
Correlated geminal wave function for molecules:An efficient
resonating valence bond approach
Michele Casula, Claudio Attaccalite, and Sandro Sorella 
 
Citation: J. Chem. Phys. 121, 7110 (2004); doi: 10.1063/1.1794632 
View online: http://dx.doi.org/10.1063/1.1794632 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v121/i15 
Published by the American Institute of Physics. 
 
Related Articles
Evaluation of magnetic terms in Cu4O4 cubane-like systems from selected configuration interaction calculations:
A case study of polynuclear transition-metal systems 
J. Chem. Phys. 135, 194704 (2011) 
Vibrational contributions to cubic response functions from vibrational configuration interaction response theory 
J. Chem. Phys. 135, 154107 (2011) 
Comparing ab initio density-functional and wave function theories: The impact of correlation on the electronic
density and the role of the correlation potential 
J. Chem. Phys. 135, 114111 (2011) 
Enhanced sampling of particular degrees of freedom in molecular systems based on adiabatic decoupling and
temperature or force scaling 
J. Chem. Phys. 135, 104106 (2011) 
Comparative density functional theory and post-Hartree-Fock (CCSD, CASSCF) studies on the electronic
structure of halogen nitrites ClONO and BrONO using quantum chemical topology 
J. Chem. Phys. 135, 094303 (2011) 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 18 Nov 2011 to 147.122.49.74. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sissa Digital Library

https://core.ac.uk/display/287419326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jcp.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Michele Casula&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Claudio Attaccalite&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Sandro Sorella&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.1794632?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v121/i15?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3659141?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3652895?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3636114?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3629450?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3624894?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


Correlated geminal wave function for molecules: An efficient resonating
valence bond approach

Michele Casula,a) Claudio Attaccalite,b) and Sandro Sorellac)

International School for Advanced Studies (SISSA) Via Beirut 2,4 34014 Trieste, Italy
and INFM Democritos National Simulation Center, Trieste, Italy

~Received 27 May 2004; accepted 27 July 2004!

We show that a simple correlated wave function, obtained by applying a Jastrow correlation term to
an antisymmetrized geminal power, based upon singlet pairs between electrons, is particularly suited
for describing the electronic structure of molecules, yielding a large amount of the correlation
energy. The remarkable feature of this approach is that, in principle, several resonating valence
bonds can be dealt simultaneously with a single determinant, at a computational cost growing with
the number of electrons similar to more conventional methods, such as Hartree-Fock or density
functional theory. Moreover we describe an extension of the stochastic reconfiguration method,
which was recently introduced for the energy minimization of simple atomic wave functions. Within
this extension the atomic positions can be considered as further variational parameters, which can
be optimized together with the remaining ones. The method is applied to several molecules from Li2

to benzene by obtaining total energies, bond lengths and binding energies comparable with much
more demanding multiconfiguration schemes. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1794632#

I. INTRODUCTION

The comprehension of the nature of the chemical bond
deeply lies on quantum mechanics; since the seminal work
by Heitler and London,1 very large steps have been made
towards the possibility to predict the quantitative properties
of the chemical compounds from a theoretical point of view.
Mean field theories, such as Hartree-Fock~HF! have been
successfully applied to a wide variety of interesting systems,
although they fail in describing those in which the correla-
tion is crucial to characterize correctly the chemical bonds.
For instance, the molecular hydrogen H2, the simplest and
first studied molecule, is poorly described by a single Slater
determinant in the large distance regime, which is the para-
digm of a strongly correlated bond; indeed, in order to avoid
expensive energy contributions—the so called ionic terms—
that arise from two electrons of opposite spin surrounding
the same hydrogen atom, one needs at least two Slater deter-
minants to deal with a spin singlet wave function containing
bonding and antibonding molecular orbitals. Moreover at the
bond distance it turns out that the resonance between those
two orbitals is important to yield accurate bond length and
binding energy, as the correct rate between the ionic and
covalent character is recovered. Another route that leads to
the same result is to deal with an antisymmetrized geminal
power ~AGP! wave function, which includes the correlation
in the geminal expansion; Barbiellini in Ref. 2 gave an illu-
minating example of the beauty of this approach solving
merely the simple problem of the H2 molecule.

On the other hand the variational methods based on the

configuration interaction~CI! technique, which is able to
take into account many Slater determinants, have been
shown to be successful for small molecules@e.g., Be2 Ref.
3#. In these cases it is indeed feasible to enlarge the varia-
tional basis up to the saturation, the electron correlation
properties are well described and consequently all the chemi-
cal properties can be predicted with accuracy. However, for
interesting systems with a large number of atoms this ap-
proach is impossible with a reasonable computational time.
Coming back to the H2 paradigm, it is straightforward to
show that a gas with N H2 molecules, in the dilute limit, can
be dealt accurately only with 2N Slater determinants, other-
wise one is missing important correlations due to the anti-
bonding molecular orbital contributions, referred toeachof
the N H2 molecules. Therefore, if the accuracy in the total
energy per atom is kept fixed, a CI-like approach does not
scale polynomially with the number of atoms. Although the
polynomial cost of these quantum chemistry algorithms—
ranging fromN5 to N7—is not prohibitive, a loss of accu-
racy, decreasing exponentially with the number of atoms is
always implied, at least in their simplest variational formu-
lations. This is related to the loss of size consistency of a
truncated CI expansion. On the other hand, this problem can
be overcome by coupled cluster methods, which however, in
their practical realization are not variational.4

An alternative approach, not limited to small molecules,
is based on density functional theory~DFT!. This theory is in
principle exact, but its practical implementation requires an
approximation for the exchange and correlation functionals
based on first principles, such the local density approxima-
tion ~LDA ! and its further gradient corrections~GGA!, or on
semiempirical approaches, such as BLYP and B3LYP. For
this reason, even though much effort has been made so far to
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go beyond the standard functionals, DFT is not completely
reliable in those cases in which the correlation plays a crucial
role. Indeed it fails in describing HTc superconductors and
Mott insulators, and in predicting some transition metal com-
pounds properties, whenever the outermost atomic d shell is
near half-filled, as for instance, in the high potential iron
proteins.5 Also H2 molecule in the large distance regime
must be included in that list, since the large distance Born-
Oppenheimer energy surface, depending on van der Waals
forces, is not well reproduced by the standard functionals,
although recently some progress has been made to include
these important contributions.6

Quantum Monte Carlo~QMC! methods are alternative to
the previous ones and until now they have been mainly used
in two versions.

~i! Variational Monte Carlo~VMC! applied to a wave
function with a Jastrow factor that fulfills the cusp conditions
and optimizes the convergence of the CI basis.7,8

~ii ! Diffusion Monte Carlo~DMC! algorithm used to im-
prove, often by a large amount, the correlation energy of any
given variational guess in an automatic manner.9

Hereafter we want to show that a large amount of the
correlation energy can be obtained with a single determinant,
using a size-consistent AGP-Jastrow~JAGP! wave function.
Clearly our method is approximate and in some cases not yet
satisfactory, but in a large number of interesting molecules
we obtain results comparable and even better than multide-
terminants schemes based on few Slater determinants per
atom that are affordable by QMC only for rather small mol-
ecules.

Moreover, we have extended the standard stochastic re-
configuration~SR! method to treat the atomic positions as
further variational parameters. This improvement, together
with the possibility to work with a single determinant, has
allowed us to perform a structural optimization in a non-
trivial molecule such as the benzene radical cation, reaching
the chemical accuracy with an all-electron and feasible varia-
tional approach.

The paper is organized as follows: In Sec. II we intro-
duce the variational wave function, which is expanded over a
set of nonorthogonal atomic orbitals both in the determinan-
tal AGP and the Jastrow part. This basis set is consistently
optimized using the method described in Sec. III that, as
mentioned before, allows also the geometry optimization.
Results and discussions are presented in the remaining sec-
tions.

II. FUNCTIONAL FORM OF THE WAVE FUNCTION

In this paper we are going to extend the application of
the JAGP wave function, already used to study some atomic
systems.10 We generalize its functional form in order to de-
scribe the electronic structure of a generic cluster containing
several nuclei. With the aim to determine a variational wave
function, suitable for a complex electronic system, it is im-
portant to satisfy, as we require in the forthcoming chapters,
the ‘‘size consistency’’ property: if we smoothly increase the
distance between two regionsA and B each containing a
given number of atoms, the many-electron wave functionC
factorizes into the product of space-disjoint termsC5CA

^CB as long as the interaction between the electrons cou-
pling the different regionsA andB can be neglected. In this
limit the total energy of the wave function approaches the
sum of the energies corresponding to the two space-disjoint
regions. This property, which is obviously valid for the exact
many-electron ground state, is not always fulfilled by a ge-
neric variational wave function.

Our variational wave function is defined by the product
of two terms, namely, a JastrowJ and an antisymmetric part
(C5JCAGP). If the former is an explicit contribution to the
dynamic electronic correlation, the latter is able to treat the
nondynamic one arising from near degenerate orbitals
through the geminal expansion. Therefore our wave function
is highly correlated and it is expected to give accurate results
especially for molecular systems. The Jastrow term is further
split into a two-body and a three-body factors,J5J2J3 , de-
scribed in the following sections after the AGP part.

A. Pairing determinant

As is well known, a simple Slater determinant provides
the exact exchange electron interaction but neglects the elec-
tronic correlation, which is by definition the missing energy
contribution. In the past different strategies were proposed to
go beyond Hartree-Fock theory. In particular a sizable
amount of the correlation energy is obtained by applying to a
Slater determinant a so called Jastrow term, which explicitly
takes into account the pairwise interaction between electrons.
QMC allows to deal with this term in an efficient way.11 On
the other hand, within the quantum chemistry community
AGP is a well known ansatz to improve the HF theory, be-
cause it implicitly includes most of the double excitations of
a HF state.

