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Abstract

In this thesis, we make use of Monte Carlo techniques to address two rather different

subjects in condensed matter physics.

The first study deals with the characterization of a relatively novel and elusive

phase of matter, the so-called supersolid, in which crystalline order and dissipationless

flow coexist. While supersolidity is a well studied phenomenology in lattice models,

we will be working here in continuous space, where much fewer results are available.

Specifically, we study a soft core Bosonic system, quantum analog of thoroughly stud-

ied classical models, which displays an unambiguous supersolid phenomenology. In

this system such a behavior is not obtained through Bose Condensation of lattice

defects, but rather it is mean field in character. By computer simulations we char-

acterize many properties of the system: of these, the most prominent are the phase

diagram of the system and its excitation spectrum. This study is loosely related to

the ultracold atom experimental field, as it is speculated that interparticle potential

pertaining to the same class of the one employed here may be realized in this context.

After the recent (and apparently definitive) ruling out of supersolidity effects in 4He,

it seems fair to state that ultracold atoms are the most promising candidate for the

observation of this phenomenology. In this section we employ our own implementation

of the worm algorithm on the continuum.

The second part of this thesis is instead related to electronic structure, more specif-

ically to the study of minimum energy pathways of reactions calculated via quantum

Monte Carlo methods. In particular, we aim at assessing the computational feasibility

and the accuracy of determining the most significant geometries of a reaction (ini-

tial/final and transition state) and its energy barrier via these stochastic techniques.

To this end, we perform calculations on a set of simple reactions and compare the

results with density functional theory and high level quantum chemistry calculations.

We show that the employed technique indeed performs better than density functional

for both geometries and energy barrier. Therefore our methodology is a good can-

didate to study reactions in which an high accuracy is needed, but it is not possible

to employ high level quantum chemistry methods due to computational limitations.

We believe that this study is significant also because of its systematic use of forces

from Monte Carlo simulations. Although several studies have addressed various as-

pects of the problem of computing forces within quantum Monte Carlo accurately and

efficiently, there is little awareness that such estimators are in fact mature, and con-

sequently there are very few studies which actually employ them. We hope to show
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here that these estimators are actually ready to be used and provide good results. In

this section we have mainly developed interfaces for existing Quantum Monte Carlo

codes.
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Chapter 1

Soft disk Bosons

1.1 Introduction: supersolidity

We deal in this chapter with an hypothetical phase of matter, displaying simultane-

ously crystalline order and dissipation-less flow, which is a subject of long standing

interest for theorist and experimenters [1–5]. Such a phase, named supersolid, should

feature unusual properties, such as a nonclassical momentum of inertia , but has so far

escaped unambiguous experimental observation. Crystalline order is determined by

spontaneous (i.e. not externally induced) breaking of translational symmetry. This

is reflected in periodic fluctuations (long-range order) of the density ρ(r), such that

ρ(r) = ρ(r + T), T being a lattice vector. The order parameter for the breaking

of translational symmetry is the static structure factor S(k), defined through the

Fourier transform of the density

S(k) =
|ρk|2

N
; ρk =

∫
e−ik·rρ(r), (1.1)

which in the solid phase displays peaks in the correspondence of reciprocal lattice

vectors Q, such that Q · T = 2πn ∀ T, n being an integer number. Dissipation-

less flow, as the name suggests, is related to the ability of a liquid to flow without

friction (superfluidity), and to the concept of nonclassical momentum of inertia. It

is common practice to treat the superfluid phenomenology in a two liquid model:

the overall density of the system can be divided in a superfluid component and in a

normal (i.e. non superfluid) one. The ratio of the averaged superfluid density and

of the average total density is referred to as the superfluid fraction ρs, and is defined

operatively through the ratio of the experimental Ie and of the classical Ic momentum

1
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of inertia of a sample:

ρs = 1− Ie
Ic
. (1.2)

In a completely superfluid sample Ie = 0 and ρs = 1. Superfluidity is accompanied

by delocalization of particles into the sample, a condition referred to as off-diagonal

long range order. More formally it is required that the single particle density matrix

of the system ρ(r, r′) has the behavior:

lim
|r−r′|→∞

ρ(r, r′) = n0, (1.3)

where n0 6= 0 is a constant. Of course the presence of this order in a solid is rather

counter-intuitive, as is seems impossible to have delocalization occurring for particles

pinned to lattice sites.

In recent years, the attention of theorists and experimenters alike has focused on

solid 4He as a potential supersolid system, following the observation of non-classical

rotational inertia by Kim and Chan [6]. At the present time, agreement is still

lacking, as to whether experimental findings indeed mark the first observation of

supersolid behavior [7]. The most reliable theoretical studies, based on first-principle

numerical simulations, show that superfluidity, if it occurs at all in solid Helium, is not

underlain by the mechanism originally envisioned in the seminal works by Andreev,

Lifshitz and Chester, i.e., through Bose Condensation of a dilute gas of vacancies

or interstitials, [2, 5] but involves instead extended defects, such as dislocations [8].

In particular, a dilute gas of point defects in solid Helium has been predicted to be

thermodynamically unstable [9]. Recently, new experiments seem to have resolved the

controversy in favor of the non supersolid nature or the observed phenomenology [10].

Thus, it seems fair to state that solid 4He does not afford a direct, simple, and

clear observation of the supersolid phenomenon. Still, among all simple atomic or

molecular condensed matter systems, Helium should be the best candidate by far, due

to the favorable combination of large quantum delocalization of its constituent (Bose)

particles, and weakness of the interatomic potential, therefore one might speculate

whether the experimental observation of such phase will be possible at all. But what

exactly, in the physics of this simple crystal, contributes to suppress (if not eliminate

entirely) its superfluid response?

The thermodynamics of solid 4He, as it emerges from first-principle quantum

simulations, is largely determined by the strong repulsive core of the pair-wise inter-
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atomic potential at short distance. For example, a very simple model of Bose hard

spheres reproduces surprisingly accurately the phase diagram of condensed Helium.

Such a repulsive core is a ubiquitous feature of ordinary interactions between atoms or

molecules, arising from the Pauli exclusion principle, acting between electronic clouds

of different atoms. One is then led to pose the theoretical question of which type of

inter-particle interaction (or, class thereof) might underlie supersolid behavior. In

particular, can an interaction featuring a “softer” core, saturating at short distance

to a value of the order of the characteristic zero-point kinetic energy of the particles,

result in the appearance of a supersolid phase?

This question might have seemed little more than “academic” until not so long

ago, for how would one go about creating artificially such an interaction, which does

not occur in any known naturally occurring quantum many-body system? However,

impressive advances in cold atom physics appear to allow one to do just that, namely

to “fashion” artificial inter-particle potentials, not arising in any known condensed

matter system [11]. It makes therefore sense to search theoretically for supersolid,

or other exotic phase of matters, based on more general types of interactions among

elementary constituents than the ones considered so far, with the realistic expectation

that such interactions might be realizable in the laboratory.

In this chapter, we study by computer simulations a system of Bosons in two

dimensions interacting with a step potential, representative of a class of interactions

for which the supersolid phenomenology occurs [12]. We employ the worm algorithm,

an extension of the path integral Monte Carlo (PIMC), a finite temperature approach

able to retrieve unbiased results for equilibrium thermal averages. We start by briefly

reviewing the state of the current understanding of the physics of soft core particles,

then results for the soft disk system are illustrated [13–15].

1.2 Soft core potentials in classical physics

Soft core potentials have been already intensively studied in classical physics. These

were used as an effective potential for soft matters particles, such as polymers or

macromolecules. To study the thermodynamic properties of a large assembly of such

objects, one is most likely forced to disregard the internal degrees of freedom, as

they are too many for a microscopic computation approach. Therefore an effective

potential accounting for the interaction among these macro particles is needed. The

interaction among these objects is rather different from the one occurring among their

atomic constituents, which typically have a strongly repulsive core. For example,
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in the case of low density objects such as macromolecules of low inner monomer

concentration, it is possible for them to interpenetrate. While of course the inner

components of the molecule do not overlap, two of these macromolecules may have

the center of mass coinciding in space. Thus, the effective potential among these

objects turns out to be soft core, being bounded to a finite value at zero separation.

This led to the study of the phase diagram of particles interacting through soft

core interactions. In this context the discovery of multiple occupancy crystal occurred,

a rather counter-intuitive phase in which a purely repulsive inter-potential can lead

to particle “piling up” into the same lattice sites [16]. More formally, these are

crystal lattices with a trivial basis of K particles in which all K basis vectors are

null. The reason for this phenomenology is purely due to the potential energy gain

upon clustering and is most easily understood in a simple example, see Figure 1.1.

If one imagines a one dimensional crystal of particles interacting through a Gaussian

two-body potential, for any density an extra particle added to the system will feel a

potential having minima in the interstitial positions: no clustering therefore occurs.

If instead we consider a system of particles interacting through a potential V (r) ∝
exp(−r4) there exists a density above which the extra particle will feel a potential such

that the lower potential region is on a lattice site rather than an interstitial position:

this leads to clustering at high density and low temperature. In particular, a criterion

is known within mean-field for the prediction of clustering, based on the form of the

molecular interatomic potential [17]: its Fourier transform must have a negative value

for some wave-vector k. A system with this characteristic possesses in its ground

state a cascade of cluster phases with progressively higher K upon increasing the

chemical potential, separated among them by a first order phase transitions. Quite

recently, a classical study of the phononic modes of a three dimensional cluster crystal

was performed [18]: it was found that, besides the acoustic modes, the 3(K − 1)

optical modes of such a system are all degenerate and k-independent. It is reasonable

to expect that the basic physics should remain relevant for a quantum-mechanical

system as well. We expect clustering to occur also in the quantum case, but we will

see that quantum fluctuations and Bose exchange will also give rise to completely new

physics, including excitation modes not present in the classical case. From Figure 1.1

it is rather clear that clustering is associated to the existence of a potential barrier

separating lattice sites. We anticipate that the height of this barrier will be important

in the quantum case in determining the superfluid properties of the system.
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Figure 1.1: Individual (full blue) and total (dashed red) potential felt by a “test”
particle in a one dimensional crystal of particles interacting via a Gaussian (top panel)
and an exp(−x4) (bottom panel) potential. No clustering occurs in the Gaussian
system at any density, while the lower system will display clustering instability at low
temperature above some density.

1.3 Soft core Bosons

In Ref. [12], assemblies of Bosons in two dimensions interacting via soft-core potentials

were studied by computer simulations. It was found that the system in its ground

state displays clustering at high density, as expected in analogy with the classical case.

Moreover, it was noted that near the liquid-cluster solid phase boundary, the crystal

shows a finite superfluid fraction. This is of course the aforementioned supersolid

phase. The potentials employed in [12] included long range tails going like 1/r3 or

1/r6, as they were representative of a class of potentials that may be fashioned in

ultracold atom assemblies, via a Rydberg dressing mechanism [11]. However, a long-

range tail is not required in order for a cluster crystal phase to exist. For example,

the classical ground state of a system of particles interacting via the following, soft

core potential

v(r) =

{
D if r ≤ a

0 if r > a
(1.4)



6 CHAPTER 1. SOFT DISK BOSONS

will be a cluster crystal at densities for which the mean inter-particle distance is

less than the soft-core diameter a. However, it is not clear what role, if any, the

long-range repulsive tail of the interaction plays in the occurrence of superfluidity

of the cluster crystal. In order to identify the “minimal model” of supersolidity, we

have investigated the low temperature properties of a two-dimensional system of spin

zero Bose “soft disks”, i.e., particles interacting via the simple potential given by Eq.

(1.4). In spite of its simplicity, to our knowledge (and surprise) this has not been

the subject of any prior theoretical study. The Hamiltonian of the system in reduced

units is

H = −1

2

N∑
i=1

52
i +D

∑
i>j

Θ(|1− rij|), (1.5)

where rij is the distance between particles i and j, all lengths are expressed in units

of the soft-core diameter a, and all energies are expressed in units of ε◦ = h̄2/ma2.

The parameter D ≡ V/ε◦ can also be expressed as (a/ξ)2, where ξ is the quantum-

mechanical penetration length of a potential barrier of height V . In the following we

will sometime refer to particles which are interacting (i.e. are at a distance smaller

than a) as being “overlapping”. In the limit ξ → 0 the model (1.5) reduces to the

hard-sphere gas. The system is enclosed in a cell with periodic boundary conditions,

of sides (Lx, Ly). We denote by N the average number of particles and express the

density ρ in terms of the dimensionless parameter rs = 1/
√
ρa2. In the crystal phase,

we denote with K the average occupation per cluster. In order to study the system

described by this Hamiltonian we use the worm algorithm approach in the grand

canonical ensemble. This a finite-temperature stochastic technique, originating from

the path integral Monte Carlo (PIMC) approach, able to give unbiased estimates of

thermal properties at equilibrium. It is based on the path integral representation of

the thermal density matrix of the system, where quantum particles are mapped into

a classical system of interacting polymers. This technique is exact, meaning that all

systematic and statistical errors can be in principle driven to zero. Details on the

employed algorithms are described in appendix A.

1.4 Ground state Phase diagram

In this section we are in the low temperature limit; that is the value of the temperature

is sufficiently low that most estimates can be regarded as essentially ground state
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Figure 1.2: Qualitative low temperature phase diagram for high and low D as a
function of µ. The panels show typical spatial configuration of the paths to which
quantum particles are mapped, referring to the various phases. Results shown in the
upper part of the figure correspond to simulations with D=60, whereas the lower part
to D=3.

ones (typically T ∼ ε◦, for most quantities). We present here results obtained varying

the chemical potential µ and D. Figure 1.2 summarizes qualitatively the ground

state phase diagram in the D − µ plane, where each panels shows a snapshot of the

paths representing quantum particles in each simulation box during the simulation.

For D � 1 (D = 60 in the figure) and at low density, the physics of the system

is essentially that of the hard-disk fluid, as particles tend not to overlap. In this

condition the system is a superfluid gas. Upon increasing the chemical potential µ,

the system undergoes solidification into a triangular crystal whit K = 1; across this

structural transition the system loses completely the superfluid properties, therefore

the system goes into a “normal solid” state. If the chemical potential is raised high

enough (µ ≈ D), the system will no longer behave as being hard-disk and particles

bunch into clusters (also referred to as “droplets”) which organize in a solid preserving

the triangular structure (a “cluster solid”). As mentioned above, the appearance at

high density of such a cluster phase is a classical effect, directly related to the finite

energy cost associated to particles being at a distance less than the soft core diameter.

Indeed, by minimizing the potential energy per particle it is possible to estimate the
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number of particles per cluster at a given nominal inter-particle distance rs. Cluster

formation becomes favorable for rs<∼ 1, and one finds K = α/r2
s , where α is a number

<∼ 2, independent of D. As in the classical case, in a cluster solid the lattice vector of

the system is almost independent of the density, which affects mainly K.

