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Abstract

The role of ribonucleic acid (RNA) in molecular biology is shifting from a
mere messenger between DNA (deoxyribonucleic acid) and proteins to an im-
portant player in many cellular activities. The central role of RNA molecules
calls for a precise characterization of their structural and dynamical properties.
Nowadays, experiments can be efficiently complemented by computational ap-
proaches.

This thesis deals with the study of the dynamical properties of small RNA
molecules, exploiting various computational techniques. Specifically we inves-
tigate two different complementary methods, elastic network models (ENMs)
and Markov state models (MSMs).

ENMs are valuable and efficient tools for characterizing the collective inter-
nal dynamics of biomolecules. We evaluate their performance by comparing
their predictions with the results of atomistic molecular dynamics (MD) sim-
ulations and selective 2’-hydroxyl analyzed by primer extension (SHAPE) ex-
periments. We identify the optimal parameters that should be adopted when
putting into use such models.

MSMs are tools that allow to probe long-term molecular kinetics based
on short-time MD simulations. We make use of MSMs and MD simulations
to measure the kinetics and the timescale of the stacking-unstacking motion
for a collection of short RNA oligonucleotides, comparing the results with
previously published relaxation experiments. We then move to the study of
the process of the fraying of the terminal base pair in a helix, characterizing
the different involved pathways and the sequence dependence of the process

timescale.
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Introduction

Since the statement of the “central dogma of biology” in the ‘50s, ribonucleic
acid (RNA) began its journey in the world of biology as a simple messenger
between DNA (deoxyribonucleic acid) and proteins. Today many things have
changed. Over the past three decades, discoveries have unearthed a surprising
complex world of RNA molecules that seems to rival proteins in terms of three
dimensional structures and biochemical functions (for a review on the topic
see for example [Morris and Mattick, 2014]). The study of the conformational
changes that RNA molecules undergo and their dynamical features is a funda-
mental step to understand the complex biological mechanisms in which these
molecules are involved. Nowadays different experimental techniques can help
in elucidating the structure, from the single nucleotide resolution of chemical
probing experiments, to the finer scales revealed by cryo-EM, NMR and X-ray
crystallography. By contrast, to elucidate fine details of the dynamics and the
kinetics of these molecules is more challenging, and the amount of information
that can be obtained with methods like single molecule pulling experiments,
FRET, or ensemble relaxation experiments, is limited.

For this reason, computer simulations are a fundamental tool to study
the functional dynamics of RNAs. Indeed, they allow to accurately model
and interpret experimental data, allowing one to access to a vast quantity of
fine-detailed information, otherwise unavailable. Accurate predictions can be
achieved with the help of accurate, atomistic molecular dynamics (MD) sim-
ulations (see époner et al| [2014] for a recent review on the topic). Given the
number of atoms that has to be modeled in these calculations, the simulation
of biomolecules with MD is a very challenging task, and even the simulation

of a few nanoseconds of dynamics usually requires hours of CPU time, while
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Introduction

even the fastest relevant biological processes take place in time scales on the
order of microseconds.

Different methods have been developed in order to circumvent this obsta-
cle. For example, calculation of thermodynamic quantities of interest can be
sped up by reducing the complexity of the model by coarse-graining the rep-
resentation of the system (see, e.g., Dawson et al.| [2016]), or by introducing
artificial forces that guides the system through the energetic barriers separat-
ing different configurations (see Bernardi et al. [2015] for a recent review).

Several efforts are being spent towards the development of coarse-grained
approaches capable of striking a good balance between having a simplified
(and computationally efficient) description of the structure and interactions of
a molecule and being able to capture its salient kinetic and thermodynamic fea-
tures. It is important to note that, viable coarse-grained models are valued not
only because they are amenable to extensive numerical characterization, but
precisely because their simplified formulation can offer a valuable insight into
the main physico-chemical mechanisms that affect the behavior and properties
of a given biomolecule.

Because of their transparent and simple formulations elastic network mod-
els (ENMs) have proved very valuable to characterize, with a minimal compu-
tational effort, the collective internal dynamics of proteins and enzymes start-
ing from the sole knowledge of their structures. The increasing evidence that,
as for proteins, also the biological functionality of RNAs is often linked to their
innate internal dynamics, poses the question of whether ENM approaches can
be successfully extended to these biomolecules.

In the first part of this thesis, we tackle this still-largely unexplored issue by
considering various possible families of ENMs for RNAs and assess their valid-
ity and predictive capabilities by comparison against extensive MD simulations
and selective 2’-hydroxyl analyzed by primer extension (SHAPE) experimen-
tal data. We observe that the best ENM performance is attained when each
nucleotide is represented by a specific combination of three ENM centroids
(sugar-base-phosphate, or SBP). We also use ENM representations to estimate
the entropic contributions to the free-energy of formation of tertiary structure

elements of an adenine riboswitch.
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While coarse-grained models as ENMs are extremely valuable tools it is
sometimes necessary to take advantage of the more precise predictions avail-
able with the help of accurate, atomistic MD simulations. A possible route
to bypass the aforementioned sampling problem of MD is to exploit the the
constant increase in the availability of parallel computational resources. It is
currently feasible to produce tens to hundreds of independent MD trajectories,
that can be combined to reach timescales that start to have a relevance in bi-
ological processes. The analysis of the multiple conformational changes that
occur during such long trajectories is however a challenging task. One of the
most successful approaches is to make use of the mathematical framework of
Markov State Models (MSMs) (see Pande et al. [2010] and (Chodera and Noé
[2014]). This methods have been shown to be extremely successful in analyzing
MD trajectories of many biomolecular systems.

The MSM framework can be employed to elucidate the kinetics of confor-
mational changes that are strictly tied to the sophisticated cellular processes
played by RNA. These dynamics are often regulated by different signals such
as ligand concentration, temperature or pH, and may take place over differ-
ent timescales, from picoseconds to minutes [Mustoe et al., 2014]. We decided
to focus on the two key interactions in the formation of RNA 3D structures,
namely base pairing and base stacking.

In the second part of this thesis we investigate the kinetics of stacking and
pairing in RNA. By analyzing atomistic MD simulations with MSM we reveal
that the main relaxation modes of RNA oligonucleotides consist in transition
between alternative folded states and that the kinetic properties predicted by
the current RNA amber99 force-field are consistent with the results of previ-
ously reported relaxation experiments. Moreover we present a novel combina-
tion of methods to construct MSMs and apply it to unravel the kinetics of the
opening, or fraying, of an RNA double helix, which is the first step in many

biologically relevant transitions.
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Outline of the thesis

This thesis is divided in two parts, related to the two complementary and
independent topics of elastic network models (ENM) (Part|l) and Markov state
models (MSM) (Part M), both applied to the study of the dynamical properties
of RNA molecules.

Part [ is organized as follows:

e Chapter (1| contains a brief introduction on the topic of ENM.

o Chapters [2 and [| report the results of a comparison between the pre-
dictions of ENM and the results of molecular dynamics (MD) simula-
tions and selective 2 -hydroxyl acylation analyzed by primer extension
(SHAPE) experiments. This work has been published in [Pinamonti et al.,
2015];

o Chapter [ summarizes preliminary results on the applicability of ENM
to estimate the vibrational entropy of RNA molecules.

Part [ll}is organized as follows:
e Chapter 5 introduces the formalism and the basic theory behind MSM;

o In Chapter [ MSMs are applied to the study of the kinetic properties of
oligonucleotides. The content of this chapter is part of a paper currently

in preparation [Pinamonti et al., 2016];
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Outline of the thesis

e In Chapter [7] we present and test an alternative approach to the con-
struction of MSMs, that combines the methods of Buchete and Hummer
[2008] and [d’Errico et al|[2016]. The application of this method on the
unzipping of the terminal base pair of a RNA double helix is described
in detail in Chapter (8| The results discussed in these two chapters will be
also collected in a future paper.

xvi
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Elastic Network
Models






Chapter 1

Theory of ENM

Understanding the functional dynamics of ribonucleic acid (RNA) molecules
is extremely important due to the increasing number of known biological roles
that they play. Numerical simulations that exploit accurate atomistic models
are becoming more and more important in this sense, helped by the constant
growth in computational resources available (see, e.g., Colizzi and Bussi [2012];
Chen and Garcial [2013]; Kiihrovaa et al. [2013]; Yildirim et al.| [2013]]; Musiani
et al. [2014]; Pan et al.| [2014]; époner et al. [2014]). Nevertheless, the cost, in
terms of time and energy consumption, is often a limiting factor for this kind
of studies. For this reason less informative but faster coarse-grained repre-
sentations are often the only avenue to the investigations of conformational
dynamics in big and complex molecules. Elastic network models (ENM) are
interesting candidates in this sense. They are simple models with a small
number of tunable parameters, and, thanks to the simplicity of their potential
energy form, their dynamical properties can be obtained without the need for

an explicit time evolution of the equation of motion.

Such models were originally motivated by the seminal work of Tirion| [1996]
who showed that the low-energy structural fluctuations of globular proteins
obtained by atomistic molecular dynamics (MD) simulations could be reliably
reproduced by replacing the detailed inter-atomic force field by spring-like,
harmonic interactions. This remarkable fact was rationalized a posteriori in

terms of the generally collective and large-scale character that low-energy fluc-
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Theory of ENM

tuations have in proteins, which makes them amenable to be captured with
models that are oblivious of the small-scale atomistic details. This observa-
tion, in turn, prompted the further development of simplified harmonic mod-
els where not only intra-molecular interactions, but the structural descriptions
themselves were simplified by representing each amino acid with only few in-
teraction centers, or centroids [Hinsen, 1998; Bahar et al., [1997; |Atilgan et al.,
2001].

Compared to the well-established case of proteins, the development and
application of ENM to RNAs is still relatively unexplored. In fact, starting
from seminal work of Bahar and Jernigan| [1998], it is only recently that it
has been tackled systematically [Setny and Zacharias, 2013; |Zimmermann and
Jernigan, [2014].

In this chapter we will introduce the general theory of ENM, that will be
used in Chapters 2 and 3 when benchmarking the performance of ENM against
MD simulations and SHAPE experiments.

1.1 Quadratic potential

Elastic or Gaussian models are coarse-grained representations able to capture
the essential dynamical space of a macromolecule with a minimal computa-
tional cost. The basic assumption of such models is that the vibrations of
a molecule (represented as a set of interaction centers, or beads) around its
minimal-energy structure are sufficiently small. Therefore it is possible to ex-
pand its Hamiltonian up to the second order in terms of the deviation around
the minimum. Another assumption of the ENM is that the second derivative
of the potential energy can be written as a sum of two-body terms. With these
simplifications, the resulting potential energy is equivalent to the one of a set
of beads connected with harmonic springs with elastic constants k;;:
1 1

V(ri, 1) = Skij(|ri = rj| = dij)* = Skij(dij — dij)* (1.1)

where r; and r; are the positions of beads i and j, d;; is the distance between

them in a reference structure.



1.1 Quadratic potential

Figure [1.1] shows a representation of the ENM of an RNA molecules (The
sarcin ricin domain (SRD) from E.coli 23S rRNA), compared with the atomistic

representation.

Figure 1.1: Representation of the ribosome sarcin-ricin domain with full atomistic
detail (left) compared with an ENM (right). The ENM shown uses only one bead per
nucleotide.

Expanding the potential energy we have

TJH Tv
ki sdtsdy (1.2)
dl.]? ij i

- ki;
V(dij) = V(di) + % )3
Hv

where d;; = d;; + d;;, u and v denote the Cartesian coordinates x, v, z. Eq. 1.2
j j jr # y q
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Theory of ENM

can be rewritten in a simpler form as

V(dij) = V(dij) + U, (1.3)
U(&l”i,y, 57’]'/1,) = 5ri,yMij,yv5rj,v (14)

where M is a 3N x 3N symmetric matrix proportional to the Hessian of U, and
Jr; is the deviation of bead i from its position in the reference structure.

The values of the parameters k;; can be defined in different ways [Bastolla,
2014]. In this work, we considered a sharp cutoff model, in which the elastic

constants are simply given by
kij = (1.5)

Here R is a cut-off radius, which defines the range of interaction between the
beads.

1.2 Choice of the beads

The two key ingredients of ENMs are the choice of the beads and their range
of interaction (R¢). Both of them must be tuned in order to obtain a model
that optimally reproduces the dynamical features of the studied biomolecules.
It is of course of primary importance that the choice for these two parameters
is universal among a family of biomolecules.

Although the original ENM considered all heavy atoms as beads [Iirion,
1996], it was later shown that a simple coarse grain representation is able to
capture the main dynamical features of a protein [Hinsen, 1998; Atilgan et al.,
2001; Delarue and Sanejouand, 2002; Micheletti et al, 2004]. In their simplest
formulation, ENMs incorporate harmonic interactions between pairs of C* cen-
troids while a two-centroid description, (for both the main and side-chains) ap-
pear to be optimally suited to capture pairwise mechanical correlations consis-
tently with MD simulations [Micheletti et al., 2004; Micheletti, 2013} Fuglebakk
et al., 2013].



1.3 How to benchmark ENM against atomistic simulations

By comparison with proteins, the development and application of ENMs
aimed at nucleic acids is still relatively unexplored. Bahar and Jernigan| [1998]
first applied ENMs to the conformational dynamics of a transfer RNA using a
model with two beads per nucleotide. Several authors further simplified this
model using a single bead placed on the phosphorus atom [Tama et al., 2003}
Wang et al., 2004; Van Wynsberghe and Cui, 2005; Wang and Jernigan, 2005;
Fulle and Gohlke, 2008; Kurkcuoglu et al., 2009; Zimmermann and Jernigan,
2014]. This choice seems to rise from the analogy with the C,s on the backbone
of proteins, but has never been justified in a rigorous way. More recently,
an extensive search on all the atoms on the backbone [Setny and Zacharias),
2013], suggested that the best candidates to host a single ENM bead is the the
sugar ring in the backbone. A successive work by |[Zimmermann and Jernigan
[2014] shown that a model with one bead in each heavy atom is the best choice
in order to reproduce the variations in an ensemble composed by different
experimental structures of the same molecule. An intermediate choice between
one bead per nucleotide and an all-atom model has been adopted by Delarue
and Sanejouand [2002] and Yang et al. [2006] that considered three beads for
each nucleotide, representing the phosphate group, the ribose ring, and the

nucleobase.

1.3 How to benchmark ENM against atomistic sim-

ulations

It is useful to compare the predictions of ENM with atomistic MD simulations
of selected systems, in order to validate their applicability, optimally tune the
model’s parameters, and compare the performance of different alternative elas-

tic models.

