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QCD constituent counting rules define the scaling behavior of exclusive hadronic scattering and
electromagnetic scattering amplitudes at high momentum transfer in terms of the total number of
fundamental constituents in the initial and final states participating in the hard subprocess. The scaling laws
reflect the twist of the leading Fock state for each hadron and hence the leading operator that creates the
composite state from the vacuum. Thus, the constituent counting scaling laws can be used to identify the
twist of exotic hadronic candidates such as tetraquarks and pentaquarks. Effective field theories must
consistently implement the scaling rules in order to be consistent with the fundamental theory. Here, we
examine how one can apply constituent counting rules for the exclusive production of one or two neutral
vector mesons V0 in eþe− annihilation, processes in which the V0 can couple via intermediate photons. In
the case of a (narrow) real V0, the photon virtuality is fixed to a precise value s1 ¼ m2

V0 , thus treating the V0

as a single fundamental particle. Each real V0 thus contributes to the constituent counting rules with
NV0

¼ 1. In effect, the leading operator underlying the V0 has twist 1. Thus, in the specific physical case of

single or double on-shell V0 production via intermediate photons, the predicted scaling from counting rules
coincides with vector-meson dominance (VMD), an effective theory that treats V0 as an elementary field.
However, the VMD prediction fails in the general case where the V0 is not coupled through an elementary
photon field, and then the leading-twist interpolating operator has twist NV0

¼ 2. Analogous effects appear
in pp scattering processes.

DOI: 10.1103/PhysRevD.97.034009

I. INTRODUCTION

One of the distinctive consequences of the underlying
conformal features of gauge theories such as QCD is
counting rules for hard exclusive processes. In such
processes, one can factorize the physical scattering ampli-
tude as the convolution of a hard-scattering quark and
gluon amplitude TH with the product of hadronic distri-
bution amplitudes ϕHðx;QÞ. The resulting scaling for the
differential cross section at large momentum transfer reads
[1–3] dσ/dt ∼ 1/SN−2, where S is a generic hard scale, and
N ¼ Ni þ Nf is the total number of fundamental constitu-
ents participating in the hard subprocess. The number of

constituents of each hadron entering the scattering ampli-
tude coincides with the number of particles in its leading
Fock state and thus with the twist of the leading operator
that creates the composite state from the vacuum. For
example, the scaling prediction for exclusive cross sections
such as fixed-angle hadron-hadron scattering is [1–3]

dσ
dt

ðAþ B → CþDÞ ∝ FðθCMÞ
SN−2 ; ð1Þ

where N ¼ NA þ NB þ NC þ ND is the total twist or
number of elementary constituents. When dealing with
hadrons, one must take into account their quark content and
use NM ¼ 2 and NB ¼ 3 for each meson and baryon,
respectively. One also predicts logarithmic corrections from
the behavior of the running couplings entering TH and the
Efremov-Radyushkin-Brodsky-Lepage (ERBL) evolution
of the distribution amplitude.
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The constituent counting rules are completely rigorous
when they are applied properly. The leading-twist contribu-
tion to the power-law falloff of a cross section for any
exclusive or semi-inclusive process depends upon the
twist of the operators that couple the hadron to the hard
subprocess. The twist τ of a hadron that couples to a
hard-scattering subprocess is computed from the number
N of its fundamental constituent fields interacting in the
hard-scattering subprocess (called active in Ref. [4]), plus L,
the relative orbital angular momenta in the contributing
hadronic Fock state. In contrast, the cross section for hadrons
produced through a soft intermediate state—such as a neutral
vector meson V0 produced via its direct coupling to a
photon of finite virtuality, or a hadron produced from jet
fragmentation—does not have increased power-law falloff.
Note also that effective field theories developed to

describe hard hadronic processes must consistently imple-
ment the counting rules in order to be consistent with the
underlying fundamental theory of QCD. AdS/QCD, which
allows the calculation of hadronic amplitudes using light-
front holography [5], is a good example of such an effective
theory.
In Refs. [6,7], the present authors studied the application