Recently we proposed a trial function for atoms, which
includes both the terms. Only the interplay between them
yields in some cases, such as Be or Mg, an extremely accu-
rate description of the correlation energy. In this work we
extend this promising approach to a number of small mo-
lecular systems with known experimental properties, which
are commonly used for testing new numerical techniques.

The major advantage of this approach is the inclusion of
many CI expansion terms with the computational cost of a
single determinant, which allow us to extend the calculation
with a full structural optimization up to benzene, without a
particularly heavy computational effort on a single processor
machine. For an unpolarized system containingN electrons
~the first N/2 coordinates are referred to the up spin elec-
trons! the AGP wave function is aN/23N/2 pairing matrix
determinant, which reads

CAGP~r1 , . . . ,rN!5det@FAGP~r i ,r j 1N/2!#, ~1!

and the geminal function is expanded over an atomic basis

FAGP~r ↑,r ↓!5 (
l ,m,a,b

la,b
l ,mfa,l~r ↑!fb,m~r ↓!, ~2!

where indicesl ,m span different orbitals centered on atoms
a,b, and i , j are coordinates of spin up and down electrons,
respectively. The geminal functions may be viewed as an
extension of the simple HF wave function, based on molecu-
lar orbitals, and in fact the geminal function coincide with
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HF only when the numberM of nonzero eigenvalues of the
l matrix is equal toN/2. Indeed the general function~2! can
be written in diagonal form after an appropriate transforma-
tion

FAGP~r ↑,r ↓!5(
k

M

lkf̃k~r ↑!f̃k~r ↓!, ~3!

wheref̃k(r )5( j ,amk, j ,af j ,a(r ) are just the molecular orbit-
als of the HF theory wheneverM5N/2. Notice that with
respect to our previous pairing function formulation also off-
diagonal elements are now included in thel matrix, which
must be symmetric in order to define a singlet spin orbital
state. Moreover it allows one to easily fulfill other system
symmetries by setting the appropriate equalities among dif-
ferent l l ,m . For instance, in homo-nuclear diatomic mol-
ecules, the invariance under reflection in the plane perpen-
dicular to the molecular axis yields the following relation:

lm,n
a,b 5~21!pm1pnlm,n

b,a , ~4!

wherepm is the parity under reflection of themth orbital.
Another important property of this formalism is the pos-

sibility to describe resonating bonds present in many struc-
tures, such as benzene. Alm,n

a,b different from zero represents
a chemical bond formed by the linear combination of themth
andnth orbitals belonging toath andbth nuclei. It turns out
that resonating bonds can be well described through the
geminal expansion switching on the appropriatelm,n

a,b coeffi-
cients: the relative weight of each bond is related to the am-
plitude of itsl.

Also the spin polarized molecules can be treated within
this framework, by using the spin generalized version of the
AGP, in which the unpaired orbitals are expanded as well as
the paired ones over the same atomic basis employed in the
geminal.12 As already mentioned in the Introduction of this
paper, the size consistency is an appealing feature of the
AGP term. Strictly speaking, the AGP wave function is cer-
tainly size consistent when both the compound and the sepa-
rated fragments have the minimum possible total spin, be-
cause the geminal expansion contains both bonding and
antibonding contributions, which can mutually cancel the
ionic term arising in the asymptotically separate regime.
Moreover the size consistency of the AGP, as well as the one
of the Hartree-Fock state, holds in all cases in which the spin
of the compound is the sum of the spin of the fragments.
However, similarly to other approaches,4 for spin polarized
systems the size consistency does not generally hold, and, in
such cases, it may be important go beyond a single AGP
wave function. Nevertheless we have experienced that a
single reference AGP state is able to describe accurately the
electronic structure of the compound around the Born-
Oppenheimer minimum even in the mentioned polarized
cases, such as in the oxygen dimer.

The last part of this section is devoted to the nuclear
cusp condition implementation. A straightforward calculation
shows that the AGP wave function fulfills the cusp condi-
tions around the nucleusa if the following linear system is
satisfied:

(
j

(1s,2s)

la,b
j , j 8f̂a, j8 ~r5Ra!52Za(

c, j
lc,b

j , j 8fc, j~r5Ra!, ~5!

for all b and j 8; in the left-hand side the caret denotes the
spherical average of the orbital gradient. The system can be
solved iteratively during the optimization processes, but if
we impose that the orbitals satisfy the single atomic cusp
conditions, it reduces to

(
c(Þa), j

lc,b
j , j 8fc, j~Ra!50, ~6!

and because of the exponential orbital damping, if the nuclei
are not close together, each term in the previous equations is
very small, of the order of exp(2uRa2Rcu). Therefore, with
the aim of making the optimization faster, we have chosen to
use 1s and 2s orbitals satisfying the atomic cusp conditions
and to disregard the sum~6! in Eq. ~5!. In this way, once the
energy minimum is reached, also the molecular cusp condi-
tions ~5! are rather well satisfied.

B. Two-body Jastrow term

As it is well known the Jastrow term plays a crucial role
in treating many-body correlation effects. One of the most
important correlation contributions arises from the electron-
electron interaction. Therefore it is worth using at least a
two-body Jastrow factor in the trial wave function. Indeed
this term reduces the electron coalescence probability, and so
decreases the average value of the repulsive interaction. The
two-body Jastrow function reads

J2~r1 , . . . ,rN!5expS (
i , j

N

u~r i j !D , ~7!

whereu(r i j ) depends only on the relative distancer i j 5ur i

2r j u between two electrons and allows to fulfill the cusp
conditions for opposite spin electrons as long asu(r i j )
→ r i j /2 for small electron-electron distance. The pair corre-
lation function u can be parametrized successfully by few
variational parameters. We have adopted two main functional
forms. The first is similar to the one given by Ceperley,13

u~r !5
F

2
~12e2r /F!, ~8!

with F being a free variational parameter. This form foru is
particularly convenient whenever atoms are very far apart at
distances much larger thanF, as it allows to obtain good size
consistent energies, approximately equal to the sum of the
atomic contributions, without changing the other parts of the
wave function with an expensive optimization. Within the
functional form~8!, it is assumed that the long range part of
the Jastrow, decaying as a power of the distance between
atoms, is included in the three-body Jastrow term described
in the following section. The second form of the pair func-
tion u, particularly convenient at the chemical bond distance,
where we performed most of the calculations, is the one used
by Fahy, Wang, and Louie:7
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u~r !5
r

2~11br !
, ~9!

with a different variational parameterb.
In both functional forms the cusp condition for antipar-

allel spin electrons is satisfied, whereas the one for parallel
spins is neglected in order to avoid the spin contamination.
This allows to remove the singularities of the local energy
due to the collision of two opposite spin electrons, yielding a
smaller variance and a more efficient VMC calculation.
Moreover, due to the Jastrow correlation, an exact property
of the ground state wave function is recovered without using
many Slater determinants, thus considerably simplifying the
variational parametrization of a correlated wave function.

C. Three-body Jastrow term

In order to describe well the correlation between elec-
trons the simple Jastrow factor is not sufficient. Indeed it
takes into account only the electron-electron separation and
not the individual electronic positionr i andr j . It is expected
that close to nuclei the electron correlation is not accurately
described by a translationally invariant Jastrow, as shown by
different authors, see for instance, Ref. 14. For this reason
we introduce a factor, often called three-body~electron-
electron nucleus! Jastrow, which explicitly depends on both
the electronic positionsr i andr j . The three-body Jastrow is
chosen to satisfy the following requirements.

~A! The cusp conditions set up by the two-body Jastrow
term and by the AGP are preserved.

~B! It does not distinguish the electronic spins otherwise
causing spin contamination.

~C! Whenever the atomic distances are large it factorizes
into a product of independent contributions located near each
atom, an important requirement to satisfy the size consis-
tency of the variational wave function.

Analogously to the pairing trial function in Eq.~2! we
define a three-body factor as

J3~r1 , . . . ,rN!5expS (
i , j

FJ~r i ,r j ! D ,

~10!

FJ~r i ,r j !5 (
l ,m,a,b

gl ,m
a,bca,l~r i !cb,m~r j !,

where indicesl and m indicate different orbitals located
around the atomsa andb, respectively. Each Jastrow orbital
ca,l(r ) is centered on the corresponding atomic positionRa .
We have used Gaussian and exponential orbitals multiplied
by appropriate polynomials of the electronic coordinates, re-
lated to different spherical harmonics with given angular mo-
mentum, as in the usual Slater basis. Analogously to the
geminal functionFAGP, whenever the one particle basis set
$ca,i% is complete the expansion~10! is also complete for the
generic two particle functionFJ(r ,r 8). In the latter case,
however, the one particle orbitals have to behave smoothly
close to the corresponding nuclei, namely, as

ca,i~r !2ca,i~Ra!.ur2Rau2, ~11!

or with larger power, in order to preserve the nuclear cusp
conditions~5!.

For the s-wave orbitals we have found energetically con-
venient to add a finite constantcl /(N21). As shown in the
Appendix B, a nonzero value of the constantcl for such
orbitalsca,l is equivalent to include in the wave function a
size consistent one body term. As pointed out in Ref. 15, it is
easier to optimize a one body term implicitly present in the
three-body Jastrow factor, rather than including more orbitals
in the determinantal basis set.

The chosen form for the three-body Jastrow~10! is simi-
lar to one used by Prendergast, Bevan, and Fahy16 and has
very appealing features: it easily allows including the sym-
metries of the system by imposing them on the matrixgl ,m

a,b

exactly as it is possible for the pairing part@e.g., by replacing
lm,n

a,b with gm,n
a,b in Eq. ~4!#. It is size consistent, namely, the

atomic limit can be smoothly recovered with the same trial
function when the matrix termsgl ,m

a,b for aÞb approach zero
in this limit. Notice that a small nonzero value ofgl ,m

a,b for
aÞb acting on p-wave orbitals can correctly describe a weak
interaction between electrons such as the the van der Waals
forces.