In order to extract from an MD simulation information that can be directly

compared with ENM it is useful to consider the covariance matrix of the dis-
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placements of each atom/bead. The covariance matrix is defined as

Cifor = (0rigudrja) (1.6)
or; M (1’1 U —(r i,y>) (1.7)

after optimal superposition on a reference structure. The covariance matrix can
be equivalently rewritten as

Cito = 2/\ 208,08, (1.8)

Where A, and v* are the eigenvalues and the eigenvectors of CMP
g g

, respectively.
The first (i.e. associated to the largest eigenvalues) eigenvectors of this matrix
are often referred to as principal components (PC) of motion of the system.
The corresponding eigenvalues represent the amplitudes of the motion of the

system projected on that eigenvector.

In the case of the ENV, it is easy to show that the covariance matrix of the
system is given by

N61

ENn (1.9)

IP‘ ]/

where ¢* and w" are the eigenvalues and the eigenvectors of the matrix M,
defined in Eq. The sum is here performed excluding the six eigenvectors
with null eigenvalues, which correspond to the translational and rotational

degrees of freedom. The eigenvectors and eigenvalues of CFNM

represent the
normal modes of the elastic network and correspond to the PCs predicted
by that model, that can be directly compared with those obtained from MD

simulations.

Several ways to compare the prediction of ENM with MD trajectories have
been developed and proposed (see for example |[Fuglebakk et al. [2013]). Here

we summarize some of them.



1.3 How to benchmark ENM against atomistic simulations

Correlation between fluctuations

In the ENM framework, the mean square fluctuation (MSF) of each bead is

obtained from the covariance matrix as

3
MSF; = (617) = Y Cij (1.10)
u=1

Analogous fluctuations can be obtained from the MD simulation. The two
MSFs profiles can then be compared by means of the Pearson correlation coef-
ficient, R. It is worth remarking that the MSF are known to be correlated with
the inverse of the number of nearest neighbors [Halle, 2002]. In this sense a
realistic prediction of these amplitudes is a condition which should be easily
satisfied by any meaningful ENM.

Owerlap between principal components eigenspaces

In order to take into account all the relevant information embedded in the
correlation matrix one should consider a quantity that relates the similarity of
its PCs.

Given two eigenspaces identified by their set of eigenvectors v; and w; and
the corresponding eigenvalues A;, 7;, one can define the root mean square
inner product (RMSIP) (cit.)

RMSIP = | © Y (v; - wj)? (1.11)

iz

Although this measure is often used to compare ENMs and MD, it bears an ar-
bitrariness in the choice of the number of relevant modes to compare, 1, which
is usually taken to be equal to 10. The root weighted square inner product
(RWSIP) was defined to overcome this difficulty [Carnevale et al., 2007], and

9
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its expression is given by

Loy Avyj(o; - w))?

RWSIP =
YN Ay

(1.12)

In the following chapter we will present our findings using the latter measure,
although the RMSIP was shown to give equivalent results.

1.4 Effective Interaction Matrix

When comparing different ENMs one must consider only the degrees of free-
dom in common between the models. To achieve this, it is necessary to com-
pute the effective interaction between the degrees of freedom (i.e. beads) of
interest [Zen et al., 2008; Micheletti, 2013|]. Let us consider a system of N de-
grees of freedom, and two subsystems, a2 and b. The interaction matrix of the

total system can be written as

Mo [ Mal W (1.13)
Wl M, '

Where M, and M, are the interaction matrices of the two subsystems, while
W represent the interactions between them. Now, if we are interested only in
subsystem a, the effective interaction matrix governing its dynamics will be

given by
M = M, — WM, 'TWT (1.14)

If the two subsystems are connected by a sufficient number of springs, M,
does not have null eigenvalues and can be straightforwardly inverted. For a
detailed derivation of this equation see [Zen et al., 2008]. Using this effective
matrix one can compute the fluctuations relative to the subsystem considered,

as well as the corresponding PCs of motion.
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Chapter 2

Testing ENM performance against

atomistic MD simulations

In this chapter we present an exhaustive and rigorous study regarding the ap-
plicability of elastic network models (ENMs) on ribonucleic acids (RNA), com-
paring the predictions of the model with atomistic molecular dynamics (MD)
simulations. This kind of comparison has never been performed systemati-
cally. In Setny and Zacharias| [2013] only the atomistic dynamics of one simple
RNA double strand was studied and in one older work [Van Wynsberghe and
Cui, 2005] a comparison between ENMs and MD was performed only for a
limited time-scale. Nevertheless, it is extremely interesting to compare ENM
with MD because simulations can give insights on the dynamics of a molecule
with an extremely fine level of detail, enabling to explore and fully understand
the accuracy of ENM.

In this study, we took in exam different RNA molecules, each bearing dif-
ferent kind of secondary and tertiary structures, in order to investigate the
applicability of ENMs on an arbitrary ribonucleic system. We also focused
our attention on the comparison between different possible choices for the
beads over which the ENM should be constructed in a ribonucleic system. To-
wards the goal of identifying the most suitable RNA ENM, we went beyond
the single-centroid representation and assessed the performance of an enlarged

family of ENMs where we consider several single- or multi-centroid alternative
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Testing ENM performance against atomistic MD simulations

representations for ENMs as well as their cutoff interaction distance.

With our approach, that optimally complements the insight offered by pre-
vious studies, we established that the best compromise between dealing with
the minimal number of degrees of freedom and yet have an accurate descrip-
tion of the internal dynamics, is offered by a three-centroid representation.

The main content of this chapter has been published in Pinamonti et al.
[2015].

2.1 Details of the MD simulations

We performed atomistic MD simulations on four different RNA molecules (Fig-
ure 2.I). These systems were chosen so as to cover a variety of size and struc-
tural complexity and yet be amenable to extensive simulations, as detailed in
Table The RNA duplex S&EUE with two central G-U wobble base pairs

chain simulation

PDB code length  time (us)
Duplex 1EKA 16 1.0
Sarcin-ricin domain 1Q9A 25 0.9
Hammerhead ribozyme 301D 41 0.25
add Riboswitch 1Y26 71 0.25

Table 2.1: RNA dataset: details and length of MD simulations.

was taken from an NMR model [Chen et al., 2000]. As a second system, we
considered the sarcin ricin domain (SRD) from E.coli 23S rRNA, which consists
of a GAGA tetraloop, a flexible region with a G-bulge and a duplex region
[Correll et al., 2003]. The U nucleobase at the 5" terminal was excised from the
high resolution crystal structure. Additionally, we performed MD simulations
on two more complex molecules: the hammered ribozyme [Scott et al., 1996
and the add adenine riboswitch [Serganov et al., 2004]. Both systems are com-
posed of three stems linked by a three-way junction. In the add riboswitch, two
hairpins are joined by a kissing loop interaction. A schematic representation
of the secondary structures is shown in Fig. Except for the RNA duplex,
all the other systems were previously studied by means of MD simulations

12



2.1 Details of the MD simulations

iat

D

Figure 2.1: Secondary structures of the four molecules studied: A) eight-base pairs
duplex; B) sarcin-ricin domain; C) hammerhead ribozyme. D) add adenine riboswitch;

[Spackovéd and Sponer, 2006; [Van Wynsberghe and Cui, 2005; Priyakumar and
MacKerell, 2010; Gong et al,, |2011; |Allnér et al., 2013} |Di Palma et al., 2013,
2015].

All MD simulations were performed using GROMACS 4.6.7 [Pronk et al.,
2013] with the AMBER99 force field [Hornak et al., 2006] including parmbsc0
[Pérez et al., 2007] and xor3 [Banas et al., 2010] corrections. GROMACS pa-
rameters can be found at http://github.com/srnas/ff. The trajectories were
obtained in the isothermal-isobaric ensemble (T = 300 K, P = 1 atm) with
stochastic velocity rescaling [Bussi et al.,2007] and Berendsen barostat [Berend-
sen et al., 1984]. Long range electrostatics were treated using particle-mesh-
Ewald summation [Darden et al,, [1993]. The equations of motion were inte-
grated with a 2 fs time step. All bond lengths were constrained using the
LINCS algorithm [Hess et al., (1997]. Na* ions were added in the box in
order to neutralize the charge, and additional CI~ and Na™ at a concentra-
tion of 0.1 M. AMBER-adapted parameters were used for Na™ [Aaqvist, 1990]
and Cl™ [Dang, (1995]. The adenine ligand bound to the add riboswitch was
parametrized using the general Amber force field (gaff) [Case et al., 2004] and
partial charges were assigned as discussed in reference [Di Palma et al., 2013].
The analyses of the hammerhead ribozyme and of the add riboswitch trajecto-

ries were performed after discarding the first 10 ns and 5 ns, respectively.
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2.2 Details of the ENM

We investigated different ENM representations considering all possible com-
binations based on the use of one or more interaction centers representing the
three chemical groups of each nucleotide: the sugar, the base and phosphate
(in short S, B and P, respectively). Each group is represented by a specific atom,
namely C1’ for the sugar, C2 for the base and P for the phosphate group. This
selection follows from the customary coarse-graining choices previous adopted
in various contexts [Hyeon and Thirumalai, 2005] including elastic networks
[Delarue and Sanejouand, 2002; Yang et al., 2006; Setny and Zacharias, 2013;

Zimmermann and Jernigan, 2014].

Figure 2.2: Schematic representation of the beads used to construct the ENM. The
three atom used as centroids are the C2 carbon in the base (red), the C1” carbon in the
sugar ring (cyan) and the P atom in the phosphorous group (yellow).

The second crucial parameter in the ENM construction is the cutoff radius
Rc. This should be chosen large enough so that the resulting Hessian matrix
has only six null eigenvalues. Since the optimal value could depend on the
precise choice of the beads, we systematically evaluated the agreement with
MD trajectories for a large range of possible values of R¢. For each model the
interaction cutoff distance, R, is varied in the 3 — 30 A range with 1 A in-

14
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crements so as to assess the dependence of the predictions on the degree of

connectivity of the elastic network.

For each RNA dataset entry, the reference structure for ENM calculations
is set equal to the centroid structure of the associated MD trajectory. This is
the conformer with the lowest average mean square distance from all MD-
sampled structures after an optimal rigid structural alignment [Kabsch, 1976].
In the case of the add riboswitch, the adenine ligand atoms are included in the
ENM calculation. In most practical applications, elastic models are built on the
experimental structures. We test our calculations on each molecule considering

both choices, and found no significant difference between the results.

The consistency of ENM and MD simulations was then assessed by com-
puting both the correlation coefficient between the mean square fluctuations
(MSF) of each bead and the root weighted square inner product (RWSIP) for
the essential dynamical spaces.

Reference Models

The statistical significance of both the MSF correlation and the RWSIP is as-
sessed by using two terms of reference. The first one is given by the degree of
consistency of the MSF or RWSIP for first and second halves of the atomistic
MD trajectories. This sets, in practice, an upper-limit for very significant cor-
relations of the observables. The second one is the degree of consistency of the
random elastic network (RNM) of Setny and Zacharias| [2013] with the refer-
ence MD simulations. This is a fully-connected elastic network where where
all pairs of beads interact harmonically though, for each pair, the spring con-
stant is randomly picked from the [0, 1] uniform distribution. Because this null
ENM does not encode properties of the target molecule in any meaningful way,
it provides a practical lower bound for significant correlations between ENMs

and MD simulations.
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Testing ENM performance against atomistic MD simulations

2.3 Results of the comparison

In this section we compare the fluctuations predicted by different ENMs with
those obtained from MD. by means of the similarity measures described in
Chapter 3. To keep the comparison as simple and transparent as possible,
each measure was computed separately for the S, B and P interaction centers.
For multi-center ENMs this required the calculation of the effective interaction
matrix (Eq.[1.14). Using as a reference the experimental structure in place of the
MD centroid introduces only minor differences in the results, see Fig. Each
measure was then averaged over the four systems in Table 2.1 (see Fig. for
non-averaged values). The results, shown in Fig. are profiled as a function
of the elastic network interaction cutoff distance, R,. The smallest physically-
viable value for R, that is the abscissa of the left-most point of the curves,
is the minimum value ensuring that the ENM zero-energy modes exclusively

correspond to the six roto-translational modes.

10 T T T T T T T T T T T T T T T T T T

RWSIP

Figure 2.3: Agreement between MD simulations and ENM for different radii of cutoff.
Correlation between MSF (upper panels), and RWSIP (lower panels). Values at the
optimal cutoff values are represented by circles. A: phosphate beads; B: sugar beads; C:
nucleobase beads. The gray regions correspond to values below the random-network
model or above the MD self-agreement.
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2.3 Results of the comparison

The main feature emerging from Fig. [2.3|is that, across the various models,
the highest consistency with MD is attained when R is marginally larger than
its smallest physically-viable value. It is also noted that the minimum value of
R, varies significantly across the models: for the AA model, which is the most
detailed ENM, it is as low as 4 A, while for the single-bead ones it is often
larger than 10 A. The MSF and RWSIP accord both decrease systematically as
R. is increased starting at the optimal value. This fact, which to our knowledge
has not been reported before, can be rationalized a posteriori by considering that
upon increasing R., one endows the network with harmonic couplings among
nucleotides that are too far apart to be in direct physical interaction, and this

brings about a degradation in model performance.

Furthermore, it is noted that the detailed, but also computationally more
onerous, AA model is consistently in better accord with MD data than any
of the coarse-grained ENMs. For this model, the degree of ENM-MD consis-
tency is practically as high as the internal MD consistency at the optimal value
R, ~ 7 A, or even higher in some cases. As a general trend, we notice that the
accord between MD and ENMs decreases for coarser models (see also Fig.
for models including two beads per nucleotide). Importantly, the AA and SBP
models perform well not only on average but for each considered structure,
whereas the performance of models with fewer interactions centers is less con-
sistent across the repertoire of RNA molecules, see Fig. For all models,
considering the optimal value of R. both MSF and RWSIP accord are signifi-
cantly higher than for the null model, indicating that all the ENMs are overall
capable to capture the salient physical interactions of the system.

It is important to mention here that in the MD simulation of the duplex
we observed a fraying event at time ~ 670 ns (see Fig. 2.4), followed by a
re-zipping into the native structure. o As a matter of fact, fraying events are
expected at RNA termini on the ys time-scale covered by our simulations [Zgar-
bova et al., 2014]. In spite of the fact that these events are clearly out of the
linear perturbation regime where one would expect ENM to properly predict
fluctuations, the correlation between MD and ENM is reasonably high. By
removing from the analysis the highly fluctuating terminal base pairs, the cor-
relation is further improved (Fig. [A.6).
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Figure 2.4: RMSD of the duplex along the 1 us trajectory, computed with respect of
the centroid frame. The increase in the RMSD visible at t ~ 670 ns correspond to a
base fraying event.

