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Correlated geminal wave function for molecules: An efficient resonating
valence bond approach

Michele Casula,? Claudio Attaccalite,” and Sandro Sorella®
International School for Advanced Studies (SISSA) Via Beirut 2,4 34014 Trieste, Italy
and INFM Democritos National Simulation Center, Trieste, Italy

(Received 27 May 2004; accepted 27 July 2004

We show that a simple correlated wave function, obtained by applying a Jastrow correlation term to
an antisymmetrized geminal power, based upon singlet pairs between electrons, is particularly suited
for describing the electronic structure of molecules, yielding a large amount of the correlation
energy. The remarkable feature of this approach is that, in principle, several resonating valence
bonds can be dealt simultaneously with a single determinant, at a computational cost growing with
the number of electrons similar to more conventional methods, such as Hartree-Fock or density
functional theory. Moreover we describe an extension of the stochastic reconfiguration method,
which was recently introduced for the energy minimization of simple atomic wave functions. Within
this extension the atomic positions can be considered as further variational parameters, which can
be optimized together with the remaining ones. The method is applied to several molecules,from Li
to benzene by obtaining total energies, bond lengths and binding energies comparable with much
more demanding multiconfiguration schemes.2@04 American Institute of Physics.

[DOI: 10.1063/1.1794632

I. INTRODUCTION configuration interaction(Cl) technique, which is able to
take into account many Slater determinants, have been
The comprehension of the nature of the chemical bonghown to be successful for small moleculesy., Be Ref.
deeply lies on quantum mechanics; since the seminal work]. |n these cases it is indeed feasible to enlarge the varia-
by Heitler and Londort, very large steps have been madetional basis up to the saturation, the electron correlation
towards the possibility to predict the quantitative propertiesproperties are well described and consequently all the chemi-
of the chemical compounds from a theoretical point of view.q4) properties can be predicted with accuracy. However, for
Mean field theories, such as Hartree-Fdél) have been jneresting systems with a large number of atoms this ap-
successfully applied to a wide variety of interesting systemsprgach is impossible with a reasonable computational time.
although they fail in describing those in which the correla-COming back to the K paradigm, it is straightforward to
tion is crucial to characterize correctly the chemical bondsgy, o\ that a gas with N Hmolecules, in the dilute limit, can

For instance, the molecular hydrogen Hhe simplest and o qeat accurately only with™2Slater determinants, other-
first studied molecule, is poorly described by a single Slate(/\/ise one is missing important correlations due to the anti-

determinant in the large distance regime, which is the parZf)onding molecular orbital contributions, referredeach of

digm of a strongly correlated bond; indeed, in order to avoi the N H, molecules. Therefore, if the accuracy in the total

expensive energy contributions—the so called ionic terms—energy per atom is kept fixed, a Cl-like approach does not

that arise from two electrons of opposite spin surroundin . )
the same hydrogen atom, one needs at least two Slater de?gﬁale polynomially with the number of atoms. Although the

minants to deal with a spin singlet wave function containingpc,lynom"’JlI cost of these quantum chemistry algorithms—

i 5 7__j ibiti -
bonding and antibonding molecular orbitals. Moreover at thd @n9ing fromN™ to N'—is not prohibitive, a loss of accu

bond distance it turns out that the resonance between thoé?cy’ dgcrela}sgg e>|(pone.nt|aﬂly_ W'f[h tTe num.be.r of Ia;[oms 1S
two orbitals is important to yield accurate bond length and®Ways Implied, at least in their simplest variational formu-

binding energy, as the correct rate between the ionic an&\tlons. This is relatgd to the loss of size copsstency of a
covalent character is recovered. Another route that leads fhuncated Cl expansion. On the other hand, this problem can
the same result is to deal with an antisymmetrized gemindP® Overcome by coupled cluster methods, which however, in

power (AGP) wave function, which includes the correlation their practical realization are not variatioffal.

in the geminal expansion; Barbiellini in Ref. 2 gave an illu- ~ An alternative approach, not limited to small molecules,
minating example of the beauty of this approach solving'S based on density functional thediFT). This theory is in
merely the simple problem of the,Hnolecule. principle exact, but its practical implementation requires an

On the other hand the variational methods based on thapproximation for the exchange and correlation functionals
based on first principles, such the local density approxima-

Slectronic mail: casula@sissat tion (LDA) and its further gradient correctioi&GA), or on
bElectronic mail: claudio@freescience.info se_miempirical approaches, such as BLYP and B3LYP. For
9Electronic mail: sorella@sissa.it this reason, even though much effort has been made so far to
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go beyond the standard functionals, DFT is not completelyp Wy as long as the interaction between the electrons cou-
reliable in those cases in which the correlation plays a crucigbling the different region#\ andB can be neglected. In this
role. Indeed it fails in describing HTsuperconductors and limit the total energy of the wave function approaches the
Mott insulators, and in predicting some transition metal com-sum of the energies corresponding to the two space-disjoint
pounds properties, whenever the outermost atomic d shell igions. This property, which is obviously valid for the exact
near half-filled, as for instance, in the high potential ironmany-electron ground state, is not always fulfilled by a ge-
proteins® Also H, molecule in the large distance regime neric variational wave function.

must be included in that list, since the large distance Born-  Our variational wave function is defined by the product
Oppenheimer energy surface, depending on van der Waalsf two terms, namely, a Jastralvand an antisymmetric part
forces, is not well reproduced by the standard functionals(V =JWV 5gp). If the former is an explicit contribution to the
although recently some progress has been made to incluadl/namic electronic correlation, the latter is able to treat the
these important contributioris. nondynamic one arising from near degenerate orbitals

Quantum Monte CarlQMC) methods are alternative to through the geminal expansion. Therefore our wave function
the previous ones and until now they have been mainly use highly correlated and it is expected to give accurate results
in two versions. especially for molecular systems. The Jastrow term is further

(i) Variational Monte Carlo(VMC) applied to a wave split into a two-body and a three-body factods; J,J5, de-
function with a Jastrow factor that fulfills the cusp conditions scribed in the following sections after the AGP patrt.
and optimizes the convergence of the Cl baSis.

(ii) Diffusion Monte Carlo(DMC) algorithm used to im-
prove, often by a large amount, the correlation energy of any ~ As is well known, a simple Slater determinant provides
given variational guess in an automatic marther. the exact exchange electron interaction but neglects the elec-

Hereafter we want to show that a large amount of thetronic correlation, which is by definition the missing energy
correlation energy can be obtained with a single determinangontribution. In the past different strategies were proposed to
using a size-consistent AGP-Jastr@AGP) wave function. go beyond Hartree-Fock theory. In particular a sizable
Clearly our method is approximate and in some cases not y@mount of the correlation energy is obtained by applying to a
satisfactory, but in a large number of interesting moleculesSlater determinant a so called Jastrow term, which explicitly
we obtain results comparable and even better than multidgakes into account the pairwise interaction between electrons.
terminants schemes based on few Slater determinants p@MC allows to deal with this term in an efficient w&yOn
atom that are affordable by QMC only for rather small mol-the other hand, within the quantum chemistry community
ecules. AGP is a well known ansatz to improve the HF theory, be-

Moreover, we have extended the standard stochastic reause it implicitly includes most of the double excitations of
configuration(SR) method to treat the atomic positions as a HF state.
further variational parameters. This improvement, together Recently we proposed a trial function for atoms, which
with the possibility to work with a single determinant, has includes both the terms. Only the interplay between them
allowed us to perform a structural optimization in a non-yields in some cases, such as Be or Mg, an extremely accu-
trivial molecule such as the benzene radical cation, reachintate description of the correlation energy. In this work we
the chemical accuracy with an all-electron and feasible variaextend this promising approach to a number of small mo-
tional approach. lecular systems with known experimental properties, which

The paper is organized as follows: In Sec. Il we intro-are commonly used for testing new numerical techniques.
duce the variational wave function, which is expanded over a  The major advantage of this approach is the inclusion of
set of nonorthogonal atomic orbitals both in the determinanmany Cl expansion terms with the computational cost of a
tal AGP and the Jastrow part. This basis set is consistentlgingle determinant, which allow us to extend the calculation
optimized using the method described in Sec. lIl that, agvith a full structural optimization up to benzene, without a
mentioned before, allows also the geometry optimizationparticularly heavy computational effort on a single processor
Results and discussions are presented in the remaining sgdachine. For an unpolarized system containhglectrons

A. Pairing determinant

tions. (the firstN/2 coordinates are referred to the up spin elec-
trons the AGP wave function is &/2 X N/2 pairing matrix
Il. FUNCTIONAL FORM OF THE WAVE FUNCTION determinant, which reads
In this paper we are going to extend the application of ~ W,gp(ry, ... ry)=de{®acp(ri,rj np2) ] (1)

the JAGP wave function, already used to study some atomic

systems® We generalize its functional form in order to de- and the geminal function is expanded over an atomic basis
scribe the electronic structure of a generic cluster containing

several nuclei. With the aim to determine a variational wave ~ ®ace(r!,r")= E Ao B bai(r) do,m(rh), (2
function, suitable for a complex electronic system, it is im-

portant to satisfy, as we require in the forthcoming chapterswhere indiced,m span different orbitals centered on atoms
the “size consistency” property: if we smoothly increase thea,b, andi,j are coordinates of spin up and down electrons,
distance between two regios and B each containing a respectively. The geminal functions may be viewed as an
given number of atoms, the many-electron wave functfon extension of the simple HF wave function, based on molecu-
factorizes into the product of space-disjoint terdis=¥, lar orbitals, and in fact the geminal function coincide with
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HF only when the numbel of nonzero eigenvalues of the (1s25) .

