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Chapter 1

Introduction

1.1 Superconductor-insulator transition in 2D disordered

systems

1.1.1 Disorder versus superconductivity: quantum phase transi-

tion

Superconductivity [1, 2] and Anderson localization [3] are both fundamental

quantum phenomena in condensed matter physics. Their interplay has been

intensely investigated theoretically and experimentally for several decades.

More than 40 year after its discovery in Kamerlingh Onnes's laboratory in

1911 [1], superconductivity received its �rst microscopic theory by Bardeen-

Cooper-Schrie�er [2], famously known as BCS theory. In this conventional

form, electrons from the vicinity of the Fermi level bind in Cooper pairs [4]

and condense into a collective state responsible for superconductivity. The

pairing e�ect is induced by the coupling to lattice vibrations, or in other

words, is due to phonon-induced attraction. (In more exotic, unconventional

superconductors, including high-Tc superconductors, the origin of the e�ective

attraction that glues electrons together and makes them behave as Cooper

pairs is still intensely debated, see for example [5].)

Not long after the breakthrough by Bardeen-Cooper-Schrie�er, Ander-

son [6], Abrikosov and Gor'kov [7] showed that nonmagnetic impurities have

no signi�cant e�ect on superconductivity and its critical temperature, since

Cooper pairs are formed from time-reversed eigenstates of the single-particle

Hamiltonian, and time-reversal symmetry is not broken by such disorder.

However, this statement holds only for weakly disordered systems in which
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electronic wavefunctions are not too strongly localized. In strongly disordered

systems the Anderson localization can cause the suppression of superconduc-

tivity if the level spacing δξ in the localization volume exceeds the gap energy

∆ . In 1985, Ma and Lee presented a scenario for the superconductivity

formed from localized states [8]. In that work, they argued that strong disor-

der gives rise to spatial �uctuations of the superconducting order parameter

(the BCS gap parameter) and its overall suppression, eventually leading to

the destruction of the superconducting state.

Indeed, it is natural to expect the existence of a phase transition in a system

where both a superconductive tendency and Anderson localization are present

since they lead to two opposite extremes of conductivity at low temperature.

On the one hand, superconductivity arises as a condensation of Cooper pairs

into a many-body coherent macroscopic quantum state with zero resistance.

In contrast, Anderson localization, the disorder-induced quantum localization

of electron's wavefunctions, pushes a system towards an insulating state with

vanishing conductivity. That transition is particularly interesting and rich in

two dimensional systems where Anderson localization is marginal, since only

a small amount of disorder is enough to transform a metal to an insulator

in non-interacting systems [9]. Adding to this picture is a question about

the role of interactions as, in the 1900s, the observation of metallic behaviors

in two dimensional low-density electron systems suggested a metal-insulator

transition can happen in strongly interacting disordered 2D system [10, 11].

However, the �nal answer to that question has not been settled.

As the transition between di�erent ground states of the Hamiltonian hap-

pens at zero temperature, the superconductor-insulator transition (SIT) pro-

vides a simple example of a quantum phase transition [12]. Quantum phase

transitions are usually studied through measurements at non-zero but low

temperature where the physics is in�uenced by quantum �uctuation in the

critical region. Understanding the essence of how disorder drives the SIT can

help to shed light on other related phase transitions. For example, the physics

here is closely related to the super�uid-insulator transition of neutral bosons

loaded in an optical lattice in the physics of cold atoms [13, 14], which is an
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appealing research area that provides a testbed for several condensed mat-

ter phenomena. Recently, a potential deep connection between the SIT and

the physics of high Tc superconductors has been surmised as several aspects,

including a magnetoresistance peak, observed on the insulating side of some

systems close to the SIT are similar to those observed in high Tc superconduc-

tors, such as La2−xSrxCuO4 and Bi2Sr2−xLaxCuO6−γ [15, 16]. Furthermore,

as the SIT is a transition driven by disorder in a many-body system, it may

entangle with the concept of many-body localization [17, 18] which attracts

a lot of attention in recent years. In particular, it has been argued that the

insulator close to the SIT might be a good candidate for a nearly many-body

localized system in the solid state.

In the following subsections, we brie�y selectively review the current situ-

ation in both theory and experiments studying the SIT.

1.1.2 Theoretical scenarios

The presence of electron-electron interactions complicates the interplay be-

tween superconductivity and disorder, rendering the SIT phenomenology richer

and even more interesting. Depending on the strength of Coulomb repulsions,

which compete with the electron pairing, the suppression of superconductivity

by disorder can occur along di�erent routes. Two main scenarios, the bosonic

and fermionic one, have been discussed for the SIT transition. This classi-

�cation is based on what actually happens at the phase transition: either

the amplitude of the order parameter is fully suppressed to zero, or it is just

the loss of phase coherence due to strong phase �uctuations, while locally a

pairing amplitude survives.

The fermionic scenario was put forward in Finkel'stein's works [19, 20]

using a perturbative microscopic description of uniformly disordered systems

without any granularity. The essence of this mechanism is that disorder en-

hances the Coulomb repulsion among electrons by slowing down their dif-

fusion. This e�ect leads to a reduction of the e�ective attraction between

electrons in a Cooper pair. As a consequence, the amplitude of the super-

conducting order parameter is suppressed. At a su�cient disorder strength,
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the Cooper pairs are broken up into electrons. However, this still happens

before the onset of localization. As a result, one expects the emerging non-

superconducting state to be a poor metal that eventually transforms into an

insulator at higher disorder strength.

In contrast, the bosonic scenario is mostly concerned with phase �uctua-

tions of the superconducting order parameter. In this case, the SIT occurs

with a minimal reduction of Cooper pairing. The amplitude of the order pa-

rameter is still �nite in the vicinity of this transition, but the phase of the

order parameter �uctuates such that the oder parameter averages to zero, and

sti�ness is lost. As a result, Cooper pairs that behave as bosons are present

on both sides of the transition. This scenario trivially occurs in granular su-

perconductor with Josephson junctions, where the superconductivity of the

macroscopic sample disappears while the local granules remain superconduct-

ing [21, 22, 23, 24]. This mechanism was �rst explored by Fisher [25], based

on the boson-vortex duality. He postulated that on the insulating side of the

transition, the system forms a Bose insulator where low energy degrees of

freedom are just spatially localized "Cooper" pairs. Recently, an interesting

route to this bosonic picture has been put forward [16, 26, 27, 28]. In par-

ticular, neglecting Coulomb repulsion, Feigel'man et al. [26, 27] propose a

mechanism of preforming pairs by a relative strong attraction within single

particle orbitals. They then argued that superconductivity is even strongly

enhanced closed to the Anderson transition due to the multifractal nature of

electronic wavefunctions.

Within the scope of this thesis, we aim to employ a relevant microscopic

model to explore the physics of the insulating regime of an SIT. We follow in

spirit of Ma-Lee approach assuming a good degree of preformation of pairs.

1.1.3 Experimental data

Experiments studying the SIT have been carried out on various thin �lms with

di�erent structures, techniques, materials and control parameters [29, 30].

They include amorphous InO [31, 32, 33], TiN [34, 35], Bi and Pb [36, 37,

38, 39], NbN [40], MoGe [41] �lms, or LaAlO3/SrTiO3 interfaces [42], SrTiO3
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surfaces [43], MoS2 �akes [44], etc. The phenomenology results in di�erent

experiments vary widely since several mechanisms may be relevant in di�er-

ent materials. For example, �lms can be simply amorphous or granular. Both

exhibit a transition from superconducting to insulating phases; however, in

granular systems the formation of mesoscale clusters leads to a nonmonotonic

temperature dependence of the resistance which is not expected for homoge-

neously disordered systems. Also the choice of the parameter tuning through

the transition (disorder, magnetic �eld, or electronic charge density) matters.

The nature of the substrate can in�uence the physics, e.g. some high dielec-

tric constant substrates may better screen Coulomb interactions. Finally, the

presence of the strong spin-orbit coupling in experiments with high-atomic-

number elements may distinguish them from materials with negligible spin-

orbit coupling, as the nature of pairing is a�ected.

Despite the above diversity, some of the most notable observations are

common to most of these experiments, namely:

(i) Many of experiments report a direct transition from a superconducting

to an insulating regime. However, for a certain class of materials such as

MoGe, the existence of an intermediate metallic regime has been claimed.

(ii) In the case of a direct transition, the characteristics of the quantum

critical regime do not seem fully universal, both with respect to the critical

values of the resistance and the critical exponent.

(iii) In the insulating phase, close to a direct SIT, at low temperature, a gi-

ant magnetoresistance peak appears exhibiting a nonmonotonic magnetic �eld

dependence of the resistance: a strongly positive magnetoresistance at low

�eld and a strongly negative one at high �eld [32, 33, 34, 39, 40, 45, 46, 47, 48].

The magnetoresistance peak is often interpreted as being driven by a crossover

from a regime of paired electrons to a single-electron dominated regime. This

experimental observation supported the idea that local superconducting co-

herence may persist in the insulating regime where only global phase coher-

ence is lost. In special tailored experiments with structured �lms, magneto-

oscillations with a period corresponding to a superconducting �ux quantum

h/2e have been reported [39, 49, 50]. This further supports the idea that low
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energy degrees of freedom are "preformed pairs" rather than single electrons.

(iv) The transport in those systems (in a wide range of low temperature

and low magnetic �eld below the peak where magnetoresistance is positive)

exhibits activated behavior, R(T ) = R0 exp(T0/T ) in a wide temperature

window. This is not usually expected in disordered electron systems where

normally Mott or Efros-Shklovskii variable range hopping are observed.

1.1.4 Open issues

Despite a lengthy discussion on both the theoretical and experimental side, a

generally accepted scenario for the loss of superconductivity with disorder and

for the nature of the non-superconducting state has not yet emerged. Several

questions remain open, for example regarding the possible universality classes

to which the quantum phase transitions belong, their universal characteris-

tics, and the possible description within a scaling theory. Also the insulating

phase presents a number of puzzling and intriguing features. In order to un-

derstand the nature of the insulating regime, it seems crucial to explore and

understand the physical mechanisms underlying the magnetoresistance peak

and the activated transport observed close to the SIT. A better understanding

of this physics also provides a clearer picture for the approach to the phase

transition.

1.2 Thesis overview

Motivated by the intriguing features of the insulating regime close to an SIT,

I carry out a systematic study of magnetoresistance, elucidating a variety of

approach that in�uence it.

In Chapter 2 I introduce a model of hard-core bosons on a two dimen-

sional honeycomb lattice in a magnetic �eld, as motivated by recent experi-

ments on structured �lms [38, 39]. This aims at explaining several key features

observed in the activated magneto-transport in those experiments. Taking

into account long range Coulomb interactions among the bosons, I study the

crossover from strong to weak localization of those excitations and how it is
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a�ected by a magnetic �eld. An e�ective mobility edge in the excitation spec-

trum of the insulating Bose glass is identi�ed as the (intensive) energy scale at

which excitations become nearly delocalized. Within the forward scattering

approximation in the bosonic hopping I �nd the e�ective mobility edge to

oscillate periodically with the magnetic �ux per plaquette [51].

Furthermore, I contrast the magnetoresistance in bosonic and fermionic

systems, and thus show convincingly that the magneto-oscillations seen in

experiments of SIT systems re�ect the physics of localized electron pairs, i.e

a Bose glass rather than a Fermi insulator. The bosonic magneto-oscillations

start with an increase of the mobility edge (and thus of resistance) with applied

�ux, as opposed to the equivalent fermionic problem. The amplitude of the

oscillations is much more substantial in bosons than in fermions. Bosons

exhibit a single hump per �ux period, while fermion characteristics undergo

two humps. Those are identical for non-interacting fermions, but Coulomb

correlations are shown to lead to systematic deviations from this statistical

period doubling.

In this approach, only bosonic degrees of freedom are considered. It thus

cannot cover the wide range of �elds often explored in experiments, where

�eld-induced pair breaking processes certainly take place and are relevant.

Therefore, in Chapter 3 I introduce a microscopic model taking both bosonic

and fermionic degrees of freedom into account. This model is then used to

study the magnetic �eld driven crossover from pair to single electron regimes

and the corresponding resistive transport. This study is motivated by the

above mentioned experiments observing a strong magnetoresistance peak on

the insulating side of the SIT which re�ects that crossover.

Assuming Mott variable range hopping transport, the pair-to-single crossover

in transport is driven by the crossover in the characteristic temperature scale

TM governing the stretched exponential growth of the resistance R(T ) for pairs

and single electrons. Within this work, I consider a system of electrons on

a square lattice, subject to strong onsite disorder, a local pairing attraction,

a magnetic �eld, and nearest neighbor hopping. The tuning parameter, the

magnetic �eld, enters both by a (spatially) isotropic Zeeman depairing term
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and an anisotropic orbital e�ect proportional to the perpendicular component

of the �eld incorporated via the complex phase of the hoppings. I found that

the former leads to a strong e�ect on the density of state which causes and

dominates the crossover, and thus the magnetoresistance peak. The orbital

e�ect captures the e�ect of the quantum interference of di�erent types of car-

riers. It further enhances the peak as the �eld orientation changes. I also

discuss the e�ect of including Coulomb interactions into this theory.

Having pointed out the peculiarity of two dimensional disordered systems

which are marginal in terms of single-particle localization, and in view of our

�nding of the e�ective mobility edge above, I address the question of whether

Coulomb interactions can give rise to a genuine mobility edge in electronic

systems in two dimensions. In Chapter 4 with Coulomb interactions being

treated at a more quantum level (but still approximately) within a Hartree-

Fock treatment, I carry out a numerical study aiming at addressing the pos-

sibility of an interaction-induced delocalization e�ect. This setting focuses on

the multiplicity of electron species, or valley degeneracy, that Punnoose and

Finkel'stein [11, 52] predicted to cause delocalization in two dimensional in-

teracting electron system. As I will discuss, by looking at the density-density

correlation function, the system with multiple species behaves di�erently from

the system with single species. In the former, the two-stage scale-dependent

behavior of the correlation function re�ects the scale-dependent resistance

predicted in Punnoose and Finkel'stein's renormalization group equations.



Chapter 2

Magneto-oscillations of the

mobility edge in Coulomb

frustrated bosons and fermions

2.1 Introduction

The interplay between disorder and Coulomb interactions is a crucial el-

ement a�ecting the phenomenology of the superconductor-insulator quan-

tum phase transition. If only disorder and local BCS attraction is con-

sidered, and Coulomb repulsion is neglected, numerous theoretical studies

[8, 25, 26, 27, 28, 53, 54, 55] have predicted the existence of preformed pairs

in the vicinity of criticality, in the sense that the route from the insulating

to the superconducting state proceeds directly through a delocalization of at-

tractively bound pairs of electrons. This contrasts with the fermionic scenario

�rst studied by Finkel'stein, in which the transition is driven by the suppres-

sion of electron pairing due to disorder-enhanced Coulomb interactions [20].

Under certain circumstances and in speci�c materials, however, it has been

argued that the local Coulomb repulsion can be overcompensated by speci�c

attraction mechanisms, resulting in systems with e�ective negative Hubbard

U interactions [56, 57, 58, 59].