In Table we summarize all the results for the optimal cut-off radius,
determined as the radius that maximizes the RWSIP. The last column of the
table reports the average number of neighbors of a bead, that is the number of
other beads at distance smaller than R, from it.

best number of

!/
ENM C1' C2 P others R, ( A) neighbors

p v 20 15.3
S v 15 9.9

B v 17 14.8
sp v v 19 30.4
BP v o/ 18 29.9
SB v v 11 154
SBP v v Y 9 12.0
AA v vV v 7 52.9

Table 2.2: Summary of the tested ENMs. For each model, the adopted beads are
marked. AA include all heavy atoms. Values of the cutoff radius (R.) that maximize
the RWSIP and average number of neighbors are also shown.
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2.4 Effect of ion concentration

2.4 Effect of ion concentration

Ribonucleic acids are charged molecules, and electrostatic interactions play a
major role, both in their structural stability and in their functional and dy-
namical behavior. It is an open question how and if elastic models are able to
capture such a feature [Zimmermann and Jernigan, 2014]. The importance of
long-range interactions can be a key difference between ribonucleic acids and
proteins, and this should be, in principle, taken into account when developing
an ENM suitable for RNA molecules. With this goal in mind, we conducted
MD simulations at different Na®/Cl~ concentrations and with different ion
parameterizations. We then performed PCA on each trajectory, considering
only the motions of atoms that we used as beads in the coarse-grained ENMs,
namely C2, C1” and P for each nucleotide. The resulting eigenspaces are then
compared by mean of the RWSIP. The results of this study are summarized in
Tab. 2.3l We notice that in our simulations with standard AMBER ions we did

Molecule 0.0M 01M 05M 10M
Duplex 0.938 0.998 0.991 0.990
SRD 0.983 0.983 0.982 0.993

Table 2.3: RWSIP between 100 ns trajectories at different NaCl concentrations and a
500 ns trajectory at 0.1 M. Except for one case, all the values of RWSIP are comparable
with the value obtained comparing the first 100 ns with the rest of the 0.1 M trajectory.

not observe any ion-crystallization event [Auffinger et al., 2007]. For a max-
imum robustness we tested the alternative ion parametrization by Joung and
Cheatham III| [2008]], obtaining very similar results.

From Tab. can see that there is no significant difference between the
principal components of motion for systems simulated at different ion con-
centrations. This finding is in agreement the study of |Virtanen et al.| [2014],
and suggests that the dynamic of RNA molecules is not sensitive to changes
in concentrations, at least for what concern the time-scale spanned by our sim-
ulations. This result justifies the use of ENM with no explicit dependence on
the ionic strength. It is however important to note that our test was limited

to monovalent cations. The treatment of divalent cations is known to be very
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Testing ENM performance against atomistic MD simulations

challenging because of force-field limitations and sampling difficulties.

2.5 Discussion

ENMs are simple but powerful models that enable to study and characterize
the global dynamics of macromolecular complexes. In this chapter we applied
ENM to RNA molecules with different, non-trivial structural elements such
as GU Wobble pairs, non-canonical base pairs, bulges, junctions and pseudo
knots. Two criteria in the choice of the molecules to treat, have been a) a lim-
ited size in order to be able to efficiently produce statistically significant MD
trajectories and b) a stable tertiary structure, so that the Gaussian approxima-
tion of the ENM can be, at least in principle, applied. The accuracy of different
ENMs was tested with respect to the agreement with atomistic MD simulations
in explicit solvent.

The results presented in this work show that, in general, the fluctuations
and the normal modes predicted by ENMs for nucleic acid systems are consis-
tent with the PC computed by atomistic MD simulations. This is in agreement
and confirms the general results of previous studies, that compared ENMs
with experimentally determined ensembles [Setny and Zacharias| 2013; [Zim-
mermann and Jernigan, [2014]]. In this work we probed the nature of this agree-
ment, systematically comparing different models, with different level of coarse-
graining.

Among the models with one bead in each nucleotides we found that the
best candidate is a model with a bead in the sugar ring (the C1” atom, in our
case). This fact was already pointed out in Setny and Zacharias| [2013], where
the authors performed a systematic search for the best bead position among
all the atoms in the backbone. We complemented those findings by analyz-
ing a wider range of RNA motifs and enlarging the search for the optimal
representative atom to the nucleobase.

We note that the model with a single bead on the C2 atom of the base (B
model) reproduces structural fluctuations less accurately than the S model and
the optimal interaction cutoff is more dependent on the specific molecule. This

can affect the general transferability of the model to different RNA molecules.
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2.5 Discussion

These shortcomings are even more evident for the P model, which present
the worse performance when compared to other models. In Fig. we can
observe that the average performance of this model at its optimal cutoff value
is significantly lower that the ones reached by different, more accurate models.
Moreover, the cutoff radius that maximizes the RWSIP is different from the
one that gives the best agreement for the fluctuations. As we can see from
Fig. on the structure 1IEKA the model seems to fail to predict meaningful
fluctuations for values of R¢ greater than 18 A.

Moving on to two-beads models, we observe that ENMs employing beads
both in the bases and in the backbone (SB, BP) perform systematically better
than any single-bead model with only a modest increase in the computational
complexity. SB and BP models also outperforms the SP model. We also stress
that being able to reproduce the fluctuations of the bases is by itself an advan-
tage because their functional role is of primary importance in nucleic acids and
their dynamics can affect different aspects of the behavior of RNA molecules
(see, e.g., Refs. [Colizzi and Bussi, 2012; Zgarbova et al., 2014; Gendron et al.,
2001])

Increasing the number of beads featured in the ENM models (see also
Fig. for 5/6-beads model), improves the agreement with MD, consistently
with what had been observed for proteins [Fiorucci and Zacharias, 2010]. The
AA-model showed to be the best ENM among the ones we tested. Fig.
shows this model reach an high level of accuracy, often comparable with the
MD simulation self-agreement. This finding is in agreement with the recent
work of |Zimmermann and Jernigan| [2014]. We focused our attention on this
model, as well as on the the SBP model, which seems to give a net increase
in the overall performance with respect to the single-bead models, at the cost
of a small increase in the computational complexity (Fig.[2.3). It is also worth
noting that the optimal radius of interaction for the SBP model (9 A) is close to
the cutoff value usually employed for constructing ENMs on protein systems
[Micheletti et al., 2004; Fuglebakk et al., 2013|], a fact that can be convenient
when considering RNA-protein complexes.

In conclusion, ENMs were here compared systematically with fully atom-

istic MD simulations. We found that, in spite of their simplistic nature, the
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Testing ENM performance against atomistic MD simulations

three-center model (SBP) and AA elastic networks are capable of properly
reproduce MD fluctuations. Of these two accurate ENMSs, the three-center
model (SBP) provides an ideal compromise between accuracy and computa-
tional complexity, given that retaining the full atomistic detail when modeling
large structures, such as the ribosome and other macromolecular RNA /protein

complexes, can be computationally extremely demanding.
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Chapter 3

Comparing atomistic fluctuations
with SHAPE reactivity

In this chapter, we propose and test a procedure to compare fluctuations with
selective 2 -hydroxyl acylation analyzed by primer extension (SHAPE) experi-
ments [Merino et al., 2005; |Wilkinson et al., 2006; Weeks and Mauger, 2011].

SHAPE is a chemical probing technique that makes use of reagents that
preferentially flexible regions of the ribonucleic acid (RNA) backbone. The
reagents used for this experiments (two commonly employed examples are N-
methylisotoic anhydride (NMIA) and 1-methyl-7-nitroisatoic anhydride (1M7))
react with the 2’-hydroxyl group forming a complex that inhibits the action of
reverse transcriptase, so that a comparison of retrotranscribed DNA fragments

enables a quantification of SHAPE reactivity at nucleotide level.

SHAPE reactivity is empirically known to correlate with base dynamics and
sugar pucker flexibility at the nucleotide level [McGinnis et al., 2012]. For this
reason it is, in principle, a good candidate for validating predictions of RNA
internal dynamics. Recently, Kirmizialtin et al.|[2015] have proposed a link be-
tween fluctuations of selected torsional angles and SHAPE reactivity and used
SHAPE data as an input to improve the accuracy of force-field terms in an
atomistic structure-based (Go-like) model. However, no other attempt of using
SHAPE reactivity measurements to assess the predictive accuracy of three-

dimensional coarse-grained models or atomistic molecular dynamics simula-
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Comparing atomistic fluctuations with SHAPE reactivity

tions, as been performed in the past.

We first set out to analyze the MD simulations so as to identify the local
fluctuations that best correlates with SHAPE data, then we test the accuracy
of elastic network models (ENMs) in reproducing such fluctuations, and we
finally compare directly the ENM predictions with the SHAPE experimental
results. A related comparison based on B-factor profiles, which are commonly
used to validate ENM predictions (albeit with known limitations [Fuglebakk
et al} 2013]), is provided in Fig.

SR domain HH ribozyme
900 T T T T T T T

B-factor (Angstrom?)
B-factor (Angstrom?)

0 5 10 15 20 25 0 5 10 15 20 25 30 35 40
Residue index Residue index

add riboswitch

Pearson correlation coefficients

Molecule PDB-MD | PDB-ENM | MD-ENM

riboswitch 0.57 0.52 0.95

SR domain 0.31 0.17 0.88
HH ribozyme 0.22 0.30 0.83

B-factor (Angstrom?)

{
0 10 20 30 40 50 60 70
Residue index

Figure 3.1: Comparison between the B-factors relative to the C1’ atoms, predicted
by ENM, computed from MD simulations and extracted from the PDB files. The
correlation between the experimental B-factors and the values predicted by ENM and
MD are significantly lower than the correlation between ENM and MD. This can be
explained considering that the experimental B-factors include many effects, such as
crystal contacts and lattice defects, and thus are not guaranteed to provide a reliable

account of the local amplitude of motion for a molecule in solution [Fuglebakk et al.,
2013].

The main content of this chapter has been published in Pinamonti et al.
[2015].
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3.1 Comparison between MD fluctuations and SHAPE

SHAPE experiments have been proved to be able to capture the flexibility of
an RNA chain at nucleotide resolution [Merino et al., 2005]. However, there is
no standard way to obtain SHAPE reactivity directly from an MD simulations
or from an ENM. We here considered several possible proxies for SHAPE re-
activity, namely: i) the variance of the distance between selected pairs of beads
and ii) the variance of the angle between selected triplets of beads. The latter
approach was inspired by a similar analysis performed in Ref. [Soukup and
Breaker, 1999] to predict in line probing experiments.

We first compared MD simulation of the add riboswitch described in Chap-
ter 3 with SHAPE data reported in Ref. [Hajdin et al., 2013]. The fluctuations
of these quantities were computed for each nucleotide, using PLUMED [Tri-
bello et al., |2014]. Afterwards, we computed the correlation coefficient with
the corresponding SHAPE reactivities. Figure 3.2/ shows the correlation of the
resulting fluctuations with SHAPE data. In order to avoid possible bias due to
the correlation definition we computed both the Pearson correlation coefficient
and the Kendall rank correlation coefficient. As we can see from Figure
the quantity that better reproduces experimental data is the fluctuation of the
distance between consecutive C2s (R = 0.78). This is remarkable, since the
SHAPE reaction does not explicitly involve the nucleobases. These fluctua-
tions are shown, as a function of the residue index, in Figure

This result can be interpreted by considering that most of the structural
constraints in RNA originates from base-base interactions, and fluctuations in
base-base distance are required for backbone flexibility. The fluctuations of the
angle O2'-P-O5’ instead showed a poor correlation with experimental SHAPE
data (R = 0.05). We notice here that the value of this angle has been shown
to correlate with RNA stability related to in-line attack [Soukup and Breaker,
1999], and its fluctuations were recently used in the SHAPE-FIT approach to
optimize the parameters of a structure-based force-field using experimental
SHAPE reactivities [Kirmizialtin et al., [2015].

We also observe that the fluctuations of the distance between consecutive

C2 atoms could be correlated with ribose mobility, which in turn depends
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Figure 3.2: Comparison between SHAPE reactivities and distance/angle fluctuations,
computed from an atomistic MD simulation. The SHAPE reactivities relative to the
i-th residues are compared with the fluctuations between atoms belonging to both
the considered residue and the one following in the chain. The two profiles are then
compared by mean of the Pearson linear correlation coefficient (R) and the Kendall
rank correlation coefficient (7).

on sugar pucker [Altona and Sundaralingam, 1972, 1973]]. Interestingly, C2’-

endo conformations have been shown to be overrepresented among highly

reactive residues in the ribosome [McGinnis et al., 2012]. An histogram of

C2-C2 distances for selected sugar puckers is shown in Fig. indicating
that C2’-endo conformations correspond to a larger variability of the C2-C2

distance.

In conclusion, although the scope of the present SHAPE profiles compari-
son could be affected by the limited accuracy or precision of both experimental
and MD-generated data, the obtained results suggest that a good structural
determinant for SHAPE reactivity is arguably provided by base-base distance
fluctuations.
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3.1 Comparison between MD fluctuations and SHAPE
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Figure 3.3: Distribution of the C2-C2 distances recorded during the MD simulation of
the add riboswitch for residues in C2’-endo/ C3’ conformation. The pucker conforma-
tion was determined from the pseudorotation phase P, computed using the baRNAba
analysis tool (http://github.com/srnas/barnaba). We identified C2'-endo conforma-
tion with values of P between 100 and 250 degrees.
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Comparing atomistic fluctuations with SHAPE reactivity

3.2 Fluctuations from ENM

In the ENM framework, the variance of the distance between two beads can be

directly obtained from the covariance matrix in the linear perturbation regime

as
3 dudP
2 _ G4 oup p p P
i, = ﬁzlj—z(c;’; +Cf =G = Cif) (3.1)
o, b=

Where dAZ. is the uth cartesian coordinates of the reference distance between
bead i and j.

Using eq. we quantified to what extent ENMs are able to reproduce
distance fluctuations at the nucleotide level. This test complements the assess-
ment made using MSF and RWSIP, which mostly depends on the agreement
of large scale motions and does not imply a good performance in the predic-
tion of local fluctuations. This comparison is presented in Figure 3.4 where the
ENM-MD Pearson correlation coefficients for each considered ENM are sum-
marized, for each of the different ENMs and RNA molecules taken into exam
in Chapter 3.

We remark here that the duplex (1IEKA) is undergoing a base fraying, so
that MD exhibits very large fluctuations at one terminus (see Fig. 2.4). The
overall accord between MD and ENM is moderately good, although signifi-
cantly worse than the accord with the large scale motions presented before.
Overall, it is seen that the both the SBP model and the AA models provide the
best agreement. We thus again focused our attention on these two models.

