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Most of the time spent to solve a numerical problem is taken by a linear system. There are cases
in which the solution is straightforward: lower triangular, upper triangular or diagonal matrices.
However, in every day life, solutions of linear systems are far for being trivial: usually partial
differential equation (PDE) problems lead to complicated linear systems and it could be even worse
when you have to deal with a system of PDEs.

This is the situation where HPC is not enough and the starting point of my thesis. Literature
and software libraries provide a huge amount of resources and it is very unlikely that you could
do better than thousand of scientists and billions of lines of code improved for years. You might
improve slightly your code, and not more but if you want to significantly improve your code, you
will have to take into account something else: what you need is a new High Performance Point of
View.

1. PRECONDITIONER

Experience proves that almost every matrix leads to a difficult linear system: there is no nice
linear system that you can assure it is easy or fast to solve. For example, consider the following

matrix [38]:
a;, ifi>j
[Alij = a0, ifi=}j (1)
aj, ifi<j
where a; are arbitrary real numbers and 4,5 € {0,...,n — 1}. Given b € R™, we are interested in
finding a solution z € R™ to the equation:
Az =b. (2)

The fastest known stable factorization direct methods for solving such a linear system requires
O(n?) floating point computations. Consider that the well-known Gauss-Elimination algorithm
requires O(n?).



A real improvement to the convergence of is given by Strang in [29]. He noticed that the
matrix could be approximated with a matrix A that leads to an equivalent system of . The
resulting system is solvable in O(nlogn) operations. The idea of Stang is to multiply Az and b for
the same non degenerate square matrix: this is the idea behind the notion of preconditioner:

(1.1) DEFINITION: A preconditioner P is a non-degenerate square matrix such that
P Az =P
is a "simpler" linear system than Az = b.

Indeed, the problem becomes the right choice of a preconditioner: we need a preconditioner
that is cheap to compute and that at the same time is a good approximation of the inverse matrix.
The literature is full of recipe about the choice of the best preconditioner (see [38] for a review)
and in many cases it is nothing but a mix of blocks obtained from the original system matrix and
cooked in the right doses.

2. NEW LANDSCAPE, NEW SPYGLASS

Notice that in Definition [I.1] we are actually interested in the action of P~" on a vector: when we
use an iterative solver, we do not need to know the value of P~*A but P~!(Az). In term of math,
this means that we should talk about linear operators instead of matrices. This is a real change
of point of view and it is something that it is not fully considered in the classical programming
languages: we would like to implement the action of multiplication, transpose-multiplication, sum
and multiplication, and sum and transpose-multiplication without physically assembling any object.

Consider the case where we have a matrix A and a matrix B and our problem requires A *x B.
Probably, one would assemble C' = A x B and then would use this new object. A finer analysis
shows that we could multiply for B and then for A every time without assembling C: ideally, a
LinearOperator class should do that without having to explicitly write any additional code and
without loss of performances. The tools we choose to solve this problem are the so called lambda
expressions: these objects are designed in order to have highest level of ductility and performance
(see [36] and [30] for an extensive explanation).

In this thesis we show how to implement a linear algebra class based on lambda expressions
objects (Chapter [I)) and we apply this class to PDE problem. Furthermore, we provide benchmarks
that show no loss of performances and a working implementation of a PDE solver that shows the
power of this syntax (Chapter .

3. DO NOT REINVENT THE WHEEL




Our intent is to use existing libraries as much as possible. First of all, we need reliable open
source libraries: for instance deal.II. This is a strengthened library for finite element with several
developer that use it for scientific research. Moreover, speaking about parallelism, deal.II has its
own interface for Trilinos and Petsc libraries.

deal.II is a very versatile and powerful tool but it has a drawback: in the case you are interested
in solving several problems and they are similar to each other you have to rewrite a lot of lines of
code changing few words. This consideration led us to write deal21kit (J27] and Chapter [II).

deal2lkit is a wrapper of classes of deal.II provided with a powerful feature of parsing
parameter file: user can change problem parameters without rebuilding the project. This means
flexibility and time saving.

Our goal is a multiphysics solver. We use the tools developed in the class LinearOperator and
the structure of deal2lkit to write a high level library named w-DoMUS (Chapter .

Using 7-DoMUS (Parallel Deal.IT MUltiphysics Solver) we are able to write a solver for every
common PDE and to recover all the previous listed features (performance and fexibility).

The intent of this thesis is to show an HPP (High Performance Programmin) interface that is
able to improve performance in the case HPC is not enough.

4. REAL LIFE PROBLEMS

Is HPP really necessary? The Millennium Prize Problems are seven problems in mathematics
that were stated by the Clay Mathematics Institute in 2000. As of November 2015, six of the
problems remain unsolved. A correct solution to any of the problems results in a US $1, 000, 000
prize (sometimes called a Millennium Prize) being awarded by the institute. One of these problems
is the existence and smoothness of the 3D Navier—Stokes equations. The equations can be stated
as follows:

P2+ p(v-V)v=—Vp+vAv+f(z,t)
dive = 0.

where v is the velocity field, p the pressure, and f represents the external forces.

Even if no existence of solutions has been already proved, Navier-Stokes equation is fundamental
for its applications: shipbuilding, airplane, and also cars. Therefore, the numerical simulation of its
behavior is necessary. We can represent its discretization as following:

F Bt f
= 3
(5 5)=(0) ®
where F' stands for p% +p(v-V)v —vAv, Bt for —Vp, and B for divw.
Practice shows that the convergence of depends strongly on v, p, grid size, time discretization,

initial condition, and boundary condition. Moreover, the term (v - V)v enormously complicates the
study of the solution.



A preconditioner for such a problem is really far from being trivial. A lot of papers are devoted
to this goal and research is still in progress. A common choice is to use

At 0
S-tpA-t gt

where S := BA™!B?!, as preconditioner for . In many applications the crucial choice for the
preconditioner is transferred to .S. There are a wide range of possibilities, the of them are listed
below (see [13] for more details):

~ SIMPLE
S'~ —(BAT'B")7!

A an approximation of A (usually A = diag(A))

— BFB¢ [14]
S '~ —(BM~'B")"Y(BM'AM~'B")(BM~'B")"!

where M is I, diag A, or X (Mass matrix on the velocity space)
— Olshanskii’s preconditioner [26]
S™'~-Q'BLT'ALT'B'Q™!
where L is the Laplacian matrix and ) the mass matrix.

In this thesis we are going to show how the research of a good preconditioner like these could be
tackled implementing a code (Chapter able to rapidly tests a wide combination of ingredients
(Chapter . This result is obtained thanks to the concept of LinearOperator class that ensure
performance and flexibility (Chapter [I).



I. 1 . INTRODUCTION

Expression templates [11], [37] are a well known optimization technique to avoid the creation
of large, temporary objects in arithmetic expressions. The idea is to overload operator+, -, *,
etc., to build up an arithmetic syntax tree with the help of the C++ template mechanism instead
of performing the arithmetic operation immediately by returning an intermediate object. The
arithmetic operations are performed later when the expression is complete and an evaluation of the
expression is actually requested. A number of numerical libraries make use of expression templates
to a certain extend, an example is the C++ linear-algebra library Eigen [15].

We present an alternative approach of building up an expression syntax for matrix-matrix,
matrix-vector and vector-vector operations. It uses the C++11 [I] features lambda expressions and
lambda captures, as well as std: :function objects, instead of a templates-only approach. This
avoids the majority of the “template overhad” that usually comes with a pure template solution.
Only two class signatures are required: A class LinearOperator to encapsulate a linear operation
with two template parameters denoting its domain and range, and a class PackagedOperation to
store a (partially applied) expression with a template parameter for its range space in which the
result can be stored. Our expression syntax is suitable to encapsulate a wide variety of concrete
matrix, vector and linear solver classes because only a very generic, high-level interface is required
(see Section . In particular, we don’t make any assumptions on the underlying memory model,
or type of execution (sequential, or with thread/process parallelization). No random access to
data, or other low-level access is required. This naturally rules out some low-level optimization
techniques that require such access (or detailed information about the expression that is formed
up), but on the other hand it allows to encapsulate a wide variety of concrete matrix and vector
implementations.

The expression syntax is developed within the framework of the finite-element library deal.Il
[7] and has been added to the library starting from version 8.3 [6]. However, we stress the point
that the implementation that is presented in this work is otherwise generic. The only deal.Il
specific portion is the concrete form of the vector and matrix interfaces we assume to be present,
which could be readily adjusted with very minor changes to any concrete choice of naming and call
signature.

The Chapter is structured as follows. In section we define the vector, matrix and solver
interfaces that are used. Then, in the following two sections, 3 and 4, the LinearOperator
and PackagedOperation class are defined. Implementations aspects for vector space opera-
tions are discussed and a generic strategy for encapsulating concrete matrix objects into the
LinearOperator framework is given. Section presents two detailed examples, an application
of the LinearQOperator to prescribe Dirichlet boundary conditions with an operator (and without
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manipulating the underlying matrix object); and an implementation of a preconditioner for the
Stokes problem. Short performance comparisons are given that show that the overhead introduced
by std::function objects is negligible. We draw some conclusions in Section

I. 2 . VECTOR, MATRIX AND SOLVER INTERFACES

In this section we introduce the vector, matrix and solver interfaces we will use to describe and

implement the LinearOperator concept. We use the deal.Il finite-element library for our concrete
implementation. It provides a large variety of matrix and vector types (serial, and mpi distributed

variants, as well as wrappers to external libraries) and offers a standardized, high-level interface for

all vector and matrix types.

A matrix object describes a linear operation. As such we require at least the following minimal

interface for applying its action on a source vector src and storing the result in a destination vector
dst:

};

class Matrix {

template<typename Vector>
void vmult(Vector &dst, const Vector &src);

template<typename Vector>
void vmult_add(Vector &dst, const Vector &src);

template<typename Vector>
void Tvmult(Vector &dst, const Vector &src);

template<typename Vector>
void Tvmult_add(Vector &dst, const Vector &src);

Here, Tvmult applies the corresponding transpose matrix vector multiplication and the variants
with vmult_add and Tvmult_add add the result of the matrix vector multiplication to dst instead
of replacing its former contents with the result. Depending on the concrete matrix type (such as
full matrices, sparse matrices, MPI-distributed variants, or block matrices) many more member
functions for accessing and manipulating a matrix are available. The concrete signature of the vmult

function, etc., may vary. It is only important to be able to call vmult, etc., with a compatible vector
type. The power of this approach lies in the fact that using this interface is (almost) completely
opaque with respect to the concrete implementation, or operations being performed.

Similarly, the guaranteed minimal interface for vectors—beside the possibility to use them in a

call to vmult—is:

class Vector {

typedef ... number_type;

Vector &operator=(const Vector &);
Vector &operator=(number_type);
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Vector &operator+=(const Vector &);
Vector &operator-=(const Vector &);
Vector &operator*=(number_type);
Vector &operator/=(number_type);

}

The roles of the operators =, +=, -=, *= and /= are straightforward with the exception of the
special assignment operator = that takes a scalar number. This is syntactic sugar to allow the
mathematically common expression

v =0; // v is of type Vector

to zero out a vector. One could have also implemented this with a zero() member function, or
similar. We will only assume that assigning a 0 to zero out is a well defined operation, all other
assignments of a scalar values are allowed to be undefined behavior.

Another design decision that becomes apparent in above interface is that no function requires
intermediate storage. With matrix and vector objects that easily go into the gigabytes of memory
requirements on modern platform, it is very important to prevent the user of the library from
any accidental space leak that, e.g., a temporary resulting from an operator+ would require.
deal .IT ensures this by forbidding all such implicit intermediates by simply not implementing those
interfaces.

The iterative solver interfaces in deal.II for solving a linear equation Az = b with a given method
and a preconditioner prec are fully templated and thus fairly generic:

template<typename Vector>
class Solver {
template<typename Matrix, typename Preconditioner>
solve (const Matrix &A,
Vector &x,
const Vector &b,

const Preconditioner &prec);

};

It is assumed that Matrix, Preconditioner and Vector adhere to the interfaces presented above.
(In case of a preconditioner, usually only vmult has to be implemented).

Remark. In the following we will assume that above matrix and vector interfaces are the smallest
level of granularity we have access to. This naturally rules out some optimizations and approaches
that can be used for non-distributed linear algebra, but allows us to readily apply the developed
framework to all scenarios of different matrix and vector implementations imaginable.

13 A LINEAR OPERATOR CLASS
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The solver interface introduced in the previous section is very generic in the sense that any
matrix or preconditioner object can be used provided that it implements (parts of) the above
matrix interface. As an example, consider two matrices B and C. If a preconditioner B + kC
(with some scalar k) should be used there is no necessity to construct an actual matrix, say D,
that physically stores B + k C'. It completely suffices to provide an object whose vmult function
performs the operation (B + k C)v when applied to a given vector v. However, there is a slight
problem with the above interface in the sense that it is unnecessarily verbose—compared to the fact
that the mathematical expression B + k C' already encodes all necessary information. A possible
implementation of the hypothetical preconditioner is

template<typename Matrix>
class MyPreconditioner {
MyPreconditioner (const Matrix &B, const Matrix &C, double k);

template<typename Vector>
void vmult(Vector &dst, const Vector &src) {
C.vmult (dst, src);
dst *= k;
B.vmult_add(dst, src);
}
};

One of the main motivations of the approach presented in the next subsection is the idea to
transform the mathematical expression B + k C' into objects adhering to the above matrix interface
and freeing the user from writing unnecessary boiler-plate code.

1.3.1. LINEAROPERATOR

To obtain an expression syntax for the above matrix and vector interfaces, we need a class
concept that stores a computational expression. The concept of a linear operator is a good starting
point for this because the current matrix interface can be transfered immediately: a linear operator
has a notion of applying itself (vmult), or its transposed operation (Tvmult). Further, a linear
operator has a well defined domain (of definition) and range. This is in contrast to the above matrix
interface that usually only has templated vmult and Tvmult variants and consequently support
multiple range and domain vector types.