On the experimental side, in the early nineties, transport measurements on

InOx by Hebard, Palaanen, and Ruel [31, 45] were interpreted as signatures of

Cooper pair insulators, suggesting that the above bosonic mechanism might be

at work in that material [25]. Indeed, fermionic and bosonic insulators di�er
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qualitatively since the exchange statistics a�ect their localization properties,

in particular the interference of scattering paths that determine the decay of

the wavefunction. In the presence of a magnetic �eld, the wavefunctions of

fermions and bosons respond in opposite ways [60, 61, 62, 63, 64, 65]. For

low energy bosonic excitations, the constructive interference among all paths

is suppressed by a magnetic �eld, which leads to a strong positive magnetore-

sistance [60]. This contrasts with the subtle mechanism of the �eld-induced

suppression of occasional negative interferences, which dominates the local-

ization properties of localized fermions and results in a negative, but rather

weak magnetoresistance [63].

More recent experiments on amorphous thin �lms of Bi [38, 39, 66], PbBi

[67], InOx [32, 33, 50], TiN [34], or on a single ring of InOx [68] have strength-

ened the case of bosonic insulators, and exhibited a variety of intriguing trans-

port characteristics. In particular, transport in the insulating state was ob-

served to have an activated characteristics, with an Arrhenius-type resistance

of the form R(T ) ∝ exp(T0/T ), over a signi�cant range of temperatures, T0

being the activation energy [32, 69]. Patterned �lms with an arti�cially cre-

ated superlattice [38, 39] also exhibited activated behavior, with an activation

energy oscillating with the applied magnetic �eld. The observed oscillation

period corresponds to one superconducting �ux quantum h/2e threading the

unit cell of the superlattice, suggesting that the relevant charge carriers are

pairs of electrons, which preserve phase coherence beyond the scale of the

imposed pattern.

The observation of purely activated transport in these systems is rather

surprising in a highly disordered insulator, where generically a stretched ex-

ponential dependence of the resistance on temperature is expected, due to

variable range hopping transport [70]. The latter, relies however, on a su�-

ciently e�cient bath that allows inelastic transitions of carriers to transport

charge through the system. If instead the coupling between phonons and the

relevant carriers (pairs or electrons) is weak, and if the low energy sector of

electronic excitations is by itself discrete in nature, transport may be domi-

nated by other channels than phonon-assisted variable range hopping. One
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possibility is the transport via activation to a mobility edge of the relevant

charge carriers [70, 71], which indeed yields an Arrhenius resistance down to

relatively low temperatures until eventually variable range hopping will take

over, in spite of the ine�ciency of the phonon bath. Such a phenomenology

may be seen as a precursor of the much more stringent many-body localiza-

tion, which not only requires a strong decoupling from phonons, but also the

full localization of any intensive excitations, and in particular the absence of

�nite-energy mobility edges, which we discuss here.

The above mentioned Arrhenius resistance is also expected in a wide tem-

perature range if the mobility of charge excitations merely exhibits a sharp

crossover around an 'e�ective mobility edge' (in energy), instead of undergoing

a genuinely sharp transition from localized to di�usive behavior at a precise

energy [70]. This will be discussed in more detail below.

In this chapter we explore the phenomenology of the crossover from weak

to strong localization. In particular we ask, how the e�ective mobility edge

behaves in the presence of a magnetic �eld. At a qualitative level, it is clear

that the e�ective mobility edge follow trends analogous to those predicted for

the localization length of low energy excitations: As the localization length

increases, the e�ective mobility edge decreases, and vice versa [60]. Here we

investigate this e�ect more quantitatively and show that a relatively simple

model of strongly localized pairs, subject to long range Coulomb interactions,

is able to reproduce the salient features reported in the experiments on pat-

terned �lms.

Long range Coulomb interactions are known to play an important role in

disordered insulators. In particular, they induce a depletion of the density

of states around the chemical potential, creating a pseudo gap in the single

particle density of states [72]. This in turn modi�es the localization prop-

erties of low energy excitations and promotes the appearance of an e�ective

mobility edge, as was recently analyzed in the context of interacting elec-

trons close to the Anderson-Mott metal insulator transition [73, 74, 75]. In

contrast, in the presence of a �at or featureless bare density of states, with

purely local repulsive interactions, there is no clear evidence of a mobility
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edge in the low energy spectrum of bosonic or fermionic insulators [60, 76].

Rather, the available techniques suggest that the localization length always

decreases with increasing excitation energy. However, numerical results sug-

gest that the addition of interactions, which are not strictly local, induces a

delocalizing tendency at higher energies, and thus mobility edges [77]. The

latter tendency becomes stronger with an increasing range of the interactions.

Here we analyze the experimentally relevant case of unscreened, long range

Coulomb interactions, and study the e�ect of magnetic �elds on the e�ective

mobility edge. Under the assumption that the e�ective mobility edge takes

the role of the activation energy T0 that enters an Arrhenius law of transport,

we obtain a semiquantitative description of transport in the absence of an

e�cient thermal bath.

It is a main goal of this work to contrast the magnetoresistance in bosonic

and fermionic systems. A particularly clean case can be made by compar-

ing tightly bound pairs, acting as hard core bosons, with unpaired (spinless)

fermions, which otherwise are subject to the same potential disorder, inter-

actions and hopping strengths. Indeed, both carriers are hard core particles.

The only di�erence consists in their exchange statistics, which at �rst sight

might seem rather innocuous in insulators. However, they re�ect strongly in

the magnetoresistance, which probes the quantum interference in the expo-

nential tails of localized excitations.

The remainder of this chapter is organized as follows. In Sec. 2.2 we in-

troduce and motivate the model under study. The magneto-oscillations of the

localization length and the e�ective mobility edge for bosons are presented in

detail in Sec. 2.3. Sec. 2.4 establishes the connection of our theory with exper-

imental data. In Sec. 2.5 we contrast the phenomenology of hard core bosons

with that of fermions and explain the various e�ects of quantum statistics

on the e�ective mobility edge. A summary of the central results is given in

Sec. 2.6.
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2.2 Model

The present study is motivated by the experiments of Refs. [38, 39] on

patterned �lms of Bismuth, with holes punched in a triangular array. Those

leave a connected part of Bismuth forming a honeycomb lattice (with lattice

constant a ≈ 50nm), see Fig. 2.1. As those �lms are made su�ciently thin

they undergo a superconductor-to-insulator transition, whereby the transport

on the insulating side bears the hallmarks of a bosonic insulator. In particular,

it exhibits a strong positive magnetoresistance.

Figure 2.1: Sketch of barely percolating �lms, with a triangular lattice of holes
pinching it. These structures are modelled by a honeycomb lattice of islands hosting
preformed pairs. The green lines connecting the two sites 0 and i enclose a diamond-
shaped region containing all the shortest paths that connect those sites.

To model such �lms, we introduce a simpli�ed model of interacting hard-

core bosons [8] living on a two-dimensional honeycomb lattice of tunnel-

coupled islands, governed by the Hamiltonian

H =
∑
i

(εi − µ)ni +
1

2

∑
j 6=i

q2

κrij
(ni − ν) (nj − ν)

−t
∑
〈ij〉

(
e

i q
~c

∫ ri
rj

Adr
b†ibj + h.c

)
, (2.1)

where b†i , bi are the creation and annihilation operators of a hard-core boson

of charge q = 2e on site i, and ni = b†ibi is the local number operator. The

hard core bosons represent strongly bound, preformed electron pairs. The

chemical potential µ is adjusted such as to assure half-�lling (ν = 1/2) of
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the lattice. The particles are subject to disordered onsite potentials εi being

uniformly distributed in εi ∈ [−W,W ]. They interact via long-range Coulomb

interactions that decay as 1/r, since the ambient space is 3d. κ denotes the

dielectric constant of the �lm, which is typically fairly large in such nearly

metallic structures [27, 78]. The Coulomb contribution from a neutralizing

background charge of homogeneous density ν has been subtracted. The mag-

netic �eld enters via an Aharonov-Bohm phase factor multiplying the nearest-

neighbor hopping amplitude t. The phase acquired on each link is the line

integral of the vector potential A, for which we choose the gauge A = Bxey.

We measure the magnetic �eld B in terms of the fraction of �ux quanta per

plaquette, f = B/B0, where B0 = hc/qS, and S = 3
√

3a2/2 is the area of the

unit cell. The depairing Zeeman e�ect of the magnetic �eld on the electron

pairs is neglected here. Its e�ect will be studied in forthcoming chapter.

The above model captures a rather generic situation in bosonic or spin-

polarized fermionic insulators. Even though a given island i will in general

host a rather large number of charges, in the insulating phase we may restrict

ourselves to describing the two most relevant charge states, which di�er by

the absence or presence of a charge carrier (an electron pair in the case of

the bosonic insulator). States di�ering by stronger charge �uctuations are

not expected to modify the physical behavior of the insulator signi�cantly,

and thus we believe the above model to capture the gist of the experimental

systems.

In the numerical studies carried out below, we study two-dimensional lat-

tices and employ periodic boundary conditions. The Coulomb interaction be-

tween two sites is taken to be proportional to the inverse of the minimum dis-

tance on the torus. The Coulomb repulsion between nearest neighbor charges,

EC = q2/κa, is used as the unit of energy, while the lattice constant a serves

as the unit of length.

2.2.1 Classical electron pair glass

It is impossible to solve the full Hamiltonian (2.1) exactly. Instead we ap-

proach the problem in an approximate way, which captures the main physical
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e�ects. We consider the hopping as a perturbation and neglect it in a �rst

step. That is, we �rst deal with a classical Hamiltonian describing a Coulomb

glass of particles with charge q = 2e. Such a system is well-known to possess

many metastable low-energy con�gurations which are stable with respect to

the rearrangement of few particles. The Coulomb interactions with other par-

ticles strongly modify the distribution of the low-lying single-site excitation

energies ε̃i,

ε̃i =
dH

dni
= εi − µ+

∑
j 6=i

q2

κrij
(nj − ν). (2.2)

In d = 2 the Coulomb interactions create a linear Coulomb gap in the density

of single particle excitations at low energy, ρ(ε̃) = Cε̃/E2
C , as predicted by

Efros and Shklovskii [72]. Fig. 2.2 shows the corresponding single-particle

density of states, ρ(ε̃) for various disorder strengths, as obtained numerically.

The coe�cient C is nearly independent of disorder (for W & 1) and takes

roughly the value C ≈ 0.61, not far from theoretical predictions [79].
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0.61ε̃/EC

Figure 2.2: Single-particle density of states for various disorder strengthsW in a two-
dimensional Coulomb glass. A linear Coulomb gap forms, which ensures stability
with respect to single particle transitions. Excitations are more strongly localized at
low energies. An e�ective mobility edge may thus appear at higher energies within
the Coulomb gap.

2.2.2 Localization on the background of a Coulomb gap

In the strongly insulating regime t� W , the hopping term can be treated as

a perturbation. Here we study the localization properties of a single particle
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excitation. It can be read o� from the spatial dependence of the amplitude of

poles of the Green's function. Following the formalism introduced in Ref. [60],

the Green's function (in the T → 0 limit) can be obtained in a perturbative

expansion in the hopping using a locator expansion, whereby we treat the on-

site potentials ε̃i as frozen-in static disorder which depends on the metastable

state under consideration. In a given metastable state of the Coulomb glass

(de�ned by a locally stable classical charge distribution), to leading order in

the hopping, the Green's function at large distance is obtained as

G0,i(ω,B)

G0,0(ω,B)
= tr0i

∑
Γ:0→i
|Γ|=r0i

eiΦΓ(B)
∏

k∈Γ\{0}

sgn(ε̃k)

ε̃k − ω

≡
(
t

W

)r0i
S0i(ω,B). (2.3)

Here the sum S0i(ω,B) runs over all paths Γ of shortest length |Γ| = r0i ≡
dist(0, i), de�ned as the minimal number of nearest neighbor hops necessary

to connect the two sites. ΦΓ(B) is the �ux enclosed by the loop formed by

path Γ and a �xed reference path connecting 0 and i. The latter merely �xes

the gauge of the Green's function.

In Eq. (2.3), the only trace of quantum statistics is the residue sgn(ε̃k) of

the locator, which applies to hard core bosons. For non-interacting fermions,

instead, this factor is absent. This forward scattering approximation, and

especially its fermionic version, has been analyzed extensively in the litera-

ture [60, 62, 63, 64, 80, 81].

The localization length of excitations at energy ε0 is de�ned as the inverse

of the typical spatial decay rate of Green's function residues of poles at ε = ε0,

ξ−1(ε0, B) = − lim
r0i→∞

1

r0i

ln

∣∣∣∣G0,i(ω,B)

G0,0(ω,B)

∣∣∣∣
ω→ε0

. (2.4)

The overbar denotes the disorder average. On a regular lattice, this de�nition

depends on the direction in which the point i tends to in�nite distance from 0,

even though the relative variations will be very similar for di�erent directions.

Below we analyze the direction along a lattice base vector, as indicated in
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Fig. 2.1.

From Eq. (2.3) it follows that at low excitation energies, ω → 0, in the

absence of a magnetic �eld (Φ = 0) all paths come with positive amplitudes

and thus interfere constructively. A magnetic �eld destroys the perfect con-

structive interference by adding a phase factor to each path. In contrast, for

fermions, the path amplitudes always have essentially random signs, whatever

the magnetic �eld. However, for B = 0 the likelihood of occasional, strongly

destructive interferences between two bunches of paths is bigger than in �nite

�ux. This e�ect was �rst discovered by Nguyen, Spivak and Shklovskii. [63]

It leads to a weak negative magnetoresistance for fermions, which contrasts

with the strong positive response of bosons [62].

It is convenient to split the inverse localization length into a simple hopping

part and a geometric part capturing interference,

ξ−1(ε0, B) = ln

(
W

t

)
+ ξ−1

g (ε0, B), (2.5)

where

ξ−1
g (ε0, B) = − lim

r0i→∞

1

r0i

ln |S0i(ω,B)|ω→ε0 . (2.6)

De�nition of (e�ective) mobility edge

Due to the increase of the single particle density of states with energy ε,

based on formula (2.3) one expects an increase of the localization length with

increasing excitation energy |ε− µ|. If the tunneling amplitude t is �nite, the

localization length of zero temperature excitations, as de�ned by (2.4), may

diverge at su�ciently high energies. This is indeed expected to happen in

dimensions d > 2 close enough to the transition to a conductor. This was

analyzed in quite some detail for fermionic insulators in Refs. [74] and [75].

In such higher dimensional systems the energy

εc = inf{E|ξ(E) =∞}. (2.7)

sharply de�nes a mobility edge in the limit T → 0.
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However, in dimensions d = 2 (the case of interest to us here) at T = 0, one

does not generally expect genuine delocalization at �nite excitation energies.

Rather, in close analogy with the well-known case of single particle excita-

tions in the absence of anti-localizing spin-orbit interactions, one expects the

proliferation of returns to the origin of any �nite energy excitation to induce

localization, albeit with a localization length that may become exponentially

large upon varying a control parameter. In non-interacting fermionic problems

the control parameter is given by k`, which is to be considered as a function

of the energy E.

