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ABSTRACT
We investigate the influence of dark energy on structure formation, within five different
cosmological models, namely a concordance � cold dark matter model, two models with
dynamical dark energy, viewed as a quintessence scalar field [using a Ratra and Peebles (RP)
and a supergravity (SUGRA) potential form], and two extended quintessence models (EQp
and EQn), where the quintessence scalar field interacts non-minimally with gravity (scalar–
tensor theories). We adopted for all models the normalization of the matter power spectrum σ 8

to match the cosmic microwave background data. In the models with dynamical dark energy
and quintessence, we describe the equation of state with w0 ≈ −0.9, still within the range
allowed by observations. For each model, we have performed hydrodynamical simulations in
a cosmological box of (300 Mpc h−1)3 including baryons and allowing for cooling and star
formation. The contemporary presence of evolving dark energy and baryon physics allows us
to investigate the interplay between the different background cosmology and the evolution of
the luminous matter. Since cluster baryon fraction can be used to constrain other cosmological
parameters such as �m, we also analyse how dark energy influences the baryon content of
galaxy clusters. We find that in models with dynamical dark energy, the evolving cosmological
background leads to different star formation rates and different formation histories of galaxy
clusters, but the baryon physics is not affected in a relevant way. We investigate several proxies
of the cluster mass function based on X-ray observables like temperature, luminosity, Mgas

and Ygas. We conclude that the X-ray temperature and Mgas functions are better diagnostic to
disentangle the growth of structures among different dark energy models. We also evaluate
the cosmological volumes needed to distinguish the dark energy models here investigated
using the cluster number counts (in terms of the mass function and the X-ray luminosity and
temperature functions). Relaxed, massive clusters, when studied in regions sufficiently far
from the centre, are built up in a very similar way despite the different dark energy models
here considered. We confirm that the overall baryon fraction is almost independent of the dark
energy models at a few per cent level. The same is true for the gas fraction. This evidence
reinforces the use of galaxy clusters as cosmological probe of the matter and energy content
of the Universe.
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1 INTRODUCTION

Over the last decade great observational evidence (Riess et al. 1998;
Perlmutter et al. 1999; Vikhlinin et al. 2009; Jarosik et al. 2011) has
shown that at present time the Universe is expanding at an acceler-
ated rate. This fact can be attributed to a component with negative
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pressure, which is usually referred to as dark energy, that today
accounts for about 3/4 of the entire energy budget of the Universe.
The simplest form of dark energy is a cosmological constant term
� in Einstein’s equation, within the so-called � cold dark matter
(�CDM) cosmologies. Though in good agreement with observa-
tions, a cosmological constant is theoretically difficult to under-
stand in view of the fine-tuning and coincidence problems. A valid
alternative consists in a dynamical dark energy contribution that
changes in time and space, often associated to a scalar field (the
‘cosmon’ or ‘quintessence’) evolving in a suitable potential (Ratra
& Peebles 1988; Wetterich 1988). Dynamical dark energy allows
for appealing scenarios in which the scalar field is the mediator of
a fifth force, either within scalar–tensor theories or in interacting
scenarios (Wetterich 1995; Amendola 2000; Boisseau et al. 2000;
Mota et al. 2008; Pettorino & Baccigalupi 2008, and references
therein). In view of future observations, it is of fundamental in-
terest to investigate whether dark energy leaves some imprints in
structure formation, giving a practical way to distinguish among
different cosmologies, as recently investigated in Hu & Sawicki
(2007), Baldi et al. (2010), Zhao et al. (2010), Baldi (2011), Baldi
& Pettorino (2011) and Wintergerst et al. (2010).

In this paper, we study the general properties of galaxy clusters in
different dark energy cosmologies. Galaxy clusters are the largest
virialized objects in the Universe and are considered to be a fair
sample of the overall matter distribution of the Universe itself.
They contain a large amount of gas in the form of diffused ionized
plasma known as intracluster medium (ICM), which emits in the X-
ray band. The X-ray properties of galaxy clusters such as luminosity
and temperature trace the total mass of the cluster itself, and hence
can be used to study global properties of these objects. A lot of
observational work (Chandra, XMM–Newton) has been made in
recent years, and future missions (e.g. IXO, eROSITA, WFXT) are
under study to improve the characterization of these objects in the
X-rays. The properties of galaxy clusters, in particular their mass,
can be investigated also in the optical region of the spectrum through
gravitational lensing, giving independent estimates with respect to
X-rays.

In this paper, we analyse the properties of simulated galaxy clus-
ters in cosmologies with different dark energy models. We follow
the formation and evolution of structures in hydrodynamical simula-
tions of a cosmological box of size (300 Mpc h−1)3 for five different
cosmologies. These cosmologies are in general characterized by the
presence of a dynamical dark energy component, i.e. a dark energy
component with density and equation of state evolving with time,
and they will be introduced and discussed in detail in Section 2. After
presenting the selection and composition of the sample we extract
from the simulations, we will study the mass function at different
redshifts. Different dark energy models have a different cosmic mi-
crowave background (CMB) normalization of the spectrum of the
perturbations and a different growth factor, both things affecting
the mass function of galaxy clusters. Then we will study the X-ray
luminosity and temperature functions, because both quantities are
a proxy for the cluster mass and can therefore be used to search for
dark energy imprints. In this case the advantage is that these quan-
tities are somehow directly observable with space facilities, while
evaluating the mass of a galaxy cluster requires the assumption of
a model or physical hypotheses (such as hydrodynamical equilib-
rium) that can introduce systematics (for example if the cluster is
not in a relaxed state), as shown in Rasia et al. (2006). We will also
examine the X-ray luminosity–temperature (L–T) relation of our
sample, in order to check whether there is any clear discrepancy
between the properties of the simulated objects with respect to the

observed ones (Arnaud & Evrard 1999; Maughan 2007; Pratt et al.
2009). After the analysis of the global properties of the simulated
sample, we will concentrate on the internal properties of the sin-
gle clusters and study the relative distribution of the different mass
components. In particular we will check the dark energy depen-
dence of the baryon fraction f bar. The study of the baryon fraction
in galaxy clusters, either in the form of ICM or of stars in galaxies,
is useful to understand the formation history and the properties of
these objects. Combined with other independent information, such
as the value of the baryonic density �b derived from primordial
nucleosynthesis, f bar can be used to derive the value of the matter
density of the Universe, �m = �bf bar.

The paper is organized as follows. In Section 2 the different
cosmological models will be introduced; in Section 3 the simulation
set will be discussed and in Section 4 the study of the mass functions
of the selected sample will be analysed. Section 5 is centred on the
analysis of the X-ray L–T relation, while in Section 6 the X-ray
observables functions will be studied. In Section 7 we will describe
the analysis and the results of the study of the cluster baryon fraction,
while conclusions will be drawn in Section 8.

2 THE COSMOLOGICAL MODELS

In a homogeneous and isotropic universe, the cosmological expan-
sion depends on the various energy components, as described by
the Friedmann equation:

H 2 = H 2
0

[∑
i

�0i exp

(
−3

∫ a

a0

1 + wi(a′)
a′ da′

)

+
( a0

a

)2
(

1 −
∑

i

�0i

)]
. (1)

Here, the Hubble parameter is defined as H ≡ ȧ/a (where the dot
denotes the derivative with respect to the cosmic time t), �0i ≡
ρ0i/ρ0c is the current density parameter of the ith component of
the universe, ρ0c ≡ 3H 2

0 /8πG is the critical density at present
time, wi is the equation of state parameter of the ith component
(wi ≡ pi/ρ i) and the sum is taken over all components. We have
used natural units and set c = 1. The first term in equation (1)
includes densities associated to each constituent of the universe
while the second term accounts for any possible deviation from
flat geometry. We can assume that the universe is constituted of
three different components: matter (baryons and CDM), for which
wm = 0; radiation (photons plus relativistic matter) with wr = 1/3,
whose contribution is nowadays negligible; dynamical dark energy
(DE), which, in the simplest case, behaves as a fluid with negative
time dependent wDE and provides the present accelerated expansion
of the universe. We consider flat cosmological models for which∑

i�0i = 1, so the curvature term in the Friedmann equation will
be equal to zero. With this in mind, and introducing κ ≡ 8πG, we
can express equation (1) as

