
Scuola Internazionale Superiore di Studi Avanzati - Trieste

SISSA - Via Bonomea 265 - 34136 TRIESTE - ITALY

Scuola Internazionale Superiore di Studi Avanzati

Area of Physics
Ph.D. in Theoretical Particle Physics

Phenomenology of dark matter at

present and future experiments

Advisor:

Prof. G. Villadoro

Candidate:

G. Grilli di Cortona

Thesis submitted in partial fulfilment of the requirements
for the degree of Doctor Philosophiae

Academic Year 2015/2016





Acknowledgements

First of all, I would like to thank my advisor, Giovanni Villadoro. I am grateful
to his support and encouragement during my PhD. He introduced me to many
interesting topics on particle physics. I am thankful also to SISSA for useful
lectures and to ICTP for hospitality during the last three years. I would like
to thank my collaborators Ed Hardy, Javier Pardo Vega and Andy Powell for
the pleasure to work with them.

I also thank all my friends and colleagues at SISSA and ICTP, with a special
mention to Kate, Alessio, Mauro, Elena, Guillaume, Serena, Claudia, Bruno,
Daniele, Marco, Javier, Juan, Ivan, Pietro, Ed, Alex, Andrei and Lasma who
made more enjoyable the long working days and the short weekends. I cannot
forget about my friends from Rome, Luca, Francesco, Gabriele, Lavinia, Lara,
Eliana and Cristina for all the time we had spend together in the last 14 years.

A special thank goes to Katusha, whose love has always been with me.

My warmest thank goes to my family, and in particular to my father and my
mother, for the support which has never been missing during my studies. This
thesis is dedicated to them.

i



ii



Preface

In this thesis we present a study of two different dark matter candidates. We focus on
the neutralino in split supersymmetric models and in models of Dirac gauginos, and on
the QCD axion.

In the first part of the thesis we discuss supersymmetric searches at future hadron
colliders and dark matter direct detection experiments. We obtain mass reach for several
simplified models in split supersymmetry with neutralino or gravitino lightest supersym-
metric particle at 14, 33 and 100 TeV collider. In particular, a supersymmetric simplified
model of anomaly mediation with long lived Winos has crucial importance in the hunt
for dark matter since a Wino lightest supersymmetric particle is expected to thermally
saturate the relic density for mW̃ ⇠ 3 TeV. In addition, we consider the discovery reach
of a future 100 TeV collider for strongly coupled states in supersymmetric theories with
Majorana gluinos, and extend this to the cases with Dirac gluinos.

Furthermore, we discuss the current bounds and future reach from dark matter direct
detection experiments for split SUSY models with universal gaugino masses and models
of anomaly mediation. We then study the interplay between the collider and dark matter
searches for the models considered. Also, we consider the dark matter candidate in Dirac
gaugino models and the relation between collider searches and dark matter direct detection
experiments.

In the second part of this thesis, we study the properties of the QCD axion at zero
and finite temperature. The computation of the relic abundance for QCD axion from the
misalignment mechanism dramatically depends on the behaviour of the axion potential
at finite temperature. Consequently, we compute the axion potential, and therefore its
mass, at temperatures below the crossover (Tc ⇠ 170 MeV) exploiting chiral Lagrangians.
Around the critical temperature Tc there is no known reliable perturbative expansion un-
der control and non-perturbative methods, such as lattice QCD, are required. At higher
temperatures, when QCD becomes perturbative, the dilute instanton gas approximation
is available, which is expected to be reliable at temperatures large enough. We point out
however that the bad convergence of the perturbative QCD expansion at finite tempera-
tures makes the instanton result unreliable for temperatures below 106 GeV. Therefore,
we study the impact of the uncertainty in the computation of the axion relic abundance,
providing updated plots for the allowed axion parameter space.
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Finally, motivated by the fact that zero temperature properties of the QCD axion are
fundamental in case of axion discovery in order to infer its possible UV completion, we
perform a NLO computation using chiral Lagrangians. We extract zero temperature ax-
ion properties, such as the mass, the potential, the self-coupling, the coupling to photon
and the tension of domain walls, at the percent level. Moreover, we show a new strategy
to extract couplings to nucleons directly from first principle QCD at the 10% level. Such
result can be improved as more lattice QCD simulations become available.

The original results obtained in this thesis have been published in the following series
of papers [1–4]:

• G. Grilli di Cortona, "Hunting electroweakinos at future hadron colliders and direct
detection experiments", JHEP 05 (2015) 035, arXiv:1412.5952 [hep-ph], chapters
2-3,

• G. Grilli di Cortona, "Searching SUSY from below", PoS PLANCK2015 (2015),
arXiv:1510.07616 [hep-ph], chapters 2-3,

• G. Grilli di Cortona, E. Hardy, J. Pardo Vega, and G. Villadoro, "The QCD axion,
precisely", JHEP 01 (2016) 034, arXiv:1511.02867 [hep-ph], chapters 5-6,

• G. Grilli di Cortona, E. Hardy, A. Powell, "Dirac vs Majorana gauginos at a 100
TeV collider", JHEP 08 (2016) 014, arXiv:1606.07090 [hep-ph], chapters 2-3.
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DM experiments
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Chapter 1

Introduction and motivations

The Higgs boson, the last missing piece of the Standard Model (SM) [5–7], was discov-
ered at the Large Hadron Collider (LHC) by the ATLAS and the CMS experiments [8, 9],
rewarding decades of intense experimental and theoretical work. The Higgs boson was
predicted long ago [10–12], arising as the consequence of a mechanism able to provide
masses to all the SM fields (but neutrinos). Tests of the SM were performed initially at
tree level, but the extraordinary agreement between the SM predictions and the precision
measurements at LEP has established the remarkable importance of the radiative correc-
tions for the agreement with data. The SM is therefore a robust framework that describes
and predicts a huge number of physical phenomena over an energy range of several order
of magnitude.

The SM is nevertheless an incomplete theory. Both experimental arguments - such as
the existence of neutrino oscillations, the presence, dark matter and the baryon asymmetry
in the universe - and theoretical considerations - such as the naturalness problem of the
Higgs mass, the strong CP problem and the presence of gravity - suggest the existence of
physics beyond the SM.

All these arguments point in the direction of physics beyond the SM, and some of them
do give a hint on the value of the new physics (NP) scale. In particular, the naturalness
problem for the Higgs mass suggests that there should be NP at a scale of O(TeV).
Furthermore, the presence of dark matter point to the same mass scale if interpreted
in the framework of the weakly interacting massive particle (WIMP) paradigm. In the
following I will review shortly how the TeV scale arise as the NP scale, and what are
possible solutions to (some of) the previously mentioned problems.
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1. Introduction and motivations

The hierarchy problem

The ratio of the strength of the weak and the gravitational force is

GFh2

GNc2
= 1.73859(15)⇥ 1033, (1.1)

that, translated in terms of energy scales, drives the question of why the ratio between
the Planck scale MPl and the electroweak scale v is so huge. 1

The electroweak scale v can be traded for the Higgs mass parameter mh, the parameter
that enters in the scalar potential. Indeed, the potential of the scalar neutral Higgs boson
in the SM contains

V � �m2
h|h|2 + �|h|4, (1.2)

where h is the neutral Higgs complex scalar. If � > 0 and m2
h > 0, at the minimum of

the potential, the Higgs field acquires a vacuum expectation value (vev)

hhi = v/
p

2 =
q

m2
h/2�. (1.3)

Experimentally, from measurement of the properties of the weak interactions, v ⇠ 246

GeV and therefore m2
h must be of order (100 GeV)2 for a natural value of � ⇠ 0.1.

However, the Higgs mass receives quantum corrections from all the virtual particles that
couples directly or indirectly with it. These give rise to quadratic corrections

�m2
h ⇠

3|�f |2

16⇡2
m2

f log

 

⇤2

m2
f

!

, (1.4)

where the mass scale ⇤ is the scale at which the SM ceases to be valid and mf is the mass
of the fermion that runs in the loop. The coefficient �f represent the coupling of the Higgs
with the fermion, e.g. a lepton or a quark (in this case �m2

h should be multiplied by a
factor 3 to account for the colour), running in the loop. The Higgs mass is therefore highly
sensitive to the states with the largest factor |�f |2m2

f . In the SM, the largest contribution
comes from the top quark Yukawa that is O(1).

If we suppose that the SM is valid at any scale, the hierarchy problem would cease
to exist, because the SM is a renormalisable theory and all quadratic corrections can
be reabsorbed by unphysical counterterms, in this case the bare Higgs mass. However,
the SM is not an ultra-violet (UV) complete theory, because the hypercharge and Higgs
quartic coupling become non-perturbative at scales O(1041 GeV), producing a new mass
threshold. A new mass threshold ⇤ is also motivated, for example, by the existence of

1For a review on the naturalness problem, see [13].
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gravity, that may involve some NP around the Planck scale1, or by the fact that, assuming
the WIMP paradigm, the SM requires new states around the TeV to reproduce the dark
matter abundance. Moreover, Majorana neutrino masses and unification of the gauge
couplings seem to point to new dynamics at scales of order ⇠ 1014�16 GeV.

In order to get a light Higgs mass in a theory where a large scale ⇤ is present, one has
to fine tune the tree level and the quantum corrections. Consider the following toy model
[14] with a light scalar � and a heavy fermion  :

L =
1

2
(@�)2 � 1

2
m2�2 +  ̄(i/@ �M) � g� ̄ , (1.5)

with m⌧M . The process can be described at energies E ⌧M with an effective theory
where the fermion has been integrated out. The physical mass of the light scalar field can
be computed in the MS scheme, and we obtain

m2
phys = m2(µ)� 4g2

16⇡2

✓

5M2 +
4

3
m2(µ)

◆

+
1

2
(m2(µ)� 6M2) log

M2

µ2
, (1.6)

where µ is the renormalisation scale. Choosing µ = M , the mass of the light scalar
simplifies leading to

m2
phys = m2(M)� 4g2

16⇡2

✓

5M2 +
4

3
m2(M)

◆

, (1.7)

showing that m2
phys is sensible to the largest parameter in the lagrangian, making the

theory unstable. Therefore, if we want the ligh scalar sensibly lighter than the scale M ,
we must have an extremely small renormalised coupling g in order to have a cancellation
between the two terms of the right hand side of equation (1.7). While it is not logically
impossible to have such a fantastic cancellation, this is usually thought as the origin of a
deeper problem.

The naturalness criterion, proposed by ’t Hooft [15], states that natural parameters
are allowed to be much smaller than unity only if a symmetry is restored when such a
parameter is set to zero. Therefore, parameters that are zero because of symmetries,
will remain zero even after the inclusion of quantum corrections, meaning that small
parameters are not a problem if they are protected by symmetries. In the SM, Yukawa
interactions are natural because setting them to zero, the SM obtains a chiral symmetry.

1Were the SM valid up to the Planck scale, the natural ratio of GF /GN would be 1, contradicting
the experimental value, Eq. (1.1).
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1. Introduction and motivations

On the contrary, the Higgs mass is not natural because setting mh to zero would not
restore any symmetry.1

On the other hand, if the coefficient g2 takes the natural value of 10�2, we can extrap-
olate the scale at which new effects start to modify the Higgs mass, finding ⇤ ⇠ O(TeV).
In this second scenario, the maximum energy up to which the SM can be extrapolated is
therefore ⇠ TeV. New dynamics should appear at this energy scale and these new particles
should cancel the quantum corrections to the Higgs mass.2 The appearance of this scale
is extremely exciting because it is precisely the range of energy that is currently probed
by the LHC.

Dark matter and the WIMP paradigm

A second argument for the presence of new physics is the experimental evidence of the
existence of dark matter [16]. Indeed, there are several observations indicating that most
of the matter contained in our Universe is non-baryonic.

The first evidence of DM is due to Zwicky [17]. Measuring the proper motion of
galaxies in the Coma cluster, he realised that the total mass of the cluster computed
via the virial theorem was about 300 times larger than expected from their luminosity.
Furthermore, one of the cleanest evidence for dark matter in the Universe comes from
the rotation curves of stars in a galaxy [18–20]. Newton’s law implies that the velocity of
stars in a galaxy is

v(R) =

r

GNM(R)

R
, M(R) = 4⇡

Z R

0

⇢(r) r2 dr, (1.8)

where R is the distance from the galactic centre, GN is the gravitational constant, M

is the mass of the system, and ⇢(r) is the mass density. Given that the contribution of
luminous matter would lead to v(r) / R�1/2 in the limit of large R, at large radii we would
expect a fall down of the velocity curve. However observations show that v(R) ' const.,
therefore requiring a dark halo of mass density ⇢(r) / 1/r2.

The Planck collaboration measured the angular power spectrum of thermal anisotropies
in the cosmic microwave background (CMB) to extract informations about the parame-
ters of the early Universe. The dark matter abundance, expressed in terms of the critical

1Another example of unnaturally small parameter is the ✓QCD angle, that we will discuss in the
second part of this thesis.

2Unfortunantely, the hierarchy problem is not completely solved because now there is a tuning to
have the NP scale close to the electroweak one.
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energy density, from the Planck collaboration is [21]

⌦DMh2 = 0.1198 ± 0.0015. (1.9)

An independent argument in favour of the presence of dark matter in the Universe
comes from the structure of the matter distribution at large scales. The formation of
structures crucially depends on the nature of the dark matter. For dark matter particles
that are relativistic at the matter-radiation equality temperature Teq ⇠ 1 eV, dubbed as
hot dark matter (HDM), only very large structures can form, and structures as we see them
now form with a top-down approach by fragmentation of the larger objects. Observations
of the distribution of galaxies strongly disfavour this paradigm. On the other hand, if
dark matter particles are non relativistic at Teq, called cold dark matter (CDM), small
objects merge into larger ones, first forming galaxy halos and then larger structures. The
intermediate case of warm dark matter, where the length scale of structure formation is
formed by the inverse of the mass scale of the dark matter particle below which structures
are suppressed, is a disfavoured but still viable scenario.

Some of the evidences for dark matter may be explained by models of modified gravity.
However, the lack of a fully consistent theory alternative to general relativity and the
huge range of scales of the dark matter evidences disfavour these models. Therefore
an important problem is to understand the possible particle physics nature of the dark
matter. From all the cosmological and astrophysical observations, it is possible to derive
some of its properties. A suitable candidate must have the cosmological abundance of
Eq. (1.9), must not be a baryon and must be electrically and colour neutral, because
strong and electromagnetic interaction would lead to the formation of anomalously heavy
isotopes, while limits on the abundance of nuclear isotopes suggest that a dark matter
candidate should be weakly interacting with matter for a wide range of masses.

The only possible candidate in the SM is the neutrino. However, cosmological ob-
servations restrict the HDM relic density for neutrinos to be only a fraction of the one
required by Eq. (1.9). It is therefore evident that the existence of dark matter requires
physics beyond the SM.

The origin of species in the early universe can be successfully explained within the
thermal decoupling paradigm (see e.g [22–24]). The evolution of a stable thermal relic
DM particle is shown in Figure 1.1. At early times (high temperature), the relevant
particle interaction rate � is much larger than the Hubble expansion rate H and the
dark matter is in equilibrium with the plasma. As the Universe expands, its temperature
decreases and at temperatures below the dark matter mass, its number density become
Boltzmann suppressed. However, in addition to cooling, the Universe is also expanding
and when � ⇠ H, the dark matter particles are so dilute that they cannot annihilate

7



1. Introduction and motivations
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Figure 1.1: The evolution of the DM number density per comoving volume Y = n�/s,
where s is the entropy.

anymore. At this point the dark matter decouples from the plasma, and its number
density become constant (freeze out).

In particular, consider a non relativistic dark matter particle �, with mass m�. Such
particle is in equilibrium at temperature T � m� by the annihilation processes

�� ! �SM �SM, (1.10)

where �SM is any Standard Model field. The evolution of the number density of the dark
matter particle n� is given by the Boltzmann equation

dn�

dt
+ 3Hn� = �h�vi

⇥

n2
� � (neq

� )2
⇤

, (1.11)

where h�vi is the zero temperature thermally averaged DM annihilation cross section
times velocity, and neq

� is the equilibrium number density of the DM. The dark matter
annihilation rate � = n�h�vi is able to keep the dark matter in equilibrium at temper-
atures for which it is larger than the Hubble expansion. The expansion of the Universe
decreases the DM number density, reducing its annihilation rate until is smaller than the
Hubble parameter. The process (1.10) can no longer maintain the chemical equilibrium
and the dark matter particles decouple from the thermal bath. The freeze out occurs at
a temperature Tfo given by

�(Tfo) = n�(Tfo)h�vi ⇠ H(Tfo), (1.12)

8



that, given the Friedmann equations in a radiation dominated era H ' T 2/MPl, yields

nfo
� ⇠

T 2
fo

MPlh�vi . (1.13)

The relic abundance is given by the current dark matter density in terms of the critical
density

⌦� =
m�n0

�

⇢c
. (1.14)

For an isoentropic Universe R T ' const1 we have n0
�/T

3
0 ' nfo

� /T 3
fo, where T0 denotes the

temperature of the universe today, and therefore

⌦� ⇠
m�T 3

0

⇢cr

nfo
�

T 3
fo

⇠
✓

T 3
0

⇢cMPl

◆

xfo

h�vi ⇠ 0.2
xfo

20

✓

3⇥ 10�26 cm3/s

h�vi

◆

, (1.15)

where xfo = m�/Tfo ⇠ 20. The equilibrium number density in the non relativistic limit is

n ⇠ (m�T )3/2e�m�/T =
m3

�

x3/2
e�x. (1.16)

Using the freeze out condition � ⇠ H we have

p
xfo e�x

fo =
1

m� MPl h�vi , (1.17)

and replacing the average cross section with the value of an electroweak interacting particle
h�vi ⇠ G2

Fm2
� of mass ⇠ 100 GeV, we get xfo ⇠ 20. In Eq. (1.15) notice that the

relic abundance is inversely proportional to the annihilation cross section: the larger the
annihilation cross section, the longer the dark matter remains coupled to the thermal
bath, the equilibrium number density is reached later and the relic density is smaller (see
Figure 1.1).

In order to derive (1.15) we used the condition for having a cold dark matter particle,
xfo � 12, and a cross section h�vi = 3⇥ 10�26 cm3/s. This value is however not peculiar
only of the electroweak scale: parametrising the cross section as � ⇠ g4/m2

�, the two
previously mentioned conditions imply that m� � 0.1 eV. Further, an upper limit can be
derived by considering a unitary limit in the partial wave expansion [25], which implies
m� . 200 TeV. Although the value of the cross section obtained to get the correct relic
density is not specific of the electroweak scale, it points to dark matter masses of order
⇠ TeV for particles with electroweak couplings.

1We denote the scale factor with R.
2This condition become m�h�viMPl � 1, see Eq. (1.17).
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1. Introduction and motivations

It is important to notice that there are three exceptions where the computation of
the relic density previously outlined is modified [26]. If another particle lies near in mass
to the DM, it must be included in the DM computation because its annihilation can
control the relic density. The freeze out of the DM particle and the one of the close
states are interconnected if the difference between the two masses is smaller than the
freeze out temperature, m��m1 . Tfo. In this case the relevant cross section h�vi is not
the DM annihilation cross section, but it is an effective cross section that includes the
contribution from the coannihilating particles. Considering N coannihilating particles,
the average cross section is modified as

h�vi �! h�e↵vi =

PN
i,j=1 �ij exp

⇣

��mi+�mj

T

⌘

PN
i=1 gi exp

�

��mi
T

�

, (1.18)

where �ij is the annihilation between the particle i and j, �mi = mi �m1 (m1 denotes
the DM particle) and gi is the coupling of the particle i (see for example [27, 28]). A
second situation occurs when the DM mass is slightly below a mass threshold. Thermal
fluctuations may open the kinematically forbidden channel that can dominate the cross
section and be important in the determination of the relic density. The last exception
occurs if the DM annihilation takes place near a pole in the cross section: the cross section
shows a peak near the pole and therefore the relic abundance is suppressed.

The two previously discussed issues of the SM point to the TeV scale as the energy
where NP should arise. The naturalness problem for the Higgs can be solved, for example,
if its mass breaks some symmetry, so that it is protected from radiative corrections. For
example, supersymmetric models [29–32] introduce a new symmetry that relates bosons
with fermions, and can solve the hierarchy problem [33]. The Higgs gets a vev only
once SUSY is broken and its quantum corrections are proportional to the SUSY breaking
soft terms m̃. As further motivation, supersymmetric models have a viable dark matter
candidate and the gauge couplings successfully unify. In the following section the Minimal
Supersymmetric Standard Model (MSSM) is reviewed [34].

1.1 The minimal supersymmetric Standard Model

As we have already anticipated, supersymmetry challenges the hierarchy problem through
the introduction of new states leading to the cancelation of the quadratic divergencies to
the Higgs mass. Consider the existence in the theory of a heavy complex scalar field S

10



1.1 The minimal supersymmetric Standard Model

with a mass mS, that couples to the Higgs via the Lagrangian term ��S|h|2|S|2. Then,
the one loop contribution to the Higgs mass with the scalar in the loop gives a correction

�m2
h ⇠ �

�S
16⇡2

m2
S log(⇤2/m2

S). (1.19)

The cancellation between (1.4) and (1.19) can happen only because of the relative minus
sign between fermions and scalars loop. Therefore, the cancellation is possible if every
quark and leptons of the SM have two complex scalar superpartner such that �S ' |�f |2
and m2

S ' m2
f . The existence of a symmetry that connects fermions and bosons (su-

persymmetry) leads to the cancellation of the loop contributions to scalar masses, and
therefore solve the hierarchy problem.

1.1.1 Structure of the MSSM

States of a SUSY theory belong to superfields, the irreducible representations of the SUSY
algebra1. Particles in the same superfield must have the same electric charge, weak isospin
and colour degrees of freedom. Moreover, a superfield contains both bosons and fermions,
that are related to each other by SUSY transformations.

The particle content of the MSSM consists of a superfield associated with each field of
the SM. Therefore, the gauge bosons and the fermions of the SM are promoted to gauge
and chiral superfields respectively, with gauge quantum numbers exactly as in the SM,
while the Higgs sector consists of two Higgs doublets with opposite hypercharge. The
model is partially described by the superpotential written as a function of the superfields
corresponding to the SU(2) singlet and doublet leptons (ê, l̂), quarks (û, d̂, q̂) and to the
two Higgs doublets ĥu, ĥd of table 1.1

WMSSM = �uijû
c
i q̂jĥu + �dij d̂

c
i q̂jĥd + �eij ê

c
i l̂jĥd + µĥuĥd, (1.20)

where �u,d,e are the dimensionless Yukawa couplings and i, j = 1, 2, 3 are family indices
(colour indices are neglected). In this notation hatted quantities denote superfields.

Additional renormalisable terms, which violate lepton L or baryon B number and
would lead to fast proton decay, are allowed by gauge invariance

W�L=1 =
1

2
�ijk0 l̂i l̂j êck + �ijk1 l̂i q̂j d̂c

k + µi
0l̂i ĥu

W�B=1 =
1

2
�ijk2 ûc

i d̂c
j d̂c

k. (1.21)

1Several reviews and textbook of SUSY exist, see for example [34–39].
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Superfields fermions scalars (SU(3)C , SU(2)L, U(1)Y )
q̂i (ui di) (ũi d̃i) (3, 2, 1/6)

ûc
i uc

i ũc
i (3̄, 1, �2/3)

d̂i dc
i d̃c

i (3̄, 1, 1/3)

l̂i (⌫i eLi) (⌫̃i ẽLi) (1, 2, �1/2)

êci e†Ri ẽ⇤Ri (1, 1, 1)

ĥd (h̃0
d h̃�

d ) (h0
d h�

d ) (1, 2, �1/2)

ĥu (h̃+
u h̃0

u) (h+
u h0

u) (1, 2, 1/2)

ĝX=1,...,8 g̃X gX
µ (8, 1, 0)

ŴA=1,2,3 w̃A WA
µ 1, 3, 0)

B̂ b̃ Bµ (1, 1, 0)

Table 1.1: The MSSM particle content.

These dangerous terms are forbidden in the MSSM by the presence of a new symmetry,
called R-parity or matter parity. R-parity acts as a multiplicative quantum number defined
as

PR = (�1)3(B�L)+2s, (1.22)

where s denotes the spin of the particle. All the SM particles and the Higgs feature
R-parity RP = 1, while all the supersymmetric partners have RP = �1. The presence
of R-parity forbids the terms in Eq. (1.21) and leads to a stable lightest supersymmetric
particle (LSP), because sparticles can only decay to an odd number of supersymmetric
particles. A stable LSP could therefore be a good dark matter candidate if it is also
weakly interacting, and electrically and colour neutral.

Since exact supersymmetry would mean that every superparticle is degenerate in mass
with its SM partner, the absence of any evidence of supersymmetry suggests that SUSY
must be broken. Moreover, a theoretically appealing supersymmetric model should break
supersymmetry spontaneously and analogously to the SM electroweak symmetry break-
ing, we expect a SUSY invariant Lagrangian, but a vacuum state that is not. Several
possible solutions for the mechanism of spontaneous supersymmetry breaking have been
proposed [40–65]. It is however possible to hide our ignorance of this mechanism intro-
ducing terms that break SUSY explicitly [66]. The breaking must be soft, namely of
positive mass dimension, in order to maintain natural the hierarchy between the elec-
troweak and the Planck scale. Therefore, the most general MSSM Lagrangian includes all
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1.1 The minimal supersymmetric Standard Model

possible renormalisable terms which do not introduce quadratic divergence at all order in
perturbation theory

L � � 1

2

⇣

M3g̃g̃ + M2W̃W̃ + M1B̃B̃ + h.c.
⌘

�
⇣

Au
ijũ

c
i q̃jhu + Ad

ij d̃
c
i q̃jhd + Ae

ij ẽ
c
i l̃jhd + h.c.

⌘

� (Bµhuhd + h.c.)�m2
hu

h†
uhu �m2

hd
h†
dhd

� (m2
q̃)ij q̃

†
i q̃j � (m2

d̃
)ij d̃c

†
i d̃j � (m2

ũ)ijũ
c†
i ũj � (m2

l̃
)ij l̃

†
i l̃j � (m2

ẽ)ij ẽ
c†
i ẽj, (1.23)

where the first line correspond to the soft breaking masses for the gluino, the Wino and
the Bino respectively, the second to the soft trilinear scalar interactions, the third to the
soft bilinear scalar interaction and the soft scalar masses for the Higgs, while the last one
to the scalar mass squares of squarks and sleptons.

The supersymmetric spectrum can be computed from the various terms of the soft
Lagrangian and of the superpotential. In particular, the composition of the neutralinos
in terms of their interaction eigenstates is very important in the context of dark matter
studies. The neutralino mass matrix in the basis (B̃, W̃ , h̃0

d, h̃0
u) is given by

M�̃0 =

0

B

B

@

M1 0 �g1vd/
p

2 g1vu/
p

2

0 M2 g2vd/
p

2 �g2vu/
p

2

�g1vd/
p

2 g2vd/
p

2 0 �µ
g1vu/

p
2 �g2vd/

p
2 �µ 0

1

C

C

A

, (1.24)

where vu,d are the vacuum expectation values of the Hu,d Higgs doublets and g1,2 are
the SM gauge couplings. Diagonalising the neutralino mass matrix, the four neutralinos
eigenstates can be expressed as

�̃0
i = N1iB̃ + N2iW̃ + N3ih̃d + N4ih̃u, (1.25)

where i = 1, ..., 4 and m�0

1

< ... < m�0

4

, providing the Bino |N1i|, Wino |N2i| and higgsino
p

|N3i|2 + |N4i|2 fraction of each neutralino. Neutralinos get a Majorana mass and the
lightest one �̃0

1 is a suitable dark matter candidate, provided it is the lightest supersym-
metric particle at low energies.

A second success of supersymmetric models compared to the SM is the prediction of
gauge coupling unification. At 1-loop, the renormalisation group (RG) equations for the
SM gauge couplings g1, g2 and g3 are

�i ⌘
d

dt
gi =

1

16⇡2
big

3
i , (1.26)
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Figure 1.2: RG evolution of the inverse of the gauge couplings ↵�1
i (µ) in the Standard

Model (light colours) and in the MSSM (darker colour). In the MSSM the sparticle masses
are degenerate at mSUSY ⇠ 1 TeV.

where t = log(µ/µ0), with µ the RG scale, and bi = (41/10, �19/6, �7) for the SM or
bi = (33/5, 1, �3) for the MSSM. The extra particles in the loop make the MSSM bi
larger than the SM ones. Furthermore, the normalisation of the couplings is chosen as
g2 = g and g1 =

p

5/3g0. Figure 1.2 compares the evolution of ↵�1
i in the SM (lighter

colours) and in the MSSM, with a SUSY mass scale of O(TeV). Supersymmetry improves
the precision of the unification with respect to the SM, and it pushes the unification
scale to higher energies, avoiding the proton decay problem of non-SUSY grand unified
theories [67]. However, as the SUSY scale is taken heavier, the precision of the unification
becomes worse. Actually, only part of the spectrum has to be near the weak scale in order
to improve unification. Indeed, in Split Supersymmetric models [68–70], where the scalar
superpartners are heavy and only the supersymmetric fermions are at the weak scale,
similar precision is achieved. This is possible because the heavy squarks and sleptons are
in complete SU(5) multiplets and do not contribute to the running up to the SUSY scale.

However, supersymmetry has been challenged by the LHC experimental data [72, 73].
The highest mass reach at the LHC has been achieved for strongly interacting particles,
such as gluinos and squarks [71]. ATLAS limits on a squark-gluino simplified model,
assuming the decays g̃ ! qq̄�̃ and q̃ ! q�̃, for the first LHC run are shown in Figure
1.3. These results imply that squarks must be heavier than ⇠ 1.5 TeV for decoupled
gluinos, gluinos must be heavier than ⇠ 1.3 TeV for decoupled squarks, and squarks and
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1.1 The minimal supersymmetric Standard Model
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Figure 1.3: Exclusion limits on first and second generation squark and gluino production,
with a lightest neutralino mass of 0 GeV (red solid curve), 395 GeV (light blue curve), or
695 GeV (green curve). The Figure is taken from [71].

gluinos must be larger than ⇠ 1.7 TeV in the degenerate case. This limits are valid for
massless neutralino LSP, while increasing the neutralino mass the bounds become weaker.
The rest of the supersymmetric spectrum is assumed to be heavy and decoupled. On the
other hand, the reaches for uncoloured superpartners, such as neutralino, charginos and
sleptons, is weaker [74]. In Figure 1.4 (left), for example, the expected and observed
limits for pure Wino �̃+

1 �̃
�
1 and �̃+

1 �̃
0
2 production are shown. The stronger limits come

from chargino neutralino associate production decaying into two or three leptons (and
missing energy) via SM gauge bosons, bounding a pure Wino to be heavier than ⇠ 400

GeV for massless Bino LSP. Higgsino production leads to stronger limits than the Wino
one if the decays to the final states are mediated by sleptons, as shown in Figure 1.4
(right). For instance, NLSP higgsinos decaying via sleptons, with m�̃0

1

< ml̃ < m�̃0

2,3
,

are excluded up to ⇠ 700 GeV, a limit that is much weaker than the one for squarks or
gluinos.

