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Abstract. We show that there exists a fine moduli space for torsion-
free sheaves on a projective surface which have a “good framing" on
a big and nef divisor. This moduli space is a quasi-projective scheme.
This is accomplished by showing that such framed sheaves may be
considered as stable pairs in the sense of Huybrechts and Lehn. We
characterize the obstruction to the smoothness of the moduli space
and discuss some examples on rational surfaces.
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1. Introduction

There has been recently some interest in the moduli spaces of framed sheaves.
One reason is that they are often smooth and provide desingularizations of the
moduli spaces of ideal instantons, which in turn are singular [17, 19, 18]. For
this reason, their equivariant cohomology under suitable toric actions is relevant
to the computation of partition functions, and more generally expectation val-
ues of quantum observables in topological quantum field theory [20, 2, 19, 6, 3].
On the other hand, these moduli spaces can be regarded as higher-rank gen-
eralizations of Hilbert schemes of points, and as such they have interesting
connections with integrable systems [12, 1], representation theory [26], etc.
While it is widely assumed that such moduli spaces exist and are well behaved,
an explicit analysis, showing that they are quasi-projective schemes and are
fine moduli spaces, is missing in the literature. In the present paper we provide
such a construction for the case of framed sheaves on smooth projective surfaces
under some mild conditions. We show that if D is a big and nef curve in a
smooth projective surface X , there is a fine quasi-projective moduli space for

1This research was partly supported by prin “Geometria delle varietà algebriche” and by
the European Science Foundation Programme Misgam.
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400 Ugo Bruzzo and Dimitri Markushevish

sheaves that have a “good framing” on D (Theorem 3.1). The point here is
that the sheaves under consideration are not assumed a priori to be semistable,
and the basic idea is to show that there exists a stability condition making all
of them stable, so that our moduli space is an open subscheme of the moduli
space of stable pairs in the sense of Huybrechts and Lehn [8, 9].
In the papers [21, 22] T. Nevins constructed a scheme structure for these moduli
spaces, however we obtain a stronger result, showing that these schemes are
quasi-projective, and in particular are separated and of finite type. Moreover
we compute the obstruction to the smoothness of these moduli spaces (Theorem
4.3). In fact, the tangent space is well known, but we provide a more precise
description of the obstruction space than the one given by Lehn [14]. We show
that it lies in the kernel of the trace map, thus extending a previous result of
Lübke [15] to the non-locally free case.
In some cases there is another way to give the moduli spaces M(r, c, n) a struc-
ture of algebraic variety, namely, by using ADHM data. This was done for
vector bundles on P2 by Donaldson [5], while (always in the locally free case)
the case of the blowup of P2 at a point is studied in A. King’s thesis [13], and
P2 blown-up at an arbitrary number of points was analyzed by Buchdahl [4].
The general case (i.e., including torsion-free sheaves) is studied by C. Rava for
Hirzebruch surfaces [24] and A.A. Henni for multiple blowups of P2 at distinct
points [7]. The equivalence between the two approaches follows from the fact
that in both cases one has fine moduli spaces. On the ADHM side, this is
shown by constructing a universal monad on the moduli space [23, 7, 25].
In the final section we discuss some examples, i.e. framed bundles on Hirzebruch
surfaces with “minimal invariants", and rank 2 framed bundles on the blowup
of P2 at one point.
In the present article, all the schemes we consider are separated and are of
finite type over C, and “a variety” is a reduced irreducible scheme of finite type
over C. A “sheaf” is always coherent, the term “(semi)stable” always means
“µ-(semi)stable”, and the prefix µ- will be omitted. Framed sheaves are always
assumed to be torsion-free.

2. Framed sheaves

Let us characterize the objects that we shall study.

