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RIEMANN-ROCH THEOREMS AND ELLIPTIC GENUS
FOR VIRTUALLY SMOOTH SCHEMES

BARBARA FANTECHI AND LOTHAR GÖTTSCHE

Abstract. For a proper scheme X with a fixed 1-perfect obstruction theory E•, we

define virtual versions of holomorphic Euler characteristic, χ−y-genus, and elliptic genus;

they are deformation invariant, and extend the usual definition in the smooth case. We

prove virtual versions of the Grothendieck-Riemann-Roch and Hirzebruch-Riemann-Roch

theorems. We show that the virtual χ−y-genus is a polynomial, and use this to define a

virtual topological Euler characteristic. We prove that the virtual elliptic genus satisfies

a Jacobi modularity property; we state and prove a localization theorem in the toric

equivariant case. We show how some of our results apply to moduli spaces of stable

sheaves.
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1. Introduction

Let X be a scheme which admits a global embedding in a smooth scheme, and E• a

1-perfect obstruction theory for X. One can view the pair (X, E•) as being a virtually

smooth scheme of expected (or virtual) dimension d := rkE•; indeed, many definitions

for smooth schemes have been extended to this case, in particular, the pair has a virtual

fundamental class [X]vir ∈ Ad(X) and a virtual structure sheaf Ovir
X ∈ K0(X), which

behave well under deformations of the pair.

In this paper we want to extend to complete virtually smooth schemes other impor-

tant notions: in particular, we define and study virtual versions of the holomorphic Euler

characteristic for elements V ∈ K0(X), and of the χ−y genus and the elliptic genus. As

a consequence, we can also define a virtual version of the topological Euler characteristic

and of the signature. The virtual holomorphic Euler characteristic was already considered

in [Lee], although it is not given this name. In this paper we will see that these invari-

ants behave in a very similar way to their non-virtual counterparts for smooth complete

schemes. All of these invariants reduce to the usual ones if X is smooth and E• is the

cotangent bundle, and they are deformation invariant.

The main results of the paper are a virtual version of the Theorems of Hirzebruch-

Riemann-Roch and of Grothendieck-Riemann-Roch (in the latter, the target is supposed

to be smooth, and not just virtually smooth). We also prove that the virtual χ−y-genus

is actually a polynomial of degree d, and show that the virtual Euler number (defined as

χ−1(X)) can be expressed as the degree of the virtual top Chern class. We show that as in

the case of smooth varieties, the virtual elliptic genus of a virtual Calabi-Yau manifold is a

weak Jacobi form. Finally, as an easy consequence of the virtual Riemann-Roch Theorem

and the virtual localization of [GP] we establish a localization formula for the virtual

holomorphic Euler characteristic, in case everything is equivariant under the action of a

torus.
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In the particular case where X has lci singularities and E• = L•
X the cotangent complex,

we prove that the virtual topological Euler characteristic coincides with Fulton’s Chern

class and deduce that this is invariant under deformations for proper lci schemes.

This paper deals mostly with virtually smooth schemes and not with stacks, although

it should be possible to generalize to the case of Deligne-Mumford stacks. We finish the

paper by a partial generalization to the case of gerbes, which allows to apply the results to

moduli spaces of sheaves on surfaces and on threefolds with effective anticanonical bundle.

The original motivation for this work comes mostly from moduli spaces of coherent

sheaves on surfaces. In [GNY], K-theoretic Donaldson invariants are introduced as the

holomorphic Euler characteristics of determinant bundles on moduli spaces of stable co-

herent sheaves on an algebraic surface S, and for surfaces with pg = 0 their wallcrossing

behaviour is studied in the rank 2 case, under assumptions that ensure that the moduli

spaces are well-behaved. Using the virtual Riemann-Roch theorem these assumptions

can be removed, and many other results of [M1] that a priori only apply to the usual

Donaldson invariants can be extended to the K-theoretic Donaldson invariants. In the

forthcoming paper [GNMY] this program is carried out. In particular is is easy to cal-

culate the wallcrossing for the virtual Euler characteristic, and show that it is given by

the same formula as in the case of so-called good walls (see [Gö]). In [DM] a physical

derivation of a wallcrossing formula for Euler numbers of moduli spaces of sheaves is given

in a very general context, which in particular implies that the wallcrossing formula is the

same in the virtual and in the non-virtual case.

The Euler numbers of moduli spaces of stable coherent sheaves on surfaces have been

studied by many authors. In [VW], Vafa and Witten made predictions about their gen-

erating functions, in particular, they are supposed to be given by modular forms. This

has been checked in a number of cases. In general when these moduli spaces are very

singular, there is to our knowledge no mathematical interpretation for the Euler numbers

that figure in the predictions of [VW]. We hope that our definition of the virtual Euler

number will provide such an interpretation.

The χ−y-genus and the elliptic genus are natural refinements of the Euler number.

Thus it is natural to refine the virtual Euler characteristic to the virtual χ−y-genus and

the virtual elliptic genus, and hope for their generating functions to have modularity

properties. If the moduli spaces are smooth of the expected dimension, this has in many

cases been shown.

The results in this paper are closely related to those obtained for [0, 1]-manifolds by

Ciocan-Fontanine and Kapranov in [CFK3]; there they prove the Hirzebruch-Riemann-

Roch theorem and a localization formula in K-theory. As explained to us by Ciocan-

Fontanine, from their results the Grothendieck-Riemann-Roch theorem for morphisms of
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[0, 1]-manifolds easily follows under the same assumptions as in our paper. They also

construct a cobordism class associated to a [0, 1]-manifold, which implies the possibility

of introducing and studying genera for [0, 1]-manifolds, such as the elliptic genus.

The language of [0, 1]-manifolds and virtually smooth schemes are closely related as fol-

lows. If X is a [0, 1]-manifold, then (π0(X ), Ω•
X |π0(X )) is a virtually smooth scheme by

[CFK3, Prop. 3.2.4]; on the other hand, it is expected that all virtually smooth moduli

spaces arise in this way. This was proven by Ciocan-Fontanine and Kapranov in the fol-

lowing cases: for the Quot scheme and (in outline) the moduli stack of stable sheaves in

[CFK1], and for the Hilbert scheme and the moduli stack of stable maps in [CFK2].

We thank I. Ciocan-Fontanine and M. Kapranov for showing us a preliminary version of

the paper in June 2006 with the above mentioned material, except for the cobordism. One

of the steps in our proof of the virtual Riemann-Roch-Theorem is an adaptation of the

corresponding argument in [CFK3]. Differently from Ciocan-Fontanine and Kapranov,

our motivation for studying this problem, came from the study of K-theoretic Donaldson

invariants, and we also consider to some extent the stack version of the virtual Riemann-

Roch theorem, as well as modular properties of the virtual elliptic genus.

In the papers [J1],[J2] Joshua deals in great generality with the relation of the virtual

fundamental class and the virtual structure sheaf for Deligne-Mumford stacks with a

perfect obstruction theory. Mochizuki informed us that he independently proved the

virtual Hirzebruch-Riemann-Roch theorem, with applications to K-theoretic Donaldson

invariants [M2].

1.1. Acknowledgements. This work was partially supported by European Science Foun-

dation Programme “Methods of Integrable Systems, Geometry, Applied Mathematics”

(MISGAM) Marie Curie RTN “European Network in Geometry, Mathematical Physics

and Applications” (ENIGMA) and by the Italian research grant PRIN 2006 “Geometria

delle varietà proiettive”.

Part of this work was done while the authors were participating in the special year

“Moduli Spaces” at the Mittag-Leffler Institut, Djursholm, Sweden.

We want to thank Paolo Aluffi for useful discussions about Fulton’s Chern class, Ionuţ

Ciocan-Fontanine for explanations about dg-manifolds and [0, n]-manifolds, and George

Thompson for useful discussions about the χ−y-genus.

2. Background material

2.1. Conventions. A scheme will be a separated scheme of finite type over an alge-

braically closed field of characteristic zero. We assume that all schemes under considera-

tion admit a global embedding in a smooth scheme.

If S is a scheme, we denote by A∗(S) the Chow group of S with rational coefficients, and
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by A∗(S) the Chow cohomology of S (as defined in [Fu, Def. 17.3]), also with rational

coefficients.

We often omit i∗ from the notation when i : S → S ′ is a closed embedding of schemes

and i∗ is either the induced map A∗(S) → A∗(S ′) or K0(S) → K0(S ′).

2.2. Grothendieck groups. Let S be a scheme. We let K0(S) be the Grothendieck

group generated by locally free sheaves, and K0(S) the Grothendieck group generated by

coherent sheaves; we recall that K0(S) is naturally an algebra, contravariant under arbi-

trary morphisms, and K0(S) is a module over K0(S), covariant under proper morphisms.

Moreover, the natural homorphism K0(S) → K0(S) (induced by the inclusion of locally

free sheaves inside coherent sheaves) is an isomorphism if S is smooth.

2.3. Grothendieck groups and perfect complexes. The fact that a scheme X can be

embedded as a closed subscheme in a smooth separated scheme implies that every coherent

sheaf is a quotient of a locally free sheaf (it would be enough to assume irreducible, reduced

and locally factorial instead of smooth: see [Ha, exercise III.6.8]). In other words, all

schemes we consider have enough locally frees.

A complex E• ∈ Db(X) on an arbitrary scheme X is called perfect if it is locally isomor-

phic to a finite complex of locally free sheaves. We write Db
perf(X) for the full subcategory

whose objects are the perfect complexes.

Since we assume that X has enough locally frees, any perfect complex has a global reso-

lution, i.e. a quasi-isomorphic complex which is globally a finite complex of locally frees.

One can therefore define for every object E• in Db
perf(X) an element [E•] ∈ K0(X) defined

to be equal to
∑n

i=m(−1)i[F i] for F m → . . . → F n a global locally free resolution of E•;

it is easy to show that the map E• $→ [E•] is well-defined and behaves well with respect

to quasi-isomorphisms and distinguished triangles.

