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The authors present a new molecular dynamics algorithm for sampling the canonical distribution. In
this approach the velocities of all the particles are rescaled by a properly chosen random factor. The
algorithm is formally justified and it is shown that, in spite of its stochastic nature, a quantity can
still be defined that remains constant during the evolution. In numerical applications this quantity
can be used to measure the accuracy of the sampling. The authors illustrate the properties of this
new method on Lennard-Jones and TIP4P water models in the solid and liquid phases. Its
performance is excellent and largely independent of the thermostat parameter also with regard to the
dynamic properties. © 2007 American Institute of Physics. �DOI: 10.1063/1.2408420�

I. INTRODUCTION

Controlling the temperature and assessing the quality of
the trajectories generated are crucial issues in any molecular
dynamics simulation.1,2 Let us first recall that in conven-
tional molecular dynamics the microcanonical ensemble
NVE is generated due to the conservation laws of Hamilton’s
equations. In this ensemble the number of particles N, the
volume V, and the energy E are kept constant. In the early
days of molecular dynamics the temperature was controlled
by rescaling the velocities until the system was equilibrated
at the target temperature. Energy conservation was also
closely monitored in order to check that the correct NVE
ensemble was being sampled and as a way of choosing the
integration time step. Furthermore, energy conservation pro-
vided a convenient tool for controlling that the code was free
from obvious bugs.

Only in 1980, in a landmark paper,3 Andersen suggested
that ensembles other than the microcanonical one could be
generated in a molecular dynamics run in order to better
mimic the experimental conditions. Here we only discuss his
proposal for generating the canonical ensemble NVT, in
which the temperature T rather than the energy E is fixed.
Andersen’s prescription was rather simple: during the simu-
lation a particle is chosen randomly and its velocity extracted
from the appropriate Maxwell distribution. While formally
correct, Andersen’s thermostat did not become popular. A
supposedly poor efficiency was to blame, as well as the fact
that discontinuities in the trajectories were introduced. How-
ever, its major drawback was probably the fact that one had
to deal with an algorithm without the comforting notion of a
conserved quantity on which to rely. Another type of stochas-
tic dynamics which leads to a canonical distribution is
Langevin dynamics.4 Such a dynamics is not often used be-
cause it does not have an associated conserved quantity, the
integration time step is difficult to control, and the trajecto-
ries lose their physical meaning unless the friction coefficient
is small. For similar reasons, an algorithm5 which is close to

the simplified version of ours discussed in Sec. II A has been
even less popular. Inspired by the extended Lagrangian ap-
proach introduced in Andersen’s paper to control the external
pressure, Nosé introduced his by now famous thermostat.6

Differently from Andersen’s thermostat, the latter allowed to
control the temperature without using random numbers. Fur-
thermore, associated with Nosé’s dynamics there was a con-
served quantity. Thus it is not surprising that Nosé’s thermo-
stat is widely used, especially in the equivalent form
suggested by Hoover.7 However, Nosé thermostat can exhibit
nonergodic behavior. In order to compensate for this short-
coming, the introduction of chains of thermostats was
suggested,8 but this spoils the beauty and simplicity of the
theory and needs extra tuning.

Alternative thermostats were suggested such as that of
Evans and Morriss9 in which the total kinetic energy is kept
strictly constant. This leads to a well defined ensemble, the
so-called isokinetic ensemble, which, however, cannot be ex-
perimentally realized. Another very popular thermostat is
that of Berendsen et al.10 In this approach Hamilton’s equa-
tions are supplemented by a first-order equation for the ki-
netic energy, whose driving force is the difference between
the instantaneous kinetic energy and its target value. Ber-
endsen’s thermostat is stable, simple to implement, and
physically appealing; however, it has no conserved quantity
and is not associated with a well defined ensemble, except in
limiting cases. In spite of this, it is rather widely used.