3.3 Comparison between ENM and SHAPE

We compared the predictions of ENM with the SHAPE data for two differ-
ent molecules. The add riboswitch, already considered in Chapter 3, and the
thiM riboswitch (PDB code: 2GDI). The SHAPE data were taken from Hajdin
et al.| [2013]. As we can see from Fig. 3.5| the prediction of ENM are in qual-
itative agreement with the SHAPE data. In particular, high SHAPE reactivity
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Fluctuations of consecutive C2s: correlation ENM-MD
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Figure 3.4: Pearson correlation coefficient R, computed between the fluctuations of
the distance between consecutive C2s, from the MD simulation and from the different
ENMs.

in the loop and junction regions correspond to highly fluctuating beads, both
for the add and thiM riboswitch. We notice that this agreement goes beyond
the mere identification of the residues involved in Watson-Crick or wobble
pairings [Hajdin et al., 2013]], as there appear several unpaired bases with a
low SHAPE reactivity. This feature seems to be often correctly reproduced by

the C2-C2 fluctuations profile. By visual inspection, it can be seen that non-
reactive, non-paired bases often engage non- Watson-Crick base pairs as well
as stacking interactions, as shown in Fig. The Pearson correlation coeffi-
cients are summarized in Table In this case too, it is found that the AA
ENM performs better than the SBP ENM which, nevertheless, is much less de-
manding computationally because of its simpler formulation. We notice that

Molecule SBP AA MD
add 0.64 0.76 0.88
thiM 0.37 0.59 -

Table 3.1: Pearson correlation coefficients between C2-C2 fluctuations predicted by
ENM/MD and SHAPE reactivities.

using the Pearson coefficient as a measure of similarity we assume that the
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Figure 3.5: Comparison of the flexibility of the add riboswitch (upper panel) and the
thiM riboswitch (lower panel), computed from the fluctuations of C2-C2 distanced
from ENM (blue) and measured in SHAPE experiment (red). The fluctuations C2-C2
computed from the MD simulation are shown for the add riboswitch (green line, upper
panel).
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3.4 Conclusion

Figure 3.6: Example of nucleotides that do not form pairing interaction and have either
low or high SHAPE reactivity. Residues 31 to 35 from add riboswitch, enlightened in
white, have low SHAPE reactivity (< 0.5); they do not form Watson-Crick or Wobble
pairs, but they are stabilized by stacking interactions. Residue 36, in red, presents an
high reactivity (~ 2.07).

C2-C2 fluctuations are linearly correlated with SHAPE reactivity.

3.4 Conclusion

The results presented in the previous sections of this chapter shown that fluc-
tuations obtained from MD and ENM fluctuations can be compared with ex-
perimental SHAPE data. SHAPE is a relatively new technique and a standard
way to connect SHAPE reactivities with molecular fluctuations has not been
reported yet.

As a first step of the analysis we considered various observables com-
puted from atomistic MD simulations against SHAPE data, and established
that the relative fluctuations of consecutive nucleobases provide a viable proxy
for SHAPE data. Our comparative analysis showed that such fluctuations can
be captured well using the SBP ENM, and to an even better extent with the
AA ENM. Possibly, this is a step in the direction of defining a model able to

directly correlate three- dimensional structures with SHAPE reactivities. This
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Comparing atomistic fluctuations with SHAPE reactivity

task is notoriously challenging, partly due to the difficulties of identifying from
a priori considerations structural or dynamical observables that correlate sig-
nificantly with SHAPE data.

Interestingly, both the ENMs are completely independent from the dihedral
potentials and thus should not be directly affected by the pucker conformation
of the ribose. The fact that they can provide a reasonable estimate of the back-
bone flexibility as measured by SHAPE reactivity suggests that the backbone
flexibility is mostly hindered by the mobility of the bases.
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Chapter 4

Entropy from ENM: a test on the add
riboswitch

Entropic contributions to the free energy are fundamental in many biomolec-
ular processes such as folding, binding, and conformational changes. The task
of estimating the entropy from a molecular dynamic (MD) simulation is far
from trivial since it involves sampling a large conformational space. Standard
methods for free-energy calculation requires to collect MD samples along a se-
quence of point connecting the initial and final states of interest. This requires

a large amount of computation in order to sample several transitions.

An alternative approach is to estimate directly the entropy for a given state
of a macromolecule, which can be summed to the enthalpy if the free en-
ergy is needed. Unfortunately this task is far from trivial. Many different
methods have been developed to perform this estimation. A few example are
methods based on the covariance matrix of atomic coordinates [|Andricioaei
and Karplus| 2001]] or forces [Hensen et al., [2014], or on computing the prob-
ability distribution based on the density observed in the simulation [Hnizdo
et al., 2007, 2008; Fogolari et al., 2015]. Elastic network models (ENMs) have
been used to estimate the change in conformational entropy upon binding in
protein complexes, in order to refine the predictions of scoring functions [Zim-

mermann et al., [2012; Zamuner, 2015].

Here we report our tests on the reliability of ENM-derived entropy on a
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Entropy from ENM: a test on the add riboswitch

complex ribonucleic acid (RNA) molecule, the add adenine riboswitch, already
introduced in the previous chapters. We focus in particular on the entropic
contribution to the change in free energy upon the opening of the so-called
“kissing loop”, a tertiary interaction between the P2 and the P3 stems. We per-
formed four MD simulations constraining the distance between the centers of
mass of the terminal loops of the two stems, in order to evaluate the free energy
as a function of the distance between the loops. The results obtained can be
compared with the estimates performed with umbrella sampling simulations
[Di Palma et al., 2015].

4.1 Methods and results

We considered the add adenine riboswitch in its Apo and Holo form. In order
to evaluate the free-energy dependence on the loop-loop distance we enforced
a restraint in the distance between the centers of mass of the residues in the
two kissing loops.

For each form we perform four different MD simulations, with different
values of the distance d (d = 12.5, 20, 30, 34 nm). Each simulation was 40 ns
long. The starting structures were taken from the published by Di Palma et al.
[2015].

The average total enthalpy, U, as well as its statistical error, were computed
using the “g_energy” routine of GROMACS. Fig. 4.1/ reports the average U for
each trajectory.

The entropy for an elastic network whose dynamics is described by the

interaction matrix M, is given by:

SENM = —%kB log(det(M)) + const. (4.1)

We are focusing only on the terms in the definition of Sgyy that will change
when the riboswitch changes is conformation. We recall that in the definition
of M the elastic constant of the springs enters as an arbitrary factor, k. This
leads to a term — kg (3N — 6) log(k) in the entropy.Since the value of k is not

expected to change considerably when considering different conformations of
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Figure 4.1: Total energy (blue) and entropy (red) computed from the MD simulations,
for the Holo (panel A) and the Apo (panel B) forms.

the same molecule we ignored this term when computing entropy differences.
Nevertheless this approximation may be a possible source of imprecision for
the model.

The entropy was computed from each of the 40 ns MD trajectories con-
sidering a three-bead SBP elastic model. The ENM was constructed using,
as reference structures, one frame every 100 ps (401 frames in total), and the
entropy was computed using eq. for each of this frames and taking the
total average for a given loop-loop distance. The error on S was computed
considering the standard deviation of the means of 10 different block (of 40
frames each). Fig. reports the average Sgnw for each trajectory, as well as
the corresponding standard error.

The free energy is computed from the enthalpy and the ENM-entropy, as
F =U — TS, with T = 300 K. Results are shown in figure

4.2 Discussion

Statistical errors reported in Fig. are large. This is expected since the ri-
boswitch considered is a complex system, and the calculation of average po-
tential energy from a simulation is known to require extensive sampling in
order to sample the phase space of all the molecules of both solute and sol-
vent.

The entropy estimation could likely be improved considering a finer coarse
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Figure 4.2: Free energy as a function of the loop-loop distance, as computed from the
MD using the entropy estimated from the SBP-ENM, for the add riboswitch in its Apo
(orange) and Holo (green) form.

graining, namely the AA-ENM model previously described, but the higher
complexity of the model corresponds to a larger computational cost.

The contribution from water entropy is not taken into account by the ENM.
This may be an major shortcoming considering that the stacking interactions
are known to be heavily mediated by hydrophobic effects.

Comparison with umbrella sampling estimations

The free energy estimated here can be compared with the results obtained
by Di Palma et al|[2015]. via umbrella sampling simulations. The values of
AG between the open and closed kissing loops obtained here are in the same
order of magnitude. Nevertheless there are consistent quantitative differences
between our results and the umbrella sampling ones. This may be due to
different factors, such as insufficient statistics, oversimplifications of the three-
beads ENM, or the neglection of solvent contribution.
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Chapter 5

Basic theory of Markov state models

Here we briefly introduce the topic of Markov state models (MSMs) of molecu-
lar kinetics. MSMs are powerful tools that enable extraction of relevant kinetic
information from multiple MD simulations. See |Pande et al. [2010]; Noé and
Fischer| [2008]]; Chodera and Noé| [2014] for a brief introduction to this topic, or
Bowman et al.[[2013]; Prinz et al./ [2011] for a more detailed discussion. Here

we summarize the basic concepts which are relevant for the present work.

5.1 Estimation

The idea behind a MSM is to reduce the complexity of an MD simulation by
dividing the phase space into discrete microstates (e.g. clustering the frames of
the trajectory). Let’s consider a trajectory of N configurations stored at a fixed

time interval At:
X={x(t=0),x(t =At),...x(t = (N—-1)At)} (5.1)

Since each configuration can be assigned to a microstate, s;, the trajectory can
be transformed into a sequence of indexes {s1,s2,...,sy}. It is then possible
to compute the transition matrix, T(7), whose elements, T;;(T), represent the

probability that the system, starting from microstate s;, will transition to mi-
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crostate Sjs after a time T:
T;j = P [x(t + 1) € si|x(t) € sj] (5.2)

This matrix is sufficient to describe the dynamics of the system if the prob-
abilities of transition are only determined by the actual state of the system, and
do not depend on its previous history, i.e. the system is Markovian.

The Markovian assumption implies that the probabilities of being in mi-

crostate s; propagates as

it+7) =) Tyt (5.3)
j=1
or in matrix form:
p(t+7) = T(D)p(t) (5.4

We define the count matrix S
Sij = “number of transitions from s; to s; observed from MD” (5.5)

The likelihood of having a certain transition matrix T given the observed tran-
sitions S is given by

H T. i (5.6)

By taking the logarithm and maximizing with respect to the elements Tj; it can
be shown that the maximum likelihood estimator for the transition matrix T is

given by

T =
TGy

If our MD simulation satisfy detailed balance, also this estimated matrix T

(5.7)

will satisfy it, in the limit of infinite statistics. However, if the amount of sim-
ulation data available is finite, the matrix § will be non symmetric and T will
break detailed balance. In order to obtain a maximum likelihood estimator for
a reversible transition matrix T one has to maximize Eq. 5.6/ with the detailed

balance constraint T;;7t; = Tj;7t;. This problem can be solve iteratively, using a
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quadratic optimization method as explained in Prinz et al. [2011].

5.2 Analysis

Relevant information about the kinetics of the system can be extracted from
the eigenspectrum of T. Specifically, given the conditions of ergodicity and
detailed balance the eigenvalues A; of T will be real and satisfy 1 = Ag >
|Aj| with j > 1 [Hohmann and Deuflhard, 2012]. The left eigenvector associ-
ated to Ap will correspond to the stationary distribution 7.
The matrix T will be non-symmetric. Assuming detailed balance we can
define the symmetric matrix:
Cij = \/Fz'Tz'jL (5.8)
VT
The left and right eigenvectors, r and I, of the matrix T, and the eigenvectors,
v of C will be related by

1

VT

where i is the index of microstates, « the index of the eigenvectors. The vectors

I} = /miri =of (5.9)

v can be chosen to be orthonormal so that v* - vf = dxp, which implies that the
left and right eigenvectors of T are related by I* - rf = Oup-

By performing a spectral analysis of matrix T we can decompose the dy-
namics of the system into independent processes, each represented by the ith
eigenvector of T, for i > 0. The relaxation timescales of such processes can be

computed from the eigenvalues A; of T as

t=— (5.10)

The eigenvectors associated with the eigenvalues smaller than 1 will be
associated to different independent processes of the system. Each eigenvector
represents a certain slow transition (or process) occurring (possibly multiple

times) in the simulation. In particular, regions of the phase-space where the
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eigenvector has an opposite sign are the regions connected by the slow process.

Test the Markovianity

A simple test of the Markovianity of the system is given by the convergence
of the implied timescales as a function of T [Swope et al., 2004]. This can be
easily explained given that exact Markovianity implies that

T(kt) = T(7)* (5.11)

which in turn means that A;(kt) = A;(7)*. By inserting this in Eq. we

obtain

kt T
) = o) — oy T

In a real application the discretized dynamics is not exactly Markovian and

(5.12)

thus MSMs constructed at different lag times will not satisfy this equation
exactly. Nevertheless it is reasonable to expect that this equation should be
approximately satisfy at least for the slowest implied timescales.

A different way to test the Markovianity of a MSM is to check the validity of
Eq. by examining the evolution of transition probabilities between given
metastable sets of microstates. By comparing P[A — B, T(kt)] with P[A —
B, T(T)k], where A,B are two metastable regions of interest, one can asses if
the prediction of the MSM built at lag-time T can reproduce the probability of
transitions observed at a larger value of lag-time k7. This is a more stringent
test than the convergence of the implied timescales. This test is usually referred
to as “Chapman-Kolmogorov test” [Prinz et al., 2011]].

Systematic error induced by the discretization

The source of systematic error is the discretization of the phase space into a
finite number of microstates. This step breaks the Markovianity of the sys-
tem, and modeling the system as a Markov chain causes deviation from the
true dynamics. Nevertheless it has been shown [Prinz et al) 2011] that this

deviation can be reduced in two ways. Increasing the lag-time 7, and using
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a finer and finer discretization. It can be proved that, in the limit of infinite
statistics, the discretization error can be made arbitrarily small by following
any of those two steps. In practice, when dealing with real finite-length sim-
ulations, there are limitations in this sense. Namely, increasing the lag-time
will decrease the time-sensitivity of the model, and increasing the number of
microstates in order to construct a finer discretization will cause overfitting
problems [McGibbon and Pande, [2015].

Statistical error

Estimating the statistical error associated with the predictions of a MSM is not
a trivial task. In principle the uncertainty of any interesting physical quantity
derived from a MSM directly derives from the statistical error in the estimation
of the elements of the count matrix S. However, the fact that many of the quan-
tities of interest are highly non linear with respect to the elements S;; makes
it extremely challenging to give an unbiased and reliable estimation for this
uncertainty. A practical and general way of solving this problem is to draw
samples of random transition matrices from the posterior distribution of pos-
sible transition matrices given a fixed count matrix.This can be done efficiently
using Markov chain Montecarlo (MCMC) sampling of transition matrix, as ex-
plained by [Irendelkamp-Schroer et al.[[2015]. The statistical uncertainty of any
observable can then be directly computed as its standard deviation over the set

of sampled transition matrices.