The existence of a SM-like Higgs with mass 125 GeV and the bounds from the first
LHC runs at 7 and 8 TeV are an indirect hint for a small hierarchy between the electroweak
and the supersymmetry restoration scale. At tree level, the Higgs mass is

m2
h ' �2(m2

Hu
+ |µ|2) + O

✓

1

tan �

◆

, (1.27)
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Figure 1.4: Exclusion limits on pure Wino �̃+
1 �̃

�
1 and �̃+

1 �̃
0
2 or pure higgsino �̃0

2�̃
0
3 produc-

tion, with SM gauge bosons decays (left) or sleptons mediated decays (right). Figures are
taken from [74].

where tan � is the ratio between the vev of the two Higgs doublets, tan � = vu/vd.
Equation (1.27) implies that a higgsino heavier than the lightest Higgs would induce a
tree level tuning. Furthermore, m2

Hu
receives corrections from the one loop RG equation

proportional to the stop mass

@tm
2
Hu

=
3|yt|2

8⇡2

⇣

m2
t̃L

+ m2
t̃R

+ |At|2
⌘

+ ..., (1.28)

where t = log µ/µ0. Finally also the stop mass receives corrections from the RG propor-
tional to the gluino mass

@tm
2
t̃ = �8↵s

3⇡
M2

3 + ..., (1.29)

showing that the gluino and the stop are the dominant source of tuning. In a weak scale
MSSM model with gauginos and first generation squarks above 2 TeV and light higgsinos,
the lightest stop mass allowed are about 1.7 TeV, assuming maximal stop mixing [75]. If
the A terms are small, large stop masses of about 10 TeV are needed. Such stop masses
require some amount of tuning and show therefore a possible tension for SUSY as a natural
solution of the hierarchy problem.

There are several ways to ease the tension between the experimental bounds on squarks
and gluinos, and the need for light stops and gluinos [76]. One way is to have an LSP that
is almost degenerate with the stop, such that the jet produced in the stop decay is soft and
it may fail to be detected, or is not visible due to the large background for soft jets (see for
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1.1 The minimal supersymmetric Standard Model

example the green curve of Figure 1.3). However, in this situation there are two unnatural
scalars: Eq. (1.29) shows that the less tuned spectra feature mt̃ ' M3. Since the largest
contribution to the fine tuning comes from the gluino, we should relax its bounds. A
possible way to weaken the LHC bounds on gluinos is to hide the collider signature via
baryonicc R-parity violating (RPV) couplings. Furthermore, an effective way to keep the
stops light is to have first and second generation squarks heavy and the third generation
light (split family models). In this way, the constraints on the stops are weakened because
the direct production cross section is suppressed by the parton distribution functions and
the signal is typically hidden in the large SM background. Nonetheless, for both RPV
models and split families, several ATLAS and LHC searches bound the gluino and the
squarks to be around the TeV level [77–84], which translates to a few percent tuning.

Finally, it is possible to suppress the squark production cross section by having a Dirac
gluino rather than a Majorana one. In this situation, squark pair production via t-channel
gluino is suppressed [85]. We will analyse this last scenario further in this thesis.

1.1.2 Split SUSY

The recent discovery of a 125 GeV Higgs boson and the lack of discovery of new coloured
states at the LHC raise serious doubts on the MSSM as a solution of the hierarchy problem.
If the naturalness problem is not to be taken as a principle to build SUSY models, it is
always possible to focus on its other advantages: the existence of a dark matter candidate
and the gauge coupling unification.

This is the approach taken in the framework of split SUSY models [68–70]. These
models abandon the idea of SUSY as a solution of the hierarchy problem and feature
heavy scalars at a mass scale m̃, in the original model ranging from 100 TeV to mGUT.
However, the 125 GeV Higgs constrain the mass of the heavy scalars to be about 108 GeV
for tan � = 1 and around 10 TeV for large tan �, see Figure 1.5. Such heavy scalars require
fine tuning in the light Higgs mass. On the other hand, the higgsinos and the gauginos are
light, about 1 TeV, motivated by WIMP dark matter. Moreover gauge coupling unification
is not spoiled by the heavy squarks and sleptons that do not contribute anymore to the
running between the weak scale and m̃, because they come in complete SU(5) multiplets.
As appealing features of Split SUSY models, the heavy scalars strongly suppress flavour
changing neutral currents and ameliorates other problems such as CP violation and fast
proton decay.
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Figure 1.5: Prediction for the Higgs mass mh in Split Supersymmetry for
tan� = {1, 2, 4, 50}. The thickness of the lower and upper boundary at tan� = 1

and tan� = 50 shows the uncertainty due to the present 2� error on the top mass. The plot
was done with SusyHD [75].

1.2 Beyond minimal SUSY: Dirac gauginos

In light of the challenges faced by the MSSM, it is also interesting to consider non-minimal
implementations of SUSY. Models with Dirac gaugino masses are an alternative to the
MSSM. Such models were considered early in the study of supersymmetric theories [86–
88], and have received renewed interest because of potential phenomenologically appealing
features [85, 89, 90]. These include possibly weakening collider limits and flavour con-
straints, and reducing EW fine tuning, compared to Majorana models.

Gauginos can get Dirac masses if extra chiral superfields �̂i = Ŝ, T̂ , Ô, in the adjoint
representation of the SM gauge group factors U (1), SU (2), SU (3) respectively, are added
to the theory. Then Dirac masses can be generated by the operator

Z

d2✓
p

2
Ŵ 0

↵ Ŵ ↵
j

M
�̂j , (1.30)

where Ŵ 0
↵ is a hidden sector U(1)0 spurion that gets a D-term D0, M is the scale of

supersymmetry breaking from the hidden to the visible sector, Ŵ↵
i is the visible sector

gauge superfield for the three gauginos, and d2✓ is the integration over the Grassmann
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1.2 Beyond minimal SUSY: Dirac gauginos

variable of the superspace formulation. This leads to terms in the Lagrangian

L � �mDj�j�̃j �
p

2mDj(�j + �⇤
j)Dj �

1

2
D2

j , (1.31)

where � is the gaugino, �j is the complex scalar component of �̂j, �̃j is its fermion partner,
and mD = D0/M .

The operator in Eq. (1.30) is supersoft, in contrast to a Majorana gaugino mass,
namely it does not give logarithmic divergent contributions to soft parameters. These
logarithmic divergences, if only the operator in Eq. (1.30) is present, are canceled by the
contribution of the diagram with � and the sfermions in the loop. Therefore there are
only threshold contributions to the sfermion masses due to the mass splitting of the Dirac
gauginos and the scalar adjoints, given by

m2
f̃

=
X

i

↵i

⇡
Ci (r) m2

Di
log

✓

m2
Re�i

m2
Di

◆

, (1.32)

where mDi are the gaugino masses, corresponding to the SM groups U (1), SU (2), SU (3)

respectively, Ci(r) are the quadratic Casimir of the fermion i under the gauge group r,
and mRe�i is the mass of the real part of the sgauge field. If only the supersoft operator
in Eq. (1.30) is present, mRe�i = 2mDi and the formula simplifies further. Moreover, the
finiteness of Eq. (1.32) allows for a hierarchy between the low scale squark and gluino
masses to be maintained during RG flow without tuning.

The scalar adjoints can also have SUSY breaking, R-symmetry preserving, mass terms

L � m2
�i
�†
i�i + B�i(�i�i + h.c.) . (1.33)

The first term of Eq. (1.33) is actually required because otherwise the imaginary part of
�i would be massless. However, the B�i term splits the real and imaginary components
of the adjoint scalar masses, and originates from the operator

Z

d2✓
p

2
Ŵ 0

↵ Ŵ↵0

M
�̂2

j . (1.34)

From Eqs. (1.31) and (1.33) we have

m2
Re�i

= 4m2
Di

+ m2
�i

+ B�i , m2
Im�i

= m2
�i
� B�i . (1.35)

Notably, the first term of Eq. (1.33) is not supersoft, and the non-holomorphic adjoint
masses m2

�i
contribute at two loops to the � functions for the sfermion masses. This two

loop contribution

@tm
2
q̃ '

32↵2
s

(4⇡)2
m2

�
3

+ ... (1.36)
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drives the squarks tachyonic and it can dominate the finite contributions of Eq. (1.32).
In gauge mediated models of Dirac gauginos, couplings of the adjoint fields to mes-

sengers in the superpotential lead to the soft masses of Eqs. (1.31) and (1.33) [91–93].
If the messengers are charged under a U(1)0, gaugino masses, and B�i are generated at
one loop. Avoiding a tachyonic adjoint scalar therefore requires m2

�i
to be large, which is

problematic since it is generated at two loops. With many messengers, positive masses
for the real and imaginary components of the scalar adjoint are possible [94]. However,
the contribution to the sfermion masses from the RG flow may then dominate the finite
contribution in Eq. (1.32) leading to problems with tachyonic states, and potentially re-
quiring extra tuning to obtain viable spectra [76]. Additional operators, that give positive
contributions to m2

Re�i
and m2

Im�i
, may alleviate the problem leading to masses for the real

and imaginary components of the scalar adjoint of the same order as the gluino mass [95–
97]. Alternatively, it is possible to forbid the operator that produces B�i if the gauginos
themselves are associated to a spontaneously broken global symmetry [98, 99].

The phenomenology of Dirac gaugino models depends on the expected ratios of the
scalar masses to gluinos and between the gauginos. If scalar masses are dominantly
produced by the supersoft operators of Eq. (1.30), the gluinos are significantly heavier
than the squarks, with mD

3

⇠ (5 ÷ 10) mq̃. However more complete models can alter this
minimal picture and lead to squark masses comparable to the gluino mass [92]. Gauge
unification is problematic in minimal Dirac models, and if it is not imposed the ratio of
gaugino masses depends on the details of the SUSY breaking and mediation sectors. It is
also possible that adjoints are present only for the SU(3) group, while the Wino and Bino
have Majorana masses, which would allow for large differences in the masses, for example
if the theory has an approximate R-symmetry (options include the possibilities that the
gluino could have both a Majorana and Dirac mass [100], or that Dirac masses could be
generated by an F-term [101]).

Unification is possible, even if difficult to achieve, if additional fields are added, which
together with the Ŝ, T̂ and Ô adjoints form a complete representation of a unified group:
the two simplest choices being SU(5) and SU(3)3 [89, 102]. The masses of the additional
fields have to be above 1014 GeV, in order to avoid a Landau pole before the unification
scale. This fixes the ratio between the gaugino masses [89], and in many models the
Bino and Wino are typically a factor of a few lighter than the gluino, often with a right
handed slepton lightest supersymmetric particle (LSP). Another possibility to achieve
gauge coupling unification is to add extra states in incomplete GUT multiplets, with
masses between the unification and the EW scale.1 In some scenarios this leads to a ratio

1These extra fields could even play the role of gauge mediation messengers.
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1.2 Beyond minimal SUSY: Dirac gauginos

between gaugino masses given by mDi/mDj ⇠ gi/gj [93]. In both scenarios, the addition
of extra states at intermediate scales quantitatively predict a different gauge coupling
unification scale with respect to the MSSM one.

Split family spectra with the first two generation squarks heavy can also be realised in
Dirac models. For example, [102] study a model with gauge unification, and stops lighter
than the first two generation squarks by a factor of about 5. The low scale gaugino masses
are

mD
1

/mD
0

: mD
2

/mD
0

: mD
3

/mD
0

' 0.22 : 0.9 : 3.5 , (1.37)

where mD
0

is the common gaugino mass at the GUT scale. The physical stop masses
are m2

t̃
' 0.2 m2

0 + 0.6 m2
D

0

, where m0 is a common first two generations squark mass at
the GUT scale, while the physical first two generations squark masses are approximately
m2

q̃
1,2
' 0.9 m2

0 + 0.6 m2
D

0

.
Finally, split SUSY models with Dirac gauginos are possible [103]. In these models,

sfermions and Dirac gauginos are very heavy and the only phenomenologically viable
states are the pseudo-Dirac higgsinos, with mass around 1 TeV. Alternatively, the Bino
can be a Majorana fermion, lighter than the other Dirac gauginos, and it can generate a
splitting of the pseudo-Dirac higgsino into Majorana states.

To summarise, in their simplest implementations models with Dirac gauginos lead to
spectra with relatively heavy gluinos compared to the squarks without tuning, typically
with gluino masses about five times larger. Meanwhile Majorana models cannot have
gluinos significantly heavier than the squarks without additional tuning. However, mini-
mal theories of Dirac gauginos have problems with tachyonic states, and solving this can
lead to squark masses comparable to that of the gluino. Split family models, with the
first two generation sfermions heavier than the gluino and the stops are also possible in
both Majorana and Dirac models, as are split SUSY models.
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Chapter 2

SUSY at a 100 TeV collider

Despite negative results from searches at the LHC, supersymmetry remains a well mo-
tivated scenario for physics beyond the SM. Supersymmetric theories consistent with
observations require a certain amount of fine tuning, but if this is accepted they can ex-
plain the remainder of the hierarchy between the electroweak and the Planck scale, and
can also lead to viable dark matter candidates and gauge coupling unification. Within
this framework the Higgs mass and the lack of discovery of new coloured states hint to
a new physics scale higher than the electroweak one. Furthermore, in SUSY models,
thermal dark matter candidates might have a mass up to 3 TeV, not accessible at the
LHC. The expectation of such heavy spectrum requires a machine more powerful than
the LHC. Consequently there has been significant interest in the prospect for discovering
supersymmetry at a future hadron collider with a centre of mass energy of about 100 TeV.

In this chapter, we analyse some searches for electroweakinos at current and future
colliders (with centre of mass of 14, 33 and 100 TeV) for Split SUSY models. Moreover,
in the second part, we carried out a simulation of the collider reach for strongly coupled
states in Dirac gaugino models at a future 100 TeV hadron collider.

2.1 Electroweakinos in Split SUSY

In this section we will extrapolate the mass reach for future hadron colliders in several
searches of electroweakinos relevant for split SUSY models. In general it is quite difficult
to estimate the mass reach for future colliders because cuts, acceptances (a), efficiencies
(✏) and type of analyses are expected to be different and because of our ignorance on the
details of the detector. In the following we will assume that cuts can be rescaled such
that efficiencies and acceptances can be kept constant (✏a ' const). We basically follow
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2. SUSY at a 100 TeV collider

the same strategy outlined in Collider Reach [104, 105]. The energy dependence of the
number of signal and background events (S and B respectively) is thus determined by
the production cross section. In particular the energy dependence of S and B is the same
since the parton level cross section has the same scaling � ⇠ 1/E2 at high energies and the
pdf of both signal and background are evaluated at the same energy.1 Therefore, requiring
that the significance at the new collider is the same as the one setting the current bounds
gives

� =
Sp
B

=
S 0
p

B0
) S

S 0 = 1, (2.1)

where S 0 and B0 refer to the number of signal and background events at a future collider.
Given an existing LHC bound, the corresponding mass reach at the new collider can

thus be obtained by simply computing the production cross section and requiring the same
number of signal events needed to put the original bound. Since in the ratio S 0/S the main
NLO effects cancel, the number of signal events can be computed using the cross section
of electroweakinos at leading order [106] convoluted2 with the MSTW Parton Distribution
Function [107].

We will show in the following that our analysis on electroweakino searches is in agree-
ment with existing studies in the literature when available. Results are shown in figures
2.1–2.5 and in table 2.1 and refer to 95% CL mass reach.

2.1.1 Wino-Bino simplified model

The first search we consider is a Wino-Bino simplified model.3 Charginos can be produced
in association with a neutralino via an s-channel W boson. Production through squarks
has been neglected because all the scalar super partners are assumed much heavier. This
scenario can be realised both in gravity and in gauge mediation (GMSB) models. When
the gaugino masses are universal (M1 : M2 : M3 = ↵1 : ↵2 : ↵3), the gluino is only
three times heavier than the Wino and we expect direct gluino searches to be stronger
than direct Wino searches. However, in non-universal gaugino models the gluino can be
much heavier than the Wino and direct electroweak searches would be the best chan-
nel to explore this scenario. This channel is also sensitive to GMSB models where the

1This is true away from the squeezed limit, where most of the background come from softer SM
particles. For this reason we will restrict to the case mLSP ⌧ mNLSP .

2Computing the signal, the cross section can be factorized out from the convolution with the Parton
Distribution Function S ⇠ �� · pdf because the integral is dominated only by the threshold ⌧0 ⇠ 4m2.
We verified numerically the negligible effects of the tail of the distribution.

3The Wino-higgsino simplified model has been recently studied in [110].
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Figure 2.1: Wino-Bino simplified model in the WZ channel. The left axis shows the
integrated luminosity for the method explained in the text and on the right axis, the same
for having 5 events and no background. The grey shaded area is the current bound from
[108].

Wino is the lightest neutralino, all the other gauginos are heavy and the gravitino is
approximately massless. In this case Winos decay promptly through the same channel
W̃±W̃ 0 ! W± Z G̃ G̃.

We consider the two different extreme cases, where the neutral Wino decays with
BR = 1 either to Z and LSP or to Higgs and LSP. The charged Wino decays always to W

and LSP. In the first case the dominant signature is three leptons and missing energy and
the main background comes from the SM WZ production. A Wino NLSP for m . 350

GeV is excluded for Bino masses less than 100 GeV [108, 111]. In the second case the
final states are one charged lepton (electron or muon), missing transverse energy (from
the LSP and the neutrino coming from the W decay) and two b-jets (from the Higgs).
For a massless Bino, Winos between 125 and 141 GeV and between 166 and 287 GeV are
excluded [109].

The mass reaches in the Wino-Bino simplified model are shown in figure 2.1 and figure
2.2 for the WZ and the Wh channel respectively. In this scenario higgsinos are decoupled
and therefore the only relevant parameter in the cross section is M2 (the cross section is
weakly dependent on tan � and M1, fixed to be less than 100 GeV by the method used).
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Figure 2.2: Wino-Bino simplified model in the W h channel. The left axis shows the
integrated luminosity for the method explained in the text and on the right axis, the same
for having 5 events and no background. The grey shaded area is the current bound from
[109].

In the WZ scenario, we find that the LHC14 may extend the mass reach to 1.2 TeV for
a luminosity of 3000 fb�1 and it will increase up to ⇠ 4 TeV at a 100 TeV collider.

The first result is in agreement with the 1.1 TeV mass reach given by ATLAS [112].
The latter can be compared with results by [113], although the two analyses differ for
the treatment of the branching ratios: we assume 100% decay in Z or h, while they
keep into account the fact that the branching ratios of Winos depend on the choice of
tan � and on the choice of the relative sign between gauginos and higgsinos. Moreover,
in [113] only the lepton channels have been considered, however the b-jet channel has a
higher sensitivity in the Higgs mediated scenario, due to the enhanced branching ratio
BR(h ! bb̄) �BR(h ! WW/ZZ). So we find that a 100 TeV collider with 3000 fb�1

of luminosity may reach 3.4 TeV in the b-jets channel as opposed to the only 1.3 TeV
reach found in [113] considering only the lepton channel. As a reference point in the right
axis of the figures we show how the reach in mass can be extended for a given integrated
luminosity assuming that the background can be reduced to zero and the efficiencies and
the acceptances can be made 100% (obtained by requiring S 0 = 5). (A more realistic result
can be simply obtained by rescaling the required luminosity by ✏, a and the

p
B.) The
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2.1 Electroweakinos in Split SUSY

right axis of each figure allows also to derive the cross section for the different searches
at different colliders as a function of the suitable gaugino masses. The plots can also
be used to compare the performance of different colliders. For example, in figure 2.1
and 2.2, we notice that, for the electroweak (EW) searches described in this section, the
sensitivity of the LHC14 with 3000 fb�1 is approximately the same as a 33 TeV collider
with a luminosity ten times smaller.

2.1.2 Long-lived Wino

Long-lived chargino searches can be used to probe models with Wino LSP such as anomaly
mediation models (AMSB) or high scale GMSB with non universal gaugino masses. In
these models the neutral Wino states are highly degenerate with the charged Wino and
all the other states are decoupled. For heavy higgsino the mass splitting at tree level is
suppressed and it is dominated by the radiative generated contribution, which is around
160-170 MeV at one-loop level [114–116]. This small mass splitting implies that the
charged Wino has a considerable lifetime (of order c⌧ = O(10) cm) and it decays mainly
into the neutral Wino and a soft charged pion.

The signature for this search is one hard jet from initial state radiation (ISR), large
missing transverse energy and a disappearing track (the chargino eventually decays to
a soft not reconstructed pion). The jet must not be too close to the missing energy
direction because it usually implies jet mismeasurement. Chargino pair (�̃+

1 �̃
�
1 ) and

chargino neutralino (�̃±
1 �̃

0
1) associated production with initial state radiation are the rel-

evant processes for this search. The relevant background originates from unidentified
leptons and charged particles with high mis-reconstructed transverse momentum (pT ) as
well as charged hadrons interacting with the inner detector. ATLAS excludes charginos
with mass below 250 GeV in the AMSB model [117].

We model the relevant cross section through the process qq̄ ! Z j ! e+ e� j using the
program MCFM [118] and rescaling the partonic cross section with the electroweakino
one. This is a good approximation within the method used because the cross section
depends only on the energy and on the different pdfs and the process with the exchange
of a photon is negligible with respect of the Z exchange diagrams. We derived the mass
reach in two ways: by conservatively rescaling the cut on the transverse momentum of
the jet with the mass of the final state (solid lines in figure 2.3), in such a way that
pT/mW̃ = const, or keeping the cut fixed to the value the ATLAS experiment used in its
study (pT > 80 GeV), if feasible (dashed lines in figure 2.3).

This scenario is relevant for dark matter searches. Indeed a Wino LSP is expected to
thermally saturate the relic density for a mass m� ' 3.2 TeV. LHC14 has the potential to
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Figure 2.3: Long-lived Wino. The left axis shows the integrated luminosity for the method
explained in the text and on the right axis, the same for having 5 events and no background.
The grey shaded area is the current bound from [117].

explore long lived chargino scenarios for masses around 600 GeV for a luminosity of 300

fb�1. This result is in agreement with the study in [119]. By exploiting the new tracker
installed at ATLAS, the reach for this kind of search may increase up to 800 GeV at the
LHC14 with 100 fb�1. We find that a 100 TeV collider would reach a Wino mass around
3.1 TeV for 3000 fb�1.

In the literature there are similar results for the disappearing track of long-lived Wino
searches [120, 121]. In order to be sure to reach the thermal dark matter mass range we
should either increase the luminosity or the collider energy: for example with a 200 TeV
collider and 1000 fb�1 of luminosity the Wino reach would comfortably extend to over 3

TeV. In addition it seems that without stronger cuts than the one used by ATLAS the
reach could be extended up to 5 TeV for a 100 TeV collider with a luminosity of 3000 fb�1.
This channel is particularly important in models such as anomaly mediation, where the
ratio between the gluino and the Wino is large (M3 ' 7 M2), because it could be more
powerful than the gluino searches [122].
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Figure 2.4: GMSB Wino-Bino scenario. The left axis shows the integrated luminosity for
the method explained in the text and on the right axis, the same for having 5 events and no
background. The grey shaded area is the current bound from [123].

2.1.3 GMSB Wino-Bino simplified model

In gauge mediated supersymmetric models usually the gravitino and the Bino are the LSP
and the NLSP respectively and the latter decays to the former via emission of one hard
photon. The search discussed in this section describes the production of Winos decaying
into Binos that subsequently decay into photons and gravitinos. This channel leads to
events with two final state photons, large missing energy and a moderate amount of visible
transverse energy. The relevant background is given by QCD processes involving photons
and jets, where a photon or a jet is mis-measured, EW processes like W + X, where X

is mis-reconstructed as a photon, and W and Z production in association with photons.
ATLAS set limits on a Wino mass of 570 GeV for any Bino above 50 GeV [123]. For
models with universal gaugino masses the limit increases to 660 GeV.

In figure 2.4 we show the reach for the GMSB Wino-Bino scenario with universal
gaugino masses. The relevant parameter in the computation of the cross section is the
Wino mass, while higgsinos are decoupled (the cross section is weakly dependent tan �).
Already the LHC14 will probe Winos up to 1.8 TeV with 3000 fb�1, corresponding to a
gluino ⇠ 5.4 TeV. At 100 TeV it is possible to exclude ⇠ 7.8 TeV Wino. This has a strong
impact in GMSB models with universal gaugino masses in which tan � is large. Indeed
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Figure 2.5: GMSB higgsino NLSP scenario. The left axis shows the integrated luminosity
for the method explained in the text and on the right axis, the same for having 5 events and
no background. The grey shaded area is the current bound from [111].

in these models the ⇠ 125 GeV Higgs mass fix the squark masses to be around 10 TeV
or below. Gluinos are expected at the same scale or below, which means a Wino around
⇠ 3.3 TeV or below. Such Wino could be probed already at a 33 TeV collider with 3000

fb�1. Like in the previous case also in this scenario the Wino reach is stronger than the
gluino one.

2.1.4 GMSB higgsino simplified model

In the last analysis the gravitino is assumed to be the LSP with higgsinos NLSP and
all the other states decoupled. This channel is relevant, for example, in lopsided gauge
mediation models [124], where scalars and gauginos are in the multi-TeV range and the
production of electroweakinos in the cascade of coloured sparticles is suppressed with
respect to the direct production of light higgsinos.

Higgsino NLSP decays to gravitino and Z or W bosons. The branching fraction of
higgsino to Z can be enhanced (with respect to the decay to Higgs) in the so called Z-
enriched GMSB model [125, 126]. The signature for this search is three or four leptons plus
missing transverse momentum or two leptons, two jets and missing transverse momentum.
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2.2 Strongly coupled states: Majorana vs Dirac

8 TeV (1)
14 TeV [300(0) fb�1] 33 TeV [300(0) fb�1] 100 TeV [300(0) fb�1]

Wino (�0
2 ! �0

1Z) 330 [108] 790 (1180) 1280 (2050) 2210 (3870)

Wino (�0
2 ! �0

1h) 287 [109] 700 (1080) 1110 (1830) 1890 (3380)

long-lived Wino 250 [117] 600 (930) 990 (1600) 1750 (3080)

GMSB Wino 660 [123] 1430 (1820) 2590 (3510) 5170 (7750)

GMSB higgsino 350 [111] 880 (1260) 1460 (2260) 2610 (4400)

Table 2.1: Current experimental status (LHC8) and results of the analyses with rescaled
background for LHC14, 33 and 100 TeV future hadron colliders. All the numbers are in GeV.
The models are explained in sections 2.1.1, 2.1.2, 2.1.3, 2.1.4 respectively.

The background is given mainly by the Standard Model WZ and ZZ production. CMS
set a limit of 350 GeV to this type of higgsinos [111]. We consider only the channel with
two leptons, two jets and missing transverse momentum since it is the one that dominates
the search. In figure 2.5 we show the results. The mass reach of this search is expected to
surpass 1 TeV by the end of the LHC lifetime (⇠ 2035) and reach 4.4 TeV at a 100 TeV
machine with 3000 fb�1.

2.2 Strongly coupled states: Majorana vs Dirac

Hadron colliders are very efficient at producing strongly interacting states, and even
though coloured superpartners are often amongst the heaviest they constitute the most
important channels for the discovery or exclusion of SUSY theories. For this reason, we
also study the production cross sections of coloured states at a 100 TeV proton–proton col-
lider obtaining the expected discovery and exclusion reach for a squark-gluino-neutralino
simplified model. The Dirac or Majorana nature of gluino masses leads to significant
differences in the production rates in some parts of parameter space [85, 127–129] and we
highlight the effects of these. LHC searches already set stringent limits on SUSY mod-
els [130, 131] and these can be recast to give significant constraints on models of Dirac
gluinos. The bounds on the first two generation squark masses from 8 TeV data are found

1The limit for GMSB higgsino model was given for 19.5 fb�1 of luminosity. All the other limits are
given for 20.3 fb�1.
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2. SUSY at a 100 TeV collider

to be roughly in the region of 800 GeV for Dirac gluino masses of around 5 TeV, and are
expected to increase up to roughly 1.2 TeV with 14 TeV data [85, 129].

2.2.1 Production cross sections

Motivated by UV theories of Dirac gluinos, discussed in Section 1.2, we consider two
benchmark patterns of soft terms, one with mq̃ = mg̃ and the other with mg̃ = 5mq̃ where
mg̃ is the gluino mass. Due to the parton content of the proton, the first two generation
sfermions are produced far more readily than stops, provided the masses are not very
hierarchical. Therefore we take mq̃ to be a degenerate mass for these states, and neglect
the production of stops. Our calculations are performed with MadGraph5 [132], and we
have not included next to leading order (NLO) K-factors in this section. These are not
yet known for Dirac gluinos and we are primarily concerned with the relative sizes of
cross sections here. Cross sections for Majorana models at 100 TeV have previously been
studied (for example in [133]), while cross sections for Dirac models at an energy of 33
TeV are given in [134], and we find good agreement with these.

In Fig. 2.6 (left) we show the production cross sections for squark pairs for Majorana
and Dirac gluinos. This production channel shows the most striking difference between the
two cases. For Dirac gluinos only production of (q̃Lq̃R) is possible, with (q̃Lq̃L) forbidden
due to the lack of an allowed chirality flip. In contrast, a chirality flip is possible with
a Majorana gluino mass, and consequently this cross section is dramatically larger than
in Dirac models [134].1 In Fig. 2.6 (right) the production cross sections for squark-anti-
squark pairs is plotted. The cross section is only slightly reduced in Dirac models because
the dominant production mode is through an s-channel gluon. This production mode is
independent of the gluino mass, reflected in the relatively small drop in cross sections
between the models with gluino mass equal to the squarks and the models with a heavy
gluino.

In Fig. 2.7 (left) we show the gluino-squark production cross section. To a good
approximation this is the same for both Dirac and Majorana models. If the squarks are
relatively heavy compared to the gluino, gluino pair production is the dominant source of
superparticles. The cross section for this is plotted in Fig. 2.7 (right), and here the only
difference between the models is the additional degrees of freedom in the Dirac gluino
model. This simply enhances the production cross section of gluino pairs by a factor of a
few.

1The difference in the relative production of same chirality and opposite chirality squarks could even
be used to distinguish Dirac from Majorana gluinos [128].
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Figure 2.6: Left: The squark-squark production cross sections for Dirac (plotted in blue)
and Majorana (red) gluinos as a function of the squark mass. We show the production cross
sections for two benchmark relations between the soft parameters, mg̃ = mq̃ (solid lines) and
mg̃ = 5mq̃ (dashed lines). Right: The squark-anti-squark production cross sections for the
same models.

Therefore the main differences in exclusion and discovery reach will be in regions
of parameter space where gluino pair production, or squark pair production dominates.
With relatively heavy squarks, gluino pair production will be most important and the
Dirac model will lead to higher potential exclusion.

Comparing the cross sections in Figs. 2.6 and 2.7, we see that when the squark masses
are equal to the gluino mass squark-gluino production will be large, and in Majorana
models there will be also be a comparable squark-squark production cross section, while
this is suppressed in Dirac models. Consequently, the collider reach is expected to be
roughly similar in the two cases. For larger gluino masses, the squark-gluino cross section
decreases fast, and squark-squark production dominates. In this part of parameter space
the exclusion and discovery potential will be drastically reduced in the Dirac model com-
pared to the Majorana model. Eventually, in the decoupling limit where the gluino is so
heavy that it is completely removed from the spectrum, squark-anti-squark production is
dominant and the two models have the same production cross section.

As well as squarks and gluinos, Dirac gluino models feature another new coloured
state. This is the sgluon �, a complex scalar in the adjoint of SU (3). The sgluon mass
depends on the UV completion of the theory, but is often comparable in mass to the
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Figure 2.7: Left: The gluino-squark production cross section for the two soft mass rela-
tions, as a function of the gluino mass. To a good approximation this is identical for the
Dirac and Majorana scenarios. For the mg̃ = 5mq̃ curve, the plotted region corresponds
to light squarks, and gluino-squark production is entirely negligible for models with such a
mass relation if the squarks are heavier than a few TeV. Right: The gluino pair production
cross sections, for the Dirac (blue) and Majorana (red) benchmark models as a function of
the gluino mass. We also show the production cross section for pair production of sgluons
(plotted in black), as a function of the sgluon mass, which is approximately independent of
the other soft parameters in the model.

gluino. Over most of parameter space sgluons are dominantly pair produced with single
production significantly suppressed [135], and to a good approximation the cross section
for this is independent of the other soft parameters of the theory. In Fig. 2.7 (right), we
therefore show the leading order production cross section for pair production, assuming
the scalar and pseudo-scalar components are degenerate in mass (NLO corrections for
sgluon production have been obtained in [136], and including these does not qualitatively
affect our conclusions). It can be seen that sgluons are pair produced less frequently than
gluinos unless they are substantially lighter.