In this paper we propose a new method for controlling
the temperature that removes many of the difficulties men-
tioned above. Our method is an extension of the Berendsen
thermostat to which a properly constructed random force is
added, so as to enforce the correct distribution for the kinetic
energy. A relaxation time of the thermostat can be chosen
such that the dynamic trajectories are not significantly af-
fected. We show that it leads to the correct canonical distri-
bution and that there exists a unified scheme in which Ber-
endsen’s, Nosé’s, and our thermostat can be formulated. A
remarkable result is that a quantity can be defined which is
constant and plays a role similar to that of the energy in the
microcanonical ensemble. Namely, it can be used to verifya�Electronic mail: gbussi@ethz.ch

THE JOURNAL OF CHEMICAL PHYSICS 126, 014101 �2007�

0021-9606/2007/126�1�/014101/7/$23.00 © 2007 American Institute of Physics126, 014101-1

Downloaded 03 Nov 2010 to 147.122.1.119. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sissa Digital Library

https://core.ac.uk/display/287419472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.2408420
http://dx.doi.org/10.1063/1.2408420


how much our numerical procedure generates configurations
that belong to the desired NVT ensemble and to provide a
guideline for the choice of the integration time step. It must
be mentioned that all the algorithms presented here are ex-
tremely easy to implement.

In Sec. II we shall first present a simpler version of our
algorithm which is an extension of the time honored velocity
rescaling. Later we shall describe its more general formula-
tion, followed by a theoretical analysis of the new approach,
a comparison with other schemes, and a discussion of the
errors derived from the integration with a finite time step.
The following Secs. III and IV are devoted to numerical
checks of the theory and to a final discussion, respectively.

II. THEORY

A. A canonical velocity-rescaling thermostat

In its simplest formulation, the velocity-rescaling
method consists in multiplying the velocities of all the par-
ticles by the same factor �, calculated by enforcing the total
kinetic energy K to be equal to the average kinetic energy at

the target temperature, K̄=Nf /2�, where Nf is the number of
degrees of freedom and � is the inverse temperature. Thus,
the rescaling factor � for the velocities is obtained as

� =�K̄

K
. �1�

Since the same factor is used for all the particles, there is
neither an effect on constrained bond lengths nor on the cen-
ter of mass motion. This operation is usually performed at a
predetermined frequency during equilibration, or when the
kinetic energy exceeds the limits of an interval centered
around the target value. The sampled ensemble is not explic-
itly known but, since in the thermodynamic limit the average
properties do not depend on the ensemble chosen, even this
very simple algorithm can be used to produce useful results.
However, for small systems or when the observables of in-
terest are dependent on the fluctuations rather than on the
averages, this method cannot be used. Moreover, it is ques-
tionable to assume that this algorithm can be safely com-
bined with other methods which require canonical sampling,
such as replica-exchange molecular dynamics.11

We propose to modify the way the rescaling factor is
calculated, so as to enforce a canonical distribution for the
kinetic energy. Instead of forcing the kinetic energy to be

exactly equal to K̄, we select its target value Kt with a sto-
chastic procedure aimed at obtaining the desired ensemble.
To this effect we evaluate the velocity-rescaling factor as

� =�Kt

K
, �2�

where Kt is drawn from the canonical equilibrium distribu-
tion for the kinetic energy:

P̄�Kt�dKt � Kt
�Nf/2−1�e−�KtdKt. �3�

This is equivalent to the method proposed by Heyes,5 where
one enforces the distribution in Eq. �3� by a Monte Carlo
procedure. Between rescalings we evolve the system using

Hamilton’s equations. The number of integration time steps
can be fixed or randomly varied. Both the Hamiltonian evo-
lution and the velocity rescaling leave a canonical probabil-
ity distribution unaltered. Under the condition that the
Hamiltonian evolution is ergodic in the microcanonical en-
semble, it follows that our method samples the canonical
ensemble.12 More precisely, Hamilton’s equations sample a
phase-space surface with fixed center of mass and, for non-
periodic systems, zero angular momentum. Since the rescal-
ing procedure does not change these quantities, our algo-
rithm samples only the corresponding slice of the canonical
ensemble. We shall neglect this latter effect here and in the
following as we have implicitly done in Eq. �3�.

