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1.1. Background

1.1 Background

The interplay between Mathematics and Physics has been for long time a most fruit-
ful and conceptually rich arena of modern Science. On one hand, the mathematical
formalization of physical models has proven to be remarkably successful in the quan-
titative description of natural phenomena; on the other, recent times have witnessed
how surprisingly effective many ideas from particle physics (e.g supersymmetry) can
be in the search of new mathematical structures.

The modern prototypical example of such cross–fertilization is provided by Super-
string Theory. In addition to being the leading candidate for a unified theory of all
forces - including a consistent quantum mechanical description of gravitational phe-
nomena - and a surprisingly powerful tool for the study of gauge theories at strong
coupling, the theory of superstrings has had a truly remarkable impact on sometimes
distant areas of Mathematical Physics and Mathematics in general, both as a heuris-
tic guiding principle and as a major unifying framework.

A central role in this respect has been played by the so-called topological phase of
string theory (see [43,93,103,118,144,149] for reviews). Physically, this consists of a
class of two–dimensional N = 2 superconformal field theories coupled to 2d–gravity
which are characterized by an exact nilpotent fermionic symmetry QBRST [145,149].
The most striking feature of these string theories is that fact the QBRST symmetry
singles out a distinguished vector space of operators in the worldsheet σ-model, whose
correlation functions do not dependent on the background metric on the Riemann
surface. As the main consequence, these correlators are computed in a drastically
simplified fashion as a finite-dimensional integral over on-shell, classical trajectories
only.
A natural place of appearance for this theories is in the context of twisted N = (2, 2)
σ-models, namely supersymmetric quantum field theories of maps from a compact
connected Riemann surface to a Kähler manifold X, whose energy-momentum tensor
is redefined by the abelian automorphisms of the N = (2, 2) superalgebra. When the
target manifold X is the internal part of a vacuum configuration for superstrings,
i.e. a Ricci-flat Kähler manifold, such topological string theories may come in two
guises: the so-called A-model1 and B-model. From the physical point of view their
most attractive feature is the close relationship with the F -term sector of the parent
Type IIA and IIB string theories on M1,3×X, for which the topological invariance
can be exploited to full power to give exact results. This has yielded a great deal of
non-trivial information about the effective holomorphic dynamics of supersymmetric
gauge and gravity theories [12,22,45,143], and has provided at the same time a very
useful laboratory for general ideas about black–hole dynamics [132] and dualities in

1In fact, conformality is not needed for the definition of the topological A-twist, which can in
principle be performed on a target manifold X with a symplectic form ω, and a not necessarily
integrable ω-tamed almost complex structure [17,145]. Such level of generality will not however be
needed in this thesis.
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Chapter 1. Introduction

string theory and gauge theory [83].

From the mathematical viewpoint, topological string theories have perhaps an
even more striking significance, as physical arguments suggest that their correlation
function should capture deep and subtle aspects of the geometry of the target space.
The most remarkable instance is given by the A-model on a target manifold XA: the
stationary phase reduction of the path integral in this case heuristically boils down
to some sort of integration over a moduli space of holomorphic maps from the source
Riemann surface to X, whose result should be invariant under deformations of the
Kähler (or in general almost-Kähler) structure onX. The outcome of the integration,
roughly speaking, should be related to a “count” of the number of curves in X
in a fixed homology class and subject to intersect various cycles. These geometric
invariants go under the name of Gromov–Witten invariants, and have very important
applications in symplectic topology and enumerative algebraic geometry. On the
other hand the same physical reasonings suggest that the B–model, which can be
consistently defined only on a Calabi–Yau manifold XB, could be interpreted as a
theory of constant maps - therefore, a local theory on XB, which computes an entirely
different set of invariants related to the theory of variation of Hodge structures of
XB.
In absence of a rigorous general theory of functional integration for two dimensional
quantum field theories, these path-integral motivated concepts begged for a sound
mathematical foundation. In the last fifteen years, a tremendous effort has been put
by the community of symplectic and algebraic geometers, somewhat in parallel, to
give a rigorous description of the A–model in terms of intersection theory on moduli
spaces of morphisms from marked curves to X (see Chapter 7 of [39] and references
therein), with the aim to turn the physical intuition about Gromov–Witten invariants
into mathematically well defined objects and relations. The success in finding a
mathematical foundation for Gromov–Witten theory, however, has not stopped new
ideas from Physics to be very influential and to make up an ever growing challenge
for mathematicians.

Duality

A key role in this context has been played by string-inspired dualities. On the Physics
side, it is an often recurring fact that different quantum theories might be isomorphic,
meaning that their spectrum and correlators coincide in their entirety. The prime
example in string theory is T -duality, namely the sign reflection of the right–moving
sector of (possibly twisted) free CFTs. A non-linear realization of this duality re-
lates pairs of Calabi–Yau threefolds (XA, XB) which are such that the topological
A–model on XA and the topological B–model on XB are identical as physical theo-
ries. This phenomenon bears the name of mirror symmetry.
The consequences of such an unexpected relationship on the Mathematics side are
striking. The statement of mirror symmetry builds an amazing correspondence be-
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1.1. Background

tween classically very hard enumerative problems for XA on one side, and much
simpler Hodge-theoretic computations on XB on the other which can be efficiently
performed. A paradigmatic application of mirror symmetry is the work of Candelas
et al. [32] that led to startling predictions of the number of rational curves of various
degrees of the quintic threefold in P4.
This results sparked a flurry of activity to prove rigorously the predictions of mirror
symmetry [79, 81, 112], to find a proper mathematical setting for the duality [107],
and to generalize it to cases of increasing difficulty. The most notable extension of
the mirror symmetry program came from the work of [22], where the power of topo-
logical Ward identities was used to propose a beautiful recursive scheme for mirror
symmetry calculations at higher genus.

A second, important example2 is given by the large N duality between closed
string theories on XC and open strings on a background XO with N D-branes, i.e.
Dirichlet conditions for the endpoints of the string, which are constrained to live on a
submanifold MO ⊂ XO. From the viewpoint of the gauge theory on the branes, this
is a realization of ’t Hooft’s idea [1] that the fatgraph expansion of a gauge theory -
resummed over “holes” - can be thought of as a closed string perturbation theory. In
the topological A–model context, a concrete example of this duality was given [83]
by relating open strings on T ∗S3 to the closed theory of OP1(−1) ⊕OP1(−1). From
the mathematical point of view, this statement gets translated into a stunning math-
ematical connection between topological invariants of 3-dimensional real manifolds,
like quantum-group theoretic invariants and knot invariants on one side, and ordinary
and relative Gromov–Witten invariants of Calabi-Yau threefolds on the other. More
than just an aesthetically appealing link between seemingly unrelated mathematical
concepts, this relationship was exploited in full power to propose a full solution of the
Gromov–Witten theory of toric Calabi–Yau threefolds, culminated in the celebrated
work of [7].

Integrability

A recurring theme in the Mathematical Physics literature about topological strings
is the conjecture that the high degree of solvability of the theory could be a signal of
underlying integrable structures. The appearance of integrable systems is indeed an
ubiquitous phenomenon in topological field and string theory: for example, already
at genus zero and before coupling to topological gravity, the so-called associativity
equations make up an integrable dynamical system [49,52,79] as do the equations that

2It must be noticed that this list of string dualities is far from being exhaustive and can be
enlarged by including more, equally remarkable examples. For one, another kind of duality -
S-duality - has proven instrumental to provide yet another instance of non-trivial mathematical
correspondences on the A–model side, by relating Gromov–Witten theory with Donaldson–Thomas
theory [96, 123,131].
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Chapter 1. Introduction

govern the interaction at tree–level between the chiral and the anti–chiral physical
operators [34,51]. A most important place in this context is occupied, after coupling
to topological gravity, by the full partition function of the topological theory, which
is conjecturally related to a τ -function of an integrable hierarchy of commuting 1+1
PDEs. The prototypical example is given by Witten’s conjecture [148], subsequently
proven by Kontsevich [104], that the generating function of intersection numbers
of Morita-Miller classes on the Deligne-Mumford moduli space of stable curves is a
particular tau function of the KdV hierarchy.
A constructing proof of this conjecture for the A-model on a target space X (i.e., an
explicit characterization of the hierarchy associated to the Gromov–Witten theory of
X) would be a very far–reaching result, both in principle and computationally, and it
represents possibly one of the main issues in Gromov–Witten theory. Aesthetically,
it would create an a priori unexpected and beautiful bridge between the enumerative
geometry of symplectic manifolds and the integrable dynamics of infinite–dimensional
non–linear systems. Moreover, from the physics side, the integrable system would also
provide a way to define non–perturbatively topological string theory on X beyond a
formal power series expansion in the string coupling constant. But more in practice,
knowledge of the underlying integrable flows would be a way to solve completely
the intersection theoretic problem of determining the Gromov–Witten invariants of
X, e.g. by establishing a set of constraints sufficiently strong to recover all the
correlators recursively starting from a smaller subset of invariants. The connection
with integrable systems is therefore a crucial aspect of the theory; however, despite
much effort on the subject there are still only two examples (GW theory of the
point and of CP1) where this connection is fully established mathematically, and the
possibility of a systematic extension of this program to new classes of examples is to
a large extent uncharted territory.

1.2 Outline of the thesis

The two aspects that we have emphasized - duality and integrability - will be the
main thread of this thesis. Our focus will be on the Gromov–Witten theory of toric
Calabi–Yau manifolds of complex dimension three. We will follow the following three
lines of investigation:

1. in Chapter 3, we will study the variation of the A-model partition function, or
Gromov–Witten potential, under a change of the Kähler moduli of the target
space. By its very definition, at fixed genus the Gromov–Witten potentials take
the shape of formal power series in the Novikov parameter, which is naturally
interpreted from the worldsheet perspective as the exponential of the Kähler
volumes of the image curves. The Gromov–Witten degree expansion is then
naturally centered around the deep interior of the Kähler cone, i.e., around some
sort of “large volume limit”. It is natural to ask what happens if we move away
from such a limit point: in particular, we would like to know how the potentials
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1.2. Outline of the thesis

change when we move from one patch to another of the Kähler moduli space,
and also what kind of geometric information we get by considering expansions
at different limiting points. We will tackle this problem by exploiting a dual
description via mirror symmetry. As first advocated in [14], the α′-exactness of
the B-model allows for a detailed study of the Kähler moduli space, including
non-geometric (“conifold”) or classically singular (“orbifold”) phases. We will
first propose a global B-model solution for the genus zero theory in a large class
of examples, and then use the formalism of [24] to give definite predictions of
the behaviour of generating functions of Gromov–Witten invariants when we
move from one chamber to another of the (stringy) A-model moduli space.

2. in Chapter 4 we will study the possibility to extend the Gopakumar-Vafa du-
ality, which relates SU(N) Chern–Simons theory on S3 to the Gromov–Witten
theory of the resolved conifold OP1(−1) ⊕OP1(−1), to the case when the real
three-sphere is replaced by a generic lens spaces L(p, q). To this aim we ex-
ploit, on one hand, the matrix model representation [117] of the SU(N) Chern–
Simons partition function and study it in a generic flat background for the entire
L(p, q) family, providing a solution for its large N dynamics; on the other, we
perform in full detail the construction of a family of would-be dual closed string
backgrounds via conifold geometric transition from T ∗L(p, q). We will then ex-
plicitly prove, using mirror symmetry techniques, that the duality fails to hold
true in this more general case.

3. in Chapter 5 we will tackle the problem of unveiling the integrable structures
behind Gromov–Witten theory in new classes of examples and begin the study
and the construction of the integrable hierarchies that govern the topological
A-model on local Calabi–Yau threefolds. To this aim, we will consider the
equivariant Gromov–Witten theory of Calabi–Yau rank 2-bundles over P1, and
construct explicitly the relevant integrable hierarchies at the genus zero ap-
proximation. We will then focus on a thorough examination of the case of the
resolved conifold with antidiagonal fiberwise action. We will formulate a pre-
cise conjecture about a candidate hierarchy that could encode the full theory,
and test it successfully at one loop in the primary sector.

The core content of thesis is contained in Chapter 3-5. For the reader’s conve-
nience, and in order to make the exposition self–contained, we will review and collect
in the next Chapter the relevant concepts that will be used throughout this thesis.
This will mainly serve as a repository for the definitions of the objects that we will
need in the following chapters, and has no pretension of completeness. We will first
give a brief review of A-model concepts, such as Gromov–Witten invariants, their
relations, and quantum co-homology; we will subsequently recall the description of
the B-model on Calabi–Yau threefolds and of the mirror symmetry constructions
that will be used in Chapter 3 and 4, including (local) Picard–Fuchs equations, open
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Chapter 1. Introduction

string mirror symmetry, and the BKMP proposal.

Finally, Chapter 6 illustrates extension of results obtained in Chapter 3-5, and
indicates new possible avenues of research. Two appendices have also been included,
containing the B-model predictions for open orbifold Gromov–Witten invariants of
C3/Z4, as well as a number of useful formulae that were used.
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2.1. The A-side

2.1 The A-side

In this section we will review the mathematical formalization of the topological A-
model in terms of intersection theory on moduli spaces of holomorphic maps. To
this aim we will first outline the properties of the relevant moduli spaces, introduce
Gromov–Witten invariants in the generality we will need for this thesis, and then
discuss some general properties of generating functions of Gromov–Witten invari-
ants. We will finally conclude with the introduction of the big quantum co-homology
algebra and the J-function.

2.1.1 Moduli spaces of holomorphic maps and stable com-

pactification

Let (X,ω) be a compact Kähler manifold with Kähler form ω and let (Σ, p) be a
connected, non-singular projective complex curve with n non-singular marked points
(p1, ..., pn). We will consider classes of equivalence of holomorphic maps φ : Σ → X,
where the data (φ,Σ, p) and (φ′,Σ′, p′) are identified if there exists a holomorphic
automorphism sending (φ,Σ, p) → (φ′,Σ′, p′). A holomorphic map (φ,Σ, p) → X is
called stable if for any irreducible component of Σ there is no conformal Killing vector
field1 on Σ having zeroes at the marked points. Let Σ be of arithmetic genus g and
β denote the total homology class of φ∗[Σ] ∈ H2(X,Z). Then a theorem from [105]
states that the space of equivalence classes of stable maps φ : Σ → X with given
g, n, β can be closed to a compact Hausdorff topological space, called the moduli
space of stable maps Mg,n(X, β). This generalizes for X 6= pt the Deligne-Mumford
compactification Mg,n of moduli spaces of genus g Riemann surfaces with n marked
points.

In the following we will be concerned with the case in which X is sufficiently non-
negatively curved, and in particular is semi-positive. This means that if β ∈ H2(X,Z)
is represented by φ∗([Σ]) with Σ ≃ S2, then we never have

ω · β > 0 and 6 − dimRX ≤ c1(X) · β < 0

In such a case, M0,n(X, β) is a smooth compact orbifold of real dimension

2(dimCX − 3) + 2c1(X) · β + 2n (2.1.1)

and, as a quotient of a smooth manifold by a finite group, it inherits a rational
fundamental cycle [M0,n(X, β)] ∈ H(M0,n(X, β),Q). However the general case, i.e.
g > 0, or non-semi-positive spaces, is considerably more involved; still, it turns out

1Given a metric g on Σ, X ∈ X (Σ) is said to be a conformal Killing vector field if

LXg ∝ g

holds pointwise.
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a review

that there exists a very rewarding approach to define nice fundamental classes and
a sensible intersection theory on Mg,n(X, β) in the language of algebraic geometry,
namely by regarding Mg,n(X, β) as a so-called “Deligne-Mumford stack”. This allows
for the introduction of “virtual fundamental classes” [Mg,n(X, β)]vir, playing the role
of the fundamental cycle in the general case and ensuring that all the otherwise formal
expressions we will write from now on, like integration of top-degree form over the
fundamental cycles, actually make sense and behave as expected. In this thesis
we will take for granted that such a definition can be made, and refer the reader
to [18, 106, 113] for the details of the construction.

2.1.2 Gromov-Witten invariants

Gromov-Witten theory deals with the construction of multi-linear functions 〈. . .〉g,n,β :
H•(X,C)⊗n → C via cup product of some universal cohomology classes over the fun-
damental cycle [Mg,n(X, β)]vir. This is done as follows: first of all there are canonical
morphisms evi : Mg,n(X, β) → Mg,n−1(X, β), Mg,n(X, β) → Mg,n, Mg,n(X, β) →
Xn called evalutation, forgetful, and contraction, which are defined respectively by
evaluating the map at the ith marked point, by forgetting the map, and by forgetting
one of the marked points and contracting unstable components. We will be intersted
in the two following examples of characteristic classes:

1. pull-backs of cohomology classes from Xn by the evaluation maps ev1 × · · · ×
evn : Mg,n(X, β) → Xn at the marked points;

2. polynomials in the curvature classes ψi = c1(Li) of the line orbi-bundles Li over
Mg,n(X, β), whose fiber over the stable map (φ : Σ → X, p) is the cotangent
space T ∗

pi
Σ.

This allows us to define Gromov-Witten invariants as follows.

Definition 1. Given classes γ1, . . . , γn ∈ H•(X,C), the primary Gromov-Witten
invariant 〈〉g,n,β : H•(X,C)⊗n → C is defined by

〈γ1, . . . , γn〉g,n,β :=

∫

[Mg,n(X,β)]vir

n∏

i=1

ev∗
i (γi) (2.1.2)

Given a collection of integers ki ≥ 0, we also define the descendant (or gravitational)
Gromov-Witten invariant

〈τk1γ1, . . . , τknγn〉g,n,β =

∫

[Mg,n(X,β)]vir

n∏

i=1

ev∗
i (γi)ψ

ki
i (2.1.3)

Remark 1. Intuitively, the primary invariants should be related in some way to
counting the number of degree-β holomorphic maps from Σ to X with n given marked
points mapped to n given cycles. However it is not immediate in general to give a di-
rect enumerative interpretaion of the invariants, as the orbifold nature of Mg,n(X, β)
allows them to take in general rational values.
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There is a manifold of generalizations that can be made to extend this setup to
other interesting situations. We will be mostly interested on the following three (not
mutually exclusive) cases:

• First of all suppose that X is acted on by an algebraic torus T ; such an action
then can be pulled-back to an action on Mg,n(X, β). Since the evaluation,
forgetful and contraction morphisms are by construction honest maps of T -
spaces, one can define correlators of equivariant cohomology classes, which take
values in H•(BT )

〈γ1, . . . , γn〉X
	T

g,n,β =

∫

[Mg,n(X,β)]vir

n∏

i=1

ev∗
i (γi)

〈τk1γ1, . . . , τknγn〉X
	T

g,n,β =

∫

[Mg,n(X,β)]vir

n∏

i=1

ev∗
i (γi)ψ

ki
i (2.1.4)

where now γi ∈ H•
T (X). When it is implicit that we will refer to T -equivariant

Gromov–Witten invariants, we will suppress the 	T apex in the notation for
equivariant correlators.

• In this thesis we will actually never consider the case of X being projective;
in fact, some of the cases of greatest interest for us will be total spaces of
concave holomorphic vector bundles X ≃ E → B, where B is a projective toric
curve or surface. Such examples are therefore non-compact, but given that
any holomorphic map of non-zero degree from a smooth projective curve Σ to
X lands to the zero section of E, we have that Mg,n(X, β) and Mg,n(B, β)
are isomorphic as topological spaces. It turns out however that their expected
dimension - in gauge theory terms, the index-theoretic computation of zero-
modes of the twisted Dirac operator on Σ - differs, and the two virtual cycles
are related as

[Mg,n(X, β)]vir = [Mg,n(B, β)]vir ∪ e(Eg,n,β) (2.1.5)

where e is the (possibly T -equivariant) Euler class and Eg,n,β is the vector bundle
over Mg,n(X, β) having H1(Σ, φ∗E) as a fiber at a stable map f : Σ → B.
Therefore GW -invariants of X coincide with twisted Gromov–Witten invariants
of B [36, 37].

• Another possibility we will allow is that X be a (reduced) orbifold. To this
purpose, suppose X is a quotient Y/G of a smooth complex manifold Y by the
possibly non-free action of a finite abelian group G by holomorphic diffeomor-
phisms, and denote with Xg ⊂ Y the invariant submanifolds of the action of
g ∈ G. The inertia orbifold IX of X is defined as the disconnected union

IX :=
⊔

g∈G
Xg (2.1.6)
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that is, a point of IX is a pair (x, g) where x ∈ X and g belongs to the isotropy
group of x. The Chen–Ruan orbifold cohomology groups H•

CR(X,C) are then
defined as

H•
CR(X,C) = H•(IX; C)

As for ordinary co-homology, we have a natural grading on H•
CR(X,C). To

each component Xg of the inertia orbifold (2.1.6) we attach a rational number
called the age of Xg, defined as follows: let g be the representation of g inside
Aut(X), and consider its differential at a point x ∈ X

dg(x) : TxX → TxX

Since g is abelian, TxX splits into a direct sum

TxX =
⊕

0≤j<r
Yj

where Yj is the eigenspace of dg with eigenvalues exp(2πij/r). The age of Xg

is defined as

age (Xg) =
r−1∑

j=0

j

r
dimYj (2.1.7)

We use this to turn H•
CR(X,C) into a Q-graded vector space by defining the

orbifold degree of α ∈ Hk(Xg,C) as

degCR(α) = k + 2age (Xg) (2.1.8)

Physically, the age-shifting is due to a shift in the fermion number of the vac-
uum when (quasi-periodic) twisted boundary conditions are put on the chiral
fermions of a 2d CFT [152]. It turns out that a moduli space of stable maps
can be defined sharing most of the desired properties of the ordinary, smooth
case. Again, one considers degree d maps from n-pointed genus g orbicurves
Σ to X and takes a stable compactification of the space of such maps up to
isomorphism; the resulting space is again sufficiently well-behaved from the al-
gebraic point of view to have a virtual fundamental class [Mg,n(X, β)]vir, with
the expected dimension, and with a nice notion for all the relevant morphisms
of moduli spaces (and in particular evaluation maps). Taking this for granted2,
we define the orbifold Gromov-Witten invariants of X as

〈τk1γ1, . . . , τknγn〉Xg,n,β =

∫

[Mg,n(X,β)]vir

n∏

i=1

ev∗
i (γi)ψ

ki
i (2.1.9)

for orbifold cohomology classes γi ∈ H•
orb(X).

2The intersted and algebraically-minded reader may find the details of the construction in [3]
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2.1.3 Generating functions and relations between correlators

Generating functions

Gromov-Witten invariants have an obvious importance if looked at individually: as
we mentioned in Remark 1, in many cases each single primary invariant should some-
how carry information about enumerative aspects of the geometry of the target space.
The main thread of this thesis, however, will be the study of the mathematical struc-
tures arising when we consider them collectively: that is, we will be interested in
the study and characterization of the properties of generating functions of Gromov–
Witten invariants.

To this aim, let us consider the Gromov–Witten theory of a target space X,
where X is allowed to be an orbifold and/or to be acted on by a torus T = (C∗)k

with compact T -fixed loci. In the following we will unify notation by denoting simply
with H(X) the (possibly equivariant and/or orbifold) co-homology ring of X

H(X) =





H•(X,C) ordinary case
H•
T (X,C) ⊗ C((λ)) equivariant
H•
CR(X,C) orbifold

H•
CR,T (X,C) ⊗ C((λ)) equivariant orbifold

(2.1.10)

where λ = (λ1, . . . , λr) and C((λ)) is the field of fractions of the T -equivariant coho-
mology of a point, HT (pt) ≃ C[λ]. H(X) is a finite dimensional vector space over
a field K, where K ≃ C and K ≃ C((λ)) in the non-equivariant and equivariant
case respectively, it has a Z- (resp. Q-)gradation induced by the de Rham (resp.
age-shifted) degree, and is endowed with a natural K-bilinear pairing: when it is
compact, or when it is acted on by a torus T with compact fixed loci F , there is an
inner product η : H(X) ×H(X) → K defined as

η(α, β) =





∫
X
α ∪ β ordinary case∫

F
i∗(α∪β)

e(NIF/IX)
equivariant∫

IX α ∪ I⋆β orbifold∫
IF

i∗(α∪I⋆β)
e(NIF/IX)

equivariant orbifold

(2.1.11)

where in the third and fourth definition i : IF → IX is the inclusion of the T -fixed
locus IF of the inertia orbifold of F into IX, and I is the canonical involution on
the inertia stack mapping Xg to Xg−1 .

Let N := dimKH(X), r = b2(X) and let us a fix a basis {Φa}N−1
a=0 of H(X) such

that degΦ0 = 0 and degΦi = 2 for 0 < i ≤ b2(X). We will write ηab the coefficient
matrix of η in the basis Φa

ηab = η(Φa,Φb)

Definition 2. Let u ∈ H(X), with u =:
∑

a u
aΦa. The genus-g primary Gromov–

Witten potential, or gth-loop A-model free-energy of X is defined as the following
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formal power series

FX
g (u) =

∑

n≥0

∑

β∈H2(X,Z)

1

n!
〈

n times︷ ︸︸ ︷
u, u, . . . , u〉Xg,n,β, (2.1.12)

The all-genus GW potential of X is the formal power series expansion

FX(u, gs) =
∑

g≥0

g2g−2
s FX

g (u) (2.1.13)

It is helpful also to have a generating function for correlators with insertions of
ψ classes as well. Introduce the semi-infinite set of variables tak ∈ K, with 0 ≤ a ≤ n,
0 ≤ k <∞. We will denote collectively with t = {tak} a=0,...,n

k≥0
the set of tak.

Definition 3. The genus-g full descendant potential of X is a formal power series
in variables tak, 0 ≤ a ≤ n, 0 ≤ k <∞ defined by

F
X
g (t) =

∑

n≥0

∑

0≤k1,...,kn<∞

∑

β∈H2(X,Z)

1

n!
〈τk1t1 . . . τkntn〉Xg,n,β (2.1.14)

where H(X) ∋ tk = tαkΦα. In analogy with the case of primary invariants, we also
define the all genus full descendant potential as

F
X
g (t, gs) =

∑

g≥0

g2g−2
s FX

g (t) (2.1.15)

GW axioms and the worldsheet expansion

It turns out that, from the general properties of the virtual fundamental class, there
exist various axioms that the correlators (2.1.3)-(2.1.2), or equally well the generating
functions (2.1.12)-(2.1.14) should satisfy. Let us start by listing the following four
conditions, which are valid for any genus g.

• Degree axiom: if γi are homogeneous classes, the gravitational correlator
(2.1.3) can be nonzero only if the total degree is “right”, in the sense that

n∑

i=1

(2ki + degγi) = 2(1 − g)dimCX − 2c1(X) · β + 2(3g − 3 + n) (2.1.16)

• Fundamental class (or string) axiom: let 1 ∈ H(X) denote the unity class
and let 2g + n ≥ 3 or β 6= 0, n ≥ 1. Then

〈τk1γ1, . . . , τknγn, 1〉Xg,n+1,β

=
∑n−1

i=1 〈τk1γ1, . . . , τki−1γi, τki+1
γi+1, . . . τknγn〉g,n,β (2.1.17)
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• Divisor axiom: if D is a divisor and let 2g + n ≥ 3 or β 6= 0, n ≥ 1. Then

〈τk1γ1, . . . , τknγn, D〉Xg,n+1,β = (D · β)〈τk1γ1, . . . , τknγn〉Xg,n,β
+
∑n−1

i=1 〈τk1γ1, . . . , τki−1(D ∪ γi), τki+1
γi+1, . . . τknγn〉g,n,β (2.1.18)

• Dilaton axiom: let 2g + n ≥ 3 or β 6= 0, n ≥ 1. Then

〈τ1τk1γ1, . . . , τknγn〉Xg,n+1,β = (2g − 2 + n)〈τ1τk1γ1, . . . , τknγn〉Xg,n,β (2.1.19)

For g = 0 we also have the following

Point–splitting axiom: for the genus zero, degree zero primary invariant

〈γ1, . . . , γn〉X0,n,0 =

{
(γ1, γ2 ∪ γ3) n = 3

0 otherwise
(2.1.20)

With the Divisor and Point–splitting relations at hand it is instructive to rewrite
the generating functions in the following way. Let us first focus on the genus zero
free energy FX

0 and recall that we have picked a basis of H(X) such that degΦ0 = 0
and degΦi = 2 for 0 < i ≤ b2(X). Then by the Divisor and Point–splitting axiom we
have

FX
0 (u) =

1

3!

(
u ∪ u, u

)
X

+
∑

n≥0

∑

di≥0

eβ·û

n!
〈

n times︷ ︸︸ ︷
ũ, ũ, . . . , ũ〉X0,n,β (2.1.21)

where û is the projection of u on H2(X) and ũ := u − û. As such, the quantum
(β 6= 0) part of the genus zero potential takes the shape of a formal power series
expansion whose domain of convergence, if not empty, must intersect the u1, . . . , ur
hyperplane in a polydisc around ui ∼ −∞. This is even more sharply evident when
X is a CY 3: by the string and degree axioms (2.1.21) becomes

FX
0 (u) =

1

3!

(
u ∪ u, u

)
X

+
∑

β 6=0

eβ·û〈1〉X0,0,β (2.1.22)

Remark 2. The latter expression has boiled down to a power series expansion solely
on the degree–2 parameters û. In the physical picture, terms of the form û · β arise
from the non-BRST exact, purely topological part of the classical A-model action,
which is simply given by the Kähler volume of the image curve represented by β
in H2(X,Z). In the Euclidean path-integral, these give rise to worldsheet instanton
contributions weighted by e−ω·β, therefore identifying û with minus the Kähler form
of X. As such, Gromov-Witten theory yields a formal expansion centered around the
deep interior of the Kähler cone, i.e. around some sort of “large volume limit”. In
physical language and after properly rescaling ω in order to make it dimensionful, this
is tantamount to an expansion in inverse powers of the square of the string length
- they measure the increasingly stringy character of the corrections. On the other
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hand, the gs-expansion of (2.1.12) takes the typical form of a topological expansion
in perturbative string theory, with gs playing the role of the string coupling constant.
Higher genus contributions correspond therefore to quantum corrections to the space-
time physics.

WDVV and TRR

There are other non-trivial relations at genus zero, which take a particularly neat
form as non-linear equations satisfied by the GW potentials. First of all, in the case of
the primary invariants, a most important role is played by the so-called associativity,
or Witten–Dijkgraaf–Verlinde–Verlinde (WDV V ) equations .

Theorem 1 ( [42, 43, 147]). The genus zero primary Gromov–Witten potential sat-
isfies the following system of third order non-linear equations in the form

∂3FX
0

∂ua∂ub∂uc
ηcd

∂3FX
0

∂ud∂ue∂uf
= (−1)degui(deguj+deguk) ∂3FX

0

∂ua∂ue∂uc
ηcd

∂3FX
0

∂ud∂ub∂uf
(2.1.23)

for any a, b, e, f .

A second, very important set of relations involves the gravitational correlators,
and it allows for a recursive computation of them in terms of the primary invariants.
Before we state it, we need to define the genus g big correlators as

〈〈τd1γ1 . . . τdnγn〉〉g(u) :=

∞∑

k=0

〈τd1γ1 . . . τdnγn,

k times︷ ︸︸ ︷
u, . . . , u〉g,β,n+k (2.1.24)

where u = uaΦa ∈ H(X) as before. Notice that the big correlators reduce to the usual
ones (2.1.2), (2.1.3) when u is set to zero. Then the following genus zero topological
recursion relations (TRR) hold

Theorem 2 ( [44]). For d1, d2, d3 ≥ 0 and γi ∈ H(X), i = 1, 2, 3 we have

〈〈τd1γ1, τd2γ2, τd3γ3〉〉0 = 〈〈τd1γ1,Φa, 〉〉0〈〈Φa, τd2γ2, τd3γ3〉〉0 (2.1.25)

where Φa denotes the dual basis to Φa with respect to the cup product.

2.1.4 Quantum co-homology and the J-function

The equations (2.1.23) have a nice algebraic interpretation in terms of a deformation
of the classical co-homology of the target space, corresponding physically to the
notion of the chiral ring of the world–sheet TFT . This is given as follows: define
structure constants ckij as

ckij =
∂3FX

0

∂ui∂uj∂ul
ηlk (2.1.26)
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Then define

Φi ∗ Φj = ckijΦk (2.1.27)

and extend it linearly to H(X). This gives the big quantum product on H(X); at
u = 0, it coincides with the classical cup product in co-homology. The product is
super-commutative [39], as it is its classical counterpart, it has a unity Φ0 = 1 by the
String Equation and the Point–Splitting Axiom, and it is associative by the WDV V
equations (2.1.23). We will henceforth denote it by QH•(X); when we work equiv-
ariantly with respect to a torus action T , we will often write QH•

T (X).

An useful notion, which will be further explored in Sec. 5.2, is that of flat sections
associated to the big quantum product. They are locally defined as H(X) valued
functions sa from H(X) such that

~
∂sa
∂ui

= Φi ∗ sa (2.1.28)

where ~ is a formal parameter. The space of solutions S of (2.1.28) is N dimen-
sional [39, 80], and we can write them as

S = Sabη
bcΦc (2.1.29)

for a matrix valued function Sab(u) on H•(X). It turns out that the coefficients
Sab have a particularly nice relationship with gravitational descendants; in particular
the first row S0a coincides with the so-called big J-function of X. The latter is a
generating function of genus zero 1-point descendant Gromov–Witten invariants in
the form

JX(u, ~) := ~ + u+
∑

n≥0

∑

β∈H2(X,Z)

1

n!

〈〈
Φa

~ − ψ

〉〉X

0,1,d

Φa (2.1.30)

We use here the shorthand notation

〈〈
Φa

~−ψ

〉〉X
0,1,d

for
∑∞

k=0
1

~k+1 〈〈Φaψ
k〉〉X0,1,d

The expression above can be usefully rewritten when we restrict u to lie in
H0(X) ⊕ H2(X). Writing u = u0Φ0 + · · · + urXΦX , the Divisor Axiom then im-
plies that

JX(u, ~) := ~
rX∏

i=0

eu
iΦi/~


1 +

∑

β∈H2(X,Z)

eu
0Φ0/~eu

rX ΦrX
/~

〈
Φa

~ − ψ

〉X

0,1,β

Φa


 (2.1.31)

We will refer to the latter as the small J function of X.
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2.2 The B-side

By QBRST -localization, and by its independence on the Kähler structure of the tar-
get space, the topological B-model boils down to a theory of constant maps. Its
mathematical formalization, in genus zero, is given in terms of Hodge theory and
special Kähler geometry. In the following we will review the basics of Hodge the-
ory and Picard-Fuchs equations, moving then to the higher genus theory and the
holomorphic anomaly equations. We will then describe the case of toric Calabi-Yau
threefolds in detail and the extensions to the open string sector. We will close the
chapter with a description of the Bouchard-Klemm-Marino-Pasquetti proposal for
the B-model on the mirrors of toric CY 3.