2.2.2 Discovery and exclusion reach

To determine the expected discovery and exclusion reach of a 100 TeV proton–proton
collider, we study a simplified squark-gluino-neutralino model. We set the neutralino
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2.2 Strongly coupled states: Majorana vs Dirac

mass to 100 GeV, and scan over the masses of the degenerate first and second generation
squarks, and the gluinos, with all other superpartners decoupled. The signal of such a
model, jets and missing energy, is a classic search for supersymmetry, and the main SM
backgrounds to this are W/Z boson + jets, and tt̄ + jet production.

Our simulation is performed using the SARAH Dirac Gauginos model [137]. We
produce parton level events for the production channels (g̃g̃), (q̃g̃), (q̃q̃), and (q̃q̃⇤) in
MadGraph5 [132]. Decay, showering and hadronisation is carried out with Pythia6.4 [138],
and we use the Snowmass detector card [139] in Delphes [140] to perform our detector
simulation. Given how rapidly the cross sections fall with increasing superpartner masses
the order one uncertainties on the properties of a future detector are expected to lead to
relatively small changes to our results. To obtain the SM backgrounds we use the publicly
available Snowmass results [141]. We assume that there are 20% systematic uncertainties
associated with the SM backgrounds (this may be a fairly cautious estimate and we
comment on the effect of altering it). Further, we compute the expected number of events
at a 100 TeV collider assuming, somewhat conservatively, 3 ab�1 worth of luminosity.
Total integrated luminosities of up to 30 ab�1 have been suggested as a suitable aim for
a 100 TeV collider, and if this is achieved a significant increase in mass reach is possible
[142, 143], and we discuss this later.

To determine the discovery reach we first perform a series of preselection cuts to remove
the majority of the SM background. For this we follow the choices of the Snowmass
study [122], although further optimisation may be possible and could lead to a small
improvement in reach. We require all jets have at least 30 GeV transverse momentum,
otherwise we ignore that jet. At least four jets with transverse momentum greater than
60 GeV are also required, and we perform a cut on the missing energy ET,miss and Ht,
the scalar sum of the final state jets, of E2

T,miss/HT > 225 GeV. Further, we also demand
there are no leptons in the final state. We then scan over square cuts on ET,miss and HT ,
with the final cuts chosen so as to maximise the signal significance, i.e. maximising, see
[144]

� =
S

p

1 + B + �2B2 + �2S2
, (2.2)

where S and B are the number of signal and background events, and � and � are the
assumed systematic uncertainties on the background and signal events.

NLO K-factors K = �NLO/�LO are calculated for Majorana gluinos using Prospino2.1
[145]. These factors have not been calculated for the Dirac case. As an estimate of
the effect of going to NLO we apply the K-factors calculated with a Majorana gluino to
both models. We do not generate events with any additional parton level jets, nor do
we include the effects of pile up. Pile up could be a substantial challenge at a 100 TeV
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Figure 2.8: Left: The 5� discovery potential of the Dirac (blue) and Majorana (red)
gluino-squark-neutralino model including the Majorana K factors for both models at a 100
TeV collider, for 5%, and 15% systematic uncertainty on the signal shown solid and dotted
respectively. Right: The expected 95% exclusion bounds for the same models.

collider [146, 147], but it has been argued that the present analysis is not likely to be very
sensitive to its effects [122].

We study the discovery and exclusion potential in both Majorana and Dirac gluino
models, and scan over gluino masses between 8 and 24 TeV, and squark masses between
6 and 20 TeV. For squarks much heavier than the gluino, the main decay mode for the
gluino is to a q q̄ �0 final state, whilst the squark decays to g̃ �0. For the opposite case,
the squark decays to a q �0 final state, while the gluino decays to q̃ q̄.

Of primary interest to us is the difference between the Dirac and Majorana models,
and this is plotted in Fig. 2.8. In the region of parameter space where the masses of
the gluinos and squarks are comparable, we find both models have the same discovery
potential. Similarly, if the squark mass is above the gluino mass then the discovery
reach is comparable between the models. For larger still squark masses, much above the
gluino mass, gluino pair production will dominate and in this case a Dirac model will
have slightly higher exclusion reach. In both models a 100 TeV collider would be able to
discover gluinos with masses up to approximately 15 TeV, and exclude gluino masses of
approximately 17 TeV.
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Figure 2.9: Left: The 5� discovery potential of the Dirac gluino-squark-neutralino model
including the Majorana k factors, dark blue, and with no K factor, light blue, for 5%, and
15% systematic uncertainty on the signal shown solid and dotted respectively. Right: The
expected 95% exclusion for the same models.

The main difference comes in the region with heavy gluinos, with masses in the range
18 to 24 TeV. In a Majorana model a 100 TeV collider can probe squark masses up
to approximately 11 TeV, however a Dirac model only has sensitivity to masses up to
6 TeV. This is expected given the relative sizes of the production cross sections. In this
mass region the dominant Majorana production mode is squark-squark pairs, but in a
Dirac model this production mode is very suppressed. In theories of Dirac gluinos, the
dominant production is instead through squark-anti-squark pairs, which has a smaller
cross section leading to reduced sensitivity.

It can be seen from the figures that the systematic uncertainty on the signal leads
to reasonable differences in the discovery potential, of order a few TeV, and the range of
values shown is plausible given the uncertainties in typical LHC analyses. The effect of
this uncertainty on the exclusion potential is relatively minor. Changing the systematic
uncertainty on the SM background has little effect on the expected discovery and exclu-
sion regions, with statistical uncertainty being the dominant source of error on the SM
background.

General arguments, based on parton distribution functions, suggest that an order of
magnitude increase in integrated luminosity from 3 ab�1 to 30 ab�1 could boost the reach
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for heavy particles by several TeV [142, 143]. Repeating our analysis with a luminosity
of 30 ab�1, we find that this is indeed the case. In the heavy gluino part of parameter
space, squark masses about 4 TeV larger than before are probed, so that in the Dirac
model squarks with masses between 8 and 10 TeV could be discovered depending on the
signal uncertainty. If the squark and gluino masses are similar the reach is increased by
about 2 TeV in both masses.

Let us also note the impact of using NLO K-factors, which is shown in Fig. 2.9. We
have computed the K-factors using Prospino2.1 in a model with Majorana gluinos. NLO
K-factors have not been calculated for Dirac gluino models to our knowledge. Thus the
inclusion of these K-factors in the Dirac model should be thought of purely as an estimate
of the impact of going to NLO, rather than a firm prediction. We see that the inclusion of
K-factors has a dramatic effect on the discovery and exclusion potential of both models,
and thus calculation of K-factors for Dirac gluino models is an important task if accurate
predictions are to be made.

A shortcoming of our present work is that we have not included additional parton
level jets, which is computationally expensive, in our simulation. The effect of this can
be estimated by comparing our Majorana results with the Snowmass study [122], which
includes up to two additional jets. Our results match the Snowmass study well in most
of the parameter space, while there is some difference in the high gluino mass region. In
particular, the Snowmass study finds sensitivity to 14 TeV squarks for gluinos at masses
around 20 TeV, falling to 12 TeV squarks for gluino masses of 24 TeV. In comparison we
find a maximum discovery reach of 10 to 12 TeV squark masses for these gluino masses.
It is likely that in this parameter region the lack of jets results in a signal that is not
well separated from the background. However even for such spectra the numerical error
introduced is relatively minor compared to, for example, uncertainties from the unknown
luminosity a future collider might achieve.

As well as models with close to universal squark masses, it is well motivated to consider
theories with stops relatively light compared to the first two generation squarks. In the
case where the gluino is decoupled, the discovery potential of this model is no different
to that studied in [148]. In a simplified model with a neutralino, it is found that pair
production allows 5.5 TeV stops to be discovered, while 8 TeV stops can be excluded.

Differences between Dirac and Majorana models can arise if the gluino mass is not
completely decoupled from the spectrum. In Dirac models the stop-anti-stop production
cross section is only slightly suppressed compared to a Majorana model due to the main
production mode being through an s-channel gluon. Thus if the gluino is out of kinematic
reach and the only way to produce stops is through pair production, then we expect
only a slight reduction in sensitivity in Dirac models compared to a Majorana model.
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However, this could change if stops and gluinos are both kinematically accessible. Since
gluino production is larger in Dirac models, stop production through gluino decay would
be more important in this case. As the stop masses are varied, it is expected that the
bound on gluino masses will be at least as strong as that obtained when all squarks are
decoupled, giving us a lower limit on the discoverable parameter space. A dedicated
analysis of these scenarios at a 100 TeV collider, along the lines of the study of LHC
search carried out in [149], would be worthwhile.

The discovery potential for sgluons depends on details of the pattern of superpartner
masses. Decays to a squark-anti-squark pair are typically dominant if they are kinemati-
cally allowed, and otherwise decays to a pair of gluinos or a quark-antiquark pair though
a loop of squarks can be significant. In the case of decays to quark-antiquark pairs, the
rate is suppressed by the mass of the quark, so a substantial proportion of events involve
top quarks. This leads to the interesting possibility of searching for events with same sign
top quarks [135], which is reasonably easy to distinguish from SM backgrounds. Stud-
ies relevant to the LHC have been carried out [150–156], and assuming a model where
sgluons decay mostly to tops, LHC searches rule out sgluon masses up to the region of
700 GeV. Since, in most of the parameter space of motivated models, sgluons do not lead
to the dominant discovery and exclusion potential we do not consider them further in our
present collider simulations. However, if gluinos or squarks were to be discovered they
would be a very exciting state to search for, not least because their presence would be a
very strong hint that gluino masses were at least partially Dirac.

We stress that our analysis and simplified model nowhere near covers the full range
of possible models and signatures. For example, it is plausible that the spectrum could
include a number of light higgsinos. These can lead to squarks decaying via a cascade,
potentially weakening our search signal, but these can give other signatures involving
photons or leptons, as pointed out in [85]. Our assumption of a light LSP may also not
hold, and if the LSP mass is instead a significant fraction of the squark or gluino mass
the sensitivity could be significantly weakened [85]. Further, many well motivated Dirac
gaugino models have a gravitino LSP, and if decays to this are slow on collider timescales
the expected signals could be altered dramatically.

2.3 Higgs mass and fine tuning in Dirac gaugino models

2.3.1 Higgs sector

In the MSSM, the tree level mass of the lightest neutral Higgs is constrained to be below
the Z boson mass and enhancing it to the observed value [8, 9] requires large radiative
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corrections from the stops. In a model with gauginos and first generation squarks above
2 TeV and light higgsinos, the lightest stop masses allowed are about 1.7 TeV assuming
maximal stop mixing [75]. However, if the A terms are small, large stop masses of about
10 TeV are needed. Extra contributions to the Higgs quartic self coupling can relax the
need for large radiative corrections. This happens in the NMSSM, which has a term
�SŜĤuĤd in the superpotential [157]. In this case very light stops are possible. For
�S > 0.7 the stops can be as light as 500 GeV, although in some parameter ranges this
leads to �S running non-perturbative at an intermediate scale [158, 159].

In Dirac gaugino models, if the operator in Eq. (1.30) is the only source of supersym-
metry breaking, the equations of motion set the D-terms for the SM gauge interactions
Di ⌘ 0. Consequently, the tree level Higgs quartic, and its tree level mass, vanish identi-
cally. However, this is no longer the case if the terms in Eq. (1.33) are present, and the
suppression can be reduced if the soft masses for the singlet S and the triplet T are large
enough. The suppression is also ameliorated if the gaugino masses are a mix of Dirac and
Majorana. Models with entirely Dirac gaugino masses have an R-symmetry in the gauge
sector. This may or may not be respected by the Higgs sector, leading to different ways
to raise the Higgs mass to 125 GeV.1

If the R-symmetry is broken in the Higgs sector, there can be couplings between the
singlet or the triplet adjoint and the Higgs

W � �SŜĤu · Ĥd + �T Ĥd · T̂ Ĥu . (2.3)

These enhance the tree level Higgs mass at small tan � by an NMSSM-like term pro-
portional to the couplings �S,T , competing with the suppression of the D-term Higgs
quartic [160]. A radiative contribution from the stops is still typically needed, though
stop masses below 1 TeV may be sufficient depending on the value of the other parame-
ters. Dirac gluino and Wino masses can be large without disrupting this conclusion, but
the Dirac Bino is bounded to be below a few hundred GeV because it mixes dangerously
with the lightest Higgs, reducing its mass. As a side effect, this mixing will lead to a
Majorana neutralino.

On the other hand, if the R-symmetry is preserved in the Higgs sector, extra inert
Higgs-like doublets Ru,d must be introduced to obtain a viable model, since the standard

1In both the cases with preserved or broken R-symmetry in the Higgs sector, the new couplings
break custodial symmetry, potentially leading to large contributions to the EW precision observables. In
particular the ⇢ parameter leads an upper bound on the triplet vacuum expectation value of |vT | . 4 GeV.
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µ term is forbidden.1 The extra doublets can couple through R-symmetric µ-type and
trilinear terms

W � µu R̂u · Ĥu + µd R̂d · Ĥd + �u Ŝ R̂u · Ĥu

+ �d Ŝ R̂d · Ĥd + ⇤u R̂u · T̂ Ĥu + ⇤d R̂d · T̂ Ĥd . (2.4)

However, the extra couplings �u,d and ⇤u,d do not alleviate the depletion of the D-terms.
For example, in the limit where � = �d = ��u, ⇤ = ⇤u = ⇤d, µu = µd = µ, and the
vacuum expectation values of the singlet and triplet scalar adjoints vS ' vT ' 0, the tree
level Higgs mass is

m2
h,tree = m2
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where mD
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are the Dirac gaugino masses and mS and mT are the masses of the
real parts of the scalar adjoints before EW symmetry breaking. Therefore the tree level
upper bound is even stronger than in the MSSM, and radiative corrections are vital. At
one loop the most relevant corrections come from four powers of the couplings � and ⇤.
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The form of these is analogous to those from the stop and if |�| ⇠ |⇤| ⇠ 1 the new terms
can give a significant contribution.3 For large couplings, ⇤u = ⇤d ⇠ 1 ⇠ ��u = ��d,
and light higgsinos with mass around 300 GeV, it is possible to obtain the correct Higgs

1Models of Dirac gaugino without the µ term [161] or where the µ term is generated as in the NMSSM
are also possible [162], as are models where SM-like Higgs state is not the lightest scalar, increasing its
tree level mass [163].

2In the limit where � = �d = ��u, ⇤ = ⇤u = ⇤d, µu = µd = µ and vS ' vT ' 0.
3However the condition |�| ⇠ |⇤| ⇠ yt may lead to a loss of perturbativity at low scales [164].
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mass for stops as light as 300 GeV (not necessarily ruled out by the LHC if they have
a compressed spectrum). A beneficial feature is that the adjoint fields do not reduce the
Higgs mass at two loop, as the stop contribution proportional to ↵s does.

In conclusion, the physical Higgs mass leads to significant constraints on the form of
viable models, especially in theories with Dirac gauginos. However, for all gluino and stop
masses not ruled out by the LHC, models exist in which a 125 GeV Higgs is possible.
Therefore none of the parameter space of discoverable strongly interacting states studied
in Section 2.2 is directly excluded, although in R-symmetric Dirac models with light stops
fairly large dimensionless coupling constants are required.

2.3.2 Fine tuning

The fine tuning of a given low energy spectrum is only well defined once a UV complete
theory is specified, such that the underlying parameters that can be varied are known.
For example, there may be extra tuning hidden in the UV theory, or alternatively the
true tuning might be reduced by particular correlations between parameters that from
the low energy perspective appear independent.1 Despite these caveats, it is interesting
to make some naive estimates of the tuning in the regions of parameter space probed by
the LHC and future colliders.

In the MSSM, at large tan �, the EW scale is fixed by the relation

MZ ' �2
�

m2
hu + |µ|2

�

, (2.7)

where m2
hu is the soft mass squared for the up type Higgs, and the physical Higgs mass

mh0 is equal to MZ at tree level, and increased by radiative corrections.
If the mass of the stops is significantly above the EW scale there are large radiative

corrections to the soft mass squared of the up type Higgs through a term in the RGEs
proportional to the top quark Yukawa. Similarly, a heavy gluino leads to a large con-
tribution to m2

hu at two loops, through the stop. As a result, obtaining a low EW scale
requires an unnatural cancellation of terms in Eq. (2.7), which can be quantified by the
fine tuning

��1 =
@ log m2

h0

@ log pi
, (2.8)

where pi are the UV parameters of the theory that can be varied independently.
Because of the large coupling in the RGE, even for low scale mediation the low scale

stop mass typically ends up close to the gluino mass. The LHC has already set strong
1The latter however raises concerns about whether assuming a UV model with such helpful correla-

tions is itself an additional tuning.
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bounds on the gluino mass. Consequently, regions of parameter space with 2 TeV stops,
heavy enough to produce a 125 GeV Higgs, are typically no more tuned than those with
lighter stops. Models with very light stops in special parts of parameter space that are
not excluded by searches, for example close to the top mass, may even be more tuned,
due to the extra cancellations needed to keep a second scalar light [166].

In Natural SUSY models the first two generation squarks cannot be made arbitrarily
heavy without introducing further tuning. Their soft masses m2

1,2 (which are assumed
close to degenerate) feed into the RGE for the stop mass squared at two loops, driving it
towards tachyonic values through a term in the RGE

dm2
t̃

dt
� 8↵2

3

3⇡2
m2

1,2 . (2.9)

Depending on the mediation scale it is possible to raise the first two generation squark
masses a factor of roughly 10 to 20 above the gluino mass (i.e. the typical mass of the
stop) without making the tuning of the theory worse. In extended models, for example
the NMSSM, the Higgs potential is modified and Eq. (2.7) does not hold. In some circum-
stances, for example if there is a large coupling �ŜĤuĤd to a singlet Ŝ, this can reduce
the sensitivity of the EW scale to the Higgs soft mass squared parameter. However, in
this case the model involves extra tuning from the requirement that the Higgs properties
closely resemble those of the SM Higgs [167].

In models of Dirac gauginos, the dependence of the EW scale on the up type Higgs
mass remains close to that of Eq. (2.7) [164]. There is a tuning from the gluino mass
associated to the finite contribution to the stop mass of Eq. (1.32), which feeds into the
up type Higgs mass. However, this contribution is enhanced only by two relatively small
logarithms log m2

Re(A)/m
2
g̃ ⇥ log m2

g̃/m
2
t̃
, unlike the MSSM where the gluino tuning varies

with the mediation scale as log2 m2
med/m

2
t̃
. This raises the hopes that relatively heavy

gluinos may be possible without introducing excessive tuning.1 There is also a finite
contribution to the Higgs soft mass from the Wino and Bino (assuming that these also
have dominantly Dirac masses). For ratios of Dirac gaugino masses coming from typical
models this leads to less tuning than that from the gluino.

Additionally, a soft mass for the imaginary part of the adjoint from Eq. (1.33) con-
tributes to the running of the squark masses at two loops

dm2
t̃

dt
� 2↵2

3

⇡2
m2

�3 . (2.10)

1Models based on Scherk-Schwarz SUSY breaking, which can have very small EW tuning, also feature
Dirac gauginos [168, 169].
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For large sgluon masses this can be important, especially since the additional matter in
Dirac models results ↵3 being larger at high scales than in the MSSM.

To study the fine tuning as a function of the gluino and stop masses in models with a
viable low energy spectrum, we fix m�3 at the mediation scale such that the low scale mass
of the imaginary part of the sgluon is equal to the gluino mass. There may be additional
tuning to achieve this in an actual SUSY breaking and mediation mechanism, since as
discussed it is often a loop factor too large. However we do not attempt to quantify this
in our measure of tuning. While it is possible that the stop mass is determined solely
by the gluino mass and the negative RG contribution from the sgluon, such a setup does
not allow for squark masses comparable to the gluino mass at a low scale (even allowing
the mediation scale to vary). Instead we allow an extra stop soft mass generated directly
at the mediation scale, opening up the low energy parameter space. Such a mass is not
supersoft and gives a logarithmically divergent contribution to the Higgs mass squared
parameter. However, in parameter ranges where the stop mass is dominantly generated
by the gluino multiplet the direct stop soft mass is small by construction, so does not
make the tuning significantly worse.

Under these assumptions we plot the fine tuning for Majorana and Dirac models in
Fig. 2.10 as a function of the low scale gluino stop masses. We add the individual tunings
in quadrature,

� =
q

�2
t̃
+ �2

g̃ , (2.11)

where �t̃ and �g̃ are the tunings from the stop and gluino parameters respectively. We
also distinguish between regions of parameter space where the stop mass squared param-
eter at the mediation scale is negative (assuming the stop mass is degenerate with the
other squarks at the mediation scale). In these parts of parameter space there are possible
concerns about whether the universe could be trapped in a colour-breaking vacuum at
early times (although this may not be the case [170]). Because of the sgluon and stop soft
masses the tuning depends on the mediation scale even in the Dirac scenario.

Comparing with the projected collider reach studied in Fig. 2.8, we see that in scenarios
with approximately universal squarks masses of the same order as the gluino mass, a 100
TeV collider can exclude models with tuning of one part in 10, 000 for both Dirac and
Majorana gluinos assuming low scale mediation and up to one part in 100, 000 for high
scale mediation. Under our assumptions about the tuning, in this region there is a slight
improvement in tuning in Dirac gluino models, but given the possible extra model building
tunings required this is certainly not significant.

In parts of parameter space where the gluino is much heavier than the stops, Dirac
models are less tuned than Majorana models especially if the mediation scale is high. This
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Figure 2.10: Left: Contours of fine tuning for Dirac gluino models (blue) and Majorana
models (red) assuming a mediation scale of 10

6
GeV. The contour labels apply to both the

Dirac and Majorana models, whose tuning coincides in the limit of small gluino mass. In
regions with a dashed line the stop mass at the mediation scale must be tachyonic (assuming
universal squark masses). Right: The same plot for a mediation scale of 10

16
GeV.

reflects the supersoftness of the gluino contribution to squark masses. The boundary
between dashed and solid lines for the Dirac contours in Fig. 2.10 corresponds to the
stops being massless at the mediation scale. If the mediation scale is low and the squark
masses are approximately universal, along this line in parameter space Dirac models with
tuning of approximately one part in 1,000 will be excluded. The same low scale soft
masses correspond to a tuning of almost one part in 10,000 in Majorana models. Further,
the collider reach is significantly stronger for Majorana models in this parameter regime
allowing models that are even more tuned to be discovered or excluded.

Natural SUSY models, with squarks far heavier than the stops, can lead to weaker
discovery and exclusion potential in the gluino-stop mass plane than models with universal
squark masses. Such models might therefore escape being observed with a 100 TeV collider
while still having not enormous tuning. However, comparing our discussion in Section 2.2
with Fig. 2.10, we see that relatively strong searches for a gluino even in the case of
decoupled squarks leads to significant constraints. For low scale mediation, Majorana
Natural SUSY models will be probed up to a tuning of one part in 3, 000 and Dirac
models up to similar levels depending on the efficiency of searches for stops. For high
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scale mediation, the longer RG flow means a Majorana gaugino has even more impact.
Models with tunings of one part in approximately 30, 000 will be constrained in this case,
while Dirac models with tuning of one part in 10,000 will be probed.
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Chapter 3

SUSY from DM direct detection
experiments

Dark matter direct detection experiments are based on the idea of [171] that exploits
the recoil energy from dark matter particles scattering on nuclei. If the dark matter has
interactions with the SM quarks or gluons, these interactions imply the possibility of the
scattering on nuclei and the release of a certain amount of energy, which is measured
through the ionisation produced by the collisions with electrons. This recoil energy is
given by

ER =
|~q|2

2mA

, (3.1)

where |~q|2 = 2µ2
�Av2(1� cos ✓), v is the DM velocity with respect to the target nucleus, ✓

is the scattering angle in the centre of mass frame, and µ�A = m�mA/(m� + mA) is the
reduced mass of the system of the DM and the nucleon mass mA. Therefore, the measure
of the recoil energy can signal the occurrence of a DM particle scattering on nuclei. The
differential event rate R per recoil energy is

dR

dER

= NT

Z

|~v|>v
min

|~v|d��A
dER

dnDM , (3.2)

where NT is the target nuclei number density, ��A is the scattering cross section of the DM
with a nucleon A and nDM is the DM density. It is possible to determine the scattering
cross section from the interaction between the DM and the quarks and gluons, and the
nuclear matrix elements. For typical Majorana WIMP candidates, such as the MSSM
neutralino, the interaction can be spin-independent or spin-dependent, corresponding to
interactions mediated by scalar or pseudo-vector, respectively. Spin dependent interac-
tions are usually subdominant, because the DM scatters only on unpaired nucleon in the
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Figure 3.1: Current bounds (solid lines), hints for a DM signal (shaded closed contours)
and future experimental reach (dashed lines) for DM-nucleon spin independent cross section
in direct detection experiments. The approximate region, where neutrino coherent scattering
from solar, atmospheric and supernova neutrinos will dominate, is also shown [172]. Figure
taken from [173].

nucleus. On the other hand, spin independent scattering happen coherently for all the
nucleons in the target, giving more stringent experimental bounds.

The total event rate turns out to be proportional to / �µ2
�A/m�, where � is the

coupling between the DM and the quarks or gluons, such that the total number of observed
events translates in a limit on the coupling

� / m�/µ
2
�A. (3.3)

In Figure (3.1) current bounds (solid lines), hints for a DM signal (closed contours) and
future reach (dashed lines) of several dark matter direct detection experiments are shown.
The dependence of � in Eq. (3.3) explains the exclusion curves of Figure 3.1: for DM
much lighter than the nucleus mass, the excluded coupling is proportional to m�1

� , while
if the DM is heavier than mA, the excluded coupling goes as the DM mass m�. Therefore
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the exclusion is stronger for a dark matter particle with mass m� ' mA. Moreover, the
presence of multiple experiments with different target mass may provide better constraints
on the DM.

From Figure 3.1 we also notice that direct detection experiments are highly sensitive
to DM mass between 10 GeV and few TeV. However, if the WIMP nucleon cross section
is too small, the neutrino background would dominate over the dark matter signal [172].

In the following sections, we will show the interplay between DM direct detection
experiments and collider searches for models of split SUSY (section 3.1) and models of
Dirac gauginos (section 3.2).

3.1 Split SUSY

In split SUSY, dark matter searches depend on the low energy electroweakino spectrum.
We focus on two representative scenarios: models with universal gaugino masses and
models of anomaly mediated SUSY breaking. These scenarios cover all the relevant dark
matter candidates in split SUSY, i.e. pure higgsino, pure Wino, h̃/W̃ , h̃/B̃ and B̃/W̃ .

The scattering cross section of the neutralino with nucleons is calculated using the
effective Lagrangian describing the interaction among neutralinos, quarks and gluons in
the limit of low relative velocity [174–176]. The spin independent scattering cross section
of the neutralino with a nucleon N can be expressed in a simple way as

�SI
N = |Higgs + gluon + twist-2|2. (3.4)

Higgs, twist-2 and gluon refer to the diagrams in figure 3.2. The Higgs diagrams (figure
3.2(a)) are generated by the scalar-type effective operators �̃0 �̃0q̄q and �̃0 �̃0Ga

µ⌫G
aµ⌫ and

their contribution to the amplitude is proportional to the �̃0�̃0h coupling:

ch�̃�̃ = (N12 �N11 tan ✓W )(N13 cos � �N14 sin �), (3.5)

where N1i are the elements of the matrix that diagonalise the neutralino mass matrix.
The first subscript of N1i is an index in the mass basis (ordered from the lightest to the
heaviest), while the second in the interaction basis (B̃, W̃ , Hu, Hd). The twist-2 diagram
(figure 3.2(b)) plays an important role in the computation of the cross section because it
contributes to the amplitude with opposite sign with respect to the other diagrams. This
will lead to some accidental cancellation. The gluon contributions (figure 3.2(c)) are of
the same order of the one-loop diagrams because of the presence of a factor 1/↵s that
comes from the calculation of the gluon matrix element.
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Figure 3.2: Diagrams that contribute to the neutralino nucleon cross section. The diagrams
with Z exchange are relevant only for the Spin Dependent cross section.

For the computation of the cross section we used leading order formulae [174–176]. The
uncertainty has been estimated by taking into account the uncertainties from hadronic
matrix elements and those from known 1-loop QCD corrections. The order of magnitude
of the latter is comparable with [177–180].

In the rest of the section we only focus on neutralino dark matter that is thermally
produced. The relic density was computed with DarkSusy [181, 182] and the package
DarkSE [183] to compute the Sommerfeld effect. For the value of the relic density we
used the Planck result, ⌦h2 = 0.1196 ± 0.0031 [184].

3.1.1 Models with universal gaugino masses

The first scenario we consider is split SUSY with universal gaugino masses. Higgsinos
can be either light or heavy and are left as free parameters. In general we have two free
parameters, µ and M0 (Mi / ↵iM0) which are further constrained to one by requiring
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Figure 3.3: Spin independent neutralino-nucleon scattering cross section (�SI) requiring
⌦h2 = 0.1196 ± 0.0031 in the universal gaugino masses model (red is Bino-like, yellow is
higgsino-like LSP). The magenta area is the current bound by LUX, the dashed magenta line
is the projected reach of LZ. The neutrino background, where direct detection experiments
lose sensitivity, is shaded in light blue. The numbers are explained in the legend on the right
panel.

⌦DM = ⌦exp. This leads to a phenomenology in which the LSP can be either the higgsino
(when |µ| < M1) or the Bino (when |µ| > M1).

In figure 3.3 we show the spin independent cross section for the scattering of neu-
tralinos on nucleons. The magenta shaded area shows the region excluded by LUX [185].
The dashed magenta curve set the projected reach for LZ [186, 187]. The light blue area
represents the irreducible neutrino background [172]. The three red/yellow curves repre-
sent the spin independent cross section requiring the correct relic density for µ > 0, large
tan � and µ < 0 from top to bottom respectively (in the following we set the gaugino
masses positive). For large tan � the sign of µ is irrelevant: the curve in the middle is the
limit for both positive and negative scenario. The red colour of each curve represents a
Bino-like LSP, while the yellow a higgsino-like LSP. A Bino needs to mix with an higgsino
in order to have sizeable annihilation cross section and therefore the correct relic density.
In this region the cross section is dominated by the Higgs diagrams. The relic density
constraint gives a relation between µ and M1, depending on tan � and on the sign of µ

(as it is shown in figures 3.4). In particular for µ < 0 the two states are close enough
and therefore coannihilation effects become relevant. At low LSP masses in the negative
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branch, the mixing is not maximal and it is given by

N11 ' 1� N2
13

2
� N2

14

2

N13 ' �sin ✓wMZ

M2
1 � µ2

(µ sin � + M1 cos �)

N14 '
sin ✓wMZ

M2
1 � µ2

(µ cos � + M1 sin �), (3.6)

while the cross section is proportional to |MZ(M1 + µ sin 2�)/(µ2 �M2
1 )|2. As the LSP

mass increases, the relic density constraint needs more mixing and more coannihilation,
the two states become more degenerate and the cross section increases (figure 3.3). Also
for µ > 0 at small LSP mass there is small mixing between the Bino and the higgsino.
In this region coannihilation is not present. The relic density constraint gives a relation
between the parameter µ and M1 such that the nucleon-neutralino scattering cross section
is constant.

Continuing the description of figure 3.3, the tt̄ threshold is visible only for µ < 0

because for positive µ there is no coannihilation and the dominant annihilation channel
is into gauge bosons. For mLSP > mt (also the annihilation in tt̄ is present), in order to
get the correct relic density the two states have to become less degenerate such that the
new annihilation channel is balanced by the weaker coannihilation effect.

