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CHAPTER 1

Introduction

“The best possible knowledge of a whole does not necessary
include the best possible knowledge of all its parts"

Schrodinger

In classical physics the idea of entropy quantifies the extent to which we are un-
certain about the exact state of a physical system or equivalently the amount of
information that is missing to identify the microstate of a system from all possibil-
ities compatible with its macrostate. Differently from classical physics, in quantum
mechanics positive entropies may arise even without an objective lack of informa-
tion. In contrast to thermal states this entropy does not originate from an absence of
knowledge about the microstate of the systems and even at zero temperature there
is a surprising non-zero entropy contribution. This entropy arise form a fundamental
property of the quantum realm: FEntanglement. Entanglement has played a crucial
role in the development of quantum physics and is mainly perceived as the qualitative
features of quantum theory that most strikingly distinguishes it from our classical in-
tuition, as Schrodinger said: “I would not call that one but rather the characteristic
trait of quantum mechanics, the one that enforces its entire departure from classical
lines of thought ” [1]. At first attached to fundamental questions regarding the na-
ture and foundation of quantum mechanics, the concept of entanglement has recently
generated an enormous interests in several fields of theoretical physics, from quantum
optics and quantum information to condensed matter, from mathematical physics to
high energy physics, cosmology and recently also gravity.
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Going back to the origins, Einstein, Podolsky and Rosen [2| soon understood that
entanglement may allow for tasks which are impossible in the classical world. The
core feature of entanglement is that the local action on a subsystem of a quantum sys-
tem may instantaneously condition the state of all its other parts, even if spatially far
apart. The word instantaneously sounds strange since this behavior is really different
from the effect of classical correlations, where a local perturbation on a subregion is
limited in its propagation to the rest of the system by some maximum speed [3|. For
this reason entanglement is often referred as a spooky non-local phenomenon. Because
of this, entanglement gave rise to severe skepticisms since the early days of quantum
mechanics, whose status of complete physical theory was called into question. The-
ories introducing some hidden variables were proposed to solve the EPR paradox
formulated in [2]. When these variables were added as new parameters, an exper-
imenter who could know their value could also exactly predict the results of single
experiments without the typical uncertainty of quantum mechanics. The ignorance of
this variables is then the cause of the probabilistic nature of the quantum theory. It
was only after the seminal contribution of John Bell [4] in 1964 that the fundamental
questions related to the existence of entangled states could be tested experimentally.
In fact, under fairly general assumptions, Bell derived a set of inequalities for corre-
lated measurements of two physical observables that any local theory should obey.
The overwhelming majority of experiments done so far are in agreement with quan-
tum mechanics thus demonstrating that quantum entanglement is physical reality
and it forbids an hidden variable interpretation without nonlocalities.

1.1 Quantum Information Point of View

Entanglement has gained renewed interest with the development of quantum infor-
mation science since it started to be considered as a resource in quantum information
processing, as much as energy is. Entanglement can be employed to perform tasks
that are utopian or extremely inefficient in a pure classical world. Quantum telepor-
tation [5] and quantum error correcting codes 6] are just some examples. To this end,
necessary criteria for any entanglement measure to be fulfilled, tools to understand
how entanglement can be characterized and manipulated were evident. In particu-
lar, it is extremely important to have a way to quantify the amount of entanglement
associated to the bipartition a given quantum state. This leads to the problem of
defining measures of entanglement. Being considered a resource, its definition has a
strong operational point of view and it is related to the possible operations that can
be performed on the system. One can consider the case where a quantum state is
shared by two parties, usually denoted by Alice and Bob. They are spatially sepa-
rated and each of them can act on the system locally, i.e. perform any measurement
that is localized in their laboratory. Any state that cannot be created with these
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operations becomes a resource. In order to be a good measure of entanglement there
are some requirements to be satisfied |7, 8] and other ones that may be desirable. A
precise picture is still ongoing, except from some specific cases, such the pure-state
entanglement of a bipartite system.

1.1.1 Quantum operations: LOCC, separable and PPT transformations

Let’s come back to Alice, Bob and the quantum state they share. The Hilbert space
of the full system is bipartite, i.e. H = H4 ® Hp. They can act locally only on their
own subsystem, and they are also allowed to send their outcomes through classical
communication one to another. The first set of transformations are called local opera-
tions (LO), while the second ones classical communications (CC) and all together are
referred by LOCC. Entanglement is defined as the resource that cannot be created
by these transformations only. LOCC can modify entanglement from one type to
another, but cannot create it where it did not exist before. In other words classical
correlations are the ones that can be created by LOCC, while quantum correlations
are those which are already present in the system and cannot be attributed by a local
action on one subsystem. LOCC operations do not allow for instance the exchange of
quantum information between Alice and Bob. An example of LOCC is distinguishing
two pairs of two entangled qubits in a Bell state, such as below:

1) = 5 (004a®0)s + [1)a®[1)5)
[¥2) = #1004 @15 +[1)a®[0)5) .

Suppose that the two-qubit system is separated, where the first qubit is given to
Alice and the second is given to Bob. Assume that Alice measures the first qubit
(LO), and obtains the result 0. We still do not know which Bell pair we were given,
|t1) or |1he). Alice sends the result to Bob over a classical channel (CC), where Bob
measures the second qubit (LO), also obtaining 0. Bob now knows that since the
joint measurement outcome is |0) 4 ® |0) 5, the Bell pair is [¢).

Another example of LOCC is teleportation, which using entanglement it allows
to transfer a quantum state from one agent to another using only measurements and
classical communications.

In the standard approach to quantum evolution, a system is evolved according
to unitary operators or through projective measurements which cause eigenfunction
collapse. In quantum information a more general set of quantum operations is con-
sidered. It can be divided in three steps: first one adds ancilla particles, then one
performs joint unitary operations and measurements on both the systems and an-
cillae and finally some particles may be discarded depending on the measurement
outcomes. If now one has total knowledge of the outcomes, then the state corre-
sponding to measurement outcomes k occurs with probability p, = Tr(AkpAL) and
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it is given by
1
pr = — AgpAl (1.1)
Pk

where p is the initial state and A, are the so called Kraus operators (we have that
S Al Ay = 1). Are also possible situations when a system is interacting with the
environment and all measurement outcomes might not be accessible, so that the
resulting system might be in a mixed states. At the end, the result of any operation
on the density matrix p of the system can be described as follows

1
o = Z o ArpAL (1.2)
J

where the index k refers to the measuring operations, while the index j to the trace
preserving ones.

After this overview of generalized quantum operations, we can be more precise in
determining which operations are implementable by LOCC. A mathematical charac-
terization of this kind of operations is still an open problem. A larger class of opera-
tions, which can be defined mathematically are called separable operations. They can
be written in terms of Kraus operator with a product decomposition

B Ay ® By, p A} @ Bf

Pk (1.3)

with >, ALAk ® B,ZB}c = 1 ® 1. Since the individual action of Alice and Bob can
be joined into a product of Kraus operators, any LOCC can be cast in the form of
separable operation. However, it was demonstrated in [9] that the converse is not true
and it was shown that exist separable operations which requires a finite amount of
quantum communication to implement it. Therefore we have that LOCC C separable.

Another class of quantum operations, called positive partial transpose preserving
operations (PPT) |10, 11|, are even more general, as we will soon see. They are
extremely important for the definitions of the logarithmic negativity. Once a local

orthonormal basis |ez, ef ) is given, the density matrix can be expressed as
Z A B\/ A B
p= Pijkl |€i 7€j ><ek ) €1 | . (14)
ijkl

Its partial transposition with respect to the subsystem B is defined as the following

matrix
IOTB = Zpij,kl |€iA7 GZB><6?, ejB| ) (15)
ijkl
While the density matrix p is a positive definite operator, it is not guaranteed that its
partial transpose is also positive definite. The positivity of the partial transpose is a
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necessary condition for a state to be separable [12H14]. Since there exist states with
positive partial transpose that are not separable, the converse in not true. Besides,
it is possible to prove that LOCC C separable C PPT. Therefore if one may find
bounds on PPT operations, they will be achieved also by LOCC ones.

1.1.2 Entanglement measures: basic properties

What is a good measures to quantify entanglement? It is possible to provide some
general statements which are valid regardless of what your favorite use of entangle-
ment 1s.

Separable state contain no entanglement. A state pap.. of many parties A, B, ...
is said to be separable [15], if it can be written as

PAB... ZZPi,OZ@pfg@-“ , (1.6)

with p; a probability distribution. These states can be created by LOCC. For in-
stance, Alice samples from the distribution p;, communicates to all other parties of
the outcome 7, then each party X locally creates its p% and throws out the infor-
mation about the outcome i. Any separable state can be converted in any other
separable state by LOCC only [16] and hence they are all locally equivalent. Their
correlations are classical and so they contain no entanglement.

The entanglement present in a state does not increase under LOCC transforma-
tions. By LOCC one can only create separable states and therefore LOCC cannot
create entanglement from an unentangled state. In other words, from a quantum
state p one can perform some LOCC and obtain another quantum state o which
is at least as entangled as p |17H19]. Moreover, since local unitary operations are
reversible, any two states connected by them must have the same entanglement.

There are mazximally entangled states. Since some states are more entangled than
others, one can wonder whether there is a maximally entangled state. It is not easy to
prove its existence in general, but for bipartite systems such state exists. Suppose to
have a bipartite system consisting of two fixed d-dimensional subsystems. Any pure
state which is locally equivalent to

~0,0) + |1, 1) 4+ ... 4 [d—1,d - 1)
\/E )
is maximally entangled. From this state is possible, using only LOCC, to prepare any
pure or mixed state of two d-dimensional systems. It is worth noticing that the non
existence of an equivalent statement in multi-particle systems is the reason behind
the difficulty in expressing a theory of multi-particle entanglement.
The problem of finding an order among quantum states according to their entan-
glement is very difficult. It was proven that there are incomparable states [20] and

|pmary (1.7)
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LOCC can only induce a partial order in the set of quantum states. An operational
approach is difficult to follow and the quantum information community replaced it
with an axiomatic one [18]. From this point of view one can define real valued func-
tions that satisfy the basic properties of entanglement listed above and at the same
time quantify the amount of entanglement present in a quantum state. Various mea-
sures, some with physical interests others purely axiomatic, have been proposed over
the last years, such as the entanglement distillation [17] and the entanglement cost |6,
17, |21} 22].

Now we will present some basic axioms that any measure of entanglement should
satisty.

1. A bipartite entanglement measure is a function F(p) from density matrices into
positive real numbers: p — E(p) € R*. The normalization is usually chosen
such that the maximally entangled state (1.7)) has E(|¥™**)) = logd.

2. If p is separable, then E(p) = 0.

3. E does not increase on average under LOCC

iPA;
>Z (TYA“OAT) : (1.8)

where the A; are Kraus operators which describe some LOCC task and p; =
Tr A; pA,LT is the probability of obtaining the outcome ;.

4. For pure state p = |¥)(W¥| the measure becomes the entanglement entropy,
which we are going to define in the next section.

Any function satisfying the first three items is usually called entanglement monotone.
In quantum information an entanglement measure is a function which fulfills item
1,2,4 and is monotone under any deterministic LOCC transformation

E(p) > E(Y_VipV)). (1.9)
j

There is some confusion in the literature about these two definitions, but we refer to
the convention of |7, |8]. Other convenient additional requirements for an entangle-
ment measure are sometimes required, such as convexity, additivity and continuity
but we will not enter into these details. The main reason to add them is for mathemat-
ical convenience. About item 3, it is worth noticing that monotonicity is requested on
average. This means that a particular measurement outcome may correspond to an
increase of the entanglement. However this process cannot be used to systematically
increase the amount of resources of the system. This property is less fundamental
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than the deterministic version, in the sense that it describes the entanglement of an
ensemble {pg, pr}, which is a less operational notion than the notion of a state, but
is something mathematically easy to deal with. The monotonicity under LOCC op-
erations implies that for any separable states, E(p) takes a constant value, which is
its minimal and we can set to zero without loss of generality [16].

Using this axiomatic approach, several other measures of entanglement has been
defined satisfying monotonicity under LOCC transformations. A satisfactory list can
be found in |7, 8]. We have understood that there is not a unique way to calculate
the amount of entanglement: different states may contain different form of it and
different measures quantify the amount of entanglement which is useful for different
specific operational tasks.

1.2 Entanglement Entropy and Rényi Entropies

Given a quantum system in its ground state |¥), we want to measure the amount of
entanglement associated to a bipartition H = Ha®H p of the Hilbert space (in Fig.[L.1]
we show a spatial bipartition in two spatial dimensions). Entanglement entropy can
quantify the resource, as previously explained. The key object to introduce is the
reduced density matrix of the subsystem A, which is obtained by tracing out all the
degrees of freedom that belong to B, i.e.

pa=Trgp, (1.10)

where p = |U) (V| is the density matrix of the full system. The entanglement entropy
is defined as the Von Neumann entropy associated to p4 [23-25]

Sa=—Tr(palogpa). (1.11)

Similarly, we could have introduced Sp for the complement. By using the Schmidt
decomposition one can show that S4 = Sp. The entanglement entropy can also
be seen as the Shannon entropy of the eigenvalues of the reduced density matrix.
Entanglement entropy is a measure of entanglement and in addition to the properties
(1 —4) listed in §1.1.2] it is additive for product states (S4(p®") = nSa). Besides, it

satisfies also two really important inequalities [26] 27|, subadditivity
Sap < Sa+Sp VA B, (1.12)
and strong subadditivity
Sapc+ S < Sap+ Spe VA, B,C (1.13)

where Sy p is the entanglement entropy of AU B and Sapc of AUBUC.
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0A

.:lk...
e o
e o

B

Figure 1.1: A discrete latticed quantum system with a Hilbert space at every site.
We divided the lattice in two regions, A and B, and consequently the total Hilbert
space can be factorized as H = H4 @ Hp.

Moreover, it is also satisfied the Araki-Lieb inequality

|Sa—Sp| < Sap VA, B. (1.14)
It is important to define also Rényi entropies |28|
mn 1 7

where n is a non-negative real number. While it is natural to expect that the full set
of Rényi entropies carries complete information about the pattern of correlations of
a state, they do not have a simple operational meaning.

Rényi entropies are also entanglement monotone on pure state, in the range 0 <
n < 1, but they do not reduce to the entanglement entropy when p is pure |16]. It is
also worth mentioning that Rényi entropies do not satisfy ((1.12)) and (1.13]). We will
see that, in order to compute entanglement entropy in quantum field theory, Rényi
entropies with integer n are extremely important. Indeed, entanglement entropy can
be recovered as the limit n — 17 of the Rényi entropies (see {L.5).

1.3 Logarithmic Negativity

Entanglement entropy is a good measure to quantify entanglement in bipartite pure
states, but what about mixed states. Is there a good measure for them? During the
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years many measures for bipartite entanglement for mixed states have been proposed.
Entanglement of formation is one of the most important [6|. It is defined as the
minimal average entanglement over all possible pure state decompositions of p

Ep(p) = inf {ZplSA U (T)) - p:Zpi]\IJiM\IfiH. (1.16)

pz,‘\IJ

It quantifies the asymptotic pure-state entanglement required to create p. Other
measures are the entanglement cost E¢, which is a regularized version of Er(p), and
the entanglement distillation Ep. The latter quantifies the asymptotic pure-state
entanglement that can be extracted from p, by means of LOCC. All these measures
are very difficult to compute for many-body systems, since they involve variational
expressions.

The measure of bipartite mixed states which will play the major role in this thesis
is negativity, mainly introduced in [29-31]. With respect to other measure, it is
computable also for many-body quantum systems. The idea underline its introduction
was to find out a quantitative version of Peres’ criterion for separability [12-14]. If
a state is separable, then its partial transpose p’2, defined in , with respect to
the subsystem B is a positive definite operator

pis separable = pis PPT (1.17)

Except for very specific cases, the positivity of p?# is not a sufficient condition for
separability. There exist entangled states with a positive partial transpose known as
bound entangled states [14]. The only cases where it is a necessary and sufficient
condition are for the smallest non trivial finite dimensional systems with dimension
2®2 and 2® 3 [32], and for oscillators in a Gaussian state when A contains only one
oscillator and B whatever [33]. Negativity essentially measures the degree to which
pB fails to be positive counting its negative eigenvalues

TB _ 1
Nipy =Ll =t !l , (1.18)
where ||M||; = Trv MTM is the trace norm, which for Hermitian matrices can be
computed as the sum of the modulus of eigenvalues A\; of M. Since the sum of all
eigenvalues of p’# is 1, N'(p) corresponds to the absolute value of the sum of only

the negative eigenvalues of p2, as follows
Tr|pT2|—Z|)\|—Z|)\|+Z|M—1+22|)\\ (1.19)
X <0 A;>0 ;<0

It was proven that negativity is an entanglement monotone under both deterministic
and stochastic LOCC |31}, 134-36] and it is convex. Unfortunately, it does not have a
clear operational interpretation and it is not additive.
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This last issue can be overcome simply defining the logarithmic negativity

E(p) =1logl|p"™||1, (1.20)

which is still an entanglement monotone and it is also additive. For both negativity
and logarithmic negativity, it can be also shown the monotonicity under the more
general class of PPT operations [34]. Logarithmic negativity does not respect the
4th item of subsection and so it fails to reduce to the entanglement entropy
on pure states. We will often refer to the logarithmic negativity as the entanglement
negativity or simply negativity.

It is interesting to note that negativity satisfies a disentangling theorem. Let us
consider a tripartite system ABC in a pure state with density matrix p4pc and denote
the negativity between A and BC' as Nyjpc and the negativity between A and B as
Nap. It was recently proved in [37] that a partitioning of B into B; and Bs, such
that the state of the whole system can be factorized as

PABC = PAB; @ PByC (1.21)

exists if and only if N, A|BC = N A)B- As a consequence of this theorem, the negativity
Najc is zero. Equivalently the reduced density matrix obtained from pape by tracing
out B factorizes: pac = pa ® pc. Furthermore, in this particular case, one has
the saturation of a monogamy inequality for the square of the negativity previously
proved by [38| for systems of three qubits

Aso = Nig + Mo (1.22)

In [37] it is conjectured that this inequality is true in general. Numerical results
support this claim, but a proof is still lacking. It is important to underline that this
inequality does not hold for negativity itself.

1.4 A Bird Eye View on Conformal Field Theory

In this section we review some very basics facts of Conformal Field Theories (CFT) [39].
The study of CFT has captured the attention of physicists and mathematicians for
several years because of its wide application from string theory (where CFT nat-
urally arises to describe the ground states of strings) to statistical physics and the
study of critical phenomena, where the conformal symmetry may arise as an extended
symmetry of scale invariance and Lorentz symmetry.

In general, when we are close to the quantum critical point, the correlation length
of a system, which is the only relevant scale for the long-distance physics, behaves
like 4

~ - 1.23
|g - gc’V ( )

§
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where ¢ is a tunable experimental parameter of our system described by the Hamilto-
nian H(g) (e.g. the magnetic field in the transverse direction in the case of the Ising
model [40]), while g. is the critical value corresponding to a quantum phase transi-
tion. The way the correlation length diverges is described by the critical exponent
v. When ¢ diverges the system becomes scale invariant. The universality hypothesis
states that some physical properties (that are called universal), close to the phase
transition, do not depend on microscopic details, but only on global proprieties, such
as symmetries and dimensionality. A fundamental result of two-dimensional CFT [41]
is that the universality class is characterized just by a single quantity called central
charge. For the minimal models, it assumes only some discrete values

6
c=1-——  withm=3,4,--,00 (1.24)
m(m + 1)

The Ising universality class has ¢ = 1/2, the free boson ¢ = 1 and for instance the
three state Potts model ¢ = 4/5. There exist also models of physical interest which
correspond to different values from the allowed ones by Eq. (1.24).

In this thesis, we will treat one and two dimensional extended quantum systems
where conformal symmetry may arise as an extended symmetry of scale invariance
and Lorentz symmetry. Our systems are made by discrete variables at a critical point.
Conformal symmetry is a property of continuous theories, which can be described by
a Quantum Field Theory (QFT). Therefore, our discrete system has to be thought
in the limit of many degrees of freedom and of a correlation length much larger than
the lattice spacing & > a. This limit washes away the microscopic details so that
universality arises: this means that many different lattice systems, with different
features and properties, may display the same behavior in some critical regime, and
therefore may be described by the same QFT. It is important to stress that from
the continuum description of our many-body system we can only recover universal
properties, like the central charge and the critical exponents.

As we will shortly see, the Hilbert space and the operator content of a conformally
invariant theories in two dimensions are strongly conditioned by the symmetry. The
classification of all CFT, even if still an extraordinary task, seems much more easy
than the classification of all the QFT. This is a crucial step towards the classification
of all the universality class. There are many CFTs known in two dimensions, among
which there are the minimal models, the ¢ = 1 compactified boson, Liouville theory,
and many others. In the following we will try to give some fundamental notions on
CFT. A detailed analysis of the various aspects of CF'T can be found for example in
Refs. [41-43], which contain also all the relevant references to the original literature.
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1.4.1 Conformal invariance and primary fields

Let us consider a general d-dimensional spacetime endowed with a flat metric g, () =
N with signature (d — 1,1). The metric tensor g,, transforms covariantly under
a change of coordinates * — 2’. By definition, a conformal transformation is a
coordinate transformation that leaves the metric invariant up to a scale change

G () = g, (2") = M2) g (2). (1.25)

These are the coordinate transformations that preserves the angle v - u/(v?u?)/?
between two vectors v, w, where v-u = g, v*u”. It is worth noticing that the Poincaré
group, which is the semidirect product of translation and Lorentz transformations of
flat space, is always a subgroup of the conformal group since it leaves the metric
invariant (g,,, = gu)-

An infinitesimal coordinate transformations z*# — x*+¢€#, is conformal if it satisfies
the following relation,

2
Ouer + Op€, = E(@ €)M (1.26)

In d > 2, this constraint forces ¢”(z) to be at most quadratic in z. Apart from
the usual translations e = a*, rotations e* = w* x” and dilatations €* = Az*, the
constraint allows also for the special conformal transformations e = bta? —
22#b - x. For each of these infinitesimal transformations it is possible to write the
corresponding finite version by exponentiation, the generators of the algebra and their
commutation relations. For a generic conformal transformation, the number of free
parameters is (d + 1)(d + 2)/2.

From now on, our attention will be focused on two dimensional conformal field
theories in Euclidean signature g,,, = d,,,, which can be recovered form the Lorentzian
signature (1,1) with the usual Wick rotation to imaginary time. In two dimensions,
the constraint reduces to the Cauchy-Riemann equation

8161 = 8262, 8162 = —8261. (127)
This means that any conformal transformation is an analytic transformation z —
f(2), z — f(2), of the coordinates z = z!' + iz? z = 2' — iz®. The complex

coordinate z and z in Euclidean signature correspond to the light-cone coordinates
x £t in Minkowski space. If we consider all the analytic functions on the plane
satisfying without further specification, since they can all be expanded in
Laurent series, we can take the following generators,

l, = —2""9,, 0, = —2""0;, n € Z, (1.28)
which satisfy the following commutation relations

[ém, €n] = (m — n)lmin, [Zm, [7”] = (m —n)lmin. (1.29)
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The ¢,’s and the /,,’s commute among each others, therefore the algebra is the direct
sum of a holomorphic and an antiholomorphic subalgebras. The coordinates z and 2
are considered independent variables in C, and only at the end the physical condition
Z = z* is imposed.

Even if all the transformations satisfying Eq. are locally analytic, they
may not be so globally, due to singularities either at = — 0 or at z — oco. In
two dimension the global conformal group is defined to be the group of conformal
transformation that are well-defined and invertible on the Riemann sphere. Therefore,
the global conformal transformations correspond to well defined, invertible, globally
analytic functions, whose generators are {{y, /1, }, and {{y, /1, }. This means that the
infinitesimal globally analytic transformations are the ones at most quadratic in z,
as discussed for the d > 2 case. Notice that /_; and ¢_; generate the translations,
i(€y — £y) generates the rotations, ¢y + f, the dilatations, and finally ¢; and /; the
special conformal transformations. The finite versions of these transformations are
the only bijective biholomorphic automorphisms of the Riemann sphere, the so called

Mobius transformations
az+b

cz+d’
for a, b, ¢, d € C and ad — bc = 1. This is the group SL(2,C)/Zy ~ SO(3,1), where
the quotient by Z, is due to the fact that is unaffected by taking all of a, b, ¢, d
to minus themselves.

All locally analytic transformations satisfying Eq. but without being M&bius
, are still of great importance. From them we can define some fields which
behave covariantly under these transformations. A primary field ®(z,z) is defined
such that the element ®(z, z)dz"dz" is invariant, for some conformal weight (h,h).
Under a conformal transformation the primary fields transform as follows,

B(z,2) = (0.1)"(0:1)"® (£(2), F(2)) . (1.31)

One usually defines also quasi-primary operators, which transform as in only for
global conformal transformations. The quasi-primaries can be defined in an analogous
way also in higher dimensional CFT.