of the constituent counting rules for the production of
tetraquarks, pentaquarks (as first suggested for the Λð1405Þ
in Refs. [8,9]), and V0 in the exclusive reactions of
electroproduction and pp̄ and e−eþ annihilation. The
purpose of the present paper is to further clarify our point
regarding single and double on-shell V0 production in eþe−

annihilation (see Figs. 1 and 2), where each V0 couples to
the hard subprocess via a virtual photon. In effect, the
leading operator underlying the V0 has twist NV0 ¼ 1, a
point not fully appreciated in Ref. [7]. In fact, the
possibility that some of the constituents in a given process
counted in the scaling rule might not be hard is the essence
of the critique of [6] given in Ref. [10]. Thus, in the specific
physical case of single or double V0 production via
intermediate photons, the predicted scaling from counting
rules coincides with vector-meson dominance (VMD) [11],
an effective theory that treats the V0’s as elementary fields.
A modified form of the constituent counting rules therefore
holds, and QCD can be approximated at these exceptional

kinematic points by an effective field theory, the VMD
model, which treats V0 as an elementary field. However, as
we shall show, VMD, in general, is not consistent with
QCD and the constituent counting rules. The VMD
prediction fails in the general case in which the V0 is
not coupled to the hard subprocess via an elementary
photon field; in that case, the leading-twist interpolating
operator has twist NV0

¼ 2.
This paper is organized as follows: Section II provides

general comments about the eþe− → γ�γ and γ�γ� proc-
esses, both leptonic and hadronic. In Sec. III we examine
the process eþe− → γμþμ−, for which the relevant cross
sections have been explicitly computed and for which the
high-momentum scaling behavior is explicit, and infer the
corresponding behavior for V0 production. Section IV
shows how the original constituent counting rules persist
in inclusive eþe− processes involving vector (or scalar or
tensor) meson production. In Sec. V we consider applica-
tions of these ideas in pp scattering processes, and in
Sec. VI we conclude.

II. VECTOR-MESON PRODUCTION VIA
INTERMEDIATE PHOTONS

The most straightforward scaling predicted by the
counting rules is valid in most physical applications,
e.g., in the pair production of mesons, baryons, or tetra-
quarks in eþe− annihilation [6], and it occurs whenever all
constituents participate in the hard process, in which cases
the scale S is just Mandelstam s, the square of the total
center-of-momentum (c.m.) energy. If any of the particles
undergo hard scatterings that constrain them to lie in the
forward (beam) c.m. direction, the corresponding factors of
S become Mandelstam jtj [7].
However, specific physical cases exist, e.g., single or

double vector-boson V0 production processes eþe− → γV0

and eþe− → V0
aV0

b, in which each V0 couples solely to an
intermediate elementary photon field, γ → V0, or a weak
gauge boson, Z0 → V0,W� → V�. In such cases, the scale
associated with the photon virtuality is fixed to a precise
value s1 ¼ m2

V0 , where mV0 is the vector-meson mass.
Therefore, one can treat the V0 (with respect to the counting

FIG. 1. Diagram for exclusive production of a vector meson V0

in eþe− → γV0, the corresponding u-channel diagram being
implied.

FIG. 2. Diagram for exclusive production of vector mesons V0
a

and V0
b in eþe− → V0

aV0
b, the corresponding u-channel diagram

being implied.
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rules) as a single fundamental particle, and QCD reduces to
the limit of the VMD model. In this specific case, the V0 is
approximated by an elementary field withNV0 ¼ 1 elemen-
tary constituents. Then, one has N − 2 ¼ 2 for both
processes eþe− → γV0 and eþe− → V0

aV0
b, which gives

the differential cross-section scaling dσ/dt ∝ 1/s2, where s
is the total c.m. energy of the lepton pair, or 1/sjtj for
forward scattering. This result follows from setting s1 ¼
m2