III. OPTIMIZATION METHOD

We have used the SR method already described in Ref.
17, which allows to minimize the energy expectation value
of a variational wave function containing many variational
parameters in an arbitrary functional form. The basic ingre-
dient for the stochastic minimization of the wave functionC
determined byp variational parameters$ak

0%k51,...,p , is the
solution of the linear system

(
k50

p

sj ,kDak5^CuOk~LI 2H !uC&, ~12!

where the operatorsOk are defined on eachN electron con-
figurationx5$r1 ,...,rN% as the logarithmic derivatives with
respect to the parametersak :

Ok~x!5
]

]ak
ln C~x! for k.0, ~13!

while for k50 Ok is the identity operator equal to one on all
the configurations. The (p11)3(p11) matrixsk, j is easily
expressed in terms of these operators:

sj ,k5
^CuOjOkuC&

^CuC&
, ~14!

and is calculated at each iteration through a standard varia-
tional Monte Carlo sampling; the single iteration constitutes
a small simulation that will be referred in the following as
‘‘bin.’’ After each bin the wave function parameters are itera-
tively updated (ak→ak1Dak /Da0), and the method is
convergent to an energy minimum for large enoughL. Of
course for particularly simple functional form ofC(x), con-
taining, e.g., only linear CI coefficients, much more efficients
optimization schemes do exist.18

SR is similar to a standard steepest descent~SD! calcu-
lation, where the expectation value of the energyE(ak)
5 ^CuHuC&/^CuC& is optimized by iteratively changing the
parametersa i according to the corresponding derivatives of
the energy~generalized forces!
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f k52
]E

]ak
52

^CuOkH1HOk1~]ak
H !uC&

^CuC&

12
^CuOkuC&^CuHuC&

^CuC&2 , ~15!

namely

ak→ak1Dt f k . ~16!

Dt is a suitable small time step, which can be taken fixed or
determined at each iteration by minimizing the energy expec-
tation value. Indeed the variation of the total energyDE at
each step is easily shown to be negative for small enoughDt
because, in this limit

DE52Dt(
i

f i
21O~Dt2!.

Thus the method certainly converges at the minimum when
all the forces vanish. Notice that in the definition of the gen-
eralized forces~15! we have generally assumed that the
variational parameters may appear also in the Hamiltonian.
This is particularly important for the structural optimization
since the atomic positions that minimize the energy enter
both in the wave function and in the potential.

In the following we will show that similar considerations
hold for the SR method, which can be therefore extended to
the optimization of the geometry. Indeed, by eliminating the
equation with indexk50 from the linear system~12!, the SR
iteration can be written in a form similar to the steepest de-
scent:

a i→a i1Dt(
k

s̄i ,k
21f k , ~17!

where the reducedp3p matrix s̄ is

s̄j ,k5sj ,k2sj ,0s0,k ~18!

and theDt value is given by

Dt5
1

2S L2
^CuHuC&

^CuC&
2(k.0Daksk,0D . ~19!

From the latter equation the value ofDt changes during the
simulation and remains small for large enough energy shift
L. However, using the analogy with the steepest descent,
convergence to the energy minimum is reached also when
the value ofDt is sufficiently small and is kept constant for
each iteration. Indeed the energy variation for a small change
of the parameters is

DE52Dt(
i , j

s̄i , j
21f i f j .

It is easily verified that the above term is always negative
because the reduced matrixs̄, as well ass̄21, is positive
definite,s being an overlap matrix with all positive eigenval-
ues.

For a stable iterative method, such as the SR or the SD
one, a basic ingredient is that at each iteration the new pa-
rametersa8 are close to the previousa according to a pre-

scribed distance. The fundamental difference between the SR
minimization and the standard steepest descent is just related
to the definition of this distance. For the SD it is the usual
one defined by the Cartesian metricDa5(kuak82aku2, in-
stead the SR works correctly in the physical Hilbert space
metric of the wave functionC, yielding Da5( i , j s̄i , j (a i8
2a i)(a j82a j ), namely, the square distance between the two
normalized wave functions corresponding to the two differ-
ent sets of variational parameters$a8% and$ak%. Therefore,
from the knowledge of the generalized forcesf k , the most
convenient change of the variational parameters minimizes

the functionalDE1L̄Da , whereDE is the linear change in

the energyDE52( i f i(a i82a i) and L̄ is a Lagrange mul-
tiplier that allows a stable minimization with small change
Da of the wave functionC. The final iteration~17! is then
easily obtained.

The advantage of SR compared with SD is obvious be-
cause sometimes a small change of the variational param-
eters correspond to a large change of the wave function, and
the SR takes into account this effect through the Eq.~17!. In
particular, the method is useful when a nonorthogonal basis
set is used as we have done in this work. Indeed by using the
reduced matrixs̄ it is also possible to remove from the cal-
culation those parameters that imply some redundancy in the
variational space. As shown in Appendix A, a more efficient
change in the wave function can be obtained by updating
only the variational parameters that remain independent
within a prescribed tolerance, and therefore, by removing the
parameters that linearly depend on the others. A more stable
minimization is obtained without spoiling the accuracy of the
calculation. A weak tolerance criteriume.1023, provides a
very stable algorithm even when the dimension of the varia-
tional space is large. For a small atomic basis set, by an
appropriate choice of the Jastrow and Slater orbitals, the re-
duced matrixs̄ is always very well conditioned even for the
largest system studied, and the above stabilization technique
is not required. Instead the described method is particularly
important for the extension of QMC to complex systems
with large number of atoms and/or higher level of accuracy,
because in this case it is very difficult to select—e.g., by trial
and error—the relevant variational parameters, which allow a
well conditioned matrixs̄ for a stable inversion in Eq.~17!.

A. Setting the SR parameters

In this work, instead of setting the constantL, we have
equivalently chosen to determineDt by verifying the stabil-
ity and the convergence of the algorithm at fixedDt value,
which can be easily understood as an inverse energy scale.
The simulation is stable whenever 1/Dt.Lcut, whereLcut is
an energy cutoff that is strongly dependent on the chosen
wave function and is generally weakly dependent on the bin
length. Whenever the wave function is too much detailed,
namely, has a lot of variational freedom, especially for the
high energy components of the core electrons, the value of
Lcut becomes exceedingly large and too many iterations are
required for obtaining a converged variational wave function.
In fact a rough estimate of the corresponding number of it-
erationsP is given by PDt@1/G, whereG is the typical
energy gap of the system, of the order of few electron volts
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in small atoms and molecules. Within the SR method it is
therefore extremely important to work with a bin length
rather small, so that many iterations can be performed with-
out much effort.

In a Monte Carlo optimization framework the forcesf k

are always determined with some statistical noisehk , and by
iterating the procedure several times with a fixed bin length
the variational parameters will fluctuate around their mean
values. These statistical fluctuations are similar to the ther-
mal noise of a standard Langevin equation

] tak5 f k1hk , ~20!

where

^hk~ t !hk8~ t8!&52Tnoised~ t2t8!dk,k8 . ~21!

The variational parametersak , averaged over the Langevin
simulation time~as for instance, in Fig. 1 fort.2H21), will
be close to the true energy minimum, but the corresponding
forces f k52]ak

E will be affected by a bias that scales to
zero with the thermal noiseTnoise, due to the presence of
nonquadratic terms in the energy landscape.

Within a QMC scheme, one needs to estimateTnoise, by
increasing the bin length as clearlyTnoise}1/ bin length, be-
cause the statistical fluctuations of the forces, obviously de-
creasing by increasing the bin length, are related to the ther-
mal noise by Eq.~21!. Thus there is an optimal value for the
bin length, which guarantees a fast convergence and avoid
the forces to be biased within the statistical accuracy of the
sampling.

An example is shown in Fig. 1 for the optimization of
the Be atom, using a DZ basis both for the geminal and the
three-body Jastrow part. The convergence is reached in about
1000 iteration withDt50.005H21. However, in this case it
is possible to use a small bin length, yielding a statistical
accuracy in the energy much poorer than the final accuracy
of about 0.05 mH. This is obtained by averaging the varia-
tional parameters in the last 1000 iterations, when they fluc-
tuate around a mean value, allowing a very accurate deter-
mination of the energy minimum which satisfies the Euler
conditions, namely, withf k50 for all parameters. Those
conditions have been tested by an independent Monte Carlo
simulation about 600 times longer than the bin used during

the minimization. As shown in Fig. 2 the Euler conditions
are fulfilled within statistical accuracy even when the bin
used for the minimization is much smaller than the overall
simulation. On the other hand, if the bin used is too small, as
we have already pointed out, the averaging of the parameters
is affected by a sizable bias.

Whenever it is possible to use a relatively small bin in
the minimization, the apparently large number of iterations
required for equilibration does not really matter, because a
comparable amount of time has to be spent in the averaging
of the variational parameters, as shown in Fig. 1. The com-
parison shown in Ref. 19 about the number of the iterations
required, though is clearly relevant for a deterministic
method, is certainly incomplete for a statistical method, be-
cause in the latter case an iteration can be performed in prin-
ciple in a very short time, namely, with a rather small bin.

It is indeed possible that for high enough accuracy the
number of iterations needed for the equilibration becomes
negligible from the computational point of view. In fact in
order to reduce, e.g., by a factor 10, the accuracy in the
variational parameters, a bin ten times larger is required for
decreasing the thermal noiseTnoise by the same factor,

FIG. 1. Example of the convergence
of the SR method for the variational
parameters of the Be atom, as a func-
tion of the number of stochastic itera-
tions. In the upper~lower! panel the Ja-
strow~geminal! parameters are shown.
For each iteration, a variational Monte
Carlo calculation is employed with a
bin containing 15 000 samples of the
energy, yielding at the equilibrium a
standard deviation of.0.0018H. For
the first 200 iteration Dt
50.00125H21, for the further 200 it-
erationsDt50.0025H21, whereas for
the remaining onesDt50.005H21.