TICA

Time-lagged independent component analysis (TICA) [Molgedey and Schus-
ter, (1994] is a technique used to reduce the dimensionality of the initial data
set of MD trajectories before proceeding with the discretization of the phase
space and the construction of a MSM [Pérez-Hernandez et al., 2013} Schwantes
and Pande, 2013].

The TICA method requires to compute the time-lagged covariance matrix

CZ']'(T) = <7’Z‘(t + T)i’j(t)>t (5.13)
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and the instantaneous covariance matrix
Cij(0) = (ri(t)r;(1)) (5.14)
The next step is to solve the generalized eigenvalue problem
C(t)U = C(0)A (5.15)

where A is a diagonal matrix whose diagonal elements are the generalized
eigenvalues, Ay, and U is a matrix whose columns are the generalized eigen-
vectors, u”. Finally, the initial coordinates can be projected on the slowest
time-lagged independent components (TICs).

It has been shown that TICA is an optimal way of reducing the dimension-
ality of the input data prior to the construction of a MSM [Pérez-Hernandez
et al., 2013]. This dimensionality reduction can be further improved by us-
ing the kinetic map projection proposed by Noé and Clementi [2015], which
consists in projecting the input data on the space defined by the rescaled eigen-

vectors 1" = A u®.

Coarse-graining a MSM

In order to obtain a good MSM the number of microstates need to be large
enough, so as to reduce the discretization error. This usually leads, for medium
sized biomolecules, to MSM with 102-10* states. This makes visualization and
intuitive analysis of the model hard.

There exist several methods that enable to overcome this problem by ex-
ploiting the kinetic information provided by an MSM to construct an even
coarser representation of the system, lumping the MSM microstates into a
few, metastable macrostates. The most standard approach is to use Perron-
cluster cluster analysis (PCCA) [Schiitte et al., 1999], a method that exploits
the sign structure of the eigenvectors to define the optimal metastable parti-
tion of the MSM microstates. Today, more advanced versions of the method,
PCCA+ [Deuflhard and Weber, 2005] and PCCA++ [Roblitz and Weber, 2013,

can be used to assign to each microstate a probability of being a member of a
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5.2 Analysis

certain metastable macrostate.

Another possibility is to reduce the complexity of the model by constructing
a hidden Markov models (HMM) of the kinetics, as introduced by Noé et al.
[2013]. The idea is that the system is modeled as a Markov chain between
hidden metastable macrostates. These states are not directly observable but
are measured looking at the microstate which at every step is extracted from a
distribution probability that depends on the hidden state.
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Chapter 6

Kinetic properties of RNA

oligonucleotides

ribonucleic acid (RNA) stability depends on a large variety of interactions,
including stacking, hydrogen bonding, and interactions with water and ions
[Bloomfield et al., 2000]. In vacuum, stacking interactions arise from complex
interactions between aromatic rings [Hobza and Sponer, [1999]. However, in
biological environment these interactions are heavily mediated by water. Din-
ucleotides and short oligonucleotides are perfect models to study stacking in
RNA. While the equilibrium properties have been extensively characterized by
NMR measurements [Vokacova et al., 2009; Olsthoorn et al., [1982; Ezra et al.,
1977; ILee et al., 1976} [Lee and Tinoco| [1980; Lee, 1983} [Condon et al., 2015;
Yildirim et al., 2011; Tubbs et al., 2013, their kinetics have been only studied in
a limited number of temperature-jump (T-jump) experiments [Porschke, 1976,
1978; Dewey and Turner) 1979].

Molecular dynamics (MD) provides a tool that can be used to character-
ize in detail the kinetics of these systems, and provide insightful fine-detailed
information that can complement experimental measurements.

In this chapter we present a systematic analysis of the kinetic processes for
RNA oligonucleotides, as predicted by MD simulations. We used Markov state
models (MSMs) and hidden Markov models (HMMs), to provide a complete
description of the transitions characterized by the slowest relaxation times. We
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studied a number of dinucleoside monophosphates, a trinucleotide (AAA),
and a tetranucleotide (AAAA) so as to characterize the dependence of kinetics
on length and sequence. Results are compared with available experiments.
Whereas some of the reported transitions correspond to known artifacts of the
current force field, our results can explain the overall trends. Importantly, we
suggest that measured autocorrelation times may not be directly associated to
transitions between helix and coil structures but to transitions between kinetic
traps characterized by different stacking patterns.

The results presented in this chapter are part of a paper currently in prepa-
ration [Pinamonti et al., 2016].

6.1 Methods

Molecular dynamics simulations

MD simulations were run with different salt concentrations, ionic strength,
sequence, and oligonucleotide length. The dinucleotides and trinucleotides
simulations were performed using GROMACS 4.6.7 [Pronk et al., 2013]. The
tetranucleotide simulation was run using AMBER [Case et al., 2014]. We used
amber99 force-field parameters [Hornak et al, 2006] with parmbscO [Pérez
et al., 2007] and xOL3 [Banas et al., 2010] corrections. Simulations were run at
different temperatures using the stochastic velocity rescaling thermostat [Bussi
et al., 2007]] and the Parrinello-Rahman barostat [Parrinello and Rahman), 1981].
RNA molecules were solvated in explicit water (TIP3P parameters [Jorgensen
et al., (1983]), adding Na™ counterions to neutralize the RNA charge, plus ad-
ditional NaCl to reach the nominal concentration. Details of all simulations are

reported in Tab.

Markov state models

In order to analyze the trajectories produced from the MD we considered the

following set of coordinates:
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CC 277 10 4 96 10 1.0 10 400 0.5 0.93
AC 277 1.0 4 97 10 1.0 10 400 05 094
CA 277 1.0 4 9.1 10 1.0 10 400 0.5 0.95
AA 277 1.0 4 89 10 1.0 10 400 0.5 0.99
CC 300 1.0 8 70 10 10 10 400 05 094
AC 300 1.0 8 70 10 10 10 400 05 0.93
CA 300 1.0 8 66 10 1.0 10 400 0.5 0.95
AA 300 1.0 16 70 10 1.0 10 400 0.5 1.0
AAA 300 0.1 17 570 100 5.0 19 100 50 1.0
AAAA 275 0.13 4 35 100 1.0 44 400 20.0 0.99

Table 6.1: Details of the MD simulations and of the MSM.

1. G-vectors (4D vectors connecting the nucleobases ring centers, as de-
scribed by Bottaro et al.|[2014])

2. Backbone dihedrals
3. Sugar ring torsional angles
4. Glycosidic torsional angles

The dimensionality of the input data was then reduced using time-lagged in-
dependent components analysis (TICA) as described in Pérez-Hernandez et al.
[2013]]; Schwantes and Pande| [2013]. Data were projected on the slowest TICs
using a kinetic map projection [Noé and Clementi, 2015] and then discretized
using a k-means clustering algorithm [MacQueen, 1967]. A lag-time T was
used to construct MSMs that approximate the dynamics of the discretized
systems. Statistical uncertainties were estimated by means of the Markov
chain Monte Carlo (MCMC) sampling of transition matrices from the poste-
rior distribution described in Trendelkamp-Schroer et al|[2015]. All details
and parameters used in the MSMs construction are reported in Tab. The
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MSM construction and analysis was performed using the software PYEMMA
2.2 [Scherer et al., 2015]].

Combined discretization of dinucleotides trajectories

Since the dinucleotide systems share the same number of residues and the
same backbone, the number of coordinates is the same for all of them. This
can be exploited to perform TICA on a virtual trajectory obtained merging
all the individual trajectories of the dinucleotides. We discretized the merged
trajectories using k-mean clustering. For each dinucleotide system, we then
built a separate MSM.

Analysis of the kinetics

From the eigenvectors and the eigenvalues of the transition matrix of an MSM
we can obtain detailed information about the slow processes occurring during
the simulations, as well as a precise estimation of their predicted timescales.
The eigenvectors of the different dinucleotides” MSMs were then compared
using an appropriate measure of similarity. Since the active sets of different
MSMs is different we first mapped all the eigenvectors, ¢, to a common 400-

dimensional space, defining

G = { Vi ifi€ A 61)

0 otherwise

Here, i is the index of the microstate, A is the set of active microstates, 7t is the
stationary distribution of the MSM considered. We then compute the similarity
between two eigenvectors, 1/3“, liJ’B , from different MSMs as the square of their
scalar product, (¢" - 1[35 )2. We also used kernel principal components analy-
sis (KPCA) [Scholkopt et al, [1997] to project the first three eigenvectors of the
eight dinucleotides” MSMs on a 2-D surface, in order to visually group similar
processes from different MSMs. As kernel definition we used ®(¢) = ¢ @ 1,
where ® denotes the outer product. This is invariant for changes in sign of .

This analysis was possible since the MSMs share a common set of microstates,

50



6.1 Methods

given that the clustering was performed on the joint set of MD data of all
dinucleotide systems.

As a further analysis of the dinucleotides” slow processes, we computed
the correlations of these eigenvectors with all the dihedral angles of the din-
ucleotides. The variables with the highest correlation coefficient with a given
eigenvector should be the best suited to describe the correspondent transition
(as explained in |Pérez-Hernandez et al. [2013]). To avoid ambiguities due to
the periodicity of dihedrals we compute the correlation between eigenvector
and torsion 6 as max;[corr(tp, cos(6 +7))], that is shifting the angle by a phase
that maximizes the correlation.

The major non-bonded interaction in short oligonucleotides is the stacking
interaction between consecutive nucleobases. In order to study this we used
the stacking definition proposed in Condon et al.|[2015], that takes into account
1) the distance between the centers of mass of the two nucleobases, 2) the angle
defined by the distance vector between the two centers of mass and the vector
normal to the first base plane, 3) the angle between the two vectors normal
to the two bases” planes. These quantities are combined in a score, s, that
goes from —2 to +2. Nucleotides are considered stacked if s > 1, unstacked
otherwise.

To further simplify the tri- and tetra-nucleotide models (and analyze their
features) we used the kinetic information from the MSMs to lump the mi-
crostates into a few metastable macrostates. This was done using a hidden
Markov model (HMM)), as described in Noé et al.| [2013]]. The resulting metastable
states were then analyzed by looking at the distributions of selected observ-
ables (dihedrals, distances between key atoms, G-vectors [Bottaro et al., 2014],
and stacking score [Condon et al., 2015] between bases).

Comparison with relaxation experiments

MSM predictions can be compared with relaxation experiments that probe the
kinetics of biomolecules. An exhaustive explanation of the theory behind this
comparison is given by Noé et al. [2011]; Buchete and Hummer| [2008]. Here

we will briefly summarize the key concepts.
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Consider a system described by a MSM with n microstates and transition
matrix T. In a typical relaxation experiment a perturbation of the thermody-
namic state of the system (e.g. a change in temperature) results in the starting
distribution, 7y becoming out of equilibrium. The system then relaxes to its
new equilibrium distribution. The relaxation process is monitored by measur-
ing the evolution of an observable A, which is a suitable function of the state

of the system. The time-evolution of A during the relaxation process is given

by )
t
A(t) = A+ ) exp (—?)’y,- (6.2)
i=2 i

Where Ag; is the value of A at the final equilibrium, and 1; is the amplitude
of the ith decay process, which in general depends both on the shape of 7
and on the nature of the observable A. The decay constant of the ith process,
t;, is given by the ith implied timescale of the transition matrix governing the
system’s dynamics.

Calculation of the amplitudes, v;, requires accurate knowledge of the initial
state of the system. When this information is not available, the relaxation time

can be approximated by the autocorrelation time of A(t), which is given by
n
Tcorr(A) = Z tiCi (63)
i=2

where the amplitudes, c;, are closely related with the factors ;. See Noé et al.
[2011] for a more detailed derivation.

6.2 Results

Dinucleotides CC, AC, CA, AA

We here report the kinetic analysis performed on all the dinucleotides. Trajec-
tories for all the investigated dinucleotides were merged together and analyzed
with a single TICA. The complex phase space of the different dinucleotides can
then be conveniently projected on the 2-D surface defined by the first two TICs
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TIC 2

A-form structures

-1.0 -0.5 0.0 0.5 1.0 1.5
TIC 1

Figure 6.1: 2-D histogram of the joint MD data of the four dinucleotides, projected on
the first two TICs; blue circles represent the centers of the microstates obtained from
the k-means clustering. The native A-form structures are indicated with stars.

(see Fig.[6.1).

An initial analysis of the TICA components and the trajectories shows that
the 1st TIC classifies the structures based on the value of the torsional an-
gle xp relative to the rotation of the glycosidic bond of the 5" nucleobase
(anti=negative values, syn=positive values). This suggests this isomerization
is the slowest kinetic process in dinucleotides.

We then constructed a MSM for each of the investigated systems. The con-
vergence of the MSMs was validated by monitoring the convergence of the
implied timescales as a function of the lagtime (see Fig. [B.I). In Tab.[6.2 we re-
port the slowest timescales of the nine resulting MSMs at the chosen lag-time
of 0.5 ns.

The four dinucleotides exhibit very different timescales. In particular, for
T = 277 K the largest timescales for CC and CA are in the order of 200-300 ns,
whereas for AA and AC it is around 40 ns. The situation is analogous at
T = 300 K, but the timescales are shorter, in agreement with expectations for
higher temperatures.

Fig. shows the first three eigenvectors for each of the dinucleotides’
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Sequence  t; (ns) tr (ns)  t3 (ns)

T=277K

CC 397 +£48 28+3 1142
AC 3618 31=£1 12+1
CA 341+16 86+4 33+8
AA 40=x6 33+1 18+04
T =300 K

CC 83+4 9+£05 5x0.1
AC 12£02 612 6=£04
CA 77+4 16+04 12+1
AA 144+02 11+£1 42=+08

Table 6.2: Implied timescales of the first three eigenvectors for the eight dinucleotides
systems as predicted by the MSM built at T = 0.5 ns.

MSM, projected on the first two TICs. Since there are a large number of eigen-
vectors, it is convenient to exploit the fact that some of them share common
features and define groups of similar processes occurring in different dinu-
cleotides. In order to do this we evaluate the similarity of two eigenvectors
using the square of their scalar product. A table summarizing the similarity
between the eigenvectors relative to all systems is reported in Fig. The
KPCA algorithm was then used to project them on a 2-D plane where we can
easily identify clusters of similar processes (Fig.[6.2). Using the information
from the 2-D projection shown in Fig. and looking at the correlations be-
tween each eigenvector and the dihedrals angles (See Fig.[6.3), it is possible to
identify five groups of eigenvectors that share similar features between them
and are separate from the main group (labeled as A) by the KPCA.