V0 in the γ → V0 transition form factor GVðs1Þ (calcu-
lated, e.g., using the soft-wall AdS/QCD approach) in
Ref. [7], rather than introducing an OðjtjÞ scale in GV as
advocated in that work. Independently, this scaling result
can be shown explicitly by considering the related process
eþe− → γμþμ− at high energy but small invariant mass for
the μþμ− pair (Sec. III), an exercise that is instructive in
explicitly indicating where the various momentum scales
appear. Let us stress again that the scaling of the differential
cross section dσ/dt ∝ 1/s2 in the particular processes of
single or double vector-boson V0 production does not
violate the constituent counting rules because the exclusive
γ → V0 transition necessarily implies soft QCD, leading
one to approximate the V0 (with respect to hard scales) as
an elementary field. In other words, the presence of soft
QCD vertices in hard processes leads to a decrease of the
scaling power in the corresponding differential cross
section by identifying each softly produced hadron com-
posed of Na constituents with an elementary field: Na → 1.
Note that the production of a V0 via a photon can be a

subleading contribution to the matrix element of a hard
process. An example of such a process is V0 production in
the reaction eþe− → V0P0, where P0 is a neutral pseudo-
scalar meson (e.g., π0, η; η0). In Ref. [10], VMD was the
mechanism proposed for the γ → V0 transition in such
processes. It is clear that this subprocess is OðαemÞ sup-
pressed in comparison with the leading QCD diagram
discussed in Ref. [12] for direct production of a V0P0 pair
by a hard photon, γ� → V0P0. As was shown in Ref. [12],
the matrix element for eþe− → V0P0 contains a helicity-
flip transition form factor Fγ�V0P0ðsÞ, which encodes
violation of hadron helicity selection rules and scales as
1/s2 at large s. As a result, the corresponding cross section
scales as dσ/dt ∝ 1/s5; i.e., it has an additional 1/s falloff
compared to helicity-favored modes of two-meson produc-
tion (πþπ−, KþK−, etc.). The mechanism for the eþe− →
V0P0 reaction considered in Ref. [10] gives dσ/dt ∝ 1/s3,
but, as stressed above, it is suppressed by a power of αem in
comparison with the leading QCD diagram.

III. LESSONS FROM THE PROCESS e + e− → γμ+ μ−

In order to verify or falsify the claim from Ref. [7] that
the γ�V0 transition form factor GVðq2Þ scales as 1/

ffiffiffiffiffijtjp

for
forward scattering in eþe− → γV0, one may study the
related process eþe− → γμþμ−, which has been considered

for decades [13,14] as a background to eþe− → μþμ−, and
more recently [15] in the initial-state radiation process, in
which the real photon is hard but the μþμ− pair is soft.
Indeed, the result of Ref. [15] was used to estimate the yield
of true muonium (μþμ−) atoms in the process eþe− →
γ þ ðμþμ−Þ [16]. The process assumes the same topology
as Fig. 3, with qq̄ replaced by μ−μþ.
To serve as an orientation, we exhibit the textbook result

[17] of the Born-level cross section for the pair-annihilation
process eþe− → γγ. One finds, neglecting masses, and in
the forward direction (m2

e ≪ jtj ≪ s),

dσ
dt

→
2πα2

s2jtj
s2 þ 2stþ 2t2

sþ t
→

2πα2

sjtj ð2Þ

in agreement with the prediction of Eq. (1) with N ¼ 4 and
one forward (fermion) propagator.
The full Born-level cross section for eþe−→ γþðμþμ−Þ,

as can be seen in Eq. (14) of Ref. [14], possesses a second-
order pole 1/ð1� zÞ2 in z≡ cos θþ, where θþ is the μþe−
angle in the eþe− c.m. frame. The corresponding differ-
ential cross section dσ/dt therefore has separate terms
scaling as 1/jtj2 and as 1/juj2. They clearly arise through the
near-collinear kinematics in which μþ, μ−, and γ all lie
close to the beam axis but have large relative momenta; in
that case, both the fermion and photon propagators in Fig. 3
contribute the large momentum-transfer factors.
But now restrict to the kinematics of Ref. [15], in which

the momentum transfer s1 of the μþμ− pair is small; in the
exclusive qq̄ case, s1 ¼ m2

