
Master Thesis

Analysis of Hybrid Parallelization Strategies:
Simulation of Anderson Localization

and
Kalman Filter for LHCb Triggers

Author: Jimmy Aguilar Mena
Supervisor: Sebastiano Pilati

Co-supervisor: Ivan Girotto

Trieste, 2015

ii

Acknowledgement

First and foremost I would like to thank God.
I am using this opportunity to express my gratitude to everyone who supported me throughout this

Master. I am thankful for their aspiring guidance and invaluably constructive criticism.
This work and the permanence in Trieste were supported by the Abus Salam, International Centre

for Theoretical Physics (ICTP).
I am also grateful to the professors of the Master for their assistance, specially to my supervisors

Sebastiano Pilati and Ivan Girotto. I could not have imagined having a better mentors.
I would like to special thank to those professors that after this year I can identify more than pro-

fessors, as friends. Specially Giuseppe Piero Brandino, and Stefano Cozzini. Without their precious
support it would not be possible to arrive at this stage of the Master.

Thanks to my family for their support and love. And finally I would like to thank all students that
shared with me this year.

“Gratitude is not only the greatest of virtues, but the parent of all others.”

Cicero

iii

Chapter 0. Acknowledgement

iv

Abstract

This thesis presents two experiences of hybrid programming applied to condensed matter and high
energy physics. The two projects differ in various aspects, but both of them aim to analyse the benefits
of using accelerated hardware to speedup the calculations in current science-research scenarios.

The first project enables massively parallelism in a simulation of the Anderson localisation phe-
nomenon in a disordered quantum system. The code represents a Hamiltonian in momentum space,
then it executes a diagonalization of the corresponding matrix using linear algebra libraries, and finally
it analyses the energy-levels spacing statistics averaged over several realisations of the disorder.

The implementation combines different parallelization approaches in an hybrid scheme. The averag-
ing over the ensemble of disorder realisations exploits massively parallelism with a master-slave config-
uration based on both multi-threading and message passing interface (MPI). This framework is designed
and implemented to easily interface similar application commonly adopted in scientific research, for ex-
ample in Monte Carlo simulations. The diagonalization uses multi-core and GPU hardware interfacing
with MAGMA, PLASMA or MKL libraries. The access to the libraries is modular to guarantee portability,
maintainability and the extension in a near future.

The second project is the development of a Kalman Filter, including the porting on GPU architectures
and autovectorization for online LHCb triggers. The developed codes provide information about the
viability and advantages for the application of GPU technologies in the first triggering step for Large
Hadron Collider beauty experiment (LHCb).

The optimisation introduced on both codes for CPU and GPU delivered a relevant speedup on the
Kalman Filter. The two GPU versions in CUDA R© and OpenCLTM have similar performances and are
adequate to be considered in the upgrade and in the corresponding implementations of the Gaudi
framework.

In both projects we implement optimisation techniques in the CPU code. This report presents exten-
sive benchmark analyses of the correctness and of the performances for both projects.

v

Chapter 0. Acknowledgement

vi

Contents

Page

Acknowledgement iii

1 Introduction 1
1.1 Project 1 . 1
1.2 Project 2 . 2

2 Enabling massive parallelism to study the Anderson localisation phenomenon 5
2.1 Materials and Methods . 5

2.1.1 Numerical procedure to determine the energy spectrum and the level-spacing
statistics speckle patterns . 6

2.1.2 Serial program functions . 7
2.1.3 Eigensolver algorithms . 9
2.1.4 Solver interface . 11
2.1.5 Master-slave thread based system . 13
2.1.6 Implementing a reusable module for the master-slave system 15
2.1.7 Object oriented thread programming . 17
2.1.8 Command line options . 18
2.1.9 Functionalities in development process . 18

2.2 Results and Discussion . 20
2.2.1 Ported code validation . 20
2.2.2 Scalability on CPU . 20
2.2.3 Performance with GPUs . 24

3 Kalman Filter improves using GPGPU and autovectorization for online LHCb triggers 27
3.1 Materials and Methods . 27

3.1.1 Experiment description . 27
3.1.2 Particle reconstruction on triggers. 28
3.1.3 Kalman Filter . 28
3.1.4 Detector and Software Characteristics . 29
3.1.5 Code isolation . 29
3.1.6 Comments about CUDA R© and OpenCLTM . 30
3.1.7 Implemented code . 30
3.1.8 Other details . 32

3.2 Results and Discussion . 34
3.2.1 Results for serial code . 34
3.2.2 Benchmarks to the GPU versions with data copy 35
3.2.3 Benchmarks to the GPU versions with a pointer to global memory 37
3.2.4 Parallel versions on CPU . 38

vii

Contents

Conclusions 41

Bibliography 43

viii

Chapter1
Introduction

General-purpose GPU computing (GPGPU) is the use of a graphics processing unit (GPU) together
with a central processor unit (CPU) to do general purpose scientific and engineering computing. (SCAI
2012)(NVIDIA Corporation 2015)

This thesis analyses two experiences of hybrid CPU and GPGPU programming applied to con-
densed matter and high energy physics respectively. Both projects differ in application field, technology
and complexity, but have in common the exploitation of GPU hardware and hybrid programming to
reduce the processing time.

The projects approach GPU technologies in different ways. The first one interfaces libraries that
exploits GPU internally while the other is implemented with GPU’s parallel computing programming
languages.

1.1 Project 1

The first project is: “Enablement of a massive parallelism to study the Anderson localisation phe-
nomenon in disordered quantum systems”. It was developed in collaboration with the Condensed Mat-
ter and Statistical (CMSP) Physics department of the Abdus Salam International Centre for Theoretical
Physics (ICTP).

Anderson localisation is the complete suppression of wave diffusion due to destructive interference
induced by sufficiently strong disorder.

To study this phenomenon we represent the Hamiltonian in momentum space and execute a diago-
nalization to get the eigenvalues. Then we perform an analysis of energy-levels spacing statistics and
the results are averaged over many realisations of the disorder pattern.

The starting point for this project was previously implemented FORTRAN serial version. This original
version had several limitations and it interfaced to PLASMA to make the diagonalization.

The main challenge was to implement the different levels of parallelization using hybrid programming
techniques(Rabenseifner 2003). The top level of parallelism among different nodes employs distributed
memory paradigm with Message Passing Interface (MPI). Withing the nodes each process employs
shared memory multiprocessing programming with Open Multi-Processing API (OpenMP).

A master-slave system controls all processes sequentially, assigning a given workload on demand
to each slave, and managing the fault tolerance system. This system is based on Portable Operating
System Interface (POSIX) threads to make a more efficient use of hardware. This master-slave code
is modular, and can be reused in other similar problems as a framework without MPI or multi-threading
coding by the user. The implementation provides thread save routines hidden from outside the frame-
work.

A simulation consists in the ensemble of many realisations of the disordered model. It can be
solved sequentially or in parallel, accordingly to compilation and execution options. For each realisation
of disorder the program executes an initial generation routine, a Fast Fourier Transform (FFT) and a
diagonalization of an Hermitian Matrix. The final diagonalization can be performed using Intel Math

1

Chapter 1. Introduction

Kernel Library (MKL), Parallel Linear Algebra for Scalable Multi-core Architectures Library (PLASMA) or
Matrix Algebra on GPU and Multi-core Architectures Library (MAGMA).

The MAGMA library works one or multiple GPUs. This is another level of parallelization in the hybrid
programming scheme of the project and it is a good case of study due to the exploitation of GPU
technologies through the use of libraries without explicit GPGPU programming.

MKL is the only mandatory dependency, because all the solvers and FFT routines use it. But all
the other parameters and dependencies are optional and configurable. The solvers interfaces are also
modular to allow not only code reuse, but also the implementation of new solvers with a standard format.

For this first project the general objective was:

To implement a massive parallel code to study the Anderson localisation phenomenon.

To accomplish this goal we had the following list as specific objectives:

1. To develop a new modularized software in C/C++ to be used as stand-alone binary or included
in a framework for exploiting distributed systems. C-style coding is also aimed to better interface
modern libraries for high performance linear algebra (i.e., MAGMA, PLASMA, etc. . .)

2. To analyse different linear algebra libraries and functions available that can solve diagonalization
and chose the best ones for our purposes.

3. To implement a centralized communication system to control and address the simulation, this
should be transparent for the final user.

4. To implement a useful log system and defensive programming strategies to facilitate debugging
and latter modifications.

5. To manage the initialisation of the pseudo random-number generators used to generate the disor-
der realisations in a centralised scheme.

1.2 Project 2

The second project was “Kalman Filter speedup using GPGPU and autovectorization for online LHCb
triggers”. It was performed as a testing code for the Gaudi framework (LHCb software architecture
group 2015) (Clemencic 2015) of the Large Hadron Collider beauty experiment (LHCb) in European
Organization for Nuclear Research (CERN).

The Kalman filter is a set of mathematical equations that provides an efficient computational (recur-
sive) means to estimate the state of a process, in a way that minimizes the mean of the squared error.
(Welch and Bishop 1995)

A small section of the serial version of Gaudi framework was the starting point for this project. To
compare possible results and behaviours we developed four different versions of the Kalman filter. The
first one was an optimised version of the original serial code for CPU. Other two versions made for GPU
used Compute Unified Device Architecture (CUDA R©) and Open Computing Language (OpenCLTM).
The last version was multi-threaded with OpenMP, it served as a comparison patterns for the parallel
OpenCLTM version tested on CPU.

This project exploits GPU hardware through direct GPGPU programming with CUDA R© and OpenCLTM.
This is the main feature that distinguishes it from the first project, despite using the same hardware.

For this second project the general objective was:

To implement, optimise and benchmark some Kalman Filter codes using different optimisa-
tion techniques for CPU and GPU programming.

To accomplish this goal we had the following list as specific objectives:

1. To port the code of interest out of the Gaudi framework guaranteeing the compatibility with the
results and consistency.

2

1.2. Project 2

2. To implement and benchmark an improved version for CPU that can be interfaced easily with a
GPU implementation.

3. To implement and benchmark a version of the Kalman Filter using OpenCLTM and CUDA R©, com-
pare performance and accuracy.

4. To improve or correct if possible the initial GPU implementations of the code and compare with
CPU versions.

3

Chapter 1. Introduction

4

Chapter 2
Enabling massive parallelism to study

the Anderson localisation phenomenon

2.1 Materials and Methods

Anderson localization is the complete suppression of wave diffusion due to destructive interference
induced by sufficiently strong disorder (Lagendijk, Tiggelen, and Wiersma 2009). It was first discussed
in (Anderson 1958) and observed much latter in various physical systems.

y

x

Figure 2.1: Speckle Image

Recently, transverse Anderson localization was realised in randomised optical fibres (Karbasi, Mirr,
et al. 2012), paving the way to potential applications in biological and medical imaging (Karbasi, Frazier,
et al. 2014).

The experiments performed with ultra-cold atoms are emerging as the ideal experimental setup to
study Anderson localization (Aspect and Inguscio 2009; Shapiro 2012). Unlike other condensed-matter
systems, atomic gases are not affected by absorption effects, and allow experimentalists to suppress
the interactions.

5

Chapter 2. Enabling massive parallelism to study the Anderson localisation phenomenon

Furthermore experimentalists can create three-dimensional disordered profiles (typically referred to
as optical speckle patterns) with tunable intensity. Figure: 2.1 shows the intensity profile of a speckle
pattern measured on a plane orthogonal to the beam propagation axis z.

The program we implemented is a tool to study the Anderson localization of atomic gases ex-
posed to three-dimensional optical speckles by analysing the statistics of the energy-level spacing. This
method allows us to consider realistic models of the speckle patterns, taking into account the possibly
anisotropic correlations which are realised in concrete experimental configurations.

The main goal is to compute the mobility edge Ec of a speckle pattern, that is, the energy threshold
that separates the localised from the extended eigenstates. In the Program we consider different mod-
els, one of them takes into account the case where two speckle patterns are superimposed, forming
interference fringes.

2.1.1 Numerical procedure to determine the energy spectrum and the level-
spacing statistics speckle patterns

The basic steps for the simulation are: first, the program uses one of the numerical algorithms described
in (Fratini and Pilati 2015) to generate isotropic or anisotropic speckle patterns. Second, it calculates
the Hamiltonian for the system; third it obtains the eigenvalues of the Hamiltonian. Finally the program
processes those values to determine the statistical distribution of the spacing between consecutive
energy levels to locate Ec .

The mathematical details related with the generator algorithms are not relevant in this report, but the
other steps are due to their relation with the code.

The equation 2.1 gives the real-space Hamiltonian of a quantum particle moving inside a speckle
pattern:

Ĥ = − h̄2

2m
∆ + V (r) (2.1)

where:

h̄ reduced Planck’s constant.

m particle mass.