B. A more elaborate approach

The procedure described above is very simple but dis-
turbs considerably the velocities of the particles. In fact, each
time the rescaling is applied, the moduli of the velocities will
exhibit a fast fluctuation with relative magnitude �1/Nf.
Thus, we propose a smoother approach in which the rescal-
ing procedure is distributed among a number of time steps.
This new scheme is somehow related to what previously
described in the same way as the Berendsen thermostat is
related to standard velocity rescaling.

First we note that it is not necessary to draw Kt from the
distribution in Eq. �3� at each time step: the only requirement
is that the random changes in the kinetic energy leave a
canonical distribution unchanged. In particular, the choice of
Kt can be based on the previous value of K so as to obtain a
smoother evolution. We propose a general way of doing this
by applying the following prescriptions:

�1� Evolve the system for a single time step with Hamil-
ton’s equations, using a time-reversible area-preserving
integrator such as velocity Verlet.13

�2� Calculate the kinetic energy.
�3� Evolve the kinetic energy for a time corresponding to a

single time step using an auxiliary continuous stochas-
tic dynamics.

�4� Rescale the velocities so as to enforce this new value of
the kinetic energy.

The choice of the stochastic dynamics has some degree
of arbitrariness, the only constraint being that it has to leave
the canonical distribution in Eq. �3� invariant. Here we
choose this dynamics by imposing that it is described by a
first-order differential equation in K. Since the auxiliary dy-
namics on K is one dimensional, its associated Fokker-
Planck equation14 must exhibit a zero-current solution. It can
be shown that under these conditions the most general form
is

dK = �D�K�
� log P̄

�K
+

�D�K�
�K

�dt + �2D�K�dW , �4�

where D�K� is an arbitrary positive definite function of K,
dW a Wiener noise, and we are using the Itoh convention.14

Inserting the distribution of Eq. �3� in this equation, one finds
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dK = �NfD�K�

2K̄K
�K̄ − K� −

D�K�
K

+
�D�K�

�K �dt

+ �2D�K�dW , �5�

which can be used to generate the correct canonical distribu-
tion. This result is independent of the choice of the function
D�K�, but different choices can lead to different speeds of
equilibration. Here we choose

D�K� =
2KK̄

Nf�
, �6�

where the arbitrary parameter � has the dimension of time
and determines the time scale of the thermostat such as in
Berendsen’s formulation. This leads to a very transparent
expression for the auxiliary dynamics

dK = �K̄ − K�
dt

�
+ 2�KK̄

Nf

dW
��

. �7�

Without the stochastic term this equation reduces to that of
the standard thermostat of Berendsen. In the limit �=0, the
stochastic evolution is instantly thermalized and this algo-
rithm reduces exactly to the stochastic velocity-rescaling ap-
proach described in Sec. II A. On the other hand, for �→�,
the Hamiltonian dynamics is recovered. When a system is far
from equilibrium, the deterministic part in Eq. �7� dominates
and our algorithm leads to fast equilibration like the Ber-
endsen’s thermostat. Once the equilibrium is reached, the
proper canonical ensemble is sampled, at variance with Be-
rendsen’s thermostat.

There is no need to apply additional self-consistency
procedures to enforce rigid bond constraints, as in the case of
Andersen’s thermostat, since the choice of a single rescaling
factor for all the atoms automatically preserves bond lengths.
Furthermore, the total linear momentum and, for nonperiodic
systems, the angular momentum are conserved. The formal-
ism can also be trivially extended to thermalize indepen-
dently different parts of the system, e.g., solute and solvent,
even using different parameters � for the different sub-
systems. Interestingly, dissipative particle dynamics15 can be
included in our scheme if different thermostats are applied to
all the particle pairs that are within a given distance.