\ matrix is equal taN/2. Indeed the general functid@) can 2 Ab b (r=Ry)= —ZaE A de(r=R,), (5

be written in diagonal form after an appropriate transforma- ! o

tion for all b andj’; in the left-hand side the caret denotes the

spherical average of the orbital gradient. The system can be
solved iteratively during the optimization processes, but if
we impose that the orbitals satisfy the single atomic cusp
conditions, it reduces to

Where?ﬁk(r)=Ej,a,uk,j,a¢>j,a(r) are just the molecular orbit-

als of the HF theory whenevevl =N/2. Notice that with > )\g:’jb,(ﬁcj(Ra):O' (6)
respect to our previous pairing function formulation also off-  c(za.j

diagonal elements are now included in thenatrix, which

M
(DAGP(rTvrl)ZEK AP y(rh), ©)

Iand because of the exponential orbital damping, if the nuclei

must be symmetric in order to define a singlet spin orbita : . . .
state. Moreover it allows one to easily fulfill other system are not close together, each term in the previous equations is
' very small, of the order of exp{|R,—R¢|). Therefore, with

symmetries by setting the appropriate equalmles among di the aim of making the optimization faster, we have chosen to
ferent \| ,,. For instance, in homo-nuclear diatomic mol-

ecules, the invariance under reflection in the plane perpenqSe s and  orbitals satisfying the atomic cusp conditions

dicular to the molecular axis yields the following relation: and to d|s_re_gard the sufB) in Eq. (5). In this way, once the .
energy minimum is reached, also the molecular cusp condi-

)\m:(_ 1)Pmt pn)\m, 4) tions (5) are rather well satisfied.
wherep,, is the parity under reflection of thath orbital.

Another important property of this formalism is the pos- B. Two-body Jastrow term
sibility to describe resonating bonds present in many struc-
tures, such as benzene)\%’tﬁ] different from zero represents
a chemical bond formed by the linear combination ofitiita
andnth orbitals belonging t@th andbth nuclei. It turns out

As it is well known the Jastrow term plays a crucial role
in treating many-body correlation effects. One of the most
important correlation contributions arises from the electron-
electron interaction. Therefore it is worth using at least a

that resonating bonds can be well described through thR/vo—body Jastrow factor in the trial wave function. Indeed

ggmln.al expansion sthchmg on the app_roprmﬂé’“n coeffi- this term reduces the electron coalescence probability, and so

cients: the relative weight of each bond is related to the amy, h | fth lsive i k h

plitude of itsh. ecreases the ave]lrage'va ue of the repulsive interaction. The
Also the spin polarized molecules can be treated withintWO'bOOIy Jastrow function reads

this framework, by using the spin generalized version of the N

AGP, in which the unpaired orbitals are expanded as well as  J,(rq, ... ,rN)zexp< 2 u(rij)), (7)

the paired ones over the same atomic basis employed in the 1<

. 12 . . . .
geminal. As_ already _mennon_ed in the Intr.oductlon of this whereu(r;;) depends only on the relative distange=|r;
paper, the size consistency is an appealing feature of the | petyeen two electrons and allows to fulfill the cusp

AGP term. Strictly speaking, the AGP wave function is Cer-.onditions for opposite spin electrons as long w&s;)

tainly size consistent when both the compound and the sepa-, ri;/2 for small electron-electron distance. The pair corre-

rated fragments have the minimum possible total spin, beftion functionu can be parametrized successfully by few

cause th_e gemln_al Expansion contains both bonding a”\gariational parameters. We have adopted two main functional
antibonding contributions, which can mutually cancel thef; s The first is similar to the one given by Ceperidy
ionic term arising in the asymptotically separate regime. ’

Moreover the size consistency of the AGP, as well as the one F
of the Hartree-Fock state, holds in all cases in which the spin ~ U(r)= 5(1_‘37%)7 ®
of the compound is the sum of the spin of the fragments.
However, similarly to other approach&$or spin polarized with F being a free variational parameter. This form fpis
systems the size consistency does not generally hold, and, particularly convenient whenever atoms are very far apart at
such cases, it may be important go beyond a single AGRlistances much larger th&n as it allows to obtain good size
wave function. Nevertheless we have experienced that eonsistent energies, approximately equal to the sum of the
single reference AGP state is able to describe accurately tregomic contributions, without changing the other parts of the
electronic structure of the compound around the Bornwave function with an expensive optimization. Within the
Oppenheimer minimum even in the mentioned polarizedunctional form(8), it is assumed that the long range part of
cases, such as in the oxygen dimer. the Jastrow, decaying as a power of the distance between
The last part of this section is devoted to the nucleamtoms, is included in the three-body Jastrow term described
cusp condition implementation. A straightforward calculationin the following section. The second form of the pair func-
shows that the AGP wave function fulfills the cusp condi-tion u, particularly convenient at the chemical bond distance,
tions around the nucleus if the following linear system is where we performed most of the calculations, is the one used
satisfied: by Fahy, Wang, and Louié:
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r For the s-wave orbitals we have found energetically con-
u(r)= 2(1+br)’ (9 venient to add a finite constaot/(N—1). As shown in the
Appendix B, a nonzero value of the constamtfor such
with a different variational parametér orbitals ¢, is equivalent to include in the wave function a

In both functional forms the cusp condition for antipar- sjze consistent one body term. As pointed out in Ref. 15, it is
allel spin electrons is satisfied, whereas the one for paralléasier to optimize a one body term implicitly present in the
spins is neglected in order to avoid the spin contaminationthree-body Jastrow factor, rather than including more orbitals
This allows to remove the singularities of the local energyin the determinantal basis set.
due to the collision of two opposite spin electrons, yieldinga  The chosen form for the three-body Jastrd) is simi-
smaller variance and a more efficient VMC calculation.|ar to one used by Prendergast, Bevan, and Eahyd has
Moreover, due to the Jastrow correlation, an exact propertyery appealing features: it easily allows including the sym-
of the ground state wave function is recovered without usingmetries of the system by imposing them on the magflﬁ
many Slater determinants, thus considerably simplifying thesxactly as it is possible for the pairing péetg., by replacing
variational parametrization of a correlated wave function. )\m with gm in Eq. (4)]. It is size consistent, namely, the

atomic limit can be smoothly recovered with the same trial
C. Three-body Jastrow term function when the matrix tern‘gﬁ;ﬁ for a#b approach zero

. . . . 'b
In order to describe well the correlation between eleci" this limit. Notice that a small nonzero value gfy, for

trons the simple Jastrow factor is not sufficient. Indeed i2” P acting on p-wave orbitals can correctly describe a weak

takes into account only the electron-electron separation anfgieraction between electrons such as the the van der Waals

not the individual electronic position andr; . It is expected forces.

that close to nuclei the electron correlation is not accurately

described by a translationally invariant Jastrow, as shown byll. OPTIMIZATION METHOD
different authors, see for instance, Ref. 14. For this reason
we introduce a factor, often called three-bo@siectron-
electron nucleusJastrow, which explicitly depends on both

We have used the SR method already described in Ref.
17, which allows to minimize the energy expectation value
: - ' of a variational wave function containing many variational

the electronic positions, andr; . The three-body Jastrow i narameters in an arbitrary functional form. The basic ingre-

chosen to satisfy the following requirements. dient for the stochastic minimization of the wave functién
(A) The cusp conditions set up by the two-body Jastrowyatermined byp variational parameterﬁaﬁ}kﬂ,_.”p, is the
term and by the AGP are preserved. solution of the linear system

(B) It does not distinguish the electronic spins otherwise
causing spin contamination.

(C) Whenever the atomic distances are large it factorizes
into a product of independent contributions located near each )
atom, an important requirement to satisfy the size consishere the operator®, are defined on eadN electron con-
tency of the variational wave function. figurationx={rq,...,ry} as the logarithmic derivatives with

Analogously to the pairing trial function in Eq2) we  Fespect to the parameter :
define a three-body factor as

p
k§=‘,0 sj kA a = (V|0 (Al —H)|T), (12)

J
OX(x)=—In¥(x) for k>0, (13
(9ak
J3(rl,...,rN)=ex;{z CIDJ(ri,r]-)), ) ) ) )
i< while for k=0 O, is the identity operator equal to one on all
(100 the configurations. Thep(+ 1) X (p+ 1) matrixs, ; is easily

Dy(ri,rj)= > gf}glﬂa (1D Y. m(T5), expressed in terms of these operators:
I,mab ' ' '
. . . . (V]|O;04 W)
where indicesl and m indicate different orbitals located STy (14)

around the atoma andb, respectively. Each Jastrow orbital
a,(r) is centered on the corresponding atomic posifign ~ and is calculated at each iteration through a standard varia-
We have used Gaussian and exponential orbitals multiplietional Monte Carlo sampling; the single iteration constitutes
by appropriate polynomials of the electronic coordinates, rea small simulation that will be referred in the following as
lated to different spherical harmonics with given angular mo-"bin.” After each bin the wave function parameters are itera-
mentum, as in the usual Slater basis. Analogously to thé&vely updated @y— ax+Aay/Aag), and the method is
geminal functiond ,cp, Whenever the one particle basis setconvergent to an energy minimum for large enoughOf
{a,} is complete the expansidf0) is also complete for the course for particularly simple functional form df(x), con-
generic two particle functiorP,(r,r'). In the latter case, taining, e.g., only linear CI coefficients, much more efficients
however, the one particle orbitals have to behave smoothlgptimization schemes do exigt.