For low values of D, the system can be kept superfluid even at high density (rs < 1,

meaning that particles do overlap). This is easily understood, as for weak interac-

tions the potential energy gain due to crystallization becomes relevant only at high

densities. Above a certain µ, the exact value depending on D, the system crystal-

lizes directly into a cluster crystal with K > 1, as single occupancy crystal would

be energetically unfavored. The interesting point is that in the cluster crystal phase

near the liquid transition, even though density modulations appear in the system

and translational symmetry is broken, the superfluid fraction ρs in the system is not

fully suppressed: this is the supersolid phase. The presence of a global superfluid re-

sponse in the supersolid phase, extending to the whole system, is assessed numerically

through the direct computation of the winding number, Eq. A.28. This phase is com-

pletely analog to the one described in Ref. [12]; our result then shows that the long

range tail included in the previous study is not a necessary condition for stabilizing

the supersolid phase. The delocalization needed for the dissipationless flow to occur

is determined by particle tunneling between neighbouring clusters. This is possible

because near the transition the potential barrier present across clusters is relatively

weak. Therefore, long cycles of exchanges of particles permutations between neigh-

bouring lattice sites are allowed, eventually leading to the superfluidity of the system

as a whole. Inside a cluster particles are at high density and essentially not interact-

ing, as the soft disk potential is completely flat in a region of diameter 1, therefore it

is reasonable to expect that individual droplets are Bose condensed (even though we

cannot rigorously speak of Bose condensation in a two dimensional, confined system).

In this condition the system behaves like a self-assebled lattice of superfluid regions

connected by Josephson junctions. The kind of supersolidity we observe here is not

related to Bose Condensation of lattice defects, but is rather of mean-field type, as

similar behaviors are obtained within the Gross-Pitaevskii approach [11].

The character of the superfluid-supersolid phase transition is depicted in Figure

1.3, where results for D = 5, (Lx, Ly) = (11.855, 10.267), 64 clusters, are reported.

The static structure factor S(k), order parameter for the breaking of translational

symmetry, has a clear jump at the transition for k corresponding to a reciprocal lattice

vector (k = [0.8662π
a
, 0]), taking place above µ = 38, while the superfluid fractions

drops from 1 to around 0.4. Immediately after the cluster transition rs = 0.59 and
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Figure 1.3: Static structure factor S(k) (k = [0.8662π
a
, 0] being a reciprocal lat-

tice vector) and superfluid fraction ρs across the superfluid-supersolid transition (left
panel), and distribution of the potential energy per particle Epot estimator from
the simulation near the superfluid transition (µ = 38.125). Data are for D = 5,
(Lx, Ly) = (11.855, 10.267), 64 clusters. The jump in the S(k) and the bimodal
character of Epot are a clear indication of a first order phase transition.

K = 5.5. The superfluid fraction is rather strong and not simply due to finite size

effect, as we have verified that the value of 0.4 is already near the infinite size limit.

Finally, near the transition, many estimators from the simulations are bimodal in

character, indicating an oscillation between two thermodynamically stable states, as

shown in Figure 1.3, right panel, for the potential energy per particle Epot. Therefore

we can unambiguously conclude that the superfluid-supersolid transition is first-order.

Increasing the density from the supersolid phase, ρs is progressively suppressed

by the rising potential barrier between neighbouring lattice sites, which is associated

with tunneling probability. This eventually destroys phase coherence in the system,

which goes into a normal (or insulating, i.e. non superfluid) cluster phase. The same

effect of tunneling suppression can be obtained also by increasing D at constant rs,

instead of µ. Higher potential barriers leads to increasingly compact clusters, i.e.

particles pile up on a smaller spatial region (compare, e.g., the spread of the clusters

in the two right panels of Figure 1.2).

The formation of the cluster crystal is also clearly reflected in the pair correlation

function g(r), as shown in Figure 1.4) for the case D = 3. Data in this Figure corre-

spond to the lower panels of Figure 1.2. The pair correlation function is essentially

featureless in the case of the dense superfluid, i.e., g(r) ∼ 1 with only a slight depres-

sion for r ≈ 1. For the supersolid, g(r) develops a peak at r = 0, signaling multiple

occupation of a single unit cell, as well as robust oscillations, with period consistent

with the lattice constant of the cluster crystal. However in this phase particles tunnel
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Figure 1.4: Ground state pair correlation function for D = 5, at three different
values of rs. The dotted line (rs = 0.542) corresponds to a superfluid gas, the solid
one (rs = 0.421) to a supersolid, and the dashed one (rs = 0.252) to a non-superfluid
cluster crystal.

between adjacent clusters, therefore the pair correlation function takes on a finite

value between successive peaks. As the density increases, clusters comprise a larger

number of particles, as reflected by the increased strength of the peak at r = 0, and

a depletion of the inter-cluster space occurs, in accordance with the increase of the

inter-cluster barrier height. Similar effects are clearly depicted in Figure 1.5, where

the averaged potential felt by a “test” particle is plotted along the crystallographic

direction [1, 0] passing trough the lattice sites for the supersolid and the cluster solid

phases, for D = 3 at different densities. The supersolid retains a finite density of

particles among neighbouring lattice sites, while in the cluster solid this is completely

suppressed. Note that the potential felt by the “test” particle, which has minima in

correspondence of the clusters, in the insulating phase is much deeper, resulting in

the already noted stronger confinement of the droplets. As particles pertaining to

the same droplet are essentially not interacting, the confining potential is originated

exclusively by the nearest neighbouring clusters. Therefore the potential perceived

by the “test” particle is precisely the cluster recoil force which determines phononic

properties of the system (see forthcoming sections for excitation properties).

We conclude this section with a small outlook. We have depicted, in Figure 1.2,

what is the behavior of the system in the limit of strong or weak D. However, it

is not clear what is the behavior in the intermediate region. In particular it would

be interesting to determine which is the minimum number of particles per unit cell

K such that the supersolid phenomenology occurs, which would answer the question
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Figure 1.5: Density profile and potential felt by a test particle between two adjacent
sites, for a supersolid conditions (upper panel) and for a cluster solid (lower panel),
for D = 3 at different densities.
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Figure 1.6: Superfluid fraction of as a function of T (in units of ε◦) for a system of
soft disks with D=5. Here, µ is set so that rs = 0.5. Data shown are for two system
sizes, comprising N=92 (circles) and N=172 (squares) particles.

as to if a supersolid with K = 1 can exists. Although from the test performed this

seems not to be the case for soft disk Bosons, whether this is at all possible with some

other potential remains unclear and is a potential subject for further investigations

on similar systems.

1.5 Temperature dependence

A typical result for the dependence of ρs on the temperature in the supersolid phase is

shown in Figure 1.6, for D = 5 and rs = 0.5. As expected, the increase in temperature

of the system results in the progressive suppression of the superfluid response. As

in any simulation study, the transition is smeared by finite-size effects, and accurate

finite-size scaling analysis of the result obtained on systems comprising significantly

different numbers of particles would be required, in order to determine accurately the

transition temperature. However, it can be seen that the T = 0 superfluid fraction

is already near the thermodynamic limit, being equal within errorbars for the two

different system sizes shown. The results shown in Figure 1.6 are consistent with

a superfluid transition in the Kosterlitz-Thouless universality class, [19] as expected

for a two-dimensional system. It is worth noting that the superfluid fraction does

not saturate to a value of 1 as T → 0. This is in line with the spontaneous break-

ing of translational invariance associated to crystalline order, as first pointed out

by Leggett. [4]. The onset of superfluidity is well known to be underlain by long

cycles of exchanges of identical particles (permutations). Figure 1.7 shows the fre-
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Figure 1.7: Number Np of occurring permutation cycles in the simulation as a func-
tion of their length (i.e., the numbers of particles involved), at various temperatures.
Temperatures are expressed in units of ε◦. Here, D = 5 and rs = 0.5. The system is
in the cluster crystal phase at all temperatures.

quency of occurrence in the simulations of exchange cycles of different “length”, i.e.,

involving different numbers of particles, at four different temperatures for a system

in the cluster crystal phase. At the lowest T , exchanges involving all particles in the

system are present. At the highest T , the number of occurring permutation cycles

Np drops sharply for cycles involving more than the number of particles per clus-

ter (approximately 7 in the simulations shown here). However, even at the highest

temperature represented here clusters are individually superfluid, even though global

phase coherence does not exist.

Regarding the transition to normal cluster crystal of the supersolid upon increasing

the density, our data at finite T are consistent with an exponential decrease with D

or µ of the superfluid transition temperature of the cluster crystal, but we cannot rule

out continuous quantum phase transitions between a supersolid and a normal cluster

crystal, driven by either µ or D. In conclusion, we can state that the supersolid

phase, at constant D, can be suppressed either by increasing the temperature or the

density, in which case the superfluid character is lost, or by lowering the density, in

which case it is the crystalline structure to be suppressed. The resulting schematic

finite temperature phase diagram in the limit of small D, compatible with data from

our simulations, is shown in Figure 1.8.
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Figure 1.8: Qualitative low D phase diagram at finite T . Thick lines show first-order,
dashed lines continuous phase transitions.

1.6 Momentum distribution

The finite superfluid response is accompanied by a strong signature in the momentum

distribution n(k), shown for low temperatures in Figure 1.9, along the crystallographic

direction [0, 1]. Even though Bose condensation is suppressed in two dimensions at

finite temperature, in the supersolid phase the calculated momentum distribution

features a pronounced peak at k = 0, as well as a smaller peak at k = 2π/l. Neither

is found in the insulating crystal. The former represents the integral of the occupa-

tion number of low-momentum states, corresponding to a slow power-low decay of

the one-body density matrix (OBDM). The latter describes a substantial real-space

modulation of the OBDM with the periodicity of the triangular lattice.

1.7 Leggett Bound

It is interesting to consider the upper limit on the superfluid fraction induced by

density modulations, as pointed out by Leggett [4]. The bound reads as [20]:

ρs ≤ min
ϕ(r)

(
1

V v2
0

∫
ρ(r)

ρ
| vs(r) |2 dr

)
vs(r) =

(
h̄

m

)
5ϕ(r)

ϕ(r + (nLx, n
′ Ly)) = ϕ(r) + 2πn′′,

(1.6)
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along the direction [0, 1]. The peaks

at k = 0 and k ∼ 0.85 (in units of 2π/a) are due to (quasi)condensation and strong
modulation of the OBDM with the lattice periodicity, respectively.

where ϕ(r) is a phase function, ρ and v0 are the average value over the simulation

cell of ρ(r) and vs(r) respectively, and n, n′ and n′′ are integers. This equation

essentially states that if the system is uniform the superfluid fraction can be one, while

if density modulations are present its value must be necessarily lower. Although the

Leggett bound is very loose in strongly correlated systems such as solid 4He or para-

hydrogen [20], it could provide an argument to explain why soft disks are supersolid

under appropriate conditions while two-dimensional solid 4He is never, should their

density profiles look different. For example, one may expect the density profile of a

cluster supersolid to be less modulated than that of an ordinary condensed matter

system. In order to verify this possibility we compared (Figure 1.10) the density

profile of the supersolid soft disk system for D=5, T=0.1, µ=45, ρs = 0.25 ± 0.01

with the one of solid 4He in two dimensions at low temperature slightly above the

melting density (ρ = 0.0765Å−1, T = 1K). Actually the two density profiles are

remarkably similar, and the Leggett bound gives ρs ≤ 0.39 for the soft disk and

ρs ≤ 0.37 for Helium. This shows that, within the constraint of Eq. 1.6 imposed by

one-body properties, many-body effects have even qualitative effects on the superfluid

response. In particular, the difference between hard- and soft-core systems is entirely
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Figure 1.10: Density profiles ρ(r)/ρ for soft disks in the supersolid phase (D=5,
T=0.1, µ=45,ρs = 0.25 ± 0.01), and for solid 4He near melting (ρ = 0.0765Å−1,
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encoded in two-body (and possibly higher) correlations. Indeed the pair distribution

function of supersolid soft disks is peaked at contact, as opposed to the correlation

hole induced by hard-core repulsion in Helium.

1.8 Toward realistic systems

If supersolid systems could be realized in the field of ultracold atoms, in principle

it would be desirable to compare results from the experiments with Monte Carlo

simulations, as it was already done for lattice systems [21]. In order to do so, one

would need to include some features of realistic interparticle potentials. In particular,

in ultracold atom systems a soft core potential may be realized employing Rydberg

dressed atoms [11], which can produce long range (in the order of µm), soft-core

potentials. However, the atoms still possess an hard core contact interaction, al-

though of a typical size much smaller (order of nm). Therefore it is be interesting

to check if this hard core interaction would break the phenomenology depicted in

the previous sections. It is easy to convince ourselves that, for a classical system at

zero temperature, if the excluded surface of this hard core is much smaller than the

inverse density inside a droplet in the system, the clustering phenomenology should

still be present. However, it is less obvious that the supersolid phase should survive

to zero point motion when quantum fluctuations are present. Indeed, simulations in

which a small excluded volume is added to Hamiltonian 1.5 display stable supersolid
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Figure 1.11: Snapshot of a Monte Carlo configuration for a soft disk system with
hard core repulsion in the supersolid phase (ρs = 0.27 ± 0.04). In the smaller panel
the g(r) of the system is reported, being zero at contact for this case.

phases for certain parameters values. In Figure 1.11, a configuration snapshot from

a simulation of the supersolid system is reported, together with the pair distribution

function which is now zero at contact. This simulation is performed in the canonical

ensamble, for 144 particles (rs = 0.427) having a small hard core of diameter 0.05a,

with the soft-core (diameter a) having D = 17. The resulting superfluid fraction is

ρs = 0.27± 0.04.

Moreover, the experimental realization of a supersolid system in the ultracold

atom field would be inevitably trapped in an harmonic potential. In such a confining

potential the supersolid system would be surrounded by a liquid region. It is inter-

esting to calculate properties that can be compared directly with experiments, such

as the momentum distribution n(k). We give in Figure 1.12 a couple of examples of

such simulations (for D = 5, µ = 50, no contact interaction included), to illustrate

the qualitative features expected in this situation. The supersolid phase (top panels)

is indeed surrounded by a broad superfluid region. However, in the angle averaged

n(k) it is possible to observe the oscillations already noted in the extended system, al-

though strongly smoothed. In a normal liquid (bottom panels), we recover the broad
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distribution expected for a non condensed system.

1.9 Excitation spectrum

We now come back to the soft disk system (no hard-core interaction) in the extended

case. Of particular interest is the spectrum of elementary excitations of a supersolid,

which offers access to arguably even more cogent information on the physics of a

system, than structural or energetic properties of the ground state. For example, it

is not obvious how the excitation spectrum would combine specific traits of a solid

and of a superfluid, i.e., whether two separate Goldstone modes should be present,

reflecting the two broken symmetries, or a single mode of distinct, different character.