We have already noted that Berendsen’s thermostat can
be recovered from ours by switching off the noise. Also
Nosé’s thermostat can be recast in a form that parallels our
formulation. To this effect, it is convenient to rewrite the
auxiliary variable � of the Nosé-Hoover thermostat in adi-
mensional from �=� /� and the mass of the thermostat as
�Nf /���2. In our scheme, Nosé-Hoover dynamics is obtained
through these auxiliary equations for � and K:

dK = − 2�K
dt

�
, �8a�

d� = �K

K̄
− 1�dt

�
. �8b�

The corresponding Liouville equation for the probability dis-
tribution P�K ,�� is

�
�P�K,�;t�

�t
= 2�P + 2�K

�P�K,�;t�
�K

− �K

K̄
− 1� �P�K,�;t�

��
, �9�

which is stationary for

P̄�K,��dKd� � K�Nf/2−1�e−�Ke−Nf�
2/2dKd� �10�

which is the desired distribution. By comparing this formu-
lation of the Nosé-Hoover thermostat with our scheme, we
see that the variable � plays the same role as the noise. In the
Nosé-Hoover scheme, the chaotic nature of the coupled
equations of motion leads to a stochastic �. When the system
to be thermostated is poorly ergodic, � is no longer stochastic
and a chain of thermostats is needed.8

C. Controlling the integration time step

When integrating the equations of motion using a finite
time step, a technical but important issue is the choice of an
optimal value for the time step. The usual paradigm is to
check if the constants of motion are properly conserved. For
example, in the microcanonical ensemble, sampled using the
Hamilton’s equations, the check is done on the total energy
of the system which is given by the Hamiltonian H�x�, where
x= �p ,q� is a point in phase space. When the Nosé-Hoover
thermostat is used, the expression for the conserved quantity
HNosé is more complex and can be recast in the form

HNose = H�x� +
Nf

� � �2

2
+ �

0

t dt�

�
��t��� . �11�

In this section we propose a quantity that can play the same
role for our thermostat, even though we are dealing with a
stochastic process.

Let us consider a deterministic or stochastic dynamics

aimed at sampling a given probability distribution P̄�x�. It is
convenient to consider a discrete form of dynamics. This is
not a major restriction and, after all, on the computer any
dynamics is implemented as a discrete process. Starting from
a point x0 in the phase space, we want to generate a sequence
of points x1 ,x2 , . . ., distributed according to a probability as

close as possible to P̄�x�. Let M�xi+1←xi� dxi+1 be the con-
ditional probability of reaching the point xi+1 given that the
system is at xi. In order to calculate statistical averages which
are correct independent of M, each visited point has to be
weighted by wi which measures the probability that xi is in
the target ensemble. The ratio between the weights of suc-
cessive points is
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wi+1

wi
=

M�xi
* ← xi+1

* �P̄�xi+1
* �

M�xi+1 ← xi�P̄�xi�
, �12�

where the conjugated point xi
* is obtained from xi inverting

the momenta, i.e., if x= �p ,q�, x*= �−p ,q�. If the dynamics
exactly satisfies the detailed balance one must have wi+1 /wi

=1, which implies that w must be constant. However, if P̄�x�
is sampled in an approximated way, the degree to which w is
constant can be used to assess the accuracy of the sampling.