The question arises (at least from an implementational standpoint) which strategy to follow.
It turns out that knowing the corresponding range and domain of a linear operator—and how
to construct vectors belonging to the respective spaces—is not only very useful but sometimes
required, e.g., the concatenation of two matrix objects without corresponding range and domain is
ill-defined. We thus define with the help of C++11 std: :function objects:

template <typename Range, typename Domain>

class LinearOperator

{

public:
std::function<void (Range &v, const Domain &u)> vmult;
std::function<void (Range &v, const Domain &u)> vmult_add;
std::function<void (Domain &v, const Range &u)> Tvmult;
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std::function<void (Domain &v, const Range &u)> Tvmult_add;

std::function<void (Range &v, bool fast)> reinit_range_vector;
std::function<void(Domain &v, bool fast)> reinit_domain_vector;

//
};

Here, vmult and its variants shall carry the usual meaning.reinit_range_vector and
reinit_domain_vector are function objects that shall reinitialize a vector v such that it is suitable
as a source or destination vector in an application of vmult. The boolean fast is an implementa-
tional detail that controls whether the vector in question is also zeroed out while it is resized (fast
== false), or not.

Beside the usual default copy constructor and assignment operator we also implement a default
constructor that will populate all std: : function objects with a default implementation throwing
an error upon invocation. Further, templated variants of the copy constructor and assignment
operator are provided that use the linear_operator wrapper that will be discussed in Section

template <typename Range, typename Domain> class LinearOperator

{

public:
/7
LinearOperator ();
LinearOperator (const LinearOperator<Range, Domain> &) = default;
template<typename Op> LinearOperator (const Op &op)
{
*this = linear_operator<Range, Domain, 0Op>(op);
}

LinearOperator<Range, Domain> &
operator=(const LinearOperator<Range, Domain> &) = default;

template <typename Op>
LinearOperator<Range, Domain> &operator=(const Op &op)
{
*this = linear_operator<Range, Domain, 0Op>(op);
return *this;

[.3.2. VECTOR SPACE OPERATIONS

With the help of the abstract vmult and vmult_add functions it is now possible to implement
vector space operations on linear operators. The key idea is to capture the individual subexpressions
(in form of their corresponding vmult and vmult_add std::function objects) of the operands by
a lambda-capture. As an example, consider the concatenation of two compatible linear operators:

template <typename Range, typename Intermediate, typename Domain>
LinearOperator<Range, Domain>
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operator*(const LinearOperator<Range, Intermediate> &first_op,
const LinearOperator<Intermediate, Domain> &second_op)
{
LinearOperator<Range, Domain> return_op;
return_op.reinit_domain_vector = second_op.reinit_domain_vector;
return_op.reinit_range_vector = first_op.reinit_range_vector;
return_op.vmult = [first_op, second_op] (Range &v, const Domain &u)
{
GrowingVectorMemory<Intermediate> vector_memory;
Intermediate *i = vector_memory.alloc();
second_op.reinit_range_vector (*i, /*bool fast =%/ true);
second_op.vmult (*i, u);
first_op.vmult (v, *i);
vector_memory.free(i);
1
// etc.
return return_op;
}

For temporary storage of the intermediate result a memory pool provided by deal.Il is used that
avoids unnecessary allocation and deallocation operations.

Remark. At this abstract level of concatenation of two opaque vmult function objects temporary
storage of intermediate results cannot be avoided. One might argue that for a plain matrix-matrix-
vector product y = A B x of two matrices A and B and a vector x the resulting operation could be
fused into a single set of stacked loops,

Yi = ZAiijkﬂfk,
3k

that avoids intermediate storage. However, the goal of the discussion is to develop a mechanism
that provides syntactic sugar for completely abstract linear algebra operations—and on this level
of abstraction fusing of loops might not be possible (for certain data structures), or not desirable,
e. g., for distributed data structures fusing might involve prohibitively expensive communication
between computing nodes.

The conceptually simpler multiplication with a scalar number, as well as addition and subtraction
can be implemented in a straightforward manner. As an example consider the addition of two
linear operators:

template <typename Range, typename Domain>

LinearOperator<Range, Domain>

operator+(const LinearOperator<Range, Domain> &first_op,
const LinearOperator<Range, Domain> &second_op)

{

LinearOperator<Range, Domain> return_op;
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return_op.reinit_range_vector = first_op.reinit_range_vector;
return_op.reinit_domain_vector = first_op.reinit_domain_vector;
return_op.vmult = [first_op, second_op] (Range &v, const Domain &u)
{

first_op.vmult (v, u);
second_op.vmult_add (v, u);

18

return_op.vmult_add = [first_op, second_op] (Range &v, const Domain &u)
{

first_op.vmult_add(v, u);

second_op.vmult_add (v, u);

8
// etc...

return return_op;

Remark. In a similar fashion it is possible to define in-place variants of all operations, +=, -=, *=
(for concatenation as well as scalar multiplication) that replace the left-hand object.

[.3.3. CONSTRUCTING A LINEAROPERATOR

A crucial, so far missing, ingredient is a strategy of how to construct a linear operator out of a
given data structure such as a matrix. For this, we define a function

template <typename Range, typename Domain, typename Matrix>
LinearOperator<Range, Domain> linear_operator (const Matrix &matrix)
{

LinearOperator<Range, Domain> return_op;
// populate return_op...

return return_op;

}

that takes a reference to a matrix object and converts it to a LinearOperator. The matrix object
must remain a valid object throughout the whole lifetime of the LinearOperator object. With
the help of a lambda expression the corresponding vmult (vmult_add, etc.) function of the matrix
object can be encapsulated in a straightforward manner:

op.vmult = [&matrix] (Range &v, const Domain &u)
{

matrix.vmult (v,u);

Remark. Wrapping in a lambda function as opposed to a direct assignment (op.vmult =
matrix.vmult) ensures that the linear operator wrapper is compatible with a wide variety of
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templated or non-templated function signatures.

The last missing ingredient for the linear_operator wrapper is a mechanism for deriving
reinit_range_vector and reinit_domain_vector. Due to the fact that a wide variety of data
structures shall be supported, a general interface cannot be easily defined. An alternative strategy
is to use template specialization of a helper class to distinguish between the vector types in question.
The selection of the most specialized variants happens in the second phase lookup. Thus, it is
possible to have a fairly generic implementation in the header file defining LinearOperator and
provide specializations for certain types in completely different header files (that only need to be
imported in a compilation unit actually using the types in question):

namespace internal

{
template<typename Vector>
struct ReinitHelper

{
template <typename Matrix>
static
void reinit_range_vector (const Matrix &matrix, Vector &v, bool fast)
{
v.reinit (matrix.m(), fast);
¥
//
I8

} /* namespace intermnal */
// in linear_operator:

return_op.reinit_range_vector = [&matrix_exemplar](Range &v, bool fast)
{
internal::ReinitHelper<Range>::reinit_range_vector (matrix, v, fast);

18

This allows to specialize for vector types that need a different setup. The split of the Vector and
Matrix template parameter to belong to the struct and to the member function, respectively, allows
to keep the Matrix template while specializing (or partially specializing) the Vector parameter:

namespace internal

template <typename> struct ReinitHelper;

template<>
struct ReinitHelper<SpecialVector>
{
template <typename Matrix>
static
void reinit_range_vector (const Matrix &matrix,
SpecialVector &v,
bool fast)

// special setup...
¥
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Remark. Encapsulation of matrix objects into a 1inear_operator wrapper can also be used to
provide safeguard against common user errors: For most vmult variants the source and destination
vectors must be different storage locations. Encapsulating the call to vmult allows to easily provide
fall-back code for this condition:

op.vmult = [&matrix] (Range &v, const Domain &u)
{
if (PointerComparison: :equal (&v, &u))
{
// vmult with intermediate storage
}
else
{
matrix.vmult(v,u);
¥
}s

Here, PointerComparison: :equal returns a constezpr true if the addresses of u and v are the
same, otherwise it return false.

[.3.4. ELIDING NULL OPERATIONS

Consider a matrix A € Mat(n,n) and a vector x € R". In the worst case scenario of a full
matrix, evaluating A z requires ~ n? operations. However, if A is the null matriz, we would like to
avoid all operations and simply set the result to zero in vmult. Similarly, a significant speed-up
can be achieved for more complex operations, such as for example the evaluation of (A + B)z,
where A € Mat(n,n), B € Mat(n,n), and x € R™. In the most general case of full matrices, this
operation would require ~ 2n? operations. If either B or A are a null matriz, at least half of the
operations can be avoided.

In order to implement this strategy of eliding unnecessary operations we augment the
LinearOperator class with a member object of type bool, is_null_operator, that describes
whether the object represents a null matrix. Whenever this variable is true, the resulting object of
an arithmetic operation can be simplified.

As an example, consider the + operator optimized using null operator:

operator+(const LinearOperator<Range, Domain> &first_op,
const LinearOperator<Range, Domain> &second_op)
{
if (first_op.is_null_operator)
return second_op;
if (second_op.is_null_operator)
return first_op;

// Do the general case here
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The complete implementation of the null_operator simply provides vmult and Tvmult methods
that zero out the destination vector, while vmult_add and Tvmult_add leave the Range vector
untouched:

LinearOperator<Range, Domain>
null_operator (const LinearOperator<Range, Domain> &op)
{

auto return_op = o0p;

return_op.is_null_operator = true;

return_op.vmult = [](Range &v, const Domain &u)

return_op.vmult_add = [] (Range &v, const Domain &u)

{};

return_op.Tvmult = [](Range &v, const Domain &u)

return_op.Tvmult_add = [](Range &v, const Domain &u)

{};

return return_op;

[.3.5. LINEAROPERATOR FOR BLOCK STRUCTURES

While it is readily possible to use the LinearOperator class to encapsulate block structures
(block matrices acting on block vectors), it is often desirable to retain access to the underlying
block structure. For this reasons we implement a derived class BlockLinearOperator that inherits
the public interface from LinearOperator with the addition of three more function objects that
provide information about the block structure:

template <typename Range, typename Domain>
class BlockLinearOperator : public LinearOperator<Range, Domain>
{
public:
/7

typedef LinearOperator<typename Range::BlockType, typename Domain::BlockType>
BlockType;
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std::function<unsigned int()> n_block_rows;
std::function<unsigned int()> n_block_cols;
std::function<BlockType (unsigned int, unsigned int)> block;

};

We provide helper functions which fills the above functions starting from standard deal.Il block
matrices, as well as from arrays of linear operators:

// An m by n block sparse matrix
BlockSpaseMatrix<double> A(m,n);

auto B = block_operator (A);

// Now we can access each sub-block as an individual
// linear operator:

auto BOO
auto B10

B.block(0,0);
B.block(1,0);

// A block operator encapsulating two sub-blocks of A
auto subA = block_operator ({{B00}, {B10}});

Using such a structure, it is possible to use the BlockLinearQOperator as a whole, as well as by
accessing its composing blocks, by means of the member function block, like in the snippet above.

Also this operator makes heavy use of std::function objects and lambda functions. Such
a flexibiliy comes with a run-time penalty, which makes such an object efficient only when the
encapsulated linear operators have a large individual size, (i.e., matrix blocks greater than 1000 x
1000). Section analyses in details the run-time penalty associated with such objects, and shows
its full potential in writing block based preconditioners for complex partial differential equations.

I 4 A PACKAGEDOPERATION

In this section a further generalization of the linear operator concept shall be discussed that
applies the same concept of expression construction to matrix-vector products, e. g., the evaluation
of a residual

Vector<double> residual = b - A * x;

with a LinearOperator A, and vectors b and x. The key point is that the above syntax should not
require any intermediate storage. We will define above binary operations in such a way that they
yield an object of type PackagedOperation:

template <typename Range> class PackagedOperation
{
public:

/7
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std::function<void (Range &v)> apply;
std::function<void (Range &v)> apply_add;

std::function<void (Range &v, bool fast)> reinit_vector;

which—similarly to LinearOperator—stores the knowledge of how to apply (or apply_add) a
computation to a vector and how to initialize a vector such that it is suitable to hold the result.
An implicit conversion operator can be defined that automatically converts the packaged operation
to its result such that above assignment to a vector type residual is possible:

template <typename Range> class PackagedOperation
{
public:

//

operator Range() const;

{
Range result_vector;
reinit_vector (result_vector, /*bool fast=*/ true);
apply (result_vector);
return result_vector;

}

};

With the move assignment semantics introduced in C++11 [I] the creation of a result vector and
subsequent assignment does not imply any additional runtime cost. The multiplication of a linear
operator with a vector is straightforward:

template <typename Range, typename Domain>

PackagedOperation<Range>

operator*(const LinearOperator<Range, Domain> &op,
const Domain &u)

{

PackagedOperation<Range> return_comp;
return_comp.reinit_vector = op.reinit_range_vector;
return_comp.apply = [op, &ul (Range &v)
{

op.vmult (v, u);
};
/7

return return_comp;

Similarly, subtraction of a PackagedOperation from a vector:

template <typename Range>
PackagedOperation<Range> operator-(const Range &offset,
const PackagedOperation<Range> &comp)

{
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PackagedOperation<Range> return_comp;
return_comp.reinit_vector = comp.reinit_vector;

return_comp.apply = [&offset, compl (Range &v)
{

comp .apply(v);

v *= -1.;

v += offset;

8
// ...

return return_comp;

}

Again, all lambda objects that are created store references to vectors. This implies that (simi-
larly to matrices that are wrapped into a LinearOperator object) all vectors must remain valid
objects throughout the lifetime of the PackagedOperation in which they are used. With this
implementation, in terms of performance, the one-liner

Vector<double> residual = b - linear_operator (A) * x; ‘

is equivalent to

Vector<double> residual;
residual.reinit(A.n());
A.vmult (residual, x);
residual *= -1.;

residual += b;

-
I NON EXAMPLES

This section contains two examples that use the new LinearOperator concept. First, a strategy
to wrap constraints around a matrix object is presented that does not need access to the elements of
the underlying matrix object, permitting the use of abstract linear operators with constraints. The
second example is a Schur complement preconditioner for the Stokes problem. Finally, performance
comparisons between optimized, hand-written implementations, and an implementation with
LinearOperator are made.