H 2 = κ

3

∑
i

ρ0i exp

(
−3

∫ a

a0

1 + wi(a′)
a′ da′

)
. (2)

For our analysis we have considered three possible sets of cos-
mological models. The first one is the standard �CDM model, that
we use as a reference model, where dark energy is represented by
the cosmological constant. This model is in agreement with present
observations, though theoretically it is intrinsically affected by fine-
tuning and coincidence problems. Alternatively, dark energy could
be a dynamical component, seen as a scalar field rolling down a
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potential (Ratra & Peebles 1988; Wetterich 1988). If the scalar field
is minimally coupled to gravity, this class of scenarios is still af-
fected by fine-tuning and coincidence problems, as much as in the
standard �CDM model. It is however interesting, for our analysis,
to consider such dynamical cases, where a time varying equation
of state is present. Numerical simulations of quintessential CDM
have been presented, for example, in Jennings et al. (2010). More
interestingly, the dynamical scalar field could be coupled to other
species, as addressed in Wetterich (1995), Amendola (2000) and
Pettorino & Baccigalupi (2008). We limit ourselves to the case in
which the coupling involves universally all species, as it happens in
scalar–tensor theories (Boisseau et al. 2000). The latter have been
also investigated within F(R) theories in Schmidt et al. (2009) and
Oyaizu, Lima & Hu (2008). N-body simulations with a coupling to
gravity (extended quintessence) have been studied, for example, in
Li, Mota & Barrow (2011). Note that hydrosimulations including a
coupling to dark matter have been presented in Baldi et al. (2010).
N-body simulations for coupled dark energy have been investigated
in Macciò et al. (2004) and Zhao et al. (2010). In Li & Zhao (2009)
and Zhao et al. (2010) the effect of scalar field perturbations was
also taken into account. Further fifth force couplings have been
simulated in Li & Zhao (2009). The impact of early dark energy
in structure formation has been considered in Grossi & Springel
(2009). Our analysis differs from previous works because of dif-
ferent dynamics in the dark energy models considered and of the
contemporary inclusion of baryonic physics in the framework of
evolving dark energy scenarios.

We will now specify in more detail the cosmologies here consid-
ered and our choice of the parameters.

2.1 �CDM

The first model considered is the concordance �CDM model, with
the values of the cosmological parameters taken from 3 yr Wilkin-
son Microwave Anisotropy Probe (WMAP3; see Section 2.4). This
model is characterized by the presence of a dark energy component
given by a cosmological constant �, with a constant w� = −1, so
that equation (2) can be written as

H 2 = κ

3

[
ρ0m

( a0

a

)3
+ ρ0r

( a0

a

)4
+ ρ0�

]
, (3)

with m, r and � denoting the matter, radiation and cosmological
constant components, respectively.

2.2 Minimally coupled quintessence

The second case that we consider here is that of a dynamical dark
energy, given by a quintessence scalar field φ with an equation of
state w = w(a) (Ratra & Peebles 1988; Wetterich 1988). In general,
we can express equation (2) as

H 2 = κ

3

[
ρ0m

( a0

a

)3
+ ρ0r

( a0

a

)4
+ ρφ

]
, (4)

where φ denotes the quintessence component. The evolution of ρφ

can be obtained from the continuity equation

ρ̇φ + 3H (ρφ + pφ) = 0, (5)

so that formally

ρφ = ρ0φ exp

[
−3

∫ a

a0

1 + wφ(a′)
a′ da′

]
, (6)

where wφ ≡ pφ /ρφ . The conserved energy density and pressure of
the quintessence scalar field that appear in equation (5) are defined

as

ρφ = 1

2
φ̇2 + V (φ), (7)

pφ = 1

2
φ̇2 − V (φ), (8)

where V(φ) is the potential in which the scalar field φ rolls.
Similarly, the evolution of the quintessence scalar field φ is given

by the Klein–Gordon equation, obtained from equation (5) substi-
tuting equations (7) and (8),

φ̈ + 3Hφ̇ + ∂V (φ)

∂φ
= 0. (9)

We note from equations (7) and (8) that when the kinetic term φ̇2/2
is negligible with respect to the potential term V(φ), then wφ → −1
and the �CDM case is recovered.

In this paper, as potentials for minimally coupled quintessence
models, we consider an inverse power-law potential

V (φ) = M4+α

φα
, (10)

the so-called RP potential (Ratra & Peebles 1988), as well as its
generalization suggested by supergravity arguments (Brax & Martin
1999), known as SUGRA potential, given by

V (φ) = M4+α

φα
exp(4πGφ2), (11)

where in both cases M and α ≥ 0 are free parameters.

2.3 Scalar–tensor theories

It is well possible that the quintessence scalar field might interact
with other species. Here we consider the case in which φ interacts
non-minimally with gravity (Wetterich 1988; Boisseau et al. 2000)
and we refer in particular to the extended quintessence (EQ) models
described in Perrotta, Baccigalupi & Matarrese (2000), Pettorino,
Baccigalupi & Perrotta (2005) and Pettorino & Baccigalupi (2008).
Scalar–tensor theories of gravity are generally described by the
action

S =
∫

d4x
√−g

[
1

2κ
f (φ,R) − ω(φ)

2
∂μφ∂μφ − V (φ) + Lfluid

]
,

(12)

where R is the Ricci scalar, the function f (φ, R) specifies the cou-
pling between the quintessence scalar field and the Ricci scalar,
ω(φ) and V(φ) specify the kinetic and potential terms, respectively,
and the Lagrangian Lfluid includes all the components but φ. Here
we assume for the sake of simplicity a standard form for the kinetic
part, ω(φ) = 1, and we define the coupling function as f (φ, R) =
κF(φ)R, where F(φ) is chosen to be

F (φ) = 1

κ
+ ξ

(
φ2 − φ2

0

)
. (13)

Here κ ≡ 8πG∗, where G∗ represents the ‘bare’ gravitational con-
stant (Esposito-Farèse & Polarski 2001), which is in general dif-
ferent from the Newtonian constant G and is set in such a way
that locally 1/κ + ξ (φ2 − φ2

0 ) = 1/8πG in order to match local
constraints on General Relativity. The parameter ξ represents the
‘strength’ of the coupling. In particular we consider here a model
with positive coupling ξ > 0 (EQp) and one with negative ξ < 0
(EQn). Note that a dependence on the sign is expected in this case
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(Pettorino & Baccigalupi 2008). The limit of General Relativity is
recovered when ωJBD 
 1, where

ωJBD ≡ F (φ)

[∂F (φ)/∂φ]2
. (14)

Stringent constraints for this quantity come from the Cassini mis-
sion (Bertotti, Iess & Tortora 2003) on Solar system scales, where
ωJBD0 > 4 × 104. However, it has been noted that such constraints
may not apply at cosmological scales (Clifton, Barrow & Scherrer
2005) where complementary bounds, obtained combining WMAP1
and 2dF large-scale structure data, provide the less tight limit of
ωJBD0 > 120 at 95 per cent confidence level (Acquaviva et al. 2005).

In EQ models, we can define a conserved density and pressure
for the scalar field, given by (Perrotta & Baccigalupi 2002)

ρφ = 1

2
φ̇2 + V (φ) − 3HḞ (φ) + 3H 2

[
1

κ
− F (φ)

]
, (15)

pφ = 1

2
φ̇2 − V (φ) + F̈ (φ) + 2HḞ (φ)

− (2Ḣ + 3H 2)

[
1

κ
− F (φ)

]
, (16)

respectively. The evolution of the scalar field follows from the
Klein–Gordon equation

φ̈ + 3Hφ̇ + ∂V (φ)

∂φ
= 1

2

∂F (φ)

∂φ
R, (17)

where the Ricci scalar is given by

R = 6(Ḣ + 2H 2). (18)

As in previous scenarios, equation (2) can be again expressed as

H 2 = κ

3

[
ρ0m

( a0

a

)3
+ ρ0r

( a0

a

)4
+ ρφ

]
, (19)

where ρφ is the conserved energy density defined in equation (15).
In this paper, as underlying potential for the extended quintessence
models, we use the RP potential in equation (10). Looking at
equations (13), (15) and (16) we notice that minimally coupled
quintessence is recovered for ξ → 0.