V (r) external potential at the position r corresponding to the intensity of the optical speckle field.

The implemented models consider a box with periodic boundary conditions and linear dimensions
Lx , Ly and Lz , in the three directions ι = x , y , z. For numerical calculations it is convenient to represent
the Hamiltonian operator in momentum space as a large finite matrix (equation: 2.2)

Hk,k′ = Tk,k′ + Vk,k′ (2.2)

where:

Tk,k′ kinetic energy operator

Vk,k′ potential energy operator.

The wavevectors form a discrete three-dimensional grid: k = (kx , ky , kz), with the three components
kι = 2π

Lι
jι, where jι = −Nι/2, ... , Nι/2 − 1, and the number Nι determines the size of the grid in the ι

direction and, hence, the corresponding maximum wavevector.
Therefore, when expanded in the square matrix format, the size of the Hamiltonian matrix Hk,k′ is

Ntot × Ntot, where Ntot = NxNy Nz . This is an important factor to consider because it represents the fast
Hamiltonian dimension growing relation with respect to the grid size.

In this basis the kinetic energy operator is diagonal: Tk,k′ = −h̄2k2

2m δkx ,k ′
x
δky ,k ′

y
δkz ,k ′

z
, where δkι,k ′

ι
is the

Kronecker delta.
The element Vk,k′ of the potential energy matrix can be computed as:

Vk,k′ = ṽk′−k (2.3)

6

2.1. Materials and Methods

where ṽk is the discrete Fourier transform of the speckle pattern V (r).

ṽkx ky kz = N−1
tot

∑
rx

∑
ry

∑
rz

vrx ry rz exp[−i(kx rx + ky ry + kzrz)] (2.4)

where vrx ry rz = V (r = (rx , ry , rz)) is the value of the external potential on the Ntot nodes of a regular lattice
defined by rι = Lιnι/Nι, with nι = 0, .., Nι − 1.

Wavevectors differences are computed exploiting periodicity in wavevector space. Our code com-
putes the Hamiltonian eigenvalues using a numerical linear algebra library. These represent the energy
levels.

In a delocalized chaotic system the distribution of the level spacings δn = En+1−En should correspond
to the statistics of random-matrix theory (in particular, to the Gaussian orthogonal ensemble), namely,
the Wigner-Dyson distribution. Instead, in the “low-energy regime” the energy levels easily approach
each other like independent random variables. This is a consequence of the localised character of the
corresponding wave functions. In this regime the levels spacing follow a Poisson distribution.

In order to identify the two statistical distributions and determine the energy threshold Ec which
separates them, we compute the ratio of consecutive level spacings:

r =
min{δn, δn−1}
max{δn, δn−1}

(2.5)

The average over disorder realisations is known to be 〈r〉WD ' 0.5307 for the Wigner-Dyson distri-
bution, and 〈r〉P ' 0.38629 for the Poisson distribution. This statistical parameter was first introduced
in the context of many-body localization.

2.1.2 Serial program functions
The program can use two different strategies to collect the eigenvalues. The first option is to consider a
large system but this method involves two problems.

On one hand the Hamiltonian size increases as a power of 6 with respect to the grid dimension.
Such array requires a large amount of memory that is not available for our researchers. On the other
hand the eigenvalues calculation is a ∼ O(n3) problem remaining a ∼ O(npmax9) problem with respect
to the grid dimension. This non lineal relations make this strategy inefficient.

The second option is to solve many systems if intermediate size. The only consideration in this case
is that all the systems must be different from each other and the results are accumulative contributions
to the same statistics. This consideration is easy to solve.

The first step in this project was to implement the main FORTRAN routines porting them to C/C++.
We elected this language because all the possible libraries to use are implemented in C. Program-
ming language mixture was undesirable because it makes the code harder to maintain and adds extra
complexities. From the beginning we wanted to create a modular code, and C++ Object Oriented Pro-
gramming (OOP) functionalities were also desired.

We classified the functions in the serial code according to their functionality. First we implemented
the essential routines for the calculations. We ported also some other functions used exclusively for
development.

Mandatory functions

The initial software had a five steps sequence that we reproduced in the parallel version. At first, we
ported this functions as they were. After some tests, we modified them to fit in the parallel version and
to prevent potential errors.

The main steps were:

1. Initial disorder system generation.

The first step is the generation of a disorder system using an initial seed in the random number
generator. Using a different seed in the random number generator it is possible to generate several
statistically equivalent disorder realisations of disorder with the same distribution of intensities and
two points spatial correlation function.

7

Chapter 2. Enabling massive parallelism to study the Anderson localisation phenomenon

In the FORTRAN code only one function implemented this, it guaranteed the diversity between
different systems providing different seeds to the random number generator in every call. A loop
provided the sequence in the serial code but a seed range change implied a source code modifi-
cation.

To distribute the disorder realisations, the serial code implemented a loop, but our parallel version
uses MPI to distribute the different seeds among the processes.

The initial function implemented four different models of speckle patterns, we call them: Plain,
Shell, Sum2 and Spherical. Details are described in (Fratini and Pilati 2015). A hard coded global
variable determined the choice between the models and the function contained several conditional
instructions combined with loops. This made the code unreadable and any modification could
easily create bugs.

In our implementation we split this routine in four different functions, one for each model. This
choice increased the number of lines of code for all the program, but it made the code much
more readable and changeable. We used a pointer to functions and a helper function to avoid
conditional instructions and to guarantee that new models can be added easily. A better memory
management was an extra advantages of this implementation.

For the final parallel version we inserted all this functions in an OOP schema to eliminate data
replication and global variables.

2. Fast Fourier Transform.

The second step after the generation of the speckle pattern is the Fast Fourier Transform function
(FFT) in three dimensions. This step is needed to represent the Hamiltonian operator in momen-
tum space as explained in equation 2.2 section: 2.1.1 page: 6. The original code used dfti MKL
interface to FORTRAN Fast Fourier transform. Each function call needs an error checking after it
and the code became harder to read.

Our code implements this function using the same dfti interface as in the original code. The
impact in performance for this function is negligible comparing with the diagonalization. The only
modification included for this function was to port the code and interface with MKL from FORTRAN
to C, and the addition of some macros for error checking.

The macros were to make the code more uniform and readable considering that all the routines
would have the same behaviour in case of failure. We inserted extra error checking strategies due
to the complexity of the MKL interface.

3. Hamiltonian calculation.

The Hamiltonian has to be defined before the diagonalization. It is the biggest array to be allocated
in memory and its eigenvalues are the data we need to perform the statistical analysis, which
allows us to extract Ec .

Our implementation for this function follows exactly the same steps than the original one. We
added memory bound checks and extra error checking associated with the memory management
functions like malloc and free. We guaranteed to free all the unneeded arrays after this function to
provide extra space for the diagonalization.

The Hamiltonian is an array of complex numbers. The C99 standard added a complex type to C
programming language; C++ provides a template type for the same purpose. The libraries made
in C should use internally the standard complex type from C99. Any modification in the standard
will results in equivalent modifications to the library. We took this into account to make our code
more portable choosing the C99 complex type instead of the C++ template.

4. Some eigensolver algorithms.

The FORTRAN code solved the eigenvalues problem calling the PLASMA zheev routine. This
function computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.

In our code we considered also some other functions and libraries combinations. Subsection 2.1.3
contains more details about solver algorithms.

8

2.1. Materials and Methods

5. Processing results.

The last step in the simplest serial code is data processing.

The program constructs an accumulative histograms with the eigenvalues from all the systems.
The process functions is called in the same loop after the other functions.

In the parallel version the processing function should receive the results from all the remote pro-
cesses, because the final results are additive. We isolated this function from the previous four to
take advantage of the master-slave system in the parallel version. Subsection 2.1.5 explains the
master-slave system details.

Figure 2.2 illustrates the flowcharts for the serial implementations. The FORTRAN code’s flowchart
(Figure 2.2a) shows all the steps in subsection: 2.1.2. We grouped all the sequential steps using only a
“Calculate” step to simplify the C++ diagram (Figure 2.2b).

Our code’s design has a higher complexity because such a version already includes error han-
dling mechanisms. An extra function provides the seeds so that we can use different random seed
sequences. The exit condition is when any function returns −1 to provide a uniform method to check it.

We considered to provide an option to specify the interesting interval for eigenvalues. This feature
implies that some diagonalization can return zero values in the interesting region of the eigenspace. In
this situation the code checks the existence of results before any action to avoid useless MPI calls or
blocking thread save executions.

Optional functions

After porting the functions needed to make calculations, we ported some functions needed by develop-
ers. This functions were in the original program and are useful to detect errors in some of the previous
steps. The original FORTRAN code needed to be modified and recompiled to call any special functions
during development-testing time.

Those functions are used to make tests only during development, like debug options. The researcher
only makes serial tests therefor the implementations of this functions is consequent with that. Out
implementation includes new command line options to avoid extra code modifications and involuntary
bugs creation. Subsection 2.1.8 provides more details about command line options.

In this category of testing routines we included only two functions called: writespeckle and correla-
tion.

1. writespeckle creates text files to plot the speckle and detect errors in the initial disorder system
generation.

2. correlation uses statistical criteria to check the consistency of the speckle model. This statistics
needs iteration over very big data and the function can be slow. We improved this function in the
final version using OpenMP.

2.1.3 Eigensolver algorithms

At this point we face the most time consuming part of the code. The program needed to calculate the
eigenvalues and optionally eigenvectors of a complex Hermitian matrix. The possible functions that
solves this problem are named with the pattern zheev* in all the libraries that use the Linear Algebra
PACKage (LAPACK) library naming scheme. Each library adds some extra suffixes.

The two standard functions zheev and zheevd can solve this kind of problems. This functions are
available in almost any Linear Algebra Library, usually with small variations. A third function zheevr is
frequently available in some libraries.

This three functions differs in functionality or the algorithm used.

zheev Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. In this
eigensolver the matrix is preliminary reduced to tridiagonal form.

There are two different versions for this eigensolver:

9

Chapter 2. Enabling massive parallelism to study the Anderson localisation phenomenon

(a) Flowchart serial Fortran code
(b) Workchart serial C++ code

Figure 2.2: Serial flowchart of the original FORTRAN (2.2a) and the ported C++ (2.2b) implementations.
The routines inside the “calculation” function are the same in both implementations, but we grouped
them in the C++ representation to simplify the diagram

One-stage eigensolver The one-stage tridiagonalisation is the approach used in the LAPACK
eigensolvers. The modern versions are partially improved including an hybrid algorithm of
the tridiagonal eigensolver. The tridiagonalisation’s performances are limited, since 50% of
the operations are level 2 BLAS operations. (Solca et al. 2012)

Two-stage eigensolver This version solves the problem of the limited performance of the tridi-
agonalisation step in the previous routine. In the first step the matrix is reduced to a band
matrix, while in the second step the band matrix is reduced to tridiagonal one using a bulge
chasing technique. (Haidar, Ltaief, and Dongarra 2011).
For the second step it uses a bulge chasing algorithm, very similar to the previous one. They
differ by using a column-wise elimination, which allows to have better locality for computing
or applying the orthogonal matrix resulting from this phase. The drawback of this approach
lies by the eigenvectors backtransformation, since the tridiagonalisation is performed in two
steps, the backtransformation requires also two steps.

zheevd The main difference with zheev is that zheevd uses a divide-and-conquer (D&C) eigenvalue
algorithm.

10

2.1. Materials and Methods

This algorithm was introduced in (Cupper 1981) the approach can be expressed in three phases:

1. Partition the tridiagonal matrix T into several sub-problems in a recursive manner.

2. compute the eigen decomposition of each sub-problem, which are defined by a rank-one
modification of a diagonal matrix.

3. Merge the sub-problems and proceed to the next level with a bottom-up fashion.

(Haidar, Ltaief, and Dongarra 2012)

The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It
will work on machines with a guard digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail
on hexadecimal or decimal machines without guard digits

zheevr This routine is a one-stage or two-stage eigensolver like zheev but includes the possibility to
compute only a fraction of the eigenspace.

The main reason to use this function is the reduction of computational time when only a small
portion of eigenvectors is needed.

2.1.4 Solver interface
The most important aspects in our code were the solvers and the parallelization framework. The first
challenge we got was designing a common interface for all the libraries.

We checked the state of the art and MKL, PLASMA, ScaLAPACK and MAGMA are extensively used
in linear algebras high performance applications. All this libraries contain variants of the eigensolvers
described in section 2.1.3

From now the main limitation for the program is the systems size and number of this realisations. In
our parallel version we considered that every individual problem to solve will fit in memory on one node.
And the parallel schema will try to solve simultaneously as many systems as possible. For this reason
the use of ScaLAPACK was neglected.