2.2.1 A summary of the compact case

Kinematics: Hodge theory and complex moduli

Physically, the truly marginal subsector of the B-twisted BRST co-homology corre-
sponds to variations of complex structure of the target space, which are computed
at tree-level via period integrals. In the following we will review the mathematical
formalization of this by giving the basics of Hodge theory which will be useful for
the purposes of mirror symmetry. In particular, after introducing the Hodge bundle
and the Gauss-Manin connection, we will conclude this section with a classification
of the types of boundary points which we will encounter in next chapters. We will
follow closely the presentation of [39, 126], to which we refer the reader for details,
proofs of the relevant statements, and further links to the original literature.

Let X̂ be a CY 3, which in the following will be taken to be smooth and projective.
Its de Rham co-homology in degree 3 with complex coefficients admits a Hodge
decomposition

H3(X̂,C) ≃
⊕

p+q=3

Hp,q(X̂)

We have Hp,q(X̂) = Hq,p(X̂) relative to the real structure determined by Hk(X̂,R);

the integer lattice coming from Hk(X̂,Z) gives a Hodge structure of weight k. It is
moreover convenient to define the Hodge filtrations

F p(X̂) =
⊕

a≥p
Ha,k−a(X̂)

We will be interested in the behaviour of Hodge co-homology groups under deforma-
tions of the complex structure of X̂. To this purpose, let S be the full complex moduli
space of X̂, which by the Bogomolov-Tian-Todorov theorem is a smooth manifold
of dimension h2,1(X̂). Consider a family π : X → S, with π smooth and of relative

dimension 3, and denote X̂t := π−1(t) for t ∈ S. Then [39] the subspaces F p(X̂t) fit
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together to form flat holomorhphic bundles Ep. There is a canonical flat connection
on Fp, called the Gauss-Manin connection3

∇ : Γ(E0) → Γ(E0) ⊗ Ω1
S

which satisfies the Griffiths transversality condition ∇(Ep) ⊂ Ep−1 ⊗ Ω1
S .

In most cases we will be interested in what happens at the boundary of S, and
more specifically at particular points of the boundary; they will mirror the notion
of specific boundary points of the Kähler moduli space of an A-model target X, like
e.g. the classical limit (or “large radius”) point of QH•(X).

To this aim, suppose that the smooth family π : X → S could be completed to
a flat family π : X → S; here S̄ is a compactification of S which we assume in the
first place to be smooth and with normal crossings boundary divisor D = S̄ − S. A
natural question is then to ask about existence and properties of extensions of (E0,∇)
on S̄. It turns out [39] that there is a canonical extension Ē0 of E0 on S̄; however,
the Gauss-Manin connection ∇ extends in general to a meromorphic connection ∇̄,
possibling acquiring single-pole singularities on D. This implies that the sections
of Ē0 undergo non-trivial monodromy transformations Ti when parallel-transported
around a connected component Di of D = ∪Di

Ti : H3(X̂t,C) → H3(X̂t,C)

By the monodromy theorem [39] we have that Ti is quasi-unipotent, (T m
i − I)4 = 0;

in the cases we will deal with in this thesis, we will always have m = 1, and the
logarithms Ni := log (Ti) of the monodromy transformations will then be nilpotent
of order four. In view of this, we shall classify classify boundary points as follows.
Let p ∈ ∩Di and define a generic linear combination N =

∑
i aiNi. Then

• if ResDi
∇̄ 6= 0 for some i and N3 6= 0 for all ai > 0, we will call one such p a

maximally unipotent boundary point4, or “large complex structure point”. This
will be the B-Model counterpart of the large radius point on the A-Model
side; however, it needs not be unique;

• if ResDi
∇̄ 6= 0 for some i and Nk = 0 for some integer 0 < k < 4, we will call

p a conifold point;

• suppose now that ResDi
∇̄ 6= 0, but allow now S̄ to be a singular compactifi-

cation of S, with Di having possibly orbifold-type singularities. This means
that, even if the connection is non-singular, we might still have monodromy,
although not of logarithmic type, due to the orbifold nature of the moduli space
itself. We will call p an orbifold point.

3The Hodge bundle E0 is isomorphic to Rkπ∗C⊗Os; ∇ is defined as the affine connection whose
covariantly constant sections coincide with the local system Rkπ∗C

4Strictly speaking the definition of maximal unipotency above only applies to the case of one-
dimensional moduli, and needs to be strengthened in the multi-parameter case in order to “mirror”
the non-degeneracy of the Poincaré pairing.
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• in all other cases, p will be called a regular point.

Classical dynamics: Picard-Fuchs equations

Let r = h2,1(X̂), z1, . . . , zr be local holomorphic coordinates on S, and D be the ring
of differential operators

D = C{z1, . . . , zr}
[
∂

∂z1
. . .

∂

∂zr

]

Denote with Ω(t) a fixed section of E3, that is, a choice of normalization of the

holomorphic (3,0) form on X̂ throughout S. The Gauss-Manin connection determines
an OS-linear map φ : D → E0 through

φ(X1, . . . , Xr) = ∇X1 . . .∇XrΩ(t)

for Xi ∈ X (S). We will call the ideal I = ker(φ) the Picard-Fuchs (PF) ideal and
the equations D ·Π = 0 for D ∈ I the PF equations. They have a central role in the
theory; their main properties are the following

1. the solution space of the PF system is spanned over C by the periods of the
holomorphic (3,0) form Ω(t)

Πγt =

∫

γt

Ω(t)

for a locally constant homology 3-cycle γt

2. it is particularly interesting to look at the behavior of the solutions around one
of the boundary points above, and especially around (one of) the large radius
point(s). Taking local coordinates z1 . . . zr around such a point, we can choose
a basis of solutions of D · Π = 0 such that their asymptotic behavior reads

Πi(z) ∼ log zi
ki + O(1), i = 1, . . . , 2r + 2

where

ki =





0 for i = 1
1 for 2 ≤ i ≤ r + 1
2 for r + 1 < i < 2r + 2
3 for i = 2r + 2

3. The solution with i = 0 is usually set to Π0 = 1 after normalizing Ω(t) →
Ω(t)/Π0. This apparently arbitrary choice enters in fact crucially in determin-
ing the mirror map to the A-model variables; after the normalization, these
are precisely given by the set of single-logaritmic solutions 1 ≤ i ≤ r + 1. We
will call them the flat coordinates around p and denote them with ti := Πi+1,
i = 1, . . . , r. We define analogously the dual periods as Fi := Πi+r+1.
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4. the solutions with double- or triple-logarithmic singularity are not independent
on the flat coordinates. There exists a complex function F0 : ∆ → C defined
locally on a polydisc ∆ ∋ p, called the prepotential of X̂, such that

Fi = Πi+r+1 = ∂F0

∂ti
for i = 1, ..., r

Π2r+2 =
∑r

i=1 ti
∂F0

∂ti
F0 − 2F0

(2.2.1)

Therefore, knowledge of the periods of Ω, or equivalently, of a suitably nor-
malized basis of solutions of the PF system, fixes completely the form of the
prepotential up to a constant.

We have seen how to associate to X̂ a function E0, defined locally around a large
complex structure point, coming from variations of Hodge structure of X̂. We are
now in a position to give the following

Definition 4 (Tree level mirror pairs). Let X and X̂ be Calabi-Yau threefolds and

let FX
0 and F bX

0 be respectively the genus zero primary Gromov-Witten potential of X

and the B-Model prepotential of X̂. Then (X, X̂) is said to be a mirror pair at tree
level if

FX
0 = F bX

0 (2.2.2)

It is worthwhile to point out the (not just formal) analogy of such a computation
with the action-angle transformation of a classical integrable system: regarding Ω as
a higher-rank generalization of the Poincaré differential pdq, the flat coordinates play
here the role of “action variables”, and the prepotential that of the Hamilton-Jacobi
function generating the canonical change of variables from zi to ti. We will push this
analogy even further in the next section.

Quantum dynamics: the holomorphic anomaly

Thinking of the prepotential as a Hamilton-Jacobi function, we can also regard it
as the eikonal limit of the (phase of) a wave-function of some quantum-mechanical
system. It would seem then natural to look at it as the leading term in a formal
~−expansion,

F0 → F0 + ~F1 + ~2F2 + . . .

where the higher order terms are produced by some sort of quantization of the ge-
ometric setup of the previous section and would heuristically correspond to higher
string loop correction of the topological B-model TCFT coupled to supersymmetric
gravity. We will refer to them as the B-Model genus g free energies.

In the physics literature, it is suggested that the definition of such a deformation
should be given [151] by geometric quantization of the phase space F0 of sec. 2.2.1.
We will not go through the details of the derivation; the result of greatest interest for
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us is that the Fg obtained in this way are bound to satisfy the holomorphic anomaly
equations of [21,22]. This means the following: first of all, there is a natural metric h
on F3, given by h := i

∫
bX

Ω∧ Ω̄. We will denote by D : Γ(F3) → Γ(F3)⊗Ω1(S) the
Levi-Civita connection associated to h. Moreover, log h defines a Kähler potential
on S, whose Kähler metric, called the Weil-Petersson metric on S, we will write as
Gij̄. Then the Fg are sections of (E3)2−2g with the following property

∂i∂̄̄F1(ti, t̄i) = 1
2
C

(0)
ikl C̄

(0)kl
̄ −

(
χ( bX)
24

− 1
)
Gī . for g = 1

∂̄ı̄Fg = 1
2
C̄

(0)jk
ı̄

(
DjDkF

(g−1) +
∑g−1

r=1 DjF
(r)DkF

(g−r)
)

for g > 1

(2.2.3)
where we defined

C̄
(0)kl
̄ = h2Gkk̄Gll̄C̄

(0)

̄k̄l̄

C̄
(0)

̄k̄l̄
= ∂̄k̄l̄F̄0

Two comments are in order:

1. The equations (2.2.3) recursively define Fg(ti, t̄i) in terms of lower order Fg(ti, t̄i),
up to a holomorphic function of the complex moduli ti, which has to be de-
termined as an additional input. It will be referred to in the following as the
holomorphic ambiguity.

2. For the purposes of mirror symmetry it is important to consider the leading
term Fg(ti) in a formal t̄ expansion, which in the case of the large radius points
of sec. 2.2.1 is centered around t̄ ∼ ∞. We will call it the holomorphic limit of
Fg(ti, t̄i).

Suppose now to have a full solution of the holomorphic anomaly equations (2.2.3) with
a prescribed choice of the holomorphic ambiguity. Then we can give the following

Definition 5 (Mirror pairs). Let X and X̂ be smooth Calabi-Yau threefolds and let

FX
g and F bX

g for g ∈ Z be respectively the genus g primary Gromov-Witten potential

of X and the holomorphic limit of the B-Model genus g free energy of X̂. Then
(X, X̂) is said to be a mirror pair if

FX
g = F bX

g ∀g ∈ N (2.2.4)

2.2.2 Closed local mirror symmetry at tree level

Establishing that X and X̂ are tree–level mirror pairs turns the (in general very
difficult) task of computing genus 0 Gromov-Witten invariants of X into the much
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simpler computation of the B–model prepotential of X̂, which consists in either eval-
uating the periods of the holomorphic (3, 0) form Ω on a basis of H3(X̂,Z), or finding

a complete set of solutions of the PF system of X̂. Such a “mirror computation”,
although much easier, is still far from being free of difficulties. Computing explicitly
the period integrals is in most cases unwieldy; on the other hand finding the solutions
of a system of linear PDEs with regular singularities seems a more tractable problem,
but until now we have avoided the central question “how do we construct a basis Li

of the PF ideal in concrete examples?”. From now on we will focus on the case in
which X is a toric CY 3. We will describe the simplifications that take place and how
they allow to address both problems in practice, as well as discuss the problems due
to the non–compactness of X.

The GKZ system

Let X be a toric CY 3. Throughout this thesis, we will denote with ΣX its fan. As
a toric variety, X can be regarded as a holomorphic quotient

X =
Ck+3�Z(Σ)

(C∗)k
(2.2.5)

where k = b2(X) and Z(Σ) is the Stanley-Reisner subvariety of X. The algebraic
k-torus (C∗)k acts on Ck+3 as

(x1, . . . , xk+3) → (λQ
1
ix1, . . . , λ

Qk+3
i xk+3) i = 1, . . . , k (2.2.6)

with Qj
i ∈ N ∀ i = 1, . . . , k, j = 1, . . . , k + 3, and moreover

∑
j Q

j
i = 0 by the CY

condition KX ≃ OX .
Let now {zi}ki=1 ∈ Ck and let ∆ be a polydisc centered around zi = 0. Introduce

also a set of k + 3 auxiliary variables {aj}k+3
j=1 which determine the zi through

zi =

k+3∏

j=1

a
Qj

i
j (2.2.7)

When acting on functions f : ∆ → C, it is immediate to verify that powers of the
partial derivatives ∂ai

take the form
(

∂

∂aj

)n
= (aj)

(−n)D
(n)
j (2.2.8)

where D
(n)
j is a linear differential operator in the variables ln zi with constant coeffi-

cients. This means that the set of equations

∏

Qj
i>0

(
∂f

∂aj

)Qj
i

=
∏

Qj
i<0

(
∂f

∂aj

)−Qj
i

(2.2.9)

becomes, when f is a complex function on ∆ and by using (2.2.7)-(2.2.8), a system
of coupled linear PDEs in the variables zi, having zi = 0 as a regular singular point.
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Definition 6. We call the system of equations (2.2.9) the GKZ hypergeometric
system associated to X. When acting on functions on ∆, we will call it the local
Picard-Fuchs system associated to X, and the point 0 ∈ ∆ its large complex structure
point.

The GKZ system first appeared in the construction of the PF ideal of CY
hypersurfaces inside toric ambient spaces [75], and its rôle in the context of local
mirror symmetry was emphasized in [35]. As opposed to the flat co-ordinates ti, we
will call the zi alternatively the B-model moduli, or bare co-ordinates.

Remark 3. The construction of a local PF system in the mirror symmetry approach
to toric CY 3 is completely straightforward and explicit. However, there are a few
drawbacks related to the non-compactness of X, which result in a sort of “incomplete-
ness” of the solution space of (2.2.9). By this we mean the following: we have seen
in section (2.2.1) that the B–model prepotential F0 was computed from the so-called
“dual” periods, that is from the solutions of the PF system with double-logarithmic
behavior. In total, we had 1 = b0(X) holomorphic, h2,1(X̂) = h1,1(X) = b2(X)
logarithimic, b4(X) = b2(X) doubly-logarithmic, and 1 = b6(X) triple-logarithmic
solutions of the PF system around a large complex structure point. In the non–
compact case, however, such a symmetry between the number of flat co-ordinates and
the number of dual periods gets spoiled by the breakdown of Poincaré duality. In this
case we have in fact

b0 = 1; b4(X) < b2(X) = k; b6(X) = 0

In particular, we know less derivatives of the prepotential than the number of flat
co-ordinates. This means that the resulting prepotential will have a functional am-
biguity in some of the flat variables, that should be fixed by other means, either by
A–model inspired considerations, or by suitably enlarging the PF system (see [68]
for a proposal about this last point).

Until now, we have been discussing the local PF system quite abstractly, without
reference to an underlying mirror manifold X̂ whose period integrals are the solutions
of (2.2.9). As it turns out, X̂ has an equally explicit description, which we are now
going to review.

The Hori-Vafa mirror and spectral curves

A general procedure for constructing mirror duals of (among others) toric CY three-
folds was provided in [91]. First of all recall that since KX ≃ OX , the tip of the
1-dimensional cones of its fan are all constrained to lie in some affine hyperplane in
R3. For given X, we will denote such hyperplane as HX . After fixing an arbitrary
origin O in HX , Pick a coordinate, integer basis (e1, e2) ∈ GL(2,Z) of H and denote
by QX = HX ∩ΣX the polytope resulting from the intersection of the fan of X with
HX . QX will be called the toric diagram of X.
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4

v2

v3

v1

v

Figure 2.1: The fan of the resolved coni-
fold, OP(−1) ⊕OP(−1).

(1, 1)(0, 1)

(0, 0) (1, 0)

Figure 2.2: The toric diagram of the re-
solved conifold.

Definition 7 (Hori-Vafa mirror, [91, 92]). The B-model target space X̂ mirror to a
toric CY three-fold X is the hypersurface in C2(x1, x2) × (C∗)2(U, V )

x1x2 = PX(U, V )

where PX(U, V ) is the Newton polynomial associated to the polytope QX

PX(U, V ) =
∑

p∈QX

apU
pr1(p)V pr2(p) (2.2.10)

and pri are the projections onto the coordinate axis e1, e2 of HX.

The geometry is therefore that of a quadric fibration over the PX(U, V ) = λ ∈ C
plane, which degenerates to a node above the punctured Riemann surface PX(U, V ) =
0. We will call the latter the mirror curve ΓX of X. Notice that at this moment the
definition of the mirror depends not only on X, but also on an arbitrary choice of
basis of H - or in other words, on a choice of an automorphism of the fan ΣX which
leaves the tip of the 1–dimensional rays inside the hyperplane HX . This turns out to
be irrelevant in the computation of closed GW invariants, but it will be important
in the context of open string invariants.
Since X̂ sits as an affine hypersurface inside C2 × (C∗)2, the holomorphic (3, 0) form
Ω is given as the residue form on PX = 0 of the holomorphic 4-form in H4,0(C2 ×
(C∗)2 \ X̂)

Ω = ResPX(U,V )=x1x2

[
dx1dx2dU/UdV/V

x1x2 − PX(U, V )

]
(2.2.11)
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In the local case under scrutiny we must actually cope with the absence of a
symplectic basis for H3(X̂,Z). The proposal of [68, 91, 94] is then to consider non–
compact cycles as well, that is we should compute

∫

Γ

Ω

for all Γ ∈ H3(X̂,Z) ⊕ (H3(X̂,Z))c, where the subscript c indicates compactly sup-
ported homology. Moreover, it was shown in [68] that the periods of Ω solve the PF
system (2.2.9) if and only if those of

dλ := ResPX=0

[
dUdV

UV
logPX(U, V )

]
(2.2.12)

do on a basis of H1(ΓX ,Z) ⊕ (H1(ΓX ,Z))c. Picking up the residue gives

dλX = log V
dU

U
(2.2.13)

The logarithmic 1-differential (2.2.13) will be called the Hori–Vafa differential of X.
In terms of this differential the periods are computed as

Πγ =

∫

γ∈H1(ΓX ,Z)⊕(H1(ΓX ,Z))c

log V
dU

U
(2.2.14)

Proposition 3 ( [68, 94]). The periods Πγ give the complete solution space of the

(extended) local PF system of X̂.

As in the compact case, a choice of polarization on Γ induces a notion of sym-
plectically conjugated periods, and therefore that of flat co-ordinates, their dual
variables, and of a prepotential. In other words, the tree-level mirror symmetry com-
putations in the toric case are controlled, in view of Proposition 3, by the datum
of a non-compact complex curve Γ ⊂ (C∗)2 with two marked logarithmic functions
logU, log V : Γ → C. As we will see, this will be true much more generally.

Remark 4 (Normalizable and non–normalizable modes). According to Remark 3,
in the local CY case there is a clear dichotomy in the closed moduli sector between
flat co-ordinates that have a dual doubly-logarithimic PF solution and those who
don’t. We will adopt the terminology of [8,9] by calling the former normalizable and
the latter non–normalizable modes of Γ. The normalizable modes correspond to flat
co-ordinates that are computed as periods of the Hori–Vafa differential around non-
trivial homology 1-cycles of the projectivized mirror curve ΓX, while non-normalizable
modes are those that are computed as residues at the marked points U = 0, V = 0 of
ΓX. We add a tilde and write t̃i whenever we refer to a non–normalizable mode.

29



2.2. The B-side

B-model moduli and compactification

In sec. 2.2.1 we gave a partial classification of boundary points of the B–model
moduli space S after compactification. An obvious question to ask is if there are
natural compactifications of S, at least in some concrete examples, and what they
look like. In the toric case there exists indeed such a natural compactification scheme,
which we will now review. As we mentioned in Remark 3, we have b2(X) = k, hence

we expect to have a k-dimensional complex moduli space for X̂. In fact, according
to (2.2.10), the mirror curves Γ, and therefore the whole mirror threefold X̂ come in
a family parameterized by the coefficients ap of PX(U, V ); these are as many as the
number of internal and external points of the polytope QX , namely k+3. The ap are
actually homogeneous coordinates for S, as an overall rescaling of them and scalings
of U and V in (2.2.10) leave invariant the symplectic form

dU

U
∧ dV

V
(2.2.15)

in (C∗)2. That is, the moduli space of the mirror theory might be seen as arising
from a holomorphic quotient of Ck+3 by the (C∗)3 action

(C∗)3 × Ck+3 → Ck+3

(λ, µ, ν) {ap} → {λµpr1(p)νpr2(p)ap} (2.2.16)

Out of these weights it is immediate to construct the (stacky) fan of a compact toric
orbifold S̄. We will call it the compactified B–model moduli space of X, and its fan
is the secondary fan of X. It bears an easy relationship with the fan of X, in that
its skeleton is simply given by columns of the gauged linear σ-model for X (i.e. the
jth ray is given by the k-tuple Qj

i , i = 1, . . . k). In general it is not a toric variety, as
typically the secondary fan will contain non-smooth simplicial cones, perhaps with
marked points along their facets. In the latter case, this would mean that the patch
parameterized by the corresponding ai’s looks like Cp/Zn rather than Cp; as such,
the periods of the holomorphic three-form will inherit the finite monodromy from the
monodromy of the ai themselves.

Deforming X̂ by moving away from a large complex structure point is the mirror
process to changing the Kähler structure on X by moving from the large radius point
to some small volume region. It is tempting to see what happens on the B–model
side in the case in which curves or divisors in X shrink to zero size by making it
(classically) singular; for example, when X is birationally isomorphic to an orbifold
X , it is natural to ask if the generating functions of X and X are related by some sort
of analytic continuation, and how this is realized in the B–model context. Indeed, it
turns out5 that orbifold points of the compactified B–model moduli space actually
are related to the Gromov–Witten expansion for X as follows

5This may be seen as following from a number of results about twisted Gromov–Witten invari-
ants, as presented in [36, 37]
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• the finite monodromy group Gorb at the orbifold point plays the same role as
the parabolic monodromy at the large complex structure point: it mirrors, on
the B–model side, the grading of the relevant A–model co-homology ring - in
this case the age-shifted grading of H•

CR(X ,C).

• therefore, in order to reflect such grading, the canonical choice of mirror co-
ordinates at the orbifold is the one that diagonalizes the monodromy. Again,
dual periods are forced by the symplectic structure of the B–model phase space
to be derivatives of an orbifold prepotential FX

0 ({torbi }), and to have dual mon-
odromy.

This procedure will then provide a set of orbifold flat coordinates {torbi }, with mon-
odromy m ∈ Gorb, that are naturally associated to the direction in the co-homology
of the mth twisted sector Xm, and an orbifold prepotential FX

0 ({torbi }). Quite remark-
ably, they are non-trivially related to the flat coordinates {ti} and the prepotential
FX

0 at large radius: the flat co-ordinates at the orbifold point are in general obtained
via a general linear transformation involving both the flat co-ordinates and the dual
periods at large radius, and the same thing happens for the orbifold prepotential.

torbi =
∑

j

Aijtj +
∑

j

Bij
∂FX

0

∂tj
(2.2.17)

∂FX
0

∂torbj
=

∑

j

Cijtj +
∑

j

Dij
∂FX

0

∂tj
(2.2.18)

The higher genus story is more involved and will be discussed in section 2.2.4.
Quite interestingly, still, the matrices A, B, C andD in (2.2.17) and (2.2.18) will com-
pletely determine how the higher genus generating functions FX

g ({torbi }) and FX
g ({ti})

will be related.

2.2.3 Open local mirror symmetry

Open string generating functions

In Sec. 2.2.1 and 2.2.2 we have tried to keep our treatment of mirror pairs, either
compact or non–compact, as symmetric as possible. By this we mean that every ob-
ject computed on the B–model side, like the prepotential or the holomorphic limit of
a solution of the holomorphic anomaly equation, has a rigorously defined counterpart
on the A–model side, with a definite enumerative meaning. In this section and the
following we will still introduce objects on the B–model side, and we will still hope
to give them a definite enumerative meaning on the A–model side, but their rigorous
construction in terms of intersection theory on some moduli space is in various cases
still in progress in the literature. This objects have to do with open string invariants,
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which is what we now turn to discuss starting from the A–model.

It is desirable to generalize the setup of section 2.1.1, which consisted of maps from
a compact source curve Σ to X, by now allowing Σ to have a non-trivial boundary.
Let then Σ be a connected Riemann surface with ∂Σ = ⊔hi=1Ci, Ci ≃ S1, and let X
be a CY 3. Let L be a Lagrangian submanifold of X, and let a map f : Σ → X be
given such that

• f is holomorphic in the interior of Σ

• f(∂Σ) ⊂ L

We will always be interested in cases when π1(L) = Z. The topological type of a
map f : Σg,h → X will be specified by a relative co-homology class β ∈ H2(X,L), as
well as by winding numbers {wi}hi=1, associated to the map f restricted to Ci.

We would now like to be able to compute numbers Ng,β, ~w which should be related
to counting “holomorphic maps f from genus g curves Σ with h disconnected compo-
nents Ci of the boundary to a CY 3 X with f∗[Σ] = β and f∗[Ci] = wiC, where C is
the generator of H1(L)”. If we could define and compute them, they would be worth
the name of open Gromov–Witten invariants. Unfortunately, defining them turns
out to be an even harder task than in the ordinary, closed case. The relevant moduli
spaces are usually real manifolds, which forces to abandon algebraic techniques for
the construction of the virtual cycle, and they have even nastier singularities which
make difficult to define a sensible intersection theory [139]. Some progress has been
done however in a few cases towards their rigorous definition and/or an effective
way to compute them by localization techniques, which is sometimes taken as an
operative definition of the Ng,β, ~w ( [33, 101]). When this is possible, we can give the
following

Definition 8. Let (X,L) be a pair given by a Calabi–Yau three-fold X and a La-
grangian submanifold L ⊂ X with b1(L) = 1. The genus g, h−holes open Gromov–
Witten potential is defined as the formal power series

FX,L
g,h (q,Zo) =

∑

β∈H2(X,L)

∑

w∈Zh

Ng,β,wq
βZw

0 (2.2.19)

We will be henceforth sticking to the case in which X is toric. It turns out that
there is a distinguished class of Lagrangians to consider in this case, which we are
now going to describe.

Toric branes

When X is a toric CY 3 we want to consider a particular class of Lagrangian sub-
manifolds, which are often referred to as “toric branes” and were constructed in [4]
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generalizing [89]. The prescription of [4] relies on the realization of a toric CY 3 as a
(degenerate) T3 fibration, parameterized by angles θi, over a base B given the toric
web (i.e., the image of the moment map) of X; roughly speaking, this is obtained
patchwise by writing in polar form the homogeneous coordinates xi of (2.2.6) as
xi =: ρi exp(θi), with ρi ∈ R+ (the reader is referred to [23, 118] for more details on
this). The authors of [4] then consider a 3 − k real dimensional subspace W of the
base ∑

i

qαi ρ
2
i = cα α = 1, . . . , k; qαi ∈ Q (2.2.20)

for arbitrary complex numbers cα and then specify for every x ∈ W a distribution
of tangent k-planes Lx over this subspace, defined by the condition that the vertical
vectors be in the kernel of the Kähler form ω =

∑
i dρ

2
i ∧ dθi. We have the following

Proposition 4 ( [4]). The distribution of tangent planes Lx is integrable for every
x ∈ W . It gives a Tk fibration L over the interior of W , which degenerates at the
edges of the toric base. L is Lagrangian by construction and is topologically a smooth
real three-cylinder Tk × R3−k; moreover, it is volume–minimizing in its homology
class if and only if

∑
i q
α
i = 0.

In the case in which the cα in (2.2.20) are such that W intersects the edges of
the toric web, i.e. the loci where one S1 of the toric fibration shrinks, L splits into
two Lagrangians L± with topology R2 × S1. In the physical picture of the boundary
worldsheet CFT , the open moduli (zo)i are then given by the size of the circle,
complexified with the holonomy of a U(1) connection along it.

Open string mirror symmetry

On the B–model side, the mirror boundary condition for the maps from the source
curve is to have ∂Σ ⊂ Ŷ , with Ŷ a holomorphic submanifold of X̂. One of the
most interesting features of the toric branes is the fact that the mirror symmetry
construction of [91] has been extended to such open string configurations in [4].
When k = 2, L+ (resp. L−) gets mirror mapped to a curve parameterized by x2

(resp. x1)

PX(U, V ) = 0 = x1 (resp. = x2) (2.2.21)

The location of the mirror brane is then simply given by a point Yo on the mirror
curve Γ. With such a clear geometric setup at hand, it is possible to provide a

physically motivated computation of B–model open string amplitudes F bX,Ŷ
g,h (z, yo) at

genus g and h holes via the holomorphic Chern–Simons theory on Ŷ [150]. The main
results are the following [5, 24, 110]

1. the generating functions F bX,Ŷ
g,h can be computed entirely via residue calculus

on the spectral curve Γ. This will be subject of the next section;
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2. F bX,Ŷ
g,h will typically depend on a choice of basis for the fan of the A–model

target X leaving fixed the affine hyperplane H , that is, they depend on an
element of SL(2,Z). Part of this ambiguity consists in specifying the location
of the mirror brane;

3. the leftover freedom in the definition of F bX,Ŷ
g,h corresponds to the subgroup of

translations of SL(2,Z) and is then parameterized by a single integer f . This
is the mirror of the so–called “framing ambiguity” on the A–model side; the
latter corresponds to an un-fixed weight of the torus action in the localization
approach to open string invariants, or, in the physics picture, by an integer
choice in the trivialization of the tangent bundle in the dual Chern-Simons
theory computation.

4. as in the ordinary closed string case, the conjectural relationship of F bX,Ŷ
g,h with

open Gromov–Witten generating functions holds true only up to a change of
variables relating the point on the mirror curve Yo to the open modulus Zo in
(2.2.19). This is done via the so-called open mirror map: this was proposed
in [5, 110] (see also [67]), who claim that at large radius Yo and Zo should be
related as

Zo = Yo
∏

j

zi − qi

rji
(2.2.22)

where the ri are rational numbers and qi are exponentiated flat co-ordinates,
qi = e2πiti . This means that the open string A–model variable is related to the
B–model one by a correction involving closed moduli only. As discovered in
[110], an extended Picard-Fuchs system may be constructed such that (2.2.22)
be in its kernel and therefore to determine the ri.

2.2.4 The BKMP formalism

A point that was avoided in the previous section was how the F bX,Ŷ
g,h can actually be

constructed from the mirror geometry. We will now review the proposal of Bouchard,
Klemm, Mariño and Pasquetti (BKMP) [24,119], based on the Eynard-Orantin recur-
sion for matrix models [62] which gives a constructive algorithm that yields explicit,

closed expressions for F bX,Ŷ
g,h via residue calculus on the mirror curve to a toric CY 3

X. In fact, for us the acronym “BKMP” is going to mean two different things:

1. a recursive procedure for the calculation of F bX,Ŷ
g,h for any toric CY 3 X;

2. a prescription to give global predictions about Gromov–Witten invariants, in-
cluding their transformation properties when they cross a wall in the extended
Kähler moduli space.
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The Eynard-Orantin-BKMP recursion

Let us start with the following

Definition 9. A spectral curve S is a quadruplet (Γ, C, u, v) where

1. Γ is a family of genus g projective curves over C;

2. C is a disconnected union of segments inside Γ

3. u, v : Γ → C are marked analytic functions on Γ, meromorphic on Γ \ C and
with at most logarithmic polydromies on the real 1-dimensional locus C

If for any p such that du(p) = 0 we have dv(p) 6= 0, the spectral curve is called
regular. All cases considered in this thesis will satisfy this condition.

Example 1. Let X be a toric CY 3 and X̂ be its Hori–Vafa mirror. Then (ΓX, C,
logU , log V ) make up a spectral curve, where ΓX is the (projectivized) Hori–Vafa
mirror curve, C are segments joining the marked points of ΓX, and logU , log V are
the logarithms of the C∗ co-ordinates U , V of Definition 7.

Remark 5. Definition 9 might be possibly generalized to include singularities for u,
and v which are worse than logarithmic. This setting is however sufficient for the
purposes of this thesis.

Let {qi} denote the branch points of the u projection to C. Notice that near a
ramification point qi there are two points q, q̄ ∈ Γ with the same projection u(q) =
u(q̄). Picking a polarization H ∈ Sp(2g,Z) of Γ, that is a canonical basis of 1–cycles,
the Bergmann kernel is defined as the unique meromorphic differential with a double
pole at p = q with no residue and no other pole, and normalized such that

∮

AI

B(p, q) = 0, (2.2.23)

It is useful to introduce also the 1–form

dEq(p) =
1

2

∫ q̄

q

B(p, ξ), (2.2.24)

which is defined locally near a ramification point qi. Notice that B(p, q) depends
only on (Γ,H) and on no additional data, like u and v.