For an extensive linear treatment of EQ models we refer to
Pettorino & Baccigalupi (2008). Here we only recall for conve-
nience that EQ models behave like minimally coupled quintessence
theories in which, however, a time-dependent effective gravitational
interaction is present. In particular, in the Newtonian limit, the Euler
equation for CDM can be written as

∇v̇m + H∇vm + 4πG̃Mmδ(0)

a2
= 0, (20)

in terms of the cosmic time, where we have redefined the gravita-
tional parameter as

G̃ = 2[F + 2(∂F/∂φ)2]

[2F + 3(∂F/∂φ)2]

1

8πF
. (21)

The latter formalism is general for any choice of F(φ). For the
coupling here chosen and given by equation (13) we have

G̃=
[
(1/8πG∗) + (1 + 8ξ )ξφ2 − ξφ2

0

][
(1/8πG∗) + (1 + 6ξ )ξφ2 − ξφ2

0

] 1[
(1/G∗) + 8πξ (φ2 − φ2

0 )
].

(22)

For small values of the coupling, that is to say ξ � 1, the latter
expression becomes

G̃

G∗
∼ 1 − 8πG∗ξ

(
φ2 − φ2

0

)
, (23)

Figure 1. Correction to the gravity constant for the two extended
quintessence models, EQp (cyan) and EQn (red), as expressed in equa-
tion (23). Note that the corrections are only within the per cent level.

which manifestly depends on the sign of the coupling ξ . We note
that, since the derivative of the RP potential in equation (10) with
respect to φ is ∂V (φ)/∂φ < 0, we have φ2 < φ2

0. This leads to the
behaviour of G̃/G∗ shown in Fig. 1.

2.4 Choice of the parameters

As a reference model we use the �CDM model, adapted to the
WMAP3 values (Spergel et al. 2007), with the following cosmolog-
ical parameters:

(i) matter density: �0m = 0.268;
(ii) dark energy density: �0� = 0.732;
(iii) baryon density: �0b = 0.044;
(iv) Hubble parameter: h = 0.704;
(v) power spectrum normalization: σ 8 = 0.776;
(vi) spectral index: ns = 0.947.

We trimmed the parameters of the four dynamical dark energy
models so that w0 = w(0) ≈ −0.9 is the highest value still consistent
with observational constraints in order to amplify the effects of
dark energy. Fig. 2 shows the evolution with redshift of w in each
cosmology. The parameters �0m, �0�, �0b, h and ns are the same for
all the models, but since we normalize all the dark energy models
to CMB data from WMAP3, this leads to different values of σ 8 for

Figure 2. Redshift evolution of the equation of state parameter w for the dif-
ferent cosmological models considered: �CDM (black), RP (blue), SUGRA
(green), EQp (cyan) and EQn (red).
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Figure 3. Redshift evolution of the growth factor D+, normalized to the
corresponding σ 8, for the different cosmological models considered: �CDM
(black), RP (blue), SUGRA (green), EQp (cyan) and EQn (red).

Table 1. Parameters chosen for the different cosmolog-
ical models: α is the exponent of the inverse power-law
potential; ξ is the coupling in the extended quintessence
models; wJBD0 is the present value of the parameter in-
troduced in equation (14); w0 is the present value of the
equation of state parameter for dark energy and σ 8 is the
normalization of the power spectrum as in equation (24).

Model α ξ wJBD0 w0 σ 8

�CDM – – – −1.0 0.776
RP 0.347 – – −0.9 0.746
SUGRA 2.259 – – −0.9 0.686
EQp 0.229 +0.085 120 −0.9 0.748
EQn 0.435 −0.072 120 −0.9 0.729

the different cosmologies:

σ8,DE = σ8,�CDM
D+,�CDM(zCMB)

D+,DE(zCMB)
, (24)

assuming zCMB = 1089. This fact, along with the different evolution
of the growth factor D+ (shown in Fig. 3), has an impact on structure
formation. Table 1 lists the parameters chosen for the different
cosmological models.

3 NUMERICAL SIMULATIONS

In order to study the formation and evolution of large-scale struc-
tures in these different cosmological scenarios we use N-body +
hydrodynamical simulations done with the GADGET-3 code (Springel,
White & Hernquist 2001; Springel 2005), which makes use of the
entropy-conserving formulation of smoothed particle hydrodynam-
ics (SPH; Springel & Hernquist 2002). We extended the dark en-
ergy implementation as described in Dolag et al. (2004) to allow
the code to use an external, tabulated Hubble function as well as a
tabulated correction to the gravity constant needed for the extended
quintessence models. The hydrodynamical simulations include ra-
diative cooling, heating by a uniform redshift-dependent ultraviolet
(UV) background (Haardt & Madau 1996) and a treatment of star
formation and feedback processes. The prescription of star forma-
tion we use is based on a subresolution model to account for the
multiphase structure of the interstellar medium (ISM), where the
cold phase of the ISM is the reservoir of star formation (Springel &
Hernquist 2003). Supernovae (SNe) heat the hot phase of the ISM

and provide energy for evaporating some of the cold clouds, thereby
leading to self-regulation of the star formation and an effective
equation of state to describe its dynamics. As a phenomenological
extension of this feedback scheme, Springel & Hernquist (2003)
also included a simple model for galactic winds, whose velocity,
vw, scales with the fraction η of the Type II SN feedback energy that
contributes to the winds. The total energy provided by Type II SN is
computed by assuming that they are due to exploding massive stars
with mass >8 M� from a Salpeter (1955) initial mass function,
with each SN releasing 1051 erg of energy. We have assumed η =
0.5, yielding vw � 340 km s−1.

We simulated a cosmological box of size (300 Mpc h−1)3, re-
solved with (768)3 dark matter particles with a mass of mDM ≈
3.7 × 109 M� h−1 and the same amount of gas particles, having a
mass of mgas ≈ 7.3 × 108 M� h−1. As in Dolag et al. (2004), we
modified the initial conditions for the different dark energy scenar-
ios adapting the initial redshift for the initial conditions in the dark
energy scenarios determined by the ratio of the linear growth factors
D+(z),

D+(zini)

D+(0)
= D+,�CDM

(
zini

�CDM

)
D+,�CDM(0)

. (25)

Additionally, the peculiar velocities of the particles are corrected
according to the new redshift to reflect a consistent application of
the Zel’dovich approximation (Zel’dovich 1970) ,

ẋ(t) = Ḋ+(t)H (t)∇q�(q). (26)

Note that, unlike in previous works, here we do not use the ap-
proximation �0.6

m for Ḋ+(t) as this would lead to small inaccuracies
in some of the dark energy scenarios. Finally, we also correct the
velocities of the particles due to the changed displacement field at
the new redshift according to

vini = vini
�CDM

Ḋ+(zini) H (zini)

Ḋ+,�CDM

(
zini

�CDM

)
H�CDM

(
zini

�CDM

) . (27)

Therefore, all simulations start from the same random phases, but
the amplitude of the initial fluctuations is rescaled to satisfy the
constraints given by CMB.

In Fig. 4 we show a density slice of depth equal to 1/64 of the box
size through the whole box for each of the five models considered at
z = 0. At first sight, we can see that the structures form in the same
place in the different cosmologies since the initial phases are the
same. Moreover, the differences among the models are small and
cannot be seen with the eye; indeed, an accurate statistical analysis
is needed to understand the properties of the objects in the different
models.

In Fig. 5 we plot the star formation rate density (SFRD) as
a function of density for all the model considered. The SFRD
in general follows the growth of the perturbations as shown in
Fig. 3.

Using the outputs of simulations, we extract galaxy clusters from
the cosmological boxes, using the spherical overdensity criterion to
define the collapsed structures. We take as halo centre the position
of the most bound particle. Around this particle, we construct spher-
ical shells of matter and stop when the total (i.e. dark matter plus gas
plus stars) overdensity drops below 200 times the mean (as opposed
to critical) background density defined by �0mρ0c; the radius so
defined is denoted with R200m and the mass enclosed in it as M200m.
We consider only haloes that have M200m > 1.42 × 1014 M�. We
select and study objects at three different redshifts, z = 0, 0.5 and 1.
For the following analysis, we also calculate for each cluster se-
lected in this way the radius at which the overdensity drops below
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Figure 4. Density slice of depth equal to 1/64 of the box size through the whole simulation box for the five different models at z = 0.
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Figure 5. SFRD as a function of redshift for the �CDM model (black), RP
(blue), SUGRA (green), EQp (cyan) and EQn (red) cosmologies.