Definition 2.1. Let X be a scheme over C, D ⊂ X an effective Weil divisor,
and ED a sheaf on D. We say that a sheaf E on X is (D, ED)-framable if E
is torsion-free and there is an epimorphism E → ED of OX-modules inducing
an isomorphism E|D

∼→ ED. An isomorphism φ : E|D
∼→ ED will be called a

(D, ED)-framing of E. A framed sheaf is a pair (E ,φ) consisting of a (D, ED)-
framable sheaf E and a framing φ. Two framed sheaves (E ,φ) and (E ′,φ′) are
isomorphic if there is an isomorphism f : E → E ′ and a nonzero constant λ ∈ C
such that φ′ ◦ f|D = λφ.
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Let us remark that our notion of framing is the same as the one used in
[14, 22, 21], but is more restrictive than that of [8], where a framing is any
homomorphism α : E → ED of OX -modules, not necessarily factoring through
an isomorphism E|D

∼→ ED. To distinguish between the two definitions, we will
call such a pair (E ,α) a framed pair, whilst the term framed sheaf will refer to
the notion introduced in Definition 2.1
Our strategy to show that framed sheaves on a projective variety make up
“good” moduli spaces will consist in proving that, under some conditions, the
framed sheaves (E ,φ) are stable according to a notion of stability introduced
by Huybrechts and Lehn [8, 9]. The definition of stability for framed pairs
depends on the choice of a polarization H on X and a positive real number δ
(in our notation, δ is the leading coefficient of the polynomial δ in the definition
of (semi)stability in [8]).
Definition 2.2 ([8, 9]). A framed pair (E ,α) on an n-dimensional projective
variety X, consisting of a torsion-free sheaf E and its framing α : E → ED, is
said to be (H, δ)-stable, if for any subsheaf G ⊂ E with 0 < rkG ≤ rk E, the
following inequalities hold:

(1)
c1(G) ·Hn−1

rk(G) <
c1(E) ·Hn−1 − δ

rk(E) when G is contained in kerα;

(2)
c1(G) ·Hn−1 − δ

rk(G) <
c1(E) ·Hn−1 − δ

rk(E) otherwise.

Remark, that according to this definition, any rank-1 framed sheaf is (H, δ)-
stable for any ample H and any 0 ≤ δ < degD.
For any sheaf F on X , PH

F denotes the Hilbert polynomial PH
F (k) = χ(F ⊗

OX(kH)). For a non-torsion sheaf F on X , µH denotes the slope of F :
µH(F) = c1(F)·Hn−1

rkF .
Theorem 2.3 ([8, 9]). Let X be a smooth projective variety, H an ample divisor
on X and δ a positive real number. Let D ⊂ X be an effective divisor, and ED a
sheaf on D. Then there exists a fine moduli space M = MH

X(P ) of (H, δ)-stable
(D, ED)-framed sheaves (E ,φ) with fixed Hilbert polynomial P = PH

E , and this
moduli space is a quasi-projective scheme.

Since we are using slope stability, and a more restrictive definition of framing
with respect to that of [8, 9], our moduli space MH

X(P ) is actually an open
subscheme of the moduli space constructed by Huybrechts and Lehn.
Another general result on framed sheaves we shall need is a boundedness theo-
rem due to M. Lehn. Given X,D, ED as above, a set M of (D, ED)-framed pairs
(E ,φ) is bounded if there exists a scheme of finite type S over C together with
a family (G,φ) of (D, ED)-framed pairs over S such that for any (E ,φ) ∈ M,
there exist s ∈ S and an isomorphism (Gs,φ|D×s) ( (E ,φ).
Definition 2.4. Let X be a smooth projective variety. An effective divisor
D on X is called a good framing divisor if we can write D =

∑
niDi, where
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402 Ugo Bruzzo and Dimitri Markushevish

Di are prime divisors and ni > 0, and there exists a nef and big divisor of
the form

∑
aiDi with ai ≥ 0. For a sheaf ED on D, we shall say that ED is

a good framing sheaf, if it is locally free and there exists a real number A0,
0 ≤ A0 < 1

rD
2 · Hn−2, such that for any locally free subsheaf F ⊂ ED of

constant positive rank, 1
rkF deg c1(F) ≤ 1

rk ED
deg c1(ED) +A0.