[.5.1. FORMULATING LINEAR CONSTRAINTS WITH A LINEAROPERATOR

In finite element codes, it is often necessary to modify the resulting linear system in such a way
that certain constraints are satisfied, e. g., when imposing Dirichlet boundary conditions or when
solving the problem in a geometry with hanging nodes.



The classical way to proceed when there are degrees of freedom which are constrained (see, e.
g., [28]) is to eliminate them during the assembly process, either by removing them altogether from
the resulting linear system, or by replacing their rows and columns by appropriate replacements.

The alternative we present here consists in imposing the constraints as a linear operator and
not by manipulating the original matrix.

Remark. This has the positive side effect that the matrix object (that should be wrapped) does
not need to be a classical matrix. It can also be a linear operator object with no direct access to
the underlying storage.

This is especially important in those situations in which the matrix is never stored, and it is not
even possible to construct a single specific entry of the matrix itself. A notable example is when the
matrix vector product may be replaced by a sequence of approximate operations which reproduce
to a certain accuracy the original matrix-vector product, but do not give access to the elements of
the matrix itself. This is the case in Boundary Element Methods, where there are several techniques
to reduce the count of operations for a full matrix vector product from n? to nlog(n) or even lower
counts, generally known as Fast Multiple Methods, which exploit such approximations without ever
forming a full matrix.

In such cases, the procedure we devise here is the only available option, since the only interface
we have with the matrix is the matrix-vector operation vmult (or its transpose Tvmult).

Algebraic formulation of linear constraints
Consider a generic linear system of the form
Az = b, (I.1)

with a system matrix A € Mat(n,n) and a right hand side b € R™.

In many numerical methods it is often convenient to assemble the matrix A without taking into
account additional constraints on the degrees of freedom, such as, for example, Dirichlet boundary
conditions or continuity conditions across faces with hanging nodes in finite element methods. Such
constraints can be later removed from the system matrix by modifying the rows and columns of A
and b.

Let us assume that of the n degrees of freedom, m are constrained, with linear constraints of
the following type:

d akwi+i; =0, k=1,...m, (1.2)
J

with coefficients d;?, k;j € R. Without loss of generality, one can renumber and renormalise the
constraints in such a way that all constrained degrees of freedom appear first, and that for the k-th
linear constraint we have that &¥ # 0. If the set of constrained degrees of freedom is well-formed,
then one can eliminate them from the linear system [28], and they can be rewritten in the following
form:

T = Zaé—“xj—&—/{j, k=1,...,m, (1.3)

ji>m



where, in the simple case where the constrained degrees of freedom do not depend on each other,
a;? = —d;’?/d’g and x; = ,%j/d’,j. The more complex case of circulant contraints, in which j may also
be smaller than m in equation , can be simplified through trivial manipulation to the same
form, when the constraints are well formed.

We denote the vector of constrained degrees of freedom by v, = {xy}},. Those degrees of
freedom can be fully expressed in terms of the remaining degrees of freedom, as in equation .
Conversely, v, = {zx}}_,, 1 shall denote the vector of unconstrained degrees of freedom and do
not appear on the left side.

Let a denote the m x (n —m)-matrix {a } ;5 appearing in equation (L.3). If a vector v satisfies

the linear constraints (L.3|), then we can rewrite them in two equivalent matrix forms:

() - w (o) *@- (L4)

=:C =r'

=:B=I-C

We observe that the affine operator P : v — Cv + &' is idempotent, i.e., P2 = P, since P always
leaves untouched the unconstrained degrees of freedom v,, and sets the constrained ones to av,, + k.
If a vector x is such that it satisfies the constraints , then P(x) = x. Moreover, the matrices B
and C are such that BC = C*Bt = 0.

Exploiting these properties, we can use the matrix B = I — C to reformulate the solution of
system subject to the constraints using a Lagrange multiplier A\ as follows:
ty _

{Ax +B'A=0, (.6)
Br =«

Since by construction the solution z of system ([.6) satisfies the constraints Bz = £/, we can
replace  with P(x) and multiply by C*! to obtain a simplified system on the variable x only

C'ACT =C' (b— AK)). (L7)

Unfortunately system is underdetermined, since C*AC has rank (m — k) (its first k rows
are all zero). This is expected, since we removed the Lagrange multiplier A from when we
multiplied by C?, and uniqueness of a solution was guaranteed by the presence of the Lagrange
multiplier.

Observing more closely the structure of C* AC, we can recover the solution of system by
summing a matrix with complementary rank, for example

0 0 I 0
=C%A I, tAC = I, = . I.
$i=0aCt L 0= (0 e, ) (0 o) (x8)
Then there exist a unique solution x to the system
Si=C'"(b— Ax) (L9)

r=C%+ K, (I.10)
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and it coincides with the solution x of system .

The deal.II library provides functions which assemble directly the matrix S and the right hand
side in , through its ConstraintMatrix class, and then distribute the constraints to the final
solution through equation (L.10).

An implementation of a similar procedure (which only uses knowledge about the action of the
matrices C' and A) would require two linear operator objects plus two packaged operation objects,
one for the right hand side of equation and one for the right hand side of equation .

Implementation with LinearOperator and PackagedOperation

For this example, we will compare with the specific implementation of the ConstraintMatrix
which can be found in deal.II, although our strategy will work also for other implementations.
First we construct a LineaOperator that encodes the action of the matrix C' in equation (I.4):

template<typename Matrix>
LinearOperator<Range, Domain>
constraints (const ConstraintMatrix &cm, const Matrix &m);

Referring to deal.II implementation, such a matrix exists in deal.II in a form which is not that
of a standard matrix, since its implementation is more efficient using a specialised class (called
ConstraintMatrix) that essentially stores the coefficients of in efficient data structures (see
[28]). With it, it is straightforward to implement a function that returns C' as a LinearOperator
for a given ConstraintMatrix. We report only the vmult function implementation, as the other
members follow a very similar structure:

// ... constraints (cm, A)
// vmult operation for a constraint matrix, available
// as a ConstraintMatrix of deal.II (here called cm)
return_op.vmult = [&cm](Range &v, const Domain &u)
for (auto i : v.locally_owned_elements())
if (cm.is_constrained(i))
{
const auto entries = cm.get_constraint_entries (i);
for (types::global_dof_index j=0; j < entries->size(); ++j)
{
auto pos = (*entries)[j].first;
v(i) = u(pos) * (xentries)[jl.second;
}
}
else
v(i) = u(i);
}

In a very straightforward manner it is then possible to implement the I. operator as (only vmult
is shown):

// ... identity_of_constraints (cm)
// vmult operation for the Ic part of the constrained operator
return_op.vmult = [&cm] (Range &v, const Domain &u) {
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v = 0;
for (auto i : v.locally_owned_elements())
if (cm.is_constrained(i))
v(i) = u(i);

The solution to system ([.9) can now be expressed as

// Given a matrix A and the constraint matrix cm, build all operators:

const auto op_C = constraints<Range, Domain, Matrix>(cm, A);
const auto op_Ic = identity_of_constraints<Range, Domain>(cm) ;
const auto op_Ct = transpose_operator<Domain, Range>(op_C);
const auto op_A = linear_operator<Range, Domain>(A);

const auto op_S = op_Ct * op_A * op_C + Ic;

// We assume both solver and preconditioner are available
const auto op_S_inv = inverse_operator (op_S, solver, preconditioner);

// The packaged operation on the right hand side is automatically
// applied on x_tilde

Vector<double> x_tilde = op_S_inv * op_Ct+*(system_rhs-op_Axkappa_prime);

// Distribute constraints to the solution
x_tilde = op_C*(x_tilde + kappa_prime);

// The above is equivalent to cm.distribute(x_tilde) in deal.II

The two consecutive packaged operation could have been condensed into one by using the
one-liner

Vector<double> solution =
op_C*(op_S_inv * op_Ct*(system_rhs-op_Axkappa_prime) ) + kappa_prime;

whose expression is identical to the mathematical formulation expressed in system (I.9)) and (I.10)
together.

Benchmark

We present some benchmarks obtained with the solution of a Laplace problem using Dirichlet
boundary conditions and a non-uniform refinement strategy. The comparison has been made with
two example test programs that can be downloaded from the deal.IT library web page, one for the
serial case [33] and one for the parallel case [32].

We replaced the original implementation of constraint matrix with one based on the
LinearOperator class. The solutions are identical in the two cases, and Figure shows the
different timing of the two methods in the serial and parallel case, indicating a negligible overhead
for the serial case (left), and a considerable overhead for the parallel case (right).



10* || —— Standard method 104 |-| —— Standard method .
--#- LinearOperator --#- LinearQOperator ,"'
10 o
— — 103 -
) 2 )
g v 2o
] & 10
10t
10
10°
102 103 10* 10° 103 10* 10°
Number of degrees of freedom Number of degrees of freedom
(a) 1 CPU (b) 16 CPUs

Figure I.1: Execution time over matrix size for a Laplace problem where the Dirichlet boundary
condition and the hanging node constraints are enforced by direct application to the matrix (Standard
Method), as well as applied indirectly by encapsulation in a linear operator (LinearOperator).

In the parallel case, the overhead of the LinearOperator approach is due to the overhead in the
communication. In the standard approach, elimination of the constraints is performed once, and
no communication about constrained degrees of freedom is required after elimination as occurred.
Without access to the underlying matrix structure, at every application of the constrained linear
operation, a certain amount of communication is unavoidable, making this approach only useful
for those cases where the matrix is not assembled or not available. In those cases the overhead is
unavoidable, and the LinearOperator approach is the only available option.

[.5.2. A PRECONDITIONER FOR THE STOKES PROBLEM

Perhaps a better way to show the power of expression syntax for matrix vector operations
is a real life example: writing a suitable preconditioner for complex problems is far from being
trivial, and a non user-friendly approach often lead to mistakes and bugs which are quite difficult
to catch. In this section we provide a use case of LinearOperator which simplifies tremendously
the readability of numerical codes, while maintaining the same performances of hand-crafted, low
level, codes.

Statement of the problem
In the following we use the stationary Stokes Problem as a case study:

I.11
V-u=0. ( )
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The corresponding system matrix of this problem has the following structure:

A Bt
S= :
(5 %)
It is well known that a good preconditioner for this system is given by (see, e. g., [9])
1

P:(S‘ 1_3; ) (112)

where S = BA~!B! is the corresponding Schur complement (see [9]).

We are going to focus on the action of the inverse of on a generic vector. In the following
we assume that A € Mat(n,n) and B € Mat(m,n) are results of a suitable discretization (of
stable ansatz spaces) such that the linear system is well-posed.

A low-level implementation

A straightforward implementation of the preconditioner PP is to compute the action of P~! on a
given vector (u,p)t:
-1
A B A"l A-1Bts—!
") = (M) = ff (). (1.13)
q 0 -S D 0 -5 D

This leads to the following low-level pseudocode implementation of the preconditioner:

v = A~{-1} * u;

u_tmp = S~{-1} * p;
u_tmp = B~t * u_tmp;
u_tmp = A~{-1} * u_tmp;
v += u_tmp

q = -8°{-1} * p;

This approach is unnecessarily expensive because it consists of two additional (and otherwise
identical) solve operations (with A~{-1} and with S~{-1}) and an intermediate vector. This can
be optimized by some minor code refactoring:

q = 8°{-1} * p;
v = u;

v += Bt * q;

v = A~{-1} * v;
q *= -1;

We stress the point that, although the derivation of this pseudocode is straightforward, it is
nonetheless non-trivial. We demonstrate in the next subsection that the same pseudocode can be
derived on an abstract level with the help of the LinearOperator concept.

A high-level implementation with the LinearOperator concept
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Let L = (l;j)i; be a regular block lower-triangular matriz consisting of linerar operators [;; and
invertible diagonal blocks ;. For a given right hand side b = (b;);, let the task be to find a block
vector & = (x;); such that:

Lx =1b. (1.14)
This equation can be solved by blockwise forward substituion:

-1
o = ZO,O . bo,
i—1
—1 2 :
€Tr; = li,i . (bn — li,j . ,Tj).
j=0

Similarly, a system of equations with an upper block triangular matrix U can be solved by blockwise

(1.15)

backward substitution:
-1
T = un,n : b’ru

u;il.(bn_ i ujxj) (1.16)

j=i+1

Z;

Both algorithms can be implemented in a straightforward manner. We created two function with
the following signature:

template <size_t n, typename Range, typename Domain>
BlockLinearOperator<n, n, Domain, Range>
block_back_substitution(
const BlockLinearOperator<n, n, Range, Domain> &block_operator,
const BlockLinearOperator<n, n, Domain, Range> &diagonal_inverse);

This allows us to write the inverse of the preconditioner in a “natural”’, high-level way without loss
of (algorithmic) performance. Notice that in we only use the inverses of diagonal blocks, and,
more importantly, they are used only once. The following listing illustrates the implementation of
the vmult operation of the block back substitution operator, which assumes that all input objects
are of type BlockLinearOperator. The other functions follow a very similar implementation.

/Y oo
return_op.vmult = [block_operator, diagonal_inverse]
(Range &v, const Range &u)
{
const unsigned int m = block_operator.n_block_rows();
if (m == 0)
return;
v.block(m-1) = diagonal_inverse.block(m-1, m-1) * u.block(m-1);
for (int i = m - 2; i >= 0; --1i)
{
auto &dst = v.block(i);
dst = u.block(i);
dst *x= -1.;
for (int j = i + 1; j < m; ++j)

dst += block_operator.block(i, j) * v.block(j);
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dst *x= -1.;
dst = diagonal_inverse.block(i, i) * dst;

8

With these prerequisites at hand, the solution process for a Stokes system, including the
construction of a block triangular preconditioner can be implemented in very few lines of code,
showing the full power of the expression syntax:

// Assemble A and B

// together with precA and precS, two preconditioners

// for A and S respectively, and Asolver, Ssolver, and Gsolver
// respectively suitable solvers for A, S and the global system

// Transpose linear operator of B

auto Bt = transpose(B);

// Inverse of A

auto Ainv = inverse_operator (A , Asolver, Aprec);

// Schur complement, or alternatively: S = Bx*Aprec*Bt
auto S = B*Ainv*Bt;

auto Sinv = inverse_operator (S, Ssolver, Sprec);

auto system_matrix = block_operator ({{A, Bt}, {B, 0}});
auto diagonal_inverse = block_diagonal_operator ({Ainv, -1%Sinv});
P_inv = block_back_substitution(system_matrix, diagonal_inverse );

// Global solver
auto system_inverse = inverse_operator(system_matrix, Gsolver, P_inv);

// Solve the problem!
auto solution = system_inverse * rhs;

[.5.3. SOME BENCHMARKS

In this subsection we present two small tests to assess the preformance of the LinearOperator
implementation of the system preconditioners when compared to a standard implementation (see,
for example, the example step-32 of the deal.II library [31]). The computations were performed on
a 2.6GHz dual-core Intel Core i5 processor (i5) and on an Intel Xeon E5-2680 v2 with 10 cores (E5).