In case one wants to extend the results of this paper to a more general situation, e.g. X

an arbitary scheme or an algebraic stack, care will have to be taken to assume that the

relevant objects admit a global resolution.

2.4. Todd and Chern classes. Let E be a rank r vector bundle on a scheme S, and

denote by x1, . . . , xr its Chern roots. The Chern character ch(E) and the Todd class

td(E) are defined by

ch(V ) :=
r∑

i=1

exi and td(V ) :=
r∏

i=1

xi

1 − e−xi
.

These extend naturally to a ring homomorphism ch : K0(S) → A∗(S) and a group

homomorphism td : (K0(S), +) → (A∗(S)×, ·) to the multiplicative group of units in the

ring A∗(S).
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The morphism det associating to a rank r vector bundle E on S its determinant det E :=∧rE ∈ Pic X extends naturally to a group homomorphism det : K0(X) → Pic(X).

The homomorphisms ch, td and det commute with pullback via arbitrary morphisms.

2.5. Perfect morphisms. A morphism f : X → Y of schemes is perfect [Fu, Example

15.1.8] if and only if it factors as a closed embedding i : X → S such that i∗(OZ) ∈ Db(S)

is perfect and admits a global resolution, and a smooth morphism p : S → Y . In particular

every lci morphism of schemes admitting a closed embedding in smooth, separated schemes

is perfect. In this case one can define a Gysin homomorphism

f ∗ : K0(X) → K0(Y ), f ∗([F ]) =
∑

i

(−1)iTorS
i (i∗OZ , p∗F).

Note in particular that the closed embedding of the zero locus of a regular section of a

vector bundle is perfect, since we can always use the Koszul resolution.

2.6. Riemann Roch for arbitrary schemes. We will use the notations of [Fu, Chapter

18]. In particular we use [Fu, Theorem 18.2, Theorem 18.3]. For every scheme S let

τS : K0(S) → A∗(S) be the group homomorphism defined in [Fu, Theorem 18.3]. We recall

in particular the following properties, which are taken almost verbatim from Theorem 18.3:

(1) module homomorphism: for any V ∈ K0(S) and any F ∈ K0(S) one has τS(V ⊗

F) = ch(V ) ∩ τS(F);

(2) Todd: if S is smooth, τS(OS) = td(TS) ∩ [S]; hence for every V ∈ K0(S) one has

τS(V ⊗OS) = ch(V ) · td(TS) ∩ [S];

(3) covariance: for every proper morphism f : S → S ′ one has f∗ ◦ τS = τS′ ◦ f∗ :

K0(S) → A∗(S ′);

(4) local complete intersection: if f : X → Y is an lci morphism, and α ∈ K0(Y ),

then f ∗(τY (α)) = (tdTf )−1 ∩ τX(f ∗α).

2.7. Fulton’s Chern class. Let X be a scheme and i : X → M a closed embedding in

a smooth scheme. Fulton’s Chern class of X (we take the name from [A]) is defined in

[Fu, Example 4.2.6] to be cF (X) = c(TM |X) ∩ s(X, M) ∈ A∗(X); it is shown there that

cF (X) is independent of the choice of the embedding. In [A] cF (X) for hypersurfaces

is related to the Schwarz-MacPherson Chern class c∗(X), which has the property that

deg(c∗(X)) = e(X). It is easy to see ([Fu, Example 4.2.6]), that for plane curves C,

deg(cF (C)) = e(C ′) where C ′ is a smooth plane curve of the same degree. Note that C is

lci and C ′ is a smoothening of C. We will generalize this statement to arbitrary proper

lci schemes in Theorem 4.15.
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3. Virtual Riemann-Roch theorems

In this section we prove a virtual version of the Grothendieck-Riemann-Roch theorem

for a proper morphism from a virtually smooth scheme to a smooth scheme. It would

be interesting to have a more general version for proper morphisms of virtually smooth

schemes, but at the moment we do not have that.

3.1. Setup and notation. This setup will be fixed throughout the paper. We will fix

a scheme X with a 1-perfect obstruction theory E•; whenever needed, we also choose an

explicit global resolution of E• as a complex of vector bundles [E−1 → E0], which exists

by 2.3.

We denote by [E0 → E1] the dual complex and by d the expected dimension d :=

rk E• = rkE0 − rk E−1. Recall that all schemes are assumed to be separated, of finite

type over an algebraically closed field of characteristic 0, and admitting a closed embedding

in a smooth scheme.

Let T vir
X ∈ K0(X) be the class [E0] − [E1]. Note that (as explained in 2.3) T vir

X only

depends on X and E•, and not on the particular resolution chosen.

3.2. Virtual fundamental class and structure sheaf. We recall from [BF, Section 5]

the definition of virtual fundamental class. Let CX be the intrinsic normal cone of X; it is

naturally a closed substack of NX := h1/h0((τ≥−1L•
X)∨), the intrinsic normal sheaf. The

map φ induces a closed embedding NX → E := h1/h0(E∨), and E = [E1/E0]. Let C(E)

be inverse image of CX in E1 via the natural projection E1 → E; it is a cone over X of

pure dimension equal to the rank of E0. Let s0 : X → E1 be the zero section; s0 is a closed

regular embedding, hence following [Fu, Def. 3.3] we can denote by s∗0 : A∗(E1) → A∗(X)

the natural, degree − rk(E1) pullback map (or Gysin homomorphism). Then the virtual

fundamental class [X]vir is by definition equal to s∗0([C(E)]) ∈ Ad(X).

We denote by Ovir
X ∈ K0(X) the virtual structure sheaf of X, whose definition we now

briefly recall.

The virtual structure sheaf Ovir
X is equal to
∞∑

i=0

(−1)iTorE1
i (OX ,OC).

Note that the sum is indeed finite; in fact, since X is the zero locus of the tautological

section s of the bundle π∗E1 (where π : E1 → X is the natural projection), we can give an

explicit finite locally free resolution of s0∗OX on E1 by the Koszul complex (
∧∗(π∗E∨

1 ), s∨).

In other words, s0 : X → E1 is a perfect morphism in the sense of 2.5 and

Ovir
X = s∗0([OC ]).

See [BF, Rem. 5.4] for more details.
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3.3. A fundamental identity. Let [F−1 → F 0] be a global resolution of τ≥−1(LX), i.e.

a complex of coherent sheaves on X with F 0 locally free of rank r, with an isomorphism

ψ : F0 → τ≥−1L•
X . Notice that such a global resolution is uniquely determined by a

morphism λ : F 0 → τ≥−1(LX) such that h0(λ) : F 0 → ΩX is surjective.

We can use it to identify the intrinsic normal sheaf of X with [F1/F0], and hence we

get an induced cone C(F ) ⊂ F1 of pure dimension r, the inverse image of the intrinsic

normal cone inside [F1/F0]. If i : X → M is a closed embedding in a smooth scheme, we

can choose F • to be [I/I2 → ΩM |X ]; we call it the resolution induced by i : X → M .

If φ : E• → τ≥−1LX is an obstruction theory, then we can choose F 0 = E0 and F−1 =

E−1/ ker h−1φ, with the induced map; we call it the resolution induced by the obstruction

theory. We denote by pF : C(F ) → X the natural projection.

Proposition 3.1. Let F • be a presentation of τ≥−1(LX). Let p : C(F ) → X be the

projection. Then

τC(F )(OC(F )) = p∗F (td F0) ∩ [C(F )] ∈ A∗(C(F )).

Proof. First step: it is enough to prove the proposition for one particular presentation.

Indeed, given two presentations F • and G•, we can compare either of them with the

presentation K• induced by K0 := F 0 ⊕ G0 → τ≥−1LX . As in [BF, Proposition 5.3], the

inclusion F 0 → K0 induces a surjection ρ̄ : K1 → F1, and C(K) = ρ̄−1(C(F )). We let

ρ : C(K) → C(F ) be the restriction of ρ̄; the map ρ is part of a natural exact sequence

of cones (in the sense of [Fu, Example 4.1.6]) on X

0 → G0 → C(K) → C(F ) → 0.

In particular ρ is an affine bundle (in the sense of [Fu, Section 1.9]) with Tρ = p∗KG0.

Since it is an affine bundle, ρ∗ induces an isomorphism on Chow rings. So the statement

holds for F • if and only if

ρ∗(τC(F )(OC(F ))) = ρ∗(p∗F (td F0) ∩ [C(F )]) ∈ A∗(C(K)).

Since pK = pF ◦ ρ, and ρ∗([C(F )] = (C[K]), the right hand side is equal to p∗K(tdF0) ∩

[C(K)]. By 2.6 applied to the smooth (hence lci) morphism ρ, the left hand side is equal

to td(Tρ)−1 ∩ τC(K)(OC(K)). So the equality holds for F iff the equality

td(Tρ)
−1 ∩ τC(K)(OC(K)) = p∗K(td F0) ∩ [C(K)]

holds in A∗(C(K)). Applying on both sides the invertible element td(Tρ) = p∗K(td G0)

yields the equivalent formulation

τC(K)(OC(K)) = (p∗K(td G0)p
∗
K(td F0)) ∩ [C(G)]
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which is just the statement for K, since K0 = F0 ⊕ G0 and hence tdK0 = td F0 · td(G0).