The transformation properties of the primaries put severe constraints on
their two and three-point functions. Let us focus first on the two-point function of
two primaries, G (z;, %) = (®1(21, 21)P2(29, 22)). Translational invariance implies
that G® is a function of 215 = 2; — 29 and zj9 = Z; — Zy, while rotational and scale
invariance implies that G®? ~ 1/ (zﬁﬁh 22{2”‘2). Finally, invariance under special
conformal transformations fixes hy = hy = h and hy = hy = h. Putting all together,
global conformal invariance forces the form of the two-point function of primaries to
be

(1.30)

1

2h 52k °
212 *12

G(2) (ZZ‘, Zl) =

(1.32)
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Notice that conformal invariance does not fix the proportionality constant in front of
the last expression. This is instead fixed by the field normalization, which is uninter-
esting and we can choose it such that G® takes the form (1.32)). Similar arguments
lead to the following expression for the three-point function G = (&, ®,d3),

1

= Chas 2(h1+ha—h3) _2(ha+hz—h1) _2(h1+hz—h2)
212 293 213

G(g) (Zi, 22)

(1.33)

In the case of the three-point function we cannot fix the proportionality constant,
since the fields are already normalized such that is valid. This constant is a
crucial model dependent quantity called structure constant.

At this stage, it might seem that conformal invariant theories are rather triv-
ial since their Green functions thus far considered are entirely determined up to a
constant. However, the N-point function for N > 4 cannot be fixed by conformal in-
variance only. Indeed, with four points we can construct invariant ratios under global
conformal transformations, for example & = 219293 /(213224), and the corresponding z.
Therefore the dependence of the four-point function on such invariant ratios cannot
be fixed by general argument, and we can write for example

2h
G (2, 7) = (ﬁ) F(z, 7). (1.34)
Z12714%223%34

Conformally invariant theories are usually quantized by compactifying the ‘spatial’
Euclidean coordinate o on a cylinder parametrized by the complex coordinate { =
74 io and ( = 7 — ioc. With the conformal map ( — z = exp(7 + io) the cylinder
is mapped onto the complex plane parametrized by (z,Zz). Surfaces at equal time
on the cylinder are mapped in the plane to circles centered in the origin, the origin
z = 0 is therefore the infinite past, and the point at infinity z = oo is the infinite
future. Hence, time and space translations on the cylinder correspond respectively
to dilatations and rotations on the plane. Thus, the dilatation operator on the plane
can be seen as the Hamiltonian of the system, while the linear momentum is given
by the rotation operator.

1.4.2 Stress energy tensor and operator product expansion

The stress-energy tensor 1), plays a fundamental role in CEFT. In general QFT, under
an arbitrary change of coordinates z# — x* 4 €, the action changes as follows,

1
08 = 5 /ddx T (Ouen + Ovey) (1.35)

where we assumed that 7T}, is symmetric, which is always true for Lorentz invariant
theories. Using Eq. (1.26)), we see that for a conformal transformation

65 = é / A%z T 0, (1.36)
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Thus the conformal invariance implies T% = 0 at classical level.

The components of the stress-energy tensor on the complex plane parametrized
by z = @ +izs are given by T., = +(Tos —2iT12 — Th1), Tzz = §(Ta2+2iT12 —T11) and
T,; =1, = i(Tn + T22). Using the traceless condition, 7,; = 0, and imposing the
conservation law 0,T"" = 0, we can also show that 0;T,, = 0,T5; = 0. Therefore, one
defines the holomorphic and antiholomorphic components of the stress-energy tensor,
respectively T'(z) = T..(z) and T(2) = T:z(2). It is also possible to write down the
set of Ward identities related to translational, rotational and scale invariance in a
holomprphic form. For any product of n primary fields, the conformal Ward identities
are given by

(T (2) @1 (w1, 01) D (ws, Ws) ... (W, W) =

n h/l 1 i i )
Z <(Z _ wi>2 + am) <(I)1(w17 wl)‘pz(wz, U)2> - q)n(wm wn)> ,

Z— W;
i=1 v

(1.37)

where h; is the conformal weight.

Another important ingredient is the operator product expansion (OPE), namely
the representation of the product of two local operators as a (possibly infinite) sum
over the local operators of the theory,

A(@)B(y) ~ > cilz — 1)0i(y), (1.38)

i

where the O;’s are a complete set of regular local operators, and the ¢; are (singular)
numerical coefficient. When two local fields at position x and y respectively, approach
one another x — y, singularities may in general appear, and they must be encoded
in the coefficients ¢;(x —y). For two-dimensional CFT, we can choose a basis of fields
with fixed conformal weight, and one finds

Cijk

Di(z,2)P;(w, w) ~ e Qul(w, w). (1.39)
Zk:(z—w)l i~he(Z — w)hithi =l

When the ®;’s are normalized such that the two-point function is given by Eq. ,
by using in for any two of the z;’s getting close one to the other, it is
easy to see that the Cj;;, appearing in the OPE and the ones appearing in the three-
point functions are the same. The conformal Ward identities of Eq. tell us the
singular behavior of primary fields approaching the stress-energy tensor, therefore we
can read off the divergent part of their OPE,

h _
(,2—111)2(1)(w’w)+ z—w

T(2)®(w,w) ~ Ow®(w, w) + regular terms, (1.40)

and analogously for T(2)®(w, w).
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1.4.3 Central charge, Virasoro algebra and the structure of the Hilbert
space

As for the OPE of the holomorphic component of the stress-energy tensor one finds
that

c/2 2 1
T(2)T(w) = + T(w) + ——0,T(w), 1.41
T ) = s+ ) + =g 0T (w) (141)
and analogously for the antiholomorphic component. The constant c¢ is called the
central charge, it cannot be fixed by symmetry requirements only and it is indeed
theory dependent. The presence of the central charge term in Eq. (1.41]) means that
the energy-momentum tensor does not transform as a primary operator. Indeed under

a conformal transformation, we have

T(2) — (%f) T(w) + %{w,z}, (1.42)

where {w, z} is the Schwartzian derivative.
We can define a mode expansion of the stress-energy tensor, by expanding in
Laurent series

T(z) =Y 2" "Ly, T(z)=Y 7z "Ly, (1.43)

neZ ne”Z
which can be inverted by
_ dz n+1 T dz n+17/ =
Ln—%égz T(2), LW—%§Ez (), (1.44)

where the integral are performed over some circle of fixed radius and our sign conven-
tion is such that dz and dz integrations are taken in the counter-clockwise sense. The
algebra of their commutators turns out to be exactly the one of the classical algebra,
Eq. , a part for some terms proportional to the conformal anomaly,

pmqum—mmmm+%mﬁwmﬂmm (1.45a)
[Zna 7m] = (TL - m)Zner + 1_c2(n3 - n)5n+m70, (145b)
(L, L] = 0. (1.45¢)

These commutators describe two copies of an infinite dimensional algebra, called the
Virasoro algebra. The modes L, and L, generate the conformal transformations on
the Hilbert space, and in particular, as for the classical algebra, Ly + L, generates di-
latation (and it is therefore proportional to the Hamiltonian) and i(Lo — Lo) generates
rotations (and correspond to the linear momentum).
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The modes of the stress-energy tensor play the role of ladder operators on the
states of the conformal theory. The Hilbert space, albeit very intricate, shows some
peculiar features common to all CFT. The vacuum |0) is defined by requiring that it
is annihilated by all modes with index n > —1,

L,]0) =0, L, 0y =0, n> -1 (1.46)

This implies that the vacuum is invariant under any conformal transformation, and
that the vacuum expectation values of T(z) and T(2) vanish. When we act on the
vacuum with primary fields |, h) = ®(0,0) |0) we get the eigenstates of the dilatation
operator, and hence of the Hamiltonian. These states are called highest weight states,

Lo|h, kY = h|h,h) Lo|h, kY = h|h,h) . (1.47)

The eigenvalue of the dilatation operator A = h + h is called the scaling dimension,
while the eigenvalue of the momentum operator is the conformal spin of the field,
s = h—h. In virtue of the Virasoro algebra, L, |h, h) = 0 and L, |h, h) = 0 for n > 0,
the modes of the stress-energy tensor with n < 0 can be successively applied on a
highest weight state to build a whole family of descendant states above it

ny,...,nphh)y =Ly L_py...L_p, |h,R), n; > 1. (1.48)

By using the Virasoro algebra it is straightforward to see that they are still
eigenstates of the dilatation and rotation generators, Lo |[{n;}; h, h) = (h+N) [{n;}; h, h),
and their conformal weight is increased with respect to the primary of an integer
N =3 ;n;. The descendant states are eigenstates of the Hamiltonian and are or-
ganized in levels, labeled by the integer N. Every conformal family, generated by a
highest weight state and its descendants, is closed under the action of the generators
of the conformal transformations, and therefore corresponds to a realization of the
Virasoro algebra. The corresponding subspace of the Hilbert space is usually called a
Verma module. Primaries and descendants are all the eigenstates of the Hamiltonian
and form a basis for the full Hilbert space.

Primary operators ® are in one-to-one correspondence with highest weight states
|h,h). In the same way, for any descendant state we can define the corresponding
descendant field, as the one that creates the state when applied to the vacuum. It
can be seen that correlation functions involving descendant fields can be obtained by
applying a specific set of differential operators to the correlation functions of their
corresponding primaries.

The structure of the Hilbert space described so far is typical of every CFT, but
specific theories can have different features. For example, the minimal models are
characterized by a finite number of Verma modules, which makes the structure of
the Hilbert space particularly regular. On the contrary, in general the number of
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realizations of the Virasoro algebra is infinite. For example, the set of primaries of
the free massless scalar boson is in one-to-one correspondence with the real numbers.
However, if we compactify the target space of the boson on a circle of radius R, thus
identifying ¢ ~ ¢ + 27 R, the set of primaries is still infinite, but discrete.

1.5 Entanglement Entropy in Conformal Field Theory

In the last years there has been a strong interest in formulating measures of entan-
glement and use them to extended quantum systems with many degrees of freedom.
In quantum field theory entanglement is much less understood than in quantum me-
chanics. One could argue that quantum field theory is just the continuous limit of
quantum mechanics, but several complications may arise. For instance, the infinite
dimensionality of the Hilbert spaces and the fact that for gauge theories there are
ambiguities in factorizing the Hilbert space are just some of these obstacles.

Although these issues and the fact that there are several measures of entanglement,
entanglement entropy and entanglement negativity are among the few entanglement
related quantities which have been studied in QFT. By tracing out part of the degrees
of freedom of correlated quantum systems, useful and non-trivial information can be
obtained by the study of the reduced density matrix. We recall that although p can
be a pure state, p4 = Trp p is a mixed state.

In the framework of quantum field theory the entanglement entropy can
be computed by means of the replica trick. This procedure can be split in two steps.
First one computes the trace of the n-th power of the density matrix Tr p”; and then
performs an analytic continuation of the resulting expression to any complex n. The
entanglement entropy can be obtained as

Sy =—1imo, Trp} . (1.49)
n—1

The Rényi entropies are defined

n 1
51(4) =7 log Tr p'} . (1.50)

—-n
Given the normalization condition Tr p4 = 1, the replica trick says

T (n)
SA = 7111_>II% SA . (1.51)

It is important to emphasize that SXL) contains more information than S4. Indeed
from the Rényi entropies one can in principle extract the full spectrum of p4 [44].

A lot of effort has been devoted in understanding the behavior of entanglement
entropy in critical systems. In this thesis we will focus our attention to the case of 1+1
and 2 + 1 space-time dimensions, when A and B correspond to a spatial bipartition.
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In [15, 45, 46| the simplest example was studied, namely the entanglement entropy
of an interval A of length ¢ in an infinite line, finding

c ¢
SA—glOga—i—Cl, (152)
where c is the central charge of the corresponding CFT, a is some UV regulator and
¢} is a non universal constant.

Let us consider the subregion A made by two subsystems A; and Ay (A = A;UA,),
which can be either adjacent or disjoint (see Fig. for a two spatial dimensional
representation). We stress that, when A; and A, are separated, the entanglement
entropy S quantifies only the entanglement between A and the remainder of the
system B, but not the entanglement between A; and A,. To measure the correlations
between A; and Ay, which can be either adjoint or disjoint, an interesting quantity
to consider is the mutual information

IA17A2 = SAl + SAQ - SAluAQ ) (153)

and, the corresponding Rényi mutual information

1 Tr p'
m, = 1 A . 1.54
Ak = o1 (Trpﬁl Trpﬁ) (159

Applying the replica trick for the entanglement entropy it is easy to see that
IAl,AQ = 7111_>H% [1(471),142 ) (155)

where Ignl)’ Ay = SX’I) + SX;) - SXLI)U A, 18 the corresponding combination of Rényi en-

tropies. However, let us underline that the mutual information is not a measure of
the entanglement between A; and A,, but quantify the amount of global correlations
between the two subsystem [47-49]. For instance, mutual information takes into
account also the classical (thermal) correlations between the two regions.

1.5.1 Replica trick for entanglement entropy

In this subsection we explain how to compute Tr p’ in order to perform the above
mentioned replica trick.

Consider a lattice quantum theory in 1+ 1 space-time dimensions and denote by
a the lattice spacing and label the lattice sites by a discrete variable x. The domain
of x can be finite, semi-infinite or infinite, while time is considered to be continuous.

We denote a complete set of local commuting observables with {¢(z)}, and their
eigenvalues and eigenvectors respectively by {¢(z)} and ®,|{¢(z)}). The dynamics
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of the theory is described by the hamiltonian H. The density matrix p in a thermal
state with inverse temperature 3 can be expressed by

p({G,100, 1) = Z(B) " ({dn,le 7105, 1) (1.56)

where Z(3) = Tre " is the partition function. We can express it as an euclidean
path integral

p({¢" (22)|¢ (21)}) = /dcby, H5 (y,0)=¢ (x1)) [ [ 6(b(y. 8) =4 (x2))e "

(1.57)
where Sp = fO’B Lpdr, with Lg the euclidean lagrangian. Setting {¢" ()} = {¢ (z)}
and integrating over them, we find Trp = 1. This operation corresponds to sew
together the edges along 7 = 0 and 7 =  to form a cylinder of circumference f3.
Consider now the case of a subsystem A composed by the points z in the disjoint
intervals (u1,v1), -+, (uy,vn). A similar expression for the reduced density matrix
pa may be found by sewing together only those points x which are not in A. This
operation will leave along the line 7 = 0 some open cuts, one for each interval (u;, v;).
By making now n copies of the above construction, each labelled by an integer k
with 1 < k < n, and sewing them together cyclically along the cuts so that ¢ (z); =
¢ (2)p1 and ¢ (z), = ¢ (x); for all the z € A (see Fig. for one interval). If we
denote the path integral on this n-sheeted structure by Z,(A), then

(1.58)

Since Trpy = >, A}, where {);} € [0, 1) are all the eigenvalues of p,, then it follows
that the left hand side is absolutely convergent and thus analytic for all Ren > 1.
The derivative with respect to n therefore also exists and it is analytic. If the entropy
pa = Z A;log A; is finite, the limit as n — 17 of the first derivative converges
to this Value So, we conclude that the right hand side of Eq. - ) has a unique
analytic continuation to Re(n) > 1 and that its first derivative at n = 1 gives the
required entropy
SA:—thgTrpA TIH GaZZ<;4)
For the sake of simplicity, everything here has been done in the discrete space domain,
but in |15, 45] it was shown that the continuum limit can be taken safely, since most
of the UV divergences of the QFT cancels in the ratio ([1.58§]).
Now, suppose to consider a subsystem A = UY | A; made of N disjoint intervals
and denote by A; = [u;,v;] the endpoints of the i-th interval with i = 1,---  N.
In [45, |46] Calabrese and Cardy developed a method to compute Trp% as the 2N

(1.59)
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Figure 1.2: The Euclidean geometry for computing the matrix elements of powers
of the reduced density matrix p4. It is illustrated the situation where we glue three
copies of the replicated path integrals to construct p matrix elements with the
identifications between boundary conditions on the replica copies indicate by the
arrows. The final trace to compute the third Rényi entropy is indicated by the
dotted line (This image is taken from [50]).
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point function of twist fields

Tr pfy = ([ [ 7o () 7o (v2)) - (1.60)

=1

In CFT the twist fields transform like primaries. These fields have been largely studied
in the early days of string theory [51-57| and their crucial role for the entanglement
computations has been exploited during the last decade.

In the simplest case of one interval A = [u, v] in an infinite line, Tr p’} is given by a
two point correlation function of twist field on the complex plane, which is completely
fixed by global conformal invariance

T —v]2An

Te ply = (To () Ta(v)) (L61)

Now, since the twist fields behave like primary operators they have the same scaling

The constant ¢,, is not universal and for the normalization condition we have that
c¢1 = 1. From it is easy to recover ((1.52]).

In the case of four (two disjoint intervals) and higher point correlation functions,
the global conformal invariance does not fix the precise dependence on u; and v;,
because it is easy to construct invariant ratios involving these points. If we apply the
conformal map such that u; — 0, uy — 1 and vy — 00, that is

(u1 — 2)(un —vy)
(v —un)(z —vy)’

(1.63)

wy(z) =
then the other points wu;’s and wv;’s are sent into the 2N — 3 four-point rations
r1 = wy(v1), v2 = wn(ug), 3 = wy(ve), -+ ,xan_3 = wy(vny_1), which are in-
variant under SL(2,C) transformations. The ordering 0 < 1 < g < -+ < Toy_3 I8

preserved by the map (|1.63). Denoting by @ the vector with elements the four-point
ratios x1, -+ ,xon_3 and by means of global conformal invariance, we can write the

2N point function ([1.60)) as [46]
21,

w [Llici (w5 = i) (v; = v) Fn(@), (1.64)

" H” (vj — ;)
whered,j = 1,---, N and the function Fy,, () keeps track of the full operator content

of the particular model and therefore it must be computed case by case. From the
normalization condition Tr ps = 1 we have Fy;(x) = 1.

Trpy =c
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The case of two interval is much more interesting and useful also when we will
consider negativity. When the subsystem A = A;UA, is made by two disjoint intervals
Ay = [uy,v1] and Ay = [ug, ve] (with the endpoints ordered as u; < v; < ug < vg), a
crucial role will be played by the function F3,(x) as we will see soon. In this setup
we have N = 2 and there is only one four-point ration 0 < z < 1

_ (ur — v1)(ug — vy)
(w1 —ug)(v1 —v2)

(1.65)

Lots of efforts were put in the derivation of analytic expressions for the function
Fon(z). In [51-58] some methods were developed to study CEFT on higher genus
Riemann surfaces and their results are expressed in terms of Riemann theta func-
tions [59-61]. Their analytic continuation in n for the most general case is still an
open problem and therefore we still miss an expression for the entanglement entropy
S4. Various numerical studies realized by means of different techniques [62-69] sup-
port these CFT predictions. As already said, it is important to emphasize the crucial
difference between the case of one single interval and the case of multiple intervals.
In the former Trp’ and S, are sensible only to the central charge of the CFT, as
Egs. and manifest. In the latter, these computations just mentioned
above showed that when the subsystem A is composed by N > 2 disjoint intervals on
the infinite line, the Rényi entropies encode all the data of the CFT, because Tr p7} is
obtained as a four-point function of twist fields |70, |71]. Eq. in the case N = 2
becomes

Trplhy = (Ta(wn) Ta(v1) Tn(u2) Tn(v2)) (1.66)

_ 2 (2 — ) (o2 — 1) T E). 6
= n 2.n . .
(v1 — up)(ve — ug)(ug — v1) (v — uy)
The function F; ,,(z) has been studied for some explicit models [62-64} |67-{76]. Other
works were done using the holographic approach |74, 77-86] and in the framework of
higher dimensional conformal field theories [87H93].
In the CFT describing the free boson compactified on a circle of radius r the

function Fy,(x) is exactly known. By introducing = 72/2, it can be written in
terms of Riemann theta functions as follows

_ ©(0[n7)0(0|72/n)
Fon(z) = OO (1.68)

where 75 = To(z) is an (n — 1) X (n — 1) matrix, called the period matrix, with
elements [70]

- I_Zsm wk/n) Fepm(1 = )cos[27r(k/n)(i—j)], (1.69)
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where Fy(x) = 5Fi(s,1—s;1;x), being o F} the hypergeometric function. Notice that
F2,(0) = 1. Since the ratio z € (0,1), the period matrix 7(z) is purely imaginary.
The Riemann theta function is defined [59-61] as

O(z[M) = ) emmiMmibzmimtz (1.70)

me 7mn—1

where M is a (n—1) x (n—1) symmetric complex matrix with positive imaginary part
and z € C"1/(Z"' + QZ"') is a complex (n — 1) dimensional vector. It is worth
observing that the analytic continuation of © is a hard task to be accomplished.

An interesting case is when the compactification radius is set to be n = 1/2. The
free boson theory corresponds to the scaling limit of the X X spin chain, which is the
so called Dirac point. Using theta functions identities it is possible to express Eq.

as
R[S

where the period matrix 7 is the same as in ((1.69), while © is the Riemann theta
function with characteristic defined as [59-61]

2

, (1.71)

. 1
fDlrac ) =
) S e

€,0

— ir(m+e)t-M-(m+e)+2ri (m+e)t-(z+6 _ (€
Olel(z|M) = 37 eirtmtey dmie)animie)(x9) :(5), (1.72)
mezn—1!
where the vector e® = (e',8") is the characteristic of the Riemann theta function
(1.72), being € and § two (n — 1) dimensional vectors whose elements are either 0 or
1/2. The characteristic provides the parity of as a function of z, which is the
same one of the integer number 4¢ - §

Ole](—2]Q) = (~1)*** Ole](2]2) . (1.73)

It is easy to realize that there are 22"~ characteristics: 2"72(2"~! + 1) are even and
2"=2(2"~1—1) are odd. In this thesis only the trivial vector z = 0 occurs and therefore
all the Riemann theta functions occurring in this work with odd characteristic vanish
identically. We find convenient to define from now on ©[e](M) = O[e|(0|M) and
©(M) = ©(0| M) when the characteristic is vanishing. The Riemann theta functions
throughout this thesis have been evaluated by using the builtt-in function SiegelTheta.
Another model for which the scaling function F;,(z) is known is the critical Ising

model
|: :| 0|7'2

where all its element were explained already few lines above.
The generalization to N intervals has been discussed in [94]. In this case the genus
of the Riemann surface becomes g = (N —1)(n — 1).

Fore(x) = (1.74)

2n-1 \@ 0|7s)
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Figure 1.3: A discrete latticed quantum system with a Hilbert space at every site.
We divided the lattice in three regions, A;, A, and B, and consequently the total
Hilbert space can be factorized as H = Ha, @ Ha, @ Hp.

1.6 Logarithmic Negativity in Conformal Field Theory

In this section we define negativity in the context of quantum field theory and then
extend the replica approach to the computation of the logarithmic negativity.

We are now interested into the entanglement between two non-complementary
parts A; and As. Indeed, the union A = A; U A, is in a mixed state with density
matrix ps = Trp p, with B the complement of A. We have already discussed in §1.5|
that the mutual information ((1.53)) is not a measure of entanglement between A; and
As, but it takes into account also classical correlations between the two regions.

We are here interested only at quantum correlations, i.e the entanglement between
Ay and A,. In we discussed how the negativity provides a proper measure of
entanglement in a bipartite mixed state [12} [16] [2931], 36]. Let us recall its definition.
The logarithmic negativity is defined through the partial transpose of p with respect
to one of the two parts. Let us consider the partial transpose with respect to the
Ay’s degrees of freedom. Now, denoting by |e§1)) and |e§2)> two arbitrary bases in the
Hilbert spaces corresponding to A; and As. The partial transpose of p4 with respect
to Ay degrees of freedom is defined as

(e el | pRleel) = (Ve palei ey . (1.75)

Since the spectrum of the Hermitian matrix pT can contain also negative eigenvalues,
it is worth computing its trace norm ||p’?||; = Tr|p’2| = 3, |\i|, which is the sum
of the absolute values of the eigenvalues of pi . The logarithmic negativity is then
defined as

=In||p%||; = InTr|p} (1.76)
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Notice that the negativity is symmetric under exchange of A; and A,, as any good
measure of the relative entanglement should be. For future convenience we also

introduce
Tr(pl)"

=1 =27 1.
E,=1log(R,), R, T ) (1.77)

It is not difficult to show that R, = 1 and therefore £ = 0.

1.6.1 Replica trick for the logarithmic negativity

The QFT approach to the logarithmic negativity € is based on a replica trick |95,
96]. Let us consider the traces Tr(p’?)" of integer powers of p’?. For n even and odd,
denoted by n. and n, respectively, we have

Tr(p?) _ Z}\ne _ Z ‘)\ Ne (1783)
Ai>0 Ai<0

L) = Z)\?” =D Il =D il (1.78b)
% Ai>0 Ai<0

where ); are the eigenvalues of p’?. The functional dependence of Tr(p’?)"™ on ])\ |
is a result of the parity of n. Setting n, = 1 in (1.78a]), we formally obtain Tr |p’?|,
whose logarithm gives the logarithmic negativity

IERT Th\ Me
S—JiglllogTr ()" (1.79)

Instead, if we set n, = 1 in (({1.78h]), we just get the normalization Tr pi'f = 1. Thus,
the relevant fact is that the analytic continuations from even and odd values of n are
different.