Also of interest is establishing whether the excitation spectrum of a superfluid system,

that also breaks translational invariance, displays a roton minimum. It is also worth

noting that the experimental study of the dynamic structure factor in assemblies of

ultracold atoms has recently begun [22, 23], therefore results presented here are in

principle amenable of direct experimental verification. We use the Worm Algorithm

in the continuous-space path-integral representation to simulate the system described

by Eq. 1.5 in the grand canonical ensemble (i.e., at fixed temperature T , area A and

chemical potential µ). The simulation gives an unbiased, accurate numerical estimate

of the imaginary-time intermediate scattering function

F (k, τ) = 〈ρ̂k(τ)ρ̂−k(0)〉/N, (1.7)

where ρ̂k =
∑

j e
ik·rj is the density fluctuation operator at wave-vector k and the

brackets denote a thermal average. The dynamic structure factor S(k, ω), which

measures the excitation spectrum of the density fluctuations, is related to F (k, τ) via

an inverse Laplace transform:

F (k, τ) =

∫
dωe−τωS(k, ω). (1.8)

It is well known that there exists no general scheme to invert a Laplace transform

from noisy data, in a way that is reliable, accurate and controlled. However, for phys-

ical spectra whose dominant contribution is given by a few well-defined peaks, some

techniques are able to identify satisfactorily locations and spectral weights of those

peaks. In this work, we made use of the Genetic Inversion via Falsification of Theories

(GIFT) [24] approach for the numerical inversion of the Laplace transform Eq. 1.8.
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When applied to superfluid 4He, the GIFT method has been shown to separate cor-

rectly the sharp quasiparticle peak of the phonon-maxon-roton elementary excitation

from the broad multiphonon contribution [24], whereas the more commonly adopted

Maximum Entropy scheme [25] tends to merge both structures [26, 27]. Alongside

with this method, using the information on the number n of excitations visible in the

reconstructed spectrum, we compute the energy of the n observed excitations by as-

suming the spectrum S(k, ω) as a function of ω only is constituted by n delta functions

(n-pole approximation) and fit their positions and strengths to the available F (k, τ)

data. Figure 1.13, colormap, shows GIFT reconstructions of the dynamical structure

factor S(k, ω) in the superfluid, supersolid and cluster crystal phases; datapoints are

obtained from the n-pole approximation instead. In the superfluid phase (Fig. 1.13

a), the spectrum is characterized by the usual phonon-maxon-roton dispersion, with

the notable peculiarity that the roton minimum is located just short of 2π/a, rather

than around 2π/rs. This suggests that the incipient crystallization takes place with a

lattice parameter larger than the mean inter-particle distance. Indeed, upon increas-

ing µ, the superfluid undergoes a first order phase transition into a triangular cluster

(super)solid with a lattice spacing d somewhat larger than a [13].

The spectrum of the cluster crystal is also standard (we have studied longitudi-

nal excitations only). Figure 1.13c) shows that, within the first Brillouin zone, most

of the spectral weight is concentrated in an acoustic phonon band. We observe a

non-negligible zero-frequency contribution at all wavelengths, representing a diffusive

mode of lattice defects (phase-incoherent hopping of particles between multiply occu-

pied sites). We also observe for some k-points the presence of an optical mode, which

might be the analogue of the highly degenerate breathing mode of individual clusters

observed for classical cluster systems [18], but we do not determine its dispersion

relation here.

The excitation spectrum of the supersolid phase (Fig. 1.13b), is the main result

of this section. The spectral weight is clearly partitioned in two distinct branches.

The higher-energy mode is a longitudinal acoustic phonon, with a linear dispersion

at small k and near the reciprocal lattice vector (the end of the k scale in the fig-

ure), and frequencies between the phonon-maxon of the liquid and the longitudinal

phonon of the solid. This assignment is further supported by the following analysis.

We computed the average potential vtest(r) felt by a test particle across a lattice site

(upper panel of Figure 1.5, also showing the particle density profile). We define a

force constant by fitting a quadratic potential to the bottom of vtest(r), and obtain

the phonon frequency of an harmonic crystal with that force constant and the aver-
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Figure 1.13: Dynamic structure factor S(k, ω) in various phases. Panels refer to a)
a superfluid, b) a supersolid, and c) a non-superfluid cluster crystal. The colormap is
obtained by smoothing and interpolation of the calculated GIFT spectra. In order to
emphasize the dispersion of the spectrum, for each k the dynamic structure factor is
rescaled to a common maximum value in all panels. The datapoints are obtained from
the n-pole approximation (see text); when errorbars are not reported, these are of the
order of the symbol size or smaller. For the modulated phases b) and c), the primitive
vectors of the Bravais lattice are d(1, 0) and d(1/2,

√
3/2) with d = 1.375a; the wave-

vector spans the range 0– 4π
d
√

3
along the direction [0, 1]. The mean site occupation is

K = 9.2 in b) and K = 16.7 in c). Also given are the values of rs (mean inter-particle
distance) and ρs (superfluid fraction). The upper (lower) panel corresponds to the
supersolid (cluster solid) phase of Figure 1.5
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age mass of a cluster, given by K. The sound velocity of the harmonic crystal is in

satisfactory agreement (to within ∼ 10%) with the slope of the phononic branch of

the supersolid displayed in Figure 1.13 b).

The lower branch of the supersolid spectrum is also acoustic. Its nature is assessed

by studying its behavior as the superfluid fraction ρs decreases on approaching the

transition to the normal cluster crystal. Figure 1.14 displays S(k, ω) at the Brillouin

zone edge for rs = 0.421, as in Figure 1.13b), and for a denser system at rs = 0.389

where the system is still supersolid but ρs drops from 0.30 to 0.15. When the density

increases the particles progressively get more localized around lattice sites, as shown

by the density profiles of Figure 1.5, and the system gets stiffer. Correspondingly, the

high energy peak of the supersolid spectrum shifts to higher frequencies, as expected

for a phonon-like excitation. The low energy mode instead loses spectral weight fol-

lowing the loss of superfluid fraction, and shifts to lower frequencies, reducing its

bandwidth. Similar results are obtained if superfluidity is suppressed by increasing

the strength (D) of the interaction, at fixed density. The lower branch is thus seen

to be largely unrelated to the spectra of the superfluid or the cluster solid phases.

It could only be related to the phonon-maxon-roton of the superfluid if the density

modulation of the supersolid could vanish smoothly. This possibility is preempted,

however, by the first-order phase transition at the melting density of the supersolid.

The structural properties of the cluster crystal [13], with particles hopping be-

tween adjacent lattice sites, suggest an analogy with the Bose-Hubbard model which

is clearly born by the spectral properties of both systems. While in continuous space
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the lattice is self-assembled, and thus features vibrational modes that are obviously

absent in the BHM, the lower branch of the supersolid phase shows noteworthy sim-

ilarities with the acoustic excitation present in the superfluid phase of the BHM.

In particular, its behavior for wavelengths approaching the reciprocal lattice vector
4π
d
√

3
parallels the expected linear vanishing of the superfluid mode of the BHM. Our

calculations use a finite simulation cell, implying a minimum distance of the wave-

vector from 4π
d
√

3
. Within this limitation, we find that the spectrum of the cluster

supersolid is gapless at the reciprocal lattice vectors, i.e. there is no roton minimum.

The analogy between the supersolid cluster crystal and the BHM superfluid is fur-

ther supported by the softening of the low energy branch of the supersolid observed

for increasing density (and/or increasing D), Figure 1.14. A higher density implies

reduced hopping probability and enhanced on-site repulsion, as shown in Figure 1.5.

In the BHM this is equivalent to lowering the t/U ratio, which in turn is known to

reduce the bandwidth of the superfluid acoustic mode of the superfluid phase [28].

The phase transition between supersolid and cluster solid observed in the SD system

has thus some bearing with the superfluid to Mott insulator (MI) quantum transi-

tion in the BHM. This is not a full correspondence, as finite temperature and lattice

dynamics contribute to stabilize a compressible cluster solid phase with non-integer

mean occupation of lattice sites, more similar to the normal liquid (NL) than the MI

phase of the BHM; on the other hand, the finite temperature NL and MI phases are

not fundamentally different, being connected by a crossover upon varying t/U [29].

In the BHM, where the translation invariance is explicitly broken, the presence of

an acoustic mode is due to long-range phase coherence, which breaks the continuous

gauge symmetry. In a continuous space superfluid, the corresponding mode is second

sound. This mode is not seen in the spectrum of the SD superfluid phase (Figure

1.13a), where its spectral weight is presumably exceedingly low. In view of the analogy

between the SD supersolid and the BHM superfluid, we are led to suggest that the

lower branch of the supersolid is a kind of second sound. Indeed, the presence of a

second longitudinal acoustic branch in a supersolid is a common feature of several

phenomenological models, which assume some degree of phase coherence and the

possibility of a density modulation not commensurate to the particle number [30–32].

In particular, Ref. [30] characterizes this second branch in the supersolid phase as

a Brillouin peak, with out-of-phase fluctuations of the normal and the superfluid

density, emerging from the defects-associated Rayleigh mode of the normal solid,

much as second sound in superfluid 4He [33].

The experimental realization of a SS system similar to that studied here appears
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possible in assemblies of ultracold atoms [12]. The double acoustic excitations, pe-

culiar to the supersolid phase, could be detected via Bragg Spectroscopy [22, 23].

This could be an interesting experimental verification of our findings, and a tool for

identifying the supersolid phase unambiguously as well.

1.10 Conclusions

In summary, we have studied by Monte Carlo simulations a two-dimensional system of

Bosons on the continuum interacting via a repulsive, short-range soft-core potential.

This system displays a low-temperature supersolid phase, wherein particles tunnel

across nearest-neighbouring, multiply occupied unit cells. We studied the qualitative

phase diagram of the system, characterizing the conditions under which the supersolid

phase can be observed. We analyzed various properties of the system in its ground

state, such as the pair correlation function and momentum distribution. Through the

computation of the Leggett bound it was shown that the superfluidity in the system

is not due to a shallower density profile with respect to solid 4He, but is encoded

in higher order correlations. The dependence of the supersolidity phenomenology on

the temperature was found to be compatible with a Kosterlitz-Thouless behavior. We

also carried out a numerical study of the excitation spectrum of the model. The main

finding is that two well-defined, distinct acoustic modes are present in the supersolid

phase. The higher-energy branch is determined by the lattice dynamics, while the

softer mode is uniquely due to the presence of a finite superfluid fraction. Its disper-

sion closely parallels that of the excitation spectrum of a superfluid Bose-Hubbard

model: it further softens as superfluidity is demoted approaching the insulating solid

phase; furthermore, for the system sizes studied here, it looks linearly vanishing at the

reciprocal lattice vectors, rather than featuring a finite roton minimum. The physics

illustrated here should be observable under relatively broad conditions, if soft-core

pair-wise interaction potentials could be fashioned.



Chapter 2

Minimum Energy Pathway via

Quantum Monte Carlo

2.1 Introduction

Determining minimum energy pathways (MEP) of reactions is of fundamental impor-

tance in scientific and technological applications. The knowledge of barrier heights is

key to the prediction of catalytic properties of materials since it enables the use of

transition state theory (TST) to determine reaction rates [34–36]. Locating efficiently

the transition state on a potential energy surface (PES) is in fact a popular subject in

computational physics and, to this aim, a variety of algorithms have been developed

such as the shallowest ascent, synchronous transit, and nudged elastic band (NEB)

approaches [37]. All these techniques ultimately rely on a method to determine the

energy of a given atomic configuration and/or its derivatives.

If we restrict ourself to quantum simulations, the most used approaches are den-

sity functional theory (DFT) or highly-correlated quantum chemical methods, that is,

wave function post-Hartree-Fock techniques such as the coupled cluster single-double

and perturbative triple approach (CCSD(T)), which is generally considered the “gold

standard” in quantum chemistry. Many of these wave function methods are varia-

tional (though coupled cluster methods are not) and in principle offer a systematic

route to converge toward the exact energy, even though the increasing computational

cost and the slow convergence severely limits this possibility. Their main drawback is

that all these approaches implicitly or explicitly rely on expanding the wave function

in Slater determinants and, therefore, require large amount of computer memory and

have a poor size scaling (N7 for CCSD(T), N being the number of electrons), limiting

25
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their range of applicability to small systems.

Consequently, for larger systems DFT remains the method of choice due to its

much more favorable computational cost (scaling from N2 to N4). Even though

continuous progress in the field has led to the development of more precise and so-

phisticated DFT functionals, the situation is still far from satisfactory if one aims

at high accuracy [38, 39]. For example, it is well known that popular functionals

such as B3LYP [40–42] often lead to poor transition state geometries and barrier

heights [43,44]. Moreover, there remains a degree of arbitrariness in the choice of the

functional, with different functional providing qualitatively different results in some

cases. Since DFT methods are not variational and do not offer a systematic way to

improve their estimates, one has to resort to different approaches if better accuracy

is needed.

Alternatively, one can employ quantum Monte Carlo (QMC) methods, such as

variational (VMC) and diffusion (DMC) Monte Carlo. These well-established ab-

initio techniques take advantage of Monte Carlo integration over the full Hilbert

space. In particular, VMC is a stochastic way of calculating expectation values of a

complex trial wave function, which can be variationally optimized. DMC provides

instead, with a higher computational cost, a stochastic ground-state solution to the

full Schrödinger equation, given a fixed nodal surface (using the fixed-node approx-

imation in order to avoid the notorious fermion sign problem). A more detailed

description of these algorithms is provided in appendix B. Because integrations are

performed in the full Hilbert space, one can make use of non separable wave func-

tions, with the explicit electron-electron correlation encoded in a so-called Jastrow

factor or in a backflow transformation [45]. This allows for noteworthy accuracy al-

ready using a simple and non memory-intensive single determinant Slater-Jastrow

wave function. Although considerably more expensive than DFT methods (scaling as

N3 with a much larger prefactor ), DMC generally offers better accuracy with respect

to DFT [46–48], although some unsatisfactory cases are known [49–51]. Furthermore,

QMC methods possess a variational principle, which is a useful feature when one has

to evaluate energy differences as in TST. From a computational point of view, QMC

codes can be made to scale linearly with the number of cores and are not particularly

memory demanding, making them suitable for today’s massively parallel supercom-

puters. Finally, QMC methods offer in principle the possibility to push the calculation

up to a desired accuracy by employing wave functions of increasing complexity (al-

though, from a practical point of view, one is likely to adopt simple wave functions for

intermediate-to-large sized systems due to the increased computational cost of multi-
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determinant wave functions). One of the alleged drawbacks of QMC methods is its

presumed inability to calculate energy derivatives effectively. Although various au-

thors have addressed the problem from different perspectives [52–55], the application

of forces from QMC has been limited to few cases [56–58]. We will in this chap-

ter make extensive use of forces with the approach described in [52], and we hope

to convince the reader that QMC forces are actually reliable and computationally

viable.