Second step: it is therefore enough to prove this in the case of the resolution induced by

a closed embedding i : X → M in a smooth scheme (which exists by assumption). This

is proven in in [CFK3, Lemma (4.3.2)] under the additional assumption that X and M

be quasiprojective, and we use a variation of their argument. Let π : M̃ → A1 be the

degeneration to the normal cone, such that π−1(0) = CX/M and M̃0 := π−1(A1
0) = M ×A1

0

(where we write A1
0 for A1 \{0}); let q : M̃ → M be the natural morphism, composition of

the blowup map M̃ → M × A1 and the projection to the first factor. Let f : CX/M → M̃

be the natural closed embedding; f is regular, hence an lci morphism, and Tf is −[OCX/M
],

hence td(Tf ) = 1. Let β := τfM (OfM − q∗ td(TM)) ∩ [M̃ ] ∈ A∗(M̃). By 2.6 applied to the

regular embedding f with α = OfM , it is enough to prove that f ∗β = 0 in A∗(CX/M ) since

p = q ◦ f . Let j : M̃0 → M̃ be the (open) inclusion. Then j∗β = 0 since M̃0 is smooth

and td(TfM0
) = q∗ td(TM) · π∗ td(TA1

0
) = q∗ td(TM). But the argument in [Fu, Section

10.1] (paragraph starting “if T is a curve”) show that from j∗β = 0 we can deduce that

f ∗β = 0, thus completing the argument. !

In fact, assuming that we can extend Chapter 18 of [Fu] to Artin stacks, the Proposition

takes the appealing form τC(OC) = [C] where C is the intrinsic normal cone.

3.4. Main theorems.

Definition 3.2. The virtual Todd genus of (X, E•) is defined to be td(T vir
X ). If X is

proper, then for any V ∈ K0(X), the virtual holomorphic Euler characteristic is defined

as

χvir(X, V ) := χ(X, V ⊗Ovir
X ).

Theorem 3.3 (virtual Grothendieck-Riemann-Roch). Let Y be a smooth scheme and let

f : X → Y be a proper morphism. Let V ∈ K0(X). Then the following equality holds in

A∗(Y ):

ch(f∗(V ⊗Ovir
X )) · td(TY ) ∩ [Y ] = f∗(ch(V ) · td(T vir

X ) ∩ [Xvir]).

Proof. The theorem follows by combining Lemma 3.7 with Lemma 3.9 below. !

Corollary 3.4 (virtual Hirzebruch-Riemann-Roch). If X is proper, and V ∈ K0(X),

then

χvir(X, V ) =

∫

[X]vir

ch(V ) td(T vir
X ).

Proof. This follows immediately by applying virtual Grothendieck-Riemann-Roch to the

projection of X to a point. !

We want to reduce in two steps Theorem 3.3 to a simpler statement.
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Lemma 3.5. To prove Theorem 3.3 it is enough to show that

(3.6) τX(Ovir
X ) = td(T vir

X ) ∩ [X]vir.

Proof. On the one hand by the module property of [Fu, Thm. 18.3] we have

τX(V ⊗Ovir
X ) = ch(V ) ∩ τX(Ovir

X ) = ch(V ) · td(T vir
X ) ∩ [X]vir,

and thus

f∗(τX(V ⊗Ovir
X )) = f∗(ch(V ) · td(T vir

X ) ∩ [X]vir).

On the other hand the covariance property of [Fu, Thm. 18.3] gives

f∗(τX(V ⊗Ovir
X )) = τY (f∗(V ⊗Ovir

X )),

and because Y is smooth we have

τY (f∗(V ⊗Ovir
X )) = ch(f∗(V ⊗Ovir

X )) · td(TY ) ∩ [Y ].

and Theorem 3.3 follows. !

The formula (3.6) is stated in [BF, Rem. 5.4], however without proof. It is proven in

a different context in [J1, Thm 1.5]. We prefer to give a direct proof here since it is not

clear to us how to relate Joshua’s results to what we need, and also since a direct proof

is very elementary.

Lemma 3.7. To prove Theorem 3.3 it is enough to show that

s∗0(τE1(OC)) = td(E0) ∩ [X]vir.

Proof. Since s0 : X → E1 is a regular embedding, it is a local complete intersection

morphism, with virtual tangent bundle Ts0 = [−E1].

By [Fu, Thm. 18.3(4)], we get

τX(s∗0(OC)) = td(Ts0) · s
∗
0(τE1(OC)).

In other words

τX(Ovir
X ) = td(−E1) · s

∗
0(τE1(OC)).

If s∗0(τE1(OC)) = td(TE1)∩ [X]vir, then we get by the above τX(Ovir
X ) = td(−E1) · td(E0)∩

[X]vir, and we are done since

td(T vir
X ) = td([E0] − [E1]) = td(E0) · td(−E1)

because td maps sums to products. !

Lemma 3.8. Let p : C → X be the projection. Then

τC(OC) = p∗(tdE0) ∩ [C] ∈ A∗(C).
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Proof. This is a special case of Proposition 3.1, when the resolution is induced by an

obstruction theory. !

By Lemma 3.7 we can finish our proof of Theorem 3.3 by showing the following

Lemma 3.9. With the notation established so far,

s∗0(τE1(OC)) = td(E0) ∩ [X]vir.

Proof. Let j : C → E1 be the embedding, π : E1 → X the projection, so that p = π ◦ j.

By the covariance property [Fu, Thm. 18.3(1)], the previous lemma and the projection

formula we have

τE1(OC) = j∗(τC(OC)) = j∗(p
∗(td(E0)) ∩ [C])

= j∗(j
∗π∗(td(E0)) ∩ [C]) = π∗(td(E0)) ∩ j∗[C].

Hence

s∗0(τE1(OC)) = s∗0(π
∗(td(E0)) ∩ j∗[C])

= td(E0) ∩ s∗0(j∗([C])) = td(E0) ∩ [X]vir.

!

Corollary 3.10. If X is proper and d = 0, then χvir(X, V ) = rk(V ) deg([X]vir). !

Corollary 3.11. If X is proper, then χvir(X,Ovir
X ) =

∫
[X]vir td(T vir

X ). !

We finish this section by proving a weak virtual version of Serre duality.

Definition 3.12. The virtual canonical (line) bundle of X is Kvir
X := det(E0)⊗det(E1)∨ ∈

Pic(X). Note that KX := det(T vir
X )∨ only depends on the obstruction theory and not on

the particular resolution chosen. The virtual canonical class is c1(Kvir
X ) ∈ A1(X). If

c1(Kvir
X ) = 0, we say that X is a virtual Calabi-Yau manifold).

In this paper the condition that X is a virtual Calabi-Yau manifold can always be

replaced by the condition that c1(Kvir
X ) ∩ [X]vir = 0 in Ad−1(X).

Proposition 3.13 (weak virtual Serre duality). If X is proper and V ∈ K0(X), then

χvir(X, V ) = (−1)dχvir(X, V ∨ ⊗ Kvir
X ). In particular if X is a virtual Calabi-Yau, then

χvir(X, V ) = (−1)dχvir(X, V ∨).

Proof. Let n = rk(E0), m = rk(E1), d = n − m and let x1, . . . , xn be the Chern roots of

E0, u1, . . . , um the Chern roots of E1. We can assume that V is a vector bundle on X.
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Let v1, . . . vr be its Chern roots. Then the virtual Riemann-Roch Theorem gives

χvir(X, V ) =

∫

[X]vir

( r∑

j=1

evj

) n∏

i=1

xi

1 − e−xi

m∏

k=1

1 − e−uk

uk

χvir(X, V ∨ ⊗ Kvir
X ) =

∫

[X]vir

( r∑

j=1

e−vj

) n∏

i=1

xi

1 − e−xi

m∏

k=1

1 − e−uk

uk

∏n
i=1 e−xi

∏m
k=1 e−uk

.

By the identity xe−x

1−e−x = −x
1−ex in Q[[x]], we see that the integrand for χvir(X, V ∨ ⊗ Kvir

X ) is

obtained from that for χvir(X, V ) by replacing all vj, xi, uk by −vj , −xi, −uk respectively.

This multiplies the part of degree d by (−1)d. The result follows because [X]vir ∈ Ad(X).

!

3.5. Deformation invariance.

Definition 3.14. A family of proper virtually smooth schemes is the datum of a proper

morphism π : X → B of schemes with B smooth, together with a 1-perfect relative

obstruction theory E• for X over B.

For every b ∈ B a closed point, we will denote by Xb the fiber π−1(b) and by E•
b the

induced obstruction theory for Xb.

For every V ∈ K0(X ), we let Vb := V |Xb
∈ K0(Xb). Write ib : Xb → X for the natural

inclusion. In particular, we define T vir
X/B ∈ K0(X ) as the class associated to the complex

(E•)∨; clearly i∗bT
vir
X/B = T vir

Xb
.

Recall from [BF, Prop. 7.2] the following

Lemma 3.15. Let π : X → B be a family of proper virtually smooth schemes. Let

b : Spec K → B be the morphism defined by the point b. Then

b![X ]vir = [Xb]
vir. !

We recall that the principle of conservation of number [Fu, Proposition 10.2] states that

for any α ∈ Adim B(X ), the degree of the cycle αb := i!b(α) is locally constant in b. The

principle is in fact valid for arbitrary cycles in A∗(X ) if we use the convention that deg

is defined on the i-th Chow group Ai to be zero if i += 0. By using this principle, we

immediately deduce the following Corollary.

Corollary 3.16. Let π : X → B be a proper family of virtually smooth schemes. For any

γ ∈ A∗(X ), the number ∫

[Xb]vir

i∗bγ

is locally constant in b.
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Proof. By definition,
∫

[Xb]vir

i∗bγ = deg
(
i∗bγ ∩ [Xb]

vir
)

= deg
(
i∗bγ ∩ i!b[X ]vir

)
= deg i!b(γ ∩ [X ]vir).

Note that this number is zero if γ ∈ Ae(X ) and e += d, where d is the virtual dimension

of Xb. !

Definition 3.17. For any numerical object (e.g., a number or a function) which is defined

in terms of a proper virtual smooth scheme X and possibly of an element V in K0(X), we

say that it is deformation invariant if, for every family of proper virtually smooth schemes

X and every object V ∈ K0(X ), the invariant associated to the virtually smooth scheme

Xb and the element Vb is locally constant in b.