In the initial benchmarks we obtained better results with PLASMA and MAGMA. We also imple-
mented a solver interface to MKL because it is a dependency anyway. This solver can be useful for
developers and to make tests in personal computers.

To provide a common interface with all the libraries, we took advantage of OOP techniques. We
created an abstract class solver that exposes only the needed functions to the main program. All the
solver objects will derive from this class and provides a common interface to the program. The solver
classes manage all the different types names for complex numbers in the different libraries exposing
always the same types to the client side.

In general, all the solvers provide the same options and internally they call the right functions accord-
ing con the initialisation options. The user can not change the options ones the solver is constructed.
The serial code only calculated eigenvalues, but in our version we included an option to calculate also
eigenvectors. So far we have not implemented any functionality for eigenvectors, but the solver should
provide the option for a near future.

The solvers are independent of each other and the rest of the program. This modular design allows
us not only to reuse any solver in any other similar application, but also to select the desired solver
taking into account the available hardware and software. In our implementation the user can chose the
solvers in compilation or run times.

The function needs more time if also eigenvectors are computed and in the centralised schema the
amount of data to transmit between processes is also larger. We gave some optional solutions to this
problems within the interfaces but the developer should consider them to add new functionalities with
eigenvectors.

In the final code we implemented four solver classes. One for MKL, another for PLASMA and other
two for MAGMA. All the solvers initialise the libraries in the constructor and provide an int solver::solve(double*)
routine to calculate the eigenvalues. An internal array, allocated in the constructor, stores the results. All
the routines have error prevention strategies. In case of failure, they print an error with information about

11

Chapter 2. Enabling massive parallelism to study the Anderson localisation phenomenon

the error location and return -1. We added a debug compilation option to the solvers that produces a
verbose output to stderr. The output gives information about called functions and returned values. This
strategies are consistent with the framework’s design. (See subsection 2.1.6)

Interface to MKL Library

MKL library includes a one-stage variant of zheev. The divide and conquer (zheevd) and the range
defined (zheevr) variants are also included.

The MKL library is usefull in computers without a PLASMA or MAGMA installations. In computers
with a low number of cores MKL performance is better than PLASMA’s and it is the simplest option for
testing small systems.

As the FFT function uses MKL, the library became the only real dependency for our code and its
eigensolver can help for development and testing purposes.

Interface to PLASMA Library

The name PLASMA is an acronym for Parallel Linear Algebra Software for Multi-core Architectures. It
has been designed to be efficient on homogeneous multicore processors and multi-socket systems of
multicore processors. (Dongarra, Kurzak, and Langou 2010)

PLASMA version 1.0 was released in November 2008 as a prototype software providing proof-of-
concept implementation of a linear equations solver based on LU factorization, SPD linear equations
solver based on Cholesky factorization and least squares problem solver based on QR and LQ factor-
izations, with support for real arithmetic in double precision only.

Plasma implements many important software engineering practices including: thread safety, support
for Make and CMake build systems, extensive comments in the source code using the Doxygen sys-
tem, support for multiple Unix OSes, as well as Microsoft Windows through a thin OS interaction layer,
clear software stack built from standard components, such as BLAS, CBLAS, LAPACK and LAPACK C
Wrapper.

zheev was a one-stage eigensolver before PLASMA 2.5, but the newest versions uses the two-stage
algorithm. The tests with two different versions of plasma gave the same performance with one-stage
and two-stage routines. But is mostly important most important that the same interface worked in both
cases.

Plasma assumes the full running node allocation and only one plasma process running in each
node. The default behaviour is to allocate the full node when there is not a thread number in the
plasma initialisation routine, and allocate always starting on the first core. Plasma provides two more
specific functions to manage the threads affinity, but we need to manage this using some environment
information. A more detailed explication is in section: 2.1.6 pag: 17.

Interface to MAGMA Library

The MAGMA project aims to develop a dense linear algebra library similar to LAPACK but for hetero-
geneous/hybrid architectures, starting with current “Multicore+GPU” systems. It is based on the idea
that optimal software solutions will have to hybridise to address the complex challenges of the emerging
hybrid environments. (ICL Team 2015)

This library combines the strengths of different algorithms within a single framework. The algorithms
and frameworks for hybrid many-core and GPU systems can enable applications that exploit the power
offered by each of the hybrid components.

Many routines have the same base names and the same arguments as LAPACK, but sometimes
MAGMA needs large workspaces or some additional arguments in order to implement an efficient al-
gorithm. These are generally hybrid CPU/GPU algorithms and the suffix indicates if the matrices are
initially allocated in the host or the device, not where the computation is done.(MAGMA development
team 2015)

none hybrid CPU/GPU routine where the matrix is initially in CPU host memory.

m hybrid CPU/multiple-GPU routine where the matrix is initially in CPU host memory.

12

2.1. Materials and Methods

gpu hybrid CPU/GPU routine where the matrix is initially in GPU device memory.

mgpu hybrid CPU/multiple-GPU routine where the matrix is distributed across multiple GPUs’ device
memories.

Magma provides the 1-stage and 2-stage eigensolvers as different functions. The 2 stage routine is
available only for host storage and the divide and conquer function was merged with the range defined
eigensolver adding the suffix “x”. In total there are 12 different variants of zheev* functions.

The users can implement many solvers with any combination of functions. We considered that the
Hamiltonian is usually very big and does not fit in the GPU Memory. For this reason our solver do not
includes GPU storage functions with the gpu or mgpu suffixes.

The one-stage solver included in our program uses a combination of 4 functions. The solver deals
with the device number internally to call the routine for a single or multiple GPUs, It also considers if the
range of interesting values is all the eigenspace or a section to call zheevd or zheevr.

The two-stage routine in Magma needs 2 times the memory than the one-stage algorithm. Our
program considers the possibility of hardware improvement in a near future and includes a solver that
uses a two-stages routines with similar characteristics that the other.

2.1.5 Master-slave thread based system

One of the simplest parallel programming paradigm is the “master-slave” approach. A master process
generates many sub-problems, which are fired off to be executed by the slave. The only interaction
between the master and slave computations is that the master starts the slave computation, and the
slave computation returns the result to the master. There are no significant dependencies among the
slave computations. (Sahni and Vairaktarakis 1996)

The traditional approach for this kind of problems implements the master-slave system on MPI pro-
cesses. Traditionally, MPI programs used a fixed number of homogeneous processes but dynamic and
heterogeneous resources are characteristic in modern architectures.

The master-slave strategy perfectly fits the ensemble averaging technique employed in our study
of Anderson localization. This kind of statistical approach is employed in most theoretical studies of
disordered systems in science and engineering. Therefore we expect that our implementation of the
master-slave scheme will also find application in future studies.

In our application, the master only sends one integer value (the seed) to each slave and receives
the results after the slaves ends the calculations. These integer values (the seeds) are used by the
slaves to initialise the sequences of pseudo random-numbers that are employed in the algorithm that
generates the disorder pattern. Therefore, the slaves can generate uniquely identified disorder reali-
sations. The ensemble of the seeds is archived by the master providing to the users the advantage
of a checkpoint/restart system, which is a fundamental requirement for scientists to access world-class
grants on large-scale HPC systems.

The operations needed to process the results are simple and serial and the arrays storing the his-
tograms for the compute of < r > are negligible comparing with the Hamiltonian.

On the other hand the main solvers we implemented for intensive calculations used MAGMA or
PLASMA. The first one requires some GPU cards in the node and the second gives a better perfor-
mance with a bigger number of threads.

In this simulations only one problem fits in the memory node and the user needs to set only one
process per node in the mpirun call. At that time the common way to use our program must be allocating
one process in each node and to implement multi-threading programming inside the processes.

Considering all this we concluded that it is a waste of resources to use the conventional master-slave
scheme with one node for the master process only. Even more if we use nodes with multiple GPUs or
heaps cores.

Our proposal was to use a master slave system where the master will be a thread attached to one
of the slaves. Using this schema all the nodes will be maximised, but the one running the master thread
will receive some extra work. This decompensation should be taken into account because the master
workflow impacts all the system. To solve this we modified the maximum number of threads in the slave
that runs in the same node to provide some free cores for the master thread.

13

Chapter 2. Enabling massive parallelism to study the Anderson localisation phenomenon

Thread Safety in MPI

Traditionally MPI implementations do not have highly tuned support for multithreaded MPI communica-
tion. In fact, many implementations do not even support thread safety. The issue of efficiently supporting
multithreaded MPI communication has received only limited attention in the literature. (Balaji et al. 2008)

For performance reasons, MPI defines four monotonic “levels” of thread safety:

1. MPI THREAD SINGLE Each process has a single thread of execution.

2. MPI THREAD FUNNELED A process may be multithreaded, but only the thread that initialised
MPI may make MPI calls.

3. MPI THREAD SERIALIZED A process may be multithreaded, but only one thread at a time may
make MPI calls.

4. MPI THREAD MULTIPLE A process may be multithreaded, and multiple threads may simultane-
ously call MPI functions with a few restrictions.

MPI provides a function, MPI Init thread, by which the user can indicate the level of thread support
desired, and the implementation will return the level supported. A portable program that does not call
MPI Init thread should assume that only MPI THREAD SINGLE is supported.

The level of thread support that can be provided by MPI INIT THREAD will depend on the imple-
mentation and the MPI compilation options. It may also depend on information provided by the user
before the program started to execute. The MPI THREAD MULTIPLE level is the most comfortable for
multi-threading programming, but although it is implemented in most of the libraries, it is deactivated
due to its performance impact.

The default thread support in most MPI implementations is MPI THREAD SERIALIZED or lower.

First Master-slave thread based implementation

Our first test for a master-slave system assumed the higher thread support level MPI THREAD MULTIPLE.
The master was attached to the first process and all the slaves implementation were exactly the same.
A simple system for tag values guaranteed the right communication between all the processes even
between the master and the slave with the same process rank. No thread save strategies were applied
to the seeds provider function or to process results because MPI blocking communication guaranteed a
save master execution.

The problem in this implementation was that we needed to compile the MPI library, by default no
MPI THREAD MULTIPLE was available anywhere. This implementation was simpler, but affected the
portability.

Second Master-slave thread based implementation

In the second implementation we assumed a MPI THREAD FUNNELED thread support. The code was
fully portable, but there were other problems:

1. The slave in the first process was executed as the attached thread because with this level only the
thread that initialised MPI can make MPI calls.

The first slave had a completely different workflow with respect to the other slaves. The code size
increased 4 times, because the master and the remote slaves shared a common main function
and code replication became hard to maintain.

2. The master and the slave in the same process communicated without MPI, but calling the same
functions to get seeds and process results.

This is a good choice because there are not MPI communications within the same process. The
local array can be processed directly without an extra copy to a temporal buffer. The only special
consideration is that shared routines needs thread save implementations to prevent data corrup-
tion.

14

2.1. Materials and Methods

Third Master-slave thread based implementation

The final implementation assumed MPI THREAD SERIALIZED thread support and it is a good middle
point between the first and the second implementations. The master thread is executed as in the first
implementation, but the local slave calls the functions directly without MPI communication. As the array
with the results in the slave and the process function are in the same process, no local data copy are
needed.

All the slaves had the same code with some simple conditional instructions, but the code size was
closer to the first version. We needed to keep the thread save routines like in the second version for the
same reasons.

To make thread save routines we used the simplest mutual exclusion strategies with mutex objects.
This method serialises the access to shared data using mechanisms that ensure only one thread reads
or writes to the shared data at any time. Incorporation of mutual exclusion needs to be well thought out,
since improper usage can lead to side-effects like deadlocks, livelocks and resource starvation.

The C++11 standardises support for multithreaded programming, and we considered to use it to
manage the threads easily. But for this kinds of operations the standard defines the threads and mutex
as std members.

Considering this from another angle, the pthread.h header is extensively used and compatible with
older compilers, it is useful in C and C++ and almost standard in Linux. We used the older version for
portability and backward compatibility.

All the implementations use the on-demand master slave method where the master thread knows
how many jobs will be assigned from the beginning. This master thread only takes care of the remote
processes and when no remote processes are running the thread ends.

In the master thread some internal values contain the number of remote processes running, the last
seed sent to each remote process, the number of systems already solved in each process and some
other useful information. When all the planed jobs are submitted to the slaves, the master sends -1 to
any new requester slave, the end condition is when the master has send -1 to all the remote processes.

2.1.6 Implementing a reusable module for the master-slave system

Figure:2.3 shows the simplified flowchart for the framework. Only one thread in each process makes
MPI calls. The remote processes have a simpler scheme as the one on the right part of the picture.
The attached thread in process zero collects all the results sent by the remote processes and executes
the analysis. The slave thread in process zero does not use the master thread to process the results
because such process have direct access to the same functions than the thread.