Theorem 2.5. Let X be a smooth projective variety of dimension n ≥ 2, H
an ample divisor on X, D ⊂ X an effective divisor, and ED a vector bundle
on D. Assume that D is a good framing divisor. Then for every polynomial P
with coefficients in Q, the set of torsion-free sheaves E on X that satisfy the
conditions PH

E = P and E|D ( ED is bounded.

This is proved in [14], Theorem 3.2.4, for locally free sheaves, but the proof
goes through also in the torsion-free case, provided that ED is locally free, as
we are assuming.

3. Quasi-projective moduli spaces

Using the notions introduced in the previous section, we now can state the
main existence result for quasi-projective moduli spaces:

Theorem 3.1. Let X be a smooth projective surface, D ⊂ X a big and nef
curve, and ED a good framing sheaf on D. Then for any c ∈ H∗(X,Q), there
exists an ample divisor H on X and a real number δ > 0 such that all the
(D, ED)-framed sheaves E on X with Chern character ch(E) = c are (H, δ)-
stable, so that there exists a quasi-projective scheme MX(c) which is a fine
moduli space for these framed sheaves.

Proof. Let us fix an ample divisor C on X . Set OX(k) = OX(kC) and E(k) =
E⊗OX(k) for any sheaf E on X and for any k ∈ Z. Recall that the Castelnuovo-
Mumford regularity ρ(E) of a sheaf E on X is the minimal integer m such that
hi(X, E(m − i)) = 0 for all i > 0. According to Lehn’s Theorem (Theorem
2.5), the family M of all the sheaves E on X with ch(E) = c and E|D ( ED is
bounded. Hence ρ(E) is uniformly bounded over all E ∈ M. By Grothendieck’s
Lemma (Lemma 1.7.9 in [10]), there exists A1 ≥ 0, depending only on ED, c
and C, such that µC(F) ≤ µC(E) + A1 for all E ∈ M and for all nonzero
subsheaves F ⊂ E .
For n > 0, denote by Hn the ample divisor C + nD. We shall verify that there
exists a positive integer n such that the range of positive real numbers δ, for
which all the framed sheaves E from M are (Hn, δ)-stable, is nonempty.
Let F ⊂ E , 0 < r′ = rkF ≤ r = rk E . Assume first that F *⊂ ker

(
E → E|D

)
.

Then we may only consider the case r′ < r, and the (Hn, δ)-stability condition
for E reads:

(1) µHn(F) < µHn(E) +
(
1

r′
− 1

r

)
δ.
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Saturating F , we make µHn(F) bigger, so we may assume that F is a saturated
subsheaf of E , and hence that it is locally free. Then F|D ⊂ E|D and we have:

(2) µHn(F) =
n

r′
deg c1(F|D) + µC(F) ≤ µHn(E) + nA0 +A1.

Thus we see that (2) implies (1) whenever

(3)
rr′

r − r′
(nA0 +A1) < δ.

Assume now that F is a saturated, and hence a locally free subsheaf of ker
(
E →

E|D
)
( E(−D). Then the (Hn, δ)-stability condition for E is

(4) µHn(F) < µHn(E)− 1

r
δ,

and the inclusion F(D) ⊂ E yields:

(5) µHn(F) < µHn(E)−HnD+nA0+A1 = µHn(E)− (D2−A0)n+A1−DC.

We see that (5) implies (4) whenever

(6) δ < r[(D2 −A0)n−A1 +DC].

The inequalities (3), (6) for all r′ = 1, . . . , r − 1 have a nonempty interval of
common solutions δ if

n > max

{
rA1 − CD

D2 − rA0
, 0

}
.

!