1. Group A This group collects together all the eigenvectors that are not
classified in other groups by the KPCA.

2. Group B These eigenvectors represent the flipping of the x; torsion. This
process is extremely slow (200-300 ns at T = 277) when this nucleobase is
a cytosine (CC and CA), while it is much faster (< 20 ns) when the base
is an adenine (AA and AC).

3. Group C These processes are related to the rotation of the dihedral yx».
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K-PC 2

K-PC1

Figure 6.2: First three eigenvectors of each of the eight dinucleotides” MSMs, pro-
jected on the plane defined by the first two directions identified by kPCA. Numbers
indicate eigenvectors’ indexes. Colors indicate the sequence: CC (blue); AC (yellow);
CA (green); AA (red). Shapes indicate the simulation conditions: T = 277 K (circle),
T =300 K (triangle).

Cytosines at the 3’ end show a much faster dynamics (~30-40 ns at T =
277) than those at the 5" end.

4. Group D, E, F These processes are instead linked to the formation of spe-
cific structures. The conformation of the backbone in these structures is
the same found in RNA Z-helices. They are in general characterized by
Y2 in trans conformation (7 > 150° or 7, < —150°), and a low distance
(< 0.4 nm) between the O4" atom on the sugar ring of the 5-end nu-
cleotide and the center of mass of the 3’ base [D’Ascenzo et al., 2016].
These three groups represent the formation of Z-motifs, that differ in the
orientation of the xi,x2 glycosidic torsion or in the pathway of the pro-
cess.

Trinucleotide AAA

We here report the MSM obtained for the AAA trinucleotide. The MSM was
validated with the implied timescales test (see Fig. B.4). The MSM of the trin-
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Figure 6.3: Correlation between the first three eigenvectors of the eight dinucleotide
systems and each of the torsional angles. Angles have been shifted by a phase in order
to maximize the correlation as define in the Methods section of main text.
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MSM HMM

f;, 212+8 295+95
ty 4242 41+4
ty 4142 39+4
ty 2742 ;

Table 6.3: Implied timescales (in ns) associated to the slowest processes, for the MSM
and the HMM of the adenine trinucleotide.

ucleotide AAA identified a very slow process (t = 213 + 9 ns). The fastest pro-
cesses are dominated by two timescales around 40 ns (see Tab.[6.3). In order to
gain further insight on the nature of the first three slow processes identified by
the MSM, we coarse-grained the microstates space into 3 metastable sets, using
an HMM. A schematic representation of the HMM is shown in Fig. A first
observation about the HMM is that state #2 corresponds to a particularly stable
state. The transition in and out of this state has a very large timescale (200 to
300 ns). The equilibrium populations of the four states is reported in Fig.

In order to understand the nature of these four states we analyzed the dis-
tribution of key observables (angles, distances, and stacking score) in the dif-
ferent HMM states, see Fig. From this analysis we discovered that state
#2 corresponds to an intercalated structure, in which base A3 stacks between
bases Al and A2. State #3 corresponds to the native state, with a single A-form
helix conformation, having all x torsions in anti conformation. State #0 acts as
an intermediate state, often visited by the system before transitioning to state
#2. In state #1 the sequence of stacking interaction is analogous to state #3,
while the main difference lies in the orientation of base A2, that in state #1
corresponds to a syn conformation of the torsion yx».

We also noticed that a significant fraction of the structures corresponding
to state #0 present an A1-A3 stacking. This state is nevertheless well separated
kinetically from #2. In fact, while in state #2 the stacking of A2-A3 occurs
simultaneously with the stacking of A1-A3, in the intermediate state #0 the

two stacking interactions are never formed together.

We also observed a recurrent hydrogen bond forming between the non-

bridging oxygen of the phosphate group of base 2 and the 5 hydrogen of
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Figure 6.4: Schematic representation of the 4-state HMM of AAA. Al (red), A2 (blue),
A3 (yellow). Percentages indicate the equilibrium population of each state; the width
of the arrows is proportional to the transition rate between the states which are also
indicated in ps~! units. Shading indicates the distribution of the simulation data on
the TICA plane.
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base 1, in the intercalated structures. Fig. shows the distribution of the
distance between these two atoms in the four metastable states. The formation
of this hydrogen bond is clearly a fundamental step in the formation of the
intercalated structures.

The distribution of the dihedral angles, particularly the couple a;1,{;, is
also informative, as shown in Fig.

1. states #1 and #3 are characterized by ap and {; < 0
2. state #2 is characterized by ay and {; > 0
3. state #0 has ay, {1, a3, and {» > 0

State #0 and #2 are also distinguished by the value of the angle x; (syn in
#0, high-anti in #2). The distributions of the three 7 dihedrals do not vary sig-
nificantly between the four metastable states, and we can exclude the presence
of kinetically stable Z-motifs, in contrast with what was observed for the AA

dinucleotide.

Tetranucleotide AAAA

The analysis of the MSM of the AAAA tetranucleotide follows a scheme similar
to that described for the trinucleotide. The complexity and the number of
available conformations grow exponentially with the number of bases in an
oligonucleotide. For this reason it is particularly challenging to sample all
the relevant conformational space for a tetranucleotide using only plain MD
[Bergonzo et al., 2015; |Gil-Ley et al., 2016]. In fact, even if our simulations have
lengths of several microseconds, many transitions are observed only once. This
reflects on the quality of the MSM, as it can be seen from the implied timescales
plot (see Fig.[B.6), and leads to extremely large statistical uncertainties.

Nevertheless it is possible to qualitatively compare the predictions of the
MSM for AAAA with those described above for shorter oligonucleotides.

The first two implied timescales exhibited by the system (see Tab. are
in the microseconds range (3.1 1.1 and 1.3 £ 0.6 ys), and are associated with

the formation of two different intercalated structures, analogous to the ones
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MSM HMM

t1 3072 £1123 4685 £ 3646
tr 1296 £567 781 =226
t3 631 =371 364 =110

Table 6.4: Implied timescales (in ns) associated to the slowest processes, for the MSM
and the HMM of the adenine tetranucleotide.

described for the trinucleotide. Again, to simplify the model we built an
HMM, coarse-graining the MSM into 4 metastable macrostates. Fig. |6.5(shows
a schematic representation of the HMM projected on the first two TICs. Also in
this case the TICA identifies the formation of the intercalated structures (State
#3) as the slowest process.

Two of the resulting states (#1 and #2) display a canonical stacking pattern
whereas the other two states (#3 and #0) are characterized by the stacking of
non-consecutive bases (see Fig. [B.7). Specifically, state #2 contains the canon-
ical A-form helix, whereas in state #1 base A3 is flipped to syn conformation.
States #3 and #0 instead are distinguished by their stacking pattern, and they
share the same features reported for trinucleotides, that is, « and { in g+ con-
formation and the presence of stabilizing hydrogen bonds with non-bridging
oxygens. State #3 contains intercalated structures analogous to the one re-
ported in previous works [Bergonzo et al.,, 2015; Gil-Ley et al., 2016; Condon
et al., 2015], while state #0 presents A2 and A4 flipped out and stacked on each
other. It is reasonable to expect other combinations of base orientation and
stackings to arise when increasing the sampling.

Unfortunately the large errors in the HMM timescales make it difficult to
discriminate quantitatively the different processes, and to clearly assign an

implied timescale to each of them.

Comparison with Temperature-jump experiments

The timescales predicted by our MSMs can be compared with relaxation times
measured using T-jump experiments in Porschke [1978]. A proper compar-
ison should follow the procedure explained by Noé et al.| [2011]], where the

relaxation of an experimental observable can be decomposed in exponential
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Figure 6.5: Schematic representation of the 4-state HMM of AAAA. Al (red), A2
(blue), A3 (orange), A4 (yellow). Percentages indicates the equilibrium population of
each state; the width of the arrows is proportional to the transition rate between the
states which are also indicated in ps~! units. Shading indicates the distribution of the
simulation data on the TICA plane.
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contributions coming from each MSM eigenvector. This requires knowledge
of the experimental observable. In Porschke| [1978] the relaxation is measured
with UV absorption. We modeled this using the stacking score proposed by
Condon et al.|[2015]. To estimate the relaxation rate without the need of further
assumptions on the equilibrium distribution of the systems prior to Tjump, we
computed the autocorrelation time of the stacking score.

The results of this calculation are reported in Tab. along with the exper-
imental relaxation times measured in Porschke [1978]. For AAA and AAAA
we report the autocorrelation time (Eq. relative to the slowest stacking
interaction (A1-A2 for AAA, A1-A3 for AAAA). We excluded from the calcu-
lations the contributions of the formation of intercalated /non-canonical struc-
tures, since the increased stability of such structures is a known limitation of
the current force field [Bergonzo et al., 2015; |Yildirim et al., 2011} Gil-Ley et al.,
2016; Condon et al., 2015]. This was done using by Eq. |6.3| and setting to zero
the amplitudes, 7;, of the relative processes. We notice that the contributions
of the slow modes of CC and CA to the stacking score kinetics are extremely
small, since the autocorrelation time is almost ten times shorter than the asso-
ciated timescale. The values of 7. predicted for CC, CA, AAA and AAAA
are in good agreement with the experimental relaxation times. On the other
hand, the values obtained for AA and AC are significantly shorter than the
experimental values.

The Tjump relaxations at 297 K reported by |Porschke [1978] also included a
long relaxation time of 600-900 ns for A, Az, A4, As, and A1y in 1 M Nat when
the transition was probed with > 280 nm light. In the same study, relaxation
times of 200 + 20 ns and 700 £ 140 ns were reported for poly(A) in 0.2 M
Na™. These experiments were conducted with a cable discharge temperature
jump apparatus where up to 200 kV/cm is transiently applied to the sample.
An independent study using a laser induced temperature jump of poly(A) in
02 M Na™, T = 298 K, however, reported only a 270 + 70 ns relaxation at
285 nm [Dewey and Turner, (1979]. None of the MD simulations of A; and A3
generated a timescale longer than 300 ns, It is therefore possible that the high
electric field in the cable discharge experiments somehow affected the RNA,

leading to the appearance of an artifactual relaxation process.
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Molecule T (ns) Exp. (ns) [Porschke, 1978]

T=277K
CC 24 +2 30+6
AC 9+1 42 + 8
CA 25+1 30+ 6
AA 9.14+0.2 50 + 10
AAAA  1712P +26 -
T =300 K
CC 72+04 -
AC 3.44 4+ 0.03 -
CA 48+0.1 -
AA 3.36 +0.04 29+ 6
AAA 25.8+0.4 45°+9

c,d 0
AAAA 2704 4+ 27 (20%)

- 479 £ 5 (80%)

Table 6.5: Autocorrelation times of the stacking score predicted by the different MSMs,
compared with the experimental relaxation times (1 M Na™). @ Simulations performed
at 275 K. b Value for A1-A3 a stack not observed by NMR [Condon et al., 2015];
values for A1-A2, A2-A3, and A3-A4 are 78, 81, and 92 ns, respectively. © Experiments
performed at 297 K. d Porschkel [1978] reports two relaxation times, with the relative
amplitudes shown in brackets.
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6.3 Discussion

What can we learn from this analysis about the kinetic properties of oligonu-
cleotides?

The slow implied timescales observed for CC and CA are one order of
magnitude longer than the experimental relaxation times (Tab. [6.2). These
timescales are related to the transition from anti to syn of the cytosine at the 5’
end. An explanation for this inconsistency may be found in the inaccuracy of
the force-field, which is a known limitation in the field of MD simulations of
RNA. Syn cytosines are rare in non-catalytic RNAs [Sokoloski et al., 2011] and
may be over represented in simulations.

The slowest timescales observed in AAA and AAAA are related to the for-
mation of kinetically stable intercalated structures. These are in contrast both
with the values for the relaxations times obtained in Porschke| [1978]] and with
NMR data for AAAA [Condon et al., 2015]. These two inconsistencies suggest
that this metastable structure is an artifact of the simulation, likely caused by
an imperfect parametrization of the force field. Analysis of the intercalated
states revealed some structural details that seem to play a crucial role in stabi-
lizing these structures. In particular these are 1) the formation of a hydrogen
bond between the non-bridging oxygen of the phosphate group of one nu-
cleotide and a hydroxyl from another nucleotide [Condon et al., 2015] , 2) the
transition from negative to positive of the torsional angles «; 1,; (see Fig.[B.7).
We propose that this information must be kept in mind when trying to mod-
ify the parameters to improve force-fields accuracy. In particular it has been
shown that tuning the parametrization of the dihedrals a and { significantly
improves agreement with NOE data for several tetranucleotides [Gil-Ley et al.,
2016].

Once the unphysical structures and transitions have been removed from
the MSM, it is possible to use the remaining eigenvalues and eigenvectors to
estimate the experimental relaxation times. It is important to recall that for
an appropriate comparison with experimental data it is necessary to define an
observable that is proportional to the measured intensity. We here used the

stacking score defined by Condon et al. [2015]. The autocorrelation time of this

64



6.3 Discussion

score is reported in Tab. and can be directly compared with experiments.
This gives good agreement. Considering experimental error, the largest differ-
ence between autocorrelation times and experimental relaxation rates may be
as small as 6-fold, corresponding to a difference of 1 kcal/mol in activation
free energy at 300 K.

In general, the predicted relaxation time in all the considered systems is
not determined by the rate of the helix <+ coil transition. It is instead related
to the rate of transitions between different structures, stabilized by stacking or
other kinds of interactions. Examples of this are the Z-motifs in dinucleotides,
or helices with flipped nucleotides in longer sequences. This suggests that
the timescales obtained from relaxation experiments of oligonucleotides may
be due to transitions between different “folded states”, rather than between
stacked, native structure and random coil. That is, these relaxation rates are
dominated by the presence of various “kinetic traps”, i.e. kinetically stable
structures where the system may get stuck for a relatively long time before
being able to reach its minimum free-energy conformation.