In the special case of a pure state p = |¥)(¥| acting on a bipartite Hilbert space,
H = Ha, ® Ha,, the moments of the partial transpose are related to the Rényi
entropies as follows |95, |96]

Trpe odd n =mn,,
Az (1.80)

T () (0[™)" = {

(Tr pne/) even n = n,,

where pa, = Tra, |¥)(¥] is the reduced density matrix of the subsystem A,. From

the relation (1.80) and the replica limit (1.79), one easily gets that £ = S, (1/ 2).
TQ)

The logarithmic negativity and the moments Tr(p of the partial transpose
are interesting quantities to compute for bipartite mixed states. In this thesis we
will focus on a particular system in its ground state, considering the mixed state
given by the reduced density matrix ps = Try, |¥V) (V] of a spatial subsystem, whose
corresponding Hilbert space Ha = Ha, ® Ha, is bipartite. Instead of the moments
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of p%, we find more convenient to consider the quantity &, defined in 1' Given
the normalization condition of p4, the replica limit (1.79) simply tells that

£=limé&,, . (1.81)
ne—1

For 1 + 1 dimensional CFTs in the ground state, the logarithmic negativity and
the moments of the partial transpose have been studied for both adjacent and disjoint
intervals [95(101]. This analysis has been extended also to a bipartite system at finite
temperature [102|. The moments of the partial transpose for some fermionic systems
on the lattice have been studied through a method involving correlators in [103} |L04]
and the overlap matrix in [105]. The logarithmic negativity has been considered
also for a non vanishing mass |96, |106] and out of equilibrium [107-110]. For two
disjoint intervals at zero temperature Tr(p%1U 4,)" must be computed case by case
because it encodes all the CFT data. The replica limit for these expressions
turns out to be difficult to compute, like for the mutual information. Indeed, analytic
results have not been found for all the possible configurations of intervals. Numerical
results for the logarithmic negativity have been found also for systems with impurities
by employing DMRG techniques [111-114]. Other interesting numerical studies for
various one dimensional lattice systems have been performed in [112} |115[{122]. The
same numerical method employed to get the mutual information from the replica
limit has been used to get the logarithmic negativity from the replica limit ,
since similar difficulties occur [123].

In two spatial dimensions, the logarithmic negativity of topological systems has
been considered [124-129] and recently interesting lattice analysis have been per-
formed for both fermionic and bosonic systems [130, [131]. Some results have been
found also in the context of holography [132, [133].

Finally, let us notice that the replica approach introduced in the context of
CFT [95, 96|, has been later applied to many other circumstances |97, 98], 122, 124
126, 132, 133|.

1.7 Area Law, its violations and sub-leading corner terms

Originally, entanglement entropy gained a lot of attention after some works related to
black hole physics by Bombelli et al. |134], Srednicki [135], Callan and Wilczek [136],
Holzhey et al. |15], where it was realized that the geometric entropy (this was the
original name, since the bipartition of H is spatial) of a free scalar bosonic field in its
ground state obeys the so-called area law, i.e in d-space dimension it scales with the
surface of the subsystem A, as follows

g d—1
Sy ox (—A) o (1.82)

€
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where ¢4 is some size of the region A and € some UV cutoff. We should remind that
entanglement entropy and logarithmic negativity in QFT are UV divergent and thus
they need to be regulated. This follows from the fact that any state in a local QFT has
short-range correlations in the ultra-violet. The ellipses in denote less divergent
terms. This area law is opposite to the bulk or volume law, Sx o< (£4/€)* obeyed
by generic states in the many-body Hilbert space. For the ground state, the area law
is the general behavior, but there are important exceptions and Eq. needs to
be discussed more deeply as we will do in this section. This leading area law term is
non universal and therefore a lot of interest is also devoted to sub-leading terms and
in particular to the logarithmic ones. In general one can argue that for states in the
Hilbert space of a relativistic QF'T, the UV behaviour of the entanglement entropy
of a smooth region A takes the form:

B A" A\ aq + O(e) d even
SA = ag_1 (?> + aq_3 (? 4.4 adlog(ﬁA/E)—l-O(l) d odd (183)

The general rule is that the expansion of entanglement entropy in terms of the size
of the systems may have terms which are universal and terms which instead depend
on the UV cutoff, as the area law one. The former play a more fundamental game,
but also the latter can be very interesting to better understand the nature of entan-
glement. Like the central charge in 1+ 1, universal terms can potentially give insight
into the low energy theories governing critical behavior, providing for example an
effective measure of degrees of freedom in the CFT or bounds on renormalization
group flow, depending on the geometry of A. It is worthwhile to notice for our fu-
ture discussion that in Eq. a logarithmic term appears for d odd, while it never
appears for d even. For any d a logarithmic terms appears in the expansion of the
entanglement entropy (and also logarithmic negativity), when the region A has a
non-smooth boundary, i.e. at least one corner.

For one dimensional quantum systems, we have to make a distinction between
critical and non-critical ground states. The area law in 1 + 1-dimensions yields a
constant entropy, independently of the system size. This only occurs for non-critical
ground states characterized by a finite correlation length [137], such as the non-critical
dimerized quantum spin-1/2 XY chain, which after a Jordan-Wigner transformation
is equivalent to a free-fermion system.

On the other hand, critical (i.e gapless) chains described by a conformal field
theory display a logarithmic violation of the strict area law. Rényi entropies grow
with the subsystem length ¢4 following the universal form

1 L ¢
SXL) = g (1 + ﬁ) log (; sin {WTA]) +Sn A+ (1.84)

for periodic chains of length L. The constant term s, is non-universal but in some
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cases can be evaluated exactly |138|, while the ellipses in the above equation repre-
sent subleasing correction to scaling and in general the vanish as power-laws of the
subsystem size [139, (140]. Eq. refers to finite size quantum systems of length
L, but an equivalent behavior happens for the same system in the continuum limit

nC 1 la
Sy:g(uﬁ)log?ﬂﬁ...? (1.85)

where € is the UV cutoff and ¢ is an universal term, more precisely the central charge
that in a rough sense counts the number of low energy degrees of freedom. For
instance, in the case of a CFT described by N free bosonic fields, ¢ is equal to
N [141).

Another important violation of the area law is given by free fermions in space
dimensions d > 1, when there is a well defined Fermi surface [142-144]

Saoc(La)e) " og(la/e) (1.86)

For non-critical fermions the entropy instead obeys a strict area law.

Intuitively, the area law expressed by Eq. is understood as resulting from
entanglement that involves degrees of freedom located near the boundary between
regions A and B. In a similar way, the logarithmic correction of Egs. ,
and has its origin in contributions to entanglement from degrees of freedom
that are further away from the boundary between A and B.

More relevant for this thesis is the following case. For a relativistic free bosonic
field theory, which is equivalent to a system of coupled harmonic oscillators, entangle-
ment entropy and Rényi entropies scale with an area law in space dimension d > 1 15
134-136]. This was numerically confirmed for critical and non-critical systems where
a strict area law is observed in both cases [145)]

Now we focus our attention on subleasing terms appearing in higher dimensions
(d + 1, with d > 1) that go beyond the area law. A very interesting case, which
will be discuss in Chap. [3| concerns subsystems having a non-smooth boundary with
the particular example of sharp corners in 2 4+ 1-dimensions which are responsible
for additive logarithmic corrections to the area law [146/159], both for entanglement
and logarithmic negativity. Now, suppose that the region A has a number ¢ of sharp
corners 6;, then the area law for the Rényis entropies is corrected as follows

AST = (Z b ( ) log Py (1.87)

where the sum is taken over all corner angles and P, is the 1d shared boundary
between A and B. For free scalar field theory, Casini and Huerta have provided
an analytical solution [147] for integer n > 2, which involves a tricky numerical
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solution of a set of non-linear differential equations valid for 6 € [0, 7]. The fact that
the corner logarithmic terms universality emerges is really remarkable. It was then
proposed that the prefactor of the logarithmic correction is an effective measure of
the degrees of freedom of the underlying CFT |79, |147, [151]. Moreover, using CFT
and some holographic approach, in [154, (157, 158 it was suggested that the ratio
b,,(#)/Cr is universal for a broad range of CFT, where Cy is the central charge of the
stress tensor correlator.

1.8 Holographic Entanglement Entropy

The Bekenstein-Hawking formula for the entropy of a black hole is one of the most
relevant results in theoretical physics. Their formula is

A

Spy = kpc®———
BH BC 4GN7i’

(1.88)

where A is the area of the event horizon and it represents the first hint that sug-
gested the idea that gravity might be holographic, namely all information about a
region of space-time (in this case the black hole interior) is somehow encoded on its
boundary. The astonishing fact about this equation is that it contains the fundamen-
tal constants h, kg, c, G, surprisingly connecting quantum mechanics, gravity and
statistical mechanics.

A concrete realization of the holographic principle is the AdS/CFT correspon-
dence, or gauge/gravity duality, proposed by Maldacena in [160]. This correspon-
dence asserts that a gravity theory in the bulk of a d + 1 space-time is dual to a
conformal field theory (without gravity) which lives on the boundary of that space-
time (i.e in one less dimension). This is a beautiful example of strong/weak coupling
duality. In particular the strong coupling regime of the CFT is captured by the weak
coupling regime of the gravity theory in the bulk. In the regime where the bulk dual
is just classical gravity, one can ask if the correspondence is able to tell us anything
about information theoretic quantities in the boundary field theory.

In 2006, Ryu and Takayanagi proposed that when an holographic dual of a CFT
is available, the entanglement entropy of a boundary subregion is given by a nice
geometric quantity in the bulk [77]. For the static situation, consider a time-slice
of the asymptotically AdS geometry. Now, pick on the boundary a subregion A,
with area A, for which we want to compute entanglement entropy. The holographic
prescription tells us to look for the bulk surface A,,;,, homologous to A and with
boundary dA, that has minimal area. The entanglement entropy is then given by

A(Amin)

= — 1.
Sa eI (1.89)
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where Gy is the Newton constant in the bulk. This formula is an important tool to
compute entanglement entropy in many situations where it would be inaccessible with
other techniques. Moreover, the similarity with the Bekenstein-Hawking formula (in
natural units ¢ = kg = i = 1) is evident and this could be another hint that there is
some striking connection between gravity and information theory.

The prescription introduced above satisfies all the properties of entanglement
entropy. In particular, Eq. satisfies the inequalities , , as shown
in [161], and also is guaranteed to be fulfilled by the homology constraint.
Remarkably, for the static solution, the Ryu-Takayanagi prescription has now been
proven in [162].
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Figure 1.4: A Ryu-Takayanagi minimal surface in AdS, anchored to the region A
showed in the lower part. The surface was made by using Surface Evolver.

During my PhD I have been involved also in a project to study the shape depen-
dence of the Ryu-Takayanagi formula. The simplest case where such dependence is
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non-trivial is AdSy.

In Fig.[1.4] (upper panel) it is shown a Ryu-Takayanagi minimal surface in AdS,
corresponding to the region A at the boundary of AdS, is depicted in the bottom
panel. The fancy fact about this domain is that, for a particular range of the pa-
rameters a and the ratio d/R, the minimal surface develops an hole. This image was
created using the program Surface Evolver |163|, a widely used open source software
for the modelling of liquid surfaces shaped by various forces and constraints. This
program allows to numerically tackle the minimization procedure for entangling re-
gions A having a generic shape and for which an analytic approach is very hard [86,
196].

1.9 Organization of the Thesis

The structure of this thesis follows the various arguments I have been dealing with
during the years of my PhD research.

e In Chap.[2] we employ a numerical method based on rational interpolations to
extrapolate the entanglement entropy of two disjoint intervals for the confor-
mal field theories given by the free compact boson and the Ising model. We
then investigate, using the same numerical approach, the case of three disjoint
intervals for the Ising model and the non compact free massless boson. For the
latter model, the logarithmic negativity of two disjoint intervals will be also
considered. Some of our findings have been checked against existing numerical
results obtained from the corresponding lattice models. This chapter is mainly
based on the following work:

[123] C. De Nobili, A. Coser, and E. Tonni, “Entanglement entropy and negativ-
ity of disjoint intervals in CFT: Some numerical extrapolations”, J. Stat. Mech.
P06021 (2015).

e In Chap.[3] we study the logarithmic negativity and the moments of the partial
transpose in the ground state of a two dimensional massless harmonic square
lattice with nearest neighbour interactions for various configurations of adjacent
domains. We will see that at leading order for large domains, the logarithmic
negativity and the logarithm of the ratio between the generic moment of the
partial transpose and the moment of the reduced density matrix at the same
order satisfy an area law in terms of the length of the curve shared by the ad-
jacent regions. We discuss also the case when the curve shared by the adjacent
domains contains vertices. In this case a subleading logarithmic term occurs in
these quantities and the numerical values of the corner function for some pairs
of angles are obtained. In the special case of vertices corresponding to exple-
mentary angles, we will provide numerical evidence that the corner function of
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the logarithmic negativity is given by the corner function of the Rényi entropy
of order 1/2. This chapter is mainly based on the following work:

[164] C. De Nobili, A. Coser, and E. Tonni, “Entanglement negativity in a two
dimensional harmonic lattice: area law and corner contributions”, J. Stat. Mech.
P083102 (2016).

e In Chap.[] we discuss some preliminary results about the spatial distribution
of entanglement entropy od disjoint intervals and negativity. In particular we
study the contour, which is a function providing a decomposition into single site
contributions of an entanglement measure. We extend some results about the
entanglement entropy contour already present in the literature to the case of
disjoint intervals for the harmonic chain in 1+ 1-dimensions. Moreover, we try
to extend this notion to the logarithmic negativity and discuss some problems
that arise in this context.
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CHAPTER 2

Entanglement Entropy and negativity of
disjoint intervals in CFT: some numerical
extrapolations

This chapter is a reproduction of the paper Entanglement Entropy and negativity of
disjoint intervals in CFT: some numerical extrapolations [123|, written in collabora-
tion with Andrea Coser and Erik Tonni.

It is well established that entanglement entropy and logarithmic negativity can
be computed in quantum field theory through a method based on the replica limit.
However, performing these analytic continuations in some cases is beyond our current
knowledge, even for very simple models. In this chapter we employ a numerical
method based on rational interpolations to extrapolate the entanglement entropy of
two disjoint intervals for the conformal field theories given by the free compact boson
and the Ising model. We also investigate, using the same numerical approach, the
case of three disjoint intervals for the Ising model and the non compact free massless
boson. For the latter model, the logarithmic negativity of two disjoint intervals will
be also considered. Some of our findings have been checked against existing numerical
results obtained from the corresponding lattice models.

2.1 Introduction

As already emphasized in the Introduction, entanglement measures have been the
focus of an intense research activity in condensed matter theory, quantum informa-
tion, quantum field theory and quantum gravity during the last decade. The most
celebrated one among them is the entanglement entropy, which measures the entan-
glement between two complementary parts when the whole system is in a pure state.
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It is probably useful to recall for completeness that the entanglement entropy Sy is
the Von Neumann entropy associated to pa, after tracing out the degrees of freedom
of the region B as explained in §I.5] of the Introduction. We also remind that in
quantum field theory, the entanglement entropy is usually computed by employing
the replica limit, namely

Sa=— Tr(palogpa) = lim s& (2.1)
n—
where 51(4”) are the Rényi entropies, which are defined as follows

n 1 T
Sg ) = T log Tr(p'}) - (2.2)

From this expression_and the normalization condition for p4, we find that Sy, =
=0, Tr(p%)|n=1. In we saw that S{E‘") is typically known for positive integers
n and therefore it must be analytically continued to real values of n in order to
perform the replica limit (2.1)). In quantum field theory, the entanglement entropy is
a divergent quantity when a — 0, being a the UV cutoff.

An important configuration we are going to study in this chapter is when the
subsystem A = A; U A, is made by two disjoint spatial regions A; and A, (see
Fig., top panel, for one spatial dimension). In this case, it is convenient to deal
with the mutual information ((1.53]) we introduced in which we recall to be

IAl,AQ = SAl + SA2 - SA1UA2 = }Lil)li ]1(471)’142 y (2_3)

where in the last step we have emphasized that 4, 4, can be found as the replica
limit of the following combination of Rényi entropies

— Tr pzlL_JAg
n— ’ Trply, Trplh,

n n n n 1
11(41)7A2 = 1(41) + S.(AQ) - 51(41)UA2 = 1 10g RZ,n 5 RQ n (24)

The subadditivity of the entanglement entropy guarantees that /4, 4, > 0 and the
leading divergence of the different terms cancels in the combination when the
area law holds. Moreover, the mutual information could contain more physical
information with respect to the entanglement entropy of a single region. For instance,
in two dimensional CFTs, while S, of a single interval depends only on the central
charge, the mutual information /4, 4, encodes all the CFT data of the model (confor-
mal dimensions of the primaries and OPE coefficients) [62-64], 66-71, 73, |L65]. The
mutual information has been studied also through the holographic approach |74} |77,
7§|.

Taking the limit n — 1 in and in many interesting cases is highly
non trivial. For instance, the analytic continuation of the Rényi entropies of a single
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Figure 2.1: The configurations of intervals considered. Top and middle: the entan-
glement between a subsystem A made by either two (top) or three (middle) disjoint
intervals and the remainder B. Bottom: the entanglement between two disjoint in-
tervals A; and A; embedded in a larger system in its ground state made by A; U A,
and the reminder B. In CFT correlation functions of branch-point twist fields 7,, and
7, placed at the endpoints of the intervals must be computed to get either the entan-
glement entropy (top and middle panels) or logarithmic negativity (bottom panel)
through the proper replica limit.

interval for the excited states given by the primaries [166-168| has been studied in
[169]. For the excited states given by the descendants, a closed expression for all the
Rényi entropies is still not known [170]. Interesting features have been observed by
considering the Rényi entropies of a single interval in critical one dimensional models
for real n but no singularities have been found [65].

In this chapter we address the case of disjoint intervals for some models in one
spatial dimension. The Rényi entropies for a subsystem A made by N disjoint inter-
vals (see Fig. middle panel for N = 3) are given by the partition function of the
model on a Riemann surface of genus g = (N — 1)(n — 1). These partition functions
can be computed for some simple CFTs like the massless compact boson and the
Ising model |70, 71}, |94] but finding the corresponding analytic continuations in the
most generic case is still beyond our knowledge. For two spatial dimensions, already
the simple case of the entanglement entropy of a disk could lead to a difficult replica
limit [171].

The other interesting quantity that we are going to consider in this chapter is the
logarithmic negativity, which is a measure of entanglement for bipartite mixed states
[12, |16} 29-31} |34}, 136, |115|, [172], as we already said in the Introduction. We remind
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that the logarithmic negativity is given by
£ =log Tr o720 (2.5)

where Tr |p)2 , | is the trace norm of the partial transpose (hermitian) matrix p’Z 4.,
which was defined in and also in . The trace norm is the sum of the
absolute values of its eigenvalues. Taking into account the traces Tr(pﬁ?1U a,)" of
integer powers of p?flu A, it is not difficult to observe the parity effect described in
(1.78a]) and (1.78b). In particular, considering the sequence of the odd powers n = n,
and the one of the even powers n = n., the logarithmic negativity can be found
through the following replica limit [95, 96|

€ = lim log Tr (p4,,4,)"" (2.6)

Notice that for n, — 1 one simply recovers the normalization condition Tr p%l ua, = L.
For a bipartite pure state a relation occurs between Tlr(,ogg1U 4,)" and the Renyi en-
tropies which tells us that the logarithmic negativity reduces to the Rényi entropy
of order n = 1/2. However, we are interested in the logarithmic negativity of mixed
states and the reduced density matrix is an important example. Thus, given a quan-
tum system in a pure state and considering the reduced density matrix p4,u4, of two
adjacent or disjoint spatial regions, while S4,4, measures the entanglement between
A; U Ay and the complementary region B, the logarithmic negativity in (2.5 mea-
sures the entanglement between A; and A, (see Fig., bottom panel, for one spatial
dimension).

In this chapter we numerically extrapolate the entanglement entropy and the
logarithmic negativity through their replica limits, which are respectively and
([2.6), for simple two dimensional CFT models and for configurations of intervals
whose analytic continuations for S4 and &£ are not known. In particular, for the free
massless boson, both compactified and in the decompactification regime, and for the
Ising model, Tr p’} are known analytically for a generic number N of disjoint inter-
vals |70, 71}, (94|, while Tr(p?1U 4,)" 18 known analytically for two disjoint intervals [95-
98|. We consider some of these models for two or three disjoint intervals (only some
configurations in the latter case) and employ a numerical method based on rational
interpolations to get the corresponding entanglement entropy or logarithmic negativ-
ity. This extrapolating method has been first suggested in this context by |[171] (see
[173] for other numerical methods). We checked our extrapolations against numerical
results found through the corresponding lattice models whenever they are available in
the literature, finding very good agreement; otherwise the method provides numerical
predictions that could be useful benchmarks for future studies.

The chapter is organized as follows. In we extrapolate the mutual informa-
tion for the compact boson and for the Ising model comparing the results with the
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corresponding ones found for the XXZ spin chain [63] and the critical Ising chain
[64]. In the entanglement entropy of three disjoint intervals is considered for the
non compact boson and for the Ising model. While the extrapolations for the former
model can be checked against exact results for the periodic harmonic chain, there are
no results in the literature about the entanglement entropy of three disjoint intervals
for the critical Ising chain to compare with. In §2.4] we focus on the logarithmic
negativity of two disjoint intervals for the non compact boson. The appendix §2.A]
contains a discussion about the rational interpolation method that has been employed

throughout the chapter.

2.2 Mutual information

In this section, after a quick review of the computation of ]1(4711)’ 4, In CFT, we focus on

the compactified boson and on the Ising model because [ iﬁ) A, 18 known analytically in

)

these cases. The numerical extrapolation of the analytic expressions for Iiﬁ, A, O —
1 leads to the mutual information, which can be compared with the corresponding
numerical results found from the XXZ spin chain and the Ising chain in a transverse
field.

Let us consider a two dimensional CF'T with central charge ¢ at zero temperature.
As first studied in the seminal paper [45] and previously discussed in §1.5[ Trp’
for a subsystem A made by N disjoint intervals can be computed as the 2N-point
correlation function of branch-point twist fields T, and 7T, placed at the endpoints of
the intervals in an alternate sequence (see [174] for integrable quantum field theories).

When the subsystem A = A; U A, is made by two disjoint intervals A; = [uq, v1]
and Ay = [ug, v5], we recall that the expression discussed in expresses
Tr p%. The function F,,(x) depends on the details of the model and therefore it must

be computed case by case. From ([1.62)) and ([1.66|), one gets that (2.4]) for a CFT is
given by

n (TL + ].)C ~ B
11(41),A2 - log(1 —z) + I(x), I(z) =

log[Fon(x)]. 2.7
gl Fan(@)] . (27)
Since the mutual information 14, 4, is the limit n — 1 of (2.7)), as stated in (2.3)), it
is the function of x given by

Inay = — s log(l—2) + (x),  ©(z) = 0,Fsn(z)|

- (2.8)

n=1"

The explicit expression of F3,(x) is known for some simple models like the free
compact boson and the Ising model (see (1.68) and (1.74)). In these cases Fy,(z) is
written in terms of the Riemann theta function introduced in (1.72)).
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As a first example, we recall from the free boson compactified on a circle of
radius 7, which has ¢ = 1. The corresponding F» ,(x) for any integer n > 2 is given

by [70]

O(n72) O(12/1)
@(T2)2 ’
where n o< % and 75 = Ty(x) is the (n—1) x (n— 1) purely imaginary period matrix of

the Riemann surface which underlies the computation of Trp';, whose elements were
introduced in (1.69)). We rewrite them here for the sake of comprehension

Fon(z) = (2.9)

Fk/n(l — [E)

Fon(@) OS2 = )R/l (2.10)

(1) = i%isin(ﬂk/n)

where Fy(z) = 2Fi(s,1 — s;1;x), being o) the hypergeometric function. Notice
that F5,(0) = 1. Moreover, F,(x) is invariant under n — 1/np and z — 1 —
separately. The latter symmetry is related to the well known property S4 = Sg
of the entanglement entropy for pure states in the case of A made by two disjoint
intervals. It is worth remarking that holds for x € (0,1). Indeed, when z € C
and z ¢ (0,1) the corresponding expression is slightly more complicated [96] and it
enters in the computation of the logarithmic negativity for the compact boson.

In order to find the analytic expression of the mutual information for the com-
pact boson, one has to compute I;(x) in 1) with Fa,(x) given by 1D Since
performing this analytic computation is still an open problem, we employ the numer-
ical extrapolation method suggested by [171] (see to get a result that can be
compared with the numerical data found in [63] from the XXZ spin chain.