V0 (labeled q2 in Ref. [7]). The
eþe− → γ þ ðμþμ−Þ forward differential cross section then
reads

dσ
dt

¼ α3

sjtjs1
ð2δþ 1 − 2x−xþÞdx−ds1; ð3Þ

where δ≡m2
μ/s1, x� ≡ Eμ� /ð

ffiffiffi

s
p

/2Þ are the fractional μ�

energies, and me → 0. The question then becomes how
much the remaining integrals, those over dx− and ds1,
influence the full high-momentum scaling of dσ/dt. One
easily finds that

s1 → 2ssin2
ϵ

2
; t → −2ssin2

θ

2
; ð4Þ

FIG. 3. Diagram contributing to eþe− → γγ� → γqq̄, the cor-
responding u-channel diagram being implied.
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where ϵ is the μþμ− angle and θ is the e−γ angle in the c.m.
frame. We are therefore interested in the hierarchy s1 ≪
jtj ≪ s or ϵ ≪ θ ≪ 1. Immediately one sees that small s1
requires a small c.m. angle ϵ between the μþμ− pair;
however, at this stage no similar restriction requires the μþ

and μ− to share their total energy
ffiffiffi

s
p

/2 equally, so x− ¼
1 − xþ can assume any value ∈ ½0; 1�.
We now turn to the exclusive hadronic case

(μ−μþ → qq̄), in which Eq. (3) is modified via multipli-
cation by a color factor 3 and the γ�V0 transition form
factor jGV j2. Here, one may naively think that the constraint
of forming a bound state—that the momenta of the initial
qq̄ pair differ by no more than Oð ffiffiffiffiffi

s1
p Þ ¼ OðΛQCDÞ—

forces their energies to be almost equal when compared to
their total energy

ffiffiffi

s
p

/2, thus forcing x− ≃ xþ and sup-
pressing the region of support of the x− integral. However,
this momentum constraint applies to the quarks in their own
c.m. frame, but their relative momentum when evaluated in
the eþe− c:m: frame must be multiplied by a relativistic
boost factor γðvÞv ≈ 1/2 ·

ffiffiffiffiffiffiffiffi

s/s1
p

. The whole [0,1] interval
for the x− integral therefore contributes to hadronic bound
states.
One is therefore left to consider the s1 integral. Strictly

speaking, the allowed range of s1 for a vector state V0 of
narrow width is vanishingly small, and jGV j2 assumes the
form of a decay constant F2

V0 (of dimension mass squared)
times a delta function δðs1 −m2

V0Þ: Requiring the virtual
photon in Fig. 3 to produce only a single exclusive state V0

of squared mass s1 fixes the photon virtuality precisely to
equal s1. However, the same result is obtained if GVðs1Þ is
replaced by a properly normalized Breit-Wigner distribu-
tion representing a wide state such as ρ0. The form factor
jGV j2 must also decrease with s1 in order to satisfy
unitarity, but this decrease merely indicates that couplings
to highly excited V0’s must decrease with s1 ¼ m2

V0 in
order to sum to a finite total. In the AdS/QCD calculation of
Ref. [7], this dependence in terms of the AdS/QCD scale
parameter κ would read κ2/s1. The expected “large”
momentum-scale suppression inGV in exclusive transitions
due to constituent counting rules actually comes from s1.
Knowledge of the larger scale jtj by the V0 is lost in the

propagation of the photon. For the most naive form of the
counting rules to hold, all propagators and fermion cou-
plings must contribute large scales to the amplitude, and
the virtual photon in this case contributes only 1/s1. One
concludes that the forward cross section for a strictly two-
body process eþe− → γV0 in which V0 contains two
fundamental constituents [N ¼ 5 in Eq. (1)] should scale
as dσ/dt ∼ ðα3/sjtjÞjGVðs1Þj2, with GVðs1Þ ∼ 1/

ffiffiffiffiffi

s1
p

.