We now define recursively an infinite sequence of correlators W
(g)
h (p1, . . . , ph) and

free energies Fg from the spectral curve as follows:

Definition 10 (Eynard–Orantin recursion). For all g, h ∈ Z+, h ≥ 1, a meromorphic

differential W
(g)
h (p1, . . . , ph) ∈ SymhΩ(1,0)(Γ) is defined from the following recursion
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W
(0)
1 (p) = 0 (2.2.25)

W
(0)
2 (p, q) = B(p, q) (2.2.26)

W
(g)
h+1(p, p1 . . . , ph) =

∑

qi

Res
q=qi

dEq(p)

Φ(q) − Φ(q̄)

(
W

(g−1)
h+2 (q, q̄, p1, . . . , ph)

+

g∑

l=0

∑

J⊂H
W

(g−l)
|J |+1(q, pJ)W

(l)
|H|−|J |+1(q̄, pH\J)

)
(2.2.27)

Here we denoted H = 1, · · · , h, and given any subset J = {i1, · · · , ij} ⊂ H we defined
pJ = {pi1, · · · , pij}. Let now φ(p) be an arbitrary anti-derivative of Φ(p) = v(p)du(p);
that is, dφ(p) = Φ(p). then for g ≥ 2 we define the free energies

Fg =
1

2 − 2g

∑

qi

Res
q=qi

φ(q)W
(g)
1 (q). (2.2.28)

The entire set of correlators and free-energies is constructed out of the spectral
curve by residue calculus on Γ. The conjecture of [24, 119] is that, when S is the
mirror spectral curve of a toric Calabi-Yau threefold X, such quantities compute
precisely the open and closed Gromov–Witten generating functions of X, for any
genus g and number of holes h.

Conjecture 1 (BKMP, [24, 119]). Let S be the mirror spectral curve to a toric CY
3–fold X, and let Ai in (2.2.23) correspond to homology 1-cycles in Γ such that
the periods of the Hori–Vafa differential have logarithmic singularities at the large
complex structure point. Then:

1. The free energies Fg constructed above are equal to the A-model closed topolog-
ical string amplitudes on X, after plugging in the closed mirror map.

2. Let Sf be the one–integer parameter family of spectral curves obtained by send-
ing U → UV f , V → V for f ∈ Z. Then:

• the integrated Hori–Vafa differential
∫
dλX =

∫
log Vf

dUf
Uf

(2.2.29)

is equal to the framed disc generating function F0,1 of (X,L) where L is

the mirror brane to Γ ⊂ X̂, after plugging in the closed and open mirror
maps;

• the integrated correlation functions Fg,h =
∫
W

(g)
k (p1, . . . , pk), for 2g +

h > 1, are equal to the A-model framed open Gromov–Witten potential of
(X,L) where L is the mirror brane to Γ ⊂ X̂, after plugging in the closed
and open mirror maps.
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Conjecture 1 has had a lot of evidence supporting it. It was checked extensively
in [24] (see also [25,26]), and an attempt at a physics proof was given in [46] from the
Kodaira–Spencer theory of gravity of [22] dimensionally reduced to 2–dimensions. A
most important hint that Conjecture 1 was the observation of [63] that there exists
a canonical anti-holomorphic extension of the Bergmann kernel, called the Schiffer
kernel. This reduces to the usual kernel in an appropriate holomorphic limit, and
moreover the anti-holomorphic free energies computed with it satisfy the holomorphic
anomaly equations (2.2.3) of BCOV, thus making (2.2.28) a suitable candidate for
a B-model generating function. More recently, a proof that the topological vertex
solution of [7, 111, 124] satisfies the recursion has been announced [65], which would
correspond to proving completely Conjecture 1 at large radius.

Almost-modularity and wall-crossings

The residue computation of eq. (2.2.25)-(2.2.27) gives, in principle, W
(g)
h (p1, . . . , ph)

as closed functions of the open moduli p1, . . . ph as well as of the closed moduli ap
of the Hori-Vafa curve, as appearing in (2.2.10). In fact, a remarkable property of

W
(g)
h (p1, . . . , ph) is that they are almost-modular forms of Γ. This goes as follows:

define the monodromy group G of X̂ as the group generated by monodromies around
each boundary point of S. The latter turns out to be a finite index subgroup of
Sp(2g,Z), where g is the genus of Γ. We have the following

Theorem 5 ( [25,62]). W
(g)
h (p1, . . . , ph) is a weight zero holomorphic almost modular

form of G. More precisely, it is a polynomial

W
(g)
h (p1, . . . , ph) =

3g−3+2h∑

n=0

cn(τ, {t̃i}, {pi})En
2 (τ) (2.2.30)

where τ is the period matrix of Γ, cn is for all pi and t̃i a −2n modular form of G,
and E2 is the genus-g generalization of the second Eisenstein series (see [9]).

Let us explain more in detail what we mean by almost modularity, focusing for
definiteness to the case g = 1. Under an Sp(2,Z) = SL(2,Z) transformation

M :=

(
A B
C D

)
∈ SL(2,Z) (2.2.31)

τ → τ̃ = (Cτ +D)−1(Aτ +B) (2.2.32)

(2.2.33)

E2(τ) transforms as
E2(τ̃) = (Cτ +D)2E2(τ) + d(τ) (2.2.34)

where

d(τ) =
6

πi
C(Cτ +D) (2.2.35)
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Hence, it is nearly a weight two modular form of SL(2,Z), but for a shift linear in τ .

The almost modularity of W
(g)
h (p1, . . . , ph) stems entirely from that of E2(τ). Under

a modular transformation τ → τ̃ , the expansion (2.2.30) gets transformed to

W
(g)
h → W̃

(g)
h

W̃
(g)
h (p1, . . . , ph) =

3g−3+2h∑

n=0

cn(τ, {t̃i}, {pi})(E2(τ) + d2(τ))
n (2.2.36)

Eq. (2.2.36) expresses the variation of the open string generating functions under a
change in the choice of polarization of the mirror curve. Recall that in Conjecture 1
a polarization was fixed by requiring the A–periods of the Hori–Vafa differential to
be large radius flat co-ordinates, i.e. logarithmic solutions of the PF system around
the maximally unipotent monodromy point. Changing polarization then corresponds
to an Sp(2g,Z) transformation to a different basis of solutions of the GKZ system.
This acquires particular relevance when we consider the problem of studying the
behaviour of Gromov–Witten invariants under variations of the Kähler structure,
and in particular under birational transformations. As in section 2.2.2, let X be a
smooth toric CY 3 and X be an orbifold which is birationally isomorphic to X. Their
respective bases of flat co-ordinates and dual periods will be related as in (2.2.17),
(2.2.18). The second part of the BKMP proposal claims the following

Conjecture 2 ( [9,24]). Let W
(g)
h denote the open string correlators of X and let M

be the matrix (
A B
C D

)
(2.2.37)

representing the change of basis from the (normalizable) solutions of the PF system
at large radius to those of the B–Model boundary point associated to X . In (2.2.37),
A, B, C and D are g×g matrices, where g is the genus of the mirror curve. Defining
the transformed open string correlators W̃

(g)
h of X as in (2.2.36), the open string gen-

erating functions FX
g,h of X are given by the integrated correlator

∫
W̃

(g)
k (p1, . . . , pk),

after plugging in the orbifold open and cloed mirror maps.

That is, to extract Gromov–Witten invariants of X starting from those of X we
need to

1. transform the correlators as in (2.2.36)

2. analytically continue them from the large radius to the relevant boundary point
corresponding to X

3. expand them in powers of the appropriate local flat co-ordinates.

Remark 6. It should be noticed that the two basis of solutions of the PF system need
not be related by a simple change of polarization of the mirror curve. This will be the
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case for the orbifolds we will treat in chapter 3, where A, B, C and D in (2.2.37) will
turn out to be complex. In that case, however, Eqs. (2.2.35) and (2.2.36) still make

sense, even though they are no longer the result of the composition of W
(g)
h with the

modular transformation (2.2.33). This is why Eq. (2.2.36) is taken as the definition

of the transformed W̃
(g)
h in Conjecture 2.
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3.1. Introduction

3.1 Introduction

This chapter will be devoted to the study of the variation of the Gromov–Witten
potential of a toric CY 3 when we move from one chamber to another of its Kähler
moduli space. In principle, assuming mirror symmetry and Conjecture 2, we have a
complete recipe how to deal with this problem, whose steps were schematized at the
end of the previous chapter. However, from a concrete point of view one is faced with
the problem of relating different basis of solutions of the GKZ system, as in (2.2.17),
(2.2.18); more general, good control on the analytic properties of such solutions as
functions of the B–model moduli is required in order for the methods of Sec. 2.2.4 to
work. Our aim in this chapter will be to detail a way to overcome such problems in
the case of a particularly interesting 2–integer parameter family of toric CY 3, which
we will refer to as the Y p,q family. Our purposes will be twofold:

1. to find global expressions for solutions of the PF system, therefore determining
their expansion in the vicinity of any boundary point;

2. to give aB-model description of wall-crossings both for open and closed Gromov–
Witten invariants, and give explicit tests of Conjecture 1 and 2 for g ≤ 2.

Point 1 is instrumental in the mirror symmetry study of wall crossings in Gromov–
Witten theory of a CY 3. Unfortunately, the GKZ system in most cases turns out to
be a system of coupled PDEs with irregular singular points as soon as b2(X) > 1,
and this jeopardizes the possibility to find solutions in closed form. The typical
method adopted in the literature is the use of Frobenius’ method: a power series
ansatz is plugged into the PF system, which imposes a set of recursive relations on
the series coefficients. Such recursions are generally not solvable in closed form1,
and knowledge of the global analytical properties of the solutions has been generally
hard to obtain. We will tackle this problem by exploiting an interesting mathemat-
ical coincidence, which relates the Seiberg–Witten curves of N = 1 gauge theories
on R4 × S1 with gauge group SU(p) and Chern–Simons level q with the Hori–Vafa
spectral curves of the Y p,q family. Physically, such a coincidence is actually justified
by the fact such gauge theories are “geometrically engineered” via M-theory com-
pactifications on local Calabi-Yau geometries. We will use this as an inspiration to
show how (derivatives of) the periods of the Hori–Vafa differential can be computed
in closed form, therefore providing a global solution of the B–model at genus zero.

Point 2 will be studied very much in the spirit of [24]. We will focus on one
particular example, namely the 2–parameter orbifold C3/Z4. This is slightly more
complicated than the C3/Z3 case considered in [9, 24], but still the results about
Point 1 will allow us to perform a very extensive check of Conjecture 1 and 2, up
to the 6th step in the recursion. We will check perturbatively that the W

(g)
h agree

1It should be noticed that in the case of invariants of bundles, the methods of [36] can be used
to offer a solution of such recursions in terms of finite products.
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with the topological vertex results, determine explicitly the modular structure of the
open string generating functions, check explicitly that the orbifold disc and closed
2-loop free energy agree with the computations from A-model localization and the
holomorphic anomaly respectively, and give predictions for the remaining orbifold
open and closed Gromov–Witten invariants.

3.2 The genus zero B–model on resolved Y p,q sin-

gularities

3.2.1 Cones over Y p,q

The manifolds Y p,q, with p and q integers such that 1 < q < p, are an infinite class
of real five-dimensional manifolds on which explicit Sasaki-Einstein metrics ds2(Y p,q)
can be constructed (see [74, 122] for the details of the construction). Geometrically,
they are principal U(1) bundles over a base which is an (axially squashed) S2 bundle
over S2, and p and q precisely specify the first Chern-class of the circle bundle, i.e.
the monopole flux through the two 2-spheres of the base. We will not be interested in
their differential–geometric characteristic, nor in the explicit knowledge of the metric:
what is important for us is the fact that, since they are Sasaki-Einstein, the metric
cone over Y p,q

ds2(C(Y p,q)) = dr2 + r2ds2(Y p,q)

is Kähler and Ricci-flat. The two extremal cases q = 0 and q = p may be formally
added to the family, corresponding to Zp quotients respectively of T 1,1 (the base of
the singular conifold) and of S5/Z2. Given that the base has a real T3 of isometries,
which can be lifted to effectively acting isometries of the full cone by (Hamiltonian)
symplectomorphisms, C(Y p,q) is a toric CY 3. We have the following

Proposition 6 ( [122]). Let C(Y p,q) denote the metric cone over Y p,q. Then its toric
diagram is given by the parallelogram spanned by

v1 =

(
1
0

)
, v2 =

(
0
0

)
, v3 =

(
0
p

)
, v4 =

(
−1
p− q

)
(3.2.1)

C(Y p,q) is then a Gorenstein toric variety. This means that a complete resolution r
can be taken

Xp,q
r

99K C(Y p,q)

such that Xp,q is smooth toric and KXp,q = r∗KC(Y p,q) ≃ OKXp,q
. At the level of the

toric diagram, this amounts [23, 85] to add the p − 1 internal points v4+j = (0, j)
for j = 1, . . . , p− 1 and declare that the set of three dimensional cones in the fan Σ
be given by the simplicial cones whose projection on the affine hyperplane H yields
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a triangulation of the polyhedron {v1, v2, v3, v4}. If we view Xp,q as a holomorphic
quotient as in Sec. 2.2.2,

(Cp+3 \ Z)/(C∗)p

the weights Q
(k)
i of the (C∗)p action zi → λQ

(k)
i zi can be chosen as

Q1 = (A, −2A−B, B, A, , 0, 0, 0, 0, 0, 0, 0)
Q2 = (0, 1, 0, 0, −2, 1, 0, 0, . . . , 0, 0)
Q3 = (0, 0, 0, 0, 1, −2, 1, 0, . . . , 0, 0)
Q4 = (0, 0, 0, 0, 0, 1, −2, 1, . . . , 0, 0)
...

...
...

...
...

...
...

...
...

...
...

...
Qp = (0, 0, 1, 0, 0, 0, 0, 0, . . . , 1, −2)

(3.2.2)

with A and B coprime numbers solving the Diophantine equation (p− q)A+ pB = 0
for q < p, while A = 1 and B = 0 for q = p.

   (−1, p−q)

��
��
��
��

��
��
��
��

��
��
��
��

  (0, p) 

 (0, 0)  (1, 0)
��
��
��
��

Figure 3.1: The toric diagram of C(Y p,q)
for p = 5, q = 2.
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Figure 3.2: The toric diagram of C̃(Y p,q)
for p = 5, q = 2.

From the toric data it is straightforward to extract co-homological information on
Xp,q, and in particular their Betti numbers. Internal vertices of the toric diagram cor-
respond in a 1-to-1 fashion to 4-cycles; connectedness, vanishing of odd co-homologies
and the area formula for the Euler characteristic [20, 71] yields

b0(Xp,q) = 1 b2(Xp,q) = p b4(Xp,q) = p− 1 b6(Xp,q) = 0 (3.2.3)
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p q p+ q Weights
1 0 1 (0, 0, 0)
1 1 2 (0, 1, 1)
2 0 2 (0, 1, 1)
2 1 3 (1, 1, 1)
2 2 4 (1, 1, 2)

Table 3.1: The Zp+q orbifold points of Xp,q for the first few values of p and q. The
fourth column lists the weights of the Zp+q action on the coordinates (z1, z2, z3) of
C3.

Remark 7. Various aspects of these geometries have been considered in the context
of topological strings. First of all, for p = 1 we have rank 2 vector bundles on P1:
the resolved conifold (q = 0) and C × KP1 (q = 1). For p = 2, the local CY in
question is the total space of the canonical line bundle KFq over the qth Hirzebruch
surface, q = 0, 1, 2. For higher p we have the so-called “ladder geometries” considered
in [57,90,95,99] in the context of geometric engineering of pure SYM theories with
eight supercharges.

The Kähler moduli space of these geometries displays a wealth of interesting
phenomena which provide a natural testing ground for the A-model away from the
large radius phase. It contains interesting conifold points, which in the case q = 0
have been related via large N duality to Chern–Simons theory on the lens space
L(p, 1) [6, 24, 87], as well as orbifold points of the form C3/Zp+q (see table 3.1). We
will study both types of boundary points in the examples of Sec. 3.2.4.

3.2.2 Hori–Vafa curves, integrable systems and five-dimensional

gauge theories

From the toric diagram of Xp,q it is immediate to write down the Hori–Vafa mirror
curve. We have the following easy

(p, 1)

(0, −1)

(−q, 1)

(q−p, −1)

Figure 3.3: The pq-web diagram of C̃(Y p,q) for p = 5, q = 2.
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0

 2
X=b

 3
X=b

 4
X=b

 1

X=

X=0

A B
A

X=b

Figure 3.4: Cuts and punctures of the X plane in the genus 1 case.

Proposition 7. The Hori–Vafa mirror curve (2.2.10) of Xp,q is given as

Γp,q : PXp,q(U, V ) = a1V +
a2U

p−q

V
−

p∑

i=0

ai+3U
i = 0 (3.2.4)

We want to pose ourselves the problem of determining the periods of the Hori–Vafa
differential (2.2.13) by a direct computation from (3.2.4). To this aim, let us first
rewrite (3.2.4) as

Y 2 = Pp(X)2 − 4a1a2X
p−q (3.2.5)

upon setting

Y = a1V − a2U
p−q/V

X = U

Pp(X) =

p∑

i=0

ai+3X
i (3.2.6)

According to (3.2.5) the mirror curve Γp,q can be seen as a two-fold covering of the
X plane branched at Y (X) = 0, that is the locus

Pp(X)2 = 4a1a2X
p−q (3.2.7)

The resulting curve has genus p − 1; denoting the solutions to (3.2.7) as {bi}2p
i=1, a

basis forH1(Γp,q,Z) might be taken as the homology classes of circles Ai, Bi encircling
the intervals

IAi
= [b2i−1, b2i] IBi

= [b2i, b2i+1] (3.2.8)

for i = 1, . . . , p − 1. We know however from the discussion of section 2.2.2 that,
in order to compute a full set of periods, we should enlarge H1(Γp,q,Z) by adding
the non-compact cycles of Γp,q \ {0±,∞±}, where we have denoted with X± the two
inverse images of the projection onto the compactified X-plane. We will then add a
circle A±

0 around the punctures atX = 0± and a contourB±
0 connecting the punctures

at 0± and X = ∞± on each sheet. The Hori–Vafa 1-differential dλp,q = log V dU/U
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is given, in an affine patch parameterized by X, as

dλp,q(X) = log V (U)
dU

U
= log

(
Pp(X) ±

√
Pp(X)2 − 4a1a2Xp−q

2a1

)
dX

X
(3.2.9)

and a complete set of periods can be obtained by integrating it over the A/B-cycles

ΠA/B =

∮

A/B

dλp,q (3.2.10)

More explicitly,

ΠAi
=

∫ b2i

b2i−1

log

(
Pp(X) +

√
Pp(X)2 − 4a1a2Xp−q

Pp(X) −
√
Pp(X)2 − 4a1a2Xp−q

)
dX

X
(3.2.11)

ΠBi
=

∫ b2i+1

b2i

log

(
Pp(X) +

√
Pp(X)2 − 4a1a2Xp−q

Pp(X) −
√
Pp(X)2 − 4a1a2Xp−q

)
dX

X
(3.2.12)

ΠA±
0

=

∮

X=0±
log

(
Pp(X) ±

√
Pp(X)2 − 4a1a2Xp−q

2a1

)
dX

X
(3.2.13)

ΠB±
0

=

∫ ∞±

0±
log

(
Pp(X) ±

√
Pp(X)2 − 4a1a2Xp−q

2a1

)
dX

X
(3.2.14)

Remark 8. This family of curves, along with the spectral data - i.e., the marked log-
arithmic functions logU and log V bears an interesting relationship with the Seiberg-
Witten curves that encode the low energy effective actions of five dimensional gauge
theories up to two derivatives [109,128]. In the a1 = a2 = (ΛR)p, a3 = ap = 1 patch
the curve (3.2.5) and the differential (3.2.9) are precisely the Seiberg-Witten curve
and differential [138]of SU(p) N = 1 SYM theory on R4 × S1 with a q-dependent
Chern-Simons term [90,142]. In this perspective, the field-theory limit of [99] corre-
sponds to taking the four-dimensional R → 0 limit in (3.2.5), (3.2.9). Quite inter-
estingly, in this limit the q-dependence drops out altogether, and one gets for all q
the Seiberg–Witten curves of N = 2 SU(p) SYM in four dimensions.

Remark 9. A further interesting identification can be made, in the case p = q [128],
with the spectral curve and action differential of the Ap−1 Ruijsenaars model [137],
i.e. the Ap−1 periodic relativistic Toda chain. More precisely, setting ζ = ΛR, (3.2.4)
reads for p = q

Γp,p : ζp
(
V +

1

V

)
= 1 +

p−1∑

l=1

U lSl + Up, dλp,p = log V
dU

U

which can be rewritten as

det(L(z) − w) =

p∑

j=0

(−w)p−jσj(z) = 0 (3.2.15)
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3.2. The genus zero B–model on resolved Y p,q singularities

with the Lax matrix defined as

Lij = eRpifi(lij + bij)

lij = δi,j+1(1 + ζpz)ξi − δi,1δj,p(1 + ζ−pz−1)ξ1

bij =

[
−(iζ)p i ≤ j − 1

1 i > j − 1

f 2
i = (1 − ζ2eqi+1−qi)(1 − ζ2eqi−qi−1)

ξ−1
i = 1 − ζ−2eqi−1−qi (3.2.16)

where qp+1 = q1, q0 = qp, σj are the elementary symmetric functions of L(z), Sj their
z-independent factor, and we have made the change of variables [128]

−wU = 1 + ζpz, z = V

An identification of the curves for q < p as the spectral curves of some finite dimen-
sional integrable mechanical system seems to be presently not known, and it would be
interesting to understand to role of the q parameter in this context.

3.2.3 Solving the PF system in the full B-model moduli

space

The previous remarks establish a direct connection between the B-model on Xp,q and
the Seiberg–Witten description of five dimensional theories compactified on a circle,
as well as with the problem of finding action(-angle) variables for complex relativistic
chains. We might wonder whether we can exploit general results from these theories
to find an efficient way to compute the periods of dλp,q. Indeed, we know that in
Seiberg-Witten theory, the gauge coupling matrix

τij =
∂ΠBi

∂uk

(
∂ΠAk

∂uj

)−1

(3.2.17)

where ui are Weyl-invariant functions of the scalar fields, is known to be the period
matrix of the Seiberg-Witten curve, that is a ratio of periods of holomorphic differ-
entials. We then expect that derivatives of dλp,q with respect to suitable functions
of the bare moduli be holomorphic differentials of Γp,q

∂f(ai)dλ ∈ Ω1,0(Γp,q) (3.2.18)

From the integrable system perspective this has its origin in the fact that, for p = q =
2, the relativistic Toda system and the non-relativistic one share the same oscillation
periods [41]; more precisely, the derivatives of the action with respect to the energy
are the same (elliptic) functions of the bare parameters. This was also noticed in [128]
in the study of the singularities of the moduli space of N = 1 SU(2) SYM in d = 5.
We have the following
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Chapter 3. Toric GW theory I: mirror symmetry and wall-crossings

Proposition 8. Let ωj be defined as

ωj :=
∂dλp,q
∂aj+4

(3.2.19)

Then spanC

(
{ωj}p−2

j=0

)
= Ω1,0(Γp,q).

Explicitly, we have

∂dλp,q
∂aj+4

=
Xj

√
P 2
p (X) − 4a1a2Xp−q

dX (3.2.20)

This last observation puts us in a position to give a straightforward and complete
recipe for computing series expansions of solutions of the PF system (2.2.9) for Xp,q

in the full B-model moduli space. The procedure is the following:

1. start with ΠAi/Bi
and consider its aj+4 derivative for 0 ≤ j ≤ p− 2

∂ΠAi/Bi

∂aj+4
=

∫ ei+1

ei

Xj

√∏2p
i=1(X − bi)

dX (3.2.21)

with ei = b2i−1, ei = b2i for the A and the B cycles respectively. The hyper-
elliptic integral (3.2.21) has a closed expression given in terms of multivariate
generalized hypergeometric functions of Lauricella type [59]

∂ΠAi/Bi

∂aj+4
= eiϕπ

(ei)
j

√∏
k 6=i,i+1(ek − ei)

× F
(2p−1)
D

(
1

2
;
1

2
, . . . ,

1

2
, j; 1; x1, . . . , x̂i, x̂i+1, . . . , x2p,

ei+1 − ei
ei

)

(3.2.22)

where xj = (ei+1 − ei)/(ej − ei), 2ϕ = lπ, l ∈ Z is a phase depending on xi and

F
(n)
D is the hypergeometric series

F
(n)
D (α; {βi}; γ; {δi}) =

∞∑

m1...mn=0

(α)m+···+mn(β1)m1 . . . (βn)mnδ
m1
1 . . . δmn

n

(γ)m+···+mnm1! . . .mn!

(3.2.23)
which converges when |δi| < 1 for every i. In the above formula we used the

standard Pochhammer symbol (α)m = Γ(α + m)/Γ(α). In many cases, F
(n)
D

can be reduced to a more familiar form. For instance, for p = 2 we have the
expected complete elliptic integrals of the first kind

49



3.2. The genus zero B–model on resolved Y p,q singularities

∂ΠA

∂a4
=

2√
(b1 − b3)(b2 − b4)

K

[
(b1 − b2)(b3 − b4)

(b1 − b3)(b2 − b4)

]
(3.2.24)

∂ΠB

∂a4

=
2√

(b1 − b2)(b3 − b4)
K

[
(b1 − b3)(b2 − b4)

(b1 − b2)(b3 − b4)

]
(3.2.25)

2. Once we have a representation for the derivatives of the periods in the form
(3.2.22), (3.2.24)-(3.2.25) we can use the formulae in Appendix B.2 to ana-
lytically continue them in any given patch of the B-model moduli space and
find a corresponding power series expansion in the bare moduli ai. Integrating
back with respect to aj yields ΠAi

and ΠBi
up to a constant of integration,

independent of aj for 0 ≤ j ≤ p− 2. This has to be fixed either by some indi-
rect consideration (for instance, by imposing a prescribed asymptotic behavior
around a singular point) or by plugging it inside the PF system and imposing
that the period be in the kernel of the GKZ operators. This operation leads to
a closed ODE integrable by quadratures, which completes the solution of the
problem of finding expansions for ΠAi/Bi

everywhere in the B-model moduli
space.

3. The procedure provides us with p − 1 flat coordinates as well as p − 1 conju-
gate periods out of which to extract the prepotential. In order to find the pth

modulus, we pick up the residue (3.2.13)

∮

X=0±

dλ =





log
(
±a3
a1

)
for q < p

log

(
a3±

√
a23−4a1a2

2a1

)
for q = p

(3.2.26)

which are manifestly solutions of (2.2.9). In the following, we will choose an
appropriate combination of them in order to have a prescribed behavior around
the expansion point under scrutiny.

Remark 10. There are many alternative ways to express (3.2.21), for instance in
terms of hyperelliptic θ functions; however, the above expression proves to be useful
due to the fact that Lauricella F

(n)
D has good analytic continuation properties outside

the unit polydisc |δi| < 1; some formulae, as well as asymptotic expansions around
singular submanifolds, are collected in the Appendix, while others can be found in
[59, 60]. Notice that, as opposed to the usual situation in solving PF equations by
Frobenius method, we are not dealing here with hypergeometric functions of the bare
moduli, but rather of the relative distance xi between ramification points; they have
singular values precisely when the latter becomes 0, 1 or infinity, that is when we
encounter a pinching point of Γp,q. This shift in perspective is definitely an advantage
compared to other expressions for hyperelliptic integrals, involving for instance the
F4 Appell function for genus 2 [102, 129]. These are simpler functions of the bare
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Chapter 3. Toric GW theory I: mirror symmetry and wall-crossings

moduli, but have worse analytic continuation properties and are less suited for a more
complete study of the moduli space, regarding for instance intersecting submanifolds
of the principal discriminant locus. The above fact was already pointed out in [10],
where the properties of F n

D were exploited to study the Z3 point of N = 2 SU(3)
SYM .

An important advantage of the method proposed here is that, instead of inte-
grating back patch-wise with respect to aj , we can work directly with an Euler-type

integral representation of the periods. The fact that F
(n)
D has a single integral rep-

resentation saves us most of the pain in the problem of finding the explicit analytic
continuation of ΠAi/Bi

, which in the multi-parameter case involves the use of multi-
loop Mellin-Barnes integrals. The details for the case p = q = 2 which will be of
our interest later on for the computation of orbifold Gromov-Witten invariants are
reported in Appendix B.1, where also a closed expression for the A-period can be
found in terms of a generalized Kampé de Fériet hypergeometric function.

3.2.4 Examples

Let us show how the three-step recipe of the previous section allows to quickly recover
some known results about mirror symmetry for local surfaces.

Local F0 : mirror map at large radius

Local mirror symmetry for KF0 has been studied in [6] in the check of the large N
duality with Chern-Simons theory on S3/Z2. The mirror curve in this case can be
written as

a1V + a2/V = a3/U + a4 + a5U (3.2.27)

(0,2)

(0,1)

(0,0) (1,0)

(−1,2)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 3.5: The toric diagram of local F0.
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3.2. The genus zero B–model on resolved Y p,q singularities

Good variables around the large complex structure point [35] are given by

zB =
a1a2

a2
4

zF =
a3a5

a2
4

(3.2.28)

Let us use the scaling freedom (2.2.16) to set

a3 = a5 = 1, a1 = a2 (3.2.29)

By using the change of variables (3.2.5) the curve (3.2.27) is then given by

Y 2 =

(
X2 +

X√
zF

+ 1

)2

− 4zB
zF

X2 (3.2.30)

which is a double covering of the X−plane branched at

b1 =
−1 + 2

√
zB −

√
1 − 4

√
zB + 4zB − 4zF

2
√
zF

(3.2.31)

b2 =
−1 − 2

√
zB −

√
1 − 4

√
zB + 4zB − 4zF

2
√
zF

(3.2.32)

b3 =
−1 + 2

√
zB +

√
1 − 4

√
zB + 4zB − 4zF

2
√
zF

(3.2.33)

b4 =
−1 − 2

√
zB +

√
1 − 4

√
zB + 4zB − 4zF

2
√
zF

(3.2.34)

We choose the A−cycle as the loop encircling [b1, b2]. The asymptotics of the corre-
sponding period will indeed identify it as the flat coordinate around zB = zF = 0.
By expanding (3.2.24) in (zB, zF ) we have

∂ΠA

∂a4

=
√
zF (20z3

B + 6(30zF + 1)z2
B

+ 2(90z2
F + 12zF + 1)zB + 20z3

F + 6z2
F + 2zF + 1) + . . . (3.2.35)

which integrates to

ΠA = log(zF ) +
20z3

B

3
+ 60zF z

2
B + 3z2

B + 60z2
FzB (3.2.36)

From (3.2.26) and (3.2.28) we can compute the remaining flat coordinate as

Π0 = −1

2
log

zB
zF

(3.2.37)

It is then easy to see that the combinations of periods that has the right asymptotics
at large radius are given by

−tB ≡ −2Π0(zB, zF ) + ΠA(zB, zF ), −tF ≡ ΠA(zB, zF ) (3.2.38)

Inversion of (3.2.36) and (3.2.37) reads, setting QB = e−tB , QF = e−tF

zB = 6Q3
B − 2Q2

B + 6Q2
FQB − 2QFQB +QB + . . .

zF = 6Q3
F − 2Q2

F + 6Q2
BQF − 2QBQF +QF + . . . (3.2.39)

which is the mirror map as written in [119].
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Local F0 : conifold point

Analogously, we can write down the expansion for the orbifold point [6], which cor-
responds to a1 = a2 = a3 = a5 = 1, a4 = 0. Setting a1 = a2 =

√
1 − x1, a4 = x1x2,

a3 = a5 = 1 as in [6], we have

s1 ≡ Π0 = − log(1 − x1)

s2 ≡ ΠA + ΠB/2 =
1

61931520π

[
x2(35(32(x1 − 2)x1(x1(11x1 − 96) + 96)E(x1)

+ x1(x1(x1(x1(105x1 − 1856) + 8000) − 12288) + 6144)K(x1))x
8
2 + . . .

]

Upon introducing s̃1 = s1 and s̃2 = s1/s2 we have

x1(s̃1) = 1 − e−s̃1

x2(s̃1, s̃2) = s̃2 +
s̃2

4
s̃1 +

(
s̃2

192
− s̃3

2

192

)
s̃2
1 +

(
− s̃2

256
− s̃3

2

768

)
s̃3
1 +

(
− 49s̃2

737280

+
7s̃3

2

73728
− 7s̃5

2

245760

)
s̃4
1 +

(
5s̃3

2

98304
− 7s̃5

2

983040

)
s̃5
1 + . . . (3.2.40)

in perfect agreement with [6]. Needless to say, the prepotential computation can be
checked exactly the same way. We have

Fs2 ≡ ΠA =
1

53760

[
x1x2

(
(75x3

1x
6
2 − 56x2

1(10x2
2 + 9)x4

2 + 64x1(10x4
2 + 21x2

2

+ 70)x2
2 − 107520

)
K(1 − x1) + . . .

]

= log
(x1

16

)
s2 −

x3
2

12
x1 + (

x2

4
+
x3

2

48
)x2

1 +

(
− 21

128
x2 +

5

768
x3

2

)
x3

1

+

(
185x2

1536
+

5x3
2

1024

)
x4

1 + . . . (3.2.41)

which reproduces the analogous formula in [6], modulo the ambiguity in the degree-
zero contribution.

Local F2 at large radius

We might proceed along the same lines for the case of local F2. The curve is given
by

a1V +
a2

V
= a3 + a4U + a5U

2 (3.2.42)

Branch points are located at

U +
a4

2a5
=





±
√
a24−4a3a5−8

√
a1

√
a2a5

2a5
≡ ±c1

±
√
a24−4a3a5+8

√
a1

√
a2a5

2a5
≡ ±c2

(3.2.43)
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and we have accordingly

∂ΠA

∂a4
=

∫ c2

c1

dX

(X2 − c21)(X
2 − c22)

=
K
(
1 − c22

c21

)

c1
(3.2.44)

∂ΠB

∂a4
=

∫ c1

−c1

dX

(X2 − c21)(X
2 − c22)

=
2K
(
c21
c22

)

c2
(3.2.45)

In this case invariant coordinates associated to the base P1 and the P1 fiber are

zB =
a1a2

a2
3

, zF =
a3a5

a2
4

(3.2.46)

Upon setting a1 = a2, a3 = a5 = 1, periods take the form

∂tF
∂zF

=
∂ΠA

∂zF
= −

2K
(
− 16

√
zBzF

−8
√
zBzF−4zF +1

)

πzF

√
1 − 4

(
2
√
zB + 1

)
zF

∂2F
∂zF∂tF

=
∂ΠB

∂zF
= −

4K
(

−8
√
zBzF−4zF +1

8
√
zBzF−4zF +1

)

zF

√
1 − 4

(
1 − 2

√
zB
)
zF

tB = Π0+ − Π0− = 2i tan−1
(√

4zB − 1
)

(3.2.47)

where the normalization has been chosen in order to get the right asymptotics. In-
tegration and inversion yields the mirror map at the large radius point

zB(QB) =
QB

(QB + 1)2

zF (QB, QF ) = (1 +QB)QF +
(
−2 − 4QB − 2Q2

B

)
Q2
F

+
(
3 + 3QB + 3Q2

B + 3Q3
B

)
Q3
F + . . . (3.2.48)

(0, 1)

(0, 0)

(0, 2)

(−1, 0) (1, 0)
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�
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�
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�
�
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Figure 3.6: The toric diagram of local F2.
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with QB = e−tB , QF = e−tF and therefore

∂tF F(QB, QF ) = (log(QF ) log(QBQF )) + (4 + 4QB)QF + (1 + 16QB +

+ Q2
B)Q2

F +

(
4

9
+ 36QB + 36Q2

B +
4Q3

B

9

)
Q3
F

+

(
1

4
+ 260Q2

B + 64(QB +Q3
B)

)
Q4
F + . . . (3.2.49)

as in [35].