In previous QMC studies of reaction barriers the geometries have been taken ei-

ther from DFT, or from constrained geometry optimization along an assumed reaction

coordinate [58–60]. In the present work, we show nudged elastic band and climbing

image calculations [61, 62], where the geometry optimization of all the NEB images

is done fully at the QMC level. We believe that assessing the performance of QMC

methods for a set of simple reactions is useful, as there is no literature on the de-

termination of reaction paths within QMC and there are limited informations on its

performances [58–60]. The QMC calculations are performed with a modified version

of the CHAMP program, a quantum Monte Carlo program package written by C.

J. Umrigar, C. Filippi, and collaborators. We also use the GAMESS package [63],

for producing initial wavefunction and DFT calculations. For some representative

challenging reactions from the NHTBH38/04 database [44, 64] and for a hydrogen

transfer reaction [65], we determine transition state geometries and forward-reverse

barrier heights within VMC and DMC, and compare our results against several cur-

rent DFT functionals and other wave function methods. We demonstrate that VMC

is able to locate reaction geometries with higher accuracy than DFT, while DMC

outperforms DFT in evaluating barrier heights [66].

2.2 Methodology: Wavefunction and Pseudopo-

tentials

In the following, unless otherwise stated, we employ a single determinant Slater-

Jastrow wave function for our VMC/DMC calculations:

Ψ(r,R) = D↑(φ↑, r↑,R)D↓(φ↓, r↓,R)J(r,R), (2.1)

where {r} and {R} denote the full set of single particle electronic (ri) and nuclear

(Ri) positions, respectively. The Jastrow factor, J(r,R), explicitly depends on the
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inter-particle distances, [67]:

J(r,R) = exp

{
−
∑
i,j

Uee (|ri − rj|)−
∑
i,j

U j
en (|ri −Rj|)−

∑
i,h,j

U j
een (ri, rh,Rj)

}
(2.2)

in which we include an electron-electron ee correlation term Uee (|ri − rj|), an election-

nucleus en term U j
en (|ri −Rj|) and a three body electron-electron-nucleus een term

U j
een (ri, rh,Rj). These functions are then expanded in fifth-order polynomials of the

ee, en distances. The Jastrow factor is adapted to deal with pseudo-atoms. The Slater

determinants, D↑ and D↓, are constructed from the sets of molecular orbitals {φ↑} and

{φ↓} for the up- and down-spin electrons, respectively. We employ scalar-relativistic

energy-consistent Hartree-Fock pseudopotentials specifically constructed for QMC

calculations and expand the molecular orbitals on the corresponding cc-pVDZ ba-

sis set [68,68]. For the hydrogen atom, we use a more accurate BFD pseudopotential

and basis set from M. Dolg and C. Filippi, unpublished. These pseudopotentials have

been extensively benchmarked, and their reliability has been recently supported by

a DMC computation of atomization energies to near-chemical accuracy [47]. The

pseudopotentials are treated beyond the locality approximation [69].

Our choice of such minimal wavefunction and basis set is intentional since we

want to maximize the scalability of our approach to systems larger than the ones

considered here. Our interest here is not to challenge quantum chemistry methods

for small systems but, rather, to devise a strategy that has a more extended range of

applicability while preserving a notable accuracy.

2.3 Methodology: Wavefunction optimization

While most DMC calculations found in literature use molecular orbitals computed

with some other electronic structure method [70–76], most often DFT, a key feature of

our approach is that it is fully consistent since, at each iteration step in our geometric

optimization, we perform a QMC optimization of all wave function parameters. This

is done in order to guarantee consistency between the forces and the PES (see following

sections) as well as to improve the results in terms of the absolute energy. It is

found that this optimization procedure only approximately doubles the computer

time needed to perform the calculations, while significantly lowering the expectation

value of the energy. Full optimization of the wavefunction parameters is performed

employing the strategy of energy minimization implemented in the CHAMP package
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and described in [77]. The wavefunction in general has a non linear dependence on its

parameters. However, we consider the expansion to linear order of the wavefunction

ψlin(α, r) = ψ(α0, r) +
Nα∑
i=1

∆αiψ
′
i(α, r)

ψ′i(α, r) =
∂ψ(α, r)

∂αi

∣∣∣∣
α=α0

,

(2.3)

where α0 are the initial parameters, ∆α = α−α0 are the parameters variation, Nα

is the number of parameters. For linear parameters, the variations minimizing the

energy are solution of the eigenvalue equation [78]

H∆α = ES∆α, (2.4)

where H and S are the Hamiltonian and overlap matrix in the basis formed by

the current wavefunction and its derivatives {ψ0, ψ
′
1, ψ

′
2, . . . , ψNα}. In a Monte Carlo

sample these are estimated as:

H ij =

〈
ψ′i
ψ0

Hψj
ψ0

〉
ψ2

0

; Sij =

〈
ψ′i
ψ0

ψj
ψ0

〉
ψ2

0

, (2.5)

where with the symbol < . . . >ψ2
0
=
∫
ψ2

0(r) . . . dr we denote the average over the

sampling of ψ2
0. By solving Eq. 2.4 one can obtain linear variations ∆α, however, as

these are calculated in the first order approximation the parameters ∆α+α0 may be

even worse than the original ones. In order to devise a better strategy, one possibility

is to alter the dependence of the wavefunction on the nonlinear parameters by acting

on the normalization of ψ(r). A function C(α) is introduced, depending on the set of

nonlinear parameters only, such that C(α0) = 1, and a new wavefunction is defined

ψ̃(α, r) = C(α)ψ(α, r). The new derivatives are

ψ̃′i = ψ′i + C ′iψ0

C ′i =
∂C(α)

∂αi

∣∣∣∣
α=α0

.
(2.6)

We can then calculate the new variations ∆α̃, and estimate the new ψ̃lin = ψ(α0, r)+∑Nα
i=1 ∆α̃iψ̃

′
i(α, r). Since the variational space is the same and we are in the linear
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approximation, ψ̃lin must be proportional to ψlin, i.e.:

∆α̃ =
∆α

1−
∑Nα

i=1C
′
i∆αi

. (2.7)

Imposing C(α) such that ψ̃′i ⊥ ψ0 one obtains good parameters but can lead to

arbitrarily large parameters variations in some cases [79]. Another possible choice

is to choose C(α) such that ψ̃′i ⊥ ψlin minimizes the linear wavefunction change∣∣∣ψ̃lin − ψ0

∣∣∣, but this can lead to arbitrarily small parameters variations even far from

the minimum. It is found that a reasonable choice is to impose an intermediate

condition: ψ̃′i ⊥
(

ψ0

2|ψ0| + ψlin
2|ψlin|

)
. The parameter variations ∆αi are found to be

unstable if the Monte Carlo sample is not large, In order to correct this problem, it

is possible to add a positive constant adiag to the Hamiltonian matrix H ij, except

for the first element. As adiag is made larger parameter variations are smaller and

point toward the steepest descent direction. In the CHAMP code, once matrices H

and S are computed, three different values of adiag are used in computing parameter

variations, differing by a factor of ten. The three resulting energies are computed

by a correlated sampling run, and a parabolic fit determines (within certain bounds)

the optimal value of adiag used for the actual computations of the new parameter.

After parameters are updated, the linear optimization procedure is iterated until

convergence of the resulting energy. It may seem that the possibility of optimizing

the wavefunction will be limited to small systems, as there is the need of storing

matrices H and S, Nα ×Nα large. However, it was recently demonstrated that the

optimization of large sets of parameters is possible [80], through the use of Krylov

subspace algorithms, although we do not use this approach here.

2.4 Calculation of forces via correlated sampling

The computation of the reactant and product geometries, the NEB calculations, and

the saddle-point location through the climbing-image method are all optimization

procedures over the total energy, although with different constraints. They require,

explicitly or implicitly, the ability to calculate derivatives of the total energy. We will

be employing here forces calculated by finite increments via correlated sampling [52].

In principle it is possible and advisable to use forces by explicit differentiation in order

to reduce the computational effort [54], however for the small systems reported here,

the use of a finite-difference techniques is not coming with a large computational cost.

We calculate forces employing a primary, reference configuration P and a secondary,
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displaced perturbed configuration S. The force then will be:

F = lim
∆R→0

EP − ES

∆R
≈ EP − ES

∆R
for small ∆R, (2.8)

where E is the total energy of the systems, and ∆R the ion coordinates displace-

ment. The calculation of 2.8 can be easily computed numerically in a non stochastic

approach by explicitly computing the energy of configurations P and S in separate

runs, as long as the limit is not done literally and numerator and denominator of

2.8, last term, do not go below machine precision. In a stochastic approach how-

ever this is not possible: if we perform the calculation of EP and ES separately and

evaluate the numerator of 2.8, we realize that we are subtracting two very similar

quantities. Because these quantities have a statistical uncertainty σEP and σES we

see that σF → ∞ as ∆R → 0. However, a technique for dealing with such differ-

ences in a stochastic approach exists and is the so-called correlated sampling. This

essentially consist in using the same sampling for systems S and P , and introducing

in the averages a reweighting factor. This is done in order to exploit the cancellation

of statistical errors arising from the use of the very same sampling. In VMC (see

appendix B.1), one can then express the difference of energies as:

EP − ES =
1

N

N∑
i=1

−ES
l

(
ψS
(
rPi
))
Wi + EP

l

(
ψP
(
rPi
))

Wi =
N
∣∣ψS (rPi ) /ψP (rPi )∣∣2∑N

j=1

∣∣ψS (rPj ) /ψP (rPj )∣∣2 ,
(2.9)

where EP
l , ES

l are the local energy terms of the two systems, Eq. B.2, and rPi

denotes the electronic coordinates sampled over the wavefunction of the reference

configuration ψP (ri). Wi are the correcting weights we have to multiply the local

energy terms of configuration S over the sampling of P , in order to obtain the correct

result. Eq. 2.9 returns zero exactly (no statistical uncertainty) if HP = HS, e.g. the

ionic configuration is the same, and ψP (ri) = ψS (ri). Expression 2.9, inserted into

Eq. 2.8, ensures that σF will not diverge anymore for ∆R → 0, but will actually

go to a finite value. This expression however has to be further modified in order to

obtain an efficient algorithm. The sampling of the electronic coordinates performed

over system P will have a density peaked at ionic positions RP
h . This of course is not a

proper distribution for the displaced ionic coordinates RS
h , introducing fluctuations in

the Wi terms which eventually are reflected in a larger σF . This problem however can
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be solved by introducing the so-called “space-warp” coordinate transformation [52],

which drags the sampling points ri for the configuration S so that, in the vicinity of

a nucleus RP
h , they move rigidly with it as it is displaced to the new position RS

h .

rSi = rPi +
Natoms∑
h=1

(
RS
h −RP

h

)
ωh(r

P
i )

ωh(r
P
i ) =

F
(∣∣rPi −RP

h

∣∣)∑Natoms
h=1 F (|rPi −RP

h |)
,

(2.10)

where F (r) is a decaying function like r−k or e−kr, such that its decaying length is

smaller of the typical interatomic distance. It is found that the choice of F has no ma-

jor effect on performances, in the following r−4 will be used. With this modification,

Eq.2.9 becomes:

EP − ES =
1

N

N∑
i=1

−ES
l

(
ψS
(
rSi
))
Wi + EP

l

(
ψP
(
rPi
))

Wi =
N
∣∣ψS (rSi ) /ψP (rPi )∣∣2 J (rPi )∑N

j=1

∣∣ψS (rSj ) /ψP (rPj )∣∣2 J (rPj ) ,
(2.11)

where J (r) is the Jacobian of transformation 2.10.

An additional complication arises due to the behavior of the local energy near the

nodes. If we make the derivative of Eq. B.1 in the case where the operator is the

Hamiltonian of the system we obtain

〈E〉 =
1

Z

∫
dr |ψT (r)|2El (r) ; Z =

∫
dr |ψT (r)|2〈

dE

dR

〉
=

1

Z

∫
|ψT (r)|2

(
dEl
dR

+ (El − 〈E〉)
d ln(|ψT (r)|2)

dR

)
dr.

(2.12)

Near the nodes El ∝ 1
d
, where d is the distance from the nearest nodal surface,

dEl
dR
∝ 1

d2 and Π ∝ d2. As a result, the integral 2.12 is bounded. However, the

variance of
〈
dE
dR

〉
is not, since

σ

〈
dE

dR

〉
=

1

Z

∫
|ψT (r)|2

(
dEl
dR

+ (El − 〈E〉)
d ln(|ψT (r)|2)

dR

)2

dr−(
1

Z

∫
|ψT (r)|2

(
dEl
dR

+ (El − 〈E〉)
d ln(|ψT (r)|2)

dR

)
dr

)2
(2.13)
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and the first right hand side term
〈(

dE
dR

)2
〉

is not bounded. This is also true in the

finite difference case. In order to mend this problem, a solution was proposed in [56].

It is based on introducing an importance sampling to evaluate Eq. 2.12, with a the

new sampling function defined as:

ψG(r, ε) = d(r)c(r, ε)ψT (r)

c(r, ε) =

 1
d(r)

, if d(r) ≥ ε

ε (d(r)ε)−
1

d(r)e , if d(r) < ε
,

(2.14)

where d(r) is a function which near the nodes reduces to the distance to the nearest

node, otherwise has a finite value, and ε is a cutoff parameter. Notice that ψG reduces

to ψT far from the nodes (d(r) ≥ ε), while at the node ψG goes to a finite value. A

suitable choice for d(r) might be:

d(r) =

∣∣∣∣ ψT (r)

|5ψT (r)|

∣∣∣∣ . (2.15)

Then, by dividing and multiplying into Eq. 2.12 by ψG, we obtain a new sampling

expression for the local energy derivative:

Z ′ =

∫
|ψG (r)|2 |ψT (r)|2

|ψG (r)|2
dr〈

dE

dR

〉
=

1

Z ′

∫
|ψG (r)|2 |ψT (r)|2

|ψG (r)|2

(
dEl
dR

+ (El − 〈E〉)
d ln(|ψT (r)|2)

dR

)
dr,

(2.16)

which we can interpret stochastically by sampling over |ψG (r)|2 and considering the

rest of the integrand as the estimator. Since now our estimator is not diverging at

the nodes, there is no problem of infinite variance anymore.