Remark 3.2. Grothedieck’s Lemma is stated in [10] in terms of the so called µ̂
slope. However, for torsion-free sheaves, the µ̂ slope and the usual slope differ
by constants depending only on (X,OX(1)), see Definition 1.6.8 in [10] and the
following remark. +

Note that up to isomorphism, the quasi-projective structure making MX(c)
a fine moduli space is unique, which follows from the existence of a universal
family of framed sheaves over it.
If D is a smooth and irreducible curve and D2 > 0, then our definition of a
good framing sheaf with A0 = 0 is just the definition of semistability. The
following is thus an immediate consequence of the theorem:

Corollary 3.3. Let X be a smooth projective surface, D ⊂ X a smooth,
irreducible, big and nef curve, and ED a semistable vector bundle on D. Then
for any c ∈ H∗(X,Q), there exists a quasi-projective scheme MX(c) which is a
fine moduli space of (D, ED)-framed sheaves on X with Chern character c.
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4. Infinitesimal study

Let X be a smooth projective variety, D an effective divisor on X , ED a vector
bundle on D. We shall consider sheaves E on X framed to ED on D. We recall
the notion of a simplifying framing bundle introduced by Lehn.

Definition 4.1. ED is simplifying if for any two vector bundles E, E ′ on X
such that E|D ( E ′

|D ( ED, the group H0(X,Hom(E , E ′)(−D)) vanishes.

An easy sufficient condition for ED to be simplifying is H0(D, End(ED) ⊗
OX(−kD)|D) = 0 for all k > 0.
Lehn [14] proved that if D is good and ED is simplifying, there exists a fine
moduli space M of (D, ED)-framed vector bundles on X in the category of sep-
arated algebraic spaces. Lübke [15] proved a similar result: if X is a compact
complex manifold, D a smooth hypersurface (not necessarily “good”) and if
ED is simplifying, then the moduli space M of (D, ED)-framed vector bundles
exists as a Hausdorff complex space. In both cases the tangent space T[E]M
at a point representing the isomorphism class of a framed bundle E is natu-
rally identified with H1(X, End(E)(−D)), and the moduli space is smooth at
[E ] if H2(X, End(E)(−D)) = 0. Lübke gives a more precise statement about
smoothness: [E ] is a smooth point of M if H2(X, End0(E)(−D)) = 0, where
End0 denotes the traceless endomorphisms. Huybrechts and Lehn in [9] define
the tangent space and give a smoothness criterion for the moduli space of stable
pairs that are more general objects than our framed sheaves. In this section,
we adapt Lübke’s criterion to our moduli space MX(c), parametrizing not only
vector bundles, but also some non-locally-free sheaves. When we work with
stable framed sheaves, we do not need the assumption that ED is simplifying.
We shall use the notions of the trace map and traceless exts, see Definition
10.1.4 from [10]. Assuming X is a smooth algebraic variety, F any (coherent)
sheaf on it, and N a locally free sheaf (of finite rank), the trace map is defined

(7) tr : Exti(F ,F ⊗N ) → Hi(X,N ) , i ∈ Z,
and the traceless part of the ext-group, denoted by Exti(F ,F ⊗ N )0, is the
kernel of this map.
We shall need the following property of the trace:

Lemma 4.2. Let 0 −→ F α−→ G β−→ E −→ 0 be an exact triple of sheaves and N
a locally free sheaf. Then there are two long exact sequences of ext-functors
giving rise to the natural maps

µi : Ext
i(F , E ⊗N ) → Exti+1(E , E ⊗N ) ,

τi : Ext
i(F , E ⊗N ) → Exti+1(F ,F ⊗N ) ,

and we have tr ◦ µi = (−1)itr ◦ τi as maps Exti(F , E ⊗N ) → Hi+1(X,N ).

Proof. This is a particular case of the graded commutativity of the trace with
respect to cup-products on Homs in the the derived category (see Section
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V.3.8 in [11]): if ξ ∈ Hom(F , E ⊗ N [i]), η ∈ Hom(E ,F [j]), then tr (ξ ◦ η) =
(−1)ijtr ((η ⊗ idN ) ◦ ξ). This should be applied to ξ ∈ Hom(F , E ⊗ N [i])
and η = ∂ ∈ Hom(E ,F [1]), where ∂ is the connecting homomorphism in the
distinguished triangle associated to the given exact triple:

E [−1]
−∂−−→ F α−→ G β−→ E ∂−→ F [1].