FIG. 2. Calculation of the derivative of the energy with respect to the
secondZ in the 2p orbital of the geminal function for the Be atom. The
calculation of the force was obtained, at fixed variational parameters, by
averaging over 107 samples, allowing, e.g., a statistical accuracy in the total
energy of 0.07 mH. The variational parameters have been obtained by a SR
minimization with fixed bin length shown in the x label. The parameter
considered has the largest deviation from the Euler conditions.
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whereas a statistical average 100 times longer is indeed nec-
essary to reduce the statistical errors of the variational pa-
rameters by the same ratio. This means that the fraction of
time spent for equilibration becomes ten times smaller com-
pared with the less accurate simulation.

B. Structural optimization

In the last few years remarkable progresses have been
made to develop QMC techniques which are able in principle
to perform structural optimization of molecules and complex
systems.20–22 Within the Born-Oppenheimer approximation
the nuclear positionsRi can be considered as further varia-
tional parameters included in the set$a i% used for the SR
minimization ~17! of the energy expectation value. For clar-
ity, in order to distinguish the conventional variational pa-
rameters from the ionic positions, in this section we indicate
with $ci% the former ones, and withRi the latter ones. It is
understood thatRi

n5ak , where a particular indexk of the
whole set of parameters$a i% corresponds to a given spatial
component (n51,2,3) of thei th ion. Analogously the forces
~15! acting on the ionic positions will be indicated by capital
letters with the same index notations.

The purpose of the present section is to compute the
forces F acting on each of theM nuclear positions
$R1 ,...,RM%, beingM the total number of nuclei in the sys-
tem:

F~Ra!52¹Ra
E~$ci%,Ra!, ~22!

with a reasonable statistical accuracy, so that the iteration
~17! can be effective for the structural optimization. In this
work we have used a finite difference operatorD/DRa for
the evaluation of the force acting on a given nuclear position
a

F~Ra!52
D

DRa
E52

E~Ra1DRa!2E~Ra2DRa!

2DR

1O~DR2!, ~23!

whereDRa is a three-dimensional vector. Its lengthDR is
chosen to be 0.01 a.u., a value that is small enough for neg-
ligible finite difference errors. In order to evaluate the energy
differences in Eq.~23! we have used the space-warp coordi-
nate transformation23,24 briefly summarized in the following
paragraphs. According to this transformation also the elec-
tronic coordinatesr will be translated in order to mimic the
right displacement of the charge around the nucleusa

r̄ i5r i1DRava~r i !, ~24!

where

va~r !5
F~ ur2Rau!

(b51
M F~ ur2Rbu!

. ~25!

F(r ) is a function which must decay rapidly; here we used
F(r )5 1/r 4 as suggested in Ref. 24.

The expectation value of the energy depends onDR,
because both the Hamiltonian and the wave function depend

on the nuclear positions. Now let us apply the space-warp
transformation to the integral involved in the calculation; the
expectation value reads

E~R1DR!5
*drJDR~r !CDR

2 @ r̄ ~r !#EL
DR@ r̄ ~r !#

*drJDR~r !CDR
2 @ r̄ ~r !#

, ~26!

whereJ is the Jacobian of the transformation and here and
henceforth we avoid for simplicity to use the atomic subin-
dex a. The importance of the space warp in reducing the
variance of the force is easily understood for the case of an
isolated atoma. Here the force acting on the atom is obvi-
ously zero, but only after the space warp transformation with
va51 the integrand of expression~26! will be independent
of DR, providing an estimator of the force with zero vari-
ance.

Starting from Eq.~26!, it is straightforward to explicitly
derive a finite difference differential expression for the force
estimator, which is related to the gradient of the previous
quantity with respect toDR, in the limit of the displacement
tending to zero:

F~R!52K lim
uDRu→0

D

DR
ELL

12S ^H&K lim
uDRu→0

D

DR
ln~J1/2C!L

2K H lim
uDRu→0

D

DR
ln~J1/2C!L D , ~27!

where the brackets indicate a Monte Carlo like average over
the square modulus of the trial wave function,D/DR is the
finite difference derivative as defined in Eq.~23!, and EL

5^CuHux&/^Cux& is the local energy on a configurationx
where all electron positions and spins are given. In analogy
with the general expression~15! of the forces, we can iden-
tify the operatorsOk corresponding to the space-warp
change of the variational wave function:

Ok5
Dn

DR
ln~JDR

1/2CDR!. ~28!

The above operators~28! are used also in the definition of
the reduced matrixs̄ for those elements depending on the
variation with respect to a nuclear coordinate. In this way it
is possible to optimize both the wave function and the ionic
positions at the same time, in close analogy with the
Car-Parrinello25 method applied to the minimization prob-
lem. Also Tanaka26 tried to perform Car-Parrinello like simu-
lations via QMC, within the less efficient steepest descent
framework.

An important source of systematic errors is the depen-
dence of the variational parametersci on the ionic configu-
ration R, because for the final equilibrium geometry all the
forces f i corresponding toci have to be zero, in order to
guarantee that the true minimum of the potential energy sur-
face is reached.27 As shown clearly in the preceding section,
within a QMC approach it is possible to control this condi-
tion by increasing systematically the bin length, when the
thermal biasTnoise vanishes. In Fig. 3 we report the equilib-
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rium distance of the Li molecule as a function of the inverse
bin length, so that an accurate evaluation of such an impor-
tant quantity is possible even when the number of variational
parameters is rather large, by extrapolating the value to an
infinite bin length. However, as it is seen in the picture,
though the inclusion of the 3s orbital in the atomic AGP basis
substantially improves the equilibrium distance and the total
energy by.1 mH, this larger basis makes our simulation
less efficient, as the time stepDt has to be reduced by a
factor 3.

We have not attempted to extend the geometry optimi-
zation to the more accurate DMC, since there are technical
difficulties,28 and it is computationally much more demand-
ing.

C. Stochastic versus deterministic minimization

In principle, within a stochastic approach, the exact
minimum is never reached as the forcesf i are known only
statistically with some error barD f i . We have found that the
method becomes efficient when all the forces are nonzero
only within few tenths of standard deviations. Then for small
enough constantDt, and large enough bin compatible with
the computer resources, the stochastic minimization, ob-
tained with a statistical evaluation ofs̄ continues in a stable
manner, and all the variational parameters fluctuate after sev-
eral iterations around a mean value. After averaging these
variational parameters, the corresponding mean values repre-
sent very good estimates satisfying the minimum energy con-
dition. This can be verified by performing an independent
Monte Carlo simulation much longer than the bin used for a
single iteration of the stochastic minimization, and then by
explicitly checking that all the forcesf i are zero within the
statistical accuracy. An example is given in Fig. 2 and dis-
cussed in the preceding section.

On the other hand, whenever few variational parameters
are clearly out of minimum, withu f i /D f i u.scut, with scut

.10, we have found a faster convergence with a much larger

Dt, by applying the minimization scheme only for those se-
lected parameters such thatu f i /D f i u.scut, until u f i /D f i u
,scut. After this initialization it is then convenient to pro-
ceed with the global minimization with all parameters
changed at each iteration, in order to explore the variational
space in a much more effective way.

D. Different energy scales

The SR method performs generally very well, whenever
there is only one energy scale in the variational wave func-
tion. However if there are several energy scales in the prob-
lem, some of the variational parameters, e.g. the ones defin-
ing the low energy valence orbitals, converge very slowly
with respect to the others, and the number of iterations re-
quired for the equilibration becomes exceedingly large, con-
sidering also that the time stepDt necessary for a stable
convergence depends on the high energy orbitals, whose dy-
namics cannot be accelerated beyond a certain threshold. It is
easy to understand that SR technique not necessarily be-
comes inefficient for extensive systems with large number of
atoms. Indeed suppose that we haveN atoms very far apart
so that we can neglect the interaction between electrons be-
longing to different atoms, than it is easy to see that the
stochastic matrix Eq.~14! factorizes inN smaller matrices
and theDt necessary for the convergence is equal to the
single atom case, simply because the variational parameters
of each single atom can evolve independently form each
other. This is due to the size consistency of our trial function
that can be factorized as a product ofN single atom trial
functions in that limit. Anyway for system with a too large
energy spread a way to overcome this difficulty was pre-
sented recently in Ref. 19. Unfortunately this method is lim-
ited to the optimization of the variational parameters in a
super-CI basis, to which a Jastrow term is applied, which
however cannot be optimized together with the CI coeffi-
cients.

In the present work, limited to a rather small atomic
basis, the SR technique is efficient, and general enough to
perform the simultaneous optimization of the Jastrow and the
determinantal part of the wave function, a very important
feature that allows to capture the most nontrivial correlations
contained in our variational ansatz. Moreover, SR has been
extended to deal with the structural optimization of a chemi-
cal system, which is another appealing characteristic of this
method. The results presented in the following section show
that in some nontrivial cases the chemical accuracy can be
reached also within this framework.

However we feel that an improvement along the line
described in Ref. 19 will be useful for realistic electronic
simulations of complex systems with many atoms, or when a
very high precision is required at the variational level and
consequently a wide spread of energy scales has to be in-
cluded in the atomic basis. We believe that the difficulty to
work with a large basis set will be possibly alleviated by
using pseudopotentials that allows to avoid the high energy
components of the core electrons. However more work is
necessary to clarify the efficiency of the SR minimization
scheme described here.