The standard implementation is taken from the example program “step-32” of the deal.ii
library [31]. It implements the optimized algorithm presented in Subsection

The LinearOperator implementation uses the back substitution algorithm presented in equation
(L.16]).

The benchmark we use consists in performing 500 matrix vector multiplication with the two
preconditioners. The average execution time over 5 different runs is plotted in figures and
for i5 and E5 processors respectively.
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Figure 1.2: Execution time of the different algorithms running in serial (left) and in parallel (right)
on a dual-core Intel Core i5 processor as a function of the matrix size. The resulting execution time

is a mean value over five runs.



10* | —e— Standard method
--#- LinearOperator
10?
=
o 10!
=
T
1071
10* 10* 100 10 107
Number of degrees of freedom
(a) 1 CPU
—e— Standard method
10% |-{-- & LinearOperator
= 101
<)
E
=
10°
-t

0% 10* 105 10 107
Number of degrees of freedom

(c) 8 CPUs

102
N
S 10
g
&

109

101

102
= o
Q
A
&

109

101

—e— Standard method

--#- LinearQOperator
o
0% 10* 105 10 107

Number of degrees of freedom

(b) 4 CPUs

—eo— Standard method
--#- LinearOperator

o

0% 10* 105 10 107
Number of degrees of freedom

(d) 16 CPUs

Figure 1.3: Execution time of the different algorithms on a cluster of 10-core Intel Xeon processors

as a function of the matrix size. The resulting execution time is a mean value over five runs for

different number of processors.

[.6.

CONCLUSION

We introduced an expression syntax for the evaluation of vector space operations. It uses the new
C++11 features of std: :function objects and lambda expressions to avoid the usual “template

overhead” associated with an implementation via pure expression templates.

The introduced



framework is very generic, it requires only a minimal interface that vector and matrix classes must
adhere to. We gave a number of examples that demonstrate that the framework results in short
and concise code. The numerical examples demonstrate that the runtime overhead introduced by
the std: :function objects and lambda functions is negligible.
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II 1 . INTRODUCTION

The solution of partial differential equations by means of a finite element method always requires
at least the following steps:

— generation of a geometrical grid to represent the domain of the simulation;

definition of the discrete functional space for the solution;

— application of proper boundary conditions;

— actual solution of the algebraic problem;

— post-processing of the result (data output and error analysis).

Such a structure usually implies that different problems share a considerable amount of code. A
natural response to such common background lies in the use of open source libraries as building
blocks for advanced numerical solvers. The general purpose finite element library deal.II [4,[7] is
one of the most successful libraries of this kind, and allows considerable simplification when writing
complex finite element codes. deal.II supports massively parallel simulations [3], hp adativity [8],
geometric multigrid [I9], discontinuous finite elements [20], and matrix free simulations [23] among
many other capabilities.

The deal.IT library has been written with generality in mind, and allows the solution of several
classes of finite element problems. Its flexibility can be attributed to the granularity and modularity
of the code base, in which only the building blocks of finite element codes are programmed, and
the semantic for the solution of an actual problem is left to users of the library. This approach
has the advantage that deal.II can be used to solve virtually any problem that can be written
into a partial differential equation, but leaves to the user the burden to stich together the various
building blocks. A typical approach is to start from one of the many example programs that the
library comes with (more than 50), and modify it to suite the needs of the user. While the approach
copy-modify-run may be well suited for a single person working on a single project, it falls short
when one wishes to reuse the same code base to solve possibly very different problems. The biggest
difficulty comes from the fact that most of the tasks above have slightly different specialisations
depending on the problem at hand. These specialisation are usually difficult to generalize, since they
depend, for example, on the number of variables of a problem, the types of boundary conditions
one would like to impose, or the type of norm one would like to use when computing errors during
the post-processing phase of a program.



=W N =

N o ot

In this Chapter, we present a brief overview of deal2lkit: a library of modules built on top of
deal.II that drastically reduces the amount of repeated lines of code between different projects,
by introducing an extensive use of parameter files into every step of a general finite element code.

deal2lkit features also interfaces for other scientific libraries in order to tackle problems of
increasing difficulties. We have constructed convenience wrappers around the SUite of Nonlinear and
DIfferential /ALgebraic equation Solvers (SUNDIALS|[I7]), that proved to be a winning strategy in
many applications which require the solution of non-linear time dependent problems [25]. deal21kit
offers also an interface to the Open Asset Import Library (Assimp), which is used to extend the
compatibility of the deal.II library towards grid generation software and 3D CAD manipulation
tools.

deal2lkit is distributed under the free GNU Lesser General Public License (LGPL) and is
available from the deal21kit homepage at https://github.com/mathLab/deal2lkit. The library is
tested by means of the continuous integration service hosted by Travis CI, where more than ninety
tests are run both in debug and release mode before any change to the library is merged in the
main distribution.

deal2lkit has been developed with full support for parallel environments, by exploiting hybrid
multithread and multiprocessors paradigm [3].

The Chapter is organized as follows: in Section[[I.2| we present some of the modules of deal2lkit;
Section [[T-3] shows some example applications which are useful to grasp the capabilities of deal2lkit
and in Section [[I-]] we draw some conclusions and address future development.

I I . 2 . MODULES

I1.2.1. PARAMETERACCEPTOR

In general, a parameter file is used to steer the execution of a program at run time, without
the need to recompile the executable, with clear advantages in terms of human-time. Morevoer,
without modifying the source code, the possibility to introduce bugs is prevented.

In the deal.II library, reading and writing parameter files is done through the
ParameterHandler class, that provides a standard interface to an input file that can be used
to feed run-time parameters to a program, such as time step sizes, geometries, right hand sides, etc.

deal.II supports the standard zml or JSON formats, or a custom text format which resemble
bash files with support for sections, as in the following example:

Generated code

subsection Nonlinear solver

set Nonlinear method = Gradient

# this is a comment

subsection Linear solver
CG
30

set Solver

o

set Maximum number of iterations
end


https://computation.llnl.gov/casc/sundials/main.html
http://assimp.sourceforge.net/index.html
https://github.com/mathLab/deal2lkit
https://travis-ci.org/
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end
Typically, the following four steps are required to let a program use a parameter file:

— make sure that the program knows what entries will be in the file;

create a parameter file with default values if one does not exist;

parse all entries of the file (possibly raising exceptions if the entries were not previously
declared, or if the parsed entries contain illegal values);

— assign the parsed entries to local variables of the program.

The ParameterHandler class of the deal.II library provides facilities to perform the above
four steps, through the following methods:

— ParameterHandler: :print_parameters

— ParameterHandler: :read_input

ParameterHandler: :declare_entry
— ParameterHandler: :get_x*

In large programs, where the number of parameters easily exceeds hundreds of entries, managing
the above four actions for different classes is far from trivial. The deal.II documentation advocates
the creation of a class that would store all parameters of the problem, with two methods:

— declare_parameters (prm)
— parse_parameters (prm) or get_parameters (prm)

that should be called by the program before writing or reading a parameter file, and right after
having read the parameter file into an object prm of type ParameterHandler.

Such an approach has the advantage that bookkeeping is simple, if compared to a scattered
approach where each class keeps track of its own parameters, but it suffers one big draw back: it
is not reusable for problems of different type and it has still the defect that one has to separate
declaration and recovery of each parameter, as in the following short example:

void NonLinEq::declare_parameters (ParameterHandler &prm) {
prm.enter_subsection ("Nonlinear solver");
{
prm.declare_entry ("Nonlinear method",
"Newton -Raphson",
ParameterHandler: :RegularExpressions::Anything());
eq.declare_parameters (prm);
}
prm.leave_subsection ();
}

The complementary part of this code is contained in the parse_parameters method, which actually
fills the values of the local variables.
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void NonLinEq::parse_parameters (ParameterHandler &prm) {
prm.enter_subsection ("Nonlinear solver");
std::string method = prm.get ("Nonlinear method");
eq.get_parameters (prm);
prm.leave_subsection ();

}

According to the proposed design in the deal.II documentation, such separation is necessary (with
a consequent proliferation of several places where one has to keep track of what variables have been
declared and what variables have been assigned locally) since the declaration, reading and writing
of a parameter file, and the assignment to local variables have to be done ezactly in this sequence.

deal2lkit implements a global subscription mechanism and a local subscription mechanism
through the base class ParameterAcceptor, which maintains compatibility with all classes written
following the deal.II suggested construction, and provides an additional method which removes
the necessity to split the declaration and parsing of parameters.

The global subscription mechanism is such that whenever a class that was derived by
ParameterAcceptor is constructed, a static registry in the base class is updated with a
pointer to the derived class. Such registry is traversed upon invocation of the single
function ParameterAcceptor::initialize("file.prm") which in turn calls the method
declare_parameters for each of the registered classes, reads the file "file.prm", (creating it
first with default values if it does not exist) and subsequently calls the method parse_parameters,
again for each of the registered classes.

The base class ParameterAcceptor conforms to the standard advocated in the deal.II
documentation, and it has a pure virtual method declare_parameters and a virtual method
parse_parameters which can be overloaded as shown above. However, the base class also
has a default implementation of parse_parameters which exploits a local subscription mecha-
nism by storing in a local registry a pointer to all variables that were declared through the
add_parameter method of ParameterAcceptor. Such method has the same syntax of the
ParameterHandler: :add_entry method, with the addition of two arguments: a ParameterHandler
object on which ParameterHandler: :add_entry will be called, and a reference to the variable that
should hold the entry when a ParameterHandler: :get_* method is called. Such variable is stored
in a registry (local to the class instantiation) which is traversed by the default implementation of
ParameterAcceptor: :parse_parameters. Specialized implementations are provided for the most
commonly used variable types.

When writing from scratch a class derived from ParameterAcceptor, if the user implements the
declare_parameters method using only the above add_parameter method, then it is guaranteed
that, upon calling the default implementation of ParameterAcceptor: :parse_parameters, all
variables that were stored in the registry are automatically populated with the values from the
parameter file, without having to do so manually.

If a particular action needs to be taken after a class has parsed its parameters, the user
can overload the virtual method ParameterAcceptor: :parse_parameters_call_back, which by
default does nothing.

A typical usage of this chain of classes is the following:

// This is your own class, derived from ParameterAcceptor
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class MyClass : public ParameterAcceptor {
virtual declare_parameters (ParameterHandler &prm) {
add_parameters (prm,
&member_par,
"Par name",
"50", // Default value
ParameterHandler: :RegularExpressions::Integer (0,100),
"long description about Par name");
}
private:
// A problem parameter
const unsigned int member_par;

int main() {
// Make sure you build your class BEFORE calling
// ParameterAcceptor::initialize ()
MyClass example;

// With this call, all derived classes will have their

// parameters initialized, including the class example above

ParameterAcceptor::initialize("file.prm",
"file_without_long_descriptions.prm");

return 0;

Running the code above in an empty directory, will result in the creation of two files: file.prm,
containing

Generated code

# long description about Par name
set Par name = 50

and file_without_long_descriptions.prm containing:

Generated code

set Par name = 50

The ParameterAcceptor: :RegularExpressions are used to set the expected type of variable
(integer in the above example) and, if available, a range of the allowed values. In the remainder of
the Chapter, for the sake of brevity, the “long descriptions” will be omitted.

The second file name is optional. If one changes the value in the parameter file "file.prm" and
runs the program again, this change will be automatically reflected on the example.member_par
variable.

All modules in deal21kit are derived from ParameterAcceptor. Declaration of the entries is
required once, by specifying at the same time the variables that will hold the parameter. Once all
objects have been constructed, the static method ParameterAcceptor: :initialize will fill the
local parameters of each derived class automatically, greatly simplifying the bookkeeping of the
parameters, and allowing for immediate reuse of all classes in different programs, without having to
rewrite a global parameter class, or without having to manually keep track of what classes have
had their parameters declared or parsed.
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As a convention, in deal2lkit all modules derived from ParameterAcceptor implement a
default constructor which takes one or more optional arguments. The first optional argument is
always the name of the section in the parameter file that the derived class should use to fill its local
variables. By default, the utility function deal2lkit: :type is used to fill the section name with
a human readable version of the class name itself. For example, according to the above example,
there will be a section named MyClass. Next options are the default values that will be written in
the parameter file. There is no need to specify these options, as the user can always change the
content of the file to make sure that the right parameters are used at run time, but this possibility
allows one to design a program that does something sensible on the first run, without having to
change any parameter file.

I1.2.2. PARSED GRID GENERATOR

The interface for generating a grid through a parameter file is managed by the
ParsedGridGenerator<dim, spacedim> class, which inherits from ParameterAcceptor. We can
specify either the type of the grid that must be generated (e.g., rectangle, sphere, ball, etc) or read
it from a file. In the first case, we exploit the dealii: :GridGenerator functions of the deal.II
library, effectively providing a parameterized wrapper around GridGenerator (hence the name).
Otherwise, we simply specify the file to be read, which must be in any of the format recognised by
the deal.ITI library.