Local F2 and C3/Z4: genus zero orbifold invariants

We will now apply the considerations above to the study of the tip of the classical
Kähler moduli space for local F2, where the compact divisor collapses to zero size.
The resulting geometry [20] is a Z4 orbifold of C3 by the action (ω; z1, z2, z3) →
(ωz1, ωz2, ω

−2z3), with ω ∈ Z4. The inertia stack (2.1.6) takes the form

IC3/Z4 = X1 ∪Xi ∪X−1 ∪X−i (3.2.50)

where X0 ≃ C3, Xi ≃ X−1 ≃ {0}, X−1 ≃ C. The orbifold co-homology ring is
spanned by classes Ok/4, where spanCOk = H0(Xk,C), and their orbifold degree is
easily computed from (2.1.7), (2.1.8) as

age O1 = 0; age Oi = 1; age O−1 = 1; age O−i = 2 (3.2.51)

By the Calabi–Yau condition, the orbifold Gromov–Witten potential then takes the
form

FC3/Z4

0 (si, s−1) =
∑

n,m≥0

1

n!m!
〈Om

i On
−1〉smi sn−1 (3.2.52)

To compute it, observe from figure 3.6 that Mori vectors for local F2 are

Q1 = (0, 1, 1, 0, −2)
Q2 = (1, −2, 0, 1, 0)

(3.2.53)

and the mirror curve Γ2,2 has the form (3.2.42)

a1V +
a2

V
= a3 + a4U + a5U

2

Following [40] we argue that the point we are looking for in the B-model moduli
space is given by a3 = a4 = 0. This would amount to shrinking to zero size the
compact divisor given, in the homogeneous coordinates xi introduced in Sec. 2.2.2,
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3.2. The genus zero B–model on resolved Y p,q singularities

by x5 = 0. To see this, notice that the secondary fan of (3.2.53) (see Fig. 3.8) has
the set of charges

a1 a3 a5 a2 a4

Q1 1, 0, 0, −1, 0
Q2 0, 0, 2, 0, 1
Q3 1, 1, 1, 1, 1

(3.2.54)

The secondary fan of KF2 is simplicial but with marked points, and it is therefore
a toric orbifold. Its orbifold patches are, as shown in figure 3.8, a smooth C2 patch
containing the large complex structure point, two non-smooth C2/Z2 cones, and
finally a C2/Z4 patch parameterized by (a3, a4). The Z4 action on the latter reads

Z4 × C2 → C2

λ (x, y) → (λx, λ2y)
(3.2.55)

(a3, a4) = (0, 0) is therefore the only point with Z4 monodromy in the compactified
B-model moduli space. From (3.2.55) we see that good coordinates around (a3, a4) =
(0, 0) are given by

a3 =
√
de

a4 = d1/4 (3.2.56)

Let us then find a complete basis of solutions for the GKZ system around this point.
Picard-Fuchs operators are written in this patch as

L1 = a3∂
2
a4 +

1

2
θa4θa3

L2 = ∂2
a3 −

1

16
(θ2
a4 − 4θ2

a3) −
1

4
θa3θa4 (3.2.57)

(0, 1)

(0, 0)

(0, 2)

(−1, 0) (1, 0)
�
�
�
�

�
�
�
�

�
�
�
�

Figure 3.7: The toric diagram of C3/Z4.
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Figure 3.8: The secondary fan of KF2.

and the branch points (3.2.43) here read

±c1 = ±1

2

√
a2

4 − 4a3 − 8

±c2 = ±1

2

√
a2

4 − 4a3 + 8 (3.2.58)

while the period integrals (3.2.44),(3.2.45) and (3.2.26) become

∂a4ΠA =
K
(
a24−4a3−8

a24−4a3+8

)

√
a2

4 − 4a3 + 8
−

K
(
a24−4a3+8

a24−4a3−8

)

√
a2

4 − 4a3 − 8

∂a4ΠB = 2
K
(
a24−4a3−8

a24−4a3+8

)

√
a2

4 − 4a3 + 8

Π0± = log

(
a3

2
±
√
a2

3 − 4

2

)
(3.2.59)

To find solutions of the PF system (3.2.57) with prescribed monodromy around
(d, e) = (0, 0), let us define
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si =

[
(8 − 8i)π1/2

Γ
(

1
4

)2

](
ΠB

2
− ΠA

1 − i

)
(3.2.60)

si =

[
(4 + 4i)Γ

(
1
4

)2

π3/2

](
ΠB

2
+

ΠA

1 + i

)
(3.2.61)

s−1 = −2iΠ0− + π (3.2.62)

we then have

si(d, e) = d1/4

[
1 +

(
e2

32
− e

192
+

1

2560

)
d− 25e3

18432
d2 + . . .

]
(3.2.63)

s−1(d, e) = d1/2

[
e+

e3d

24
+

3e5d2

640
+

5e7d3

7168
+ . . .

]
(3.2.64)

s−i(d, e) = d3/4

[(
e− 1

12

)
+

(
3e3

32
− 3e2

128
+

9e

2560
− 3

14336

)
d+ . . .

]
(3.2.65)

The normalization of the mirror map has been fixed against the explicit I-function
formulae for C3/Z4. Concerning the solution s−i, this is identified with the derivative
of the generating function Forb in (3.2.52) with respect to si; in fact, the orbifold

Poincaré pairing modifies this relation by a factor of 4, i.e. s−i = 4∂si
FC3/Z4

0 . Taking
all this into account, inversion of (3.2.63) and (3.2.64) gives the following expression
for the prepotential

4
∂FC3/Z4

0

∂si
(s−1, si) =

(
s−1 +

s3
−1

48
+
s5
−1

960
+

29s7
−1

430080
+

457s9
−1

92897280
+O

(
s11
−1

))
si

+

(
− 1

12
− s2

−1

96
− 11s4

−1

9216
− 49s6

−1

368640
− 601s8

−1

41287680
+O

(
s10
−1

))
s3
i

+

(
7s−1

3840
+

s3
−1

1920
+

47s5
−1

460800
+

6971s7
−1

412876800
+O

(
s9
−1

))
s5
i

+ . . . (3.2.66)

As a check, the prepotential thus obtained is invariant under monodromy. The first
few invariants are listed in table 3.2. Our results exactly match2 those of [38].

2We are grateful to Tom Coates for sharing with us his computations and for enlightening
discussions on this point.
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m 2 4 6 8 10
n
0 0 −1

8
0 − 9

64
0

1 1
4

0 7
128

0 1083
1024

2 0 − 1
32

0 −143
512

0
3 1

32
0 3

32
0 85383

16384

4 0 − 11
256

0 −159
128

0
5 1

32
0 47

128
0 360819

8192

6 0 − 147
1024

0 −157221
16384

0
7 87

1024
0 20913

8192
0 73893099

131072

8 0 −1803
2048

0 −3719949
32768

0
9 457

1024
0 1809189

65536
0 5312434641

524288

10 0 −70271
8192

0 −498785781
262144

0
11 7859

2048
0 56072653

131072
0 254697581847

1048576

12 0 −15933327
131072

0 −11229229227
262144

0
13 801987

16384
0 2354902131

262144
0 31371782305803

4194304

Table 3.2: Genus zero orbifold Gromov-Witten invariants of C3/Z4.

3.3 A case study: the C3/Z4 orbifold

3.3.1 Intermezzo: the disc and torus amplitudes

The B-model disc function and open orbifold mirror map

Following the discussion of Sec. 2.2.3 we now turn on an open sector and add
Lagrangian branes to KF2. We will consider the setups I and II of figure 3.9, with
a Lagrangian brane ending respectively on the upper and lower external legs of the
pq-web. The choice of variables (3.2.4) we have made for the mirror curve Γ2,2

corresponds to phase II. This means that V is the variable that goes to one on
the brane and X(II) ≡ U is the good open string parameter to be taken as the
independent, bare variable in (2.2.22) [24]. The transition from phase II to phase I
is accomplished by the (exponentiated) SL(2,Z) transformation

X(II) ≡ U → 1

U
≡ X(I)

V → V U2 (3.3.1)

Accordingly, the differential (3.2.9) has the form

dλ =





log
a3X2

(I)
+a4X(I)+1+

q

(a3X2
(I)

+a4X(I)+1)2−4X4
(I)

2X4
(I)

dX(I)

X(I)
phase I

log
a3+a4X(II)+X

2
(II)

+
q

(a3+a4X(II)+X
2
(II)

)2−4

2

dX(II)

X(II)
phase II

(3.3.2)
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|z | = 0

II

5 |z | = 04|z | = 01

|z | = 03

|z | = 02

I

Figure 3.9: The toric web of local F2 with lagrangian branes on an upper (I) and
lower (II) outer leg.

The unframed A-model disc amplitude for a brane in phase I can be computed as
follows. First of all we need to define a proper open orbifold flat modulus. To
this aim, we use the result of [110], where the authors show that for this outer-leg
configuration the large radius open flat variable solving the extended Picard-Fuchs
system is given by

zLRo = z +
tB
4

+
tF
2

+ πi (3.3.3)

where z = logX(I). In the (a3, a4) patch containing the orbifold point this becomes

zLRo = z + πi+ O(a4) + O(a3) (3.3.4)

Notice that in (3.3.3), (3.3.4), both zLRopen and z + πi solve the extended PF system
and can then serve as a flat coordinate: zLRopen does the job by construction, and the
same is true for z because it is a difference of solutions of the Picard-Fuchs system
by (3.3.3). Following [24], we will give the following operative

Definition 11. The open orbifold mirror map for an outer brane in phase I is given,
in exponentiated coordinates, by

Zorb
o = −X(I) (3.3.5)

Indeed, we have that the difference zLRopen − tB
4
− tF

2
= z + πi is a global open flat

variable, and moreover it is the minimal choice that yields a regular expansion at
the orbifold point. Unfortunately, we have no other external input, not even from a
physics-inspired BPS counting argument, to justify (3.3.5).
Having the mirror map (3.3.5) and using (2.2.29) we can now expand the chain inte-
gral and obtain the disc amplitude F0,1(a3, a4, z) as a function of the bare variables,
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Chapter 3. Toric GW theory I: mirror symmetry and wall-crossings

or, using (3.2.63)-(3.2.64), of the flat variables. Notice that, since (a3, a4) have non-
trivial Z4 transformations, in order to preserve the fact that the curve (3.2.42) stays
invariant forces to assign weights (1/4, 1/2) to (U, V ) respectively, and so according
to (3.3.5) Zorb

o has weight −1/4. Eventually we get

F0,1(si, s−1,Zorb
o ) =

(
−s−1s

3
i

192
+
s2
−1si
32

− si

)
Zorb
o

+

(
s2
−1s

2
i

64
− s2

i

4
+ s−1

(
1

2
− s4

i

384

))
(Zorb

o )2

+

(
7s2

−1s
3
i

576
− s3

i

9
+
s−1si

3

)
(Zorb

o )3

+ . . . (3.3.6)

which is monodromy invariant. Eq. (3.3.6) is a B-model prediction of orbifold disc
invariants of C3/Z4.

Remark 11. The situation for phase II appears to be more subtle. The resulting
topological amplitude computed from the chain integral (2.2.29) picks up a sign flip
under Z4. This is not completely surprising, since it is known that disc amplitudes
may have non-trivial monodromy [133], and it might also be seen to be related to the
more complicated geometrical structure of the Z4 orbifold with respect to the Z3 case,
due to the presence of non-trivial stabilizers for the cyclic group action.

The B-model genus 1 potential

A recipe to determine from mirror symmetry the generating function of genus 1
Gromov–Witten invariants was given in [21, 22]. In the case of toric CY 3, we have
that

F1 = −1

2
log detJ − 1

12
log ∆ (3.3.7)

where J is the Jacobian matrix of the A-periods (in the appropriate polarization)
with respect to the bare moduli and ∆ is a rational function of the branch points,
with zeroes at the discriminant locus of the curve. It is reassuring to see that we have
already done most of the work in Sec. 3.2.3: the (in general difficult to compute)
Jacobian J in (3.3.7) is precisely the main object for which we have found a closed
form expression in (3.2.22). Specializing (3.3.7) to the KF2 it is easy to obtain a
closed expression for F1 in homogeneous (bare) coordinates at large radius. We get

FLR
1 (tF , tB) = −1

2
log

(
∂tF
∂a4

)
+ log

[
ca1c

b
2(c1 − c2)

c(c1 + c2)
d
]

(3.3.8)

where the exponents of the second term can be fixed against the topological vertex
results as a = −1/6, b = −1/6, c = −1/12, d = −1/12. Then, from (3.2.43) and
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(3.2.44)

FLR
1 (QF , QB) = −1

2

K
(
1 − c22

c21

)

c1
− 1

6
log c1c2 −

1

12
log
(
c21 − c22

)
(3.3.9)

and plugging in the mirror map (3.2.48) we can straightforwardly compute

FLR
1 (QF , QB) =

(
− log(QB)

24
− log(QF )

12

)
− QF

6
− Q2

F

12
− Q3

F

18
− Q4

F

24
+ (3.3.10)

+

(
−QF

6
− Q2

F

3
− Q3

F

2

)
QB +

(
−Q

2
F

12
− Q3

F

2
+

37Q4
F

6

)
Q2
B + . . .

This agrees with the invariants computed via the topological vertex [7].

Having a closed expression for the genus 1 free energy of KF2, we can follow [9]
to obtain a prediction of elliptic orbifold Gromov–Witten invariants of C3/Z4. We
will defer it to the next section, where we display explicitly the modular properties
of the open and closed generating functions and use them to bring our results for
KF2 down to the orbifold point.

3.3.2 The change of basis from large radius

In the last section we have computed the mirror map at the orbifold point by choos-
ing solutions of the GKZ system which diagonalize the monodromy of the periods.
The solutions at large radius (1, tB, tF , ∂FF), which obey a different monodromy
condition at a different point, must be then be related to those at the orbifold point
(1, si, s−1, s−i) by some general linear transformation. In particular, the restriction of
this linear map to the subspace spanned by (tF , ∂FF) and (s−1, s−i) plays a key role
in the transformation rules of the open string generating functions, as well as of the
higher genus closed free energies computed with the BKMP method: this subsector
is the one corresponding to linear combinations of periods of the Hori–Vafa differen-
tial on H1(Γ2,2,Z), and it is the one that enters the shift (2.2.34) in the propagator.
The methods of Sec. 3.2.3 make it much easier to study the analytic properties of the
solutions, and consequently the linear change of basis. Indeed, instead of performing
standard (but cumbersome) multiple Mellin-Barnes transforms, we can easily read
off what S and ∆ are in our case from formulae (B.1.2-B.1.3) and (3.2.59). We have
the following

Proposition 9. Define

~ΠLR =




1
tB
tF
∂FF


 ~Πorb =




1
s−1

si
s−i


 (3.3.11)
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and S̃ ∈ GL(2,C) be such that ~ΠLR = S̃~Πorb. Then

S̃ =




1 0 0 0
π −i 0 0
α β

S
γ δ


 (3.3.12)

where

S =




2π3/2

Γ( 1
4)

2
(1−i)√π
Γ( 1

4)
2

−Γ( 1
4)

2

√
π

( 1
2
+ i

2)Γ( 1
4)

2

π3/2


 (3.3.13)

and α, β, γ and δ are complex numbers.

Proof. The coefficients of the submatrix S follow immediately from explicit knowledge
of the a4 derivatives of the periods, which we have obtained in the previous section,
and by expanding them at the large complex structure and at the Z4 orbifold point.
The rest of the matrix S̃ can be computed by using the Euler integral representation
of Appendix B.1; since α, β, γ and δ do not enter the shift term of the propagator, and
hence the transformation formulae of the higher genus open and closed generating
functions, they will not be computed here.

3.3.3 Γ(2) modular forms

According to (2.2.34), Eq. (3.3.13) fully determines the change of the generating
functions of open and closed Gromov–Witten invariants when we move from the
large radius patch of the Kähler moduli space to the Z4 orbifold patch. As a further
step towards a complete characterization of FX

g,h, let us show explicitly that the basic
objects computed from the spectral curve data are modular forms of Γ(2), that is
the group of SL(2,Z) matrices congruent to the identity modulo 2.

Again, we will use for inspiration the fact that our curves coincide with five-
dimensional Seiberg-Witten curves, as we noticed in Remark 8, and also the fact
that such curves are the same as the R → 0 limit, the only thing that changes being
the symplectic structure defined on the elliptic fibration, i.e., the SW differential.
We have the following important

Lemma 1. Let c1 and c2 denote the branch-point related variables of (3.2.43). They
are Γ(2) modular forms of Γ2,2, and read explicitly

c1(τ) = 2
θ2
4(τ)

θ2
2(τ)

c2(τ) = 2
θ2
3(τ)

θ2
2(τ)

(3.3.14)

Proof. By formulae (3.2.5), (3.2.43) the Γ2,2 family can be written as

Y 2 = (X̂2 − c21)(X̂
2 − c22) (3.3.15)
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where we have shifted the X variable in (3.2.5) by X̂ = X + a4/2. Through the
SL(2,C) automorphism of the X̂-plane

X̂ =
aX̃ + b

cX̃ + d
Ỹ = (cX̃ + d)2Y

a =

√
c1c2 − c22√
4c1 + 4c2

, b =
c2(3c1 + c2)

2
√
c2 (c21 − c22)

, c = −

√
c21
c2
− c2

2(c1 + c2)
, d =

c1 + 3c2

2
√
c2 (c21 − c22)

(3.3.16)
we bring (3.3.15) to the celebrated Seiberg-Witten Γ(2)-symmetric form

Ỹ 2 = (X̃2 − 1)(X̃ − u) (3.3.17)

where

u =
c21 + 6c2c1 + c22

(c1 − c2)2
(3.3.18)

With (3.3.18) at hand we can re-express the quantities computed in the previous
section as Γ(2) modular forms, whose ring is generated by the Jacobi theta functions
θ2(τ), θ3(τ), θ4(τ), all having modular weight 1/2. This goes as follows: the Klein
invariant j(τ) of the curve (3.3.17) is rationally related to u as

j(u) = 64
(3 + u2)3

(u2 − 1)2
(3.3.19)

while inversion of (3.3.18) gives, writing everything for definiteness in the (a3, a4)
patch,

a2
4 − a3 =

u+ 3√
2
√
u+ 1

(3.3.20)

Writing the j(τ) invariant in terms of θ functions

j(τ) =
4

27

(1 − λ(τ) + λ2(τ))3

λ2(τ)(1 − λ(τ))2
(3.3.21)

where λ(τ) = (θ2(τ)/θ3(τ))
4, inverting (3.3.19) to yield u(j), and plugging it into

(3.3.20), we get (3.3.14).

�

Example 2. Given (3.3.14) it is then straightforward to write the building blocks
of the BCOV recursion in terms of modular forms. Let us analyze the large radius
Yukawa coupling first. We have

C ≡ ∂3F
∂t3F

=
4

π

(
∂a4

∂τ

∂tF
∂a4

)−1
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Using (3.2.44) we have

∂tF
∂a4

=
K
(
1 − c22

c21

)

c1
=
π

4
θ2
2(τ) (3.3.22)

while combining (3.3.14) and (3.2.43) yields

∂a4

∂τ
= − 26

a4(τ)

η12(τ)

θ2(τ)8
(3.3.23)

where η(τ) is Dedekind’s function and we have used

2η3(τ) = θ2(τ)θ3(τ)θ4(τ) (3.3.24)

besides the modular expression of a4 from (3.2.43)

a4(τ) = 2

√
4
θ4
4(τ)

θ4
2(τ)

+ a3 + 2 (3.3.25)

Putting it all together we arrive at

C(τ) = −a4(τ)

64

θ6
2(τ)

η12(τ)
(3.3.26)

Example 3. We can also complete the results of Sec. 3.3.1 by using the modular
expression of c1, c2 and ∂a4tF to write the B-model genus one potential as an almost-
modular form. From (3.3.8) and (3.3.14) we get at large radius

FLR
1 (τ) = −1

2
log η(τ) (3.3.27)

Plugging in the expression for the modular parameter q = e2πiτ in exponentiated flat
coordinates, which can be computed from (3.2.48), (3.3.19) and (3.3.20)

q(QB, QF ) = QBQ
2
F +

(
4Q2

B + 4QB

)
Q3
F +

(
10Q3

B + 48Q2
B + 10QB

)
Q4
F +O

(
Q5
F

)

(3.3.28)
we recover precisely (3.3.10). As the logarithm of a weight 1/2 modular form, the
genus 1 free energy transforms with a shift under a modular transformation

F1

(
Aτ +B

Cτ +D

)
= F1(τ) +

1

2
log

1

τ + C−1D
(3.3.29)

Writing τ as a function of the ai variables using (3.2.44), (3.2.45) and plugging the
orbifold mirror map (3.2.64) we get

F orb
1 (si, s−1) =

∑

n,m

Norb
1,(m,n)

n!m!
smi s

n
−1 (3.3.30)

= −s
2
14s12

384
+
s2
12

192
− 5s2

14s
3
12

9216
+

7s4
12

18432
− 13s2

14s
5
12

163840
+

31s6
12

1105920
+ . . .

The first few GW invariants are reported in table 3.3.
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m 0 2 4 6 8 10
n
0 0 1

128
0 441

4096
0

1 0 - 1
192

0 - 31
1024

0 -71291
32768

2 1
96

0 35
3072

0 235
512

0
3 0 - 5

768
0 - 485

4096
0 -2335165

131072

4 7
768

0 485
12288

0 458295
131072

0
5 0 - 39

2048
0 -40603

49152
0 -58775443

262144

6 31
1536

0 2025
8192

0 10768885
262144

0
7 0 - 2555

24576
0 -293685

32768
0 -522517275

131072

8 2219
24576

0 240085
98304

0 1437926315
2097152

0
9 0 -22523

24576
0 -73017327

524288
0 -397762755193

4194304

10 16741
24576

0 54986255
1572864

0 32280203275
2097152

0
11 0 -389975

32768
0 -18440181205

6291456
0 -12177409993695

4194304

12 1530037
196608

0 1434341595
2097152

0 7495469356455
16777216

0

Table 3.3: B-model predictions for genus one orbifold Gromov-Witten invariants of
C3/Z4.

3.3.4 Bulletproofing BKMP

On the basis of the results of the previous sections, we will now perform an extensive
check of the BKMP proposal. We will compute the correlators of the BKMP
recursion up to the point where the lowest genus prediction for closed, ordinary GW
invariants can be made. Before we do that, we will resume the formalism of kernel
differentials of [24] specialized to the case of elliptic mirror curves. We will then
give a proof of Theorem 5 from this formalism, and exhibit the general expression of
W

(g)
h as almost-modular forms. Finally we will exploit Conjecture 2 to predict open

orbifold Gromov–Witten invariants of C3/Z4, and briefly comment on the results.

Kernel differentials

Let us specialize the recursion to the case of local F2. The Hori-Vafa differential
(3.2.9) reads, in the (a3, a4) patch,

dλ2,2(u) = log

(
P2(u) ± Y (u)

2

)
du

u
(3.3.31)

where

P2(u) = a3 + a4u+ u2, Y (u) =
√
P 2

2 (u) − 4

and the Γ2,2 family can be written in the Z2 symmetric form (3.3.15) as a two-fold
branched covering of the compactified u-plane

Y 2 = (u− b1)(u− b2)(u− b3)(u− b4) = (û2 − c21)(û
2 − c22) (3.3.32)
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thanks to (3.2.43) and (3.3.15) and having defined û = u+ a4/2. We have first of all
that

dλ(u) − dλ(ū) = 2M(u)Y (u)du (3.3.33)

where the so-called “moment function” M(u) is given, after using the fact that
log(P + Y ) − log(P − Y ) = 2 tanh−1 (Y/P ), as

M(u) =
1

uY (u)
tanh−1

[
Y (u)

P2(u)

]
, (3.3.34)

Moreover, the one form dE(p, q) (2.2.24) can be written as [61]

dEw(u) =
1

2

Y (w)

Y (u)

(
1

u− w
− LC(w)

)
du (3.3.35)

where

C(w) :=
1

2πi

∮

A

du

Y (u)

1

u− w
, L−1 :=

1

2πi

∮

A

du

Y (u)
(3.3.36)

We have assumed here that w stays outside the contour A; when w lies inside the
contour A, C(w) in (3.3.35) should be replaced by its regularized version

Creg(w) = C(w) − 1

Y (w)
(3.3.37)

Since Γ2,2 is elliptic, it is possible to find closed form expressions for C(u), Creg(u),
B(u, w) and L. We have

C(u) =
2(b2 − b3)

π(u− b3)(u− b2)
√

(b1 − b3)(b2 − b4)

[
Π(n4, k) +

u− b2
b2 − b3

K(k)

]
(3.3.38)

Creg(u) =
2(b3 − b2)

π(u− b3)(u− b2)
√

(b1 − b3)(b2 − b4)

[
Π(n1, k) +

u− b3
b3 − b2

K(k)

]
(3.3.39)

L−1 =
2√

(b1 − b3)(b2 − b4)
K

[
(b1 − b2)(b3 − b4)

(b1 − b3)(b2 − b4)

]
(3.3.40)

B(u, w) =
1

Y (u)

[
Y 2(u)

2Y (w)(u− w)2
+

(Y 2)′(u)

4Y (w)(w − u)
+

A(u)

4Y (w)

]

+
1

2(u− w)2
(3.3.41)

where

k =
(b1 − b2)(b3 − b4)

(b1 − b3)(b2 − b4)
, n4 =

(b2 − b1)(u− b3)

(b3 − b1)(u− b2)
, n1 =

(b4 − b3)(u− b2)

(b4 − b2)(u− b3)
,

(3.3.42)
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A(u) = (u− b1)(u− b2) + (u− b3)(u− b4) + (b1 − b3)(b2 − b4)
E(k)

K(k)
(3.3.43)

and K(k), E(k) and Π(n, k) are the complete elliptic integrals of the first, second
and third kind respectively.

With these ingredients one can compute the residues as required in (2.2.27). Given
that dEq(p)/(dλ(q) − dλ(q̄)), as a function of q, is regular at the branch-points, all
residues appearing in (2.2.27) will be linear combinations of the following kernel
differentials

χ
(n)
i (p) = Resq=xi

(
dEq(p)

dλ(q) − dλ(q̄)

1

(q − xi)n

)

=
1

(n− 1)!

1

Y (p)

dn−1

dqn−1

[
1

2M(q)

(
1

p− q
− LC(q)

)]

q=xi

(3.3.44)

In (3.3.44), C(p) should be replaced by Creg(p) when i = 1, 2.

W
(g)
h as almost-modular forms

Let us then explicitly display the quasi-modular structure of the correlators. We
have the following

Theorem 10. The correlators (2.2.27) have the form

W
(g)
h (p1, . . . , ph; a3, τ) =

3g−3+2h∑

n=0

c(g,h)
n (p1, . . . , ph; a3, τ)E

n
2 (τ) (3.3.45)

where c
(g,h)
n (p1, . . . , ph; a3, τ) is, for every fixed p1, . . . , ph, a3, a modular form of weight

−2n.

Proof. Formulae (2.2.28), (2.2.27), (3.3.41) and (3.3.44) imply thatW
(g)
h (p1, . . . , ph; a3, τ)

will be a polynomial in the following five objects

M
(n)
i , φ

(n)
i , A

(n)
i ,

(
1

Y

)(n)

i

, C(n)
i (3.3.46)

where, for a function f(x) with meromorphic square f 2(x), we denote with f
(n)
i the

(n+ 1)-th coefficient in a Laurent expansion of f(x) around bi

f(x) =

∞∑

n=−Ni

f
(n+Ni)
i

(p− bi)n/2
(3.3.47)

and have defined

C(n)
i =

{
C

(n)
reg,i for i = 1, 2

C
(n)
i for i = 3, 4

(3.3.48)
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In fact, φ
(n)
i only enters the expression of the free energies Fg. Of the five building

blocks in (3.3.46), M
(n)
i and φ

(n)
i are the ones which are computed most elementarily

from (3.3.31) and (3.3.34), the result being in any case an algebraic function of
(a3, a4). When re-expressed in modular form, we can actually say more about them:

we have that the a3-dependence in M
(n)
i (a3, τ) and φ

(n)
i (a3, τ) is constrained to come

only through a4(a3, τ) as written in formula (3.3.25). Indeed, from (3.2.43), (3.3.14)
we have that the branch points bi have the form

−a4

2
± c1(τ), −a4

2
± c2(τ) (3.3.49)

and therefore depend on a3 only through a4(a3, τ). Moreover, since P2(bi) = 2 and the
derivatives of P2(U) do not depend explicitly on a3, we have that the a3 dependence

in W
(g)
h as obtained from the recursion may only come through a4(a3, τ):

P2(bi) = 2, P ′
2(bi) = 2(−1)i+1c[ i−1

2
]+1(τ), P ′′

2 (bi) = −a4

2
+ (−1)i+1c[ i−1

2
]+1(τ)

Notice moreover that these are the only pieces bringing a dependence on the addi-
tional a3 variable: all the others do not depend on the form of the differential (3.3.31),
and are functions only of differences of branch points bi. This means in particular
that they only depend on the variables c1 and c2 introduced in (3.2.43) and whose

modular expressions we already found in (3.3.14). This is immediate to see for A
(n)
i

and (1/Y )
(n)
i from formulae (3.3.32) and (3.3.43). The case of C(n)

i is just slightly
more complicated: for n = 1, we need the first derivative of Π(x, y) with respect to
x:

∂xΠ(x, y) =
xE(y) + (y − x)K(y) + (x2 − y)Π(x, y)

2(x− 1)x(y − x)

The above formula implies that

∂(n)
x Π(x, y) = An(x, y)K(y) +Bn(x, y)E(y) + Cn(x, y)Π(x, y) (3.3.50)

where An, Bn and Cn are rational functions of x and y. From (3.3.42), to compute

C(n)
i , we need to evaluate these expressions when n1 (resp. n4) equals either 0 or k.

But using

Π(0, y) = K(y), Π(y, y) =
E(y)

1 − y
(3.3.51)

we conclude that

C(n)
i = R

(n)
1 (c1, c2)K(k) +R

(n)
2 (c1, c2)E(k) (3.3.52)

for two sequences of rational functions R
(n)
i . Observe now that, by (3.3.44), C(n)

i

always appears multiplied by L in the recursion. By (3.3.40)

LC(n)
i = R̃

(n)
1 (c1, c2) + R̃

(n)
2 (c1, c2)

E(k)

K(k)
(3.3.53)
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This last observation allows us to collect all the pieces together and state the fol-
lowing. By (2.2.28) and (2.2.27) we have that W

(g)
h (p1, . . . , ph, a3, τ) is a polynomial

in M
(n)
i , φ

(n)
i , A

(n)
i , (1/Y )

(n)
i , C(n)

i , and moreover the whole discussion above as well
as formulae (3.3.43) and (3.3.53) imply that this takes the form of a polynomial in
W (τ) := E(k)/K(k)

W
(g)
h (a3, τ) =

n∑

k=0

W k(τ)H
(g)
h,k(a3, τ) (3.3.54)

where the coefficients H
(g)
h,k(a3, τ) are weight zero modular forms of Γ(2), paramet-

rically depending on a3. To conclude the proof of (3.3.45), we can exploit the fact
that [140]

E(k)K(k) =
(π

2

)2 4E2(2τ) −E2(τ)

3
(3.3.55)

and that from (3.3.14) and (3.3.22)

K(k) =
π

2
θ3(τ)θ4(τ) (3.3.56)

where we have used the fact that in our case

K(k) =

√
c2
c1
K

(
1 − c22

c21

)

as the reader can easily check. Moreover, the second Eisenstein series satisfies the
duplication formula

E2(2τ) =
E2(τ)

2
+
θ4
4(τ) + θ4

3(τ)

4
(3.3.57)

Therefore,

W (τ) =
1

3θ2
4(τ)θ

2
3(τ)

(
E2(τ) + θ4

3(τ) + θ4
4(τ)

)
(3.3.58)

This proves (3.3.45).

�

Based on (3.3.45), we can enforce Conjecture 2 by postulating the following form for
the orbifold correlators.

Definition 12. We define the orbifold correlators of C3/Z4 as

W̃
(g)
h (p1, . . . , ph; a3, τ) =

3g−3+2h∑

n=0

c(g,h)
n (p1, . . . , ph; a3, τ)(E2(τ) + d(τ))n (3.3.59)

where d(τ) is defined by (2.2.35) and (3.3.13), and c
(g,h)
n (p1, . . . , ph; a3, τ) are the

modular forms computed by the recursion at large radius (3.3.45).
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Upon integration and inversion of the orbifold mirror map, the orbifold correlators
will provide predictions for the generating functions of open orbifold Gromov–Witten
invariants of C3/Z4.

Remark 12. It is interesting to remark that performing only the analytic continua-
tion of the large radius open string generating functions to the orbifold patch, without
the shift E2(τ) → E2(τ) + d(τ), would end up in an expansion around the orbifold

point with irrational (in fact transcendental) coefficients. Indeed, while the H
(g)
h,k op-

erators have an expansion with rational coefficients, the propagator W (τ) has the
Taylor expansion

W (τ) =

(
1

2
+

4π2

Γ
(

1
4

)4

)
+

(
− i

32
− 2iπ4

Γ
(

1
4

)8

)
s2
i (3.3.60)

+

((
i

8
+

8iπ4

Γ
(

1
4

)8

)
+

(
8π6

Γ
(

1
4

)12 − π2

8Γ
(

1
4

)4

)
s2
i

)
s−1

+

((
− 16π6

Γ
(

1
4

)12 +
π2

4Γ
(

1
4

)4

)
+

(
− i

128
+

24iπ8

Γ
(

1
4

)16 − 5iπ4

8Γ
(

1
4

)8

)
s2
i

)
s2
−1 + . . .