FIG. 3. Plot of the equilibrium distance of the Li2 molecule as a function of
the inverse bin length. The total energy and the binding energy are reported
in Tables II and III, respectively. The triangles~full dots! refer to a simula-
tion performed using 1000~3000! iterations with Dt50.015H21 (Dt
50.005H21) and averaging over the last 750~2250! iterations. For all
simulations the initial wavefunction is optimized at Li-Li distance 6 a.u.
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IV. APPLICATION OF THE JAGP TO MOLECULES

In this work we study total, correlation, and atomization
energies, accompanied with the determination of the ground
state optimal structure for a restricted ensemble of mol-
ecules. For each of them we performed a full all-electron SR
geometry optimization, starting from the experimental mo-
lecular structure. After the energy minimization, we carried
out all-electron VMC and DMC simulations at the optimal
geometry within the so called ‘‘fixed node approximation.’’
The basis used here is a double zeta Slater set of atomic
orbitals~STO-DZ! for the AGP part, while for parametrizing
the three-body Jastrow geminal we used a double zeta
Gaussian atomic set~GTO-DZ!. In this way both the anti-
symmetric and the bosonic part are well described, preserv-
ing the right exponential behavior for the former and the
strong localization properties for the latter. Sometimes, in
order to improve the quality of the variational wave function
we employed a mixed Gaussian and Slater basis set in the
Jastrow part, which allows to avoid a too strong dependency
in the variational parameters in a simple way. However, both
in the AGP and in the Jastrow sector we never used a large
basis set, in order to keep the wave function as simple as
possible. The accuracy of our wave function can be obvi-
ously improved by an extension of the one particle basis set,
but, as discussed in the preceding section, this is rather dif-
ficult for a stochastic minimization of the energy. Neverthe-
less, for most of the molecules studied with a simple JAGP
wave function, a DMC calculation is able to reach the chemi-
cal accuracy in the binding energies and the SR optimization
yields very precise geometries already at the VMC level.

In the first part of this section some results will be pre-
sented for a small set of widely studied molecules and be-
longing to the G1 database. In the second section we will
treat the benzene and its radical cation C6H6

1 , by taking into
account its distortion due to the Jahn-Teller effect, which is
well reproduced by our SR geometry optimization.

A. Small diatomic molecules, methane, and water

Except from Be2 and C2, all the molecules presented
here belong to the standard G1 reference set; all their prop-
erties are well known and well reproduced by standard quan-
tum chemistry methods, therefore they constitute a good case
for testing new approaches and new wave functions.

The Li dimer is one of the easiest molecules to be stud-
ied after H2 , which is exact for any diffusion Monte Carlo
calculation with a trial wave function that preserves the
nodeless structure. Li2 is less trivial due to the presence of
core electrons that are only partially involved in the chemical
bond and to the 2s-2p near degeneracy for the valence elec-
trons. Therefore many authors have done benchmark calcu-
lation on this molecule to check the accuracy of the method
or to determine the variance of the internuclear force calcu-
lated within a QMC framework. In this work we start from
Li2 to move toward a structural analysis of more complex
compounds, thus showing that our QMC approach is able to
handle relevant chemical problems. In the case of Li2 , a 3s
1p STO-DZ AGP basis and a 1s 1p GTO-DZ Jastrow basis
turns out to be enough for the chemical accuracy~see Ap-
pendix C for a detailed description of the trial wave func-
tion!. More than 99% of the correlation energy is recovered
by a DMC simulation~Table I!, and the atomization energy
is exact within few thousand of eV (0.02 kcal mol21) ~Table
II !. Similar accuracy have been previously reached within a
DMC approach,29 only by using a multireference CI like
wave function, that before our work, was the usual way to
improve the electronic nodal structure. As stressed before,
the JAGP wave function includes many resonating configu-
rations through the geminal expansion, beyond the 1s 2s HF
ground state. The bond length has been calculated at the
variational level through the fully optimized JAGP wave
function: the resulting equilibrium geometry turns out to be
highly accurate~Table III!, with a discrepancy of only
0.001a0 from the exact result. For this molecule it is worth
comparing our work with the one by Assaraf and Caffarel.30

TABLE I. Total energies in variational (EVMC) and diffusion (EDMC) Monte Carlo calculations; the percentages
of correlation energy recovered in VMC@Ec

VMC(%)# and DMC @Ec
DMC(%)# have been evaluated using the

‘‘exact’’ ( E0) and Hartree-Fock (EHF) energies from the references reported in the table. Here exact means the
ground state energy of the nonrelativistic infinite nuclear mass Hamiltonian. The energies are in hartree.

E0 EHF EVMC Ec
VMC(%) EDMC Ec

DMC(%)

Li 27.478 06a 27.432 727a 27.477 21(11) 98.12~24! 27.477 91(12) 99.67~27!
Li2 214.9954b 214.871 52b 214.990 02(12) 95.7~1! 214.994 72(17) 99.45~14!
Be 214.667 36a 214.573 023a 214.663 28(19) 95.67~20! 214.667 05(12) 99.67~13!
Be2 229.338 54(5)b 229.132 42b 229.3179(5) 89.99~24! 229.333 41(25) 97.51~12!
O 275.0673a 274.809 398a 275.0237(5) 83.09~19! 275.0522(3) 94.14~11!
H2O 276.438(3)b 276.068(1)b 276.3803(4) 84.40~10! 276.4175(4) 94.46~10!
O2 2150.3268b 2149.6659b 2150.1992(5) 80.69~7! 2150.272(2) 91.7~3!
C 237.8450a 237.688 619a 237.813 03(17) 79.55~11! 237.8350(6) 93.6~4!
C2 275.923(5)b 275.406 20b 275.8273(4) 81.48~8! 275.8826(7) 92.18~14!
CH4 240.515d 240.219d 240.4627(3) 82.33~10! 240.5041(8) 96.3~3!
C6H6 2232.247(4)e 2230.82(2)f 2231.8084(15) 69.25~10! 2232.156(3) 93.60~21!

aExact and HF energies from Ref. 50. dReference 33.
bReference 29. eEstimated exact energy from Ref. 43.
cReference 51. fReference 52.
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Their zero-variance zero-bias principle has been proved to be
effective in reducing the fluctuations related to the internu-
clear force; however they found that only the inclusion of the
space warp transformation drastically lowers the force statis-
tical error, which magnitude becomes equal or even lower
than the energy statistical error, thus allowing a feasible mo-
lecular geometry optimization. Actually, our way of comput-
ing forces@see Eq.~27!# provides slightly larger variances,
without explicitly invoking the zero-variance zero-bias prin-
ciple.

The very good bond length, we obtained, is probably due
to two main ingredients of our calculations: we have carried
out a stable energy optimization that is often more effective
than the variance one, as shown by different authors,31 and
we have used very accurate trial function as it is apparent
from the good variational energy.

Indeed within our scheme we obtain good results with-
out exploiting the computationally much more demanding
DMC, thus highlighting the importance of the SR minimiza-
tion described in Sec. III B.

Let us now consider larger molecules. Both C2 and O2

are poorly described by a single Slater determinant, since the
presence of the nondynamic correlation is strong. Instead
with a single geminal JAGP wave function, including implic-
itly many Slater determinants,10 it is possible to obtain a
quite good description of their molecular properties. For C2 ,
we used a 2s 1p STO-DZ basis in the geminal, and a 2s 1p
DZ Gaussian Slater mixed basis in the Jastrow, for O2 we
employed a 3s 1p STO-DZ in the geminal and the same
Jastrow basis as before. In both the cases, the variational
energies recover more than 80% of the correlation energy,
the DMC ones yield more than 90%, as shown in Table I.
These results are of the same level of accuracy as those ob-

tained by Filippi and Umrigar29 with a multireference wave
function by using the same Slater basis for the antisymmetric
part and a different Jastrow factor. From the Table II of the
atomization energies, it is apparent that DMC considerably
improves the binding energy with respect to the VMC val-
ues, although for these two molecules it is quite far from the
chemical accuracy (.0.1 eV): for C2 the error is 0.55~2! eV,
for O2 it amounts to 0.67~5! eV. Indeed, it is well known that
the electronic structure of the atoms is described better than
the corresponding molecules if the basis set remains the
same, and the nodal error is not compensated by the energy
difference between the separated atoms and the molecule. In
a benchmark DMC calculation with pseudopotentials,32

Grossman found an error of 0.27 eV in the atomization en-
ergy for O2 , by using a single determinant wave function;
probably, pseudopotentials allow the error between the
pseudoatoms and the pseudomolecule to compensate better,
thus yielding more accurate energy differences. As a final
remark on the O2 and C2 molecules, our bond lengths are in
between the LDA and GGA precision, and still worse than
the best CCSD calculations, but our results may be consid-
erably improved by a larger atomic basis set, which we have
not attempted so far.

Methane and water are very well described by the JAGP
wave function. Also for these molecules we recover more
than 80% of correlation energy at the VMC level, while
DMC yields more than 90%, with the same level of accuracy
reached in previous Monte Carlo studies.33–36Here the bind-
ing energy is almost exact, since in this case the nodal energy
error arises essentially from only one atom~carbon or oxy-
gen! and therefore it is exactly compensated when the atomi-
zation energy is calculated. Also the bond lengths are highly
accurate, with an error lower then 0.005a0 .

For Be2 we applied a 3s 1p STO-DZ basis set for the
AGP part and a 2s 2p DZ Gaussian Slater mixed basis for the
Jastrow factor. VMC calculations performed with this trial
function at the experimental equilibrium geometry yield 90%
of the total correlation energy, while DMC gives 97.5% of
correlation, i.e., a total energy of229.333 41(25) H. Al-
though this value is better than that obtained by Filippi and
Umrigar29 (229.3301(2) H! with a smaller basis (3s atomic
orbitals not included!, it is not enough to bind the molecule,
because the binding energy remains still positive@0.0069~37!
H#. Instead, once the molecular geometry has been relaxed,
the SR optimization finds a bond distance of 13.5(5)a0 at the
VMC level; therefore the employed basis allows the mol-

TABLE II. Binding energies in eV obtained by variational (DVMC) and diffusion (DDMC) Monte Carlo calcu-
lations; D0 is the exact result for the nonrelativistic infinite nuclear mass Hamiltonian. Also the percentages
@DVMC(%) andDDMC(%)] of the total binding energies are reported.