In contrast, Ref. [7] concluded that GVðs1Þ ∼ 1/
ffiffiffiffiffijtjp

, the
large scale jtj reemerging through a hard-gluon exchange
needed to bind the otherwise noncollinear pair qq̄ into the
bound state V0. However, as noted above, the formation of
a single photon of virtuality s1 ≪ jtj completely erases the

system’s memory of the large scale jtj: Emission of a hard
gluon in this case is not natural. Moreover, even though the
qq̄ pair can have Oð ffiffiffi

s
p Þ energies in the c.m., their

momentum invariants (their masses and s1) are small.
Consider instead a process such as that illustrated in

Fig. 3, except that the photon virtuality s1 does not
precisely equal m2

V0 but rather assumes a value of OðjtjÞ
(because the process is still one of forward scattering). The
inclusive process eþe− → γqq̄ has a much greater phase
space than does the exclusive process eþe− → γV0, and its
cross section scales in the forward direction as dσ/dt ∼
1/sjtj2 (as seen above for e−eþ → γμþμ−). This inclusive
rate does indeed include a portion of the exclusive channel
eþe− → γV0, but only from the large-jtj tail of the V0 line
shape. It also includes contributions from eþe− → γV0 plus
additional soft hadrons such that the total hadronic system
has invariant mass squared of OðjtjÞ, which can be
misidentified as the exclusive channel eþe− → γV0 if the
soft hadrons escape detection.
In summary, the correct high-momentum forward-angle

scaling for the genuine two-body exclusive eþe− → γV0

cross section is dσ/dt ∼ 1/sjtj, rather than 1/sjtj2 as given in
Ref. [7]. However, tails of the original process and
processes that can be misidentified as eþe− → γV0 give
contributions scaling as 1/sjtj2; and since they have much
greater available phase space, they may dominate the
observed rate of eþe− → γV0 even if jtj is rather larger
than m2

V0 . Completely analogous comments hold for the
process eþe− → V0

aV0
b.

IV. INCLUSIVE e + e− PROCESSES WITH
VIRTUAL PHOTONS VS. VMD

When the V0s are off shell, an extra power falloff in the
large scale appears for each meson state. The forward-
scattered virtual photons then carry OðjtjÞ momentum
transfers, and the constituent counting rules read [7]

dσ
dt

ðeþe− → γV�0Þ ∼ 1

s2jtj2 ;
dσ
dt

ðeþe− → V�0
a V�0

b Þ ∼ 1

s2jtj3 : ð5Þ

Crucially, the full QCD theory differs from an effective
field theory developed from VMD in their applications to
physical processes. In particular, VMD makes no distinc-
tion between on-shell and off-shell V0, which leads to an
incorrect off-shell behavior of the γ� → V0 transition. In
Ref. [7] we explicitly showed that a constant value for this
transition is ruled out by the nontrivial form factor GVðq2Þ,
where q is the photon (or V0) four-momentum. In fact,
GV ∼ 1/jtj1/2 at large t ¼ q2, consistent with perturbative
QCD (pQCD) and constituent counting rules.
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In Ref. [7] we pointed out another property distinguish-
ing pQCD from effective field theories treating V0 as
elementary fields, i.e., in its application to electromagnetic
form factors of hadrons. Let us review this important point:
In effective theories (like VMD [11], chiral perturbation
theory [18], or the hidden-symmetry approach with vector
mesons as dynamical gauge bosons [19]) that treat the V0

as an elementary field, the form factorGVðq2Þ is a constant.
One obtains different scaling contributions of the relevant
diagrams with elementary V0 and with pQCD. For exam-
ple, in the case of the pion electromagnetic form factor
FπðQ2Þ, one may split the VMD result into the contact and
the vector-meson exchange diagrams (Fig. 4). The contact
diagram gives 1 (a constant contribution at largeQ2¼−q2),
whereas the vector-meson exchange diagram gives a ð−1þ
m2