Nonetheless, even in d = 2 it is meaningful to identify a crossover energy

εc at which strong localization (at lower energies) turns into exponentially

weak localization (at higher energies). For most practical purposes, such a

crossover scale εc acts like an e�ective mobility edge, above which the e�ects

of localization become very weak. They will thus not show up down to very

low temperatures. If the localization length is a strongly increasing function

of excitation energy the e�ective mobility edge is expected to exhibit only a

slow logarithmic increase with decreasing temperature. To illustrate this idea,

let us brie�y discuss the case of two-dimensional disordered insulators, where

one expects that any �nite energy excitation remains localized at strictly zero

temperature. In other words, eigenstates with excitation energy O(1) above

the ground state are expected to di�er only locally from the latter. One may

in principle construct operators that create such "elementary" T = 0 exci-

tations from the ground state. However, in general two such operators do

not (anti-)commute with each other. As a consequence, eigenstates at �nite

energy density will not simply consist in a �nite density of such localized ex-

citations above the ground state, but hybridize various con�gurations with

excitations in di�erent locations. In particular the su�ciently weakly local-

ized excitations at high energy will not commute (and thus collide) with many

other elementary excitations. If the corresponding collision rate is bigger than

the inverse of the level spacing in the localization volume of the high energy

excitation, the localization of the latter should be irrelevant at that tempera-

ture, and one expects those excitations to be di�usive. This phenomenology
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leads to a weakly temperature dependent e�ective mobility edge, as was dis-

cussed in Ref. [70]. At su�ciently low temperature, the collision rate with

other elementary excitations will eventually become so infrequent that the �-

nite system size becomes a more e�cient cut-o� for localization. In that case

the e�ective mobility edge will become (weakly) size dependent 1.

A practical de�nition for an e�ective mobility edge can be obtained by

identifying the energy εc where the perturbative locator expansion (2.4) ceases

to decay with distance (while higher order loop corrections would most likely

reinstate a weak exponential decay), i.e.,

εc = min{E|ξFSA(E) =∞}. (2.8)

Here, the superscript FSA indicates the restriction to the leading order forward

scattering approximation. For non-interacting fermions in d ≥ 3 this criterion

correctly selects an energy for which k`(εc) = O(1), a qualitative criterion

which is also satis�ed by the rigorously de�ned, sharp mobility edge (2.7).

We stress that we are not so much interested in the absolute value of εc at a

given set of parameters, but rather in its variations with magnetic �eld. We

expect the qualitative features of such variations to be much less sensitive to

the approximations involved in the restriction to forward scattering, than εc

itself.

As mentioned before, in the absence of an e�cient phonon or electron

bath, the above de�ned εc will act like a mobility edge and may dominate

transport in an intermediate temperature regime where activation to εc is less

costly than weakly assisted variable range hopping passing through lower lying

1A simple example is given by single particle excitations in a non-interacting system with white-
noise disorder in the continuum. The localization length ξ(E) in the orthogonal universality class
grows exponentially with energy, ξ(E) ∼ exp[γE]. Transport th rough a �nite system of size L
then proceeds via levels of energy E that optimize the product exp[−E/T ] exp[−L/ξ(E)], which
for no n-interacting 2d electrons leads to a quasi-activated conduction with an activation energy
that grows logarithmically with system size. Inciden tally, activated transport with logarithmically
growing activation energy was reported in insulating, bosonic systems in Ref. [82]. We caution
though that the scenario we mention is just one out of many possible explanations for such a
phenomenology; it could possibly apply only under the stringent condition that the coupling to
phonons and the ensuing variable range hopping transport are too weak to provide a more e�cient
transport channel in the considered temperature window. Simpler scenarii yielding similar length
dependent insulating transport have been discussed in Ref. [83].
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energy states. Under such circumstances one may expect εc to appear as the

activation energy in an Arrhenius-type resistance [27, 60].

2.3 Bosonic localization: Oscillations of localization length

and mobility edge

2.3.1 Energy and �eld dependence of the localization length

Fig. 2.3 shows the numerically evaluated interference part of the inverse local-

ization length as a function of excitation energy. At ω = 0 all paths contribute

positively to a maximally constructive interference sum, while at �nite energy

occasional negative locators occur. In the absence of interactions, i.e. without

Coulomb gap in the density of states (data plotted in black), this leads to a

slight increase of ξ−1
g with increasing ω [60, 76]. A magnetic �eld frustrates

the predominantly positive interference and leads to a shrinkage of the local-

ization length (positive magnetoresistance). This e�ect is strongest for small

ω where the �eld-free interference is maximal.

Adding Coulomb interactions has quite a dramatic e�ect on the localiza-

tion. The presence of the Coulomb gap suppresses the low energy density

of states and thus strongly enhances the localization tendency there. The

localization length qualitatively traces the variation of the density of states.

Hence, the enhancement of localization is the stronger the lower the energy.

This overcompensates the e�ect of rarer and rarer negative locators as ω → 0.

Within the forward approximation, the Coulomb gap indeed turns ξ(ω) into

an increasing function of ω, even at B = 0, unlike in the limit of purely local

hard core repulsions.

If the hopping is su�ciently strong, high energy excitations are essentially

delocalized and there is an e�ective mobility edge, as de�ned in (2.7). A

magnetic �eld frustrates the predominantly constructive interference. This

makes the localization length at a given energy shrink and thus pushes up the

e�ective mobility edge.

Fig. 2.4 presents the full �ux dependence of the inverse localization length.
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Figure 2.3: Geometric part of the inverse localization length of hard core bosons as
a function of excitation energy ω. Without interactions and in the absence of a �eld,
the localization length slightly decreases with increasing ω. The interaction-induced
Coulomb gap enhances localization and reverses this trend, as localization becomes
strongly enhanced at low energies. In either case the localization length shrinks with
magnetic �eld (i.e., ξ−1

g increases). The e�ect is strongest at low energies, where the
zero �eld interference is maximally constructive.
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Figure 2.4: Geometric part of the inverse localization length of bosonic excitations as
a function of magnetic �eld, at various excitation energies. ξ−1

g tends toward a local
minimum as the �ux approaches integer values, or fractions with small denominators.
There, for low energies, large subsets of paths interfere maximally positively. At
�nite energies, a tiny, non-analytic upward cusp of ξ−1

g sits on top of this main
feature. It re�ects the destruction of negative interference at large scales, akin to
the dominant mechanism of magnetoresistance in fermions. Similar cusps of the
same origin appear at half integer �uxes, cf. the inset (for ω = 0).

Its geometric part ξ−1
g oscillates with the period of one �ux quantum per pla-

quette, B0. At ω = 0 and for small �elds, B � B0, the localization length

shrinks monotonically with increasing �ux. However, at �nite excitation en-
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ergies the localization length is slightly non-monotonic very close to B = 0,

even though this is hard to see in Fig. 2.4 except at larger ω & 0.2. Indeed,

at non-zero energies locators occasionally have negative signs. At large scales

the interference sum thus behaves like a fermionic problem, having a negative

magnetoresistance at the smallest �elds. This argument assumes the absence

of the so-called sign transition, as discussed, e.g., in Refs. [80] or [84]. A

small B-�eld then �rst reduces the destructive interference of paths with op-

posite signs, like in fermions, resulting in a very weak increase of ξ. A larger

�ux, however, has the main e�ect of suppressing the predominantly positive

interference between shorter path segments. This then turns the magnetore-

sistance positive. This non-monotonicity in ξ(B), which occurs for a small

enough abundance of negative locators (i.e., not too large ω), was already

observed and explained in Ref. [64] (cf. especially Fig. 3.2).

At half integer �ux, B = B0/2, further features appear in ξ(B). At that

�ux all path amplitudes are real, but they �uctuate in sign. At exactly half-

integer �ux, the localization length is a local minimum of ξ(B). This is re-

�ected in a tiny upward cusp in ξ−1
g , as illustrated by the inset of Fig. 2.4. It

originates again from the elimination of occasional destructive interferences

once the �ux per plaquette deviates slightly from half integer. However, at

larger deviations the dominant e�ect of B is the destruction of maximal in-

terference between paths that di�er by two unit cells; at least for su�ciently

low energies ω where negative locators are rare. This results in an increase

of ξ−1
g . Similar local minima can be seen at the lowest ω for �uxes that are

multiples of B0/3.

The cusps at integer and half-integer �ux are all non-analytic. This can

be understood from a mapping to directed polymers. The mapping is truly

faithful at ω = 0, where all path weights are positive [62]. However, also nega-

tive weight problems exhibit the same type of scaling for the spatial roughness

of paths (with wandering exponent ζ = 2/3 in d = 2), and amplitude �uc-

tuations governed by a Tracy-Widom distribution [65, 85]. From those, one

predicts a change of the localization length which scales as δξ−1
g ∼ |δB|ψ with

the deviation δB from integer or half-integer �ux, where the exponent has the
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value ψ = 2ζ/(1 + ζ) = 4/5 [62].

2.3.2 Magneto-oscillation of the e�ective mobility edge

For energies well inside the Coulomb gap, the localization length ξ(ω) is a

monotonically growing function of ω. For su�ciently large hopping amplitude

t, ξ diverges at the �nite e�ective mobility edge εc, which is a periodic function

of the �ux. In Fig. 2.5 we plot εc(B) for a �xed value of the hopping amplitude,

t = 0.368EC , and disorder strength W = EC . With these parameters, we �nd

the amplitude of oscillations of εc to be about ∆εc ≈ 0.1EC . The qualitative

features of the �eld dependence εc(B) are the same as those of ξ−1
g (B,ω)

(cf. Fig. 2.4) for an energy ω ≈ 0.3EC corresponding to the �ux-averaged

average mobility edge. Upon approaching criticality, as the average mobility

edge decreases, we expect the function εc(B) to become non-monotonic in

the range B ∈ [0, B0/2], exhibiting maxima slightly before and after B0/2, in

analogy to the �eld dependence of ξ−1
g at low energies, cf. Fig. 2.4. However,

we do not show corresponding results of the forward scattering analysis, since

so close to criticality our approximation is for sure not reliable quantitatively;

even though the discussed qualitative features presumably survive.

0 1 2 3 4

0.28

0.32

0.36

0.4

B/B0

ǫ
c
(4
e2
/κ

a
)

Figure 2.5: Flux dependence of the e�ective mobility edge of bosonic excitations.
The upward cusps ∼ |δB|4/5 at half integer �uxes, and similar (but tiny) cusps
at integer �uxes originate from the destruction of occasional negative interference
among certain close pairs of paths with real amplitudes but opposite signs. The
overall dome shape of the oscillation re�ects the destruction of the predominantly
positive interference by the Aharonov-Bohm phases introduced by incommensurate
�uxes.
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Qualitatively, εc(B) shows the same features as those of ξ(B,ω > 0). After

a tiny, non-analytical decrease at B � B0, the e�ective mobility edge increases

as a consequence of the suppressed constructive interference in low energy

bosonic excitations. At half �ux per plaquette, εc(B) exhibits an upward cusp

|δB|4/5, like ξ−1
g (B). Its origin lies in the destruction of occasional, nearly

complete negative interferences.

2.3.3 Increased relative oscillations upon approach to criticality

Note that as long as the e�ective mobility edge lies well within the Coulomb

gap εc . Egap = E2
C/(2CW ) the disorder strength W plays a minor role, since

the smallest locators have an abundance dictated by the pseudo-gapped part

of the density of states, which is nearly disorder independent.

In contrast, the hopping amplitude t a�ects the location of the e�ective

mobility edge directly, as illustrated in Fig. 2.6. That �gure shows that, upon

tuning the hopping between islands, the oscillation amplitude increases as the

e�ective mobility edge decreases, i.e., as the transition to the superconduc-

tor is approached. The location of the transition can roughly be estimated

from the criterion εc(B = 0) ≈ 0, but in its vicinity the forward scattering

approximation should not be trusted quantitatively. For some range beyond

the zero-�eld transition, the magnetic �eld is expected to be able to drive an

SI transition.

It is interesting to compare these qualitative predictions with experimental

data. To do so we interpret εc as the activation energy entering the Arrhenius-

type resistance, and ∆εc its �eld-induced variation. The experiments of Refs.

[38] (Fig. 3) and [67] (Fig. 3(b)) show the same trends as we �nd from our

theory: the further the system is from criticality, the smaller is the variation

of the activation energy.

2.4 Relating theory to experiments

The experimental structured �lms [38, 39, 50] bear signatures of bosonic in-

sulators, the small �eld magnetoresistance being positive, while the �ux pe-
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Figure 2.6: The zero-�eld e�ective mobility edge εc(B = 0) and the magneto-
oscillation amplitude ∆εc, plotted as a function of the hopping amplitude t. The mo-
bility edge εc can be tuned by the hopping t. It serves as a measure for the distance
to criticality. As the mobility edge εc decreases and the transition is approached
(approximately where εc(B = 0) ≈ 0, as marked by the arrow), the oscillation
amplitude increases.

riodicity is that expected for charges q = 2e. We note that unpaired, non-

interacting electrons of charge q = 1e would exhibit the same �ux periodicity

as we recall in the next section; however, as we will discuss there, in the pres-

ence of interactions the period of single electrons is doubled and thus faithfully

re�ects the carrier's charge.

To relate our theoretical study to experimental systems, we need to discuss

the relevant scale of Coulomb interactions, EC . For an insulator of bosonic

carriers of charge q = 2e, with a lattice spacing between islands a ≈ 50nm and

dielectric constant κ one obtains the Coulomb scale EC = q2/κa ≈ 1334/κK.

The essential di�culty resides in determining the e�ective dielectric constant

κ which governs the Coulomb interaction at and above the lattice scale a.

This is nearly impossible to predict from �rst principles as the islands possess

a large polarizability and have to be considered as nearly touching each other.

Therefore they renormalize the dielectric constant of the medium surrounding

the patterned �lm, such that values of κ ∼ 102 − 103 are not unrealistic.

However, another consideration allows us to argue for an upper bound on

EC , simply on empirical grounds. The system essentially realizes an array

of Josephson junctions. The proximity to the superconductor suggests that

the charging energy (∼ EC) is of the order of the Josephson energy, whose
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role is played by the hopping t here. Deeply in the superconducting phase,

the Josephson coupling determines the scale of the transition temperature Tc.

These considerations imply that not too far from criticality EC is of the order

of typical Tc in well superconducting samples. Empirically, the latter never

exceeds a few Kelvin, suggesting that EC ∼ 2K, and e�ectively κ ∼ 500.

Our results in Fig. 2.6 show that typical magneto-oscillation amplitudes

are of the order of one magnitude smaller than EC . This is compatible with

experimental oscillation amplitudes of activation energies of the order of 0.2K,

as extracted from resistance data that were �tted to an Arrhenius law [39].

Our theory predicts a non-analytic cusp of the e�ective mobility edge at

half integer �uxes, and another cusp of much smaller size at integer �ux.

Interestingly, such cuspy features have been observed in measurements of the

resistance as a function of B, cf. Ref. [38], Fig. 2A.

As we discussed in the previous section, we further expect that upon ap-

proaching criticality, when εc . 0.1EC , the resistance develops a double-hump

within an oscillation period, akin to the low energy behavior of ξ−1
g (ω). Unfor-

tunately, in the experimental systems of Refs. [38] and [39] this corresponds

to a rather small energy scale. Therefore very low temperatures will be re-

quireed to reliably observe an activated behavior over a su�cient range of

resistances and extract activation energies from it that would exhibit this

double-hump feature.