Once the region of maximal mixing is reached, the mLSP ' 500 (900) GeV for posi-
tive (negative) µ respectively, we have (N11, N12, N13, N14) ' (1/

p
2, 0, 1/2,⌥1/2), where

the ⌥ sign refers to the cases µ ' ±M1. Thus the cross section is proportional to
| cos � + sign(µ) sin �|2 and it is constant for both signs of µ. The suppression in the
negative µ branch is again due to the sign of µ and the value of tan �.

Recent results by LUX [185] already exclude the region with positive µ independently
on the value of tan �. The only available parameter space is for negative µ and small
tan �. When the higgsino becomes the LSP and mB̃ become heavier and heavier, the Higgs
exchange become suppressed and the twist-2 and gluon diagrams will eventually dominate.
However, their contribution is suppressed by a factor 10 due to a cancellation between
the gluon and twist-2 diagrams. When the scale of the LSP is such that coannihilation
does not help anymore to maintain the correct relic density, the mixing is

N11 '
(sin � ± cos �) sin ✓wMZ

⌥M1

p
2

N13 ' ± 1p
2

N14 '
1p
2
, (3.7)

the Higgs diagrams are suppressed by M1 and the cross section decreases. Figure 3.3 shows
also the indirect reach from gluino searches: a 16 TeV gluino corresponds to M1 ' 2.4
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Figure 3.4: Region in the (µ, M1) allowed by direct chargino searches at LEP (excluded
in red) and by the requirement that the neutralino does not exceed the CDM relic density
(excluded in blue). The left (right) panel are for negative (positive) µ, respectively. The
colour shading for actual bounds, future reach and background for direct detection are the
same as in the previous figure.

TeV. This is the reach for a 100 TeV collider in the (mLSP , �SI) plane. However, direct
detection is stronger for µ > 0: indeed LZ can reach M1 ' 7 TeV corresponding to gluinos
around 42 TeV. On the other hand the curve for negative µ is not bounded by LUX and
LZ will explore pure higgsino states with M1 . 1.7 TeV. The gluino reach for a 100 TeV
collider is stronger in this scenario. Continuing along the yellow curve, there is a value of
M1 such that the Higgs contribution is of the same order of the gluon and twist-2 diagrams
and the cross section vanishes. Due to the cancellation uncertainty becomes O(1) and we
cannot tell where exactly the cancellation happens. While the Bino completely decouples
(mB̃ = O(100 TeV)), the Higgs amplitude vanishes and the cross section reaches the value
of the pure higgsino case given by the gluon+twist-2 diagrams:

�SI
N . 10�48 cm2. (3.8)

When the LSP does not contribute to the whole DM abundance, the interplay between
collider and direct dark matter searches is better shown in figure 3.4. The dark blue area
describes the region where the relic abundance exceeds the experimental value. The dark
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Figure 3.5: Contours of SI neutralino-nucleon cross section in [cm

2
] for higgsino dark matter

(red curves). The black arrows shows the uncertainty on the cross section. The parameter
µ is fixed such that the lightest neutralino has the correct relic density. The colour shading
for actual bounds, future reach and background for direct detection are the same as in the
previous figure. The green shaded area shows the expected reach at a 100 TeV collider for
gluino searches.

magenta is the bound by LUX, the light magenta region shows the reach of LZ and the
light blue is the neutrino background. In red is the bound on charginos from LEP [188]. In
the plot are shown also future reach from mono-jet searches (m�0

1

' 870 GeV, [120]) and
the indirect reach coming from gluinos at a 100 TeV collider (mg̃ ' 16 TeV). According
to the left panel of figure 3.4, for µ < 0 thermal Bino-higgsino DM is not constrained
by Direct Detection searches. Future experiments can however explore scenarios where
µ ' �1.1 TeV and M1 < 1.7 TeV. Nonetheless the strongest reach in this kind of models
would come from a 100 TeV collider: gluino pair searches have the potential to explore a
large area of the parameter space, while mono-jet searches will not have enough sensitivity
to explore pure thermal higgsinos. The right panel shows how the Direct Detection reach
is stronger for µ > 0.

The pure higgsino region is shown in figure 3.5 and it is interesting because it does not
require the coincidence |µ�M1|⌧ |µ| in order to explain the WIMP miracle. Figure 3.5
shows the dependence of tan � as a function of the gluino mass (and thus M1 = ↵1/↵3M3),
for a dark matter particle with the correct relic density for M3 < 0 and M3 > 0 in the left
and right panel respectively (now we fixed µ to be positive and the sign of M3 can vary).
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Figure 3.6: Spectrum of gauginos and higgsinos in Anomaly Mediation.

The value of the parameter µ has been fixed by requiring the correct relic density and it
is approximately 1.1 TeV across the whole plot. The colour labelling is the same as in the
previous figures except for the green region that denotes the reach for gluinos at a 100
TeV collider. The red curves represent the SI cross section, while the black arrows show
the uncertainties on the cross section. We notice that the collider reach is weaker than the
direct detection experiments for M3 > 0, while in the other case it can be competitive.

3.1.2 Anomaly Mediation

In split SUSY with Anomaly Mediation [64, 65, 70] the physical gaugino masses are
predicted in terms of the gravitino mass. The leading contributions to Bino and Wino
masses come from one-loop anomaly mediation and threshold effects

M1,2 =
�1,2
g1,2

m3/2 +
↵1,2

2⇡

(m̃2 + µ2)µ tan �

(tan2 � + 1)m̃2 + µ2
ln



(1 + tan�2 �)

✓

1 +
m̃2

µ2

◆�

, (3.9)

where gi is the corresponding gauge coupling, �i its beta function, m3/2 is the gravitino
mass and m̃ is the scalar mass-scale. The gluino mass receives contributions only from
anomaly mediation. In this scenario the scalars (except the SM-like Higgs) are heavy and
close to the gravitino mass, while the gauginos are light. Higgsinos are not constrained.

Figure 3.6 shows the spectrum of split SUSY with anomaly mediation. Depending
on the contribution of the higgsinos the nature of the LSP changes. Light higgsinos
lead to a spectrum in which the higgsino is the LSP and the ratio between gauginos is
M1 : M2 : M3 ' 3 : 1 : 9. Scenarios in which the Wino is the LSP are allowed if the
higgsino is heavier than the Wino. For very heavy higgsinos the threshold corrections in
(3.9) dominate and the Bino become the LSP.
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Figure 3.7: Spin independent nucleon-neutralino cross section in a split SUSY with anomaly
mediation model (the red curve describe a Bino-like LSP, the yellow curve a higgsino-like
and the blue one a Wino-like dark matter candidate). The magenta area is the actual bound
by LUX, the dashed magenta line is the projected reach of LZ. The neutrino background is
shaded in light blue. The numbers are explained in the legend on the right panel.

The model is entirely described in terms of four parameters: m3/2, µ, tan � and m̃.
However, the value of the Higgs mass gives a relation between tan � and m̃. In order to
have heavy scalars compatible with the Higgs mass we choose tan � = 2. We also discuss
how the results change in the large tan � scenario.

In figure 3.7 we show the spin independent cross section that satisfies the relic density
constraint. We start with the case µ < M2 and discuss the behaviour of the cross section
and the bounds as the higgsino mass is increased. The yellow curve describes a mostly
higgsino LSP state. At mLSP ' 1.1 TeV the cross section behaviour is the same explained
for the Universal Gaugino masses scenario. The neutrino background makes it difficult
for future direct detection experiments to probe this region of the parameter space, while
LZ will probe only anomaly mediated spectra with higgsino LSP and M2 . 10 TeV. As
M2 approaches µ the coupling increases and so does the cross section. A 100 TeV collider
may explore a very small region where 1.2 . |µ| . 1.7 TeV (see for example the gluino
reaches of the top panels of figure 3.8). Continuing along the yellow curve of figure 3.7,
when µ ⇠ M2 the mixing is maximal, the tree level Higgs exchange dominate and the
LUX bounds apply. The recent LUX results [185] already exclude maximal Wino-higgsino
mixing for positive µ. Moreover, for small tan � higgsino dark matter with M2 < 2 TeV
or Wino dark matter with µ < 3.5 TeV are ruled out. On the other hand, Wino-higgsino
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mixing for negative µ and small tan � will be probed by LZ. In this region the cross section
is constant and the Higgs coupling is proportional to

(cos � + sign(µ) sin �). (3.10)

The lower curve represents the cross section for µ < 0 which is suppressed by the sign of
µ. At large tan � the sign of µ becomes irrelevant. Analogously to what happens for the
pure higgsino case, the cross section decreases when µ�M2 and the LSP approaches the
pure Wino state. Indeed now the mixing is given by N12 ⇠ 1,

N13 '
cos ✓wMZ

|µ|2 (M2 cos � + µ sin �) N14 '
cos ✓wMZ

|µ|2 (M2 sin � + µ cos �), (3.11)

and the Higgs coupling becomes

�cos ✓wMZ

|µ|2 (M2 + µ sin 2�). (3.12)

The cross section therefore decreases as the higgsino decouples from the Wino. In
this regime the gluon and the twist-2 diagrams are also important. However, as for
the higgsino case the gluon and the twist-2 amplitudes accidentally cancel suppressing
their contribution by a factor 5. Going down along the blue curve there is a value of µ

for which the cross section vanish because the Higgs diagrams cancel the gluon+twist-2
contributions. Due to O(1) uncertainties it is not possible to define exactly for which value
of µ this cancellation happens. When the higgsino and the Bino are both decoupled, the
cross section is estimated to be

�SI
N . 10�47 cm2. (3.13)

If one keeps increasing the value of µ, with M2 ⇠ 3 TeV in order to reproduce the
correct relic density that provide a Wino dark matter candidate, the mass of the Bino-
like neutralino decreases (see (3.9)). While the splitting between Wino and Bino decreases,
the cross section increases because the Higgs diagrams become negligible with respect to
the other contributions (N11 is negligible with respect to N12 and N13 and N14 are given
by equation (3.11)). This is the top flat edge of the blue rectangle. In this region the
LSP neutralino is a pure Wino, with M1 closer and closer and µ decoupled. From the top
right to the top left part of the blue rectangle, the value of M1 ranges between 10 and 1.8

TeV, while the higgsino is decoupled and the LSP mass is given by the value of M2. The
mixing between Bino and Wino is always negligible for mass splitting larger than a GeV.
Once M1 < M2 the Higgs diagrams, the only contributions to the cross section, become
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Figure 3.8: The parameter space region allowed by the requirement that the neutralino
relic abundance does not exceed the relic density in the plane (µ, M2) for µ < 0 (µ > 0 ) in
the left (right) panel. The bottom panel shows the plane (M1, M2). Direct Detection and
collider constraints and future reach are also shown.

suppressed by the large value of µ. In this region the neutralino is almost a pure Bino
with the mixing given by (3.6). In this case in order to have the correct relic, the Bino
must coannihilate with the Wino and therefore the splitting must be . 30 GeV. In order

58



3.2 Dirac gauginos

to decrease the gaugino mass scale and maintain such splitting, µ has to decrease and
thus the cross section increases, being the Higgs coupling given by

MW tan ✓w
M1 + µ sin 2�

|µ|2 . (3.14)

There is no top threshold in this case because the annihilation into tt̄ is not the dominant
contribution. A 100 TeV collider could be able to explore the whole region where the LSP
is a mixed Bino/higgsino and Bino/Wino state from the LEP bound to MLSP ⇠ 3.1 TeV
(those reaches are better shown in the figure 3.8). Given the large value of µ, at large
tan � the cross section is further suppressed.

The (µ, M2) and the (M1, M2) planes are shown in figure 3.8. The upper panels show
the (µ, M2) planes for µ < 0 (left) and µ > 0 (right). The blue region is excluded by the
requirement on the relic density. The dark and light green areas describe the constraints
from long lived Winos at LHC8 and the future reach for a 100 TeV collider. The grey
lines shows the bounds and reach on gluino pair searches. It is interesting to note that
the direct detection reach is limited in the left panel, due to the suppression of the cross
section for µ < 0. On the right panel the two different searches are complementary. The
bottom panel shows the plane (M1, M2), for both positive and negative µ. The colour
coding is the same as in the upper plots. The yellow line that cuts the panel in two
represents the area in which the higgsino is the LSP and it cuts the plane in a region with
µ > 0 (left) and µ < 0 (right). The yellow region is strongly connected with the upper
plots. The blue stripe overlapping the yellow line is a region in which M1 is decoupled
and it shows the crossing between the Wino LSP parameter space and the higgsino one.
A large region of the parameter space could be probed at a 100 TeV collider, leaving
unexplored just the narrow region corresponding to the pure Wino and higgsino cases.

3.2 Dirac gauginos

The viable dark matter candidates can change dramatically if gauginos have Dirac masses.
In models of gauge mediation the gravitino can be a suitable dark matter candidate. How-
ever, similarly to the MSSM the possible collider signatures are highly model dependent,
so we focus on the high mediation scale case where a neutralino is the LSP.

If there are additional chiral adjoints only for the SU (3) gauge group, while the other
gauginos are Majorana and the Higgs sector is unchanged from the MSSM, viable dark
matter candidates are the same as for the MSSM. For the purpose of a 100 TeV collider,
such models simply change the relations between gluino searches and dark matter. It is
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interesting that large hierarchies between the gluino and other gaugino masses can easily
occur in this scenario, for example due to an approximately conserved R-symmetry. Such
a spectrum relaxes the links between collider searches for coloured states and dark matter,
which we discuss shortly. Similarly, if chiral adjoints are present for the SU (2) and U (1)

groups, but the mediation is such that these gauginos are dominantly Majorana, the dark
matter candidates are similar to the MSSM, with the extra possibility that the LSP could
have a significant adjoint fermion component. New dark matter scenarios occur when the
LSP is a combination of the MSSM-like gaugino and the adjoint fermion, and when the
Bino and Wino in the MSSM are replaced with the corresponding adjoint fermion, leading
to dark matter candidate with either Majorana or Dirac masses [93, 94, 102, 160, 189–193].

On the other hand, if the theory has an unbroken R-symmetry, neutralinos are a linear
combination of the Bino/adjoint singlet (Dirac Bino), Wino/adjoint triplet (Dirac Wino),
up and down higgsinos, and extra so-called R-higgsinos that must be introduced [85].
We take this scenario, called Minimal R-symmetric Supersymmetric SM (MRSSM), as
a representative example to study Dirac gaugino masses and it is reviewed in Appendix
A. Another motivated possibility is that the mediation mechanism is such that all the
gaugino masses are dominantly Dirac, but the Higgs sector is that of the MSSM. The
phenomenology of this case qualitatively follows that of the MRSSM. In these cases the
Dirac nature of the gauginos has a large effect on direct detection searches.

In the following we study the relationship between DM direct and indirect detection
experiments, relic density and collider reach for Dirac gaugino models. For our numerical
results we get model inputs from the CalcHEP [194] output of SARAH [195], the mass
spectrum and couplings are computed at one-loop with SPheno [196], and finally the relic
density and direct and indirect detection rates are computed with MicrOMEGAs [197].

3.2.1 Direct detection and relic density

Direct and indirect dark matter detection experiments can be used to place bounds on the
dark matter mass. The Dirac or Majorana nature of the lightest neutralino dramatically
changes the interactions probed by direct detection experiments. For Majorana particles
the vector interaction with quarks vanishes and the neutralino–nucleon cross section is
suppressed. Therefore in the MSSM the dominant process for the spin independent cross
section are Higgs and squark exchange, while Z exchange contributes only to the spin
dependent cross section. Combining the relic density constraint [198] and bounds from
direct detection experiments, in most models a significant part of the parameter space
is ruled out already for Bino/higgsino and higgsino/Wino LSP, although there are still
viable regions (Section 3.1 and Refs. [1, 199]). Moreover, indirect detection may set limits
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3.2 Dirac gauginos

on Wino dark matter with masses between 500 GeV and 3 TeV [200], although there are
large astrophysical uncertainties.

In contrast, in models of Dirac gauginos the vector interaction of the Z exchange can
lead to a large contribution to the spin independent cross section if the dark matter has
a significant higgsino content [201]. In general the spin independent cross section with
protons can be written as

�SI =

✓

m�mp

m� + mp

◆2
1

16⇡m2
�m

2
p

 

1

4

X

spins

|M|2
!

, (3.15)

where m� is the DM mass and mp is the proton mass. The Z-exchange spin independent
cross section with protons is given by

�p
SI '
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,(3.16)

where sW (cW ) is the sine (cosine) of the weak mixing angle, c��Z is the coupling between
two DM particles and the Z boson, g is the SU (2) coupling and N (1)

ij , N (2)
ij are the unitary

mixing matrices that diagonalise the neutralino mass matrix, in a basis where N13 and
N14 corresponds to the higgsino content of the dark matter (complete definitions are in
Appendix A).1 The squark-exchange spin independent cross section with protons, for Bino
dark matter, is given by

�p
SI '

✓

m�mp

m� + mp

◆2 g4
1

4 ⇡m4
q̃

✓

Y 2
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+ Y 2
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+
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◆

, (3.17)

where mq̃ is the squark mass and Yi are the hypercharges of the different quarks.2 Finally
the Higgs-exchange spin independent cross section with protons is given by

�p
SI =

✓

m�mp

m� + mp

◆2 c��h
⇡m4

h

 

X

q

cqq̄hB
p
qq̄h

!2

, (3.18)

where c��h is the coupling between DM and the Higgs boson and cqq̄h is the coupling of
the Higgs with the quarks. The Yukawa suppression in the Higgs contribution makes the

1Depending on the different values of the parameters characterising the mass matrix, N (1,2)
1j . 1. If

the dark matter is a pure state, the corresponding element is O(1), while the others vanish.
2In the Wino dark matter case, we have to replace g1 ! g2.
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Figure 3.9: The proton elastic scattering cross section due to Z and squark exchange
processes. The two blue solid lines show the cross section for the Z-exchange for LSP higgsino
contents of ZN ' 10

�3 (upper curve) and ZN ' 5 ⇥ 10

�5 (lower curve). In the limit of
Eq. (3.23) these correspond to higgsino masses of 1.3 TeV and 6 TeV respectively. The blue
dashed lines show the cross section for squark-exchange for squark masses of 5 TeV (upper)
and 20 TeV (lower), assuming a dominantly Bino dark matter candidate. The orange shaded
region is the actual bound from LUX, while the green curve is the projected reach of LZ.
The red area denotes the neutrino background.

Higgs-exchange diagram subdominant to the Z- and squark-exchange, while interference
between these is only important if their amplitudes are comparable. Defining

ZN = |N (1)
13 |2 � |N (1)

14 |2 + |N (2)
13 |2 � |N (2)

14 |2 , (3.19)

we have that

�p,Z
SI ' 8⇥ 10�46

✓

ZN

10�3

◆2

cm2,

�p,q̃
SI ' 8⇥ 10�46

✓

3.5 TeV

mq̃

◆4

cm2 . (3.20)

In Fig. 3.9 we plot the different contributions to the spin independent elastic scat-
tering cross section. The spin independent cross section for Z-exchange is shown for two
benchmark values of the higgsino content of the LSP: the upper curve has ZN ⇠ 10�3,
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3.2 Dirac gauginos

while the lower curve has ZN ⇠ 5⇥10�5. The dashed lines give the spin independent cross
section for squark-exchange with squark masses 5 TeV and 20 TeV, assuming Bino dark
matter. Therefore to avoid the bound from LUX [185], the neutralino needs a small hig-
gsino content1 and the squarks must be heavier than roughly 3 TeV. The LZ experiment
[186, 187] will be able to probe a higgsino content of the LSP as small as 5 ⇥ 10�5 TeV

and squarks around 20 TeV. In the plot we show also the neutrino background, where
direct detection experiments lose sensitivity [172].

A small higgsino content typically requires a heavy higgsino. For example, in the limit
where MB

D < µ = µu = µd ⌧ MW
D , with � = �u = �d = ⇤u = ⇤d ⇠ 0 and large tan � we

have

N (1)
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Inserting Eqs. (3.21) and (3.22) into (3.19) gives

ZN '
g2
1v
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4

µ2 + (MB
D )2

(µ2 � (MB
D )2)2

, (3.23)

and therefore higgsinos heavier than 1 TeV are needed for Bino masses around 100 GeV to
avoid the bound from LUX. LZ may explore parameter regions corresponding to higgsinos
lighter than 4.5 TeV for 100 GeV Dirac Bino dark matter.

With light higgsino scenarios excluded, the Wino or the Bino remain as possible dark
matter candidates. A Wino LSP is hard to achieve from a model building perspective,
since it turns out that in most of the parameter space the lightest Wino is a chargino [202].
Consider, for example, the limit where ⇤ ' � ' 0, tan � � 1 and MB

D � µd, µu, MW
D .

After the Bino has been integrated out, the mass matrices for the neutralinos and the
charginos are2

M� =

0

@

mW
D �mW 0
0 µ 0
0 0 µ

1

A , and m⇢̃� =

✓

mW
D

p
2mW

0 µ

◆

. (3.24)

1There are however blind spots, where a tuning of the parameters may lead to N
(1)
13 = N

(1)
14 and

N
(2)
13 = N

(2)
14 , giving rise to a vanishing vector current and suppressing the spin independent cross section.

2The neutralino mass matrix is in the basis
⇣

˜W 0, R0
d, R

0
u

⌘

,
⇣

˜T 0, ˜H0
d ,

˜H0
u
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, while the chargino mass
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˜W�, R�
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,
⇣

˜T+, ˜H+
u

⌘

.
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Figure 3.10: Left: The constraints on Dirac Bino-Wino dark matter parameter space as
a function of their soft masses mD

1

and mD
2

. Models in the thin blue strip can give the
correct dark matter relic density, while the relic density is too large in the white region.
In the grey region the theories have a chargino LSP, and we also show the LEP constraint
on light charginos [203]. Right: The constraints on Dirac Bino dark matter annihilating
through sleptons, as a function of the Bino mass mD

1

, and the common first two generation
slepton soft mass ml̃

1,2
. The correct relic density is obtained along the blue contour, and

the relic density is too large to the right of this. The ATLAS search for sleptons is shown in
yellow and excludes a significant part of parameter space, while the constraints from LEP
are shown in red.

The neutralino mass matrix is simplified by the higgsino (in the third row) not mixing
with the other states. The upper left 2⇥ 2 block has the same form as the chargino mass
matrix m⇢̃� , but the off-diagonal element is smaller. This means that the lightest chargino
is lighter than the lightest neutralino both in the higgsino-like limit (µ < mB

D, mW
D ) and

the Wino limit (mW
D < mB

D, µ), preventing a pure Wino being a viable dark matter
candidate. This feature of the MRSSM appears in large portions of parameter space for
arbitrary values of ⇤, � away from the limit considered here [202].

A small part of parameter space remains in which a mostly Bino LSP can coannihilate
with the Winos to give the correct relic density. In Fig. 3.10 we plot the parameter space
for a Bino-Wino dark matter candidate, where squarks, sleptons and higgsinos are decou-
pled with masses of order 10 TeV. The singlet and triplet vacuum expectaction values
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3.2 Dirac gauginos

are vS ' 0.1 GeV and vT ' 0.02 GeV, evading bounds from EW precision observables
[164, 165]. We take large tan � to enhance the tree level Higgs mass, and the couplings
�d = ��u = � ' �0.1 and ⇤ = ⇤d = ⇤u ' 0.5 giving a Higgs mass of approximately
125 GeV over the whole parameter space.1 Over a large part of parameter space the
LSP is a chargino, and the only viable models are in a thin strip, where a mainly Bino
neutralino can be the dark matter candidate. In this region the mass splitting between
the Bino dark matter and the mostly Wino NLSP is around 20 GeV, similar to the MSSM
Bino-Wino scenario. However, in Dirac models the expected signal from indirect detection
searches is reduced with respect to the MSSM.

In the pure Bino case annihilation must proceed through sleptons to give the correct
relic density, while avoiding direct detection constraints on squarks and higgsinos. For
pure Dirac states Bino annihilation is dominated by the t-channel sfermion exchange, and
the largest contribution is from right handed sleptons due to the their large hypercharge.
The annihilation is relatively slow, �ann / m2

�0

/m4
l̃R

, therefore the Bino and the sleptons
need to be close to the LEP limit and have similar masses to reduce the relic density
sufficiently. In this case the dominant annihilation mechanism is �0

1 �̄
0
1 ! l+i l�i , and there

is also coannihilation with sleptons mainly via l̃i�0
1 ! � li or Z li, and l̃il̃⇤j ! � �, �Z or

ZZ.
In Fig. 3.10 (right) we plot the contour with the correct relic density for a Bino-slepton

scenario. The model parameters are the same as in the left panel, but now the first two
generation of sleptons are light (we keep the stau heavy) and the Wino is decoupled with
a mass of order 10 TeV. With lighter staus it is possible to have Bino dark matter with
a mass up to about 300 GeV. Fig. 3.10 (right) also shows the constraints from LEP
[204] and from ATLAS [205]. Although the viable parameter space is relatively small, it
is easier to obtain the correct relic density than in such a scenario in the MSSM. This
is because in the MSSM the dominant annihilation process is P-wave suppressed and
a large enough annihilation cross section is only possible with close to degenerate Bino
and slepton masses. In contrast, in Dirac models with an unbroken R-symmetry the
annihilation cross section into a fermion and an anti-fermion pair has a non-vanishing
S-wave contribution even in the limit of vanishing fermion masses.2

1There are other possibilities for reaching a 125 GeV Higgs mass. However, varying the values of ⇤

and �, keeping vS,T fixed to have the right Higgs mass we did not find any appreciable difference in the
relic density, while the spin independent cross sections vary slightly but remain below the reach of LZ
everywhere.

2If the R-symmetry is broken the self annihilation cross section for the processes �0
1 �

0
1 ! l+i l

�
i and

�0
2 �

0
2 ! l+i l

�
i are P-wave suppressed (analogously to the MSSM), while the process �0

1 �
0
2 ! l+i l

�
i has a

non vanishing S-wave contribution (as in the MRSSM).
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The large annihilation of Dirac Binos into charged lepton pairs leads to different indi-
rect detection signatures with respect to the MSSM. Dark matter annihilation to leptonic
channels does not contribute to the signal of cosmic ray antiprotons, yielding a very
weak constraint. The strongest indirect detection constraints come from the annihilation
to e+e�, leading to a bound m� & 60 GeV for an annihilation cross section of order
10�26 cm3/s [206].

Finally, small Majorana mass terms can slightly break the R-symmetry and change
the behaviour of the dark matter. For example, in Split Dirac Supersymmetry models
[103], the relic abundance is as it is in the usual Dirac scenario, while direct and indirect
detection signals may or may not be, depending on the splitting between the two Majorana
states. In particular, for splittings larger than a few keV the neutralino scattering through
Z-exchange is suppressed, as in Majorana models. In this framework it is then possible to
have a pseudo-Dirac higgsino LSP as a dark matter candidate with a mass around 1 TeV.

3.2.2 MRSSM dark matter at colliders

A Dirac Bino LSP coannihilating with first and second generation sleptons is a viable dark
matter candidate for masses up to about 300 GeV. The correct relic density is possible
for larger mass splittings between a Dirac Bino and sleptons than in the Majorana case,
and as a result searches for slepton pair production can probe this scenario unlike in the
MSSM. Because sleptons are directly produced in Drell Yann processes, the collider limits
in the slepton–neutralino parameter space obtained by ATLAS and CMS analyses apply
to Dirac Binos [111, 205], and the ATLAS bound is plotted in Fig. 3.10 right. Slepton
NLSPs are directly pair produced and subsequently decay into two same flavour leptons
and two LSPs (giving rise to missing energy). As a result, in this scenario the ATLAS and
CMS experiments exclude a Bino dark matter lighter than 120 GeV, leaving unexplored
regions of small neutralino-slepton mass splitting. New colliders will be able to improve
the reach for sleptons with light LSP mass, but the sensitivity in the interesting region,
where ml̃ �m�0

1

< mW , is limited by the large background.
The Dirac Bino-Wino dark matter scenario is complicated to search for at hadron

colliders, because the small mass splitting, comparable with the one of the Majorana Bino-
Wino dark matter case, creates issues in background rejection and triggering. However
interesting opportunities arise in boosted electroweakino searches [199]. In particular,
searches for pp! �̃±

1 �̃
0
2 ! l± �̃0

1� �̃
0
1 j are very effective in probing models with Bino-Wino

coannihilation. This search has the advantage that the smaller the splitting between the
two neutralinos, the greater the branching fraction to photons compared to off-shell Z

bosons. The cross section for this process is suppressed at the LHC, but studies for the
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3.2 Dirac gauginos

MSSM at a 100 TeV collider indicate that this search could probe dark matter masses
up to 2 TeV for a luminosity of 20 ab�1. The production cross section for charged and
neutral Dirac Winos is a few times the one in the MSSM, while the splitting between
the Bino LSP and the Wino NLSP is comparable to in the MSSM. Therefore boosted
electroweakino studies at a future hadron collider are expected to probe the whole Dirac
Bino-Wino dark matter parameter space after a few ab�1 of luminosity.

Similarly to the MSSM, if the gaugino mass ratios are fixed, searches for coloured
particles can be relevant. If squarks are light compared to a Dirac gluino, LHC searches
constrain the gluino mass to be heavier than 1.5 TeV. Therefore, since a Dirac Bino
must have mass less than about 300 GeV to be a suitable dark matter candidate, this is
only a viable scenario in models with a ratio of gaugino masses MD

3

/MD
1

& 5. As seen
in Fig. 2.9, for light squarks a 100 TeV collider can probe up to 20 TeV Dirac gluinos.
Consequently, models with Dirac Bino dark matter and MD

3

/MD
1

. 70 will either be
discovered or excluded. Given the typical ratios of gaugino masses from UV models
(discussed in Section 1.2), for large classes of theories this probes the entire Bino dark
matter parameter space, surpassing the sensitivity of searches for sleptons. In the Bino-
Wino scenario, MD

2

and MD
1

must be close to degenerate. This is not naively the case
in any of the simple UV completions considered and therefore the impact of searches for
gluinos is unclear.

Finally, searches for squarks and gluinos at 100 TeV colliders can have an interesting
interplay with direct detection. In models where the higgsinos are decoupled, the spin
independent cross section is mediated only by squarks. Therefore, LZ can effectively
exclude squark masses up to 15 TeV in models with a Dirac Bino LSP. On the other
hand, a 100 TeV collider can be sensitive to comparable mass squarks. The discovery of
squarks would therefore lead to an expected minimum direct detection cross section in
models with Bino dark matter, close to the experimentally accessible values. Meanwhile
the exclusion of squarks with similar masses would mean that Dirac Bino dark matter
would have to scatter via a higgsino component if it was to be visible at LZ.
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Axion dark matter

69





Chapter 4

Introduction and motivation

Many models for dark matter have been proposed so far, and can be classified in two
categories with different production mechanisms. On one hand, dark matter can be
thermally produced and such mechanism selects a dark matter with mass close to the
electroweak scale. Dark matter candidates with masses around the TeV are also motivated
by possible solutions to the hierarchy problem, that point at NP at the same scale. In
the first part of this thesis (chapters 1-3) we analysed one of the most popular WIMP
candidate, the neutralino.

On the other hand, dark matter particles can be produced via non-thermal mecha-
nisms. In this case, the dark matter mass scale is arbitrary. In particular, motivated
models contain light pseudo-scalar particles, as the QCD axion [207–214]. The QCD ax-
ion provides a robust solution to the strong CP problem, and the hypothesis that the
axion is the dark matter has been analysed in several papers [215–227].