Rather than in terms of weights, it is convenient to ex-
press this principle in terms of an effective energy

H̃i = −
1

�
ln wi. �13�

The evolution of H̃ is given by

H̃i+1 − H̃i = −
1

�
ln�M�xi

* ← xi+1
* �P̄�xi+1

* �

M�xi+1 ← xi�P̄�xi�
�

= −
1

�
ln�M�xi

* ← xi+1
* �

M�xi+1 ← xi�
� + H�xi+1� − H�xi� ,

�14�

where the last line follows in the case of a canonical distri-

bution P̄�x��e−�H�x�.
Let us now make use of this result in the context of our

dynamics. This is most conveniently achieved if we solve the
equations of motion alternating two steps. One is a velocity
Verlet step or any other area-preserving and time-reversible
integration algorithm. In a step with such property, M�xi

*

←xi+1
* �=M�xi+1←xi� and the change in H̃ is equal to the

change in H. The other is a velocity-rescaling step in which
the scaling factor is determined via Eq. �7�. If we use the
exact solution of Eq. �7� derived in the Appendix, this step
satisfies the detailed balance and therefore does not change

H̃. An idealized but realistic example of time evolution of H

and H̃ is shown in Fig. 1.
If we use this analysis and go to the limit of an infini-

tesimal time step, we find

H̃�t� = H�t� − �
0

t

�K̄ − K�t���
dt�

�
− 2�

0

t�K�t��K̄
Nf

dW�t��
��

,

�15�

where the last two terms come from the integration of Eq. �7�
along the trajectory. Note that a similar integration along the
path is present in HNosé. However, in our scheme a stochastic
integration is also necessary. In the continuum limit the
changes in energy induced by the rescaling compensate ex-
actly the fluctuations in H. For a finite time step this com-

pensation is only approximate and the conservation of H̃
provides a measure on the accuracy of the integration. This
accuracy has to be interpreted in the sense of the ability of
generating configurations representative of the ensemble.
The physical meaning of Eq. �15� is that the fluxes of energy
between the system and the thermostat are exactly balanced.

A further use of H̃ is possible whenever high accuracy
results are needed and even the small error derived from the
use of a finite time-step integration needs to be eliminated. In
practice, one can correct this error by reweighting16 the

points with wi�e−�H̃i. Alternatively, segments of trajectories
can be used in a hybrid Monte Carlo scheme17 to generate
new configurations which are accepted or rejected with prob-

ability min�1,e−���H̃��.
From the discussion above one understands that in many

ways H̃ has a role similar to E in the microcanonical en-
semble. It is, however, deeply different: while in the micro-
canonical ensemble E defines the ensemble and has a physi-

cal meaning, in the canonical ensemble the value of H̃
simply depends on the chosen initial condition. Thus, the

value of H̃ can be only compared for points belonging to the
same trajectory.

III. APPLICATIONS

In this section we present a number of test applications
of our thermostating procedure. Moreover, we compare its
properties with those of commonly adopted thermostats,
such as the Nosé-Hoover and the Berendsen thermostat. To
test the efficiency of our thermostat, we compute the energy
fluctuations and the dynamic properties of two model sys-
tems, namely, a Lennard-Jones system and water, in their
crystalline and liquid phases. All the simulations have been
performed using a modified version of the DL POLY code.18,19

We adopt the parameterization of the Lennard-Jones po-
tential for argon, and we simulate a cubic box containing 256
atoms. Calculations have been performed on the crystalline
solid fcc phase at a temperature of 20 K and on the liquid
phase at 120 K. The cell side is 21.6 Å for the solid and
22.5 Å for the liquid. Water is modeled through the com-
monly used TIP4P potential:20 water molecules are treated as
rigid bodies and interact via the dispersion forces and the
electrostatic potential generated by point charges. The long-
range electrostatic interactions are treated by the particle
mesh Ewald method.21 The energy fluctuations and the dy-
namic properties, such as the frequency spectrum and the
diffusion coefficient, have been computed on models of liq-

FIG. 1. Schematic time series for H �upper� and H̃ �lower�, in units of the
root-mean-square fluctuation of H. Time is in unit of the integration time
step. The solid lines represent the increments due to the velocity Verlet step,
which is almost energy preserving. The dashed lines represent the incre-
ments due to the velocity rescaling. Since only the changes due to the

velocity Verlet steps are accumulated into H̃, this quantity is almost con-
stant. On the other hand, H has the proper distribution.
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uid water and hexagonal ice Ih, in cells containing 360 water
molecules with periodic boundary conditions. The model of
ice Ih, with a fixed density of 0.96 g/cm3, has been equili-
brated at 120 K, while the liquid has a density of 0.99 g/cm3

and is kept at 300 K.