2.5 Role of quantum statistics - Bosonic vs fermionic

mobility edges

Apart from studying bosonic insulators per se, a central goal of this study

is to investigate the role of quantum statistics in insulators. To this end we

repeated the same type of analysis as above for a system of spinless fermions,

subject to the same Coulomb interactions. The only di�erence with respect to

the previously considered hard core bosons consists in the exchange statistics

of the particles, while the Hilbert space and the terms in the Hamiltonian

were left essentially identical. Data for the inverse localization lengths and
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e�ective mobility edges of fermions are shown in Figs. 2.7 and 2.8. The e�ec-

tive mobility edge of fermions oscillates with magnetic �ux similarly as ξ−1 at

�nite ω.
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Figure 2.7: Variations of the inverse localization length ξ−1
g,(F ) of fermionic excitations

at ω = 0 as a function of magnetic �eld - with and without interactions. In the
non-interacting case, the symmetry in the distribution of the uncorrelated disorder
potential leads to a doubling of the oscillation period. In the presence of interactions,
the e�ective disorder is correlated, which re-instates the �ux periodicity expected

for fermions, B
(F )
0 = hc/e. The correlations due to Coulomb repulsion enhance

the localization at half a �ux per plaquette as compared to commensurate �ux, as
explained in the main text.
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Figure 2.8: Magnetic �eld dependence of the fermionic e�ective mobility edge ε
(F )
C .

The qualitative features are similar to the variation of the inverse localization length
in Fig. 2.7.

The comparison between Figs. 2.4 and 2.7 show three main e�ects of the

opposite exchange statistics, some of which have been discussed previously

in the literature [62, 64, 65]: (i) the magnetoresistance of fermions in small
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�elds is opposite to that of bosons at low energies; (ii) the amplitude of the

�eld-induced variations are signi�cantly smaller in fermions; (iii) the structure

within an oscillation period is very di�erent: bosons show one dome shaped

oscillation, whereas fermions exhibit a pronounced double hump with a second

local maximum in the localization length at half �ux. As we discuss below the

details of the latter re�ect the nature of Coulomb correlations. Let us now

explain these features in turn.

2.5.1 Negative magnetoresistance of fermions

The increase of the fermion's localization length at small �elds, as opposed to

the stronger decrease in low energy bosons, is due to the fact that at B = 0

fermionic paths already come with random signs, so that there is no domi-

nant positive interference to be destroyed by an extra B-�eld. Instead it is

the B-induced lifting of accidental negative interference between two bunches

of paths of nearly equal amplitude, which dominates the magnetoresistance

by occasionally enhancing the tunneling further away. Such negative inter-

ferences are not that abundant, however. Therefore the resulting negative

magnetoresistance is signi�cantly less strong than the suppression of max-

imally positive interference of all bosonic paths. This explains the smaller

amplitude of the �eld-induced variations in fermions [62].

Fermionic path sums also obey the scaling of the Kardar-Parisi-Zhang

universality class [85]. Probabilistic arguments on the occurrence of large,

strongly interfering pairs of path bundles [62, 65] thus lead again to the pre-

diction that ξ−1, as well as the e�ective mobility edge, vary in a non-analytical

fashion close to integer and half integer �uxes as δξ−1 ∼ −|δB|4/5.

2.5.2 Approximate period doubling and traces of interaction cor-

relations in fermionic magneto-oscillations

An interesting, hitherto little explored feature is the structure of the magneto-

oscillation within a �ux period. For fermions there are two local maxima of ξ−1

within one period. They occur at integer and half integer �ux, where all path
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amplitudes are real (albeit random in sign). This maximally favors negative

interference. In fact, it has been known for a long time (cf., for example,

Ref. [64], Fig. 3.2) that in non-interacting models, for an energy at the center

of a symmetric impurity band, the magneto-oscillations of ξ have a shorter

period, reduced from B0 to B0/2, with identical peaks at integer and half

integer �ux, as we recon�rm in Fig. 2.7. For completeness, the proof of this

fact is given in App. A. It relies on the symmetry of the distribution of onsite-

potentials, ρ(ω + δ) = ρ(ω − δ), and, most importantly, on the independence

of potentials from site to site.

The �rst assumption on the density of states is not that crucial. Indeed

the deviations from perfect period doubling are not very signi�cant as long

as ω remains close to the band center of a featureless density of states. The

assumption of independence of onsite potentials is much more important. Cru-

cially, it breaks down in the presence of interactions that induce correlations

between local energies of spatially close sites. Indeed, around a soft site with

a low local potential, non-local repulsive interactions suppress other sites with

small potentials of opposite sign. That is, low energy sites in the vicinity of an

occupied low energy site will predominantly be occupied themselves, rather

than empty. Otherwise the considered con�guration would be unstable with

respect to the transfer from the occupied to the nearby empty sites.

This bunching e�ect of low energy sites of the same kind has been described

long ago in the literature of Coulomb glasses [86, 87]. For the locator expansion

in the insulating phase, it has the following interesting implication. Consider

a small loop of interfering paths. Paths with signi�cant weight contain a lot

of small denominators, that is, they tend to pass through low energy sites.

The correlation e�ect implies that two small denominators occuring in the

two branches of a small loop are more likely to be of the same sign, and thus

to interfere positively in the absence of �ux. At the level of such a loop,

adding half a �ux through the plaquette is equivalent to �ipping the sign of

one of the energies. This induces a bias towards negatively interfering path

pairs and thus enhances the localization tendency. The bias introduced by

correlations among nearby sites thus destroys the exact period doubling and
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induces maximal localization of fermions at half-integer �ux, as con�rmed by

Fig. 2.7.

Since this interaction e�ect is usually signi�cantly stronger than the e�ect

of a non-symmetric density of states, the deviation from period doubling in

fermionic insulators can be used, qualitatively, as a measure and witness of

Coulomb correlation e�ects.

2.6 Summary and conclusion
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Figure 2.9: Oscillations of the e�ective mobility edge of hardcore bosons of charge
2e versus that of fermions of charge e. Each set of data is shown in units of the
relevant Coulomb interaction between nearest neighbors. Due to the approximate
period doubling for fermions, the �ux interval between maxima is the same as for
bosons, but the structure within the oscillation period is very di�erent: Fermions
start with negative magnetoresistance at small �elds, exhibit a smaller oscillation
amplitude and alternating peak heights.

In Fig. 2.9 we provide a direct comparison of the oscillations of the e�ective

mobility edge as a function of magnetic �eld for fermions of charge e and

those of hard core bosons (tightly bound electron pairs) of charge 2e. Since

these two systems share the same �ux interval between peaks of enhanced

localization, the latter cannot be used to determine the nature of the charge

carriers. However, bosons and fermions are clearly distinguished by their

opposite magnetoresistance close to integer �uxes: Bosons (at ω = 0) have a

minimum of localization tendency at those points, whereas fermions exhibit

a (weaker) maximum; a cousin of that fermionic maximum also appears at



2.6. Summary and conclusion 35

half integer �ux. Note that the oscillation amplitude of the fermionic e�ective

mobility edge is nearly one order of magnitude smaller than that of the bosons.

As we explained in the last section, the correlations induced by repulsive

interactions render the two fermionic maxima within a �ux period inequivalent

and enhance localization at half integer �uxes. We hope that future exper-

iments on patterned �lms of non-superconducting metals will reveal these

qualitative features re�ecting both fermionic statistics and correlations in the

Coulomb glass.

Many aspects of our simple theoretical modelling are in reasonable semi-

quantitative agreement with experimental data reported by J. Valles' group

[38, 39, 67]: The overall sign and shape of the magneto-oscillations, their cuspy

nature at half �ux as well as the evolution of their relative size as one tunes

the distance to criticality. It would be interesting to test further predictions of

our model, such as the appearance of a double hump in the oscillation period,

as one approaches criticality more closely.





Chapter 3

Giant magnetoresistance peak in a

Cooper-pair insulator

3.1 Introduction

Due to the sensitivity of superconductivity to magnetic �eld, theories and

experiments on magneto-transport shed light on the nature of the SIT and

especially of its insulating side. As seen in the previous chapter, the magneto-

oscillations of the resistance with an applied transverse �eld is one among those

aspects that support the existence of localized electron pairs, on the insulating

side of the transition. The oscillations dictated by the �ux quantum h/2e

have been mostly reported in experiments on periodic lattice-like systems.

More generally, in several amorphous superconducting �lms, patterned or non-

patterned, �eld-driven or thickness-driven transitions, a giant nonmonotonic

magnetoresistance peak has been reported on the insulating side in samples

being nearly critical (in zero �eld) at very low temperature. The peak starts

with a highly anisotropic (�eld orientation dependent) rise, showing positive

magnetoresistance, and is followed by a dramatic drop in higher magnetic �eld.

This remarkable nonmonotonicity of the magnetoresistance has attracted a

considerable attention in the �eld. It implies that more than one mechanism

is at play. Moreover, since negative magnetoresistance is usual, the giant

negative part is particularly interesting. The appearance of the peak also

suggests that superconductivity seems to enhance the insulating behavior.

Paalanen et al. [45] were the �rst to report the appearance of the peak on

amorphous InOx and suggested it to be a signature of a crossover or transition

between a Bose insulator and a Fermi insulator. Very recently, on the experi-
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mental side, to con�rm and extend that work, there has been a large number

of works carried out on amorphous InOx [32, 33, 46, 88, 89], Bi [39, 47, 48],

TiN [34], PbBi [49, 67], NbN[40]. A similar peak has also been reported in the

high temperature superconductor La2−xSrxCuO4 implicating the existence of

electron pairs in high magnetic �elds [15].

Especially Shahar's group has performed a careful study of the �eld orien-

tation dependence of the magnetoresistance peak presented in Refs [89, 90].

The main observations from those two experiments can be summarized as

follows: (i) a strong anisotropic positive magnetoresistance is seen in the low

�eld regime before the peak, the samples are more resistive as the �eld is

out-of-plane; (ii) when the �eld direction changes from being parallel to being

perpendicular to the �lm plane, the peak moves to lower �elds and higher re-

sistance values; (iii) beyond the peak, the degree of anisotropy decreases with

the strength of the �eld; (iv) in the high �eld regime there is a temperature-

dependent value BISO at which the magnetoresistance seems to be nearly inde-

pendent of the �eld-orientation, and after which its anisotropy is reversed; as

the temperature decreases, BISO moves closer to the peak position; (v) thin-

ner, i.e., more disordered, samples, in which the superconducting state cannot

be achieved, host much weaker anisotropy and no peak at all. Furthermore,

the authors also suggested that there are at least two di�erent mechanisms

related to the magnetic �eld in their samples: an anisotropic one at low �eld is

of orbital origin, and the other is isotropic and contributes signi�cantly only at

high �eld. Still it is not clear which mechanism is the "driving force" behind

the peak. Adding to this picture, data on periodically patterned �lms of Bi

[39] or PbBi [49] with a honeycomb array of holes shows a series of oscillations

in the low �eld region before the peak.

On the theory side, several works attempted to tackle the underlying

physics behind the magneto resistance peak [62, 91, 92, 93, 94, 95, 96, 97]. At a

phenomenological level, a series of works based on the percolation description

presented in Refs. [91, 92] proposed a qualitative explanation. Within that

scheme, the SIT was considered as a percolation transition from a regime, in

which transport is carried out by Cooper pairs tunneling through supercon-
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ducting islands, to another regime, in which transport is carried by normal

electrons due to a suppression of coherent superconducting clusters. Ref. [91]

focused only on the orbital e�ect of the perpendicular �eld while Ref. [92]

also took into account the Zeeman e�ect together with the orbital mechanism

to describe the anisotropy observed in experiments. The approach reported

in Ref. [93] gave an alternative view for the e�ect of the perpendicular �eld.

It started with the boson picture of superconducting �lm in a perpendicular

�eld and introduced fermionic degrees of freedom played by the vortices. Fur-

thermore, recently, Pokrovsky et al. [94] have used a variational approach to

explore the phase diagram of electron systems near the SIT and found a non-

monotonic tendency of the magnetoresistance when moving from a Bose to a

Fermi insulating phase by increasing the magnetic �eld. Alternatively, based

on the renormalization group for a nonlinear sigma model applicable in the

weak disorder regime, Burmistrov et al. [95] predicted a nonmonotonic mag-

netoresistance when a perpendicular �eld is applied, which is stronger than

the case with a parallel �eld. Within that framework, they also observed a

considerable increase of magnetoresistance with �eld in the high parallel �eld

regime that is in contrast with the perpendicular �eld case and has not been

reported experimentally.

Despite a signi�cant theoretical e�ort devoted to this subject and the

fact that the magnetoresistance peak is often interpreted as a crossover from

bosonic to fermionic transport, its underlying microscopic origin and possible

magnetic �eld-related mechanisms a�ecting it have not been resolved yet. It is

a main goal of this part of the thesis to understand the magnetic �eld e�ects,

their associated physical mechanisms and implications about the magnetore-

sistance peak in an insulator close to the SIT.

The orbital e�ect of a magnetic �eld, or in other words, its frustration

on quantum interference, has been studied in detail [60, 62, 64, 65]. It has

strongly opposite impacts on bosonic and fermionic systems due to their quan-

tum statistical nature. A strong positive magnetoresistance for bosons, and

in contrast, a much weaker negative magnetoresistance have been discussed.

However, in this work, we explore more carefully the Zeeman e�ect that com-
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petes with pairing attraction causing the depairing of electron pairs. We will

show that it is the main driving force leading to the magnetoresistance peak.

The above interference e�ect enhances that e�ect further due to its �eld ori-

entation dependence.

As mentioned previously, in experiments close to the SIT, at low �elds be-

low the peak where magnetoresistance is positive, most of the systems exhibit

activated transport behavior. On the other hand, in the high �eld regime

beyond the peak, single-electron Mott's variable-range hopping has been re-

ported at low temperatures [98]. Therefore, in the present chapter, to capture

the magneto-transport in a wide range of the magnetic �eld, we consider that

the transport is to follow Mott's variable range hopping [99] in which the

Mott's characteristic temperature TM governs the growth of the resistance

with a stretched power: R(T ) ∝ exp(TM/T )1/3 for two dimensional systems.

This is a well-known model of transport in disordered insulators where the

hopping conduction is carried out by carriers that hop between localized elec-

tronic states. At low temperature, the length of the hops grows to optimize

the conductivity. In principle, in disordered superconducting �lms, electronic

conduction can occur through hopping of either single electrons or electron

pairs. Depending on system parameters, the transport can be dominated by

only one of the two, and as we will see below, it is interesting to study the

crossover between two transport regimes dominated by di�erent carrier types.

At �rst, we neglect Coulomb interactions among charges so as to provide a

clear and simple, but adequate picture of the physics behind the magnetore-

sistance peak. Nevertheless, after discussing the main obtained results, we

will comment on the case involving Coulomb interactions.

The remainder of this chapter is organized as follows. In Sec. 3.2 we

introduce the microscopic model in detail. The e�ect of Zeeman depairing

on the single-site density of states (DOS) is analyzed in Sec. 3.3. Sec. 3.4

presents the total impact of a magnetic �eld, both Zeeman depairing and

orbital e�ects, on the localization lengths of the zero energy excitations. The

resulting crossover in the characteristic Mott's temperature representing the

appearance of magnetoresistance peak and its properties varying with the �eld
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and other model parameters are shown in Sec. 3.5. Sec. 3.6 is devoted to a

discussion of the case in which Coulomb interactions are present. The main

results are summarized in Sec. 3.7.