In the second part of this thesis we analyse the QCD axion properties at high precision
and the consequences for cosmology and axion searches. In particular, in section 4.1 we
outline the strong CP problem, and in section 4.2 we present the QCD axion solution.1

In chapter 5 we discuss the axion as a DM candidate, we give results for the temperature
dependence of the axion mass and potential at increasing temperatures and the implica-
tions for the axion dark matter abundance. Finally, in chapter 6 we review current and
future axion searches and we present our new computations and numerical estimates for
the various properties of the axion at zero temperature.

1Numerous reviews of the QCD axion exists. See for example [228, 229].
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4.1 The U(1)A and the strong CP problem

The QCD Lagrangian in the limit of vanishing quark masses is invariant under a global
U(nf )V ⇥ U(nf )A, where nf is the number of families. However, such symmetry would
imply that hadrons come in doublets [230], which is not observed experimentally. In fact,
quark condensates spontaneously break the axial symmetry SU(nf )A ⇥ U(1)A. Pseudo-
Goldstone bosons arise as a consequence of this breaking and are identified with the pions,
the kaons and the ⌘ meson. On the other hand, there is no candidate for the pseudo-
Goldstone from the breaking of the U(1)A. Such particle should have a mass .

p
3m⇡,

which excludes the ⌘0 meson as a possible candidate. The absence of this particle is known
as the U(1)A problem [231].

The addition of a term in the QCD Lagrangian that explicitly breaks the U(1)A sym-
metry is a possible solution of the U(1)A problem [232, 233]. Indeed, the QCD Lagrangian
allows a topological term of the form

LQCD � ✓0
g2
s

32⇡2
Tr Gµ⌫ G̃µ⌫ , (4.1)

where gs is the strong gauge coupling, Gµ⌫ is the gluon field strength tensor, G̃µ⌫ = ✏µ⌫⇢� G⇢�/2

is its dual and the trace is over the adjoint representation of SU(3). This term is allowed
by symmetries, but it violates CP [212]. Moreover, it is a total divergence [234]

Gaµ⌫ G̃µ⌫
a = @µ✏

µ↵��(Aa↵Ga�� �
gs
3

fabcAa↵Ab�Ac�), (4.2)

where A is the gluon vector potential. At any order in perturbation theory this term does
not modify the equation of motion, and it contributes to the action only as a surface term.
However, it was shown that already at the classical level there are gauge configuration,
called instantons,1 with non trivial Gaµ⌫ G̃µ⌫

a and finite action [232, 233]. At infinity Aaµ

is a pure gauge field and the field strength vanishes. At infinity the second term on the
right hand side of Eq. (4.2) does not vanish and it gives a finite contribution to the
classical action

Z

d3xGaµ⌫ G̃µ⌫
a = 32⇡2 n, (4.3)

where n is the winding number. The contribution of configurations with non vanishing
winding number to the Euclidean path integral is suppressed at small coupling by a factor

e�S
inst = e

�
R

1

4g2s
Ga µ⌫ G̃µ⌫

a d4x
= e

� 8⇡2|n|
g2s . (4.4)

1Instantons are solutions of the condition Gaµ⌫ = ± ˜Gaµ⌫ .
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4.1 The U(1)A and the strong CP problem

In QCD configuration with n 6= 0 however are not small. The QCD coupling gs = gs(µ)

is a function of an energy scale µ and become larger at low energies. The relevant scale
of this configuration is set by the size of the instanton ⇢, where the energy density is
enclosed, leading to µ = 1/⇢. At one loop, the QCD running coupling is given by

g(µ)2 =
8⇡2

�0 log (µ/⇤)
, (4.5)

where �0 = 11 � 2 nf/3, with nf the number of active flavours at the renormalisation
scale µ, and ⇤ ⇠ 150 MeV is the QCD non perturbative scale. Equation (4.4) therefore
becomes

e
� 8⇡2n

g2s (1/⇢) = (⇢⇤)�0 . (4.6)

The path integral is the sum over all gauge configurations, in particular over instantons
of any size. This shows that for large instanton configurations, the one with ⇢⇤ ' 1,
instanton effects are non perturbative. On the other hand, for small instantons, the QCD
coupling constant is small, the instanton configuration is perturbative and contribute
with exponentially small factors. Unfortunately, the contribution from instantons to the
QCD action is dominated by large non perturbative instanton configurations that are not
calculable. The existence of configurations for which Eq. (4.4) does not vanish provide a
solution to the U(1)A problem.

To understand better the consequences of the ✓0-term in Eq. (4.1), consider the effect
of the axial symmetry on quarks

q ! ei�5↵q, (4.7)

where q are the quark fields and ↵ is a phase. Under this transformation the path integral
is not invariant. In particular, the measure in the path integral transforms non trivially

�q �q̄ ! exp

⇢

� i

16⇡2
↵

Z

d4xGµ⌫G̃
µ⌫

�

�q �q̄. (4.8)

This is equivalent to shift ✓0
✓0 ! ✓0 + 2↵, (4.9)

showing that ✓0 is non physical, because under a field redefinition it is shifted by a phase.
The same field redefinition will change also the quark mass term

q̄L M qR + h.c! q̄L M e2i↵ qR, (4.10)

leading to
arg detM ! arg detM + 2↵. (4.11)
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Therefore, ✓0 and arg detM are separately non physical, but

✓ = ✓0 � arg detM (4.12)

is physical, because it is invariant under a field redefinition. Notice that individually ✓0
and arg detM violate parity and time inversion (and therefore CP) and a non vanishing
✓ breaks CP.

In particular the ✓ term induces a neutron electric dipole moment of order [235, 236]

dn '
e|✓|m2

⇡

m3
N

' 10�16|✓| e cm, (4.13)

and therefore the experimental bound on the electric dipole moment of the neutron
dn . 3 · 10�26 e cm [237] implies ✓ . 10�10.

Since experimentally no CP violation has been observed in the strong interactions,
either ✓0 and arg detM should be both tiny individually or there must be a cancellation
between the two. However, ✓0 comes just from gluon dynamics, while the phase in the
mass matrix of the quarks comes from the electroweak sector, in particular from the
Yukawa sector and the coupling to the Higgs. Therefore, we expect them to be unrelated.
On top of this we know that off- diagonal phases in the mass matrix, the CKM phases,
are of order one, such that in order to have a cancellation we would expect ✓0 ⇠ O(1). A
solution to this problem would exist if any of the quarks were massless. In this situation
the ✓ angle would not be physical and there would be no CP violation in QCD. Lattice
computations show, however, that the light quark masses are non zero [238–240]. The
strong CP problem is therefore driven by the question of why strong interactions do not
violate CP symmetry even if CP violation is not forbidden by the theory.

There are two known families of solutions to the theta problem. One uses CP invari-
ance in the UV, the other uses the so called Peccei-Quinn symmetry. Requiring CP to
be a fundamental symmetry of the theory, will not allow the contributions to the ✓ term
from both the GG̃ term and the quark mass term. However CP is broken in nature by
the CKM phases. Therefore, the new theory needs some mechanism that breaks CP pro-
ducing the CKM angles and possibly also extra CP for baryogenesis, without introducing
a contribution to the ✓ term. There are various implementation of this idea [241–243].
For example in the Barr-Nelson model [244–247], CP is a symmetry of the UV theory
and needs to be broken. Heavy singlet quarks, with a vacuum expectation value much
above the electroweak scale, are introduced and after symmetry breaking they mix with
the SM quarks. At low energy the heavy quarks can be integrated out and the SM quarks
acquire the required amount of CP violation through the CKM mixing. The arg detM

vanishes at tree level and it is different from zero only at loop level, being therefore able
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to evade the bound from the neutron electric dipole moment if small coupling are chosen.
However, this model needs some sort of tuning between its parameters to reproduce O(1)

CKM phases and it is very sensitive to extra NP contributions that may spoil the CP
breaking mechanism.

On the other hand, the introduction of an additional chiral symmetry is one of the
most robust solutions of the strong CP problem. The description of the properties of this
solution is the main subject of this chapter.

4.2 The QCD axion

The axion solution may be considered the most robust solution to the strong CP problem
because it is insensitive to any extra source of CP violation generated at higher energies.
The model is based on the idea of making ✓ a dynamical field [207, 208], achieved intro-
ducing a new global chiral symmetry U(1)PQ, which is spontaneously broken at a scale
fa. The axion is the pseudo-Goldstone resulting from the symmetry breaking.

The SM Lagrangian is made U(1)PQ invariant adding the axion kinetic term and the
interaction of the axion with gluons

L � �1

2
@µa @

µa +
↵s

8⇡

a

fa
Gµ⌫G̃

µ⌫ , (4.14)

where a is the axion field. Since the axion is the pseudo-Goldstone boson of the broken
symmetry, it is invariant under a shift symmetry

a(x)! a(x) + ↵. (4.15)

The shift symmetry is broken only by the coupling to GG̃. Furthermore, the axion can
couple to photons, quarks and leptons in ways that do not break the shift symmetry.
Even if these couplings are not present, the gluon will generate them from quark loops.

In the SM Lagrangian with the ✓ term and the axion, the ✓ term can be reabsorbed
by the axion. The axion then acquires a potential, whose minimum is reached when
ha(x) + ✓fai = 0. This has been proven in [248]. Consider E(✓), the vacuum energy of
QCD, as a function of ✓ in a volume V. Then, the path integral formula for the ground
state energy is

e�V E(✓) =

Z

�[�] e�S
0

+i✓Q, (4.16)
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where � denotes all the possible fields, S0 is the SM action, ✓ = a/fa and Q = ↵s
8⇡

R

d4xGµ⌫G̃µ⌫

is the topological charge. The integrand is positive definite and using the Schwartz in-
equality we obtain

e�V E(✓) =

Z

�[�] e�S
0

+i✓Q =

�

�

�

�

Z

�[�] e�S
0

+i✓Q

�

�

�

�


Z

�[�]
�

�e�S
0

+i✓Q
�

� = e�V E(0) (4.17)

In the last equality, the theta term appears only as a phase to the topological charge and
therefore the modulus is the same as the argument of the path integral at ✓ = 0. It is then
possible to prove that ✓ = 0 is always an absolute minimum of the QCD energy and that
the axion has always a global minimum at ✓ = 0, thus solving the strong CP problem.

In the following subsections I will discuss feature of specific axion models, starting
with the Peccei-Quinn-Weinberg-Wilczek (PQWW) model, also dubbed visible axion,
and continuing with the Kim-Shifman-Vainshtein-Zakharov (KSVZ) and the Dine-Fishler-
Srednicki-Zhitnitsky (DFSZ) axion models. Finally, I will summarise the properties of the
QCD axion.

4.2.1 The visible axion

In the PQWW model [207–210], the axion is embedded in the phase of the Higgs field in
the usual SM. One Higgs doublet is not enough to give rise to the axion because three
Goldstones are absorbed by the longitudinal degrees of the SM gauge bosons and the
remaining Higgs boson has a potential. The Lagrangian contains two Higgs doublets Hu

and Hd, where Hu gives a mass to the up-type quarks and Hd give a mass to the down-type
quarks and the charged leptons

L � �y(u)q̄LHuuR � y(d)q̄LHddR � V (Hu, Hd) + h.c. . (4.18)

The potential V (Hu, Hd) has two mexican hat like potential, one for each Higgs doublet,
so that they both take a vev vu,d

V =
�u
4

✓

|Hu|2 �
v2
u

2

◆2

+
�d
4

✓

|Hd|2 �
v2
d

2

◆2

+ ... (4.19)

The symmetries of the lagrangian shows that we have a U(1) phase for each Higgs doublet.
One of the two phases is the hypercharge, absorbed by the Z boson, while the other, after
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4.2 The QCD axion

giving a vev to the Higgs doublets, is spontaneously broken and gives a Goldstone boson.
The axion content of Hu and Hd, that is orthogonal to the hypercharge, is therefore

Hu =
vup
2

✓

0
1

◆

e
ia tan �

v , Hd =
vdp
2

✓

1
0

◆

e
ia

tan � v , (4.20)

where tan � = vu/vd and v2 = v2
u + v2

d.
The axion couplings to the SM fields are in the Yukawa terms

L � �yuq̄LHuuR � ydq̄LHddR � yeL̄HdeR + h.c. (4.21)

and replacing the Higgs doublets with the expressions in Eq. (4.20) we get

L � �yu
vup
2
e

ia tan �
v ūLuR � yd

vdp
2
e

ia
tan � v d̄LdR � ye

vdp
2
e

ia
tan � v ēLeR + h.c. (4.22)

These terms contain therefore the couplings between the SM fermions and the axion.
Expanding the exponents, one finds that the generic coupling of the axion to SM fermions
is suppressed by a factor mq/v. Moreover, the Yukawa terms are invariant under chiral
transformations of the fermion fields

uR ! e�ia tan �
v uR, dR ! e�i ↵

v tan � dR. (4.23)

Using these transformations we see that the couplings of the axion to the SM fermions
disappear from the term of the lagrangian in equation (4.22), giving rise to the GG̃ term
that is needed to solve the strong CP problem. After performing the transformation of
the quarks, the couplings between the axion and the quarks will appear from the quarks
kinetic terms.

The original PQWW model, with weak scale visible axions where fa ' v, has been
ruled out experimentally. Indeed, for such models the axion is lighter than the electron
and it is long lived, since the only possible decay is into photons. Such an axion model has
been ruled out by the non observation, for example, of the process K+ ! ⇡+a. Indeed,
the branching ratio for this process is estimated to be [249]

BR(K+ ! ⇡+a) ' 3⇥ 10�5

✓

tan � +
1

tan �

◆2

, (4.24)

which is larger than the bound from KEK, BR(K+ ! ⇡++nothing)< 3.8⇥ 10�8 [250].
On the other hand, models where the axion decay constant is much larger than the

electroweak scale are still viable. As we will see shortly, if fa � v, the axion is very light,
very weakly coupled and long lived.1 It is in general possible to classify invisible axion
models depending on whether the axion couples directly or not with the SM fermions.

1Such models are often called invisible axion models.
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4.2.2 The KSVZ model

In 1979, Kim [211] and independently Shifman, Vainshtein and Zakharov [212] proposed a
model where the axion does not couple to Standard Model fermions at tree level. Suppose
to add to the Standard Model lagrangian a heavy quark Q in the fundamental of SU(3)C
and a complex scalar field �

L � @µ� @
µ�+ i Q̄ /D Q + �� Q̄LQR + h.c.� V (|�|2), (4.25)

where V (|�|2) is a mexican hat like potential that breaks the global U(1) symmetry
associated to �. These terms of the lagrangian, except ��Q̄LQR, respect a global U(1)

symmetry such that
�! ei↵�. (4.26)

Also the term ��Q̄LQR is invariant if Q is allowed to transform in the same way

Q! e�
↵
2

�
5Q, (4.27)

such that the absence of bare mass terms for the heavy quark, that would spoil the
realisation of the PQ symmetry, is guaranteed.

If � gets a vacuum expectation value, the symmetry is spontaneously broken and

� =
vPQp

2
e
i a
vPQ . (4.28)

After the spontaneous breaking of the symmetry, the heavy quark gets a mass term

�vPQp
2

e
i a
vPQ Q̄LQR + h.c., (4.29)

that also generates a coupling to the axion. Exploiting the PQ symmetry and Eqs. (4.26)
and (4.27), we can redefine the heavy quarks

Q �! Q0 = e
ia

2vPQ
�
5

Q, (4.30)

such that Eq. (4.29) becomes

�vPQp
2

Q̄0
LQ0

R + h.c. . (4.31)

The shift in the action is just

�S =

Z

a

vPQ

1

32⇡2
Gµ⌫G̃

µ⌫ . (4.32)
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Now the field Q0 has only a mass term and not anymore an interaction with the axion
and it is possible to integrate it out. The only non derivative coupling that remains is the
coupling to the gluon. Furthermore, if the heavy quark Q was charged under U(1)Y , we
would have also analogous couplings to photons and Z.

It is possible to do the same procedure in the case of a number N of heavy quark fields
Qi=1,...,N . In this situation, we would get

�S =

Z

a

vPQ

N

32⇡2
Gµ⌫G̃

µ⌫ =

Z

a

fa

1

32⇡2
Gµ⌫G̃

µ⌫ , (4.33)

by defining fa = vPQ/N , where N is the colour anomaly coefficient of having N funda-
mental heavy quarks.

At low energy, this model has only the coupling with gluons and the axion do not
couple with quarks or leptons at tree level. However, at energies where the QCD is strongly
coupled, the axion coupling to gluons will produce couplings to pions and nucleons.

4.2.3 The DFSZ model

This class of models, due to Zhitnitsky [213] and independently Dine, Fishler and Srednicki
[214], employs two Higgs doublets Hu and Hd, one giving mass to the up quarks, the other
to the down quarks and the charged leptons, and a scalar field �. The scalar potential is

V =
�u
4

✓

|Hu|2 �
v2
u

2

◆2

+
�d
4

✓

|Hd|2 �
v2
d

2

◆2

+
��
2

✓

|�|2 �
v2
�

2

◆2

+ f̃
⇣

|Hu|2|�|2, |Hd|2|�|2, HT
u Hd�

2, |HT
u Hd|2, |H†

dHu|2
⌘

, (4.34)

where f̃ is a function of the terms |Hu|2|�|2, |Hd|2|�|2, HT
u Hd�2, |HT

u Hd|2, |H†
dHu|2. The

HT
u Hd�2 terms make the Higgs doublets charged under PQ. Out of the three different

U(1) phases for Hu, Hd and �, the potential only preserves two, the hypercharge and the
PQ symmetry, which, after giving a vev to all the scalar fields, is spontaneously broken
and give rise to a Goldstone boson. Writing the three scalar fields around the vacuum,
we have

Hu =
vup
2
e
i a
vPQ

qu
, Hd =

vdp
2
e
i a
vPQ

qd , � =
v�p
2
e
i a
vPQ

q� . (4.35)

The axion a, the linear combination of the three phases, is the generator that it is not
broken by the HT

u Hd�2 term in the potential and which is not the hypercharge. The
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constants qu, qd, and q� are determined by preserving the HT
u Hd�2 term and writing the

generator orthogonal to the hypercharge. The HT
u Hd�2 term is preserved if

qu + qd + 2q� = 0. (4.36)

On the other hand, writing the kinetic terms for the Higgs doublets and the complex
scalar, we find the cross term between the axion and the Z boson, that must vanish. This
gives the following condition:

quv
2
u � qdv

2
d = 0. (4.37)

We can solve this equations up to an overall constant, that anyway can be reabsorbed in
vPQ. The solution is

qu =
2v2

d

v2
, qd =

2v2
u

v2
, q� = �1. (4.38)

Both the vevs of the two Higgs doublets break the electroweak symmetry and the total
breaking is v2 = v2

u+v2
d. However, v� can be arbitrary large because it does not break any

SM symmetry. The PQ scale can be fixed requiring that the kinetic term for the axion is
canonically normalised

v2
PQ = v2

� + v2 sin 2�, (4.39)

where, as in the visible axion models, tan � = vu/vd. We notice that if v� is very large,
vPQ is dominated by v� and the axion is mostly the component associated to the new
scalar field.

As in the PQWW model, the coupling of the axion to the SM fermions arise in the
Yukawa terms. Again, if we replace the Higgs doublets with Eqs. (4.35) we get

L � �yu
vup
2
ūLe

2i sin2 � a
vPQ uR � yd

vdp
2
d̄Le

2i cos2 � a
vPQ dR � ye

vdp
2
ēLe

2i cos2 � a
vPQ eR. (4.40)

Since part of the Higgs doublets is made of axions, now we have direct couplings between
the axion and the charged fermions of the SM, which are suppressed by mf/vPQ.

How does this model solve the strong CP problem? As we did previously, we can
rotate the phase away by redefining the quarks with the chiral rotation. At this point
the axion-fermion couplings disappear from the terms of the lagrangian in equation (4.40)
and the term

�L =
6

32⇡2vPQ

aGG̃ =
1

32⇡2fa
aGG̃, (4.41)
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appears, where in the second equality we defined fa = vPQ/6. The factor 6 is the anomaly
coefficient associated with the 6 standard model quarks. The SM fermion kinetic terms
generate axion fermion couplings

q̄L /DqL ! cq
@µa

vPQ

q̄�µ�5q, (4.42)

where cq is a coefficient depending on whether the quark is up or down type.

4.3 Leading order axion properties
In this section we summarise the leading order axion properties and the notation that
is used in the following chapters. At energies below the Peccei Quinn (PQ) and the
electroweak (EW) breaking scales the axion dependent part of the Lagrangian, at leading
order in 1/fa and the weak couplings can be written, without loss of generality, as

La =
1

2
(@µa)2 +

a

fa

↵s

8⇡
Gµ⌫G̃

µ⌫ +
1

4
a g0

a��Fµ⌫F̃
µ⌫ +

@µa

2fa
jµa,0 , (4.43)

where the second term defines fa, the dual gluon field strength G̃µ⌫ = 1
2
✏µ⌫⇢�G⇢�, color

indices are implicit, and the coupling to the photon field strength Fµ⌫ is

g0
a�� =

↵em

2⇡fa

E

N
, (4.44)

where E/N is the ratio of the Electromagnetic (EM) and the color anomaly (=8/3 for
complete SU(5) representations). Finally in the last term of eq. (4.43) jµa,0 = c0q q̄�

µ�5q

is a model dependent axial current made of SM matter fields. The axionic pseudo shift-
symmetry, equation (4.15), has been used to remove the QCD ✓ angle.

The only non-derivative coupling to QCD can be conveniently reshuffled by a quark
field redefinition. In particular performing a change of field variables on the up and down
quarks

q =

✓

u
d

◆

! ei�5
a

2fa
Qa

✓

u
d

◆

, tr Qa = 1 , (4.45)

eq. (4.43) becomes

La =
1

2
(@µa)2 +

1

4
a ga��Fµ⌫F̃

µ⌫ +
@µa

2fa
jµa � q̄LMaqR + h.c. , (4.46)

where

ga�� =
↵em

2⇡fa



E

N
� 6 tr

�

QaQ
2
�

�

, jµa = jµa,0 � q̄�µ�5Qaq , (4.47)
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Ma = ei
a

2fa
QaMq ei

a
2fa

Qa , Mq =

✓

mu 0
0 md

◆

, Q =

✓

2
3

0
0 �1

3

◆

.

The advantage of this basis of axion couplings is twofold. First the axion coupling
to the axial current only renormalizes multiplicatively unlike the coupling to the gluon
operator, which mixes with the axial current divergence at one-loop. Second the only
non-derivative couplings of the axion appear through the quark mass terms.

At leading order in 1/fa the axion can be treated as an external source, the effects
from virtual axions being further suppressed by the tiny coupling. The non derivative
couplings to QCD are encoded in the phase dependence of the dressed quark mass matrix
Ma, while in the derivative couplings the axion enters as an external axial current. The
low energy behaviour of correlators involving such external sources is completely captured
by chiral Lagrangians, whose raison d’être is exactly to provide a consistent perturbative
expansion for such quantities.

Notice that the choice of field redefinition (4.45) allowed us to move the non-derivative
couplings entirely into the lightest two quarks. In this way we can integrate out all the
other quarks and directly work in the 2-flavor effective theory, with Ma capturing the
whole axion dependence, at least for observables that do not depend on the derivative
couplings.

At the leading order in the chiral expansion all the non-derivative dependence on the
axion is thus contained in the pion mass terms:

Lp2 � 2B0
f 2
⇡

4
hUM †

a + MaU
†i , (4.48)

where
U = ei⇧/f⇡ , ⇧ =

✓

⇡0
p

2⇡+
p

2⇡� �⇡0

◆

, (4.49)

h· · · i is the trace over flavor indices, B0 is related to the chiral condensate and determined
by the pion mass in term of the quark masses, and the pion decay constant is normalized
such that f⇡ ' 92 MeV.

In order to derive the leading order effective axion potential we need only consider the
neutral pion sector. Choosing Qa proportional to the identity we have

V (a, ⇡0) = �B0f
2
⇡

h

mu cos
⇣

⇡0

f⇡
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⌘
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◆

(4.50)
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-3� -2� -� 0 � 2� 3�
a/fa

V
(a
)

Figure 4.1: Comparison between the axion potential predicted by chiral Lagrangians,
eq. (4.52) (continuous line) and the single cosine instanton one, V inst

(a) = �m2
af

2
a cos(a/fa)

(dashed line).

where

tan�a ⌘
mu �md

md + mu

tan

✓

a

2fa

◆

. (4.51)

On the vacuum ⇡0 gets a vacuum expectation value (VEV) proportional to �a to minimize
the potential, the last cosine in eq. (4.50) is 1 on the vacuum, and ⇡0 can be trivially
integrated out leaving the axion effective potential

V (a) = �m2
⇡f

2
⇡

s

1� 4mumd

(mu + md)2
sin2

✓

a

2fa

◆

. (4.52)

As expected the minimum is at hai = 0 (thus solving the strong CP problem). Expanding
to quadratic order we get the well-known [210] formula for the axion mass

m2
a =

mumd

(mu + md)2
m2

⇡f
2
⇡

f 2
a

. (4.53)

Although the expression for the potential (4.52) was derived long ago [251], we would
like to stress some points often under-emphasized in the literature.

The axion potential (4.52) is nowhere close to the single cosine suggested by the
instanton calculation (see fig. 4.1). This is not surprising given that the latter relies on a
semiclassical approximation, which is not under control in this regime. Indeed the shape
of the potential is O(1) different from that of a single cosine, and its dependence on the
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quark masses is non-analytic, as a consequence of the presence of light Goldstone modes.
The axion self coupling, which is extracted from the fourth derivative of the potential

�a ⌘
@4V (a)

@a4

�

�

�

�

a=0

= �m2
u �mumd + m2

d

(mu + md)2
m2

a

f 2
a

, (4.54)

is roughly a factor of 3 smaller than �(inst)a = �m2
a/f

2
a , the one extracted from the single

cosine potential V inst(a) = �m2
af

2
a cos(a/fa). The six-axion couplings differ in sign as

well.
The vev for the neutral pion, h⇡0i = �af⇡ can be shifted away by a non-singlet chiral

rotation. Its presence is due to the ⇡0-a mass mixing induced by isospin breaking effects
in eq. (4.48), but can be avoided by a different choice for Qa, which is indeed fixed up to
a non-singlet chiral rotation. As noticed in [252], expanding eq. (4.48) to quadratic order
in the fields we find the term

Lp2 � 2B0
f⇡
4fa

ah⇧{Qa, Mq}i, (4.55)

which is responsible for the mixing. It is then enough to choose

Qa =
M�1

q

hM�1
q i

, (4.56)

to avoid the tree-level mixing between the axion and pions and the vev for the latter.
Such a choice only works at tree level, the mixing reappears at the loop level, but this
contribution is small and can be treated as a perturbation.

The non-trivial potential (4.52) allows for domain wall solutions. These have width
O(m�1

a ) and tension given by

� = 8maf
2
a E



4mumd

(mu + md)2

�

, E[q] ⌘
Z 1

0

dy
p

2(1� y)(1 +
p

1� qy)
. (4.57)

The function E[q] can be written in terms of elliptic functions but the integral form is more
compact. Note that changing the quark masses over the whole possible range, q 2 [0, 1],
only varies E[q] between E[0] = 1 (cosine-like potential limit) and E[1] = 4� 2

p
2 ' 1.17

(for degenerate quarks). For physical quark masses E[qphys] ' 1.12, only 12% off the
cosine potential prediction, and � ' 9maf 2

a .
In a non vanishing axion field background, such as inside the domain wall or to a

much lesser extent in the axion dark matter halo, QCD properties are different than in
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the vacuum. This can easily be seen expanding eq. (4.50) at the quadratic order in the
pion field. For hai = ✓fa 6= 0 the pion mass becomes

m2
⇡(✓) = m2

⇡

s

1� 4mumd

(mu + md)2
sin2

✓

✓

2

◆

, (4.58)

and for ✓ = ⇡ the pion mass is reduced by a factor
p

(md + mu)/(md �mu) '
p

3. Even
more drastic effects are expected to occur in nuclear physics (see e.g. [253]).

The axion coupling to photons can also be reliably extracted from the chiral La-
grangian. Indeed at leading order it can simply be read out of eqs. (4.46), (4.47) and
(4.56)1:

ga�� =
↵em

2⇡fa



E

N
� 2

3

4md + mu

md + mu

�

, (4.59)

where the first term is the model dependent contribution proportional to the EM anomaly
of the PQ symmetry, while the second is the model independent one coming from the
minimal coupling to QCD at the non-perturbative level.

The other axion couplings to matter are either more model dependent (as the derivative
couplings) or theoretically more challenging to study (as the coupling to EDM operators),
or both.

1The result can also be obtained using a different choice of Qa, but in this case the non-vanishing
a-⇡0 mixing would require the inclusion of an extra contribution from the ⇡0�� coupling.
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Chapter 5

Axion dark matter

Due to the large value of the symmetry breaking scale fa, axions have many properties
required by dark matter: they are stable on cosmological scales and interact weakly with
matter. Moreover, they are non-baryonic and massive. Depending on the production
mechanism, the axion can be either hot or cold dark matter. The requirement that the
axion has the correct relic density gives constraints on the value of the scale fa (and
therefore on its mass and interactions). Furthermore, as we will see in chapter 6, the dark
matter properties of the axion are a necessary feature for several experiments.

It is therefore very important to study the mechanisms of axion production and the
properties of the axion that give the correct relic density. In section 5.1, the cosmology
of the axion will be reviewed, describing its production mechanisms and assessing the
importance of studying axion properties at high temperatures. Then, in section 5.2, the
properties of the axion at finite temperature are reviewed and their implication for dark
matter are outlined.

5.1 Axion cosmology

Relic axions are produced both through thermal and non-termal mechanisms. They can
arise due to the usual freeze out process, via the coherent production from the initial
misalignment of the axion field, or through topological defects. These three mechanisms
can be the dominant process for the production of relic axions, depending on the time of
the breaking of the PQ symmetry relative to inflation, and on the effective value of the
axion mass.
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5.1.1 Thermal production

Axions can be produced in the early universe from the coupling to the thermal bath. Ini-
tially, the thermal equilibrium is kept by collisions with the SM particles and annihilation,
and the axion number density follows the Boltzmann equation

dna

dt
+ 3H(T )na = �ann (neq

a � na) , (5.1)

where the number density of axion in thermal equilibrium is

neq
a =

⇣(3)

⇡2
T 3. (5.2)

The axion annihilation rate in the hot bath is

�ann =
X

i

nih�ivi, (5.3)

where ni is the number density for the particle species i, and v is the relative veloc-
ity between the particle species i and the axion. The cross section �i for the process
a + i $ SM SM is averaged over the momentum distributions of the particles in-
volved.

As long as the annihilation rate is faster than the Hubble expansion, �ann(T ) > H(T ),
the axion is in thermal equilibrium with the bath. Therefore, the temperature at which
the axion decouples from the thermal bath is set by

�ann(Tfo) = H(Tfo) =

r

8⇡2g⇤
90

T 2
fo

MPl

, (5.4)

where g⇤ is the number of degrees of freedom at the decoupling temperature Tfo and MPl

is the Planck mass. In order to solve this equation we have to compute the annihilation
rate �ann(T ).

In the thermal bath, the axion couples mainly with gluons and quarks (if it directly
couples to that, depending on the model) [223, 227].1 The cross section of the conversion
of two gluons in axions is

� ⇠ ↵3
s

f 2
a

. (5.5)

For this process, the annihilation rate become

�ann(T ) ⇠ ↵3
s

f 2
a

T 3 ⇠ 10�5

f 2
a

. (5.6)

1Thermal axions were first studied in [219], where Primakoff (conversion of an axion into a photon in
presence of an external electromagnetic field) and photoproduction processes were considered.
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From this last Equation, we can derive the decoupling temperature1

Tfo ⇠ 2 · 1011 GeV

r

g⇤
100

✓

fa
1012 GeV

◆2

. (5.7)

After decoupling, the number density is

na(T ) / na(Tfo)

✓

R(Tfo)

R(T )

◆3

, (5.8)

and the current abundance from thermal production can be estimated to be

⌦a = 10�8

✓

100

g⇤

◆

1012 GeV

fa
. (5.9)

The axion production from thermal processes is not efficient for fa ⇠ 1012 GeV. If fa is
smaller, the coupling of the axion increases and the axion decouples later, helping to get
more relic abundance. It is possible to get the correct relic abundance for fa ⇠ 106 GeV.
As we will see in the next chapter, this value is normally excluded by astrophysics bounds.
However, the astrophysical bounds do not apply if the axion has an anomalously small
coupling to photons. In this scenario the axion forms a hot dark matter candidate, but
bounds from Planck already exclude the axion as hot dark matter [254].