A. Controlling the integration time step

As discussed in Sec. II C, the effective energy H̃ can be
used to verify the sampling accuracy and plays a role similar
to the total energy in the microcanonical ensemble. In Fig. 2

we show the time evolution of H̃ for the Lennard-Jones sys-
tem at 120 K with two different integration time steps,
namely, �t=5 fs and �t=40 fs. In both cases, we use �
=0.1 ps for the thermostat time scale. With �t=5 fs the in-

tegration is accurate and the effective energy H̃ is properly
conserved, in the sense that it does not exhibit a drift. More-
over, its fluctuations are rather small, approximately
0.3 kJ/mol: for a comparison, the root-mean-square fluctua-
tions in H are on the order of 16 kJ/mol. When the time step
is increased to �t=40 fs, the integration is not accurate and
there is a systematic drift in the effective energy. For a com-
parison we show also the time evolution of E in a conven-
tional NVE calculation. The fluctuations and drifts for E in
the NVE calculation are similar to the fluctuations and drifts

for H̃ in the NVT calculation. We notice that, while in the
NVE calculation the system explodes at some point, the NVT
calculation is always stable, thanks to the thermostat. How-

ever, in spite of the stability, the drift in H̃ indicates that the
sampling is inaccurate under these conditions.

B. Energy fluctuations

While the average properties are equivalent in all the
ensembles, the fluctuations are different. Thus we use the
square fluctuations of the configurational and kinetic ener-
gies, which are related to the specific heat of the system,1 to
check whether our algorithm samples the canonical en-
semble. Therefore we perform 1 ns long molecular dynamics
runs using our thermostat with different choices of the pa-
rameter �, spanning three orders of magnitude. An integra-
tion time step �t=5 fs is adopted, which yields a satisfactory

conservation of the effective energy, as verified in the previ-
ous section. For comparison, we also calculate the fluctua-
tions using the Nosé-Hoover thermostat, which is supposed
to sample the proper ensemble. The results for the Lennard-
Jones system, both solid and liquid, are presented in Fig. 3.
The fluctuations are plotted in units of the ideal-gas kinetic-
energy fluctuation. For the liquid �panels �c� and �d��, the
Nosé-Hoover and our thermostat give consistent results for a
wide range of values of � for both the kinetic and configu-
rational energy fluctuations. The Nosé-Hoover begins to fail
only in the regime of small �, due to the way the extra vari-
able of the thermostat is integrated. For the solid �panels �a�
and �b��, the ergodicity problems of the Nosé-Hoover ther-
mostat appear for �	0.2 ps, in terms of poor sampling. We
notice that increasing �, the fluctuations tend to their value in
the microcanonical ensemble. On the other hand, our proce-
dure is correct over the whole � range, both for the solid and
for the liquid. In Fig. 3 we also plot the fluctuations calcu-
lated using the Berendsen thermostat. It is clear that both for
the liquid and for the solid the results are strongly dependent
on the choice of the � parameter. In the limit �→0 the Ber-
endsen thermostat tends to the isokinetic ensemble, which is
consistent with the canonical one for properties depending
only on configurations:9 thus, the fluctuations in the configu-
rational energy tend to the canonical limit, while the fluctua-
tions in the kinetic energy tend to zero. In Fig. 4 we present
a similar analysis done on water �panels �c� and �d�� and ice
�panels �a� and �b��. For this system the equations of motion
have been integrated with a time step �t=1 fs. In this case
we only performed the calculation with the Nosé-Hoover
thermostat and with ours. The Nosé-Hoover thermostat is not
efficient for ice in the case of � larger than 0.2 ps and also for
water in the case of � larger than 2 ps. On the other hand, the
performance of our thermostat is again fairly independent
from the choice of �.