Theorem 3.18. Let V ∈ K0(X ), and assume that π is proper. Then

χvir(Xb, Vb)

is locally constant in b. In other words, the virtual holomorphic Euler characteristic is

deformation invariant.

Proof. This is an immediate consequence of Corollary 3.16 and of virtual Hirzebruch-

Riemann-Roch. !

4. Virtual χ−y-genus, Euler characteristics and signature

In this section we introduce the virtual p-forms Ωp,vir
X on X and define the virtual

χ−y-genus χvir
−y(X). A priori χvir

−y(X) is just a formal power series in y. However we will

prove that it is a polynomial of degree d in y satisfying χvir
−y(X) = ydχ−1/y(X). The virtual

Euler number is then defined as evir(X) := χvir
−1(Y ) and the virtual signature as σvir(X) :=

χvir
1 (X). We show a virtual version of the Hopf index theorem: evir(X) =

∫
[X]vir cd(T vir

X ).

If X is a proper local complete intersection scheme with its natural obstruction theory,

then evir(X) is the degree of Fulton’s Chern class cF (X).

Definition 4.1. If E is a vector bundle on X of rank r and t a variable, we put

ΛtE :=
r∑

i=0

[ΛiE]ti ∈ K0(X)[t], St(E) :=
∑

i≥0

[SiE]ti ∈ K0(X)[[t]].

If 0 → F → G → H → 0 is a short exact sequence of vector bundles on X, it easy to see

that ΛtG = ΛtF × ΛtH . Furthermore it is standard that 1/Λt(E) = S−tE in K0(X)[[t]].

Thus Λt can be extended to a homomorphism Λt : K0(X) → K0(X)[[t]] by Λt([E]− [F ]) =

Λt(E)S−t(F ). For n ∈ Z≥0 and V ∈ K0(X), we define ΛnV := Coefftn ΛtV ∈ K0(X).

We define Ωvir
X := (T vir

X )∨. The bundle of virtual n-forms on X is Ωn,vir
X := Λn(Ωvir

X ) ∈

K0(X).
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Definition 4.2. Let X be a proper scheme with a perfect obstruction theory and expected

dimension d. The virtual χ−y-genus of X is defined by

χvir
−y(X) := χvir(X, Λ−yΩvir

X ) =
∑

p≥0

(−y)pχvir(X, Ωp,vir
X ).

Let V ∈ K0(X). The virtual χ−y-genus with coefficients in V of X is defined by

χvir
−y(X, V ) := χvir(X, V ⊗ Λ−yΩvir

X ) =
∑

p≥0

(−y)pχvir(X, V ⊗ Ωp,vir
X ).

By definition V ⊗ Λ−y(Ωvir
X ) ∈ K0(X)[[y]], and thus χvir

−y(X, V ) ∈ Z[[y]].

We will show below that χvir
−y(X, V ) ∈ Z[y]. Assuming this result for the moment, the

virtual Euler characteristic of X is defined as evir(X) := χvir
−1(X), and the virtual signature

of X as σvir(X) := χvir
1 (X).

Finally, for any partition I of d, where I = (i1, . . . , ir) and
∑r

k=1 k · ik = d, we define the

I-th virtual Chern number of X to be cI(X) :=
∫
[X]vir

∏r
k=1 cik

k (T vir
X ). The virtual Chern

numbers are deformation invariant by Lemma 3.16.

Let n = rk(E0), m = rk(E1), d = n − m. Let x1, . . . , xn be the Chern roots of E0,

u1, . . . , un the Chern roots of E1. We write A>d(X) :=
∑

l>d Al(X). Let A be the quotient

of A∗(X) by A>d(X). We will denote classes in A by the same letters as the corresponding

classes in A∗(X). By definition we have

ch(Λ−yΩvir
X ) =

∏n
i=1(1 − ye−xi)∏m
j=1(1 − ye−uj)

∈ A[[y]],

where the right hand side is considered as element in A[[y]] by the development

1∏m
j=1(1 − ye−uj)

=
m∏

j=1

(∑

k≥0

yke−kuj

)
∈ A[[y]].

Let

(4.3) X−y(X) := ch(Λ−yΩvir
X ) · td(T vir

X ) =
n∏

i=1

xi(1 − ye−xi)

1 − e−xi
·

m∏

j=1

1 − e−uj

uj(1 − ye−uj)
∈ A[[y]].

By the virtual Riemann-Roch theorem we have

(4.4) χvir
−y(X) =

∫

[X]vir

X−y(X), χvir
−y(X, V ) =

∫

[X]vir

X−y(X) · ch(V ).

Theorem 4.5. (1) We have χvir
−y(X, V ) ∈ Z[y], and its degree in y is at most d.

(2) χ−1(X, V ) = rk(V )
∫
[X]vir cd(T vir

X ).

(3) In fact, we have X−y(X) ∈ A[y], and its degree in y is at most d. Furthermore we

can write X−y(X) =
∑d

l=0(1 − y)d−lX l where X l = cl(T vir
X ) + bl with bl ∈ A>l(X).
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Proof. We start by observing that it is enough to prove (3). Assume we know (3). Then

(4.4) implies that χvir
−y(X, V ) =

∫
[X]vir X−y(X) · ch(V ) ∈ Q[y] is a polynomial of degree at

most d. By definition χvir
−y(X, V ) ∈ Z[[y]], thus (1) follows. (3) also gives

χ−1(X, V ) =

∫

[X]vir

X 0(X) · ch(V ) = rk(V )

∫

[X]vir

cd(T
vir
X ),

which gives (2). Thus we only have to show (3). Let

(4.6) Yz := zd

∏n
i=1

(
xi

e−xi

1−e−xi
+ xi

z

)

∏m
j=1

(
uj

e−uj

1−e−uj
+ uj

z

) ∈ A[z].

The right hand side of (4.6) is seen to be an element of A[z] as follows: for a variable t

write te−t

1−e−t := 1 +
∑

k>0 aktk ∈ Q[[t]], which is obviously invertible in Q[[t]]. Putting this

into (4.6), we get that

(4.7) Yz = zd

∏n
i=1

(
1 +

∑
k>0 akxk

i + xi
z

)
∏m

j=1

(
1 +

∑
k>0 akuk

j + uj

z

) ∈ A∗(X)((z−1)).

Denote Y l the coefficient of zd−l of Yz. Then we see immediately from (4.7) that Y l ∈

A≥l(X) for all l ≥ 0. In particular Y l is zero in A for d − l < 0, and thus Yz ∈ A[z]. We

also see that Yz has at most degree d in z. Furthermore (4.7) also implies that the part

of Y l in Al(X) is the part in Al(X) of
Qn

i=1(1+xi)Qm
j=1(1+uj)

, i.e. cl(T vir
X ). Thus in order to finish the

proof we only have to see that Y1−y = X−y(X) in A[[y]]. In A[[y]] we have

Y1−y = (1 − y)d

∏n
i=1

(
xi

e−xi

1−e−xi
+ xi

1−y

)

∏m
j=1

(
uj

e−uj

1−e−uj
+ uj

1−y

) =

∏n
i=1 xi

(
1 + (1 − y) e−xi

1−e−xi

)

∏m
j=1 xi

(
1 + (1 − y) e−uj

1−e−uj

)

=
n∏

i=1

xi(1 − ye−xi)

1 − e−xi

m∏

j=1

1 − e−uj

uj(1 − ye−uj)
= X−y(X).

!

Corollary 4.8 (Hopf index theorem). The virtual Euler characteristic equals the top

virtual Chern number

evir(X) = cd(X).

Proof. This is a special case of Theorem 4.5(2). !

Corollary 4.9. Let X be proper of expected dimension d, and V ∈ K0(X).

(1) χvir
−y(X, V ) = ydχvir

−1/y(X, V ∨).

(2) For all p ≥ 0 we have χvir(X, V ⊗Ωp,vir
X ) = (−1)dχvir(X, V ∨⊗Ωd−p,vir

X ), in particular

χvir(X, V ⊗ Ωp,vir
X ) = 0 for p > d.
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Proof. (1) Let again n := rk(E0), m := rk(E1), d = n − m. It is well known that

ΛkF ⊗ det(F )∨ - Λr−kF∨ for F a vector bundle of rank r. Equivalently

(4.10) (Λ−yF ) · [det(F )∨] = (−y)rΛ−1/yF
∨, in K0(X)[y].

By the weak virtual Serre duality we have

(4.11) χvir
−y(X, V ) = χvir(X, V ⊗ Λ−yΩvir

X ) = (−1)dχvir(X, V ∨ ⊗ KX ⊗ Λ−yT
vir
X ).

By (4.10) we have in A∗(X)[[y]] the identity

ch(KX ⊗ Λ−yT
vir
X ) = ch

(
det(E0)∨ ⊗ Λ−yE0

det(E1)∨ ⊗ Λ−yE1

)

= ch

(
(−y)nΛ−1/yE0

(−y)mΛ−1/yE−1

)
= (−y)d ch

(
Λ−1/yΩvir

X

)
.

Thus (4.11) and the virtual Riemann-Roch theorem give

χvir
−y(X, V ) = (−1)d

∫

[X]vir

ch
(
V ∨ ⊗ KX ⊗ Λ−yT

vir
X

)
· td(T vir

X )

= yd

∫

[X]vir

ch
(
V ∨ ⊗ Λ−1/yΩvir

X

)
· td(T vir

X ) = ydχvir
−1/y(X, V ∨).

(4.12)

(4.12) holds a priori in Q[[y]], but by Theorem 4.5 both sides are in in Z[y]. Thus (4.12)

holds in Z[y]. This proves (1). (2) is just a reformulation of (1). !

Remark 4.13. Thus we see that the virtual χ−y-genus, Euler number and signature have

properties very similar to their non-virtual counterparts on smooth projective varieties:

(1) χvir
−y(X, V ) is a polynomial of degree d in y with χvir

−y(X, V ) = ydχvir
−1/y(X, V ∨), in

particular χvir
−y(X) = ydχvir

−1/y(X).