close to the corresponding nuclei, namely, as SR is similar to a standard steepest des¢8ny) calcu-
lation, where the expectation value of the enefgfw,)
(r)— s . ~lr— 2
Yai(N) = Yai(Ra)=[r —Ra[", 1 _ (W|H|W)/(¥|W¥) is optimized by iteratively changing the
or with larger power, in order to preserve the nuclear cusgparametersy; according to the corresponding derivatives of
conditions(5). the energy(generalized forcegs
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9E (V|OH+HO+ (19akH)|‘1'> scribed distance. The fundamental difference between the SR
fie=— FPia W) minimization and the standard steepest descent is just related
K to the definition of this distance. For the SD it is the usual
(V|0 W) (W|H| V) one defined by the Cartesian metdg,=3,|a,— a,/?, in-
(V[V)2 , (15 stead the SR works correctly in the physical Hilbert space

metric of the wave function¥, yielding A,=3; js5; j(«/
- ai)(aj’ —a;j), namely, the square distance between the two
ap— ay+ Atf,. (16) normalized wave functions corresponding to the two differ-
ent sets of variational parametdi®’} and{«,}. Therefore,
At is a suitable small time Step, which can be taken fixed Ofrom the know|edge of the genera”zed forch(s the most
determined at each iteration by minimizing the energy expecconvenient change of the variational parameters minimizes

g?hn \t/slu_e.(;gd?edhtge r:/?(;iabteior?eog;{hi ]Eg:alnigﬁ’gm‘it . the functionalAE+ A A, whereAE is the linear change in
step IS eastly show gativ S 9 the energyAE=—X=;f;(e{ — ;) and A is a Lagrange mul-

because, in this limit tiplier that allows a stable minimization with small change
A, of the wave functior’. The final iteration(17) is then
easily obtained.

) o The advantage of SR compared with SD is obvious be-
Thus the method certainly converges at the minimum whegayse sometimes a small change of the variational param-
all the forces vanish. Notice that in the definition of the gen-gtgrs correspond to a large change of the wave function, and
eralized forces(15) we have generally assumed that theine SR takes into account this effect through the @@). In

variational parameters may appear also in the Hamiltoniararticular, the method is useful when a nonorthogonal basis
This is particularly important for the structural optimization get js used as we have done in this work. Indeed by using the

since the atomic positions that minimize the energy entefeduced matriss it is also possible to remove from the cal-
both in the wave function and in the potential. culation those parameters that imply some redundancy in the

In the following we will show that similar considerations \5riational space. As shown in Appendix A, a more efficient
hold for the SR method, which can be therefore extended t@hange in the wave function can be obtained by updating

the optimization of the geometry. Indeed, by eliminating thegnly the variational parameters that remain independent
equation with index=0 from the linear systerfl2), the SR ithin a prescribed tolerance, and therefore, by removing the
iteration can be written in a form similar to the steepest de'parameters that linearly depend on the others. A more stable

namely

AE=—AtY, f2+0(At?).
I

scent: minimization is obtained without spoiling the accuracy of the
calculation. A weak tolerance criteriuew=10"2, provides a
ai—ai+ ALY, S M, (17 very stable algorithm even when the dimension of the varia-
. tional space is large. For a small atomic basis set, by an
where the reduced X p matrix’s is appropriate choice of the Jastrow and Slater orbitals, the re-
_ duced matrixs is always very well conditioned even for the
Sj.k= Sk~ Sj 050k (18) largest system studied, and the above stabilization technique
and theAt value is given by is not required. Instead the described method is particularly
important for the extension of QMC to complex systems
At= 1 ' (19) with Iarge_ number of_aFoms ant_:l/pr higher level of accuracy,
of A (¥| H|‘1’>_E Aans because in this case it is very difficult to select—e.g., by trial
(¥|WP) k>07k>k.0 and error—the relevant variational parameters, which allow a

. . well conditioned matrixs for a stable inversion in Eq17).
From the latter equation the value &t changes during the q1n

simulation and remains small for large enough energy shiff. Setting the SR parameters

A. However, using the analogy_ with t_he steepest descent, |, this work, instead of setting the constahtwe have
convergence to the energy minimum is reached also whegqivalently chosen to determire by verifying the stabil-

the vglue QfAt is sufficiently small and is kept constant for ity and the convergence of the algorithm at fixad value,
each iteration. Indeed the energy variation for a small changg iich can be easily understood as an inverse energy scale.

of the parameters is The simulation is stable wheneve\t/> A, whereA ., is
an energy cutoff that is strongly dependent on the chosen
AE=—AtD), §Mif;. wave function and is generally weakly dependent on the bin
b length. Whenever the wave function is too much detailed,
It is easily verified that the above term is always negativenamely, has a lot of variational freedom, especially for the
because the reduced mati$x as well ass !, is positive  high energy components of the core electrons, the value of
definite,s being an overlap matrix with all positive eigenval- A, becomes exceedingly large and too many iterations are
ues. required for obtaining a converged variational wave function.
For a stable iterative method, such as the SR or the SIn fact a rough estimate of the corresponding number of it-
one, a basic ingredient is that at each iteration the new paerationsP is given by PAt>1/G, whereG is the typical
rametersa’ are close to the previous according to a pre- energy gap of the system, of the order of few electron volts
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4 Z! .
S
2 3l 128 FIG. 1. Example of the convergence
] 222p A of the SR method for the variational
_t') 5 Ly 2 parameters of the Be atom, as a func-
175} tion of the number of stochastic itera-
© ; tions. In the uppdtower) panel the Ja-
o] strow(gemina) parameters are shown.
For each iteration, a variational Monte
18 [ Z1 - Carlo calculation is employed with a
Zg‘s 0 bin containing 15000 samples of the
o, 8 2115 ° energy, yielding at the equilibrium a
n 6 2225 o standard deviation of0.00184. For
< 4 2125 . the first 200 iteration At
] 2 =0.0012% "1, for the further 200 it-
25 Z erationsAt=0.002%1 "1, whereas for
0 the remaining onedt=0.0084 1.

0 500 1000 1500 2000 2500 3000
# Iterations

in small atoms and molecules. Within the SR method it isthe minimization. As shown in Fig. 2 the Euler conditions
therefore extremely important to work with a bin length are fulfilled within statistical accuracy even when the bin
rather small, so that many iterations can be performed withused for the minimization is much smaller than the overall
out much effort. simulation. On the other hand, if the bin used is too small, as
In a Monte Carlo optimization framework the forcgs  we have already pointed out, the averaging of the parameters
are always determined with some statistical nojgeand by is affected by a sizable bias.
iterating the procedure several times with a fixed bin length  Whenever it is possible to use a relatively small bin in
the variational parameters will fluctuate around their mearthe minimization, the apparently large number of iterations
values. These statistical fluctuations are similar to the therrequired for equilibration does not really matter, because a
mal noise of a standard Langevin equation comparable amount of time has to be spent in the averaging
of the variational parameters, as shown in Fig. 1. The com-

=Tt i, 20 parison shown in Ref. 19 about the number of the iterations
where required, though is clearly relevant for a deterministic
() 710 (8)) = 2T noised (=) S i 1) method, is certainly incomplete for a statistical method, be-

! - nois K’

cause in the latter case an iteration can be performed in prin-
The variational parameters,, averaged over the Langevin ciple in a very short time, namely, with a rather small bin.
simulation time(as for instance, in Fig. 1 fdr>2H""), will It is indeed possible that for high enough accuracy the
be close to the true energy minimum, but the correspondingumber of iterations needed for the equilibration becomes
forcesfy=—d, E will be affected by a bias that scales to negligible from the computational point of view. In fact in
zero with the thermal nois& 5., due to the presence of order to reduce, e.g., by a factor 10, the accuracy in the
nonquadratic terms in the energy landscape. variational parameters, a bin ten times larger is required for

Within a QMC scheme, one needs to estimBtg.., by  decreasing the thermal noisg,ys by the same factor,
increasing the bin length as cleaily,,¢< 1/ bin length, be-
cause the statistical fluctuations of the forces, obviously de-
creasing by increasing the bin length, are related to the ther- 0.000
mal noise by Eq(21). Thus there is an optimal value for the
bin length, which guarantees a fast convergence and avoid
the forces to be biased within the statistical accuracy of the
sampling.

An example is shown in Fig. 1 for the optimization of
the Be atom, using a DZ basis both for the geminal and the
three-body Jastrow part. The convergence is reached in about
1000 iteration withAt=0.009H ~*. However, in this case it
is possible to use a small bin length, yielding a statistical 0.002
accuracy in the energy much poorer than the final accuracy 00
of about 0.05 mH. This is obtained by averaging the varia-
tional parameters in the last 1000 iterations, when they fluCrig. 2. calculation of the derivative of the energy with respect to the
tuate around a mean value, allowing a very accurate detesecondz in the 2p orbital of the geminal function for the Be atom. The
mination of the energy minimum which satisfies the Eu|ercalcula_tion of the force was obtgined, at fixed_vgriational parameters, by
conditions, namely, withf,=0 for all parameters. Those averaging over 10samples, _a\llgwmg, e.g., a statistical accuracy in the total

. . nergy of 0.07 mH. The variational parameters have been obtained by a SR
conditions have been tested by an independent Monte C:arﬁ‘?inimization with fixed bin length shown in the x label. The parameter
simulation about 600 times longer than the bin used duringonsidered has the largest deviation from the Euler conditions.