The arguments to implement the model with threads are applicable to any high performance sim-
ulation. Several applications can benefit from the model implemented in our project. For this reason
we decided to implement the master-slave thread bases system like a simple reusable framework. In
this way we can provide support to many applications and the improves will benefit more potential
applications.

Current implementation takes advantage of the object oriented programming techniques and in the
near future we will include generic programming techniques. We implemented the framework as an
abstract class with three pure virtual functions. The functions should be implemented by the user
following simple rules and using serial code. The final user do not need to know about MPI or multi-
threaded programming. The implementation turns the user defined function in thread save routines
internally if needed. The three functions to implement are: the seed sequence generator, the calculate
function and the function to process the results.

This three steps are generic and the rules to implement them are in the project’s documentation.
We designed the module to support conditional compilation. The master-slave framework can com-

pile as serial code without MPI library. This is useful to develop and test code in personal computers
before testing it in parallel environments. This functionality is provided using macros, and can be com-
bined with other compilation options.

It is different to run the serial code or the parallel version with only one process. The attached master
thread is always created in the parallel version but it ends immediately if there is a single process in
the communicator because it detects only remote processes. The first process modifies the maximum

15

Chapter 2. Enabling massive parallelism to study the Anderson localisation phenomenon

Figure 2.3: Thread based framework’s flowchart.

• Blue squared sections represent a shared memory region (a process).

• The green lines represent that the functions joined are the same, but they are called from different
execution threads in the same process. This routines are thread save.

• Yellow regions represent MPI calls.

• Red arrows are the messages between processes.

number of threads available for the libraries in the parallel version to provide capacity to the attached
thread and the code contains useless conditional instructions, calls to MPI functions and thread save
strategies. On the other hand, we optimised the serial code deleting all the unneeded calls and depen-
dencies.

We made some tests to the serial and parallel version of the program and we could not get any
differences in performance. Maybe the differences would be observed in applications with calculation
time smaller than processing time; but our framework is not designed to be used in those conditions.

We added a logfile system to debug errors and to check the simulation status. The log file system
provides information about the overall simulation and specific errors details. User defined routines can
insert information in the logfile using a function similar to printf provided by the framework.

The framework includes a self consistent error managing system. All functions should return -1 in

16

2.1. Materials and Methods

case of error to properly integrate in the framework. We included special macros to guarantee and
facilitate an effective error checking and readability.

The process prints a message with useful information when the framework detects an error in a
remote process. After that it sends -1 to the master thread to inform the problem, the master thread
adds more information about the failure to the logfile and sends -1 back. When a process receives -1 it
jumps automatically to the MPI finalise barrier and it starts spinning. The master thread sends -1 after
detecting an error or to inform that the last seed was reached.

This workflow guarantees that a single failure does not kill all the program and prevents corrupted
data insertion in results.

Affinity assignation

Processor affinity, or CPU pinning enables the binding and unbinding of a process or a thread to a
CPU or a range of CPUs. So that the process or thread will execute only on the designated CPU or
CPUs rather than any CPU. This is like a modification of the native central queue scheduling algorithm
in a symmetric multiprocessing operating system. Each item in the queue has a tag indicating its king
processor. At the time of resource allocation, each task is allocated to its kin processor in preference to
others.

A thread’s core affinity mask determines the set of cores on which it is eligible to run on a mul-
tiprocessor system. Setting the CPU affinity mask can be used to obtain performance benefits. By
dedicating one CPU to a particular thread, it is possible to ensure maximum execution speed for that
thread.

Restricting a thread to run on a single CPU also avoids the performance cost caused by the cache
invalidation that occurs when a thread ceases to execute on one CPU and then recommences execution
on a different CPU. The affinity mask is a per-thread attribute that can be adjusted independently for
each of the threads in a thread group.

External libraries can assume a full node allocation, some libraries provides functionalities to set
the number of threads to use, but default behaviour is not standard. When the application creates an
external thread, conflicts are possible with the libraries and the cores affinity. This conflicts are more
dangerous when running many processes in the same node. Plasma, for example, provides a method
to set the number of threads but assumes the full node allocation. Magma have an affinity macro but
the some control functions are unprovided.

We implemented some environment checks using POSIX for hardware and MPI for the processes
information. The framework collects this information in its constructor and estimates the maximum
number of threads in each process and the index of the first core to use. This information is useful for
the interfaces to the solver classes and to decide the core where the slave thread should run in the first
process.

Our master thread’s performance can impact all the processes in our system therefore we assigned
a dedicated core to it. The default behaviour in our implementation is to run the master thread in the
last core available for the first process and assign the other n − 1 cores to the libraries when affinity
functionalities are available.

The current implementation does not handle multiple processes in the same node with a MAGMA
solver. The reason for this is that analogous options are not available to manage the core affinity in
MAGMA and GPU affinity should be considered.

2.1.7 Object oriented thread programming

Multi-thread programming using the pthread.h header is limited by the absence of object orientated
implementation. This is expected considering that the header is useful not only in C++ but also with C.
Thread creation routine receives a pointer to a function as an argument. Such a function can not be an
object member because those are not defined in the standard. But in the framework all functions are a
member of the base abstract class to provide a simpler transparent interface to the user. It is possible to
create a thread with an object’s static function, but static functions have not access to the “this” pointer
and can modify only other static members.

17

Chapter 2. Enabling massive parallelism to study the Anderson localisation phenomenon

We solved this using two functions: first a static function that receives a pointer to an object as
the framework and second a private helper function. A non static member function creates the thread
passing its this pointer as argument to the static one throw the pthread interface. At that time the static
function calls the private one using the received “this” pointer and the dereference operator (->).

The real execution for the thread is in the second function and the static one works just as a helper
to the interface.

2.1.8 Command line options

The implementation of command line options was a time consuming feature, but very useful for the
benchmarks and the code usage. The framework sets any command line option aside the constructor.
It is a framework design choice, but the user can implement this feature, or any other parameter modi-
fication function. The last configuration step and memory allocation is the first step before starting the
calculations inside the framework. This step is independent from the constructor.

To prevent the extra code modification we implemented two different input options: a command
line and an input file. The input file is a mandatory command line option and the last argument to be
provided.

The command line options have the same names than the input file. The command line value is
used if command line and input file provide different values for the same variable. We provided some
extra options for the serial or the parallel versions that can be useful to debug or testing.

The provided options allows to call an optional function (see subsection: 2.1.2 page: 9) instead of
the normal calculation sequence, or to build a dynamic graph with gnuplot for a small number of runs.
We provided a full help command with all the possible options.

To implement the command line options parser we employ the GNU getopt routines. Some code
is reused to parse also the input file making the program completely consistent and the new insertions
easier to implement.

2.1.9 Functionalities in development process

The already implemented parallel program contains all the functionalities available in the original FOR-
TRAN version. We are still improving it and automatising operations that used to be hand made. Some
functionalities in development process deserve a comment.

Restart a previous calculation

The statistic tests are performed only after the program ends. The researcher starts a new calculation
if needed and the results used to be combined manually. Now the program contains a restart option
that allows to restart a previous calculation from the previous state. To use this function the user should
provide a restart parameter with the output file from a previous run and provide a different seeds range.
This option is an experimental feature and needs to be improved.

Documentation

Doxygen is the standard tool for generating documentation from annotated C++ sources. It also sup-
ports other popular programming languages such as C, Objective-C and C#.

We are developing a full documentation using Doxygen to facilitate the use of the program for new
users. The completed parts in the documentation is already available using bitbucket hosting with useful
information about the program in general and some results for comparing performance and accuracy.

The installation and the different alternative combinations are commented too and we provide some
links to get the dependencies and their installation instructions. The class hierarchy is provided with
comments about the most important variables and functions.

There is a special section for the master-slave framework. There the functionalities and usage
instructions are explained. In case the master slave framework receives enough interest in the future,
we are planing to give it a special support as an independent library.

18

2.1. Materials and Methods

Installation

A proper build and installation system is essential to use any software extensively. CMake is a cross-
platform, open-source build system. It is used to control the software compilation process using simple
platform and compiler independent configuration files. CMake is available almost any server because
most of the projects are migrating from autotools. We considered to use CMake as the project’s build
system, but there is not any standard way to find the dependencies we need.

The portability is a priority, for this reason we made all the modules optional. The build system
should create only the executable files to avoid the risk of new dependencies or complexities in different
architectures. Simplicity is always beneficial to get usability in a project and we are careful with build
automatising.

From now we decided to use an elaborated Makefile until a more complex build system could be
implemented. The absolute paths for the libraries should be declared as environment variables with
specific names. This is the simplest option at the moment to perform several tests with different compil-
ers or libraries versions.

The Makefile checks the variables and compilers in the path and makes the best possible choice. It
will provide always the serial version and will add the support for all the libraries it could find with the
environment variables. It will create the parallel executable if there is some MPI compiler.

19

Chapter 2. Enabling massive parallelism to study the Anderson localisation phenomenon

2.2 Results and Discussion

2.2.1 Ported code validation

When porting a code to a different programming language the first step is to check that the new version
produces the same results than the old one. This validation should be made before anything else. Since
we use a different random number generator, the comparison has to consider the statistical fluctuations.
We could not check some code sections until the end.

Our validation required two steps. First we corrected some errors in the interfaces to the libraries
and we started the validation for the mandatory routines after(see section: 2.1.2 page: 7). An initial
benchmarks to the libraries functions provided the information about the useful functions and expected
performance for final code.

The tests were made in Ulisse using the regular queue for PLASMA or MKL and the gpu queue
when using MAGMA’s. Regular nodes contain 20 Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz cores
and at least 40 GB of ram memory. Each node has two GPUs NVidia Tesla K20m with 4 GB of memory.

Validating the interfaces with the libraries

The first step was to validate the interfaces with the libraries because we needed a solver class to test
the rest of the ported code. Such test code will be included with the program because it is useful to
develop new interfaces in the future.

The validation for the interfaces was quick because all the libraries produced the same results when
working. We automatised the test with a bash script and a small C++ program. The program calculates
the eigenvalues of several random Hermitian matrices using all the interfaces and saves the results in
text files. The bash script compares all the files and prints any difference. We added some extra error
handling strategies to the interfaces considering the errors we found in this section.

The only problems we faced were with memory allocations in MAGMA’s two-stage routine. We
reported the problem to the developers and they corrected it. Therefore we made all the benchmarks
using the last MAGMA release, version 1.7.0.

Validating the ported functions

In this test both optional functions (see section: 2.1.2 page: 9) helped to validate the initialisation routines
and correct all the bugs. Being save that all the interfaces to the libraries produce the same results we
tested the accuracy using PLASMA interface only. We made this choice because it is faster to access
some nodes in the regular queue than in the gpu one and the system’s dimension is relatively small.

The system dimension and parameters were the same used to obtain some previous results with
the serial code. Our software needed less that 2 hours to solve 20000 systems npmax = 16 using 16
nodes and one process per node.1

Figure: 2.4 illustrates the ensemble-averaged adjacent-gap ratio 〈r〉 as a function of the energy E/Eσ

for an isotropic speckle pattern of intensity V0 = Eσ and two different system sizes. Eσ is the correlation
energy. The horizontal line is the result for the Wigner-Dyson distribution. (Fratini and Pilati 2015)

Figure: 2.5 shows the relative difference between results from our code and the original one using
three values for the grid. The difference is compatible with the standard deviation. The calculations for
each grid size needed around 24 hours with the FORTRAN serial code. The difference between both
data is lower than 0.5% and it is associated with statistical fluctuations. In the lower energy region the
errors are bigger because there is a lower values accumulation and consequently worst statistics.

2.2.2 Scalability on CPU

Scalability refers to the capability of a system to increase its total output when resources are added.
Testing the scalability in our code provides information about if it is suitably efficient and practical when
applied to a large number of participating nodes.

1Please remember that the diagonalised matrix is the system’s Hamiltonian in complex representation with dimension npmax3

20

2.2. Results and Discussion

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

<
r>

E/E
σ

<r> as function of Energy

Serial N=12

Serial N=18

Parallel N=12

Parallel N=18

Wigner-Dyson

Figure 2.4: Ensemble-averaged adjacent-gap ratio 〈r〉 obtained with the original serial implementation
and our parallel version. Eσ is the correlation energy.

 0

 0.5

 1

 1.5

 2

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
e
la

ti
v
e
 e

rr
o
r

(%
)

E/E
σ

Relative error

N=12

N=16

N=18

Figure 2.5: Percent of relative difference in results from our code and from the original FORTRAN code
for grid size npmax = 12, 16 and 18

The scalability graph represents the calculation time with serial code divided by the time using paral-
lel code. We calculated this value for 1,2,4,8,16 and 32 nodes to illustrate the system scalability respect
to the number of nodes. All the nodes have the same number of cores therefore the local parallelism is
considered constant in this benchmark.