(2) evir(X) = χvir
−1(X) =

∫
[X]vir cd(T vir

X ).

(3) If d is odd, then σvir(X) = 0.

(4) By definition χvir
0 (X, V ) = χvir(X, V ) and in particular χvir

0 (X) = χvir(X,OX).

Proposition 4.14. Let X be a proper, virtually smooth scheme, and V ∈ K0(X). Then

the virtual χ−y genus χvir
−y(X, V ) is deformation invariant. Hence, also the virtual Euler

characteristic evir(X) and the virtual signature σvir(X) are deformation invariant.

Proof. This follows immediately from the definition and from Proposition 3.18. For the

virtual Chern numbers a different proof can be given by combining Corollary 4.8 with the

deformation invariance of the Chern numbers. !
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4.1. The local complete intersection case. We will say that the scheme X has local

complete intersection singularities, or just is lci (see [Fu, Appendix B.7]) if it admits a

closed regular embedding i : X → M in a smooth scheme. In this case τ≥−1L•
X = L•

X is a

perfect complex, and thus a natural obstruction theory for X. Hence every lci scheme is

naturally a virtually smooth scheme. The corresponding virtual fundamental class is just

[X] and the virtual structure sheaf is OX .

A family of proper lci schemes is an lci morphism π : X → B with B smooth; again,

the relative cotangent complex is also a relative obstruction theory, and hence π : X → B

is also a family of proper virtually smooth schemes.

If X is a proper lci scheme and X0 is a proper smooth scheme, we say that X0 is a

smoothening of X if there exists a family of proper lci schemes π : X → B and closed

points b, b0 ∈ B such that Xb is isomorphic to X and Xb0 is isomorphic to b0.

Theorem 4.15. Let X be a proper lci scheme with its natural obstruction theory: then

evir(X) = deg(cF (X)). Therefore deg(cF (X)) is invariant under lci deformations of X; if

X admits a smoothing X0, then evir(X) = e(X0).

Proof. It is of course enough to prove the first statement. By [Fu, Ex. 4.2.6] we have

cF (X) = c(T vir
X ) ∩ [X], thus if d = dim(X), then deg(cF (X)) =

∫
X cd(T vir

X ) = evir(X). !

This is easy to see in case X is the zero scheme of a regular section of a vector bundle

on a smooth proper variety M . We thank P. Aluffi for pointing this out to us.

Remark 4.16. More generally, all the virtual Chern numbers of a proper lci scheme are de-

formation invariants and coincide with the corresponding Chern numbers of a smoothing,

when one exists.

5. Virtual Elliptic genus

Now we want to define and study a virtual version of the Krichever-Höhn elliptic genus

[Kr],[Hö]. The definition is completely analogous to the standard definition, we only

replace at all instances TX by T vir
X and the holomorphic Euler characteristic by χvir. Then

we show that it has similar properties to the elliptic genus of smooth projective varieties.

In particular, if X is a virtual Calabi-Yau, i.e. the virtual canonical class of X vanishes,

then the elliptic genus is a meromorphic Jacobi form.

Definition 5.1. As in the previous section let A be the quotient of A∗(X) by A>d(X)

and denote by the same letter classes in A∗(X) and in A.

For a vector bundle F on X, we put

E(F ) =
⊗

n≥1

(
Λ−yqnF∨ ⊗ Λ−y−1qnF ⊗ Sqn(F ⊕ F∨)

)
∈ 1 + q · K0(X)[y, y−1][[q]].
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Note that E defines a homomorphism from the additive group K0(X) to the multiplicative

group 1 + q · K0(X)[y, y−1][[q]]. For any vector bundle F on X we also put

EL(F ; y, q) := y− rk(F )/2 ch(Λ−yF
∨) · ch(E(F )) · td(F ) ∈ A∗(X)[y−1/2, y1/2][[q]],

then the map F $→ EL(F ) extends to a homomorphism from the additive group of K0(X)

to the multiplicative group of A∗(X)((y1/2))[[q]]. The virtual elliptic genus of X is defined

by

(5.2) Ellvir(X; y, q) := y−d/2χvir
−y(X, E(T vir

X )) ∈ Q((y1/2))[[q]].

For V ∈ K0(X) we also put Ellvir(X, V ; y, q) := y−d/2χvir
−y(X, E(T vir

X ) ⊗ V ). By our

definitions and the virtual Riemann-Roch theorem we have

Ellvir(X; y, q) =

∫

[X]vir

EL(T vir
X ; y, q), Ellvir(X, V ; y, q) =

∫

[X]vir

EL(T vir
X ; y, q) · ch(V ),

and we see (in the notations of (4.3)) that

EL(T vir
X ; y, q) = y−d/2X−y(X) ch(E(T vir

X )),

in particular, by Theorem 4.5 we see that EL(T vir
X ; y, q) ∈ A[y1/2, y−1/2][[q]]. Finally

for every k ∈ Z≥0, a ∈ Ak(X), we put Ellvir((X, a); y, q) :=
∫

[X]vir EL(T vir
X ; y, q) · a ∈

Q[y1/2, y−1/2][[q]]. From the definitions it is clear that Ellvir(X; y, q)|q=0 = y−d/2χvir
−y(X).

For z ∈ C, τ ∈ H :=
{
τ ∈ C

∣∣ .(τ) > 0
}
, we write

EL(F ; z, τ) := EL(F ; e2πiz, e2πiτ ), Ellvir(X; z, τ) := Ellvir(X; e2πiz, e2πiτ ),

Ellvir(X, V ; z, τ) := Ellvir(X, V ; e2πiz, e2πiτ ), Ellvir((X, a); z, τ) := Ellvir((X, a); e2πiz, e2πiτ ).

Let

θ(z, τ) := q1/8 1

i
(y1/2 − y−1/2)

∞∏

l=1

(1 − ql)(1 − qly)(1 − qly−1), q = e2πiτ , y = e2πiz.

be the Jacobi theta function [Ch, Chap. V]. Let f1, . . . , fr be the Chern roots of F . Then

it is shown e.g. in [BL, Prop. 3.1], that

(5.3) EL(F ; z, τ) :=
r∏

k=1

fk
θ( fk

2πi − z, τ)

θ( fk
2πi , τ)

.

Let B be the subring of A⊗C generated by the Chern classes of T vir
X and a given element

a ∈ Ak(X). This is a finite dimensional C-vector space. It is easy to see that
∏r

k=1
fk

θ(
fk
2πi ,τ)

defines a holomorphic map from H to the group of invertible elements B× of B. Similarly

h :=
∏r

k=1 θ(
fk

2πi − z, τ) defines a holomorphic map from H× C to B. Write Γ := Z + Zτ .

Then we see that the part of h in A0(X) is given by θ(−z, τ), which is nonzero on

(C \ Γ) × H. It follows that EL(T vir
X ; z, τ) is a holomorphic map (C \ Γ) × H → B, and

thus Ell((X, a); z, τ) and Ell(X; z, τ) are meromorphic functions from C × H to C.
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Now we want to see that that the virtual elliptic genus is a weak Jacobi form with

character (see [EZ, p. 104], for the definition in the case without character), as in the

case of the usual elliptic genus of compact complex manifolds (see [Hö], [BL]). We do not

know whether (1) of Theorem 5.4 below was already known before in the case of compact

complex manifolds.

Theorem 5.4. (1) Fix k ∈ Z≥0, and let a ∈ Ak(X) with c1(Kvir
X ) · a ∩ [X]vir = 0 in

Ad−k−1(X). Then Ellvir((X, a); z, τ) is a weak Jacobi form of weight −k and index

d/2 with character. Furthermore if k > 0, then Ellvir((X, a); 0, τ) = 0.

(2) In particular if X is a virtual Calabi-Yau manifold of expected dimension d, then

Ellvir(X; z, τ) is a weak Jacobi form of weight 0 and index d/2 with character.

Furthermore Ellvir(X; 0, τ) = evir(X).

Proof. First we want to show the transformation properties. By definition Ellvir(X; z, τ) =

Ellvir((X, 1); z, τ), thus it suffices to prove them for Ellvir((X, a); z, τ) for a ∈ Ak(X). The

proof is a modification of that of [BL, Thm. 3.2]. We have to show the equations

Ellvir((X, a); z, τ + 1) = Ellvir((X, a); z, τ),(5.5)

Ellvir((X, a); z + 1, τ) = (−1)dEllvir((X, a); z, τ),(5.6)

Ellvir((X, a); z + τ, τ) = (−1)de−πid(τ+2z)Ellvir((X, a); z, τ),(5.7)

Ellvir

(
(X, a);

z

τ
,−

1

τ

)
= τ−ke

πidz2

τ Ellvir((X, a); z, τ).(5.8)

We have T vir
X = [E0 −E1], thus EL(T vir

X ) = EL(E0)/EL(E1). From (5.3) and the standard

identities (cf.[Ch, V(1.4), V(1.5)])

(5.9) θ(z + 1, τ) = −θ(z, τ), θ(z + τ, τ) = −e−2πiz−πiτθ(z, τ), θ(z, τ + 1) = θ(z, τ),

we see that (5.5), (5.6), (5.7) are satisfied for any vector bundle F , if we replace Ellvir((X, a); z, τ)

by EL(F ; z, τ) and d by rk(F ). As rk(E0)−rk(E1) = d, they also hold if we instead only re-

place Ellvir((X, a); z, τ) by EL(T vir
X ; z, τ). Thus they are also true for Ellvir((X, a); z, τ) =∫

[X]vir EL(T vir
X ; z, τ) · a.