FIG. 2. �Color online� Total energy E �left axis� and effective energy H̃
�right axis�, respectively, for an NVE simulation and for an NVT simulation
using our thermostat, with �=0.1 ps, for Lennard-Jones at 120 K. In the
upper panel, the calculation is performed with a time step �t=5 fs, and E

�or H̃� does not drift. In the lower panel, the calculation is performed with a

time step �t=40 fs and E �or H̃� drifts.

FIG. 3. Square fluctuations of the kinetic energy �K2 and of the potential
energy �U2, in units of NfkB

2T2 /2, for a Lennard-Jones solid at 20 K �panels
�a� and �b�� and liquid at 120 K �panels �c� and �d��, using the Berendsen
��, dashed-dotted�, the Nosé-Hoover ��, dashed� and our �
, solid� ther-
mostat, plotted as function of the characteristic time of the thermostat �. In
these units the analytical value for the fluctuations of the kinetic energy is 1.
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C. Dynamic properties

In order to check to what extent our thermostat affects
the dynamic properties of the systems, we have computed
the vibrational spectrum of the hydrogen atoms in ice Ih from
the Fourier transform of the velocity-velocity autocorrelation
function. The spectra have been computed, sampling 100 ps
long trajectories in the NVT ensemble every 2 fs, at a tem-
perature of 120 K, with two different values of the relaxation
time � of the thermostat �see Fig. 5�. They are compared to
the spectrum of frequencies obtained in a run in the micro-
canonical ensemble. In all these runs the integration time
step �t has been reduced to 0.5 fs. Two main regions can be
distinguished in the vibrational spectrum of ice: a low fre-
quency band corresponding to the translational modes �on
the left in Fig. 5� and a band at higher frequency related to
the librational modes. Due to the use of a rigid model the
high frequency intramolecular modes are irrelevant. All the
features of the vibrational spectrum of ice Ih are preserved

when our thermostat is used. When compared with the spec-
trum obtained from the NVE simulation, no shift of the fre-
quency of the main peaks is observed for �=2 ps and the
changes in their intensities are within numerical errors. It is
worth noting that, although the thermostat acts directly on
the particle velocities, it does not induce the appearance of
fictitious peaks in the spectrum. The simulation done with
�=0.002 ps shows that with a very short � the shape of the
first translational broad peak is slightly affected �see the inset
in Fig. 5�.

The performances of our thermostat have been tested
also with respect to the dynamic properties of liquids, com-
puting the self-diffusion coefficient D of TIP4P water. D is
computed from the mean square displacement, through Ein-
stein’s relation, on 100 ps long simulations equilibrated at a
temperature of 300 K. The results for different values of �
are reported in Table I and compared to the value of D ex-
tracted from an NVE simulation. The results obtained by
applying our thermostat are compatible with the values of D
reported in literature for the same model of water22 and are
consistent with the one extracted from the microcanonical
run. A marginal variation with respect to the reference value
occurs for very small �=0.002 ps.

IV. CONCLUSION

We devised a new thermostat aimed at performing mo-
lecular dynamics simulations in the canonical ensemble. This
scheme is derived from a modification of the standard veloc-
ity rescaling with a properly chosen random factor and gen-
eralized to a smoother formulation which resembles the Be-
rendsen thermostat. Under the assumption of ergodicity, we
proved analytically that our thermostat samples the canonical
ensemble. Through a proper combination with a barostat, it
can be used to sample the constant-pressure–constant-
temperature ensemble. We check the ergodicity assumption
on realistic systems and we compare the ergodicity of our
procedure with that of the Nosé-Hoover thermostat, finding
our method to be more ergodic. We also use the concept of
sampling accuracy rather than trajectory accuracy to assess
the quality of the numerical integration of our scheme. To
this aim, we introduce a new quantity, which we dub effec-
tive energy, which measures the ensemble violation. This
formalism allows a robust check on the finite time-step errors
and can be easily extended to other kinds of stochastic mo-
lecular dynamics, such as the Langevin dynamics.