D0 DVMC DVMC(%) DDMC DDMC(%)

Li2 21.069 20.967(3) 90.4~3! 21.058(5) 99.0~5!
O2 25.230 24.13(4) 78.9~8! 24.56(5) 87.1~9!
H2O 210.087 29.704(24) 96.2~1.0! 29.940(19) 98.5~9!
C2 26.340 25.476(11) 86.37~17! 25.79(2) 91.3~3!
CH4 218.232 217.678(9) 96.96~5! 218.21(4) 99.86~22!
C6H6 259.25 252.53(4) 88.67~7! 258.41(8) 98.60~13!

TABLE III. Bond lengths (R) in atomic units; the subscript 0 refers to the
exact results. For the water moleculeR is the distance between O and H and
u is the angle HOH~in deg!, for CH4 R is the distance between C and H and
u is the HCH angle.

R0 R u0 u

Li2 5.051 5.0516~2!
O2 2.282 2.3425~18!
C2 2.348 2.366~2!
H2O 1.809 1.8071~23! 104.52 104.74~17!
CH4 2.041 2.049~1! 109.47 109.55~6!

R0
CC RCC R0

CH RCH

C6H6 2.640 2.662~4! 2.028 1.992~2!
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ecule to have a van der Waals like minimum, quite far from
the experimental value. In order to have a reasonable de-
scription of the bond length and the atomization energy, one
needs to include at least a 3s2p basis in the antisymmetric
part, as pointed out in Ref. 37, and indeed an atomization
energy compatible with the experimental result@0.11~1! eV#
has been obtained within the extended geminal model38 by
using a much larger basis set~9s,7p,4d,2f,1g!.39 This sug-
gests that a complete basis set calculation with JAGP may
describe also this molecule. However, as already mentioned
in Sec. III D, our SR method cannot cope with a very large
basis in a feasible computational time. Therefore we believe
that at present the accuracy needed to describe correctly Be2

is out of the possibilities of the approach.

B. Benzene and its radical cation

We studied the1A1g ground state of the benzene mol-
ecule by using a very simple one particle basis set: for the
AGP, a 2s1p DZ set centered on the carbon atoms and a 1s
SZ on the hydrogen, instead for the three-body Jastrow, a
1s1p DZ-GTO set centered only on the carbon sites. C6H6 is
a peculiar molecule, since its highly symmetric ground state,
which belongs to theD6h point group, is a resonance among
different many-body states, each of them characterized by
three double bonds between carbon atoms. This resonance is
responsible for the stability of the structure and therefore for
its aromatic properties. We started from a non resonating
two-body Jastrow wave function, which dimerizes the ring
and breaks the full rotational symmetry, leading to the
Kekulé configuration. As we expected, the inclusion of the
resonance between the two possible Kekule´ states lowers the
VMC energy by more than 2 eV. The wave function is fur-
ther improved by adding another type of resonance, that in-
cludes also the Dewar contributions connecting third nearest
neighbor carbons. As reported in Table IV, the gain with
respect to the simplest Kekule´ wave function amounts to 4.2
eV, but the main improvement arises from the further inclu-
sion of the three-body Jastrow factor, which allows to re-
cover the 89% of the total atomization energy at the VMC
level. The main effect of the three-body term is to keep the
total charge around the carbon sites to approximately six
electrons, thus penalizing the double occupation of thepz

orbitals. The same important correlation ingredient is present
in the well known Gutzwiller wave function already used for
polyacetylene.40 Within this scheme we have systematically

included in the three-body Jastrow part the same type of
terms present in the AGP one, namely, bothga,b andla,b are
nonzero for the same pairs of atoms. As expected, the terms
connecting next nearest neighbor carbon sites are much less
important than the remaining ones because the VMC energy
does not significantly improve~see the full resonating
1three-body wave function in Table IV!. A more clear be-
havior is found by carrying out DMC simulations: the inter-
play between the resonance among different structures and
the Gutzwiller-like correlation refines more and more the
nodal surface topology, thus lowering the DMC energy by
significant amounts. Therefore it is crucial to insert into the
variational wave function all these ingredients in order to
have an adequate description of the molecule. For instance,
in Fig. 4 we report the density surface difference between the
nonresonating three-body Jastrow wave function, which
breaks the C6 rotational invariance, and the resonating
Kekuléstructure, which preserves the correctA1g symmetry:

TABLE IV. Binding energies in eV obtained by variational (DVMC) and diffusion (DDMC) Monte Carlo calcu-
lations with different trial wave functions for benzene. In order to calculate the binding energies yielded by the
two-body Jastrow we used the atomic energies reported in Ref. 10. The percentages@DVMC(%) andDDMC(%)]
of the total binding energies are also reported.

DVMC DVMC(%) DDMC DDMC(%)

Kekulé1two-body 230.57(5) 51.60~8! ¯ ¯

Resonating Kekule´1two-body 232.78(5) 55.33~8! ¯ ¯

Resonating Dewar Kekule´1two-body 234.75(5) 58.66~8! 256.84(11) 95.95~18!
Kekulé1three-body 249.20(4) 83.05~7! 255.54(10) 93.75~17!
Resonating Kekule´1three-body 251.33(4) 86.65~7! 257.25(9) 96.64~15!
Resonating Dewar Kekule´1three-body 252.53(4) 88.67~7! 258.41(8) 98.60~13!
Full resonating1three-body 252.65(4) 88.87~7! 258.30(8) 98.40~13!

FIG. 4. Surface plot of the charge density projected onto the molecular
plane. The difference between the nonresonating~indicated as HF! and reso-
nating Kekuléthree-body Jastrow wave function densities is shown. Notice
the corresponding change from a dimerized structure to a C6 rotational
invariant density profile.
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the change in the electronic structure is significant. The best
result for the binding energy is obtained with the Kekule´
Dewar resonating three-body wave function, which recovers
98.6% of the total atomization energy with an absolute error
of 0.84~8! eV. As Pauling41 first pointed out, benzene is a
genuine RVB system, indeed it is well described by the
JAGP wave function. Moreover Pauling gave an estimate for
the resonance energy of 1.605 eV from thermochemical ex-
periments in qualitative agreement with our results. A final
remark about the error in the total atomization energy: the
latest frozen core CCSD~T! calculations42,43are able to reach
a precision of 0.1 eV, but only after the complete basis set
extrapolation and the inclusion of the core valence effects to
go beyond the pseudopotential approximation. Without the
latter corrections, the error is quite large even in the CCSD
approach, amounting to 0.65 eV.42 In our case, such an error
arises from the fixed node approximation, whose nodal error
is not compensated by the difference between the atomic and
the molecular energies, as already noticed in the previous
subsection.

The radical cation C6H6
1 of the benzene molecule has

been the subject of intense theoretical studies,44,45 aimed to
focus on the Jahn-Teller distorted ground state structure. In-
deed the ionized2E1g state, which is degenerate, breaks the
symmetry and experiences a relaxation from theD6h point
group to two different states,2B2g and2B3g , that belong to
the lower D2h point group. In practice, the former is the
elongated acute deformation of the benzene hexagon, the lat-
ter is its compressed obtuse distortion. We applied the SR
structural optimization, starting from the2E1g state, and the
minimization correctly yielded a deformation toward the
acute structure for the2B2g state and the obtuse for the2B3g

one; the first part of the evolution of the distances and the
angles during those simulations is shown in Fig. 5. After this
equilibration, average over 200 further iterations yields bond
distances and angles with the same accuracy as the all-
electron BLYP/6-31G* calculations reported in Ref. 44~see
Table V!. As it appears from Table VI not only the structure

but also the DMC total energy is in perfect agreement with
the BLYP/6-31G* , and much better than SVWN/6-31G*
that does not contain semi empirical functionals, for which
the comparison with our calculation is more appropriate, be-
ing fully ab initio.

The difference of the VMC and DMC energies between
the two distorted cations are the same within the error bars;
indeed, the determination of which structure is the real cation
ground state is a challenging problem, since the experimental
results give a difference of only few meV in favor of the
obtuse state and also the most refined quantum chemistry
methods are not in agreement among themselves.44 A more
affordable problem is the determination of the adiabatic ion-
ization potential~AIP!, calculated for the2B3g state, follow-
ing the experimental hint. Recently, very precise CCSD~T!
calculations have been performed in order to establish a
benchmark theoretical study for the ionization threshold of
benzene;45 the results are reported in Table VII. After the
correction of the zero point energy due to the different struc-
ture of the cation with respect to the neutral molecule and
taken from a B3LYP/cc-pVTZ calculation reported in Ref.
45, the agreement among our DMC result, the benchmark
calculation and the experimental value is impressive. Notice
that in this case there should be a perfect cancellation of
nodal errors in order to obtain such an accurate value; how-
ever, we believe that it is not a fortuitous result, because in
this case the underlying nodal structure does not change
much by adding or removing a single electron. Therefore we
expect that this property holds for all the affinity and ioniza-
tion energy calculations with a particularly accurate varia-
tional wave function as the one we have proposed here. Nev-
ertheless DMC is needed to reach the chemical accuracy,

FIG. 5. Plot of the convergence toward the equilibrium geometry for the
2B2g acute and the2B3g obtuse benzene cation. Notice that both the simu-
lations start from the ground state neutral benzene geometry and relax with
a change both in the C-C bond lengths and in the angles. The symbols are
the same of Table V.

TABLE V. Bond lengths (r ) for the two lowest2B2g and2B3g states of the
benzene radical cation. The anglesa are expressed in degrees, the lengths in
a0 . The carbon sites are numerated from 1 to 6.

2B2g

acute

2B3g

obtuse Computational method

r (C12C2) 2.616 2.694 B3LYP/cc-pVTZa

2.649 2.725 BLYP/6-31G* b

2.659~1! 2.733~4! SR-VMCc

r (C22C3) 2.735 2.579 B3LYP/cc-pVTZa

2.766 2.615 BLYP/6-31G* b

2.764~2! 2.628~4! SR-VMCc

a(C6C1C2) 118.4 121.6 B3LYP/cc-pVTZa

118.5 121.5 BLYP/6-31G* b

118.95~6! 121.29~17! SR-VMCc

aReference 45.
bReference 44.
cThis work.