Before entering in the numerical analysis, it is worth discussing the decompact-
ification regime, which can be addressed analytically. The non compact boson cor-
responds to the regime 1 > 1 (or n < 1 because of the symmetry n <> 1/n) in the
above expressions. In |70] it has been found that, for < 1, the terms I;(x) in
becomes

1
R0, = —3lomn +

D(z)+ D(1 — ) Dix) = /ioo dz 7z
()

s, = - JJog[ . (+)]

i sin(rz
(2.11)

The Hamiltonian of the periodic XXZ spin 1/2 chain in a magnetic field h reads
[175]

—ioco

L

L
Hy, =Y (S7ST, +8YSY,, + AS;S7 ) —h) S7, (2.12)

j=1 J=1
where S§ = 0¢/2, being of the standard Pauli matrices acting on the spin at the

j-th site. The chain has L sites and A is the anisotropy. The mutual information for
this lattice model has been computed in [63| by direct diagonalization for L < 30.
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Figure 2.2: Mutual information for the XXZ model. The data points are extracted
from [63] and the coloured curves are obtained from the rational interpolations of the
analytic expressions and for the compact boson with the values of (p, q)
indicated in the left panel. The dashed grey lines correspond to the decompactifi-
cation regime, where the analytic continuation is known. Left: I;, defined in
(2.8), as function of = for various values of 7. Right: the mutual information 74, a,
as function of 7 for two fixed values of x.

When A =0 and —1 < A < 1 the model in the continuum is described by the ¢ =1
compact boson with n = 1 — (1/7)arccos A, while for h # 0 an explicit formula
providing 1 does not exist and therefore it must be found numerically. The CFT
formulas reviewed above can be applied also to the case of a finite system of length
L with periodic boundary conditions by employing a conformal mapping from the
cylinder to the plane. As final result, the CFT formulas for this case are obtained by
considering the expressions for the infinite line and replacing any length ¢; with the
corresponding chord length (L/7)sin(w¢;/L) [45].

Let us consider the mutual information of the compactified boson as first example
of our extrapolation method. For any fixed value of x, we have that Iﬁ{j{ A, are given
analytically by and for any positive integer n > 2, while the corresponding
analytic continuation to n = 1 is estimated by performing a numerical extrapolation
of the known data through a rational function. The latter one is characterized by
two positive integer parameters p and ¢, which are the degrees of the numerator
and of the denominator respectively. As explained in §2.A] to perform a rational
interpolation characterized by the pair (p, ¢) we need at least p + ¢ + 1 known data.
An important technical difficulty that one encounters is the evaluation of the Riemann
theta functions for large genus period matrices, i.e. for high values of n. Given the
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computational resources at our disposal, we were able to compute Riemann theta
functions containing matrices whose size is at most 12. For the compactified boson
this corresponds to ny.c = 11 and therefore p + ¢ + 1 < 10.

In Fig.[2.2 we compared our numerical extrapolations of the analytic expressions
of |70] with the numerical data for the XXZ spin chain computed in [63] by exact
diagonalization, finding a very good agreement. In the left panel I; is shown as
function of the four-point ratio = for different values of the parameter 7, while in
the right panel the mutual information /4, 4, is shown as function of n for the two
fixed configurations of intervals given by ¢; = ¢, = d; = dy = L/4 (x = 0.5) and
20y = 20y = dy = dy = L/3 (x = 0.25), being L the total length of the periodic
system. All the rational interpolations in the figure exhibit a good agreement with
the numerical data, despite the low values of p and ¢. Increasing these parameters,
a better approximation is expected but the result is already stable for these values
and we provided two rational interpolations for each curve as a check. Some ratio-
nal interpolations may display some spurious bahaviour in some regimes of . As
discussed in detail in §2.A] this possibility increases with g. These results have been
discarded and we showed only rational interpolations which are well-behaved in the
whole domain = € (0,1). Notice that rational interpolations that are well-behaved
for some 7 and x could display some bad behaviour changing them. Thus, the values
of (p,q) must be chosen case by case. In Fig. the dashed grey lines are obtained
from the analytic continuation found in [70|, which corresponds to the decom-
pactification regime and therefore it reproduces the numerical data from the XXZ
chain and from the rational interpolations only for small 7, as expected.

Another important case where the Rényi entropies of two disjoint intervals have
been found analytically is the Ising model [71]. The Hamiltonian of the one dimen-
sional spin chain defining the Ising model in a transverse field is

HIsing

(J}”aﬁrl +h O';) : (2.13)

L
=1

J

where periodic boundary conditions are imposed. This model has a quantum critical
point at A = 1 and in the continuum it is a free Majorana fermion with central
charge ¢ = 1/2. The Rényi entropies for two disjoint intervals on the spin chain
have been studied in [64] through a Tree Tensor Network algorithm [148] and
in [66] through the exact solution of the model in terms of free Majorana fermions.
The former method allowed to find also the mutual information.

As for the Rényi entropies for two disjoint intervals in corresponding CFT, by
employing known results about bosonization on higher genus Riemann surfaces for
¢ = 1 models [51}-57|, the expression of F;,(z) for the Ising model can be written in
terms of Riemann theta functions evaluated for the period matrix 7, in (2.10)).
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Figure 2.3: Extrapolations for —I;, defined in (2.8), as function of x for the Ising
model. The data points are extracted from [64] while the coloured curves are obtained
through the rational interpolations with (p, ¢) indicated.

In particular, Tr p'4 4, for the Ising model is given by (1.67) with ¢ = 1/2 and [71]

— Ze |@[€](7’2)|
T = o)

(2.14)
where the sum is performed over all the possible characteristics e* = (!, "), being e
and 0 two n— 1 dimensional vectors whose elements are either 0 or 1/2. Let us remark
that in the sum (2.14)) only the 2"72(2"~! + 1) even characteristics occur. Thus, the
mutual information for the Ising model is with 73, () given by . Similarly
to the case of the compact boson, also for the Ising model we are not able to compute
L () analytically and therefore we perform a numerical extrapolation through the
rational interpolation method described in §2.A]

In Fig. we show — I (z) as function of z € (0, 1), which can be found by consid-
ering two disjoint intervals of equal length, and compare the numerical data obtained
in [64] with the curve found through the numerical extrapolation of the correspond-
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ing formula containing through rational interpolations. Since contains
Riemann theta functions, we cannot consider high values for n, like for the compact
boson. Moreover, in this case one faces an additional complication with respect to
the compact boson because in the sum over all the even characteristics occurs
and the number of terms in the sum grows exponentially with n. Given our compu-
tational power, we have computed the Rényi entropies up to n = 7 and in Fig.[2.3 we
show the rational interpolations found by choosing three different pairs (p, ¢) which
are well-behaved among the available ones. Since the curves coincide, the final result
is quite stable and, moreover, the agreement with the numerical data found in [64]
through the Tree Tensor Network is very good.

2.3 Three disjoint intervals

In this section we partially extend the analysis done in by considering the case
of three disjoint intervals. After a brief review of the analytic results known for
a generic number N of disjoint intervals, we focus on N = 3 and perform some
numerical extrapolations for the non compact boson and for the Ising model.

Given a the spatial subsystem A = UY , A; made by the union of the N disjoint

intervals A; = [uq,v1], ..., Ay = [un,vn], a generalization of (2.4) to N > 2 reads
[ctt-14]
N -
m _ (=DY B N ILR
]A17...7AN - n—1 IOg RN,nu RN,n = H H (TI‘ pgN7p> ) (215)
=lon,p

where oy, denotes the union of a generic choice of 1 < p < N intervals among the N
ones. It is straightforward to observe that the analytic continuation n — 1 of (2.15)),
i.e.
— iy TP
]Ahm,AN = 71;1_{% IAl,..‘,AN ) (2‘16>

provides a natural generalization to N > 2 of the mutual information (£2.3). We find

it useful to normalise the quantities introduced in (2.15) and (2.16) by themselves
evaluated for some fixed configuration of intervals, namely

RN,n

RHNO;;Z] = ! []h\l;b = IN o IN’ﬁxed - TlLl_)H% RHNO;'I’:‘ ’ (217)

where we have adopted the shorthand notation Iy = 14, 4,-

In two dimensional CFTs, the expression of Tr p for N disjoint intervals can be
written as a 2/N-point function of twist fields [45, |46|. Similarly to the two intervals
case, the global conformal invariance cannot fix the dependence on u; and v;. In
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particular, given the endpoints u; < v; < -+ < uy < vy, one can employ the
following conformal map

(up — 2)(uy —vy)

(ur —un)(z — o)

, (2.18)

wy(z) =

which sends u; — 0, uy — 1 and vy — oco. The remaining endpoints are mapped into

the 2N — 3 four-point ratios 1 = wy(v1), Ta = wy(ug), 3 = wy(ve),...,Tony_3 =
wy(vy—1) which are invariant under SL(2,C). Notice that z; € R and the order is
preserved, namely 0 < 21 < x9 < +++ < Tony_3 < 1.

The global conformal invariance allows us to write Tr p} for N disjoint intervals
as follows [46|

27,

v | Hicj(uy — wi)(v; — i) Funlx), (2.19)

Trpy = <H To(ui) To(vi)) = ¢, IL.(v; — u;)

where 7,7 = 1,..., N, the scaling dimension A, is given in and x is the
vector whose elements are the 2N — 3 four-point ratios introduced above. It is worth
remarking that Fy ,(x) encodes the full operator content of the model and therefore
its computation depends on the features of the model. From and , one
finds that Ry, and Ry7 in CFT become respectively [94]

al —1)N-p Ryn(x
Rya(@) = [ [I [Foulem)] ™", Rym(a) = val®) g g)
P=2 ONp

B RN,n (mﬁxed)

where x?V» is the vector made by the 2p — 3 four-point ratios obtained with the
endpoints of the p intervals selected by op .

The function Fy,(x) for the compactified boson has been studied in [94] by
generalizing the construction of [70] and, again, it is written in terms of the Riemann
theta function . For N > 2 disjoint intervals the Riemann surface occurring in
the computation of Tr p’ has genus g = (IV — 1)(n — 1). The corresponding g x g
period matrix 7y = R +1Z, which is symmetric and complex with positive imaginary
part, is complicated and, since we do not find instructive to report it here, we refer
to [94] for any detail about it. The expression of Fy ,(x) for the compactified boson
reads [51H57, |94]

o(T,) _(inT R
Fn() e = ( ;73 iI/n), (2.21)

where 7 is the parameter containing the compactification radius introduced in §2.2]
Notice that (2.21)) is invariant under n <> 1/7.
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As done in for the two intervals case, also for N disjoint intervals it is in-
teresting to consider the decompactification regime. When 7 > 1 the expression in

(2.21)) becomes
n9/?

Vdet(Z) [O(7w)|?

For computational purposes, it is important to observe that in the Riemann
theta function is evaluated for 7y, which is g x g, while for finite 1, when ([2.21))
holds, the matrix occurring in the Riemann theta function is 2g x 2¢g. This implies
that for the non compact boson we can reach higher values of n and therefore the
corresponding numerical extrapolation is more precise. In the decompactification
regime we can also appreciate the convenience of considering the normalization .

Indeed, plugging ([2.22)) into (2.20]) one obtains an expression which is 1 independent

N 2o (—=pHN=p
H H F—M)] . (2.23)

‘Fp n(wﬁxed )

Fio(x) = =09 Fyn(z). (2.22)

RT]%OO

~

N,n( ) Rn%oo wﬁmd

As for the Ising model, since the results of [51-57] about the bosonization on
higher genus Riemann surfaces for ¢ = 1 models hold for a generic genus, we can
straightforwardly write the generalization to N > 2 of the N = 2 formula (2.14)).

Indeed, given the period matrix 7y employed for the compact boson in 12.21), we
have that Tr p} for the Ising model is (2.19)) with ¢ = 1/2 and [51-57, 94]

2..|Ole](Tv)]
2910(v)|

Frnn(x) = (2.24)

The Riemann theta functions in this formula are evaluated for the g x g period
matrix and a sum over all the characteristics occurs. It is worth remarking that
the Riemann theta functions in (2.24)) with odd characteristics vanish and therefore
the sum contains 2971(29 + 1) terms. In [94] the formula has been checked
numerically on the lattice for n = 2, various N and different configurations of intervals
by employing the Matrix Product States. To our knowledge, numerical results for Iy
with N > 3 are not available in the literature for the critical Ising chain in transverse
field.

In this chapter, for simplicity, we consider only N = 3 disjoint intervals and there-
fore let us specify some of the formulas given above to this case. The generalization
of the mutual information to the case of three disjoint intervals is given by

IA1,A2,A3 = SAl + SA2 + SA3 - SAlUAQ - SA1UA3 - SAQUA3 + SA1UA2UA3 = T]-llir% IA(AT?{AQ,A:; )
(2.25)
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where IX? A,.4, Can be written by specifying the expressions in (2.15) to N = 3,
namely

n log(R&n) n n n n n n n
]1(41),142,143 = ﬁ - S1(41) + 81(42) + 51(43) - 51(41)UA2 - 31(41)UA3 - Sz(ng)UAg + 51(41)UA2UA3 ’
(2.26)
with Tr p'; (Tr o Trp’y Tr ”)
Rgn = pAlUAQUAg pAl pAg IOA3 . (227)

7 7 n
Tr pAluAQ Tr pA1UA3 Tr pAQUAg

Considering CFTs, when N = 3 the vector & = (21, x9, x3) is made by three four-point

ratios and ([2.20)) becomes

_ -7'—3,n($1,5(72,9€3)
.7_—2771(—259537@;) Fon(x1) Fon(E=22) ,

xr3—x] 1—x2

where Fs,(x) is for N =3 and F5,,(z) has been introduced in (1.67)).

The non compact boson is the CF'T describing the massless harmonic chain in
the continuum. The Hamiltonian of the harmonic chain with L lattice sites and with
nearest neighbour interaction reads

L-1

Mw? K

1
H= 2 2 - (Gt — Gn)? 2.29

n=0
where periodic boundary conditions are imposed. Rewriting in terms of a =
M /K and w through a canonical transformation, one can observe that it provides
the lattice discretization of the free boson with mass w and lattice spacing a. Thus,
the continuum limit of the w = 0 case is the decompactified boson discussed above.
The method to compute Rényi entropies for the lattice model is well known
[145, 176-181] and Trp” can be found from the correlators (g.qs) and (p.ps). Let
us recall that setting w to zero leads to a divergent expression for (g.qs) because
of the zero mode occurring for periodic boundary conditions. In [94] the method
discussed in [145] |176-181| has been applied to perform various checks of the CFT
formulas for the non compact boson at fixed n. Moreover, also I3 has been found
from the harmonic chain data, but a comparison with the analytic results has not
been done because the analytic continuation of the corresponding Rényi entropies is
not known yet. Indeed, the Riemann theta function occurs in and its analytic
continuation in n is still an open problem. As for the values of w, in [94] it has been
checked that wL = 107° is small enough to capture the CFT regime through the
periodic harmonic chain. The numerical data for the periodic harmonic chain have
been found by setting M = K = 1 and wL = 107° in (2.29)). The same quantities
evaluated for wL = 1073 turned out to be indistinguishable.
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Figure 2.4: Extrapolations of I5™ (see with N = 3) as function of the four-point
ratio o for the non compact boson. The points are the data obtained in [94] from
the periodic harmonic chain (2.29) with L = 5000 and wL = 107°. The configuration
chosen here is made by equal intervals separated by equal distances, while the fixed
configuration normalizing [5*" is given in the text. The coloured lines correspond
to two different extrapolations obtained through rational interpolations with (p, q)
indicated.

In the remaining part of this section we focus on the case of three disjoint intervals
and perform some numerical extrapolations of the analytic results reviewed above
to n = 1 through rational interpolations, comparing them with the corresponding
numerical data from the lattice models, whenever they are available.

In Figs.2.4] and we consider I5* (see (2.17)) for the decompactified boson,
comparing the results obtained for the periodic harmonic chain with the numeri-
cal extrapolations found for the corresponding configurations of intervals obtained
through the rational interpolation (see §2.A). The dots are numerical data obtained
in [94] from the periodic harmonic chain given by with L = 5000 and different
sets of data correspond to different configurations of the three intervals. In particu-
lar, referring to the inset of Fig.[2.4] for the notation, the configuration considered in
Fig.[2.4) is the one where all intervals are equal ¢; = ¢, = {3 and they are placed at
the same distance d; = dy = d3 = L/3 — {. Varying the length ¢ of the intervals, one
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Figure 2.5: Extrapolations of I5* for the non compact boson. The harmonic chain is
the same one of Fig.ﬂ while the configurations of intervals are given by (2.30). The
data for the periodic harmonic chain have been extracted from [94].

finds the result, which is plotted as function of the four-point ratio zo. In Fig. 2.5
the data are labeled according to the following configurations of the three intervals:

(a)  Li=X\l, di= (L= 6)/3with A\ =1, Ay =2, A3 = &;
() b=l di=md d=L/(3 ;%) — ¢ withy =1, =3, 73 =6;

where the parameter ¢ is varied and the results are plotted as functions of x5 € (0, 1).
As for the fixed configuration normalizing 75" in (2.17)) we have chosen ¢ = ly = {3 =
dy = dy = int(L/6), where int(...) denotes the integer part. The coloured curves
in Figs.2.4 and are the numerical extrapolations of the CFT formulas for the
non compact boson and through the rational interpolation method. For
each set of data, we show two different rational interpolations which are well-behaved
in order to check the stability of the result. The differences between different well-
behaved rational interpolations are very small and the agreement with the numerical
data from the harmonic chain is very good, supporting the validity of the extrapolat-
ing method. In Figs.[2.4 and we have employed 2 < n < 6. It is worth remarking
at this point that the Riemann theta functions occurring in the CF'T expression ([2.28))
for the non compact boson contain at most g x g matrices (g = 2(n — 1) for N = 3)
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Figure 2.6: Extrapolations of 4, 4, 4,, defined in , for the Ising model. Two
configurations of intervals have been considered, namely (2.31)) with a = 0.25 (left)
and « = 2 (right). The dots correspond to ]X{A%% in (2.26) with n € {2,3,4} while
the lines are the extrapolations obtained through the rational interpolation method
with the values of (p, q) indicated. The dot-dashed line is the extrapolation to n = 2
performed as a check of the method, while the remaining lines correspond to 4, 4, ;-

while for the compact boson their size is at most 2g x 2g (see ) From the
computational viewpoint, this is an important difference because the higher is n that
can be addressed, the higher is the number of different (p, q) that can be considered
in the rational interpolations. Thus, the maximum n that we can deal with is related
to the maximum size of the matrices in the Riemann theta functions occurring in the
model. Nevertheless, from Figs.[2.4] and we observe that, for this case, rational
interpolations with low values of (p, ¢) are enough to capture the result expected from
the lattice data.

In Fig.2.6| we show I, 4, 4,, defined in (2.25), for the Ising model. We have
considered the following configurations of three intervals specified by a parameter «
(see the inset of Fig.[2.4] for the notation)

In particular, the results in Fig. correspond to a = 0.25 (left panel) and a = 2
(right panel), where the dots denote the values of 11(4711)7 A,.4, Tor € {2,3,4}. Unfor-
tunately, with the computational resources at our disposal, we could not compute
Rényi entropies for higher values of n. Indeed, besides the problem of computing the
Riemann theta function numerically for large period matrices, the additional obstacle
occurring for the Ising model is that the number of elements in the sum grows
exponentially with n. Given the few n’s available, only few rational interpolations
can be employed to approximate the analytic continuation to n = 1 and they are de-
picted in Fig. 2.6 through solid and dashed lines (in general we never use (p, ¢) = (0, 1)
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because is often not well-behaved).

It is interesting to observe that the three different rational interpolations provide
the same extrapolation to n = 1 for a large range of x5 (they differ when z, is
close to 1). Since, to our knowledge, numerical results about 14, 4, 4, for the Ising
model are not available in the literature, the curves in Fig.[2.6] are predictions that
would be interesting to test through other methods. We remark that we are not
guaranteed that this extrapolation method provides the correct analytic continuation.
Nevertheless, the fact that extrapolations with different values of (p, q) give very close
outputs is a strong indication that the result should be trusted, assuming that no
singularities occurs for real n between 1 and the maximum value of n employed in
the extrapolations. Another check of the reliability of the numerical method is the
following: we have performed rational interpolations considering only n € {3,4} to
extrapolate the value at n = 2, which is known analytically. Since only two points
are available, only the rational interpolation with (p, q) = (1,0) can be done, which is
given by the dot-dashed curve in Fig.[2.6 Despite the roughness of the extrapolation
due to the few input points, the agreement with the expected values computed with
the analytic expression (black dots) is very good.

2.4 Entanglement negativity of two disjoint intervals

In this section we consider the logarithmic negativity of two disjoint intervals for the
non compact massless free boson, whose analytic formula is not known.

The method to compute the logarithmic negativity £ in quantum field theory
and in conformal field theory has been described in |95 |96] (see [102] for the finite
temperature case) and we refer to these papers for all the details and the discussion of
further cases. In order to briefly mention the main idea, let us consider a subsystem
A =UN,A; made by N disjoint intervals A; = [u;, v;]. The traces Trp% in CFT are
given by the correlators of twist fields in . Denoting by Ag & A a set of Ny < N
disjoint intervals among the ones in A and by pﬁo the partial transpose of p4 with
respect to Ay, we have that Tr(p”?)™ in CFT is the correlation function of twist fields
obtained by placing 7, in u; and 7, in v; when A; € A \ A, and 7, in u; and 7, in
v; when A; € Ay. The corresponding logarithmic negativity £, which measures the
entanglement between Ay and A\ Ag, can be computed by considering the sequence
of the even integers n. and taking the replica limit (2.6). Configurations containing
adjacent intervals are obtained as limiting cases and the fields 7,2 and 7, occur.

In the simplest example, starting from two disjoint intervals A = A; U Ay, whose
endpoints are ordered as u; < v; < ug < v like in §2.2] one considers e.g. the partial
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transpose with respect to As. In this case we have that [95] |96]
Te(p2)" = (Talw)Ta(v1) Ta(uz) To(v2)) (2.32)

2A,,
_ 2 (Ul_ul)EZ:z;))((sz:Z; ) Go(z), (2.33)

where x € (0,1) is the four-point ratio (?7) and A,, has been introduced in (1.62).
Since ([2.32) is obtained from (|1.66|) by exchanging 7,, <+ 7, for the endpoints of A,
the function G, in (2.33) is related to the function 5, in (1.67)) as follows

Gn(z) = (1 — x)*4n Fon (:v/(x — 1)) , (2.34)

where we remark that z/(x — 1) € (—o00,0). Plugging (2.34) into (2.33) and taking
the replica limit (2.6]) of the resulting expression, since A; = 0 and ¢; = 1, we find

that the logarithmic negativity of two disjoint intervals in CF'T is given by
E(x) = nlelgl log G,.(x) = 71161211 log Fo . (z/(x — 1)) , (2.35)

telling us that the logarithmic negativity is scale invariant, being a function of the
ratio z only. In order to get rid of the prefactor in (2.33)), it is convenient to consider
the following ratio

= _ Tr(pg)" _ Gal2)

R, = _ (1 . I)4A” Fon (:E/(:E - 1))

Tr(pa)"  Fou(z) Fonlz)
where (2.34) has been employed in the last step. Since Fo1(z) = 1 for x € (0,1)

because of the normalization of p4, the logarithmic negativity can be found also by

taking the replica limit of (2.36)), namely

(2.36)

E(x) = log nl:r_xgl R, (x), (2.37)

Notice that, since for n = 2 we have that 75 = 75, one concludes that Eg =1
identically.

The simplest model we can deal with for which analytic expressions for Tr(pﬁz)”
are available in the literature is the non compact free massless boson. For this model
it has been found that |95, 96|

n—1 1/2
> Hk:l Fk/n(x)Fk/n(l - 1’)

Ro(x) = (1 —a) Ve | 2 Y
[T2s Re(Fiyn(757) Frya(£55))

When n = n, is even, it could be convenient to isolate the term k/n = 1/2 in the
product in order to get rid of the square root in the remaining part of the product

(2.38)
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Figure 2.7: The ratio ﬁn(af;) in 1} for the non compact boson. The data points
come from the periodic harmonic chain with wL = 107°, while the curves are given
by CFT formula ([2.38]).

because of the symmetry k <+ n — k in F},. Notice that when n = 2 we have that
ﬁz(x) = 1 identically.

In Fig. we compare the CFT result 1) for én(:ﬂ) with the corresponding
quantity computed for the periodic harmonic chain m, where Tr(pﬁz)" is computed
through the correlators (g.¢s) and (p.ps) as explained in [145} [176{{181]. Notice that
we have improved this check with respect to [96], indeed the data in Fig. corre-
spond to chains whose total length L is significantly larger than the ones considered
in [96], where L < 300. All the data reported in the figure have wL = 107°. We have
considered also harmonic chains with wL = 1073 and L = 10000, finding the same
results reported in Fig.[2.7 for L = 10000. For n = 3 the agreement is very good,
while it gets worse as n increases. This is expected because of the unusual corrections
to the scaling [139, [140, [182].