5.1.2 Misalignment mechanism

The most efficient mechanism for axion production is non-thermal and it is called the
misalignment mechanism [215–217]. The axion abundance today depends on whether
inflation happened and on the value of the reheating temperature. Therefore there are
two possible scenarios:

1) the breaking of the PQ symmetry happens before inflation, and the reheating
phase happens at a temperature such that it cannot restore the PQ symmetry,
vPQ & max(TR, HI);

2) the breaking of the PQ scale happens after inflation or at smaller scales with respect
to the reheating temperature, vPQ . max(TR, HI).

1There is another window of temperature that makes the axion to be in thermal equilibrium, T ' f⇡.
At this temperature it matters only the coupling of the axion to pions, that is larger than the pertur-
bative ↵s, and the process is more efficient. At this temperature the axion would have been in thermal
equilibrium for fa . 10

7 GeV.
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In the first case, the PQ symmetry is broken at some very high scale, and then inflation
happens. During inflation all modes are inflated: whatever was the configuration of the
axion before inflation, because of the exponential expansion, all the modes get stretched
and effectively in our universe the axion will end up to be a constant. During inflation the
value of the axion is flattened within each Hubble patch, up to small fluctuation induced
by the inflationary phase itself, which are of order �a ⇠ HI/2⇡. When inflation ends, the
universe starts to reheat. If the reheating temperature is below the PQ breaking scale,
reheating cannot restore the PQ phase and there is a constant axion at low energy. After
reheating, the universe will evolve as in the Standard Cosmology.

In the second case, either the inflation scale HI or the reheating temperature TR are
larger than the PQ breaking scale. If TR > vPQ, independently on when inflation happens,
the reheating phase will restore the PQ phase. As the temperature drops, there is a phase
transition and the axion gets a potential. Once the potential is formed, the axion will
start falling towards the minimum. After the restoration, in our observable patch there are
regions where the axion has a different random initial value. If HI > vPQ, independently of
TR, the axion field assumes any value between (0, 2⇡) because of the quantum fluctuation
of inflation, that are of order h�a�ai ' H2

I /(2⇡)2.When the modes reenter the horizon,
they would populate all the values of the axion potential. Independently of whether TR or
HI is larger than vPQ, the axion has an effective initial condition assuming all the values
in the range (0, 2⇡).

In the first scenario, the axion is a constant up to small fluctuation of order HI , which
are negligible at the moment. The equation of motion of the axion are

ä + 3Hȧ + m2
a(T )fa sin

✓

a

fa

◆

= 0, (5.10)

where we assumed a cosine-like potential.
In the early universe, the mass is basically zero and a is a constant.1 After inflation,

during radiation or matter domination, H decreases in time. On the other hand, ma = 0 at
high temperature and as T drops, it starts increasing. There will be a time (temperature)
when H and ma are comparable. At that time the axion mass will pull the axion towards
the minimum, and at lower temperature the pull will become stronger than the Hubble
friction. As a consequence, the term 3Hȧ can be neglected. The axion then starts
oscillating towards the minimum with a frequency ma. When it starts oscillating it is
possible to build an adiabatic invariant. The energy density is

⇢ =
1

2
ȧ2 +

m2

2
a2, (5.11)

1Even if a would not be a constant, it would be driven to a constant by the Hubble friction: if H � a,
a = const.
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where ȧ denotes the derivative of a with respect to time, and the time derivative of ⇢ is

⇢̇ = ȧä + m2ȧa + mṁa2. (5.12)

Using the equation of motion (5.10), I can rewrite the previous equation as

⇢̇ = ȧ(�3Hȧ) +
ṁ

m
m2a2, (5.13)

assuming that the axion already started oscillating, and the term 3Ha is sufficiently
smaller than ma. Averaging over one oscillation we have

h⇢̇i = hm2a2i
✓

�3H +
ṁ

m

◆

. (5.14)

Replacing Equation (5.11) in the expression for h⇢̇i, we get

⇢̇

⇢
=

ṁ

m
� 3

Ṙ

R
, (5.15)

and integrating this equation
h⇢iR3

m
= const, (5.16)

one gets the number density

hni =
h⇢i
m

=
const

R3
, (5.17)

showing that the number of axions in a comoving volume is conserved over time and the
energy density behaves as cold dark matter. It is then possible to use this conservation
law to extrapolate the energy density stored in the axion field today. In order to do so,
we need to estimate the temperature at which the axion starts to oscillate. The axion
starts oscillating when ma(T⇤) ' 3 H(T⇤).1 Assuming we are in radiation domination,

3 H(T⇤) = 3

✓

8⇡3g⇤(T⇤)

90M2
Pl

◆1/2

T 2
⇤ ' ma(T⇤) (5.18)

where g⇤ is the number of degrees of freedom of the standard model at the temperature
when the axion start oscillating, T⇤. A crucial point of the extraction of the temperature at
which the axion starts oscillating is the understanding of the behaviour of the temperature
dependence of the axion mass.

1There will be a region where both terms are important, but the transition is very fast.
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The current axion abundance from misalignment, assuming standard cosmological
evolution, is given by

⌦a =
86

33

⌦�

T�

n?
a

s?
ma , (5.19)

where ⌦� and T� are the current photon abundance and temperature respectively and s?

and n?
a are the entropy density and the average axion number density computed at any

moment in time t? sufficiently after the axion starts oscillating such that n?
a/s

? is constant.
The latter quantity can be obtained by solving eq. (5.10) and depends on 1) the QCD
energy and entropy density around Tc, 2) the initial condition for the axion field ✓0, and
3) the temperature dependence of the axion mass and potential. The first is reasonably
well known from perturbative methods and lattice simulations (see e.g. [255, 256]). The
initial value ✓0 is a free parameter in the first scenario, where the PQ transition happens
before inflation—since in this case ✓0 can be chosen in the whole interval [0, 2⇡] only an
upper bound to ⌦a can be obtained in this case. In the scenario where the PQ phase is
instead restored after inflation n?

a is obtained by averaging over all ✓0, which numerically
corresponds to choosing1 ✓0 ' 2.1. Since ✓0 is fixed, ⌦a is completely determined as a
function of fa in this case. At the moment the biggest uncertainty on the misalignment
contribution to ⌦a comes from our knowledge of ma(T ).

In the computation of the axion relic density, we assumed that the axion is constant
everywhere. However, this is not true, because during inflation the axion is subject to
non adiabatic quantum fluctuations, called isocurvature fluctuations.

Isocurvature fluctuations

In the first scenario, where the PQ symmetry breaks before inflation and the reheating
temperature TR is smaller than the PQ breaking scale, the axion modes that enter the
horizon feels quantum fluctuations

h|�a(x)|2i =

✓

HI

2⇡

◆2

) �2
✓ =

✓

HI

2⇡ fa

◆2

. (5.20)

The perturbations are non adiabatic because the axion is massless during inflation and
the fluctuation in the axion field do not change the energy density. If HI < vPQ the
fluctuation do not restore the PQ phase and the heavy modes are not excited. Thus,
inflationary axion fluctuations leads to

�⇢ = 0 = �⇢a +
X

i 6=a

�⇢i + �⇢r, (5.21)

1The effective ✓0 corresponding to the average is somewhat bigger than h✓2i = ⇡2/3 because of
anharmonicities of the axion potential.
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where ⇢i represents the energy density of matter and ⇢r the one of radiation. Assuming
that all the fields but the axion have adiabatic perturbations

�⇢i
⇢i

=
3

4

�⇢r
⇢r

= 3
�T

T
, (5.22)

one gets
�T

T
= ��⇢a

⇢a

⇢a
3
P

i ⇢i + 4⇢r
. (5.23)

Since the biggest contributions come from modes that reentered the universe the latest,
we can neglect the radiation contribution and the temperature fluctuations coming from
isocurvature fluctuations are

�T

T
= ��na

na

⌦a

3⌦m

. (5.24)

There are strong bounds on this type of fluctuations from the CMB. The fraction
of isocurvature to total temperature fluctuations has been constrained by the Planck
Collaboration to be [198]

↵a =
h(�T/T )2iiso
h(�T/T )2itot

< 0.02, (5.25)

where (�T/T )tot ' 10�5.
Assuming a gaussian distribution for ✓, we find

*
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◆2
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=
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✓2 � h✓2i
h✓2i

◆2
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= 2 �2
✓

2h✓2i � �2
✓
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It follows then that

↵a =

✓

⌦a

⌦m

◆2
2 �2

✓

h(�T/T )2itot
2h✓2i � �2

✓

h✓2i2 . (5.27)

The solution of this equation leads to an upper bound on the scale of inflation [257]

HI . k107 GeV

✓

fa
1012 GeV

◆1/2
⇣ ↵a

0.02

⌘1/2
✓

0.24

⌦a

◆1/2

, (5.28)

where k is a constant that depends on the temperature dependence of ma and can vary
of about one order of magnitude.1 Equation (5.28) shows that high scale inflation is
not compatible with this type of scenario. Requiring that the axion does not give the
whole dark matter could relax the constraint on HI , allowing larger value. However, ⌦a

cannot be too small because ✓0 is bounded to be at least �✓. If ⌦a is the smallest possible
compatible with the bound on ✓0 and fa ⇠ MPl, the scale of inflation will still be too
small to be compatible with high scale inflation models.

1In the following of this thesis we will discuss the impact of this constant depending on ma(T ).
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5.1.3 Topological defects

In the scenario where the PQ symmetry happens after inflation the physics of axion pro-
duction goes beyond the misalignment mechanism. After inflation, when the temperature
drops below the scale vPQ, the PQ symmetry breaks spontaneusly, and the axion field
rolls down the potential randomly. Therefore, in different patches of the universe, the
value of the axion may be different. In particular, there could be configurations where
the axion in the minimum of the PQ potential forms a loop, spanning all the values from
✓0 = 0 to 2⇡. In such configurations, inside the loop, there is a value of the field that is on
the maximum of the potential, with an energy stored of order f 2

a . Considering a family
of surfaces, there must be a line of points in the maximum of the potential, called cosmic
string [258].

The energy stored in the string is measured as a tension µ (an energy per unit length)

µ =
E

l
' ⇡f 2

a log
fa
ma

, (5.29)

where the logarithm comes form the fact that the axion must lie between 0 and 2⇡ as we
go around the string. Therefore, there is a gradient of energies associated to the axion
(�a 6= 0) around the cosmic string. The energy stored in the gradient is logarithmic
divergent, exactly like the potential induced by a charged wire. Cosmic strings, therefore,
may give rise to extra contributions to the axion energy density, that have to be taken
into account in the computation of the relic abundance. Moreover, since the mass of the
axion is much lighter than the scale fa, the logarithm can be as big as ⇠ 70.

Such cosmic strings may evolve, cross each other and form loops.1 Loops shrink
because they have to minimise the energy, and by shrinking emit axions. At first, the
Hubble expansion stretch the strings, that are stuck in the primordial plasma. Due to the
Hubble expansion, the density of strings increases and it may be larger than one string
per horizon. However, the expansion dilutes the plasma and at some point strings start
to move freely at a relativistic speed. At this point, collapsing string loops and wiggles on
long strings radiate axions. Moreover, strings move and intersect each other. After strings
may intersect, may form loops that collapse and may emit axions. Given such efficient
mechanism, the density of long strings is expected to reach a scaling solution [277] where
the universe, in average, is filled up with a few strings per horizon.

At temperatures around the QCD phase transition, when H(T ) ⇠ ma(T ), the axion
gets a mass and around each string the QCD potential develops with different initial con-
ditions. The periodicity of the potential is 2⇡vPQ, where vPQ = Nfa and N is the number

1Cosmic string evolution has been discussed in several papers, see for example [259–276].
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of charged representations that were inducing the anomaly. Therefore, the potential of
the axion is periodic in fa. The axion starts to oscillate towards the minimum and there
are N different minima. At this point, each string become the edge of N domain walls.1

The presence of domain walls may be dangerous because the process of axion radiation
by strings stops [259], unless there is inflation after the PQ phase transition, such that
the axion field is homogenised and there are no strings or domain walls, or unless N = 1

[258, 278, 279].
If N = 1 the period of the QCD potential is the same as the one of the PQ. Therefore,

when the axion goes from 0 to 2⇡, there is only one vacuum and one domain wall for
each string. Each domain wall starts from one string and ends to another, such that each
string is a boundary of a domain wall. Strings attached to a domain wall are pulled by the
domain wall tension and they annihilate into axions. In this case every string annihilates
giving rise to a new population of axions that may significantly change the computation
of the relic abundance.

Alternatively, in the scenario where N > 1, strings are connected by domain walls and
form a stable network. As the universe expands, domain walls dilute slower than any other
relativistic or non-relativistic particle and their energy density dominates at late times.
This fact changes the history of the universe and this scenario is completely excluded. In
principle it is possible to solve this problem by a small breaking of the PQ symmetry [259]:
an extra term that breaks PQ tilts the potential and makes distinguishable the N vacua
because they have different energy density. If the energy density of two close minima are
different, the domain walls may accelerate towards each other in order to minimise the
energy and the whole system may collapse, recovering the N = 1 scenario. Unfortunately,
the PQ breaking must be small in order not to spoil the solution of the ✓ problem. With
such a small PQ breaking, the process of domain wall collapse would be too slow, the
annihilation would happen at late times and axions would be overproduced. It appears,
then, that the scenario N > 1 is almost excluded.

In general, due to the large logarithmic factor, the final abundance of axions coming
from this configuration may dominate over the misalignment mechanism [258, 259, 261,
264, 277, 280, 281].

5.2 The hot axion at NLO: finite temperature results

We now turn to discuss the properties of the QCD axion at finite temperature. The
temperature dependence of the axion potential and its mass are important in the early

1Domain walls are two dimensional objects that interpolate between two close vacua.
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Universe because they control the relic abundance of axions today (for a review see e.g.
[282]). The most model independent mechanism of axion production in the early universe,
the misalignment mechanism [215–217], is almost completely determined by the shape of
the axion potential at finite temperature and its zero temperature mass. Additionally,
extra contributions, such as string and domain walls can also be present if the PQ pre-
serving phase is restored after inflation, and might be the dominant source of dark matter
[258, 259, 261, 264, 277, 280, 281]. Their contribution also depends on the finite temper-
ature behavior of the axion potential, although there are larger uncertainties in this case
coming from the details of their evolution (for a recent numerical study see e.g. [274]).1

One may naively think that, as the temperature is raised, our knowledge of axion prop-
erties gets better and better—after all the higher the temperature the more perturbative
QCD gets. The opposite is instead true. In this section we show that, at the moment, the
precision with which we know the axion potential worsens as the temperature is increased!

At low temperature this is simple to understand. Our high precision estimates at zero
temperature rely on chiral Lagrangians whose convergence degrades as the temperature
approaches the critical temperature Tc '160-170 MeV where QCD starts deconfining. At
Tc the chiral approach is already out of control. Fortunately around the QCD cross-over
region lattice computations are possible. The current precision is not yet competitive with
our low temperature results but they are expected to improve soon. At higher tempera-
tures several lattice computations are available [283–286], although with different results.
For T � Tc the dilute instanton gas approximation, being a perturbative computation, is
believed to give a reliable estimate of the axion potential. It is known however that finite
temperature QCD converges fast only for very large temperatures, above O(106) GeV (see
e.g. [287]). The situation is particularly bad for the instanton computation. The screening
of QCD charge causes an exponential sensitivity to quantum thermal loop effects. The
resulting uncertainty on the axion mass and potential can easily be one order of mag-
nitude or more! This is compatible with a recent lattice computation [288], performed
without quarks, which found a high temperature axion mass differing from the instanton
prediction at T = 1 GeV by a factor ⇠ 10. Recent results from simulations with physical
quark masses [283] seem to show an even bigger disagreement, suggesting that at these
temperatures even the form of the action is very different from the instanton prediction.
However, other recent results from lattice simulations show a better agreement with the
instanton computation [284–286], but still a factor ⇠ 10 larger.

1Axion could also be produced thermally in the early universe, this population would be sub-dominant
for the allowed values of fa [221, 223, 226, 227] but might leave a trace as dark radiation.
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5.2.1 Low temperatures

For temperatures T below Tc axion properties can be reliably computed within finite
temperature chiral Lagrangians [289, 290]. Given the QCD mass gap in this regime
temperature effects are exponentially suppressed.

The computation of the axion mass is straightforward. Note that the temperature
dependence can only come from the non local contributions that can feel the finite tem-
perature. At one loop the axion mass only receives contribution from the local NLO
couplings once rewritten in terms of the physical m⇡ and f⇡ [291]. This means that the
leading temperature dependence is completely determined by the temperature dependence
of m⇡ and f⇡, and in particular is the same as that of the chiral condensate [289–291]
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The function J1(⇠) asymptotes to ⇠1/4e�
p
⇠/(2⇡)3/2 at large ⇠ and to 1/12 at small ⇠. Note

that in the ratio m2
a(T )/m2

a the dependence on the quark masses and the NLO couplings
cancel out. This means that, at T ⌧ Tc, this ratio is known at a even better precision
than the axion mass at zero temperature itself.

Higher order corrections are small for all values of T below Tc. There are also contri-
butions from the heavier states that are not captured by the low energy Lagrangian. In
principle these are exponentially suppressed by e�m/T , where m is the mass of the heavy
state. However, because the ratio m/Tc is not very large and a large number of states
appear above Tc there is a large effect at around Tc, where the chiral expansion ceases to
reliably describe QCD physics. An in depth discussion of such effects appears in [292] for
the similar case of the chiral condensate.

The bottom line is that for T . Tc eq. (5.30) is a very good approximation for the
temperature dependence of the axion mass. At some temperature close to Tc eq. (5.30)
suddenly ceases to be a good approximation and full non-perturbative QCD computations
are required.

The leading finite temperature dependence of the full potential can easily be derived
as well,
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The temperature dependent axion mass, eq. (5.30), can also be derived from eq. (5.32)
by taking the second derivative with respect to the axion. The fourth derivative provides
the temperature correction to the self-coupling,
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. (5.33)

5.2.2 High temperatures

While the region around Tc is clearly in the non-perturbative regime, for T � Tc QCD
is expected to become perturbative. At large temperatures the axion potential can thus
be computed in perturbation theory, around the dilute instanton gas background, as de-
scribed in [293]. The point is that, at high temperatures large gauge configurations, which
would dominate at zero temperature because of the larger gauge coupling, are exponen-
tially suppressed because of Debye screening. This makes the instanton computation a
sensible one.

The prediction for the axion potential is of the form V inst(a; T ) = �f 2
am2

a(T ) cos(a/fa)

where
f 2
am2

a(T ) ' 2

Z

d⇢n(⇢, 0)e
� 2⇡2

g2s
m2

D1

⇢2+...
, (5.34)

the integral is over the instanton size ⇢, n(⇢, 0) / mumde�8⇡2/g2s is the zero temperature
instanton density, m2

D1 = g2
sT

2(1 + nf/6) is the Debye mass squared at LO, nf is the
number of flavor degrees of freedom active at the temperature T , and the dots stand for
smaller corrections (see appendix B and [293] for more details). The functional dependence
of eq. (5.34) on temperature is approximately a power law T�↵ where ↵ ⇡ 7 + nf/3 + . . .

is fixed by the QCD beta function.
There is however a serious problem with this type of computation. The dilute instan-

ton gas approximation relies on finite temperature perturbative QCD. The latter really
becomes perturbative only at very high temperatures T & 106 GeV due to IR divergences
of the thermal bath [294]. Further, due to the exponential dependence on quantum correc-
tions, the axion mass convergence is even worse than many other observables. In fact the
LO estimate of the Debye mass m2

D1 receives O(1) corrections at the NLO for tempera-
tures around few GeV [295, 296]. Non-perturbative computations from lattice simulations
[297–299] confirm the unreliability of the LO estimate.

Both lattice [299] and NLO [295] results give a Debye mass mD ' 1.5 mD1 where mD1

is the leading perturbative result. Since the Debye mass enters the exponent of eq. (5.34)
higher order effects can easily shift the axion mass at a given temperature by an order of
magnitude or more.
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Given the failure of perturbation theory in this regime of temperatures even the actual
form of eq. (5.34) may be questioned and the full answer could differ from the semiclas-
sical instanton computation even in the temperature dependence and in the shape of the
potential. Because of this, direct computations from non-perturbative methods such as
lattice QCD are highly welcome and have been performed lately [283–286].

Recently several computations of the temperature dependence of the topological sus-
ceptibility for pure SU(3) Yang-Mills appeared [288, 300]. While computations in this
theory cannot be used for the QCD axion1, they are useful to test the instanton result.
In particular in [288] an explicit comparison was made in the interval of temperatures
T/Tc 2 [0.9, 4.0]. The results for the temperature dependence and the quartic deriva-
tive of the potential are compatible with those predicted by the instanton approximation,
however the overall size of the topological susceptibility was found one order of magnitude
bigger. While the size of the discrepancy seem to be compatible with a simple rescaling
of the Debye mass, it goes in the opposite direction with respect to the one suggested
by higher order effects, preferring a smaller value for mD ' 0.5mD1. This fact betrays a
deeper modification of eq. (5.34) than a simple renormalization of mD.

Several full studies for real QCD are now available in the same range of temperatures.
Results for T 2 [150, 600] are available in [283], for 2+1 flavour QCD with physical quark
masses. Fig. 5.1 compares these results with the ChPT ones, with nice agreement around
T ⇠ 140 MeV. The plot is in terms of the ratio m2

a(T )/m2
a, which at low temperatures

weakens the quark mass dependence, as manifest in the ChPT computation. However, at
high temperature this may not be true anymore. For example the dilute instanton com-
putation suggests m2

a(T )/m2
a / (mu + md) / m2

⇡, which implies that the slope across the
crossover region may be very sensitive to the value of the light quark masses. It is therefore
very important to use the physical quark masses in lattice computations. These results
suggest that �(T ) decreases with temperature much more slowly than in the quarkless
case, in contradiction to the instanton computation. The result for the temperature slope
in [283] imply a temperature dependence for the topological susceptibility (�(T ) ⇠ T�3)
departing strongly from the one predicted by instanton computations. As we will see in
the next section this could have dramatic consequences in the computation of the axionic
relic abundance.

More recently lattice results appeared in [286], for temperatures between 100 MeV
and 3 GeV. The analysis was performed with 2 + 1 + 1 flavours (therefore including the
charm quark) and physical quark masses. These results are also shown in figure 5.1, and

1Note that quarkless QCD differs from real QCD both quantitatively (e.g. �(0)

1/4
= 181 MeV vs

�(0)

1/4
= 75.5 MeV, Tc ' 300 MeV vs Tc ' 160 MeV) and qualitatively (the former undergoes a first

order phase transition across Tc while the latter only a crossover).
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Figure 5.1: The temperature dependent axion mass squared normalized to the zero temper-
ature value squared. In blue the prediction from chiral Lagrangians. In green the continuum
extrapolation from the lattice data from ref. [283], and in yellow the lattice data from [286].
The red shaded curve shows the results from the instanton computation, varying the renor-
malisation scale µ between ⇢�1 and 2⇢�1.

suggest that the topological susceptibility �(T ) has a slope in agreement with the one in
the instanton computation. For completeness, in figure 5.1 we also show the instanton
computation result, for details see appendix B.

5.2.3 Implications for dark matter

As we saw in section 5.1.2, the biggest uncertainty on the misalignment contribution to
⌦a comes from our knowledge of ma(T ). Assuming that ma(T ) can be approximated by
the power law

m2
a(T ) = m2

a(1 GeV)

✓

GeV

T

◆↵

= m2
a

�(1 GeV)

�(0)

✓

GeV

T

◆↵

,

around the temperatures where the axion starts oscillating, eq. (5.10) can easily be inte-
grated numerically. In fig. 5.2 we plot the values of fa that would reproduce the correct
dark matter abundance for different choices of �(T )/�(0) and ↵ in the scenario where ✓0
is integrated over. We also show three representative points, two of them with parameters
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Figure 5.2: Values of fa such that the misalignment contribution to the axion abundance
matches the observed dark matter one for different choices of the parameters of the axion
mass dependence on temperature. For definiteness the plot refers to the case where the
PQ phase is restored after the end of inflation (corresponding approximately to the choice
✓0 = 2.15). The temperatures where the axion starts oscillating, i.e. satisfying the relation
ma(T ) = 3H(T ), are also shown. The three points corresponding to the dilute instanton gas
prediction, lattice data by [286] and lattice data by [283] are shown for reference.

(↵ ⇡ 8, �(1 GeV)/�(0) ⇡ few 10�7), corresponding respectively to the expected behaviour
from instanton computations and the lattice results [284–286], and one with parameters
(↵ ⇡ 3, �(1 GeV)/�(0) ⇡ 10�2) from the lattice data in [283]. The figure also shows
the corresponding temperature at which the axion starts oscillating, here defined by the
condition ma(T ) = 3H(T ).

Notice that for large values of ↵, as predicted by instanton computations, the sensi-
tivity to the overall size of the axion mass at fixed temperature (�(1 GeV)/�(0)) is weak.
However if the slope of the axion mass with the temperature is much smaller, as claimed
by the results in [283], then the corresponding value of fa required to give the correct relic
abundance can even be larger by an order of magnitude (note also that in this case the
temperature at which the axion starts oscillating would be higher, around 4÷5 GeV). The
difference between the three cases could be taken as an estimate of the current uncertainty
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Figure 5.3: The axion parameter space as a function of the axion decay constant and the
Hubble parameter during inflation. The bounds are shown for the two choices for the axion
mass parametrization suggested by the instanton computations and the lattice simulation by
[286] (continuous lines), and by the lattice results by [283] (dashed lines), corresponding to
the labeled points in fig. 5.2. In the green shaded region the misalignment axion relic density
can make up the entire dark matter abundance, and the isocurvature limits are obtained
assuming that this is the case. In the white region the axion misalignment population
can only be a sub-dominant component of dark matter. The region where PQ symmetry
is restored after inflation does not include the contributions from topological defects, the
lines thus only represent conservative upper bounds to the value of fa. Ongoing (solid)
and proposed (dashed empty) experiments testing the available axion parameter space are
represented on the right side (see chapter 6).

on this type of computation. More accurate lattice results are needed to assess the actual
temperature dependence of the axion mass and potential.

To show the impact of this uncertainty on the viable axion parameter space and the
experiments probing it, in fig. 5.3 we plot the various constraints as a function of the
Hubble scale during inflation and the axion decay constant. Limits that depend on the
temperature dependence of the axion mass are shown for the instanton and lattice inspired
forms (solid and dashed lines respectively), corresponding to the red and green labeled
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5.2 The hot axion at NLO: finite temperature results

points in fig. 5.2. On the right side of the plot we also show the values of fa that will
be probed by ongoing experiments (solid) and those that could be probed by proposed
experiments (dashed empty). Orange colors are used for experiments using the axion
coupling to photons, blue for the others. Experiments in the last column (IAXO and
ARIADNE) do not rely on the axion being dark matter. The boundary of the allowed
axion parameter space is constrained by the CMB limits on tensor modes [21], supernova
SN1985 and other astrophysical bounds including black-hole superradiance.

When the PQ preserving phase is not restored after inflation (i.e. when both the
Hubble parameter during inflation HI and the maximum temperature after inflation Tmax

are smaller than the PQ scale) the axion abundance can match the observed dark matter
one for a large range of values of fa and HI by varying the initial axion value ✓0. In
this case isocurvature bounds [301] (see e.g. [302] for a recent discussion) constrain HI

from above. At small fa obtaining the correct relic abundance requires ✓0 to be close to
⇡, where the potential is flat, so the the axion begins oscillating at relatively late times.
In the limit ✓0 ! ⇡ the axion energy density diverges. Given the sensitivity of ⌦a to ✓0
in this regime, isocurvatures are enhanced by 1/(⇡ � ✓0) and the bound on HI is thus
strengthened by a factor ⇡ � ✓0.1 Meanwhile, the axion decay constant is bounded from
above by black-hole superradiance. For smaller values of fa axion misalignment can only
explain part of the dark matter abundance. In fig. 5.3 we show the value of fa required
to explain ⌦DM when ✓0 = 1 and ✓0 = 0.01 for the two reference values of the axion mass
temperature parameters.

If the PQ phase is instead restored after inflation, e.g. for high scale inflation models,
✓0 is not a free parameter anymore. In this case only one value of fa will reproduce
the correct dark matter abundance. Given our ignorance about the contributions from
topological defect we can use the misalignment computation to give an upper bound on
fa. This is shown on the bottom-right side of the plot, again for the two reference models,
as before. Contributions from higher-modes and topological defects are likely to make
such bound stronger by shifting the forbidden region downwards. Note that while the
instanton behavior for the temperature dependence of the axion mass would point to
axion masses outside the range which will be probed by ADMX (at least in the current
version of the experiment), if the lattice behavior will be confirmed the mass window
which will be probed would look much more promising.

1This constraint guarantees that we are consistently working in a regime where quantum fluctuations
during inflation are much smaller than the distance of the average value of ✓0 from the top of the potential.
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Chapter 6

Axion searches

The feeble couplings to photons and matter make the axion very challenging to search for.
However, despite its elusive nature, excellent progress has been done in proposing new
ways to detect it (see for example the following reviews [303–306]). The first proposal for
axion detection [307] showed that axions can be directly searched in laboratories using
the conversion of an axion into a photon in the presence of an external electromagnetic
field.1 Other proposals exploit axion telescopes (helioscopes) [309, 310] or new techniques
as Nuclear Magnetic Resonance [311, 312].

Alternatively, axions can be produced in the hot plasma that constitutes astrophysical
objects like stars, opening up additional channels for the occurrence of astrophysical
processes and altering star evolution. As a consequence, it would be possible to observe
a modification of the solar sound-speed profile, an increase in the solar neutrino flux, a
reduction of the helium-burning life time of globular cluster stars, an accelerated white
dwarfs cooling, and a reduction of the supernova SN 1987A neutrino burst duration (see
[313] for a review).

Some of the proposed laboratory experiments to detect the QCD axion are reviewed
in section 6.1, while the astrophysical bounds are described in section 6.2. Finally, the
precision axion properties at T = 0 are presented in section 6.3.

6.1 Laboratory searches
Exploiting the coupling of the axion with photons

L =
1

4
a ga��Fµ⌫F̃

µ⌫ = �ga�� E · B a, (6.1)

1This process is called Primakoff effect [308].
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where E and B are respectively the standard electric and magnetic field of the coupling
photons respectively, it is possible to detect the axion [307]. Indeed, axions passing
through an electromagnetic cavity, where a strong electromagnetic field with a frequency
related to the size of the cavity is produced, could resonantly convert into photons when
the cavity resonant frequency !a matches with the axion mass ma.

Relic axions from the Big Bang are gravitationally bound to the Milky Way with a
non relativistic velocity v and dispersion1 �v ' 10�3. Consequently, the predicted axion
mean energy would be

E ' ma

✓

1 +
�v2

2

◆

, (6.2)

with energy dispersion �E = 1
2
ma �v2 ' 10�6.