!

Theorem 4.3. Let X be a smooth projective surface, D ⊂ X an effective
divisor, ED a locally free sheaf on D, and c ∈ H∗(X,Q) the Chern character of
a (D, ED)-framed sheaf E on X. Assume that there exists an ample divisor H
on X and a positive real number δ such that E is (H, δ)-stable, and denote by
MX(c) the moduli space of (D, ED)-framed sheaves on X with Chern character
c which are (H, δ)-stable. Then the tangent space to MX(c) is given by

T[E]MX(c) = Ext1(E , E ⊗OX(−D)),

and MX(c) is smooth at [E ] if the traceless ext-group

Ext2(E , E ⊗OX(−D))0 = ker
[
tr : Ext2(E , E ⊗OX(−D)) → H2(X,O(−D))

]

vanishes.

Proof. We prove this result by a combination of arguments of Huybrechts-Lehn
and Mukai, so we just give a sketch, referring to [9, 16] for details. As in Section
4.iv) of [9], the smoothness of M = MX(c) follows from the T 1-lifting property
for the complex E → ED.
Let An = k[t]/(tn+1), Xn = X × SpecAn, Dn = D × SpecAn, EDn = ED "
An, and let En

αn−−→ EDn be an An-flat lifting of E → ED to Xn. Then the
infinitesimal deformations of αn over k[ε]/(ε2) are classified by the hyper-ext
Ext1(En, En

αn−−→ EDn), and one says that the T 1-lifting property is verified for
E → ED if all the natural maps

T 1
n : Ext1(En, En

αn−−→ EDn) → Ext1(En−1, En−1
αn−1−−−→ EDn−1)

are surjective whenever (En,αn) ≡ (En−1,αn−1) mod (tn). In loc. cit., the
authors remark that there is an obstruction map ob on the target of T 1

n which
embeds the cokernel of T 1

n into Ext2(E , E → ED), so that if the latter vanishes,
the T 1-lifting property holds.
In our case, E is locally free along D, so the complex E → ED is quasi-isomorphic
to E(−D) and Exti(E , E → ED) = Exti(E , E(−D)). It remains to prove that
the image of ob is contained in the traceless part of Ext2(E , E(−D)). This is
done by a modification of Mukai’s proof in the non-framed case.
First we assume that E is locally free. Then the elements of
Ext1(En−1, En−1(−Dn−1)) can be given by Čech 1-cocycles with values in
End(En−1)(−Dn−1) for some open covering of X , and the image of such
a 1-cocycle (aij) under the obstruction map Ext1(En−1, En−1(−Dn−1)) →
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Ext2(E , E(−D)) is a Čech 2-cocycle (cijk) with values in End(E)(−D). A di-
rect calculation shows that (tr cijk) is a Čech 2-cocycle with values in OX(−D)
which is the obstruction to the lifting of the infinitesimal deformation of the
framed line bundle det En−1 from An−1 to An. As we know that the mod-
uli space of line bundles, whether framed or not, is smooth, this obstruction
vanishes, so the cocycle (tr cijk) is cohomologous to 0.
Now consider the case when E is not locally free. Replacing E , ED by their twists
E(n), ED(n) for some n > 0, we may assume that Hi(X, E) = Hi(X, E(−D)) =
0 for i = 1, 2 and that E is generated by global sections. Then we get the exact
triple of framed sheaves

0 → (G, γ) → (H0(X, E)⊗OX ,β) → (E ,α) → 0,

where G is locally free (at this point it is essential that dimX = 2 and X is
smooth). Then we verify the T 1-lifting property for the exact triples

0 → (Gn, γn) → (ON
Xn

,βn) → (En,αn) → 0.