<0.001

-dE/d Z’,
p

1000/Bin lenght
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whereas a statistical average 100 times longer is indeed neon the nuclear positions. Now let us apply the space-warp
essary to reduce the statistical errors of the variational paransformation to the integral involved in the calculation; the
rameters by the same ratio. This means that the fraction afxpectation value reads

time spent for equilibration becomes ten times smaller com-

2 AR
pared with the less accurate simulation. E(R+AR)= fdr‘]AR(r)\PAR[WZr)]EL [r(n] (26)
JArdar(r)W3Rr(r)]
whereJ is the Jacobian of the transformation and here and
B. Structural optimization henceforth we avoid for simplicity to use the atomic subin-

dex a. The importance of the space warp in reducing the

In the last few years remarkable progresses have been . . :
. . ..~ variance of the force is easily understood for the case of an
made to develop QMC techniques which are able in principle

L isolated atoma. Here the force acting on the atom is obvi-
to perform structural optimization of molecules and complexOusl Jero. but onlv after the space warp transformation with
system£%-22 Within the Born-Oppenheimer approximation y ’ y b P

the nuclear position®; can be considered as further varia- wg=1 the integrand of expressid@6) will be independent

tional parameters included in the set;} used for the SR of AR, providing an estimator of the force with zero vari-

minimization (17) of the energy expectation value. For clar- ancgtartin from Eq/(26), it is straightforward to explicit
ity, in order to distinguish the conventional variational pa- 9 d4<9), 9 plctty

2 I S : .. __derive a finite difference differential expression for the force
rameters from the ionic positions, in this section we indicate

) . . estimator, which is related to the gradient of the previous
with {c;} the former ones, and witR; the latter ones. It is oo . - = :
understood thaR'= a, where a particular indek of the quantity with respect taR, in the limit of the displacement
1 H

whole set of parametefsy;} corresponds to a given spatial tending to zero:

component ¢=1,2,3) of theith ion. Analogously the forces ] A

(15) acting on the ionic positions will be indicated by capital F(R)= _< lim ﬁEL>
letters with the same index notations. |AR|—0

The purpose of the present section is to compute the _ A i
forces F acting on each of theM nuclear positions 2| (H){ lim =In(I"5P)
{R1,...,Ry}, beingM the total number of nuclei in the sys- |ARI=0
tem: A
—<H lim ﬁln(J”Z\P)>), (27)
F(Ra)=— Vg, E({Ci},Ra), (22) |AR|-0

with a reasonable statistical accuracy, so that the iteratiolfere the brackets indicate a Monte Carlo like average over
(17) can be effective for the structural optimization. In this the square modulus of the trial wave functidfAR is the
work we have used a finite difference operatoiAR, for finite difference d_erlvatlve as defined in E(23),. and E
the evaluation of the force acting on a given nuclear position:<‘1’|H|X>/<q’|X> is the local energy on a configuration

a where all electron positions and spins are given. In analogy
with the general expressidi5) of the forces, we can iden-
FR)=— A El E(R,+AR,) —E(R;—AR,) tify the operatorsOy corresponding to the space-warp
(Ra) = AR, 2AR change of the variational wave function:
+0(AR?), 23 A"
(AR @ 0= Y e, (28

where AR, is a three-dimensional vector. Its lenghR is

chosen to be 0.01 a.u., a value that is small enough for negche above operator&8) are used also in the definition of
ligible finite difference errors. In order to evaluate the energythe reduced matri>s for those elements depending on the
differences in Eq(23) we have used the space-warp coordi-variation with respect to a nuclear coordinate. In this way it
nate transformaticii?* briefly summarized in the following is possible to optimize both the wave function and the ionic
paragraphs. According to this transformation also the elecpositions at the same time, in close analogy with the
tronic coordinates will be translated in order to mimic the Car-Parrinell8® method applied to the minimization prob-

right displacement of the charge around the nuckeus lem. Also Tanak# tried to perform Car-Parrinello like simu-
. lations via QMC, within the less efficient steepest descent
fi=r+ AR w,(r;), (24 framework.
where An important source of systematic errors is the depen-
dence of the variational parametexson the ionic configu-
F(Ir—Ral) ration R, because for the final equilibrium geometry all the
wa(r :m- (29 forces f; corresponding ta; have to be zero, in order to

guarantee that the true minimum of the potential energy sur-
F(r) is a function which must decay rapidly; here we usedface is reache@’ As shown clearly in the preceding section,
F(r)= 1/r* as suggested in Ref. 24. within a QMC approach it is possible to control this condi-
The expectation value of the energy dependsAdty  tion by increasing systematically the bin length, when the
because both the Hamiltonian and the wave function depentthermal biasT ;s Vanishes. In Fig. 3 we report the equilib-
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5.09 At, by applying the minimization scheme only for those se-
® lected parameters such theft /Af|>0o,, until |f;/Af
g 508 <o, After this initialization it is then convenient to pro-
8 507k ] ceed with the global minimization with all parameters
27 A 15252p . . . L
S changed at each iteration, in order to explore the variational
£ 5.06 ® 152s2p3s . .
£ 208¢ 3 space in a much more effective way.
é 5.05 M
ug." 5.04E 3 D. Different energy scales

00 02 0.4 Y 0.8 10 The SR method performs ggnerally very well, whenever
1000/Bin lenght there is only one energy scale in the variational wave func-
tion. However if there are several energy scales in the prob-
FIG. 3. Plot of the equilibrium distance of the,Linolecule as a function of  1em, some of the variational parameters, e.g. the ones defin-
the inverse bin length. The total energy and the binding energy are reportethg the low energy valence orbitals, converge very slowly
i_n Tables Il and III,_respectiver. Thg tria_ngléfs:ll_dots) refer to alsimula- with respect to the others, and the number of iterations re-
tion performed using 10043000 iterations with At=0.018H" 1 (At . - . .
=0.00H"1) and averaging over the last 750250 iterations. For all q_u"e,d for the equmbratlpn becomes exceedingly large, con-
simulations the initial wavefunction is optimized at Li-Li distance 6 a.u.  Sidering also that the time stept necessary for a stable
convergence depends on the high energy orbitals, whose dy-
namics cannot be accelerated beyond a certain threshold. It is
easy to understand that SR technique not necessarily be-
rium distance of the Li molecule as a function of the inversecomes inefficient for extensive systems with large number of
bin Iength, so that an accurate evaluation of such an imporatoms_ Indeed suppose that we h&Vetoms very far apart
tant quantity is possible even when the number of variationao that we can neglect the interaction between electrons be-
parameters is rather large, by extrapolating the value to apnging to different atoms, than it is easy to see that the
infinite bin length. However, as it is seen in the picture,stochastic matrix Eq(14) factorizes inN smaller matrices
though the inclusion of the 3s orbital in the atomic AGP baSiSand the At necessary for the convergence is equa| to the
substantially improves the equilibrium distance and the totakingle atom case, simply because the variational parameters
energy by=1mH, this larger basis makes our simulation of each single atom can evolve independently form each
less efficient, as the time stept has to be reduced by a other. This is due to the size consistency of our trial function
factor 3. that can be factorized as a product Mfsingle atom trial
We have not attempted to extend the geometry optimifunctions in that limit. Anyway for system with a too large
zation to the more accurate DMC, since there are technicadnergy spread a way to overcome this difficulty was pre-
difficulties” and it is computationally much more demand- sented recently in Ref. 19. Unfortunately this method is lim-
ing. ited to the optimization of the variational parameters in a
super-Cl basis, to which a Jastrow term is applied, which
however cannot be optimized together with the CI coeffi-
cients.
In the present work, limited to a rather small atomic
In principle, within a stochastic approach, the exactbasis, the SR technique is efficient, and general enough to
minimum is never reached as the fordgsare known only  perform the simultaneous optimization of the Jastrow and the
statistically with some error bakf; . We have found that the determinantal part of the wave function, a very important
method becomes efficient when all the forces are nonzerteature that allows to capture the most nontrivial correlations
only within few tenths of standard deviations. Then for smallcontained in our variational ansatz. Moreover, SR has been
enough constanht, and large enough bin compatible with extended to deal with the structural optimization of a chemi-
the computer resources, the stochastic minimization, obeal system, which is another appealing characteristic of this
tained with a statistical evaluation efcontinues in a stable method. The results presented in the following section show
manner, and all the variational parameters fluctuate after sevhat in some nontrivial cases the chemical accuracy can be
eral iterations around a mean value. After averaging theseeached also within this framework.
variational parameters, the corresponding mean values repre- However we feel that an improvement along the line
sent very good estimates satisfying the minimum energy condescribed in Ref. 19 will be useful for realistic electronic
dition. This can be verified by performing an independentsimulations of complex systems with many atoms, or when a
Monte Carlo simulation much longer than the bin used for avery high precision is required at the variational level and
single iteration of the stochastic minimization, and then byconsequently a wide spread of energy scales has to be in-
explicitly checking that all the forcek are zero within the cluded in the atomic basis. We believe that the difficulty to
statistical accuracy. An example is given in Fig. 2 and dis-work with a large basis set will be possibly alleviated by
cussed in the preceding section. using pseudopotentials that allows to avoid the high energy
On the other hand, whenever few variational parametersomponents of the core electrons. However more work is
are clearly out of minimum, withf; /Af;|>o.,, with oo  necessary to clarify the efficiency of the SR minimization
=10, we have found a faster convergence with a much largescheme described here.