V0 /Q2Þ contribution. Summing these together, one arrives
at an m2

V0 /Q2 scaling. In contrast, using pQCD counting
rules, the contact diagram turns out to be of leading order
(1/Q2), whereas the V0-exchange diagram is subleading
[ð1/Q2Þ3/2] at large Q2. Of course, at fixed Q2 ¼ m2

V0 the
contributions do not cleanly separate. Another crucial point
is that, while the scaling of FπðQ2Þ in VMD is formally
m2

V0 /Q2 due to the V0 propagator, this factor has no
connection with 1/Q2 scaling in pQCD due to hard-gluon
exchanges between constituent quarks in the pion.
Therefore, the 1/Q2 falloff of FπðQ2Þ in VMD coincides
with pQCD accidentally and is not related to the physical
nature of strong interactions at high scales. As a conse-
quence, an effective field theory of VMD completely fails
in the description of the electromagnetic form factors of
baryons and multiconstituent hadronic systems (tetra-
quarks, pentaquarks, etc.) at high scales. Without pQCD
it is impossible to produce the 1/Q2ðN−1Þ falloff of the
electromagnetic form factors of hadrons containing N
constituents. Note that a criticism of VMD in the descrip-
tion of data for photon-hadron interactions at high energies
was also stressed in Ref. [20]. In particular, Ref. [20] argues
that VMD is not a suitable framework for a description of
deep-inelastic scattering over the full kinematical range.
Additionally, in the generic case of exclusive on-shell

hadron production, it is not possible to approximate the

hadrons as elementary fields. In the recent paper Ref. [21],
the exclusive production processes of scalar S ¼ 0þþ and
tensor T ¼ 2þþ mesons through single-photon annihilation
eþe− → γ� → γSðTÞ were analyzed. Here, the transition
form factors of γ� → γS and γ� → γT are not constants, and
they scale as Fγ�γSðsÞ ∼ 1/s and Fγ�γTðsÞ ∼ 1/s2 at large s,
consistent with the scaling of the corresponding form
factors at large values of virtual-photon squared Euclidean
momentum Q2: Fγ�γSðQ2Þ ∼ 1/Q2 [22] and Fγ�γTðQ2Þ ∼
1/Q4 [23]. The scaling of the form factors follows directly
from using the differing twist counting for the S- and T-
creating operators [12]. As a result, both differential cross
sections scale as dσ

dt ðeþe− → γ þ SðTÞÞ ∼ 1/s3, in agree-
ment with constituent-quark counting rules that treat real
scalar and tensor mesons as qq̄ systems with NSðTÞ ¼ 2

substituted into the counting formula (1) for dσ/dt.
Consistent with Ref. [6], when scalar and tensor mesons
are considered as tetraquark systems of two tightly bound
color diquarks, the corresponding transition form factors and
differential cross sections have the same falloffs as in the qq̄
case. For other tetraquark or two-hadron molecular configu-
rations, the transition form factors Fγ�γSðTÞðsÞ and the
differential cross section dσ/dt have additional falloffs
scaling as 1/s and 1/s2, respectively.
Again, we point out that the case of single and double

neutral vector-meson production via an intermediate pho-
ton or the weak gauge boson fields is very specific,
constraining V0 (with respect to the counting rules) to
acting as effectively fundamental (structureless) particles; it
is the result of an exceptional case in which some of the
internal propagators (i.e., virtual gauge bosons) are explic-
itly excluded from carrying large off-shell virtuality.