TABLE VI. Total energies for the2B2g and 2B3g states of the benzene
radical cation after the geometry relaxation. A comparison with a
BLYP/6-31G* and SVWN/6-31G* all-electron calculation~Ref. 44! is re-
ported.

VMC DMC BLYP/6-31G* SVWN/6-31G*

2B2g 2231.4834(15) 2231.816(3) 2231.815495 2230.547931
2B3g 2231.4826(14) 2231.812(3) 2231.815538 2230.547751
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since the VMC result is slightly off from the experimental
one just by few tenths of eV. The AIP and the geometry
determination for the C6H6

1 are encouraging to pursue this
approach, with the aim to describe even much more interest-
ing and challenging chemical systems.

V. CONCLUSION

In this work, we have tested the JAGP wave function on
simple molecular systems where accurate results are known.
As shown in the preceding section a large amount of the
correlation energy is already recovered at the variational
level with a computationally very efficient and feasible
method, extended in this work to the nuclear geometry opti-
mization. Indeed, much larger systems should be tractable
because, within the JAGP ansatz, it is sufficient to sample a
single determinant whose dimension scales only with the
number of electrons. The presence of the Jastrow factor im-
plies the evaluation of multidimensional integrals that, so far
can be calculated efficiently only with the Monte Carlo
method. Within this framework, it is difficult to reach the
complete basis set limit, both in the Jastrow and the AGP
terms, although some progress has been made recently.19,46

Even if the dimension of the basis is limited by the difficulty
to perform energy optimization with a very large number of
variational parameters, we have obtained the chemical accu-
racy for most cases studied. From a general point of view the
basis set convergence of the JAGP is expected to be faster
than AGP considering that the electron-electron cusp condi-
tion is fulfilled exactly at each level of the expansion. Nev-
ertheless, all results presented here can be systematically im-
proved with larger basis set. In particular the Be2 bonding
distance should be substantially corrected by a more com-
plete basis, that we have not attempted so far.39

The usefulness of the JAGP wave function is already
well known in the study of strongly correlated systems de-
fined on a lattice. For instance, in the widely studied Hub-
bard model, as well as in any model with electronic repul-
sion, it is not possible to obtain a superconducting ground
state at the mean-field Hartree-Fock level. On the contrary,
as soon as a correlated Jastrow term is applied to the BCS
wave function~equivalent to the AGP wave function in mo-
mentum space47!, the stabilization of a d-wave superconduct-
ing order parameter is possible, and is expected to be a real-
istic property of the model.48 More interestingly the presence
of the Jastrow factor can qualitatively change the wave func-
tion especially at one electron per site filling, by converting a
BCS superconductor to a Mott insulator with a finite charge
gap.49

The same effect is clearly seen for the gedanken experi-
ment of a dilute gas of H2 molecules, a clarifying test ex-
ample already used in the introduction. The AGP wave func-
tion is essentially exact for a single molecule~at least with
the complete basis set!, but its obvious size consistent exten-
sion to the gas would lead to the unphysical result of super-
conductivity because the charge around each molecule would
be free to fluctuate within the chosen set of geminal orbitals.
Only the presence of the Jastrow term added to this wave
function, allows the local conservation of the charge around

the molecule, by forbidding unphysical H2 dimers with more
than two electrons. Once the charge is locally conserved, the
phase of the BCS-AGP wave function cannot have a definite
value and phase coherence is correctly forbidden by the Ja-
strow factor. In the present work, the interplay between the
Jastrow and the geminal part has been shown to be very
effective in all cases studied and particularly in the nontrivial
case of the benzene molecule, where we have shown system-
atically the various approximations. Only whenboth the Ja-
strow and the AGP terms are accurately optimized together,
the AGP nodal structure of the wave function is considerably
improved. For the above reasons and the size consistency of
the JAGP we expect that this wave function should be gen-
erally accurate also in complex systems made by many mol-
ecules. The local conservation of the charge around each
molecule is taken into account by the Jastrow factor, whereas
the quality of each molecule is described also by the AGP
geminal part exactly as in the H2 gas example.

In the near future it is very appealing and promising to
extend the JAGP study to the DNA nitrogenous bases, whose
geometrical structure is very similar to the benzene ring. In
particular, we plan to accurately evaluate the energetics~re-
duction potential, ionization energies, electron affinity, etc.!
of DNA bases and base pairs, quantities of great importance
to characterize excess electron and hole transfer which are
involved in radiation damage as well as in the development
of DNA technologies.
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APPENDIX A: STABILIZATION OF THE SR
TECHNIQUE

Whenever the number of variational parameters in-
creases, it often happens that the stochastic (N11)3(N
11) matrix

sk,k85
^CuOkOk8uC&

^CuC&
~A1!

TABLE VII. Adiabatic ionization potential of the benzene molecule; our
estimate is done for the2B3g relaxed geometries of the benzene radical
cation, with an inclusion of the zero point motion correction between the
2B3g state and the1A1g neutral molecule ground state, calculated in Ref. 45
at the B3LYP/6-31G* level.

VMCa DMCa CCSD(T)/cc-pV̀ Zb experimentc

AIP 8.86~6! 9.36~8! 9.29~4!
DZPEad 20.074 20.074 20.074
best estimate 8.79~6! 9.29~8! 9.22~4! 9.2437~8!

aThis work.
bReference 45.
cReference 53.
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becomes singular, i.e., the condition number, defined as the
ratio s5lN /l1 between its maximumlN and minimum ei-
genvaluel1 , is too large. In that case the inversion of this
matrix generates clear numerical instabilities which are dif-
ficult to control especially within a statistical method. Here
Ok5d ln C(x)/dak are the operators corresponding to the
variational parametersak appearing in the wave functionC
for k51,...,N, whereas fork50 the operatorO0 represents
the identity one.

The first successful proposal to control this instability
was to remove from the inversion problem~12!, required for
the minimization, those directions in the variational param-
eter space corresponding to exceedingly small eigenvalues
l i .

In this Appendix we describe a better method. As a first
step, we show that the reason of the large condition number
s is due to the existence of ‘‘redundant’’ variational param-
eters that do not make changes to the wave function within a
prescribed tolerancee. Indeed in practical calculations, we
are interested in the minimization of the wave function
within a reasonable accuracy. The tolerancee may represent
therefore the distance between the exact normalized varia-
tional wave function which minimizes the energy expecta-
tion value and the approximate acceptable one, for which we
no longer iterate the minimization scheme. For instance,e
51/1000 is by far acceptable for chemical and physical in-
terest. A stable algorithm is then obtained by simply remov-
ing the parameters that do not change the wave function by
less thane from the minimization. An efficient scheme to
remove the ‘‘redundant parameters’’ is also given.

Let us consider theN normalized states orthogonal toC,
but not orthogonal among each other

uei&5
~Ok2sk,0!uC&

A^Cu~Ok2sk,0!
2uC

, ~A2!

wheresk,0 is defined in Eq.~A1!. These normalized vectors
defineN directions in theN-dimensional variational param-
eter manifold, which are independent as long as the determi-
nantS of the correspondingN3N overlap matrix

s̄k,k85^ekuek8& ~A3!

is nonzero. The numberS is clearly positive and it assumes
its maximum value 1 whenever all the directionsei are mu-
tually orthogonal. On the other hand, let us suppose that
there exists an eigenvaluel̄ of s̄ smaller than the square of
the desired tolerancee2, then the corresponding eigenvector
uv&5( iai uei& is such that

^vuv&5(
i , j

aiaj s̄i , j5l̄, ~A4!

where the latter equation holds due to the normalization con-
dition ( iai

251. We arrive therefore to the conclusion that it
is possible to define a vectorv with almost vanishing norm
uvu5Al<e as a linear combination ofei , with at least some
nonzero coefficient. This implies that theN directionsek are
linearly dependent within a tolerancee and one can safely
remove at least one parameter from the calculation.TA
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In general whenever there arep vectorsv i that are below
the tolerancee the optimal choice to stabilize the minimiza-
tion procedure is to removep rows andp columns from the
matrix ~A3!, in such a way that the corresponding determi-
nant of the (N2p)3(N2p) overlap matrix is maximum.

From practical purposes it is enough to consider an it-
erative scheme to find a large minor, but not necessarily the
maximum one. This method is based on the inverse ofs̄. At
each step we remove thei th row and column froms̄ for
which s̄i ,i

21 is maximum. We stop to remove rows and col-
umns afterp inversions. In this approach we exploit the fact
that, by a consequence of the Laplace theorem on determi-
nants,s̄k,k

21 is the ratio between the described minor without
the kth row and column and the determinant of the fulls̄
matrix. Since within a stochastic method it is certainly not
possible to work with a machine precision tolerance, setting
e50.001 guarantees a stable algorithm, without affecting the
accuracy of the calculation. The advantage of this scheme,
compared with the previous one,17 is that the less relevant
parameters can be easily identified after few iterations and do
not change further in the process of minimization.

APPENDIX B: SIZE CONSISTENCY OF THE THREE-
BODY JASTROW FACTOR

In order to prove the size consistency property of the
three-body Jastrow factor described in Sec. II C, let us take
into account a system composed by two well separated sub-
systemsA and B, which are distinguishable and whose di-
mensions are much smaller than the distance between them-
selves; in general they may contain more then one atom. In
this case the Jastrow functionJ3 ~10! can be written asJ3

5eU with

U5
1

2 (
i , j PA
iÞ j

f~r i ,r j !1
1

2 (
i , j PB
iÞ j

f~r i ,r j !

1(
i PA

(
j PB

f~r i ,r j !, ~B1!

where we have explicitly considered the sum over different
subsystems. As usual, the two particle functionf(r i ,r j ) is
expanded over a single particle basisc, centered on each
nucleus of the system

f~r i ,r j !5(
m,n

lm,ncm~r i !c
n~r j !. ~B2!

The indicesn andm refer not only to the basis elements but
also to the nuclei which the orbitals are centered on.