C. Stochastic versus deterministic minimization
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TABLE I. Total energies in variationaH,c) and diffusion Epyc) Monte Carlo calculations; the percentages
of correlation energy recovered in VMEYY®(%)] and DMC[EZMC(%)] have been evaluated using the
“exact” (Eg) and Hartree-FockH,r) energies from the references reported in the table. Here exact means the
ground state energy of the nonrelativistic infinite nuclear mass Hamiltonian. The energies are in hartree.

Eo Eve Evmc EMC(%) Eomc EC"C(%)
Li —7.478 06 —7.43272% —7.47721(11) 98.124) —7.47791(12) 99.627)
Li, —14.9952 —14.8715%  —14.99002(12) 95(1) —14.99472(17) 99.484)
Be —14.667 38 —14.573028 —14.66328(19) 95.620 —14.667 05(12) 99.613)
Be, —29.33854(5) —29.1324% —29.3179(5) 89.924) —29.33341(25) 97.512)
e} —75.0673 —74.809398 —75.0237(5) 83.049) —75.0522(3) 94.14.1)
H,O —76.438(3% —76.068(1y  —76.3803(4) 84.400) —76.4175(4) 94.4@.0)
0O, —150.3268 —149.6659 —150.1992(5) 80.69) —150.272(2) 91.B)
C —37.8450 —37.688619 —37.81303(17) 79.581) —37.8350(6) 93.6Y)
G, —75.923(5% —75.40620  —75.8273(4) 81.4®) —75.8826(7) 92.1@4)
CH, —40.51% —-40.219 —40.4627(3) 82.330) —40.5041(8) 96.3)
CeHs  —232.247(4§ —230.82(2)  —231.8084(15)  69.230) —232.156(3) 93.621)
®Exact and HF energies from Ref. 50. YReference 33.
PReference 29. *Estimated exact energy from Ref. 43.
‘Reference 51. Reference 52.

IV. APPLICATION OF THE JAGP TO MOLECULES A. Small diatomic molecules, methane, and water

. . — Except from Bg and G, all the molecules presented
In this work we study total, correlation, and atomization ) .
. . : S ere belong to the standard G1 reference set; all their prop-
energies, accompanied with the determination of the ground _.
erties are well known and well reproduced by standard quan-

statle o?:tlrr:al s:]ru?ttl;remfc\:\; a rre;strrrl]::tzd in”serlrblle ?rf r:ng I'um chemistry methods, therefore they constitute a good case
ecules. For each ot the € performed a full afl-electro or testing new approaches and new wave functions.

geometry optimization, starting from the experimental mo- The Li dimer is one of the easiest molecules to be stud-
lecular structure. After the energy minimization, we carriedied after H, which is exact for any diffusion Monte Carlo
out all-electron VMC and DMC‘:‘ simulations at the opt_|ma,! calculation with a trial wave function that preserves the
geometry within the so called “fixed node approximation.” ,,jeless structure. 4iis less trivial due to the presence of
The basis used here is a double zeta Slater set of atomig, ¢ glectrons that are only partially involved in the chemical
orbitals(STO-D2) for the AGP part, while for parametrizing ;54 and to the € 2p near degeneracy for the valence elec-
the three-body Jastrow geminal we used a double zetg,s Therefore many authors have done benchmark calcu-
Gaussian atomic séGTO-D2). In this way both the anti- |4ti0n on this molecule to check the accuracy of the method
symmetric and the bosonic part are well described, preserys, 1o determine the variance of the internuclear force calcu-
ing the right exponential behavior for the former and the|gieq within a QMC framework. In this work we start from
strong localization properties for the latter. Sometimes, ir‘Li2 to move toward a structural analysis of more complex
order to improve the quality of the variational wave function compounds, thus showing that our QMC approach is able to
we employed a mixed Gaussian and Slater basis set in thgandle relevant chemical problems. In the case of ki 3s
Jastrow part, which allows to avoid a too strong dependencyy STO-DZ AGP basis and asllp GTO-DZ Jastrow basis
in the variational parameters ina Simple way. However, bothurns out to be enough for the chemical accurm Ap-
in the AGP and in the Jastrow sector we never used a larggendix C for a detailed description of the trial wave func-
basis set, in order to keep the wave function as simple agon). More than 99% of the correlation energy is recovered
possible. The accuracy of our wave function can be obvihy a DMC simulation(Table ), and the atomization energy
ously improved by an extension of the one particle basis sefs exact within few thousand of eV (0.02 kcal md) (Table
but, as discussed in the preceding section, this is rather dift). Similar accuracy have been previously reached within a
ficult for a stochastic minimization of the energy. Neverthe-DMC approact?® only by using a multireference CI like
less, for most of the molecules studied with a simple JAGRvave function, that before our work, was the usual way to
wave function, a DMC calculation is able to reach the chemiimprove the electronic nodal structure. As stressed before,
cal accuracy in the binding energies and the SR optimizatiothe JAGP wave function includes many resonating configu-
yields very precise geometries already at the VMC level. rations through the geminal expansion, beyond th@4 HF

In the first part of this section some results will be pre-ground state. The bond length has been calculated at the
sented for a small set of widely studied molecules and bevariational level through the fully optimized JAGP wave
longing to the G1 database. In the second section we wilfunction: the resulting equilibrium geometry turns out to be
treat the benzene and its radical catiQ,'Hg:, by taking into  highly accurate(Table Ill), with a discrepancy of only
account its distortion due to the Jahn-Teller effect, which i90.00la, from the exact result. For this molecule it is worth
well reproduced by our SR geometry optimization. comparing our work with the one by Assaraf and Caffafel.
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TABLE II. Binding energies in eV obtained by variational (yc) and diffusion Apyc) Monte Carlo calcu-
lations; A, is the exact result for the nonrelativistic infinite nuclear mass Hamiltonian. Also the percentages
[Aymc(%) andApyc(%)] of the total binding energies are reported.

AO AVMC AVMC(C’/‘)) ADMC ADMC(O/O)
Li, ~1.069 —0.967(3) 90.43) —1.058(5) 99.06)
0, ~5.230 —4.13(4) 78.98) —4.56(5) 87.19)
H,0 —10.087 —9.704(24) 96.21.0) —9.940(19) 98.8)
C, ~6.340 —5.476(11) 86.317) ~5.79(2) 91.83)
CH, ~18.232 —17.678(9) 96.96) —18.21(4) 99.8622)
CeHe -59.25 —52.53(4) 88.677) —58.41(8) 98.6(L3)

Their zero-variance zero-bias principle has been proved to beined by Filippi and Umriga&® with a multireference wave
effective in reducing the fluctuations related to the internu<function by using the same Slater basis for the antisymmetric
clear force; however they found that only the inclusion of thepart and a different Jastrow factor. From the Table Il of the
space warp transformation drastically lowers the force statisatomization energies, it is apparent that DMC considerably
tical error, which magnitude becomes equal or even lowelmproves the binding energy with respect to the VMC val-
than the energy statistical error, thus allowing a feasible moues, although for these two molecules it is quite far from the
lecular geometry optimization. Actually, our way of comput- chemical accuracy=£0.1 eV): for G the error is 0.58) eV,
ing forces[see Eq.(27)] provides slightly larger variances, for O, it amounts to 0.6() eV. Indeed, it is well known that
without explicitly invoking the zero-variance zero-bias prin- the electronic structure of the atoms is described better than
ciple. the corresponding molecules if the basis set remains the
The very good bond length, we obtained, is probably dugame, and the nodal error is not compensated by the energy
to two main ingredients of our calculations: we have carriedyifference between the separated atoms and the molecule. In
out a stable energy optimization that i§ often more effective; penchmark DMC calculation with pseudopotentfals,
than the variance one, as shown by different autfoeid  Gossman found an error of 0.27 eV in the atomization en-

we have used very accurate trial function as it is apparer‘g\rgy for O,, by using a single determinant wave function;

from the good variational energy. probably, pseudopotentials allow the error between the

¢ Indele_c:_ wnt:;]n our sch?r?e Wﬁ Obta";] good rzsults V(\j".th'pseudoatoms and the pseudomolecule to compensate better,
out exploiting the computationally much more demandingy, yielding more accurate energy differences. As a final

DMC, thus highlighting the importance of the SR minimiza- remark on the @and G, molecules, our bond lengths are in

tion described in Sec. Il B. between the LDA and GGA precision, and still worse than

Let us now gon5|der Ia_rger molecules. BO.IB éhd .Q the best CCSD calculations, but our results may be consid-
are poorly described by a single Slater determinant, since the

presence of the nondynamic correlation is strong. Insteagrably improved by a larger atomic basis set, which we have

: : . o . = . not attempted so far.
with a single geminal JAGP wave function, including implic- .
ity many Slater determinant$,it is possible to obtain a Methane and water are very well described by the JAGP

quite good description of their molecular properties. Fer C wave function. Also f_or these molecules we recover more
we used a & 1p STO-DZ basis in the geminal, and a 2p than 80% of correlation energy at the VMC level, while