The constructor of ParsedGridGenerator<dim, spacedim> takes optional strings which allow
the user to decide what are the default values that will be written on the parameter file:

ParsedGridGenerator (const std::string section_name="",
const std::string grid_type="rectangle",
const std::string input_grid_file="",
const std::string opt_point_1="",
const std::string opt_point_2="",
const std::string opt_colorize="false",
const std::string opt_double_1="1.0",
const std::string opt_double_2="0.5",
const std::string opt_int="1",
const std::string opt_vec_of_int="",
const std::string mesh_smoothing="none",
const std::string output_grid_file="");

The first optional argument specifies the section name within the parameter file. If the section
name is empty, by default it is set to ParsedGridGenerator<x,x> where x,x will be replaced with
the actual dim and spacedim numbers with which the user instantiated the class.

ParsedGridGenerator can be used both in serial and parallel settings, and a typical usage of
this class is

// 2D square - serial mesh

// by default it constructs the rectangle whos opposite corner points
// are p1=(10.0,10.0) and p2=(20.0,20.0)

ParsedGridGenerator<2,2> tria_builder_2d("2D mesh",

"rectangle",
nn
s
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"10.0,10.0",
"20.0,20.0",
"true");

// 3D parallelepiped - parallel distributed mesh
// by default it constructs the parallelepiped whos opposite corner
// points are p1=(7.0,8.0,9.0) and p2=(15.0.16.0,16.7)
ParsedGridGenerator<3,3> tria_builder_3d("3D mesh",
"rectangle",
"7.0,8.0,9.0",
"15.0,16.0,16.7");

// call ParameterAcceptor
ParameterAcceptor::initialize("file.prm", "no_descriptions.prm");

// Construct a serial mesh following the indications in "file.prm"
// in the section "2D mesh"
Triangulation<2,2> *tria_serial = tria_builder_2d.serial();

// Comnstruct a parallel::distributed::Triangulation following the

// indications in "file.prm’’, in the section "3D mesh"

parallel::distributed::Triangulation<3,3> *tria_mpi =
tria_builder_3d.distributed (MPI_COMM_WORLD) ;

Once the function ParameterAcceptor::initialize("no_descriptions.prm") is called, the

no_descriptions.prm is filled with the following entries:

Generated code

subsection 3D mesh

set Colorize = false

set Grid to generate = rectangle
set Input grid file name =

set Mesh smoothing alogrithm = none

set Optional Point<spacedim> 1 = 7.0,8.0,9.0
set Optional Point<spacedim> 2 = 15.0,16.0,16.7

set Optional double 1 =1.0
set Optional double 2 = 0.5
set Optional int 1 =1
set Optional vector of dim int = 1,1,1
set Output grid file name =

end

subsection 2D mesh
set Colorize = true
set Grid to generate = rectangle
set Input grid file name =
set Mesh smoothing alogrithm = none

set Optional Point<spacedim> 1 = 10.0,10.0
set Optional Point<spacedim> 2 = 20.0,20.0

set Optional double 1 = 1.0
set Optional double 2 = 0.5
set Optional int 1 =1

set Optional vector of dim int = 1,1

set Output grid file name =
end

If the user would then change the parameter file to generate a sphere, or read a file, no change

in the code would be necessary, as at run time the new parameters would be used.
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The option Output grid file name, if set to non-empty, will allow the user to call the method
ParsedGridGenerator<dim,spacedim>: :write(tria) to output the given triangulation to a file.
The format of the output file is decided by the extension of the output file name.

I1.2.3. PARSED FINITE ELEMENT

The existence and stability of solutions to partial differential equations is strictly depen-
dent on the selected solution space, which defines the finite element to use. The class
ParsedFiniteElement<dim,spacedim>, derived from ParameterAcceptor, allows the definition
of the finite element type from a parameter file. The constructor takes several optional arguments,
which are reported below, that are used to fill the default values of the parameter file:

ParsedFiniteElement (const std::string &name="",
const std::string &default_fe="FE_Q(1)",
const std::string &default_component_names="u"
const unsigned int n_components=0,
wn

const std::string &default_coupling="",
const std::string &default_preconditioner_coupling="");

The first entry is the mname if the section for ParameterHandler. The sec-
ond one is the FiniteElement, which follows the same form returned by the
dealii::FiniteElement: :get_name() function. For example, for the Stokes problem in two
or three dimension, the following string could be used “FESystem[FE_Q(2) ~dim-FE_Q(1)]”, gen-
erating a Taylor-Hood mixed finite element space of order two for the velocity and one for the
pressure. Further optional entries are the component names, the allowed number of components (0
means an arbitrary number) and the system and preconditioner couplings, which may be used to
define the blocks of a dealii::BlockVector or a dealii::BlockMatrix.

If one specifies a given number of components at construction time, then the program will throw
an exception if the user changes the parameter file in a way that creates a finite element space with
the wrong number of components.

A typical usage of this class is reported in the snippet below:

// finite element for 2D Stokes problem
ParsedFiniteElement<2,2> fe_builder ("Parsed Finite Element for Stokes",
"FESystem [FE_Q(2)~2-FE_Q(1)1",

"u,u,p");
ParameterAcceptor::initialize("file.prm", "no_descriptions.prm");
// pointer to a newly created finite element following the content

// of "file.prm"
FiniteElement<2,2> *fe = fe_builder ();

After that the above code is run, the no_descriptions.prm file is filled as follows:

Generated code

subsection Parsed Finite Element for Stokes
set Block coupling
set Blocking of the finite element
set Finite element space

u,u,p
FESystem[FE_Q(2)~2-FE_Q(1)]
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set Preconditioner block coupling =
end

An extended use of the methods in ParsedFiniteElement can be found, for example, in
the 7DoMUS (Parallel Deal.IT MUltiphysics Solver) application (https://github.com/mathLab/
pi-DoMUS) [12].

I1.2.4. PARSED FUNCTIONS AND BOUNDARY CONDITION

Forcing terms and boundary conditions are often expressed by means of functions, and one would
like to have the possibility to change them without recompiling the user code. The deal21kit library
offers three classes (derived from ParameterAcceptor) to define such functions at run time as parsed
objects: ParsedFunction<dim,ncomponents>, ParsedMappedFunctions<dim,ncomponents>, and
ParsedDiricheltBCs<dim, spacedim,ncomponents>.

ParsedFunction<dim,ncomponents> is a thin wrapper for the deal.II class
dealii::Functions::ParsedFunction, which simply derives the deal.II version from
ParameterAcceptor, in order to put in place the subscription strategy of deal2lkit (see
Section . The constructor takes a name for the section and an expression string, which is
used to set the expression of the underlying dealii: :Functions: :ParsedFunction as soon as the
parameters are parsed. For example, if we declare a ParsedFunction as follows:

ParsedFunction<2,1> forcing_term("Forcing term",
"sin(2*pi*(x-t))");

then, within the parameter file, the following section can be found:

Generated code
subsection Forcing term
set Function constants
set Function expression
set Variable names
end

sin (2*pix(x-t))
X,y,t

and the forcing_term can be used in place of a Function<2> object. The second value for the
template parameter specifies the number of components for the function, which can be greater or
equal than one.

As for each class derived from ParameterAcceptor, the strings given in the constructor are the
default values set in the parameter file, but they can be changed within the parameter file itself.

ParsedMappedFunctions<dim,ncomponents> is a more complex collection of functions acting
on given ids (boundary id, material id, etc.) and on specified components. Neumann boundary
conditions and forcing terms can be easily handled with this class. The constructor takes:

— the name for the section of the Parameter Handler to use;

— the name of the variable to which the component belongs. For example, for Stokes equations,
if we name the velocity u and the pressure p, then component_names=u,u,p, in 2D, and
component_names=u,u,u,p for a 3D framework;


https://github.com/mathLab/pi-DoMUS
https://github.com/mathLab/pi-DoMUS

- a list of ids and components where the boundary conditions
must  be  applied, which is a string with the following pattern
boundary_id = component; other_component % other_id = comp; other_comp. The
components can be either set with numbers (e.g., first component is 0, second is 1) or with
the name of the variable defined in component_names;

— a list of ids and expressions defined over the ids (if this string is left empty, a ZeroFunction
is imposed on the above specified ids and components).

— A list of constants that can be used in the above expressions.

A typical use of this class is the following:

// create mapped_functions object - 2D Stokes problem

ParsedMappedFunctions<2,3>
mapped_functions ("Mapped functions",
“u’u’p“!

"O=u 7% 6=ALL",

"0=x;y;0 % 6=yxk;0;k",

"k=1");
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unsigned int id = cell->material_id();
std::vector<double> fs(n_q_points);
mapped_functions.get_mapped_function(id)->value_list(

fe_values.get_quadrature_points (),
£s);

After the code is run for the first time, the following section will appear in the parameter file:

Generated code

subsection Mapped functions

set IDs and component masks = O=u % 6=ALL

set IDs and expressions = 0=x;y;0 % 6=y*k;0;k
set Known component names = u,u,p

set Used constants = k=1

end

ParsedDiricheltBCs<dim,spacedim,ncomponents> is a specialization of the above,
which allows to set Dirichlet boundary conditions wusing deal.II utilities. This
class is derived from ParsedMappedFunctions<spacedim,ncomponents> and provides
wrappers for the functions dealii::VectorTools::interpolate_boundary_values,
dealii::VectorTools: :project_boundary_values and dealii: :VectorTools: :compute_nonzero_normal_flux.
The constructor takes:

— the name for the section of the Parameter Handler to use;

— the name of the variable to which the component belongs, as for the class
ParsedMappedFunctions;



- a list of ids and components where the boundary conditions
must  be  applied, which is a string with the following pattern
boundary_id = component; other_component % other_id = comp; other_comp. The
normal component can be specfied postponing ".N" to the name of the components (e.g.,
u.N is the normal part of u);

— a list of ids and expressions defined over the ids (if this string is left empty, homogeneous
boundary conditions are imposed on the above specified ids and components);

— A list of constants that can be used in the above expressions.

A typical use of this class is the following:

// create dirichlet object - 2D Stokes problem

ParsedDirichletBCs<2,2,3>
dirichlet ("Dirichlet BCs",
"u,u,p",

"0=u % 3=u.N",

"0=x3y;0 % 3=x3;2;0");

// the following functions apply the boundary conditions for the
// boundary id 0

_ =
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dirichlet.interpolate_boundary_values (dof_handler,constraints);

// in order to apply the boundary conditions also to the

// boundary id 3, where the normal component is set,

// the following function must be called
dirichlet.compute_nonzero_normal_flux(dof_handler,constraints);

T W N

Once the above code is run, the following section is included in the parameter file:

Generated code

subsection Dirichlet BCs

set IDs and component masks = O=u % 3=u.N
set IDs and expressions = 0=x;y;0 % 3=x;2;0
set Known component names = u,u,p

set Used constants =
end

I1.2.5. PARSED SOLVER

In deal.II, to solve a linear system one needs to specify in every program the solver type, the
preconditioner, and the solver parameters (such as how many iterations to perform before giving
up in an iterative solver, or to what tolerance we should iterate to).

The typical implementation in deal.II looks like the following snippet of code:

// Maximum 1000 iterations, to 1le-8 absolute tolerance
SolverControl solver_control (1000, 1e-8);

SolverCG<VEC> solver(solver_control,
SolverCG<VEC>::AdditionalData());
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// Assuming preconditioner was constructed somewhere above...
solver.solve ( system_matrix,

dst, src,

preconditioner );

Following the philosophy of the other deal21kit modules, the ParsedSolver<VECTOR> class
allows to change the solver type (Conjugate Gradient, in the above snippet of code) and the entries
of SolverControl from a parameter file

ParsedSolver<VEC> inverse("Solver", "cg",
unsigned int max_iterations= 1000,
double reduction= 1e-8,
linear_operator<VEC> matrix = Identity<VEC>(),
linear_operator<VEC> preconditioner =
Identity<VEC>());

The constructor takes as optional entries the section name, the solver type, the maximum
number of iterations, and the reduction required to reach convergence. If the operators in which this
solver should act (i.e, the system matrix, op, and the preconditioner, prec) are known in advance,
they can be supplied in the constructor. They default to the identity operator, and they can be
assigned later by setting op and prec. A typical usage of this class is as follows:

ParsedSolver<VEC> matrix_inv("Solver");
ParameterAcceptor::initialize("...");

matrix_inv.op = linear_operator<VEC>(matrix);
matrix_inv.prec = linear_operator<VEC>(preconditioner);

solution = matrix_inv*rhs;

Once the above code is run, within the parameter file the following section is populated:

Generated code
subsection Solver
set Log frequency = 1

set Log history = false

set Log result = true

set Max steps = 1000

set Reduction = 1le-08

set Solver name = cg

set Tolerance = 1.e-10
end

ParsedSolver is derived from the LinearOperator class of deal.II [24], which allows the use
of very effective syntax expressions, making the solution of the system computable with the very
simple expression:

solution = matrix_inv * rhs;

The supported solver types are those provided by the deal.II library, namely, CG, BICSTAB,
GMRES, FGMRES, MINRES, QMRS and Richardson. One of the main advantage of such a
solver it’s the possibility to combine it using the expression syntax of LinearOperators in the
construction, for example, of block preconditioners for complex problems.
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[1.2.6. POST-PROCESSING AND ERROR ANALYSIS

deal2lkit provides two classes to handle post processing through a parameter file, namely,
ParsedDataOut<dim,spacedim> and ErrorHandler<ntables>, which are both derived from
ParameterAcceptor.

The class ParsedDataOut<dim, spacedim> provides a wrapper for dealii: :DataOut, to write
solution vectors in any of the formats supported by deal.II, automatically splitting the output
of several files at once when the code is run in parallel. The constructor takes the name of the
parameter section, the format of the output (e.g., vtu), an optional incremental suffix for creating a
progressive directories/subdirectories for every run, the base name of the output file (the default is
set to solution) and an optional MPI_COMMUNICATOR object. A typical usage of this class is the
following:

// constructor

ParsedDatalOut<dim, spacedim> data_out("Section name", "vtu");
std::stringstream suffix;

suffix << "." << number_of_this_cycle;

data_out.prepare_data_output (xdof_handler, suffix.str());
data_out.add_data_vector (vector_storing_solution_of_stokes, "u,u,p");
data_out.add_data_vector (another_vector, "random");

data_out.write_data_and_clear ();

The function prepare_data_output initialises the internal data structures and prepares the
output files, whose names are constructed as a combination of the base name, an optional user
supplied suffix, eventually a processor number and the output suffix. The function add_data_vector
is a wrapper for the method dealii: :DatalOut::add_data_vector and it automatically distinguish
between vector and scalar fields according to the names used in the add_data_vector method.
Finally, write_data_and_clear saves the output file and releases the pointers to the internal
data structures. It is worth mentioning that the lines of codes that must be written are the same
for both a serial or parallel application, with the exception of the constructor which needs an
MPI_COMMUNICATOR in the parallel case.