The terms containing powers of Γ(1/4) are exactly cancelled by the shift in the prop-
agator due to E2(τ) → E2(τ) + d(τ) in (3.3.59)

W

(
Aτ +B

Cτ +D

)
=

1

2
− is2

i

32
− 11is6

i

61440
+

(
i

8
+

13is4
i

6144
+

457is8
i

13762560

)
s−1

+

(
− is2

i

128
− 371is6

i

1474560

)
s2
−1 + . . . (3.3.61)

Results

Let us conclude this chapter by presenting part of the explicit computation of W
(0)
2 ,

W
(0)
2 , W

(0)
3 , W

(1)
1 , W

(1)
2 and W

(2)
1 . These correlators will also put us in a position to

compute the genus 2 free energy F2.
The first three were computed in [24] and are given by

W
(0)
2 (p1, p2) = B(p1, p2)

W
(0)
3 (p1, p2, p3) =

1

2

4∑

i=1

M2(bi)(Y
2)′(bi)χ

(1)
i (p1)χ

(1)
i (p2)χ

(1)
i (p3), (3.3.62)

W
(1)
1 (p) =

1

16

4∑

i=1

χ
(2)
i (p) +

1

8

4∑

i=1

(
2A(bi)

(Y 2)′(bi)
−
∑

j 6=i

1

bi − bj

)
χ

(1)
i (p),

W
(1)
2 is then given from (2.2.27) as

W
(1)
2 (p, p1) =

∑

bi

Res
q=bi

dEq(p)

dλ(q) − dλ(q̄)

(
W

(0)
3 (q, q̄, p1) + 2W

(1)
1 (q)W

(0)
2 (q̄, p1)

)
(3.3.63)
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A very lengthy, but straightforward computation leads us to

W
(1)
2 (p, q) = −1

8

4∑

i=1

[
Ai(q)χ

(3)
i (p) +Bi(q)χ

(2)
i (p) + Ci(q)χ

(1)
i (p) +

∑

j 6=i
Dij(q)χ

(1)
i (p)

]

(3.3.64)
For the sake of notational brevity, we spare to the reader the very long expressions
of the rational functions Ai(q), Bi(q), Ci(q) and Dij(q). They involve M

(n)
i , A

(n)
i ,

(1/Y )
(n)
i and C(n)

i up to the third order in a Taylor-Laurent expansion around the
branch points.

The next step is given by

W
(2)
1 (p) =

∑

bi

Res
q=bi

dEq(p)

dλ(q) − dλ(q̄)

(
W

(1)
2 (q, q̄) +W

(1)
1 (q)W

(1)
1 (q̄)

)
(3.3.65)

The pole structure of Ai(q), Bi(q), Ci(q) and Dij(q) dictates for W
(2)
1 (p) the following

linear expression in terms of kernel differentials

W
(2)
1 (p) =

5∑

n=1

4∑

i=1

E
(n)
i χ

(n)
i (p) (3.3.66)

for some (very complicated) coefficients E
(n)
i .

Finally, we can compute the g = 2 free energy by (2.2.28)

F2 = −1

2

∑

bi

Res
p=bi

φ(p)W
(2)
1 (p) (3.3.67)

It is useful to collect together terms involving the same powers of W (τ). Taking the
residues in (3.3.67) yields3

3∑

n=0

h(2)
n (a3, τ)W

n(τ) (3.3.68)

3It must be noticed that, in order to match exactly the asymptotics of the Gromov-Witten
expansion at large radius, we have to subtract from (3.3.67) a constant term in τ , namely, a

rational function of a3 of the form
a2

3
−10

1440(a2

3
−4)

. It would be interesting to investigate the origin of

this discrepancy further.
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where the modular coefficients h
(2)
n (a3, τ) are given as

h
(2)
3 (a3, τ) =

5a2
4(a3, τ)θ

4
2(τ)

24576θ2
3(τ)θ

2
4(τ)

h
(2)
2 (a3, τ) =

1

1024
− a4(a3, τ)

2

49152θ3(τ)6θ4(τ)4

[
θ2(τ)

4(15θ4(τ)
6 + 16θ3(τ)

2θ4(τ)
4

+ θ2(τ)
4
(
8θ3(τ)

2 + 15θ4(τ)
2
)
)

]

h
(2)
1 (a3, τ) = −(θ2(τ)

4 + 2θ4(τ)
4 + 3θ3(τ)

2θ4(τ)
2)

3072θ4(τ)2θ3(τ)2
+
a2

4(a3, τ)

294192

[
13θ2(τ)

12

θ3(τ)6θ4(τ)6

+
91θ2(τ)

8

θ3(τ)6θ4(τ)2
+

48θ2(τ)
8

θ3(τ)4θ4(τ)4
+

91θ4(τ)
2θ2(τ)

4

θ3(τ)6
+

96θ2(τ)
4

θ3(τ)4

]

h
(2)
0 (a3, τ) =

1

61440

(
1

a3 + 2
− 1

a3 − 2

)
+
θ2(τ)

8 − 5θ3(τ)
2θ2(τ)

4 + 10θ3(τ)
6

30720θ3(τ)4θ4(τ)4

+
a2

4(a3, τ)θ2(τ)
4

2949120

[
12

(
θ2(τ)

4

θ3(τ)8
− θ2(τ)

4

θ4(τ)8

)
− 65θ4(τ)

2

θ3(τ)6
− 175

θ3(τ)2θ4(τ)2

− 311

2θ3(τ)4
− 311

2θ4(τ)4
− 65θ3(τ)

2

θ4(τ)6

]
+

17

46080
(3.3.69)

Plugging in the expression (3.3.28) of the modular parameter q in exponentiated flat
coordinates reproduces as expected the topological vertex expansion at large radius

FLR
2 (QB, QF ) =

(
− 1

120
− QB

120

)
QF +

(
− 1

60
− QB

60
− Q2

B

60

)
Q2
F

+

(
− 1

40
− QB

40
− Q2

B

40
− Q3

B

40

)
Q3
F +

(
− 1

30
− QB

30
− Q2

B

6
− Q3

B

30

)
Q4
F

+

(
− 1

24
− QB

24
− 299Q2

B

24
− 299Q3

B

24

)
Q5
F + +O

(
Q6
F

)
(3.3.70)
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By replacing the propagators as in Definition 12, we obtain predictions for open
and closed orbifold Gromov–Witten invariants (see Table 3.4 for the genus 2 closed in-
variants and Tables A.1-A.21 in the Appendix for the open invariants; a Mathematica

notebook is available on request for the detailed computation). We summarize here
the main results, that make up a significant confirmation of Conjectures 1 and 2:

• all W
(g)
h computed at large radius where checked to reproduce correctly the

topological vertex computation of open Gromov–Witten invariants of KF2, at
the first few orders in the degree expansion;

• the closed genus 2 free energy matches both the genus 2 Gromov-Witten ex-
pansion at large radius, and, upon the GKZ change of basis and analytic
continuation to the orbifold point, the orbifold genus 2 invariants predicted by
the Yamaguchi-Yau polynomial method to solve the HAEs [11]. As such, this
is not just a check on a finite set of numbers, but a check on the full functional
form of F2, since we are considering Taylor expansions at different points.

• the disc generating function (3.3.6), at the first few orders in the open moduli
expansion, agrees to all orders in the closed moduli with the invariants defined
by localization [33], up to a sign. These results will appear in joint work with
R. Cavalieri [28].

m 0 2 4 6 8 10
n
0 − 1

960
0 − 61

30720
0 − 9023

81920
0

1 0 41
46080

0 6061
245760

0 36213661
7864320

2 − 7
7680

0 − 647
92160

0 −1066027
1310720

0
3 0 257

92160
0 168049

983040
0 887800477

15728640

4 − 11
5120

0 − 65819
1474560

0 −18530321
1966080

0
5 0 23227

1474560
0 43685551

23592960
0 62155559923

62914560

6 − 2479
245760

0 −437953
983040

0 −9817250341
62914560

0
7 0 418609

2949120
0 452348269

15728640
0 5851085490887

251658240

8 − 19343
245760

0 −303139073
47185920

0 −438364727389
125829120

0
9 0 1380551

737280
0 25384681949

41943040
0 355405937648809

503316480

10 −604199
655360

0 −2982122587
23592960

0 −16896151842371
167772160

0
11 0 200852963

5898240
0 25012290702059

1509949440
0 54049855936801961

2013265920

12 −59566853
3932160

0 −818897894611
251658240

0 −1840152188554961
503316480

0

Table 3.4: The B-model prediction for genus two orbifold Gromov-Witten invariants
of C3/Z4
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4.1. Overview

4.1 Overview

After the seminal work of Witten [146], Chern-Simons (CS) theory has been deeply
studied both in Mathematics and Physics. A most attractive property of this topo-
logical field theory is its large N duality with the A-model topological string as
discovered by Gopakumar and Vafa in [83]. From the Physics viewpoint, this is a
concrete realization of ’t Hooft’s intuition [1] that the large N Feynman expansion
of a gauge theory with U(N) structure group can be recast as a perturbative expan-
sion of closed oriented strings in a suitable background; mathematically, such duality
is a precise (and amazing!) correspondence between two seemingly very unrelated
mathematical objects, namely knot invariants and (relative) Gromov-Witten invari-
ants. This duality is realised through a particular kind of geometric transition, called
conifold transition, which plays a relevant rôle in the study of the moduli space of
Calabi-Yau three-folds (CY 3) (see e.g. [16, 84, 135] for reviews).
Let us recall the basic features of Gopakumar-Vafa (GV ) duality. We have the
following

Proposition 11 (Witten, [150]). Let M be a closed smooth 3-manifold such that
T ∗M is a Calabi-Yau threefold. Then the open topological A-model on T ∗M , with N
Lagrangian branes wrapping M , is equivalent to U(N) Chern-Simons theory on M .

Proposition 12 (Gopakumar-Vafa, [83]). The topological open A-model on T ∗S3

with N A-branes wrapping the base S3 is equivalent at large N to the closed topological
A-model on OP1(−1) ⊕OP1(−1).

The closed string target space OP1(−1)⊕OP1(−1) and the open string one T ∗S3 are
related by topological surgery - a birational contraction plus a complex deformation
of a nodal singularity. This is what goes under the name of “(conifold) geometric
transition”. As it stands, the content of Proposition 12 is striking and somewhat
mysterious: a topological invariant of a 3-manifold - the CS partition function, or
Reshetikin-Turaev-Witten invariant of S3 [134,146] - is also a generating function of
symplectic invariants of a non-compact Kähler manifold - its Gromov-Witten poten-
tial. It would be then extremely interesting to see if one could find new examples
of such a duality along the same lines, replacing S3 with a generic 3-manifold and
engineering the geometric transition in such a case. Indeed, one expects on general
grounds the duality to hold for Chern-Simons theories on rational homology spheres,
but actually very few examples beyond S3 are known:

Open problem. Find when the Reshetikin-Turaev-Witten invariant of a compact
smooth 3-manifold M is equal, in suitable coordinates, to the all genus Gromov-
Witten potential of an algebraic threefold XM obtained by geometric transition from
T ∗M : that is, XM is given by a complex deformation of T ∗M to a normal variety,
followed by a birational resolution.

This issue has been addressed in the case of Zp ⊂ SU(2) cyclic quotients of S3:
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Proposition 13 ( [87]). Let M = L(p, 1). The Hori-Vafa mirror curve and differ-
ential of the family of CY 3 obtained by geometric transition from T ∗M coincide with
the spectral curve and resolvent of the L(p, 1) = M Chern-Simons matrix model [117].

This has been achieved through a detailed study of the random matrix represen-
tation for the Chern-Simons path integral, originally obtained by Mariño in [117]. An
early confirmation of the above assertion was provided in [6] for p = 2, by matching
the ’t Hooft expansion of the Chern-Simons 2-matrix model with the solutions of the
Picard-Fuchs system at the orbifold point of KP1×P1. Notice that, assuming 1 the
validity of local mirror symmetry for toric CY 3, Proposition 13 implies GV duality
for L(p, 1) lens spaces at least in genus zero; actually, the proposal of [24]and the
announced proof of [65] would imply that the spectral data contain the full structure
of the B-model on toric CY 3 at all genera, in which case the work [87] would become
automatically an all-genus proof.

However, it has been suspected [16, §7.3] that one could hardly go further along
this direction for generic M . We make the following

Claim 1. Proposition 13 is false when M = L(p, 1) is replaced by the generic lens
space M = L(p, q) for q > 1.

In this chapter we will perform a detailed analysis of the whole family M =
L(p, q), thus including cyclic subgroups not contained in SU(2), along the lines of [87]
The case q > 1, in which the lens space is not a U(1) bundle on S2, appears to be
much harder as most of the features of the q = 1 case, like the mirror realization
of [6] become either unclear or simply are not there. To this aim, in section 4.2 we
will work out explicitly the conifold transition for the case at hand and obtain a class
of would-be large N duals X̂p,q as well as their Hori-Vafa mirror curves, correcting en
passant a few claims in the literature [16] about the impossibility of performing such a
geometric transition in the L(p, q) case preserving at the same time the CY condition;
in section 4.3 we will present a matrix integral representation for the Chern-Simons
U(N) partition function on L(p, q) in a fixed flat connection background and consider
its large N expansion as governed by a spectral curve and a resolvent. For q > 1,
we will find disagreement with the B-model spectral data obtained after geometric
transition from T ∗L(p, q).

1See [58, 81, 112] for rigorous mathematical proofs.
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4.2 The closed string side: conifold transition for

T ∗L(p, q)

4.2.1 Geometric transition

According to Proposition 11 and 12, the GV duality for the case of the generic L(p, q)
lens space should be realized in two steps:

1. a complex deformation of X̂p,q ≡ T ∗L(p, q) to a normal variety Xp,q (a suitable
Zp quotient of the singular conifold);

2. a complete crepant resolution Xp,q of the latter.

The first step is realized as follows: let us recall that, from [84, Theorem 1.6], the
cotangent bundle to the 3-sphere T ∗S3 is diffeomorphic to a smooth hypersurface in
A4

xy − zt = µ (4.2.1)

which is a complex structure deformation of a conifold singularity. The base S3 is
the real locus y = x̄, t = −z̄

|x|2 + |z|2 = µ (4.2.2)

Now, consider the Zp action

Zp × C4 → C4

ω (x, y, z, t) → (ωx, ω−1y, ωqz, ω−qt)
(4.2.3)

where ω = e2πi/p, 1 ≤ q < p, (p, q) = 1; the orbit manifold restricted to (4.2.2) is a
L(p, q) lens space. At first sight, using the same coordinatization as [84], the cyclic
group acts both on the fibers and on the base of T ∗S3, thus yielding something a
priori different from an R3-bundle over L(p, q). However we have the following simple

Lemma 2. The orbit space of (4.2.3) restricted to (4.2.1) is smoothly diffeomorphic
to T ∗L(p, q).

Proof. Introduce the new set of variables wi = qi + ipi

w1 = (z1 + z3)/2 w2 = i(−z1 + z3)/2
w3 = (z2 + z4)/2 w4 = i(−z2 + z4)/2

(4.2.4)

In this coordinates, (4.2.1) is the locus in R8 described by

4∑

j=1

q2
j − p2

j = µ,

4∑

j=1

qjpj = 0 (4.2.5)

Consider then the change of variables

p̃1 = q1p1 + q2p2, p̃2 = q1p2 − q2p1

p̃3 = q3p3 + q4p4, p̃4 = q3p4 − q4p3
(4.2.6)
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and q̃i = qi, i = 1, . . . , 4. The change of variables for µ > 0 is nonsingular everywhere
in the set defined by (4.2.5), which is then rewritten as

4∑

i=1

q̃2
i = µ, p̃1 + p̃3 = 0 (4.2.7)

The Zp action is now represented on the tilded R8 in the form:




q̃1
q̃2
q̃3
q̃4


→




cos 2π/p sin 2π/p 0 0
− sin 2π/p cos 2π/p 0 0

0 0 cos 2πq/p sin 2πq/p
0 0 − sin 2πq/p cos 2πq/p







q̃1
q̃2
q̃3
q̃4


 (4.2.8)




p̃1

p̃2

p̃3

p̃4


→




p̃1

p̃2

p̃3

p̃4


 (4.2.9)

realizing therefore the Zp quotient (4.2.3) of the deformed conifold as a trivial R3-
bundle over L(p, q). By Stiefel’s theorem [141], the latter being an orientable three-
manifold, there exists a (strong) C∞ bundle isomorphism mapping R3 × L(p, q) to

T ∗L(p, q) =: X̂p,q.

�

With the algebraic realization (4.2.1), (4.2.3) of X̂p,q at hand it is straightforward
to perform the second step of the transition. As in the S3 case, the µ parameter
measures the size of the lens space and sending µ to zero amounts to deforming X̂p,q

to the singular variety Xp,q, where the Lagrangian null section L(p, q) has shrunk to
zero size. We have the following

Theorem 14. The singular variety Xp,q, obtained as the orbit space of (4.2.3) inside
(4.2.1) with µ = 0, is a toric variety with trivial canonical sheaf, KXp,q ≃ OXp,q .

Proof. For q = 1 the theorem was proven in [87], where the authors exploited the
fact that Xp,1 is obtained from the resolved conifold (a rank 2 bundle over S2 as in
proposition 12) by quotienting a fiberwise-acting Zp group and “blowing-down” the
base S2. For q > 1, though, the Zp group does no longer act fiberwise and we have
to deal with it in a different way.

By definition , we have to prove that Xp,q contains an algebraic three-torus as
an open subset effectively acting through an extension of its obvious action on itself.
This is identified as follows: the singular conifold X , as an affine variety

X := Spec
C[x, y, z, t]

{xy − zt}
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is toric with torus action given by

(C∗)3 j→֒ X
(t1, t2, t3) → (t1, t2, t3, t1t2t

−1
3 ) (4.2.10)

This action descends to an action on the orbifolded conifold Xp,q by (4.2.3)

(C∗)3/Zp

j̃→֒ Xp,q (4.2.11)

Proving that Xp,q is toric therefore amounts to find explicitly an isomorphism π :
(C∗)3/Zp 7→ (C∗)3

0 → Zp
i→ (C∗)3 π→ (C∗)3 → 0 (4.2.12)

where the injection i is dictated by (4.2.3) to be

i : Zp →֒ (C∗)3

ω 7→ (ω, ω−1, ωq)
(4.2.13)

and by (4.2.12) we can write for π

π : (C∗)3 →֒ (C∗)3

(t1, t2, t3) 7→ (tp1, t1t2, t
q
1t

−1
3 )

(4.2.14)

The three-torus inside the quotient of the conifold by the action (4.2.3) is then
identified by

(C∗)3 j̃◦π−1

→֒ Xp,q

(t1, t2, t3) → (t
1/p
1 , t

−1/p
1 t2, t

q/p
1 t−1

3 , t
−q/p
1 t2t3) (4.2.15)

From (4.2.15) we can read off the dual cone as the real tetrahedron spanned by

a1 =




1/p
0
0


 a2 =




−1/p
1
0


 a3 =




q/p
0
−1


 a4 =




−q/p
1
1


 (4.2.16)

The fan is then obtained by taking the inward pointing normal to each facet, normal-
ized in such a way to hit the first point on the Z3 lattice. Modulo an automorphism
of the lattice, we thus get that the rays of the fan of Xp,q are given by

b1 =




0
1
q


 b2 =




0
1

q + 1


 b3 =




p
1
1


 b4 =




p
1
0


 (4.2.17)

and the fan consists of a single cone generated by bi, i = 1 . . . 4. Notice that the tip
of the rays all lie in an an affine hyperplane, namely y = 1, thus implying triviality
of the canonical class [71]. The theorem is proved.
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Figure 4.1: The toric diagram of Xp,q for
p = 5, q = 2.
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Figure 4.2: The toric diagram of Xp,q for
p = 5, q = 2

�

Remark 13. It is instructive to point out an interesting new geometrical fact in
the 1 < q < p − 1 case. Let us consider the orbifold of the resolved conifold ge-
ometry OP1(−1) ⊕OP1(−1) by the Zp action (4.2.3), which corresponds to a partial
resolution of Xp,q. This can be described as an orbi-bundle fibration of a Hirzebruch-
Jung singularity over a P1 with two marked points with Zp-monodromy. One way
to do that is to realize the projectivization of the resolved conifold as a subspace
{[z0, z1, z2], [z3, z4, z5], [r, s] ∈ P2 × P2 × P1|z1r = z2s, z3r = z4s}. The Zp action
on the above variables is inferred from (4.2.3) via the identification (z1, z2, z3, z4) =
(x,−z, t,−y) and imposing invariance of the relations, which gives (r, s) → (ωq−1r, s).
The fiber over the north pole r = 0, s = 1 is parametrized by (z1, z3), which describe
precisely a Hirzebruch-Jung singularity. The analogue of the above is valid for the
fiber over the south pole.

All we are left to do to complete step 2 is to take a complete resolution Xp,q of
Xp,q

Xp,q
r

99K Xp,q

Since Xp,q is Gorenstein, the birational morphism r can be taken to preserve the
condition of Xp,q being both toric and Calabi-Yau, i.e. to be a crepant toric resolution.
We can realize this diagrammatically [71] by adding all the interior lattice vectors
inside the tetrahedron spanned by bi, and declaring that the (top-dimensional part
of the) fan of Xp,q is made by the cones constructed above the 2-simplices which
triangulate the projection of the fan onto the y = 1 plane. Notice that the latter
is a parallelogram with shorter sides of length 1 (see figure 4.1). This means that
the intersection of the parallelogram with the horizontal lines x = 1, . . . , p contains
either one point of the lattice in the interior or two points on the diagonal edges, the
latter possibility being excluded by the coprimality condition (p, q) = 1. Thus the
number of points of the lattice (apart from the 4 external vertices) in the interior of
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the parallelogram is precisely p − 1. As is clear from the picture, these points have
the form (on the plane) ([q + 1 − jq/p], j) = (q − [jq/p], j), where square brackets
denote the integer part of the argument.

It is straightforward to get a complete crepant resolution of the orbifold by taking
a triangulation of the p+ 3 points

v1 ≡
(
q + 1

0

)
v2 ≡

(
q
0

)
vp+3 ≡

(
1
p

)

vj+2 ≡
(
q − [jq/p]

j

)
, j = 1, . . . , p (4.2.18)

Definition 13. We will call Xp,q the toric variety defined (modulo flops) by a fan
supported by the rays

bi ≡
(
vi
1

)
(4.2.19)

and whose 3-dimensional cones are defined by having their intersection with the z = 1
hyperlane coincide with the simplices of a complete triangulation of the convex hull
of (4.2.19).

By construction Xp,q is a simplicial, smooth2 toric CY three-fold which is bira-
tionally isomorphic to Xp,q. Step 2 is completed.

�

The toric data (4.2.19) allows us to extract some useful information on the ge-
ometry of Xp,q. First of all, since internal vertices are in 1-to-1 correspondence with
linear equivalence classes of (compact) divisors of Xp,q, we have that the fourth Betti
number is

b4(Xp,q) = p− 1

for every q. Moreover, given that the Euler characteristic χ(Xp,q) is simply given by
twice the area of the base of the tetrahedron and that odd Betti numbers vanish, we
can easily compute the dimension of the second cohomology group as

b2(Xp,q) = χ(Xp,q) − b0(Xp,q) − b4(Xp,q) = 2p− 1 − (p− 1) = p (4.2.20)

2A triangulation of the p + 3 points (4.2.18) realizes the projection of our cone onto the plane
y = 1 as the disjoint union of precisely 2p triangles. The fact that the number of triangles is 2p
is a consequence of Euler’s formula: denoting with m the number of triangles in a triangulation of
(4.2.18), since each triangle has 3 edges and the convex hull has 4, the number of edges is (3m+4)/2,
due to the fact that each edge is incident to exactly two faces. Plugging all the ingredients (number
of points and edges) into Euler’s formula, it follows that the number of triangles is exactly 2p. Now,
each triangle has half-integer area since each vertex is a site of the lattice, and the area is then
given by half the determinant of an integer matrix. But p is the area of the whole parallelogram,
so having 2p triangles implies that each triangle must have area 1/2. The cones which project onto
those triangles are then simplicial and smooth (i.e. each triple of vectors spanning a cone in the fan
of the resolution is an integer basis of the lattice), which is precisely the non-singularity condition
for a toric variety.
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Figure 4.3: A pictorial representation of the geometric transition for Lens spaces
L(p, q) as T2 fibrations.

A

BC

D

(0, 1)

(5, 2)

(5, 2)
(0, 1)

Figure 4.4: The pq-web diagram for the resolution of the orbifold p = 5, q = 2. A,
B and C, D represent two dP2 and two F1 surfaces respectively.

for every q. This is expected: the dimension of the Kähler moduli space of Xp,q

should match the number of inequivalent flat connections of the CS SU(N) theory
on L(p, q), which is π1(L(p, q)) = p.
It is however remarkable, as it is also apparent from figure 4.2 and 4.4, that the
intersection structure of Xp,q for q > 1 is significantly more complicated than the
simple case q = 1. Instead of the simple ladder diagrams describing the pq-webs
of the Ap−1 geometries, which were built out of a single tower of (nef) Hirzebruch
surfaces, the compact divisors here are generic toric Fano surfaces and intersect in a
wildly more intricate way, due to the fact that the vertices of the rays of the fan are
no-longer tetravalent and vertically aligned.

4.2.2 Mirror symmetry

From the toric data (4.2.19) we can straightforwardly write down the Hori-Vafa
mirror curve to Xp,q. We have the following

Proposition 15. The B-model target space mirror to a toric CY three-fold X is the
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hypersurface in C2(x1, x2) × (C∗)2(U, V )

x1x2 = PX(U, V )

where

Pp,q(U, V ) = (UpV q − 1) (V − 1) + dp +

p−1∑

j=1

djU
jV q−[(p−j)q/p] (4.2.21)

When dj = 0, corresponding to the singular Xp,q, this form for the mirror curve
had already been suggested by [6]. Notice, from (4.2.18), that there is no GL(3,Z)
transformation sending the points in FXp,q

into a strip of horizontal width less than

3 for 1 < q < p − 1. Moreover, by (4.2.3), the fan of Xp,q and Xp,p−q are related by
an automorphism of the lattice, thus yielding isomorphic toric varieties. Collecting
it all together we have proven the following

Proposition 16. The Hori-Vafa mirror curve and 1–differential are given by

ΓHVp,q : Pp,q(e
u, ev) = 0, dλp,q = udv

where Pp,q is given by (4.2.21) and u = logU ,v = log V ∈ R × S1. The curve has
4 punctures and genus p − 1 for all q, and its periods have a symmetry given by
q → p− q. For 1 < q < p− 1, ΓHVp,q is not hyperelliptic.

�

4.3 The open string side: CS theory on L(p, q) and

matrix models

The goal of this section is to provide a suitable matrix model representation of the
partition function of Chern-Simons theory on a L(p, q) lens space in a given vacuum.
This case has been already considered in [117], where a general matrix integral rep-
resentation for the partition function of Chern-Simons theory on Seifert homology
spheres has been derived (see also [72] and [48]). Here we find a slightly different,
but equivalent, representation more useful for our purposes.

More precisely, let us consider U(N) Chern-Simons theory at level k ∈ Z on a
L(p, q) lens space (1 ≤ q < p, p and q coprime) and index with m ∈ ZN

p the set of
U(N)-flat connections on L(p, q). We will denote the corresponding partition func-

tion, or Reshetikin-Turaev-Witten invariant, as Z
L(p,q)
U(N)

(
k,m

)
. We have the following

Theorem 17 (Hansen-Takata, [88]). The Chern-Simons partition function for a
L(p, q) lens space, gauge group U(N), level k and a fixed choice of flat connection m

is given by

Z
L(p,q)
U(N)

(
k,m

)
= CN(p, q; gs) e

− 4π2q

g2
sp

m
2 ∑

ω̃,ω∈SN

ε(ω) e
g2
s

2 p
ω(ρ)·ρ e

2πı
p
ω̃(m)·(q ρ+ω(ρ)) (4.3.1)
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where g2
s = 4πi

k+N
= 4πi

k̂
, ρ = 1

2

∑
α>0 α is the Weyl vector of SU(N), SN is the permu-

tation group of N elements and CN(p, q; gs) is a fixed overall factor, not depending
on the particular flat connection (the exact expression of CN(p, q; gs) is given in [88]
and does not play any role here).

To obtain a matrix model representation it is useful to observe that this expres-
sion, up to an overall normalization factor, can be also written as

Z
L(p,q)
U(N)

(
k,m

)
=

∑

ω̃,ω∈SN

ε(ω) e
1

4g2
sp

(g2s(ω(ρ)+ρ)+4iπω̃(m))
2
+2πi

(q−1)
p

ω̃(m)·ρ
. (4.3.2)

By exploiting a trivial integral representation of the gaussian function, we can rewrite
the above partition function as an integral

Z
L(p,q)
U(N)

(
k,m

)
=

∫ ∞

−∞
dNx

∑

ω̃,ω∈SN

ε(ω) eik̂pπ(x·x)+2π(ω(ρ)+ρ+k̂ ω̃(m))·x+2πi (q−1)
p

ω̃(m)·ρ

=

∫ ∞

−∞
dNx

∑

ω̃,ω∈SN

ε(ω) eik̂pπ(x·x)+2π(ω̃−1(ω(ρ))+ω̃−1(ρ)+k̂ m)·ω̃−1(x)+2πi
(q−1)

p
m·ω̃−1(ρ).

(4.3.3)

Since the measure of integration and (x · x) are symmetric under permutations, the
partition function can be rearranged as

Z
L(p,q)
U(N)

(
k,m

)
=

∫ ∞

−∞
dNx

∑

ω̃,ω∈SN

ε(ω)ε(ω′) eik̂pπ(x·x)+2π(ω(ρ)+ω̃′(ρ)+k̂ m)·x+2πi
(q−1)

p
m·ω̃′(ρ).

(4.3.4)

To perform the sum over ω and ω′, it is sufficient to recall the Weyl-formula

∑

ω∈SN

ε(ω)ei(φ·ω(ρ)) =
∏

α>0

2 sin

(
α · φ

2

)
, (4.3.5)

and we thus get, restoring gs = 4πi

k̂
,

Z
L(p,q)
U(N)

(
k,m

)
=

=

∫ ∞

−∞
dNx eik̂pπ(x·x)+2πk̂ m·x

∏

α>0

sinh (πα · x) sinh

(
πα ·

(
x+ i

(q − 1)

p
m

))

=

∫ ∞

−∞
dNx e−gsp(x·x)+4πi m·x

∏

i<j

sinh

(
∆ij +

iπ(q − 1)

p
(mi − mj)

)
sinh (∆ij) ,

(4.3.6)

where ∆ij ≡ gs

2
(xi − xj). All the equalities hold up to irrelevant multiplicative

constant factors and we have
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Theorem 18. The partition function of Chern-Simons theory on a L(p, q) lens space
for a choice m of flat connection can be written as a multi-eigenvalue integral as

Z
L(p,q)
U(N)

(
k,m

)
=

∫ ∏p
I=1 d

NIu
(I)
k e−

PN
j=1 u

2
j

p
2gs
∏

i<j sinh
(
∆̂

(I)
ij

)
sinh

(
∆̂

(I)
ij

)

∏
I<J

∏
i<j sinh

(
∆̂

(IJ)
ij + πi(I−J)

p

)
sinh

(
∆̂

(IJ)
ij + q πi(I−J)

p

)

(4.3.7)

where uIi ∈ R, I = 1, . . . , p, i = 1, . . . , NI and we have defined ∆̂
(I)
ij ≡ 1

2

(
u

(I)
i − u

(I)
j

)
,

∆̂
(IJ)
ij ≡ 1

2

(
u

(I)
i − u

(J)
j

)
.

In (4.3.7) we have eventually rescaled gs by a factor of two in order to make
contact with the notation of [6, 87], to which it reduces in the case q = 1 and
discarded a constant in front of the final matrix integral. This representation is of
course equivalent to the one found in [117], up to an overall multiplicative constant.

Remark 14. At this stage we can already spot a few signals of the fact that GV
duality could break down for q > 1. Indeed, two L(p, q) and L(p′, q′) lens spaces are
homeomorphic if and only if p = p′ and q = ±q′ (mod p) or qq′ = ±1 (mod p): the
related partition functions are topological invariants and should thus be equal. This
can be verified explicitly when the sum over the flat connections is performed and the
Chern-Simons level is correctly quantized [88], but the same property does not seem
to show up for the partition function in the background of a fixed flat connection: as
one can easily check by explicit examples, different flat connection sectors are mixed
under the relevant transformations. On the other hand, as pointed out in Proposition
16, q = ±q′ (mod p) is instead a symmetry of the closed string background described
in the the previous section. Therefore it is expected that the spectral data (4.2.21)
will be different from what we will extract from the large N analysis of (4.3.7).

4.3.1 Large N limit of the CS matrix model

We now would like to prove that, as in the case of hermitian matrix models, the eigen-
value integral (4.3.7) is governed by a pair (ΓCSp,q , dRp,q) made up of a spectral curve
ΓCSp,q and a resolvent dRp,q, out of which the genus zero free energy is extracted by the
usual relations of special geometry. Proving spectral equivalence as in proposition 13
amounts then to finding an isomorphism of curves φ such that

φ : ΓHVp,q 7→ ΓCSp,q isomorphism
(φ−1)∗dλp,q = dRp,q

(4.3.8)

Let us first introduce some basic objects in the discussion of the large N limit.

Definition 14. Let N ∈ N0, I = 1, . . . , p and x ∈ R. For every I, the sequence of
tempered distributions ρ

(I)
N ∈ S ′(R)

ρ
(I)
N (x) :=

1

N

N∑

i=1

δ(x− u
(I)
i )
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will be called Ith eigenvalue density at rank N . Their integral on the real line gives
the relative fraction of eigenvalues (filling fraction) in the I th group

∫

R

ρN(x)dx =
NI

N
(4.3.9)

We then make the following basic

Assumption. We assume that the N → ∞ distributional limit

ρ(I)(x) := lim
N→∞

ρ
(I)
N (x)

is a compactly supported continous function on the real line, ρ(I) ∈ C0
c (R), ∀I.