The infinitesimal deformations of such exact triples are classified by
Hom(Gn, En(−Dn)), and the obstructions lie in Ext1(G, E(−D)). We have
two connecting homomorphisms µ1 : Ext1(G, E(−D)) → Ext2(E , E(−D)) and
τ1 : Ext1(G, E(−D)) → Ext2(G,G(−D)). Our hypotheses on E imply that: 1)
every infinitesimal deformation of (En,αn) lifts to that of the triple, and 2) µ1

is an isomorphism, that is, the infinitesimal deformation of En is unobstructed
if and only if that of the triple is. By Lemma 4.2, tr (µ1(ξ)) = −tr (τ1(ξ)) in
H2(X,OX(−D)). As in 1.10 of [16], τ1(ξ) is the obstruction ob(Gn−1, γn−1)
to lifting (Gn−1, γn−1) from An−1 to An. As Gn−1 is locally free, we can use
the Čech cocycles as above and see that tr (τ1(ξ)) ∈ H2(X,OX(−D)) is the
obstruction to lifting (detGn−1, det γn−1), hence it is zero and we are done. !

The following Corollary describes a situation where the moduli space MX(c)
is smooth (hence, every connected component is a smooth quasi-projective
variety).

Corollary 4.4. In addition to the hypothesis of Theorem 4.3, let us assume
that D is irreducible, that (KX +D) ·D < 0, and choose the framing bundle to
be trivial. Then the moduli space MX(c) is smooth.

This happens for instance when X is a Hirzebruch surface, or the blowup of
P2 at a number of distinct points, taking for D the inverse image of a generic
line in P2 via the birational morphism X → P2. In this case one can also
compute the dimension of the moduli space, obtaining dimMX(c) = 2rn, with
r = rk(E) and

c2(E)−
r − 1

2r
c1(E)2 = n.,

where . is the fundamental class of X . When X is the p-th Hirzebruch surface
Fp we shall denote this moduli space by Mp(r, k, n) if c1(E) = kC, where C is
the unique curve in Fp having negative self-intersection.
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The next example shows that the moduli space may be nonsingular even if the
group Ext2(E , E ⊗OX(−D)) does not vanish.

Example 4.5. For r = 1 the moduli space M(1, 0, n) is isomorphic to the Hilbert
scheme X [n]

0 parametrizing length n 0-cycles in X0 = X\D. Of course this space
is a smooth quasi-projective variety of dimension 2n. Indeed in this case the
trace morphism Ext2(E , E ⊗OX(−D)) → H2(X,O(−D)) is an isomorphism.

5. Examples

5.1. Bundles with small invariants on Hirzebruch surfaces. Let X
be the p-th Hirzebruch surface Fp, and normalize the Chern character by twist-
ing by powers of the line bundle OFp(C) so that 0 ≤ k ≤ r − 1. It has been
shown in [3] that the moduli space Mp(r, k, n) is nonempty if and only if the
bound

n ≥ N =
pk

2r
(r − k)

is satisfied. The moduli spaces Mp(r, k,N) can be explicitly characterized:
Mp(r, k,N) is a rank k(r−k)(p−1) vector bundle on the Grassmannian G(k, r)
of k-planes in Cr [25]; in particular, M1(r, k,N) ( G(k, r), and M2(r, k,N) is
isomorphic to the tangent bundle of G(k, r). This is consistent with instanton
counting, which shows that the spaces Mp(r, k,N) have the same Betti numbers
as G(k, r) [3].