200 (500) times the critical background density and denote it with
R200(R500). The corresponding mass is indicated as M200 (M500). Just
as a reference, the most massive object of all the simulations has
M200m = 3.15 × 1015 M�. The number of clusters at each redshift
is different for each cosmology: for example, the sample at z = 0
is made up by 563 clusters in the �CDM cosmology, 484 in RP,
352 in SUGRA, 476 in EQp and 431 in EQn. This fact directly
reflects the different values of σ 8 and D+ leading to differences
in the formation history of the haloes. No morphological selection
has been made on the sample considered, so that clusters in very
different dynamical state are included. Nevertheless, it is useful to
define a quantitative criterion to decide whether a cluster can be
considered relaxed or not because, in general, relaxed clusters have
more spherical shapes, better defined centres and thus are more rep-
resentative of the self-similar behaviour of the dark matter haloes.
We use a simple criterion similar to that introduced in Neto et al.
(2007): first of all we define xoff as the distance between the centre
of the halo (given by the most bound particle) and the barycentre of
the region included in R200m; then we define as relaxed the haloes
for which xoff < 0.07R200m.

4 MASS FUNCTION

A standard way to use galaxy clusters as cosmological probe is the
study of their mass function. Since the total mass of these objects
is dominated by dark matter, it is a tracer of structure formation
in different cosmological models. In the top panel of Fig. 6 we
plot the cumulative mass functions for the different cosmologies
at three different redshifts: z = 0, 0.5 and 1. This plot simply
illustrates the number of haloes per unit volume having a total mass
greater than a given mass threshold. We can see that the shape and
the properties of the mass functions are substantially the same at
different redshifts (with the obvious exception of the maximum
mass of the formed haloes), with �CDM forming more clusters of
a given mass with respect to the other cosmologies; SUGRA is the
cosmology which forms fewer clusters, while RP, EQp and EQn
lie in between, with RP and EQp being the closest to �CDM. This
fact seems to directly reflect the redshift evolution of the equation
of state parameter w (see Fig. 2) and of the growth factor (see
Fig. 3), given the different value of σ 8 in the different models.
Actually, for extended quintessence models, a positive value of
the coupling ξ leads to G̃ > G∗ in the past, and vice versa for a

Figure 6. Top panel: cumulative mass function at z = 0, 0.5 and 1 for the
�CDM (black), RP (blue), SUGRA (green), EQp (cyan) and EQn (red)
cosmologies. For each cosmological model the mass of the most massive
object at each redshift is marked by a cross. Error bars (shown only for
�CDM for clarity reasons) are Poissonian errors for the cluster number
counts. Bottom panel: ratios between the mass functions for different dark
energy cosmologies and the corresponding values for �CDM at z = 0, 0.5
and 1.

negative ξ . Therefore, the linear density contrast is expected to be
higher for EQp than for EQn. In a spherical collapse model like the
Press–Schechter formalism (Press & Schechter 1974), this implies a
higher mass function for models with negative coupling (i.e. EQn)
than for models with positive coupling (i.e. EQp), when all the
other parameters are kept fixed. In our case, this effect is somehow
mitigated by the different σ 8 used.

In the bottom panel of Fig. 6 we plot (always at z = 0, 0.5 and
1) the ratios between the number of clusters in a given dark energy
model with respect to the corresponding value in �CDM. For each
cosmology, we consider only bins in which we have more than
one object. The same results are summarized also in Table 2. At
z = 0, RP, EQp, EQn and SUGRA form 86, 85, 77 and 63 per
cent the number of objects formed in �CDM, respectively. These
numbers decrease with increasing redshift, reaching, at z = 1, 78,
76, 64 and 47 per cent for RP, EQp, EQn and SUGRA, respectively.
This fact indicates that the differences in the formation history are
more evident at high redshift. If we consider different mass bins at
z = 0, we see that the differences between �CDM and the other
models are enhanced for very massive objects, in particular for
SUGRA.
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Table 2. Ratios between the number of clusters in the simulated volume for
a given dark energy model with respect to N�CDM in the given M200m bin
at different redshifts.

M200m (1014 M�) z N�CDM RP SUGRA EQp EQn

>1.42 0 563 0.86 0.63 0.85 0.77
>1.42 0.5 202 0.81 0.52 0.80 0.69
>1.42 1 45 0.78 0.47 0.76 0.64

1.42–5 0 507 0.88 0.65 0.86 0.78
5–10 0 45 0.69 0.42 0.69 0.67
>10 0 11 0.82 0.36 0.82 0.64

Note that we have considered here minimally coupled models and
scalar–tensor theories, as illustrated in Section 2. Couplings with
dark matter only, where, as in equation (20), an additional velocity-
dependent term is present, have been shown to lead to different
results (Baldi & Pettorino 2011), increasing the number of massive
clusters at high redshift. Differences between these sets of models
have been illustrated in detail in Pettorino & Baccigalupi (2008).

In principle, if we can count all the clusters above a given mass
threshold, or in a given mass bin, we can try to discriminate between
different cosmologies just using cluster number counts coming from
cosmological surveys. From a practical point of view, evaluating the
mass of galaxy clusters requires the assumption of some hypotheses
on their dynamical state, and in general it is not an easy task to per-
form. So it is better to consider cluster properties that are directly
observable (like X-ray luminosity and temperature) in order to dis-
tinguish among different cosmologies. We discuss these topics in
the next two sections.

5 L– T RELATION

Once we have analysed the general composition of our sample, we
can now proceed with the study of the properties of the objects
inside the sample. We recall that, when considering self-similar
evolution of gravitational systems, we can derive simple scaling
relations between their properties. The existence of such scaling
relations is confirmed by observations, even if in general they have
a different shape with respect to the ones predicted by self-similarity,
indicating an important role of some non-gravitational physics in the
evolution of these systems. We use our hydrodynamical simulations
in order to understand whether the baryon physics introduces any
scale dependence that can break the self-similarity of the scaling
relations. Since one of the aim of this work is to study whether there
exist observable quantities that can be used to distinguish among
the different cosmologies considered, we start studying the X-ray
L–T relation of our sample, also comparing it to observations to
verify that the observed relation holds for our simulated objects too.

In order to do that for the clusters we want to analyse, we produce
2D maps of (5 Mpc)2 size of the X-ray luminosity LX and emission-
weighted temperature Tew in the [0.5–2] keV soft band. The latter
is defined by

Tew ≡
∫

�(T )n2T dV∫
�(T )n2 dV

, (28)

where n is the gas density and �(T) is the cooling function.
Then, for each object, we evaluate the total luminosity and the

emission-weighted temperature in the region [0.15–1]R500. We de-
cide to cut the core for two reasons: first of all, despite the fact we
use accurate physical models to describe the hydrodynamics of the
simulations, still we do not include active galactic nucleus (AGN)

feedback, so they are not optimized for the study of the central
regions of the clusters; secondly, we have checked that cutting the
core we obtain a lower dispersion of our data in the L–T plane. We
stress that despite excluding the central region of the clusters in our
analysis we can still draw robust conclusions from a cosmological
point of view, avoiding the effects of detailed physical processes
which can affect the inner parts. Moreover, this cut is often used
in observations to avoid problems with cool-core emission that can
lead to a deviation from the self-similar scaling relation. Having
generated luminosity and temperature catalogues of our sample,
we can proceed with the analysis of the L–T relation. In the left-
hand panel of Fig. 7 we plot the L–T relation at different redshifts
(z = 0, 0.5 and 1) for the �CDM cosmology. Here we correct
the luminosity using E−1