Also in DMC is possible to follow a similar route as in VMC, but complications

are found. In DMC (see appendix B.2) we have to consider a primary walk gener-

ated for the reference configuration according to Eq. B.9, and a secondary walk for

the displaced nuclei, generated from the primary one by applying the space warp

transformation on each sampling point. As in VMC, the two configurations must

have different wavefunctions ψP and ψS, as well as different Hamiltonians, resulting

in different expression for DMC Green functions (Eq. B.9), which will be labeled by

adding a superscript index P or S, like GP and GS. Therefore we have to correct

for the wrong dynamics of the random walk of system S, as it is derived from the
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one of system P . The secondary walk is generated according the drift-diffusion term

(Eq. B.10) of the primary system GP
dd(r

P , r′P , τ)/J(rP ), while a correct generation

should have followed GS
dd(r

S, r′S, τ). In the presence of the Metropolis step Eq. B.12,

the secondary move was accepted with probability P P rather than P S. Therefore,

to correct for the wrong Gdd, the weight of the secondary walkers should have been

multiplied by the term:

P S GS
dd(r

S, r′S, τ)

P P GP
dd(r

P , r′P , τ)/J(rP )
. (2.17)

It is found that this expression has strong fluctuations, making its application un-

practical. Here we employ the approximate strategy described in [52], which essen-

tially replaces expression 2.17 with the ratio of secondary and primary wave function∣∣ψS(rS)/ψP (rP )
∣∣2 J(rP ) as it is done in VMC, Eq 2.11. This is correct in the limit

of a trial function equal to the true ground state wavefunction ψg, as in the case the

growth/decay term does not modify walker’s weight as it becomes simply δ(r− r′) by

an appropriate choice of El, and Gdd exactly samples ψT . In other words, in the pres-

ence of the acceptance step, the DMC procedures exactly reduces to a VMC procedure

if ψT = ψg, with a proposal term given by Gdd, therefore in this limit resampling by

Eq 2.11 is exactly equivalent to using 2.17. The approximation than lies in assuming

that this substitution is reasonably good even if ψT 6= ψg. Of course, in this case the

growth-decay term is not a simple delta and the weight of the secondary walkers must

be propagated by according to GS
g/d(r

S, r′S, τ). In summary, the procedures follows

the following steps:

i) A primary walk is generated by the standard DMC procedure.

ii) A secondary walk is generated from the primary by applying the space warp

transformation on each element of the primary walk.

iii) Secondary weights at time step t (wS(t)) are obtained from the primary ones

(wP (t)) by

wS(t) = wP (t)

Nproj∑
i=1

exp
[
−τ
(
El
(
rS(t− iτ), ψS

)
− El

(
rP (t− iτ), ψP

))]
.(2.18)

Nproj is a number of time steps large enough to project out the secondary ground

state, but small enough to avoid large fluctuations of wS(t).

iv) The difference in energy is calculated as in 2.11, the simple average being replaced
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by a weighted average according to weights calculated in the previous point:

EP − ES = −
∑t0+N

t=t0
wS(t)ES

l

(
ψS
(
rS(t)

))
W (t)∑t0+N

t=t0
wS(t)

+

∑t0+N
t=t0

wP (t)EP
l

(
ψP
(
rP (t)

))∑t0+N
t=t0

wP (t)

W (t) =
N
∣∣ψS (rS(t)

)
/ψP

(
rP (t)

)∣∣2 J (rP (t)
)∑t0+N

t′=t0
|ψS (rS(t′)) /ψP (rP (t′))|2 J (rP (t′))

.

(2.19)

It is found that this approximation is surprisingly accurate [52]. Also in DMC we have

to use the guiding function approach already shown for the VMC case in our sampling

in order to avoid infinite variance in the energy derivatives estimators, Eq. 2.14. By

employing a time step dependent cutoff ε(τ) such that ε(0) = 0, the procedure is

correct in the limit of τ → 0.

When calculating forces by using finite differences, Eq. 2.8, we can improve the

estimate by calculating the force both for ∆R and −∆R, and then averaging over the

result F (−∆R)+F (∆R)
2

. This symmetrization of the estimate ensures that the procedure

is correct to O(∆R2) instead of O(∆R), and allows the estimation of the second

derivative of the energy along the direction defined by ∆R as F (−∆R)−F (∆R)
∆R

, which is

a useful quantity for minimization procedures we intend to use.

2.5 Force bias from wavefunction choice

We are calculating forces by evaluating the difference in energy of two configurations.

This implies that we have to write two different wavefunctions ψP (r) and ψS (r), as

the energy evaluated in VMC/DMC depends through ionic coordinates and wave-

function: ES
(
ψP (r) ,RP

)
. In principle, in the Born-Oppenheimer approximation,

we would like EP and ES to be the ground state energies; however this would imply

that we knew the exact ground state wavefunction. In reality, we are restricting the

form of the wavefunction to be a linear combination of Slater determinant of molecu-

lar orbitals expressed in some basis multiplied by a Jastrow factor. The VMC/DMC

energy of a configuration depends on the set of wavefunction parameters (basis and

Jastrow coefficients), that we will collectively indicate with the Greek letter α. The

optimal VMC/DMC parameter in turn depend on the ionic coordinates R, therefore

we can write E (αi{R},R). Of course the choice of the wavefunction influences the

accuracy on forces. Here we deal with an additional source of error, which depends on

the way we generate the wavefunction for the displaced configuration ψS (r). As ionic

displacements are by definition small, a common choice to generate the secondary
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Figure 2.1: Schematic representation of the procedure for generating the perturbed
wavefunction needed for correlated sampling. In configuration P the molecular orbital
φMO is generated combining linearly atomic orbitals φA and φB. In configuration S
atom B is moved to B’. The atomic orbital of atom B φB is displaced rigidly with
the nucleus in position B’ without being modified and a new molecular orbital is
generated accordingly. Jastrow factor is kept fixed.

wavefunction is to take the wavefunction for system P and recenter the atomic or-

bitals into the new nuclei position without changing the coefficients of their expansion

in the basis set and keeping the Jastrow fixed. This, however, introduces an error in

the calculation of correlated sampling VMC/DMC forces, as we would like to calculate

the total derivative of the energy with respect to the ionic displacements, compatibly

with the form of the employed wavefunction. Suppose we want to calculate the force

along some direction Rh, this total derivative would be:

dE (α{R},R)

dRh

=
∂E (α{R},R)

∂Rh

+
∑
j

∂E (α{R},R)

∂αj

dαj
dRh

. (2.20)

If we neglect the variation of parameters with ionic displacements, we are effectively

neglecting the second right hand side term of equation 2.20, therefore we are taking

only a partial derivative of the energy instead of the total one. One solution is to

optimize the wavefunction VMC/DMC parameters in configuration P and S and use

these wavefunctions in Eq. 2.11. However Eq. 2.20 tells us that at first order we

need only to optimize ψP (r) to get an unbiased result, as by definition for optimized

parameters

∂E (α{R},R)

∂αj
= 0 ∀j. (2.21)
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In this case the second right hand side term of Eq. 2.20 vanishes and ψS (r) can be

generated by recentering the basis functions and neglecting parameter variations.

In order to estimate the bias incurred neglecting the last term of Eq. 2.20 when

the wavefunction parameters are not optimal, we tested the consistency between the

force obtained with the correlated sampling method and the one obtained fitting the

potential energy curve for a C2 molecule, for different types of wavefunctions and lev-

els of optimization. Optimization of the wavefunction parameters is done employing

the procedure described in section 2.3. The C2 molecule was chosen because it is

a relatively cheap system to perform calculations on, yet is not trivial for its multi-

determinantal character, therefore is representative of a challenging system for QMC

calculations. Let’s start from a non optimized case. We take the C2 molecule and

calculate, using the GAMESS package (with the same pseudopotentials and basis

set described in section 2.2), the HF wavefunction at the experimental equilibrium

distance of the molecule and, using this determinant, optimize a Jastrow factor at

VMC level via the CHAMP code. We then calculate at various interatomic distances

the HF orbitals, and perform a VMC/DMC calculation of energy and force using

the corresponding HF determinant coupled to the same Jastrow factor obtained as

described before. The comparison between the force obtained by fitting the poten-

tial energy curve with a third order polynomial (and computing the derivative) with

the force obtained with correlated sampling is reported in Figure 2.2, panel a). We

observe that in this case there is no consistency, with the force from the correlated

sampling being far from the one obtained by fitting the PES, due to the poorness of

the wavefunction. If we instead of using an HF calculation we use a better wavefunc-

tion, such as the one obtained by replacing the HF calculation with a B3LYP DFT

calculation in the aforementioned procedure, we see that the agreement improves,

Fig.2.2, panel b). However, there is still no consistency, as the data do not overlap

even considering their statistical uncertainty. In Fig.2.2, panel c), we optimize the

wavefunction (molecular orbitals and Jastrow) at each considered distance at VMC

level. In this case there is a full consistency between the line and the datapoint, as

expected. It is interesting to check whether using more sophisticated wavefunctions

than single determinant ones is possible to obtain a reasonable agreement between

correlated sampling force and PES without the need of a VMC optimization. In

this case, we employ a simple complete active space (CAS) wave function correlating

three electrons in the three more relevant orbitals, calculated self-consistently with

the GAMESS package at each distance tested. In case Fig.2.2, panel d), we couple this

wavefunction with a fixed (i.e. not changing with the various interatomic distances
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Figure 2.2: Interatomic VMC force for the C2 molecule as obtained with various
methods and levels of wavefunction optimization. Force obtained with correlated
sampling (datapoints, statistical error within circle size) is compared with the force
obtained by fitting the VMC potential energy curve and computing the derivative
(full line with dashed confidence interval). Panels correspond to the following wave-
functions:
a) HF determinant calculated at each distance, fixed Jastrow optimized at the exper-
imental equilibrium distance.
b) B3LYP determinant calculated at each distance, fixed Jastrow optimized at the
experimental equilibrium distance.
c) determinant and Jastrow optimized at each distance.
d) CAS wavefunction calculated at each distance, fixed Jastrow optimized at the ex-
perimental equilibrium distance.
e) CAS wavefunction calculated at each distance, optimized Jastrow and CI expan-
sion coefficients at each distance.
f) CAS wavefunction fully optimized (orbitals, CI coefficients, Jastrow) at each dis-
tance.
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tested) Jastrow, optimized at the equilibrium distance of the molecule as usual, and

use it for a VMC energy/force calculation. We see that, although the wavefunction is

of better quality and retrieves a lower energy than the single determinant optimized

ones (−11.0427±0.0004 vs. 11.0240±0.0004 Ha at the equilibrium distance), it does

not return a consistent force. This is because the condition 2.21 has not any direct

relation to the overall quality of the wavefunction, but only with the optimization of

its parameters. Even a partial optimization of the CAS wavefunction is not enough

to retrieve a full consistency. This is shown in Fig.2.2, panel e), were we repeat the

procedure of case d) but we precede the energy/force calculation with an optimiza-

tion of the determinantal expansion (CI coefficients) and Jastrow parameters at VMC

level at each distance, keeping thus fixed the molecular orbitals in the determinants.

In Fig.2.2, panel f), full optimization of the CAS wavefunction (molecular orbitals,

CI coefficients, Jastrow) is performed at each distance, thus recovering the expected

agreement. We attribute the small scattering of data present in this case panel with

a less than perfect wavefunction optimization.

We also repeated the same analysis substituting the final VMC energy/force cal-

culation with a DMC one, but keeping the various wavefunction optimization at VMC

level, as doing this in DMC would be too expensive in an actual case. By doing this

procedure we expect two sources of error to be present. The first one is arising from

the fact that we are enforcing condition 2.21 at VMC level, but we do not expect

this condition to hold exactly at DMC level. The other source of error is due to the

approximate reweighting procedure for the correlated sampling calculation that we

are employing, described in section 2.4. Results are illustrated in Fig. 2.3, where

the panels are completely analogous to the one of Fig. 2.2. We use a time step of

0.01 a.u. in the DMC calculations. The outcome appears to be pretty similar: if

complete optimization of the wavefunction is not performed, there is no complete

consistency between correlated sampling force and PES, irrespective of the number

of determinants included into the wavefunction. In the fully optimized cases c) and

f) we retrieve good results, even if the consistency appears to be less striking than in

the VMC case: this is due to the sources of error pointed out before.

In conclusion, we have shown in this section that full wavefunction optimization

is needed to obtain full consistency between forces calculated by correlated sampling

in VMC/DMC and the potential energy curve, even for wavefunctions of good qual-

ity. However, the errors displayed here may be small enough for many application,

therefore full wavefunction optimization may be not necessary. Additional errors are

present in DMC calculations shown here, due to the approximate reweighting tech-
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Figure 2.3: Interatomic DMC force for the C2 molecule as obtained with various
methods and level of wavefunction optimization. All optimizations are done at VMC
level, not at DMC level. Force obtained with correlated sampling corresponds to
datapoints, and is compared with the force obtained by fitting the DMC potential
energy curve and computing the derivative corresponds to the full line with dashed
confidence interval. Panels refer to the same wavefunctions as in Figure 2.2

.
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Figure 2.4: Illustrative example of a Minimum Energy Pathway (MEP) connecting
two stable states in a Potential Energy Surface (PES) and of the forces driving the
minimization of an initial guess of the Nudged Elastic Band (NEB) to the MEP
(magnified panel).

nique employed and the fact that we did not perform optimization of the wavefunction

ad DMC level but at VMC level, since optimization at DMC level would be exceed-

ingly expensive in an actual application. However, the extent of these errors is small

enough for most applications.

2.6 Nudged Elastic Band and Climbing Image meth-

ods

Reactants and product states of a chemical reaction are by definition stable: therefore,

in configuration space, they sit in minima of the potential energy surface (PES). From

this follows that the path of minimum energy (MEP) connecting these minima will go

through one or more saddle points, the so-called transitions states. The saddle point

are stationary, but are not stable as at least one eigenvalue of the Hessian matrix is

negative. The Nudged Elastic Band method (NEB) is a local search method for the

MEP connecting reactants (initial state) and products (final state) of a reaction [61].

It is a local search procedure in that it does not guarantee to converge to the true

MEP (i.e. the one having the lowest saddle point), but in the space of configuration

of the NEB recovers the energy pathway having a basin of attraction into which the
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initial guess falls. Thus the initial guess mus be “near” enough to the true MEP

in order to converge to it. Therefore the method is suitable for simple reactions, in

which there is little doubt about the mechanism, or reactions in which the MEP is

approximately already known. The idea behind the method is to discretize an initial

guess for a MEP connecting the stable states into a series of “images”, the first one

being the initial state and the last one being the final, see Fig. 2.4. The first and last

images are kept fixed, all the others evolve their position following a dynamics that

let the NEB “fall” into the saddle point and valleys of the PES, while keeping the

images roughly equispaced in configuration space. The commonly employed dynamics

is driven by the following component of the force applied on each image i:

i) A force parallel to the NEB, F‖. The parallel direction n‖ is obtained by the

normalized difference the versors pointing from image i to i+1 and i−1. A spring

force, denoted with Fs
i,i+1, is applied pointing toward image i + 1, of modulus

K |Ri −Ri+1|2, and another is applied toward image i − 1. The acting spring

force is then projected on the parallel direction F‖ =
((

Fs
i,i+1 + Fs

i,i−1

)
· n‖
)
n‖.