It is more convenient to consider than for the computation of the

replica limit, and for the logarithmic negativity of the non compact boson we have

that

ne/2—1

£(a) = —3 Tog [K(@)K(1 — )] — 2 log(1 ~ 2) + log(r/2) — lim > log G, (x),

(2.39)
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Figure 2.8: Logarithmic negativity of two disjoint intervals for the non compact boson
as function of the four-point ratio x. The dots are numerical data obtained
for the periodic harmonic chains with wL = 107> and increasing total lengths. All
data collapse on the same curve, which corresponds to the continuum limit. The red
dashed curve is the analytic continuation found in in the regime x — 17. The
remaining curves are extrapolations obtained from different rational interpolations
having (p, ¢) indicated. In the inset we show the same plot in logarithmic scale in
order to highlight the behaviour of the different extrapolated curves when x ~ 0.

where

Csle) = 2R (8.8, 1) | SE ) () oy (58,2801 — ) — (s 1 — 6)} ,

I(1—p)? 2a0)

being K (x) the elliptic integral of the first kind. The sum in is defined for
ne = 4 and for n, = 2 that term is zero. The analytic continuation in is not
known for the entire range z € (0,1). In the analytic continuation has been
found for the regime x — 17, obtaining an expression that surprisingly works down
to z ~ 0.3 (see the dashed red curve in Fig.[2.8)).

Here we numerically extrapolate £(z) through the formula by using the

rational interpolation method, which has been discussed in §2.A| and employed in
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the previous sections for the entanglement entropy of disjoint intervals. It is worth
remarking that, since the replica limit for £(z) involves only even n’s, to perform
a rational interpolation characterized by some (p, q) we need higher values of n with
respect to the ones employed for the entanglement entropy in the previous sections.
In particular, for the logarithmic negativity p + ¢ + 1 < ne o /2

In Fig. we report the extrapolations found for some values of (p, g). Since the
numerical data from the harmonic chain are accurate enough to provide the curve in
the continuum limit that should be found through the analytic continuation ,
we can check the reliability of our numerical extrapolations against them. For the non
compact boson the expression ([2.40)) is not difficult to evaluate numerically. Thus, we
can deal with high values of n and therefore we have many possibilities for (p,q). It
turns out that an accurate extrapolation for the logarithmic negativity requires high
values of p and ¢, in particular for the regime of small intervals  ~ 0 (see Fig.
in for extrapolations having low p and ¢). As already remarked in [95] [96], the
behaviour of £(x) when = ~ 0 is not power-like. We observed, as a general behaviour,
that increasing ¢ leads to extrapolations which are closer to the numerical data, but
spurious fluctuations or even singularities in some regimes of x can occur (see the
black and magenta curves in the inset of Fig.[2.8) and the dashed magenta and cyan
curves in Fig.[2.11)). This happens whenever one of the g poles of the rational function
is close to the range (1, n,,,) of the interpolated data and not too far from n =1 (it
may be real or have a small imaginary part). Let us emphasize that these singularities
are simply a feature of the extrapolating function and have nothing to do with true
singularities of the analytic continuation. If any true singularity is present in the
extrapolating region, we do not expect the method to be able to decribe it correctly.
More details are reported in §2.A] Taking low ¢’s, one usually gets smooth curves
but even high values of p’s are not sufficient to capture the behaviour of £(x) when
x ~ 0.

Thus, the logarithmic negativity is more difficult to find through the rational in-
terpolation method than the entanglement entropy. Indeed, while for the latter one
few Rényi entropies are enough to capture the expected result in a stable way, for
the logarithmic negativity more input data are needed to reproduce the regime of
distant intervals. Maybe other numerical methods are more efficient. It is worth
remarking that the fact that high values of n’s in Tr(p’?)" are required to perform
accurate extrapolations of the logarithmic negativity leads to a computational obsta-
cle whenever G,,(x) in (2.33) is written in terms of Riemann theta functions, like for
the compact boson [96] and for the Ising model |97, 98]. Given our computational
resources, we have not been able to deal with those analytic expressions for n high
enough to guarantee convincing extrapolations.
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Appendices

2.A Rational interpolations

In this appendix we discuss the numerical method that we have employed throughout
this chapter, which is based on rational interpolations, and the issues we encountered
to address the replica limits for the entanglement entropy and negativity considered
in the main text. Its use in this context has been first suggested in [171].

The rational interpolation method consists in constructing a rational function
which interpolates a finite set of given points labeled by a discrete variable. Once
the rational function is written, one simply lets the discrete variable assume all real
values. The needed extrapolation is found by just evaluating the rational function
obtained in this way for the proper value of the variable.

For the quantities we are interested in, the discrete variable is an integer number
n. As a working example, let us consider the case of two disjoint intervals, where
the variable € (0,1) characterizes the configuration of intervals. For any integer
n > 2 we have a real function of x and typically we have access only to n < n,,,, for
computational difficulties. The rational function interpolating the given data reads

m , _ Plxin) _ ag(z) + ar(x)n + az(x)n® + - - - + a,(x)n?
Voo™ = Qain) = o) + bi@n + ba@n? + -t byl G

being p = deg(P) and ¢ = deg(Q) the degrees of the numerator and of the denomi-
nator respectively as polynomials in n. The extrapolations are performed pointwise
in the domain z € (0,1). Thus, for any given x € (0,1), in (2.41)) we have p + g + 2
coefficients to determine. Nevertheless, since we can divide both numerator and de-
nominator by the same number fixing one of them to 1, the number of independent
parameters to find is p + ¢ + 1. Once the coeflicients in have been found, the
extrapolation is easily done by considering n real and setting it to the needed value.
It is important to stress that, having access only to a limited number m of data
points, we can only perform rational interpolations whose degrees (p, q) are such that
p+ q+ 1 < m. This method is implemented in Wolfram Mathematica through the
Function Approximations package and the command Rationallnterpolation.

In Fig. we consider an explicit example where we extrapolate the T 1(z) in
of the compact boson (¢ = 1) for a particular value of the compactification radius
corresponding to nn = 0.295 (see also Fig. For n > 2 the analytic expressions are
and and we take into account 2 < n < 6 only (in Fig.[2.2] we employ also
n = T). Given these data, we can perform rational interpolations with p+ ¢+ 1 < 5.
The blue curve in Fig.[2.9]is the extrapolation to n = 1 of the rational interpolation
with (p,q) = (2,2). We find it instructive to describe the details for a specific value of
x. Let us consider, for instance, a configuration corresponding to x = & = 0.2101 (see
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Figure 2.9: The quantity I,, in and the corresponding n — 1 limit for the
compact boson (¢ = 1) with n = 0.295. The blue line is the extrapolation n = 1 of the
rational interpolation with (p,q) = (2,2) obtained through the analytic expressions
given by and with 2 < n < 6, whose values for I,, are shown by points
for some values of the four point ratio x. In the inset, considering the configuration
having = = 0.2101 (highlighted by the dashed rectangle in the main plot), we show I,
as function of n for rational interpolations having different (p,q). The extrapolations
having ¢ > 0 capture the expected value better than the ones having ¢ = 0.

the dashed rectangle in Fig.. First one has to compute the rational interpolation
with (p, q¢) = (2,2), then the limit n — 1 must be taken. For these two steps, we find
respectively

0.358 — 0.480 1 + 3.689 n?
1+1.347n+ 7.870n% '

In the inset of Fig.[2.9 we show how adding more data improves the final extrapolation
and how it becomes stable. Focusing again on x = z, we can start by taking only
n € {2, 3}, which allow to perform a rational interpolation with (p, ¢) = (1,0) (a line).
Since rational interpolations having p = 0 often provide wrong predictions, we prefer
to avoid them, if possible. The extrapolation to n = 1 corresponding to (p,q) =
(1,0) cannot be trusted and therefore we consider four input data n € {2,3,4,5}

W(g,z) (92) =

lim W5 () = 0.349. (2.42)
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which allow to consider a rational interpolation with, for instance, (p, q) = (3,0) and
also (p,q) = (1,1). These two different rational interpolations do not provide the
same extrapolation to n = 1 and therefore we must take into account more input
data. Considering 2 < n < 6 we can choose also (p,q) = (2,2) finding that the
corresponding rational interpolation basically coincides with the one with (p,q) =
(1,1) (their difference is of order 1073). Thus, the extrapolation to n = 1 obtained
with (p,q) = (2,2) is quite stable. Repeating this analysis for the whole range of
z € (0,1), one can find the blue curve in Fig.2.9 As a further check, in Fig.[2.2 we
have used (p,q) = (3,2) using more input data, finding that the final extrapolation
is basically the same. Plots like the one shown in the inset of Fig.[2.9 are very useful
to understand the stability of the extrapolation to n = 1. Increasing the values of p
and ¢ in the rational interpolations leads to more precise extrapolations, as expected.
Rational interpolations with ¢ > 0 provide extrapolations which are closer to the
expected value with respect to the ones with ¢ = 0. When ¢ is strictly positive, ¢
poles occur in the complex plane parameterized by n € C. Nevertheless, if these poles
are far enough from the real interval (1, n,,.,) containing all the n’s employed as input
data for the interpolation, the extrapolations to n = 1 are reliable. Increasing ¢, we
have higher probability that one of the poles is close to the region of interpolation,
spoiling the extrapolation. Plotting W, (z) as function of n is useful to realize
whether this situation occurs (see the inset of Fig.[2.10] for an explicit example).

The issue of evaluating Riemann theta functions which involve large matrices
becomes important when we want to compute I4, 4, 4, (see and (2.26)) for a
compact boson. Indeed, F3,,(x) in is given by for N = 3 and therefore
the matrix occurring in the Riemann theta function is 2g x 2g with ¢ = 2(n — 1).
Given our computational power, we computed IXR Ap.a, fOT M E {2,3} for all the
needed configurations of intervals, while for n = 4 we got results only for small
intervals. In Fig.[2.10] we show our data and some numerical extrapolations. In the
whole range of xs we performed only the rational interpolation with (p,q) = (1,0)
(blue line) because only two input data are available, while for z5 € (0,0.22), where
also n = 4 is available, we could employ higher values of p and ¢q. When we have more
extrapolations, unfortunately they do not overlap, indicating that we cannot trust
these curves to give a prediction, even if they are quite close. Another indication that
n = 4 is not enough to get a precise extrapolation comes from the fact that, given
the data with n € {3,4} and extrapolating to n = 2 (orange curve in Fig.2.10) we
did not recover exactly the expected values (purple circles) found with the analytic
expressions. In the inset we focus on a configuration of three intervals corresponding
to xo = 0.224 and show the dependence of IX? A4, O1 v for various (p,q). While
the extrapolations to n = 1 associated to (1,0) (for this one only n € {2,3} have
been used), (1,1) and (2,0) are very close, the one corresponding to (p,q) = (0,2)
provides a completely different extrapolation to n = 1. Considering the two poles of
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Figure 2.10: Three disjoint intervals: The quantity 11(41’ A4, 1 ([2.26) for the compact
boson, computed through and for n > 2. Our limited computational
power in evaluating Riemann theta functions for large matrices prevented us to con-
sider n = 4 in the whole range of configurations and this limits also the possible
rational interpolations that can be employed. The blu line is the extrapolation found
by using only n € {2,3}, which should not be considered as a prediction because
more n’s are needed to find stable extrapolations. The orange line is a check of the
method for n = 2: the fact that the expected points are not precisely recovered is due
to low number of n’s (n € {3,4}) available. In the inset, considering the configura-
tion having zy = 0.224, we show IX?’ A,.4, as function of n for rational interpolations
having different (p, ¢). The rational interpolation with (p, q) = (0,2) (red line) shows
a bad behaviour and the extrapolation to n = 1 cannot be trusted; indeed, the red
curve in the main plot is different from the other extrapolations.

the interpolating function in the regime of x5 where also n = 4 is available, we find
that they are real and at least one of them is inside the domain n € (1,4). Thus, the
function cannot be considered a good approximation of the true analytic continuation
and the extrapolation cannot be trusted. This behaviour does not occur for the case
considered in the inset of Fig.[2.9] Thus, it is useful to plot the n dependence of the
functions obtained through the rational interpolation method in order to check the
occurrence of singularities that could lead to wrong extrapolations.

We find it instructive to discuss some details about the extrapolations of the
logarithmic negativity of two disjoint intervals (see §2.4). The simplest case we can
deal with is the non compact boson and the replica limit to perform for this model

is (2.39). The analytic expression (2.40)) contains only hypergeometric functions and
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Figure 2.11: Logarithmic negativity of two disjoint intervals for the non compact
boson: Extrapolations having low values of p and ¢. This plot should be compared
with Fig.[2.8] where higher values of p and ¢ have been considered. Increasing ¢
improves the extrapolation but in some regimes of x wrong results can be found. The
dashed red curve is the analytic continuation for the regime x — 1~ found in ,
while the points are obtained through a periodic harmonic chain (2.29) with L sites.

therefore it can be evaluated for high values of n. Some extrapolations performed
through the rational interpolation method explained above are shown in Figs.[2.8
and The first difference between the logarithmic negativity and the mutual
information in the extrapolation process is that for the former quantity we need to
consider higher values of p and ¢ with respect to the latter one to recover the expected
result. Moreover, in the regime of small intervals or large separation (i.e. x ~ 0),
where the logarithmic negativity falls off to zero faster than any power, it is very
difficult to capture its behaviour in a clean way, despite the high values of p and q.
In Fig.[2.11] we show some extrapolations characterized by low values of p and ¢q. The
most difficult regime to capture is the one with z ~ 0. Thus, in Fig.2.8 we show
some extrapolations having higher values of p and ¢q. Comparing the curves in these
figures, one observes that with low ¢’s it is difficult to capture the regime of small z,
even for very high values of p. Increasing ¢, the agreement slightly improves for small
x, but, as already remarked, it is more probable that the singularities of the rational
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interpolation fall close to the domain of the interpolated data. For example, in the
case of the dashed magenta curve of Figl2.1T] all the poles of the rational function
are real. Varying the parameter z, they move on the real axis and, whenever one of
them comes close to the interpolation region (1, n,,,,) and it is not too far from n = 1,
the extrapolated function to n = 1 cannot be trusted as approximation of the true
analytic continuation. This leads to fluctuations or singularities in the extrapolation
curve as function of = (e.g. see also the dashed cyan curve in Fig. and the black
and magenta curves in Fig.[2.§).

In order to test the method, in some cases we have performed two further checks.
Firstly we have employed as input for the extrapolations the numerical Rényi en-
tropies obtained from the harmonic chain with the largest value of L at our disposal,
rather than the analytic ones. The former naturally contains some systematic finite
size errors, but the results agree with the ones obtained from the corresponding an-
alytic expressions. Secondly, we added some randomness to the analytic expressions
for the Rényi entropies to mimic some statistical errors which may arise when they
are computed through approximated techniques such as Monte Carlo. The extrapo-
lations obtained are in agreement with the expected ones up to the same amount of
randomness.
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CHAPTER 3

Entanglement negativity in a two
dimensional harmonic lattice: Area law and
corner contributions

In this chapter it will be reproduced the paper Entanglement negativity in a two
dimensional harmonic lattice: Area law and corner contributions |164], written in
collaboration with Andrea Coser and Erik Tonni.

In the following lines, we are going to study the logarithmic negativity and the
moments of the partial transpose in the ground state of a two dimensional massless
harmonic square lattice with nearest neighbour interactions for various configura-
tions of adjacent domains. We will see that at leading order for large domains, the
logarithmic negativity and the logarithm of the ratio between the generic moment
of the partial transpose and the moment of the reduced density matrix at the same
order satisfy an area law in terms of the length of the curve shared by the adjacent
regions. We will then give numerical evidences that the coefficient of the area law
term in these quantities is related to the coefficient of the area law term in the Rényi
entropies. Whenever the curve shared by the adjacent domains contains vertices, a
subleading logarithmic term occurs in these quantities and the numerical values of the
corner function for some pairs of angles are obtained. In the special case of vertices
corresponding to explementary angles, we will provide numerical evidence that the
corner function of the logarithmic negativity is given by the corner function of the
Rényi entropy of order 1/2.
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3.1 Introduction

For some quantum systems on the lattice, the entanglement entropy S4 grows like the
area of the boundary of the subsystem A as its size increases [134, |135] |145| [180} 183~
185]. This area law behaviour of S4 has been proved for gapped systems on the lattice
[49], but for critical systems the situation is more complicated: important exceptions
are the critical systems in one spatial dimension, where S, diverges logarithmically
with the length of the interval A [186, 187, and free fermions in higher dimensions
[142, |144].

When the continuum limit is described by a quantum field theory, an ultraviolet
(UV) cutoff € must be introduced and Sy is a divergent quantity for ¢ — 0. The area
law behaviour can occur in the coefficient of the most divergent term, which is non
universal and turns out to be proportional to the area of A (i.e. the boundary of A)
in these cases. A quantum system in the continuum at criticality is described by a
conformal field theory (CFT). Considering a 1+ 1 dimensional CFT on a line at zero
temperature and an interval A of length ¢, we have that Sx = (¢/3)log(¢/e) + const,
where ¢ is the central charge of the model |15, |45, 46, 136]. Instead, the mutual
information of two disjoint intervals is UV finite and it depends on the full
operator content of the model [62, 63, 70, 71, [74, 94]. Performing the replica limit to
get analytic expressions for S4 and 14, 4, from the ones for SXL) and 11(4"1)7 4, can be a
very difficult task (see [123, 171] for a numerical approach).

As we already discussed in §1.7 in 2 + 1 dimensional CFTs and for domains A
whose boundary is smooth, the expansion of the Rényi entropies reads

St =@, % +const, as e—0, (3.1)
where P, is the perimeter of A and the coefficient &,, depends on the model and on the
details of the UV regularisation. The replica limit implies that Sy = & P/c+const as
¢ — 0, where lim,,_,; @, = & When the two dimensional spatial domain A has a non
smooth boundary, SXL) contains also a subleading logarithmic term whose coefficient
is independent of the regularisation details. Such coefficient is obtained as the sum
of the contributions of the vertices of the curve 0A, where each term is given by a
model dependent function (corner function) evaluated on the opening angle in A of
the corresponding vertex. Many interesting studies have been done on such corner
functions in various lattice models [147, 150, (151} 153} (155, [188-193|. For a CFT in
2 4+ 1 dimensions, it has been recently found that the leading term in the expansion
of the corner function as the opening angle 6 is close to m provides the constant
characterising the two-point function of the stress tensor [154} 157, [158|. Within the
context of the AdS/CFT correspondence, the prescription to compute holographically
the entanglement entropy in the regime where classical gravity can be employed has
been found in |77, 78|. In the case of AdS,/CFTjs, such holographic prescription
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provides also the expected subleading logarithmic divergence whenever JA contains
vertices 86}, 194}196].

The mutual information of disjoint domains with smooth boundaries is a
UV finite quantity because the area law terms cancel. When the separation between
the regions is large with respect to their sizes, analytic results have been found [87]. In
the case of two dimensional adjacent domains A; and As, both the mutual information
and its generalisation involving the Rényi entropies display an area law behaviour
in terms of the length of the curve shared by the adjacent regions. In particular,
IX),AQ = 20, Parea/€ + - .. and T4, a4, = 20 P/ + ... as € — 0, where Pq =
length(8A1 N 8A2>

In this chapter we consider a two dimensional square harmonic lattice with near-
est neighbour interactions in its ground state. We focus on the regime of massless
oscillators, whose continuum limit is described by the CFT given by the massless
scalar field in 2 4+ 1 dimensions. In the thermodynamic limit, we study the logarith-
mic negativity and the quantity for various configurations of adjacent domains
in the regime where they become large. At leading order, these quantities follow an
area law behaviour in terms of the length of the curve shared by the adjacent regions.
This observation for the logarithmic negativity has been already done for this model
in [130], where the configuration given by two halves of a square has been considered.
We notice that the coefficient of the area law term is related to the coefficient of the
area law term in the Rényi entropies. We study also the subleading logarithmic term,
which occurs whenever the curve shared by the adjacent regions contains vertices.
Such term is very interesting because it is independent of the regularisation details.

The layout of this chapter is as follows. In we review the method to compute
Sa, 51(4"), £ and &, for this bosonic lattice. In we investigate the area law
behaviour in the leading term of £ and &, for various configurations of large adjacent
domains in the infinitely extended lattice. In we study the subleading logarithmic
term of £ due to the occurrence of vertices in the curve shared by the adjacent domains
and in we draw some conclusions.

3.2 Harmonic lattice

In this section we introduce the lattice model considered throughout this chapter, its
correlators in the thermodynamic limit and their role in computing the entanglement
entropies, the moments of the partial transpose and the logarithmic negativity.

3.2.1 Hamiltonian and correlators

We consider the two dimensional square lattice made by harmonic oscillators coupled
through the nearest neighbour spring-like interaction. Denoting by L, and L, the
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number of sites (oscillators) along the two orthogonal directions, such lattice contains
N = L,L, oscillators. The Hamiltonian of the model reads

s, Mw? K
H= ). {2]\} t 5 dt g [(‘Jm,j ~ i)+ (di501 - qm)Q} } o (32)

1<i<Ly
1<5< Ly
where the pair of integers (7, j) identifies a specific lattice site. The canonical variables
¢;,; and p; ; satisfy the canonical commutation relation [¢; ;, ¢r.s| = [pij, Pr,s) = 0 and
(@i, Pr.s) =10;,0;5. We assume periodic boundary conditions along both the spatial
directions, namely qr,+k,; = Gk,js PLo+kj = Phj» GLy+k = Gk and pjr, 1k = pjy for a
generic integer k.
The model described by (3.2)) contains three parameters w, M and K, but not all
of them are independent. Indeed, by performing the canonical rescaling (g; j, pi ;) —

(VMKq ;, pij/¥VMK) and introducing a = /M/K, the Hamiltonian (3.2) becomes

2
Dij . aw 1 2 2
H= 3, { oy T Gy + % [(qiﬂ,j = i)+ (@1 — i) }} (3:3)

From this expression, one can easily observe that gives the Hamiltonian of a
free scalar field with mass w in two spatial dimensions discretised on a square lattice
with lattice spacing a. The continuum limit corresponds to take simultaneously the
limits L, — oo, L, — oo and a — 0, while L,a and L,a are kept fixed. In our lattice
computations, without loss of generality, we set K = M = 1. The Hamiltonian
can be diagonalised in a standard way, finding the following dispersion relation

Wi, = \/oﬂ + 4[sin2(7rkx/Lx) + sin2(7rk‘y/Ly) > w, (3.4)

where k = (k,, k,) is a pair of integers such that 0 < k, < L, and 0 < k, < L,.
Because of the translation invariance of the model, the zero mode with k = (0,0)
occurs, for which the equality holds in (3.4)).

In our analysis we need the following vacuum correlators

(0]Gi.1Gr.s0) = Z — cos[2mk,(i — 1)/ L, cos|2mk,(j — s)/L,],  (3.5)

Y o0<ka<Ly
0<ky<Ly

2LL

1
(Olpi jprs|0) = LI, 0<;L wk cos[2mky, (i — 1)/ Ly] cos[2mky,(j — s)/Ly] , (3.6)

0<ky <Ly

which are the matrix elements of the correlation matrices Q and PP respectively (where
(7,7) and (r, s) are the raw and column indices respectively). These matrices satisfy
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Q- P = 1/4, being I is the identity matrix. We remark that the term in (3.5))
corresponding to the zero mode reads 1/(2L,L,w), which is divergent for w — 0.
This implies that we cannot take w = 0 in a finite lattice.

Since from our computations on the lattice we would like to extract informa-
tion about the model in the continuum limit, we need to consider the regime where
L,,L, > (> 1, being ¢ the linear size of the subsystem. Thus, it is convenient to
consider the thermodynamic limit, where L, — oo and L, — oo, while the lattice
spacing a is kept finite. In order to perform the thermodynamic limit of the corre-
lators and (3.6)), we define ¢, = 27k, /L, for r € {z,y}. In the thermodynamic
limit ¢, becomes a continuous variable ¢, € [0,27) and the sum in and

is replaced by an integration according to Li Dok °T dar Thus, the correlators

0 2

(3.5) and (3.6) in the thermodynamic limit become respectively

1 27 1 ' '

(019i.j4rs10) = o | — coslaa(i —7)] coslay (s — 5)] dguday , (3.7)
m 0 wq
1 21

(Olpigprsl0) = ¢ | wa cos|qz (i — )] cos[q,(j — 5)] dgdgy , (3.8)

where wy = /w? + 4[sin®(q,/2) + sin®(q,/2)], with ¢ = (¢z,q,). When w = 0 the
integral in (3.7)) is convergent and therefore, in principle, the massless regime can
be considered without any approximation. Nevertheless, in order to avoid divergent
integrands, in our numerical calculations we have set w < 1079, checking in some
cases that smaller values of w do not lead to significant changes in the final result.

3.2.2 Entanglement entropies

Following [176,178,|179,|181], we can compute the Rényi entropies 51(4”) for this model
by considering the matrices Q4 and P4, which are obtained by restricting Q and P
respectively to the subsystem A. Their size is Ny x Ny, being N, the number of
lattice points inside the region A.

The matrix product Q4 - P4 has positive eigenvalues {uf, ..., u%, } with 7 > 1/4
and the moments of the reduced density matrix are given by

Trpy = ﬁ KﬂjﬂL%)n— (Mj - %)"]—1' (3.9)

j=1

From this expression it is straightforward to get the Rényi entropies

S(")—llT”—lNAl oy oy 1
A =7, log I“PA—EJZ:; og\lmtg) —(w—35) | (10
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while the entanglement entropy is given by

Sa = %A: Kﬂj + %) log (Mj + %) - (Nj - %) log (Nj - %)] : (3.11)

J=1

By employing these formulas for disjoint domains on the lattice, one gets ]1(473 Ay

and the mutual information 74, 4,.