z ≡ H0/H, which is a factor containing all
the predicted dependence on the cosmology (see e.g. Ettori et al.
2004). We can see that there are not substantial differences at the
various redshifts, but in general at high redshift we lack clusters
in the luminosity region below 1043 erg s−1 and in the temperature
region below 2 keV. This fact can be explained as a selection effect
in our sample: at high redshift, only more evolved (and thus more
luminous and hotter) clusters are massive enough to be included in
our sample. We also provide a fit to our points, fitting the linear
relation between the logarithms of luminosity and temperature. We
find a slope of 1.81, which is slightly higher than the self-similar
value of 1.5 expected for the soft band considered. Finally, we plot
a collection of observed data at different redshifts compiled by Pratt
et al. (2009). The luminosities are taken exactly in the same way as
we did, i.e. in the [0.15–1]R500 region and in the [0.5–2] keV band,
while they use spectroscopically determined temperatures (see the
details in Pratt et al. 2009). The slope of their best-fitting relation is
2.53 ± 0.16, steeper than what we found. Despite the difference in
the slope, we can see that in the high-temperature/high-luminosity
region where we have a sufficient number of both observed and sim-
ulated objects, the agreement is very good. In any case, we stress
that a direct comparison between simulations and observations is
not the main target of this work. Here, we just want to show that
our simulated clusters lie in a region in the L–T plane which is the
same as the observed objects. Regarding the differences we find in
the low-temperature/low-luminosity region, we stress that it is not
due to overcooling in the simulations, since we are cutting the core;
more likely, this region is populated by objects with lower mass,
for which the detailed physical processes acting in the inner regions
(e.g. AGN feedback) have important effects also on the overall
properties of the clusters (see e.g. Puchwein, Sijacki & Springel
2008).

In the right-hand panel of Fig. 7 we plot the evolution with
redshift of the mean luminosity and temperature in the different
cosmologies. We consider only the relaxed clusters at z = 0, 0.5
and 1. Then, for each cosmology, we select the 10 most massive
objects at each redshift, using M200 for this selection. Actually,
at z = 1 for the SUGRA model we only have six relaxed clus-
ters, and we consider all of them. At this point, at each redshift,
we evaluate the mean luminosity and temperature of the selected
objects both in the region inside R500 and in the region [0.15–
1]R500. We find that cutting the core results in both a lower mean
luminosity and lower mean emission-weighted temperature. As a
general trend, either including or cutting the core, both the mean
luminosity and temperature increase with decreasing redshift, in-
dependently of the cosmological model. This is in somehow ex-
pected, since at late cosmic time the clusters are more evolved, and
thus hotter and more luminous. The differences in the values of
mean luminosity and temperature among the different cosmologies

C© 2011 The Authors, MNRAS 415, 2758–2772
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

Downloaded from https://academic.oup.com/mnras/article-abstract/415/3/2758/1052225
by SISSA user
on 29 November 2017



2766 C. De Boni et al.

Figure 7. Left-hand panel: the X-ray L–T relation in the [0.5–2] keV band, evaluated in the [0.15–1]R500 region at z = 0 (black), z = 0.5 (cyan) and z = 1
(red) for the �CDM cosmology. The dashed black line is the best fit of our simulated data. The violet squares are a collection of observed data from Pratt
et al. (2009), while the violet line is their best fit of the same data set. Right-hand panel: redshift evolution of the mean luminosity and temperature in the
[0.5–2] keV band for the 10 most massive relaxed objects in the �CDM (black), RP (blue), SUGRA (green), EQp (cyan) and EQn (red) cosmologies. Circles
refer to objects at z = 0, triangles to objects at z = 0.5 and squares to objects at z = 1. Dashed lines and empty symbols indicate the evolution of the mean
luminosity and temperature evaluated inside R500, while solid lines and filled symbols refer to the same quantities evaluated in the [0.15–1]R500 region. In both
panels, the cosmological dependence is taken into account using the factor E−1

z ≡ H0/H which multiplies the luminosity.

reflect the different histories experienced by objects in differ-
ent dark energy environments, substantially following the mass
function.

6 X-RAY OBSERVABLE FUNCTIONS

Using the same maps built to study the X-ray L–T relation, we can
also analyse the X-ray luminosity function (XLF) and the X-ray
temperature function (XTF) of our samples. Since the samples are
mass selected (see Section 4), only the mass functions we have

shown before can be considered complete. XLFs and XTFs in some
sense reflect the mass functions, but cannot be considered complete
for the selection effect discussed in the previous section. This means
that at higher redshift, we are missing more and more clusters in
the low-luminosity region of the XLF and in the low-temperature
region of the XTF. We show in Fig. 8 the cumulative XLFs and
XTFs of our sample at z = 0. We cut the plots at 0.1 × 1044 erg s−1

and 1 keV in order to be as complete as possible also in the low-
luminosity and low-temperature regions. In the left-hand panel of
Fig. 8 we show the cumulative luminosity function. In the middle

Figure 8. Left-hand pane: the XLF in the [0.5–2] keV band, evaluated in the [0.15–1]R500 region at z = 0 for the �CDM (black), RP (blue), SUGRA (green),
EQp (cyan) and EQn (red) cosmologies. For each cosmological model the luminosity of the object with the highest luminosity is marked by a cross. Error bars
(shown only for �CDM for clarity reasons) are Poissonian errors for the cluster number counts. In the middle panel the ratios between the luminosity functions
for different dark energy cosmologies and the corresponding values for �CDM are shown. In the bottom panel we plot the ratio between the luminosity
functions shown in the top panel and the ones recovered by applying the L–M relation at z = 0 for the �CDM cosmology to the mass function of each dark
energy model. Right-hand panel: the same as in the left-hand panel, but for the XTF.
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Table 3. Ratios between the number of clusters in the simulated volume
for a given dark energy model with respect to N�CDM in the given LX, Tew,
Mgas500 and Ygas500 bin.

z = 0 N�CDM RP SUGRA EQp EQn

LX (1044 erg s−1)

0.1–0.5 391 0.87 0.61 0.86 0.78
0.5–1 24 1.38 0.63 1.13 1.00
>1 13 0.62 0.23 0.46 0.46

Tew (keV)

1–3 528 0.87 0.64 0.86 0.78
>3 30 0.70 0.33 0.57 0.43

Mgas500 (1013 M�)

1–5 347 0.85 0.58 0.81 0.76
>5 14 0.50 0.21 0.43 0.50

Ygas500 (1013 M� keV)

1–5 392 0.87 0.63 0.82 0.79
5–10 55 0.98 0.49 0.96 0.96
>10 29 0.69 0.38 0.62 0.66

panel of the same figure we plot the ratios between the number
of clusters in a given dark energy model with respect to �CDM
in every luminosity bin. As in the case of the mass function, for
each cosmology, we consider only bins in which we have more than
one object. The results for three luminosity bins are also summa-
rized in Table 3. In general, despite some noisy oscillations, the
ratio is decreasing with increasing luminosity. Nevertheless, in the
range between 0.5 and 1 × 1044 erg s−1 it increases and in three
models out of four the number of objects is equal or even large
than in �CDM. This effect seems to be statistically significant
in particular for RP. In any case, by looking only at very lumi-
nous objects, the differences with �CDM are significant for all the
models.

In the right-hand panel of Fig. 8 we show the same as in the
left-hand panel, but for the cumulative temperature function (see
also Table 3). In this case, the decrease of the ratio with increasing
temperature is evident in all the dynamical dark energy cosmologies.
Going from objects in the range between 1 and 3 keV to objects with
temperatures higher than 3 keV, RP goes from 87 to 70 per cent,
SUGRA from 64 to 33 per cent, EQp from 86 to 57 per cent and
EQn from 78 to 43 per cent.