The effect of this force in the minimization procedure is simply to slide the

images along direction n‖ until they are equispaced, independently of the spring

constant K.

ii) A force perpendicular to the NEB, F⊥. We consider the force F applied by

the PES on image i (minus the gradient of the PES), and remove from it the

component parallel to the NEB, defined in i), to obtain F⊥ = F−
(
F · n‖

)
n‖.

This component is the one letting the NEB move toward the MEP.

These forces are represented in Fig. 2.4, magnified panel. Following these forces

one applies a minimization procedure iteratively, until the NEB reaches equilibrium.

In our case, we employ the Newton minimization method on the single images until

convergence is reached.

In the equilibrium configuration, the NEB is an approximation of the MEP. There

is no reason to believe that one of the images is lying exactly on the transition state.

For this reason, another procedure, the so-called climbing image method, is commonly

used to locate the saddle point. The procedure involves only the image with the

highest energy i, plausibly the nearest to the saddle point, and its neighbouring

images. The images i + 1 and i− 1 are kept fixed, and image i is evolved according

to the forces components:

i) Perpendicular force F⊥ = F−
(
F · n‖

)
n‖.
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ii) Parallel force F‖ = −
(
F · n‖

)
n‖.

This simple procedure transforms the saddle point into a minimum for image i, as the

force in the parallel direction, the one along which the curvature of the PES is nega-

tive, is reversed. Therefore, if the images i+1 and i−1 are near enough to the saddle

point so that the direction connecting the two images is a sufficiently good description

of the direction along which the curvature is negative, the image i converges to the

transition state exactly. The NEB-climbing image procedure therefore provides with

the geometry and energy of the transition state. This information, together with the

energy of the initial/final states, allows calculation of the forward/reverse barrier of

the reaction.

2.7 Results

We select four challenging reactions from the NHTBH38/04 database [44] plus one

hydrogen transfer reaction. As best estimates, we use the atomic geometries for the

initial, final, and transition states reported in the database and computed through

a quadratic configuration interaction with single and double excitations (QCISD)

optimization. For these geometries, the barrier heights estimated with the W1 method

(a complete basis set extrapolation over CCSD(T)) are also available. The reference

data for H + OH→ H2 + O are from ext-CAS+1+2+Q calculations [65].

We initially focus on the H + F2 → HF + F reaction, in which the atoms are

aligned through all the reaction. The DFT and Hartree-Fock (HF) all-electron cal-

culations are performed with the GAMESS package [63], using Dunning-type Cor-

relation Consistent triple-zeta basis sets, augmented with a set of diffuse function

(aug-cc-pVTZ). No relativistic correction is included. QMC calculations include them

through the scalar-relativistic pseudopotentials, however these corrections are small

for the light elements considered here and will not affect our results. An example of

the obtained NEB for this reaction is reported in Figure 2.5 for VMC and for the

functional B3LYP, in the space of the H-F and F-F bond distances. In the figure it is

possible to appreciate how the two methods return similar geometries near the equi-

librium geometries, while differ significantly in the region where the actual reaction

takes place. In particular, the VMC NEB passes much nearer to the best estimate

saddle point than B3LYP one. We now focus on the three most significant geometries

along the reaction: the initial, final and transition state ones; DFT and QMC data

are collected in Table 2.1. To measure how much the geometries differ from the best

estimates, we calculate the RMS deviations of the interatomic distance among all
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atoms with respect to the corresponding best-estimate geometries. In the Table, a

forward barrier (Vf ) of zero means that the DFT functional finds no transition state

(i.e. the reactants are unstable) with the reverse barrier being the reactant-product

energy difference. Many DFT functionals fail in finding any transition state for this

reaction, including the hybrid functionals PBE0 [81] and B3LYP, while M06 [82]

retrieves a saddle point but with large deviations over the best estimate transition

state geometry. In Table 2.1, we also report the initial/final/transition state geome-

tries computed via VMC forces, where the uncertainty on the interatomic bonds due

to the statistical noise on the forces is about 0.002 Å. These geometries come from

a fully VMC NEB and climbing image calculations. Since forces calculated in QMC

possess a statistical uncertainty, strictly speaking the optimization procedure via the

Newton method never converges. Therefore, the equilibrium positions of the images

along the nudged elastic band are obtained by averaging over several iterations after

all quantities vary only by statistical fluctuations around a stationary value. VMC

is able to retrieve even at the single-determinant level the initial, the final and, es-

pecially, the transition state geometry with much better accuracy than DFT. It is

interesting to notice that, for geometrical data, VMC also performs better than the

hybrid-meta M06 functional which is constructed to fit the barriers calculated on the

best-estimate geometries from the database [82]. Clearly, this fitting procedure does

not always guarantee that the actual transition state retrieved by the functional is

near the best-estimate one. For testing purposes we also have located the saddle

point using non optimized orbitals from the M06 functional and a fixed Jastrow; we

find that the result is substantially worse, with a RMS deviation from the best es-

timate of 0.149 Å. This result confirms that at least in some cases the wavefunction

optimization is needed to obtain accurate values.

Although the VMC geometries are rather accurate, the predicted reverse energy

barrier (Vr) is markedly overestimated. Performing a DMC (time step of 0.01 a.u.)

calculation on the VMC geometries retrieves better energy estimates, but the error

on the reverse barrier of about 8 Kcal/mol is still quite significant. We find that, to

improve this energy barrier, it is not useful to reoptimize the geometries via DMC

forces: the use of DMC forces does not alter significantly the geometries (within

a statistical uncertainty on the transition state geometry of about 0.008 Å) and,

consequently, the estimated barrier heights either. In order to improve over these

values, it is possible to take advantage of the variational principle available in QMC

and to resort to the use of multi-determinantal wave function. In this case, we employ

a simple complete active space (CAS) wave function correlating three electrons in
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Figure 2.5: Nudged Elastic Band results obtained with single-determinant VMC (red
full line) and with the functional B3LYP (green dashed line), represented in the space
of the H-F and F-F bond distances (in this case the atoms are always aligned during
the reaction). The best estimate transition state position is also reported (full circle).

the three active orbitals relevant for the reaction and recompute the energy barriers

over the VMC geometries obtained at the single-determinant level. The resulting

VMC barriers are improved and the DMC values become very similar to the best

estimates. Although the use of CAS wave functions is not readily applicable to

larger systems due to their exponential scaling with system size, there exist scalable

techniques to improve over single-determinant wave functions through the design of

accurate multi-determinantal size-extensive and linear-scaling [83] or backflow wave

functions [45,84,85].

We now return to the simple Slater-Jastrow wave function, and consider the other

reactions. In Figure 2.6, we compare the difference between the geometries obtained

by VMC and various DFT functionals with respect to the reference ones obtained

with QCISD, using the same measuring criterion as in Table 2.1. The functionals

reported in this figure are all hybrid or meta-hybrid and are the ones returning the

smallest geometric/energy deviation among the ones we tested on this set of reactions,

which are the same ones listed in Table 2.1. The generalized-gradient-approximation
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Table 2.1: Barrier heights and RMS of geometric deviations, H + F2 → HF + F
reaction, for reactants (React), products (Prod) and transition states (TS). We denote
with Vf/Vr the forward/reverse reaction barrier heights (BHs). The RMS is calculated
over the deviation of the interatomic distances of all the atoms from the best estimate
geometry.
H + F2 → HF + F BE VMC VMC CAS DMC DMC CAS HF LSDA BLYP B3LYP PBE PBE0 M06

BHs
(Kcal/mol)

Vf 2.27 6± 1 1.3± 0.2 2.2± 0.5 1.4± 0.3 0.0 0.0 0.0 0.0 0.0 0.0 2.7
Vr 106.18 126± 1 112.2± 0.6 114± 1 105.4± 0.7 127.3 83.2 90.9 100.9 87.9 100.0 107.8

RMS deviation
(Å)

React 0.008 0.007 0.067 0.010 0.037 0.002 0.018 0.019 0.020
Prod 0.002 0.008 0.016 0.018 0.020 0.009 0.017 0.004 0.001
TS 0.028 0.013 - - - - - - 0.216

functionals used in the overwhelming majority of DFT applications of CI-NEB, entail

significantly larger deviations. For example, the deviation of PBE is two to four times

larger than that of PBE0 for transition state geometries reported here, and the RMS

barrier heights deviation of PBE on this set is more than twice than that of PBE0.

For equilibrium geometries, VMC performs at the level of the hybrid functionals. For

the transition state, it typically returns more accurate geometries, often performing

much better than DFTs. Notwithstanding that the M06 is actually fitted to repro-

duce barrier heights for the NHTBH38/04 reactions, VMC still performs better than

this functional in evaluating transition state geometries. This may be again due to

the M06 parametrization procedure, which does not guarantee the accuracy of the

actual transition state calculated by the functional. We do not recalculate the geome-

tries employing DMC forces because, from the test performed, DMC forces improves

VMC transition state geometries only slightly, as these are already notably accurate.

Furthermore, DMC geometry corrections are barely reflected in the calculation of the

barrier heights, as these energies are second order in the deviation from the actual

equilibrium points. For these reasons, we speculate that the calculations of geometries

at VMC level and of barrier heights at DMC level is the most sensible choice regard-

ing the trade-off between accuracy and computational cost. In Figure 2.7, we report

the forward and reverse reaction barriers. While VMC (not shown) performs less

accurately than hybrid functionals, DMC calculated on the VMC geometries signifi-

cantly improves the barrier heights estimates of all reactions upon the VMC values,

and performs at the level of the hybrid DFT approaches. In particular, our QMC

procedure is more accurate than the hybrid functionals B3LYP and PBE0, while the

only functional performing on average at the same level or slightly better is M06, de-

spite these barriers being calculated on transition state geometries worse than VMC

ones. Moreover M06 is actually fitted to reproduce precisely the NHTBH38/04 bar-
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Figure 2.6: RMS of deviation of interatomic distances from the QCISD geometries
(Å). Distances are calculated among all atoms involved in the reactions.
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timates calculated by QMC and DFT Methods (Kcal/mol). The dash-dotted line
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rier heights, and there is no guarantee that, on a different set of reactions, it would

still perform as well as QMC. Note that single-determinant DMC performs better

than all DFT approaches, included M06, even in the reaction H + N2O→ OH + N2,

which is known to be strongly multi-determinantal in character. Overall, QMC gets

both the geometry and the energetics accurately, offering a parameter-free, more bal-

anced description of reactants, products and transition states than all DFT schemes

considered here.

2.8 Conclusions

We investigated the possibility of performing full-QMC reconstruction of minimum

energy pathways of chemical reactions. Full optimization of the wave function pa-

rameters is carried out during each iteration, so the employed technique is internally

fully consistent. Geometric optimization of the minimum energy pathway and of

the transition state is done at VMC level, with the obtained geometries being more

accurate than DFT ones, especially for transition states. It also demonstrates the

ability to correctly locate the transition state in cases in which DFT fails in returning

accurate geometries. At DMC level, the method displays very good performance in

evaluating barrier reaction heights, comparing favorably even against hybrid func-

tionals. Therefore, our approach of calculating the geometries at the VMC level and

reaction barriers at the DMC level is most effective as far as performance over com-

putational cost is concerned: calculating DMC geometries is very expensive and, in

the tested cases, it does not improve significantly the estimates, while calculating

DMC energies over VMC geometries is much cheaper and still retrieves good results.

Since the employed wave function is of the simple Slater-Jastrow type, this technique

is scalable to larger systems. Our results indicate that, for intermediate-sized sys-

tem reactions where quantum chemistry methods are not computationally viable, the

QMC approach may be the most accurate technique currently available.
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Appendix A

A.1 Path Integral Monte Carlo

One of the leading techniques in the study of quantum many-body systems is the

Path Integral Monte Carlo approach (PIMC). This ab-initio technique is capable of

providing with unbiased estimates of physical observables at finite temperature on

Bosonic systems. Being a Monte Carlo technique, the word exact in this context has

to be intended in a numerical sense, meaning that all the errors (statistical and sys-

tematic) can in principle be driven to zero. Although the technique is very successful

in the study of superfluidity in Bosonic systems, its applicability is strongly limited

by the poor scaling with system size, as we will illustrate below.

PIMC originates from Feynman mapping of a quantum system onto a classical

models of interacting “polymers” (path integral representation). This was subse-

quently translated in a Monte Carlo technique [86] based on sampling the diagonal

part of the density matrix of a Bosonic system. On the continuum it was first ap-

plied to a system of 64 4He atoms in periodic boundary condition, in the pioneering

work of Ceperley and Pollock [87]. We start by recalling that in thermal equilibrium

properties of a quantum system can be calculated as:

〈O〉 =

∑
i
〈φi | O | φi〉 e−βEi

Z
=

∑
i

〈
φi | e−βHO | φi

〉
Z

, (A.1)

where φi and Ei are the eigenvectors and eigenvalues of the Hamiltonian. β = (KbT )−1

is called the imaginary time or the inverse temperature. Z is the partition function:

Z =
∑
i

e−βEi . (A.2)

The thermal density matrix operator (we will always be dealing with its unnormalized

51
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version) is e−βH , or in eigenvector representation:

ρ (φi, φj, β) =
〈
φi | e−βH | φj

〉
. (A.3)

Therefore Eq. A.1 can be written as:

〈O〉 =
Tr (ρO)

Tr(ρ)
, (A.4)

i.e. all the properties of a quantum system in equilibrium can be calculated from the

thermal density matrix. This of course is true also in position representation. If we

denote with R = (r1, r2, ..., rN) a vector containing the dN particles coordinates, d

being the dimensionality of the system, we can write the density matrix in position

representation as:

ρ (R′, R′′, β) =
〈
R′ | e−βH | R′′

〉
(A.5)

and Eq. A.1 becomes

〈O〉 =

∑
i

〈
φi | e−βHO | φi

〉∑
i
〈φi | e−βH | φi〉

=∫
dR′dR′′dR′′′

∑
i

〈
φi | R′ 〉〈R′ | e−βH | R′′ 〉〈R′′ | O | R′′′ 〉〈R′′′ | φi

〉∫
dR′dR′′

∑
i
〈φi | R′ 〉〈R′ | e−βH | R′′ 〉〈R′′ | φi〉

=∫
dR′dR′′

〈
R′ | e−βH | R′′

〉
〈R′′ | O | R′〉∫

dR′ 〈R′ | e−βH | R′〉
=

∫
dR′dR′′ρ (R′, R′′, β) 〈R′′ | O | R′〉∫

dR′ρ (R′, R′, β)
.

(A.6)

Of course we do not know in general how to evaluate ρ (R′, R′′, β). However, in many

cases it is possible to express a sufficiently good approximation of the density matrix

for small β. Therefore, one can make use of the property of the exponential operator

e−(β1+β2)H = e−β1H + e−β2H , which in position representation reads:

ρ (R′, R′′, β1 + β2) =

∫
dR′′′ρ (R′, R′′′, β1) ρ (R′′′, R′′, β2) . (A.7)

Employing Eq. A.7 one can discretize the full imaginary time in M “slices” of length

τ = β/M and represent the density matrix as a convolution in space of M density

matrices.