The work presented in this chapter demonstrates how MD simulations and
MSMs can be used to provide deeper interpretation of experimental measure-
ments of the kinetics of RNA folding. While most experimental methods report
weighted averages for an ensemble of structures, MD follows transitions of a
single molecule. If the simulations are converged, then the results from MSM
analysis can be compared to experimental measurements. Although current
RNA force fields do not accurately predict structural ensembles [Bergonzo
et al., 2015; Condon et al., 2015]], the results presented here suggest that the
latest amber force field can reproduce the order of magnitude of Tjump relax-
ations [Dewey and Turner, 1979; Porschke, 1978] measured for short oligonu-
cleotides. Most current tests of force fields use structural data from NMR
and x-ray diffraction as benchmarks. The results presented above indicate that
comparison to experimental kinetic data can provide new benchmarks in the
future. Moreover, when MD simulations accurately predict structures, they
can generate more detailed interpretations of experiments and suggest new
experiments to test hypotheses.
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Chapter 7

Density-peak clustering applied to
core-set MSMs

In this chapter we present an alternative approach to construct a Markov state
model that describes the dynamics of a biomolecular system, starting from
atomistic MD simulations. We make use of the unsupervised density peak
(UDP) clustering algorithm, introduced by [Rodriguez and Laio| [2014] and
further developed by [d’Errico et al,| [2016]. We combine this algorithm with
time-lagged independent component analysis (TICA) [Molgedey and Schus-
ter, [1994] in order to define the microstates of the system and we next define
the transition probabilities between them using a “core-set approach” [Buchete
and Hummer, 2008]. In the next sections we explain the basics concept of these
methods, present their application to MSMs and finally test the applicability
of this novel approach on several complex RNA molecules. In the next chapter
we focus on the results obtained applying this method to the topic of RNA
base fraying.

7.1 Core-set MSM

In the previous chapters we have reviewed the basics theory behind MSMs, and
successfully applied this methodology to the study of RNA oligonucleotides.
We learned that the key steps in the construction of a solid MSM involve the
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fine partition of the full data space into microstates. After this is done, the
time evolution of the system is observed, and a transition is counted when the
system, after time T, has cross the border between two states.

An alternative approach to compute the transition probabilities between
given microstates, called “transition-based-assignment” (TBA) or “coring”, has
been proposed by Buchete and Hummer| [2008]. This method bears similar-
ities to the concept of milestoning [Faradjian and Elber, 2004], which has in
turn been developed and applied to the framework of rate-matrix-based MSM
[Schiitte et al., 2011] and transition-matrix-based MSMs [Sarich et al., 2013].
Here we will not discuss the differences between these alternatives nor com-
pare their results, limiting our discussion to the method of Buchete and Hum-
mer| [2008]].

The idea of the coring approach is to define a collections of “core sets”, i.e.
metastable regions of the phase space, which are not required to be in contact
between them.

The important requirement is that each of this core regions is associated
with a different metastable state of the system. This means that the system
that just left a core region will return back to it more often than transitioning
to another core. Under the assumption that the internal relaxation in these
states is faster than the rate of transitions between them, the dynamics of the
system can be approximated as a discrete Markov process between these states.

In order to properly estimate the transition probability between our states
we follow the procedure originally proposed by [Buchete and Hummer| [2008].
Suppose that the system is in the core region of state A, C4, at time t. We
define a transition from state A to a second state B to occur only when the
system reaches its core region Cp. Then the system will be considered in state
B until it goes back to Cy4, or reaches a third core region, independently of
how many times it exits and re-enters in Cp before reaching a new state. This
procedure is visually illustrated in Fig.

The fundamental step of this approach is to start with a good definition of
metastable core sets. This requirement is usually in contrast with the fact that,
when studying the dynamics of a complex biomolecule, no prior knowledge

of the free-energy landscape of the system is available. Therefore, in order
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, CoreA |

Core B

Set B

Set A

Figure 7.1: Graphical example of transitions in the core set approach, on a 1-D two-
wells potential. The yellow trajectory exits from the core region A but does not reach
the core region B, and thus is not counted as a transition A—B. The blue trajectory,
instead, is considered as a proper transition since it reaches the core region B.

to successfully apply this method it is necessary to extract these information
from the simulation data, preprocessing the trajectories in order to identify
different states and define realistic core regions. A smart way to do this is to
make use of a density-based clustering algorithm to separate the MD data set
into a collection of clusters and identify the core regions of these clusters as
the regions with higher density. In the following section we will introduce a
recently published clustering algorithm that is optimally suited to address this
problems.

7.2 Unsupervised density peak clustering algorithm

In this section we briefly report the methods published by |d’Errico et al.| [2016]]
and Rodriguez and Laio [2014].
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An unbiased density estimator: LOCk-NN

Estimating local densities in complex data sets is a complex task, that often is a
key step of data analysis in different scientific fields. Here we report the theory
behind the adaptive and parameter-free density estimator LOCk-NN [d Errico
et al.,|2016], a generalization of the k-NN algorithm [Silverman), (1986].

Let’s consider a large data-set of points in a d-dimensional set. The density
around a certain point i can be estimated with the k-NN estimator as

Pk = — (7.1)

where k is a parameter that defines the number of nearest neighbors to consid-
ered, vy is the volume of an hypersphere in d dimensions with radius rx equal
to the distance between point i and its kth nearest neighbor. The selection of
parameter k is a critical step in the application of k-NN algorithm to complex
data set, and can be a challenging task since many real-world data set may
present highly-inhomogeneous densities.

A viable solution is to select a different value of k for each point i. In
general the density will be constant in a neighborhood of a point i, while
dishomogeneities will arise when considering points further and further apart.
Therefore, the optimal k is the maximum value for which p is truly constant.
This can be done by means of log-likelihood techniques by comparing the
probability distribution of the volumes of the hyperspherical shells enclosed
between successive neighbors of i with the exact distribution in the uniform
case. The details of the algorithm are reported in d’Errico et al. [2016], where
the LOCk-NN algorithm is shown to be able to accurately estimate both the
density and the associated statistical uncertainty of points in complex highly-

dimensional data sets.

Density peak clustering

After the density p; and the associated statistical error €; have been computed
for each point i in the data set of interest, using the LOCk-NN algorithm, this

information can be used to partition the data set into separated clusters. This
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can be done with the density peak algorithm, that proceeds as follows.

The first step is to compute the following quantity:

400 5
8i :H/oo dex(Plzepl)/

1#£i 7~ x

+o0 )

which is, the product of the probabilities that the density of point i is higher
than the density of any other point /. Ny(a, o) represents the Gaussian distribu-
tion with average a and variance o. The cluster centers are defined as the local
maxima of g;, i.e. points that have the highest probability of being surrounded

by points with a lower density. The second step is to compute ; = min 7y,
J:8j>8i
which is the distance to the nearest point with higher g. A point is identified as

a center only if §; > r; , that is, a data point is a center only if all its k neighbors
have a value of g lower than g;. After all the centers have been identified all
points are assigned, in order of decreasing g, to the same cluster of the nearest
point with higher g. As final step of the clustering a merging is performed
between clusters that are not separated in a statistically meaningful sense, i.e.
if the density at the border between them is comparable, considering statistical
uncertainty, with the peak density at their centers.

7.3 Comparison with standard MSMs

Methods

In order to test the viability of our approach that combines the core-set ap-
proach with UDP clustering, we analyzed MD simulations of four different
RNA molecules, and compare the results with the ones of a standard full-state
MSM. As RNA systems we considered the adenine dinucleotide and trinu-

cleotides, already described in Chapter [7} together with the duplexes §;-§55¢

and §;-J9C8. Details of the MD simulations of the adenine oligonucleotides
are reported in Chapter [6| Since the main purpose of the MD simulation of
the RNA duplexes was to study the dynamics of the fraying of the A-U ter-

minal, we constrained the distances between the heavy atoms involved in the
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AA 4 196 10 10 7 500 31 4
AAA 17 570 100 100 14 100 58 6
4-bp duplex 105 50.1 100 50 23 500 63 5
5-bp duplex 56 1121 100 50.0 27 500 81 4

Table 7.1: Details of the MD simulations and of the MSM.

hydrogen bonds corresponding to the G-C pairs using an harmonic potential.
We select for the present analysis only a subset of the MD trajectories of the
4-bp duplex in order to remove unphysical artifactual structures. More details
about this selection will be given in the next chapter.

The RNA duplexes were solvated in a truncated dodecahedral box filled
with TIP3P water molecules [Jorgensen et al., 1983]. Na™ and Cl~ ions were
added to the simulation box in order to neutralize the total charge and reach
a concentration of 0.1 M. All MD simulations were performed using GRO-
MACS 4.6.7 [Pronk et al., 2013] with the AMBER99 force field [Hornak et al.,
2006] including parmbscO [Pérez et al., 2007] and xors [Banas et al., [2010] cor-
rections. GROMACS parameters can be found at http://github.com/srnas/
ff. AMBER-adapted parameters were used for Na™ [Aaqvist, 1990] and Cl~
[Dang), 1995], The trajectories were obtained in the isothermal-isobaric ensem-
ble (T = 300 K, P = 1 atm) with stochastic velocity rescaling [Bussi et al.,
2007] and Parrinello-Rahman barostat [Parrinello and Rahman, 1981]. Long
range electrostatics were treated using particle-mesh-Ewald summation [Dar-
den et al., 1993]. The equations of motion were integrated with a 2 fs time
step. All bond lengths were constrained using the LINCS algorithm [Hess
et al.,[1997]. Further details about the simulations are reported in Tab.

In order to analyze the trajectories produced from the MD we considered
the following set of coordinates: 1) G-vectors, 2) backbone dihedrals, 3) sugar-
ring torsional angles, 4) glycosidic torsional angles. The dimensionality of the
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7.3 Comparison with standard MSMs

input data was reduced using time-lagged independent components analysis
(TICA) as described in |Pérez-Hernandez et al. [2013]. The data were pro-
jected on the time-independent components using the kinetic map projection
proposed by Noé and Clementi| [2015]. The lag-time used for TICA and the
number of components considered is reported in Tab.

As a benchmark for standard MSM we discretized the TICA projected space
using a k-means clustering algorithm, and successively follow the standard
MSM approach, using the software pyEMMA 2.2 [Scherer et al| 2015]. The
number of k-means centers used in the analysis is reported in Tab.

The UDP clustering was performed as described by |d’Errico et al. [2016]
using home-built python scripts. This requires no input parameter other than
the intrinsic dimensionality of the data set, which was estimated using the 2-
NN method, recently developed by Facco and Laio| [2016]. The UDP algorithm
gives as output both the local density p; at each data point and its cluster as-
signment. The number of clusters obtained is reported in Tab. We defined
a point i to be in a core if

PP (7.3)

Pmax

where py;ax is the maximum density of the cluster to which point i is assigned.

In order to have a proper statistical analysis of the performance of different
models, we performed a cross-validation analysis as described by McGibbon
and Pande [2015]. This consist in subdividing the available simulation data
into k disjointed sets, construct a MSM excluding the subset [ from the input
data and then test it by evaluating a performance score on the subset I. The
average of the performance score over the k possible choices of the test sub-
set of data [, will give an unbiased estimation of the general perfomance of
the model, taking into account any systematic error due to overfitting of the
data. McGibbon and Pande [2015] proposed an optimal performance score for
MSMSs, which is the generalized matrix Rayleigh quotient (GMRQ), previously
introduced by Noé and Nuske [2013].
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Figure 7.2: Implied timescales dependency on the lag time for MSMs built using
different clustering algorithm: UDP (continuous line), k-means (dashed line). The
four panels show the results for the four molecules considered: adenine dinucleotide
(A), adenine trinucleotide (B), 4-bp duplex (C), 5-bp duplex (D).

Results of the comparison

Fig. shows the behavior of the implied timescales relative to the slowest
processes of the MSMs built with both the standard and the core-set approach,
for the four RNA molecules. The core-set MSM exhibits a virtually perfect
convergence of the implied timescales even for very small values of the lagtime
7. This is a convenient feature of the core-set approach, as it makes possible to
deal with MSM with a high time resolution.

In contrast, the implied timescales from the full-state MSM approach reach
convergence only for relatively large values of T for the two oligonucleotide
systems (0.2 ns for the dinucleotides; 5 ns for the trinucleotide). When dealing
with the higher complexity of the two unzipping duplexes the k-means-based
MSM fails to reach properly converged implied timescales for lagtimes in the
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Figure 7.3: Cross validation of the MSM built with different clustering algorithms:
UDP (red) k-means (green). Panel A: adenine dinucleotide; panel B: adenine trinu-
cleotide; panel C: 4-bp duplex; panel D: 5-bp duplex.

range < 10 ns. We notice that in the AA dinucleotide, where convergence is
reached for relatively small values of 7, the timescales obtained with the full-
state MSM are sensibly smaller than the ones obtained with the “UDP+coring”
approach. This is an index of a MSM of lower quality as explained by Noé and
Nuske| [2013] and Niiske et al.| [2014].

In order to properly assess the statistical significance of the improvement
in the MSM accuracy due to the “UDP+coring” approach we performed a
cross-validation using the GMRQ as described by McGibbon and Pande [2015].
Fig.|7.3| shows the results of this cross-validation. The value of the GMRQ de-
creases when the MSM lagtime increases, as expected [McGibbon and Pande,
2015]. We remark that since the eigenvalues of an MSM are expected to depend
on the lag time, even in the situation of a perfectly Markovian system, it make
no sense to compare the values of GMRQ for different values of 7. Neverthe-
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less, the GMRQ computed for the “UDP+coring” MSMs is always larger than
the one obtained for k-means MSMs. This difference is particularly significant
in the well-converged dinucleotide system. The statistical uncertainty become
larger when increasing the lagtime and the complexity of the studied system.

Discussion

From the results presented in the previous section, we shown that a MSM
built using a combination of UDP clustering and core-set milestoning is able to
reproduce the kinetics of complex RNA biomolecules with a level of accuracy
equal or greater than a standard full-state MSM based on k-means clustering.

One of the main advantages of the core-set MSM approach is to enable an
extremely fine time resolution. This is fundamental for an accurate estimation
of kinetic quantities such as mean first passage time, or to the identification of
transition pathways between different states of the system.

Other convenient features are: 1) the relatively small number of clusters
required in order to have a good convergence of the implied timescales, which
translate in a simpler model, easier to analyze and visualize; 2) the unsuper-
vised nature of the UDP clustering, that automatically determines an optimal
clusterization for complex high-dimensional and non-homogeneous data sets,
without requiring to tune any input parameter, or manually perform a hierar-
chical cluterizations. This last feature makes this approach extremely easy and
quick to implement.

In the next chapter we will exploit this approach to analyze more deeply
the kinetics of unzipping of the terminal base pair of an RNA duplex.
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Chapter 8

Kinetics of base fraying

In this chapter we report a study on the kinetics of fraying of the terminal
base pair in an RNA double helix. In particular we performed a computational
analysis using 1) atomistic molecular dynamics (MD) to simulate the dynamics
of a small RNA duplex and 2) Markov state models (MSM) to extract kinetic
information from the MD.

The work presented in this chapter has been mainly performed during a
three weeks visit in the Computational Molecular Biology group at the Freie
Universitdt Berlin, thanks to the financial contribution of the European Molec-

ular Biology Organization.