This assumption is motivated by the analogous situation for hermitian matrix en-
sembles as well as for the CS matrix models of [87], and we will prove that it is
self-consistent. It will be useful in the following to denote with t ≡ gsN the total ’t
Hooft coupling and with SI the large N limit of the filling fractions

SI := t lim
N→∞

NI

N

normalized so that
∑

I SI = t.

We will now construct explicitly the spectral curve ΓCSp,q and differential dRp,q

emerging from the large N study of (4.3.7). As usual in random matrix theory, this
will be accomplished by finding an implicit algebraic expression Pp,q(u, v) for the
force v(u) on a probe eigenvalue u at large N , in terms of which we will define

ΓCSp,q := {(u, v) ∈ (R × S1) × (R × S1)|Pp,q(u, v) = 0}
dRp,q := v(u)du (4.3.10)

At large N , v(u) will have cuts in the complex plane whose discontinuity yields the
individual eigenvalue densities ρI ; its regularized integral from infinity to the I th cut
will instead measure, by construction, the variation of the (leading order) free energy
with respect to the I th filling fraction. This is summarised by the special geometry
relations ∮

AI

dRp,q = SI

∮

BI

dRp,q =
∂F
∂SI

(4.3.11)

We will now show, from the explicit form of (ΓCSp,q , dRp,q), that no such a φ as in
(4.3.8) does in fact exist for 1 < q < p− 1.

Proof of Claim 1. As is customary for CS multi-matrix models, the steepest
descent (saddle-point) method to evaluate (4.3.7) at large N yields a singular in-
tegral equation for ρ(I) with q-dependent hyperbolic kernels. From (4.3.7) we can
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straightforwardly write the saddle point equation as

pλI = t −
∫

coth

(
λI − λ′I

2

)
ρI(λ

′
I)dλ

′
I

+
t

2

∑

J 6=I

∫

R

[
coth

(
λI − λJ

2
+ dIJ

)
+ coth

(
λI − λJ

2
+ qdIJ

)]
ρJ(λJ)dλJ

(4.3.12)

where dIJ := iπ(I − J)/p and the slashed integral indicates the Cauchy principal
value (“improper”) integral.
Now let us define the following set of resolvents

ωI(z) ≡ t

∫

R

coth

(
z − λI

2

)
ρI(λI)dλI , (4.3.13)

ω(z) =
1

2

p∑

I=1

[
ωI

(
z − 2πi

I

p

)
+ ωI

(
z − 2πi

qI

p

)]
, (4.3.14)

We will need the following easy generalization of the Sokhotski-Plemelij lemma

Lemma 3. Define the following limits in S ′(R)

coth±(z) := lim
ǫ→0

coth (z ± iǫ) .

Then the following identities in S ′(R) hold true:

coth+ + coth− = 2pv(coth), (4.3.15)

coth+ − coth− = −2πiδ. (4.3.16)

For notational purposes, we define accordingly ω±(z) ≡ limǫ→0 ω(z + iǫ).

Given that the eigenvalue densities are supported on the real axis, we conclude
immediately from (4.3.13) and (4.3.16) that the individual resolvents ωI(z) have
branch cuts which coincide with3 supp(ρi) = [−aI , aI ] for some aI ∈ R. This implies
that ω(z), as a function from the cylinder 0 ≤ ℑmz < 2π to the Riemann sphere, has
p cuts centered at z = 2πiI/p, whose width as usual depends on a choice of filling
fractions SI . Explicitly, from (4.3.14) we have for J = 0, . . . , p− 1

2ω

(
z +

2πiJ

p

)
= ωJ (z)+ωĴ(z)+

∑

I 6=J
ωI

(
z − 2πi(I − J)

p

)
+
∑

I 6=Ĵ

ωI

(
z − 2πi(qI − J)

p

)

(4.3.17)

3The eigenvalue integral is parity invariant, which therefore implies a Z2 symmetry in the location
of the branch points.
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where Ĵ is defined by qĴ = J mod p. When I = 0 we have Î = 0, and for x ∈ [−a0, a0]
we get that

ω+(x)+ω−(x)
2

= t−
∫

coth
(
x−λ′I

2

)
ρ0(x

′)dx′

+ t
2

∑
J 6=0

∫
R

[
coth

(
x−x′

2
+ dpJ

)
+ coth

(
x−x′

2
+ qdpJ

)]
ρJ(x

′)dx′

= px
(4.3.18)

due to (4.3.12) and lemma 3. However, a quick inspection shows that for no other
0 < I < p it is possible to find a closed expression for the average of the resolvent on
the I th cut. Indeed, since I 6= Î for 0 < I < p, different individual resolvents become
singular at x+ 2πiI/p inside the total sum (4.3.14), namely ωI and ωÎ 6= ωI , and it
appears to be very intricate to infer the structure of ω(z) from (4.3.12). However,
let us restrict ourselves for the moment to the special case in which

ρI = ρ1 1 < I < p (4.3.19)

This corresponds to a particular symmetric choice of filling fractions, that is one
in which a fraction of S0 eigenvalues have been put on the cut on the real axis,
corresponding to the trivial Chern-Simons connection, and SI = (t − S0)/(p − 1)
for I > 0 are democratically distributed between the non-trivial flat connections.
This would amount to explore a peculiar codimension p − 2 subspace in the space
of ’t Hooft parameters, for which the large N data can be described in complete
detail. In particular, this would give a 2-parameter closed subset of our sought-for
p-dimensional family (ΓCSp,q , dRp,q).
Under the constraints (4.3.19) we now have that, for x ∈ [−aI , aI ],

ω+

(
x+ 2πiI

p

)
+ ω−

(
x+ 2πiI

p

)

2
= px ∀I = 0, . . . , p− 1 (4.3.20)

Now, let’s map conformally the cylinder of width 2π to the punctured complex plane
via

Z : R × S1 7→ C∗

z 7→ ez.
(4.3.21)

Exponentiating (4.3.20) yields

Zp = eω+/2eω−/2 (4.3.22)

Introduce now
g(z) = eω/2 + Zpe−ω/2 (4.3.23)

This is a function which is single-valued on the whole strip 0 ≤ ℑmz < 2π, because
for all x ∈ [−aI , aI ] we have that

g+(x+ 2πiI/p) = eω+/2 + ep(x+2πiI/p)e−ω+/2 = eω+/2 + epx

× e−ω+/2 = epxe−ω−/2 + eω−/2 = g−(x+ 2πiI/p). (4.3.24)
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Figure 4.5: Cuts of the resolvent for p = 5.
Cuts relative to non-trivial flat connections
are drawn in red.

 z
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Figure 4.6: Cuts of the resolvent for p = 5,
imposing the constraint (4.3.19). Cuts rela-
tive to non-trivial flat connections are drawn
in red.

and it is regular everywhere, except perhaps at infinity. This implies that g(Z) is an
entire analytic function in Z with algebraic growth

g(Z) =

p∑

n=0

dnZ
n (4.3.25)

where the dn’s are (still unknown) functions of the two filling fractions S0, SI = S1 =
(t − S0)/(p − 1). The resolvent ω(z) is then determined by solving the quadratic
equation (4.3.23) with the appropriate boundary condition at infinity, which yields

ω(z) = log

[
1

2

(
g(z) −

√
g2(z) − 4epz

)]
. (4.3.26)

Defining u ≡ z, v ≡ (t − 2ω) we arrive at the following form for ΓCSp,q under the
constraint4 (4.3.19)

ΓCSp,q : et−2v − et/2−ve−t/2
(
epu +

p−1∑

n=1

dne
nu + 1

)
+ epu = 0 ⇒

et−ev
(
epu +

p−1∑

n=1

dne
nu + 1

)
+epu+2v = (ev−1)(epu+v−1)+et−1+ev

p−1∑

n=1

dne
nu = 0,

(4.3.27)
which coincides with the Hori-Vafa mirror curve (4.2.21) for q = 1 and a proper
identification of the complex structure parameters. We have then proven the following

4We also set d1 = dp = 1 with a redefinition u and dividing by an overall factor.
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Proposition 19. Let ΓCSp,q and dRp,q ≡ vdu be the 2-parameter family (4.3.27) of
large N spectral curves and differentials of the L(p, q) Chern-Simons matrix model
(4.3.7) under the constraint (4.3.19). Then they are q-independent and they make
up a closed subset of the family of Hori-Vafa mirror curves (4.2.21) with q = 1.

This concludes the proof of Claim 1 for the following reason. Notice that this
restricted class of L(p, q) large N curves consists of hyperlliptic Riemann surfaces,
since they coincide with the large N curves of the q = 1 case. Moreover, they are
generically smooth and have topological genus p− 1. But for 1 < q < p− 1, there is
no such a subfamily inside the Hori-Vafa family of mirror curves (4.2.21), as follows
from the discussion preceding Proposition 16.5

�

5Indeed, the very definition of the Hori-Vafa map and the fact that the toric diagram is not
contained in a strip of width at most two for 1 < q < p − 1 imply that hyperellipticity can be
obtained only imposing a vanishing condition on a coefficient multiplying a monomial associated
to an external point in the toric diagram. This amounts to discard a 1-dimensional ray in the fan
and all the three-dimensional cones in which it is contained, as is familiar from the degenerate limit
in which local surfaces reduce to local curves. But this fact will automatically lower the number
of internal points and thus the genus of the mirror curve. Hence there can be no hyperelliptic and

genus p − 1 subfamily of curves inside (4.2.21).
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5.1. Topological string theory and integrable systems

5.1 Topological string theory and integrable sys-

tems

Topological string theory can often be solved very effectively, as we have witnessed
in chapter 3 and 4 in the toric CY 3 case. It has been conjectured for long that
“solvability” could be seen as a consequence of an underlying integrability. It is
a general fact that integrable systems appear in topological field theories, as we
reviewed in the Introduction; many more characters appear in the play when we look
at the mirror symmetry description of the A–Model on a toric CY 3:

1. first of all, at fixed moduli, the Jacobian of the mirror spectral curve can often
be identified with the Liouville torus of a complex integrable system, and the
Hori–Vafa differential with its Poincaré 1–form pdq [26, 109];

2. secondarily, and more importantly, the Kodaira–Spencer theory of gravity [22],
dimensionally reduced on the mirror curve, provides [8] a free–fermion descrip-
tion of the integrable hierarchies that govern the “slow motion” over the moduli
space of spectral curves [50, 108]. In addition, this lays the basis for a disper-
sive deformation of the hierarchy in terms of a D-module quantization of the
spectral data [47];

3. finally, the Eynard–Orantin recursion itself dictates [62] for genus zero spectral
curves that the all–genus partition function should be a τ–function of some
underlying integrable hierarchy1.

A distinguished place in this context, and partly related to point 2 and 3 above,
has been historically occupied by the conjectural existence of an integrable hierar-
chy that governs the full Gromov–Witten theory of a target space X, including the
observables that come from the gravity sector of the topological A–model: the grav-
itational descendants. Let X be a smooth Kähler manifold or a reduced orbifold,
possibly acted on by an algebraic torus T with compact fixed loci, and consider its
all–genus, full descendant Gromov–Witten potential (2.1.15)

F
X(λ, t) =

∑

g≥0

g2g−2
s

∑

n≥0

∑

0≤k1,...,kn<∞

∑

β∈H2(X,Z)

1

n!
〈τk1t1 . . . τkntn〉Xg,n,β (5.1.1)

FX(λ, t) is by construction the object of our desire: it is defined in such a
way as to package the entire set of correlators of the topological A–model on X in
a single generating function. However, moving from single intersection numbers to
generating functions is more than just a bookkeeping device: we learn from examples

1Quite interestingly, the generalization to g > 0 spectral curves is intimately related to the
proposal of a non–perturbative definition of the model [64]
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[104, 130, 148] and have general evidence from conjectural properties of Gromov–
Witten theory [53, 56] that the following statement holds true:

Conjecture 3. There exists an integrable hierarchy of evolutionary 1+1 PDEs such
that FX(λ, t) is the logarithm of a τ–function associated to one of its solutions.

As we reviewed in the Introduction, proving this conjecture would be of cru-
cial importance both conceptually and computationally. Unfortunately, to find out
whether such an integrable structure can be found and effectively described is a very
tough problem, and it should be no surprise that the catalogue of answers to this
question is restricted to a discouragingly low number of examples. Indeed, we have
only two cases where Conjecture 3 has been rigorously proven

1. X = pt, that is, the intersection theory on the Deligne–Mumford compactifi-
cation of the moduli space of curves. The Witten–Kontsevich theorem states
[104,148] that the KdV hierarchy is the relevant integrable system in this case;

2. X = P1, in which case the associated system is the extended Toda hierarchy
[53, 55, 76, 125, 130]

A constructive proof of Conjecture 3 for a generic target space X appears to be
out of reach at the moment. In fact, even adding new examples to the above list
seems to be a very challenging problem: the next–to–simplest case of the complex
projective plane P2 is already very hard to tackle, and it is as of today unsolved. For
this reason, it would be a very valuable step forward if one could find more examples,
or perhaps families of examples, of target spaces for which we can give an explicit
construction of the relevant integrable model.

In this chapter, we will try to address this problem by beginning the study of the
integrable structures that govern the equivariant Gromov-Witten theory of Calabi-
Yau rank 2 bundles over the projective line, building on known results on the local
Gromov–Witten theory of curves due to Bryan and Pandharipande [30]. This would
constitute a new, one–integer parameter family of examples for which a relationship
can be found with (possibly new) integrable models. In spirit, we will be very close
to the perturbative philosophy of [49, 53], where the whole hierarchy is constructed
according to the following two–step process:

1. find a closed form description of its genus zero approximation;

2. find a reconstruction procedure to incorporate the higher genus corrections.

In the following sections we will thus first describe the general recipe of [49]
that associates a dispersionless integrable hierarchy to the (possibly equivariant)
big quantum cohomology ring of a target space X; we will then review the results
of [30, 31] on the primary, equivariant potential for a class of rank 2 bundles over
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CP1 with a torus action rotating the fibers, and complete the construction of the
prepotential; finally, we will consider the application of Dubrovin’s construction to
such target spaces, deriving the general structure of the dispersionless limit for the
whole family and discussing in detail the case of the resolved conifold OP1(−1) ⊕
OP1(−1). This example will be the main focus of this chapter: by adapting results
of [54], we will relate its genus zero approximation to the so–called long–wave limit
of the Ablowitz–Ladik lattice, and we will formulate a precise conjecture for the
all–genus theory, propose a series of tests to verify it, and perform the simplest of
them.

5.2 Dispersionless hierarchies from associativity

equations

In the following we will review some general facts about associativity equations and
their associated Principal Hierarchies. This is basically a review of known material;
the interested reader is referred to the original literature [49, 52] for more details.

5.2.1 WDVV and the Gauss-Manin connection

The discussion here is mostly adapted to the case we will have in mind in section 5.3.
Let K be a field; we will always have in mind either the complex numbers K = C or a
field of fractions of a polynomial ring over the complex numbers K = C(λ1, . . . , λn).

Definition 15. A Frobenius manifold is a pair (N , F0) where

• N is a finite dimensional K-vector space, dimKN = N ∈ N. We will also fix a
set of basis vectors Φα, α = 0, . . . , N − 1; a generic point in N will be denoted
as u =

∑
α u

αΦα with uα ∈ K.

• F0 : N → K is an analytic function. Here this means, in absence (possibly) of
a metric structure on N and an analytic theory of functions, that F is a formal
power series

F0(u) =
∑

j

∑

i1...ij

ci1...ij (u
1)i1 . . . (uj)

ij
j (5.2.1)

Analytic operations such as integration and derivation are defined algebraically.

• the direction spanned by Φ0 is marked in the following sense: for every u ∈ N ,
∂0∂

2
αβF0(u) =: ηαβ is a nondegenerate, constant symmetric matrix.

• for every u ∈ N , cγαβ(u) := ∂3
αβδF0(u)η

δγ are point-dependent structure con-
stants of an associative algebra (with a unity, because of the previous item).
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The last statement is tantamount to imposing a set of third order, non-linear
PDEs on F0, called the WDVV equations

∂3
αβγF0η

γδ∂3
δεζF0 = ∂3

αεγF0η
γδ∂3

δβζF0 (5.2.2)

The matrix η will be often referred to in the following as the “metric” or the “topo-
logical2 metric”, although it need not be positive definite. It will be implicit that
the operation of lowering and raising indices of tensor fields on N will be performed
with η.

Remark 15. These are actually two thirds of the usual definition of a Frobenius
manifold [52], which also includes a grading condition on N . In fact, we do not im-
pose here any quasi-homogeneity condition on F0. The construction of the Principal
Hierarchy - see below - will go through unaffected; however, this will leave an ambi-
guity to the choice of basis of conserved currents, which in the enumerative context it
will be crucial to fix - let alone the consequences on the Dubrovin-Zhang perturbative
reconstruction of the higher genus theory.

Example 4. Let X be a n–dimensional compact Kähler manifold (respectively orb-
ifold) with vanishing odd co-homologies and let N = QH•(X) Then the arguments
of section 2.1.3 N is a Frobenius manifold over K = C: the marked direction Φ0

corresponds to the unity class in co-homology, and the metric η coincides with the
Poincaré (resp. orbifold Poincaré) pairing (2.1.11). The WDV V equations are pre-
cisely the associativity condition (2.1.23). Notice that the assumption b2k+1(X) = 0
for all k is needed in order to ensure that N be a commutative ring.

Example 5. Let X be a possibly non–compact n–dimensional Kähler manifold (re-
spectively orbifold) with vanishing odd co-homologies and endowed with a holomor-
phic T ≃ (C∗)k action (k ≤ n) with compact fixed locus F . Let C[λ] denote the
T -equivariant co-homology of a point and K := C(λ) be its field of fractions. Then
N = QH•

T (X) is a Frobenius manifold over K: the marked direction Φ0 corresponds
to the unity class in equivariant co-homology, and the metric η coincides with the
equivariant Poincaré (resp. equivariant orbifold Poincaré) pairing (2.1.11). Again,
the WDV V equations are precisely the associativity condition (2.1.23)

Remark 16. To have a well-defined metric η it was important in Example 5 to
require that the fixed locus F be compact, in order to ensure non–degeneracy of the
Poincaré pairing. When F is non–compact, and more particularly when X is non–
compact and we consider the non–equivariant theory, the metric becomes degenerate.
Indeed, the very definition of the degree zero term in the Gromov–Witten potential
becomes more subtle in this case [35, 69] and in no case does it lead to a Frobenius
manifold, not in even in the relaxed meaning we have adopted here. They still lead
to solutions of WDV V though, as happens in the case of the prepotentials coming
from Seiberg–Witten theory or the large N limit of matrix models, but the following
discussion cannot apply to such cases.

2The adjective here might be needed to distinguish it from the Zamolodchikov, or tt∗ metric.
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One nice implication of (5.2.2) is the following. Let us define M := T ∗N and the
following 1-parameter family of connections on M

Dz := d+ Γ (5.2.3)

where the Christoffel symbol Γγαβ = zcγαβ and z ∈ K. We want to find the horizontal
sections of Dz, i.e.

Dzω = 0, ω ∈ M (5.2.4)

Now, notice that because of integrability of cαβγ and WDVV, we have that

D2
z = 0 ∀z (5.2.5)

that is, the connection is flat. This means that all ω satisfying (5.2.4) are closed
1-forms; the trivial cohomology of N and (5.2.4) then imply that ω = df and also

∂2
αβf = zcγαβ∂γf (5.2.6)

The system of PDEs (5.2.6) has aN = dimKN dimensional space of solutions hδ(u, z).
We will call them the flat functions of N . Their duals hα(u, z) = ηαβh

β(u, z) can be
normalized such that

hα(u, 0) = wα = ηαβu
β (5.2.7)

∂γhα(u, z)η
γδ∂δhβ(u,−z) = ηαβ (5.2.8)

∂0hα(u, z) = zhα(u, z) + η0α (5.2.9)

In the following section, such a normalization will always be implicitly assumed,
unless otherwise stated.

5.2.2 The Principal Hierarchy

The flat functions hδ(τ ; z) are closely related to the one–point, “big” correlators
(2.1.24). Taylor–expanding hδ(τ ; z) with respect to z

hα(u, z) =:

∞∑

z=0

hα,p(u)z
p (5.2.10)

we have [52]
hα,p = 〈〈τpΦα〉〉 (5.2.11)

It was first conjectured by Witten [148] that the one–point “big” correlators could
be seen as densities of a Hamiltonian integrable system on N , whose flow would allow
to reconstruct the full descendant, genus zero potential starting from the primary one.
A complete formalization in the context of a generic Frobenius manifold was made
by Dubrovin in [49], and we will now schematically review it here. Consider the
loop space LN of N , LN = u : S1 → N ; elements of LN will be written as uα(x).
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LN can be turned into an infinite dimensional Poisson manifold by introducing the
hydrodynamic Poisson bracket

{uα(x), uβ(y)} = ηαβδ′(x− y) (5.2.12)

We then define the following hierarchy of quasilinear PDEs

∂tα,puβ = {uβ, Hα,p} (5.2.13)

where

Hα,p(u) =

∫
hα,p+1(u(x))dx (5.2.14)

Theorem 20 (Dubrovin). The set of Hamiltonians (5.2.13) mutually Poisson–commute
with respect to the Poisson bracket (5.2.12). Let then uα(x, t) solve the system
(5.2.13) with boundary condition

uα(x, {tk = 0}) = ∂2
x,uαF0(u

0 + x, u1, . . . ...)|ui=0

and define for all times

∂2
x,uαF0(x+ t0,0, t1,0, . . . , tγ,k, . . . ) := uα(t) (5.2.15)

〈〈φα,pφβ,q . . . 〉〉 := ∂tα,p∂tβ,q . . . ∂...F0(t) (5.2.16)

Then F0 - the logarithm of a τ function for the hierarchy (5.2.13) - satisfies

F0|ta,p=0 for p>0 = F0(t
a,0) (reduction to primaries)

∂xF0 =
∑
tα,p∂tα,p−1F0 + 1

2
ηαβt

α,0tβ,0 (string equation)
〈〈φα,pφβ,qφγ,r〉〉 = 〈〈φα,pφδ,0〉〉ηδǫ〈〈φǫ,0φβ,qφγ,r〉〉 (TRRs)

(5.2.17)

This is particularly interesting in the case in which (N , F0) is the (possibly
equivariant) big quantum cohomology algebra of a Kähler manifold or orbifold X,
N = QH•

T (X), where BT = K. In this case, the genus zero TRRs (5.2.17) and
the string equation allow to determine the descendant correlators, starting from the
primary invariants. The statement of Theorem 20 is that such a procedure is given
through a dispersionless flow, generated by hα,p. In particular we have in this case

Corollary 1.

〈〈φα1,i1 . . . φαn,in〉〉 = 〈〈τi1Φα1 . . . τinΦαn〉〉0 (5.2.18)

where ik ≥ 0, 0 ≤ αk < N .

Remark 17. We are deliberately hiding some subtleties here. Indeed, the normaliza-
tion conditions (5.2.7)–(5.2.9) do not single out a unique basis of Hamiltonians: in
fact, there is a leftover functional ambiguity in z. In the quasi-homogeneous case, this
is mostly ruled out by the presence of the Euler vector field; however, in more general
cases the problem will have to be dealt with otherwise. We will see how to overcome
this difficulty in more detail in the example of the resolved conifold in section 5.4.2.

99



5.2. Dispersionless hierarchies from associativity

equations

Let us summarize the situation. We have a full construction of an integrable
hierarchy, associated to the (possibly equivariant and/or orbifold) big quantum co-
homology of a target space, which is valid as long as a metric can be sensibly defined.
This has a number of good, as well as weak points, which we can schematize as follows

• the good point is that the construction is both general3 and (almost) complete.
The gravitational invariants ofX, i.e. F0, is entirely determined by the primary
structure, i.e. F0, on whose form no extra constraining assumption is made
besides the fact that it should give rise to a Frobenius structure on TuN for u ∈
N . Moreover, this is achieved through an integrable flow on LN which solves a
hierarchy of differential equations of hydrodynamic type. Almost everything is
dictated by the functional form of F0 and the flatness condition (5.2.6) for the
Hamiltonian densities. Such a procedure therefore proves, in this generality,
Conjecture 3, at the leading order in the topological expansion parameter gs.

• the weak point is that we need F0 in closed form - no implicit, recursive or up-to-
inversion-of-the-mirror-map form will do the job. Any polynomial truncation
of (5.2.1) affects dramatically the form of the three-point couplings cijk and
therefore the flat functions. In other words, we must know beforehand all
the coefficients ci1...ij in (5.2.1). Moreover, if we want the recursion to have
geometric meaning - i.e., the derivatives of the deformed flat coordinates to
reproduce the J function of the target space (see section 5.4.2), we will need to
pick a canonical normalization of the hα(w; z). In absence of an Euler vector
field, this will need to be done using some external input.

The good news are actually beautiful news: there is an integrable system gov-
erning the intersection theory on the spaces of holomorphic maps from the Riemann
sphere to X. But the bad ones are, in the Gromov-Witten case, extremely constrain-
ing in practice. It is an overly fortunate case to actually have the full Gromov-Witten
potential F0 in closed form. This is the case of the Gromov-Witten theory of the
point

F0(u) =
1

3!
u3

for which (5.2.13) is the dispersionless limit of KdV, and of the complex projective
line

F0(u) =
1

2
(u(0))2u(2) + eu

(2)

in which case (5.2.13) becomes the long-wave limit of the Toda lattice. The fact
that this list coincides with the only two known cases for which Conjecture 3 was
proven is indeed not an accident: already for CP2 the full form of the potential is
only available in a recursive, non-closed form. Such a construction becomes then
impracticable in most of the cases, and the form of the integrable system has to be
argued by different means.

3Again, as long as b2k+1(X) = 0, as we stressed at the end of Example 4.
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Besides, a second problem arises when one wonders what happens with the higher
genus theory. This is the case that is of more interest on the geometry side, where
in general no recursive relations like 2.1.25 are known, and for which having an
integrable system at hand could become the key to solve the Gromov–Witten theory
of X completely. Adding higher order corrections in λ takes the shape, on the
integrable system side, of a dispersive deformation of the Hamiltonians 5.2.14 in the
form of a long–wave expansion [53]

∂tα,puβ = {uβ, Hα,p,gs} = A(u)ux + g2
sB(u, ux, uxx) + g4

sC(u, ux, uxx, uxxx) + . . .
(5.2.19)

Addressing fully the statement of Conjecture 3 would require to find a way to
determine all the higher order coefficients in the genus expansion. In the quasi–
homogeneous case and assuming the Virasoro conjecture, a reconstruction theorem
was given in the monumental work of [53]. On the other hand, nothing is known
to date about its generalization to the non-quasihomogeneous case, which is the one
relevant for equivariant Gromov–Witten theory.

5.3 The local Gromov–Witten theory of curves

In this section, we will review the findings of [30,31] about the local Gromov–Witten
theory of curves. We will just give the general frame and quote the results we are
going to need; the interested reader is referred to the original papers for the details.

We want to consider a one-integer-parameter family of target spaces, isomorphic
(differentially) to neighbourhoods of a rational curve inside a Calabi-Yau threefold.
More precisely, we are going to consider a family of Calabi-Yau complex rank 2 bun-
dles over the Riemann sphere. By Grothendieck’s theorem, such bundles split (in the
holomorphic category) into a sum of line bundles: OP1(n1)⊕OP1(n2), ni ∈ Z; by the
Calabi-Yau condition, we must have that k := n1 = −n2 − 2. We will denote with
Xk the total spaces of these bundles. Moreover, we will consider a T ≃ C∗ algebraic
torus acting fiberwise with opposite characters on each C fiber - that is, it will rescale
the fibers with equivariant parameter λ and −λ respectively.

As in section 2.1.3, let H(Xk) := H•
T (Xk,C) ⊗ C(λ) denote the localized T -

equivariant cohomology of Xk and Fk ≃ P1 be the fixed locus of the T -action, that
is, the null section of Xk → P1. Let (1, p) be a canonical basis for H(Xk) (regarded as
a free C(λ)-module), where 1 and p denote respectively the identity and the Kähler
class, and let u =: v + wp with ui ∈ C(λ). Since Xk is a CY 3, the prepotential is
given by (2.1.22) as

FXk
0 (τ) = FXk

0,cl(u) + FXk
0,qu(u) (5.3.1)
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where

FXk
0,cl(u) =

1

3!
(u ∪ u, u)

FXk
0,qu(u) =

∑

d>0

edwN0,d

Ng,d =

∫

[(Xk)g,0,d]vir

1 (5.3.2)

This allows us to separate the classical, d = 0 part from the quantum, worldsheet
instanton corrected one given by degree > 0 maps to Xk.

We have seen that one of the weak points of Theorem 20 is the fact that we
are supposed to know beforehand all the genus zero primary invariants to construct
explicitly the hierarchy, and that this can be hardly attained in general. However,
the case of Xk is very special: their big quantum co-homology shares most of the
desirable features of the ordinary Fano case (e.g., it is semisimple), yet, being a
toric CY 3 with an equivariantly CY action, it borrows most of the characteristics of
its non-equivariant limit, like the possibility to compute Gromov–Witten invariants
via the topological vertex [7, 111, 124] or via mirror symmetry: either way, the fact
that b4(Xk) = 0 guarantees then the possibility to give a closed formula for the
prepotential.

5.3.1 Calculating FXk

0,qu(u)

In the mathematical literature, it was indeed shown that localization techniques
allow to compute Ng,d for arbitrary rank 2 bundles over arbitrary genus g projective
curves with arbitrary (C∗)2 action on the fibers [30]. Here’s a corollary of their main
theorem, which is just a specialization of the latter to our X	T

k case.

Theorem 21 (Bryan-Pandharipande). The fixed-degree d > 0, all-genus Gromov -
Witten free energies of X	T

k are given by the following sum over partitions

∑

g≥0

g2g−2
s Ng,d = (−1)d(k−1)

∑

ρ

(
dimQρ

d!

)2

Qcρ(1−k) (5.3.3)

In (5.3.3), ρ is a Young diagram (a partition of length l(ρ)), cρ is its total content,
Q = eigs, h(�) is the hooklength of a box in ρ and

dimQρ

d!
=
∏

�∈ρ

(
2 sin

h(�)gs
2

)−1

Theorem (21) can be regarded as a specialization of the topological vertex method
of [7] to Xk.
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This gives a great deal of information on Xk, but still not exactly what we need.
In fact, what we will eventually want is a closed form expression for the big quantum
cohomology N = QH•

T (Xk), i.e., a closed form expression for its prepotential F 0
Xk

. In
a sense, this means that we want to sum up things the other way round with respect to
(5.3.3): we will need the all-degree, fixed genus (=0) free energies of Xk. The problem
how to extract them from (5.3.3) was addressed in [31], where the authors perform
a steepest descent analysis of the sum over partitions with a chirality assumption,
which enables them to find closed form expressions for F 0

Xk
. Their results match

perfectly with known results for the case k = 1 [15]; additionally, a confirmation was
given mathematically via mirror symmetry (Coates-Givental+Bikhoff factorization)
in [70] and via symplectic field theory methods in [136]. The result is the following:

Proposition 22 (CGMSP). The genus zero, quantum corrected tail FXk
0,qu(u) of the

A–model prepotential of Xk is given by

FX1
0,qu(τ) = Li3(e

w) (5.3.4)

FX2
0,qu(τ) = −Li3(ew) (5.3.5)

FXk
0,qu(τ) = (−)k−1e−wn+3Fn+2

[
1, 1, 1, 1,

1

n
,
2

n
, . . . , 1 − 1

n
; 2, 2, 2, 2,

1

n− 1
,

. . . , 1 − 1

n− 1
; (−1)k

(
n

n− 1

)n−1

n exp(w)

]
(k > 2)

(5.3.6)

where n = (k − 1)2.

5.3.2 Calculating FXk

0,cl(u)

The only missing ingredient for the complete calculation of the prepotential is the
trivial computation of the classical (in α′) term FXk

0,cl(τ). From (5.3.1), this is given
by the triple intersection “number”

FXk
0,cl(τ) =

1

3!

∫

[P1]

u ∪ u ∪ u
e(NXT

k /Xk
)

(5.3.7)

Remember that u =: v +wp, Xk = OP1(−k) ⊕OP1(k − 2) and T acts antidiagonally
on the fibers. That is,

(e(NXT
k /Xk

)−1 = [(−kp + λ)((k − 2)p− λ)]−1 = − 1

λ2

1

1 − kp
λ
− (k−2)p

λ

= − 1

λ2

[
1 + 2

(k − 1)p

λ

]
(5.3.8)
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Eq. (5.3.7) then becomes

FXk
0,cl(τ) = − 1

3!λ2

∫

[P1]

(v + wp)3

[
1 + 2

(k − 1)p

λ

]

=
1

3!

(
− 1

λ2

)(
2k − 2

λ

)
v3 − 1

2
v2w

1

λ2
(5.3.9)

Therefore,

F 0
Xk

(τ) =
2 − 2k

3!

(v
λ

)3

− 1

2
w
(v
λ

)2

+ FXk
0,qu(w) (5.3.10)

We now have all the ingredients to compute the structure constants of QH•
T (Xk).

First of all the metric, after rescaling v → vλ, is given as

ηij = ∂3
0ijF

0
Xk

(τ) =

(
2−2k
λ3 − 1

λ2

− 1
λ2 0

)
(5.3.11)

with inverse

ηij := (η−1)ij =

(
0 −λ2

−λ2 −(2 − 2k)λ

)
(5.3.12)

while the only other non-trivial Yukawa coupling Yk(w) := ∂3
w3F 0

Xk
(τ) is given by

Yk(w) =





exp (w)
1−exp (w)

k = 1
exp (w)

exp (w)−1
k = 2

1
n
− 1

nn−1Fn−2

[
1
n
, . . . , n−1

n
; 1
n−1

, . . . , n−2
n−1

; (−1)k nn

(n−1)n−1 exp(−w)

]
k > 2

(5.3.13)

5.3.3 Warming up: principal hierarchies in the equivariantly

CY case

The exact form of the prepotential is the main ingredient to determine the form of
the Principal Hierarchy. As a warm–up, let us determine the first few flows here in
the general case.