If an exact (or a reference) solution is known, the class ErrorHandler<n_tables> gives the
possibility to calculate the error of the numerical solution in various norms (i.e., L2, H!, L> W)
where both the norms and the exact solution can be parsed from the parameter file. It is templated
over the number of tables that the user wishes to generate. The constructor of this class takes the
name of the section of the parameter, the name of the components (i.e., for Stokes in 2D it could
be “u,u,p”), and the norms to be used. An example use of this class is the following:

// constructor. we are solving Stokes equations in 2D
ErrorHandler<1> eh("Error Tables",

nu, u, pu’

"L2, Linfty, H1; AddUp; L2");

for (unsigned int cycle=0; cycle<max; ++cycle)
{

if (cycle != 0)

refine_mesh () ;
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setup_and_solve_all();

eh.error_from_exact (dof_handler,
vector_storing_solution,
exact_solution);

}

eh.output_table(std: :cout);

Line 4 of the above code shows that by default this code will compute the error for the velocity
in L2, L>°, H' norm, whereas the error for the pressure would be computed only in L? norm. The
AddUp entry is used to add different components of the same vector-valued variable. After running
the code for the first time, the user can change any of the above options at run time by modifying
the input file parameter.

The example below shows a complete program using ParsedGridGenerator, ParsedFunction
and ErrorHandler classes to estimate the error of interpolation for bi-linear finite element spaces:in
particular we want to measure the rate of convergence of the interpolation of the cosine function.

ParsedGridGenerator<2> gg;
ErrorHandler<> eh;

ParsedFunction<2,1> pf ("Function", "cos(2xpi*x)*cos(2%pi*xy)");
ParameterAcceptor::initialize("error.prm","used.prm");
auto tria = gg.serial();

FE_Q<2> fe(1);
DoFHandler<2> dh(*tria);

for (unsigned int i=0; i<5; ++1i)
{
tria->refine_global(1);
dh.distribute_dofs (fe);
Vector<double> sol(dh.n_dofs());
VectorTools::interpolate(dh, pf, sol);
eh.error_from_exact (dh, sol, pf);
}
eh.output_table(deallog.get_file_stream());

In the error.prm file it is possible to specify several output parameters. For example: error file
format, table name, and the norms we want to evaluate. In this case we selected a tex file format
and as norms Linfty, L2, and H1, and we asked to output the table also on the terminal:

Generated code
subsection deal2lkit::ErrorHandler<1>

set Compute error = true
set Error file format = tex
set Output error tables = true
set Solution names = u

set Solution names for latex = u

set Table names = error
set Write error files = false

subsection Table O
set Add convergence rates
set Extra terms

true
cells ,dofs
set Latex table caption = error
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set List of error norms to compute
set Rate key
end

Linfty, L2, H1

end

The output of the program will look like the following;:

Generated code

cells dofs u_Linfty u_L2 u_H1

4 9 1.183e-01 - 5.156e-02 - 2.615e-01 -

16 25 3.291e-02 1.85 1.333e-02 1.95 1.272e-01 1.04
64 81 8.449e-03 1.96 3.360e-03 1.99 6.313e-02 1.01
256 289 2.126e-03 1.99 8.418e-04 2.00 3.150e-02 1.00
1024 1089 5.325e-04 2.00 2.106e-04 2.00 1.574e-02 1.00

Since we specified the tex format, the program will generate the file error0.tex, which reads:

Generated code

\documentclass [10pt]{report}
\usepackage{float}

\begin{document}

\begin{table}[H]

\begin{center}

\begin{tabular}{Irlrlclclclclclcl} \hline

\# cells & \# dofs &

\multicolumn{2}{lcI}{$\| u - u_h \|_\infty $} &

\multicolumn{2}{lc|}{$\| u - u_h \|_0 $} &

\multicolumn{2}{lcI}{$\| u - u_h \l_1 $}\\ \hline

4 & 9 & 1.183e-01 & - & 5.156e-02 & - & 2.615e-01 & -\\ \hline

16 & 25 & 3.291e-02 & 1.85 & 1.333e-02 & 1.95 & 1.272e-01 & 1.04\\ \hline
64 & 81 & 8.449e-03 & 1.96 & 3.360e-03 & 1.99 & 6.313e-02 & 1.01\\ \hline
256 & 289 & 2.126e-03 & 1.99 & 8.418e-04 & 2.00 & 3.150e-02 & 1.00\\ \hline
1024 & 1089 & 5.325e-04 & 2.00 & 2.106e-04 & 2.00 & 1.574e-02 & 1.00\\ \hline
\end{tabular}

\end{center}

\end{table}

\end{document}

If error0.tex is included in a tex file, it will result in the following table:

Fcells | # dofs | [[u—unllos [u = unllo [u—unls
4 9 | 1.183e-01 - 5.156e-02 - 2.615e-01 -
16 25 | 3.291e-02 | 1.85 | 1.333e-02 | 1.95 | 1.272¢-01 | 1.04
64 81 | 8.449e-03 | 1.96 | 3.360e-03 | 1.99 | 6.313e-02 | 1.01

256 289 | 2.126e-03 | 1.99 | 8.418e-04 | 2.00 | 3.150e-02 | 1.00
1024 1089 | 5.325e-04 | 2.00 | 2.106e-04 | 2.00 | 1.574e-02 | 1.00

I1.2.7. SUNDIALS INTERFACE

deal2lkit features an interface for the SUite of Nonlinear and DIfferential/ALgebraic equation
Solvers (SUNDIALS) [I7], which is implemented in the class SundialsInterface.

The class IDAInterface is a wrapper to the Implicit Differential-Algebraic solver (IDA) [18],
provided within the SUNDIALS library, which is a general purpose solver for systems of Differential-
Algebraic Equations (DAES).

Citing from the SUNDIALS documentation:
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Consider a system of Differential-Algebraic Equations written in the general form

=

(t,y,9
(to)

J(to)

<

) =0,
Yo, (IIl)
Yo -

<

where y, y are vectors in R™, ¢ is often the time (but can also be a parametric quantity),
and F : R x R™ x R™ — R"™. Such problem is solved using Newton iteration augmented
with a line search global strategy [I8]. The integration method used in IDA is the
variable-order, variable-coefficient BDF (Backward Differentiation Formula), in fixed-
leading-coefficient form [I0]. The method order ranges from 1 to 5, with the BDF of
order g given by the multistep formula

q
> i Yn—i = hn i, (I1.2)
i=0
where y,, and g, are the computed approximations of y(t,,) and ¢(t, ), respectively, and
the step size is hy, = t,, — t,,—1. The coeflicients «,, ; are uniquely determined by the
order ¢, and the history of the step sizes. The application of the BDF method to
the DAE system results in a nonlinear algebraic system to be solved at each time
step:

1Y
G(yn) =F <tna Yns E ;) Qn i yn—i> =0. (113)
The Newton method leads to a linear system of the form

where y,(,,) is the m-th approximation to y,, J is the approximation of the system
Jacobian

gy 9y 0y’
and o = ay, 0/hy. It is worthing metioning that the scalar o changes whenever the step
size or method order changes.

(IL5)

As far as the solution of the linear system is concerned, the deal21kit class SundialsInterface
exploits the linear algebra classes included in the deal.II library (e.g., solvers, preconditioners,
LinearOperator, etc.).

A user that would want to use the SUNDIALS interface, should derive its problem class from the
SundialsInterface class, and implement all pure virtual methods.

The following snippet of code shows in details the methods needing overloads in order to actual
solve a DAE system of the form :

class MyClass : public SundialsInterface<VEC>

{
public:
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MyClass ()
void run ();

/K ok ok oK K K K K K K K K K K K K K K K K K K K kK ok oK ok ok oK oK oK oK oK K K K K K K K K K K K K K K K K K Kk kK
* Public interface from SundialsInterface
Ko o oK K K K K K K K K K K K K K K K K K K K K K K K oK oK oK oK oK K K K K K K K K K K K K K K K Kk K K K Kk kK K/
virtual shared_ptr<VEC>
create_new_vector () const;

/** Returns the number of degrees of freedom. Pure virtual function.

virtual unsigned int n_dofs () const;

/** This function is called at the end of each iteration step for
* the ode solver. Once again, the conversion between pointers and
* other forms of vectors need to be done inside the inheriting
* class. */

virtual void output_step(const double t,

const VEC &solution,

const VEC &solution_dot,

const unsigned int step_number,
const double h);

/%% This function will check the behaviour of the solution. If it
* is converged or if it is becoming unstable the time integrator
* will be stopped. If the convergence is not achived the
* calculation will be continued. If necessary, it can also reset
* the time stepper. */

virtual bool solver_should_restart(const double t,

const unsigned int step_number,
const double h,

VEC &solution,

VEC &solution_dot);

/** For dae problems, we need a

residual function. */

virtual int residual(const double t,
const VEC &src_yy,
const VEC &src_yp,
VEC &dst);

/*% Setup Jacobian system (and preconditioner). */
virtual int setup_jacobian(const double t,
const VEC &src_yy,
const VEC &src_yp,
const VEC &residual,
const double alpha);

/*% Solve the linear system. */

virtual int solve_jacobian_system(const double t,
const VEC &y,
const VEC &y_dot,
const VEC &residual,

41
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const double alpha,
const VEC &src,
VEC &dst) const;

/** And an identification of the
differential components. This
has to be 1 if the
corresponding variable is a

differential component, zero
otherwise. */
virtual VEC &differential_components() const;
private:
// This class provides the interface to the IDA solver
IDAInterface<VEC> ida;
};
void MyClass: :run()
{
// once the grid has been constructed, the FE has been setup
// and all necessary variables have been initialized
// IDA can be called and the job is done :)
ida.start_ode(solution, solution_dot, max_time_iterations);
}

The functions declared after the comment Public interface from SundialsInterface are

problem-dependent and therefore must be implemented by the end user.

I I . 3 EXAMPLES

This Section deals with several examples of actual solution of partial differential equations with
deal2lkit. Such examples are part of the deal21kit library itself and the source codes can be
found within the folder examples.

I1.3.1. SIMPLE POISSON PROBLEM

We start the examples section with a trivial problem, that shows very effectively the potential
for high performance programming using deal2lkit. This trivial example program does not follow
best practices in scientific programming, and has everything in the main function for the sake of
brevity.
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We solve the poisson problem

-V -(kVu)=f inQ,

with Dirichlet boundary conditions, or homogenous Neumann boundary conditions, and where &,

f, and Q can all be constructed from a parameter file.
We report here the full listing excluding header files and comments:

// header files excluded
using namespace deal2lkit;
using namespace dealii;

// Two simple parameters for this problem
class PoissonParameters : public ParameterAcceptor
{
public:
virtual void declare_parameters (ParameterHandler &prm)
{
add_parameter (prm, &n_cycles, "Number of cycles", "4");
add_parameter (prm, &initial_refinement, "Initial refinement",
}
unsigned int n_cycles;
unsigned int initial_refinement;

};

// Main function
int main(int argc, char x*argv)
{
Utilities::MPI::MPI_InitFinalize mpi_init (argc, argv);

// Change this if you want a one or three dimensional simulation
const unsigned int dim = 2;

// embedded in spacedim Euclidean space

const unsigned int spacedim = 2;

// All the generators
PoissonParameters par;
ParsedGridGenerator<dim, spacedim> pgg;
ParsedFiniteElement<dim, spacedim> pfe;

// Parametric functions
ParsedDirichletBCs<dim,dim,1> bcs;
ParsedFunction<spacedim> kappa("Kappa", "1.0");
ParsedFunction<spacedim> force("Forcing term");
ParsedFunction<spacedim> exact("Exact solution");

// Linear algebra classes
SparsityPattern sparsity;
SparseMatrix<double> matrix;
SparseIlLU<double> prec;
ConstraintMatrix constraints;

Vector<double> solution;
Vector<double> rhs;

||3n);
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// Parsed inverse

ParsedSolver<Vector<double> > inverse("Solver",
linear_operator<Vector<double> >(matrix),
linear_operator<Vector<double> >(matrix, prec));

"cg", 1000, 1le-8,

shared_ptr<Triangulation<dim,spacedim> > tria;
shared_ptr<FiniteElement<dim,spacedim> > fe;

ErrorHandler<1> eh;
ParsedDataOut<dim, spacedim> pdo;

// And now the parameter file is initialized, written if
// non-existant, and then read
ParameterAcceptor::initialize("poisson.prm", "used_parameters.prm");

tria = SP(pgg.serial());
pgg.write (*tria);

fe = SP(pfe());
DoFHandler<dim, spacedim> dh(*tria);

tria->refine_global (par.initial_refinement);
QGauss<dim> quad(2*fe->degree+1);

// Execute par.n_cycles refinements
for (unsigned int i=0; i<par.n_cycles; ++i)

{
dh.distribute_dofs (*xfe);
std::cout << "Cycle " << i
<< ", cells: " << tria->n_active_cells ()
<< ", dofs: " << dh.n_dofs() << std::endl;

DynamicSparsityPattern dsp(dh.n_dofs());
DoFTools::make_sparsity_pattern (dh, dsp);
sparsity.copy_from(dsp);

matrix.reinit (sparsity);
solution.reinit (dh.n_dofs());
rhs.reinit (dh.n_dofs());

constraints.clear();
bcs.interpolate_boundary_values(dh, constraints);
constraints.close();