To build the scalability graph the program solved a system as big as memory allowed. The limitation
to solve bigger systems is the memory size available in individual nodes. With the hardware available in
Ulisse we can solve systems with npmax = 36 using PLASMA or npmax = 34 with MAGMA’s one-stage

21

Chapter 2. Enabling massive parallelism to study the Anderson localisation phenomenon

routine.
The two-stage routine in MAGMA needs more memory and we can allocate a system no bigger

than npmax = 33. The formulation in our program only works for even dimensional systems, hence the
bigger system we can solve with all the interfaces is npmax = 32.

To construct the scalability graph we need to solve the same problem using different number of
nodes, starting with one. Plasma needs around 20 minutes to calculate the eigenvalues in a system
with this dimension but walltime in the regular queue in Ulisse is 12 hours. With this in mind we es-
timated that around 32 systems could be solved within the walltime in serial code. We ran five times
each configuration and we report the mean to make a precise measurement considering statistical fluc-
tuations. To estimate the error we used the error of the mean as the standard deviation divided by
sqrt(N − 1) where N is the total number of measurements.

We could not make this test using any GPU interface because in Ulisse we can get only two nodes
per process in the GPU queue.

Scalability test for affinity implementation

Section: 2.1.6 page: 17 explains how we managed the affinity for PLASMA’s interface and the extra
master thread considerations. The first implementation did not consider the affinity, this consideration
emerged from other tests and after the corrections we benchmarked the code again. We expected to
find differences between the results when running multiple processes per node, but single process per
node configurations also showed performance differences.

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32

S
p
e
e
d
u
p

Nodes

Plasma Speedup npmax=32 systems=32

Plasma_no-affinity Speedup

Plasma_affinity Speedup

Figure 2.6: Scalability using Plasma with 1,2,4,8,16 and 32 nodes. The affinity line is always over the
initial non-affinity implementation.

Figure 2.6 shows the scalability graph using PLASMA. Both lines shows an almost lineal scalability
from 2 to 32 nodes, but the implementation that considers the affinity provides better values. The
performance difference can be estimated throw the scalability, but we should consider that serial code
was improved and the times fraction hides some information. The relative difference in time between
both serial code versions is close to 10%.

This difference is due to a change in performance for PLASMA with affinity thread because that is
the only difference between the two codes. The master thread affinity does not influence the serial
version because that version never creates a master thread.

Table 2.1 shows the influence of affinity in calculation time. The times for the affinity code are always
smaller in serial and parallel code. The reported values are the mean over 10 tests for each point in the

22

2.2. Results and Discussion

table. We calculated the relative differences respect to the first implementation (non-affinity) using the
formula σ = |t1−t2|

t1
× 100.

The parallel version evidences smaller relative time changes respect to serial code. This difference
increases very slowly with the number of nodes and they are completely independent to PLASMA’s
number of threads. This can be a consequence of a more efficient master thread due to affinity assig-
nation.

Nodes affinity time (s) no-affinity time (s) Relative difference (%)
1 28916 ± 336 31332 ± 636 7.71 ± 2.94
2 14813 ± 180 17457 ± 116 15.14 ± 1.59
4 7667 ± 83 8196 ± 70 6.45 ± 1.82
8 3841 ± 49 4377 ± 52 12.24 ± 2.16

16 2099 ± 86 2442 ± 31 14.05 ± 4.62
32 1083 ± 19 1265 ± 23 14.35 ± 3.05

Table 2.1: Mean execution time and relative difference to solve 32 systems sized npmax = 32 using
PLASMA with and without core affinity. The relative difference between times uses the non-affinity time
as pattern time in the formula.

PLASMA vs MKL performance

An interesting test was the benchmark between MKL and PLASMA. The MKL version 11.1 is available in
Ulisse, unfortunately such a version is old and the results using newer releases could be significantly dif-
ferent. MKL library is always a reference to solve this kind of problems and a comparison with PLASMA
have sense considering that both have multi-thread support and will run on the same hardware.

We tried the same benchmarks we ran with PLASMA, but the calculation time typically exceeds
the walltime in the regular queue. Because of this we could collect results only for 16 and 32 nodes.
Although we compiled MKL solver with parallel support, runtime checks proved that regardless the
number of threads available, zheev routine uses only 1 or 2 cores at the time.

Nodes Plasma time (s) MKL time (s)
16 2099 29693
32 1083 14879

Table 2.2: Mean execution time to solve 32 systems sized npmax = 32 using PLASMA and MKL.

Table 2.2 confirms the low parallelization in the zheev routine of MKL. The times using MKL are in
the order of

Small Systems and Multiple Processes per Node

During the parallel solution of linear algebra problems with PLASMA, the scalability respect to the num-
ber of threads is not lineal. PLASMA’s scalability with respect to the number of threads is not lineal
and excessive parallelism is useless for small systems. Consequently the time to solve two systems
sequentially in one process with 20 threads is bigger than in two process with ten threads each.

Considering this from another angle, an excessive number of processes in the master-slave scheme
can impact performance. The master consumes time to process the results forcing any remote sending
process to wait. The probability of this undesirable situation increases proportionally to the number of
remote processes and inversely to the individual processing time.

We should consider to run multiple processes per node when many small systems fit in the memory
of the individual nodes. As the number of cores in a node is fixed, increasing the number of processes
per node implies a reduction of the cores available per process.

Plasma manages internally the affinity and MPI binding command line options did not produce the
expected behaviour. To run multiple processes in the same node we managed the affinity internally not

23

Chapter 2. Enabling massive parallelism to study the Anderson localisation phenomenon

only for plasma, but also for the master thread. A brief description of our strategy is in section: 2.1.6
pag: 17.

In this benchmark we ran the parallel program on four nodes with 20 cores each using 1,2,4 and 5
processes per node. We selected a different number of total systems to solve according to their size
to get better precision with smaller times. To build the graph we normalised the times respect to the
number of solved systems in each tests for each size.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

12 16 18 20

T
im

e
 (

s
)

Grid size (npmax)

Mean time per system on nodes=4 with different configurations

Processes per node
1

2

4

5

Figure 2.7: Mean solution time per system for different configurations with multiple processes per node
for small systems.

Figure 2.7 shows significant differences when running two processes per node respect to one. In
small systems the difference is around 50%. This relative difference decreases with system size be-
cause in bigger systems the scalability is closer to linear in PLASMA. The data to process in the master
thread is a vector of the same dimension than the Hamiltonian ((npmax3)) and processing time for re-
sults grows proportionally. This can explain why performance is worst for bigger system sizes when we
run four processes per node.

A reduction in the total number of threads per process increases the individual time to solve one
system, but we should also consider the affinity impact if the processes are allocated correctly in the
processors.

2.2.3 Performance with GPUs

We tested the system’s behaviour using MAGMA solvers interface for one and two stage routines. All
the benchmarks ran on Ulisse using the gpu queue and this limited the maximum number of nodes in
use because that queue only allows two nodes per process.

MAGMA provides different function prototypes for one-stage and two-stages routines. Each function
has a single and a multiple GPU’s version with slightly different interfaces. We ran the benchmarks with
the same system size used in subsection 2.2.2 to reuse PLASMA’s results in the graph.

Solving this we found errors in the MAGMA one-stage routines for single and multiple GPUs. The
error “info” variable returned a successful value but the results values were unset. The function returned
after about a minute.

On the other hand the two-stage routines were executing for longer time than one-stage version and
produced some results. But those did not match with the values from PLASMA. We tested memory
allocation in the workspace in the host side and other possible errors in our code unsuccessfully.

24

2.2. Results and Discussion

This error occurred only for large systems and not in all the routines. In the Ulisse’s GPU nodes the
errors started for npmax = 26 in the one-stage version with one gpu. The others routines started to fail
with slightly larger systems.

We informed the developer about this issues but we set npmax = 24 in our benchmarks because
this is the bigger even value we could find where all the functions run correctly.

Figure 2.8 shows performance difference for one-stage and two-stage routines on single and multiple
GPUs. The current implementation can not handle multiple processes per node with a MAGMA solver
because of the reasons in subsection: 2.1.6 page: 17.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 2

T
im

e
 (

s
)

Total Nodes

Time npmax=24 sytems=32

Plasma_affinity

Plasma_no-affinity

Magma-1-GPU

Magma-2-GPU

Magma-2stage-1-GPU

Magma-2stage-2-GPU

Figure 2.8: Total calculation time for 32 systems with npmax = 24 using MAGMA one-stage and two-
stage routines on one and two nodes. The black lines on the top of each block are the error bars. The
statistic error for this system sizes is negligible and it was calculated using the same procedure than in
previous section: 2.2.2

The one-stage function is slower than two-stage routine as expected according to subsection: 2.1.3
page: 9. The PLASMA eigensolver uses a two-stage routine and this makes it faster than the one-stage
routine in MAGMA regardless the hardware. The speedup is 1.7x when using two GPUs instead of one,
but even with this hardware it is 5% slower than PLASMA.

The two stage routines are two times faster than the one-stage with the same number of GPUs. The
main limitation for this function is the amount of memory it needs in the workspace. On the other hand
the speedup when using two GPUs is just 1.1x.

In the tests with npmax = 26 we found that the two-stage routine was even slower with two GPUs
than one. This is a problem in the MAGMA release that falls back some computation on CPU and need
to be fixed by hand in the source code.

Comparing with PLASMA the two-stage routine in MAGMA is 10% faster with one GPU and 20% with
two GPUs. This difference will increase when using pinned memory (Boyer 2015) because according
to the developers it is always faster for these eigensolvers. But we did not implement this functionality
due to the expected sizes of the matrices.

Scalability

We calculated the scalability respect to the total number of nodes. In this case it is perfectly lineal using
MAGMA as a consequence of the small system size used in this test. We added some testing code
in the framework to check the blocked time of processes and with this system size was always zero
because the results are processed very fast in the master thread.

25

Chapter 2. Enabling massive parallelism to study the Anderson localisation phenomenon

We made 20 tests for each function and the error was smaller than 1% for all the reported times.
The statistic error for this system sizes is negligible and it was calculated using the same procedure
than in previous section: 2.2.2.

26

Chapter 3
Kalman Filter improves using GPGPU
and autovectorization for online LHCb

triggers

3.1 Materials and Methods

3.1.1 Experiment description

The LHCb experiment is at one of the four points around CERN’s Large Hadron Collider where beams
of protons are smashed together, producing an array of different particles. It is a single arm forward
spectrometer at the LHC collider, designed to do precision studies of beauty and charm decays, among
others.

This experiment aims to record the decay of particles containing b and anti-b quarks, collectively
known as “B mesons”. The detector design guarantees to filter out these particles and the products of
their decay. These decays feature a displaced vertex as signature. To isolate these interesting decay
requires software triggers.

B mesons formed by the colliding proton beams stay close to the line of the beam pipe. Other LHC
experiments surround the entire collision point with layers of sub-detectors, like an onion, but the LHCb
detector stretches for 20 metres along the beam pipe, with its sub-detectors stacked behind each other
like books on a shelf.

Each sub-detectors specialises in measuring a different characteristic of the particles produced by
colliding protons. Collectively, the detector’s components gather information about the identity, trajec-
tory, momentum and energy of each particle generated, and it can single out individual particles from
the billions that spray out from the collision point. (LHCb Experiment 2008)

Trigger description

The detector registers around ten million proton collisions per second. Due to limited storage capacity
a trigger system filters the best of them reducing the frequency from 30 MHz to 15 kHz in two steps.

1. The first step uses information taken in real-time from the detector–specifically from the Vertex
Locator (VELO), the calorimeter, and the muon system.

This trigger level reduces the frequency from 30 MHz to 1 MHz. The first level trigger takes deci-
sion in 250 ns.

2. A very large amount of data still remains after the first level trigger.

27

Chapter 3. Kalman Filter improves using GPGPU and autovectorization for online LHCb
triggers

This trigger level processes 35 GB of data every second into 2000 computers underground at the
LHCb site. This second level trigger has more time to take the decision than the previous one and
reduces the frequency from 1 MHz to 15 kHz

An upgrade to all the LHCb experiment will take place in the next years. Different software and
hardware modification are tested constantly to improve performance. This tests and simulations take
place inside the framework “Gaudi”.

Gaudi Framework

The Gaudi project is an open project for providing the necessary interfaces and services for building
High Energy Physics HEP experiment frameworks in the domain of event data processing applications.
The framework is experiment independent. It was developed for LHCb, but now it has been adopted
and extended by ATLAS and several other experiments including GLAST and HARP. (Clemencic 2015)

Gaudi is being updated to use modern hardware more efficiently, while developing performance and
compatibility tests. The upgrades include not only the usage of features like SSE4.2 and AVX instruction
sets on the CPU, but also running on different architectures.