The non-trivial structure constant is the one relative to the product ∂w · ∂w,
namely cγww = cwwδη

δγ . We have

cvww = cwwwη
wv = cwww = −λ2Yk(w) (5.3.14)

cwww = cwwwη
ww = (2k − 2)λYk(w) (5.3.15)

The flat functions must then satisfy the system of PDEs

∂2
vf = z∂vf (5.3.16)

∂2
vwf = z∂wf (5.3.17)

∂2
wf = −zλYk(w)(λ∂vf + (2k − 2)∂wf) (5.3.18)
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The general integral of the first equation is

f(v, w; z) = A(w, z, λ)
ezv

z
+B(w, z) (5.3.19)

Replacing it in the second equation imposes

B(w, z) = B(z) (5.3.20)

and the third equation reduces to a linear ODE for A

A′′(w) =
[
z2A(w) + 2zA′(w)

]
Yk(w) (5.3.21)

When k = 1, 2 this is a Fuchsian ODE which can be integrated in closed form;
there is however no general recipe to solve it exactly for k > 2. However, let us solve
it perturbatively in z. First of all, notice that the normalization condition (5.2.9)for
the Hamiltonian densities

hkv(v, w; z) = Akv(w, z)
ezv

z
+Bk

v (z)

hkw(v, w; z) = Akw(w, z)
ezv

z
+Bk

w(z) (5.3.22)

now implies that

Bk
v (z) =

2k − 2

z
, Bk

w(z) = −1

z
(5.3.23)

while, upon defining

Akv(w, z) =: Ak0,0(w) + zAk0,1(w) +
z

2!
Ak0,1(w) + . . .

Akw(w, z) =: Ak2,0(w) + zAk2,1(w) +
z

2!
Ak2,1(w) + . . .

Eq. (5.2.7) yields

Ak0,0(w) = 2 − 2k, Ak0,1(w) = w, Ak2,0(w) = 1, Ak2,1(w) = 0 (5.3.24)

while the flatness condition (5.3.18) imposes that

∂2
wA

k
0,2(w) = 0, ∂2

wA
k
2,2(w) = 2Yk(w) (5.3.25)

This implies that the densities have the expansion

hkv(v, w; z) = (2 − 2k)v + w +
1

2

(
(2 − 2k)v2 + 2vw + Ak0,2(w)

)
z + O(z2)

(5.3.26)

hkw(v, w; z) = v +
1

2

(
v2 + Ak2,2(w)

)
z (5.3.27)
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Let us focus on the t2,0 flow, compute the Poisson bracket of the coordinates with
the Hw,0 Hamiltonian, and eliminate v. We have

∂tv(x, t) = {v(x, t), Hw,0} =
1

2
∂2
wA

k
2,2(w)(w)x = Yk(w)x (5.3.28)

∂tw(x, t) = {w(x, t), Hw,0} = (v)x + (2k − 2)Yk(w)x (5.3.29)

which reduces to the following non–linear wave equation

(w)tt = (Yk(w)(w)x)x + 2 (Yk(w)(w)x)t (5.3.30)

This sort of “hypergeometric hierarchy”, given by (5.3.30) and its conservation laws
generated by Hα,p for p > 0, seems to be unknown in the literature. Let us mention,
as a curiosity, that the hypergeometric Yukawa Yk(w) might have an expression in
terms of elementary (in fact algebraic) functions of ew (see appendix B.5 for the
details of the case k = 3).

5.4 A case study: the resolved conifold and the

Ablowitz–Ladik hierarchy

5.4.1 Solving the flatness condition

The case k = 1 corresponds to the special case of a rigid P1 inside a CY 3, for which
concavity of the normal bundle and the Calabi–Yau condition imply the latter to be
of the form OP1(−1) ⊕ OP1(−1). This case was treated, with one minor difference,
in [54], where it is shown that a prepotential of the form

F (u, v) =
1

2
uv2 − Li3(e

−u) (5.4.1)

was related to the long-wave limit of the Ablowitz-Ladik lattice4.

Let us compute explicitly the flat functions hv(τ, z), hw(τ, z). In this case the linear
ODE (5.3.21) becomes

A′′(w, y) = −y2A(w) exp (w)

1 − exp (w)
(5.4.2)

where we defined y := zλ. A basis of solutions is given by

f1(w, y) = 2F1 (−y, y; 1; ew) ; f2(w, y) = (1 − ew) 2F1 (1 − y, y + 1; 2; 1 − ew)
(5.4.3)

4Finding the correct geometric interpretation for the prepotential of [54] in the context of
Gromov–Witten theory was indeed the first motivation of this chapter.
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Therefore, Hamiltonian densities for the hierarchy (5.2.13) have the form

hv(v, w; z) = Av(w, zλ)
ezv

z
+Bv(z)

hw(v, w; z) = Aw(w, zλ)
ezv

z
+Bw(z) (5.4.4)

where

Av(w, y) = c
(v)
1 (y) 2F1 (−y, y; 1; ew) + (1 − ew) c

(v)
2 (y) 2F1 (1 − y, y + 1; 2; 1 − ew)

(5.4.5)

Aw(w, y) = c
(w)
1 (y) 2F1 (−y, y; 1; ew) + (1 − ew) c

(w)
2 (y) 2F1 (1 − y, y + 1; 2; 1− ew)

(5.4.6)

for some constants of integration c
(i)
j (y). As we stressed in Remark 17, the set

of conditions (5.2.7)–(5.2.9) is insufficient to uniquely fix them without any more
external information. In fact, such extra data are available, as we will now turn to
discuss.

5.4.2 Normalizing the deformed flat coordinates

The extra information that we need comes from a result of Coates–Givental [36],
which allows in particular to compute the twisted Gromov–Witten invariants of the
total space of a concave vector bundle E → B, where B is a compact orbifold, in
terms of the ordinary invariants of B. For the sake of brevity we will just mention
the result that we need without justifying it5. We have

Proposition 23 ( [36]). The J–function of the resolved conifold OP1(−1)⊕OP1(−1)
with anti–diagonal action is given by

J(q, z) = ezp log q
∑

d≥0

∏0
m=−d+1 (−p+m/z + λ) (−p+m/z − λ)

∏d
m=1 (p+m/z)2

qd (5.4.7)

Here, we have redefined ~ = 1/z in eq. (2.1.31).

By the discussion of section 2.1.4, the J function is very closely related to the flat
functions (5.2.6). Comparing (5.2.6) and (2.1.28), we see that the basis of solutions
hα of (5.2.6) is related to the fundamental solution (2.1.29) as

∂αhβ = Sαβ

5The result comes from knowledge of the J function of P1, the Coates–Givental hypergeometric
modification [36] defining the twisted I function of the conifold, and uniqueness properties of the J
function.
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and the J function is then given by

J = ∂0hβΦ
b (5.4.8)

By this relation, we can use our knowledge of the J function of the conifold (5.4.7)

to completely fix the unknown coefficients c
(i)
j (y). In particular, it allows us to prove

the following

Theorem 24. The dispersionless integrable hierarchy associated to the genus zero
equivariant Gromov–Witten theory of the resolved conifold OP1(−1) ⊕OP1(−1) with
anti–diagonal C∗ action on the fibers is given by

∂tα,puβ =

{
uβ,

∫
hα,p

}
(5.4.9)

where {, } denotes the Poisson bracket (5.2.12), η is the topological metric (5.3.11)
with k = 1, and the Hamiltonian densities hα,p (5.2.10) are given by

hv(v, w, z, λ) =
evz

λ2

[
(H−zλ +Hzλ) 2F1 (−zλ, zλ; 1; ew) + (−1 + ew)

× πzλ csc(πzλ) 2F1 (1 − zλ, zλ + 1; 2; 1 − ew)

]
(5.4.10)

hw(v, w, z, λ) =
1 − evz 2F1 (−zλ, zλ; 1; ew)

zλ2
(5.4.11)

In (5.4.10), ψ(0)(z) is the polygamma function

ψ(0)(z) =
d log Γ(z)

dz

while Hz is the harmonic number function

Hz = ψ(0)(z + 1) + γ

where γ is the Euler–Mascheroni constant.

Proof. The O(z) term of the expansion of J is the statement that the mirror map is
trivial in this case

log q = w (mod 2πi) (5.4.12)

Let us examine the summand in (5.4.7) above more closely, starting from the numer-
ator. It simply reads

m2

z2
− 2pm

z
− λ2
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and performing the product (remember that p2 = 0) yields

−
y
(
λ2

y2

)d
Γ(d− y)Γ(d+ y) sin(πy)

π
+

y2
(
λ2

y2

)d
Γ(d− y)Γ(d+ y)

(
−ψ(0)(d− y) + ψ(0)(−y) + ψ(0)(y) − ψ(0)(d+ y)

)
sin(πy)

πλ
p

while for the inverse of the denominator we obtain simply

(z2)
d

Γ(d+ 1)2
− 2z (z2)

d
Hd

Γ(d+ 1)2
p

By (5.4.8), this means that the deformed flat coordinate of the unity is given as

h0(0, w, z, λ) =
∑

d≥0

−
y
(
y2

λ2

)d (
λ2

y2

)d
Γ(d− y)Γ(d+ y) sin(πy)

πΓ(d+ 1)2
edw = f1(w, y)

(5.4.13)
This simply sets

c
(v)
1 (y) = 1, c

(v)
2 (y) = 0 (5.4.14)

On the other hand, the term proportional to the volume form is a series whose general
term looks as follows

1

πΓ(d+ 1)2
z2λΓ(d− zλ)Γ(d+ zλ)

(
2Hd + ψ(0)(−zλ)

+ψ(0)(zλ) − ψ(0)(d− zλ) − ψ(0)(d+ zλ)
)

sin(πzλ)

and has moreover a zw term, coming from the ezp log q prefactor of the I function,
which multiplies f1(w, y). Let us then fix the coefficients c

(w)
i (z) by Taylor expanding

the sum at q = expw = 0. We get an expansion of the form a log q + b+ o(1)

A2(w, y) =

(
c
(w)
1 (y) − c

(w)
2 (y) (H−y +Hy + log(q)) sin(πy)

πy

)
+O

(
q1
)

while from the explicit form of the I function we get

A2(w, y) = z log q + O(q)

Matching the logarithmic coefficient gives

c
(w)
2 (y) = −z πy

sin(πy)
(5.4.15)
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while the O(1) term gives

c
(w)
1 (y) = −πy cot(πy)

λ
− 2yHy

λ
+

1

λ
(5.4.16)

that completely fixes the form of the deformed flat coordinates. It is straightforward
to check that the normalization condition (5.2.7)-(5.2.9) are satisfied.

�

5.4.3 The dispersionless Ablowitz–Ladik hierarchy

Let us work out the z-expansion of (5.4.10), (5.4.11) explicitly. Using (B.4.1), (B.4.2)
we can write

hv(v, w, z, λ) = − w

λ2
− vwz

λ2
+

[
1

6
w

(
−3v2

λ2
− 6w log (1 − ew) + π2

)

− wLi2 (1 − ew) − 2Li3 (ew)

]
z2 +

[
1

6
vw

(
− v2

λ2
− 6w log (1 − ew)

+ π2

)
− vwLi2 (1 − ew) − 2vLi3 (ew)

]
z3 +O

(
z4
)

(5.4.17)

hw(v, w, z, λ) = − v

λ2
+

(
Li2 (ew) − v2

2λ2

)
z +

(
vLi2 (ew) − v3

6λ2

)
z2

+

(
− v4

24λ2
+

1

2
Li2 (ew)

(
v2 − λ2Li2 (ew)

)
+ 2λ2S2,2 (ew)

)
z3 +O

(
z4
)

(5.4.18)

where Sν,p(z) denotes the Nielsen polylogarithm

Sν,p(z) =
∞∑

k=1

(−1)k+pk−νzkS(p)
k

k!

and S
(p)
l are the Stirling numbers of the second kind.

Let us focus on the first two non-trivial flows, which are generated by Hα,0. Hv,0

generates space translation, ∂tv,0 = ∂x; on the other hand the t := tw,0 flow is given
by

∂tv(x, t) = {v(x, t), Hw,0} =
λ2

e−w − 1
(w)x (5.4.19)

∂tw(x, t) = {w(x, t), Hw,0} = (v)x (5.4.20)

Eliminating v we get

(w)tt = λ2

(
1

e−w − 1
(w)x

)

x

(5.4.21)
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Equations (5.4.19) were recognized in [54] to be related to the dispersionless limit of
an integrable system called the Ablowitz–Ladik lattice [2]; we will here review, almost
verbatim, the arguments of [54] relating the solution of WDV V (5.4.1) to such an
integrable lattice. The latter is defined as

i ȧn = −1

2
(1 − anbn)(an−1 + an+1) + an

(5.4.22)

i ḃn =
1

2
(1 − anbn)(bn−1 + bn+1) − bn.

Introducing new variables

un = − log(1 − anbn)

(5.4.23)

yn =
1

2i

(
log

an
an−1

− log
bn
bn−1

)
.

the evolution (5.4.22) can be written as a Hamiltonian flow generated by

HAL =
∑

n

√
(1 − e−un) (1 − e−un−1) cos yn (5.4.24)

with the Poisson bracket

{un, ym} = δn,m−1 − δn,m, {un, um} = {yn, ym} = 0. (5.4.25)

Taking the long-wave expansion means that we interpolate the space variable and
rescale the time parameter

un = u(gsn, gst), yn = y(gsn, gst)

This leads, at leading order in gs, to the dispersionless system

ut = ∂X [(eu − 1) sin y]

(5.4.26)

yt = ∂X
[
e−u cos y

]
.

In order to make contact with the Principal Hierarchy of the resolved conifold, we
will follow the argument of [54] replacing v(X),u(X) by

x := iλX (5.4.27)

v(x) := iy(x)λ (5.4.28)

w(x) :=
gsλ∂x

egsλ∂x − 1
u(x) (5.4.29)
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In this way, the Poisson brackets of w and v take the standard form (5.2.12), and
the Hamiltonian (5.4.24) becomes upon interpolation

HAL =

∫
hAL dx

=

∫ √(
1 − exp

{
1 − egsλ∂x

gsλ∂x
w

})(
1 − exp

{
e−gsλ∂x − 1

gsλ∂x
w

})
cosh

(v
λ

)
dx

(5.4.30)

hAL = (−1 + ew) cosh
(v
λ

)
+

(
ewλ2 cosh

(
v
λ

)
(4 (−1 + ew)wxx − 3(wxx)

2)
)
g2
s

24 (−1 + ew)
+O

(
g4
s

)

(5.4.31)
The long–wave limit of the AL system admits an infinite set of conserved currents,

and a direct computation shows [54] that such densities coincide precisely with the
coefficients of the z-expansion of the Hamiltonian densities of the Principal Hierarchy,
thereby justifying the identification of the latter with the dispersionless Ablowitz–
Ladik hierarchy.

5.4.4 The equivariant Gromov–Witten theory of the conifold

and the dispersionful Ablowitz–Ladik hierarchy: the

Main Conjecture

The Main Conjecture

Our results about the resolved conifold can be summarized in the following two
statements: on one hand, we have written down the Principal Hierarchy associated
to the genus zero subsector and singled out the correct normalization of the flows;
on the other, we have borrowed and adapted the results of [54], that identify such a
system with the dispersionless limit of the Ablowitz–Ladik hierarchy.

For the purposes of solving the full Gromov–Witten theory of X, the first result
was a necessary, non–trivial, but still unsatisfactory step. From the point of view of
geometry, in fact, knowing the Principal Hierarchy adds little to the complete knowl-
edge we already have about gravitational correlators in genus zero: the latter are fully
recovered, via the Dijkgraaf–Witten TRRs (2.1.25), by the primary invariants. This
fortunate situation is however restricted to low genus only: for g = 1 a complete set
of topological recursion relations were found by Getzler [77], and additional universal
relations were established for g = 2 by [19, 78, 127], but apart from that very little
(see e.g. [73]) has been established in general, without appealing to extra working
hypothesis - like the Virasoro conjecture. This could be a, if not the main, domain
of application of an integrable hierarchy associated to the Gromov–Witten theory of
some target space, since it provides in a specific case a powerful tool to solve the
full theory completely. For these reasons it is of great interest to establish a precise
connection, however conjectural, to an integrable system of the PDEs in the form
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(5.2.19) in order to obtain extract higher genus enumerative data on the geometry
side. The discussion of the previous section pushes us to formulate the following

Conjecture 4. The dispersionful Ablowitz–Ladik hierarchy is the integrable hierarchy
associated to the all–genus equivariant Gromov–Witten theory of the resolved conifold
OP1(−1) ⊕OP1(−1).

The reader might feel that such a proposal is driven by some sort of psychological
bias, due to the fact that all we happened to lay our hands on is not more than one
acceptable candidate; in fact, lacking more information this would not rule out at all -
and in fact tells us nothing about - that the right answer might be given by a different
system, that shares with AL the same dispersionless limit. However, postulating
that the dispersive corrections should really take the form of the Ablowitz–Ladik
Hamiltonians is less naive than it might seem. First of all, it was shown in [54] that
not every dispersive deformation of a two-component dispersionless limit preserves
integrability: in our case, blindly discretizing space–derivatives would not result in
an integrable system already at the leading order in the gs–expansion. Therefore,
if we insist to look for an integrable hierarchy governing the all–genus theory, it is
already fortunate to have one such system at our disposal. Secondarily, and most
importantly, Conjecture 4 can be effectively tested, at least perturbatively in gs,
which is what we now turn to do.

Dispersive deformation and D-operator formalism

To check Conjecture 4, it would be desirable to find explicitly the form of the dis-
persive corrections (5.2.19) to the Hamiltonians of the Principal Hierarchy (5.4.10),
(5.4.11). Without a quasi–homogeneous prepotential we cannot avail ourselves of
the Reconstruction Theorem of [53]; however, assuming (5.4.30) as the full dispersive
completion of the dispersionless density

h
(0)
AL = (1 − ew) cosh v/λ (5.4.32)

is sufficient to determine the dispersive deformation of all flows of the Principal Hi-
erarchy. A method to do it was devised in [54] and relies on the construction of a
so–called D–operator, which we here review.

Let H be one of the Hamiltonians of a dispersionless Hamiltonian system (5.2.13),
and let Ĥ be a dispersive deformation of the form

Ĥ = H + gsH
(1) + g2

sH
(2) + . . . (5.4.33)

The dispersionless hierarchy (5.2.13) has an infinite set of conserved Hamiltonians
{Hα,p}, which Poisson commute with Ĥ at leading order in gs

{
Hα,p, Ĥ

}
= O(gs) ∀α, p
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What we would like to find is a dispersive deformation of each dispersionless
Hamiltonian Hα,p in the form (5.4.33)

Ĥα,p = Hα,p + gsH
(1)
α,p + g2

sH
(2)
α,p + . . . (5.4.34)

which be such that {
Ĥα,p, Ĥ

}
= 0 ∀α, p (5.4.35)

A key object in the determination of the dispersive corrections (5.4.34) is a so-called
D–operator. We recall its definition from [54], adapting it to the case of the Ablowitz–
Ladik system with dependent variables v, w (5.4.27).

Definition 16. The linear differential operator

D = D[0] + gsD
[1] + g2

sD
[2] + . . .

D[0] = id, D[k] =
∑

b
[k]
i1,i2

(w,wx, . . . , v, vx, . . . )
∂m(k)

∂vi1 . . . ∂wi2
(5.4.36)

is said to be a D-operator for the perturbations (5.4.33), (5.4.34) if for any disper-
sionless Hamiltonian density hα,p the Hamiltonian

Ĥα,p =

∫
Dhα,p dx (5.4.37)

satisfies the involutivity condition (5.4.35).

In (5.4.36), the coefficients b
[k]
i1,i2

are smooth functions of v, w in some domain D ⊂
R2, and depend polynomially on the jet coordinates wx, wxx, vx, vxx, . . . . We have
denoted m(k) =

[
3k
2

]
, and i1, i2 are non-negative integers such that i1 + i2 = m(k).

A D-operator need not exist for an arbitrary perturbation (5.4.33); as we have
already mentioned, not every dispersive perturbation preserves integrability. More-
over, picking H = h

(0)
AL = (1 − ew) cosh(v/λ), (5.4.35) implies that the tree–level

densities hα,p satisfy

∂2
whα,p −

λ2

e−w − 1
∂2
vhα,p = 0 (5.4.38)

Therefore a normal form for this operator should be chosen, for example by keeping
derivatives of order at most 1 with respect to u. Apart from this ambiguity, it was
shown in [54] that if a D-operator (5.4.36) exists, it is unique. We can rephrase the
last statement as follows: the involutivity condition (5.4.35) implies that knowing
one perturbed Hamiltonian allows to reconstruct the dispersive completion of all the
Hamiltonians of the Principal Hierarchy, order by order in gs. In our case, postulating
that (5.4.30) be the perturbation of (5.4.32) allows to reconstruct the flows related
to higher genus descendant invariants.
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A check at genus one

We can now apply the above arguments to determine explicitly the D–operator of the
AL hierarchy at one–loop. This was already computed in [54]; the result here differs
slightly because of the minor differences between the prepotential (5.4.1) considered
in [54] and the genus zero Gromov–Witten potential of the resolved conifold (5.3.4),
(5.3.10). Imposing the involution condition (5.4.35), we get

DALf = f − g2
s

[
ew(x)

(
−1 + 2ew(x)

)
w′(x)2fvvλ

4

24 (−1 + ew(x))
2 +

ew(x)w′(x)2fvvwλ
4

12 (−1 + ew(x))

+
ew(x)w′(x)v′(x)fvvvλ4

6 (−1 + ew(x))
+

v′(x)2fvvλ
2

−12 + 12e−w(x)
+

1

12
v′(x)2fvvwλ

2

]
+ O(g4

s)

(5.4.39)

Let us apply it to the first non–trivial Hamiltonian flow associated to the Kähler
class [P1], i.e. Hw,0. At O(g2

s) we get

Hw,0 =

∫ [
− v2

2λ2
+ Li2(e

w) + g2
s

(
ew(x)

(
−1 + 2ew(x)

)
λ2w′(x)2

24 (−1 + ew(x))
2 +

v′(x)2

−12 + 12e−w(x)

)]
dx

(5.4.40)
With the perturbed Hamiltonian (5.4.40) at hand, we can perform a first check

of Conjecture 4. Recall [52] that the reduction to primaries is obtained by setting

ux

∣∣∣
tα,p=0 p>0

= Φ0 (5.4.41)

Moreover, the Hamiltonian densities are related (see (5.2.16)) to second deriva-
tives of the logarithm of the topological τ–function, which in turn, according to
Conjecture 4, should be related to “big” 2–point correlators (2.1.24)

hβ,p

∣∣∣
s.p.s.

= ∂x∂tβ,p ln τ
∣∣∣
s.p.s.

= 〈〈τpΦβvΦ0〉〉 = 〈〈τp−1Φβ〉〉 (5.4.42)

where by |s.p.s. we have denoted the reduction to small phase space (5.4.41). Com-
bining (5.4.40), (5.4.41) and (5.4.42) with p = 1 we obtain the following

Corollary 2. Assuming Conjecture 4, the genus 1 primary Gromov–Witten potential
F1 of the resolved conifold with anti–diagonal action is given by

〈〈τ0Φβ〉〉 =
∂F1

∂w
=

1

12
Li0(e

w) (5.4.43)

This result agrees perfectly with the known answer in Gromov–Witten theory, for
example from the localization computation of [30] (see also [100, 116])

Fg(w) = χ(Mg)Li3−2g(e
w) (5.4.44)

for g = 1.
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5.4. A case study: the resolved conifold and the Ablowitz–Ladik

hierarchy
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Chapter 6

Conclusions
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The results of this thesis open the way for various avenues of research. We will
mention here a few of them, subdivided into the three main directions that we have
followed.

Mirror symmetry and wall-crossings

In Chapter 3 we have proposed an exact solution for the B-model on a 2–parameter
family of mirrors of toric CY 3 which applies to the full B-model moduli space, in-
cluding orbifold and conifold divisors. Our focus was mostly on local Hirzebruch
surfaces, that is, Y p,q geometries with p = 2; extending it to the more complicated
p > 2 case is just technically more involved, and would allow for a considerably
simplified study of a number of new singular points, including Argyres–Douglas like
conifold points [13] and a variety of orbifold points of the form C3/Zn. It is also
noteworthy to see that our methods can be extended beyond the case of Y p,q: it is in
fact straightforward to show that holomorphicity of (derivatives of) the differential
can be proven whenever the mirror curve is hyperelliptic1, like for example for local
Del Pezzo surfaces.
Another interesting aspect is the relationship with integrable systems. The identifi-
cation of the mirror geometry in the q = p case as a fibration over the spectral curve
of the relativistic Ap−1 Toda chain pushes to give a meaning to the q parameter as
an integrable deformation of the Toda chain, perhaps leading to new classes of alge-
braically integrable systems.
Finally, it would be worthwile to back the large number of B-model computations
of of Sec 3.3.4 with further checks, especially at the orbifold point. We already
mentioned the result, which will appear in joint work with R. Cavalieri [28], that
the A-model orbifold disc function computed via localization [33] agrees, at the first
few order in the open moduli expansion, to all orders in the closed moduli with the
predictions from mirror symmetry, up to signs. It would be very interesting, first
of all, to show a complete identity between the A-model and the B-model generat-
ing functions, therefore giving a full proof of the mirror symmetry computation in
this case, and secondarily to perform an explicit A-model check of the predictions
for the annulus function, which, by the non-trivial almost modular structure of the
Bergmann kernel would constitute a remarkable verification of Conjecture 2 in an
open string case. We plan to report on this in the near future [28].

Geometric transitions and Gopakumar–Vafa duality

Even though our proof of Claim 1 in Chapter 4 might appear to be an obstruction
to the program of extending the duality of [83] to more general backgrounds, let us
outline two possible avenues of further investigation which we think might lead to
the solution of the puzzle for the case under scrutiny.

1At a pictorial level, this class coincides with those toric CY whose toric diagram is contained
into a vertical strip of width 2, modulo SL(2, Z) transformations.

118



One possible way out is to regardGV duality as an identity between the full CS parti-
tion on a 3-manifoldM and some suitable non-perturbative definition of the A−model
on the CY 3 obtained through conifold geometric transition from T ∗M . Indeed, as
first advocated2 in [120], a proper non-perturbative definition of the A−model on
toric target spaces with a dual matrix integral description should be given in terms
of a filling fraction independent sum over multi-instanton sectors. This would be dual
to the proper definition of the Reshetikin-Turaev-Witten invariant as a sum over flat
connections.
A second possibility, hinted at by the geometric picture arising in the discussion of
section 2, might consist in a refinement of the notion of “orbifold of the GV duality
for S3” in order to properly encompass the case of the generic lens space. Indeed, for
1 < q < p− 1 the cyclic group does no longer act fiberwise on the resolved conifold,
giving rise to an orbibundle over a rational curve with marked points (see Remark
13). This new feature with respect to the q = 1 case definitely begs for further
understanding, in order to clarify the correct formulation of GV duality in this case
as well as its possible relation with a (suitably twisted) Gromov-Witten theory of
orbicurves.

The local Gromov–Witten theory of curves and integrable hierarchies

The results of Chapter 5 raise a large number of new problems and directions of
research. Let us list a few of them:

• the first, impelling problem is a thorough verification of Conjecture 4. From a
computational point of view, the reconstruction of the D-operator is feasible,
albeit quite lengthy, for genus 2. This would immediately yield an extension
of Corollary 2 to genus 2. The real testing ground however is the correct
computation of descendant invariants from the perturbative hierarchy, at least
for g ≤ 2. In particular, if it could be proven that the AL flows imply the
genus 1 [77] and the genus 2 [19, 78, 127] topological recursion relations, which
in the semi–simple case exhaust the whole set of universal relations between
gravitational Gromov–Witten invariants, then this would be the smoking gun
of the validity of Conjecture 4 at higher genus. A key tool for a proof of these
statements could be given by a perturbative reconstruction of the dispersive
τ -function, possibly via a quasi–triviality transformation as in the ordinary
Frobenius manifold case [53]. These topics will be addressed in a forthcoming
paper [29].

• it would also be nice to see how the results for the resolved conifold with
antidiagonal action could be adapted to more general cases, where the quantum
part of the prepotential is still dictated by the Aspinwall–Morrison formula.

2See also [64] for related work on background independence and [121, §6.3], [64, §5.2] for a
discussion precisely about the case of topological strings with a L(p, 1) Chern-Simons matrix model
representation.
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Examples are given by the OP1(k) ⊕OP1(−k − 2) bundle with diagonal action
and the k = 2 case with generic torus action. It would also be fascinating,
moreover, to study in the integrable systems setting the k → ∞ limit, which is
related to Hurwitz theory and the ordinary Toda hierarchy. A further extension
could be given by the study of multi–parameter cases, such as the local “chains
of P1” as well as their orbifold points of the form C × C2/Zn.

• on a more conceptual level, it would be of great interest to re-interpret topics in
Gromov–Witten theory in the framework of integrable hierarchies. One exam-
ple is given by the Crepant Resolution Conjecture, which in the cases mentioned
above, like C × C2/Zn, could perhaps be regarded as the same kind of transi-
tion that relates, in the Gelfand-Dikii case, topological (p, 1) minimal models
to (p, q) minimal models, or ordinary to topological 2d gravity - that is, a flow
of the same solution at a different time. Another topic is the re-interpretation
of the relationship between descendant invariants and open string invariants,
as suggested for example by localization on orbifolds of C3 [33]. Moreover, it
would be of sure interest to find a mirror symmetry description of equivariant
Gromov–Witten theory in terms of spectral curves, and therefore find a con-
nection with the Eynard–Orantin recursion. Finally, the explicit construction
of the hierarchies might also be a playground for the study of higher genus
relations in equivariant Gromov–Witten theory. A natural question is whether
the Virasoro conjecture should still be expected to be true, or if some other,
more general kind of symmetries, like W-symmetries take over in this general
setting.