The power of axions converting into photons in an electromagnetic cavity is given by

Pa = Cg2
a��V B2

0

⇢a
ma

Qe↵ , (6.3)

where C is a constant that depends on the transverse magnetic cavity modes, V is the
volume of the cavity, B0 is the magnetic field, and Qe↵ is an effective quality factor that
is smaller or equal than the cavity’s quality factor QL and the quality factor for the
axion signal Qa ' 1/�v2 ⇠ 106. Three physical parameters that are extremely important
are the axion-photon coupling ga��, the axion mass ma and the local axion density ⇢a.
Such an experiment would lead to measurements of the axion-photon coupling and its
mass, once the local axion DM density is fixed to its value [314, 315]. The resonant
condition requires that the frequency of the cavity must be equal to the axion mass
⌫ = ma(1 + �v2/2). Therefore, should the axion be discovered by such experiments, its
mass would be known with a precision comparable to the suppressed line width of the
resonance, �ma/ma ⇠ O(10�6).

The drawback of cavity microwave experiments is that the cavity frequency has to be
equal to the energy of the axion, which is essentially given by its mass. Since the axion
mass is not known and it may be in a wide range, these experiments require a slow scan
over large numbers of frequencies.

The first experiments of this kind were performed at the Brookhaven National Lab-
oratory [316, 317] and at the University of Florida [318], and excluded an axion mass in
the range [4.5, 16.3] µeV, without reaching the photon coupling characteristic of the QCD
axion. The best sensitivity is currently achieved by the Axion Dark Matter eXperiment
(ADMX) [319]. Currently, ADMX excludes the region between 1.9 and 3.65 µeV, for an
axion photon coupling larger than ⇠ 10�15 GeV�1, on the edge of the KSVZ QCD axion

1We use natural units where c =

/h = 1.
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Figure 6.1: Search reach of ADMX and ADMX-HF over the next years in the ma-|ga�� |
plane. The blue shaded area denotes the current limits from ADMX. The shaded green
regions are the reach of the future stages of ADMX. The red curves show the QCD axion
parameter space.

model, see figure 6.1. In the figure it is also shown the possible future reach of the high
frequency version of ADMX (ADMX-HF), that may cover along the years the QCD axion
parameter space for ma 2 [2, 40] µeV.

Future experiments

New search concepts for the detection of dark matter axions have been proposed in the
last years. The authors of [320] proposed a microwave resonator structure sensitive to
dark matter axions with an expected sensitivivity to dark matter axion mass between 40

and 600 µeV for axion photon couplings below 10�14 GeV�1.
Alternatively, the oscillating axion field induces oscillating electric dipole moments

that cause a precession of nuclear spins in spin polarised nucleon in presence of an electric
field. Consequently, it is possible to search for the resulting transverse magnetisation
exploiting nuclear magnetic resonance techniques. The Cosmic Axion Spin Precession
Experiment (CASPEr) searches for two different couplings of the axion [311]. On one
hand, CASPER-Wind searches for the axion wind effect which causes a precession of the
nuclear spin, probing the pseudo-scalar coupling gaNN . On the other hand, CASPER-
Electric exploits the time varying nucleon electric dipole moment gd caused by the axion.
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This experiment may reach large values of fa corresponding to masses of the order of the
neV but, at least with the current technology, it is not able to reach the parameter space
of the QCD axion.

The search for axion can be extended by combining nuclear magnetic resonance tech-
niques and short distance tests of gravity. The proposals by [312] (ARIADNE) is based
on resonant couplings between the rotational frequency of a source mass and a nuclear
magnetic resonance sample with matching spin precession frequency. ARIADNE may be
able to probe CP-violating axion couplings to matter for QCD axion masses below 10�3

eV.
The authors of [321] proposed a new technique to search for axions with dish anten-

nas. Cold dark matter axions mixing with photons are converted into monochromatic
photons emitted from the surface of a spherical antenna and focused in the centre, where
a broadband detector is placed. The proposed experiment would be both directional and
broadband in frequency, overcoming some of the drawbacks of the resonant cavity exper-
iments. The lack of resonant enhancement can be compensated by increasing the area of
the dish surface. Such experiment may be sensitive to QCD axion with masses between
1 and 100 µeV.

6.2 Astrophysical bounds

Solar axions

The existence of axion produced in the hot plasma of astrophysical objects would open
up additional channels for the occurrence of astrophysical process and would alter the
star evolution. Consequently, the sun would be a powerful axion source. Particles with a
two-photon vertex, like the axion, transform into photons in an electric or magnetic field.
Thus, the axion can be produced from thermal photons in the electromagnetic fields of
the stellar plasma [322]. This new process can in principle shorten the lifetime of the
sun. Requiring that the axion does not spoil the standard solar model constrain the axion
photon coupling to be ga�� . 1.1⇥ 10�9 GeV�1 [323]. A similar bound can be derived by
the fact that the axion affect the sound speed profile of the sun. Moreover, solar models
with axion losses would dramatically increase the solar 8B neutrino flux [323], while the
measured value implies ga�� . 5⇥ 10�10 GeV�1 [324–326].

Additionally, the inverted Primakoff effect can be exploited to search for axion conver-
sion in a magnetic field. The CERN Axion Solar Telescope (CAST) consists in a telescope
pointed at the Sun, with a strong magnetic field and an X-ray detector at the end. An
axion passing through the magnetic field may convert to a low energy photon that can
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be detected at the end of the telescope. CAST has already been able to constrain the
axion photon coupling to lie below ga�� . 8.8 ⇥ 10�11 GeV�1 for ma < 0.02 eV and
ga�� . 2.2⇥ 10�10 GeV �1 for 0.02 < ma < 0.4 eV [327].

Furthermore, it is possible to reach an increased sensitivity with stronger magnets,
the basis for the International Axion Observatory (IAXO) [310]. After few years of data
taking, IAXO may be able to reach ga�� ⇠ 5 ⇥ 10�12 GeV�1 for ma . 0.02 eV and
ga�� ⇠ 1⇥ 10�11 GeV�1 for 0.02 . ma . 0.2 eV.

Supernova SN1987A

One of the strongest bounds on the axion mass comes from the observations of neutrinos
originating from the supernova SN1987A [328]. The relevant process consists of a core
collapse of a massive star which subsequently leads to a proto neutron star. Axion can
therefore be produced through nucleon nucleon axion bremsstrahlung N+N ! N+N+a,
involving the axion nucleon coupling.

The cooling time of the supernova can be affected by such a process and the duration
of the burst can therefore be reduced. As a consequence, the associated neutrino flux
may be reduced. If the axion nucleon coupling gaNN is very small, the axion emission
does not change the cooling time. As gaNN increases, the emission of bremsstrahlung
axions increase and therefore the burst duration shortens. A minimum in the cooling
time is reached when the axion mean free path corresponds to the geometric size of the
supernova core. For even larger couplings, axions are trapped in the medium and their
emission decreases reaching a point where the cooling time is unaffected by their presence.

The Kamiokande-II and the Irvine-Michigan-Brookhaven experiments measured the
flux of electron antineutrinos coming from the SN1987A, allowing comparison of the data
with theoretical expectations. Such measurements allowed to exclude axions for 3 ⇥
10�10 . gaNN/ GeV�1 . 3 ⇥ 10�7 [313], implying that QCD axion masses heavier than
O(10) meV are excluded. This bound corresponds to fa & 2⇥ 108 GeV.

White dwarf cooling

After helium burning stars reach the latest stages of their helium consumption, they evolve
to the asymptotic giant branch (AGB) in the Hertzsprung-Russell diagram. An AGB star
may then evolve into a white dwarf star by cooling down because of neutrino emission and
surface photon emission. The existence of axions would open up an additional channel
for the cooling of AGN into white dwarfs via the process

e + Ze! e + Ze + a, (6.4)
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where Z is the atomic number. It is then possible to derive constraints on the axion mass
and the axion-electron coupling comparing the theoretical luminosity function, including
the above process, and the observed cooling rate derived from the decrease of the rotational
period. The constraint on the axion-electron coupling obtained is [329, 330]

gaee . 1.3⇥ 10�13. (6.5)

Globular cluster stars

Gravitationally bound systems of stars that formed at the same time are called globular
clusters. Globular clusters are particularly useful for testing models of stellar evolution
because their stars formed at the same time. If axions exist, they would change the
evolution of helium burning stars accelerating the helium consumption via the axion
production channel. This effect would reduce the lifetime of the horizontal branch stars
by a factor proportional to the axion-photon coupling



1 +
3

8

⇣ ga��
10�10 GeV�1

⌘2
��1

. (6.6)

A reasonably conservative estimate from the analysis of a statistically significant set of
helium burning stars implies [331]

ga�� . 6.6⇥ 10�11 GeV�1, (6.7)

a limit comparable to the one of CAST, but applying for higher masses. This limit
excludes QCD axions heavier than O(10) eV.

Black hole superradiance

Very light axions have a Compton wavelength comparable to the size of black holes and
thus form an approximately hydrogenic spectrum of bound states with different energy
levels. The occupation number of the bound states grows exponentially, fed by the energy
and the angular momentum of the black hole. While the occupation number of the
bound states grows forming a condensate around the black hole, axions can superradiate
extracting angular momentum and rotational energy from the black hole. Furthermore,
axions can emit gravitational waves resulting in a regular extraction of angular momentum
from the black hole. As a consequence, the black hole spins down. Current black hole
spin measurements imply an upper bound on the QCD axion decay constant of 2⇥ 1017

GeV [332, 333].
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6.3 The cool axion, precisely: T = 0 properties

Axion searches set bounds on the axion mass and on its couplings. Furthermore, the
discovery of the axion by ADMX, for example, would lead to a very accurate measurement
of its mass. Depending on the experiment, different axion couplings may also be extracted
with a different accuracy. It is therefore important to understand what we could learn
from these measurements and if it is possible to exploit such high precision in the axion
mass and maybe couplings.

At this point the natural question is, how good are the estimates obtained so far using
leading order chiral Lagrangians? In the 3-flavor chiral Lagrangian NLO corrections
are typically around 20-30%. The 2-flavor theory enjoys a much better perturbative
expansion given the larger hierarchy between pions and the other mass thresholds. To get a
quantitative answer the only option is to perform a complete NLO computation. Given the
better behaviour of the 2-flavor expansion we perform all our computation with the strange
quark integrated out. The price we pay is the reduced number of physical observables that
can be used to extract the higher order couplings. When needed we will use the 3-flavor
theory to extract the values of the 2-flavor ones. This will produce intrinsic uncertainties
O(30%) in the extraction of the 2-flavor couplings. Such uncertainties however will only
have a small impact on the final result whose dependence on the higher order 2-flavor
couplings is suppressed by the light quark masses.

6.3.1 The mass

The first quantity we compute is the axion mass. As mentioned before at leading order
in 1/fa the axion can be treated as an external source. Its mass is thus defined as

m2
a =

�2

�a2
logZ

�

a
fa

�

�

�

�

a=0
=

1

f 2
a

d2

d✓2
logZ(✓)

�

�

�

✓=0
=
�top

f 2
a

, (6.8)

where Z(✓) is the QCD generating functional in the presence of a theta term and �top is
the topological susceptibility.

A partial computation of the axion mass at one loop was first attempted in [334]. More
recently the full NLO corrections to �top has been computed in [335]. We recomputed
this quantity independently and present the result for the axion mass directly in terms of
observable renormalized quantities1.

1The results in [335] are instead presented in terms of the unphysical masses and couplings in the
chiral limit. Retaining the full explicit dependence on the quark masses those formula are more suitable
for lattice simulations.
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The computation is very simple but the result has interesting properties:

m2
a =

mumd

(mu + md)2
m2

⇡f
2
⇡

f 2
a



1 + 2
m2

⇡

f 2
⇡

✓

hr
1 � hr

3 � lr4 +
m2

u � 6mumd + m2
d

(mu + md)2
lr7

◆�

, (6.9)

where hr
1, hr

3, lr4 and lr7 are the renormalized NLO couplings of [336] and m⇡ and f⇡ are
the physical (neutral) pion mass and decay constant (which include NLO corrections).
There is no contribution from loop diagrams at this order (this is true only after having
reabsorbed the one loop corrections of the tree-level factor m2

⇡f
2
⇡). In particular lr7 and

the combinations hr
1 � hr

3 � lr4 are separately scale invariant. Similar properties are also
present in the 3-flavor computation, in particular there are no O(ms) corrections (after
renormalization of the tree-level result), as noticed already in [334].

To get a numerical estimate of the axion mass and the size of the corrections we need
the values of the NLO couplings. In principle lr7 could be extracted from the QCD con-
tribution to the ⇡+-⇡0 mass splitting. While lattice simulations have started to become
sensitive to EM and isospin breaking effects, at the moment there are no reliable esti-
mates of this quantity from first principle QCD. Even less is known about hr

1� hr
3, which

does not enter other measured observables. The only hope would be to use lattice QCD
computation to extract such coupling by studying the quark mass dependence of observ-
ables such as the topological susceptibility. Since these studies are not yet available we
employ a small trick: we use the relations in [337] between the 2- and 3-flavor couplings
to circumvent the problem. In particular we have

lr7 =
mu + md

ms

f 2
⇡

8m2
⇡

� 36L7 � 12Lr
8 +

log(m2
⌘/µ

2) + 1

64⇡2
+

3 log(m2
K/µ2)

128⇡2

= 7(4) · 10�3 ,

hr
1 � hr

3 � lr4 = �8Lr
8 +

log(m2
⌘/µ

2)

96⇡2
+

log(m2
K/µ2) + 1

64⇡2
= (4.8 ± 1.4) · 10�3 . (6.10)

The first term in lr7 is due to the tree-level contribution to the ⇡+-⇡0 mass splitting due
to the ⇡0-⌘ mixing from isospin breaking effects. The rest of the contribution, formally
NLO, includes the effect of the ⌘-⌘0 mixing and numerically is as important as the tree-
level piece [337]. We thus only need the values of the 3-flavor couplings L7 and Lr

8, which
can be extracted from chiral fits [338] and lattice QCD [339], we refer to appendix C for
more details on the values used. An important point is that by using 3-flavor couplings
the precision of the estimates of the 2-flavor ones will be limited to the convergence of
the 3-flavor Lagrangian. However, given the small size of such corrections even an O(1)

uncertainty will still translate into a small overall error.
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The final numerical ingredient needed is the actual up and down quark masses, in
particular their ratio. Since this quantity already appears in the tree level formula of the
axion mass we need a precise estimate for it, however, because of the Kaplan-Manohar
(KM) ambiguity [340], it cannot be extracted within the meson Lagrangian. Fortunately
recent lattice QCD simulations have dramatically improved our knowledge of this quantity.
Considering the latest results we take

z ⌘ mMS
u (2 GeV)

mMS
d (2 GeV)

= 0.48(3) , (6.11)

where we have conservatively taken a larger error than the one coming from simply aver-
aging the results in [238–240] (see the appendix C for more details). Note that z is scale
independent up to ↵em and Yukawa suppressed corrections. Note also that since lattice
QCD simulations allow us to relate physical observables directly to the high-energy MS

Yukawa couplings, in principle1, they do not suffer from the KM ambiguity, which is a
feature of chiral Lagrangians. It is reasonable to expect that the precision on the ratio z

will increase further in the near future.
Combining everything together we get the following numerical estimate for the axion

mass

ma = 5.70(6)(4) µeV

✓

1012GeV

fa

◆

= 5.70(7) µeV

✓

1012GeV

fa

◆

, (6.12)

where the first error comes from the up-down quark mass ratio uncertainties (6.11) while
the second comes from the uncertainties in the low energy constants (6.10). The total
error of ⇠1% is much smaller than the relative errors in the quark mass ratio (⇠6%) and
in the NLO couplings (⇠30÷60%) because of the weaker dependence of the axion mass
on these quantities

ma =



5.70 + 0.06
z � 0.48

0.03
� 0.04

103lr7 � 7

4

+0.017
103(hr

1 � hr
3 � lr4)� 4.8

1.4

�

µeV
1012 GeV

fa
. (6.13)

Note that the full NLO correction is numerically smaller than the quark mass error and
its uncertainty is dominated by lr7. The error on the latter is particularly large because of
a partial cancellation between Lr

7 and Lr
8 in eq. (6.10). The numerical irrelevance of the

other NLO couplings leaves a lot of room for improvement should lr7 be extracted directly
from Lattice QCD.

1Modulo well-known effects present when chiral non-preserving fermions are used.
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6. Axion searches

The value of the pion decay constant we used (f⇡ = 92.21(14) MeV) [341] is extracted
from ⇡+ decays and includes the leading QED corrections, other O(↵em) corrections to
ma are expected to be sub-percent. Further reduction of the error on the axion mass may
require a dedicated study of this source of uncertainty as well.

As a by-product we also provide a comparably high precision estimate of the topolog-
ical susceptibility itself

�1/4
top =

p

mafa = 75.5(5) MeV , (6.14)

against which lattice simulations can be calibrated.

6.3.2 The potential: self-coupling and domain-wall tension

Analogously to the mass, the full axion potential can be straightforwardly computed at
NLO. There are three contributions: the pure Coleman-Weinberg 1-loop potential from
pion loops, the tree-level contribution from the NLO Lagrangian, and the corrections from
the renormalization of the tree-level result, when rewritten in terms of physical quantities
(m⇡ and f⇡). The full result is

V (a)NLO =�m2
⇡

�

a
fa

�

f 2
⇡

⇢

1� 2
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f 2
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✓
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◆�

+
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⇡

�

a
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�
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⇡

"

hr
1 � hr
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2
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�
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fa

�
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�
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� lr7
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�
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fa

�

µ2

!

� 1

2

!#)

(6.15)

where m2
⇡(✓) is the function defined in eq. (4.58), and all quantities have been rewritten

in terms of the physical NLO quantities1. In particular the first line comes from the NLO
corrections of the tree-level potential while the second line is the pure NLO correction to
the effective potential.

The dependence on the axion is highly non-trivial, however the NLO corrections ac-
count for only up to few percent change in the shape of the potential (for example the
difference in vacuum energy between the minimum and the maximum of the potential
changes by 3.5% when NLO corrections are included). The numerical values for the addi-
tional low-energy constants lr3,4 are reported in appendix C. We thus know the full QCD
axion potential at the percent level!

1See also [342] for a related result computed in terms of the LO quantities.
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6.3 The cool axion, precisely: T = 0 properties

It is now easy to extract the self-coupling of the axion at NLO by expanding the
effective potential (6.15) around the origin

V (a) = V0 +
1

2
m2

aa
2 +

�a
4!

a4 + . . . (6.16)

We find

�a =� m2
a

f 2
a

⇢

m2
u �mumd + m2

d

(mu + md)2
(6.17)

+6
m2

⇡

f 2
⇡

mumd

(mu + md)2



hr
1 � hr

3 � lr4 +
4l̄4 � l̄3 � 3

64⇡2
� 4

m2
u �mumd + m2

d

(mu + md)2
lr7

��

, (6.18)

where ma is the physical one-loop corrected axion mass of eq. (6.9). Numerically we have

�a = �0.346(22) · m2
a

f 2
a

, (6.19)

the error on this quantity amounts to roughly 6% and is dominated by the uncertainty
on lr7.

Finally the NLO result for the domain wall tensions can be simply extracted from the
definition

� = 2fa

Z ⇡

0

d✓
p

2[V (✓)� V (0)] , (6.20)

using the NLO expression (6.15) for the axion potential. The numerical result is

� = 8.97(5) maf
2
a , (6.21)

the error is sub percent and it receives comparable contributions from the errors on lr7
and the quark masses.

As a by-product we also provide a precision estimate of the topological quartic moment
of the topological charge Qtop

b2 ⌘ �
hQ4

topi � 3hQ2
topi2

12hQ2
topi

=
f 2
aV 0000(0)

12V 00(0)
=

�af 2
a

12m2
a

= �0.029(2) , (6.22)

to be compared to the cosine-like potential binst2 = �1/12 ' �0.083.

6.3.3 Coupling to photons

Similarly to the axion potential, the coupling to photons (4.59) also gets QCD corrections
at NLO, which are completely model independent. Indeed derivative couplings only pro-
duce ma suppressed corrections which are negligible, thus the only model dependence lies
in the anomaly coefficient E/N .
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For physical quark masses the QCD contribution (the second term in eq. (4.59)) is
accidentally close to �2. This implies that models with E/N = 2 can have anomalously
small coupling to photons, relaxing astrophysical bounds. The degree of this cancellation
is very sensitive to the uncertainties from the quark mass and the higher order corrections,
which we compute here for the first time.

At NLO new couplings appear from higher-dimensional operators correcting the WZW
Lagrangian. Using the basis of [343], the result reads

ga�� =
↵em

2⇡fa

⇢

E

N
� 2

3

4md + mu

md + mu

+
m2

⇡

f 2
⇡

8mumd

(mu + md)2



8

9

�

5c̃W3 + c̃W7 + 2c̃W8
�

� md �mu

md + mu

lr7

��

. (6.23)

The NLO corrections in the square brackets come from tree-level diagrams with insertions
of NLO WZW operators (the terms proportional to the c̃Wi couplings1) and from a-⇡0

mixing diagrams (the term proportional to lr7). One loop diagrams exactly cancel similarly
to what happens for ⇡ ! �� and ⌘ ! �� [344]. Notice that the lr7 term includes the
mu/ms contributions which one obtains from the 3-flavor tree-level computation.

Unlike the NLO couplings entering the axion mass and potential little is known about
the couplings c̃Wi , so we describe the way to extract them here.

The first obvious observable we can use is the ⇡0 ! �� width. Calling �i the relative
correction at NLO to the amplitude for the i process, i.e.

�NLO
i ⌘ �tree

i (1 + �i)
2 , (6.24)

the expressions for �tree
⇡�� and �⇡�� read

�tree
⇡�� =

↵2
em

(4⇡)3
m3

⇡

f 2
⇡

,

�⇡�� =
16

9
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⇡
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

md �mu
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5c̃W3 + c̃W7 + 2c̃W8
�

� 3

✓

c̃W3 + c̃W7 +
c̃W11
4

◆�

. (6.25)

Once again the loop corrections are reabsorbed by the renormalization of the tree-level
parameters and the only contributions come from the NLO WZW terms. While the
isospin breaking correction involves exactly the same combination of couplings entering
the axion width, the isospin preserving one does not. This means that we cannot extract
the required NLO couplings from the pion width alone. However in the absence of large
cancellations between the isospin breaking and the isospin preserving contributions we

1For simplicity we have rescaled the original couplings cWi of [343] into c̃Wi ⌘ cWi (4⇡f⇡)

2.
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6.3 The cool axion, precisely: T = 0 properties

can use the experimental value for the pion decay rate to estimate the order of magnitude
of the corresponding corrections to the axion case. Given the small difference between the
experimental and the tree-level prediction for �⇡!�� the NLO axion correction is expected
of order few percent.

To obtain numerical values for the unknown couplings we can try to use the 3-flavor
theory, in analogy with the axion mass computation. In fact at NLO in the 3-flavor
theory the decay rates ⇡ ! �� and ⌘ ! �� only depend on two low-energy couplings
that can thus be determined. Matching these couplings to the 2-flavor theory ones we are
able to extract the required combination entering in the axion coupling. Because the c̃Wi
couplings enter eq. (6.23) only at NLO in the light quark mass expansion we only need
to determine them at LO in the mu,d expansion.

The ⌘ ! �� decay rate at NLO is

�tree
⌘!�� =

↵2
em

3(4⇡)3
m3

⌘

f 2
⌘

,
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7 + 6 C̃W

8

⌘

, (6.26)

where in the last step we consistently neglected higher order corrections O(mu,d/ms). The
3-flavor couplings C̃W

i ⌘ (4⇡f⇡)2CW
i are defined in [343]. The expression for the correction

to the ⇡ ! �� amplitude with 3 flavors also receives important corrections from the ⇡-⌘
mixing ✏2,

�(3)⇡�� =
32
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m2
⇡
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⇡
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�
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3
(1 + �⌘��) , (6.27)

where the ⇡-⌘ mixing derived in [337] can be conveniently rewritten as

✏2p
3
' md �mu

6ms



1 +
4m2

K

f 2
⇡

✓

lr7 �
1

64⇡2

◆�

, (6.28)

at leading order in mu,d. In both decay rates the loop corrections are reabsorbed in the
renormalization of the tree-level amplitude1.

1NLO corrections to ⇡ and ⌘ decay rates to photons including isospin breaking effects were also
computed in [345]. For the ⌘ ! �� rate we disagree in the expression of the terms O(mu,d/ms), which
are however subleading. For the ⇡ ! �� rate we also included the mixed term coming from the product of
the NLO corrections to ✏2 and to �⌘�� . Formally this term is NNLO but given that the NLO corrections
to both ✏2 and �⌘�� are of the same size as the corresponding LO contributions such terms cannot be
neglected.
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Figure 6.2: Result of the fit of the 3-flavor couplings ˜CW
7,8 from the decay width of ⇡ ! ��

and ⌘ ! ��, which include the experimental uncertainties and a 30% systematic uncertainty
from higher order corrections.

By comparing the light quark mass dependence in eqs. (6.25) and (6.27) we can match
the 2 and 3 flavor couplings as follows

c̃W3 + c̃W7 +
c̃W11
4

= C̃W
7 ,

5c̃W3 + c̃W7 + 2c̃W8 = 5C̃W
7 + 12C̃W
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✓

lr7 �
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64⇡2

◆�

(1 + �⌘��) . (6.29)

Notice that the second combination of couplings is exactly the one needed for the axion-
photon coupling. By using the experimental results for the decay rates (reported in
appendix C), we can extract CW

7,8. The result is shown in fig. 6.2, the precision is low
for two reasons: 1) C̃W

7,8 are 3 flavor couplings so they suffer from an intrinsic O(30%)
uncertainty from higher order corrections1, 2) for ⇡ ! �� the experimental uncertainty
is not smaller than the NLO corrections we want to fit.

For the combination 5c̃W3 + c̃W7 + 2c̃W8 we are interested in, the final result reads

5c̃W3 + c̃W7 + 2c̃W8 =
3f 2

⇡

64m2
K

mu + md

mu

⇢

1 + 4
m2

K

f 2
⇡

✓

lr7 �
1

64⇡2

◆�

f⇡
f⌘

(1 + �⌘��)

1We implement these uncertainties by adding a 30% error on the experimental input values of �⇡��
and �⌘�� .
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Figure 6.3: The relation between the axion mass and its coupling to photons for the three
reference models with E/N = 0, 8/3 and 2. Notice the larger relative uncertainty in the
latter model due to the cancellation between the UV and IR contributions to the anomaly
(the band corresponds to 2� errors.). Values below the lower band require a higher degree
of cancellation.
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When combined with eq. (6.23) we finally get

ga�� =
↵em

2⇡fa



E

N
� 1.92(4)

�

=



0.203(3)
E

N
� 0.39(1)

�

ma

GeV2
. (6.31)

Note that despite the rather large uncertainties of the NLO couplings we are able to extract
the model independent contribution to a ! �� at the percent level. This is due to the
fact that, analogously to the computation of the axion mass, the NLO corrections are
suppressed by the light quark mass values. Modulo experimental uncertainties eq. (6.31)
would allow the parameter E/N to be extracted from a measurement of ga�� at the percent
level.
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For the three reference models with respectively E/N = 0 (such as hadronic or KSVZ-
like models [211, 212] with electrically neutral heavy fermions), E/N = 8/3 (as in DFSZ
models [213, 214] or KSVZ models with heavy fermions in complete SU(5) representations)
and E/N = 2 (as in some KSVZ “unificaxion” models [346]) the coupling reads

ga�� =

8

<

:

�2.227(44) · 10�3/fa E/N = 0
0.870(44) · 10�3/fa E/N = 8/3
0.095(44) · 10�3/fa E/N = 2

. (6.32)

Even after the inclusion of NLO corrections the coupling to photons in E/N = 2 models
is still suppressed. The current uncertainties are not yet small enough to completely rule
out a higher degree of cancellation, but a suppression bigger than O(20) with respect to
E/N = 0 models is highly disfavored. Therefore the result for gE/N=2

a�� of eq. (6.32) can
now be taken as a lower bound to the axion coupling to photons, below which tuning is
required. The result is shown in fig. 6.3.

6.3.4 Coupling to matter

Axion couplings to matter are more model dependent as they depend on all the UV cou-
plings defining the effective axial current (the constants c0q in the last term of eq. (4.43)).
In particular, there is a model independent contribution coming from the axion coupling
to gluons (and to a lesser extent to the other gauge bosons) and a model dependent part
contained in the fermionic axial couplings.

The couplings to leptons can be read off directly from the UV Lagrangian up to the
one loop effects coming from the coupling to the EW gauge bosons. The couplings to
hadrons are more delicate because they involve matching hadronic to elementary quark
physics. Phenomenologically the most interesting ones are the axion couplings to nucleons,
which could in principle be tested from long range force experiments, or from dark-matter
direct-detection like experiments.

In principle we could attempt to follow a similar procedure to the one used in the
previous section, namely to employ chiral Lagrangians with baryons and use known ex-
perimental data to extract the necessary low energy couplings. Unfortunately effective
Lagrangians involving baryons are on much less solid ground—there are no parametrically
large energy gaps in the hadronic spectrum to justify the use of low energy expansions.

A much safer thing to do is to use an effective theory valid at energies much lower
than the QCD mass gaps � ⇠ O(100 MeV). In this regime nucleons are non-relativistic,
their number is conserved and they can be treated as external fermionic currents. For
exchanged momenta q parametrically smaller than �, heavier modes are not excited and
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6.3 The cool axion, precisely: T = 0 properties

the effective field theory is under control. The axion, as well as the electro-weak gauge
bosons, enters as classical sources in the effective Lagrangian, which would otherwise be
a free non-relativistic Lagrangian at leading order. At energies much smaller than the
QCD mass gap the only active flavor symmetry we can use is isospin, which is explicitly
broken only by the small quark masses (and QED effects). The leading order effective
Lagrangian for the 1-nucleon sector reads

LN = N̄vµDµN + 2gA Ai
µ N̄Sµ�iN + 2gq

0 Âq
µ N̄SµN + �hMaiN̄N + bN̄MaN + . . . (6.33)

where N = (p, n) is the isospin doublet nucleon field, vµ is the four-velocity of the non-
relativistic nucleons, Dµ = @µ � Vµ, Vµ is the vector external current, �i are the Pauli
matrices, the index q = (u+d

2
, s, c, b, t) runs over isoscalar quark combinations, 2N̄SµN =

N̄�µ�5N is the nucleon axial current, Ma = cos(Qaa/fa)diag(mu, md), and Ai
µ and Âq

µ

are the axial isovector and isoscalar external currents respectively. Neglecting SM gauge
bosons, the external currents only depend on the axion field as follows

Âq
µ = cq

@µa

2fa
, A3

µ = c(u�d)/2
@µa

2fa
, A1,2

µ = Vµ = 0 , (6.34)

where we used the short-hand notation c(u±d)/2 ⌘ cu±cd
2

. The couplings cq = cq(Q)

computed at the scale Q will in general differ from the high scale ones because of the
running of the anomalous axial current [347]. In particular under RG evolution the
couplings cq(Q) mix, so that in general they will all be different from zero at low energy.
We explain the details of this effect in appendix D.

Note that the linear axion couplings to nucleons are all contained in the derivative in-
teractions through Aµ while there are no linear interactions1 coming from the non deriva-
tive terms contained in Ma. In Eq. (6.33) dots stand for higher order terms involving
higher powers of the external sources Vµ, Aµ, and Ma. Among these the leading effects
to the axion-nucleon coupling will come from isospin breaking terms O(MaAµ).2 These
corrections are small O(md�mu

�
), below the uncertainties associated to our determination

of the effective coupling gq
0, which are extracted from lattice simulations performed in the

isospin limit.
Eq. (6.33) should not be confused with the usual heavy baryon chiral Lagrangian [348]

because here pions have been integrated out. The advantage of using this Lagrangian
is clear: for axion physics the relevant scale is of order ma, so higher order terms are

1This is no longer true in the presence of extra CP violating operators such as those coming from
the CKM phase or new physics. The former are known to be very small, while the latter are more model
dependent and we will not discuss them in the current work.