3.2.3 Moments of the partial transpose and logarithmic negativity

In |33}, |177] it was shown that the partial transposition with respect to A, for a
bosonic state corresponds to the time reversal applied only to the degrees of freedom
in A,, while the remaining ones are untouched. In particular, in A, the positions are
left invariant ¢, ; — ¢; ; everywhere, while the momenta are reversed p; ; — —p;; if
(1,7) € As. Given a bosonic Gaussian state, like the ground state of the harmonic
chain we are considering, the resulting operator after such transformation will be
Gaussian as well. It is worth remarking that this is not true for fermionic systems.
For instance, for free fermions the partial transpose of the ground state density matrix
can be written as a sum of two Gaussian operators [103].

The above observations are implemented on our lattice model by introducing the

following matrix
P =Ry, Py Ry,, (3.12)

where R4, is the Ny x N4 diagonal matrix having —1 in correspondence of the
sites belonging to A; and +1 otherwise. Since Ry, = —Ry4,, it is easy to observe
that P = P22 as expected. The matrix Q4 - P’ has also positive eigenvalues
{vi,... v, }, but if the state is entangled some of them can be smaller than 1/4.
From the eigenvalues v; one gets the moments of the partial transpose of the reduced
density matrix as in for the moments of the reduced density matrix, namely

Tr (p)" = lN_A[ Kuj + %)n - (uj - %)n}l (3.13)

The trace norm of p’2 reads

ol = 11

j=1

1
V. — —_
72
which leads straightforwardly to the logarithmic negativity

&= Z log [max (1, (2v;)™")] . (3.15)
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In the remaining part of the chapter we discuss the numerical results obtained by
employing the above lattice formulas.

3.3 Area law

In this section we consider various configurations of adjacent domains for the har-
monic lattice in the thermodynamic limit described in §3.2] For large domains, we
show that at leading order the logarithmic negativity and &, satisfy an area law in
terms of the length of the curve shared by the adjacent domains. We observe that
the coeflicient of such term in these quantities is related to the coefficient of the area
law term in the Rényi entropies.

3.3.1 Logarithmic negativity

We begin our analysis by considering the logarithmic negativity of two equal adjacent
rectangles A; and A, which share an edge along the vertical y axis, as shown in the
inset of the left panel in Fig.[3.1] where the adjacent domains are highlighted by blue
dots and red circles. These rectangles have the natural orientation induced by the
underlying lattice, namely their edges are parallel to the vectors generating the square
lattice. Denoting by ¢, and ¢, the lengths of the edges along the x and y directions
respectively, the numerical data for £ of this configuration of adjacent domains are
plotted in Fig.[3.1]

In the left panel we show the ratio £/¢, as function of ¢, when ¢, is kept fixed. For
any given ¢, such ratio reaches a constant value when ¢, is sufficiently large. This
confirms the intuition that the main contribution to a quantity characterising the
entanglement between two adjacent regions A; and Ay should come from the degrees
of freedom localized along their shared boundary, namely the curve 0A; N0 A,. In the
right panel of Fig.[3.1], the logarithmic negativity of the same configuration is plotted
as function of ¢, for fixed values of ¢,. If ¢, is sufficiently large, a neat linear growth
can be observed. The fact that the asymptotic value of £/¢, depends on ¢, in the
left panel of Fig.[3.1]is mainly due to the subleading corner contributions, which will
be largely discussed in

These results tell us that, given two equal and large enough adjacent regions A
and A,, at leading order the logarithmic negativity £ between them increases like
the length of the curve 0A; N dA; shared by their boundaries as their size increases.
Such length will be denoted by P....a = length(0A; N 0Az) throughout this chapter.
Thus, the logarithmic negativity between large adjacent domains satisfies an area
law in terms of the region shared by their boundaries. This observation has been
recently done for this model also by Eisler and Zimborés [130], who have considered
the logarithmic negativity between the two halves of a square as the length of its edge
increases.
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Figure 3.1: Area law behaviour for the logarithmic negativity £ between two equal
rectangles, whose edges have lengths ¢, and /,, which are adjacent along the vertical
edge (inset of the left panel). Left: For fixed values of ¢,, the ratio £/¢, reaches a
constant value as ¢, increases. Right: For fixed and large enough values of /., the
logarithmic negativity grows linearly as ¢, increases (the dashed line is obtained by
fitting all the data corresponding to ¢, = 11).

In order to improve our analysis of the area law behaviour for the logarithmic
negativity between adjacent regions A; and A,, let us consider the six configurations
of adjacent domains on the lattice shown in Fig.[3.2] where the sites belonging to A;
and A, are highlighted by blue dots and red circles. In these examples the curve
0A; N OA; is not given by a simple line segment. The domains identified by the red
circles in Fig.[3.2] are convex, while the ones corresponding to the blue dots are not.

It is well known that the curve separating adjacent domains on the lattice is not
unique. For these configurations we have chosen the dashed lines, which are the
lines whose length has been used to get the perimeter. The three configurations in
the top panels of Fig.[3.2] are natural to define on the square lattice because their
edges are parallel to the orthogonal vectors generating the lattice. Instead, the three
configurations in the bottom panels of Fig.[3.2] are made by adjacent domains where
the line 0A; NOA, either is curved or it contains a line segment which is oblique with
respect to the vectors generating the lattice. Notice that a disk of given radius on
the lattice could include a different number of sites depending on whether the centre
of the disk is located on a lattice site or within a plaquette. Such ambiguity does not
affect the leading order behaviour of the quantities that we are considering, but it
could be relevant for subleading terms [189} 197].

Also for the logarithmic negativity of the adjacent domains shown in Fig.[3.2] we
have observed the same qualitative behaviour described in the left panel of Fig.[3.]|
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Figure 3.2: Configurations of adjacent domains on the lattice, identified by red circles
and blue dots, which have been employed to study the area law behaviour (see
and Figs. and and the corner contributions for explementary angles (see
and Fig.[3.5)).

for the equal adjacent rectangles: by keeping fixed the region corresponding to the
red circles while the sizes of the region characterised by the blue dots increase, £
saturates to a constant value.

In Fig.[3.3] we show some quantitative results for the logarithmic negativity of the
configurations in Fig.[3.2l In particular, let us consider the configuration in the top
left panel, which is characterised by the lengths ¢, < /... of the edges of the internal
square and of the whole subregion A; U A, respectively. In the left panel of Fig.[3.3
we show £//,,, as function of the ratio ¢,,/¢.,, < 1 when £, is kept fixed and the
internal square increases. For large enough /.., the area law behaviour in terms of
¢, is observed. It is worth remarking that & — 0 when ¢, /¢, — 1. This is expected
because in this limit the internal convex domain becomes the whole A. For any fixed
and large enough value of 7, there is a critical size of the internal square after which
the logarithmic negativity deviates from the linear growth predicted by the area law.
The numerical data tell us that such critical value of ¢, increases by increasing /..
This suggests that in the continuum limit, where both ¢;, and ¢,,, diverge but their
ratio is finite, the linear behaviour occurs for any ratio ¢,,/¢,,. < 1. From the plot
in the left panel of Fig. one can also notice that the ratio ¢,,/¢,, ~ 1/3 is a
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Figure 3.3: Left: Logarithmic negativity for the configuration in the top left panel of
Fig.[3.2] where ¢, and ¢, are the sizes of the edges of the red square and of the square
A1 U A, respectively. The dashed line is obtained by fitting the data corresponding
to loy = 76 up to 4, /l,, >~ 0.7. Right: Logarithmic negativity of adjacent domains
for the configurations shown in Fig.|3.2] which involve different shapes for the curve
0A;1 N 0Ay. The sizes of the domains increase while their ratios are kept fixed.
The data correspond to configurations where the linear size of the convex domains
(highlighted by red circles) is 1/3 of the size of the corresponding A;UA,. The dashed
line has been found by fitting the data obtained for the configuration in the bottom
left panel of Fig.[3.2]

good regime to explore the area law behaviour even for relatively small domains.
Given the latter observation, we have considered the logarithmic negativity of all the
configurations in Fig.ﬂ with a ratio of 1/3 between the size of the internal convex
domain and the one of the whole subsystem A (for the triangle we refer to its shortest
edge and for the trapezoid to its height). By increasing the sizes of both the domains
while their ratio is kept fixed to 1/3, we find the results collected in the right panel
of Fig.|3.3] which nicely confirm the area law behaviour in terms of P,,,., observed
above. Notice that the different configurations in the right panel of Fig.[3.3 provide
linear growths with almost the same slope. Moreover, the data corresponding to the
configuration in the bottom left panel of Fig.[3.2]do not provide a neat straight line, as
expected whenever domains with a curved boundary on a square lattice are involved.

Summarising the numerical results presented above, we can conclude that at the
leading order the logarithmic negativity of two large adjacent domains A; and A5 on a
lattice of massless harmonic oscillators with nearest neighbour spring-like interactions
in the ground state satisfies an area law in terms of the length P,.., of the curve
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shared by the adjacent regions, namely
€ = aPupmeat .., (3.16)

where the dots indicate subleading terms for large values of P,,... The area law
is consistent with the fact that £ measures the bipartite entanglement between
A; and A, for the mixed state characterised by the reduced density matrix pa,ua,-
The coefficient a in (3.16)) is non universal, i.e. it depends on the ultraviolet details.

Given the two adjacent regions A; and As considered above, another very inter-
esting quantity to study is their mutual information I4, 4,, which has been defined in
(??). Since the area law of the entanglement entropy for large domains tells us that
Sa=aPs+..., it is straightforward to find that I4, 4, of adjacent domains satisfies
an area law in terms of P,,... In particular, we have that

[A17A2 = 2C~L Pshared + trt (317)

where, as above, the dots stand for subleading terms.

3.3.2 Moments of the partial transpose

The moments Tr(p2)" of the partial transpose for integer values of n are interest-
ing quantities to study because they provide the logarithmic negativity through the
replica limit [95, 96].

Given the configurations of adjacent domains described in §3.3.1] instead of con-
sidering the n-th moment of the partial transpose, we find it more interesting the
ratio &, defined in , which also provides the logarithmic negativity through the
replica limit because of the normalisation condition Trps = 1. In our model,
the main reason to consider &, instead of log Tr(p?2)™ occurring in is that, by
repeating the analysis described in §3.3.1) we find that, at leading order for large
adjacent domains, &, follows an area law in terms of the length of the curve shared
by the adjacent domains, i.e.

g?’b - an ‘F)Shared + sty (318)

where the non universal coefficient a,, depends on the integer n and the dots denote
subleading terms. We recall that the Rényi entropies of our model satisfy the area law
SXL) = a, Pa+. .., where the coefficient a,, is non universal as well and lim,,_; a,, = a.
From (3.18) and the area law of the Rényi entropies it is straightforward to find
the leading term of the logarithm of the moments of the partial transpose, which is

given by
log Tr (p?)n = ap Ppovea + (1 —=n)a, Pa+ ... . (3.19)

Thus, the quantities log Tr(p’2)" contain an area law contribution also from the
boundary of A = A; U A,. Since lim,_ . (n. — 1)a,, = 0, such term cancels in
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the replica limit (1.79). A similar cancellation occurs also for adjacent intervals in
1 + 1 dimensional CFTs. Indeed, considering the divergent terms for ¢ — 0, in &,
only the ones giving a non trivial contribution after the replica limit survive, while
log Tr(p™)"™ contains also other terms [96], which vanish in the replica limit (1.79).
The quantity &, for adjacent intervals in 1 + 1 dimensional CFTs has been studied
in [102, 107] and for free fermions on a two dimensional lattice in [130].

In the left panel of Fig.[3.4] we show a, as function of n for disks and squares on
the infinite lattice. The centres of the disks have been chosen either on a lattice site
(like in the bottom left panel of Fig. or in the central point of a plaquette. As for
the squares, we have considered both the ones whose edges are parallel to the vectors
generating the lattice and the ones obtained by rotating of 7/4 the previous ones
(denoted as rhombi in the plot). In this plot we have 150 < Py...a < 200, depending
on the configuration. A slight dependence of @, on the shape can be observed from
our data points. The asymptotic @, ~ 1/n* as n — 0 [198, [199] is consistent with
our numerical results. For the Ising model a numerical analysis for a,, as n — 0 has
been done in [65]. The numerical data in the left panel of Fig.[3.4] have been found
by employing a fitting function which includes also a logarithmic term, as it will be
discussed in detail in §3.4] but such term does not change the coefficient of the leading
area law term in a significant way.

It is worth considering the quantity Iiﬁ)’ A = SX? + Sﬁg) - Sﬁﬁ)u 4, for the con-
figurations of adjacent domains described in §3.3.1] Given the area law behaviour
of Siln), it is easy to observe that 11(47?7 A, displays an area law behaviour in terms of
Piarea, namely

194, = 20y Poea + - .- (3.20)

Once the configuration of adjacent domains A; and A, has been chosen, we find it
interesting to compare the non universal coefficients a,, and @, occurring in the area
law terms of and respectively.

It is reasonable to expect that the area law term for &, comes from effects lo-
calised in the neighbourhood of the curve dA; N dA,. Thus, considering e.g. the
configurations in Fig.[3.2] where the domain identified by the red circles is entirely
surrounded by the one characterised by the blue dots (i.e. the configurations in the
top left, bottom middle and bottom right panels), such term should be independent
of the size of the domain identified by the blue dots. In the limit where this domain
becomes the whole region complementary to the one identified by the red circles, one
gets the bipartition of the ground state. These considerations suggest us that a,
in is the same one occurring for a bipartition of the ground state, when the
identity can be applied. This implies that the following relation should hold

(1 — no) G, odd n =n,,
n = (3.21)

2(1—ne/2) Qn, /2 even n = N .
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Figure 3.4: Left: The coefficient of the area law term in the Rényi entropies 81(4”) as
function of n for domains with different shapes. centre The centres of the disks have
been chosen both on the lattice site and in the centre of a plaquette. Here the edges
of the square configuration are parallel to the vectors generating the lattice, while
the rhombus configuration corresponds to the previous square configuration rotated
by m/4 with respect to its centre. Right: Numerical check of and for
the configuration in the bottom left panel of Fig.[3.2] with R,./R.. = 1/3. Inset:
The coefficient (1 — n)a,, as function of n for disks (the data are taken from the left
panel with the same colour code). The black curve corresponds to the best fit of the
numerical data through the function f(n) = c_o/n?+ c_1/n + ¢y + ¢1n, constrained

by the condition f(1) = 0. In the main plot the red curve is f(n) obtained in the
inset and the green one is 2f(n/2).

Notice that a; = 0, as expected. By employing the relation (3.21)) and the replica
limit ((1.81)), it is straightforward to find that the coefficient of the area law term in

the logarithmic negativity in (3.16]) is equal to the coefficient of the area law term in
the Rényi entropy of order 1/2, namely

a = al/g. (322)

In the right panel of Fig.ﬂ we show a numerical check of the relations
and for the configuration in the bottom left panel of Fig.. In particular,
the coincidence of the data points corresponding to n = 1/2 provides a check of
. The solid curve in the inset is obtained by fitting the data with the function
f(n) = c_o/n* + c_1/n + ¢y + cin, where the parameters are constrained by the
requirement that f(1) = 0. Thus, such fit has three independent parameters. As for
the solid curves in the main plot, the red one is f(n), namely the black curve found
in the inset, while the green one is 2f(n/2).
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This analysis has been performed also for other configurations as further checks
of (3.21)) and (3.22)), finding the same qualitative behaviours.

3.4 Logarithmic term from the corner contributions

In this section we consider the subleading logarithmic term in £ and &, for adjacent
domains, which occurs whenever the shared curve 0A; N 0A, contains some vertices,
where its endpoints are included among them. For vertices corresponding to exple-
mentary angles, we provide some numerical evidence that the corner function of £ is
given by the corner function of the Rényi entropy of order 1/2.

3.4.1 Entanglement entropies

Let us consider the entanglement entropy S4 of a connected domain A whose bound-
ary contains some vertices (see Figs.7 and for examples). For large size of
A, the leading term gives the area law behaviour. The occurrence of vertices in 0A
provides a subleading logarithmic term which is characterised by a corner function

b(0) as follows [147, 188, |189|

SA:ELPA—< Z 5(01)) log Py + ... 0< 6, <, (3.23)

of DA
where 6; is the opening angle in A corresponding to the i-th vertex of JA and the
dots denote subleading terms.

Since the logarithmic term is due to the corners, we have that b(r) = 0. From
the general property that S, = Sp for pure states and a bipartite Hilbert space
H = Ha ® Hg, we have that b(h) = b(2r — ), which tells us that b(f) is defined for
0 < 6 < 7. The model dependent corner function 5(9) is universal, i.e. independent of
the ultraviolet details of the regularisation. In the continuum limit, which is described
by a 24 1 dimensional CFT, the corner function b(#) contains important information
about the model. For instance, recently it has been found that the constant o entering
in the asymptotic behaviour b(f) = o(m — )2 + ... as § — 7 at the leading order is
related to the constant characterising the correlator (7),,(x)T,s(y)) of the underlying
CFT 154, [157]. The corner function b(f) for the massless scalar has been studied by
Casini and Huerta [147]. In the context of holography, by employing the prescription
of |77, 78] for S, the corner function b(#) has been studied e.g. in [86} 194/ 1196].

We find it worth considering the mutual information (??) of two adjacent domains
A; and A; when their boundaries contain some vertices. For the sake of simplicity,
we focus on configurations such that either two or three curves meet at every vertex.
Explicit examples are shown in Figs.[3.2] [3.6 and where the adjacent domains are
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identified by blue dots and red circles. In the scaling limit, when their sizes increase
while the ratios among them are kept fixed, from ({3.23]) one finds that

Tag s = 2 Poyes — ( > b+ be®) - B(@““”)D log(+..., (3.24)
vertices of
0A1 NOAy

where ¢ is a parameter characterising the common size of the adjacent regions, ng)
is the angle in A; and QEIUZ) the angle in A; U A, corresponding to the i-th vertex
belonging to dA; N dA;y. In the simplest case where such vertex is not an endpoint
of 0A; N 0A,, it provides a bipartition of the angle of 27 and the corresponding
contribution to the sum in is 25(91(1)) = 25(91(2)).

We find it instructive to consider explicitly the examples in Figs.[3.2] and [3.6]
For the configurations shown in the top left, middle and right panel of Fig.[3.2] the
sum within the parenthesis multiplying the logarithmic term in is given by
8b(m/2), 8b(w/2) and 6b(r/2) respectively, while for the bottom mlddle and right
panels of the same figure it reads 4b(r/4) +2b(x/2) and 2b(7 /4) —|—4b(7r/2) + 2b(37r/4)
respectively. As for the configurations of Fig.|3 such coefficient is 4b(m /4) —2b(7 /2),
3b(m/4) + b(3w/4) — b(n/2) and 4b(m/2) for the top left, middle and right panels
respectively, while it is given by 3b(mw/4) + b(37/4) — 2b(n/2), 2b(7/2) and 2b(xw/4) +
2b(3m /4) — 2b(m/2) for the bottom left, middle and right panels respectively. It is
not difficult to get the coefficient of the logarithmic term also for the configurations
in Fig.[3.8 Let us point out that for the one in the top left panel such coefficient is
vanishing.

As for the Rényi entropies of domains with non smooth boundary, we have that

St = G, Py — ( > bl >logPA +. (3.25)

vertices

of 0A

where the corner function b, (¢) depends on the order n and it provides b(@) through
the replica limit, i.e. lim,_,1 b,(6;) = b(6;). For the model we are dealing with, the
corner function b,(#) has been found in [147]. A formula similar to 1) can be

written for [1(471)7 4, by just replacing @ with @, and b(0) with b,(6).

3.4.2 Logarithmic negativity

Considering the scaling limit for the configurations of adjacent domains A; and A,
in Figs.3.2] [3.6] and 3.8 where 9A; and 0A, contain vertices, the expansion of the
logarithmic negativity contains a subleading logarithmic term after the leading area
law term. By analogy with the case of the entanglement entropy, it is reasonable
to expect that the coefficient of the logarithmic term is obtained by summing the
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contributions of the vertices occurring in 0A; and 0A,. Extracting the coefficient of
such subleading logarithmic term from the lattice numerical data is a delicate task.

Let us first discuss the method employed to get the numerical values presented in
this section from the formulas discussed in A first rough approach could consist
in fitting the numerical data by a linear term, a logarithmic term and a constant one.
Nevertheless, since the logarithmic contribution is tiny with respect to the linear one,
its estimation can be spoiled by the occurrence of subleading lattice effects. In order
to take them into account, we have inserted in our fitting analysis also some standard
power law corrections, i.e. we have fitted our data with a function of the form
el + coglog(l) +co+e b7+ -+ ey, A7 Fmax [147, [189], where / is a characteristic
length of P,.... In particular, considering the domains identified by red circles in
Figs.[3.2] and in each configuration ¢ corresponds to the edge for squares, to
the shortest edge for the triangles, to the radius for the disks and to the height for
the trapezoids. For each data set, in the plots we show the results of various fits
performed in different ranges of ¢, where each range is specified by the starting value
(e and by the ending value £,,,. We fix some maximum exponent k... and some
(e Dy removing some initial points, which are strongly affected by lattice effects
and therefore would need more corrections. Then, we plot the logarithmic coefficient
obtained from different fits as a function of /,,,. The parameters k..., £.... and the
maximum value of /.., are chosen in order to get a stable result from the fits in the
whole range of /... The logarithmic coefficient is estimated as the average of the
fitted values within such range of £..4. The error introduced through this procedure
is estimated by taking the maximum deviation of the data from the average within
this range of stability.

An important benchmark employed to test our numerical analysis is the mutual
information of adjacent domains. In particular, we have considered the coefficient of
the logarithmic term in the mutual information for the configurations in the top left,
bottom middle and bottom right panels of Fig.[3.2] recovering the values of the corner
function b(0) for 6 € {m/4,7/2,31/4} available in the literature [147, 189, 200].

Let us consider the occurrence of a subleading logarithmic term due to corners
in the logarithmic negativity of some configurations of adjacent domains. We first
observe that the angles of A; and A, contributing to the logarithmic term in & are
such that at least one of their sides belongs to 0 A;NJ Az, namely only the angles whose
vertices lie on the curve 0A; N 0Ay provide a non trivial logarithmic contribution.
Also the endpoints of 0A; N 0As have to be included among such vertices. This
is expected from the guiding principle that the logarithmic negativity measures the
entanglement between A; and A,.

A way to check numerically this observation is to consider e.g. the coefficients of
the logarithmic terms in & for the configurations in the top panels of Fig.[3.2] These
configurations contain only three possible different contributions corresponding to
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Figure 3.5: Stability analysis of the fitted values of the corner functions b(6, 27w — 0)
and by5(0) for 6 € {m/4,7/2,37/4}, as explained in . The configurations
employed here are shown in the top left, bottom middle and bottom right panels
of Fig.[3.2l The horizontal lines (with various dashing) correspond to the estimates
obtained as explained in §3.4.2] The numerical values are b(r/4, 7w /4) = 0.0977(3),
b(m/2,37/2) = 0.029(1) and b(37/4,57/4) = 0.0060(5).

this kind of vertices. Thus, one can easily solve the resulting linear system of three
equations finding that the contribution coming from the four vertices which do not
belong to 0A; NOA, is much smaller than the other ones (by a factor of about 1/100).
As further check that only the vertices lying on dA; N 0A, (including its endpoints)
contribute to the logarithmic term of £, we have constructed another configuration
of adjacent domains as follows: starting from a configuration like the one in the top
right panel of Fig.m with ¢, /¢, = 1/3 and dividing the domain corresponding to
the blue dots along the diagonal with negative slope of A; N Ay, we have removed the
upper triangle. In the resulting configuration A; U A, is a triangle and the subregion
identified by the red circles is a square. Comparing the coefficients of the logarithmic
term for this configuration and the one for the configuration in the top right panel of
Fig. with ¢,,/¢,.. = 1/3, we have found the same number within numerical errors.

Thus, the logarithmic negativity of adjacent domains whose boundaries share a
curve containing some vertices, where its endpoints are counted among them, is given
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g = aPsharecl - ( Z b 0(1) 9(2 )logphared + (326)

vertices of
OA1 NOAy

being 95'{“‘) the angle corresponding to the i-th vertex of 0A; N dA, which belongs to
Ag. In (3.26) we have assumed that either two or three curves meet at every vertex
of 0A1NOA,, i.e. every vertex corresponds either to a bipartition (01(1) + 92(2) = 27) or
to a tripartition (91(1) + (9@(2) < 27) respectively of the angle of 2. This assumption,
which has been done also in , is verified for all the configurations in Figs.,
and 3.8

From our numerical analysis, we find that the above considerations apply also for
the quantity &, defined in . Thus we have

gn - a shated - ( Z b (1) 0(2 )logphared + (327)

vertices of

0A1 NOAy

where the coefficient a,, has been already discussed in §3.3.2] and the corner function
bn(HQ), 052)) is related to the one occurring in the logarithmic term of 1' through

the replica limit , namely lim,,__; by, (91(1), 91(2)) = b(&f’, 952)).