ρ (R0, RM , β) =

∫
dR1dR2...dRMρ (R0, R1, τ) ρ (R1, R2, τ) ...ρ (RM−1, RM , τ) . (A.8)
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The subscript index of the vector R will be referred to in the following as the time slice

index. Now, in order to be able to express a short time approximation for ρ (R0, R1, τ)

it is useful to split the kinetic and potential part of an Hamiltonian H = T + V , in

the so-called primitive approximation:

e−τ(T+V ) ≈ e−τT e−τV . (A.9)

The correctness of the approximation in the limit of small τ for the full imaginary

time is guaranteed by the Trotter formula [88]:

e−β(T+V ) = lim
M→∞

(
e−τT e−τV

)M
. (A.10)

The primitive approximation in position space reads again as a convolution of two

terms:

ρ (R0, R2, τ) ≈
∫
dR1

〈
R0 | e−τT | R1

〉 〈
R1 | e−τV | R2

〉
. (A.11)

We can plug this expression for ρ (R0, R2, τ) into Eq. A.8. We are left with finding

an expression for the integrand of Eq. A.11. The potential operator is diagonal in

position space and it is easily evaluated:

〈
R1 | e−τV | R2

〉
= e−τV (R1)δ (R1 −R2) , (A.12)

while the kinetic term can be calculated expanding in the eigenfunctions of free par-

ticles of mass m in a box of side L in d dimensions in periodic boundary conditions:〈
R1 | e−τT | R2

〉
=
∑
i

〈R1 | Ki〉
〈
Ki | e−τT | Ki

〉
〈Ki | R2〉 =

∑
i

L−de−τ
h̄2

2m
K2
i e−iKi(R2−R1) ≈ (4πλτ)−d/2 e−

(R0−R1)2

4λτ

(A.13)

where λ = h̄2/2m. The last term of Eq. A.13 is obtained by substituting the sum-

mation by an integral, which is appropriate in the limit of λτ � L2. Combining Eq.

A.8, A.11, A.12 and A.13 one obtains the final expression we will be employing for
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the unnormalized thermal density matrix:

ρ (R0, RM , β) =∫
dR1dR2...dRM−1 (4πλτ)−dM/2 exp

{
−

M∑
i

[
(Ri−1 −Ri)

2

4λτ
+ τV (Ri)

]}
.

(A.14)

If we substitute Eq. A.14 into A.6 we see that the evaluation of the expectation value

of an operator is an highly dimensional integral formally equivalent to the calculation

of the ensemble average of a classical system.

〈O〉 =

∫
dR0...dRM (4πλτ)−dM/2 e

{
−
∑M
i

[
(Ri−1−Ri)

2

4λτ
+τV (Ri)

]}
〈RM | O | R0〉∫

dR0 dRM ρ (R0, RM , β)
. (A.15)

The convolution representing the density matrix can be viewed as the distribution

function, integrating to the partition function. The basis of PIMC is to apply the same

Monte Carlo integration techniques used for classical systems to quantum systems,

taking advantage of this mapping: namely, to sample 〈RM | O | R0〉 according to a

probability distribution given by ρ (R′, R′′, β) expressed in its expanded form. Notice

that the latter is a proper unnormalized density distribution for Bosonic systems,

being positive at all temperatures. We will not be considering here Fermionic systems,

for which this is no longer true and approximations are needed.

If we closer inspect this mapping, we see that the integrand of Eq. A.15 is equiv-

alent to the distribution function of classical particles which are interacting trough

V (R) if they pertain to the same time slice, while particles pertaining to neighbouring

time slices interact through a spring-like potential (Ri−1−Ri)2

4λτ
. In other words, if we

unfold the set Ri = (r1
i , r

2
i , ..., r

N
i ) of particles position we have used in the preced-

ing equations and consider the individual quantum particle position, we see that the

position of each quantum particle at different imaginary times are in this mapping

classical particles, connected by “springs”, and interacting trough the potential term

only among the same time slice. In the following, we will call the classical particles

“images”, to distinguish them from the quantum particle they are mapped from, and

the springs connecting the images will be called “links”. These links and images form

“paths” in configuration space, often called “world lines” in PIMC jargon. Because

thermodynamic properties or properties diagonal in space are determined by the trace

of the density matrix, in PIMC world lines are closed on themselves. In this way, we

are introducing in PIMC a periodicity in imaginary time, imposing the 0th and the

M th time slice to be the same. Also, we are making all time slices equivalent as far as



A.1. PATH INTEGRAL MONTE CARLO 55

Figure A.1: Time-space representation of a PIMC configuration (left panel), with the
diagonality condition R0 = RM imposed, and two dimensional spatial representation
of permutation cycles, see text. In this figure, full circles represent the position of the
images, while the line connecting them is the link, associated with a spring-like term
in the distribution function.

their distribution, and therefore the reference time slice index 0 can be set arbitrarily.

For distinguishable particles this is equivalent to imposing R0 = RM , forming closed

loops of length M . If however we are dealing with indistinguishable particles, we have

to allow all possible permutations of particles to occur, namely R0 = Ph (RM), where

P ia a permutation operator and h a generic permutation index. This means that

each world line can either close on itself at time slice M , or close at the beginning of

another world line at time 0. Therefore, the loop we are forming can have a length

multiple of M , involving permutation of more than one quantum particle. For this

reason, world lines are also referred to as “permutation cycles”. These permutations

need to be sampled, in order to obtain correct estimates for the observables of a

Bosonic system. While it is relatively simple to design efficient Metropolis Monte

Carlo moves to sample paths configurations at given permutation, it is much harder

to sample the permutations themselves. This is because permutations are topologi-

cally different, so that there exists no continuous (or “local”) transformation in the

space of configurations that allows changing them. As a result, designing Metropolis

Monte Carlo moves that perform this operation is found too difficult and system size

dependent. Eventually, it is found that permutation sampling is exponentially de-

pressed with system size, making permutations “topologically locked” for large sizes.

This feature strongly limits the ability of PIMC of extrapolating to the thermody-

namic limit, and is the main factor limiting its success. This is exactly the problem
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Figure A.2: Time-space representation of a Worm algorithm configuration in which
there is an open world line, as well as closed permutation cycles. The head and the
tail of the worm are called Ira I and Masha M.

it is solved by a simple but ingenious modification of the PIMC algorithm called the

“worm algorithm”, which is described in the following section.

A.2 Worm Algorithm

The extension of PIMC called “worm algorithm” was first derived for lattice mod-

els by Prokof’ev [89]. It was subsequently extended to continuous space by Bonin-

segni [90,91]. We will be dealing here with the latter version of the algorithm. Worm

algorithm not only eliminates the problem of the exponential suppression of permu-

tation sampling with system size, but also makes it easier to calculate off-diagonal

correlations, such as single particle particle Matsubara Green function.

The worm algorithm works by expanding the space of allowed configuration of

PIMC. In standard path integral, the set of valid configurations is the one in which

all world lines form closed permutation cycles1. This set of configuration is referred to

as the Z sector. In the worm algorithm, configuration in which there is one open world

line, called “the worm”, are allowed. The set of “open” configurations is called the G

sector. An example of such a configuration is given in Figure A.2 This modification is

critical for performances, as it eliminates the problem of topological locking of permu-

tations, by allowing cutting and closing of cycles. As a result, in the worm algorithm

it is possible to design local Monte Carlo moves able to sample permutations in the

1When measuring off-diagonal correlations, open configurations are admitted also in PIMC, but
are not used for changing permutations.
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Z sector by moving through the G sector. Most of the estimators are calculated in

the Z sector, although the G sector is key to the calculation of off-diagonal imaginary

time correlations such as the Matsubara Green function. In order to enter into the

details of the algorithm, it is useful to introduce some standard nomenclature. We

will denote with M the number of time slices, Nim the number of images in a certain

configuration, while with N we denote the number of quantum particles present in a

configuration pertaining to the Z sector. Note that in the this sector the number of

links is equal to Nim, while in the G sector is Nim − 1, because we have to remove

at least a link in order to have an open configuration. Following reference [90], the

head and the tail of the worm are called Ira I and Masha M. In the following, we

will sometime refer to specific images with Greek letters, such as α. The position of

an image at time slice i and image index j will be denoted by rji , or r (α) if we are

referring to an already named image. The vector containing all images coordinates at

time slice i is Ri. We will denote as next (α) the image connected to alpha by a link

and forward in time, while with prev (α) the preceding image. The next (next (α))

will be written as next2 (α), and similarly for the prev operator. Sometime we will

sum over time slice indexes; as these are periodic, the result is to be taken modulus

M . The same applies also for difference in time slices.

As there is the need of removing and adding part of world lines, the worm al-

gorithm is most easily defined in the grand canonical ensemble, although it is not

difficult do design a canonical version. A valid grand canonical expression of the

sampling distribution, Eq. A.14, is:

π (R0, RM , β) =

∫
dR1...dRM−1 (4πλτ)−dM/2 e

−
∑M
i

[
(Ri−1−Ri)

2

4λτ
+τ(V (Ri)−µNi)

]
, (A.16)

where Ni is the number of images at time slice index i. This expression reduces to the

grand canonical expression for the unnormalized density matrix in the Z sector. This

distribution is sampled with a generalized Metropolis-Hastings algorithm [92, 93].

We recall that in this algorithm the probability of acceptance of a new world line

configuration s′ starting from configuration s is:

A (s, s′) = min

{
1,
T (s′, s) Π (s′)

T (s, s′) Π (s)

}
, (A.17)

where T (s, s′) is the probability of proposing a transition from s to s′, and Π(s)

is the distribution function A.16. In the following, we briefly describe the Monte

Carlo Metropolis moves constructed according to Eq. A.17 implemented in the code
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employed in this thesis. A graphical illustration of the effect of these MC moves on

the configuration of world lines is provided in Figure A.3.

Replace The replace MC moves applies both to the G and to the Z sector, and is the

typical MC move one would find in standard PIMC. An image α is chosen at random.

It is traced forward in imaginary time for Nrp time steps, individuating a new particle

we will denote by υ = nextNrp (α). If in this process I is encountered, or if υ = I, the

move is rejected. Nrp is a uniformly distributed integer number ∈ [1, Nmax], where

Nmax is an algorithm parameter. A new piece of world line connecting α to υ is

sampled from the product of Nrp free particle propagators
∏Nrp

i=1 ρ0 (ri−1, ri, τ).

ρ0 (rα, rω, τ) = (4πλτ)−dM/2 exp

{
(ri−1 − ri)2

4λτ

}
. (A.18)

The new piece of the world line is substituted to the original one with acceptance

probability:

Arp = min
{

1, e−∆U
}
, (A.19)

where ∆U =
∑

i V (Ri (s
′)) − V (Ri (s)) is the difference in total potential energy

between initial and final configurations.

Open The open MC move brings the system from the Z sector to the G sector by

opening a permutation cycle. It starts by checking that the system is in the Z sector,

otherwise the move is rejected. A random integer Nop uniformly distributed in the

interval [1, Nmax] is selected. An image α is selected at random, and Nop − 1 images

and Nop links following the selected image are removed, so that α becomes the head

I of the worm and the N th
op image after α becomes the worm tailM. The probability

of acceptance of a proposed move generated in this way is:

Aop = min

{
1,
CNmaxNime

−∆U−µNopτ

ρ0 (rI , rM, Nopτ)

}
, (A.20)

where Nim is the number of images in the starting configuration, in this case equal to

MN . C is an algorithm constant determining the relative statistical weight of Z and

G sectors, ∆U =
∑

i V (Ri (s
′))−V (Ri (s)) is the difference in total potential energy

between configurations.
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Close The close MC move is the reverse of the open move. This move is applicable

in the G sector only, and if accepted brings the system into the Z sector. It starts

by checking the difference Ncl in time slices betweenM and I. If Ncl /∈ [1, Nmax] the

move is rejected, otherwise a portion of path connecting I and M is proposed. This

path {rI , r1, ..., rNcl−1, rM}, with r0 = rI and rNcl = rM, is sampled from the product

of Ncl free particle propagators
∏Ncl

i=1 ρ0 (ri−1, ri, τ). The probability of acceptance of

the proposed move is then:

Acl = min

{
1,
e−∆U+µNclτρ0 (rI , rM, Nclτ)

CNmaxNim

}
, (A.21)

where Nim is the number of images in the final configuration, and ∆U is again the

difference in potential energy between final and initial configurations. Open and close

moves are conjugated, in the sense that the probability of acceptance of each depends

mutually on the way the proposal of the other is designed. In other words, in Eq.

A.17, if T (s, s′) is the probability of proposing a certain open move, T (s′, s) is the

probability of proposing the opposite close move.

Insert The insert MC move brings the system from the Z sector to the G sector

by inserting a new worm in the system. If the system is in the Z sector, we select

a position in space and a time slice index at random. Then we generate new Nin ∈
[1, Nmax] images distributed according to Nin−1 free particles propagators. The move

is then accepted with probability

Ain = min
{

1, CNmaxVMe−∆U+µNinτ
}
, (A.22)

where V is the volume of the system.

Remove The remove MC move is the conjugate of the insert move. It brings the

system from the G sector to the Z sector by attempting to remove the worm. If the

system is in the G sector, it is checked the length of the worm Nre, defined as the

number of images it is composed of. If this length Nre ∈ [1, Nmax], then the worm is

removed with probability

Are = min

{
1,
e−∆U−µNreτ

CNmaxVM

}
. (A.23)

Advance The advance MC move applies to the G sector and keeps the system in it.

A new piece of word line of length of Nin ∈ [1, Nmax] images is generated, distributed



60 APPENDIX A.

according to Nad free particles propagators, starting from I. The new piece of world

line is inserted in the system with probability

Aad = min
{

1, e−∆U+µNadτ
}
. (A.24)

The new I is now the end of the added part of world line.

Recede The recede MC move is the conjugate of the advance move, and applies to

the G sector. If the system is in the G sector, a number Nrd ∈ [1, Nmax] is selected.

The length of the worm by number of images is checked, if this is smaller or equal to

Nre the move is rejected. Otherwise Nrd images are removed from the worm, starting

from I and going backwards in imaginary time, with probability

Ard = min
{

1, e−∆U−µNrdτ
}
. (A.25)

Swap The swap move is defined in the G sector, and is the critical move for efficient

permutation sampling (although also the previously described moves have the ability

to change the permutations). After checking whether the system is in the G sector,

than the time slice index of I, denoted by j, is identified. The j + Nsw time slice is

considered, Nsw ∈ [1,M−1] being an algorithm parameter and an image α pertaining

to this time slice is chosen according to the probability distribution

π (α) =
ρ0 (rI , r(α), Nswτ)

ς (I, Nsw)

ς (I, Nsw) =
∑
i

ρ0

(
rI , r

i
j+Nsw , Nswτ

)
,

(A.26)

where the index i in the summation spans over all the images at time slice j + Nsw.