3.2 Model

Here we propose a microscopic model that incorporates key ingredients that

seem essential to describe the strongly insulating side of the SIT in the pres-

ence of a magnetic �eld. Electrons on a square lattice are subject to strong

onsite disorder, local attraction that facilitates electron pairing and thus are

ultimately responsible for superconductivity, a Zeeman �eld promoting un-

paired electrons, and quantum transport characterized by hopping amplitudes

whose phases are modi�ed by the orbital e�ect of the magnetic �eld. The

Hamiltonian of such a minimal model reads

H =
∑
i,s

(εi − µ)nis −
∑
i

(λini↑ni↓ −B(ni↑ − ni↓))

−
∑
〈i,j〉

(∑
s

t1e
iγφgijB sinαc†iscjs + t2e

i2γφgijB sinαc†i↑c
†
i↓cj↓cj↑ + h.c.

)
, (3.1)

where c†is, cis are the creation and annihilation of an electron with spin s =

{↓, ↑} on site i. nis = c†iscis is the local occupation number operator, and

each site can have at most two particles, ni = 0, 1, 2. The chemical potential

µ is adjusted to assure half �lling. The disordered onsite potentials εi are

uniformly distributed

P (ε) =
1

2W
Θ(W − |ε|). (3.2)

λi describes the local bias towards attraction between two opposite spins to

form a singlet. It varies from site to site, and a Gaussian distribution with

mean λ0 and variance σ2 is chosen to describe them,

P (λ) =
1

σ
√

2π
exp

(
−(λ− λ0)2

2σ2

)
. (3.3)
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In granular superconductors, the variation of local attraction arises naturally

with varying local grain size and concentration. The presence of an attrac-

tive interaction inducing local pairing representing superconductivity has been

assumed in other theoretical models [27, 54, 94, 100].

In the presence of a magnetic �eld, the Zeeman e�ect suppresses super-

conducting states, diminishes the attraction-induced local pairing. B is the

Zeeman energy that measures how much the magnetic �eld B0 is applied to

the system, B = 1
2
gµBB0, where g denotes the g-factor, and µB is the Bohr

magneton. The orbital component of the �eld is proportional to sinα, where

α is the angle between the magnetic �eld and the plane of the �lm. It en-

ters via an Aharonov-Bohm phase factor. Each hop of an electron with the

charge e or a pair with the charge 2e between two nearest neighbor sites i and

j comes with the hopping amplitude t1,2, respectively, and a corresponding

phase factor. To evaluate the Aharonov-Bohm phase as

e

~c

∫ rj

ri

Adr = γφgijB sinα, (3.4)

we have chosen the gauge such that the in-plane component of the vector

potential A is given by A‖ = B0 sinαxey. φgij is the geometric part of the

phase, φgij = 1
a2

∫ rj
ri
xeydr, where a is the lattice constant. In the constant γ =

2π/EZ , EZ is the Zeeman energy induced by a magnetic �eld corresponding

to a �ux quantum of an electron per unit cell, EZ = 1
2
gµB

hc
ea2 .

In conventional systems, it is expected that the pair hopping is generated

as a second order process in the single particle hopping amplitude, i.e. much

weaker than and dependent on the latter. However, in realistic superconduct-

ing materials, the relation between the two might be more complicated due to

the local electronic structure that is responsible for local attraction and en-

hances pair hopping. Therefore, in the present model, we have chosen to work

with two independent parameters, namely t1 and t2 for the electron and pair

hopping amplitudes. Later, to characterize the distance to the superconduc-

tor transition, we consider the pair hopping amplitude as a control parameter

while the single electron hopping remains untouched.
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3.3 Classical ground state: DOS e�ect induced by Zee-

man depairing

Solving the full Hamiltonian is an ambitious goal. Instead, we tackle the

problem step by step as in the previous chapter. First the hoppings are

neglected for a moment, and we focus on describing the e�ect of Zeeman

depairing on the density of states. In the next step, quantum transport on

the background of the classical ground state con�guration is discussed by

bringing back the hoppings in a perturbative way.

3.3.1 Single-site density of states

In this section, we analyze the single-site DOS's for single electron and pair

excitations corresponding to the classical part of the Hamiltonian. A classical

ground state con�guration is de�ned by a set of occupation numbers {nis}.
The chemical potential µ is the value such that the total particle number is

Ne =
∑

i ni = Nsites. Once µ is determined, we have the following ground

state con�guration: on any site i, the occupation is given by the following

rules

εD ≡ εi − µ−min(λi/2, λi −B) < 0 → ni,↓ = ni,↑ = 1,

εS1 ≡ εi − µ− λi +B > 0; εS2 ≡ εi − µ−B < 0 → ni,↓ = 1, ni,↑ = 0,

εE ≡ εi − µ−max(B, λi/2) > 0 → ni,↓ = ni,↑ = 0. (3.5)

Thus the local occupation number ni on each site i in a given random real-

ization is

ni(εi, λi, B, µ) = 2Θ(−εD) + 1Θ(εS1)Θ(−εS2). (3.6)

The chemical potential µ has to be found as the unique root of the equation

n̄(µ,B) = 1 where the average particle density reads

n̄(µ,B) =

∫ ∞
−∞

dλP (λ)

∫ W

−W
dεP (ε)ni(ε, λ,B, µ). (3.7)
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The relation among onsite disorder, attraction, and magnetic �eld determines

the location of the chemical potential in the energy spectrum.

The excitation energies Em±
ni,s

corresponding to adding or removing m ∈
{1, 2} charges on site i occupied by ni = 0, 1, 2 particles are, respectively,

for ni = 2: E1−
2,↓ = (εi − µ)− λi −B, (3.8)

E1−
2,↑ = (εi − µ)− λi +B, (3.9)

E2−
2 = 2(εi − µ)− λi, (3.10)

for ni = 1: E1+
1,↑ = (εi − µ)− λi +B, (3.11)

E1−
1,↓ = (εi − µ)−B, (3.12)

for ni = 0: E1+
0,↓ = (εi − µ)−B, (3.13)

E1+
0,↑ = (εi − µ) +B, (3.14)

E2+
0 = 2(εi − µ)− λi. (3.15)

As those excitations are excited from a classical ground state con�guration,

they obviously obey Em+
n > 0 and Em−

n < 0. The single-site DOS for spin ↓
electron excitations is averaged over the distributions of the disorder εi and

the attraction λi, and receives contribution from all types of occupancies

ρS↓(E) = ρ0+
↓ (E) + ρ1−

↓ (E) + ρ2−
↓ (E). (3.16)

Each element in the above sum coming from an empty, singly occupied, or
doubly occupied site is given by, respectively,

ρ0+
↓ (E) =

∫ ∞
−∞

dλP (λ)

∫ W

−W
dεP (ε)δ(E − E1+

0,↓)Θ(εE) (3.17)

=
1

4W

[
erf

(
2(E +B)− λ0

σ
√

2

)
+ 1

]
Θ(E)Θ(W − |E +B + µ|),

ρ1−
↓ (E) =

∫ ∞
−∞

dλP (λ)

∫ W

−W
dεP (ε)δ(E − E1−

1,↓)Θ(εS1)Θ(−εS2) (3.18)

=
1

4W

[
erf

(
E + 2B − λ0

σ
√

2

)
+ 1

]
Θ(−E)Θ(W − |E +B + µ|),
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ρ2−
↓ (E) =

∫ ∞
−∞

dλP (λ)

∫ W

−W
dεP (ε)δ(E − E1−

2,↓)Θ(−εD) (3.19)

=
1

4W

[
erf

(
min{W − E − µ−B,−2(E +B)} − λ0

σ
√

2

)
−erf

(
−W − E − µ−B − λ0

σ
√

2

)]
Θ(−E − 2B)Θ(W − E −B + µ).

The same procedure is applied to �nd the single-site DOS for spin ↑ electron
excitations

ρS↑(E) = ρ0+
↑ (E) + ρ1+

↑ (E) + ρ2−
↑ (E), (3.20)

where

ρ0+
↑ (E) =

∫ ∞
−∞

dλP (λ)

∫ W

−W
dεP (ε)δ(E − E1+

0,↑)Θ(εE) (3.21)

=
1

4W

[
erf

(
2(E −B)− λ0

σ
√

2

)
+ 1

]
Θ(E − 2B)Θ(W − |E −B + µ|),

ρ1+
↑ (E) =

∫ ∞
−∞

dλP (λ)

∫ W

−W
dεP (ε)δ(E − E1+

1,↑)Θ(εS1)Θ(−εS2) (3.22)

=
1

4W

[
erf

(
min{W − E +B − µ,−E + 2B} − λ0

σ
√

2

)
−erf

(
−W − E +B − µ− λ0

σ
√

2

)]
Θ(E)Θ(W +B + µ),

ρ2−
↑ (E) =

∫ ∞
−∞

dλP (λ)

∫ W

−W
dεP (ε)δ(E − E1−

2,↑)Θ(−εD) (3.23)

=
1

4W

[
erf

(
min{W − E +B − µ, 2(B − E)} − λ0

σ
√

2

)
(3.24)

−erf

(
−W − E +B − µ− λ0

σ
√

2

)]
Θ(−E)Θ(W − E +B + µ),

Finally, the pair DOS gets contributions only from empty and doubly occupied

sites

ρP (E) = ρ0+
P (E) + ρ2−

P (E), (3.25)
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where

ρ0+
P (E) =

∫ ∞
−∞

dλP (λ)

∫ W

−W
dεP (ε)δ(E − E2+

0 )Θ(εE) (3.26)

=
1

8W

[
erf

(
2(W − µ)− E − λ0

σ
√

2

)

−erf

(
max{2(−W − µ)− E, 2B − E} − λ0

σ
√

2

)]
Θ(E)Θ(W −B − µ),

ρ2−
P (E) =

∫ ∞
−∞

dλP (λ)

∫ W

−W
dεP (ε)δ(E − E2−

2 )Θ(−εD) (3.27)

=
1

8W

[
erf

(
2(W − µ)− E − λ0

σ
√

2

)

−erf

(
max{2(−W − µ)− E, 2B + E} − λ0

σ
√

2

)]
Θ(−E)Θ(W − E −B − µ).

Figs. 3.1 and 3.2 show the above DOS functions and their evolution with

the applied magnetic �eld in the two cases of a constant attraction and a

distributed one.

Without magnetic �eld, the distribution of occupancies through out a half-

�lled system is governed by the on-site disorder and attraction pro�les. Even

though it is unrealistic to have constant attraction in real materials, we �rst

discuss this case in detail to emphasize later the case with non-trivially dis-

tributed attraction. In that limit σ = 0, at low �elds B < λ0/2, since the

local attraction wins over the depairing Zeeman e�ect, all electrons are paired

in the lowest potential wells, i.e all sites are either empty or doubly occupied.

Therefore, adding or removing one particle at a given site requires a minimal

energy of order λ0/2−B creating a hard gap in the single DOS, see Fig. 3.1.

When the �eld becomes moderately larger, some sites change their occupants

from a pair to unpaired electrons. This happens for sites whose energies are

close to the Fermi energy µ while sites with energies lying deep in the spec-

trum remain unchanged. The appearance of low energy electron excitations

leads to an exchange of gap in the electron and pair DOS: the hard gap in
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Figure 3.1: The single-site DOS's for single electron and pair excitations for a con-
stant attraction. For a whole range of the magnetic �eld, the regime in which both
the electron and pair DOS's are ungapped does not exist. When B < λ0/2, all sites
in the system are doubly occupied; it requires a minimal energy of order λ0/2− B
to add or remove an electron from a given site leading to a hard gap in the electron
DOS while the pair DOS is simply �at. As B �eld is moderately larger than λ0/2,
the picture is reversed since some unpaired electrons appear, whose energies are close
to the Fermi energy, resulting in the hard gap in pair DOS of order 2B − λ0 and
the closing of the other one in electron DOS. At a certain value of B > W + λ0/2,
all electrons are singly occupied all sites in the system, and the pair DOS vanishes.

the former is closed while simultaneously a gap opens up in the pair DOS. As

B > W +λ0/2, all electrons are unpaired and all sites are singly occupied, the

pair DOS disappears. The overall picture follows that there is no regime for a

genuine mixture of pair and single electron transport since the excitations of

one of the two carrier types are always gapped. At low temperature, transport

is carried out by ungapped species.

On the other hand, as shown in Fig. 3.2, the situation is more interesting in

the presence of a distributed attraction since a regime for pair-electron mixture

emerges in transport. At low �elds, the previous sharp gap in the electron

DOS is smeared out by an amount corresponding to the standard deviation

of the attraction distribution. In this case, even at zero �eld, a slight negative

tail of the Gaussian distribution of λi induces a small number of soft sites

occupied by unpaired electrons whose energies are close to the Fermi energy.

They add more weight to the low energy single particle excitation sector and

simultaneously reduce the weight of pair excitations. Their presence is felt
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Figure 3.2: The single-site DOS's for single electron and pair excitations for a Gaus-
sian distributed attraction. At zero magnetic �eld, the presence of a small number
of unpaired electrons in the system is marked by a discontinuity and a slight dip at
zero energy in the electron, pair DOS's, respectively. As the �eld increases, the more
those electrons grow in number, the signi�cantly higher the density of low energy
states contributed by them becomes, e.g see in the inset presenting the contribution
of singly occupied sites to the electron DOS. The total e�ect is to quickly �ll up the
low energy part of the electron DOS's and simultaneously suppress the same sector
for pair excitations.

in both the single electron and pair DOS's: a tiny jump in the former and a

slight dip in the latter at the zero excitation energy. This is so because all the

occupancies contribute to the single-site DOS's for single electron excitations

in Eqs. (3.16, 3.20) while only the empty or double occupancies contribute to

the pair DOS. Consequently, the area covered by the pair DOS relates to the

number of unpaired electrons in the system and will reduce if that number

increases.

When a magnetic �eld is applied to the system, it modi�es dramatically

the low excitation energy sector. Due to the Zeeman e�ect, the magnetic

�eld competes with the local pairing tendency on each site i supported by

the attraction λi. As a result, there are more and more unpaired electrons

in the system as the magnetic �eld is strengthened. The degenerate energy

levels close to the chemical potential, which were previously occupied by pairs

of electrons, now are replaced by single electron levels. Therefore, the low

excitation energy sector provided by those unpaired electrons in the single
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electron DOS's grows quickly with the applied �eld as seen in the inset of

Fig. 3.2, while the low energy pair excitation sector falls o� further. In other

parts of the electron DOS's coming from empty and double occupancies, if

the change in the magnetic �eld is ∆B, the value of the DOS is just a simple

shift in the possible energy of the order of ∆B, e.g. ρ0+
↓ (E,B + ∆B) =

ρ0+
↓ (E −∆B,B)Θ(E −∆B). For the pair DOS, outside the growing deeper

dip at low energy E ≤ 2B with increasing B, it remains untouched re�ecting

the fact that the B �eld changes only those degenerate levels close to the Fermi

energy, but not the ones deep inside the spectrum. Furthermore, due to the

possibility of multiple occupancies, the electron DOS is highly asymmetric.

As the above picture emerges with an increasing magnetic �eld, the un-

paired electrons actively contribute to the transport and eventually overtake

the pairs in the role as the main carriers in transport. Moreover, comparing

the low excitation energy sector corresponding to spin ↓ in (3.16) and spin ↑
in (3.20), we can see that the former has higher weight than the latter. This

observation suggests that the single electron transport is dominated by spin

↓.

3.3.2 The evolution of the DOS's at zero energy with a magnetic

�eld

For transport at the lowest temperatures, obviously the low energy excita-

tions matter the most. In this subsection, we focus on analyzing the DOS at

zero energy. It can be extracted from the above given general Eqs. (3.16,

3.20, 3.25). A zero energy excitation of a spin ↓ (↑) electron can be created

by adding one to an empty (singly occupied) site or removing one from a

singly (doubly) occupied site; a similar procedure for other zero energy pair

excitation is applied. Following either way, one comes up with the following

expressions for those DOS's at zero energy

ρ0
S↓ =

1

4W

[
erf

(
2B − λ0

σ
√

2

)
+ 1

]
Θ(W − |B + µ|), (3.28)
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ρ0
S↑ =

1

4W

[
erf

(
min{W +B − µ, 2B} − λ0

σ
√

2

)
− erf

(
−W +B − µ− λ0

σ
√

2

)]
Θ(W +B + µ), (3.29)

ρ0
P =

1

8W

[
erf

(
2(W − µ)− λ0

σ
√

2

)
− erf

(
max{2(−W − µ), 2B} − λ0

σ
√

2

)]
Θ(W −B − µ). (3.30)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

B/EZ

 

 

ρ0S↓,σ = 0.4EZ

ρ0S↑,σ = 0.4EZ

ρ0P ,σ = 0.4EZ
ρ0S↓,σ = 0

ρ0P ,σ = 0

Figure 3.3: The DOS for zero excitation energy as a function of the Zeeman energy.
The calculated result is shown for W = 1, λ0 = 0.8. As the �eld is strengthened, a
decrease in the pair DOS at that energy transfers into a strong rise of the electron
DOS. It re�ects the appearance of more and more unpaired electrons in the system,
which possess energies close to the Fermi energy. For a constant attraction case, at
B = λ0/2 the gap is swapped between the two DOS's.

We are interested in the parameter regime |µ + B| < W in which both

pairs and unpaired electrons occur in the ground state simultaneously. The

above formulae for the DOS's can be rewritten as follows

ρ0
S↓ =

1

4W

[
erf

(
2B − λ0

σ
√

2

)
+ 1

]
, (3.31)

ρ0
S↑ =

1

4W

[
erf

(
2B − λ0

σ
√

2

)
− erf

(
−W +B − µ− λ0

σ
√

2

)]
, (3.32)

ρ0
P =

1

8W

[
erf

(
2(W − µ)− λ0

σ
√

2

)
− erf

(
2B − λ0

σ
√

2

)]
. (3.33)
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Those quantities re�ect the evolution of the low excitation energy sector with

an increasing magnetic �eld. Due to the conservation of the total particle

number, a growing in the number of unpaired electrons occupying low en-

ergy sector is accompanied by a reduction of the one for pairs. This leads

to a depletion of zero energy pair DOS with an enhancement of B �eld by

an amount represented by the last term in Eq. (3.33). Concurrently, a cor-

responding amount cast by the �rst term in Eq. (3.31) is added to the zero

energy DOS for the spin ↓ electrons. Moreover, it is worth to mention that

the DOS at zero energy of a spin ↑ excitation is never smaller than the one of

a spin ↓. It follows from the fact that on a singly occupied site, it is always

more costly to add one more particle to that site than to empty it. Therefore,

below we consider only spin ↓ type in term of electron excitation.

To demonstrate more how quickly the B �eld changes the DOS's, we ex-

amine their logarithmic derivatives

L1(B) =
d ln ρ0

S↓

d ln B
=

4B

σ
√

2π

exp

[
−
(

2B−λ0

σ
√

2

)2
]

erf
(

2B−λ0

σ
√

2

)
+ 1

, (3.34)

L2(B) =
d ln ρ0

P

d ln B
= − 4B

σ
√

2π

exp

[
−
(

2B−λ0

σ
√

2

)2
]

erf
(

2(W−µ)−λ0

σ
√

2

)
− erf

(
2B−λ0

σ
√

2

) . (3.35)
The signs of those functions con�rm the tendencies of the relevant DOS's with

B: a positive slope for an increasing of the single particle DOS and a negative

one for a decreasing pair DOS. Besides that, at low �eld the amplitude with

a convex feature accompanied with the former is bigger than the one with a

concave tendency associated with the latter. It says how strong the depairing

e�ect endorses the single particle transport by creating quickly more and more

low energy excitations as a magnetic �eld is applied. At the �eld value at

which ρ0
S↓ and ρ

0
P are equal, the magnitude of the derivative of the �rst one

is twice bigger than the one of the second. That ratio comes purely from the

di�erence in the number of particles in a given state they represent. At �elds

that are higher than the DOS meeting �eld, the dramatic rise of the electron
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Figure 3.4: The variations of the DOS's with magnetic �eld for a set of parameters:
W = 1, λ0 = 0.8, and σ = 0.4. The vertical dotted line marks the value where
ρ0
S↓ = ρ0

P . From low B, ρ0
P approaches that value with a negative slope while ρ0

S↓
does with a much steeper positive slope showing a rapid increase of ρ0

S↓ with B.
Comparing the variation of the pair DOS before and the visibly higher one of the
electron DOS after the crossing �eld, it signals a possible asymmetry in quantities
characterized transport in those regimes.

DOS is replaced by a slower trend with the slope becoming to decrease.

3.4 Quantum transport: localization properties

3.4.1 Formalism

In the strongly insulating regime t1,2 � W , the quantum hopping can be

considered as a perturbation on a background of the classical ground state

con�gurations. Following the formalism proposed in Ref. [60] and used in

previous chapter, we study the localization properties of the system by exam-

ining the localization lengths of electron and pair excitations. The localization

length measures the spatial decay rate of the relevant Green's function. The

single electron and pair propagators are de�ned as follows, respectively,

GR
i0,σ(t) = −iΘ(t)

〈
{ciσ(t), c†0σ(0)}

〉
, (3.36)

FR
ii,0(t) = −iΘ(t)

〈[
ci↓(t)ci↑(t), c

†
0↑(0)c†0↓(0)

]〉
. (3.37)
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Those functions are the probabilities of �nding an electron or a pair at time

t > 0 on a site i after being inserted into the system at time 0 on a given site

of the lattice, denoted by 0. The notation 〈. . .〉 indicates an expectation value

with respect to the ground state of the Hamiltonian.

The equations of motion for the creation and annihilation of an electron

read

i
dci↓(t)

dt
= (εi − µ− λini↑(t)−B) ci↓(t)−

∑
j∈∂i

(
t
(ij)
1 cj↓(t)− t(ij)2 c†i↑(t)cj↓(t)cj↑(t)

)
,

(3.38)

i
dci↑(t)

dt
= (εi − µ− λini↓(t) +B) ci↑(t)−

∑
j∈∂i

(
t
(ij)
1 cj↑(t) + t

(ij)
2 c†i↓(t)cj↓(t)cj↑(t)

)
.

(3.39)

In the above expressions, t(ij)q = tqe
iqγφgijB sinα denotes the e�ective amplitude

of a hop from site j to site i of an electron with q = 1 or a pair with q = 2.

The sum runs over all sites j that belong to the group of nearest neighbors of

site i, denoted as ∂i. We obtain the Green's functions in the frequency space:

GR
i0,↓(ω) =

1

εi − µ− λin̄i↑ −B − ω

−δi,0 +
∑
j∈∂i

t
(ij)
1 GR

j0,↓(ω)

 , (3.40)

GR
i0,↑(ω) =

1

εi − µ− λin̄i↓ +B − ω

−δi,0 +
∑
j∈∂i

t
(ij)
1 GR

j0,↑(ω)

 , (3.41)

FR
ii,0(ω) =

1

2(εi − µ)− λi − ω

{
−δi,0 (1− n̄0↑ − n̄0↓) +

∑
j∈∂i

t
(ij)
1

[
FR
ji,0(ω) + FR

ij,0(ω)
]

+
∑
j∈∂i

t
(ij)
2 (1− n̄i↑ − n̄i↓)FR

jj,0(ω)

}
, (3.42)

where

FR
ij,0(ω) =

1

εi + εj − λin̄i↑ − λjn̄j↓ − ω

∑
k∈∂i

t
(ik)
1 FR

kj,0(ω) +
∑
k∈∂j

t
(jk)
1 FR

ik,0(ω)

 .

(3.43)
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In the strongly insulating regime t1,2 � W , one can take the number operator

niσ outside the brackets 〈. . .〉 by its eigenvalue n̄iσ with respect to the classical

ground state of the classical Hamiltonian. To get to Eqs. (3.40, 3.41), the same

argument is applied, i.e. to the leading order in the hoppings, the expectation

value of the type
〈
c†i↑(t), cj↓(t)

〉
can be approximately replaced by its value

at the time t = 0 in the classical ground state, and thus gets zero value.

In the expression (3.42), there are two sources contributing to the pair

propagator. The �rst accompanied by the single electron hopping amplitude

t1 comes from pair disintegration/formation processes while hopping through

the lattice. In the second with the pair hopping t2, a pair travels from an initial

site to a �nal site as a rigid boson without being broken into its constituents.

In the next step, we assume that in intermediate states the pair remains

intact allowing us to neglect the contribution of all the processes containing

the travel of single particle to the pair propagator. This is the case when the

energy required to break a pair is large so that a pair would choose to stay

intact and make a hop with t2 rather than to be disintegrated and then hop

paying an energy t1 for a hop of each electron. The pair Green's function

(3.42) is simpli�ed as

FR
ii,0(ω) =

1

2(εi − µ)− λi − ω

{
−δi,0 (1− n̄0↑ − n̄0↓)+

∑
j∈∂i

t
(ij)
2 (1− n̄i↑ − n̄i↓)FR

jj,0(ω)

}
.

(3.44)

In the course of the forward scattering approximation, which is reasonable

in the strongly insulating regime, one is only allowed to take recursion steps

that approach the �nal point. With that, the Green's function can be cast as

a sum over only shortest paths {Γ} connecting the initial site 0 to the �nal one

i. It leads to the �nal expressions for the Green's functions in the expansion

in the hoppings:

FR
ii,0(ω)

FR
00,0(ω)

= tr0i2

∑
Γ:0→i
|Γ|=r0i

ei2γφΓB sinα
∏

k∈Γ\{0}

1− n̄k↑ − n̄k↓
2(εk − µ)− λk − ω

(3.45)
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GR
i0,↓(ω)

GR
00,↓(ω)

= tr0i1

∑
Γ:0→i
|Γ|=r0i

eiγφΓB sinα
∏

k∈Γ\{0}

1

εk − µ− λkn̄k↑ −B − ω
(3.46)

GR
i0,↑(ω)

GR
00,↑(ω)

= tr0i1

∑
Γ:0→i
|Γ|=r0i

eiγφΓB sinα
∏

k∈Γ\{0}

1

εk − µ− λkn̄k↓ +B − ω
(3.47)

Here the shortest length |Γ| = r0i is de�ned as the minimal number of nearest

neighbor hops needed to connect 0 and i. φΓ is the geometric part of the

�ux enclosed by the loop formed by a path Γ and a reference path connecting

those two sites.

In the above expressions, the amplitude of each shortest path is a product

of all locators that a site belonging to that path contributes. The appearance

of the factor 1 − n̄k↑ − n̄k↓ in the pair locator indicates the weakening of the

pair propagator if there are more singly occupied sites blocking on the way

since in this case the locator picks its zero value.

The localization length of an excitation of energy ω can be read o� from

the typical spatial decay rate of the Green's function. Having the variable

range hopping transport at lowest temperature in mind, we are interested in

the lowest excitation energy ω = 0 whose localization lengths for eletrons and

pairs are given by, respectively,

ξ−1
0S↓,↑ ≡ ξ−1

S↓,↑(ω = 0) = − lim
r0i→∞

1

r0i

ln

∣∣∣∣∣GR
i0,↓,↑(ω

′)

GR
00,↓,↑(ω

′)

∣∣∣∣∣
ω′→ω

, (3.48)

ξ−1
0P ≡ ξ−1

P (ω = 0) = − lim
r0i→∞

1

r0i

ln

∣∣∣∣∣ FR
ii,0(ω′)

FR
00,0(ω′)

∣∣∣∣∣
ω′→ω

. (3.49)

The overbar denotes the average over di�erent disorder and attraction realiza-

tions. On a square lattice we carry the simulation out below, the localization

length is calculated by choosing a �xed distance which is the largest one on

that lattice to evaluate the sum over paths.

The calculated localization lengths re�ect both the DOS e�ect via the dis-

tribution of amplitudes of locators and the orbital �eld e�ect via the Aharonov-

Bohm phase factors. The former a�ects the amplitude of each possible path
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by changing the value of its belonging locators. That is the place where the

importance of the growth of the low energy electron excitation sector shows

up as one varies the �eld strength.

Separately, the �eld orientation a�ects the interference of paths. At zero

frequency, a non-zero pair locator (if ni 6= 1) always comes with a positive sign,

and thus all paths have positive amplitudes no matter what the �eld amplitude

or orientation are. In the absence of a magnetic �eld or in the case the �eld is

parallel to the system, that fact results in a positive interference among paths.

An out-of plane �eld introduces a complex phase for each path, destroys that

constructive interference, and therefore narrows the pair localization length.

On the other hand, the opposite e�ect holds for the electron propagation. Its

locators and so the paths come with random signs. Hence, an out-of plane

�eld frustrates the negative interference of random sign paths pushing farther

the localization length of an electron excitation.

As seen previously, the low energy sector of electron excitation with spin

↑ has lighter weight than the one with spin ↓. With that being transformed

into a more frequent appearance of costly denominators of the locators, the

propagation of a spin ↑ excitation is cut shorter than its counter part. In

other words, its localization length is smaller, and the corresponding resis-

tance is always higher than for spin ↓. Consequently, in term of the single

electron transport, the main contribution comes from spin ↓ electron exci-

tations. Therefore, from now on to the rest of this chapter, we refer to only

that excitation type whenever discussing about the transport of single electron

excitations, i.e. we omit the spin index.

Below we carry out a numerical study to understand the localization and

transport properties of a system governed by the Hamiltonian (3.1). We

choose a half-�lled regular square lattice of 24 × 24 sites. First step is to

�nd the classical ground state con�guration of the Hamiltonian. The chem-

ical potential is chosen to be the average of the minimal energy to add and

remove an electron from a given classical ground state. Single electron excita-

tion energies are counted from µ while pair excitation energies are measured

from the reference energy 2µ. On the classical con�guration background, to
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obtain the localization length, we perform the sum over shortest paths en-

closed in a diamond-shape region illustrated in Fig. (3.5). All energies are

measured in the units of EZ that is the Zeeman energy given by a magnetic

�eld corresponding to one �ux quantum per unit cell from an electron. The

lattice constant a is chosen as the unit of length. All below observables are

obtained by averaging over 500 random con�gurations.

0  i

Figure 3.5: The diamond-shape region enclosing all the shortest paths between two
chosen sites 0 and i to perform the numerical evaluation of the propagators.

3.4.2 Field and �eld-orientation dependence of the localization

length: DOS and orbital e�ects

Fig. (3.6) presents the �eld dependence of the inverse localization lengths of

pair and electron excitations at zero-energy for various values of the angle

between the �eld direction and the system plane. When a parallel �eld is

applied to the system, the Aharonov-Bohm phase factor has not yet entered

into play, the only e�ect of the �eld is presented in the Zeeman term, or in

other words the DOS e�ect. As the �eld increases, in the system there are

more unpaired electrons whose energies are close to the Fermi energy. The

low energy sector occupied by those single electrons grows and contributes

signi�cantly to the transport, while the low energy sector of pair excitations

shrinks considerably. In the sum over paths, the small denominators connected

to the former amplify the electron propagator, and thus make the electron

localization length bigger. On the other hand, for pairs, the reduction of
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Figure 3.6: The inverse localization lengths of pair (◦) and electron (O) zero-
energy excitations as a function of Zeeman �eld for various angles: α =
0◦ (solid black) (parallel �eld), 15◦ (cyan), 30◦ (green), 45◦ (magenta), 90◦ (dashed black)
(perpendicular �eld). Other parameters are taken to be: W = EZ , λ0 = 0.8EZ ,
σ = 0.4EZ , t1 = 0.06EZ , t2 = 0.04EZ . For a parallel �eld, there is only the DOS
e�ect which promotes more low energy electron excitations, therefore, enhances
the electron localization length and also reduces the pair one. For an out-of-plane
�eld, the orbital e�ect is taken into account on top of the DOS e�ect. It frustrates
the interference of paths and suppresses the maximally positive one among pair
paths and the accidentally negative one among electron ones. This leads to a
signi�cantly additional increase of the single electron localization length at low
�eld, and oppositely a weak extra decrease of the pair one. The e�ect reaches its
maximum as the �eld is perpendicular to the system. Here only data corresponding
to electron with spin ↓ is shown since it is the most important to the transport
between two spin orientations.

small denominators and also the rise in the number of paths being blocked by

singly occupied sites shorten the propagation of a pair excitation resulting in

a shrinkage of the pair localization length.

When the �eld direction is out-of-plane, on top of the DOS e�ect, the

interference e�ect starts adding its contribution to the localization proper-

ties. An out-of-plane �eld a�ects the localization lengths for pair and electron

excitations in two opposite ways as discussed above. For a zero-energy pair

excitation, the fact that the �eld suppresses the positive interference of paths

all having positive sign leads to a decrease of the pair localization length. In

contrast, the �eld reduces the negative interference of paths in case of single
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electron giving rise for a broadening of the localization length. At zero energy,

the �eld-free interference for pairs is strongest. Therefore, at low �eld, the

more out-of-plane the �eld is, the stronger is the orbital e�ect; the maximal

e�ect is reached when the �eld direction is perpendicular to that system. The

suppression of the perfectly positive interference of all pair paths reduces the

pair localization length much stronger comparing to a weak enhancement of

the electron localization length. The latter is weak due to the reduction of an

accidental cancellation of two bunches of electron paths that are close in the

amplitude, but have opposite signs.

At very large B, upon approaching the point where all the electrons are

unpaired and singly occupy all the sites, the average of the sum over electron

paths slowly saturates to a certain value. In that regime, increasing the �eld

hardly changes the electron localization length and also the resistance.

On a strictly periodic lattice, if only the orbital e�ect is taken into account

while neglecting the Zeeman depairing term in the Hamiltonian, the data of

the inverse localization lengths at di�erent angles would collapse onto each

other after an appropriate scaling related to factor sinα revealing magneto

oscillations with a �xed periodicity. For pairs, the period of oscillations comes

naturally as a �ux quantum per unit cell of a particle with charge 2e, h
2e
. For

electrons, due to the asymmetry of the DOS, it cannot be the same period
h
2e

for the electron localization length at zero energy. Nonetheless, the quasi

doubling structure with two minima in one period h
e
discussed in the previous

chapter still holds. Now taking into account the DOS e�ect, the rapid change

of the amplitudes of the locators changes signi�cantly the path amplitudes

with increasing �eld, and thus destroys the perfect magneto-oscillations. In

real materials, some have small Zeeman energy, e.g. in the one of high atomic

number substrate with strong spin-orbit coupling, one might observe a rem-

nant of those oscillations. However, for others or in the context of granular

superconductors, the case where there are multiple �uxes is hardly realistic.

As discussed earlier for the case of a constant attraction λ0, B = λ0/2 is the

value of the �eld at which the hard gap in the electron DOS is closed while the

one in pair DOS is opened up. For the distributed attraction, we examine how
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Figure 3.7: The �eld dependence of the inverse localization length for pair (◦) and
electron (O) zero-energy excitations for two values of the mean of the attraction:
λ0 = 0.8EZ (black) and 0.4EZ (red) while keeping other parameters the same W =
EZ , σ = 0.4EZ , t1 = 0.06EZ , t2 = 0.04EZ . Data is presented for parallel (solid),
perpendicular (dashed) �elds. The impact of DOS e�ect shows up: at the same
�eld strength in low B regime, there are more and more low energy single particle
excitations for a system that has smaller attraction. Therefore, the localization
length of those excitations increases enormously as the attraction decreases.

the �eld dependence of the localization lengths changes due to the DOS e�ect

as varying the mean attraction value. In the Fig. (3.7), we show the inverse

localization lengths of pair and electron zero energy excitations for two values

of the attraction: λ0 = 0.8EZ and λ0 = 0.4EZ . At the smaller attraction, a

weaker �eld strength is needed to free electrons from being paired. Because of

that, at the same �eld strength, there are more low energy electron excitations

contributing to transport for a system that has smaller attraction value. It

substantially reinforces the single electron transport by a drastic rise of the

electron localization length. At the same time, the pair localization length is

suppressed further for a smaller attraction. Less importantly, a tiny initial

decrease of the electron localization length at small �eld in case λ0 = 0.4EZ

comes from the asymmetry of the electron DOS.

In Eqs. (3.48, 3.49), the dependence of the localization length on the

hopping amplitude is trivial. When the hopping changes by a factor n, the

relevant inverse localization length is varied by an amount − ln(n). Therefore,
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it is natural to expect a shrinkage of the localization length as the associated

hopping is weakened.

3.5 Transport properties: Pair-to-single crossover

3.5.1 The crossover and its �eld orientation dependence

In the course of variable range hopping transport, there are two parallel chan-

nels for transport, by pairs of electrons and by single electrons themselves.

Each of them can be characterized by the Mott's characteristic temperature

T
(0)
Mβ =

1

ρ0βξ2
0β

, (3.50)

where the subscript β = P, S denotes the type of carriers, pairs and singles,

respectively. As long as one of the two temperatures is smaller, the transport

will be dominated by the carrier corresponding to that lower characteristic

temperature. Based on that fact, a crossover in transport regimes dominated

by di�erent types of carriers happens when one of the two Mott's temperatures

takes over the other to be the lower. Therefore, at lowest temperature, the

pair-to-single crossover in transport is driven by the crossover in the Mott's

temperature for pairs and electrons.

Despite its unrealistic nature, it is worth to mention the case of a constant

attraction. At a zero �eld, the DOS of electron excitations possesses a hard

gap up to an energy of the order of a half attraction value, and all electrons

are paired. It means, for a �eld below that value, the transport is carried

purely by pairs. A higher B �eld closes that gap in the electron DOS and

opens a gap in the pair DOS. After that switch, the low energy transport is

dominated by electrons forming a sort of crossover in transport.

With the same spirit is the picture in our case of interest with a distributed

attraction. At a zero �eld, almost all electrons in the system are paired in

local minima, only few unpaired ones are present due to a negative tail of the

distributed attraction. In the low �eld regime, which is still overshadowed by

the strong attraction, the pair transport is dominated as long as nearlly all
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sites are doubly occupied, and there is a soft gap in the electron DOS. This

is seen in Fig. (3.8) showing that the Mott's temperature for electrons are

completely out of scale compared to the one for pairs at very low �eld.
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Figure 3.8: The �eld dependence of the Mott's temperature for pair
(◦) and electron (O) zero-energy excitations for various angles: α =
0◦ (black, solid) (parallel �eld), 15◦ (cyan), 30◦ (green), 45◦ (magenta), 90◦ (black,
dashed) (perpendicular �eld). Other parameters are: W = EZ , λ0 = 0.8EZ ,
σ = 0.4EZ , t1 = 0.06EZ , t2 = 0.04EZ . A crossover in Mott's temperature happens
at any �eld orientation. It is a result of Zeeman depairing solely for a parallel
�eld. The interference e�ect on the localization lengths accelerates it in case of
out-of-plane �eld leading to a strong �eld orientation dependence of the MR peak:
a considerable anisotropy on its pair side compared to its electron side. In high
B regime, the Mott's temperature for electron transport slowly reaches its typical
value when all electron are depaired, which is much smaller than the value for pair
at B = 0. Inset: the average fraction of pairs, NP /Nsites, and electrons, NS/Nsites,
evolving with the applied magnetic �eld; at the �eld where the crossover to electron
dominated transport happens, pairs are still outnumbered by single electrons.

Gradually increasing the �eld �lls up the gap in the low energy electron

excitation sector by driving previously paired electrons into unpaired electron

whose energies are close to the Fermi level. It, on one hand, gives rise to an

increase of both the DOS of zero-energy electron excitation and its localization

length, and on the other hand, decreases the ones for pair. That re�ects into

a gradual rise of Mott's temperature for pairs and a rapid downturn of the

temperature for electrons. As the �eld is strong enough, the latter takes over

the former to be the lower characteristic temperature. That is a signature
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when transport changes from pair to electron dominated regimes resulting

in a giant magnetoresistance peak seen in experiments. And that transport

crossover and its associated resistance peak happen regardless of the �eld

orientation because it is purely from the DOS e�ect.

Notice that at the value of B where the crossover in transport takes place,

in the system, still a majority of electrons is paired, see the inset in Fig. (3.8).

It tells us how robust is the contribution to transport of the unpaired electrons

freed by an increasing �eld even though there are just few of them. Those

electrons become an important source of transport since they hold the low

energy excitation sector. In contrast, most of paired electrons possess very

deep energy levels far from the chemical potential, and thus do not actively

contribute to the low energy transport.
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Figure 3.9: The crossing �eld Bc and corresponding Mott's temperature Tc as a
function of the angle between the �eld orientation and the system plane. Toward
a perpendicular direction at which the orbital e�ect has its maximum impact, the
crossover happens at a smaller �eld and a higher temperature.

Now what the �eld orientation does in this context is to add the interfer-

ence e�ect, when the �eld is out-of-plane, on top of the pair-breaking DOS

e�ect. That a�ects only the localization lengths leaving the zero-energy DOS's

untouched. Therefore, qualitatively, Mott's temperatures follow the trend of

the inverse localization length seen in Fig. (3.6). Fig. (3.8) plots those tem-

peratures for pairs and electrons for various degrees of the angle α between
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the �eld and the system plane. On the low (high) �eld side of the crossover,

the bigger the angle is toward a perpendicular direction, the more frustration

due to an Aharonov-Bohm phase is added to reduce the maximal constructive

(occasional destructive) interference of pair (electron) paths at α = 0; and

thus, the higher (lower) the Mott's temperature is for pair (electron). The

overall picture is that the magnetoresistance peak moves to a lower �eld, a

higher characteristic temperature as the �eld direction changes from being

parallel to being perpendicular to the system plane, which is presented in Fig.

(3.9). Moreover, the variation of magnetoresistance with the �eld orientation

is much stronger on the pair side of the peak than on the electron side. These

results are in agreement with the anisotropy and its exhibition on two sides

of the peak observed in Fig. 3 in Ref. [89] and Fig. 2 in Ref. [90].

In the very high B regime, after a strong drop after the peak, while the

pair Mott's temperature is out of scale (not shown in the �gure), the electron

one varies slowly and reaches its saturated value. That is when nearly all

electrons are unpaired and singly occupy most of lattice sites. The DOS of

the zero-energy electron excitation gets to its peak, and increasing �eld no

longer changes the setting. The typical value of the Mott's temperature (and

so the resistance) in this electron dominated regime is much smaller than the

temperature for pairs at B = 0.

3.5.2 Magnetoresistance peak and various model parameters

In this subsection, we analyze the dependence of the pair-to-single crossover

on the model parameters. Putting together the DOS's in Eqs. (3.31, 3.33)

in the expression for Mott's temperature at lowest temperature, Eq. (3.50),

one obtains a condition for the �eld Bc and the corresponding characteristic

temperature Tc at which the crossover or the magnetoresistance peak happens

Bc =
λ0

2
+

σ√
2

erf−1

 u2

2
erf
(

2(W−µ)−λ0

σ
√

2

)
− 1

u2

2
+ 1

 λ0�σ≈ λ0

2
+

σ√
2

erf−1

(
u2 − 2

u2 + 2

)
,

(3.51)
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Tc =
8W

ξ2
0,P (Bc)

u2

2
+ 1

u2

2
erf
(

2(W−µ)−λ0

σ
√

2

)
+ 1

λ0�σ≈ W

(
1

ξ2
0P (Bc)

+
2

ξ2
0S(Bc)

)
, (3.52)

where u ≡ ξ0P (Bc)/ξ0S(Bc).

As seen above, in the limit when the attraction is sharply distributed

around its mean value, λ0 � σ, the peak position pinpoints closely a half of

that value. This result is independent of the on-site disorder pro�le. It is so

because the transport is sensitive the most to the soft gap in the electron DOS

and the gap closing process itself, which depend nearly only on the attraction

mean value and the Zeeman �eld, but not on the on-site disorder distribution.

It also says in that expression that, besides the main component coming from

the attraction, other contributions through the localization length, e.g. the

hoppings and B orientation, are counted in the ratio between the two local-

ization lengths. If that ratio exceeds
√

2, or d
√

2 in a d dimension, in which

2 stands for the charge ratio between a pair and an electron, the transport

crossover takes place at a higher �eld than a half of the attraction mean value.

Despite an obvious attraction dependence of the peak position, for its height,

everything is encoded into the two localization lengths that are heavily relied

on not only the DOS e�ect, but also the interference one, and so the hopping

amplitudes.