DZ Gaussian Slater mixed basis in the Jastrow, forv@ DMC yields more than 90%, with the same level of accuracy
employed a 8 1p STO-DZ in the geminal and the same Feached in previous Monte Carlo studiés*®Here the bind-

Jastrow basis as before. In both the cases, the variationi]9 €nergy is almost exact, since in this case the nodal energy
energies recover more than 80% of the correlation energy'Tor arises essentially from only one at¢earbon or oxy-
the DMC ones yield more than 90%, as shown in Table 19€N and therefore it is exactly compensated when the atomi-

These results are of the same level of accuracy as those oBRtion energy is calculated. Also the bond lengths are highly
accurate, with an error lower then 0.@GQ5

For Be, we applied a 3s 1p STO-DZ basis set for the
TABLE Ill. Bond lengths R) in atomic units; the subscript O refers to the  AGP part and a 2s 2p Dz Gaussian Slater mixed basis for the
exact results. For the water molectRés the distance between O and Hand j5strow factor. VMC calculations performed with this trial
0 is the angle HOHin deg, for CH, R is the distance between C and H and . . ey . 0
9is the HCH angle. function at the experlmental equmb_num geom_etry yield 90%
of the total correlation energy, while DMC gives 97.5% of

Ro R fo 0 correlation, i.e., a total energy of 29.33341(25) H. Al-
Li, 5.051 5.0516) though this value is better than that obtaineq by Filippi and
0, 2.282 2.342618) Umrigar® (—29.3301(2) H with a smaller basis (8atomic
C 2.348 2.36@) orbitals not includey it is not enough to bind the molecule,
22HO ;'ggi’ ;-gfm) igg-f‘é igg-;@m because the binding energy remains still posif¥©06937)
‘ RCC ' Rcei) RCH R'CE’ ) H]. Instead, once the molecular geometry has been relaxed,
CeHq 2_§40 2.6624) 2028 1.99%2) the SR optimization finds a bond distance of 13.%(Hat the

VMC level; therefore the employed basis allows the mol-
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TABLE IV. Binding energies in eV obtained by variational (,,c) and diffusion Apyc) Monte Carlo calcu-
lations with different trial wave functions for benzene. In order to calculate the binding energies yielded by the
two-body Jastrow we used the atomic energies reported in Ref. 10. The percédtaget’) andA pyc(%)]

of the total binding energies are also reported.

AV!\/IC AVMC(O/O) ADMC ADMC(C’/O)
Kekule+two-body —30.57(5) 51.608)
Resonating Kekdle two-body —32.78(5) 55.338)
Resonating Dewar Kekidetwo-body —34.75(5) 58.668) —56.84(11) 95.9618)
Kekule+three-body —49.20(4) 83.057) —55.54(10) 93.78.7)
Resonating Kekule three-body —51.33(4) 86.657) —57.25(9) 96.6415)
Resonating Dewar Kekitethree-body —52.53(4) 88.617) —58.41(8) 98.6(13)
Full resonating-three-body —52.65(4) 88.817) —58.30(8) 98.40L3)

ecule to have a van der Waals like minimum, quite far fromincluded in the three-body Jastrow part the same type of
the experimental value. In order to have a reasonable deerms present in the AGP one, namely, bo#? and\?® are
scription of the bond length and the atomization energy, on@onzero for the same pairs of atoms. As expected, the terms
needs to include at least &3p basis in the antisymmetric connecting next nearest neighbor carbon sites are much less
part, as pointed out in Ref. 37, and indeed an atomizatioimportant than the remaining ones because the VMC energy
energy compatible with the experimental reg0lt11(1) eV]  does not significantly improvesee the full resonating
has been obtained within the extended geminal mi8dsl -+ three-body wave function in Table )VA more clear be-
using a much larger basis s@s,7p,4d,2f, 15 This sug-  havior is found by carrying out DMC simulations: the inter-
gests that a complete basis set calculation with JAGP maglay between the resonance among different structures and
describe also this molecule. However, as already mentioneithe Gutzwiller-like correlation refines more and more the
in Sec. Il D, our SR method cannot cope with a very largenodal surface topology, thus lowering the DMC energy by
basis in a feasible computational time. Therefore we believaignificant amounts. Therefore it is crucial to insert into the
that at present the accuracy needed to describe correctly Bgariational wave function all these ingredients in order to

is out of the possibilities of the approach. have an adequate description of the molecule. For instance,
in Fig. 4 we report the density surface difference between the
B. Benzene and its radical cation nonresonating three-body Jastrow wave function, which

breaks the g rotational invariance, and the resonating

we StUd.'ed thelAlg ground state O.f the be_nzenc.e mol- Kekule structure, which preserves the corrégt; symmetry:
ecule by using a very simple one particle basis set: for the

AGP, a 2s1p DZ set centered on the carbon atoms and a 1s
SZ on the hydrogen, instead for the three-body Jastrow, a .
1s1p DZ-GTO set centered only on the carbon sitglGs p(r) resonating Kekule - p(r) HF
a peculiar molecule, since its highly symmetric ground state,
which belongs to th®g, point group, is a resonance among
different many-body states, each of them characterized by 6
three double bonds between carbon atoms. This resonance is
responsible for the stability of the structure and therefore for 4
2
0

A 7
its aromatic properties. We started from a non resonating \' <
two-body Jastrow wave function, which dimerizes the ring 7 ;
and breaks the full rotational symmetry, leading to the | N\
Kekule configuration. As we expected, the inclusion of the
resonance between the two possible Kélaties lowers the 2| F ,

VMC energy by more than 2 eV. The wave function is fur- / \

ther improved by adding another type of resonance, that in- -4 t / \
cludes also the Dewar contributions connecting third nearest
neighbor carbons. As reported in Table IV, the gain with -6 ' ‘ ' ' '

respect to the simplest Kekukeave function amounts to 4.2 6 4 2 0 -2 4 -6

eV, but the main improvement arises from the further inclu-

sion of the three-body Jastrow factor, which allows to re-

cover the 89% of the total atomization energy at the VMC [ e ; | 30-2

level. The main effect of the three-body term is to keep the -0.05-0.025 0 0.025 0.05

total charge around the carbon sites to approximately six

electrons, thus penalizing the double occupation of ghe FIG. 4. Surf_ace plot of the charge density projected onto the molecular
orbitals. The same important correlation ingredient is preserft2"e: The difference between the nonresondimgjcated as Hyand reso-

. . . nating Kekulethree-body Jastrow wave function densities is shown. Notice
in the well known Gutzwiller wave function already used for the corresponding change from a dimerized structure tog aofational
polyacetylend® Within this scheme we have systematically invariant density profile.
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et acute geometry . Bond lengths () for the two lowest'B,, and“B;, states of the
bt t TABLE V. Bond lengths () for the two | £B,, and?By, states of th
ootuse geometry benzene radical cation. The angteare expressed in degrees, the lengths in

- i ] ay. The carbon sites are numerated from 1 to 6.
3_ 27 /’."-V'_yv“’-'w 2329 2339
T 2B g g T acute obtuse Computational method

26 . . . .
2 . S r(C,—C,) 2.616 2.694 B3LYP/cc-pVTZ
S 227_ 3 /,/*"M ] 2.649 2.725 BLYP/6-316°
S Les ] 2.6591) 2.7334) SR-VMC®

o8 \ ) ) ) r(C,—Cy) 2.735 2.579 B3LYP/cc-pVTZ
~ 121 ' ' ' 2.766 2.615 BLYP/6-316
i 2.7642) 2.6284) SR-VMC®
S 120 W @(CeC,Cy) 118.4 1216 B3LYP/cc-pVTZ
R DR S 118.5 1215 BLYP/6-31¢

118 . . . 118.956) 121.2917) SR-VMC®

0 40 80 120 160

# Iterations “Reference 45.

- PReference 44.
FIG. 5. Plot of the convergence toward the equilibrium geometry for theel-hiS work.

2BZg acute and théB3g obtuse benzene cation. Notice that both the simu-
lations start from the ground state neutral benzene geometry and relax with

a change both in the C-C bond lengths and in the angles. The symbols are .. .
the same of Table V. ut also the DMC total energy is in perfect agreement with