// Solve a poisson problem
MatrixCreator::create_laplace_matrix(dh, quad, matrix, force,

rhs, &kappa, constraints);
prec.initialize (matrix);

solution = inversex*rhs;
constraints.distribute(solution);

pdo.prepare_data_output (dh, std::to_string(i));
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pdo.add_data_vector (solution, "solution");
pdo.write_data_and_clear ();

eh.error_from_exact (dh, solution, exact);

tria->refine_global (1) ;

eh.output_table();
return O;

After we run the code for the first time, a file similar to the following (short listing) parameter
file is created in used_parameters.prm (we show here a changed version of this file, where we
added a manufactured solution to test convergence of Q1 finite elements on a square):

Generated code

subsection Dirichlet BCs

set IDs and component masks = 0=ALL
set IDs and expressions =
set Known component names =u

set Used constants =
end
subsection Exact solution

set Function constants

set Function expression = sin(2*pi*x)*sin(2*pix*y)
set Variable names = X,y,t
end

subsection Forcing term
set Function constants

set Function expression = 8*pix*pi*sin(2*pix*x)*sin(2*pixy)
set Variable names = x,y,t
end

subsection Kappa
set Function comnstants =
set Function expression = 1.0
set Variable names = X,y,t
end
subsection PoissonParameters
set Initial refinement = 2
set Number of cycles =5
end
subsection Solver
set Log frequency = 1

set Log history = false
set Log result = true
set Max steps = 1000
set Reduction = 1e-08
set Solver name = cg
set Tolerance = 1.e-10

end

subsection deal2lkit::ErrorHandler<1>
set Compute error = true
set Error file format = tex
set Output error tables = true
set Solution names = u
set Solution names for latex = u
set Table names = error
set Write error files = false

subsection Table O



44 set Add convergence rates = true

45 set Extra terms = cells,dofs
46 set Latex table caption = error
47 set List of error norms to compute = Linfty, L2, H1
48 set Rate key =

49 end

50 |end

51 subsection deal2lkit::ParsedDatalOut<2, 2>

52 set Incremental run prefix

53 set Output partitioning = false

54 set Problem base name = solution

55 set Solution names =u

56 subsection Solution output format

57 set Output format = vtu

58 set Subdivisions = 1

59 end

60 |end

61 subsection deal2lkit::ParsedFiniteElement<2, 2>
62 set Block coupling =

63 set Blocking of the finite element = u

64 set Finite element space = FE_Q(1)
65 set Preconditioner block coupling =

66 |end

67 subsection deal2lkit::ParsedGridGenerator<2, 2>
68 set Colorize = false

69 set Grid to generate = rectangle

70 set Input grid file name =

71 set Mesh smoothing alogrithm = none

72 set Optional Point<spacedim> 1 = 0,0

73 set Optional Point<spacedim> 2 = 1,1

74 set Optional double 1 = 1.0

75 set Optional double 2 = 0.5

76 set Optional int 1 =1

r set Optional vector of dim int = 1,1

78 set Output grid file name =

79 |end

The final output of the code is something similar to (only last cycle is shown):

Generated code

1 Cycle 4, cells: 4096, dofs: 4225

2 |DEAL:cg::Starting value 0.615860

3 |DEAL:cg::Convergence step 41 value 4.15887e-09

4 |DEAL:PrepareQutput::Will write on file: ./solutioné4.vtu
5 |DEAL:AddingData::Added data: solution

6 |DEAL:WritingData::Wrote output file.

7 |DEAL::Reset output.

8 cells dofs u_Linfty u_L2 u_H1

9 16 25 2.088e-01 - 1.218e-01 - 1.996e+00 -
10 64 81 7.554e-02 1.47 3.039e-02 2.00 1.003e+00 0.99
11 266 289 2.063e-02 1.87 7.601e-03 2.00 5.031e-01 1.00
12 1024 1089 5.273e-03 1.97 1.901e-03 2.00 2.518e-01 1.00
13 4096 4225 1.325e-03 1.99 4.752e-04 2.00 1.259e-01 1.00

The full program consists of less than one hundred lines of actual code, and allows one to
arbitrarily change almost everything of the program itself (with the exception of the problem to
solve) without recompiling the code.
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I1.3.2. HEAT EQUATION SOLVED WITH THE SUNDIALS INTERFACE

In order to demonstrate the potential of the deal21kit library, we solved the heat equation

ou(z,t)
ot
where D = 0.5 and

— V- (DVu(z,t)) = f(z,t) for 2€Q=(0,1)x(0,1) Vte (0,1), (IL.7)

f(z,t) = 2my (y — 1) cos (—2m(t — z)) — 2D [2n?y (y — 1) sin (=27 (¢ — x)) — sin (—2n(t — x))] .
(I1.8)
At the boundaries, we impose the exact solution of the problem

uloa =y (1 —y) sin (27 (x — t)) (I1.9)

Ou(t =0)

and = 0 has been used as initial condition.

The aforementioned problem has been solved relying on the SundialsInterface class, which
features a variable-order, variable-coefficient BDF (Backward Differentiation Formula) integration
method. During the transient, the mesh is adaptively refined in order to satisfy a given accuracy,
which is set by the user. We use a Kelly error estimator [2I] to compute an a posteriori estimate for
the error on each cell, and when the L°° norm of the error estimator is greater than a threshold, the
mesh is accordingly refined. Snapshots of the computed solution are shown below. The statistics of

the calls to the different functions when the code is run on two processors with mpirun -np 2 are

given here:

Generated code
Hoocoooooooooooooooooo00o0onooooooooooooasoSSS Posososososos Pocososososos +
| Total wallclock time elapsed since start | 3.1s | |
| | | |
| Section | no. calls | wall time | % of total |
Soccosooooooooooooonononooooononos Soccoocoooos Hocooooososos Socccocososos +
| Assemble Jacobian matrix | 95 | 0.0761s | 2.5% |
| Compute error estimator | 122 | 0.298s | 9.6% |
| Setup Jacobian | 95 | 0.0777s | 2.5% |
| Solve system | 281 | 0.309s | 10% |
| Post-processing | 101 | 1.61s | 52% |
| Residual | 281 | 0.726s | 23% |
| Setup dof systems | 23 | 0.0323s | 1% |
PoooO00000000000000000000000000000 Foooooooooos Hoocoooooooooo Socoooooooooo +

As it can be seen, the jacobian matrix has been assembled only 95 times, even though the system
has been solved 281 times. The mesh has been refined 22 times, because the setup dof systems has
been called 23 times (one call is for the first time that the mesh is created). More than 50% of the
time is spent for storing the solution, which, in this case, has been saved every 0.01 seconds.

During the transient, the mesh has been h-adaptively refined and coarsened relying on the
Kelly error estimator and they are reported in Fig. The corresponding computed solutions are

depicted in Fig. [[T.2]
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Figure II.1: Computed meshes during the transient.
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Figure I1.2: Computed solution during the transient.
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I1.3.3. FLOW PAST A CYLINDER: STOKES EQUATIONS

As a last example, we provide an example saddle-point problem: the flow past a cylinder for
low Reynolds number in a 2D settings. We used the IdaInterface to solve the dynamic Stokes
equations:

%:—VAU—FVp:O for zeQ=(-1,3) x(-1,1) Vt e (0,20),
diva=0 in Q7 (1110)
u= f(x,t) on 09,
u(t =0) = (0,0) in Q,

where u is the fluid velocity, v is the kinematic viscosity, p is the pressure, and f(t) represents
the applied Dirichlet boundary conditions.On the left boundary (boundary_id=1) we impose a
parabolic velocity profile, which is multiplied by a ramp function within the time interval (0,0.1),
and we applied the no-slip condition on the cylinder surface (boundary_id=5).

Generated code
subsection Dirichlet BCs
set IDs and component masks i=u % 5=u
1=(t<.1 ? (-1.0)*t*10.0*(y-1)*(y+1)/6.0 : \
(-1.0)*(y-1)*(y+1)/6.0 ); 0; 0 % 5=0; 0; O
u,u,p

set IDs and expressions

set Known component names

set Used constants
end

We discretized the problem using the second order Taylor Hood finite element.

Generated code

subsection Finite Element
set Block coupling =1,1; 1,0
set Blocking of the finite element = u,u,p
set Finite element space = FESystem[FE_Q(2)~dim-FE_Q(1)]
set Preconditioner block coupling = 1,0; 0,1

end

The mesh was imported by the file named grid-2.2.ucd

Generated code
subsection Domain
file
../source/grid-2.2.ucd

set Grid to generate

set Input grid file name

end

During the transient, the mesh was locally refined using a Kelly error estimator [21] for the
velocity components. Figure [[I.3] shows the initial mesh and the locally coarsened and refined mesh.
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Figure I1.3: Initial (left) and refined (right) mesh for the Stokes example.

We provide two snapshots of the solution, at time=0.2 and 20 seconds, in Fig. [[L.4]
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Figure 11.4: Velocity magnitude (top) and pressure (bottom) at time=0.2 and 20.0 seconds.

Finally, we report the statistics of the summary of the calls to the various functions.

Generated code

Poccocoooocoooosoccoconascooansosacoonssccnsos Poccoccosscos Poccocoosscos +
| Total wall clock time elapsed since start | 4.71s | |
| | | |
| Section | no. calls | wall time | % of total |
SO S SRR SRR SR +
| Assemble Jacobian matrix | 28 | 0.425s | 9% |
| Compute error estimator | 203 | 0.559s | 129 |
| Setup Jacobian | 28 | 0.427s | 9.1% |
| Solve system | 77 | 1.13s | 249 |
| Post-processing | 201 | 2.25s | 48% |
| Residual | 77 | 0.193s | 4.1% |
| Setup dof systems | 4 | 0.0648s | 1.4% |
. L SRR L SRR SRR +

It is worth mentioning that the system matrix has been assembled only 28 times, while the system
has been solved 77 times. Within the parameter file, we set to output the solution every 0.1 seconds

51



therefore two hundred times plus one at time=0. Since the system has been solved with a lower
frequency, the solution that is stored is obtained through interpolation.

H4 CONCLUSIONS

In this Chapter we presented version 1.0.0 of the deal21kit library, which is a collection of
modules for deal.II designed to provide a high performance programming experience to both
beginner and advanced users of the deal.II library. One of the key feature of deal2lkit is the
possibility to access most of the repetitive tasks related to writing complex finite element codes using
parameter files. We gave a general overview of some of the main classes. The full documentation is
generated automatically using Doxygen, and it is available online at http://mathlab.github.io/
deal2lkit. Example programs were used to show the potential of deal21kit, which allows fast
prototyping of time dependent, linear and non-linear, scalar and vector problems, which are fully
parallel, and support adaptive mesh refinement.

deal2lkit is in continuous development and new functionalities are constantly implemented to
enrich those tools that are useful to develop prototype finite element codes efficiently, in a well tested
environment. Currently the main application using deal21kit is m-DoMUS, the Parallel Deal Il
MUTlti-physics Solver [34]. m-DoMUS exploits all of deal21kit latest functionalities, including
symbolic calculation of Jacobians and residuals, relying on the Sacado package [2] of Trilinos [16].


http://mathlab.github.io/deal2lkit
http://mathlab.github.io/deal2lkit

I I I . 1 . INTRODUCTION

Nowadays, many remarkable simulations and industrial applications require a lot of hours for a
single result: the running time is often measured in days, weeks, or even months. In this framework,
you are interested in optimizing your code as much as possible and HPC is essential to reach this
task: non parallel codes or source files without an header of math libraries are unthinkable on a
cluster.

There are many optimized libraries for almost every purpose (e.g. deal.II, Trilinos, PETSc,
BLAS, Plasma, P4est, tbb, etc ..) and with this in mind we do not intent to reinvent the wheel.
We think that our contribution to these libraries in term of HPC could only “slightly” improve our
codes. Nevertheless, advangarde research requires a result as soon as possible. Our solution to this
request is the only available for a scientist: turn the code upside down as quickly as possible and
test as much as possible solutions with some small benchmarks. This paradigm is summed up with
the acronym HPP (High Performance Programmin): flexible code to focus your attention on the
algorithm. In practice, you do not want to spend hours to optimize your code improving for loops
or other low level ingredients if existing libraries have done better codes than you could write: it is
very probable that an existing library could reach a lower order of time with respect to your own
code. Ideally, you should try to optimize the algorithms (the math behind your code) as much as
possible, before trying to optimize the code. This can improve your code of orders of magnitude of
time.

In literature, you can find libraries devoted to specific problems: fluid dynamics, elasticity,
mechanics, etc. One of the most successful libraries of this kind is ASPECT (Advanced Solver for
Problems in Earth’s ConvecTion, [5]). The purpose of this library is to handle problems concerning
simulation of convection in the Earth mantle (see [22, [B]). ASPECT is what we mean for HPP:
it is based on deal.II for the finite element content and deal.II uses Trilinos, PETSc, tbb,
UMFPACK, and Boost for example for the HPC' part.

Our intent is to handle multiphysic PDEs, in particular non-linear ones: the kind of PDEs
we have in mind, admit a weak formulation (residual formulation) and sometime an energetic
formulation. In the next section we will introduce the 7-DoMUS (Parallel Deal.IT MUltiphysics
Solver, [34]) project. In terms of finite element library we make the same choice of ASPECT and
base our library on deal.II. Since we are looking for a flexible tool we integrate deal21kit to parse
parameter. Eventually, we take advantages of the library IDA of SUNDIALS (SUite of Nonlinear
and DIfferential/ALgebraic equation Solvers) for the advancement in time of our equations.

The main characteristic of 7-DoMUS is the capability to construct automatically the system
matrices (or system preconditioners) starting from a residual (or energetic) formulation which does
not require the user to compute manually any Jacobian (or Hessian) matrix. Such goal is obtained



by using the advanced package Sacado, included in the Trilinos library. Such package has the
capability of computing symbolic derivatives of quantities in an automated and efficient way at
compile time, resulting in assembly routines which perform similarly to those assembled manually,
at a fraction of uman time.