2Axion couplings to EDM operators also appear at this order.
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negligibly small O(ma/�). The price to pay is that the couplings gA and gq
0 can only be

extracted from very low-energy experiments or lattice QCD simulations. Fortunately the
combination of the two will be enough for our purposes.

In fact, at the leading order in the isospin breaking expansion, gA and gq
0 can simply

be extracted by matching single nucleon matrix elements computed with the QCD+axion
Lagrangian (4.46) and with the effective axion-nucleon theory (6.33). The result is simply:

gA = �u��d , gq
0 = (�u + �d, �s, �c, �b, �t) , sµ�q ⌘ hp|q̄�µ�5q|pi , (6.35)

where |pi is a proton state at rest, sµ its spin and we used isospin symmetry to relate
proton and neutron matrix elements. Note that the isoscalar matrix elements �q inside gq

0

depend on the matching scale Q, such dependence is however canceled once the couplings
gq
0(Q) are multiplied by the corresponding UV couplings cq(Q) inside the isoscalar currents

Âq
µ. Non-singlet combinations such as gA are instead protected by non-anomalous Ward

identities1. For future convenience we set the matching scale Q = 2 GeV.
We can therefore write the EFT Lagrangian (6.33) directly in terms of the UV cou-

plings as

LN = N̄vµDµN +
@µa

fa

ncu � cd
2

(�u��d)N̄Sµ�3N

+
hcu + cd

2
(�u + �d) +

X

q=s,c,b,t

cq�q
i

N̄SµN
o

. (6.36)

We are thus left to determine the matrix elements �q. The isovector combination can
be obtained with high precision from �-decays [341]

�u��d = gA = 1.2723(23) , (6.37)

where the tiny neutron-proton mass splitting mn�mp = 1.3 MeV guarantees that we are
within the regime of our effective theory. The error quoted is experimental and does not
include possible isospin breaking corrections.

Unfortunately we do not have other low energy experimental inputs to determine
the remaining matrix elements. Until now such information has been extracted from
a combination of deep-inelastic-scattering data and semi-leptonic hyperon decays: The
former suffer from uncertainties coming from the integration over the low-x kinematic
region, which is known to give large contributions to the observable of interest; the latter
are not really within the EFT regime, which does not allow a reliable estimate of the
accuracy.

1This is only true in renormalization schemes which preserve the Ward identities.
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Fortunately lattice simulations have recently started producing direct reliable results
for these matrix elements. From [349–354] (see also [355, 356]) we extract1 the following
inputs computed at Q = 2 GeV in MS

gud
0 = �u + �d = 0.521(53) , �s = �0.026(4) , �c = ±0.004 . (6.38)

Notice that the charm spin content is so small that its value has not been determined
yet, only an upper bound exists. Similarly we can neglect the analogous contributions
from bottom and top quarks which are expected to be even smaller. As mentioned before,
lattice simulations do not include isospin breaking effects, these are however expected to
be smaller than the current uncertainties. Combining eqs. (6.37) and (6.38) we thus get:

�u = 0.897(27) , �d = �0.376(27) , �s = �0.026(4) , (6.39)

computed at the scale Q = 2 GeV.
We can now use these inputs in the EFT Lagrangian (6.36) to extract the correspond-

ing axion-nucleon couplings:

cp = �0.47(3) + 0.88(3)c0u � 0.39(2)c0d � 0.038(5)c0s

� 0.012(5)c0c � 0.009(2)c0b � 0.0035(4)c0t ,

cn = �0.02(3) + 0.88(3)c0d � 0.39(2)c0u � 0.038(5)c0s

� 0.012(5)c0c � 0.009(2)c0b � 0.0035(4)c0t , (6.40)

which are defined in analogy to the couplings to quarks as

@µa

2fa
cNN̄�µ�5N , (6.41)

and are scale invariant (as they are defined in the effective theory below the QCD mass
gap). The errors in eq. (6.40) include the uncertainties from the lattice data and those
from higher order corrections in the perturbative RG evolution of the axial current (the
latter is only important for the coefficients of c0s,c,b,t). The couplings c0q are those appearing
in eq. (4.43) computed at the high scale fa = 1012 GeV. The effect of varying the matching
scale to a different value of fa within the experimentally allowed range is smaller than the
theoretical uncertainties.

A few considerations are in order. The theoretical errors quoted here are dominated
by the lattice results, which for these matrix elements are still in an early phase and
the systematic uncertainties are not fully explored yet. Still the error on the final result

1Details in the way the numbers in eq. (6.38) are derived are given in appendix C.
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is already good (below ten percent), and there is room for a large improvement which
is expected in the near future. Note that when the uncertainties decrease sufficiently
for results to become sensitive to isospin breaking effects, new couplings will appear in
eq. (6.33). These could in principle be extracted from lattice simulations by studying the
explicit quark mass dependence of the matrix element. In this regime the experimental
value of the isovector coupling gA cannot be used anymore because of different isospin
breaking corrections to charged versus neutral currents.

The numerical values of the couplings we get are not too far off those already in the
literature (see e.g. [341]). However, because of the caveats in the relation of the deep
inelastic scattering and hyperon data to the relevant matrix elements the uncertainties in
those approaches are not under control. On the other hand the lattice uncertainties are
expected to improve in the near future, which would further improve the precision of the
estimate performed with the technique presented here.

The numerical coefficients in eq. (6.40) include the effect of running from the high
scale fa (here fixed to 1012 GeV) to the matching scale Q = 2 GeV, which we performed
at the NLLO order (more details in appendix D). The running effects are evident from
the fact that the couplings to nucleons depend on all quark couplings including charm,
bottom and top, even though we took the corresponding spin content to vanish. This
effect has been neglected in previous analysis.

Finally it is interesting to observe that there is a cancellation in the model independent
part of the axion coupling to the neutron in KSVZ-like models, where c0q = 0,

cKSVZ
p = �0.47(3) , cKSVZ

n = �0.02(3) , (6.42)

the coupling to neutrons is suppressed with respect to the coupling to protons by a factor
O(10) at least, in fact this coupling still is compatible with 0. The cancellation can be
understood from the fact that, neglecting running and sea quark contributions

cn ⇠
⌧

Qa ·
✓

�d 0
0 �u

◆�

/ md�d + mu�u , (6.43)

and the down-quark spin content of the neutron �u is approximately �u ⇡ �2�d, i.e.
the ratio mu/md is accidentally close to the ratio between the number of up over down
valence quarks in the neutron. This cancellation may have important implications on
axion detection and astrophysical bounds.

In models with c0q 6= 0 both the couplings to proton and neutron can be large, for
example for the DFSZ axion models, where c0u,c,t = 1

3
sin2 � = 1

3
� c0d,s,b at the scale

Q ' fa, we get

cDFSZ
p = �0.617 + 0.435 sin2 � ± 0.025 , cDFSZ

n = 0.254� 0.414 sin2 � ± 0.025 . (6.44)
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6.3 The cool axion, precisely: T = 0 properties

A cancellation in the coupling to neutrons is still possible for special values of tan �.
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Chapter 7

Conclusions and outlook

Several experimental and theoretical arguments suggest the existence of physics beyond
the standard model, and one of the most fascinating and challenging issues is the nature of
dark matter. Many promising models extend the SM predicting the existence of stable and
massive particles with the properties needed to accommodate observations. In this thesis
we have analysed two viable dark matter candidates: we have focused on the neutralino
in split SUSY scenarios and in supersymmetric models with Dirac gaugino masses, and
on the QCD axion.

In the first part of this thesis we have presented supersymmetric searches at future
hadron colliders and dark matter direct detection experiments. In particular, in the con-
test of split SUSY models, we have analysed the mass reach of several electroweakino
searches for future hadron colliders, their implications for dark matter and the comple-
mentarity with direct detection experiments. Moreover, we have compared prospects of
discovering or excluding models with Dirac and Majorana gauginos at a possible future
100 TeV collider, considering a neutralino-squark-gluino simplified model. Finally, we
have considered neutralino dark matter in SUSY models with Dirac gauginos and the
relations between searches at a 100 TeV collider, direct and indirect detection.

In Chapter 1 we have reviewed the motivations for physics beyond the standard model
and we have introduced split SUSY models and SUSY models with Dirac gauginos.

In the second Chapter we have discussed some aspects of collider phenomenology. In
particular, in section 2.1, we have studied scenarios where Wino NLSPs decay into lep-
tons (or b-jets and leptons) and Bino LSP, with long-lived Winos in models of anomaly
mediation and with Wino or higgsino LSP in GMSB models. The LHC excludes elec-
troweakinos up to few hundred GeV, well below the interesting cases of pure Wino or
higgsino dark matter. Electroweakinos collider searches are relevant, for example in low
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scale gauge mediation models with universal gaugino masses and large tan � or in models
of anomaly mediation. Indeed, in the first scenario the gluino is expected to be at the
same scale or below the squarks (the Higgs mass fixes this scale to be around 10 TeV)
that means a Wino around 3 TeV. Such Winos could be explored at a 100 TeV collider
with less than 100 fb�1 of luminosity. In anomaly mediation the ratio between the gluino
and the Wino mass is large, making the Wino searches more powerful: a 100 TeV collider
with few ab�1 of luminosity could explore 3 TeV Winos (mg̃ & 20 TeV).

In section 2.2 we have compared the reach of coloured states in SUSY models with
Dirac or Majorana gluinos. Our results are summarised in figure 2.8. Differences between
Majorana and Dirac gaugino models are pronounced for heavy gluinos compared to the
squarks, where the sensitivity is significantly weaker in Dirac models.

A major shortcoming of the present work is the lack of NLO K factors for Dirac models,
a topic that needs further work. In extending our analysis there are many other possible
searches for colour superpartners, and different patterns of soft masses to be studied.
Additionally, study of scenarios where the first two generation sfermions are heavy, but
the gluino and stop are relatively light would be worthwhile. Moreover, it would also be
interesting to pursue dedicated analysis of the possible signatures of the sgluon, or the
other adjoint scalars. Searches for Dirac Winos and Binos with or without sfermions at
comparable masses and with the gluino decoupled would also be relevant because Dirac
gaugino models often predict gluinos significantly heavier than the squarks and the Winos.
Collider signatures of electroweakinos in Dirac models have been discussed in [127, 357],
and the reach of a 100 TeV collider for Majorana gauginos with associated production has
been studied in [144]. However, we leave the case of models of Dirac electroweakinos at a
100 TeV collider for future work.

Furthermore, we have considered some aspects of model building, and the relation
of these to the future collider searches in section 2.3. Although a proper calculation of
the fine tuning of a model requires a full UV complete theory to be specified, we have
estimated the typical tuning that will be probed in the Dirac and Majorana scenarios. Our
analysis has been fairly independent of the details of particular models, and is expected
to give a lower bound on the tuning of a theory with a given low scale spectrum. It
would therefore be interesting to take a well motivated UV complete model, for example
a theory of Dirac gluinos that avoids tachyonic states, and investigate whether its true
tuning is close to our estimates.

Dark matter direct detection searches for the SUSY models considered in this thesis
have been analysed in chapter 3. In section 3.1, we have studied split SUSY models with
universal gaugino masses or anomaly mediation. In split SUSY models with universal
gaugino masses the strongest mass reach comes from direct detection in the positive µ
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scenario. In particular, the recent LUX results already exclude the Bino-higgsino scenario
for any value of tan � (see figure 3.3), while the combination of direct detection experi-
ments (after LZ), monojet and gluino searches at a 100 TeV collider will leave unexplored
a narrow region with µ & 870 GeV and M1 & 5 TeV. On the other hand, in the negative
µ case dark matter direct detection experiments are weaker, due to the suppression of
the cross section (although large tan � scenarios have been recently ruled out by LUX).
However, gluino and monojet searches may explore also the region where the neutrino
background limits direct detection experiments. In this scenario, therefore, it would be
possible to explore the entire parameter space where the (non-termal) neutralino dark
matter candidate is an admixture of higgsino and Bino states (see figure 3.4).

In anomaly mediation models direct detection experiments and collider searches are
complementary. Indeed searches on long-lived Winos set strong mass reach in regions
where direct detection is weak. The interplay between gluino searches, long-lived Winos
and direct detection may cover large area of the parameter space where the neutralino
does not contribute to the whole dark matter. Gluino searches at a 100 TeV collider
could be able to explore the whole parameter space in which the dark matter particle is
a Bino/higgsino or Bino/Wino mixed state. Moreover, the Wino-higgsino dark matter
scenario with large tan � is now excluded by the recent LUX data (see figure 3.7). On
the other hand, the small tan � scenario is not excluded only for negative µ. In the case
with positive µ, LZ may probe pure thermal Winos or higgsinos.

Furthermore, in section 3.2, we have examined the prospects for viable neutralino dark
matter candidates in Dirac gaugino models. In R-symmetric Dirac gaugino models, strong
constraints from direct detection experiments already rule out higgsino dark matter. The
remaining electroweakino dark matter possibilities are Binos coannihilating with sleptons,
and a mainly Bino neutralino coannihilating with the Winos. LHC searches already
constrain the viable Bino candidates to be close in mass to the sleptons, and it will be
hard for a future hadron collider to strengthen limits in this part of parameter space.
However, for many well motivated patterns of soft terms, searches for coloured particles
at such a collider can indirectly exclude this scenario. It would be interesting to study
whether a future lepton collider could constrain this case directly. In contrast, the Dirac
Bino-Wino case can be fully covered by direct searches. Notably, models with Dirac
gluinos but a neutralino sector with R-symmetry broken can lead to many other dark
matter scenarios. It would be worthwhile to consider the impact of a 100 TeV collider on
such theories, as well as R-symmetric models with gravitino dark matter.

In the second part of this thesis, we have studied the QCD axion. In chapter 4 we have
introduced the QCD axion as the solution of the strong CP problem, the different reali-
sations of the Peccei-Quinn idea that produced a variety of axion models and the leading
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order properties of the QCD axion. In chapter 5 we have discussed in more detail the QCD
axion as the dark matter particle, reviewing the three different production mechanisms.
Furthermore, we have studied the dependence of the axion mass and potential on the
temperature, which affects the axion relic abundance today. While at low temperature
such information can be extracted accurately using chiral Lagrangians at temperatures
close to the QCD crossover and above perturbative methods fail. We also point out
that instanton computations, which are believed to become reliable at least when QCD
becomes perturbative have serious convergence problems, making them unreliable in the
whole region of interest. Recent lattice result suggests large deviations from the instanton
estimates [283], although other lattice simulations are in agreement [284–286]. We studied
the impact that this uncertainty has on the computation of the axion relic abundance and
the constraints on the axion parameter space. More dedicated non-perturbative compu-
tations are therefore required to reliably determine the axion relic abundance. Moreover,
we have not considered contributions from topological defects that may dominate over
the misalignment mechanism if inflation happens before the PQ breaking.

Finally, in chapter 6, we have discussed the laboratory searches and astrophysical
bounds. The possible discovery of the QCD axion would lead to a precise determination of
its mass. Therefore, in order to fully exploit such experimental result, precise theoretical
determination of the zero temperature properties of the QCD axion are needed. We
showed that several QCD axion properties, despite being determined by non-perturbative
QCD dynamics, can be computed reliably with high accuracy. In particular we computed
higher order corrections to the axion mass, its self-coupling, the coupling to photons,
the full potential and the domain-wall tension, providing estimates for these quantities
with percent accuracy. We also showed how lattice data can be used to extract the
axion coupling to matter (nucleons) reliably, providing estimates with better than 10%
precision. These results are important both experimentally, to assess the actual axion
parameter space probed and to design new experiments, and theoretically, since in the
case of a discovery they would help determining the underlying theory behind the PQ
breaking scale.
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Appendix A

The MRSSM neutralinos

In this Appendix we briefly review the MRSSM. This has a superpotential

W = W µ=0,A=0
MSSM + µdR̂dĤd + µuR̂uĤu

+ ⇤dR̂dT̂ Ĥd + ⇤uR̂uT̂ Ĥu + �dŜR̂dĤd + �uŜR̂uĤu , (A.1)

where Ĥu and Ĥd are MSSM-like Higgs doublets, and R̂u and R̂d are new inert Higgs
doublets added to allow viable phenomenology while preserving an R-symmetry. The
other new fields compared to the MSSM are a singlet Ŝ, a SU (2)–triplet T̂ , and a SU (3)–
octet Ô.

The gauginos B̃, W̃ and g̃ can get, R-symmetry preserving, Dirac mass terms with
the fermionic parts of the adjoint chiral supermultiplets S̃, T̃ and Õ

LD �MD
1

B̃S̃ + MD
2

W̃ T̃ + MD
3

g̃Õ + h.c. . (A.2)

There are also new trilinear terms involving these extra adjoint chiral multiplets, with
coupling constants ⇤u,d and �u,d. Other important parameters are the soft masses for the
scalar components of Ĥu,d and R̂u,d. MSSM like trilinear A terms are forbidden by the
R-symmetry.

During EW symmetry breaking the two MSSM-like Higgs doublets get vacuum expec-
tation values, and R̂u and R̂d do not. There are several important differences between the
EW sectors of the MSSM and the MRSSM. In the MRSSM, the neutralino mass matrix
in the basis

⇣

�B̃, W̃ 0, R0
d, R

0
u

⌘

,
⇣

S̃, T̃ 0, H̃0
d , H̃

0
u

⌘

is

m�̃0 =

0

B

B

@

MD
1

0 �1
2
g1vd

1
2
g1vu

0 MD
2

1
2
g2vd �1

2
g2vu

� 1p
2
�dvd �1

2
⇤dvd mR0

dH̃
0

d
0

1p
2
�uvu �1

2
⇤uvu 0 mR0

uH̃
0

u

1

C

C

A

, (A.3)
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where

mR0

dH̃
0

d
= �1

2
⇤dvT �

1p
2
�dvs � µd (A.4)

mR0

uH̃
0

u
= �1

2
⇤uvT +

1p
2
�uvs + µu . (A.5)

The Dirac neutralinos are therefore composed of eight Weyl spinors coming from the
neutral components of the Higgs doublets H0

u,d, R0
u,d, the gauginos B̃, W̃ 0, and the adjoint

singlet S̃ and triplet T̃ . The four mass parameters MD
1

, MD
2

and µu,d give most of the
mass to the neutralinos. There are four new couplings �u,d and ⇤u,d, that arise from the
superpotential terms in the second line of Eq. (A.1). Instead in the MSSM the gauginos
have Majorana masses and there is only one higgsino parameter that give mass to two
almost degenerate neutralinos.

The neutralino mass matrix is diagonalised by two unitary matrices N (k)
ij , where k =

1, 2, i, j = 1, ...4. Conservation of electromagnetic charge and R-charge divides the eight
two-component fermions from the Winos, higgsinos and R-fields into four sets that do
not mix. This means that there are two chargino mass matrices. Acting on the basis
(T̃�, H̃�

d ), (W̃+, R̃+
d ) we have a mass matrix

m�̃+ =

 

g2vT + MD
2

1p
2
⇤dvd

1p
2
g2vd �1

2
⇤dvT + 1p

2
�dvs + µd

!

, (A.6)

while on the basis
⇣

W̃�, R�
u

⌘

,
⇣

T̃+, H̃+
u

⌘

the mass matrix is

m⇢̃� =

 

�g2vT + MD
2

1p
2
g2vu

� 1p
2
⇤uvu �1

2
⇤uvT � 1p

2
�uvs � µu

!

. (A.7)

Both of these matrices is diagonalised by two unitary matrices, so there are four indepen-
dent rotations. The parameters MD

1

, MD
2

, µu and µd can chosen to be real and positive,
because it is possible to rotate any phases into the scalar adjoint holomorphic masses and
the parameters �u,d, ⇤u,d.
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Appendix B

The dilute instanton gas approximation

The effective potential of the axion in the dilute instanton gas approximation is computed
in terms of the single instanton contribution to the partition function Z1

Ve↵(T ) = �2Z1(T ) cos ✓. (B.1)

Consequently, the mass of the axion in the DIGA computation is

m2
a(T ) =

2

f 2
a

Z1(T ). (B.2)

The one loop contribution to the partition function Z1 of a single instanton is given by

Z1(T ) =

Z

d⇢n(⇢, T ) =

Z

d⇢nG(⇢) nf (mf , ⇢) nT (⇢, T ), (B.3)

where ⇢ is the size of the instanton and n(⇢, T ) is the instanton density. The explicit
calculation of Z1(T ), performed by [293], can be factorised in a gauge (nG), a fermion
(nf ), and a finite temperature contribution (nT ). The gauge contribution of the instanton
density is

nG(⇢) =
CNc

⇢5

✓

⇡

↵s(µ)

◆2Nc

(µ ⇢)�
0
0

(nf ) e�
2⇡

↵s(µ) , (B.4)

CNc =
eNc/6 ⇠1 ⇠

�(Nc�2)
2

(Nc � 2)!(Nc � 1)!
,

where Nc is the number of colours, ⇠1 = 0.260156, ⇠2 = 1.33876, the constant eNc/6 in CNc

appears in the MS scheme, and

�
0

0(nf ) = �0(nf ) +
↵s(µ)

4⇡



�1(nf )� 4Nc�0(nf ) + 3nf
N2

c � 1

Nc

�

,
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�0(nf ) =
11Nc � 2nf

3
, �1(nf ) = 2

153� 19nf

3
.

The fermionic contribution in presence of nf quarks with mass mf is given by [358]

nf (mf , ⇢) =

nf
Y

f=1

(mf ⇢)
2

3 exp

✓ 1
3
log mf⇢+ 2↵� (6↵ + 2�)(mf⇢)2 + 2A1(mf⇢)4 � 2A2(mf⇢)6

1� 3(mf⇢)2 + B1(mf⇢)4 + B2(mf⇢)6 + B3(mf⇢)8

◆

,

(B.5)
where

↵ = 0.145873, � = 0.05797,

A1 = �13.4138, A2 = 2.64587,

B1 = 25

✓

592955

21609
A2 +

255

49
A1 + 9↵ + 3�

◆

, B2 = �75

✓

85

49
A2 + A1

◆

, B3 = 75A2.

Finally, the finite temperature contribution is

nT (⇢, T ) = exp



�2(⇡⇢)2

g2
s

m2
D(T )� 12A(⇢, T )

✓

1 +
1

6
(Nc � nf )

◆�

, (B.6)

A(⇢, T ) = � 1

12
log

✓

1 +
(⇡⇢T )2

3

◆

+ c1

 

1

1 + c2(⇡⇢T )�
3

2

!

,

where c1 = 0.01289764, and c2 = 0.15858. The leading order Debye mass is given by

m2
D(T ) =

1

3
g2
s(µ)T 2

⇣

Nc +
nf

2

⌘

, (B.7)

that receives O(1) corrections at NLO for temperatures around few GeV.
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Appendix C

Input parameters and conventions

For convenience in table C.1 we report the values of the parameters used in this work.
When uncertainties are not quoted it means that their effect was negligible and they have
not been used.

In the following we discuss in more in details the origin of some of these values.

Quark masses

The value of z = mu/md has been extracted from the following lattice estimates:

z =

8

<

:

0.52(2) [240]
0.50(2)(3) [238]
0.451(4)(8)(12) [239]

(C.1)

which use different techniques, fermion formulations, etc. In [359] the extra preliminary
result z = 0.49(1)(1) is also quoted, which agrees with the results above. Some results are
still preliminary and the study of systematics may not be complete. Indeed the spread
from the central values is somewhat bigger than the quoted uncertainties. Averaging the
results above we get z = 0.48(1). Waiting for more complete results and a more systematic
study of all uncertainties we used a more conservative error, z = 0.48(3), which better
captures the spread between the different computations.

Axion properties have a much weaker dependence on the strange quark mass which
only enter at higher orders. For definiteness we used the value of the ratio

r ⌘ 2ms

mu + md

= 27.4(1) , (C.2)

from [359].
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z 0.48(3) l̄3 3(1)
r 27.4(1) l̄4 4.0(3)

m⇡ 134.98 l7 0.007(4)
mK 498 Lr

7 �0.0003(1)
m⌘ 548 Lr

8 0.00055(17)
f⇡ 92.2 gA 1.2723(23)

f⌘/f⇡ 1.3(1) �u + �d 0.52(5)
�⇡�� 5.16(18) 10�4 �s �0.026(4)
�⌘�� 7.63(16) 10�6 �c 0.000(4)

Table C.1: Numerical input values used in the computations. Dimensionful quantities
are given in MeV. The values of scale dependent low-energy constants are given at the scale
µ̄ = 770 MeV, while the scale dependent proton spin content �q are given at Q = 2 GeV.

ChPT low energy constants

For the value of the pion decay constant we used the PDG [341] value:

f⇡ = 92.21(14) MeV , (C.3)

which is free from the leading EM corrections present in the leptonic decays used for the
estimates.

Following [337] the ratio f⌘/f⇡ can be related to fK/f⇡, whose value is very well known,
up to higher order corrections. Assuming the usual 30% uncertainty on the SU(3) chiral
estimates we get f⌘/f⇡ = 1.3(1).

For the NLO low energy couplings we used the usual conventions of [336, 337]. As
described in the main text we used the matching of the 3 and 2 flavor Lagrangians to
estimate the SU(2) couplings from the SU(3) ones. In particular we only need the values
of Lr

7,8, which we took as

Lr
7 ⌘ Lr

7(µ̄) = �0.3(1) · 10�3 , Lr
8 ⌘ Lr

8(µ̄) = 0.55(17) · 10�3 , (C.4)

computed at the scale µ̄ = 770 MeV. The first number has been extracted from the fit in
[338] using the constraints for Lr

4 in [339]. The second from [339]. A 30% intrinsic uncer-
tainty from higher order 3-flavor corrections has been added. This intrinsic uncertainty
is not present for the 2-flavor constants where higher order corrections are much smaller.

In the main text we used the values

l̄3 = 3(1) , lr3(µ̄) = � 1

64⇡2

✓

l̄3 + log

✓

m2
⇡

µ̄2

◆◆

,
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l̄4 = 4.0(3) , lr4(µ̄) =
1

16⇡2

✓

l̄4 + log

✓

m2
⇡

µ̄2

◆◆

,

extracted from 3-flavor simulations in [339].
From the values above and using the matching in [337] between the 2 and the 3 flavor

theories we can also extract:

l7 = 7(4) 10�3 , hr
1 � hr

3 � lr4 = �0.0048(14) . (C.5)

Preliminary results using estimates from lattice QCD simulations [360] give l̄3 =

2.97(19)(14), l̄4 = 3.90(8)(14), l7 = 0.0066(54) and Lr
8 = 0.51(4)(12) 10�3. The new re-

sults in [361] using partially quenched simulations give l̄3 = 2.81(19)(45), l̄4 = 4.02(8)(24)

and l7 = 0.0065(38)(2). All these results are in agreement with the numbers used here.

Proton spin content

While the axial charge, which is equivalent to the isovector spin content of the proton,
is very well known (see discussion around eq. (6.37)) the isosinglet components are less
known.

To estimate gud = �u+�d we use the results in [349–354]. In particular we used [353],
whose value for gA = 1.242(57) is compatible with the experimental one, to estimate the
connected contribution to gud. For the disconnected contribution, which is much more
difficult to simulate, we averaged the results in [351, 352, 354] increasing the error to
accommodate the spread in central values, which may be due to different systematics.
Combining the results we get

gud
conn. + gud

disc. = 0.611(48)� 0.090(20) = 0.52(5) . (C.6)

All the results provided here are in the MS scheme at the reference scale Q = 2 GeV.
The strange spin contribution only have the disconnected contribution, which we ex-

tract averaging the results in [349–352, 354]

gs = �s = �0.026(4) . (C.7)

All the results mostly agree with each others but they are still preliminary or use heavy
quark masses or coarse lattice spacing or only two dynamical quarks. For this reason
the estimate of the systematic uncertainties is not yet complete and further studies are
required.

Finally [351] also explored the charm spin contribution. They could not see a signal
and thus their results can only be used to put an upper bound which we extracted as in
table C.1.
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Appendix D

Renormalization of axial couplings

While anomalous dimensions of conserved currents vanish it is not true for anomalous
currents. This means that the axion coupling to the singlet component of the axial
current is scale dependent:

@µa

2fa

X

q

cqj
µ
q =

@µa

2fa

"

X

q

✓

cq �
P

q0 cq0

nf

◆

jµq +

P

q0 cq0

nf

jµ⌃q

#

(D.1)

! @µa

2fa

"

X

q

✓

cq �
P

q0 cq0

nf

◆

jµq + Z0(Q)

P

q0 cq0

nf

jµ⌃q

#

(D.2)

where Z0(Q) is the renormalization of the singlet axial current jµ⌃q. It is important to note
that jµ⌃q only renormalizes multiplicatively, this is not true for the coupling to the gluon
operator (GG̃) which mixes at one-loop with @µjµ⌃q after renormalization (see e.g. [362]).

The anomalous dimension of jµ⌃q starts only at 2-loops and is known up to 3-loops in
QCD [347, 363]

@ log Z0(Q)

@ log Q2
= �A =

nf

2

⇣↵s

⇡

⌘2

+ nf
177� 2nf

72

⇣↵s

⇡

⌘3

+ . . . . (D.3)

The evolution of the couplings cq(Q) can thus be written as

cq(Q) = cq(Q0) +

✓

Z0(Q)

Z0(Q0)
� 1

◆ hcqinf

nf

, (D.4)

where we used the short hand notation h·inf
for the sum of q over nf flavors. Iterating the

running between the high scale fa and the low scale Q = 2 GeV across the bottom and
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top mass thresholds we can finally write the relation between the low energy couplings
cq(Q) and the high energy ones cq = cq(fa):

ct(mt) = ct +

✓

Z0(mt)

Z0(fa)
� 1

◆

hcqi6
6

,

cb(mb) = cb +

✓

Z0(mb)

Z0(mt)
� 1

◆

hcqi5
5

+
Z0(mb)

Z0(mt)

✓

Z0(mt)

Z0(fa)
� 1

◆

hcqi6
6

,

cq=u,d,s,c(Q) = cq +

✓

Z0(Q)

Z0(mb)
� 1

◆

hcqi4
4

+
Z0(Q)

Z0(mb)

✓

Z0(mb)

Z0(mt)
� 1

◆

hcqi5
5

+
Z0(Q)

Z0(mt)

✓

Z0(mt)

Z0(fa)
� 1

◆

hcqi6
6

, (D.5)

where at each mass threshold we matched the couplings at LO. In eq. (D.5) we can
recognize the contributions from the running from fa to mt with 6 flavors, from mt to mb

with 5 flavors and the one down to Q with 4 flavors.
The value for Z0(Q) can be computed from eq. (D.3), at LLO the solution is simply

Z0(Q) = Z0(Q0) e
�

6nf
33�2nf

↵s(Q)�↵s(Q
0

)

⇡ . (D.6)

At NLLO the numerical values at the relevant mass scales are

Z0(1012 GeV) = 0.984 , Z0(mt) = 0.939(3) , Z0(mb) = 0.888(15) , Z0(2 GeV) = 0.863(24) ,

(D.7)
where the error is estimated by the difference with the LLO which should capture the
order of magnitude of the 1-loop thresholds not included in the computation. For the
computation above we used the MS values of the quark masses, i.e. mt(mt) = 164 GeV
and mb(mb) = 4.2 GeV. The dependence of Z0(fa) on the actual value of fa is very mild,
shifting Z0(fa) by less than ±0.5% for fa = 1012±3 GeV.

Note that DFSZ models at high energy can be written so that the axion couples only
through the quark mass matrix. In this case no running effect should be present above the
first SM mass threshold (at the top mass). Indeed in this models, hcqi6 = hc0qi6�tr Qa = 0

and the renormalization effects from fa to mt cancel out.
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