For a ring R, and α ∈ A∗(X) ⊗ R denote by [α]m the part in Am(X) ⊗ R, and for

G ∈ K0(X), write

ELτ (G; z, τ) :=
∑

m≥0

τ−m [EL (G; z, τ)]m .
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For F a vector bundle on X of rank r with Chern roots f1, . . . , fr, (5.3) gives

ELτ

(
F,

z

τ
,−

1

τ

)
=

r∏

l=1

fl

τ

θ(− z
τ + fl

2πiτ ,− 1
τ )

θ( fl
2πiτ ,− 1

τ )

= τ−r
r∏

l=1

(
e

−zfl
τ fl

e
πiz2

τ θ(−z + fl
2πi , τ)

θ( fl
2πi , τ)

)

= τ−re−
zc1(F )

τ e
πirz2

τ EL (F ; z, τ) .

Here the first and third line are obvious from the definitions, and the second line follows

from the transformation properties of θ by a two line computation (cf. [BL, eq. (9)]).

Thus

ELτ

(
T vir

X ,
z

τ
,−

1

τ

)
=

ELτ

(
E0,

z
τ ,− 1

τ

)

ELτ

(
E1,

z
τ ,− 1

τ

) = τ−de
zc1(Kvir

X )

τ e
πidz2

τ EL
(
T vir

X ; z, τ
)
.

By the definition of ELτ

(
T vir

X ; z, τ
)
, we thus have

[
EL

(
T vir

X ,
z

τ
,−

1

τ

)]

d−k

= τ−ke
πidz2

τ

[
e

zc1(Kvir
X )

τ EL (F ; z, τ)

]

d−k

.

As a ∩ [X]vir ∈ Ad−k(X), we thus get

Ellvir

(
(X, a);

z

τ
,−

1

τ

)
= τ−ke

πidz2

τ

∫

[X]vir

[
e

zc1(Kvir
X )

τ EL (F ; z, τ)
]

d−k
· a

= τ−ke
πidz2

τ

∫

[X]vir

[EL (F ; z, τ)]d−k · a = τ−ke
πidz2

τ Ellvir((X, a); z, τ),

where in the second line we have used that Kvir
X · a ∩ [X]vir = 0. This shows that

Ell((X, a); z, τ) has the transformation properties of a Jacobi form of weight −k and

index d/2 with character.

Finally we show that Ell((X, a); z, τ) is regular on C × H and at infinity and compute

Ell((X, a); 0, τ), Ell(X; 0, τ). Before the statement of Theorem 5.4 we saw that

Ellvir((X, a); y, q) :=

∫

[X]vir

Xy(X) · ch(E(T vir
X ) · a ∈ Q[y1/2, y−1/2][[q]],

i.e. Ellvir((X, a); z, τ) is holomorphic at infinity. By Theorem 4.5, we have Xy(X) ∈ A[y]

and X−1(X) = cd(T vir
X ) ∈ A. By definition

ch(E(F ))|y=1 =
∏

n≥1

ch
(
Λ−qn(F ⊕ F∨)

)
ch(Sqn(F ⊕ F∨)) = 1
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for all F ∈ K0(X). Thus we get for a ∈ Ak(X) that Ellvir((X, a); z, τ) is holomorphic at

z = 0 and

(5.10) Ellvir((X, a); 0, τ) =

∫

[X]vir

cd(T
vir
X ) · a =





0 k > 0,

evir(X) a = 1.

Finally we can see that Ellvir((X, a); z, τ) is holomorphic on C × H: We had seen before

that it is holomorphic on (C \Γ)×H, and just saw that it is holomorphic at z = 0. Then

(5.6) and (5.7) show that it is holomorphic at all z ∈ Γ. !

Proposition 5.11. Let X be proper and a ∈ A∗(X). Then the virtual elliptic genus

Ellvir((X, a); y, q) is deformation invariant. In particular if X is a smoothable lci scheme

with the natural osbtruction theory, then the virtual ellipitic genus Ellvir(X; y, q) coincides

with the elliptic genus of a smoothening.

Proof. This is a direct consequence of the definition and of Lemma 3.16. !

6. Virtual localization

In this section let X be a proper scheme over C with a C∗-action and an equivariant

1-perfect obstruction theory. We also assume that X admits an equivariant embedding

into a nonsingular variety. We denote by K0
C∗(X), the Grothendieck group of equivariant

vector bundles on X. We combine the virtual Riemann-Roch formula with the virtual

localization of [GP] to obtain a localization formula expressing χvir(X, V ), in terms of the

equivariant virtual holomorphic Euler characteristics on fixpoint schemes.

Let Z be a scheme on which C∗ acts trivially. Let ε be a variable. Let B be a vector

bundle on Z with a C∗-action. Then B decomposes as a finite direct sum

(6.1) B =
⊕

k∈Z

Bk

of C∗-eigenbundles Bk on which t ∈ C∗ acts by tk. We identify B with
∑

k Bkekε ∈

K0(X)[[ε]]. This identifies K0
C∗(X) with a subring of K0(X)[[ε]]. Now let again B be a

C∗-equivariant vector bundle on Z with decomposition (6.1) into eigenspaces. We denote

Bfix := B0, Bmov := ⊕k )=0B
k.

We put Λ−1B :=
∑

i≥0(−1)iΛiB. If B = Bmov, then Λ−1B is invertible in K0(Z)((ε)).

Thus if C ∈ K0
C∗(Z) is of the form C = A − B, with A = Amov, B = Bmov, then

Λ−1C := Λ−1A/Λ−1B is an invertible element in K0(Z)((ε)).

Now assume that Z is proper and has a 1-perfect obstruction theory. Let Ovir
Z be the

corresponding virtual structure sheaf. Let pvir
∗ := K0(Z)((ε)) → Q((ε)) be the Q((ε))-linear

extension of χvir(Z, •) : K0(X) → Z.
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We also recall some basic facts about equivariant Chow groups. Let A∗
C∗(Z) be the

equivariant Chow ring, this can be canonically identified with A∗(Z)[ε]. We extend the

Chern character ch : K0(Z) → A∗(Z), by Q((ε))-linearity to ch : K0(Z)((ε)) → A∗(Z)((ε)).

With our identification of K0
C∗(Z) with a subring of K0(Z)[[ε]], the restriction to K0

C∗(Z) is

the equivariant Chern character. For V ∈ K0
C∗(Z) let Eu(V ) ∈ A∗

C∗(Z) be the equivariant

Euler class, and td(V ) the equivariant Todd genus. By definition, we have ch(Λ−1V ∨) =

Eu(V )/ td(V ). Let p∗ : AC∗

∗ (Z) = A∗(Z)[ε] → Q[ε] be the equivariant pushforward to

a point; it is Q[ε]–linear and we denote by the same letter its Q((ε))–linear extension.

As the action of C∗ on Z is trivial, td(T vir
Z ) and [Z]vir are C∗-invariant. Thus α $→

p∗(td(T vir
Z )·α∩[Z]vir) is Q((ε))-linear. As

∫
[Z]vir ch(V ) td(T vir

Z ) = χvir(Z, V ) for V ∈ K0(Z),

it follows that

(6.2) pvir
∗ (V ) = p∗(ch(V ) td(T vir

Z ) ∩ [Z]vir), for V ∈ K0(Z)((ε)).

We briefly recall the setup of [GP]. We assume that X admits an equivariant global

embedding into a nonsingular scheme Y with C∗ action. Let I the ideal sheaf of X in Y ,

assume that φ : E• → [I/I2 → ΩY ] is a map of complexes. Assume that the action of C∗

lifts to E• and φ is equivariant. Then [GP] define an equivariant fundamental class [X]vir

in the equivariant Chow group AC∗

d (X). Let Xf be the maximal C∗-fixed closed subscheme

of X. For nonsingular Y , Y f is the nonsingular set-theoretic fixpoint locus, and Xf is the

scheme-theoretic intersection Xf = X ∩ Yf . Let Y f :=
⋃

i∈S Yi be the decomposition into

irreducible components and Xi = X ∩ Yi. The Xi are possibly reducible. [GP] define a

canonical obstruction theory on Xi. Let [Xi]vir be the corresponding virtual fundamental

class and Ovir
Xi

the corresponding virtual structure sheaf. The virtual normal bundle Nvir
i

of Xi is defined by Nvir
i := (T vir

X |Xi)
mov.

Proposition 6.3 (weak K-theoretic localization). Let V ∈ KC(X) and let Ṽ ∈ K0
C(X)

be an equivariant lift of V . Denote by Ṽi the restriction of Ṽ to Xi and pi : Xi → pt the

projection. Put

χvir(X, Ṽ , ε) :=
∑

i

pvir
i∗

(
Ṽi/Λ−1(N

vir
i )∨)

)
.

Then χvir(X, Ṽ , ε) ∈ Q[[ε]] and χvir(X, V ) = χvir(X, Ṽ , 0).

Proof. This follows by combining the virtual Riemann-Roch theorem with the virtual

localization. We will show:

(6.4) p∗(ch(Ṽ ) · td(T vir
X ) ∩ [X]vir) = χvir(X, V, ε).
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This implies the Corollary: ch(Ṽ ) · td(T vir
X )∩ [X]vir ∈ A∗(X)[[ε]] and thus by (6.4) we have

χvir(X, V, ε) ∈ Q[[ε]]. Furthermore the virtual Riemann-Roch theorem gives

χvir(X, V ) =

∫

[Xvir]

ch(V ) · td(T vir
X ) = p∗(ch(Ṽ ) · td(T vir

X ) ∩ [X]vir)|ε=0 = χvir(X, Ṽ , 0).

By the localization formula of [GP] we have

p∗(ch(Ṽ ) · td(T vir
X ) ∩ [X]vir) =

∑

i

pi∗

(
ch(Ṽi) td(T vir

X |Xi)/ Eu(Nvir
i ) ∩ [Xi]

vir
)

=
∑

i

pi∗

(
td(T vir

Xi
) ch

(
Ṽi/ ch(Λ−1(N

vir
i )∨

)
∩ [Xi]

vir
)

=
∑

i

pvir
i∗

(
Ṽi/Λ−1(N

vir
i )∨

)
.

where we have used td(T vir
X |Xi) = td(T vir

Xi
) td(Nvir

i ), and td(Nvir
i ) = Eu(Nvir

i )/ ch(Λ−1(Nvir
i )∨),

and finally (6.2). !