1112 BEYOND THE CODE

m-DoMUS (Parallel Deal Il MUItiphysics Solver, [34]) is a solver for PDEs in residual form or in
energetic form. From the residual form or the energetic form, the software automatically constructs
the system matrices in parallel using both MPI and multithreaded parallelizations. The aim of this
software is to deal with multiphysics equations with non linear terms in a easy and intuitive way: a
system of PDEs coupled together. An example are the Navier-Stokes equations for compressible
fluid coupled with some costitutive equations for the density, the viscosity, or the temperature.

First of all it is better to explain what we mean for residual and energetic formulation. Let us
start from the easier:

(IT11.2.1) DEFINITION: we say that a differential equation
Lli,u,t] = f (IIL.1)
admits an energetic formulation if there is a functional

E: R —» R
u = Eul

depending on u such that every solution of (III.1)) is a stationary point of (II1I.2)).

(I11.2)

Notice that we are minimizing only with respect to u contrary to the classical sense of stationary
point of energy.

A lot of PDEs (linear PDEs like Laplace equation, Stokes equation, and Heat Equation) admit
an energetic formulation in the sense of [[IL.271] Furthermore, there are important PDEs that do not
admits such a formulation. Among these equation we could list a lot of multiphysics equations, such
as the equations related to Neo-Hookean hyperelastic materials, and the well known Navier-Stokes
Equations. In order to recover generality in our theory we reformulate the code in w-DoMUS to
tackle general residual formulations:

(IT1.2.2) DEFINITION: Consider the following PDE:

L[t,u,t] = f. (I11.3)
The residual formulation of (IIL.3)) is a functional
R: R*xR" — R (II1L.4)

(u,v) +— Llu,u,t]-v—f-v
such that if @ is solution of [[II.3| then for every v € R", (@, v) is a solution for [[II.4



I11.2.1.  7w-DOMUS

m-DoMUS uses and [[TT.3] to implement a multiphysics solver. It implement two different
interfaces: ConservativelInterface for energetic problems and NonConservativeInterface for
residual formulations. Every problem is an interface derived from the ConservativeInterface
or the NonConservativeInterface. The user should implement in this file the energetic/residual
formulation of the system and of the preconditioner. For the preconditioner it is possible to assemble
more than one enery/residual: a priori one can combines different preconditioner or to choose
different preconditioner according to the physic parameters.

An important feature of 7-DoMUS is the complete integration with deal21kit. This makes the
code really flexible: every parameter can be changed once the code is compiled. Test different
preconditioners or solve a family of PDEs can be done without recompile the code but changing a
text file.

[11.3.  wmrc

The main task of m-DoMUS is to provide a flexible HPC' solver for multiphysics PDEs and
parallelism is essential in this framework. Indeed, we are interested in solving huge linear systems
with milions and even bilions degrees of freedom and geneally, a code that does not scale properly
has no hope to solve such kind of problems. A well tested tool able to answer efficiently to this
problem is the so called WorkStream of deal.II.

I11.3.1.  WORKSTREAM

Modern Finite Element codes usually presents the following pattern: a stream of local inde-
pendent operation followed by a reduction into a global data structure. In [35] we see how such
a software pattern, called WorkStream inside the deal.II library, can be efficiently implemented.
An explicit synchronisation of the tasks would be quite inefficient and may not scale well. More
importantly we must remember that, in floating point arithmetic, the order of a summation may
lead to significant change in the result. Since we can’t make any assumption on the order of creation
of single task we conclude that with this manual synchronisation we can’t obtain the same result
two times in a row. To overcome such difficulties WorkStream separates

— the embarrassingly parallel local computations;
— the reduction operation.

The local computation can run in any order and in parallel, while the reduction operation must
run on a single thread, it should avoid manual synchronisations and must perform the summation
always in the same order. These constraints assures that the results are both reliable and repeatable.
We stress that, for what concerns the local parallel computations, WorkStream usually schedules
more tasks to the same thread in order to optimize computation time.
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The typical application of such a class is the assembling a matrix in a FiniteElementMethod. In
such a case we need to perform computation on each cell and then add together all the contributions
inside the global matrix. The assemblage of the local contribution can be done on all the cells
simultaneously. However we can’t allow all the local contributions to be written at the same
time on the global matrix because we would have race conditions and we would corrupt the data.
Consequently, we want to ensure that only one thread at a time writes into the global matrix, and
that results are copied in a stable and reproducible order. We need the following ingredients to use
WorkStream

— A stream of object that is used by the scheduler to spawn the needed Tasks.
— A worker function to be run in parallel on all the objects to perform the local computations

— A copier that reduces the local contributions.

Generated code
typedef
FilteredIterator<typename DoFHandler<dim, spacedim>::active_cell_iterator>
CellFilter;
WorkStream::
run (CellFilter (IteratorFilters::LocallyOwnedCell(),
dof_handler ->begin_active()),
CellFilter (IteratorFilters::LocallyOwnedCell(),
dof_handler ->end()),
local_assemble,
local_copy,
Scratch (*mapping,
xfe,
quadrature_formula,
energy.get_jacobian_flags (),
face_quadrature_formula,
energy.get_face_flags()),
Assembly::CopyData::
piDoMUSSystem<dim, spacedim> (*fe,n_aux_matrices));

compress (jacobian_matrix, VectorOperation::add);

In the following we analyze the basic features of the two functions needed by WorkStream.

Worker function

WorkStream assigns one worker function per threads. We need to keep in mind that all the
workers must be able to run in parallel since WorkStream does not check for any race condition at
this level. In the following we list the argument of the worker object.

— Input: a ScratchData object. The worker uses this object to make its computation. The
object needs to have a working copy constructor since it is copied among all threads when
WorkStream is run.

— Output: a CopyData object. Every worker fills its own CopyData. This object will be pass
down by reference to the copier function.
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— Additional parameters: if we need to pass more informations to the work stream we have to
make sure that this information is the same for all the threads. Then we have two strategies.

— We can use a std::bind function coupled with placeholder mechanism to obtain a function
that takes only ScratchData and CopyData, in this way we are binding the additional
parameters to some known values

— We can exploit a functionality of C++11, the lambda function. A lambda function is
a function that you can write inline in your source code. It uses a so-called capture
that allows the user to pass additional information to the function. In this way we can
straightforwardly limit the number of parameter of the function erasing the need of a

binding.
Generated code

auto local_assemble = [ this 1]

(const typename DoFHandler<dim, spacedim>::active_cell_iterator &
cell,

Scratch & scratch,
SystemCopyData & data)

{

this->energy.assemble_local_system(cell, scratch, data);
}s

Copier function

The copier function is the object that takes care of copy back the result of the worker computation
back to the global memory. It takes as argument the reference to the CopyData object computed by
the worker. For any additional parameter we can follow the same strategies of the worker function.
The copier function automatically handles any race conditions, this means that it is responsible for
any synchronisation overhead of the WorkStream class.

Generated code
auto local_copy = [ this ]
(const SystemCopyData & data)
{
this->constraints.distribute_local_to_global (data.local_matrix,
data.local_dof_indices,
this->jacobian_matrix);

18

We recall here that all local matrices are assembled automatically using the Sacado library
of Trilinos. Such implementation allows easy and fast prototyping of both system matrices and
preconditioners.

I I I 4 INTERFACES
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In this Section we use the Stokes equation to show a possible interface for an energetic problem.
The equation is the following:

—dive(u)+Vp=f
divu =0

t
where u is the velocity field, p is the pressure, f is the force, and £(u) = w.
This problem has an “energetic” formulation:

E(u,p) = 5[V — pdiv (u).

and therefore we use the conservative interface. The code starts with the inclusion of
interfaces/conservative.h and the consequently derivation of the class Stokes form
ConservativeInterface.

#include "interfaces/conservative.h"

template <int dim>

class Stokes : public ConservativeInterface<dim,dim,dim+1, Stokes<dim> >
{

public:

void declare_parameters (ParameterHandler &prm);
void parse_parameters_call_back ();

template<typename Number>
void preconditioner_energy( ... ) const;

template<typename Number>

void system_energy( ... ) const;
virtual void compute_system_operators( ... ) const;
}s
Notice that this code has mainly two kind of function: a group is com-

posed by declare_parameters and parse_parameters_call_back and an other by
preconditioner_energy, system_energy, and compute_system_operators.

The first group concerns parameter files while the second the math of the problem.

m-DoMUS it is designed in such a way if you need to change any parameters of the problem you
will have to change just the parameter file without recompile anything. declare_parameters and
parse_parameters_call_back take all the parameters that the user might want to change after
different tests of the same code (e.g. density, velocity, boundary conditios, or initial conditions).
These feature are inherit from the full integration of 7-DoMUS in deal2lkit (Section [[L.2.T]).

template <int dim>
void Stokes<dim>::declare_parameters (ParameterHandler &prm)

{
Conservativelnterface<dim,dim,dim+1, Stokes<dim> >::declare_parameters (prm);
this->add_parameter (prm, &eta, "eta [Pa s]", "1.0", Patterns::Double(0.0));
this->add_parameter (prm, &block_back_substitution_bool, "use

block_back_substitution", "false", Patterns::Bool());
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template <int dim>
void Stokes<dim>::parse_parameters_call_back ()
{
Conservativelnterface<dim,dim,dim+1, Stokes<dim> >::
parse_parameters_call_back();

Finite elements, coupling, and all the numerical structure of the problem is passed through the
constructor.

template<int dim>
Stokes<dim>::Stokes ()
ConservativeInterface<dim,dim,dim+1,Stokes<dim> >

("Stokes",
"FESystem[FE_Q(2)~d-FE_Q(1)1",
“a,u,p", "1,1; 1,0, "1,0; 0,1",%0,0")

{};

In system_energy you write the energy of the system. A lot of mathematical functions (e.g.
scalar_product, grad, grad_sym, transpose, etc ...) are implemented in order to simplify this
routine:

void Stokes<dim>::system_energy(...) const

{

energy = O0;
for (unsigned int q=0; q<n_q_points; ++q)

{

Number psi = eta * .5 * scalar_product(sym_grad_u,sym_grad_u)
- p*div_u;
energy += psi*JxW[ql;
}

and the same procedure has to be done for the preconditioner:

void Stokes<dim>::preconditioner_energy(...) const
{
energy = 0;
for (unsigned int q=0; gq<n_q_points; ++q)
{
Number psi = (1./eta)*p*p
energy += psi*JxW[ql;
}
}

At this point we are ready to assemble all the blocks of the system matrix and of the preconditioner
matrix. In this part the LinearOperator class (Section is crucial to have flexibility and do not
lose performances:
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template <int dim>

void
Stokes<dim>:: compute_system_operators(...) const
{
auto A = linear_operator< VEC >( matrix.block(0,0) );
auto Bt = linear_operator< VEC >( matrix.block(0,1) );
auto B = transpose_operator (Bt);
auto ZeroP = null_operator< VEC >( matrix.block(1l,1) );
auto Mp = linear_operator< VEC >( preconditioner_matrix.block(1,1) );
auto A_inv = inverse_operator( A, solver, Amg_preconditioner);
auto Schur_inv = inverse_operator( Mp, solver, Mp_preconditioner);

auto P00 = A_inv;
auto P01 = null_operator (Bt);

auto P10 = Schur_inv * B * A_inv;
auto P11 = -1 * Schur_inv;
system_op = block_operator<2, 2, VEC >({{
{{ A, Bt }} ,
{{ B, ZeroP }}
¥
) g

prec_op = block_operator<2, 2, VEC >({{
{{ poo, POl }} ,
{{ P10, P11 1}}

) g

I I I . 5 . EXAMPLES

The research of a Schur complement for a saddle point system is a well know problem of
Numerical Analysis. In few words, dividing the block of the velocity from the block of the pressure,
many PDEs has the same representation in term of linear system:

(4 2)- (1) ans

A problem that admits a numerical representation in the form of (II1.5)) is called a saddle point
problem.
Let A~! be an inverse for A and S := BA~!B? the so called Schur complement. It is straight-
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forward that multiplying (IIL.5)) for the following block matrix

A1 0
(S—IBA—I _S—l) (IH‘G)

uncouples the pressure block of and leads to a simpler problem (the resulting system is
upper diagonal). Therefore, the idea is to use as starting point for a suitable preconditioner
for (ITL.5)). There are two missing ingredients for this recipe: an approximation for A~ and one for
S~1. In this Section we focus our attention to the research of S~1.

In the following we are going to consider the Navier-Stokes Equations as a case study:

{p% +p(v-V)v=—Vp+vAv + f(z,t) (I11.7)

dive = 0.

where v is the velocity field, p the pressure, and f represents the external forces. This problem is
behind a lot of problems of fluid dynamic and admits a saddle point representation. Indeed, we are
going to look for a Schur complement for . We approximate S in two different ways: the first
is obtained using %Mp that we call stokes and the second using ﬁ*pAp that we call low-nu. M,
is the mass matrix for the pressure block and A, is the matrix representing a Laplace Equation
solved for the pressure block.

II1.5.1. STATIONARY NAVIER-STOKES EQUATIONS

In these subsection we focus on the so called Lid Cavity: we solve the Navier-Stokes Equations
is a 2D 1zl square and impose v = (0,0) on the bottom, right, and left wall while we impose
v = (1,0) on the top.

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

(a) Velocity magnitude (b) Velocity vector field with streamlines

Figure III.1: Lid Cavity
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Figure II1.3: Weak scalability obtained wth different preconditioners and v = 0.0024
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Figure I11.4: Strong scalability of different Finite Elements obtained using a "stokes" preconditioner

I11.5.2. TIME DEPENDENT NAVIER-STOKES EQUATIONS

This subsection concludes the examples giving a sample of a time depending Navier Stokes
simulation. We simulate 20s with Reynolds number equal to 400 (v ~ 0.0024). We consider a 2D
[0,20] x [—1, 1] rectangle and impose v = (0,0) on the top and on the bottom, and on the left side:

{v = (t(1 —y?),0) ift<1

v=((1-y?),0) otherwise.

The result is the following:
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Var: u_magritude

— 6.000
4.000

2.000

0.000
Max: 0.000
Min: 0.000

Figure II1.5: Navier-Stokes simulation at ¢t =0, ¢ =5, t = 10, t = 15, and ¢t = 20
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