V. VECTOR-MESON PRODUCTION
IN pp SCATTERING

In this section we discuss V0 production in pp scattering
processes. The hadronic angular momentum dependence of
hard exclusive QCD processes is controlled by the
Brodsky-Lepage helicity selection rules [12,24], which
state that the total hadron helicity is conserved from the
initial to the final state, up to higher-twist corrections
appearing as inverse powers of the hard scale. This result
was used for eþe− → V0P0 in Sec. II. Taking here V0 ¼ ρ0,
we consider three specific cases of semi-inclusive ρ0-meson
production [4,25,26]: (1) the reaction pp → ρ0X, with the
ρ0 produced from jet fragmentation and X being any
hadrons; (2) the reaction pp → ρ0DX, with a “direct” ρ0D
produced at high pT in isolation from other hadrons on the
trigger side (i.e., without any same-side particles); and
(3) the reaction pp → γ�X → ρ0DX, where a single virtual
photon produces a “direct” ρ0, which again is isolated on
the trigger side.
Reaction (1) has normal conformal scaling (modulo log

corrections). Consistent with Eq. (1), the differential cross

FIG. 4. Diagrams (contact and vector-meson exchange) contrib-
uting to the electromagnetic form factor of the pion in effective
field theories involving vector mesons as elementary fields.
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section for semi-inclusive production of a single hadron ρ0

with form factor F scales as

dσ
d3p/E

∼
FðxTÞ
p4
T

; ð6Þ

where pT and xT ¼ 2pT /
ffiffiffi

s
p

are the transverse momentum
and its light-cone fraction, respectively.
In case (2) the ρ0D couples via a qq̄ to the hard underlying

hadron subprocess. The corresponding differential cross
section then has an additional 1/p2

T falloff in comparison
with case (1) and scales as

dσ
d3p/E

∼
FðxTÞ
p6
T

; ð7Þ

reflecting the corresponding twist-2 operator and the jqq̄i
Fock state of the ρ0. Note that reaction (2) is power
suppressed at high pT (being higher twist), but the ρ0 in
this case exhibits color transparency [27]: It is produced
directly from the hard subprocess as a small-sized color-
singlet state and can propagate through a nuclear medium
with minimal interactions. In contrast to reaction (2), the
process pp → γX with an isolated photon occurs at leading
twist since the photon can couple directly to the hard
process without additional power suppression.
Consideration of pp → γX leads to case (3), which again

scales like dσ
d3p/E ∼ 1/p4

T as in Eq. (6), since in this case the

ρ0 couples softly via the twist-1 photon field to the hard
subprocess without an additional power suppression.
Reaction (3) exhibits the same type of behavior as
discussed in Secs. II and III for eþe− → γV0 and
eþe− → V0

aV0
b.

VI. CONCLUSIONS

Let us summarize the main results of this paper. We
examined the application of QCD constituent counting
rules to exclusive processes involving neutral vector
mesons V0. In particular, we considered exclusive produc-
tion of one or two V0 via intermediate photons from eþe−

annihilation and in pp scattering. In the case of a real V0,
the photon virtuality s1 can be fixed to a precise value m2

V0 ,
in effect treating the V0 as a single fundamental particle.

Therefore, each real V0 contributes to the constituent
counting rules with NV0

¼ 1. Because the leading operator
underlying the V0 has twist 1, in the case of single or
double on-shell V0 production via intermediate photons,
the predicted scaling from counting rules coincides with
VMD, an effective theory that treats vector mesons as
elementary fields.
However, the VMD prediction fails in the general case

where the V0 is not coupled solely through an elementary
photon field, and in that case, the leading-twist interpolat-
ing operator has NV0

¼ 2. Furthermore, VMD fails in the
case of off-shell coupling of the electromagnetic field with
hadrons at large momentum scales because this approach,
by construction, does not respect the constituent structure
of hadrons and hard-gluon exchange at large scales. As a
result, the large-Q2 scaling of electromagnetic form factors
of hadrons with N ≥ 3 constituents in VMD is not con-
sistent with that from pQCD. Only in the case of qq̄
systems (conventional mesons) is the VMD prediction of
1/Q2 scaling formally similar to that of pQCD because of
the 1/Q2 behavior of the V0 propagator. One should also
note the criticism of VMD in the description of data for
photon-hadron interactions at high energies stressed before
in Ref. [20].
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