• to conclude, there are a number of applications to the physics of type II/M
theory compactifications that beg for further understanding. It would be in-
teresting to find a clear interpretation of the equivariant deformation and to
find a meaning for the gravitational correlators from a target–space point of
view, perhaps due to couplings to suitable background superfields. An impor-
tant issue is the relationship of the AL flows with UV deformations of SU(2)
Seiberg–Witten theory on R5, which is geometrically engineered by M-theory
compactification on local curves. This would generalize to the non-abelian (yet
purely perturbative, from a four-dimensional point of view) case the results
of [114, 115] for abelian extended Seiberg-Witten theories.
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A.1. Predictions for open orbifold Gromov-Witten invariants of C3/Z4

A.1 Predictions for open orbifold Gromov-Witten

invariants of C3/Z4

A.1.1 g = 0, h = 1

m 1 3 5 7 9
n
0 1 0 - 3

64
0 -1491

4096

1 0 1
32

0 207
2048

0
2 - 1

16
0 - 37

1024
0 -79869

65536

3 0 9
512

0 9963
32768

0
4 - 3

256
0 - 1551

16384
0 -8292567

1048576

5 0 321
8192

0 940047
524288

0
6 - 101

4096
0 -130737

262144
0 -1385156769

16777216

7 0 23689
131072

0 144472923
8388608

0
8 - 6343

65536
0 -18265531

4194304
0 -337142625627

268435456

9 0 2963841
2097152

0 32673216687
134217728

0
10 - 696201

1048576
0 -3803089437

67108864
0 -112241155641669

4294967296

Table A.1: Predictions for g = 0, h = 1 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number 1.

m 0 2 4 6 8 10
n
0 0 -1

2
0 9

64
0 861

512

1 1
2

0 - 1
16

0 - 93
256

0
2 0 1

16
0 23

256
0 44133

8192

3 -1
8

0 - 3
128

0 -1047
1024

0
4 0 0 0 225

1024
0 548475

16384

5 1
32

0 - 27
512

0 -47061
8192

0
6 0 7

512
0 2259

2048
0 44197653

131072

7 - 1
128

0 - 239
1024

0 -1741719
32768

0
8 0 25

512
0 304325

32768
0 1305131775

262144

9 1
512

0 -7251
4096

0 -95530011
131072

0
10 0 339

1024
0 15386001

131072
0 211795044723

2097152

11 - 1
2048

0 -1340031
65536

0 -7258371969
524288

0

Table A.2: Predictions for g = 0, h = 1 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number 2.
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Appendix A. The C3/Z4 computation

m 1 3 5 7 9
n
0 0 2

3
0 -21

32
0

1 -1
3

0 43
192

0 8417
4096

2 0 - 7
48

0 -1229
3072

0
3 7

48
0 73

1024
0 412041

65536

4 0 1
96

0 -4697
4096

0
5 - 41

768
0 11963

49152
0 41384697

1048576

6 0 - 299
4096

0 -1783953
262144

0
7 229

4096
0 362393

262144
0 6936052081

16777216

8 0 -11747
32768

0 -142831999
2097152

0
9 26639

196608
0 56047641

4194304
0 1730826138737

268435456

10 0 -10669787
3145728

0 -68424562163
67108864

0
11 4170167

3145728
0 38784663739

201326592
0 598285614606521

4294967296

12 0 -196698881
4194304

0 -2844990148951
134217728

0

Table A.3: Predictions for g = 0, h = 1 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number 3.

a a
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A.1. Predictions for open orbifold Gromov-Witten invariants of C3/Z4

A.1.2 g = 0, h = 2

m 0 2 4 6 8 10
n
0 0 1

8
0 3

128
0 4893

4096

1 -1
4

0 - 1
128

0 - 33
128

0
2 0 0 0 35

512
0 55935

8192

3 1
32

0 - 3
128

0 -22407
16384

0
4 0 3

256
0 21

64
0 4220337

65536

5 - 1
64

0 - 201
2048

0 -195789
16384

0
6 0 5

128
0 42915

16384
0 118015665

131072

7 - 23
1024

0 -2881
4096

0 -20423991
131072

0
8 0 63

256
0 2067209

65536
0 18287528607

1048576

9 - 131
1024

0 -506487
65536

0 -185694621
65536

0
10 0 9945

4096
0 140110485

262144
0 58498600995

131072

11 -9049
8192

0 -1981089
16384

0 -287144765007
4194304

0
12 0 4542901

131072
0 3177309831

262144
0 3818835874293

262144

Table A.4: Predictions for g = 0, h = 2 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number (1, 1).

m 1 3 5 7 9
n
0 0 - 3

16
0 - 21

1024
0

1 1
8

0 - 3
512

0 27309
32768

2 0 5
256

0 - 2505
16384

0
3 - 5

128
0 255

8192
0 2302815

524288

4 0 - 35
4096

0 -189045
262144

0
5 21

2048
0 15737

131072
0 312154689

8388608

6 0 - 795
65536

0 -23293305
4194304

0
7 - 465

32768
0 1732635

2097152
0 63058278675

134217728

8 0 - 80835
1048576

0 -4329443445
67108864

0
9 - 25879

524288
0 291969237

33554432
0 17804785464789

2147483648

10 0 -11668795
16777216

0 -1135730450505
1073741824

0
11 -3887325

8388608
0 70313936215

536870912
0 6698323708804935

34359738368

12 0 -2459089635
268435456

0 -400027626445845
17179869184

0

Table A.5: Predictions for g = 0, h = 2 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number (2, 1).
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Appendix A. The C3/Z4 computation

m 0 2 4 6 8 10
n
0 1

2
0 3

8
0 - 21

128
0

1 0 -1
8

0 3
32

0 -11463
4096

2 0 0 - 5
64

0 45
128

0
3 0 1

16
0 - 3

64
0 -122187

8192

4 0 0 5
256

0 6645
4096

0
5 0 - 7

256
0 - 233

2048
0 -4019679

32768

6 0 0 - 15
512

0 98805
8192

0
7 0 17

512
0 -12633

16384
0 -196225827

131072

8 0 0 - 235
2048

0 8814945
65536

0
9 0 31

512
0 -246663

32768
0 -6705257547

262144

10 0 0 -39985
32768

0 17375355
8192

0
11 0 2641

4096
0 -1721123

16384
0 -612160163421

1048576

12 0 0 -2340015
131072

0 23610629685
524288

0

Table A.6: Predictions for g = 0, h = 2 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number (2, 2).

a a
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A.1. Predictions for open orbifold Gromov-Witten invariants of C3/Z4

A.1.3 g = 0, h = 3

m 1 3 5 7 9
n
0 0 - 3

64
0 189

4096
0

1 1
32

0 - 33
2048

0 -132711
131072

2 0 11
1024

0 14547
65536

0
3 - 7

512
0 - 1989

32768
0 -18108903

2097152

4 0 353
16384

0 1809801
1048576

0
5 - 79

8192
0 -218993

524288
0 -3593874231

33554432

6 0 33711
262144

0 330787647
16777216

0
7 - 7287

131072
0 -36190149

8388608
0 -990617610423

536870912

8 0 4907493
4194304

0 84814988181
268435456

0
9 - 889439

2097152
0 -8528369313

134217728
0 -363568459048071

8589934592

10 0 1045989811
67108864

0 29188217357547
4294967296

0
11 -167510567

33554432
0 -2728134070309

2147483648
0 -171647294174135943

137438953472

12 0 307481197833
1073741824

0 13004327932052961
68719476736

0

Table A.7: Predictions for g = 0, h = 3 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number (1, 1, 1).

m 0 2 4 6 8 10
n
0 1

2
0 9

64
0 - 21

128
0

1 0 - 1
16

0 3
64

0 28137
8192

2 1
16

0 - 7
256

0 -4377
8192

0
3 0 3

128
0 87

1024
0 464121

16384

4 - 1
32

0 - 3
512

0 -64593
16384

0
5 0 - 7

512
0 4509

8192
0 11087523

32768

6 17
512

0 - 111
2048

0 -5600217
131072

0
7 0 - 1

64
0 170919

32768
0 1472070201

262144

8 9
512

0 -11867
32768

0 -85512669
131072

0
9 0 - 423

2048
0 4679277

65536
0 16303071447

131072

10 1091
4096

0 -493299
131072

0 -14083706541
1048576

0
11 0 -176659

65536
0 701236689

524288
0 29811430249887

8388608

12 22219
8192

0 -7019643
131072

0 -753800096679
2097152

0

Table A.8: Predictions for g = 0, h = 3 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number (2, 1, 1).
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Appendix A. The C3/Z4 computation

m 1 3 5 7 9
n
0 -3

4
0 -111

256
0 19593

16384

1 0 15
128

0 -2595
8192

0
2 - 1

64
0 603

4096
0 595491

262144

3 0 - 177
2048

0 - 40479
131072

0
4 65

1024
0 1245

65536
0 63319245

4194304

5 0 895
32768

0 -4055235
2097152

0
6 - 541

16384
0 343623

1048576
0 10240884231

67108864

7 0 - 68737
524288

0 -568999599
33554432

0
8 34245

262144
0 39364105

16777216
0 2384870136465

1073741824

9 0 -5665425
8388608

0 -119917956675
536870912

0
10 1984519

4194304
0 7678005843

268435456
0 757515211867371

17179869184

11 0 -1112041297
134217728

0 -35129545858719
8589934592

0
12 386924425

67108864
0 2109027490965

4294967296
0 315113944321865685

274877906944

Table A.9: Predictions for g = 0, h = 3 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number (2, 2, 1).

m 1 3 5 7 9
n
0 -2

3
0 -19

32
0 3017

2048

1 0 35
192

0 -1655
4096

0
2 - 1

16
0 599

3072
0 216111

65536

3 0 - 127
1024

0 -34639
65536

0
4 7

64
0 71

1024
0 7515233

262144

5 0 385
16384

0 -4900175
1048576

0
6 - 733

12288
0 263963

262144
0 6306454721

16777216

7 0 -280541
786432

0 -972023479
16777216

0
8 8599

32768
0 71107289

6291456
0 935960475531

134217728

9 0 -12976415
4194304

0 -276764938375
268435456

0
10 1372579

1048576
0 12755007193

67108864
0 744181335698931

4294967296

11 0 -3203261567
67108864

0 -105795705480319
4294967296

0
12 28966097

1572864
0 1153922108479

268435456
0 47596772308516649

8589934592

Table A.10: Predictions for g = 0, h = 3 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number (3, 1, 1).

a a
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A.1. Predictions for open orbifold Gromov-Witten invariants of C3/Z4

A.1.4 g = 1, h = 1

m 1 3 5 7 9
n
0 1

48
0 9

1024
0 31003

65536

1 0 - 5
1536

0 - 3375
32768

0
2 1

768
0 1367

49152
0 3206563

1048576

3 0 - 81
8192

0 -326497
524288

0
4 65

12288
0 40345

262144
0 534647035

16777216

5 0 - 19145
393216

0 -50714835
8388608

0
6 4321

196608
0 5760669

4194304
0 129857120323

268435456

7 0 -2469623
6291456

0 -11529490917
134217728

0
8 490945

3145728
0 3642090395

201326592
0 43135367843675

4294967296

9 0 -158835215
33554432

0 -3604297162935
2147483648

0
10 85184641

50331648
0 354513303549

1073741824
0 18747883132922083

68719476736

11 0 -128738647003
1610612736

0 -1481653476327337
34359738368

0
12 21004177025

805306368
0 137005640391385

17179869184
0 10315653154790585915

1099511627776

Table A.11: Predictions for g = 1, h = 1 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number 1.

m 0 2 4 6 8 10
n
0 0 - 1

32
0 - 3

512
0 -30093

16384

1 1
48

0 - 1
512

0 19
64

0
2 0 1

192
0 - 27

512
0 -200327

16384

3 - 5
384

0 5
512

0 121865
65536

0
4 0 - 5

3072
0 - 315

1024
0 -33148025

262144

5 1
768

0 1277
24576

0 1175231
65536

0
6 0 - 11

2048
0 -89893

32768
0 -247637721

131072

7 - 85
12288

0 6995
16384

0 131562305
524288

0
8 0 - 275

6144
0 -9362985

262144
0 -161674997735

4194304

9 - 389
12288

0 1350073
262144

0 631910777
131072

0
10 0 -25459

49152
0 -337003153

524288
0 -8635006486289

8388608

11 -27155
98304

0 4250765
49152

0 2044307220305
16777216

0
12 0 -4343505

524288
0 -16051763495

1048576
0 -584421859946805

16777216

Table A.12: Predictions for g = 1, h = 1 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number 2.
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Appendix A. The C3/Z4 computation

m 1 3 5 7 9
n
0 0 1

12
0 - 21

256
0

1 - 5
144

0 115
3072

0 -258695
196608

2 0 - 59
2304

0 9679
49152

0
3 53

2304
0 - 1903

49152
0 -34606561

3145728

4 0 305
18432

0 219465
131072

0
5 - 235

12288
0 - 716555

2359296
0 -6451124795

50331648

6 0 4819
65536

0 240631049
12582912

0
7 - 16007

589824
0 -14352681

4194304
0 -567229333447

268435456

8 0 962165
1179648

0 7715651635
25165824

0
9 -2979965

9437184
0 -3575613975

67108864
0 -608448940883375

12884901888

10 0 1821378401
150994944

0 21402084232819
3221225472

0
11 -207837889

50331648
0 -10779639149749

9663676416
0 -94491992113090307

68719476736

12 0 32205472535
134217728

0 1609762782468295
8589934592

0

Table A.13: Predictions for g = 1, h = 1 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number 3.

m 0 2 4 6 8 10
n
0 1

3
0 - 5

16
0 315

256
0

1 0 3
32

0 -181
512

0 106299
16384

2 - 1
24

0 39
256

0 -109
128

0
3 0 - 11

128
0 387

2048
0 5026167

65536

4 7
96

0 - 3
32

0 -162943
16384

0
5 0 233

3072
0 11689

8192
0 132120547

131072

6 - 31
384

0 - 403
2048

0 -8297873
65536

0
7 0 - 331

12288
0 286821

16384
0 2328425659

131072

8 187
1536

0 -31927
12288

0 -70090611
32768

0
9 0 1389

4096
0 73463763

262144
0 868198249737

2097152

10 389
6144

0 -5027977
131072

0 -25016794729
524288

0
11 0 193951

49152
0 6224145569

1048576
0 12994166797747

1048576

12 47767
24576

0 -99929913
131072

0 -2869421365529
2097152

0

Table A.14: Predictions for g = 1, h = 1 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number 4.

a a
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A.1. Predictions for open orbifold Gromov-Witten invariants of C3/Z4

A.1.5 g = 1, h = 2

m 0 2 4 6 8 10
n
0 0 1

192
0 - 83

2048
0 -179179

32768

1 - 1
96

0 19
1536

0 16183
16384

0
2 0 - 3

512
0 -1313

6144
0 -3412701

65536

3 1
128

0 59
1024

0 581143
65536

0
4 0 - 127

6144
0 -116319

65536
0 -383135601

524288

5 11
1024

0 10619
24576

0 15337479
131072

0
6 0 - 3329

24576
0 -1426777

65536
0 -7424556503

524288

7 761
12288

0 238597
49152

0 1121762999
524288

0
8 0 -5593

4096
0 -1171872737

3145728
0 -3036747101441

8388608

9 4423
8192

0 20167831
262144

0 217372440663
4194304

0
10 0 -15545773

786432
0 -4454455581

524288
0 -395787223226897

33554432

11 228811
32768

0 2578302709
1572864

0 26951369828703
16777216

0
12 0 -1225078949

3145728
0 -4181947560489

16777216
0 -1000188285379879

2097152

Table A.15: Predictions for g = 1, h = 2 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number (1, 1).

m 1 3 5 7 9
n
0 0 - 3

128
0 749

8192
0

1 1
64

0 - 73
4096

0 -806391
262144

2 0 11
2048

0 59347
131072

0
3 - 13

3072
0 - 4277

65536
0 -114835519

4194304

4 0 323
98304

0 7763577
2097152

0
5 161

16384
0 -1512059

3145728
0 -23730473751

67108864

6 0 14031
524288

0 1484285887
33554432

0
7 28147

786432
0 -87714437

16777216
0 -6775943551839

1073741824

8 0 6282863
25165824

0 395292407237
536870912

0
9 4059523

12582912
0 -21529218793

268435456
0 -2563997898607031

17179869184

10 0 1355800153
402653184

0 140469708824427
8589934592

0
11 277853969

67108864
0 -21346688578591

12884901888
0 -1243192010808991359

274877906944

12 0 132430149801
2147483648

0 64325487060690897
137438953472

0

Table A.16: Predictions for g = 1, h = 2 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number (2, 1).
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Appendix A. The C3/Z4 computation

m 0 2 4 6 8 10
n
0 -1

4
0 7

128
0 - 63

256
0

1 0 - 1
96

0 19
512

0 164059
16384

2 - 1
32

0 - 19
1536

0 -15543
16384

0
3 0 5

768
0 85

2048
0 2917315

32768

4 1
64

0 73
3072

0 -254719
32768

0
5 0 - 47

3072
0 2213

6144
0 73876031

65536

6 - 17
1024

0 391
4096

0 -23761463
262144

0
7 0 - 25

768
0 246515

65536
0 10287089645

524288

8 - 9
1024

0 187937
196608

0 -383755867
262144

0
9 0 - 4013

12288
0 14299413

262144
0 474325562521

1048576

10 -1091
8192

0 10594097
786432

0 -66113744979
2097152

0
11 0 -1594085

393216
0 3320919305

3145728
0 224405506520675

16777216

12 -22219
16384

0 68613211
262144

0 -3672961920137
4194304

0

Table A.17: Predictions for g = 1, h = 2 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number (2, 2).

m 0 2 4 6 8 10
n
0 -4

9
0 1

8
0 -161

384
0

1 0 - 29
576

0 189
2048

0 1521551
98304

2 5
144

0 - 95
2304

0 -48635
24576

0
3 0 17

512
0 6733

24576
0 22458213

131072

4 - 1
18

0 - 59
1536

0 -135383
6144

0
5 0 - 13

18432
0 215983

65536
0 1055600059

393216

6 115
4608

0 -1335
2048

0 -134219405
393216

0
7 0 16493

73728
0 13351407

262144
0 44963141923

786432

8 - 433
2304

0 -179953
18432

0 -87659531
12288

0
9 0 8527

3072
0 1095436053

1048576
0 6682846176571

4194304

10 -50965
36864

0 -25251695
131072

0 -610917761875
3145728

0
11 0 117348941

2359296
0 348308890001

12582912
0 5664941001390979

100663296

12 -387979
18432

0 -3841015873
786432

0 -10511662024063
1572864

0

Table A.18: Predictions for g = 1, h = 2 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number (3, 1).

a a
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A.1. Predictions for open orbifold Gromov-Witten invariants of C3/Z4

A.1.6 g = 2, h = 1

m 1 3 5 7 9
n
0 1

3840
0 - 851

81920
0 -7860797

5242880

1 0 391
122880

0 716029
2621440

0
2 - 91

61440
0 - 235817

3932160
0 -1298196793

83886080

3 0 32689
1966080

0 112050491
41943040

0
4 - 6263

983040
0 -11465707

20971520
0 -313635847269

1342177280

5 0 1451137
10485760

0 76688664827
2013265920

0
6 - 739891

15728640
0 -7332916417

1006632960
0 -103745095940193

21474836480

7 0 855699469
503316480

0 24010004494133
32212254720

0
8 -394660109

754974720
0 -2156215517801

16106127360
0 -134782837320297767

1030792151040

9 0 233999737631
8053063680

0 3291576679832789
171798691840

0
10 -32994415691

4026531840
0 -279022560888339

85899345920
0 -24641235234298899593

5497558138880

11 0 85088983138249
128849018880

0 5161051100360148793
8246337208320

0
12 -3705845271181

21474836480
0 -414824442483351281

4123168604160
0 -16682185968014850733109

87960930222080

Table A.19: Predictions for g = 2, h = 1 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number 1.

m 0 2 4 6 8 10
n
0 0 - 23

3840
0 397

20480
0 3708677

655360

1 37
5760

0 - 9
2560

0 -752263
983040

0
2 0 47

46080
0 6763

61440
0 468854467

7864320

3 - 37
23040

0 - 1837
122880

0 -30020327
3932160

0
4 0 11

73728
0 404921

393216
0 5658808193

6291456

5 599
184320

0 - 97087
737280

0 -856150369
7864320

0
6 0 2443

491520
0 108494989

7864320
0 773230153649

41943040

7 10501
737280

0 -2175833
1310720

0 -66501755201
31457280

0
8 0 22249

294912
0 1589644841

6291456
0 49653533899283

100663296

9 191287
1474560

0 -9401217
327680

0 -13531886494963
251658240

0
10 0 517601

368640
0 15956291063

2621440
0 33622369415282627

2013265920

11 10024913
5898240

0 -123550208597
188743680

0 -1747956403728227
1006632960

0
12 0 414232039

12582912
0 9407394255163

50331648
0 93672968896625789

134217728

Table A.20: Predictions for g = 2, h = 1 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number 2.
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Appendix A. The C3/Z4 computation

m 1 3 5 7 9
n
0 0 221

5760
0 - 12691

122880
0

1 - 643
34560

0 19633
737280

0 175714631
47185920

2 0 - 7651
552960

0 -1942183
3932160

0
3 7231

552960
0 907759

11796480
0 35888259253

754974720

4 0 - 16787
1105920

0 -300043261
47185920

0
5 24737

8847360
0 583154159

566231040
0 10087645073971

12079595520

6 0 -10955107
47185920

0 -334185141679
3019898880

0
7 12947971

141557760
0 53326890019

3019898880
0 3757753867641473

193273528320

8 0 -4233264583
1132462080

0 -61018503742387
24159191040

0
9 2754790277

2264924160
0 2105326035057

5368709120
0 1799638347922850591

3092376453120

10 0 -2843659084991
36238786560

0 -6332775558829201
85899345920

0
11 825581791111

36238786560
0 25692970234497637

2319282339840
0 1078976536421303954893

49478023249920

12 0 -101535236275903
48318382080

0 -4154760487766076713
1546188226560

0

Table A.21: Predictions for g = 2, h = 1 open orbifold Gromov–Witten invariants of
C3/Z4 at winding number 3.
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B.1. Euler integral representations, analytic continuation and

generalized hypergeometric functions

B.1 Euler integral representations, analytic con-

tinuation and generalized hypergeometric func-

tions

As we pointed out in Sec. 2.2.2, an important feature of our formalism for solving
the genus zero B-model is the fact that we can work directly with an Euler-type
integral representation for the periods. We will focus here in the case p = q = 2,
but the strategy is completely general and computationally feasible as long as xi is
algebraically related to ai.
For p = q = 2, the derivatives of the periods have the simple form (3.2.44), (3.2.45).
Using the standard Euler integral representation for the complete elliptic integral
K(x)

2K(x) =

∫ 1

0

dθ√
θ
√

1 − θ

1√
1 − xθ

(B.1.1)

we can integrate back a4 and get

ΠA(ai) =

∫ 1

0

2a5dθ√
θ
√

1 − θ
log

[
a4 +

√
c21 + (c22 − c21)(1 − θ)

]
(B.1.2)

ΠB(ai) = 4

∫ 1

0

2a5dθ√
1 − θ2θ

log

[
1√

c21 − c22

(
a4θ +

√
(c21 − c22) + c2θ2

)]
(B.1.3)

where the constant factors in a4 are introduced as a constant of integration in order
to satisfy (2.2.9). Formulae (B.1.2), (B.1.3) then yield simple and globally valid
expressions for the periods and significantly ease the task of finding their analytic
continuation from patch to patch. For small a4, we can simply expand the integrand
and integrate term by term. For large a4 ΠA has the following asymptotic behavior

ΠA = 2a5 log (2a4) − 2
(
a3a

2
5

)( 1

a4

)2

+
(
−3a2

3a
3
5 − 6a1a2a

3
5

)( 1

a4

)4

+O

(
1

a4

)5

(B.1.4)
but an expansion for ΠB is much harder to find. The leading order term can still be
extracted, for example in the a2 = a3 = a5 = 1 patch using

∫ 1

0

log

[
θa+

√
1 +

(
b+

a2

4

)
θ2

]
dθ√

1 − θ2θ
= 2Li2(−1 − a) +O(log a) (B.1.5)

which gives

ΠB = 4

(
log

(
1

2 4
√
a1

)
− log

(
1

a4

))2

+O (log a4) (B.1.6)

148



Appendix B. Useful formulae

Single and double logarithmic behaviors as in (B.1.4, B.1.6) are characteristic of the
large radius patch in the moduli space, which as we will see will be given precisely
by a4 → ∞ (and a1 → 0).

Lastly, a nice fact to notice is that the periods for this particular case take the
form of known generalized hypergeometric functions of two variables. For example
we have that, modulo a4 independent terms, the A period can be written as

ΠA =
π

4
log c1 +

π

4

(
a2

4

c1
− c1

)
F 1,2,2

1,1,1

[
1 3

2
, 1 1

2
, 1

2

2 2 1

∣∣∣∣∣c1
(

1 − a2
4

c21

)
, c1

(
1 − c22

c21

)]

(B.1.7)
in terms of the Kampé de Fériet1 hypergeometric function of two variables.

1See Eric Weinstein, “Kampé de Fériet Function”, http://mathworld.wolfram.com/KampedeFerietFunction.html,
or [59, 60] for a more detailed account on such functions.
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B.2. Lauricella functions

B.2 Lauricella functions

We collect here a number of properties and useful formulae for Lauricella’s F
(n)
D

functions. The interested reader might want to look at [59] for a detailed discussion
of this topic.

B.2.1 Definition

The usual power series definition of Lauricella F
(n)
D of n complex variables is

F
(n)
D (a, b1, . . . , bn; c; x1, . . . , xn)

=

∞∑

m1=0

· · ·
∞∑

mn=0

(a)m1+···+mn(b1)m1 · · · (bn)mn

(c)m1+···+mnm1! · · ·mn!
xm1

1 · · ·xmn
n , (B.2.1)

whenever |x1|, . . . , |xn| < 1. For n = 1 this is nothing but Gauss’ hypergeometric
function 2F1(a, b; c; x); for n = 2 is boils down to Appell’s F1(a, b, c; d; x, y). It also
satisfies the following system of PDE’s, which generalizes the n = 1 hypergeometric
equation

abjFD = xj(1 − xj)
∂2FD
∂x2

j

+ (1 − xj)
∑

k 6=j
xk

∂2FD
∂xk∂xj

+ [c− (a+ bj + a)xj ]
∂FD
∂xj

− bj
∑

6=j
xk
∂FD
∂xk

j = 1, . . . , n (B.2.2)

The system (B.2.2) has regular singular points when

xi = 0, 1,∞ and xi = xj i = 1, . . . , n, j 6= i (B.2.3)

The number of intersecting singular submanifolds in correspondence of the generic
singular point

(x1, . . . , xn) = (0, . . . , 0︸ ︷︷ ︸
p

, 1 . . . , 1︸ ︷︷ ︸
q

,∞, . . . ,∞︸ ︷︷ ︸
n−p−q

) (B.2.4)

is

(
p+ 1

2

)(
q + 1

2

)(
n− p− q + 1

2

)

In contrast with the well-known n = 1 case, typically the Lauricella system does
not close under analytic continuation around a singular point. As explained in [59], a
complete set of solutions of the F n

D system (B.2.2) away from the region of convergence
|xi| < 1 involves a larger set of functions, namely Exton’s Ck

n andDp,q
(n). We will report

here a number of analytic continuation formulae valid for generic n, and refer to [59]
for further results in this direction. See also [66] for further developments in finding
asymptotic expressions for large values of the parameters.
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B.2.2 Analytic continuation formulae for Lauricella FD

In the following, results on analytic continuation for FD will be expressed in terms
of Exton’s C and D functions

C
(k)
n ({bi}, a, a′; {xi})

=
∑

m1,...mn

∏
i(bi)mi

(a)Pn
i=k+1mi−

Pk
i=1mi

(a′)−Pn
i=k+1mi+

Pk
i=1mi

∏
i
x

mi
i

mi!

(B.2.5)

Dp,q
(n)(a, b1, . . . , bn; c, c

′; x1, . . . , xn)

=
∑∞

m1=0 · · ·
∑∞

mn=0

(a)mp+1+···+mn−m1−···−mp (b1)m1 ···(bn)mn

(c)mq+1+···+mn−m1−···−mpc
′
mp+1+···+mq

m1!···mn!
xm1

1 · · ·xmn
n ,

(B.2.6)

• Continuation around (0, 0, . . . , 0,∞)

F
(n)
D (a, b1, . . . , bn; c; x1, . . . , xn) =

Γ

[
c, bn − a
bn, c− a

]
(−xn)−aF (n)

D (a, b1, . . . , bn−1, 1 − c+ a; 1 − bn + a; x1

xn
, . . . , xn−1

xn
, 1
xn

)

+Γ

[
c, −bn + a
a, c− bn

]
(−xn)−bC(n−1)

n (b1, . . . , bn, 1 − c+ bn; a− bn;−x1, . . . ,−xn−1,
1
xn

)

(B.2.7)

• Continuation around (0, 0, . . . , 0, 1)

F
(n)
D (a, b1, . . . , bn; c; x1, . . . , xn) = Γ

[
c, c− bn − a

c− a, c− bn

]
(1 − x1)

−b1 . . . (1 − xn−1)
−bn−1

×x−bnn C
(n−1)
n (b1, . . . , bn, 1 + bn − c; c− a− bn;

x1

1−x1
, . . . , xn−1

1−xn−1
, 1−xn

xn
)

+Γ

[
c, bn + a− c
a, bn

]
(1 − x1)

−b1 . . . (1 − xn−1)
−bn−1(1 − xn)

c−a−bn

×F (n)
D (c− a, b1, . . . , bn−1; c− a− bn + 1; 1−xn

1−x1
, . . . , 1−xn

1−xn−1
, 1 − xn)

(B.2.8)

• Continuation around (0, 0, . . . ,∞, 1)

F
(n)
D (a, b1, . . . , bn; c; x1, . . . , xn) = Γ

[
c, bn + a− c
a, bn

]
(1 − xn)

c−a−bn ∏n−1
i=1 (1 − xi)

−bi

×F (n)
D (c− a, b1, . . . , bn−1; c− b1 − · · · − bn; c− a− bn + 1; 1−xn

1−x1
, . . . , 1−xn

1−xn−1
, 1 − xn)

+Γ

[
c, c− a− bn, a− bn−1

c− a, c− bn−1 − bn, a

]
(1 − x1)

−b1 . . . (1 − xn−1)
−bn−1x−bnn

×D1,2
(n)(c− a− bn, bn, . . . , b1; c− bn−1 − bn; bn−1 − a+ 1; xn−1

xn
, 1

1−xn−1
, xn−2

1−xn−2
. . . , x1

1−x1
)

+Γ

[
c, bn−1 − a

c− a, bn−1

]
(1 − xn−1)

−a

×F (n)
D (a, b1, . . . , bn−2; c−

∑n
i=1 bi; bn, a− bn−1 + 1; 1−x1

1−xn−1
, . . . , 1−xn−2

1−xn−1
, 1

1−xn−1
, 1−xn

1−xn−1
)

(B.2.9)
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B.3. CSMM as a unitary matrix model

Notice that the formulae above are valid only for generic values of the parameters
bi, a and c. Should one be confronted with singular cases, it would be necessary to
take a suitable regularization (such as bi → bi + ǫ) and after analytic continuation
take the ǫ→ 0 limit. See Appendix B in [10] for more details; suffice it here to report
as an example the case bn = a:

F
(n)
D (a, b1, . . . , bn−1, a; c; x1, . . . , xn)

= Γ

[
c

a, c− a

]
(−xn)−a

∑
M

∑∞
mn=0 Γ

[
c− a− |M ||
c− a+ |M |

]
(a)|M|+mn (1−c+a)2|M|+mn

(|M |+mn)!mn!

∏n−1
i=1

(bi)mi

mi!
×

× (log(−xn) + hmn)
(
x1

xn

)m1

· · ·
(
xn−1

xn

)mn−1 (
1
xn

)mn

+Γ

[
c, c− a
a

]
(−xn)−a

∑
M

∑|M |−1
mn=0

(a)mnΓ(|M |−mn)
mn!(c−a)|M|−mn

∏n−1
i=1

(bi)mi

mi!
xm1

1 · · ·xmn−1

n−1

(
1
xn

)mn

,

(B.2.10)
with

hmn = ψ(1 + |M |+mn) + ψ(1 +mn)− ψ(a+ |M |+mn)− ψ(c− a−mn), (B.2.11)

and M = (m1, . . . , mn) is a multindex (so that |M | ≡∑mn

i=1mi).

B.3 CSMM as a unitary matrix model

An alternative matrix model realization can be given, in the trivial vacuum m = 0,
as an integral over unitary matrices. Starting from (4.3.1) and reasoning along the
lines of [117] we have that the CS partition function can be written as

Z
L(p,q)
U(N)

(
k, 0
)

=

∫
dNxe−

p(x·x)
gsq

∏

i<j

sinh

(
xi − xj

2q

)
sinh

(
xi − xj

2

)
, (B.3.1)

and by means of the identity

∏

i<j

sinh (a(xi − xj)) =
e−a(N−1)

P

i xi

2N(N−1)/2
∆(e2axi), (B.3.2)

we can write (B.3.1) as follows

ZCS =

∫ +∞

−∞

dNx

2N(N−1)/2
exp

[
−p(x · x)

gsq
− (N − 1)(q + 1)

2q

∑

i

xi

]
∆(xi)

2∆(exi/q)∆(exi)

∆(xi)2
.

(B.3.3)
Now, with the help of the Itzykson-Zuber formula [97]

det(ejxi/q)

∆(ij)∆(xji )
=

1∏N−1
p=0 p!

(
1

q

)N(N−1)
2

∫
dU1e

1
q
Tr(U1ADU

†
1Xd) (B.3.4)
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with AD = diag (1, . . . , N) and using that

∫

u(N)

f(X)dX = ΩN

∫

RN

dNx∆2(x)f(diag(xi)) (B.3.5)

for any Ad-invariant f : u(N) → C, where ΩN = (2π)N(N−1)/2/
∏N

j=1 j!, we can turn
(4.3.6) for m = 0 into a HUU 3-matrix integral

ZCS =

(
N !

(4πq)N(N−1)/2

)∫
dXe

−p
gsq

TrX2− (N−1)(q+1)
2q

TrX

×
∫
dU1dU2e

1
q
Tr(U1ADU

†
1X)+Tr(U2ADU

†
2X) (B.3.6)

Defining X̂ ≡ U †
1XU1, U ≡ U †

1U2 and exploiting the translation invariance of the
Haar measure on U(N)

ZCS =

(
N !

(4πq)N(N−1)/2

)∫
dX̂e

−p
gsq

TrX̂2− (N−1)(q+1)
2q

TrX̂

×
∫
dUe

1
q
Tr(ADX̂)+Tr(UADU

†X )̂ (B.3.7)

The gaussian integral over X̂ gives

ZCS =

(
N !

(4πq)N(N−1)/2

)∫
dUe

gs
2p

TrUAU†A

exp

{
gs
8pq

[(
N − 1

4

)2

N(q + 1)2 + (q2 + 1)TrA2 − (N − 1)(q + 1)2TrA

]}
(B.3.8)

Notice that this last integral can be explicitly evaluated by means of the Itzykson-
Zuber formula [97]. The result is in agreement with [48], where the same expression
was computed by exploiting the biorthogonal polynomials.

B.4 Expansion formulae for Gauss’ hypergeomet-

ric function around integer parameters

We give here some useful expansion formulae [98] for the expansion of Gauss’ hyperge-
ometric function 2F1(a, b, c; x) around integer values of a, b, and c. By hypergeometric
recursions, this can be reduced to the following cases:

153



B.5. Hypergeometric Yukawas as algebraic functions

2F1

(
1 + a1ε, 1 + a2ε

2 + cε

∣∣∣∣ z
)

=
1 + cε

z

(
− ln(1 − z) − ε

{
c− a1 − a2

2
ln2(1 − z)

+cLi2 (z)

}
+ ε2

{
[
(a1 + a2)c− c2 − 2a1a2

]
S1,2(z) +

[
(a1 + a2)c− c2 − a1a2

]

ln(1 − z)Li2 (z) + c2Li3 (z) − 1

6
(c− a1 − a2)

2 ln3(1 − z)

}

−ε3

{
c
[
(a1 + a2)c− c2 − 2a1a2

]
S2,2(z) + c

[
(a1 + a2)c− c2 − a1a2

]

ln(1 − z)Li3 (z) + (c− a1)(c− a2)(c− a1 − a2)

[
ln(1 − z)S1,2(z)

+
1

2
ln2(1 − z)Li2 (z)

]
+

1

24
(c− a1 − a2)

3 ln4(1 − z)

+c(c− a1 − a2)
2S1,3(z) + c3Li4 (z)

}
+ O(ε4)

)
, (B.4.1)

2F1

(
a1ε, a2ε
1 + cε

∣∣∣∣ z
)

= 1 + a1a2ε
2

(
Li2 (z) − ε

{
(c− a1 − a2)S1,2(z) + cLi3 (z)

}

+ε2

{
c2Li4 (z) + (c− a1 − a2)

2S1,3(z) +
1

2
[c(c− a1 − a2) + a1a2] [Li2 (z)]2

− [c(c− a1 − a2) + 2a1a2] S2,2(z)

}
+ O(ε3)

)
. (B.4.2)

B.5 Hypergeometric Yukawas as algebraic func-

tions

For OP1(1) ⊕OP1(−3) we have

Y3(τ2) =
1

4
3F2

[
1

4
,
1

2
,
3

4
;
1

3
,
2

3
;−44

33
exp(−τ2)

]
− 1

4
(B.5.1)

By the remarkable formula [82]

n−1Fn−2

[
1

n
, . . . ,

n− 1

n
;

2

n− 1
, . . . ,

n− 2

n− 2
,

n

n− 1
;
x(1 − xn−1)

fn

n−1
]

=
1

1 − xn−1

(B.5.2)
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where fn = (n− 1)n−n/(n−1), and the fact that

3F2

[
1

4
,
1

2
,
3

4
;
1

3
,
2

3
; x3

]
=

d

dx

{
1

x
3F2

[
1

4
,
1

2
,
3

4
;
2

3
,
4

3
; x3

]}

we get, upon defining

x3 := −44

33
exp(−τ2) (B.5.3)

t(x) :=

√
1 − x3 − 1

2
(B.5.4)

y(x) :=
1

2

√√√√ x
3
√

4t
+

3
√
t− 2 3

√
2√

−x+(2t)2/3

3√t

−

√
−x+(2t)2/3

3√t

2 3
√

2
(B.5.5)

that

Y3(x) =
−y(x)3 + 3xy′(x)y(x)2 + 1

(y(x)3 − 1)2 (B.5.6)

Unfortunately, this does not seem to simplify the task of finding a closed form in z
for the flat functions.
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