Among the vertices belonging to the curve dA; N 0As which contribute to the
logarithmic term in and , let us consider first the ones corresponding to
pairs of explementary angles, i.e. the ones such that 91(1) + 9§2) = 27. This kind of
vertices occurs in all the panels of Fig.except for the bottom left one (in particular,
for the configurations in the top left, bottom middle and bottom right panels only
this kind of vertices occurs), while it does not occur at all in the configurations of
Fig.|3.6l

For these vertices we can make an observation similar to the one that leads to
(3-21). Indeed, because of the local nature of the function b, (6;, 21 — 6;), it is rea-
sonable to assume that these vertices provide the same contribution given in the case
of a bipartition of the ground state, when - holds. This observation leads us
to propose the following relation between b, (6, 27 — ) and the corner function b, (6)
entering in the Rényi entropies

{ (1—n,) by, (0) odd n = n,,

b, (0,21 — 0) = s
2(1 — ne/2) by, /2(8) even n = n, .

(3.28)

By employing the replica limit (1.81]), the relation (3.28)) allows to conclude that the
corner function in the logarithmic negativity for this kind of vertices is equal to the
corner function in the Rényi entropy of order 1/2, namely

b(6,2m — 0) = by »(0) . (3.29)
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Figure 3.6: Configurations of adjacent domains on the lattice, identified by red cir-
cles and blue dots, which have been employed to find b(#™"), ) for some values of
arguments such that 8 + 63 < 27 (coloured markers in Fig.[3.7)).

Numerical checks of the relation (3.29)) for some values of ¢ are shown in Fig.|3.5
The values of b(#,2m — 6) and b /2(6) for 0 € {r/4,7/2,3n/4} have been found by

evaluating £ and £111/7 124)2 for the configurations shown in the top middle, bottom middle
and bottom right panels of Fig. where the curve 0A; NOA, contains only the kind
of vertices that we are considering. The numerical values obtained for b(6, 2 — ) for
the above opening angles are: b(w/4,7m/4) = 0.0977(3), b(7/2,37/2) = 0.029(1) and
b(3m /4,57 /4) = 0.0060(5). The corresponding numerical values obtained for by /2(0)
are less stable than the ones for b(6, 2 — ). Nevertheless, they provide a reasonable
check of (3.29).

An analytic expression for the function b; /2(0), which can be found by performing
the analytic continuation n — 1/2 of the formula for b,(6) obtained in [147], is not
available. Considering the expansion of the corner function b, (0) = o, (7 — 8)> + ...
as § — m, where the dots denote subleading contributions, in [200] it has been
found that the leading term provides a lower bound, namely b,(#) > 0> (), where
D> (0) = 0,,(0 — 7)2. The coefficient ¢,, has been computed for simple models like
the Dirac fermion and the complex scalar for integer n (see e.g. Table 2 of )
and a duality between the free bosonic and fermionic contributions allows to get also

Ti/n \] In particular, for the real free boson one gets o/, = % (see Table 5 of
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Figure 3.7: Stability analysis of the fitted values of the corner function b(6™), §?)) for
some pair of angles such that 61 + ) < 27. The data corresponding to coloured
markers have been obtained by employing the configurations in Fig.[3.6] while the
data corresponding to black markers have been found by using the configurations in
Fig.[3.§ and the ones in the top middle and top right panels of Fig.[3.2] The horizontal
lines (with various dashing) correspond to the estimates obtained as explained in
§3.4.2, The numerical values are reported in (3.30).

[158]), which leads to the following lower bounds for by »(6) for the opening angles
that we analysed: B (7/4) = 0.0552, B> (7/2) = 0.0245 and b:>(37/4) = 0.00614.
Our numerical values for b(f,2m — 6) are above these limiting values. The bound
becomes stronger and stronger as the angle 6 approaches 7, as expected from the fact
that the corner function decreases monotonically to zero. For § = 37w /4, our result
satisfies the bound only once the estimated error is taken into account.

Let us consider the vertices corresponding to a tripartition of the angle 27, for
which 92(1) + 92(2) < 27 and which are the endpoints of the curve 9A4; N A, in the
class of vertices that we are considering. For this kind of vertices the corner function
bn(Ggl), 92(2)) depends on two independent variables. We have obtained its numerical
values for some pairs of angles by employing the configurations in Fig.|3.6| The results
are shown in Fig.[3.7] (coloured solid markers) and they are given by

b(m/4,7/4) = 0.0908(1) b(m/4,37/4) = 0.0614(3) b(w/4,57/4) = 0.0536(1)
b(r/2,7/2) = 0.0364(1) b(r/2,7) =0.0152(2)  b(3m/4,3m/4) = 0.0068(2),
(3.30)
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Figure 3.8: Configurations of adjacent domains on the lattice, identified by red circles
and blue dots, which have been employed as crosschecks for the values of b(6(), 9())

given in Fig.[3.5 and Fig.[3.7]

where the parenthesis denote the uncertainty on the last digit. In Fig.[3.7] the black
markers correspond to the values obtained by employing all the configurations of
Fig. and the ones in the top middle and top right panels of Fig.|3.2

Let us remark that the coefficient of the logarithmic term in the logarithmic
negativity of the configuration in the top left panel of Fig.[3.§ is non zero, while it is
vanishing in the mutual information of the same configuration, as already pointed out
in §3.4.1 Moreover, such coefficient for the configuration shown in the the bottom
left panel of Fig.[3.2] turns out to be zero within our numerical errors, both for the
negativity and the mutual information, as expected from the fact that corners do not
occur in the continuum limit.

In principle, our numerical analysis allows to find also bn(ﬁgl), 61(2)). Nevertheless,
in order to check the relation (3.28)) we need to know the unusual corrections |140)]
to the scaling in 2 4+ 1 dimensions in order to perform a precise fitting analysis (see

c.g. [159).
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3.4.3 Comments on the continuum limit

The continuum limit of the lattice model considered throughout this chapter is
described by the massless scalar field in 2 + 1 dimensions, which is a CFT. Denoting
by ¢ the UV cutoff that must be introduced to regularise the model, the logarithmic
negativity of adjacent domains diverges when ¢ — 0.

The numerical results on the lattice discussed above tell us that the expansion of
the logarithmic negativity as € — 0 reads

£ = o P ( > b, 6 >10g( Povea) + .- (3.31)

vertices of

DA NOAs
where the coefficient o in front of the area law term is non universal. A similar
expression can be written for &£, in (|1.77)), namely

£, = Lt ( > ba(00,608) >1og< Powea/€) ..., (332)

vertices of
0A1 NOAy

0?) and

where «,, is non universal as well. Instead, the corner functions b(QZ(l), ;
bn(ﬁgl) 0(2)) are independent of the UV details of the regularisation and therefore

1 » e
they are the most important quantities to study. In and , like for their
lattice versions and , we have assumed that the vertices in 0A; and 0A,
correspond either to a bipartition or to a tripartition of the angle of 2.

The divergent terms in the ¢ — 0 expansion of £ and &, are determined by
local effects close to the curve 0A; N JA,, consistently with the intuition that the
entanglement between A; and A, comes from the degrees of freedom living close to

their shared boundary. This leads to relate the coefficients o and «,, in (3.31]) and
to the area law coefficients & and &, of S4 and Sén) like in M and (3.22]).
Notice that, whenever for the i-th vertex of 9A; N 0As we have 910) + 952) = 2m, the
relations and for the corner functions b(6, 2w — ) and b, (6, 2m — 6) hold
also in the continuum limit. Instead, whenever the vertices correspond to partitions
of the angle of 27 in three (i.e. 91(1) + 9£2) < 2m) or higher number of components, we
expect that the corner functions occurring in £ or &, contain new information with
respect to the corner functions entering in Sy or S (n)

It would be very interesting to find an analytic expression for the corner function
b(0,~) for any pair of angles # and -y, where we can assume 6 < . By considering
only the few pairs of angles that we have studied on the lattice, we can make some
observations about the behaviour of this corner function. For instance, when the two
angles are equal, the function b(0,6) is decreasing with 6 € (0,x] and b(w,7) = 0.
Moreover, for fixed § < 7, the function b(6,~) is decreasing with v € (6,27 — 6). By
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Figure 3.9: Configurations of adjacent domains A; and A, in the plane (the yellow
and cyan regions). The grey part corresponds to the region B which has been traced
out. The quantities £ and &, for the configurations in the top left and top middle
panels do not contain a logarithmic term, while for the remaining ones such term is
non vanishing. The vertices corresponding to a partition of the angle of 27 in three
or four angles are highlighted with red circles.

comparing Fig.[3.7] with Fig.[3.5] one notices that this is not true anymore when ~ is
exactly 2 — 6. Such behaviour is not surprising because in this limit the boundaries
of A; and A, merge, P,...c changes abruptly and therefore a continuous behaviour of
the divergent terms in the logarithmic negativity is not expected.

In Fig.[3.9 we show some illustrative examples of configurations of adjacent regions
in the plane. The grey region is associated to the part B, which has been traced
out. Considering £ and &, between the yellow domain and the cyan domain, the
expressions and can be employed for all the configurations in Fig.
except for the one in the bottom right panel, where the vertex highlighted by the red
circle corresponds to a partition of the angle of 27 in four parts.

In the configurations shown in the top left and middle panels of Fig.[3.9| the curve
0A; N 0A, is smooth; therefore the logarithmic divergence does not occur in £ and
E,. Instead, in the remaining configurations the curve 0A; N A contains vertices
and the subleading logarithmic divergence occurs. As for the configuration in the top
right panel, the coefficient of the logarithmic term of £ and &, is related to the corner
functions b(f) and b,(0) entering in the logarithmic term of S, or SXL) respectively

through (3.28) and (3.29). Thus, for the configurations in the top panels of Fig.[3.9)
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and assuming that only one scale ¢ occurs to determine the logarithmic term, one
can construct the following UV finite quantity

L 12
- 5 11(41/714)2 ) (333)
For the same configurations, also the following combinations, depending on the parity

of the integer n, are UV finite

1—n,

Eny —
’ 2

No Ne Ne

5, & — (1-5) 1), (3.34)
The second expression in ([3.34]) provides after the analytic continuation n, — 1.
In a 241 dimensional CFT, the quantities in (3.33)) and (3.34) should give non trivial
scale invariant functions of the parameters characterising the adjacent domains. For
example, when the adjacent domains are given by a disk of radius R;, and an annulus
surrounding it whose radii are R, < R,.., the expression should be a model
dependent function of the ratio R,,/R,.. It would be very interesting to develop a
method which allows to get an analytic expression for this function.

The configurations of adjacent domains shown in the bottom panels of Fig.[3.9
are more interesting because the corner functions corresponding to the vertices high-
lighted by the red circles is not related to the corner functions occurring in the en-
tanglement entropies. Thus, because of such terms, we expect that the combinations
in (3.33) and (3.34) diverge logarithmically for these configurations.

3.5 Conclusions

In this chapter we have investigated the logarithmic negativity £ and the moments
of the partial transpose for adjacent domains A; and A, in the ground state of a two
dimensional harmonic square lattice with nearest neighbour spring-like interaction.
The regime of massless oscillators in the thermodynamic limit has been considered.

By exploring various configurations of adjacent domains, we have shown that,
at leading order for large domains, the logarithmic negativity and the quantity &,
introduced in satisfy an area law in terms of the length of the shared curve
0A; NOA,, suggesting a relation between the coefficient of the area law term in these
quantities and the coefficient of the area law term in the Rényi entropies.

A subleading universal logarithmic term occurs in £ and &,, whenever the shared
curve contains vertices, being its endpoints included among them. The values of the
corner function of £ have been obtained for some pairs of angles. For the vertices of
0A; NOA, corresponding to pairs of explementary angles, we have proposed that the
corner function of &, is related to the corner function entering in the Rényi entropies
[147]. This relation implies that the corner function of £ for this kind of vertices
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coincides with the corner function of the Rényi entropy of order 1/2. This statement
has been supported by numerical evidences shown in Fig.|3.5|

As for the vertices of the curve dA; N 0A; corresponding to a tripartition of the
angle of 27, their contribution to the logarithmic term in £ and &, is characterised
by a new corner function which depends on two independent angular variables. The
numerical values of this corner function for £ have been given in for some pair
of angles (see also Fig.|3.7)).

Let us conclude with some open questions. It would be interesting to provide
further checks of . In particular, the analytic continuation to n = 1/2 of
the corner function found by Casini and Huerta [147] should be performed. More
importantly, a method should be found to compute analytically the corner functions
b(f,v) and b,(0,~) for the vertices partitioning the angle of 27 in three parts. By
analogy with the results of [154, 157| obtained for the corner function of Sy, it could
be interesting to study the corner function b(#,0) for equal angles as § — 7. In
order to extract reliable numerical results for the logarithmic term of &, from the fit
of the lattice data, the unusual corrections to the scaling must be studied, extending
the analysis done by Cardy and Calabrese [140] in 1 + 1 dimensions. Finally, it is
worth studying the corner contributions to £ and &, for other models, both on the
lattice and in the continuum.
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CHAPTER 4

Comments on Entanglement Contour for
Logarithmic Negativity

This chapter contains some preliminary results about the spatial distribution of en-
tanglement entropy and negativity. This on-going project is in collaboration with
Andrea Coser and Erik Tonni.

4.1 Introduction

Which real-space degrees of freedom contribute, and how much, to the entanglement
of a region A with another region B? Is there a way to understand the spatial struc-
ture of entanglement? In 2004, Botero and Reznik [179] studied the spatial structure
of vacuum entanglement for bosonic oscillators introducing the so called mode par-
ticipation function. Ten years later, this lead Chen and Vidal [201] to introduce the
entanglement contour in the context of fermionic modes. The bosonic case has then
been studied by Frérot and Roscilde [202|. These concepts try to answer the above
questions providing a decomposition into single site contributions for the entangle-
ment entropy. As we already explained in , the area law (|1.82)) is understood
as resulting from entanglement that involves degrees of freedom located near the
boundary between regions A and B. Also intuitively, the logarithmic correction we
described in is argued to have its origin in contributions to entanglement from
degrees of freedom that are further away from the boundary between A and B. The
goal of this chapter is to discuss the contour, which is capable of testing the above
intuitions [201]. With respect to the previous works, we study the contour for the
harmonic chain in 1 4+ 1-dimensions for disjoint intervals and try to extend it to the
logarithmic negativity.
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Given an entanglement measure Fy, the idea is to introduce a positive function,
the entanglement contour, that assigns a real number e4 (i) > 0 to each lattice site ¢
contained in region A such that

E, = ZeA(i), (4.1)

The entanglement contour quantifies how much the degrees of freedom in site ¢ con-
tributes to the entanglement between A and B. In |201], Chen and Vidal listed some
properties that should characterize the entanglement contour

(i) Positivity: e4(i) > 0.
(ii) Sum rule: ), ,ea(i) = Ex.

(iii) Symmetry: if G is a symmetry of pa, that is GpsGT = p4, and G exchanges
site ¢ with site j, then e4(i) = ea(j).

(iv) Invariance under local unitary transformations: if two states are connected by
a unitary transformation U, that acts on a subset A" C A of sites in A, then
eA(A") must be the same for both states.

Moreover, some upper and lower bounds on the entanglement contour are required by
the above authors but since they are too technical and not relevant for our discussion,
we refer the reader to [201] for a detailed explanation.

For bipartite pure states we will consider the entanglement contour for the entan-
glement entropy (entanglement entropy contour), i.e. Sa = >, 4 5a(i),where s4(7)
quantifies how much the site ¢ contributes to the entanglement between A and its
complement. For mixed states we will focus on the contour for the logarithmic nega-
tivity (entanglement negativity contour), i.e. £ =) ., (i), where (i) measures the
weight of the site 7 in the negativity between A; and A, (as usual A = A; U Ay) that
are embedded in a larger region B.
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4.2 Entanglement entropy contour for free fermions

The determination of the entanglement structure of a given quantum state is a com-
plicated problem. However, things are simplified if we consider a pure Gaussian state,
which can be shown to be equivalent to products of pairs of entangled modes [203,
204]. In the following construction, as described in [201], we will deal with a Gaussian
quantum state p for a set of N fermonic modes. The Hamiltonian of the fermionic
system is quadratic and we can think about p as its ground state.

Let us consider a fermionic lattice system made of N sites characterized by a set

of N fermionic annihilation operators b;, ¢ = 1,..., N such that
(01,0} = 65, {bi,bj} =0. (4.2)
There are two Majorana operators ;1 and v; » associated to each site ¢, defined by
b; + b} b; — b}
Vi1 = Yio = (4.3)

It is easy to check that {t; o,1; 3} = 0ij0as. Now, let us consider the usual bipartition
of our lattice system in a region A of N, sites and its complement B. In this case
the reduced density matrix p4 = Trp p is completely characterized by its correlation
matrix I'4. In terms of the Majorana modes we can write it as

(FA)@Ot;jﬁ = _i<[¢i,a; 77Z)j,,3]> ;o Lj=1,...,Nga. (44)

I'4 is antisymmetric and therefore there exists an orthogonal matrix such that

Na O U
O'T40 =Ny, Aa=EP ( O’“) , (4.5)

1 — Mk

with —1 < g < 1. The matrix A4 can be diagonalized by of the unitary matrix

1 Ma/1 i
W=— . . 4.6
5905 ) o
The following matrix % can be diagonalized using both O and W

. N 1+pk
T+il4 B
5 =<m@wm>=cwv<ga< 0 13%)>mﬂ0? (4.7)

k=1

These considerations lead us to write the entanglement entropy of this fermionic
system in the following useful form

S5 = TH( ) = 387 (45)
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where i i
FTa) = - A g (204 (4.9)
2 2
and 1 1 1 1
+ Hi + Mk — Pk — Mk
! = ] — ] 4.1
ST () 5 og( 5 ) 5 og( 5 ) , (4.10)

We can now define the delocalized Majorana modes ¢y 5 as

Ny 2
Srp =YY (O )kpiatia- (4.11)

i=1 a=1

This orthogonal transformation connects the delocalized modes ¢, 3 with the real
space modes v; ,. For each site 7, these orthogonal transformations can be used to
define the mode participation function P*(i)

2

PH(i) = % S (Orons)? (4.12)

which reflects the weight that the pair of delocalized Majorana modes ¢ 1 and ¢y 2
have in the Majorana modes ;1 and ;2 on site ¢. Since for this fermionic systems
Pk (i) is by definition positive P*(i) > 0 and ZfVA Pk(i) = 1, it can be interpreted as
a probability. From it, we can define the entanglement entropy contour as

$hD) =Y PHOS (n). (4.13)

We can easily see that the entanglement entropy contour for fermions sﬁ(i) is positive,

being a weighted sum of P¥(i) and S/ (y,), which is positive in the range —1 < p, < 1.
The contour is obtained by inserting the projector onto site 4, that is M =
Za:l,Q |i’ a> <iv a|

st (i) = Te(MD f(T4)). (4.14)

This form is extremely useful in order to prove the property listed in the introduction
of this chapter.

4.3 Entanglement entropy contour for free bosons

In this section we will consider a Gaussian quantum state p given by the ground state
of N bosonic modes [179]. The canonical variables can be collected into the following
vector

n=(¢p", (4.15)
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where ¢ = (Q1>Q2,"' 7QN)T and p = (p1>p2,"' ,pN)T-

relations give

The canonical commutation

[Ma:n8] = iJag (4.16)

J = (—?IN H(])V) . (4.17)

A (2N x 2N)-matrix S, with entries in R, is said to be part of the (real) symplectic
group Sp(2N,R) if and only if SJST = J. A Gaussian quantum state p for a set of
N modes is uniquely characterized by the first and second moments of n, which are
(n) and (nnT) respectively. For simplicity we consider the case with (n) = 0 and take
care only of the second moment, the so-called covariance matriz

M = Re (m"). (4.18)

where J is the following matrix

Under a symplectic transformation 1 = S7, a Gaussian state characterized by a
covariance matrix M gets mapped to another Gaussian state characterized by the
covariance matrix M = SMST.

An important tool in our discussion is the Williamson theorem [205]: if M is
symmetric and positive definite, a symplectic transformation S always exists that
brings M to the normal form

W=D@D=SMS", (4.19)

where D = diag(A, A2,--- ,Ax). The elements \; for i = 1,--- | N, are called the
symplectic eigenvalues of M. They must be greater than or equal to 1/2, according to
Eq. (4.16), which is nothing else than the uncertainty principle. With the symplectic
transformation that diagonalizes W we can define a new set of modes, Williamson
modes, 11 = Sn and decompose the components of 7 into creation and annihilation
operators

_ ata . ap—ay

k. = N Pr =1 NG
Suppose now to partition our system of oscillators in two sets, one of Ny < N sites
and the complement. The reduced density matrix of the region A can be factorized
as follows [178, |186]

(4.20)

Na
pa=Q o, pr=(1—e )P (4.21)
k=1

where 1y, = d;dk is the number operator. The Boltzmann factor Sy is related to the
symplectic eigenvalues )\ via the relation

At 1)2 1 B
Bk_IOg)\k—l/Q (:)/\k—Qcoth(2>. (4.22)
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Now, because the eigenvalues of p; are
m® = (1 —ePye P n=01,..., (4.23)

we can easily calculate the entanglement entropy

Na Ny oo
Sa = Z prlog pr = Z Z m® logm®) | (4.24)
k=1 k=1 n=0

Applying (4.22) and (4.23)), the entanglement entropy can be expressed in terms of
the symplectic eigenvalues as

Si=3"8(\), SO = (A + %) log ()\ + %) - (/\ - %) log <)\ - %)  (4.25)

€A

The local covariant matrix of the subsystem A is defined as follows

_ T\ _ <Qz‘Qj> <Qipj> o
Ma = (nama) = <<pi a) (pipj>) , ,jEA. (4.26)

It is convenient to introduce

Q= <q qT> , P= <ppT> ) (427)

which are symmetric matrices, Q = Q7 and P = P”. In this thesis we will deal only
with Gaussian states for which (gp?) = 0 and therefore we can write

0

My = (nany) = (<qi0qj> (ps D)

) , i,j€A. (4.28)
Since the local covariance matrix M, is block diagonal, its symplectic eigenvalues can
be obtained from the square root of the doubly degenerate spectrum of the matrix

— (JaMy)? = <PAOQA QAO]P) . (4.29)

In other words, the symplectic eigenvalues are given by the square root of the eigen-
values of P4 Q4 (or Q4 P4, being that Q4 Py = (P4 Qa)T). How do the local modes
contribute to each of the collective Williamson modes? This can be answered by
studying the symplectic transformation 17 = Sn between the local and global modes.
In particular we want to directly relate the symplectic transformation to the eigen-
vectors of P4 Q4 (or QaP4). Since we previously set (pg) = 0, the symplectic
transformations do not mix the ¢’s and p’s, so we can write

Ga=Uqa, pa=Vpa UVT =1, (4.30)
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where the last condition guarantees that the transformation is symplectic. Now, say
D, the diagonal matrix with the symplectic eigenvalues of M,. Thus D4 may be
written as

Dy=UQ U =VP, VT, (4.31)

where for clearness we emphasize that the above expressions are not equations for
the eigenvalues of Q and P, since Ul # U and VT # V. They just follow from

Eq. and SJST = J. Let u™ and v™ be right eigenvectors of P, Q4 and
Q4 Py, respectively. corresponding to the symplectic eigenvalue A,,, so that

(PaQa)u™ = X3u™, (QaPa) 0™ = A0 (4.32)
It is convenient to introduce the normalization
w™Tym =1, (4.33)
It is then possible to see that
™) = cmQat(m) u™ = d,P 0™ (4.34)

where the proportionally constant c,,,d,, must satisfy the condition ¢,,d,, = 1/\?,.
A natural choice to make is ¢,, = d,, = A-!, implying that u™ and v™ must be
normalized so that

pMTP ™ = 4 MTQ ™ = A, . (4.35)

Since Q4 and P4 are symmetric, u™ and v(™ are respectively the right and left
eigenvectors of P4 Q4. This implies, together with (4.33)), the following spectral
decomposition and orthogonality condition

]PA QA = Z )\ilu(m)v(m)T y u(m)TU(n) = 5mn . (436)

Using Egs. (4.34) and the orthogonality condition above, we finally arrive at the
following condition

vMTP 0™ = ¢ M™TQ 0™ = X\ - (4.37)

We can now build the symplectic transformation matrix U. Let ®; be a column
vector with all entries set to zero except the ith one. One can then verify by direct
substitution that the matrices

U=> ®,u™" vV=> &, (4.38)
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satisfy Eq. (4.31). It is now interesting to express the relation between the local and
collective phase-space (global) modes as

g Z WM P = Z o™p; . (4.39)
icA icA

Now, if the local site creation operator is defined as

1
a; = 5[&]1' + fi_lpi] ) (4.40)

where £ is some arbitrary dimensional parameter, the creation operator for the m-th
Williamson can be expanded as

i = 5 [ + g™+ (60— g™al] - (aa)

i€A

This expression can be recast into a more convenient form

— Z \/ P (i) [cosh Ti(m)ai + sinh Tl-(m)a;r] , (4.42)

P (1) = ul™ ™ (4.43)

(m) 2,.(m)
7™ (i) = tanh ™" (“(m—”> . (4.44)

From (4.33)) one can easily check that Y, P (i) = 1. For each mode m, the function
P (4) captures the weight of the local site participation and for this reason is called
mode participation function.