The self consistency problem arises from the last term in
Eq. ~B1!, i.e., when the electronr i belongs toA andr j to B.
If the Jastrow is size consistent, wheneverA and B are far
apart from each other this term must vanish or at most gen-
erate a one-body term, that is, in turn size consistent, as we
are going to show in the following. In the limit of large
separation all thelm,n off diagonal terms connecting any
basis element ofA to any basis element ofB must vanish.
The second requirement is a sufficiently fast decay of the
basis set orbitalsc(r ) wheneverr→`, except at most for a
constant termCn which may be present in the single particle
orbitals, and is useful to improve the variational energy.

For the sake of generality, suppose that the systemA
containsMA nuclei andNA electrons. The first requirement
implies that

f~r i ,r j !5 (
m,nPA

lm,ncm~r i !c
n~r j !

1 (
m,nPB

lm,ncm~r i !c
n~r j !, ~B3!

instead the second allows to write the following expression
for the mixed term in Eq.~B1!:

(
i PA

(
j PB

f~r i ,r j !5NB (
nPA

CnPn1NA (
mPB

CmPm , ~B4!

where the factorsPn are one-body terms defined as

TABLE IX. Matrix of the l coefficients of the pairing function expansion in the three-body Jastrow for the Li2 molecule. As in the previous table only the
upper part is reported.

sGa pGxa pGya pGza sGb pGxb pGyb pGzb

sGa 20.2427 0 0 22.71331024 25.13631024 0 0 21.20231025

pGxa ¯ 20.1772 0 0 0 27.99731023 0 0
pGya ¯ ¯ 20.1772 0 0 0 27.99731023 0
pGza ¯ ¯ ¯ 1.02731022 1.20231025 0 0 28.74931023

sGb ¯ ¯ ¯ ¯ 20.2427 0 0 22.71331024

pGxb ¯ ¯ ¯ ¯ ¯ 20.1772 0 0
pGyb ¯ ¯ ¯ ¯ ¯ ¯ 20.1772 0
pGzb ¯ ¯ ¯ ¯ ¯ ¯ ¯ 1.02731022

TABLE X. Orbital basis set parameters used for the Li2 molecule. Since the
molecule is homonuclear the parameters of the atomb are the same as the
atoma.

z1 z2 p

f1sa
2.4485 4.2891 0.4278

f2sa
0.5421 1.4143 21.5500

f2pxa
0.6880 ¯ ¯

f2pya
0.6880 ¯ ¯

f2pza
1.0528 ¯ ¯

f3sa
0.6386 ¯ ¯

fsGa
1.4356 ¯ 20.2044

fpGxa
0.7969 4.4217 21.2689

fpGya
0.7969 4.4217 21.2689

fpGza
8.9801023 20.1924 0.3229
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Pn5H (
mPA

ln,m(
i PA

cm~r i ! if nPA

(
mPB

ln,m(
i PB

cm~r i ! if nPB

. ~B5!

Notice that if all the orbitals decay to zero, the size consis-
tency is immediately recovered, since the sum in Eq.~B4!
vanishes. Analogously to the derivation we have done to ex-
tract the one body contribution from the mixed term, the
other two terms on the right-hand side of Eq.~B1! can be
rearranged in the following form:

1

2 (
i , j PA
iÞ j

f~r i ,r j !5~NA21! (
nPA

CnPn

1two-body terms, ~B6!

and the sum in Eq.~B1! can be rewritten as

U5~N21! (
nPA

CnPn1~N21! (
nPB

CnPn

1 two-body size consistent terms. ~B7!

Therefore the size consistency implies that the scaling of the
Cn with the total number of particleN is

Cn5
cn

N21
, ~B8!

as mentioned in Sec. II C.

APPENDIX C: AN EXAMPLE CASE: JAGP WAVE
FUNCTION FOR Li2

We briefly describe the application of the JAGP to the
Li2 molecule. This example shows the beauty of our ap-
proach that allows to describe the chemical bond as reso-
nance of many pairing functions whose importance is
weighted by thel coefficients. In the expansion of the gemi-
nal function for the determinant in Eq.~2! we used six orbit-
als for each atom:

f1s ,f2s5C1s~e2z1r1pe2z2r !, ~C1!

f2p5C2prWe2z1r , ~C2!

f3s5C3sr
2e2z1r . ~C3!

The parametersp in 1s,2s orbitals are fixed by the single
atomic cusp conditions, andC1s ,C2p ,C3s are the normaliza-
tion constants. These orbitals are connected by different
lm,n

a,b , which obey the constraints given by the symmetry of
the system, and are reported in Table VIII. Since the trial
function does not need to be normalized we setl1s,1s

a,a equal
to 1. The total number of nonzerol is 58, but the constraints
allow to reduce them to 18 variational parameters.

In the Jastrow part we used a two-body term that is a
slightly modified version of the Eq.~9!. In fact due to the
simple symmetry of the system is possible to build a Jastrow
more suitable for this diatomic molecule, namely

u~r ,z!5
r

2@11Aa~x21y2!1bz2#
, ~C4!

which distinguishes the different components of the two
electrons distance. We found that this two-body Jastrow fac-
tor is particularly useful for Li2 , which is much more elon-
gated than the other molecules studied here, for which the
usual form in Eq.~9! has been employed. The optimal pa-
rameters obtained for the Jastrow area50.8796,b
50.7600. In the expansion of the pairing function for the
three body Jastrow term@see Eq.~10!# we used the following
orbitals:

fsG5e2z1r 2
1p, ~C5!

fpG5rW~e2z1r 2
1pe2z2r 2

!. ~C6!

The l matrix that connects these orbitals is given in Table
IX; this matrix fulfills the same symmetry constraints as in
the case of the paring determinant. In this case the total num-
ber of nonzerol is 24 and the symmetry reduces the varia-
tional freedom to only eight parameters. The single particle
orbitals are reported in Table X, and include other 15 param-
eters.

1W. Heitler and F. London, Z. Phys.44, 455 ~1927!.
2B. Barbiellini, J. Phys. Chem. Solids61, 341 ~2000!.
3S. Evangelisti, G. L. Bendazzoli, R. Ansaloni, F. Duri, and E. Rossi,
Chem. Phys. Lett.252, 437 ~1996!.

4T. D. Crawford and H. F. Schaefer III, inReviews in Computational
Chemistry, edited by K. B. Lipkowitz and D. B. Boyd~VCH, New York,
1991!, Vol. 14, pp. 33–136.

5L. Noodleman, T. Lovell, T. Liu, F. Himo, and R. A. Torres, Curr. Opin.
Chem. Biol.6, 259 ~2002!.

6W. Kohn, Y. Meir, and D. E. Makarov, Phys. Rev. Lett.80, 4153~1998!;
M. Lein, J. F. Dobson, and E. K. U. Gross, J. Comput. Chem.20, 12
~1999!; H. Rydberg, M. Dion, N. Jacobson, E. Schro¨der, P. Hyldgaard, S.
I. Simak, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett.91, 126402
~2003!.

7S. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. B42, 3503~1990!.
8C. J. Umrigar inQuantum Monte Carlo Methods in Physics and Chemis-
try, Proceedings of the NATO Advanced Study Institute, edited by M. P.
Nightingale and C. J. Umrigar~Kluwer, Dordrecht, 1998!, p. 129.

9P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem.
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36A. Lüchow, J. B. Anderson, and D. Feller, J. Chem. Phys.106, 7706

~1997!.
37J. M. L. Martin, Chem. Phys. Lett.303, 399 ~1999!.
38I. Røeggen, J. Chem. Phys.79, 5520~1983!.
39I. Røeggen and J. Almlo¨f, Int. J. Quantum Chem., Quantum Chem. Symp.

60, 453 ~1996!.
40P. Horsch, Phys. Rev. B24, 7351~1981!; D. Baeriswyl and K. Maki,ibid.

31, 6633~1985!.
41L. Pauling,The Nature of the Chemical Bond, 3rd ed.~Cornell University,

Ithaca, New York!, p. 204.
42D. Feller and D. A. Dixon, J. Phys. Chem. A104, 3048~2000!.
43S. Parthiban and J. M. L. Martin, J. Chem. Phys.115, 2051~2001!.
44K. Muller-Dethlefs and J. B. Peel, J. Chem. Phys.111, 10550~1999!.

45M. S. Deleuze, L. Claes, E. S. Kryachko, and J. P. Franc¸ois, J. Chem.
Phys.119, 3106~2003!.

46C. Filippi and S. Fahy, J. Chem. Phys.112, 3523~2000!.
47B. Weiner and O. Goscinski, Phys. Rev. A22, 2374~1980!.
48See, e.g., A. Paramekanti, M. Randeria, and N. Trivedi, Phys. Rev. Lett.

87, 217002~2001!; T. Nakanishi, K. Yamaji, and T. Yanagisawa, J. Phys.
Soc. Jpn.66, 294 ~1997!; H. Yokoyama, Y. Tanaka, M. Ogata, and H.
Tsuchiura, cond-mat/0308264.

49M. Capello, F. Becca, M. Fabrizio, S. Sorella, and E. Tosatti,
cond-mat/0403430.

50S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, and C. F.
Fischer, Phys. Rev. A47, 3649~1993!.

51D. Feller, C. M. Boyle, and E. R. Davidson, J. Chem. Phys.86, 3424
~1987!.

52W. C. Ermler and C. W. Kern, J. Chem. Phys.58, 3458~1973!.
53S. G. Lies, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and

W. G. Mallard, in Ion Energetics DataNIST Chemistry Webbook, NIST
Standard Reference Database Number 69, edited by P. J. Linstrom and W.
G. Mallard~National Institute of Standards and Technology, Gaithersburg,
MD, 2001! ~http://webbook.nist.gov!.

7126 J. Chem. Phys., Vol. 121, No. 15, 15 October 2004 Casula, Attaccalite, and Sorella

Downloaded 18 Nov 2011 to 147.122.49.74. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions


