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Abstract 
 

Background  

Trigeminal ganglion (TG) is a key player in processing noxious stimuli. Among many ligand-

gated ion channels, trigeminal sensory neurons express on their membranes purinergic P2X3 

receptors and capsaicin-sensitive transient receptor potential vanilloid 1 channels (TRPV1). 

These receptors are thought to be involved in pain transduction and pathophysiology of 

different pain syndromes, including migraine disorders. P2X3 and TRPV1 channels are 

continuously regulated by a variety of endogenous modulators, which, upregulating these 

receptors, can cause sensitization and promote development of pathological pain conditions. 

Although positive P2X3 and TRPV1 regulators are well studied, not much is known about 

those which might restrain the activity of these receptors. One candidate for the role of 

endogenous negative regulator of sensory ganglion activity is the brain natriuretic peptide 

(BNP). In fact, BNP was recently reported to downregulate inflammatory pain and firing 

frequency of small neurons in dorsal root ganglia via its receptor NPR-A.  

Aims  

In order to investigate the role of BNP/NPR-A system in trigeminal ganglion in control 

conditions and in migraine pathology we used wild-type (WT) mice and transgenic R192Q 

KI mice of the familial hemiplegic migraine type 1 (FHM1) model. First we characterized 

BNP and NPR-A expression and functional properties of the BNP/NPR-A pathway in 

trigeminal ganglions of WT and KI mice. To understand if this pathway can affect the 

properties of sensory neurons in TG we studied the effects of endogenous and exogenous 

BNP on P2X3 and TRPV1 receptors responses in vitro. Investigating molecular mechanisms 

underneath P2X3 receptor modulation we carefully examined changes in P2X3 

phosphorylation and membrane distribution and considered involvement of particular 

kinases and phosphatases in this process. Firing activity of the WT and KI trigeminal 

neurons were also evaluated to find out if the modulatory effects of BNP/NPR-A system on 

the P2X3 channels are reflected in neuronal excitability.  

Additionally, in search for new potent P2X3 antagonists a variety of diaminopurine 

derivatives as well as several adenosine nucleotide analogues were evaluated on recombinant 

P2X3 receptors in HEK cells and on native P2X3 receptors of TG sensory neurons.  

Results 

We found abundant expression of NPR-A in trigeminal ganglion along with low levels of 

BNP itself; the BNP/NPR-A pathway in both WT and KI neurons proved to be functional. 

Exogenously applied BNP inhibited TRPV1-mediated responses in WT and KI trigeminal 

neurons without any changes in the receptor’s expression level. On the other hand, P2X3 

receptors were not sensitive to additional exogenous BNP, but appeared to be 

downregulated by the low amount of endogenous BNP already present in WT TG cultures. 

This negative modulation included P2X3 serine phosphorylation and receptor redistribution 

to the non-lipid raft membrane compartments. Both mechanisms were dependent on the 

activity of protein kinase G. Interestingly, in KI mice NPR-A-mediated P2X3 inhibition 
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could not be seen and receptors remained upregulated, most probably due to the increased 

activity of P/Q calcium channels and high concentration of calcitonin gene related peptide 

(CGRP). Considering firing properties of trigeminal neurons, inactivation of BNP/NPR-A 

system with NPR-A antagonist anantin caused a hyperexcitability phenotype of WT cultures, 

which was very similar to what is typical for KI neurons. KI cultures remained unaltered, 

consistent with lack of BNP/NPR-A regulation over P2X3 activity.  

Experiments with new diaminopurine compounds and adenosine nucleotide derivatives 

resulted in molecules which showed antagonistic behavior towards P2X3 receptors with IC50 

values in low micromolar and nanomolar range, respectively. 

Conclusion 

The main result of the present study is the identification of BNP/NPR-A pathway as an 

intrinsic negative modulatory system for P2X3 and TRPV1 receptors activity in sensory 

neurons of mouse trigeminal ganglion and related neuronal excitability. However, in a mouse 

FHM1 migraine model BNP/NPR-A lacked the inhibitory effect on P2X3 receptors due to 

the overall amount of activation these receptors undergo in KI neurons. 

Modifications of diaminopurine and adenosine scaffold could serve as a promising strategy 

in search for new potent antagonists of P2X3 receptors. 
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Introduction 
 

1. P2X3 receptors 
 

1.1. ATP receptors 

Nowadays the notion that ATP is not only a principal energy source and component of 

nucleic acids inside the cell, but also a signaling molecule and a genuine neurotransmitter is 

widely accepted 1. ATP was first reported to be released from sensory nerves by Pamela 

Holton 2,3 and then this idea was further developed by Geoffrey Burnstock 4. Later on, ATP 

was shown to cause neuronal depolarization in rat dorsal horn neurons 5, to activate inward 

cation currents in mammalian sensory neurons 6 and to act like a mediator during synaptic 

transmission in the peripheral and central nervous systems 7–9. ATP is released from a variety 

of cell types in physiological and pathophysiological conditions in response to mechanical 

tissue injury, hypoxia, and inflammation 1. After being released ATP usually undergoes rapid 

breakdown by the ecto-nucleotidase 5′-triphosphate diphosphohydrolase (NTPDase) 

enzyme family to ADP, ANP and adenosine 10 (Fig. 1). 

 

 

 
 

Figure 1. Interplay of released nucleotides, nucleotide metabolism, and activity of P2Y, P2X, 

and adenosine receptors. Released ATP, UTP, and UDP-glucose activate P2Y2, P2Y4, P2Y11, or 

P2Y14 receptors and ATP activates all P2X receptors. E-NTPDases generate ADP and UDP, 

transiently providing agonists for P2Y1 and P2Y6 receptor activation, respectively 10. 

Nucleotide action is mediated by a large group of cell surface receptors divided into two 

main families: metabotropic P2Y receptors that work through coupling with G-proteins, and 

ionotropic P2X receptors that form an ion permeable pore upon agonist binding. The time 

scale of purinergic receptor activation and subsequent effects vary from milliseconds to 
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minutes 11, likewise, receptor ATP sensitivity has a wide range: from nanomolar in the case 

of P2Y receptors, to hundreds of micromolar for P2X7 receptors 12.  

 

1.2 P2X receptor structure 

P2X receptors were cloned in 1994 and showed to possess an unique structure, different 

from other known ligand-gated channels 13,14. This was further supported when the crystal 

structure of zebrafish P2X4 receptor in closed 15 and open 16 states were reported. Even 

though the transmembrane (TM) topologies of P2X receptors are similar to acid sensing ion 

channels (ASICs), epithelial sodium channels (ENaCs), and degenerin channels (DEGs), 

their primary amino acid sequences have little in common 15. Seven subunits of P2X 

receptors are encoded in the mammalian genome and form homomeric and heteromeric 

complexes 17–21. Each subunit contains two hydrophobic transmembrane segments (TM1 and 

TM2) separated by a glycosylated and disulfide-rich extracellular domain (Fig. 2; 13,14). The 

extracellular domain forms binding sites for ATP, competitive antagonists and modulatory 

metal ions, whereas the transmembrane domains form a non-selective cation channel, 

permeable for sodium, potassium and calcium 22. Systematic analysis by Egan and Khakh 

showed that P2X channels seem to have relatively high calcium permeability that can be 

even larger than the one of acetylcholine-, serotonin or glutamate-gated channels 23. 

Moreover, P2X receptors can mediate Ca2+ influx at resting or low membrane potential 

when other Ca2+ sources (like high Ca2+ -permeable NMDA receptors) are not active 24,25. 

In some cells, P2X channels are also permeable to anions. Specific properties of various P2X 

receptors are summarized in Table 1.  

P2X receptors are present in virtually all mammalian tissues and mediate a variety of 

responses such as synaptic transmission, smooth muscle contraction, platelet aggregation, 

activation of macrophages, cell proliferation and cell death, pain and taste sensation 21,24,26–28. 

 

Table 1: Properties of P2X receptors 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2. Structure of P2X3 receptors (adapted from 30) 

 

1.3 P2X3 receptors in pain pathways 

ATP-activated P2X receptors and in particular P2X3 receptors are widely accepted to play 

an important role in nociception 24,26,31,32. Studies on role of P2X receptors in pain started 

with early observations that ATP evokes pain in humans when applied to blisters 33. 

Investigations considering P2X receptor distribution within the tissues and their localisation 

to pain relevant neuronal structures showed almost unique P2X3 receptor distribution to 

nociceptive neurons of small and medium somatic size 18,34,34–37, suggesting their particular 

importance in pain pathways among all P2X receptors (Fig. 3). In particular, P2X3 receptors 

are predominantly expressed on C- and Aδ-fibers and their cell bodies of primary afferent 

neurons in most tissues 32,38 and also on their central projections to the spinal cord and 

brainstem (Fig. 3; 36). 

P2X3 is often coexpressed with capsaicin-sensitive TRPV1 channels and isolectin B4, 

further supporting the involvement of P2X3 receptors in pain 18,37,39.  

P2X3 knockout mice offered further evidence for the role of these receptors in nociception, 

showing reduced mechanical allodynia 40,41,41.  

Considering their fast desensitization and slow recovery, the importance of homomeric 

P2X3 receptors is most often regarded in relation to chronic rather than acute pain 

conditions 32. 

 

1.3.1 P2X3 receptors in inflammatory and neuropathic pain 

During inflammation high concentrations of extracellular ATP at the site of tissue injury, 

originated from damaged cells as well as from non-damaged endothelial cells have been 

measured in humans and animals 42,43. Selective P2X3 antagonists or prior depletion of P2X3 

receptor expression by intrathecal antisense oligonucleotides were shown to reduce chronic 

neuropathic and inflammatory pain as well as prevent or reduce mechanical hyperalgesia and 

allodynia in neuropathic pain models 44–48, providing strong evidence for the involvement of 

P2X3 receptors in the development of inflammatory pain. Further support came from 
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experiments on P2X3 KO mice 41,49. Inflammation was proved to enhance P2X3 receptor 

expression in TG and DRG neurons 50,51.  Neuropeptides such as CGRP along with 

inflammatory factors released within the inflamed tissue were observed to further sensitise 

P2X3 receptors leading to hyperalgesia 31,52,53.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3. P2X receptors in pain pathways (adapted from 32). ATP is released by nociceptive 

stimuli from primary afferent neurons or from damaged neuronal or non-neuronal cells in peripheral 

tissue and can stimulate P2X2/3,3 receptors localized on nociceptive terminals of sensory ganglia 

(TG, DRG) neurons. The signal is then projected to the spinal cord and brainstem and through the 

thalamus to the cortex. Ado – adenosine, DRG – dorsal root ganglion, TG – trigeminal ganglion. 
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Figure 4. P2X3 in pain sensitization (adapted from 52) If the noxious stimulus is weak (top row), 

the ATP membrane current is small and cannot produce a generator potential large enough to reach 

the threshold for spike firing and pain signal. A strong stimulus (middle row) can, however, evoke an 

ATP receptor current large enough to induce generator potential that reaches firing threshold and 

thus elicits pain. When there is pain sensitization (bottom rows) due to pathological processes, the 

ATP receptor current is proposed to be very large even for modest stimuli: the resulting increase in 

generator potential may allow repetitive firing and stronger pain signals.  

 

Experimental models include sensitisation of the peripheral or central pain processing to 

mimic certain aspects of chronic pain conditions 54. During inflammatory and neuropathic 

pain nociceptors become sensitized and could be activated even by sub-threshold stimuli 

(Fig. 4). Recent experiments on chemically-induced colitis in rats show that P2X3 receptors 

mediate visceral hypersensitivity via different mechanisms of sensitization 55. Likewise, in a 

rat model of lumbar disc herniation persistent pain hypersensitivity was associated with 

increased P2X3 expression and was partially reversed by the P2X3 antagonist A317491 56. 

P2X3 expression and function upregulation in DRG was also shown in relation to chronic 

pancreatic pain 57 and neuropathic pain in diabetic rats 58.  

The particularly high expression of P2X3 receptors by the majority of sensory neurons in 

TG 59 provides the molecular substrate for P2X3-mediated trigeminal pain including 

migraine pain 52. Experimental models of trigeminal and migraine pain showed P2X3 

receptor upregulation via different mechanisms, including enhanced membrane expression 

and trafficking of these receptors, changes in phosphorylation state and receptor membrane 

distribution 60–62.  

 

1.3.2 P2X3 receptors in migraine pain 

Accumulating evidence suggests that P2X3 receptors play an important role in trigeminal 

and migraine pain 32,63–65. The high expression of P2X3 receptors by the vast majority of 

trigeminal sensory neurons 59 provides the molecular substrate for P2X3-mediated trigeminal 

pain including migraine 52. Experiments on R192Q CACNA mouse migraine model in vitro 
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show upregulation of P2X3 currents 64 and P2X3-mediated firing activity of TG neurons 66. 

Sensitization of P2X3 receptors during migraine headache could be caused by neuropeptides 

and inflammatory mediators released in TG after activation of trigeminal afferents 31,52,53. A 

well-known migraine mediator CGRP 67–69, increases P2X3 receptor membrane level in vitro 

by enhancing receptor transcription and trafficking from intracellular compartments and 

facilitates P2X3 receptor recovery from desensitisation 52,60, contributing to the elevated 

P2X3 receptor function. Furthermore, most neurons coexpress P2X3 and CGRP receptors 

in TG 50, a phenomenon that can facilitate P2X3 modulation by CGRP. 

A clinical study found higher levels of nerve growth factor (NGF) in the cerebrospinal fluid 

of patients with chronic headache, supporting its involvement in chronic head pain 70. NGF 

was shown to enhance P2X3 activity in trigeminal neurons 59 and neutralization of 

endogenous NGF downregulated P2X3 currents and their recovery from desensitization via 

a PKC-dependent pathway 71. 

Data obtained with well-established anti-migraine drugs further support the role of P2X3 

receptors in migraine pain. Thus, naproxen, a popular anti-headache analgesic, directly 

inhibits P2X3 receptors by facilitating receptor desensitization, an effect enhanced in the 

presence of the algogen nerve growth factor 72, the level of which is elevated in patients with 

chronic migraine 73. Another study found that dihydroergotamine (DHE), an ergot alkaloid 

derivative used extensively in the acute migraine treatment, supresses ATP-mediated 

sensitization of trigeminal neurons via downregulation of P2X3 receptors 74. 

 

1.4 Modulation of P2X3 receptors  

A summary of known modulators of P2X3 receptors is in Tables 2, 3; some of them will be 

discussed further in more details. 

 

Table 2. Pain Mediators Upregulating P2X3 Receptors (adapted from 31). 
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Table 3. Cell Signaling Effectors on P2X3 Receptors (adapted from 31). 

  
 

 

1.4.1 P2X3 Synthesis 

Changing the amount of receptor protein can be one of the mechanisms to modulate its 

activity. De novo expression of P2X3 receptors in distinct neuronal subpopulations can 

underlie persistent enhancement of ATP mediated activity in sensory neurons during chronic  

and neuropathic pain conditions 56,57,75. CGRP promotes P2X3 receptor expression via a 

BDNF-dependent mechanism, CaMKII activation and phosphorylation of CREB 

transcription factor 76 (Fig. 5). Recent evidence indicates that Runx1 and C/EBPβ 

transcription factors also can directly up-regulate P2X3 gene transcription in DRG 77, while 

Ret is a critical regulator of several pain-related ion channels and receptors, including P2X3 

receptors 78. Recent evidence suggests that P2X3 expression can be positively regulated by 

p2x3r gene promoter DNA demethylation and enhanced interaction with p65, an active 

form of nuclear factor-kappa B (NF-B), contributing to cancer and neuropathic pain in rats 
58,79. Another study shows enhanced P2X3 receptor synthesis in chronic neuropathic pain 

injury probably via intermedin-dependent phosphorylation of p38 and ERK1/2 80. 
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1.4.2 P2X3 trafficking 

With the development of imaging and biochemical experimental methods to track ion 

channels, it had become clear that membrane receptors undergo constant surface diffusion 

and trafficking. A conserved site responsible for P2X receptor surface expression and 

receptor trafficking has been identified in the cytoplasmic C-terminus, that for P2X3 

subunits comprises residues 353-357, YKAKK 81. Enhancing surface abundance of pain-

facilitating receptors, including P2X3 receptors, even without changes in their total 

expression level, in nociceptors and dorsal horn neurons is an important mechanism 

underpinning chronic pain states (Ma 2014). Inflammation, tissue damage or pain mediators 

facilitate P2X3 cell surface trafficking in primary sensory neurons to amplify pain intensity 

and duration 82. Conversely, in other brain regions the same pathological conditions could 

lead to decreased P2X3 delivery to the membrane. Thus, in the model of neuropathic pain in 

diabetic rats decreased P2X3 membrane expression in PAG led to mechanical allodynia, 

most likely by impairing the descending inhibitory system in modulating pain transmission 83. 

 

 
  

Figure 5. Molecular mechanisms regulating P2X3 receptors of trigeminal neurons (TG) in 

basal conditions (nonsensitized, A) and in a migraine pain model (sensitized, B–D), when 

pain mediators such as CGRP (B, C) or NGF (D) are released (adapted from 52). A, ATP-gated 

P2X3 receptors are expressed intracellularly and on the neuronal membrane of trigeminal neurons at 

rest. B, CGRP stimulates trafficking of P2X3 receptors from intracellular stores to the cell membrane 

via PKA- and PKC-dependent mechanisms. C, CGRP triggers new P2X3 gene expression to support 

long-lasting upregulation of P2X3 receptor function. D, NGF induces rapid and reversible 

upregulation of P2X3 receptor function through their PKC-dependent phosphorylation. 

 

The molecular mechanisms to speed up P2X3 membrane delivery can vary for different cell 

types. Thus, in DRG it relies on CaMKII, whereas in TG increased membrane expression of 

P2X3 is related to PKC and PKA activity that in turn is modulated by CGRP 52,84,85 (Fig. 5). 
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The level of functional receptors expressed on the cell surface is temperature- and agonist-

dependent 31. Agonist stimulation rapidly increases the number of P2X3 on the membrane as 

well as augments receptor endocytosis accompanied by preferential targeting of the receptors 

to late endosomes/lysosomes, with subsequent degradation 86. Likewise, the protein kinase 

CASK stabilizes P2X3 receptors on the membrane and decreases their internalization and 

degradation 87. Experiments show that retrograde trafficking of P2X3 receptors along DRG 

neuronal processes relies on the activity of the GTPase family proteins, Rab5 and Rab7 88. A 

recent study describes the mechanism of ATP-induced membrane delivery of the P2X3 

receptors in DRG as a CaMKIIα and caveolin-1-dependent process. CaMKIIα binds to the 

P2X3 N-terminus and phosphorylates Thr388 on C terminus responsible for P2X3 

interaction with caveolin-1 (Fig. 6; 89). 

 

  
 

Figure 6. A schematic diagram showing the ATP-induced membrane delivery of the P2X3 

and P2X2/3 receptors (adapted from 89). Extracellular ATP binds to and activates the P2X3 

receptors present on the cell membrane in the soma and the nerve terminal of DRG neurons. Ca2+ 

influx via the P2X3 receptor not only phosphorylates ERK to form a ‘signaling endosome’ but also 

activates CaMKIIα, which binds to the N terminus of the P2X3 receptor and phosphorylates Thr388 

in the C terminus. Thr388 phosphorylation of the P2X3 receptor enhances its binding to caveolin-1, 

leading to the promotion of forward trafficking and membrane insertion of the P2X3 receptor. 

CaMKIIα is dispensable in forward transport of the P2X3 receptor after Thr388 phosphorylation. 

Furthermore, this regulated trafficking of the P2X3 receptor also drives the membrane delivery of 

the assembled P2X2 receptor and enhances the P2X3 receptor-mediated response. 
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1.4.3 Lipid rafts in control of P2X3 function 

Growing evidence indicates that ligand-gated receptor clustering and localization to 

particular membrane regions is one of the key factors to regulate their function 90–92. P2X3 

receptors were shown to be unevenly distributed within the membrane, showing their 

association with so called lipid rafts – membrane microdomains rich in cholesterol and 

sphingolipids 93–95. Preferential localization of P2X3 receptors to lipid rafts in sensory 

neurons of migraine-model mice is associated with a large gain of function that is promptly 

lost following disruption of membrane cholesterol 94. Lipid rafts were also shown to regulate 

P2X3 receptor trafficking and agonist-binding dependent endocytosis 86. 

Lipid rafts can affect P2X3 receptors in a number of different ways, from direct lipid-protein 

interaction to indirect mechanisms. Thus, phosphoinositides can regulate P2X3 activity by 

interacting with their C-terminal domain 96. On the other hand, lipid rafts can create a 

specific membrane microenvironment and facilitate P2X3 modulation by the protein kinase 

CASK, known to upregulate P2X3 receptors and usually found in a complex with P2X3 

receptors in trigeminal sensory neurons 87,97.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. A simplified kinetic scheme for P2X3 receptor operation indicating resting, open 

and desensitized receptor states (adapted from 63). Note multiple factors accelerating (+, red 

arrow) or retarding (-, black arrow) recovery from desensitization, while naproxen promotes 

desensitization onset. Factors accelerating recovery are expected to facilitate ATP signaling via P2X3 

receptor activity, whereas factors retarding recovery (or promoting desensitization onset) could 

provide the anti-nociceptive effect. 

 

1.4.4 Desensitization  

Desensitization is a general phenomenon which can be observed in most membrane 

receptor types and implies a loss of receptor responsiveness which develops with the 

continuous presence of the agonist. P2X3 receptors are characterized by very fast (ms range) 

desensitization onset and slow (min range) recovery from desensitization 21,98. 

Desensitization is an important process to limit P2X3 receptor-mediated responses 63. 

Desensitization onset of P2X3 receptors is accelerated by increased agonist concentration 99 

and remarkably insensitive to the temperature changes 100. Low pH slows down 
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desensitization development 101 that might contribute to the development of migraine pain, 

during which acidic conditions could potentially originate 102,103. Likewise, experiments with 

Xenopus oocytes showed a decrease in heteromeric P2X2/3 receptor channel desensitization 

after treatment with inflammatory mediators substance P and bradykinin 104. Conversely, the 

analgesic naproxen speeds up the desensitization onset of recombinant P2X3 receptors 

expressed in HEK cells 72 (Fig. 7).  

Recovery from desensitization of P2X3 receptors is an agonist-specific process 99. Unlike 

desensitization onset, recovery from desensitization is highly temperature dependent 100 and 

facilitated by cibacron blue 105, extracellular Ca2+ 106, low pH, or CGRP 60. The independent 

modulation of desensitization onset and recovery suggests that they are likely to have 

different determinants 63. 

 

1.4.5 P2X3 phosphorylation/dephosphorylation 

A number of kinases are involved directly or indirectly in P2X3 modulation 31 (Fig. 8). A 

highly conserved T-X-K motif (residues 12-14 TTK in P2X3) for PKC-mediated 

phosphorylation is present in the intracellular N-terminus of P2X3 receptors 107, and is likely 

to mediate NGF-dependent potentiation 71. It has been shown that substance P and 

bradykinin as well as PKC activators augment P2X3 receptor currents via PKC-dependent 

phosphorylation of the receptor N-terminal domain, although some reports argue that PKC-

mediated upregulation does not require direct P2X3 receptor phosphorylation 108,109. 

D’Arco et al. 110 demonstrated that P2X3 receptor function is constitutively inhibited by 

phosphorylation of its C-terminal tyrosine-393 by the C-terminal Src inhibitory kinase (Csk). 

Cyclin-dependent kinase 5 (Cdk5) involved in pain signaling 111 was shown to downregulate 

P2X3 receptors by increasing their serine phosphorylation 62, whereas the phosphatase 

calcineurin and activated CaMKII opposed this action 64. Moreover, a specific 

phosphorylation site on P2X3 receptor C terminus was identified for CaMKIIα, namely the 

Thr388, which is crucial for ATP-induced receptor delivery to the membrane (Fig. 6; 89).  

 

 
 

Figure 8. Schematic representation of cell signaling effectors and intracellular modulators 

known to act on P2X3 receptors (adapted from 31). 
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Another important P2X3 modulator is the inflammatory mediator, PGE2, that largely 

increases ATP currents by stimulating PKA and PKCɛ dependent P2X3 phosphorylation 112. 

A critical role in this process is played by the cAMP-responsive guanine nucleotide exchange 

factor 1 (Epac1), since it biases the intracellular kinase activity toward PKCɛ to 

phosphorylate P2X3 receptors 112. 

 

1.5 P2X3 receptor antagonists 

In the last decades P2X3 and P2X2/3 ion channels have received strong interest by research 

groups and pharmaceutical companies for development of new therapeutic strategies to treat 

P2X3-related pathologies 45,113,114. Synapses formed by involvement of P2X3 subunits in the 

spinal cord or in the brainstem are suggested to play a role in enhancing the release of 

glutamate at this first sensory synapse, and therefore provide an ideal subject to amplify 

neuronal responses by sensitization. Expression of P2X3 subunit-containing receptors is 

very limited and is mostly restricted to small and medium nociceptive sensory neurons in the 

dorsal root, trigeminal and nodose ganglia 32. Considering that, P2X3 subunit antagonists 

may offer a lower likelihood of adverse effects if used therapeutically.  Data from studies on 

P2X3 knock-out mice are also useful for identifying potential side effects of a future P2X3 

antagonising drug, most probable being hypogeusia and urinary hyporeflexia 49,115. 

According to the review of patent literature a considerable number of the of potential 

therapeutic uses could be proposed for compounds with P2X3 antagonist properties 113. 

Most important therapeutic fields for the P2X3 antagonists include genitourinary diseases 

such as urinary incontinence, overactive bladder/dysuria and benign prostate hyperplasia. 

Furthermore, P2X3 antagonists could be potentially used for treating respiratory disorders 

such as asthma, bronchospasm and chronic obstructive pulmonary disease. Other relevant 

areas disease targets may include sleep disorders and epilepsies as well as various acute and 

chronic pain conditions such as neuropathic and inflammatory pain disorders, tissue injury 

pain, headache and migraine. 

Differently from agonists, most of which are derivatives of the natural P2X agonist ATP, 

P2X receptor antagonists belong to different chemical classes 114. Until recently, only 

nonselective P2X antagonists, such as PPADS (4-[(E)-diazenyl]benzene-1,3-disulfonic acid) 

suramin, were available as tools for pharmacological animal studies and in vivo pain models 

(Fig. 9). However, they show weak P2X3 antagonist activity with IC50 values in the 

micromolar range (with the exception of NF110, which displays nanomolar activity at rat 

receptors) and not favourable pharmacokinetic properties due to the presence of several 

charged groups 114. Modification of the natural ligand ATP led to the discovery of 

competitive P2X receptor antagonist TNP-ATP (Fig. 9; 47), which, although not selective, 

showed high potency at P2X1, P2X3 (IC50 of 0.006 µM and 0.001 µM, respectively), and 

heteromeric P2X2/3 receptors.  
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Figure 9. P2X antagonists: PPADS, suramin, NF110, TNP-ATP (adapted from 113). 

 

Several pharmacological companies proposed and patented a variety of molecules with P2X3 

antagonist properties, with the three main compound families dominating the patent 

literature (Fig. 10; 113). More than 50 patent applications have been published in the field of 

small-molecule P2X3 and P2X2/3 receptor antagonists, with most active companies being 

Roche, Merk, Evotec, Shionogi and AstraZeneca 113. Compound A-317491 (Fig. 11) 

designed by Abbot was the earliest non-nucleotide small molecule with nanomolar affinity 

for blocking P2X3 and/or P2X2/3 receptors 46. However, because of the poor bioavailability 

and the competitive mechanism of action 46,47,116, A-317491 could not serve as a lead 

compound or a starting point for any chemical program.  
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Figure 10. P2X3 antagonist compound families used by different pharmacological companies  

(adapted from 113). 

 

 
Figure 11. P2X3 antagonist developed by Abbot (A-317491), AstraZeneca (AZ-2), Roche (RO-

4) and Merck (MK-3901) (adapted from 113). 

 

The common structural features of several promising compounds produced by Roche, 

Merck and Evotec are three aryl and/or hetaryl moieties and a carboxamide function in meta 

arrangement on the central ring of the molecule (Fig. 10). Most of these compounds show 

high P2X3 antagonist activity (IC50 values in the nanomolar range) and drug-like properties 
113. The compound showing the highest level of selectivity (approximately 570-fold) for 

P2X3 over P2X2/3 is AZ-2 (Fig. 11) produced by AstraZeneca (P2X3 IC50 = 15 nM; 

P2X2/3 IC50 = 8579 nM). AZ-2 was proved to act only peripherally and demonstrated 

analgesic effect in a rat Freund’s complete adjuvant-induced inflammatory pain model 117. 

Roche has been the most active in the field of P2X3 antagonists. In the early research in this 

field their favorite scaffold was the diaminopyrimidine ring, various modifications of which 
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(like RO-3, RO-4, RO-51) were reported as promising P2X3 inhibitors 118,119. A dual P2X3 

and P2X2/3 allosteric antagonist RO-4 (Fig. 11) is known as AF-353 and has recently been 

shown to have a favorable pharmacokinetic profile with reasonable oral bioavailability and 

high brain penetrability 118. Substitution of the diaminopyridine scaffold with diaminopurine 

led to molecules which maintained the antagonistic bchavior 120. Another group of P2X3 

antagonists from Roche consists of carboxamide derivatives. The company’s first 

carboxamide derivative, RO-85 121 has a modest P2X3 IC50 value (398 nM), but this was the 

first compound reported to be selective over P2X2/3 receptors. One of the most promising 

compounds produced by Merk is MK-3901 (Fig. 11), which, however, does not fulfill the 

requirements of drug-likeness, containing too many aromatic and heteroaromatic rings 113. 

Apart from synthetic molecules, several natural compounds have been reported to exhibit 

antagonist properties for P2X3 receptors. Recently, scientists from Nanchang University 

published that the known isoflavone, puerarin (Fig. 12) was useful for treating P2X3 

receptor-mediated acute pain and other nervous system diseases 113. Additionally, 

compounds emodin and resveratrol (Fig. 12) were claimed to have P2X3 inhibitory 

properties and have been proposed for the treatment of neuropathic and chronic pain 113. 

  
Figure 12. Natural products with P2X3 antagonist activity (adapted from 113). 

 

So far, the most advanced reported P2X3 antagonist is R-1646 known as AF-219 (structure 

undisclosed), developed by Afferent Pharmaceuticals (licensed from Roche in 2009). AF-219 

is the only compound that has been in clinical development (Phase II) for the treatment of 

chronic cough, osteoarthritis of the knee and bladder pain syndrome 113. In fact, further 

Phase II studies are currently ongoing in order to prove the applicability of P2X3 antagonists 

for treatment other pathologies like knee osteoarthritis and interstitial cystitis/bladder pain 
113. The results of these clinical studies will clarify the therapeutic potential of P2X3 

antagonists. Supposing that the outcome of these trials is positive, terapeutic applications of 

AF-219 and P2X3 antagonists in general may be further extended. Considerable amount of 

data on various available P2X3 antagonists together with the recently published crystal 

structure of sebrafish P2X4 receptor 15,16 and, hopefully, future availability of the P2X3 

structure itself, will help to develop new potent and selective molecules with P2X3 

antagonist activity. 
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2. Transient receptor potential vanilloid 1 (TRPV1) 
 

2.1 TRP receptors superfamily 

The mammalian TRP channel superfamily consists of 28 members subdivided into 6 

subfamilies according to their primary amino acid sequence homology 122: TRPC (canonical, 

7 members), TRPV (vanilloid, 6 members), TRPM (melastatin, 8 members), TRPA (ankyrin, 

1 member), TRPP (polycystin, 3 members) and TRPML (mucolipin, 3 members). TRP 

receptors share a common structure, which consists of six transmembrane domains (S1–6), 

S5 and S6, and intracellularly located NH2 and COOH termini which regulate channel 

assembly and channel function 123. The number of ankyrin repeats, coiled-coil regions, a TRP 

signature motif and other domains differentiate TRP subfamilies. Complete TRP channels 

are composed of four pore-forming subunits that may assemble as homo- or hetero-

tetramers 123. Upon activation, TRP channels form a cation permeable pore, mediating an 

inward cationic current, that produces membrane depolarization and the opening of voltage 

gated ion channels and hence in a large series of intracellular events that eventually lead to 

specific cell responses 122,123. Each individual TRP channel can be activated by a large series 

of disparate exogenous and endogenous stimuli of both physical and chemical nature. 

TRP channels are expressed in almost every tissue and cell type and play an important role in 

the regulation of various cell functions. Currently, significant effort is devoted to 

understanding the physiology of TRP channels and their relationship to human diseases 122. 

 

2.2 TRPV1 activation and structure 

The transient receptor potential vanilloid 1 (TRPV1) channel was first identified by its 

responsiveness to capsaicin, a vanilloid derived from chili peppers that elicits a hot burning 

sensation 124. Apart from capsaicin, TRPV1 is directly activated by high temperatures 

(>42oC) 125 and potentiated by low pH conditions that originate during inflammation and 

injury 126. Therefore, TRPV1 can act as a polymodal nociceptor integrating multiple forms of 

noxious stimuli 127. 

TRPV1 is expressed by approximately 30-50% of small- and medium-sized sensory neurons 

in TG and DRG 39,128, predominantly peptidergic C-fiber nociceptors 129. As all TRP 

receptors, TRPV1 is a nonselective cation channel with six transmembrane domains, a pore 

loop region between the S5 and S6 segments, and six ankyrin repeats at the N terminal (Fig. 

13) 130,131. Recent single-particle cryo-EM structural analyses revealed the TRPV1 architecture 

as a tetramer with a radial symmetry around the central ion pore 132 (fig. 14). 
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Figure 13. Schematic structure of TRPV1 channel illustrating residues that are involved in 

channel activation and regulation (adapted from 131). TRP – transient receptor potential domain 

conserved for TRP channels required for PIP2 activation; PIP2 – phosphatidylinositol 4,5-

bisphosphate; black circles – phosphorylation sites involved in sensitizing actions of PKC and PKA. 

 

 

 
Figure 14. Tetrameric architecture of the rat transient receptor potential vanilloid type 1 

(rTRPV1) homology model viewed from the extracellular side (adapted from 131). The four 

monomers (A, B, C, D) are arranged so that their loop between transmembrane (TM) domains TM5 

and TM6 form a central position. 
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Vanilloid agonists pass through the plasma membrane to act from at an intracellular side of 

TRPV1 binding to a hydrophobic pocket composed of the transmembrane domains S3 and 

S4 131,133. TRPV1 proton sensitivity relies on the residues in the pore helix and in the S3-S4 

region 134 as well as on the residue E648 between the selectivity filter and S6, whereas E600 

mediates the ability of protons to potentiate the activity of other TRPV1 agonists 126. TRPV1 

is intrinsically temperature sensitive and C-terminal region, pore forming region and N-

terminal region are implicated in this process, and recently it has been found that PKCβII is 

also required for TRPV1 thermal sensitivity 135–139. 

 

 

 
 

Figure 15. TRPV activation by neuropeptides and inflammatory mediators (adapted from 122). 

Owing to the smaller number of charged amino acids in the voltage sensor domain, TRPV1 

was shown to be weakly voltage-dependent 124,131. Nevertheless, capsaicin and high 

temperatures shift this voltage dependence toward physiological relevant potentials, 

indicating that TRPV1 could operate as a voltage-gated cation channel 140. 

 



 

28 
 

2.3 TRPV1 modulation 

TRPV1 activity is modulated via various second messenger signaling pathways by a range of 

proalgesic and proinflammatory agents including NGF, bradykinin, lipids, prostaglandins 

and ATP (Fig. 15) 127,129. Activation of GPCRs by bradykinin or prostaglandins initiates 

intracellular pathways for phosphorylation-induced sensitization/activation of TRPV1 

channel, thus forming an indirect activation 131. Similar indirect positive modulation is under 

the effect of NGF 60,141–143. PI3K promotes trafficking of TRPV1 to the plasma membrane 
144. Endogenous lipid ligands such as endocannabinoids, lipoxygenase metabolites, or LPA 

are also released intracellularly, inducing a direct activation of TRPV1.  

 
Figure 16. Complex operational features of the TRPV1 channel on the nociceptive nerve 

ending of the primary afferent neuron (adapted from 131). 1, Exogenous (e.g., capsaicin) or 

endogenous (lipoxygenase products, H+) chemical agents as well as physical interventions (noxious 

heat, depolarizing voltage) trigger channel opening. 2, PKA, PKC, phospholipase C pathways induce 

TRPV1 sensitization; dephosphorylation of the channel induces desensitization. 3, Intracellularly 

released lipophilic ligands (e.g., anandamide, lysophosphatidic acid or lipoxygenase metabolites) could 

act directly on TRPV1. 4, Influx of Ca2+ through the activated channel induces release of sensory 

neuropeptides from the nerve endings. AP: axonal action potentials, mediated by voltage-gated 

channels (green) transmit information to the spinal dorsal horn or brainstem where synaptic ligand-

gated channels (orange) are activated by the released neurotransmitter. 

 



 

29 
 

Activation of other GPCR receptors, mediated by opioids, cannabinoids, and somatostatin, 

lead not to activation, but to inhibition of TRPV1 signals 131. One way to modulate 

functioning of TRPV1 receptor is to target its phosphorylation state (Fig. 15). Regulation of 

TRPV1 by phosphorylation has been shown to contribute to its ability to respond to 

noxious stimuli, whereas dephosphorylation led to receptor desensitization following 

activation 124. Figure 16 summarizes multiple functions of the TRPV1 chemoceptive 

thermosensor ion channel. 

 

2.4 TRPV1 in pain conditions 

Preferential expression of TRPV1 on peripheral nociceptors 39,128, its ability to sense noxious 

stimuli and become potentiated by various neuropeptides and inflammatory agents involved 

in pain conditions, have made TRPV1 one of the major targets for pain-related research 
124,131,145,146. Currently, a pivotal role of TRPV1 receptors in nociception and development of 

various pathological pain states is well recognized 124,131.  

TRPV1 channels have become a promising target for high throughput screening (HTS) for 

analgesics that either block the function of the receptor or utilize the lasting loss of function 

of nociceptors which ensues after application of high doses of capsaicin. However, side 

effects such as hyperthermia and impaired noxious heat sensation (burn risk) were the main 

obstacles discovered in preclinical studies and clinical trials of TRPV1 antagonists. 131. 

 

2.4.1 Inflammatory pain 

There is growing evidence showing a strong link between TRPV1 receptors and 

inflammatory pain 124. TRPV1 knockout mice exhibit reduced nociceptive behavior in 

various models of inflammation. Likewise, antagonists of TRPV1 receptors were shown to 

act as analgesics in inflammation models 147,148. Human studies reported an increase in 

TRPV1 immunoreactive fibers in inflamed skin that correlates with inflammatory 

hyperalgesia 149. Furthermore, TRPV1 receptors are associated with the pain from 

inflammatory diseases of the gastrointestinal tract 150–153. 

 

2.4.2 Neuropathic pain 

TRPV1 expression increases following nerve injury, whereas TRPV1 antagonists reduce 

thermal and mechanical hypersensitivity 154,155. Additionally, desensitization of TRPV1 

receptors with capsaicin or resiniferatoxin has been shown to relieve osteoarthritic pain, and 

nerve injury-induced heat sensitivity, further supporting the idea of the importance of 

TRPV1 in the development of neuropathic and inflammatory pain states 156–159. 

 

2.4.3 TRPV1 in migraine 

Numerous studies focussed on the role of TRPV1 in the generation and pathophysiology of 

migraine 65. A two-stage genetic association study found that single nucleotide 

polymorphisms in the TRPV1 gene contribute to the genetic susceptibility to migraine in a 

Spanish population, but how these channel mutations may contribute to migraine is not clear 
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160. An immunohistological study found that nerve fibers in the dura mater express TRPV1 
161. In line with that observation, approximately 24% of dural afferents express TRPV1 162. 

Application of capsaicin to the rat dura produces behavioral responses consistent with 

headache 163,164, and sumatriptan, a well-known antimigraine drug, inhibits TRPV1 channels 
165 as well as attenuates the positive modulation of TRPV1-mediated behavioral responses by 

5HT 166.  

Bolus injections of capsaicin induce dural vessel dilation through TRPV1-mediated release of 

CGRP, which plays an important role in the generation of migraine headache 167. Another 

well-known inducer of headache, ethanol, is able to stimulate TRPV1 on primary afferent 

neurons, promoting neurogenic inflammation and CGRP-mediated coronary dilation 168. 

Endogenous or exogenous mediators of inflammation have been shown to either activate 

TRPV1 directly or lower its activation threshold 65,169. Thus, numerous mechanisms exist by 

which dural TRPV1 receptors may be activated and sensitized following meningeal 

inflammation, but which of these actually occurs either before or during migraine headache 

is not clear 169. 

Multiple TRPV1-targeted therapies have been developed to potentially treat migraine, some 

of which showed to be partially effective, although not side effect-free, leaving the question 

of the efficacy of TRPV1-based therapy open 65,169. 

 

3. B-type natriuretic peptide system 
 

3.1 Natriuretic peptide family 

Natriuretic peptides (NPs) comprise the structurally related atrial, brain, and C-type 

natriuretic peptides (ANP, BNP, and CNP, respectively) which principally mediate 

natriuretic, diuretic, vasorelaxant, and antimitogenic responses, by reducing blood pressure 

and maintaining fluid volume homeostasis 170–172. ANP, BNP, and CNP are expressed as pro-

hormones and are proteolytically processed to form the mature peptides. The three peptides 

share a similar structure (Fig. 17) consisting of two cysteine residues flanking a 17- residue 

disulfide-linked ring that is essential for biological activity 170.  

 

3.1.1. Atrial natriuretic peptide (ANP) 

The gene encoding for ANP (NPPA) is localized on chromosome 1p36.2 in humans and on 

chromosome 4 in mice 173. ANP knockout mice show marked hypertensive state 174, 

highlighting the critical role of this peptide in regulating blood pressure, inducing natriuresis 

and diuresis in the kidney 175. Like the other two natriuretic peptide genes, NPPA contains 

three exons and its mRNA is translated into a preprohormone that needs to be sequentially 

processed in order to generate the mature peptide. In humans, a 151 aminoacid-long 

preproANP is cleaved off from its amino-terminal signal sequence to yield a 126-aminoacid 

proANP. This form is the one predominantly found stored inside the atrial myocardial 

secretory granules 176. The prohormone is then converted to its carboxy-terminal 28-

aminoacid active form, via exocytosis by a transmembrane serine protease corin, 177, which is 
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crucial for correct ANP processing 178. Interestingly, ANP aminoacid sequence of ANP is 

highly conserved, being almost identical across various mammalian species 179,180. 

ANP is mainly synthesized in the heart, mostly in the atria, and secreted into the circulation 

in response the atrial walls stretch. The major molecular form of circulating ANP is a 28-

aminoacid peptide with a ring structure formed by an intramolecular disulphide link (Fig. 

17). Among extracardiac tissues that also express ANP are kidney, lung and the central 

nervous system 181, although ANP expression there is much lower than in the heart. 

 

 

 
 

Figure 17. Natriuretic peptides structure and tissue expression (adapted from 182). 

Representation of the polypeptide precursors of ANP, BNP and CNP and their aminoacidic length 

in human. Their proteolytic processing by corin and/or furin leads to the production of the 

respective active peptides. The disulfide link generating the conserved ring structure is shown in 

black, and invariant residues are highlighted in grey. 
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3.1.2. B-type (brain) natriuretic peptide (BNP) 

BNP was first purified in 1988 from porcine brain extracts 183, but not long after that it was 

shown that the highest concentrations of BNP could be found in the heart and its secretion 

highly increased when ventricles undergo cardiac stress 184,185, making BNP a good biomarker 

of the heart pathophysiological state. For this reason, “B-type” rather than “brain” 

natriuretic peptide is the denomination considered more appropriate when referring to this 

hormone. 

The BNP gene (NPPB) is located on human chromosome 1p36.2 and mouse chromosome 

4maps, close to NPPA 186. Knockout of NPPB causes animals to develop pressure-sensitive 

ventricular fibrosis while being normotensive 187. Thus, unlike ANB, BNP does not have a 

crucial role in the regulation of blood pressure and is considered as an antifibrotic factor that 

plays a role in ventricular remodelling and as an important biomarker for heart failure or 

myocardial infarction 188. 

BNP expression is suggested to undergo dynamical changes, depending on the physiological 

and pathophysiological conditions, and to have a distinct regulation from that of ANP. 

Thus, BNP half-life in the plasma can be as much as 10 times longer than that of ANP 189,190. 

In humans, NPPB transcript is translated into a 134-aminoacid preproBNP, which 

subsequently generates a 108 aminoacids-long proBNP after its amino-terminal signal 

peptide removal. An additional cleavage by proteases such as corin or furin results into an 

inactive amino-terminal 76-residue fragment and the biologically active carboxy-terminal 

BNP, which is the predominant circulating BNP form (Fig. 17) 191. While ANP structure has 

been shown to be relatively unchanged among species, the aminoacid sequence of BNP is 

less conserved and the length of the fully processed peptide can vary from 26 aminoacids in 

the pig, to 32 aminoacids in man and 45 aminoacids in the rat and mouse 183,192,193. 

Both proBNP and BNP can be found circulating in the plasma following heart failure, with 

their ratio being influenced by the type of failure: the proBNP/BNP ratio appears to be 

higher in case of ventricular overload or decompensated heart failure compared to failures 

caused by atrial overload. This is consistent with the finding that both forms of the peptide 

are stored in the heart, with the proBNP being dominant in ventricular tissue while BNP is 

dominant in atrial tissue 194. 

The heart represents the main source of BNP. Despite being normally more expressed in the 

atrium, during heart failure BNP increases dramatically almost exclusively in the ventricles, 

making it the the main source of total cardiac and circulating BNP 184,195. Extra-cardiac 

expression of BNP is up to 1 – 2 orders of magnitude lower than that in the heart, but it is 

extended to a variety of tissues, including kidney, lung, small intestine, striated muscle and 

nervous system 196. 

 

3.1.3. C-type natriuretic peptide (CNP) 

CNP was first identified in porcine brain extracts by Sudoh and colleagues in 1990 197. Based 

on structural similarity it was included into the natriuretic peptide family (Fig. 17), though its 

sodium-excretion properties are actually low or hardly detectable 182,198. 
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Evolutionary studies suggest that ANP and BNP may have evolved from CNP gene 

duplication events, making it the most ancient and, interestingly, the most conserved in the 

family 199.  

The CNP gene (NPPC) is localized on chromosome 2 in human and on chromosome 1 in 

mouse 200. Its disruption was reported to yield normotensive mice with impaired 

endochondral ossification, which results in severe dwarfism and early death 201. These 

observations may be explained by CNP ability to regulate the proliferation of chondrocytes, 

where it is abundantly expressed and operates in an autocrine fashion 202. 

NPPC mRNA is translated to preproCNP, a 126-aminoacid long precursor that, after the 

signal peptide removal, generates a 103-aminoacid proBNP. Further processing of proBNP 

can yield two forms of the mature peptide: CNP-53 and CNP-22. Two forms of CNP have 

different tissue distribution, but show similar, if not identical, functions 203. In general, CNP-

53 is the predominant BNP form in most tissues, whereas CNP-22 is more abundant in 

plasma and cerebrospinal fluid 204,205. 

Overall, CNP is most expressed in the central nervous system 206. Other sites of expression 

include cartilage, bone, and vascular endothelium and, to a lower extent, also heart 172,182. 

CNP is expressed in cardiac fibroblasts and not in myocytes, emphasizing the distinctly 

different expression profile of this peptide compared to ANP and BNP.  

 

3.2 Natriuretic peptide receptors 

For three natriuretic peptides three receptor subtypes have been identified (Fig. 18): namely, 

NP receptor-A (NPR-A), NP receptor-B (NPR-B), and NP receptor-C (NPR-C). Both 

NPR-A and NPR-B are membrane-bound receptors, containing an extracellular ligand-

binding domain, a single transmembrane spanning region and intracellular kinase 

homologous domain (KHD) and guanylyl cyclase (GC) catalytic domain 170,171,182,207. ANP and 

BNP activate NPR-A, and CNP activates NPR-B that leads to the production of second 

messenger cGMP. The cGMP in turn can activate cGMP-dependent protein kinase G 

(PKG) and subsequent cellular signaling cascades 172,208. All three natriuretic peptides 

indiscriminately bind to NPR-C, which contains only a short intracellular fragment with no 

GC activity and is considered to clear NPs through receptor-mediated internalization and 

degradation 209,210. 
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Figure 18. Natriuretic peptide receptor topology and ligand preferences (adapted from 182). 

Natriuretic peptides bind three types of receptors with different selectivity, as indicated by the figure. 

NPR-C contains an intermolecular disulphide bond, indicated by the red horizontal line, but has a 

short intracellular domain with no intrinsic enzymatic activity. In contrast, NPR-A and NPR-B 

contain intracellular kinase homology, dimerization and carboxy-terminal guanylate cyclase domains. 

 

3.2.1 Natriuretic peptide receptor type A (NPR-A) 

NPR-A (or GC-A) is the main receptor for ANP and BNP. Studies of NPR-A activation 

revealed that ANP stimulates the receptor equally or more than BNP, while CNP has a 

much lower potency 172,182 

NPR-A expression was observed in a variety of tissues, including kidney, adrenal and 

adipose tissues, lung, nervous system and endocardial endothelium 182. NPR-A receptor is 

coded by a gene NPR1 localized on chromosome 1q21-22 in human, and on chromosome 3 

in mouse. Disruption of the gene generates animals that develop high blood pressure and 

cardiac hypertrophy 211. Similar symptoms were observed also in humans displaying a rare 

mutation in NPR1 promoter that causes it to decrease dramatically its expression 212, 

confirming the important roles exerted by its agonists in the regulation of blood pressure 

and heart integrity. 

The NPR-A receptor consists of three parts: an extracellular domain (ECD), a single 

transmembrane domain and an intracellular domain (ICD). The amino-terminal ECD, which 

binds the ligand, shows less sequence homology with NPR-B 171 that probably accounts for 

the different binding affinity to the natriuretic peptides showed by the two receptors. The 

ICD is composed of regulatory kinase homologous domain (KHD), dimerization domain 

and carboxy-terminal guanylate cyclase domain (GCD) 172. 
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NPR-A could be preassembled on the membrane as a homodimer or homotetramer, even 

prior to ligand binding 213,214, although the oligomerisation process is ligand-dependent and 

speeds up upon ligand binding 172. It should be noted that the activation of the receptor 

requires simultaneous binding of its agonist to the ECD and of ATP to a glycine-rich 

binding site located in the KHD 215. ATP increases ligand-dependent GC activity of NPR-A, 

but the exact mechanism of its action is debatable 172,216. It is suggested that the KHD, which 

has no intrinsic kinase activity, acts by repressing the receptor’s basal activity. This repression 

may then be relieved by the conformational change induced by ATP and the extracellular 

agonist 217,218. Additionally, under basal conditions N-terminal end of KHD is 

phosphorylated on four serine and two threonine residues that is essential for NPR-A 

ligand-dependent GC activity. Dephosphorylated upon prolonged agonist binding is, thus, 

responsible for the receptor desensitization 219,220 (Fig. 19). 

 

 
 

Figure 19. Hypothetical model for NPR-A (and NPR-B) activation and desensitization 

(adapted from 182). NPR-A and NPR-B are proposed to exist in basal, active and desensitized states. 

In the basal state, receptors are phosphorylated on several residues of the KHD (yellow dots). 

Simultaneous natriuretic peptide (blue) and ATP (red) binding promotes the functional activation of 

the GCD (green), whereas prolonged ligand exposure stimulates receptor dephosphorylation and 

consequent desensitization. Ligand release and re-phosphorylation return the receptors to the basal 

state. 

 

The exact molecular mechanism through which extracellular binding of the ligand is 

translated into the activation of the NPR-A intracellular catalytic domain (GCD) is still 

poorly understood. It was shown that natriuretic peptide and ATP binding can dramatically 
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increase GCD’s affinity for its substrate, GTP 221. The resulting increase in the conversion of 

GTP to cGMP can, thus, be considered as an indicator of receptor activation. The increased 

intracellular cGMP levels may ultimately mediate biological functions through the activation 

of several cGMP-dependent effectors (see section 4.3). 

After NPR-A activation, signal transduction may be terminated by three mechanisms. One is 

the enzymatic degradation of natriuretic peptides mediated by the neutral endopeptidase 

neprilysin 222. Another one is the aforementioned dephosphorylation-dependent receptor 

desensitization. The last mechanism includes ligand-induced receptor internalization and 

degradation, though there is some controversy as to whether such a phenomenon indeed 

occurs 223,224. 

The receptor can be pharmacologically and specifically blocked by anantin, a bacterial 1.9 

kDa peptide isolated from S. coerulescens that binds NPR-A as a competitive antagonist and 

prevents its GC activation 225. 

 

3.3 Main NPR-A effectors 

Natriuretic peptides (mainly ANP and BNP) upon binding to the NPR-A promote CG 

activity and cGMP production. Thus, cGMP represents the major intracellular second 

messenger through which natriuretic peptides elicit their physiological responses. 

There are three main cGMP binding proteins that could act as the NPRs effectors: the 

cGMP-dependent protein kinases, the cGMP-binding phosphodiesterases (PDEs) and the 

cyclic nucleotide-gated ion channels (CNG) (Fig. 20) 182. 

 

  
 

Figure 20. Main cGMP effectors. Illustration of the main classes of cGMP-regulated proteins, 

which may mediate biological effects of NPR-A and NPR-B activation (adapted from 182). 
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3.3.1. Protein kinase G 

The cGMP-dependent kinases are all termed protein kinase G (PKG) and are the best 

studied cGMP effectors. They are homodimeric proteins composed of three domains. The 

amino-terminal homodimerization domain interacts with protein substrates and also 

suppresses basal kinase activity. The regulatory domain activates the enzyme upon cGMP 

binding, and a kinase domain catalyses phosphotransferase reaction on serine and threonine 

residues of target proteins. Two different genes have been identified for this kinase. The 

PKGI gene produces two splice variants differing in their amino-termini, denominated 

PKGIα and PKGIβ. Both are mostly cytosolic and are found in platelets, smooth muscle, 

cardiomyocytes and nervous system. Their absence in mouse causes a lack of cGMP-

dependent vasorelaxation, resulting in severe vascular and intestinal dysfunctions 226. PKGII 

instead produces a myristoylated form of the kinase that is mostly membrane bound 227. This 

gene is highly expressed in the intestine, kidney, nervous system, cartilage and bone, and its 

deletion yields animals with dwarfism, due to impaired chondrocyte differentiation and 

impaired ossification 228,229. 

The substrates of PKG comprise an extremely large variety of proteins which, upon 

phosphorylation, may then become enzymatically active, inactive, or generally undergo a 

structural and functional change. Moreover, PKG signaling may branch out and cross-talk 

with further signaling pathways through phosphorylation-dependent activation of other 

biologically important protein kinases, including protein kinase A (PKA), protein kinase B 

(PKB, also known as Akt) and the extracellular signal-regulated kinase 1/2 (ERK1/2) 230–232. 

 

3.3.2. Phosphodiesterases (PDEs) 

Cyclic nucleotide PDEs are enzymes that break the phosphodiester bond of cAMP and 

cGMP, converting them into the inactive AMP and GMP, respectively. Therefore, they 

represent important regulators of the intracellular levels of these second messengers and of 

the respective signaling cascades. 

Up to now, eleven genes for PDEs have been identified, encoding for at least 25 different 

proteins in mammals 233. They differ in their substrate specificity (cAMP, cGMP or both), 

and in how they are activated or inhibited. For instance, the isoforms that selectively 

hydrolyze cGMP are PDE5, -6 and -9, whereas PDE1, -2, -3, -10 and -11 can degrade both 

cyclic nucleotides. Some of these may be allosterically regulated by cGMP itself, which is, 

thus, able to modulate its own degradation, via PDE5, as well as that of cAMP, through 

PDE2 234. 

 

3.3.3. Cyclic nucleotide-gated ion channels 

Cyclic nucleotide-gated ion channels represent a third potential effector of cGMP. They 

constitute a family of tetrameric nonselective cationic channels activated by intracellular 

cAMP or cGMP 235. In both human and mouse,  subunits are coded by 6 different genes, 

which are divided in two subfamilies, CNGA and CNGB, according to their sequence 

relationships 236. However, despite the fact that NPR-A (or -B) GC activity could 
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theoretically lead to the opening of CNG channels, very few studies have suggested an actual 

direct link between these channels and a specific natriuretic peptide function 237,238. 

 

3.4. Natriuretic peptides in the nervous system 

The natriuretic peptide system is generally considered in relation to blood pressure and 

volume homeostasis regulation, since this is the first and most obvious function that was 

described. However, the natriuretic peptide system, and BNP with its receptor NPR-A in 

particular, has been associated with various functions apart from the regulation of the 

cardiovascular system 172. Supporting the idea of multiple functions, natriuretic peptides and 

their receptors were found in a variety of tissues in animals and humans 171,182. For the 

purposes of this thesis, I will focus on the physiological role natriuretic peptide system can 

play in the nervous system. 

 

3.4.1. Central nervous system 

All three natriuretic peptides are expressed in the central nervous system (CNS), although at 

different levels. For instance, CNP is the most highly expressed natriuretic peptide in the 

CNS, whereas BNP is rarer than CNP but generally more abundant than ANP 237,239,240. BNP 

and CNP show a similar distribution throughout many CNS regions, (and their overall 

distribution tends to be complementary to that of ANP, with some exceptions where 

expression of all three peptides overlaps, like in the hypothalamus, retina and the cerebral 

cortex 182. 

Binding and functional studies suggest that NPR-A, NPR-B and NPR-C are predominantly 

expressed by glial cells 241–244. However, neuronal expression of the NPRs has also been 

reported, particularly in the hypothalamus, brainstem and retina 245,246. 

Elements of the natriuretic peptide system start being expressed in CNS from the earliest 

stages of embryonal development 247, suggests a possible role in modulating the cell 

differentiation in the developing brain and spinal cord 248. In vitro studies suggest that this 

modulation may consist in an antiproliferative action, through DNA synthesis inhibition, 

probably driving cells towards terminal differentiation 249,250.  

Various workers have shown that NPR signaling can modulate neurotransmitter uptake and 

release, including noradrenaline 251–253, vasopressin and oxytocin 254,255. ANP was also shown 

to modulate synaptic transmission from osmoreceptor afferents to the supraoptic nucleus in 

the hypothalamus, reducing their postsynaptic responsiveness 256. Natriuretic peptides may 

alter synaptic transmission also in the retina, where NPR-A activation can suppress GABAA 

currents in bipolar cells, whereas NPR-B can reduce AMPA-mediated transmission in 

amacrine cells 246,257. Furthermore, it was reported recently that NPR-A inhibits glutamatergic 

release in the projections between the epithalamus and the midbrain, enhancing stress-

induced analgesia, through a PDE-mediated suppression of cAMP signaling 258. 

Additionally, several studies have shown that cGMP might protect neurons against 

excitotoxicity and oxidative stress 259,260. Given that cortical spreading depression, which is 

suggested to contribute to neuroprotection against ischemia 261,262, is followed by an increase 
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in cortical ANP expression and cGMP levels 263, it would not be surprising that the 

natriuretic peptide system might have a neuroprotective role in the CNS. One example is 

NPR-A protection against NMDA-induced neurotoxicity in the rat retina 264. This effect is 

supposedly caused by an enhancement of dopaminergic signaling, however the precise 

mechanisms through which it leads to actual neuroprotection remains unclear. 

 

3.4.2. Peripheral nervous system 

Compared to the wealth of information regarding the effects of natriuretic peptides in the 

CNS, fewer studies have investigated their physiological role in the peripheral nervous 

system. Nonetheless, the fact that ANP-induced hypotension is usually not followed by the 

expected reflex tachycardia or increased sympathetic activity, and that this hypotension is 

attenuated by vagotomy, indicates that ANP may somehow interact with the autonomic 

nervous system 265. A study on in vitro vagal-sinoatrial transmission has proposed that CNP 

may potentiate bradycardia by increasing vagal acetylcholine release in a NPR-B- and PKA-

dependent manner 266. A similar bradycardic effect had been reported earlier in vivo, 

although it was attributed to ANP 267, strengthening the hint that NPRs are expressed in the 

autonomic nervous system. 

Autoradiographic and in situ hybridization analyses revealed an early (E10.5) expression of 

NPRs in dorsal root ganglia (DRG) and cranial ganglia 248,268. In contrast to the embryonal 

CNS, where NPR signaling has antiproliferative effects, it was shown to stimulate DNA 

synthesis in Schwann cells and promote sensory neuron survival. Furthermore, natriuretic 

peptides were reported to have an important role in guiding axonal outgrowth and branching 

from DRG neurons toward their target in the spinal cord 269. 

 

3.5 Natriuretic peptides in nociception 

More recently, evidence has supported a potential involvement of the natriuretic peptide 

system in the modulation of sensory neuron nociceptive transmission 270. In 2010 Zhang et 

al showed that BNP and NPR-A are both expressed in the rat DRG, and their signaling 

attenuates inflammatory pain through a mechanism that involves large-conductance Ca2+-

activated K+ (BKCa) channels and PKG 271 (Fig. 21). Another study showed that also NPR-

C is present in DRG, where it colocalizes with transient receptor vanilloid-1 (TRPV1) 

channels. Here, however, NPR-C activation by CNP displays the opposite effect, enhancing 

thermal hyperalgesia in a protein GβƔ-, TRPV1- and PKC-dependent fashion, appearing as 

a positive modulator of chronic pain 272. 

These results indicate the coexistence of functional NPRs in sensory neurons that exhibit 

contrasting effects on pain transduction, and could play an important role not only under 

normal conditions but also during pathological pain states. Apart from DRG, the trigeminal 

ganglion (TG) is another important player in the pain transduction and development of 

different pain-associated conditions. While all NPRs have been identified in the brainstem 

trigeminal nuclei 273–275, few studies investigated the presence and possible role of the 

natriuretic peptides system in TG. For instance, ANP was reported to be expressed in TG 
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276,277, and one study suggested the presence of BNP in porcine TG neurons innervating 

arteries of the Circle of Willis. Yet, the question of whether natriuretic peptides and their 

receptors are involved in the modulation of trigeminal pain states at the TG level remains to 

be answered. 

 

  
 

Figure 21. BNP modulation of nociceptive transmission in murine DRG (adapted from 270). 

Activation of the BNP/NPR-A pathway leads to the PKG-I-mediated phosphorylation of BKCa 

channels, which, in the presence of high intracellular Ca2+ levels, may suppress the transmission of 

noxious heat stimuli in peptidergic DRG neurons. The exact release mechanism of BNP is unclear. 

 

4. Excitability of trigeminal neurons 
Primary sensory neurons, including trigeminal neurons, constitute the first link in the chain 

of neurons making up somatosensory pathways. They encode their responses to received 

stimuli as a series of action potentials. Under normal circumstances, trigeminal neurons are 

relatively quiescent, but they produce highly modulated series of action potentials when 

stimulated, conveying information about the sensory stimuli to the higher brain regions 278. 

In some pathological conditions, however, primary sensory neurons can become 

hyperexcitable and can give rise to unprovoked spontaneous action potential activity or 

bursting which can contribute to chronic pain 279–281. Chronic pain is characterized by 

enhanced sensory neurotransmission that underlies increased sensitivity to noxious stimuli 

and the perception of non-noxious stimuli as painful 282. Therefore, excitability and firing 
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properties of sensory neurons including those in TG are aspects of greatest interest as they 

are the major determinants of the encoding capacity and transduction properties of the 

neuron. Heterogeneous firing properties have been reported in a number of studies on adult 

rat and mouse TG neurons 66,283. 

Trigeminal neurons in culture express diverse voltage gated and ligand gated ion channels 

and a wide array of metabotropic receptors which collectively control neuronal excitability. 

Studies in trigeminal ganglion neurons show that their functional properties correlate with 

distinct electrophysiological phenotypes. Catacuzzeno et al 283 have identified three distinct 

firing patterns among trigeminal neurons of adult mice having biophysical and 

pharmacological properties influenced by different low-threshold K+ currents, namely slow-

inactivating (Ik), fast inactivating transient (IA) and slow-inactivating transient (ID)currents. 

In rat trigeminal neurons, low threshold TTX-resistant sodium currents mostly mediated by 

NaV1.9 channels are also observed 284. Multiple types of high voltage activated and low 

voltage activated Ca2+ channels 285–287 are known to be expressed by trigeminal neurons. 

Activation of ATP-gated P2X3 channels and capsaicin-sensitive TRPV1 channels, expressed 

on the membranes of trigeminal sensory neurons, also invokes firing activity that is 

conveyed to higher brain regions and then is interpreted as pain 66,282. Thus, brief firing 

responses could be invoked in trigeminal neurons by activation of P2X3 channels while 

neurons activated by the pungent compound capsaicin in nociceptors have been found to 

exhibit more sustained firing 66,282,288. In acutely dissociated neurons in vitro, action potentials 

are close to true membrane action potentials; they usually include a stump of axon as well as 

varying amounts of proximal dendrites, but the remaining processes are usually short enough 

that the whole membrane surface can be considered isopotential, even during spikes 289. The 

main characteristics of a neuron are its electro responsive and membrane properties which 

include input resistance, rheobase, capacitance and voltage threshold for spike generation.  

Input resistance represents the resistance exhibited by the neuron or a cell for a change in 

membrane potential caused by injected current, and   depends on the open membrane 

channels in the neuron. Rheobase is a measure of excitability and is defined as the minimal 

strength of an electrical current injected (of indefinite duration) for generation of an action 

potential in a neuron. Rheobase depends on resting membrane potential, input resistance 

and the voltage threshold 290. The capacitance of an excitable cell membrane is affected by 

the processes of the neuron and influences the shape and speed of membrane potential 

changes including action potentials 290. Voltage threshold for spike generation is usually 

measured in mV and is defined as the amount of depolarization required to generate an 

action potential. Voltage sensitivity of sodium channels primarily dictates the voltage 

threshold 290. The spike threshold can be determined using a phase plane plot with the time 

derivative of the voltage (dV/dt) versus the voltage. On the plot threshold for action 

potential is the voltage at which dV/dt suddenly increases.  
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5. Migraine 
Migraine is a common, disabling, and undertreated episodic brain disorder with a 

complicated and not fully understood pathophysiology 65,291. It is characterized by recurrent 

headache attacks with associated autonomic symptoms. Intensity of headache varies from 

moderate to severe pain, causing prolonged incapacitation. Migraine is one of the most 

common disabling brain disorders and it affects according to different sources approximately 

11- 20% of people at some point in their lives 292–294. The annual costs of diagnosing and 

treating migraines to American employers are estimated to be over $1 billion per year for 

direct costs, and $13 billion per year for indirect costs that are due to reduced productivity, 

reduced ability to do household work, and high likelihood of adverse consequences in 

relationships between migraines and other family members 292,295,296. The prevalence of 

migraine was estimated to be around 17-18 % in women and 5-8% in men 296,297. 

 

5.1 Classification of migraine 

Migraine comprises a group of disorders which differ considerably in their clinical 

symptoms, origins and pathophysiology. In addition, migraine-like conditions can mimic 

stroke, seizure or epilepsy 298,299. All this adds up to make a complex classification of migraine 

headaches.  

A full spectrum of migraine includes migraine without aura, migraine with aura, and 

migraine-related conditions. 

 

Migraine without aura (MO) affects approximately one third of all migraine sufferers. It is an 

idiopathic, recurring headache disorder with attacks usually lasting 4 to 72 hours if untreated. 

Typically migraine headache is unilateral and is accompanied by a characteristic pattern of 

other symptoms such as nausea, vomiting, photophobia and phonophobia in various 

combinations. Not all features are present in every attack or in every patient 298. 

Migraine with aura (MA) is similar to MO but it is also characterized by the presence of so 

called aura – a complex of neurologic symptoms that usually occurs at or just before the 

onset of a migraine headache 300. Approximately 20 to 30% of migraineurs experience aura, 

which most often includes visual phenomena, but it may involve somatosensory or motor 

phenomena, as well as language or brainstem disturbances 300. 

Migraine-related conditions. The diagnosis of migraine-related condition is based on a transient 

sign or symptom in the absence of conventional visual aura. The headache may or may not 

be present 299. 

 

5.2 The stages of migraine  

A typical migraine attack can be divided into four phases: the premonitory phase (or 

prodrome), the aura, the ictus, and the resolution phase (postdrome) 301. 

1. Prodrome occurs from hours to a day or two before the aura in 60% of migraineurs and 

may include symptoms such as fatigue, difficulty in concentrating, neck stiffness, sensitivity 

to light or sound, nausea, blurred vision, yawning, and pallor 301.  
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2. The aura usually develops over a period of 5 to 20 minutes and lasts less than an hour; the 

most common aura is the visual aura that may include simple flashes, specks or more 

complicated hallucinations 298.  

3. The headache is unilateral and is aggravated by head movement or physical activity; 85% 

of patients describe it as throbbing. The onset is usually gradual and the attack lasts 4 to 72 

hours, but it may be completely absent as well 298. 

4. Headache phase is followed by a phase known as postdrome when patients suffer from 

head tenderness, fatigue and mood changes 301,302.  

 

5.3 Migraine pathophysiology   

Migraine is a complex disorder that includes a variety of pathological conditions with 

different clinical profiles and undetermined causes. Unravelling the pathophysiological 

mechanisms underlying migraine headache proved to be a challenging task that is yet to be 

completed. However, years of investigations were able to shed light upon several 

mechanisms that might contribute to the migraine pathophysiological profile 303. 

Nowadays migraine is most often described as a neurovascular disorder, since its symptoms 

arise from a combination of vascular and neurological events occurring in the cranial 

meninges 304. Phenomena like cortical spreading depression (CSD), activation of the 

trigeminovascular system, neurogenic inflammation (leading to changes in the meningeal 

vasculature) are  thought to be the key events in the development of migraine pain 305, 

although the exact interaction between these processes is not completely clear 303. 

 

5.3.1 Migraine theories 

The vascular theory and the neurogenic theory are two independent theories that were 

proposed to explain migraine etiology. 

 

Vascular theory 

The vascular theory was first introduced by Thomas Willis and then advanced by Graham 

and Wolff, postulating migraine as a vascular event mediated by initial intracranial 

vasoconstriction followed by rebound vasodilation 306,307. This was consistent with the notion 

of “throbbing” pain during migraine attacks and with the fact that vasoconstrictors such as 

ergotamine, triptans (serotonin receptor agonists) and calcitonin gene-related peptide 

(CGRP) agonists diminish migraine symptoms 308,309. Because the vasodilator nitroglycerin 

was observed to induce headache, this result was taken as a confirmation of vascular 

migraine theory 310.   

However, there is evidence that does not support a vascular theory as the primary cause for 

migraine 311,312. Amin et al. (2013) have shown that vasodilation itself is not the cause of 

peripheral and central pain pathways 313. Vasodilation remains linked to migraine attacks and 

can promote migraine via accompanied release of neuropeptides and proinflammatory 

substances from trigeminal afferents in the meninges 314. It was demonstrated that electrical 

and mechanical stimulation of dural vasculature produced head pain in awake patients 
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undergoing craniotomy, whereas stimulation of non-vascular areas of the dura induced no 

pain 315,316. This is consistent with the notion that the dural innervation is nociceptive largely 

due to unmyelinated C-fibers and thinly myelinated Aδ fibers coming from the trigeminal 

ganglion and C1-3 dorsal root ganglia 311,317–319. Moreover, sensory nerves in trigeminal and 

upper cervical ganglia closely follow meningeal blood vessels but not non-vascular areas of 

the dura 315.   

 

Neurogenic theory 

The alternative neurogenic theory explains migraine as a disorder of the brain in which any 

vascular events are caused by dysfunction of neuronal networks 314. Indeed, some of the 

migraine symptoms could not be described only in terms of vasodilation 320. Currently the 

neurogenic theory implies activation and sensitisation of the trigeminovascular system and a 

phenomenon of cortical spreading depression that underlies aural symptoms in migrainers 
314,320.  

Clearly neither theory can account for the entire cascade of events associated with a migraine 

attack and it is likely that both theories contribute to a more complex neurovascular model 

that describes migraine pathophysiology as the interaction between vascular and neurogenic 

mechanisms 303. 

 

 5.3.2 The trigeminovascular system 

The trigeminovascular system consists of the trigeminal nerve and trigeminal sensory 

afferents innervating extra- and intra- cranial meningeal blood vessels and the brain stem 321. 

The trigeminal nerve contains both sensory and motor components. The sensory 

component conveys thermal and tactile sensations from the face and forehead and is 

thought to play an integral role in regulating vascular tone and pain transduction including 

migraine pain and other headache conditions 303. The cell bodies that give rise to the 

trigeminal sensory fibers are pseudo-unipolar neurons localized in the trigeminal ganglion. 

Upon activation of perivascular trigeminal afferents, the signal is first conveyed from the 

trigeminal ganglion to neurons in the trigeminocervical complex via CGRP that serves as the 

main neuromodulator 322 and then to the thalamus 323,324 and finally to the cortex where the 

awareness of the pain originates. The pain signal is modulated through extensive connections 

with brainstem regions such as the periaqueductal gray and the locus coeruleus 323 (Fig. 22).  

Activation of the trigeminovascular system during migraine is thought to initiate the release 

of a variety of chemical components from trigeminal sensory nerve endings 325,326. Trigeminal 

pain fibers contain vasoactive neuropeptides such as substance P (SP), calcitonin gene-

related peptide (CGRP), neurokinin A and pituitary adenylate cyclase-activating peptide 

(PACAP) that released in the extracellular compartment lead to neurogenic inflammation 

around vascular structures in the meninges and, thus, head pain 53,327–330. However, the 

neurogenic inflammation hypothesis does not explain what causes the initial activation of 

meningeal nociceptors to trigger migraine pain. 
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Figure 22. Migraine headache is caused by activation of the trigeminovascular system 

(adapted from 331). TG = trigeminal ganglion; PAG = periaqueductal gray; LC = locus coeruleus; 

TNC = trigeminal nucleus caudalis. 

 

5.3.3 Cortical spreading depression  

Activation of meningeal nociceptors is considered to be a key process from which pain 

signals originate during a migraine attack. Nevertheles, it remains unclear what serves as a 

trigger for such an activation. Recent studies suggest that initial activation of trigeminal 

nociceptors could be caused by the process of cortical spreading depression (CSD). 

CSD, first observed by Leão in 1944 332,333, may be described as a short-lasting, intense wave 

of neuronal and glial depolarisation that spreads at a rate of approximately 2–4 mm/min 

over the cerebral cortex. This depolarisation wave is accompanied by disruption of ionic 

gradients (Ca2+, Na+, K+), followed by long-lasting inhibition of spontaneous and evoked 

neuronal activity 334,335 (Fig. 23). This is accompanied by localized changes in blood flow that 

spread through the cortex at a similar rate. In migraineurs, cerebral blood flow studies 

demonstrate a wave of oligoemia that precedes the aura and progresses with the rate 

comparable to the rate of CSD 336–338. At the present time, CSD is regarded as the 

electrophysiological substrate of migraine aura 336,337,339. Since the aura often precedes the 

onset of headache by 20-30 min, it was postulated that CSD may stimulate the initial 

activation of meningeal nociceptors. In fact, CSD may activate and sensitize the 

trigeminovascular system, starting a series of neural, vascular and inflammatory events that 

result in pain 340 (Fig. 24). 
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Figure 23. Cortical spreading depression (adapted from 331). CBF – cerebral blood flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Cortical spreading depression might activate the trigeminovascular system 

(adapted from 331). CSD – cortical spreading depression; TG – trigeminal ganglion; HMGB1 – high-

mobility group box 1; Panx1 – pannexin 1. 

 

Experiments in rats have shown that evoked cortical spreading depression might persistently 

activate first nociceptors within the trigeminal ganglion which innervate the meninges 341 and 

second (central) trigeminovascular neurons. 340,342. 
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A recent study has shown that CSD caused Pannexin1 megachannel opening and caspase-1 

activation that in turn can turn on parenchymal inflammatory pathways and may provide the 

stimulus for sustained trigeminal activation and longlasting pain 343. The CSD hypothesis 

assumes that agents such as potassium ions, hydrogen ions, and glutamate largely released 

extracellularly during CSD in the cortex, diffuse through the overlying meninges to activate 

meningeal nociceptors and induce neurogenic inflammation in the dura 344–346. Thus, if 

confirmed in human studies, CSD might not only cause the migraine aura, but also trigger 

the mechanisms underlying the migraine headache and associated symptoms 331. 

 

5.3.4 Neuronal sensitization 

Sensitization is a process by which primary sensory neuron afferents in peripheral nervous 

system and central synapses become hypersensitive to nociceptive and innocous stimuli 347–

350. Thus, neurons show a reduction in their activation threshold 349,351–354, and increased 

responses to supra-threshold stimuli 347,355–357. Peripheral and central sensitization is thought 

to underlie neuropathic and chronic pain, including allodynia, hyperalgesia and spontaneous 

pain 348.  

 

Peripheral sensitization 

Symptoms of peripheral sensitization during migraine include throbbing headache and its 

aggravation during routine physical activities that increase intracranial pressure such as 

coughing and bending over 303,358,359. Intracranial hypersensitivity involves sensitization of 

nociceptors that innervate the meninges, implying that the trigeminovascular system plays an 

important role in the process of peripheral sensitization during migraine attack 65. 

Peripheral sensitization is supported by enhanced release of neurotransmitters and 

inflammatory peptides from primary afferents to spinal synapses after injury and 

inflammation 360. Bradykinin, histamine, serotonin (5HT), and prostaglandin E2, (PGE2) 

cause mechanical sensitization and increase the excitability of somatic 361 and meningeal 

nociceptors 349,350. Inflammatory mediators such as interleukins 1, 6 and 8 (IL-1, IL-6, IL-8) 

and tumor necrosis factor α (TNFα) exert their effects through the endogenous release of 

eicosanoids and sympathetic amines 362,363. Acidic pH and proteases were shown to induce 

inflammation within the meninges through protease-activated receptors (PARs) 364 triggering 

headache or migraine in patients 365. Existing evidence suggest that CSD might sensitize 

meningeal nociceptors indirectly, triggering the release of CGRP and SP which in turn cause 

the release of  inflammatory mediators such as histamine, 5HT, BK, TNFα and nitric oxide 

from mast cells, macrophages and other immune cells 366–368. 

Inflammatory mediators modulate the activity of ion channels on nociceptors, therefore 

contributing to the spontaneous activity of sensory fibers to complete a pathological cycle of 

hyper-responsiveness 348,369,370. Purinergic receptors, acid-sensing ion channels and TRPV1 

channels are modulated by inflammatory mediators 65. Experiments in sensory ganglion 

cultures show that the development of a neuroinflammatory profile facilitates the release of 

endogenous mediators (including ATP and cytokines) to reinforce inflammatory cell 
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activation and to constitutively potentiate ATP-gated P2X3 receptors amplifying nociceptive 

signaling 348. 

Central sensitization 

Central sensitization is a condition in which nociceptive neurons in the dorsal horn of the 

spinal cord exhibit increased excitability, increased synaptic strength, and enlargement of 

their receptive fields 371,372. Like peripheral sensitization, central sensitization is induced by 

released neurotransmitters and inflammatory factors. Animal models and human studies 

provide direct evidence that symptoms of central sensitization in somatosensory pain 

pathways contribute to post-injury pain hypersensitivity 373–378 that arises from increased 

responsiveness of dorsal horn nociceptors. Clinically, central sensitization is manifested as 

decreased pain threshold and exaggerated pain response even outside the original pain site. 

In migraineurs, symptoms of central sensitization are often expressed as allodynia, when 

patients become sensitive to otherwise innocuous stimuli 379–383. This involves the 

sensitization of nociceptive trigeminovascular neurons of the medullary dorsal horn that 

receive converging sensory input from the dura and the skin 384,385.  

Overall, although migraine headache has been intensely investigated for decades, there are 

still many questions concerning its origins and pathophysiology that remain unanswered and 

require future research.  Figure 25 shows a schematic representation of pathophysiology of 

headache as proposed by Pietrobon and Striessnig (386. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Schematic representation of pathophysiology of headache (adapted from 386). 

 

5.3.5 Migraine as a channelopathy 

Ion channels are pore-forming transmembrane proteins that allow the transmembrane flow 

of ions. Ion channels are essential components of every living cell, even considering not 

excitable ones, and are vitally important for proper signaling and cell function. No wonder 
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that alterations and dysfunctions in ion channels functioning are expected to lay at the 

origins of a variety of known disease.  

Throughout the years, migraine disorders are often considered as channelopathies, since 

more and more channels malfunctions are shown to contribute to the development of these 

pathologies 65.  

Mutations in several ion channels have been shown to underlie particular migraine 

pathologies. Mutations in the CACNA1A gene, encoding the α1 subunit of P/Q voltage-

gated calcium channel Cav2.1, and SCNA1A, encoding α1 subunit of the voltage-gated 

sodium channel Nav1.1, have been linked to familial hemiplegic migraine types 1 and 2 

(FHM 1 and 2), respectively 387–389. Recently, another susceptibility gene responsible for the 

potassium channel subfamily K member 18 (KCNK18), which encodes a two-pore domain 

potassium channel (K2P), TRESK, was linked to inherited migraine with aura 390,391 although 

further work could not validate that the aura or the migraine attacks in these patients are 

directly related to dysfunction of TRESK 65. 

Apart from these particular mutations that are usually linked to relatively rare migraine types, 

there is growing evidence that the dysfunction of a variety of ion channels is involved in the 

process of migraine development.   

 

Acid-Sensing Ion Channels (ASICs) 

The ASIC family consists of 4 members, ASIC1-4, with several splice variants 392; they are 

proton-activated voltage-insensitive cationic channels 393 that are widely expressed in the 

central 394,395 and peripheral nervous system 396. Approximately 80% of dural afferents show 

immunolabeling for ASIC3 397,398 and their expression is found in most trigeminal neurons. 

ASIC3 have been proposed as a sensor of decreased extracellular pH within the dura 384. 

Considering the ASICs pH sensitivity and their high expression in dural afferents, it is 

possible that even small pH changes can activate ASIC-positive neurons 65. That could be an 

important contribution to the migraine headache during which low pH conditions could 

potentially arise: for example, CSD is shown to be accompanied by ischemia 102 which could 

induce a pH drop in the dura. Furthermore, experiments demonstrate that low pH elicits 

migraine-related pain behavior in awake animals through the activation of ASICs 103, and 

increases CGRP release in TG neurons 397 that might result in neurogenic inflammation and 

headache progression. In accordance with this view, the non-specific blocker of ASICs 

amiloride was shown to block CSD and inhibit trigeminal activation through an ASIC1-

dependent mechanism in a preclinical study 399. Overall, these data provide support for the 

idea of ASIC involvement in the pathophysiology and initiation of migraine. 

 

Transient Receptor Potential (TRP) Channels in migraine 

TRP channels are a group of cation ion channels that respond to a variety of stimuli, 

including heat, changes in osmolarity and pH, and various natural products 65,400. The 28 

mammalian TRP channels can be divided into 6 subgroups based on their primary amino 

acid sequences. 3 of 6 subgroups include channels that are considered to be involved in 
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migraine pathophysiology: transient receptor potential channel ankyrin (TRPA), transient 

receptor potential channel melastin (TRPM) and transient receptor potential channel 

vanilloid (TRPV) 65. 

Transient Receptor Potential Ankyrin Channel 1 (TRPA1) is expressed on sensory neurons 
401 including dural afferents 402 and has an established role in pain transduction 403. Recently 

TRPA1 has been also proposes to play a role in migraine pathophysiology. Thus, studies on 

rodents demonstrated that umbellulone (an agent known to trigger headache) evokes 

nociceptive behavior, meningeal vasodilation, and CGRP release through activation of 

TRPA1 404. Moreower, many identified TRPA1 agonists (like formaldehyde, ammonium 

chloride, cigarette smoke, and umbellulone) are chemical irritants, and they have long been 

known to trigger migraine headache in susceptible individuals 404–406.  

Transient Receptor Potential Melastatin 8 (TRPM8) is activated by low temperatures 

(<26°C) and chemical cooling agents, including menthol and icilin. Until now the strongest 

evidence for a role of TRPM8 in migraine comes from three separate genome-wide 

association analyses, all of which identified that a TRPM8 gene variant (2q37.1, rs10166942) 

is associated with increased susceptibility to common migraine 407–409. However, it is still to 

be identified how this gene variant alters channel expression or function if at all, and prove 

its causal relation to migraine 65. 

Transient Receptor Potential Cation Channel V4 (TRPV4) is a mechanosensitive channel 

that is thought to be responsible for the trigeminal nociceptors activation by osmolarity 

changes. In awake animals dural application of hypotonic solutions acting on TRPV4 

resulted in migraine related pain behavior, although the endogenous mechanism remains 

unclear 65. There is no evidence for osmolarity changes before or during a migraine attack. 

Nevertheless, TRPV4 might be activated by mechanical stimulation (sudden intracranial 

pressure changes due to head jolts or rotation, breath holding, sneezing, coughing, etc). It is 

noteworthy that mechanosensitivity is most probably elevated during migraine attack, since 

mechanical stimulation such as rapid head movements and coughing can worsen headache 

pain in migraine patients 379. One possible basis for such symptoms as well as for the 

throbbing pain sensation of migraine headache could be sensitization of TRPV4 65, followed 

the release of inflammatory mediators in the meninges.  

 

Transient Receptor Potential Cation Channel V1 (TRPV1)  

The structure and function of TRPV1 channel and its relation to migraine pathophysiology 

were addressed in details in the section 2 of the introduction. 

 

P2X Channels 

ATP-activated P2X receptors and P2X3 receptors in particular have been widely implicated 

in pain conditions including migraine headache 31,65. The structure and function of P2X3 

channel and its relation to migraine pathophysiology were addressed in details in the section 

1 of the introduction. 
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Calcium-Activated Potassium (BKCa or MaxiK) Channel  

Large conductance calcium-activated potassium channels BKCa are widely expressed in the 

brain, including sensory neurons, both in soma, dendrites, and axonal terminals 410. BKCa 

decrease presynaptic Ca2+ influx by narrowing the presynaptic action potential upon 

activation, resulting in reduced neurotransmitter release 411. Thus, they might play an 

important role in modulation of pain transmission from the peripheral to the higher centers 

of CNS 65. It was shown that activation of MaxiK channels can depress neuronal firing and 

presumably release of neurotransmitters from trigeminal neurons 412. Mice with sensory 

neuron-specific knockout of MaxiK channels exhibited increased inflammatory, but not 

acute or neuropathic pain, suggesting their role in inflammatory pain conditions 413.  

 

5.4 Migraine genetics 

Insights into the genetic basis of migraine have come from different angles. First, linkage 

studies in family pedigrees in which inheritance of migraine is apparent have been used to 

identify genomic regions, and even particular genes, responsible for migraine susceptibility. 

Second, studies of migraine pathophysiology have led to proposals of candidate genes 

potentially involved in migraine 303. 

Unbiased genome-wide association studies (GWAS) 407,408,414 and subsequent meta-analysis 414 

have identified 13 migraine-associated variants pointing to genes that cluster in pathways for 

glutamatergic neurotransmission, synaptic development and plasticity, pain sensing, 

metalloproteinases, and vasculature and metabolism (Table 4). 

 

5.5 Familial Hemiplegic Migraine 

 

5.5.1 Classification and genetics 

Familial hemiplegic migraine (FHM), a rare autosomal dominantly inherited subtype of 

migraine with aura, was first described by Clarke in 1910 in a UK family of 4 generations. 

Since then it has been the object of much interest by geneticists researching migraine 387, and 

it has led to FHM being the most extensively studied model for migraine 331. FHM attacks 

typically include hemiparesis (half-side motor weakness) during the aura phase 415, but are 

otherwise indistinguishable from common forms of migraine and can be provoked by similar 

triggering factors; in two-third  of FHM patients hemiplegic attacks might alternate with 

episodes of migraine without motor weakness 416,417. The stronger genetic component and 

major phenotypic overlap of FHM with MA have made FHM an advantageous model to 

study the mechanisms of headache and aura 418. 

Three causative genes have been identified for FHM: CACNA1A, ATP1A2 and SCNA1A, 

each gene associated with one of three familial forms of hemiplegic migraine, referred to as 

FHM1, FHM2, and FHM3, respectively (Table 5) 419. All three genes encode ion-

homoeostasis-regulating proteins that control neuronal activity via modulation of the 

availability of glutamate at synaptic terminals 331. Although FHM-causing mutations target 

different genes, encoding proteins that are involved in different molecular pathways,  
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Table 4. Susceptibility genes for migraine with or without aura identified in genome-wide 

association studies (adapted from 331). 
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clinically the phenotypes of the three FHMs are nearly identical. The seemingly diverging 

mechanisms ultimately converge and lead to the same neuronal profile: increased glutamate 

concentration in the synaptic cleft (Fig. 26). That in turn induces cerebral hyperexcitability 

and enhances susceptibility to cortical spreading depression 331. FHM1 Cav2.1 CACNA1A 

gain-of-function mutations cause increased neuronal release of glutamate, while FHM2 

Na+/K+-ATPase ATP1A2 loss-of-function mutations diminish glial cell reuptake of 

glutamate from the synaptic cleft. FHM3 NaV1.1 SCN1A loss-of-function mutations are 

predicted to cause increased activity of glutamatergic excitatory neurons via decreased 

GABAergic interneuronal inhibition 331,420,421. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. A common pathway for the effects of mutations in FHM genes (adapted from 331) 

FHM – familial hemiplegic migraine; EAAT1 – excitatory amino acid transporter 1; EAAT2 – 

excitatory amino acid transporter 2. 

 

Table 5. Familial Hemiplegic Migraine and Defective Genes Identified (adapted from 303). 

 

 

 

 

 

 

 

 



 

54 
 

5.5.2 FHM1 pathophysiology  

FHM1 is caused by missense mutations in the CACNA1A gene on chromosome 19p13 that 

encodes the pore-forming α1 subunit of neuronal voltage-gated P/Q-type (Cav2.1) calcium 

channel (Fig. 27) 387,422. These channels are widely expressed at presynaptic terminals 

throughout the mammalian nervous system 423 and trigger neurotransmitter release in CNS 

synapses in response to neuronal excitation 424. Cav2.1 channels are expressed in all brain 

structures that have been implicated in the pathogenesis of migraine, including the cerebral 

cortex, the trigeminal ganglia, and brainstem nuclei involved in the central control of 

nociception 386. Cav2.1 channels were also found at somatodendritic membranes, where they 

can modulate neuronal excitability 425,426. Fifteen different missense mutations in the 

CACNA1A gene have been associated with FHM. Some mutations cause pure FHM, 

whereas other add neurological symptoms such as ataxia or coma to the typical FHM profile 
303,331.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Mutations of α1 subunit of P/Q-type voltage gated calcium channel responsible 

for FHM-1 (adapted from 389). 

 

Mutant FHM1 Cav2.1 channels show gain-of-function because of increased probability of 

being open and shifted activation to lower voltages 427–431. Thus, FHM1 neurons expressing 

Cav2.1 channels possess higher basal calcium concentration 432. Not all neurons carrying 

Cav2.1 channels are equally affected by FHM1 mutations. Experiments on autapses and 

brain slices reveal that, while Cav2.1 channel-mediated excitatory neurotransmission in 

FHM1 neurons is enhanced due to increased glutamate release, Cav2.1 channel-mediated 

inhibitory neurotransmission at cortical interneuronal synapses is apparently unaltered 433. As 

a result, the final effect of FHM1 mutations is enhanced glutamatergic excitatory activity 

without apparent compensatory GABA-ergic interneuronal inhibition (Fig. 28). 
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Figure 28.  Functional alterations in the cerebral cortex of a familial hemiplegic migraine 

type 1 (FHM1) knockin mouse model (adapted from 389). 

 

Another important feature of FHM1 mice is their higher susceptibility to cortical spreading 

depression as a result of higher glutamate release 331,433. Indeed, experiments show lower 

threshold for in vivo induction of cortical spreading depression by KCl application or 

cortical electrical stimulation in FHM1 mice, along with increased frequency and propagation 

velocity of cortical spreading depression (van den 429,430,434. 

In the trigeminal ganglion, analysis of the P/Q-type Ca current in small TG neurons from 

adult R192Q KI mice showed gain-of-function only of the Cav2.1 channels in capsaicin-

insensitive TG neurons expressing T-type Ca channels (CI-T neurons), but not of capsaicin-

sensitive TG neurons (CS neurons) that innervate the dura 435 (Fig. 29). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Functional alterations in trigeminal ganglion neurons of an FHM1 knockin mouse 

model (adapted from 389). 



 

56 
 

Investigations into the actual intracellular Ca2 levels demonstrated that a significant number 

of KI neurons display substantially larger Ca2 transients inhibited by the selective blocker ω–

agatoxin, suggesting upregulated Cav2.1 channels (Nair et al 2010). The FHM1 mutation 

increases evoked CGRP release from intact trigeminal ganglia 435 and cultured TG neurons 
436. Elevated CGRP levels in R192Q KI migraine-model TG in turn was reported to 

upregulate P2X3 receptors (Fig. 30) via increased gene expression and trafficking through 

PKA/PKC dependent mechanism 31,60,64. Additionally, enhanced P2X3 currents were 

associated with decreased serine phosphorylation, higher immunoreactivity for active 

phosphorylated CaMKII in R192Q KI mice compared to WT 64 and higher neuronal 

excitability in response to P2X3 receptor activation 66. CGRP is also an important messenger 

in the neuron-neuron and neuron-satellite glial cells crosstalk; it increases expression of 

inflammatory genes and release of inflammatory mediators from satellite glial cells, that in 

turn can sensitise TG neurons and further activate glial cells, maintaining an inflammatory 

milieu in TG 68,389,437,438. Experiments with TG cell cultures reveal enhanced basal release of 

TNFα and stronger basal activation of macrophages in R192Q KI trigeminal neurons 439,440. 

On the basis of these findings, it has been suggested that FHM1 mutations create a basal 

inflammatory milieu within the trigeminal ganglion and facilitate peripheral sensitization 

contributing to the development of pathological profile typical for FHM1 64,389,439,440.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Upregulated P2X3 currents in R192Q KI trigeminal neurons in culture (adapted 

from 64). A, Representative traces of αβ-meATP-induced responses of WT and KI neurons. B, Plot 

showing P2X3 current amplitudes in response to different α,β-meATP in WT and KI neurons. 

 

5.5.3 FHM1 as a model for common migraine  

Genetically modified mice have been engineered based on mutations in the three specific 

genes responsible for FHM with the goal to shed light on the pathophysiology of common 

migraine 303,331. Despite the large number of mutations characterized at each FHM locus, only 

a small fraction of mutations have been studied in genetically altered mice given the expense 

and time involved in generating modified animals 303. 
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FHM1 has been used as a model to identify possible pathways for the more common forms 

of migraine with aura and migraine without aura. The question remains whether and to what 

extent mechanisms identified for FHM1 are also involved in non-hemiplegic migraine. 

Migraine is phenotypically and genetically heterogeneous and no single variant can explain 

the entire underlying genetic component across different families and populations 303. 

However, there is growing, albeit circumstantial, evidence that FHM-like mechanisms might 

also be involved in patients with non-hemiplegic migraine with aura or non-hemiplegic 

migraine without aura, including evidence obtain from humans. Among them are the 

phenomenon of enhanced cortical spreading depression susceptibility of transgenic FHM1 

mice, increased glutamatergic neurotransmission and cerebral hyperexcitability 331. Moreover, 

resemblance of FHM1 clinical profile to that of common migraine is another reason to 

support the idea of potential similarity between the mechanisms underlying these 

pathologies.  

Two common FHM1 mutations in the CACNA1A gene have been introduced in knock-in 

mice: R192Q 429,433 and S218L 430,441. While both mutations cause gain-of-function of P/Q-

type Ca2+ channel, the phenotype of S218L mutation is more extreme than R192Q and 

mice exhibit symptoms of cerebellar ataxia, seizure and head trauma and in particular 

increased sensitivity to CSD 430.  

 

R192Q KI mouse model of FHM1 

The FHM1 mouse model used in the present study is based on the KI R192Q mutation in 

theCACNA1A gene and was first introduced by van den Maagdenberg et al. in 2004 429. 

Functional analysis revealed a pure gain-of-function effect on P/Q type Ca2+ channel 

current and increased action potential-evoked Ca2+ influx and glutamate release 431 in 

R192Q KI mice. Moreover, R192Q mutation reduces threshold and increases propagation 

velocity of cortical spreading depression 421,429. Chanda et al 442 recently reported pain like 

symptoms similar to episodic attacks of migraine in R192Q KI mice. 

Further investigation of the R192Q mouse phenotype and its deviations from the WT 

phenotype may explain the underlying mechanism for the increased susceptibility of the 

migraine brain for CSD and aura and in general for migraine pathophysiology, thereby 

providing new directions for future therapy.  
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Aims of the study 
Trigeminal sensory neurons play a crucial role in nociception, processing and transducing 

noxious stimuli from periphery to higher brain regions under normal conditions as well as in 

pathological pain states including migraine 303,323,324. A variety of neuromodulators control 

different aspects of trigeminal neurons’ functioning 349,350,361. In particular, many of them 

regulate activity of certain membrane ion channels, involved in nociception, such as ATP-

gated P2X3 receptors and capsaicin-sensitive TRPV1 receptors 65,348,369,370. That in turn can 

cause changes in neuronal excitability 66,348. Most known modulators of P2X3 and TRPV1 

receptors positively affect these receptors activity and very little is known about their 

negative regulation. However, recent evidence brought to light natriuretic peptides as 

potential regulators of sensory neuron nociceptive transmission 270. Brain natriuretic peptide 

in particular was suggested to play an inhibitory role in inflammatory pain 271. Collectively 

these data prompted the present project to investigate the following aspects of BNP system 

in sensory trigeminal cultures of WT mice and transgenic R192Q KI mice of the familial 

hemiplegic migraine type 1 model: 

 

 Expression of BNP and its receptor NPR-A in trigeminal cultures in vivo and in vitro 

and functional properties of BNP/NPR-A pathway in WT and KI mice 

 Effects of endogenous and exogenous BNP on P2X3 and TRPV1 receptors activity 

in WT and KI trigeminal neurons 

 Molecular mechanisms underlying BNP/NPR-A-dependent modulation of P2X3 

receptors, in particular in terms of receptor’s membrane distribution and serine 

phosphorylation in WT mice 

 Effects of BNP/NPR-A system on the excitability of small to medium sized 

trigeminal sensory neurons in WT and KI 

 Evaluation of new synthetic compounds as potential P2X3 antagonists on 

recombinant P2X3 receptors in HEK cells and native P2X3 receptors of trigeminal 

neurons  
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Methods and results 
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1. B-type natriuretic peptide-induced delayed modulation of TRPV1 and P2X3 

receptors of mouse trigeminal sensory neurons. 
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2. Brain natriuretic peptide constitutively downregulates P2X3 receptors by 

controlling their phosphorylation state and membrane localization 
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3. Inefficient constitutive inhibition of P2X3 receptors by the brain natriuretic 

peptide system in trigeminal sensory neurons of mouse model of genetic 

migrain 
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4. Loss of selective inhibition by brain natriuretic peptide over P2X3 receptor-

mediated excitability of trigeminal ganglion neurons in a mouse model of 

familial hemiplegic migraine type-1 
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5. Evaluation of adenine as scaffold for the development of novel P2X3 

receptor antagonists  
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6. Ribose blocked ATP derivatives as new potent antagonists for the 

purinergic P2X3 receptors  

 



 

169 
 

 



 

170 
 

 
 



 

171 
 

 
 



 

172 
 

 
 



 

173 
 

 
 



 

174 
 

 
 



 

175 
 

 
 



 

176 
 

 
 



 

177 
 

 
 



 

178 
 

 
 



 

179 
 

 
 



 

180 
 

 
 



 

181 
 

 
 



 

182 
 

 
 



 

183 
 

 
 



 

184 
 

 
 



 

185 
 

 
 



 

186 
 

 
 



 

187 
 

 
 



 

188 
 

 
 



 

189 
 

 
 



 

190 
 

 
 



 

191 
 

 
 



 

192 
 

 
 



 

193 
 

 
 



 

194 
 

 
 



 

195 
 

 
 



 

196 
 

 
 



 

197 
 

 
 



 

198 
 

 
 



 

199 
 

 
 



 

200 
 

 



 

201 
 

 



 

202 
 

 



 

203 
 

 



 

204 
 

 



 

205 
 

 



 

206 
 

Discussion 
Activity of neurons in central and peripheral pain pathways is regulated by a variety of 

chemical substances that shape pain perception and transduction. Important targets for such 

modulation are ion channels expressed on the membranes of sensory neurons in trigeminal 

and dorsal root ganglia (TG and DRG). In particular, ATP-gated P2X3 receptors and 

capsaicin-sensitive TRPV1 receptors play a critical role in nociception and are proposed to 

contribute to the development of various pathological pain conditions, including migraine 
26,52,65,443,444. Although many endogenous peptides and trophic factors are reported to 

upregulate the function of these receptors 76,445,446, much less is known about the potential 

role of endogenous modulators in restraining the operation of TRPV1 and P2X3 receptors.  

 

BNP/NPR-A pathway in WT and KI trigeminal neurons 

Until recently, natriuretic peptides were regarded only in terms of their role in regulating 

blood pressure and heart function 175,188. However, growing evidence suggested the 

importance of natriuretic peptides for nociception, and their ability to exhibit contrasting 

effects on pain transduction under normal conditions as well as in pathological states 270,272. 

In particular, Zhang et al reported BNP and NPR-A expression in the rat DRG, and the fact 

that their signaling can attenuate inflammatory pain 271.  

In the present study our first goal was to characterize the BNP/NPR-A system in trigeminal 

neurons of WT mice and in a mouse model of FHM1. Experiments on WT and KI mouse 

TG showed NPR-A expression in the vast majority of neurons in vivo and in vitro. Moreover, 

the activity of the NPR-A pathway was similar in these two genotypes and included 

stimulation of cGMP production, Akt phosphorylation and activation of PKG. Interestingly, 

like NPR-A, BNP itself both in WT and in KI cultures was produced at rather low level and 

mostly by non-neuronal cells. Even though KI exhibited a slightly higher percent of BNP-

expressing cells, the total BNP concentration in the culture medium was identical to that of 

WT, suggesting a comparable degree of basal NPR-A activation. Considering the question of 

the principal endogenous agonist of NPR-A receptors in TG, current evidence supports the 

idea of BNP serving as the main ligand. Apart from BNP, NPR-A receptors could in theory 

be activated by atrial natriuretic peptide (ANP) whose RNA was shown to be present in 

trigeminal ganglion 276,277. However, the complete similarity between the effects of NPR-A 

blocker anantin and silencing of BNP RNA suggests that BNP and not ANP is the main 

peptide for BNP/NPR-A regulation, at least for P2X3 receptors.   

Experiments on inactivation of the NPR-A pathway further supported the idea of equal 

basal BNP/NPR-A activity in WT and KI cultures, showing similar reduction in cGMP 

levels in WT and KI after siBNP or application of NPR-A antagonist anantin. Thus, the 

expression and basal activity of the BNP/NPR-A system in KI neurons appear to be very 

similar to what is observed in WT cultures, implying that any changes in functional 

properties of this pathway should be explained in terms of more subtle regulatory 

mechanisms.  
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Regulation of TRPV1 receptors by exogenous BNP in WT and KI trigeminal neurons 

TRPV1 channels, being important transducers of noxious stimuli and potential players in 

migraine pathophysiology 124,169,444, were the first target for our investigation of BNP/NPR-A 

functions in TG primary cultures. Our data show that, although the basal activity of the 

BNP/NPR-A pathway does not alter TRPV1-mediated responses, rather low concentrations 

of exogenous BNP (100 ng/ml) significantly depressed TRPV1 currents of WT neurons as 

well as KI. This might indicate the need for additional stimuli, which by raising BNP 

concentration could control the activity of trigeminal neurons and in particular their TRPV1 

receptors. This is consistent with what is known about other neuropeptides, like vasoactive 

intestinal polypeptide, galanin and NPY, which are normally expressed at low or 

undetectable levels in sensory neurons and a specific stimulus is required for these peptides 

to be upregulated 447. Interestingly, notwithstanding rapid changes in cGMP and pAkt levels 

following NPR-A activation by BNP, the onset of TRPV1 modulation was delayed by hours, 

suggesting a complex molecular cascade underneath this regulation that triggers 

comparatively slow modifications in neuronal activity. A similar phenomenon is also typical 

of other TRPV1 modulators, such as the growth factors NGF and GDNF 448 or the cytokine 

TNF-α 449.  The effect of delayed BNP-induced modulation would be compatible with a role 

of BNP in controlling chronic rather than acute pain. The exact molecular mechanisms 

underneath BNP-induced TRPV1 modulation remain unclear and require further 

investigation. However, our data could rule out some potential processes. Thus, no change 

in total TRPV1 expression level associated with receptor inhibition suggested a subtle 

mechanism to control TRPV1 activity, like for instance, the level of phosphorylation, 

trafficking and receptor compartmentalization.  

It is worth noting that modulation of TRPV1 receptor function by BNP proved to be 

reversible, disappearing after NPR-A inactivation with anantin. Thus, BNP/NPR-A 

influence on TRPV1 receptors appears to be dynamic and sensitive to changes in the 

environmental conditions, especially the endogenous BNP concentration. Considering 

possible causes for BNP upregulation, a recent study showed higher concentrations of 

plasma BNP precursor in migraine patients compared to healthy controls 450. Thus, we could 

speculate that, even though under normal conditions, the level of endogenous BNP in TG is 

not enough to downregulate TRPV1 receptors, in migraine pathology it might become 

sufficiently high because of elevated levels of BNP in the bloodstream: this phenomenon 

might serve to prevent exaggerated nociceptive responses. Experiments in vivo are necessary 

to clarify this suggestion. 

 

Regulation of P2X3 receptors by endogenous BNP in trigeminal neurons of WT and 

KI mice 

ATP-gating P2X3 receptors, which are mostly expressed by sensory neurons, play an 

important role in nociception under normal as well as pathological conditions 26, including 

migraine pathology 32,63–65. In particular, the activity of P2X3 receptors is crucial for 

trigeminal ganglia. Enhanced functional properties of TG sensory neurons are thought to 
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underlie neuronal sensitization, facilitating the onset of chronic pain attacks, including 

migraine 63,303,331,348. Thus, our next goal was to understand how the BNP/NPR-A system 

affects P2X3 receptors in WT trigeminal cultures as well as in cultures from KI mice of 

R192Q FHM1 migraine model. 

Unlike TRPV1 receptors, P2X3 receptor activity of WT or KI neurons was not influenced 

by activation of NPR-A with exogenous BNP. However, in WT cultures suppressing basal 

BNP/NPR-A signaling with either siBNP or the NPR-A inhibitor anantin greatly enhanced 

P2X3 receptors. Such findings imply that, under basal conditions, P2X3 receptors in WT 

trigeminal neurons are constantly inhibited by endogenous BNP. Although the level of 

endogenous BNP in TG was low, it was apparently sufficient for NPR-A-dependent P2X3 

modulation because increasing the BNP concentration did not lead to stronger P2X3 

inhibition. Thus, the BNP/NPR-A system in TG can operate on different levels, inhibiting 

several pain-sensing modalities (P2X3 and TRPV1) depending on the extracellular BNP 

concentration.  

In WT neurons the BNP-dependent P2X3 regulation seemed almost all-or-none, without 

gradual changes in the size of P2X3 currents. Although the molecular mechanisms involved 

in this modulation remain incompletely understood, our experiments identified several 

processes that are employed by the BNP/ NPR-A system to suppress P2X3-mediated 

responses. Thus, one contribution was likely to originate from the delayed onset of P2X3 

receptor desensitization, an important parameter that controls current amplitude and pain 

signaling 63. We also showed two distinct mechanisms (downstream of PKG activation) that 

restrained P2X3 receptors in WT neurons, namely, increased P2X3 serine phosphorylation 

and receptor redistribution from lipid rafts to non-raft membrane compartments. 

Interestingly, in KI trigeminal neurons the same P2X3 properties were reversed and 

associated with enhanced P2X3 activity. Thus, the KI phenotype was characterized by larger 

P2X3-mediated currents, lower level of P2X3 p-Ser and more P2X3 receptors in the lipid 

raft membrane fraction. These observations, therefore, suggested loss of NPR-A-dependent 

downregulation of P2X3 receptors in KI trigeminal neurons. The idea was further supported 

by the fact that inactivation of BNP/NPR-A pathway in KI cultures did not upregulate 

P2X3 responses, indicating absence of basal constituitive inhibition typical for P2X3 

receptors of WT neurons. 

As to the mechanisms that make P2X3 receptors of KI neurons apparently disjointed from 

BNP/NPR-A constitutive inhibition, our study investigated the influence of CaV2.1 calcium 

channels and CGRP in this process. In KI trigeminal cultures, the R192Q mutation leads to 

the gain-of-function of CaV2.1 calcium channels that in turn determine the development of 

a distinct KI phenotype. In particular, this involves upregulation of P2X3 receptors and 

activity of the CGRP pathway. We showed that reversing KI phenotype with the inhibitors 

of CaV 2.1 channels or CGRP receptors could restore the negative control of BNP/NPR-A 

system over P2X3 activity that was unmasked by blocking NPR-A signaling with anantin. 

The present data suggest that there are multiple processes impacting on the function of 

trigeminal P2X3 receptors, and that these mechanisms are potent enough to overcome 
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constitutive inhibition by BNP, at least in this genetic model of migraine. The process of 

P2X3 upregulation underlying trigeminal sensitization to pain 52,348 might be triggered 

because “migraine mediators” like CGRP and other endogenous algogens swamp the normal 

negative control that maintains a physiological pain threshold. While additional experiments 

are required to clarify the exact molecular mechanisms involved in this process, identifying 

strategies to enhance intrinsic inhibition, even at peripheral level, may be useful to control 

pain. 

 

BNP/NPR-A system negatively regulates P2X3-induced firing of TG neurons in WT 

but not in KI cultures 

Sensory neurons encode their responses to received stimuli as a series of action potentials. 

The neuronal excitability and firing properties are, therefore, aspects of greatest interest as 

they are the major determinants to convey activation of brainstem trigeminal nuclei. 

Trigeminal neurons in culture express diverse voltage gated and ligand gated ion channels 

and a wide array of metabotropic receptors which collectively control neuronal excitability. 

Activation of ATP-gated P2X3 channels and capsaicin-sensitive TRPV1 channels can induce 

firing activity that in higher brain regions is interpreted as pain signals 66,282. Thus, the next 

question was if the constitutive modulatory effects of BNP/NPR-A system on P2X3 

receptor activity could be reflected in changing the excitability of trigeminal neurons.  

In WT and KI neurons similar patterns of firing activity were observed in response to 

different stimuli, comprising intracellular current pulses, application of α,β-meATP or 

capsaicin, in analogy with a previous report 66. However, the distributions of these patterns 

in the examined WT and KI populations had some significant differences, especially 

prominent in case of P2X3-dependent firing activity.  

Under normal circumstances, trigeminal neurons are relatively quiescent, but they produce 

highly modulated series of action potentials when stimulated, conveying information about 

the sensory stimuli to higher brain regions 278. In some pathological conditions, however, 

primary sensory neurons can become hyperexcitable and can give rise to unprovoked 

spontaneous action potential activity or bursting which can contribute to chronic pain 279–281. 

A hyperexcitability phenotype had been previously reported for trigeminal neurons of 

FHM1 mouse migraine model 66. In line with this notion, in our experiments KI cultures 

exhibited lower percent of SS and NS cells and higher percent of MF cells when stimulated 

with α,β-meATP. The discrepancy between WT and KI cultures could probably be explained 

by upregulated P2X3 receptor currents typical for KI phenotype 64. Higher-amplitude 

currents in response to the same agonist concentration may lead to increased firing activity 

of TG neurons, transforming for example SS cell into FA or MF.  

Larger occurrence of MF and RF neurons at the expense of NS and SS cells in KI cultures 

might also be a consequence of other differences between WT and KI trigeminal sensory 

neurons, namely the lower spike threshold in KI versus WT cells 66. Lower threshold for 

action potentials was understandably associated with a statistically larger number of spikes in 

KI cultures, averaged for all firing pattern types, as well as increased spike number for MF 
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group in particular. Thus, lower firing threshold can elevate general level of KI TG neuron 

excitability. In response to the same extracellular ATP concentration KI neurons are 

expected to generate, on average, more spikes, meaning at least partial transformation of 

former NS cells into SS, SS to FA, FA to MF and RF ones.  
 

Anantin brings the WT low excitability profile close to the KI hyperexcitability state 

Recent studies proposed BNP as a potential endogenous anti-inflammatory and anti-pain 

modulator, which, acting through its receptor NPR-A, inhibits excitability of sensory DRG 

neurons and constantly downregulates P2X3 receptors in TG 271,451 Marchenkova). In the 

present project, we obtained additional evidence in support of the idea that BNP/NPR-A 

pathway pays an important role in depressing the excitability of sensory neurons, especially 

in the case of P2X3-dependent firing. Indeed, negative control over P2X3 receptor activity 

in trigeminal neurons apparently suppresses their excitability in response to α,β-meATP, 

which is an analog of the natural ligand ATP and simulates a situation when ATP is released 

in TG.  

It is noteworthy that inactivation of BNP/NPR-A signaling transformed the WT excitability 

phenotype into the one usually associated with KI. Thus, it decreased spike threshold, 

increased the average number of action potentials generated in response to α,β-meATP 

application and, as a consequence, changed the distribution of firing activity types in WT 

cultures towards the prevalence of higher excitability patterns. This phenomenon mostly 

concerned trigeminal P2X3-dependent excitability, and did not affect responces to current 

injections or capsaicin.  It is, therefore, possible to argue that, under normal conditions, the 

WT NPR-A pathway, activated by endogenous BNP 451 dampens neuronal excitability in 

response to extracellular ATP. In the R192Q KI mouse model, the BNP/NPR-A system 

activity is unable to overcome the P2X3 upregulation typical for this phenotype. Taken 

together, our data suggest that hyperexcitability phenotype of trigeminal sensory neurons of 

FHM1 migraine model could originate from insufficient BNP/NPR-A-mediated negative 

control over P2X3 receptor activity. The exact mechanisms underlying this modulation 

remain to be clarified. 

 

New P2X3 antagonists on the basis of diaminopurine and adenosine scaffolds 

Nowadays, development of new potent and potentially therapeutic P2X3 antagonists 

becomes more and more popular among basic scientists and pharmaceutical companies. This 

is considered as a promising strategy in order to advance research in the area of P2X3 

functions in health and disease and, most importantly, to create new drugs for a variety of 

P2X3-related pathologies. In the current study we aimed at testing the adenine scaffold as 

possible new basis for the development of P2X3 antagonists. The designed series of 2-

aminoadenine derivatives were proved to behave as P2X3 receptor antagonists when tested 

on recombinant rat P2X3 receptors expressed in HEK cells. The most promising compound 

9-(5- iodo-2-isopropyl-4-methoxybenzyl)-N6 -methyl-9H-purine-2,6- diamine (24) appeared 

to be a good antagonist on both recombinant rat P2X3 receptors as well as on native P2X3 

receptors of mouse trigeminal neurons, with IC50 in the µM range. Thus, new synthesised 
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adenine-based compounds exhibited P2X3 antagonist activity, even if with lower potency 

compared to the corresponding diaminopyrimidines taken as reference compounds. These 

results are encouraging since the high versatility of the adenine scaffold allows the insertion 

of different substituents into several positions of the purine moiety.  

Further investigation and molecular modeling studies, performed at homology models of the 

P2X3, proposed several TNP-ATP analogues for the role of P2X3 antagonists. Patch-clamp 

experiments confirmed antagonistic potency of new compounds. Most potent molecules 

(2’,3’-O-cyclohexylATP, 2’,3’-O-benzylATP) appeared to be potent inhibitors of the P2X3 

receptors (IC50 in nanomolar range), with selectivity against GABA and 5-HT receptors.  

Future investigation into the effect of these modifications on P2X3 antagonism could 

promote the development of new agents for the treatment of various conditions including 

neuropathic, inflammatory and migraine pain. 

 

Conclusion 
Figure 31 summarises our view on the functional properties of BNP/NPR-A pathway in 

trigeminal sensory neurons of WT mice and FHM1 mouse migraine model. The primary 

finding of the present study is the demonstration that in cultures of WT trigeminal ganglion 

the BNP/NPR-A pathway can efficiently downregulate the activity of pain-sensing P2X3 

and TRPV1 receptors (Fig. 31, A). The process of P2X3 inhibition is PKG-dependent and is 

associated with receptor’s serine phosphorylation and redistribution from lipid rafts to non-

raft membrane compartments (Fig. 31, A). Consistent with tonic downregulation of P2X3 

receptors, NPR-A pathway also negatively controls P2X3-dependent firing activity of 

trigeminal neurons. In contrast, in KI trigeminal cultures the BNP/NPR-A system loses its 

ability to effectively supress P2X3 receptor responses or P2X3-dependent neuronal 

excitability (Fig. 31, B). This phenomenon might be explained by the characteristic KI 

phenotype that exhibits an elevated Ca2+ influx through Cav 2.1 channels and an upregulated 

CGRP pathway. Other properties of the BNP/NPR-A pathways remain intact, including 

negative modulation of TRPV1 receptors by exogenous BNP (Fig. 31, B).  

A variety of compounds, developed on the basis of diaminopurine and adenosine scaffolds, 

showed good antagonist activity on recombinant and native P2X3 receptors, with IC50 values 

in micromolar and nanomolar range, respectively. Thus, experimenting with diaminopurine 

and adenosine moiety could serve as a promising strategy in search for new potent 

antagonists of P2X3 receptors. 
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Figure 31. Schematic diagrams for the proposed functions of the BNP/NPR-A system in WT 

and KI trigeminal neurons. GC –guanylyl cyclase domain of NPR-A receptor; P – P2X3 serine 

phosphorylation; CGRPR – CGRP receptor. 
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Future perspectives 
In the light of the current findings, several factors emerge which warrant to be extensively 

studied. The molecular pathways through which BNP is able to negatively regulate P2X3 and 

TRPV1 receptors require careful investigation. Although some of the intermediate steps and 

molecular targets have been indicated by current study, many remain still unknown.  

The discrepancy between low level of BNP expression in TG and hight – of its receptor 

NPR-A, raises a question about possible conditions when the BNP production could be 

upregulated. Considering that BNP is synthesized mostly by non-neuronal cells, a potential 

crosstalk between neuronal and glia cells might be important for understanding the whole 

picture of BNP/NPR-A system operation. Thus, the role of non-neuronal cells in regulating 

the function of trigeminal neurons should be evaluated in detail, especially in relation to the 

KI phenotype, for which the importance of non-neuronal cells had been already reported 439. 

The observed changes in subthreshold properties in the WT trigeminal neurons after 

inactivation of BNP/NPR-A signaling suggest alterations in voltage-dependent potassium or 

subthreshold sodium conductances, which have to be carefully studied. Interaction of 

different voltage- and ligand-gated ion channels and their co-operative behavior further need 

to be investigated in order to understand how their activity affects excitability of trigeminal 

sensoty neurons in normal conditions and in pathological models.  

The present study presents a perspective which requires a collective approach to tackle the 

ligand and voltage gated channels for development of therapeutic targets. Further studies are 

required to evaluate possible targets along BNP/NPR-A pathway to treat chronic pain 

conditions and migraine pathologies effectively.  

Future experiments with diaminopurine and especially adenosine derivatives could provide 

new copounds with even higher antagonist potency over P2X3 receptors and potentially 

good pharmacokinetic properties. 
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