In Fig.[A.1] it is shown the 3D plot of the mode participation function P™ (i) of
the entanglement entropy of a single interval of length /4, = N4 = 60 in a periodic
chain of total length L = N = 300 for the free massless boson. The modes are
ordered according to their corresponding eigenvalue, from the greatest to the lowest.
One can appreciate how for the dominant mode P (i) has two peaks close to the
boundary between A and B, while the less relevant mode has a peak in the center of
the interval.

where

and

4.3.1 Estimating the central charge form the entanglement entropy con-
tour

In [201], Vidal and Chen proposed the following ansatz for the entanglement contour
of one interval in 1 4 1 dimensions for free fermions

c (/2
3(0—i—1/2)(i+1/2)"

sa(i) = (4.45)
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Figure 4.1: The mode participation function P™(7) for the entanglement entropy of a
single interval of length N4 = 60 in a periodic chain of total length N = 300 for the
free massless boson. The mode participation function, as said in the main text, gives
a measure of how much the ith site of the subregion A contributes to the m-mode.
The modes are ordered according to their corresponding eigenvalue, from the greatest
to the lowest. One can appreciate how for the first dominant mode P (i) has two
peak close to the boundary between A and B, while the less relevant mode has a
peak in the center of the interval.
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Figure 4.2: Entanglement entropy contour s(i) of three different intervals of length
¢ =100, 200,400 in an infinite harmonic chain (thermodynamic limit) plotted against
Eq. (4.45) with ¢ =1 (wf = 41071 is kept fixed). The black line represents ¢ = 1.

where ¢ = N4 is the length of the interval A, and i = 0,...,¢ — 1, labels its sites.
This formula is compatible with the entanglement entropy when the large ¢ limit is
taken and we can replace the sum over sites by an integral

1 . (—1/2 / T )
=3 20—7); 6 5 — 3! 1). 4.4
;SA(Z) 3;;2 200 — 5)j 6/21[ (1—2) 3 ogl+ O(1) (4.46)

Considering our bosonic oscillators in the thermodynamic limit, in Fig.[4.2] we plot
the entanglement contour of an interval of length ¢, keeping wf = 4 - 107% fixed. The
black line is Eq. with ¢ = 1, the central charge of the underline CFT. The
estimation works, but is not as accurate as the one for fermions shown in Fig. 6 of
[201]. Note that we had to compute the entanglement profile for a single region, while
using entanglement entropy to find ¢ requires a large number of subregions. Notice
that Eq. corresponds to the entanglement temperature §(z) for one interval in
one dimension [206, [207]

Hy :/A/B(ZL‘)TO()(I‘), Hy = —logpa, (4.47)

where H, is the entanglement Hamiltonian and Tpo is the energy density. In our
preliminary study we wanted to push forward this analogy and check if it was correct
also for finite systems with periodic boundary conditions (PBC). In [207], the entan-
glement temperature for this case is written and simply consists in taking Eq.
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Figure 4.3: Entanglement entropy contour of an interval of length ¢ = 80 in a chain
of length L = N = 200, plotted with respect to the finite size version of Eq. (4.45)).
The three main lines corresponds to different masses w = 107* (blue), 107¢ (red),
1078 (green). The three different markers corresponds to different ¢ = 400, 600, 800,
keeping fixed the ratio ¢/L = 2/5. A dependence on the mass is evident.

and substitute ¢ — L/msin(¢w/L), ({ —i —1/2) — L/wsin((¢{ —i¢ — 1/2)w/L) and
(i +1/2) — L/msin((i + 1/2)7/L). However, in the case of finite size systems and
PBC, as shown in Fig.[f.3] the estimation of the central charge seems not to work
properly. We numerically checked three different small masses m = 10~4,1075,1078
and three different ¢ = 400, 600, 800 keeping ¢/L = 2/5 fixed. It is easy to notice that
none of the slopes is one. Moreover, they are all different and a dependence on the
small mass is evident. This remains an open problem in our preliminary analysis.

4.3.2 Positivity of the entanglement entropy contour for bosons

As already mentioned in §4.1] the entanglement contour was first introduced in [201]
to decompose the bipartite entanglement entropy of lattice free fermions between
two extended regions A and B into different contributions, each from single site in
A. By construction, as described in both the participation function and the
contour for fermions are positive and therefore this is in agreement with the properties
required in [201] and listed in §4.1 In , the mode participation function of
bosonic Gaussian oscillators was introduced and also numerically studied when A is
a single interval. In [202], Frérot and Roscilde generalized the notion of contour to the
entanglement of any quadratic (bosonic or fermionic) lattice Hamiltonian. In their
work they pointed out the possibility that the contour for bosons might be negative,
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Figure 4.4: Mode participation function of a subsystem A composed by two disjoint
intervals (each of length £4 = N4 = 30 in a chain of L = N = 300). The different
subfigures represent six different distances d between the two intervals. P (i) ex-
hibits negative values (see Fig.[4.5| (a)), differently from the well behaved case of one
interval. For small distances d, the profile of one interval feels the presence of the
other, while for far enough distances each profile becomes symmetric, as if the other
interval were not present.
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Figure 4.5: (a) it is plotted the mode m = 2 participation function of entanglement
entropy of two equal disjoint intervals of length N, = 30 and separation d = 9 in a
chain N = 300. The red circles correspond to negative values of P=2)(i). In (b) it
is shown the entanglement entropy contour for disjoint (d = 3,9, 15) intervals.
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since the mode participation function gains a minus sign compared to the one for
fermions (see Eq. (22) of [202]).

In this section we will list our preliminary results about the entanglement entropy
contour for bosons. First, we numerically check (in our 1+ 1 harmonic chain) that for
configurations in which A is composed by just one interval, the mode participation
function (and therefore the contour) is positive. On the contrary, when A is made
by two disjoint intervals may be that the mode participation function shows some
negative values. However, the contour turns out to be always positive in all the
numerical examples of disjoint intervals we considered. In this section we will discuss
in more details the case of the two intervals, which is not present in the literature
and prove the positivity of the entanglement entropy contour for bosons. Let us first
start with some preliminary steps.

The entanglement entropy can be written in the following form which is
more suitable for our discussion

SA:TI”(f(\/QAPA)), i:1,...£A, (448)
where
f(x) = (x+1/2)log(x +1/2) — (x — 1/2) log(x — 1/2). (4.49)

The contour can be obtained by inserting in the trace a projector on the i-th site,
M@ = |i)(i|. Thus, we have

sa(i) = Te(MY f(/QaPa)), i=1,...,Na. (4.50)
To see this, let us recall that the matrices /Q4 P4 and /P4, Q4 can be diagonalized

as
VI QuP,V =D, U 'WP,QuU =D, (4.51)

where V' and U are the real invertible matrices introduce in Eq. . We recall
that they are not orthogonal because /Q P4 is not symmetric. The matrices V' and
U are related by VT = U~!. D is the diagonal matrix with the A, > 1/2 on its main
diagonal. Since f in - is analytic, it can be written as an infinite sum of powers

and therefore
F(VQaER) = F(VDVY) = V(D). (452)
Now, f(D) is diagonal with the diagonal elements the S(A;) = f(A\g)’s. The r.h.s. of

becomes
Te(MDf(\/QuPy)) = Te(MDV =Y MPVif (W)U

jlk

=Y d0uv u SOw) = Y P uP s () =3 PEES (),
jlk k k
(4.53)
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where we used that P*(i) = vfk)ugk) is the mode participation function defined in
(4.43). In Fig., plot the participation function of a subsystem A composed by
two disjoint intervals (each of length ¢4 = N4 = 30 in a chain of L = N = 300).
The different subfigures represent different distances d between the two intervals. For
close intervals (small d) the profile of one interval feels the presence of the other,
while for far enough distances each profile become symmetric, as if the other interval
was not present. As described at the beginning of this section, in general the mode
participation function for bosons might be negative. Numerically we checked different
configurations for the 1 4+ 1 harmonic chain: single intervals and disjoint intervals.
In the former case, we do not find any negative value for the mode participation
function, while in the latter some negative values emerge. However, while the mode
participation function is sometimes negative (see Fig.[4.5] (a)), the contour obtained
is numerically always positive (Fig.[4.5] (b)). This can be prove also in a rigorous way,
as follows.

The eigenvalues of Q4 P4 are Ay > 1/2 and f(x) > 0 for z > 0. Therefore,
f(VQaP4) > 0. Since M@ is a projector, it is symmetric and positive definite, and
therefore M®@\/Q,P,M® is positive definite too and have positive trace. Finally,
since (M®)2 = M®_ we have Tr(M® f(v/QaP4)) = Tr(MO f(/QaP)MD) > 0.
Thus, we conclude that the entanglement entropy contour is always positive.

The same proof holds also in the case of the contour for Rényi entropies, which is
defined as follows

W= X Pr0s 0. sP0 = | (v 3) - (a-3) ]

meAy
(4.54)
being that the mode participation function P™(7) is the same as for the entanglement
entropy and the function Sg")(x) > () for x > 0.

4.4 Negativity contour: an ansatz

In this section we try to implement the same approach used for the entanglement
entropy contour in order to find a definition of the contour for the logarithmic neg-
ativity. Let us consider a chain of N bosonic oscillators in the ground state, which
is a pure Gaussian state. We now take a set of Ny < N sites and bipartite it in
two subsets Ny, and Ng,, i.e. Na, + Ny, = N4. In this framework, the logarithmic
negativity ca be written as

1

vy — —H = log max {1%} . (4.55)

Vp + =
k 2 Vi

E=> ), E0) = ~log|jn + 3

|
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where the v, > 0 are the symplectic eigenvalues of 1/ Q4 I@A, being }IN”A =R4,PaR Y,
where R4, is the matrix introduced in Eq.(3.12)).

Inspired by the procedure described above for the mode participation function,
let us introduce the following mode participation function for the negativity

Pi) = ™o, (4.56)
where now ﬁgm) and ﬂgm) are the eigenvectors of PyQ4 and Q4 Py, respectively. The
contour of the negativity, similarly to the entanglement entropy case, can be defined
as
Na

e(i) =Y P™(1)E(vm). (4.57)

m=1

Being that » ., P™(i) = 1, we recover the first equation of (4.55), as expected.

4.4.1 Negativity contour in the pure case

Let us consider the case of a pure state p = |¥) (¥| acting on a bipartite Hilbert
space, where B =0 (A = A; U Ay, S4 = 0). In this case we remind that the relation
between logarithmic negativity and 1/2-Rényi entropy

£=250"=35\? (4.58)

holds and the moments of the partial transpose are related to the Rényi entropies as
follows 95, (96]

Tr o' odd n =n,,
(4.59)

w ) - {

It is important to underline that this result depends on the parity of n. From this
relation, by employing that SX) = SX;) for pure state, we obtain

glno) = (“T”) CRETR (4.60)

e = (1=5) (S5 + sl (4.61)

(Trpne/ ) even n = n, .

where S ) has support only in Ay, k = 1,2. Suppose now that N4, < Ny, it is useful
for our dlscussmn remind that, being in a pure state, the symplectic eigenvalues of
D 4, are the same of D4, plus a number Ny, — Ny, of 1/2, which do not contribute. For
the N4, + N4, symplectic eigenvalues of the partial transpose, we can divide them in
those less then 1/2, denoted by vy, those greater then 1/2, denoted by v, and those
equal to 1/2, namely 1, /2. The latter are exactly N4, — N4, and do not contribute
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Figure 4.6: In this figure, Eq. is plotted with n. = 1. We can see that, when
B = 0, the well known relation between negativity and Rényi entropy S(/?) holds

site by site.
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to the moments of the partial transpose. This suggests the existence of a relation
between the v’s and the \’s different from 1/2; or in an equivalent way between the
eigenvalues of the partial transpose and the partial density matrix (different from 0).
In other words the negativity spectrum is not independent from the entanglement
spectrum [208]. Starting from Eq. (4.61]), we can write

S 2) - (o-2) |28 (- (-]
(4.62)
from which

(oG9 ()] s
N N T

and after some algebra it is easy to obtain the followmg relations

VE =M — A2 == (4.65)
Vi _Akﬂ/v—— (4.66)

These equations are nothing else that Eq. (11) of |208] written in terms of sym-
plectic eigenvalues. Eq. (11) of [208] was found from Eq. (4.59) using the Schmidt
decomposition of an arbitrary bipartite pure state.

We recall that the contour for Rényi entropies was defined in Eq. and the
one for the moments of the partial transpose is

=Y PHEM (), EM(v) = —log KV + %)n — (y — %) n] . (4.67)

meA

As it is shown in Fig.[4.6] the negativity contour, when restricted to sites in region
Ag, k = 1,2, coincides site by site with half of the contour of the 1/2-Rényi entropy
in region Ay. This means that Eq. (4.58]) is true also locally, namely site by site

. 1 . )
5(Z> - 5 <5i€A1 SA (Z) + 52'6142 S Ay (2)) ’ (468)
where d;c4, = 1 if © € Ay, zero otherwise. We also checked the same relation for the
contour of the moments. This allows us to write

. Ne Ne Ne .
e (j) = (1—7) (526,41 s/ ()+5zeA2sA2/2>()), Vie A (4.69)

. 1- o o . .
e)(i) = ( 2” ) (5@1 S5 (i) + Giea, SA2)(Z)> L Ve A, (4.70)
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Figure 4.7: P™ (1) versus sites and modes for the negativity of two equal and adjacent
intervals (N4, = N4, = 20, chain of N = 200 sites). The subregion B that was
traced out is not plotted and the transparent plane separates modes corresponding
to symplectic eigenvalues v, < 1/2 (front of the plot), which contributes to the
negativity, from modes corresponding to v, > 1/2 (back of the plot), which do not
contribute in Eq. . The main contribution to negativity comes form the sites
which are close to the boundary between A; and A,, while sites close to B do not
partecipate. For what concerns the moments of the partial transpose, where also
the eigenvalues v, > 1/2 enter into the game, one can observe that they receive
contributions also from the back part of the plot. That is the reason why they have
with B an area law (see also [164])

4.4.2 Negative values in the logarithmic negativity contour

One can try to prove the positivity of the negativity contour following the same logic
we used for the entanglement case. However, this approach fails. The starting point
for the proof of the positivity of the entanglement contour for bosons was Eq. (4.50)).
One can write the contour for negativity, Eq. , in the same form of Eq. (4.50))
for the entanglement contour and obtain

£(i) = Tr (M%(VQA IP’A)) , (4.71)
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where we recall that M) = |i)(i| is the projector on the i-th site. Now

ﬂ@z—bg{

L1
x —_ —
2

x—%H. (4.72)

This function is not analytic (due to the presence of the absolute value) and there-
fore we cannot prove that the negativity contour is positive by the straightforward
generalization of the proof discussed in for the entanglement entropy contour
for bosons.

In Fig. it is shown 75’"(1) versus sites and modes for the negativity of two equal
and adjacent intervals (N4, = N4, = 20, chain of N = 200 sites). The subregion
B that was traced out is not plotted and the transparent plane separates modes
corresponding to symplectic eigenvalues v, < 1/2 (front of the plot), which contribute
to the negativity, from modes corresponding to v, > 1/2 (back of the plot), which
do not contribute in Eq. . One can easily see that the main contribution to
negativity comes form the sites which are close to the boundary between A; and A,,
while sites close to B provide a very small relative contribution. For what concerns
the moments of the partial transpose, where also the eigenvalues v, > 1/2 enter into
the game, one can observe that they receive contributions also from the back part
of the plot. That is the reason why they exhibit an area law behavior with B (see
also [164]).

In Fig. we plot the mode participation function P™(3) for two disjoint inter-
vals with increasing distance between them. It is natural to compare this figure with
Fig.[.4] where for d = 30 the profiles of the two intervals were completely symmetric,
as if the presence of one interval does not influence the profile of the other. Now, for
what concerns P (i) relative to the modes corresponding to v, > 1/2 (lower part) it
seems as each profile is not affected by the presence of the other, while for 75’”(2) rel-
ative to v, < 1/2 (upper part) the profile of one interval still feels the presence of the
other. Numerically, using the harmonic chain in 1 + 1-dimensions we tested several
configurations where the subregions A; and A, were adjacent or disjoint intervals.
The mode participation function 75m(z) shows negative values, both for adjacent and
disjoint intervals. This miss fact was also present in P™ (i) for disjoint intervals (see
Fig.[4.5 (a)), but we proved that the entanglement contour s4(i) = > P™(i)S(An)
is positive (also for Rényi entropies), as shown also numerically in Fig.[4.5] (b). More-
over, we numerically had evidence that not only the mode participation function but
also the contour for negativity shows up negative values, in particular close to the
boundary with the traced out region B, both for adjacet (see Fig.[4.9(a)) and disjoint
intervals (see Fig.[1.9] (b)).

In Fig. (a), it is plotted the contour for the negativity between two equal
adjacent intervals of length Ny = Ny = 40 in a chain of N = 400 oscillators. As
expected, the contour has a peak close to the boundary shared by the two intervals
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Figure 4.8: In this three figures we are considering the participation function for
the negativity of a subsystem A composed by two disjoint intervals (each of length
¢y = N4 =30 in a chain of L = N = 300). It is natural to compare this figure with
Fig.[4.4] where for d = 30 the profiles of the two intervals were completely symmetric,
as if the presence of one interval does not influence the profile of the other.
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and it then decreases while reaching the opposite endpoints. However, in red are
underlined the undesired negative values. The same happens also for the case of
disjoint intervals, as shown in red in Fig.[4.9| (b).
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Figure 4.9: In (a) it is plotted the contour for the negativity between two equal
adjacent intervals of length Ny = Np = 40 in a chain of N = 400 oscillators. The
contour has a peak close to the boundary shared by the two intervals and it decreases
while reaching B. Negative values occur for sites close to B region. The same miss
fact happens in (b), where the intervals are disjoint.

In Fig.[4.10] we consider the case of adjacent intervals, focussing on the region
close to B where the logarithmic negativity contour becomes negative. In the scaling
limit the negative values do not disappear.

This miss fact invalidates the interpretation of the contour [201], which was
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Figure 4.10: The scaling limit of the contour for the negativity between two equal
adjacent intervals for the region where the contour becomes negative. The length of
the intervals is 1/10 the length of the whole system.

thought to be a quantifier of how much the degrees of freedom in the 7th site con-
tribute to the entanglement between the two regions A; and As.
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Conclusions

Entanglement negativity has drawn a lot of attention in the last years as a very useful
tool to quantify entanglement between separated regions or in general mixed states
of quantum many-body systems. The entanglement entropy computed for disjoint
regions only measures the amount of entanglement between the union of the intervals
with the rest of the system. If one needs the entanglement shared by the disjoint
regions, which are in general left in a mixed state after the rest is traced out, the
entanglement entropy is no longer useful, and other measures must be used. The
definition of the negativity makes it a computable measure of entanglement |31] also
in many-body systems, and we saw that it can be computed in QFT, at least in
principle, using the replica trick [95] |96]. However, the analytic continuations leading
to analytic expressions for the entanglement entropy and the logarithmic negativity
of disjoint regions can be very difficult to perform, even for simple CFTs.

In Chap.[2] we studied this problem numerically for the CFTs given by the free
massless boson (compactified or in the decompactification regime) or by the Ising
model, where Tr p’; for a generic number of disjoint intervals |70, |71, |94] and Tr(p%1U )"
are known analytically [95H98]. The numerical extrapolations have been performed
through a method based on rational interpolations, which has been first employed
in this context by [171]. Its reliability has been checked by reproducing the existing
results found from the corresponding lattice models through various techniques like
exact diagonalizations |63} 94] and Tree Tensor Networks [64]. In our analysis, we ob-
served that for the entanglement entropy one finds the same curve through different
extrapolations already with small values of the degrees p and ¢ of the polynomials
occurring in the numerator and in the denominator respectively of the rational inter-
polation. Instead, for the logarithmic negativity higher values of p and ¢ are needed
for the regime of distant intervals, where it falls off faster than any power. Extrapola-
tions having higher values of ¢ are more efficient in providing the expected result, but
they can show some spurious behaviour in some parts of the domain. Our numerical
analysis has been limited both by our computational resources (in the evaluation of
the Riemann theta functions for large matrices) and by the features of the model (e.g.
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for the logarithmic negativity of distant intervals). These obstacles prevented us to
treat some interesting cases like the logarithmic negativity of two disjoint intervals
for the compact boson and for the Ising model because high values of n are needed
to get convincing extrapolations. We remark that lattice results for £(x) have been
found in [97] for the Ising model through Tree Tensor Networks, while for the com-
pact boson they are not available in the literature (see [122] for Ry obtained through
Quantum Monte Carlo).

When singularities in n occur (see e.g. [65, [209, 210]), the numerical method
adopted in Chap.[2)is not expected to be stable and to reproduce the correct analytical
continuation. However, a more detailed analysis of the behaviour of the method in
these cases would be interesting and should be addressed in the future. As for the
one dimensional systems that have been considered, given the good agreement with
the lattice results, a posteriori we expect that there are no singularities in the ranges
of n that have been explored.

The rational interpolation method has been also employed to address some cases
whose corresponding lattice results are not available in the literature (e.g. the U(1)
gauge theory in 2 4+ 1 dimensions has been studied in [171] and the case of three
disjoint intervals for the Ising model in . Thus, it is a useful tool that could
be used in future studies to find numerically the entanglement entropy and the log-
arithmic negativity of disjoint regions (or for single regions whenever the analytic
continuation is difficult to obtain) for other interesting situations like e.g. for CFTs
in higher dimensions [87, |88, 90, (92| and in the context of the holographic corre-
spondence |77, 78, 80-86|, which has interesting connections with the MERA tensor
network technique 149, 211-217].

In Chap.[3] we have investigated the logarithmic negativity £ and the moments of
the partial transpose for adjacent domains A; and A, in the ground state of a two
dimensional harmonic square lattice with nearest neighbour spring-like interaction.
The regime of massless oscillators in the thermodynamic limit has been considered.

By exploring various configurations of adjacent domains, we have shown that,
at leading order for large domains, the logarithmic negativity and the quantity &,
introduced in satisfy an area law in terms of the length of the shared curve
0A; NOA,, suggesting a relation between the coefficient of the area law term in these
quantities and the coefficient of the area law term in the Rényi entropies.

A subleading universal logarithmic term occurs in £ and &,, whenever the shared
curve contains vertices, being its endpoints included among them. The values of the
corner function of £ have been obtained for some pairs of angles. For the vertices of
0A; NOA, corresponding to pairs of explementary angles, we have proposed that the
corner function of &, is related to the corner function entering in the Rényi entropies
[147]. This relation implies that the corner function of &£ for this kind of vertices
coincides with the corner function of the Rényi entropy of order 1/2. This statement
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has been supported by numerical evidences.

As for the vertices of the curve dA; N OA, corresponding to a tripartition of the
angle of 27, their contribution to the logarithmic term in £ and &, is characterized
by a new corner function which depends on two independent angular variables. The
numerical values of this corner function for £ have been given in for some pair
of angles (see also Fig.[3.7).

In this context, It would be interesting to provide further checks of . In
particular, the analytic continuation to n = 1/2 of the corner function found by
Casini and Huerta [147] should be performed. More importantly, a method should be
found to compute analytically the corner functions b(6,v) and b,,(6, ) for the vertices
partitioning the angle of 27 in three parts. By analogy with the results of [154, |157]
obtained for the corner function of Sj4, it could be interesting to study the corner
function b(#, ) for equal angles as § — 7w~. In order to extract reliable numerical
results for the logarithmic term of &, from the fit of the lattice data, the unusual
corrections to the scaling must be studied, extending the analysis done by Cardy
and Calabrese [140] in 1 + 1 dimensions. Finally, it is worth studying the corner
contributions to £ and &, for other models, both on the lattice and in the contin-
uum. In general, the study of negativity in higher dimensions, where few results are
available [124} |125], still remains an open problem. In particular not much has been
investigated in higher dimensional QFT [218|, unlike for the entanglement entropy,
the Rényi entropies and the mutual information where some important results have
been found [87] 92, 93, 219].

In Chap.[] we discussed some preliminary results about the spatial distribution
of entanglement entropy, which was first studied in [179, 201}, [202], and logarithmic
negativity. The concept of contour may be a very useful tool in the understanding
of the corresponding entanglement measure. However, its definition and the related
mode participation function have to be better understood. In the case of entangle-
ment entropy of a free bosonic theory, we showed that negative values appear in the
mode participation function for disjoint intervals. Nevertheless, the entanglement
contour is always positive. For logarithmic negativity, the situation gets worse. The
mode participation function that we have introduced by a naive generalization of the
one occurring for the entanglement entropy still have negatives values, but now also
the contour presents them in particular close to the boundary between A and B.
Presumably in the case of negativity a new definition is necessary for the contour and
only a more detailed analysis may give the answer.

Finally, let us mention that a holographic description of negativity is still lacking,
even if some steps have been made in that direction [132, [133]. A deeper analysis
of this issue could lead to interesting results on the connections between quantum
information and quantum gravity.
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