Some development versions of Gaudi, or projects implemented on it, are testing the advantages of
using GPU hardware. Different routines and simulation projects can already run on this hardware but
most of them use CUDA R© as programming language. CUDA R© is an excellent platform but it limits the
software to NVIDIA hardware.

Considering the possibility of using hardware from other manufacturers like ATI’s GPU cards, or
other parallel architectures like Intel Xeon Phi, several new tests are implemented with OpenCLTM to
provide portability among hardware. (subsection: 3.1.6 page: 30 contains a brief description of CUDA R©
and OpenCLTM)

3.1.2 Particle reconstruction on triggers.
A hit is the information collected by a detector. Each hit represents a particle position detected by the
coordinates (x,y,z). Many particles are detected at the same time and the detectors bring only hits
information.

A track is a set of hits that describes a path of a particle inside the detectors. With a track it is
possible to determine several particle’s properties like mass, charge, energy, etc..

All the tracks associated to the same interaction are grouped in “events”. The common events
contain around 400 tracks but the limit is 2500.

The main action in the first trigger step is the track reconstruction from hits. The triggers use different
techniques for this task but they always implement some Kalman Filters for this purpose. This filters
consumes about 10− 25% time in the first trigger step.

The more complex routines are in the second triggering step. More sophistication inside these
triggers implies more sensitivity, but will require more time for the data flow processing. Improving the
first trigger step will provide some extra time to the second one for making more complex analysis and
get better resolution.

Different processing systems implemented on Gaudi simulates the triggering systems. This simula-
tions look for the better options to be implemented in the next upgrade. Our goal in this project was to
implement some Kalman filter prototypes for the track reconstruction routines for different architectures.

3.1.3 Kalman Filter
The Kalman Filter (Kalman 1960) is a linear quadratic estimation. This algorithm uses a series of
measurements containing statistical noise and other inaccuracies, and produces estimates of unknown
variables that tend to be more precise than those based on a single measurement alone.

This filter addresses the general problem of trying to estimate the state x ∈ <n of a discrete-time
controlled process that is governed by the linear stochastic difference equation:

xk = Axk−1 + Buk−1 + wk−1 (3.1)

where:

28

3.1. Materials and Methods

A: the state transition matrix which applies the effect of each system state parameter at position xk−1
on the system state at position xk .

B: the control input matrix which applies the effect of each control input parameter in the vector u.

uk : the vector containing any control inputs.

wk : the vector containing the process noise terms for each parameter in the state vector.

With a measurement z ∈ <m that is:
zk = Hxk + vk (3.2)

where:

H: the transformation matrix that maps the state vector parameters into the measurement domain

The random variables wk and vk represent the process and measurement noise (respectively). They
are assumed to be independent (of each other) and with normal probability distributions.

p(w) ∼ N(0, Q)
p(v) ∼ N(0, R)

(3.3)

In practice, the process noise covariance Q and measurement noise covariance R matrices might
change with each time step or measurement, however here we assume they are constant. (Welch and
Bishop 1995)

3.1.4 Detector and Software Characteristics
The VELO registers tracks in 42 silicon detector elements positioned close to the point where protons
collide. This elements provide hits information with some noise in the (x , y) axis. Each detector element
is in a well know position along the z axis, this is the value of z used for the hits the element detects.
The error in z is negligible and the detectors are in consecutive positions each other. Due to the VELO
geometry each track will have not more than 24 hits. (Experiment 2008)

VeloPixel is a track reconstruction code implemented on Gaudi to simulate the trigger system for
the VELO. The current version of this code implements a PrPixel class that reconstructs tracks using a
Kalman Filter. We elected this filter for our study case.

In this filter the measured values are (x ; y) and the positions z are xk in equation: 3.1. This is a two
dimensional Kalman filter where each axis is filtered independently but using the same equation.

In the simulations Gaudi generates random hits emulating some tracks and noise grouped in events.
This algorithm only provides hits information as the detector do, but keeps the information needed to
check the reconstruction effectiveness at the end.

The Gaudi framework relies heavily on Object Oriented Programming. The tracks are objects and
the events are items containing arrays of tracks. The implementation of the PrTrack class consists
basically on an std::vector of objects that contains the data of the position (x,y,z) and the errors (tx, ty)
for the hit.

The code before the filter makes a partial reconstruction associating the hits belonging to the same
track. The tracks store the hits in vectors because this distribution is similar to the hardware output. But
it keeps this distribution for the triggering process.

The implementation in use calls a function two times for each hit in a loop over all the hits in the
track. All the filter is embedded inside Gaudi and the operations are single precision.

3.1.5 Code isolation
Gaudi compilation is a slow process and the tests take a long time because all the hits generation and
track reconstruction takes much longer than the filter. For this reason the first task was the isolation of
the Kalman filter code to use it outside Gaudi.

First we modified the original code to create files with the filter’s inputs and outputs. This is called
serialisation.

29

Chapter 3. Kalman Filter improves using GPGPU and autovectorization for online LHCb
triggers

The serialisation requires different detail levels because the default serialisation of objects available
in C++ does not save the information inside arrays or vectors. We used text files for both outputs to
make easiest accuracy tests at the end.

We reproduced the OOP based implementation, cloning the needed dependencies or deleting the
unneeded ones. The methods were copied or re-implemented (cloned) to delete external useless de-
pendencies.

To import the data from the Gaudi’s output file we added an extra function, and the same serialisation
than before for the output. This was the only modification that this code received. As both codes ran on
the same hardware the accuracy should be the same. We tested the accuracy with diff.

All the benchmarks to the other implemented versions compare with this serial code because it is
the original one.

3.1.6 Comments about CUDA R© and OpenCLTM

CUDA R© and OpenCLTM are the standard languages for GPGPU programming. While there are more
solutions, these have the most potential and are extensively used.

CUDA R©

CUDA R© is a parallel computing platform and API model created by NVIDIA. It allows software develop-
ers to use a CUDA-enabled graphics processing unit (GPU) for general purpose processing GPGPU.
The CUDA platform is a software layer that gives direct access to the GPU’s virtual instruction set and
parallel computational elements.

The CUDA R© platform is designed to work with programming languages such as C, C++ and FOR-
TRAN. This accessibility makes it easier for specialists in parallel programming to utilise GPU resources,
as opposed to previous API solutions like Direct3D and OpenGL. CUDA supports programming frame-
works such as OpenACC and OpenCL.

Being developed by NVIDIA, CUDA R© restricts its domain to NVIDIA GPU cards. This provides a
highly optimised code for this architecture, but sacrifices portability among different architectures.

OpenCLTM

OpenCLTM is a framework for writing programs that execute across heterogeneous platforms like CPUs,
GPUs, digital signal processors (DSPs), field-programmable gate arrays (FPGAs) and other processors
or hardware accelerators. OpenCL specifies a language based on C99 for programming and APIs to
control the platform and execute programs on the compute devices. The platform provides a standard
interface for parallel computing using task-based and data-based parallelism. It is an open standard
maintained by the non-profit technology consortium Khronos Group.

A key feature of OpenCL is portability but the programmer is not able to directly use hardware-
specific technologies. It is possible to run any OpenCL kernel on any implementation. However, perfor-
mance of the kernel is not necessarily portable across platforms.

Existing implementations proved competitiveness when kernel code is properly tuned. Some studied
has suggested possible solutions to the performance portability problem.(Fang, Varbanescu, and Sips
2011) yielding “acceptable levels of performance” in experimental linear algebra kernels.(Du et al. 2012)

Portability of entire applications containing multiple kernels with differing behaviours is available in
literature.(Dolbeau, Bodin, and Verdiere 2013)

3.1.7 Implemented code

We implemented 10 different versions for the code: first a serial improved version for CPU, 4 versions
for GPU in CUDA R©, 4 in OpenCLTM and a last version with OpenMP for benchmark purposes only.
The GPU code implementation had extra testing versions but this work reports only the most important
ones.

30

3.1. Materials and Methods

Contiguous memory implementation on CPU

The first implementation we made was an improved CPU serial version for the code. This was also
useful for the later GPU implementations.

The main performance hit in the original code was the storage of data using arrays of structures. The
excessive use of getter/setter methods that can also have a significant impact because these functions
some times can not be inlined by the compiler.

The generated code also depends of the optimisation level and encapsulation. Irrespective of the
compiler used, autovectorization can not give good results, since the storage layout does not match the
hardware capabilities. The code uses arrays of structures (AOS) on several different levels, then there
are many internal pointer potentially aliasing the same memory location. This prevents the compiler to
make autovectorization or reordering strategies.

This first implementation substituted the arrays of structures (AOS) with structures of arrays (SOA).
The getter/setter functions were avoided declaring friendship relations between the most related objects.
All the hits were rearranged in memory to be contiguous. This way the autovectorization and cache
usage are improved simultaneously.

The AOS will benefit the GPU implementation because it reduces the number of copy operations
to the device. This copy reduction is important taking into account the huge latency in copy operations
host-device.

The new storage enables the code to process many events at the same time on the CPU or GPU.
This makes sense from the GPGPU point of view if the data fit in the memory, because that will reduce
kernel’s load and initialisation operation, copy operations host-device and the associated latency.

Hybrid implementation

Far from the optimal previous conception we should consider that the data incoming from the detectors
is ordered in portions more similar to AOS than to SOA. This is unavoidable from the hardware point
of view and any reshape should be made in the software’s side. Such a reshape can be expensive in
terms of performance, but it is an option we should consider due to its simplicity.

Mixing both serial codes we implemented a mix serial algorithm to estimate the viability of data
reshaping in the final code. This version imports the data to AOS as in the original code, but moves the
information to the contiguous memory shape (SOA) before the filter execution.

The time counter in this case considers not only the filter application time, but also the time needed
to reshape the data from AOS to SOA.

GPU implementations

In the GPU implementations we used the contiguous memory implementation to provide better parallel
memory access to the threads.

In the serial code there are four nested loops iterating over the runs, the events, the tracks and the
hits respectively. The filter runs the inner loop over hits for both axis (x ; y) simultaneously but filtering
independently.

The Kalman filter is an iterative algorithm but every step depends of the previous one according to
equation: 3.1. This kind of dependent algorithm is not parallelizable in this level.

To implement the filter for GPUs it is possible to parallelize up to the track level, but the inner loop
(iteration over hits) should remain serial. As all the tracks and events are independent each other and
our code processes the tracks as individual elements.

This ignores the event which the tracks belong to, and it is a design choice to maximise the number of
threads in each kernel call. Some grouping procedure will enforce multiple kernel calls and will reduce
the occupancy affecting performance. We implemented all the GPU codes using both CUDA R© and
OpenCLTM.

1. Our first implementation used one thread to filter each track. The hits were copied to local memory
with a loop and saved the results at the end of the execution.1 The kernel in this implementation

1In this report we will use the CUDA names convention. Website (Advanced Micro Devices, Inc 2014) contains more informa-
tion of OpenCL equivalences.

31

Chapter 3. Kalman Filter improves using GPGPU and autovectorization for online LHCb
triggers

runs two loops: first to copy and a last one to run the filter over its track.

The loop followed the same sequence than serial code and applied the filter to both axis at the
time in the same loop.

2. The second option was similar to the first one but we extended the level of parallelism. Considering
that the hits in a track were dependent for the filter, but the axis in the hits were not, we added an
extra dimension to the problem.

In this version each thread will filter only the values of one axis x or y instead of both. This doubled
the number of threads but reduced the amount of data to copy in each thread, the operations per
thread and the global memory access to save results at the end.

3. The third and forth versions were the same than above but eliminating the copy loop with a pointer
to global memory. As the copy to local memory used a loop the total amount of memory accesses
were the same, but some calculations could overlap with memory read operations.

This version needs frequent access to global memory during all the kernel execution instead of
only on the beginning and the end. Considering this from another angle no local vectors are
allocated inside the kernels and the local memory is free.

Parallel CPU implementation

This version is not useful for application due to the conditions the code should be executed. We made a
modification in the contiguous memory implementation code for CPU to provide OpenMP parallelization.
In the development tests the performance difference between versions was very big and evident from
the beginning. As expected, the better performance was the OpenMP parallelization of the outer loop
and we used it for the other benchmarks.

This was an academic experiment to compare the parallel performance for code generated with
OpenMP and with OpenCL. As OpenCL executes dynamic compilation the benchmarks only measured
the filter execution time over the events.

3.1.8 Other details

Code functionalities

In all the implementations we tried to follow the standards for the host code. CUDA programs were
implemented with C++ but the OpenCLTM ones followed the C99 standard. All the programs used simple
precision arithmetic because that is the kind of precision of the data incoming from the detectors.