FIG. 4. Square fluctuations of the kinetic energy �K2 and of the potential
energy �U2, in units of NfkB

2T2 /2, for ice at 120 K �panels �a� and �b�� and
water at 300 K �panels �c� and �d��, using the Nosé-Hoover ��, dashed� and
our �
, solid� thermostat, plotted as function of the characteristic time of the
thermostat �. In these units the analytical value for the fluctuations of the
kinetic energy is 1.

FIG. 5. Vibrational density of states for the hydrogen atom in ice Ih at
120 K. The spectra obtained with different values of the relaxation time � of
our thermostat �dashed and dotted lines� are compared to a simulation in the
NVE ensemble �solid line�.

TABLE I. The diffusion coefficient D of water at 300 K, as a function of the
relaxation time � of the thermostat. For a comparison, also the value ob-
tained from an NVE trajectory is shown.

� �ps� D �10−5 cm2/s�

0.002 3.63±0.01
0.02 3.44±0.06
0.2 3.51±0.05
2.0 3.53±0.01

NVE 3.47±0.03
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APPENDIX: EXACT PROPAGATOR FOR THE KINETIC
ENERGY

For the thermostat designed here it is essential that the
exact solution of Eq. �7� is used. In the search for an analyti-
cal solution, we are inspired by the fact that if each indi-
vidual momentum is evolved using a Langevin equation,
then the evolution of K is described by the same Eq. �7�.
Thus we first define an auxiliary set of Nf stochastic pro-
cesses xi�t� with the following equation of motion:

dxi�t� = −
xi�t�

2

dt

�
+

dWi�t�
��

. �A1�

This is the equation for an overdamped harmonic oscillator
which is known also as the Ornstein-Uhlenbeck processes for
which an analytical solution exists:23

xi�t� = xi�0�e−t/2� + �1 − e−t/�Ri, �A2�

where the Ri’s are independent random numbers from a
Gaussian distribution with unitary variance. Then we define
the variable y

y�t� =
1

Nf
	
i=1

Nf

xi
2�t� . �A3�

The equation of motion for y is obtained applying the Itoh
rules14 to Eq. �A1� and recalling that the increments dWi are
independent,

dy�t� = �1 − y�t��
dt

�
+ 2�y�t�

Nf

dW�t�
��

. �A4�

Since the equation of motion for x is invariant under rotation,
we can assume without loss of generality that at t=0 the
multidimensional vector 
xi� is oriented along its first com-
ponent,


xi�0�� = 
�Nfy�0�,0, . . . � . �A5�

Combining Eqs. �A3� and �A2� we obtain for y�t� at finite
time,

y�t� = e−t/�y�0� + �1 − e−t/��	
i=1

Nf Ri
2

Nf

+ 2e−t/2��1 − e−t/��y�0�
Nf

R1. �A6�

We now observe that with the substitution y�t�=Kt /K, Eq.
�A4� is equivalent to Eq. �7�. Thus, with simple algebra, we

find the desired expression for the rescaling factor,

�2 = e−�t/� +
K̄

NfK
�1 − e−�t/���R1

2 + 	
i=2

Nf

Ri
2�

+ 2e−�t/2�� K̄

NfK
�1 − e−�t/��R1. �A7�

We observe here that there is no need to draw all the Ri’s
Gaussian numbers, because 	i−2

Nf Ri
2 can be drawn directly

from the Gamma distribution p�Nf−1�/2�x�
=x�Nf−1�/2−1e−x /���Nf −1� /2� if Nf −1 is even or by adding a
squared random Gaussian number to that extracted from
p�Nf−2�/2�x�=x�Nf−2�/2−1e−x /���Nf −2� /2� if Nf −1 is odd.24 A
routine that evaluates Eq. �A7� is available upon request.
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