In general, we see that the relative trend among the different cos-
mologies shown by the mass functions at z = 0 is almost preserved
in the XLFs and XTFs: in a given mass, luminosity and tempera-
ture bin, �CDM forms more clusters than the other cosmologies do
(except for RP in a luminosity bin, as noted before). On the other
hand, SUGRA is the cosmological model that forms fewer clusters
in each bin. EQp and EQn lie in between. This finding is confirmed
by the bottom panels of Fig. 8 where we show the ratios between
the XLFs and XTFs plotted in the top panels and the ones recovered
by applying the L–M relation at z = 0 for the �CDM cosmology
to the mass functions of each dark energy model. This is done to
disentangle the differences in the XLFs and XTFs due to different
mass function and the ones due to baryon physics. The fact that
the subsample considered in right-hand panel of Fig. 7 reproduces
the XLF and XTF of Fig. 8 seems also to indicate that relaxed and
massive objects are still a good representation of the whole sample.
The general trend of the mass, luminosity and temperature functions

seems to reflect the evolution with redshift of the dark energy equa-
tion of state parameter w = w(z), as we showed in Fig. 2. �CDM
tends to form massive clusters earlier than the other cosmologies,
thus giving a larger number of evolved (i.e. with high luminosity
and temperature) objects at z = 0. The XTF seems to better reflect
the mass function, while the XLF is more influenced by baryonic
physics, as we can clearly see from the behaviour of the RP cos-
mology. So, in principle, we can try to distinguish among different
cosmologies by building the XTF of a sample of galaxy clusters.
The problem is that if we check, for example, the sample from Pratt
et al. (2009), there are very few clusters in the temperature range
we have considered for our XTF. Being an X-ray-selected sample,
in general they have a higher temperature compared with our sim-
ulated objects, and so it is not easy to directly compare our results
with their observational data.

In order to check whether other proxies could better trace the
formation history of structures, we also analysed the X-ray Mgas500

and Ygas500 functions. Mgas500 is defined simply by the mass of
X-ray-emitting gas contained in R500, while Ygas500 = Mgas500Tew,
where Tew is evaluated in the [0.15–1]R500 region. We see from
Table 3 that, for Mgas500 > 5 × 1013 M�, Mgas500 is in principle
a very powerful tool to distinguish between different cosmolo-
gies. In fact, all the models form at most 50 per cent the num-
ber of objects formed by �CDM, and, since Mgas500 is quite an
easy quantity to estimate from observations it should be possi-
ble to rule out some models just by studying the Mgas500 function.
The quantity Ygas500 seems to be not as good as Mgas500, since the
differences between �CDM and the other models are less pro-
nounced, and also the behaviour in the different bins is not so
smooth.

It is interesting to evaluate the volume that a cluster survey must
cover to be able to discriminate using the local (i.e. at z = 0) cluster
counts among the different dark energy models here considered.
For that we assume Poissonian error bars and consider a 3σ level.
Using the mass function with a threshold of 5 × 1014 M�, we
find that cosmological volumes larger than 1.6 × 107 (Mpc/h)3 are
sufficient to distinguish between SUGRA and �CDM, while 6.4 ×
107 (Mpc h−1)3 are required for EQn and 9.1 × 107 (Mpc h−1)3 are
required for RP and EQp. Considering the XLF (with a threshold
of 0.5 × 1044 erg s−1), larger surveys are required: in fact volumes
larger than 4.3 × 107, 3.4 × 108, 1 × 109 and 1.3 × 109 (Mpc h−1)3

are necessary to discriminate among SUGRA, EQn, EQp and RP
and �CDM, respectively. The situation is better when the XTF (with
a threshold of 3 keV) is used: predictions for the �CDM model are
different at 3σ level with respect to the ones for SUGRA, EQn,
EQp and RP, when volumes as large as 2.7 × 107, 4.3 × 107, 6.4 ×
107 and 1.7 × 108 (Mpc h−1)3 are considered, respectively. This fact
confirms the importance of XLF/XTF in tracing the number counts
in a given cosmology, and again that the XTF is a better quantity
to use in that kind of studies, if compared to the XLF. We recall
that we are not considering any selection function on XLF/XTF,
being a proper treatment of any observational approach in defining
an XLF/XTF beyond the purpose of the present work. If we move to
z = 1, using the mass function with a threshold of 1.42 × 1014 M�
and 2.7 × 107 (Mpc h−1)3 are still sufficient to distinguish between
SUGRA and �CDM, while EQn, EQp and RP need 6.4 × 107, 1.7 ×
108 and 2.2 × 108 (Mpc h−1)3 to be distinguished from �CDM,
respectively. Larger cosmological boxes and larger observational
samples with higher resolution and sensitivity (i.e. lower flux limit),
such as the one expected with eROSITA (Predehl et al. 2007) and
WFXT (Giacconi et al. 2009), can provide better answers to the
question.
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7 THE BARYON FRACTION

In this section we focus on the baryon fraction f bar = f star + f gas

of our simulated galaxy clusters, where f star ≡ Mstar/Mtot and f gas ≡
Mgas/Mtot. Since we are considering galaxy clusters in a cosmolog-
ical context, it is better to re-express the star fraction f star, the gas
fraction f gas and the total baryon fraction f bar in units of the cosmic
baryon fraction �0b/�0m = 0.164 adopted in these simulations. To
do this we introduce the quantities

bstar ≡ fstar

�0b/�0m
, bgas ≡ fgas

�0b/�0m
, bbar ≡ fbar

�0b/�0m
, (29)

and indicate them as star, gas and baryon depletion parameter, re-
spectively. In this section we analyse the dependence of these quan-
tities on mass, redshift and distance from the centre of the object
considered, as well as on the underlying cosmology.

In Fig. 9 we plot the distribution of bbar, bgas and bstar evaluated
at R200 for the whole sample at z = 0, 0.5 and 1 in order to check
the spread of the values for the single objects. We see that at z = 0
there is a substantial overlapping among the different cosmologies,
indicating that evolved objects have almost the same distribution
whatever the underlying cosmological background is. The same is
true looking at z = 0.5 and 1, even though in these cases there is a
larger spread in the values. We note is a decrease of bstar going from
z = 1 to 0, not completely compensated by an increase of bgas. The
net effect is a decrease of bbar going from z = 1 to 0.

In Table 4 we summarize the mean value of bstar, bgas and bbar

evaluated at R2500, R500 and R200 for all the objects in the different
cosmological models considered, at z = 0, 0.5 and 1. We see that,
on the one hand, for any cosmological model, at any redshift, bstar

is a decreasing function of radius, going from R2500 to R200. On the
other hand, bgas is an increasing function of radius. As we already
noted from Fig. 9, bbar is slightly decreasing with radius. Fixing the
radius, either R2500, R500 or R200, bstar decreases going from z = 1
to 0, while bgas increases. Again, as we already noted from Fig. 9,
bbar is slightly decreasing going from z = 1 to 0. These trends are
general, and they hold for all the cosmological models considered.

In the left-hand panel of Fig. 10 we plot, for each cosmology,
the ratio between the mean values of bbar, bgas and bstar evaluated
at R200 in four different mass ranges at z = 0 and the mean value
of bnorm

bar , bnorm
gas and bnorm

star for clusters having M200 ≥ 1015 M� in the
�CDM cosmology at z = 0 (i.e. 0.921, 0.757 and 0.165, respec-
tively). We have considered four mass ranges: M200 < 1014, 1014 ≤
M200 < 5 × 1014, 5 × 1014 ≤ M200 < 1015 and M200 ≥ 1015 M�. We
have evaluated the quantities at R200 instead of R500 as in Section 5
because this radius is representative of the cluster as a whole, in-
cluding the external regions, and indeed we want to check whether,
in different cosmologies, these objects are a fair representation of
the underlying background. The first thing we notice is that, in every
mass bin, the values of bbar, bgas and bstar are similar, within error
bars, among the different cosmologies. So, we can refer to a single
cosmology (e.g. �CDM) in order to study the mass dependence of
these quantities. We see that bbar is almost constant, independent
of mass. On the one hand, bgas shows a slight positive trend, of the
order of 5 per cent, going from low-mass to high-mass systems, but
still compatible with a constant value within the error bars. On the
other hand, bstar shows a decrease up to 30 per cent going from low-
mass to high-mass clusters, not compatible with a constant value.
In the right-hand panel of Fig. 10 we plot, for each cosmology,
the ratio between bbar, bgas and bstar evaluated at R200 at z = 1 and
the mean values for �CDM at z = 0 already used in the left-hand
panel. We limit ourselves by dividing the sample between objects
having M200 < 1014 M� and objects having M200 ≥ 1014 M�, since

Figure 9. Distribution of bbar, bgas and bstar evaluated at R200 for the �CDM
(black), RP (blue), SUGRA (green), EQp (cyan) and EQn (red) cosmologies
at z = 0 (top panel), z = 0.5 (middle panel) and z = 1 (bottom panel).

at this redshift the cluster abundance starts to be low. Again, in both
mass bins, the cosmologies are completely equivalent within error
bars.