To detect bugs we added a debug compilation option to the build system. This debug option activates
not only the compiler debug flags but also extra macros to provide more verbose information. The extra
macros exists in the kernels and the C/C++ codes and they provide information about the program
status, the hardware and some time information.

Time measurement method for benchmarks

To measure the time we tried two methods: Inside and outside the kernel. CUDA R© and OpenCLTM

provides completely different methods to measure execution time on the GPU side.
OpenCL measuring method had more impact in performance than the kernel we implemented. The

method needs debug compilation for the kernel and extra objects creation. CUDA R©, on the other
hand, provides a simpler method for this task, but some kernel modifications are needed for precise
measurements. The compatibility between both methods is undocumented, and for this reason we
rejected this results.

Another option is to use CPU timing measurement. For long kernels, like the ones we implemented,
this method provides results with enough accuracy. The main advantage of this method is that it uses
only standard C and all the programs can use it with few modifications.

32

3.1. Materials and Methods

OpenCL providers

Unlike CUDA, different companies provide OpenCL implementations. We tried our code with libraries
from NVIDIA, ATI and Intel. Most of the code ran in all the architectures but we found some issues
kernel functions like printf. We observed that some implementations produced warning messages in
code sections than the others compiled without any problem.

Our initial benchmarks with a downloaded code showed that in similar hardware the ATI’s library is
about 10% slower than NVIDIA’s. On the other hand ATI implementation provides some extra function-
alities that the others lack.

In this project we only used the OpenCL library provided by NVIDIA. We chose this library to execute
all the tests on the same hardware because CUDA code is limited to NVIDIA cards.

33

Chapter 3. Kalman Filter improves using GPGPU and autovectorization for online LHCb
triggers

3.2 Results and Discussion

In the benchmarks for GPU implementations we should consider that in practical systems the data will
be already on the device memory. The time needed to copy from the host to the device should be
ignored by the timers. To guarantee the copy time exclusion we inserted the time functions inside the
code around the filter loops or kernel.

Even when our serial code maintains the tracks grouped in events and the events in runs, our
graphs show processing time associated to the total number of tracks because the filters run over
tracks. Therefore the number of tracks also means total number of Kalman Filters applied.

The only error to consider in this measurement is that the tracks could have from 3 to 24 hits. For
a big number of tracks this is not important because more than 90% of tracks contains from 3 to 5 hits
and less than 1% more than 15.

The time needed to apply the Kalman Filter to a known number of tracks is a good measurement
of the efficiency of the code. The number of tracks in each event is limited, and on GPUs it is better
to process as many tracks as possible. To process all the events at the time more sense on the GPU
makes and it is more efficient, but in the serial code it does not matter.

For the CPU benchmarks we ran the codes on a node with two Intel R©Xeon R©CPU E5-2670 v2 @
2.50GHz. This CPUs contain 10 multithreaded cores for a total amount of 40 threads per node.

For the GPU codes we used an nVidia R©GeForce GTX 690 graphics card on the same node.

3.2.1 Results for serial code
The first benchmarks we did were to the serial code versions without any parallelization. The objective of
this is to measure the effectiveness of the proposed changes to allow autovectorization and contiguous
memory access.

For serial code we built two scalability graphs. In this point we benchmarked both contiguous mem-
ory implementations that applies the filter on SOA to compare with the initial implementation that applies
the filter on AOS. This allows us to get some idea of the benefits of this implementation and the cost of
data reshaping in terms of performance.

First we measured the time to apply the filters respecting to the total number of tracks in our clone
of the original code with AOS for 1 to 300 events. This time values were used as pattern to get the
scalability graph, the other times were compared with this.

Then we followed the same procedure with the version that applies the filter on the contiguous
memory implementation explained in section: 3.1.7 page: 31. This implementation is expected to have
the better performance due to autovectorization and and contiguous memory access.

Finally we compared the version that moves the data from AOS to SOA before applying the filter
described in subsection: 3.1.7 page: 31.

Figure: 3.1 shows the time graph vs the total number of tracks for the three serial algorithms. The
initial implementation (array of structs) holds the higher times in all the range of our study and increasing
the time presents jumps every 40000 tracks. On the other hand the time in the contiguous memory
algorithm (struct of arrays) grows lineally with the number of tracks but with a less vertical slope than
the other.

The algorithm that includes the internal data reshape shows a similar behaviour than the original
implementation, but not worst. This algorithm needs to access the non contiguous data to reshape it
before the filter. From this follows that most of the difference in performance between the first and sec-
ond algorithms is associated with the memory access, but autovectorization and compiler optimisations
also influences, but less.

Figure: 3.2 contains the speedup of contiguous memory algorithm respect to the original code. For
the pure contiguous memory version the speedup is close to 2 with a precision around to 10%.

On the other hand, the implementation with data reshape have a speedup close to one in all the
range, but always a higher up to 20% for some values. However, although the speedup values for this
algorithm are not surprisingly high, it proved viability not being worst than the original one.

According with this graphs the only exceptions to the previous affirmation is for 3 values with a small
number of tracks. But only few points shows this behaviour and the difference is small to consider it
relevant. Moreover this small number of tracks is very unlikely in real conditions.

34

3.2. Results and Discussion

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
 (

s
)

Tracks

Time vs Number of Tracks from 1 to 300 events CPU code

AOS
SOA

SOA+conversion

Figure 3.1: Time vs number of tracks in serial code for three different serial implementations:

AOS Array of structures.

SOA Structure of arrays.

SOA+conversion reshape the data in memory from AOS to SOA and then applies the
Kalman Filter.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

S
p
e
e
d
U

p

Tracks

SpeedUp vs Number of Tracks from 1 to 300 events serial code

SOA
SOA+conversion

Figure 3.2: Speedup with respect to the original code using serial implementations.

3.2.2 Benchmarks to the GPU versions with data copy
This section presents the benchmark results of the first two implementations for GPU as given in sec-
tion: 3.1.7 page: 31. Both versions are implemented in CUDA R© and OpenCLTM. The second imple-

35

Chapter 3. Kalman Filter improves using GPGPU and autovectorization for online LHCb
triggers

ments the higher parallelism with smaller kernels.
This implementations copy the track data in the local memory with a for loop before starting the

calculations. This was implemented assuming that the compiler could optimise the loop to reduce
global memory access.

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
 (

s
)

Tracks

Time vs Number of Tracks from 1 to 300 events GPU copy code

OpenCL1
OpenCL2

Cuda1
Cuda2

Figure 3.3: CPU time measurement for the Kalman Filter implementation on GPU.

Figure: 3.3 illustrates the filter execution time respect to the total number of tracks.
In the programs made with CUDA the time increases linearly with the tracks.2. The slope is stepper

in the simple parallel version and OpenCL runs around 10% slower than CUDA. This is the expected
behaviour, the higher parallelism and the library optimised for the architecture should provide better
performance.

The most parallel version provides always a better performance in CUDA R©. The relative rate be-
tween the first and the second implementations in CUDA is about 25% for the higher amount of tracks.
This is a big rate taking into account that the GPU execution with simple parallelism is already 20 times
faster than our best serial code processing 300 events.

There is a basis displacement for time when the track number is zero. This is a consequence the
time measurement on the CPU side and it represents the kernel loading time as seen by the HOST side
and the execution of at least one block of threads.

The performance with a small number of tracks is slightly better in OpenCL but for more tracks
OpenCL becomes worst than CUDA. In the simple parallelization OpenCL brings a better performance
than CUDA R© over 30000 tracks. With smaller values the behaviour is unstable in OpenCL, opposite to
the straight linear time grow observed in CUDA.

The second implementation in CUDA have the best performance of all, and the simple parallelization
with OpenCL is the next. With twice the number of threads OpenCLTM holds the worst performance of
all as CUDA R© have the best one in the same conditions.

This unexpected behaviour suggests that some resources in the GPU are worse managed with
OpenCLTM than with CUDA R©. The arrays storing the hits information in private memory can be limiting
the execution in OpenCL reducing the registers availability when twice the number of threads per block
are created. For this reason a longer kernel and less number of threads is a better choice in OpenCLTM

opposite to CUDA R©.
The other implementation for GPU confirms all this claims.

2remember that track number is also the total threads number and the total number of jobs.

36

3.2. Results and Discussion

3.2.3 Benchmarks to the GPU versions with a pointer to global memory

We tried different strategies to improve the first implementations. The global memory access limited
time execution in all the tests according to the debugger tools. We tried the function memcpy from
inside the CUDA kernel, but that maintained the same performance and there is not equivalent function
in OpenCL.

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
 (

s
)

Tracks

Time vs Number of Tracks from 1 to 300 pointer vs loop in Cuda

loop Cuda1
loop Cuda2

pointer Cuda1
pointer Cuda2

Figure 3.4: CUDA kernel runtime with a loop copy or a pointer to global memory.

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
 (

s
)

Tracks

Time vs Number of Tracks from 1 to 300 pointer vs loop in OpenCL

Loop OpenCL1
Loop OpenCL2

Pointer OpenCL1
Pointer OpenCL2

Figure 3.5: OpenCL kernel runtime with a loop copy or a pointer to global memory.

The only modification that made a real difference was the change of the copy loop. We substituted
the loop and the local copy with a pointer to the global memory because every value is accessed only
once. This improvement allows some calculations to overlapped with global memory access during the
kernel execution. It is important to remark that the memory access model used in the implementation is

37

Chapter 3. Kalman Filter improves using GPGPU and autovectorization for online LHCb
triggers

not the most efficient one, but the most practical in the possible real application.
With this change the total accesses to global memory keeps constant, but all the kernels do not try

access at the same time. Moreover the local array suppression provides more memory to the threads
and reduced the amount of operations inside the kernel.

Figures: 3.4 and 3.5 shows the difference of copy data locally or access them directly in global mem-
ory. This change in performance confirms the claims we made in the previous subsection respecting to
the resources and the kernel size.

Both CUDA codes received a performance improvements close to 1.35x for the higher number of
tracks, but the bigger change was in the OpenCL double parallelization. The speedup for this code was
1.7x .

Both implementations with the pointer have almost the same performance in OpenCL. This confirms
that the internal array allocation affected the performance in the double parallel implementation with
OpenCL. Otherwise a bigger difference should remain.

3.2.4 Parallel versions on CPU

As many devices can have OpenCL support, it is possible to run the implemented OpenCL code in the
same CPU than the serial code and compare both performances. The comparison between the GPU
and CPU executions makes no sense, because those are quite different hardware.

The last benchmark compared the parallel version from OpenCLTM running on the CPU and a par-
allel multithreaded version implemented with OpenMP.

 0

 5

 10

 15

 20

 25

 30

 35

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

S
p
e
e
d
U

p

Tracks

SpeedUp vs Number of Tracks from 1 to 300 events OpenCL on CPU

SOA
OpenMP

OpenCL1
OpenCL2

Figure 3.6: Speedup graph for parallel code using OpenCLTM with simple and double parallelism and
OpenMP respect to original serial code (AOS). This graph shows also the contiguous memory version
with SOA

Figure: 3.6 shows the speedup for the parallel versions of the code using OpenCLTM and OpenMP.
This results were in a hardware with 20 cores and activated multi-thread (a total of 40 threads). In this
system the speedup can reach around 20− 30x with OpenCL and 15− 20x with OpenMP.

Both parallel versions show the same speedup increase with the tracks on the beginning, but
OpenCL grows faster. For a small number of tracks the serial version with contiguous memory ac-
cess provides better speedup respect to the original code than any of both parallel versions. This only
happens with less than 5000 tracks.

38

3.2. Results and Discussion

For OpenCLTM the graph shows instability with a large number of tracks. We measured the mean
over multiple executions but this behaviour always persisted for more than 50000 tracks.

On the other hand for the same system with OpenMP the speedup is lower than 20 and we can
appreciate also the unstable behaviour but less intense. For a very large number of tracks

39

Chapter 3. Kalman Filter improves using GPGPU and autovectorization for online LHCb
triggers

40

Conclusions

Our massively parallel code to study the Anderson localisation phenomenon was implemented and
tested. This code is designed to run in different configurations on different architectures and hardware.

It combines different parallelization approaches in an hybrid scheme. The averaging over the en-
semble of realisations of the disorder exploits massively parallelism using MPI in a master-slave config-
uration.

The calculation of the energy levels (Hamiltonian matrix diagonalization) exploits multi-core and GPU
hardware via MAGMA, PLASMA or MKL libraries. The code is flexible and it allows the user to improve
the efficiency by tuning the number of disorder realisations solved simultaneously in the same node.

This flexibility permits scientists to tackle the study of disordered systems in the computational op-
timal configuration, finding the compromise between system size and number of realisations. This
provides them the most statistically significant data set.This is a very common situation in science and
engineering. We expect that our hybrid scheme will find application in other future research projects.