Conjecture 6.5 (K-theoretic virtual localization). Let ι :
⋃

Xi → X be the inclusion.

Then Ovir
X =

∑s
i=1 ι∗

(
Ovir

Xi
/Λ−1(Nvir

i )∨
)
, in localized equivariant K-theory.

In the context of DG-schemes Conjecture 6.5 has already been proven in [CFK3,

Thm. 5.3.1] and it should be possible to adapt their proof.

Corollary 6.6. Under the assumptions of Theorem 6.3 we have

(1) For any V ∈ K0(X) we have (writing Ṽi := Ṽ |Xi for Ṽ an equivariant lift of V ):

χvir
−y(X, V ) =

(∑

i

χvir
−y

(
Xi, Ṽi ⊗ Λ−y(N

vir
i )∨/Λ−1(N

vir
i )∨

))
|ε=0.

(2) Let ni := rk(Nvir
i ). Then

Ellvir(X; z, τ) =
(∑

i

y−ni/2Ellvir
(
Xi, E(Nvir

i )Λ−y(N
vir
i )/Λ−1(N

vir
i )∨, z, τ

) )
|ε=0.

(3) evir(X) =
∑

i e
vir(Xi), where evir(Xi) is defined using the obstruction theory in-

duced from X. In particular, if all the Xi are smooth and the obstruction theory

induced from X on each Xi is the cotangent bundle, then evir(X) = e(X).

Proof. (1) By definition and Proposition 6.3 we get

χvir
−y(X, V ) = χvir(X, V ⊗ Λ−y(Ω

vir
X )) =

∑

i

pvir
i∗

(
Vi ⊗ Λ−y(Ω

vir
X |Xi)/Λ−1(N

vir
i )∨

)
|ε=0.

As T vir
X = T vir

Xi
+ Nvir

i ∈ K0(Xi), and Λ−y is a homomorphism we get

pvir
i∗

(
Vi ⊗ Λ−y(Ω

vir
X |Xi)/Λ−1(N

vir
i )∨

)
= pvir

i∗

(
Vi ⊗ Λ−yΩvir

Xi
⊗ Λ−y(N

vir
i )∨/Λ−1(N

vir
i )∨

)

= χvir
−y

(
Xi, Vi ⊗ Λ−y(N

vir
i )∨/Λ−1(N

vir
i )∨

)
.
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(2) Putting y = e2πiz, q = e2πiτ , we have by definition and applying (1)

Ellvir(X, z, τ) = y−d/2χvir
−y(X, E(T vir

X ))

= y−d/2
(∑

i

χvir
−y

(
Xi, E(T vir

X ) ⊗ Λ−y(N
vir
i )∨/Λ−1(N

vir
i )∨

) )
|ε=0

= y−d/2
(∑

i

χvir
−y

(
Xi, E(T vir

Xi
) ⊗ E(Nvir

i ) ⊗ Λ−y(N
vir
i )∨/Λ−1(N

vir
i )∨

) )
|ε=0

=
(∑

i

y−ni/2Ellvir
(
Xi, E(Nvir

i )Λ−y(N
vir
i )/Λ−1(N

vir
i )∨, z, τ

) )
|ε=0.

(3) By the definition of evir(X) and by (1) we have

evir(X) = χvir
−1(X) =

∑

i

χvir
−1

(
Xi, Λ−1(N

vir
i )∨/Λ−1(N

vir
i )∨

)
|ε=0

=
∑

i

χvir
−1 (Xi) =

∑

i

evir(Xi).

If all the Xi are smooth with trivial obstruction theory, then evir(Xi) = e(Xi), thus

evir(X) =
∑

i e(Xi). Put Y := X \
⋃

i Xi. Then the C∗ acts freely on Y , thus e(Y ) = 0.

Furthermore Y is open in X. Thus e(X) = e(X \ Y ) + e(Y ) =
∑

i e(Xi). !

7. Virtually smooth DM stacks

Obstruction theories arise naturally as deformation-theoretic dimensional estimates on

moduli spaces, e.g. of stable maps or stable sheaves. Such moduli spaces are often not

schemes but DM stacks. In this section we will extend this paper’s definition to the stack

case, and discuss which results are still valid. A significant case where the theory works

are moduli spaces of stable sheaves: in the forthcoming paper [GNMY], this will be used

together with the results of [M1] to study the invariants of moduli spaces of sheaves on

surfaces.

7.1. Notation and conventions. A DM stack will be a separated algebraic stack in

the sense of Deligne–Mumford of finite type over the ground field of characteristic 0.

All DM stacks will be assumed to be quasiprojective in the sense of Kresch, i.e. they

admit locally closed embeddings into a smooth DM stack which is proper over the base

field and has projective coarse moduli space. Furthermore we assume that they have the

resolution property; in characteristic 0 this last condition is implied by quasiprojectivity

[Kre, Thm. 5.3].

A DM stack X will be called virtually smooth of dimension d if we have chosen a perfect

obstruction theory φ : E• → τ≥−1L•
X .
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The definitions for schemes are valid also in this case, yielding a virtual fundamental

class [X ]vir ∈ Ad(X ), a virtual structure sheaf Ovir
X ∈ K0(X ) and a virtual tangent bundle

T vir
X ∈ K0(X ).

If X is proper and V ∈ K0(X ) we can define

χvir(X , V ) := χ(X , V ⊗Ovir
X ).

Following Definition 4.2, we put Ωvir
X := (T vir

X )∨, and define the virtual χ−y-genus of X by

χvir
−y(X ) := χvir(X , Λ−yΩvir

X ) and, for V ∈ K0(X ), put χvir
−y(X , V ) := χvir(X , V ⊗ Λ−yΩvir

X ).

If χvir
−y(X ) is a polynomial, we define the virtual Euler characteristic of X by evir(X ) :=

χvir
−1(X ). Following (5.2) we put Ellvir(X , y, q) := y−d/2χvir

−y(X , E(T vir
X )).

7.2. Morphisms of virtually smooth DM stacks. A morphism between virtually

smooth DM stacks (X , EX ) and (Y , EY) is a pair (f, ψ) where f : X → Y is a morphism,

and ψ : f ∗EY → EX is a morphism in Db(X ) such that

f ∗φY ◦ ψ = τ≥−1Lf ◦ φX : f ∗EY → τ≥−1LX

and such that the mapping cone C(ψ) is perfect in [−1, 0].

Note that every fibre of a morphism of virtually smooth stacks is itself virtually smooth

A morphism (f, ψ) of virtually smooth DM stacks is called étale if f is étale and ψ is

an isomorphism.

Lemma 7.1. Let f : X → Y be an étale morphism of virtually smooth DM stacks.

(1) T vir
X = f ∗(T vir

Y ).

(2) [X ]vir = f ∗[Y ]vir.

(3) Ovir
X = f ∗(Ovir

Y ).

Proof. (1) follows directly from the definitions.

The isomorphism f ∗LY → LX induces an isomorphism of abelian cone stacks NX → NY ,

and, by the consequence of [BF, Cor. 3.9], an isomorphism CX → f ∗CY . Choose a global

resolution [E−1 → E0] of EY and let [F−1 → F 0] be its pullback to X . The cartesian

diagram

CX
! [F1/F0] ! X

CY

"

! [E1/E0]
"

! Y
"

induces a cartesian diagram

CX
! F1

! X

CY

"

! E1

f
"

! Y

f
"
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where CX (resp. CY) is the inverse image of CX (resp. CY). Let s0 (resp. s̃0) denote

the zero section of F1 (resp. E1). Since [Y ]vir = s̃!
0[CY ] and f

∗
[CY ] = [CX ], (1) becomes

s!
0f

∗
[CY ] = f ∗s̃!

0[CY ], which is [Fu, Thm. 6.2]. On the other hand

Tor
OF1
k (OCX

,OX ) = Tor
OF1
k (f

∗
OCY

, f
∗
OY) = f ∗(Tor

OE1
k (OCY

,OY)),

since f is flat and hence commutes with Tor; this proves (2).

!

7.3. The gerbe case. Let X be a scheme, and ε : X → X a gerbe over X banded by a

finite abelian group G; note that ε is always an étale proper morphism. Write |G| for the

order of G.

For all W ∈ K0(X) we have ε∗ε∗(W ) = W . The morphism ε∗ : A∗(X) → A∗(X ) is a

ring isomorphism and ε∗ε∗ : A∗(X) → A∗(X) is multiplication by 1
|G| . In particular for

any class α ∈ A∗(X) we have
∫
[X]vir α = |G|

∫
[X ]vir ε∗(α).

Let F be a coherent sheaf on X ; then for every point x : Spec C → X the fiber

F(x) := x∗F is naturally a representation of G, and hence decomposes as a direct sum

over the group G∨ of characters of G. The fiberwise direct sum decompositions induce a

global decomposition E :=
∑

Eχ where the sum runs over χ ∈ G∨, and any morphism

f : E−1 → E0 of coherent sheaves respects the characters.

We write χ0 for the trivial character. For E a coherent sheaf on X , one has ε∗ε∗E = Eχ0 ;

hence E is a pullback from X if and only if E = Eχ0, that is Eχ = 0 for every χ += χ0.

Let φ : E• → τ≥−1LX be a 1-perfect obstruction theory for X . The morphism ε is étale,

hence the natural map ε∗LX → LX is an isomorphism.

Remark 7.2. The following are equivalent:

(1) there is a (unique up to isomorphism) obstruction theory F • on X such that ε

induces an étale morphism of virtually smooth stacks;

(2) for every point x : Spec C → X the G-representations hi((x∗E•)∨) are trivial, for

i = 0, 1.

For the rest of this subsection we assume that the conditions of Remark 7.2 are fulfilled.