We stress here again that our simulations do not follow AGN
feedback. It is known from literature (e.g. Puchwein et al. 2008)
that the effect of this feedback is mass dependent, leading to a
lowering in the baryon fraction in groups and low-mass clusters,
without affecting significantly high-mass clusters.

We find in general a constant baryon fraction with respect to
the mass. Some authors (e.g. Giodini et al. 2009) claim that in
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Table 4. Mean values of bstar, bgas and bbar evaluated at R2500, R500 and R200 for all the objects in the different cosmological
models considered, at z = 0, 0.5 and 1. N indicates the number of objects in the given model at the given redshift. Numbers in
brackets are 1σ errors on the mean.

Model z N bstar2500 bgas2500 bbar2500 bstar500 bgas500 bbar500 bstar200 bgas200 bbar200

�CDM 0 563 0.508 0.535 1.043 0.269 0.680 0.948 0.207 0.731 0.937
(0.072) (0.067) (0.065) (0.032) (0.037) (0.036) (0.021) (0.027) (0.026)

0.5 202 0.865 0.435 1.300 0.385 0.621 1.006 0.263 0.704 0.967
(0.110) (0.062) (0.106) (0.051) (0.050) (0.056) (0.030) (0.034) (0.037)

1 45 1.359 0.437 1.796 0.574 0.568 1.142 0.364 0.669 1.033
(0.214) (0.090) (0.189) (0.113) (0.071) (0.093) (0.063) (0.051) (0.058)

RP 0 484 0.498 0.541 1.039 0.263 0.683 0.946 0.204 0.733 0.937
(0.069) (0.066) (0.063) (0.029) (0.037) (0.036) (0.019) (0.026) (0.024)

0.5 164 0.852 0.450 1.302 0.378 0.629 1.007 0.261 0.705 0.967
(0.107) (0.065) (0.010) (0.051) (0.052) (0.059) (0.028) (0.035) (0.037)

1 35 1.380 0.452 1.833 0.562 0.584 1.146 0.350 0.675 1.026
(0.155) (0.085) (0.149) (0.093) (0.072) (0.085) (0.055) (0.050) (0.065)

SUGRA 0 352 0.520 0.549 1.069 0.260 0.693 0.953 0.196 0.740 0.937
(0.076) (0.066) (0.066) (0.029) (0.036) (0.035) (0.018) (0.025) (0.024)

0.5 105 0.863 0.463 1.326 0.368 0.643 1.011 0.251 0.717 0.968
(0.130) (0.066) (0.113) (0.052) (0.047) (0.051) (0.031) (0.032) (0.033)

1 21 1.393 0.477 1.870 0.554 0.579 1.132 0.348 0.674 1.021
(0.152) (0.085) (0.173) (0.091) (0.069) (0.098) (0.048) (0.064) (0.084)

EQp 0 476 0.515 0.554 1.069 0.258 0.689 0.947 0.197 0.744 0.941
(0.078) (0.068) (0.075) (0.030) (0.037) (0.036) (0.018) (0.026) (0.026)

0.5 162 0.858 0.458 1.316 0.369 0.636 1.005 0.254 0.711 0.966
(0.112) (0.062) (0.108) (0.048) (0.051) (0.052) (0.027) (0.036) (0.037)

1 34 1.379 0.466 1.845 0.561 0.575 1.136 0.342 0.670 1.013
(0.174) (0.073) (0.162) (0.090) (0.073) (0.080) (0.056) (0.055) (0.069)

EQn 0 431 0.508 0.545 1.053 0.258 0.689 0.947 0.199 0.736 0.934
(0.070) (0.058) (0.070) (0.028) (0.034) (0.034) (0.018) (0.025) (0.024)

0.5 140 0.862 0.459 1.321 0.378 0.638 1.016 0.261 0.711 0.971
(0.127) (0.063) (0.113) (0.048) (0.048) (0.051) (0.027) (0.034) (0.036)

1 29 1.404 0.460 1.863 0.557 0.568 1.125 0.343 0.674 1.018
(0.190) (0.091) (0.166) (0.085) (0.071) (0.083) (0.051) (0.054) (0.058)

Figure 10. The evolution of stellar, gas and baryon depletion parameter evaluated at R200 with mass at z = 0 (left-hand panel) and z = 1 (right-hand panel) for
the �CDM (black), RP (blue), SUGRA (green), EQp (cyan) and EQn (red) cosmologies. Crosses, triangles and squares indicate bstar, bgas and bbar, respectively.
The depletion parameters are expressed in units of bnorm

bar , bnorm
gas and bnorm

star , the mean values for clusters with M200 ≥ 1015 M� in the �CDM cosmology at z =
0. Error bars are rms of the mean distribution.

observed objects the total baryon fraction shows an increase with
increasing mass. This difference with respect to our results could
be due to the fact that some relevant physical processes are still
not included in our cosmological simulations. Such processes may

be able to affect the global properties of low-mass systems with-
out changing the high-mass clusters. Not including them in the
simulations does not permit to us to fully compare our results
with observations. In particular, we note an overabundance of stars
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(which obviously influences the total baryon fraction) in low-mass
objects.

Combining the right- and left-hand panels of Fig. 10, we can
study the evolution with redshift of bbar, bgas and bstar. Since the
differences among various cosmologies at the same redshift are
quite small, we rely on our reference �CDM model for the analysis
of redshift evolution. For clusters with 1014 < 5 × 1014 M�, the
mean value of bbar decreases of about 10 per cent going from z = 1 to
0. In particular, bgas increases of about 5 per cent, while the decrease
of bstar is up to a factor of 2. The decrease of the baryon fraction
with decreasing redshift was already found in other simulations (see
e.g. Ettori et al. 2006), and a possible explanation is that at high
redshift the radius at which the baryons accrete is smaller than at
low redshift, and so a greater number of baryons can fall in the
cluster potential well.

Finally, we study the star, gas and baryon depletion parameters
as a function of the distance from the centre of the cluster, defined
as the position of the most bound particle. For each cosmology we
select, as in Section 5, the 10 most massive (in M200) relaxed haloes
and generate the radial profile of the object obtained by stacking
them. We do this at z = 0, 0.5 and 1. We recall that, at z = 1, for
SUGRA we only have six objects. The resulting profiles, expressed
in units of the cosmic baryon fraction �0b/�0m = 0.164, are shown in
Fig. 11. At z = 0, in the outer regions near R200, the five cosmologies
are completely equivalent, with bbar having almost the cosmological
value, while looking toward the centre some differences can be seen.
This fact means that, as a whole, evolved relaxed clusters contain the
same amount of baryonic matter, independently of the underlying
cosmological model, but that the matter can be redistributed inside
them according to their formation history. This fact is confirmed by
looking at z = 0.5 and in particular at z = 1, where the differences
among the models are clear even in the outer regions, indicating a
sort of self-regulating mechanism that leads to the same objects at
z = 0 even if they can be very different at higher redshifts. Again,
the same features appear both in the mean values of the whole
sample and in more relaxed and massive objects, indicating that the
latter are a fair representation of the clusters in a given cosmological
model.

As a general rule for the radial profiles, it is confirmed the well
known relative trend of the radial profile of gas and stars compo-
nents, being the former increasing with radius and the latter de-
creasing, giving a total baryon fraction almost constant (but slightly
decreasing) beyond 0.5R200. Then we note that the total baryon frac-
tion at z = 1 is higher with respect to z = 0, in particular in the inner
regions of clusters. The effect is mainly due to a higher star frac-
tion in the inner regions of clusters at z = 1. Another quite evident
feature is that the radius at which the gas starts to dominate over
the stars increases with increasing redshift. The explanation is that,
as we have just seen, the gas fraction profile is almost independent
of redshift, while the star fraction at a given radius increases with
redshift, and so at higher redshift it remains the dominant baryonic
component also at larger radii.