8.1 Introduction

The phenomenon of base fraying consists in the breaking of the pairing and
stacking interactions of the bases at one terminus of an RNA (or DNA) double
helix. This phenomenon plays crucial a role in the stability of double helices
and it is the first step of the opening of a duplex, which can be either spon-
taneous or driven by nucleic acid processing enzymes. Base fraying has been
characterized in terms of free energy by |Colizzi and Bussi [2012] and it has
been recently studied by means of computational techniques by |Zgarbova et al.
[2014]. However, a quantitative characterization of the kinetic of the process,

which is fundamental to understand the time-scales involved, is still missing.
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In particular Colizzi and Bussi| [2012] examined the two possible pathways in
which the 5 or the 3’ terminal base is the first to unstack from the rest of the
helix. A significant free-energy difference between the two intermediates was
found, suggesting a preference for the dangling 3" pathway. This hypothesis is
supported by experimental evidence such as ultrafast spectroscopy [Liu et al.,
2008], analysis of ribosome x-ray structure [Mohan et al., 2009], and contribu-
tion of 5'/3” dangling ends to duplex stability [Turner et al.,[1988]. However, to
give a final answer to this question, from a theoretical point of view, it is nec-
essary to study the kinetics of the process, understanding the different rates
associated with the two possible pathways.

8.2 Molecular dynamics

The simulated systems consist in a §; {5 duplex. Since we decided to focus

the study on the fraying of the A-U terminal pair, we constrained the distances
between the heavy atoms involved in the hydrogen bonds corresponding to
the G-C pairs. Details of the simulations are given in Section

From an initial analysis of the MD trajectories we observed the formation
of several ladder-like structures [Banas et al, 2010] (fig.[8.1). These unphysical
structures are a known artifact present in MD simulations of RNA duplexes,
and are likely caused by the constraints on the base pairs distances Bergonzo
et al. [2015]].

In order to exclude these unphysical structures from the analysis we pro-

ceed in this way:

1. for each frame, compute the root mean square deviation (RMSD) after
optimal alignment of all the atoms in the three constrained G-C pairs,
with respect to the canonical double helix (fig. [8.1));

2. remove all the frames with RMSD> 0.275 nm;
3. keep only the continuous chunks of trajectories with length > 100 ns.

This procedure lead to a final set of 105 trajectories, with a total length of 51
us.
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Figure 8.1: Histogram of the RMSD computed only on the three G-C base pairs, in
logarithmic scale; the A-form helix and the ladder-like structure are shown above,
along with the transition rate between the two states.

8.3 Markov state model

In order to analyze the trajectories produced from the MD we considered the
following set of coordinates: 1) G-vectors; 2) backbone dihedrals; 3) sugar
ring torsional angles; 4) glycosidic torsional angles. The dimensionality of
the input data was then reduced using TICA [Pérez-Hernandez et al., 2013]]
with a lag-time of 5 ns. Data were projected on the 23 slowest TICs using a
kinetic map projection [Noé and Clementi, 2015], and then discretized using
the UDP clustering [Rodriguez and Laio, 2014; d’Errico et al, 2016]. A lag-time
T = 100 ps was used to construct MSMs that approximate the dynamics of the
discretized systems. The quality of the Markovian approximation was tested 1)
looking at the convergence of the implied timescales predicted by the MSM for
increasing values of T (see figure[8.2]A), 2) performing a Chapman-Kolmogorov
test, as described in [Prinz et al., 2011]] (see figure 8.2B).

The timescales predicted by the MSM show a small gap between the 3rd
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Figure 8.2: Test of Markov approximation; A: implied timescales predicted by MSM as
a function of lagtime; B: comparison of the residence probability for each metastable
macrostate as predicted propagating the transition probability of the MSM, built at
T = 0.1 ns, and the actual transitions observed from the simulation.

and the 4th one. This allows to lump the microstates into a few metastable
macrostates, using an hidden markov model (HMM) [Noé et al., 2013]. Fig.
shows the structure of the terminal base pair in the four macrostates. The
macrostates 2 and 3 are distinguished by the orientation of the uracil base at
the 3’ terminus (U3’); in state 3 the U3’ base is in the canonical orientation,
forming a Watson-Crick base pair with the adenine at the 5" terminus (A%’),
while in state 2 it is flipped upside down, forming a non-canonical base-pair
with U3". In states 0 and 1 base A5’ is almost completely solvated, without any
stacking with G2 nor pairing with U3’. States 0,1 are again separated by the
orientation of U3’. We can therefore describe the slow processes in the system,
from slower to faster, in this way: the slowest process is the flipping of U3’ base
while A5’ is stacked on the remaining part of the duplex (220 ns), followed by
the unstacking of A5" (150 ns), then followed by the flipping of U3’ base while
A5’ is unstacked (80 ns). This analysis tells us that the state with A5 open is
a kinetically stable state. On the other hand we do not identify a metastable
state with U3” open, nor one with both bases unstacked.

In order to study the opening of the two terminal A/U bases individually

80



8.3 Markov state model

State 0 !\/\
\

»

%o

State 2 State 3 '

\
,/czﬁt”

Figure 8.3: Representation of the structure of the terminal bases in the four metastable
states identified by the HMM.

we quantitatively measured their stacking interaction with the adjacent G/C
base, using the stacking definition proposed in [Condon et al., 2015].

We already observed that structures in which the terminal base-pair is com-
pletely open are not metastable since they are not distinguished by the kinetic
coarse-graining. For this reason we further classify the clusters based on the
fraction of stacked structures that they contain (see figure [8.4). For each mi-
crostate we define the stacking interaction of one of the two terminal bases to
be broken if the fraction of stacked structures is < 0.5. Microstates where both
stacking interactions are formed correspond to a closed terminal pair, while the

structures with both stacking broken correspond to completely open terminals.

After dividing the microstates in these four groups (see figure it is
possible, using transition path theory, as described by Noé et al,| [2009], to
compute the the mean first passage time (MFPT) from the closed group of
states (C) to the open one (O), and viceversa, as well as the fraction flux from
C — O passing through group 5pO (A5 open) or 3pO (U3’ open). The results
of this analysis are shown in figure We can see that the fraction of flux
going through 3pO is significantly smaller than the fraction of flux passing
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Figure 8.4: Representation of the probability flux from C to O; circles represent the
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open (yellow), or U3" open (cyan); arrows” width is proportional to the net flux (indi-
cated in ps~1).
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through 5pO, while only a negligible amount of flux is jumping directly from
C to O. The MFPT from C to O is 5 ys.

8.4 Discussion

The MSM built on extensive MD simulations of the $,{S¢ duplex showed
to be able to approximate the full atomistic dynamics of the system with a
satisfactory of accuracy (see fig.[8.2). Such MSM identifies no kinetically stable
state corresponding to a fully frayed terminal. The metastable states instead
identify structures with flipped U5" base and unstacked A5’ base.

We then focused on the mechanism associated to RNA unzipping. We ob-
serve that the preferred pathway for the system is the one in which the A5" base
breaks its stacking and pairing interactions first, while the U3’ base opening is
the last step of the reaction. This confirms the mechanism proposed by previ-
ous computational studies [Colizzi and Bussi, 2012]], where it was shown that
the free energy increase associated to opening one of the bases of the terminal
pair is smaller when opening the 5" base. We remark that the previous work by
Colizzi and Bussi| [2012] was limited to an energetic analysis. The present work
confirms the proposed mechanism by means of a complete kinetic analysis.

Concluding, we obtained a MSM able to accurately reproduce the kinetic
properties of the terminal base pair of an RNA double helix. This makes possi-
ble to obtain a robust estimation of rates and MFPT between folded and frayed
structures, to identify metastable states and their relative equilibrium popula-
tions, as well as the unzipping pathways followed by the system.
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Conclusions and perspectives

The importance of ribonucleic acid (RNA) in the field of biology is constantly
growing, as researchers discover more and more roles played by non-coding
RNAs in the life of cells. Characterizing the functional dynamics of RNA
molecules represents one of the avenues that are being most actively pursued
by molecular biologists. This thesis investigated the topic of computational
modeling of the dynamical properties of small RNA molecules. The research
presented focused both on atomistic molecular dynamics (MD) simulations

and coarse-grained models.

In particular, we reported the application on RNA molecules of a class of
very simple coarse-grained representations, elastic network models (ENMs)
[Pinamonti et al., 2015]. We studied the applicability of such models bench-
marking their predictions against accurate atomistic molecular dynamics sim-
ulations, comparing different possible models and identifying the optimal pa-
rameters to describe such systems. In addition, we tested the robustness of our
findings, comparing ENM predictions with RNA chain flexibility measured by
SHAPE experiments (Selective 2’-hydroxyl acylation analyzed by primer ex-
tension, see Wilkinson et al.|[2006]). Finally, we investigated the precision of

the vibrational entropy computed from ENM on the add riboswitch.

In the second part of the thesis we dealt with the application of Markov
state models (MSMs, see Bowman et al|[2013]]) to the analysis of MD simula-
tions of RNA molecules, using them to study the kinetics of the fundamental

interactions of such molecules, namely base stacking [Pinamonti et al., 2016

85



Kinetics of base fraying

and base pairing. Concurrently we examined a novel recipe for the construc-
tion of reliable core-set MSMs, based on the unsupervised density-peak clus-
tering developed by |d’Errico et al. [2016].

The work reported in this thesis may provide a starting point for different
applications in the field of computational modeling of RNA systems. Possi-
ble routes for future research include the application of ENM to analyze the
flexibility of larger and more complex RNA molecules, and a comparison with
a larger pool of experimental data. The analysis of the vibrational entropy
could be improved with a more deep investigation, by employing more de-
tailed ENMs and including different systems in the comparison.

On the MSM side, our analysis of RNA-helix unzipping can be easily ex-
tended by examining different RNA sequences in order to highlight the se-
quence dependence of the process, as well as by adding to the picture the fray-
ing of the following base-pairs. The computational predictions of the open-
ing/closing rates could also be compared with single-molecule experiments
with optical tweezers, and this comparison could be further improved by in-
troducing a pulling force on the terminal base pairs during the simulation.

MSM analysis of more complex RNA systems is also an appealing devel-
opment. A feasible process to be investigated is the so called “RNA strand
invasion”, the process by which one strand of an RNA double helix is replaced
by an equivalent strand. Due to the equivalence of the sequences of the origi-
nal and the replacing strand, the free-energy difference between the initial and
the final states of this process is zero. The key feature of this process is thus
determined by its kinetics. An even more complex future task would be to
apply the MSM approach in the study of the conformational changes in one
of the riboswitches that have been shown to operate in a kinetic regime, rather
than at the thermodynamic equilibrium [Lemay et al., 2011]].
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ENM supplementary data

1.0

RWSIP

Re (A) Re (A) Re (A)

Figure A.1: Comparison between the MD simulations and a ENM constructed con-
sidering 5 or 6 beads per nucleotide: P, C1’, C4’, C2, C5 for pyrimidines; the same
plus C8 for purines. Also the 1-,3-beads models and the all-atom model are shown for
comparison. Fluctuations” correlation (upper panels) and RWSIP (lower panels) are
computed considering the beads in the base (A), sugar (B) and phosphate (C), and are
averaged over the four molecules considered.
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R

RWSIP

Figure A.2: Comparison between the MD simulations and a 3-beads SBP ENM
with space-dependent elastic constant. The elastic constant is given by k;;
exp(—(dij/Rc)?). The 3-beads SBP model with sharp cutoff is shown for compari-
son. Fluctuations’ correlation (upper panels) and RWSIP (lower panels) are computed
considering the beads in the base (A), sugar (B) and phosphate (C), and are averaged
over the four molecules considered.
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Figure A.3: Comparison between the MD simulations and the ENMs using as refer-
ences the experimental structures. Fluctuations’ correlation (upper panels) and RWSIP
(lower panels) are computed considering the beads in the base (A), sugar (B) and phos-
phate (C), and are averaged over the four molecules considered.
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Figure A.4: Agreement between MD simudgjions and ENM for different radii of cutoff.
Correlation between MSF (upper panels), and RWSIP (lower panels). The results are
shown separately for the 4 different molecules for the 1 bead, 3-beads SBP and for
the all atom model, as labeled. Left: phosphate beads; middle: sugar beads; right:
nucleobase beads.



1.0

RWSIP

Figure A.5: Agreement between MD and ENM. Comparison of all the considered
models with 1,2,3 beads per nucleotide as well as the all-atoms model. Values at
the optimal cutoff values are represented by circles. Fluctuations’ correlation (up)
and RWSIP (down) are computed considering the beads in base (A), sugar (B) and
phosphate (C), and are averaged over the four molecules studied.

RWSIP

Figure A.6: Agreement between MD and ENM on the duplex molecule excluding the
terminal residues from the analysis. Fluctuations’ correlation (up) and RWSIP (down)
are computed considering the beads in base (A), sugar (B) and phosphate (C).
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MSM supplementary data

timescales (ns)

timescales (ns)

Figure B.1: Convergence of the implied timescales of the eight dinucleotide systems
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Free energy

803
asa
204
053
o 0.00
=
-057
212
2 -4.66
© 818
25.48
14.42
6.49
168
o) 0.00
=
-181
-6.74
2 -1479
< 2597
633
358
161
042
o} 0.00
g
0.5
-167
ks -367
& -6.45
19.05
1079
485
126
o} 0.00
&
-135
-5.04
< -1106
< 1000 -19.42
0.00
mos 3749
250 2122
. 0.955
0248
- -5.00
I} 0.000
B 625
-0.267
70 ~0.992
] 87 —2a77
2 -10.00 se2
8] ~1125
& 0o
-12 7.92
-24 4.8
202
e o052
Q e 0.00
¢
-60 -0.56
12 -2.09
3 -84 -a59
2 o6 807
-4 0.00
250 1046
an
-375
122
- -5.00
o} 0.00
B _
625 -131
_750 489
g -8.75 -1072
] -1000 1883
<
& 00
683
-24
3.08
-8 080
g 48 0.00
¢
60 0.6
12 -319
3 84 -7.01
3 —10 -05 00 05 10 15 —10 -05 00 05 10 15 —10 -05 00 05 10 15
< Tico Tico

Figure B.2: Graphical representation of the first three eigenvectors of each of the eight
dinucleotides systems. 94



CpA ApC

ApA

0.30

v
S
S
0
Q
a
O
2
IS)
)
0
Q
Q.
<
¥
1)
S
o
<
S
O
v
S
S
0
<
S
<

CpC ApC CpA ApA  CpC-300K ApC-300K CpA-300K ApA-300K

Figure B.3: Similarity between the first three eigenvectors of the eight dinucleotides
systems. Numbers refers to the square scalar product between eigenvectors, as define
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Figure B.4: Convergence of the implied timescales of the adenine trinucleotide system,
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metastable states identified by the HMM of AAA.
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Figure B.6: Convergence of the implied timescales of the adenine tetranucleotide as a
function of the MSM lagtime.
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