the BLYP/6-31G, and much better than SVWN/6-31G
that does not contain semi empirical functionals, for which
) . o the comparison with our calculation is more appropriate, be-
the change in the electronic structure is significant. Thg be%g fully ab initio.
result for the binding energy is obtained with the Kekule The difference of the VMC and DMC energies between
Dewar resonating three-body wave function, which recoverg,q 4 distorted cations are the same within the error bars;
98.6% of the total atomization energy with an absolute errof,qeeq the determination of which structure is the real cation
of 0.848) eV. As Paulm'd first pointed out, benzene is & 4.4 ng state is a challenging problem, since the experimental
genuine RVB system, indeed it |s_well descrlbed_ by thepegyits give a difference of only few meV in favor of the
JAGP wave function. Moreover Pauling gave an esﬂm_ate fObptuse state and also the most refined quantum chemistry
the resonance energy of 1.605 eV from thermochemical €X;,athods are not in agreement among themsét/asmore
periments in qualitative agreement with our results. A finaly¢,4apie problem is the determination of the adiabatic ion-
remark about the error in the tot_al atomization energy: th‘?zation potential AIP), calculated for théBs, state, follow-
latest frozen core CCSMD) calculation§®**are able to reach ing the experimental hint. Recently, very gprecise CCBD
a precision of 0.1 eV, but only after the complete basis sef ;i ations have been performed in order to establish a
extrapolation and the inclusion of the core valence effects t@enchmark theoretical study for the ionization threshold of
go beyond the pseudopotential approximation. Without thgye,,6nd5 the results are reported in Table VII. After the
latter corrections, f[he error is quite large even in the CCSDQyorrection of the zero point energy due to the different struc-
approach, amou_ntlng t0 0.65 éMn_ our case, such an error e of the cation with respect to the neutral molecule and
arises from the fixed node approximation, whose nodal erof,yan from a B3LYP/cc-pVTZ calculation reported in Ref.
is not compensated py the difference bet_ween the atomic. a“zﬂ;, the agreement among our DMC result, the benchmark
the molecular energies, as already noticed in the previougyication and the experimental value is impressive. Notice
subsection. _ . that in this case there should be a perfect cancellation of
The radical cation gHg of the benzene molecule has qqq| errors in order to obtain such an accurate value; how-
been the subject of intense theoretical stuffféSaimed to  oyer we believe that it is not a fortuitous result, because in
focus on t_he.Jahn—TeIIer dlstOfted.ground state structure. INyis case the underlying nodal structure does not change
deed the |on|ze&Elg state, which is dggenerate, brea_ks theyuch by adding or removing a single electron. Therefore we
symmetry and experiences a relaxagon from g point oy hect that this property holds for all the affinity and ioniza-
group to two different state$B,, and“Bg,, that belong 10 iqn energy calculations with a particularly accurate varia-
the lower Dy, point group. In practice, the former is the a1 wave function as the one we have proposed here. Nev-

elongated acute deformation of the benzene hexagon, the 1alyhejess DMC is needed to reach the chemical accuracy,
ter is its compressed obtuse distortion. We applied the SR

structural optimization, starting from tI?eElg state, and the

minimization correctly yielded a deformation toward the TABLE VI. Total energies for the’B,, and *By, states of the benzene
acute structure for th@zg state and the obtuse for tﬁssg radical cation after the geometry relaxation. A .comparisor.\ with a
one; the first part of the evolution of the distances and thés(')‘::epf'mek and SVWN/6-31G all-electron calculatior(Ref. 49 is re-
angles during those simulations is shown in Fig. 5. After this :
equilibration, average over 200 further iterations yields bond VMC DMC BLYP/6-31G* SVWN/6-31G
distances and angles with the same accuracy as the ayézg —231.4834(15) —231.816(3) 231815495 — 230547931
electron BLYP/6-31G calculations reported in Ref. 4¢ee ?B,, —231.4826(14) —231.812(3) —231.815538 —230.547751
Table V). As it appears from Table VI not only the structure
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since the VMC result is slightly off from the experimental TAI_BLE VI_I. Adiabatic ionization potential of the benzene molecule; our
one just by few tenths of eV. The AIP and the geometryest!mate is don_e for _théB3g relaxed ge_ometrlgs of the b_enzene radical
det inati for th + . ¢ thi cation, with an inclusion of the zero point motion correction between the

elermina 'O_n or e He are E_Jncouraglng 0 pursu_e 1S 2839 state and théA1g neutral molecule ground state, calculated in Ref. 45
approach, with the aim to describe even much more interesty the B3LYP/6-316 level.

ing and challenging chemical systems.

vMmC? DMC?  CCSD(T)/cc-p\WwZ® experimerft

AP 8.866)  9.368) 9.294)
V. CONCLUSION AZPE,, —0074 —0.074 —0.074
best estimate 8.18) 9.298) 9.224) 9.243%8)

In this work, we have tested the JAGP wave function on
simple molecular systems where accurate results are knowghis work.
As shown in the preceding section a large amount of theReference 45.

. . - Reference 53.

correlation energy is already recovered at the variational
level with a computationally very efficient and feasible
method, extended in this work to the nuclear geometry opti- o . ] .
mization. Indeed, much larger systems should be tractabld1® molecule, by forbidding unphysicaldimers with more
because, within the JAGP ansatz, it is sufficient to sample §1an two electrons. Once the charge is locally conserved, the
single determinant whose dimension scales only with thehase of the BCS-AGP wave function cannot have a definite
number of electrons. The presence of the Jastrow factor im¢@lué and phase coherence is correctly forbidden by the Ja-
plies the evaluation of multidimensional integrals that, so faStrow factor. In the present work, the interplay between the
can be calculated efficiently only with the Monte Carlo Jastrow and the geminal part has been shown to be very
method. Within this framework, it is difficult to reach the effective in all cases studied and particularly in the nontrivial
complete basis set limit, both in the Jastrow and the AGFEas€ of the benzene molec_ule,.where we have shown system-
terms, although some progress has been made reé&ffly. atically the various approximations. Only thth the Ja-
Even if the dimension of the basis is limited by the difficulty Strow and the AGP terms are accurately optimized together,
to perform energy optimization with a very large number ofthe AGP nodal structure of the wave function is considerably
variational parameters, we have obtained the chemical acciProved. For the above reasons and the size consistency of
racy for most cases studied. From a general point of view thé€ JAGP we expect that this wave function should be gen-
basis set convergence of the JAGP is expected to be fastgFally accurate also in complex systems made by many mol-
than AGP considering that the electron-electron cusp condiecules. The local conservation of the charge around each
tion is fulfilled exactly at each level of the expansion. Nev-molecule is taken into account by the Jastrow factor, whereas
ertheless, all results presented here can be systematically i€ qua"ty of each mole_cule is described also by the AGP
proved with larger basis set. In particular the,Beonding ~ 9eminal part exactly as in the,Hjas example. o
distance should be substantially corrected by a more com- [N the near future it is very appealing and promising to
plete basis, that we have not attempted sé¥ar. extend the JAGP study to the DNA nitrogenous bases, whose

The usefulness of the JAGP wave function is a|read>geometrical structure is very similar to the benzene ring. In
well known in the study of strongly correlated systems de-Particular, we plan to accurately evaluate the energétes
fined on a lattice. For instance, in the widely studied Hub-duction potential, ionization energles.,.electron aﬁ.mlty, Jetc.
bard model, as well as in any model with electronic repul-of DNA bases and base pairs, quantities of great importance
sion, it is not possible to obtain a superconducting ground® characterize excess electron and hole transfer which are
state at the mean-field Hartree-Fock level. On the contrarynvolved in radiation damage as well as in the development
as soon as a correlated Jastrow term is applied to the BC® DNA technologies.
wave function(equivalent to the AGP wave function in mo-
mentum spacé), the ;tab|llza}t|on of a Q—wave superconduct- ACKNOWLEDGMENTS
ing order parameter is possible, and is expected to be a real-
istic property of the modé® More interestingly the presence We grateful acknowledge P. Carloni, F. Becca, and L.
of the Jastrow factor can qualitatively change the wave funcGuidoni for fruitful suggestions in writing this manuscript.
tion especially at one electron per site filling, by converting awe also thank S. Moroni, S. Zhang, C. Filippi, and D. Cep-
BCS superconductor to a Mott insulator with a finite chargeerley for useful discussions. This work was partially sup-
gap?® ported by MIUR, COFIN 2003.

The same effect is clearly seen for the gedanken experi-
ment of a dilute gas of Himolecules, a clarifying test ex-
ample already used in the introduction. The AGP wave funcAPPENDIX A: STABILIZATION OF THE SR
tion is essentially exact for a single molecu least with ~ TECHNIQUE
the complete basis gebut its obvious size_consistent exten- Whenever the number of variational parameters in-
sion to t_h(_a gas would lead to the unphysical result of SUPeTgreases, it often happens that the stochastie )X (N
conductivity because the charge around each molecule would 1) matrix
be free to fluctuate within the chosen set of geminal orbitals.
Only the presence of the Jastrow term added to this wave (V[OO|P)
function, allows the local conservation of the charge around kKT (W)

(A1)
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TABLE VIII. Matrix of the \ coefficients of the geminal function expansion in the pairing determinant for thendlecule. The matrix is symmetric to have a spin singlet, therefore we show only the upper part oft