8 CONCLUSIONS

In this paper we have analysed the general properties of a sam-
ple of galaxy clusters extracted from hydrodynamical simulations
of different cosmological models with dynamical dark energy. We
simulated a cosmological box of size (300 Mpc h−1)3, resolved with
(768)3 dark matter particles and the same amount of gas particles.
The reference cosmology is a concordance �CDM model normal-

Figure 11. The evolution of stellar, gas and baryon depletion parameter with
radius at z = 0 (top panel), z = 0.5 (middle panel) and z = 1 (bottom panel)
for an object obtained by stacking the 10 most massive relaxed clusters
in the �CDM (black), RP (blue), SUGRA (green), EQp (cyan) and EQn
(red) cosmologies. Crosses, triangles and squares indicate bstar, bgas and
bbar, respectively. The depletion parameters are expressed in units of the
cosmic baryon fraction �0b/�0m = 0.164. Error bars are rms of the mean
distribution.

ized to WMAP3 data. The others are two quintessence models,
one with a RP and the other with a SUGRA potential, and two ex-
tended quintessence models, with a positive and a negative coupling
between quintessence and gravity, indicated as EQp and EQn, re-
spectively. Since all models are normalized to CMB data, they have
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different σ 8, and thus different structure formation histories. We
focused on various properties of the considered objects, in particu-
lar the mass function, the X-ray L–T relation, the X-ray luminosity
and temperature functions (XLF and XTF, respectively) and finally
the baryonic fraction in terms of the depletion parameters bstar, bgas

and bbar defined in equation (29). We select and study objects at
three different redshifts, z = 0, 0.5 and 1, with M200m ≥ 1.42 ×
1014 M�. We also define a criterion to distinguish between relaxed
and unrelaxed clusters. From our analysis we draw the following
conclusions.

(i) Mass function: at z = 0 the total mass function evaluated at
R200m shows different behaviours in the different cosmologies, in
particular in the normalization. The �CDM model tends to form
more clusters of a given mass with respect to the other cosmologies;
SUGRA is the cosmology with the smallest abundance, while RP,
EQp and EQn lie in between, with RP and EQp being the clos-
est to �CDM. This fact directly reflects the redshift evolution of
the equation of state parameter w and of the growth factor, given
the different assumed value of σ 8 in the various models. Actually,
for extended quintessence models, a positive value of the coupling
leads to a higher linear density contrast, and vice versa for negative
coupling. This would imply a higher mass function for models with
negative coupling (i.e. EQn) than for models with positive coupling
(i.e. EQp), keeping fixed all remaining parameters. In our case, this
effect is somehow mitigated by the different σ 8 used. This trend is
preserved also at z = 0.5 and 1. The differences among the mod-
els are more pronounced in the high-mass tail of the distribution.
This is expected, because very massive objects form later and are
representative of the different structure formation time-scale of the
considered cosmologies. We note here that our results are different
from what has been found in the case of coupling with dark matter
(Baldi & Pettorino 2011), where there is an enhancement in the
number counts of massive objects.

(ii) L–T relation: we have compared the L–T relation of our sim-
ulated objects in the �CDM reference models with a collection of
observed objects (Pratt et al. 2009). Despite the differences in the
slope of the relation in the two cases (1.81 for our simulated objects
versus 2.53 ± 0.16 for their observed ones), we find that there is
a good agreement in the high-temperature, high-luminosity region
where X-ray selected observed objects are found. The discrepancy
in the low-temperature, low-luminosity region is not worrying, be-
cause low-mass systems are globally more affected by physical
mechanisms not yet fully understood and reproduced (e.g. Borgani
et al. 2004), acting in the core. We have also studied the evolution
with redshift of the L–T relation for the 10 most massive relaxed
objects in each cosmology, both keeping and cutting the core. We
find that cutting the core results in both a lower mean luminosity
and lower mean emission-weighted temperature. In general, both
the mean luminosity and temperature increase with decreasing red-
shift, independently of the cosmological model, because they trace
the hierarchical growth of structures.

(iii) X-ray observable functions: the relative behaviour observed
in the mass functions is also qualitatively reproduced by the XLFs
and XTFs evaluated in the [0.5–2] keV band in the [0.15–1]R500

region, with few exceptions. In particular, in the range of luminos-
ity around 0.5 × 1043 erg s−1 RP tends to form 10 per cent more
clusters than �CDM. We also checked the X-ray Mgas500 and Ygas500

functions as proxies for the mass function. We conclude that all the
X-ray observable functions are more or less equivalent, with Tew

and Mgas500 being slightly more stable than LX and Ygas500, in trac-
ing the mass function and thus disentangle the growth of structures

among different dark energy models. For each dark energy model
we evaluated the volumes that a cluster survey must cover in order
to be able to distinguish it from the concordance �CDM model,
using the mass function, the XLF and the XTF.

(iv) Baryon fraction: the analysis of the bstar, bgas and bbar depen-
dence on mass, redshift and distance from the cluster centre shows
that there is no significant difference among the five cosmologies
considered, if we limit ourselves to the values at R200 and at z =
0. Therefore, at these conditions, bbar (and so the baryon fraction
f bar) can be safely used as a cosmological proxy to derive the value
of other cosmological parameters. In addition, we do not find any
clear positive trend of the total baryon fraction with mass, while we
see a positive trend (of the order of 5 per cent) of the gas fraction
and a negative trend (of the order of 30 per cent) of the star frac-
tion going from low-mass to high-mass systems. Other authors (e.g.
Giodini et al. 2009), considering observations of real objects, de-
spite finding the same trend for the gas and star fraction as we did,
claim that the total baryon fraction is increasing with increasing
mass. Actually, for all the cosmological models here considered,
we find a slight decrease in the total baryon fraction with increas-
ing mass. Still, we have to recall that, despite the hydrodynamical
treatments in the simulations is based on sophisticated physical
models, we do not include AGN feedback in our simulations. It is
known from literature (see e.g. Puchwein et al. 2008) that AGN
feedback is mass dependent, in the sense that it globally affects
more low-mass systems than high-mass systems. The net effect is
the lowering of the total baryon fraction in low-mass objects while
not affecting more massive clusters. Finally, we find a slight de-
crease (at most 10 per cent) of the baryon fraction going from high
to low redshift. A similar trend was already noted by Ettori et al.
(2006) and a possible explanation is that at high redshift the ra-
dius at which the baryons accrete is smaller than at low redshift,
and so a greater number of baryons can fall in the cluster potential
well.

In the end, we can conclude that in models with dynamical dark
energy, the evolving cosmological background leads to different star
formation rates and different formation histories of galaxy clusters,
but the baryon physics is not affected in a relevant way. Indeed,
evolved and relaxed clusters, if studied in regions sufficiently far
from the centre, reveal to be very similar despite the different dark
energy models considered. So, in conclusion, galaxy clusters can
affectively be used as a probe to distinguish among different dark
energy models.
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Predehl P. et al., 2007, Proc. SPIE, 6686, 668617
Press W. H., Schechter P., 1974, ApJ, 187, 425
Puchwein E., Sijacki D., Springel V., 2008, ApJ, 687, L53
Rasia E. et al., 2006, MNRAS, 369, 2013
Ratra B., Peebles P. J. E., 1988, Phys. Rev. D, 37, 3406
Riess A. G. et al., 1998, AJ, 116, 1009
Salpeter E. E., 1955, ApJ, 121, 161
Schmidt F., Lima M., Oyaizu H., Hu W., 2009, Phys. Rev. D, 79, 083518
Spergel D. N. et al., 2007, ApJS, 170, 377
Springel V., 2005, MNRAS, 364, 1105
Springel V., Hernquist L., 2002, MNRAS, 333, 649
Springel V., Hernquist L., 2003, MNRAS, 339, 289
Springel V., White M., Hernquist L., 2001, ApJ, 549, 681
Vikhlinin A. et al., 2009, ApJ, 692, 1060
Wetterich C., 1988, Nuclear Phys. B, 302, 645
Wetterich C., 1995, A&A, 301, 321
Wintergerst N., Pettorino V., Mota D. F., Wetterich C., 2010, Phys. Rev. D,

81, 063525
Zel’dovich Y. B., 1970, A&A, 5, 84
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