As before let E0 → E1 be the dual complex to E• and F0 → F1 the dual complex to F •, and

let T vir
X := E0 −E1 and T vir

X := F0 −F1. Let [X ]vir ∈ Ad(X ), (resp. [X]vir ∈ Ad(X)) be the

virtual fundamental classes defined via E• (resp. F •). Denote Ovir
X ∈ K0(X ), (resp. Ovir

X ∈

K0(X)) the virtual structure sheaves on X (resp. X) defined via E• (resp. F •). As before

for any V ∈ K0(X ) and any W ∈ K0(X) let

χvir(X , V ) := χ(X , V ⊗Ovir
X ), χvir(X, W ) := χ(X, W ⊗Ovir

X ).

Corollary 7.3. (1) For any V ∈ K0(X ) we have χvir(X , V ) = χvir(X, ε∗(V )).
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(2) For any W ∈ K0(X), we have χvir(X , ε∗(W )) = χvir(X, W ).

Proof. (1) By the projection formula

χvir(X , V ) = χ(X , V ⊗Ovir
X )) = χ(X, ε∗(V ) ⊗Ovir

X ) = χvir(X, ε∗(V )).

(2) By (1) χvir(X , ε∗(W )) = χvir(X, ε∗(ε∗(W ))) = χvir(X, W ). !

Corollary 7.4. (1) Let V ∈ K0(X ), then

χvir(X , V ) = |G|

∫

[X ]vir

ch(ε∗ε∗(V )) td(T vir
X ).

(2) Let W ∈ K0(X), then

χvir(X , ε∗W ) = |G|

∫

[X ]vir

ch(ε∗(W )) td(T vir
X ).

Proof. (1) By Corollary 7.3 and virtual Riemann-Roch we get

χvir(X , V ) = χvir(X, ε∗(V )) =

∫

[X]vir

ch(ε∗(V )) td(T vir
X ) = |G|

∫

[X ]vir

ε∗(ch(ε∗(V ))) td(T vir
X ),

and the claim follows because ch commutes with pullback. (2) Again Corollary 7.3 and

virtual Riemann-Roch give

χvir(X , ε∗W ) = χvir(X, W ) =

∫

[X]vir

ch(W ) td(T vir
X ) = |G|

∫

[X ]vir

ch(ε∗(W )) td(T vir
X ).

!

Corollary 7.5. (1) χvir
−y(X ) = χvir

−y(X), evir(X ) = evir(X).

(2) More generally for V ∈ K0(X ) and W ∈ K0(X), we have χvir
−y(X , V ) = χvir

−y(X, ε∗(V ))

and χvir
−y(X , ε∗W ) = χvir

−y(X, W ).

(3) Ellvir(X , y, q) = Ellvir(X, y, q).

(4) evir(X) = |G|
∫
[X ]vir cd(T vir

X ).

Proof. (1), (2), (3) follow immediately from the definitions and Corollary 7.3. (4) follows

from Corollary 4.8. !

7.4. Moduli stacks of stable sheaves. Let V be a projective variety of dimension d,

H an ample line bundle on V , r > 0 an integer and (for i = 1, . . . , r) ci ∈ H2i(X, Z)

cohomology classes. We denote by X the moduli stack of H–stable bundles of rank r and

Chern classes ci on V . We denote as usual by Pic V the Picard group of V , and by Pic V

the Picard stack of V , i.e. the moduli stack of line bundles on V . The determinant defines

a natural morphism det : X → Pic V , and there is a natural map Pic V → Pic V which

identifies Pic V with the coarse moduli space of Pic V .
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Both X and Pic V are algebraic stacks in the sense of Artin, and they have a natural

structure of gerbes banded by Gm over their coarse moduli spaces, since all stable bundles

and all line bundles are simple, i.e. their automorphism group is given by nonzero scalar

multiples of the identity. It is a well known fact that the gerbe Pic V → Pic V is trivial,

and we choose a trivialization i.e., a Poincaré line bundle on V ×Pic V , that is a section of

the structure morphism Pic X → Pic X. We denote by X the fiber product X×Pic V Pic V ;

if L ∈ Pic V is a line bundle, we denote by XL the fiber of X over L. Both X and XL are

DM stacks, and are naturally gerbes banded by µr over their coarse moduli spaces, which

we denote by X and XL respectively. Both X and XL are quasiprojective schemes; they

are projective if there are no strictly semistable sheaves with the given rank and Chern

classes (and determinant, in the case of XL).

Let F be an H-stable sheaf of rank r, with Chern classes ci and determinant L, and

denote by f the corresponding morphism from Spec C to either X or XL. The stack X and

XL have natural obstruction theories E• and E•
L with the property that hi(f ∗(E•

L)∨) =

Exti+1
0 (F ,F), h1(f ∗(E•)∨) = Ext2

0(F ,F), h0(f ∗(E•
L)∨) = Ext1(F ,F).

Lemma 7.6. Let c ∈ C be a nonzero scalar. Then the automorphism induced on Exti(F ,F)

and Exti
0(F ,F) by acting simultaneously on both copies of F with the scalar c is the iden-

tity.

Proof. Since Ext is contravariant in the first variable and covariant in the second, the

scalar automorphism c applied to the first variable acts as c−1, and applied to the second

variable it acts as c. The vector space Exti
0(F ,F) carries the induced action. !

Proposition 7.7. The complex E• (respectively E•
L) is the pullback of a unique obstruction

theory on X (resp. on XL).

Proof. This follows immediately by Remark 7.2. !

Appendix – A detailed proof of Theorem 4.5

Fix formal variables xi for i = 1, . . . , n and yj for j = 1, . . . , m and let A be the

formal power series ring A := Q[[xi, yj]]. Let d = n − m which we assume nonegative,

mA the maximal ideal in A, and let Ā be the quotient ring A/md+1
A (formal power series

developments up to order d).

Let t indicate one of the variables xi’s or yj’s. Let

f(t, y) :=
t

1 − e−t
(1 − ye−t) ∈ A[y].
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Since t/(1 − e−t) is invertible in A, f is invertible in A[[y]]; its inverse is the power series

f∗(t, y) :=
1 − e−t

t
(
∑

r≥0

yrert) ∈ A[[y]].

We now consider the variable change y = 1 − 1/u, i.e. u = 1/(1 − y). Note that

g(t, u) := uf(t, 1 − 1/u) ∈ A[u, 1/u] is actually a degree one polynomial, which can be

written as

g(t, u) = ut +
te−t

1 − e−t
= 1 + / + tu

with / ∈ mA. Note that g is invertible and its inverse is

g∗(t, u) =
∑

r≥0

(−1)r(/ + tu)r.

Let ξ =
∑

ξkuk ∈ A[[u]] be a power series. We say that ξ is good if ξk ∈ mk
A for every k;

in that case, we denote by ξ̃ the power series
∑

ξ̃kuk where ξ̃k is the homogeneous part of

degree k in ξk. Good power series are closed under sum, product, and infinite sum when

this makes sense, and the map ξ $→ ξ̃ commutes with all these operations.

Claim 1. The power series g∗(t, u) is good, and g̃∗(t, u) = (1 + tu)−1.

Proof. Let ξ := / + tu. Then ξ is good and ξ̃ = tu. Hence g∗ is good, and g̃∗ :=∑
r≥0(−1)rξ̃r =

∑
r≥0(−1)r(tu)r = (1 + tu)−1. !

We denote by f̄ the image of f in Ā[u], and similarly for f∗, g, g∗. Note that by the

claim ḡ∗ is actually a polynomial in u of degree at most d.

Since g is a polynomial, we can consider g(t, 1/(1− y)) ∈ A[[y]]; it is easy to check that

g(t, 1/(1 − y)) = (1 − y)−1f(t, y). In particular ḡ(t, 1/(1 − y)) = (1 − y)−1f̄(t, y).

Since ḡ∗ is a polynomial in u, it makes sense to consider ḡ∗(t, 1/(1 − y)) ∈ Ā[[y]].

Claim 2. In the ring Ā[[y]] one has the equality

1

1 − y
ḡ∗(t, 1/(1 − y)) = f̄∗(t, y).

Proof. From the equations gg∗ = 1 in A[[u]] and ff∗ = 1 in A[[y]] it follows that f̄ f̄∗ = 1

and ḡ(t, 1/(1−y))ḡ∗(t, 1/(1−y)) = 1 in Ā[[y]]. We can multiply both sides of the claim by

ḡ(t, 1/(1−y)) and f̄(t, y) since these are invertible elements. The result to prove becomes

1

1 − y
f̄(t, y) = ḡ(t, 1/(1 − y))

which immediately follows from the corresponding equality in A[[y]]. !
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The claim above would not make sense in A[[y]] since we cannot substitute in the power

series g∗ the power series (1 − y)−1 which has a nonzero constant term.

Let

X−y(X) :=
n∏

i=1

f̄(xi, y)
m∏

j=1

f̄∗(yj, y) ∈ Ā[[y]].

Claim 3. (1) In the ring Ā[[y]] one has the equality

X−y(X) = (1 − y)d
n∏

i=1

ḡ(xi, 1/(1 − y))
m∏

j=1

ḡ∗(yj, 1/(1 − y))

(2) X−y(X) is a polynomial of degree at most d.

(3) Write X−y(X) =
∑r

l=0 X
l(1 − y)l. Then X l − cl(T vir

X ) ∈ ml+1
Ā

.

Proof. (1) We can apply the previous claim since (1 − y)d = (1 − y)n/(1 − y)m.

(2) The power series

h(u) :=
n∏

i−1

g(xi, u) ·
m∏

i=1

g∗(yj, u) ∈ A[[u]]

is good since each of its factors is good, and therefore h̄(u) is a polynomial of degree at

most d.

(3) It is enough to prove that h̃(u) =
∏n

i=1(1+xiu)
∏m

j=1(1+yju)−1, and this follows from

the definition and the first claim. !
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