¥ Chem

3sy,

2py,

2pXy

2pz,

1s, 2sy

3s,

2pYa

2pX,

2pz,

2s,

1s,

0

—2.877x10°8

—-6.838x10°°

—2.162x10°°

1
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. o - - becomes singular, i.e., the condition number, defined as the
E L g 9 7’3 = 5 ratio o=N\y/\; between its maximurny and minimum ei-
* 2 oo XKk x&§o0o0d genvalue\(, is too large. In that case the inversion of this
R © e @ R ° © matrix generates clear numerical instabilities which are dif-
- b T ! ficult to control especially within a statistical method. Here
. . O=dIn¥(x)/dey are the operators corresponding to the
5 5 variational parametera, appearing in the wave functiol
000 & o oo0o o X for k=1,... N, whereas fok=0 the operatoO, represents
S & the identity one.
il T The first successful proposal to control this instability
was to remove from the inversion problgd®), required for
I 7 the minimization, those directions in the variational param-
g ° g eter space corresponding to exceedingly small eigenvalues
o O ": o O o o g )\i ]
T o In this Appendix we describe a better method. As a first
step, we show that the reason of the large condition number
T < < T L w o is due to the existence of “redundant” variational param-
S g = 339 eters that do not make changes to the wave function within a
g é ° e X % é ﬁ prescribed tolerance. Indeed in practical calculations, we
<|r' S 2 «|> T' ¥ are interested in the minimization of the wave function
within a reasonable accuracy. The toleraagaay represent
- - therefore the distance between the exact normalized varia-
T8 (‘é 3L tional wave function which minimizes the energy expecta-
g g ° o & g tion value and the approximate acceptable one, for which we
5 < R by o no longer iterate the minimization scheme. For instarce,
: o =1/1000 is by far acceptable for chemical and physical in-
terest. A stable algorithm is then obtained by simply remov-
© e e o o ing the parameters that do not change the wave function by
less thane from the minimization. An efficient scheme to
7 ‘é ‘Té remove the “redundant paramgters” is also given.
2 & o o X Let us consider th&l normalized states orthogonal 1o
8 G ! but not orthogonal among each other
S T
Ox—Sk 0|V
. |ei>:\/ (Ok— S 0| Z , A2)
S <\I’|(Ok_5k,0) |‘I’
°en-° é wheres, o is defined in Eq(A1). These normalized vectors
*-‘i defineN directions in theN-dimensional variational param-
eter manifold, which are independent as long as the determi-
7 nantS of the corresponding X N overlap matrix
—
oo 3 Skke=(exlex) (A3)
™
T is nonzero. The numbes is clearly positive and it assumes
its maximum value 1 whenever all the directiogsare mu-
L 1 tually orthogonal. On thE other hand, let us suppose that
g g there exists an eigenvalue of s smaller than the square of
3 « the desired tolerance?, then the corresponding eigenvector
T lv)==a|e;) is such that
5 <U|U>:Z a;S; j=N\, (A4)
9 i
§ where the latter equation holds due to the normalization con-
dition 3;a?=1. We arrive therefore to the conclusion that it
is possible to define a vector with almost vanishing norm
lv|=VA=<e as a linear combination & , with at least some
nonzero coefficient. This implies that tiNedirectionse, are
B I e 2 linearly dependent within a toleraneeand one can safely
88883888838 remove at least one parameter from the calculation.

1s,
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TABLE IX. Matrix of the \ coefficients of the pairing function expansion in the three-body Jastrow for thendliecule. As in the previous table only the
upper part is reported.

sG, pPGxa PGYa PGz sG, PG PGy, PGz,
sG, —0.2427 0 0 —2.713x1074 —5.136x10°* 0 0 —1.202<107°
pGXx, -0.1772 0 0 0 —7.997x 103 0 0
PGy, -0.1772 0 0 0 —7.997x 1072 0
pGz, 1.027x10°? 1.202<10°° 0 0 —8.749<10°°
sG, —0.2427 0 0 —2.713x10°*
pGXb —0.1772 0 0
pGyb —0.1772 0
pGz 1.027x10 2

In general whenever there gpevectorsv; that are below  The indicesn andm refer not only to the basis elements but
the tolerances the optimal choice to stabilize the minimiza- also to the nuclei which the orbitals are centered on.

tion procedure is to remove rows andp columns from the The self consistency problem arises from the last term in
matrix (A3), in such a way that the corresponding determi-Eq. (B1), i.e., when the electron belongs toA andr; to B.
nant of the N—p) X (N—p) overlap matrix is maximum. If the Jastrow is size consistent, wheneyeandB are far

From practical purposes it is enough to consider an itapart from each other this term must vanish or at most gen-
erative scheme to find a large minor, but not necessarily therate a one-body term, that is, in turn size consistent, as we
maximum one. This method is based on the inverse @t  are going to show in the following. In the limit of large
each step we remove thi¢h row and column froms for  separation all then™" off diagonal terms connecting any
which ?[il is maximum. We stop to remove rows and col- basis element oA to any basis element @& must vanish.
umns afterp inversions. In this approach we exploit the fact The second requirement is a sufficiently fast decay of the
that, by a consequence of the Laplace theorem on determasis set orbitalg/(r) whenever —c, except at most for a
nants,?k",} is the ratio between the described minor withoutconstant ternC, which may be present in the single particle
the kth row and column and the determinant of the fslll orbitals, and is useful to improve the variational energy.
matrix. Since within a stochastic method it is certainly not  For the sake of generality, suppose that the syséem
possible to work with a machine precision tolerance, settingontainsM , nuclei andN, electrons. The first requirement
€=0.001 guarantees a stable algorithm, without affecting thémplies that
accuracy of the calculation. The advantage of this scheme,
compared with the previous o_ﬁ_é,ls that the _Iess _relevant b(ri )= 2 AT (1 )
parameters can be easily identified after few iterations and do mneA
not change further in the process of minimization.

T2 NP, (B3)
APPENDIX B: SIZE CONSISTENCY OF THE THREE- '
BODY JASTROW FACTOR instead the second allows to write the following expression

. . for the mixed term in Eq(B1):
In order to prove the size consistency property of the

three-body Jastrow factor described in Sec. I C, let us take

into account a system composed by two well separated sub- i% ];B B(ri 'rj):NBn;A CnPnt NAEB CrPm, (B4)
systemsA and B, which are distinguishable and whose di-

mensions are much smaller than the distance between themhere the factor$, are one-body terms defined as
selves; in general they may contain more then one atom. In

this case the Jastrow functialy (10) can be written agd,

=eY with . . . .
TABLE X. Orbital basis set parameters used for therolecule. Since the
1 1 molecule is homonuclear the parameters of the dboane the same as the
U=3 2 a(rir+s 2 ¢rir) atoma.
2i72A 2ij<B
P#] P#] 2, Z) D
b1s 2.4485 4.2891 0.4278
ﬂ; EB ¢riry), (B1) o, 0.5421 1.4143 —~1.5500
¢2an 0.6880
where we have explicitly considered the sum over differents,,, 0.6880
subsystems. As usual, the two particle functig(r;,r;) is ¢z, 1.0528
expanded over a single particle basis centered on each (‘z%a 2'2222 T oss
nucleus of the system qsiiia 0.7969 4.4217 12689
bpcy, 0.7969 4.4217 —1.2689
o(r ,rj)zz AT YO (r ). (B2) bpoz, 8.98010°° —0.1924 0.3229
m,n
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which distinguishes the different components of the two

EA X”’mEA yT(r) if neA electrons distance. We found that this two-body Jastrow fac-
P,= ) (Bs)  toris particularly useful for L, which is much more elon-
Anm M) if neB gated than the other molecules studied here, for which the
ngB g’s v < usual form in Eq.(9) has been employed. The optimal pa-

Notice that if all the orbitals decay to zero, the size consis—rarnEterS obtained for the Jastrow am=0.8796,b

tency is immediately recovered, since the sum in ) =0.7600. In the expansion of the pairing function for the
. i three body Jastrow terfsee Eq(10)] we used the following

vanishes. Analogously to the derivation we have done to X pitals:

tract the one body contribution from the mixed term, the ’

other two terms on the right-hand side of E&1) can be b= e-ar’ 4 P, (C5)

rearranged in the following form:

L bpa=F(e 1" +pe22”). (C6)
EiJZEA ¢(rirj)=(Na— 1)§A CnPn The A\ matrix that connects these orbitals is given in Table
%] IX; this matrix fulfills the same symmetry constraints as in

(B6) the case of the paring determinant. In this case the total num-

+two-body terms, ) _
y ber of nonzeran is 24 and the symmetry reduces the varia-

and the sum in Eq(B1) can be rewritten as tional freedom to only eight parameters. The single particle
orbitals are reported in Table X, and include other 15 param-
U=(N-1)2, C,P,+(N-1)> C,P, eters.
neA neB
+ two-body size consistent terms. (B7)  w. Heitler and F. London, Z. Phyg4, 455 (1927.

. . . . . °B. Barbiellini, J. Phys. Chem. Solid&l, 341 (2000.
Therefore the size consistency implies that the scaling of theg Evangelisti, G. { Bendazzoli R. Ansr(allonio E Duri. and E. Rossi

C, with the total number of particl®&l is Chem. Phys. Lett252, 437 (1996.
4T. D. Crawford and H. F. Schaefer Ill, iReviews in Computational
_ Cn Chemistry edited by K. B. Lipkowitz and D. B. BoydvCH, New York,
Co=N"T" (B8) 1991, vol. 14, pp. 33-136.
5L. Noodleman, T. Lovell, T. Liu, F. Himo, and R. A. Torres, Curr. Opin.
as mentioned in Sec. Il C. Chem. Biol.6, 259 (2002.

SW. Kohn, Y. Meir, and D. E. Makarov, Phys. Rev. LeBD, 4153(1998;

M. Lein, J. F. Dobson, and E. K. U. Gross, J. Comput. Ch&f).12
APPENDIX C: AN EXAMPLE CASE: JAGP WAVE (1999; H. Rydberg, M. Dion, N. Jacobson, E. Sctes, P. Hyldgaard, S.

FUNCTION FOR Li, I. Simak, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Let{.126402

. . L (2003.
We briefly describe the application of the JAGP to the 7s. Fahy, X. W. Wang, and S. G. Louie, Phys. Rew® 3503(1990.
Li, molecule. This example shows the beauty of our ap-SC. J. Umrigar inQuantum Monte Carlo Methods in Physics and Chemis-

: ; _try, Proceedings of the NATO Advanced Study Institute, edited by M. P.
proach that allows to describe the chemical bond as reso Nightingale and C. J. Umrigailuwer, Dordrecht, 1998 p. 129.
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