5.2. Rank 2 vector bundles on F1. We study in some detail the moduli
spaces M1(2, k, n). As [27] and [28] show, the non-locally free case turns out
to be very complicated as soon as the value of n exceeds the rank. So we
consider only locally free sheaves. To simplify notation we call this moduli
space M̂(k, n), where n denotes now the second Chern class. We normalize k
so that it will assume only the values 0 and −1. Moreover we shall denote by
M(n) the moduli space of rank 2 bundles on P2, with second Chern class n,
that are framed on the “line at infinity” /∞ ⊂ P2 (which we identify with the
image of D via the blow-down morphism π : F1 → P2).
Let us start with the case k = −1. We introduce a stratification on M̂(−1, n)
according to the splitting type of the bundles it parametrizes on the exceptional
line E ⊂ F1

M̂(−1, n) = Z0(−1, n) ⊃ Z1(−1, n) ⊃ Z2(−1, n) ⊃ . . .

defined as follows: if Z0
k(−1, n) = Zk(−1, n) \ Zk+1(−1, n) then

Z0
k(−1, n) = {E ∈ M̂(−1, n) | E|E ( OE(−k)⊕OE(k + 1)} .

Proposition 5.1. There is a map

F1 : M̂(−1, n) →
n∐

k=0

M(n− k)
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which restricted to the subset Z0
k(−1, n) yields a morphism

Z0
k(−1, n) → M(n− k)

whose fibre is an open set in Hom(σ∗E|E ,OE(k))/C∗ ( P2k+1, made by k-linear
forms that have no common zeroes on the exceptional line.

Proof. We start by considering Z0
0 (−1, n). The morphism Z0

0 (−1, n) → M(n)
is given by E1 0→ E = (π∗E)∗∗. The fibre of this morphism includes a P1. To
show that this is indeed a P1-fibration we need to check that E1 has no other
deformations than those coming from the choice of a point in M(n) and a point
in this P1. This follows from the equalities

dimExt1(E1, E1(−E)) = dimExt1(E , E(−/∞) + 1

Ext2(E1, E1(−E)) = 0

Note that this result is compatible with the isomorphism M1(r, k,N) ( G(k, r)
mentioned in Section 5.1.
In general, if E1 ∈ Z0

k(−1, n) with k ≥ 1, so that E1|E ( OE(k+1)⊕OE(−k), the
direct image π∗(E1(kE)) is locally free. This defines the morphism Z0

k(−1, n) →
M(n− k). !

We consider now the case k = 0. One has Z0
0 (0, n) ( M(n). We study the

other strata by reducing to the odd case. If E1 ∈ Z0
k(0, n), there is a unique

surjection α : E1 → OE(−k); let F be the kernel. Restricting 0 → F → E1 →
OE(−k) → 0 we get an exact sequence

0 → OE(1− k) → F|E → OE(k) → 0

so that
F|E ( OE(a+ 1)⊕OE(−a) with − k ≤ a ≤ k − 1.

A detailed analysis shows that a = k − 1. As a result we have:

Proposition 5.2. For all k ≥ 1 there is a morphism

Z0
k(0, n) → M(n− 2k + 1)

whose fibres have dimension 2k − 1.

References

[1] D. Ben-Zvi and T. Nevins, Flows of Calogero-Moser systems, Int. Math.
Res. Not. IMRN (2007), no. 23, Art. ID rnm105, 38 pp.

[2] U. Bruzzo, F. Fucito, J. F. Morales, and A. Tanzini, Multi-
instanton calculus and equivariant cohomology, J. High Energy Phys.
(2003), no. 5, 054, 24 pp. (electronic).

[3] U. Bruzzo, R. Poghossian, and A. Tanzini, Poincaré polynomial
of moduli spaces of framed sheaves on (stacky) Hirzebruch surfaces.
arXiv:0909.1458 [math.AG]. Comm. Math. Phys. (2011), to appear.

Documenta Mathematica 16 (2011) 399–410



Moduli of Framed Sheaves on Projective Surfaces 409

[4] N. P. Buchdahl, Blowups and gauge fields, Pacific J. Math. 196 (2000),
pp. 69–111.

[5] S. K. Donaldson, Instantons and geometric invariant theory, Comm.
Math. Phys. 93 (1984), pp. 453–460.

[6] E. Gasparim and C.-C. M. Liu, The Nekrasov conjecture for toric sur-
faces, Comm. Math. Phys. 293 (2010), pp. 661–700.