In our application, the master only sends one integer value (the seed) to each slave and receives
the results after the slaves ends the calculations. These integer values (the seeds) are used by the
slaves to initialise the sequences of pseudo random-numbers that are employed in the algorithm that
generates the disorder pattern. Therefore, the slaves can generate uniquely identified disorder reali-
sations. The ensemble of the seeds is archived by the master providing to the users the advantage
of a checkpoint/restart system, which is a fundamental requirement for scientists to access world-class
grants on large-scale HPC systems.

The main achievements of the project are:

• We developed a new modularized software in C/C++ for exploiting distributed systems.

The employed techniques guarantee maintainability and portability of our code.

The final interface is transparent for the user and the developers. Most of the code is generic and
reusable.

• PLASMA is the best option to solve this problems in our architecture.

MAGMA is a promising library to exploit GPU, but at the moment the benefits are less relevant
than the limitations and issues for our application.

The MKL version we tested does not exploit parallelism efficiently.

• The implemented communication system with a master-slave thread based scheme uses hard-
ware more efficiently.

The parallelization among different nodes with our framework provides a transparent interface for
the final user and exempt him/her from using parallel programming techniques.

The affinity plays an important role in this master-slave scheme specially when multiple processes
share a node.

• The error handler makes the code stable and save computing time.

The log system within the error handler and defensive programming techniques facilitate to modify
and debug the application.

• The master-slave framework manages the initialisation of the sequences of pseudo random-
numbers and it archives the seeds used for the initialisation aiding a consistent checkpoint/restart.

41

Chapter 3. Conclusions

The optimisation introduced on both codes for CPU and GPU delivered a relevant speedup on the
Kalman Filter. Benchmark results of the various implementations are used at CERN to identify best
strategies to improve the Kalman filters in the LHCb triggers. The first trigger execution is then reduced
while increasing the the time frame available for the second step algorithm. With longer time to execute
the second step, higher resolution will be achieved.

Both GPU versions in CUDA R© and OpenCLTM have similar performance and can be considered to
be included in the upgrade and in the corresponding implementations of Gaudi.

The main achievements of the project are:

• To isolate the code required simple techniques and makes sense when developing small portions
of code from a large framework like Gaudi.

The isolated code is easier to test, develop and benchmark.

The invested time to extract the target codes from Gaudi is amply rewarded in the subsequent
development time, quality of the code and benchmark’s accuracy.

• The contiguous memory implementation substituting AOS with SOA improves our the serial code
close to 50%.

This implementation match the hardware capabilities and can be easily interfaced with other im-
plementations.

The performance for the SOA implementation is better even when including data reshape from
AOS on runtime.

• Both implementations in CUDA R© and OpenCLTM provide better performance comparing with the
initial serial code.

OpenCLTM and CUDA R© codes behave in the opposite way when the parallelization level in-
creases.

In our architecture the OpenCLTM code on CPU gives the best performance comparing with the
serial code and OpenMP implementations.

• Different memory access optimisations impact the performance much more than the operations
within the kernel.

The array copy substitution with a pointer to global memory improved the implementations for
GPU due to memory access and resource availability.

42

Glossary

AOS Array of structures.

API Application programming interface.

CERN European Organization for Nuclear Research.

CPU Central processor unit.

CUDA R© Compute Unified Device Architecture.

FFT Fast Fourier Transform.

GPGPU General purpose GPU programming.

GPU Graphical processor unit.

HEP High Energy Physics.

LAPACK Linear Algebra PACKage.

LHCb Large Hadron Collider “beauty” experiment.

MAGMA Matrix Algebra on GPU and Multicore Architectures Library.

MKL Intel Math Kernel Library.

MPI Message Passing Interface.

OOP Object Oriented Programming.

OpenCLTM Open Computing Language.

OpenMP Open Multi-Processing API.

PLASMA Parallel Linear Algebra for Scalable Multi-core Architectures Library.

POSIX Portable Operating System Interface.

SOA Structure of arrays..

VELO Vertex Locator detector of LHCb.

43

Glossary

44

Bibliography

Advanced Micro Devices, Inc (2014). OpenCL and the ATI Stream SDK v2.0. URL: http://developer.
amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-

app-sdk/ (visited on 08/11/2015).
Anderson, P. W. (1958). “Absence of Diffusion in Certain Random Lattices”. In: Phys. Rev. 109 (5),

pp. 1492–1505.
Aspect, Alain and Massimo Inguscio (2009). “Anderson localization of ultracold atoms”. In: Physics

Today 62.8, pp. 30–35.
Balaji, Pavan et al. (2008). “Toward Efficient Support for Multithreaded MPI Communication”. English.

In: Recent Advances in Parallel Virtual Machine and Message Passing Interface. Ed. by Alexey
Lastovetsky, Tahar Kechadi, and Jack Dongarra. Vol. 5205. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 120–129. ISBN: 9783540874744. DOI: 10.1007/978-3-540-87475-
1_20.

Boyer, Michael (2015). Choosing Between Pinned and Non-Pinned Memory. URL: https://www.cs.
virginia.edu/~mwb7w/cuda_support/pinned_tradeoff.html (visited on 12/01/2015).

Clemencic, Marco (2015). LHCb Software Tutorials. URL: https://twiki.cern.ch/twiki/bin/view/
LHCb/LHCbSoftwareTutorials (visited on 07/10/2015).

Cupper, J.J.M. (1981). “A divide and conquer method for the symmetric eigenproblem”. In: Numerische
Mathematik 36, pp. 177–195.

Dolbeau, R., F. Bodin, and G.C. de Verdiere (2013). “One OpenCL to rule them all?” In: Multi-/Many-
core Computing Systems (MuCoCoS), 2013 IEEE 6th International Workshop on, pp. 1–6. DOI:
10.1109/MuCoCoS.2013.6633603.

Dongarra, Jack, Jakub Kurzak, and Julien Langou (2010). PLASMA Users Guide. University of Ten-
nessee.

Du, Peng et al. (2012). “From CUDA to OpenCL: Towards a Performance-portable Solution for Multi-
platform GPU Programming”. In: Parallel Comput. 38.8, pp. 391–407. ISSN: 0167-8191. DOI: 10.
1016/j.parco.2011.10.002.

Experiment, LHCb (2008). VErtex LOcator (VELO). URL: http://lhcb-public.web.cern.ch/lhcb-
public/en/detector/VELO-en.html (visited on 11/05/2015).

Fang, Jianbin, Ana Lucia Varbanescu, and Henk Sips (2011). “A Comprehensive Performance Com-
parison of CUDA and OpenCL”. In: Proceedings of the 2011 International Conference on Par-
allel Processing. ICPP ’11. Washington, DC, USA: IEEE Computer Society, pp. 216–225. ISBN:
9780769545103. DOI: 10.1109/ICPP.2011.45.

Fratini, E. and S. Pilati (2015). “Anderson localization of matter waves in quantum-chaos theory”. In:
Phys. Rev. A 91 (6), p. 061601.

Haidar, Azzam, Hatem Ltaief, and Jack Dongarra (2011). “Parallel Reduction to Condensed Forms
for Symmetric Eigenvalue Problems using Aggregated Fine-Grained and Memory-Aware Kernels”.
In: Published in the proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. Seattle, WA, USA.

— (2012). “Toward a High Performance Tile Divide and Conquer Algorithm for the Dense Symmetric
Eigenvalue Problem”. In: SIAM Journal on Scientific Computing.

45

http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk/
http://dx.doi.org/10.1007/978-3-540-87475-1_20
http://dx.doi.org/10.1007/978-3-540-87475-1_20
https://www.cs.virginia.edu/~mwb7w/cuda_support/pinned_tradeoff.html
https://www.cs.virginia.edu/~mwb7w/cuda_support/pinned_tradeoff.html
https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbSoftwareTutorials
https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbSoftwareTutorials
http://dx.doi.org/10.1109/MuCoCoS.2013.6633603
http://dx.doi.org/10.1016/j.parco.2011.10.002
http://dx.doi.org/10.1016/j.parco.2011.10.002
http://lhcb-public.web.cern.ch/lhcb-public/en/detector/VELO-en.html
http://lhcb-public.web.cern.ch/lhcb-public/en/detector/VELO-en.html
http://dx.doi.org/10.1109/ICPP.2011.45

Bibliography

ICL Team (2015). MAGMA Main page. URL: http://icl.cs.utk.edu/magma/index.html (visited on
11/10/2015).

Kalman, Rudolph Emil (1960). “A New Approach to Linear Filtering and Prediction Problems”. In: Trans-
actions of the ASME–Journal of Basic Engineering 82.Series D, pp. 35–45.

Karbasi, Salman, Ryan J. Frazier, et al. (2014). “Image transport through a disordered optical fiber
mediated by transverse Anderson localization”. In: Nature Communications.

Karbasi, Salman, Craig R Mirr, et al. (2012). “Observation of Transverse Anderson Localization in an
Optical Fiber”. In: Optics Letters 37.12, pp. 2304–2306.

Lagendijk, Ad, Bart van Tiggelen, and Diederik S Wiersma (2009). “Fifty years of Anderson localization”.
In: Phys. Today 62.8, pp. 24–29.

LHCb Experiment (2008). The LHCb Detector. URL: http://lhcb- public.web.cern.ch/lhcb-
public/en/detector/Detector-en.html (visited on 08/11/2015).

LHCb software architecture group (2015). The Gaudi Project. URL: http://proj-gaudi.web.cern.ch/
proj-gaudi/ (visited on 10/10/2015).

MAGMA development team (2015). MAGMA User Guide. URL: http://icl.cs.utk.edu/projectsfiles/
magma/doxygen/index.html (visited on 11/10/2015).

NVIDIA Corporation (2015). What is GPU Computing? URL: http://www.nvidia.com/object/what-
is-gpu-computing.html (visited on 11/05/2015).

Rabenseifner, Rolf (2003). “Hybrid Parallel Programming on HPC Platforms”. In: Published in the pro-
ceedings of the Fifth European Workshop on OpenMP, (EWOMP 03), Aachen, Germany, 22-26 Sept
2003. Aachen, Germany.

Sahni, Sartaj and George Vairaktarakis (1996). “The master-slave paradigm in parallel computer and
industrial settings”. In: Journal of Global Optimization 9.3-4, pp. 357–377.

SCAI, CINECA (2012). GPGPU (General Purpose Graphics Processing Unit). URL: http : / / www .

hpc.cineca.it/content/gpgpu- general- purpose- graphics- processing- unit (visited on
11/05/2015).

Shapiro, Boris (2012). “Cold atoms in the presence of disorder”. In: Journal of Physics A: Mathematical
and Theoretical 45.14, p. 143001.

Solca, Raffaele et al. (2012). “A hybrid Hermitian general eigenvalue solver”. In: Partnership for Ad-
vanced Computing in Europe.

Welch, Greg and Gary Bishop (1995). An Introduction to the Kalman Filter. Tech. rep. Chapel Hill, NC,
USA.

46

http://icl.cs.utk.edu/magma/index.html
http://lhcb-public.web.cern.ch/lhcb-public/en/detector/Detector-en.html
http://lhcb-public.web.cern.ch/lhcb-public/en/detector/Detector-en.html
http://proj-gaudi.web.cern.ch/proj-gaudi/
http://proj-gaudi.web.cern.ch/proj-gaudi/
http://icl.cs.utk.edu/projectsfiles/magma/doxygen/index.html
http://icl.cs.utk.edu/projectsfiles/magma/doxygen/index.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.hpc.cineca.it/content/gpgpu-general-purpose-graphics-processing-unit
http://www.hpc.cineca.it/content/gpgpu-general-purpose-graphics-processing-unit

	Acknowledgement
	Introduction
	Project 1
	Project 2

	Enabling massive parallelism to study the Anderson localisation phenomenon
	Materials and Methods
	Numerical procedure to determine the energy spectrum and the level-spacing statistics speckle patterns
	Serial program functions
	Eigensolver algorithms
	Solver interface
	Master-slave thread based system
	Implementing a reusable module for the master-slave system
	Object oriented thread programming
	Command line options
	Functionalities in development process

	Results and Discussion
	Ported code validation
	Scalability on CPU
	Performance with GPUs

	Kalman Filter improves using GPGPU and autovectorization for online LHCb triggers
	Materials and Methods
	Experiment description
	Particle reconstruction on triggers.
	Kalman Filter
	Detector and Software Characteristics
	Code isolation
	Comments about CUDA and OpenCL
	Implemented code
	Other details

	Results and Discussion
	Results for serial code
	Benchmarks to the GPU versions with data copy
	Benchmarks to the GPU versions with a pointer to global memory
	Parallel versions on CPU

	Conclusions
	Bibliography