Now we trace back starting from α for Nsw time slices, individuating an image we

will denote with ι = prevNsw (α). If when tracing back from α, M is encountered,

or if ι =M, the move is rejected. The quantity ς (ι, Nsw) is calculated, in the same

way as ς (I, Nsw). Now, a new piece of word line constituted by Nsw − 1 images is

constructed, sampled as the product of Nsw free particles propagators connecting I
to α. Then, with probability

Asw = min

{
1,
e−∆U ς (I, Nsw)

ς (ι, Nsw)

}
, (A.27)
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the world line connecting ι to α is removed and substituted with the proposed one

connecting I to α. In this case ι becomes the new I.

The code is written in Fortran90, allowing for both canonical and grand-canonical

ensemble. A number of estimators such as potential and kinetic energy, intermedi-

ate scattering function [86], superfluid fraction [94], pair distribution function, one

body density matrix, Green function [90], are included in the code. We explicitly

report here only the expression for the estimator of the superfuid density in periodic

boundary conditions, as this quantity is crucial in our analysis.

ρs =
m 〈W〉2

h̄2βN
, (A.28)

where W is the winding number estimator, defined as

W =
∑
i,t

ri(t+ 1)− ri(t), (A.29)

where i is the particle index and t the time slice index. The distance ri(t+1)−ri(t) has

to be calculated using the periodic boundary replica of image i+ 1 nearest to image

i. The sum in Eq. A.29 can be different from zero if some permutation cycle winds

around the periodic boundary condition, as paths that never cross the boundary do

not contribute into the summation.
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Figure A.3: Illustration of the effect of the various Metropolis Monte Carlo moves
on the configuration of the world lines in the worm algorithm.



Appendix B

B.1 Variational Monte Carlo

Variational Monte Carlo (VMC) is a way of calculating stochastically expectation

values of a trial wavefunction ψT . It is based on the observation that any expectation

value can be expressed as

〈O〉 =
〈ψT | O | ψT 〉
〈ψT | ψT 〉

=

∫
dr 〈ψT | r〉 〈r | ψT 〉 〈r|O|ψT 〉〈r|ψT 〉∫

dr 〈ψT | r〉 〈r | ψT 〉
=

∫
dr Π (r, ψT )EO (r)∫

dr Π (r, ψT )

Π (r, ψT ) = |ψT (r)|2 ; EO (r, ψT ) =
[OψT ] (r)

ψT (r)
,

(B.1)

where r denotes particle coordinates. In case the operator O of our interest is the

Hamiltonian of the system H, the expectation value is the total energy of the system

E and the term EO takes the name “local energy”

El (r, ψT ) =
[HψT ] (r)

ψT (r)
. (B.2)

Eq. B.1 is in general a highly multidimensional integral. Moreover, the term Π (r, ψT )

as a function of r can be interpreted as an unnormalized probability, as it is positive

definite. These two observation point to Monte Carlo integration as a way to solve

Eq. B.1. By sampling r distributed according to Π (r, ψT ), the estimate for the total

energy E is evaluated as the average El(r) over this sampling. The technique of choice

to perform the sampling is most times the Metropolis-Hastings algorithm [92,93], Eq.

A.17 (where s and s′ have to be interpreted here as r and r′). A possible proposal

probability for T (r′, r) is a multidimensional gaussian distribution centered on r, of

suitable amplitude in order to obtain a reasonable acceptance ratio, but also more

sophisticated strategies can be applied if one aims at high efficiency [95]. Eq. B.1

for the total energy retains its variational property in the stochastic integration:

63



64 APPENDIX B.

〈E〉 ≥ Eg, where Eg is the true ground state energy of the system, and 〈E〉 = Eg

only if ψT = ψg. VMC also exploits the important “zero variance” property of the

local energy, which states that if our trial wave function is equal to the true ground

state wavefunction ψT = ψg, the local energy will be identically equal to the ground

state energy El (r, ψT ) = Eg, as it is easily verified from Eq. B.2. This properties

guarantees that by improving the trial wave function ψT the variance of El (r, ψT )

sampled over Π (r, ψT ) will decrease, making the stochastic integration cheaper. The

advantage of VMC with respect to other wavefunction based methods is in that we

need not to be able to perform explicit integrations over ψT (r), therefore we need not

to use separable wavefunctions, say as a series of Slater determinants. In fact, the only

requisite we have is to be able to evaluate ψT (r) and its derivatives, possibly in a fast

way in order to make the computation efficient. Therefore, we have the possibility of

including explicit correlations into ψT , e.g. by the use of a Jastrow term, depending

on all the electron and nuclear coordinates r and R simultaneously J(r,R), which is

typically a positive definite function expressed as an exponential of some correlation

functions. In general there is great freedom in the choice of the form of these functions,

which may even include high order correlation terms. As the Jastrow term has the

ability to recover much of the correlation energy, for many applications there may be

no need to include correlation through the use of multi-determinantal wavefunctions,

therefore a common VMC wavefunction is the so called Slater-Jastrow, constituted

by single Slater determinant multiplied by a Jastrow factor.

B.2 Diffusion Monte Carlo

Diffusion Monte Carlo is a method aimed at stochastically projecting a trial wave

functions toward the true ground state wavefunction. We start from the Schrödinger

equation

ih̄
∂ψ(r, t)

∂t
= (H− Et)ψ(r, t) = − h̄2

2m
52 ψ(r, t) + (V − Et)ψ(r, t), (B.3)

where Et is he so called “trial energy”, providing a rigid shift of the eigenvalues of the

equation. Now we consider the imaginary-time evolution of Eq. B.3, starting from

an initial trial wavefunction ψT (r) at time zero

ψ (r, t) = exp [−t (H− Et)]ψT (r) . (B.4)
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In the limit t→∞ the procedure will exponentially project out the eigenfunction

not perpendicular to ψg(r) corresponding to the lowest eigenvalue, as can be seen

by decomposing ψT (r) in eigenfunctions of H. Eq. B.4 clarifies the role of Et as a

constant needed to keep the normalization of the lowest eigenvalue. Eq. B.4 can also

be rewritten in a convolution form:

ψ (r′, t+ τ) =

∫
drG(r, r′, τ)ψ (r, t)

G(r, r′, τ) = 〈r′ | exp [−τ (H− Et)] | r〉 .
(B.5)

A short time approximation for the Green function G(r, r′, τ) can be devised, in a

way completely analogous to the procedure described in section A.1 for the short time

approximation of ρ (R,R′, β). By using the Trotter decomposition one obtains:

G(r, r′, τ) ≈ (4πλτ)
−3N/2 exp

[
−(r− r′)2

2τ

]
exp

[
−τ

2
(V (r) + V (r′)− 2Et)

]
, (B.6)

where V (r) is the potential energy operator of the Hamiltonian, λ = h̄2

2m
and N the

number of particles. In principle, with repeated application of G(r, r′, τ), one can

sample the true ground state wavefunction of the system: it is enough to interpret

Eq. B.5 as a master equation of a stochastic process. We can select a position r

distributed according to the initial ψT (r), and let its position evolve stochastically

by repeatedly applying G(r, r′, τ) until at imaginary time t all the components other

from the ground state are projected out. This procedure can be repeated at will,

obtaining sampling points at time t distributed according ψg. Minor complications

arise from the renormalizing factor exp
[
− τ

2
(V (r) + V (r′)− 2Et)

]
which can be dealt

with in a stochastic approach either by assigning a weight to the sampling points,

also referred to as “walkers”, by the branching approach (see below). Therefore in

principle, by this procedure, one can sample the true ground state wavefunction of the

system. This can then be used to estimate expectation values, such as the energy, in

the same spirit of VMC, by a weighted average of the local energy over this sampling.

However, here the well known sign problem comes into play: if we are dealing with

a Fermionic system, the initial ψT (r) will in general not be positive definite, therefore

is not a proper probability distribution. If we tackle this problem by distributing

the initial walkers as |ψT (r)|, and keeping track of the sing in the walker’s weight,

cancellation of weights will exponentially increase the statistical uncertainty of any

expectation value we may wish to calculate on the sampled distribution. This is easily
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understood if we imagine to separate the positive and negative parts of ψ+ and ψ−,

and project them separately, taking advantage of the linearity of Eq.B.4. Both the

positive and negative population will distribute toward the Bosonic ground state at

t → ∞, canceling each other out. In order to solve this notorious problem, one of

the most used approaches is the so-called fixed-node approximation. As the name

suggests, it is a modification of the imaginary time propagation devised so to prevent

walkers from crossing the nodes, i.e. hypersurfaces in which ψT (r)=0. By doing

so one introduces an approximation as it is fixing the nodal surface, therefore the

projection operation cannot reach the true ground state wavefunction anymore. This

constraint can be introduced into the algorithm by means of an importance sampling

procedure. We start by modifying the Schrödinger equation B.3 by multiplying both

sides by ψT (r), obtaining an equation for f (r, t) = ψ (r, t)ψT (r)

ih̄
∂f(r, t)

∂t
= − h̄2

2m
52 f(r, t) +

h̄2

2m
5 · (vd(r)f(r, t)) + (El(r)− Et) f(r, t)

El (r, ψT ) =
[HψT ] (r)

ψT (r)

vd(r) = 5ln |ψT (r)| ,

(B.7)

where El is the local energy and vd(r) is the “drift velocity” term. This equation

is not equivalent to the original Schrödinger equation, as the function ψT (r) is zero

at the nodes, and we are effectively decoupling the evolution of ψ in different nodal

pockets, i.e. regions enclosed into a nodal surface. In analogy to what done for the

original evolution in imaginary time, also for the evolution driven by Eq. B.7 can be

written as a master equation of a stochastic process:

f (r′, t+ τ) =

∫
drG(r, r′, τ)f (r, t) . (B.8)

We can write by the Trotter decomposition a short time approximation (exact in the

limit of τ → 0) of the Green function as:

G(r, r′, τ) =

∫
dr′′ dr′′′Gg/d (r′′′, r′, τ)Gdiff (r′′, r′′′, τ)Gdrift (r, r′′, τ)

Gdrift (r, r′, τ) = (1− τ 5 ·vd(r)) δ (r′ − r− τvd(r))

Gdiff (r, r′, τ) = (4πλτ)
−3N/2 exp

[
−(r− r′)2

2τ

]
Gg/d (r, r′, τ) = exp [−τ (El (r, ψT )− Et)] δ (r− r′) .

(B.9)
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The three terms of the Green function have the following interpretation in the stochas-

tic implementation:

Gdrift Drift term. Has the effect of an importance sampling: it drives walkers toward

the region in which |ψT (r)| is larger. It also ensures, in the limit of τ → 0, that

walkers do not cross the nodal surface, where the term vd(r) diverges.

Gdiff Diffusion term. It diffuses walkers by randomly displacing them of a normally

distributed quantity.

Gg/d Growth/decay term. It is a statistical weight acquired by the walker. This term

can be dealt with in a branching approach (see below).

We will also sometime refer to the convolution of Gdrift and Gdiff as the drift-diffusion

term:

Gdd(r, r
′, τ) =

∫
dr′′Gdiff (r′′, r′, τ)Gdrift (r, r′′, τ) . (B.10)

The procedure then follows as in the original dynamic. Starting from a random walker

distributed initially as |ψT (r)|2, it is projected in time by successive small time steps

τ until a stationary distribution f0 (r) = ψ0(r)ψT (r) is reached. Naturally results are

to be extrapolated in the τ → 0 limit. This distribution can be used for computing

expectation values such as the energy, trough the mixed estimator

〈E〉 =
〈ψ0 | H | ψT 〉
〈ψ0 | ψT 〉

=

∫
dr Π (r, ψT )El (r, ψT )∫

dr Π (r, ψT )

Π (r, ψT ) = f0 (r) .

(B.11)

The algorithm retains the variational property in that 〈E〉 ≥ Eg. Differently with

VMC there is a less strict condition for the two quantities to be equal, 〈E〉 = Eg only

if the nodal surface of ψT is equal to the one of ψg. It can be in fact demonstrated

that the expectation value of the energy is a function on the nodal surface of ψT only.

As a consequence, a Jastrow factor we might be adding into ψT does not have any

effect on 〈E〉. However, the inclusion of a Jastrow factor is critical for an efficient

implementation of the algorithm, as the growth/decay Green function fluctuations

term depends on the details of ψT . This can be seen easily, for example if ψT = ψg

then El = Eg, i.e. as in VMC the zero variance property holds, with the Gg/d going

to a constant.

The algorithm as it is presented up to now lacks some key ingredients for an effi-

cient implementation, see e.g. [96]. We will not enter the details of these technicalities,
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being a description of these algorithm beyond the scope of this thesis, but we will

mention the most relevant. First, it is fundamental to devise a strategy to control

the weight fluctuations of walker, due to the Gg/d term. The most common solution

is represented by the many walker formulation with branching. Instead of using a

single walker, we employ a population of them propagating simultaneously. After

each time step, i.e. after each application of G(r, r′, τ), each walker will have a weight

multiplied by the Gg/d (r, r′, τ). Instead of simply keeping track of the weight for each

single walker, walkers with high weight are replicated in copies, while walkers with

low weight are removed. This proves to be a much more efficient methodology for

large many-body systems, as we are avoiding to propagate walkers that have small

statistical weight. Once this is done, one has to guarantee that the population of

these walkers does not diverge or vanish exponentially, by acting on the constant Et,

entering in the Gg/d. However, by dynamically acting on Et one introduces a bias,

as it is suppressing weight fluctuations in the population, which would be present

even if Et =< E >. Weight fluctuations are then re-introduced back into averages

by properly reweighting the walkers. Other problems are arising at the nodes of ψT ,

where El and vd diverges. For this reason near the nodes Gdrift of Eq. B.9 is a rather

poor approximation of the true Green function, so that better approximations have

been devised. At finite τ the density of walkers near a node is not zero, due to the

approximation in the Green function. This problem can be tackled by adding an ac-

cept/reject step that corrects for the imperfect sampling of the Gdrift and Gdiff terms.

In practice, after the drift-diffusion term Gdd(r, r
′, τ) is applied, the new position r′

is accepted with probability:

P = min

{
1,
|ψT (r′)|2Gdd(r, r

′, τ)

|ψT (r)|2Gdd(r′, r, τ)

}
. (B.12)

This Metropolis-Hastings term ensures that the sampling of Gdd(r, r
′, τ) in the limit

of ψT = ψg is performed with no time step error.

Finally, at electron-electron overlap and at electron-nucleus overlap El diverges unless

proper cusp conditions are satisfied by ψT .
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