[7] A. A. Henni, Monads for torsion-free sheaves on multi-blowups of the
projective plane. arXiv:0903.3190 [math.AG].

[8] D. Huybrechts and M. Lehn, Stable pairs on curves and surfaces, J.
Alg. Geom. 4 (1995), pp. 67–104.

[9] , Framed modules and their moduli, Internat. J. Math. 6 (1995),
pp. 297–324.

[10] , The geometry of moduli spaces of sheaves, 2nd edition, Cambridge
University Press, Cambridge, 2010.

[11] L. Illusie, Complexe cotangent et déformations. I, vol. 239 of Lecture
Notes in Mathematics, Springer-Verlag, Berlin-New York, 1971.

[12] A. Kapustin, A. Kuznetsov, and D. Orlov, Noncommutative instan-
tons and twistor transform, Comm. Math. Phys. 221 (2001), pp. 385–432.

[13] A. King, Instantons and holomorphic bundles on the blown-up plane. The-
sis, Oxford University, 1989.

[14] M. Lehn, Modulräume gerahmter Vektorbündel. Ph.D. thesis, Bonn, 1992.
[15] M. Lübke, The analytic moduli space of framed vector bundles, J. Reine

Angew. Math. 441 (1993), pp. 45–59.
[16] S. Mukai, Symplectic structure of the moduli space of sheaves on an

abelian or K3 surface, Invent. Math. 77 (1984), pp. 101–116.
[17] H. Nakajima, Lectures on Hilbert schemes of points on surfaces, vol. 18

of University Lecture Series, American Mathematical Society, Providence,
RI, 1999.

[18] H. Nakajima and K. Yoshioka, Lectures on instanton counting, in Al-
gebraic structures and moduli spaces, vol. 38 of CRM Proc. Lecture Notes,
Amer. Math. Soc., Providence, RI, 2004, pp. 31–101.

[19] , Instanton counting on blowup. I. 4-dimensional pure gauge theory,
Invent. Math. 162 (2005), pp. 313–355.

[20] N. A. Nekrasov, Seiberg-Witten prepotential from instanton counting,
Adv. Theor. Math. Phys. 7 (2003), pp. 831–864.

[21] T. A. Nevins, Moduli spaces of framed sheaves on certain ruled surfaces
over elliptic curves, Int. J. Math. 13 (2002), pp. 1117–1151.

[22] , Representability for some moduli stacks of framed sheaves, Manuscr.
Math. 109 (2002), pp. 85–91.

[23] C. Okonek, M. Schneider, and H. Spindler, Vector bundles on
complex projective spaces, vol. 3 of Progress in Mathematics, Birkhäuser
Boston, Mass., 1980.

[24] C. L. S. Rava. Ph.D. thesis, SISSA (Trieste), 2011.
[25] , ADHM data for framed sheaves on Hirzebruch surfaces. In prepa-

ration, 2011.

Documenta Mathematica 16 (2011) 399–410



410 Ugo Bruzzo and Dimitri Markushevish

[26] F. Sala and P. Tortella, Representations of the Heisenberg algebra
and moduli spaces of framed sheaves. arXiv:1004.2814 [math.AG].

[27] M. E. Sorokina, Birational properties of moduli spaces of rank 2
semistable sheaves on the projective plane. Ph.D. thesis (in Russian),
Yaroslavl, 2006.

[28] A. S. Tikhomirov, On birational transformations of Hilbert schemes of
an algebraic surface, Mat. Zametki 73 (2003), pp. 281–294.

Ugo Bruzzo
Scuola Internazionale Superiore

di Studi Avanzati
Via Bonomea 265
34136 Trieste
and
Istituto Nazionale

di Fisica Nucleare
Sezione di Trieste
Italia
bruzzo@sissa.it

Dimitri Markushevich
Mathématiques — Bât. M2
Université Lille 1
F-59655 Villeneuve d’Ascq Cedex
France
markushe@math.univ.lille1.fr

Documenta Mathematica 16 (2011) 399–410