In our model, the most important parameters to the magnetoresistance

peak are the Zeeman �eld, the attraction, and the hoppings, especially the

pair hopping in the context of the superconductor-to-insulator transition. Ex-

amining the dependence of the current picture of the crossover as one varies

the attraction and the pair hopping is shown in Figs. (3.10) and (3.11), re-

spectively. In the former, reducing the mean attraction value by a half while

keeping other parameters the same accelerates the crossover to happens at

much smaller B. Due to a fatter tail of the attraction distribution in the

negative value regime, the presence of a greater number of unpaired electrons

even at zero �eld promotes this escalation. The peak position moves dispro-

portionately comparing to the change of the mean attraction value. Moreover,

a strong enhancement of the electron localization length, in contrast to a slight

decrease of the pair one, makes the peak happens at a smaller characteristic
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Figure 3.10: The Mott's temperature for pair (◦) and electron (O) zero-
energy excitations for two values of the mean of the attraction: λ0 =
0.8EZ (black) and 0.4EZ (red) while keeping other parameters the same W = EZ ,
σ = 0.4EZ , t1 = 0.06EZ , t2 = 0.04EZ . Data is presented for parallel (solid), per-
pendicular (dashed) �elds. The peak moves to a lower �eld as the attraction is
reduced due to the a strong rise of low energy single particle DOS and a suppression
of pair DOS at smaller �eld.
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Figure 3.11: The Mott's temperature for pair (◦) and electron (O) zero-energy exci-
tations for two values of pair hopping: t2 = 0.04EZ (black) and 0.02EZ (green) and
for perpendicular (dashed) and parallel (solid) �elds while keeping other parameters
the sameW = EZ , λ0 = 0.8EZ , σ = 0.4EZ , t1 = 0.06EZ . The peak height increases
signi�cantly as the pair hopping decreases resulting in a profound reduction of the
localization length for pair excitations.

temperature in this case. On the other hand, in Fig. (3.11), reducing the

pair hopping to its half value signi�cantly raises of the peak height due to an



3.6. What could Coulomb interactions do? 67

additional shift of ln(2) to the inverse pair localization length while the DOS's

at zero energy remain unchanged.

The above two parameters, the mean attraction value and the pair hop-

ping are important in the granular superconductor context as they re�ect the

distance to the superconductor transition. The further the system is away

from criticality, the smaller both values are. The combined e�ect will lead

to the following picture: as the distance to criticality increases, the magne-

toresistance peak occurs at smaller �eld. Eventually, the electron part of the

peak is already dominant even at zero �eld exhibiting all the corresponding

behavior, a negative magnetoresistance with a very weak �eld orientation de-

pendence, the magnetoresistance peak is no longer seen. This explains the

disappearance of the peak and also its strong anisotropy at low �eld as the

sample gets deeper into the insulating regime seen in experiments [49, 90].

3.6 What could Coulomb interactions do?

In previous sections, one can see how dominantly the DOS e�ect determines

the whole magnetoresistance peak picture. A natural question to ask is how

that picture changes if Coulomb interactions are taken into account. One

may expect that the well-known Coulomb gap created in both the pair and

electron DOS's modi�es the DOS e�ect. Here we discuss some preliminary

results about the DOS's. A more complete picture for MR will be reported

elsewhere.

Here we brie�y describe the procedure to include the Coulomb interaction

term into the Hamiltonian in (3.1). The classical part of the full Hamiltonian

becomes

HCoulomb =
∑
i,s

(εi−µ)nis+
1

2

∑
j 6=i

e2

κrij
(ni−ν)(nj−ν)−

∑
i

(λini↑ni↓ −B(ni↑ − ni↓)) ,

(3.53)

where κ denotes the dielectric constant of the �lm, rij is the distance between

those two sites, and ν = 1
2
is the �lling of the lattice due to which the Coulomb

contribution of the positive background is subtracted to assure the neutrality
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condition. We employ the same procedure that has been used in various works,

eg. Refs. [96, 97]. It is to consider the DOS's within typical metastable states

that are energetically stable with respect to moves of single electrons, pairs,

or to disintegration/formation of pairs. Numerically, on a �nite size system, a

simulation is carried out by looping over all pairs of sites (i, j) and attempting

to move either one or two electrons. The proposed move is accepted if it

lowers the total energy, otherwise it is rejected. A metastable con�guration

is found if there is no longer any pair/single electron move that lowers the

total system energy. It is equivalent with the requirement that the following

stability conditions are ful�lled

E1+
i − E1−

j −
e2

κrij
> 0, (3.54)

E2+
i − E2−

j −
4e2

κrij
> 0, (3.55)

where Em±
i are the excitation energies to add or remove m = 1, 2 particles

from a given site i. Those excitation energies can be obtained from Eqs.

(3.8)-(3.15) by replacing

εi → εi +
∑
j 6=i

e2

κrij
(nj − ν) (3.56)

Below is the numerical result obtained on a 30×30 square lattice with the peri-

odic boundary condition. The Coulomb interaction between nearest neighbor

electrons, EC = e2/κa, is taken to be equal to the energy unit EZ . The

numerically evaluated DOS's shown in Fig. (3.12) are the histograms of the

electron/pair excitation energies and are averaged over 200 initial random

con�gurations. Energies are de�ned relatively to the chemical potential at

which Em+
i > 0 and Em−

i < 0.

In the case of a constant attraction, there is a sharp gap of order of λ0/2−B
around the Fermi energy in the electron DOS at zero �eld due to the fact that

all electrons are paired. The well-known mechanism for Coulomb gap is active

only for those energy states outside that gap. Increasing the �eld shortens the
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Figure 3.12: The electron (O), pair (◦) DOS's, ρS and ρP , in the presence of
Coulomb interactions with a constant (dashed), λ0 = 1, σ = 0, and a Gaussian
distributed attraction (solid), λ0 = 1, σ = 0.4 for various values of the �eld:
B = 0 (blue), 0.3 (green), 0.5 (red), 0.9 (black). The on-site disorder strength is
chosen to be W = 4EZ , and EC = EZ . In the constant attraction case, when
B < λ0/2, Coulomb interactions only modify the energies outside the hard gap of
order of λ0/2 − B in ρS while a linear Coulomb gap is created at low energy pair
excitations. The reverse is seen for higher B �eld. As the attraction is distributed,
all sharp features are smeared out due to the presence of unpaired electrons in the
system. The low energy electron excitations contributed by those electrons leak into
the λ0 hard gap, and are subject to be depleted by the Coulomb interaction. But
the overall picture of the DOS's evolving with the �eld seems una�ected.

gap. After B = λ0/2, that hard gap disappears and is replaced by a Coulomb

gap: lowest energy excitations come from unpaired electrons and are subject

to the Coulomb gap. On the other hand, the same analogy acts in a reverse

way for the pair DOS. In the regime B < λ0/2, the pair DOS changes from

being a �at, featureless form when without Coulomb interactions to possessing

a linear gap at low excitation energy in the presence of those repulsive long-

range interactions. Out side that regime of the �eld, a hard, �at gap of order

2B − λ0 appears at low energy. This is entirely due to the depairing e�ect of



70 Chapter 3. Giant magnetoresistance peak in a Cooper-pair insulator

the Zeeman �eld. For higher excitation energies, a combination of Coulomb

interaction and depairing e�ect smoothly governs the density of those states.

Comparing to the above picture, a Gaussian distributed attraction changes

mostly the low energy sectors of both electron and pair DOS's. While the

latter is smeared out just a little bit for small �eld, a much stronger impact

is seen for the former due to the presence of the unpaired electrons already at

zero �eld in the absence of the Coulomb interactions. They provide a �nite

amount of low energy electron excitations around the Fermi energy that, in

turn, becomes the subject to be depleted by the long-range repulsion creating

a Coulomb Gap. In this case, the Coulomb gap in the electron or pair DOS's

is always there for any small to mediate value of the �eld.

Within this scope, we are not interested in the question whether the

Coulomb gap in this setting is universal or not. That question would require

much more resources to answer, but provide not much insight into the problem

we try to address here. Instead, we focus only on the magnetoresistance peak,

trying to answer the question of any possibility for the Coulomb interactions

to alter the explained above picture. The next (pending) step would be to

calculate the electron and pair resistances and see how they evolve with the

�eld. Despite the presence of the Coulomb gap in both the pair and electron

DOS's, the prominent role of the B �eld to lift o� low electron excitation

energies shows up. One of its representative is a steeper and steeper Coulomb

gap in the electron DOS, while a weaker reverse trend is seen in the pair DOS,

when the �eld gets stronger. This suggests the current explanation for mag-

netoresistance peak should hold even in the presence of Coulomb interactions.

3.7 Summary and conclusion

In this part of the thesis, we have proposed a microscopic model that cap-

tures the underlying physics behind the MR peak re�ecting the crossover from

pair to single electron dominated transport. It is the interplay between the

isotropic DOS and the anisotropic interference e�ects. The former is the main

driving force toward the crossover. It represents the process of an increasing
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Zeeman �eld that releases unpaired electrons from being paired to contribute

greater impact to the transport. This happens by �lling the low energy sector

with electron excitations coming from those unpaired electrons. This e�ect

occurs regardless of the orientation of the �eld.

The interference e�ect of an out-of-plane �eld highlights the role of quan-

tum statistics that emphasizes the di�erence in dominant carrier type on either

side of magnetoresistance peak. The more out-of-plane the �eld, the stronger

the orbital e�ect. The maximal e�ect is reached as B �eld is perpendicular

to the system. As the angle α increases from 0◦ to 90◦, in the pair dominated

transport, the magnetoresistance is signi�cantly enhanced while, in contrast,

a much weaker opposite impact is seen in the electron dominated one. As a

result, the magnetoresistance peak occurs at a lower �eld and a higher char-

acteristic Mott's temperature in perpendicular �eld as compared to parallel

�eld.

Further into the insulating regime, due to a strong suppression of both

the local attraction and the pair hopping, the electron dominated transport

takes over at lower �elds. At strong enough disorder or distance to the SIT, it

already occurs even at zero �eld. In this case, the peak disappears leaving only

(strong) negative magnetoresistance which arises from the destruction of local

superconducting regions that do not participate in the electronic transport.

Our theory captures qualitatively many key features observed in the ex-

periments in Refs. [89, 90]: the relative magnitudes and opposite tendencies

of the anisotropy of MR before and after the peak, the evolution of the peak

�eld and height with the �eld orientation, its disappearance when the system

gets deeper into the insulating regime. The current picture is expected to

hold at lowest temperature even down to zero temperature. The Coulomb

interactions can be present as a part of a more realistic model. However, we

believe that the essential nature of the pair-to-single crossover in the transport

remains intact.





Chapter 4

Interaction-induced delocalization

in 2D interacting systems

4.1 Introduction

In this chapter, we leave the superconductivity aside. Instead we discuss

the role of the long-range electron-electron interactions on the localization

properties of a two-dimensional system with multiple electron �avors that can

be pocket or band or spin indices.

After the discovery of Anderson localization [3] and the later scaling theory

of localization [9], it was generally believed that no true metallic state exists

in one- and two- dimensional (2D) non-interacting disordered systems while

a metal-insulator transition (MIT) is predicted in three dimensional systems.

With the exclusion of electron-electron interaction, the original scaling theory

by Abraham et al. [9] implies that an in�nite 2D system is always an insulator

due to the localization of electronic wavefunctions, no matter how weak the

disorder is. In that work, the main assumption was that the scaling function

β(g) ≡ d ln g/d lnL is a function of the conductance g itself but not an explicit

function of the length scale L. The behavior of β(g) is shown in Fig. (4.1).

In 2D, β(g) is always negative meaning that the conductance decreases mono-

tonically upon increasing the length scale, or decreasing the temperature. In

contrast, in 3D there is an unstable �xed point, i.e. moving away from it, the

scaling trajectory goes either towards small g for a negative β(g) (insulating

behavior) or towards large g for a positive β(g) (metallic behavior) as the

length scale increases.

On the other hand, in the limit of strong electron-electron interaction
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without disorder, the 2D electronic system forms a Wigner crystal, and the

conductivity reduces to zero due to collective trapping and weak collective

pinning of the crystal [101].

Figure 4.1: The scaling function β(g) versus the logarithmic of the conductance g,
taken from Ref. [9].

In the 1990s, a series of experimental works in high-mobility silicon metal-

oxide-semiconductor �eld-e�ect transistors (Si MOSFETs) [10, 102, 103, 104,

105], and also in other materials [106, 107, 108, 109, 110], reported metallic

behavior in 2D samples. This observation suggested the scaling theory for non-

interacting systems might not hold for interacting cases. In these experiments,

at low carrier density the resistivity diverged with lowering temperature as

expected for an insulator. At higher carrier density, however, above a certain

critical value nc ∼ 0.8 × 1011 cm−1, it showed metallic behavior, and the

resistivity dropped to a �nite constant upon lowering temperature. This raised

a fundamental question about localization, namely, whether a genuine metal-

insulator transition might exist in 2D systems.

There has been an extensive number of theoretical works over the last

decades proposing di�erent scenarios about the 2D MIT. However, a �nal an-

swer to the above question has not been reached. On the numerical side, a

signi�cant e�ort has been devoted to this issue, including di�erent methods
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and techniques, for example quantum Monte Carlo, Hartree-Fock, or dynam-

ical mean �eld theory [111, 112, 113, 114, 115]. On the analytical side, in

the 1980s, there were perturbative calculations performed in the weak disor-

der regime attempting to include electron-electron interactions in 2D disor-

dered systems, �rst by Altshuler et al. [116] and later by Finkel'stein [117]

and Castellani et al. [118]. In the breakthrough work [116], Altshuler et al.

showed the weak-localization (logarithmic) corrections to the conductivity for

2D systems at low temperature. Within a perturbative renormalization group

approach, Finkel'stein [117] suggested a mechanism of delocalization due to

the spin-spin interaction. Unfortunately, this perturbative treatment is in-

valid at zero temperature. Those above mentioned works were focused on the

di�usive limit. Interestingly, the work by Zala et al. [119] on the systems in

the ballistic regime found the correction to the conductivity to be linear in

temperature, and this correction changes its sign depending on the strength

of the interaction.

Later, Punnoose and Finkel'stein [11, 52] re-summed over the most diver-

gent terms that caused the breakdown of the previous perturbation theory

upon approaching zero-temperature. Their work emphasized the crucial role

of spin and valley (degenerate regions in the conduction band of semiconduc-

tors) degeneracy. They considered 2nν �avors of electrons, where nν is the

number of valleys, and the extra factor two refers to the two possible spin

states of an electron. The existence of a quantum critical point separating

a metallic and an insulating phase has been argued. Below we review only

the most relevant approaches to our work, for reviews on this subject see for

example [120, 121].

The essence of Punnoose and Finkel'stein's work is summarized by the fol-

lowing renormalization group equations for two parameters, the dimensionless

resistance ρ and the electron-electron scattering amplitude γ2, re�ecting the

interplay between disorder and interaction,

d ln ρ

ρdl
=

[
nν + 1− (4n2

ν − 1)

(
1 + γ2

γ2

ln(1 + γ2)− 1

)]
, (4.1)
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Figure 4.2: ρ/ρmax as a function of ρmax ln(T/Tmax). The solid line presents the
solution of Eq. 4.1 with nν = 2 showing the non-monotonic scale dependence of the
resistivity. The symbols correspond to di�erent values of the electron density, 0.83
(square), 0.88 (triangle), and 0.94 (diamond) ×1011 cm−2. The plot is taken from
Ref. [11].

dγ2

ρdl
=

(1 + γ2)2

2
. (4.2)

In the above, l = − ln(Tτ) is a relevant scale of those two quantities, where

τ is the elastic scattering time, T is the temperature, and Tτ � 1 is in the

di�usive regime. In Eq. (4.1), the �rst term is the usual Anderson localiza-

tion without interactions. This term corresponds to the quantum interference

leading to weak localization in non-interacting systems with nν valleys. The

second term is a contribution of a singlet mode of interaction in the charge

channel, discovered in Ref. [116]. It is independent of nν as the singlet mode

is unique no matter how many �avors. Moreover, the e�ective constant of

the interaction in front of this term is unity due to the (over) screening of

the long-range Coulomb interaction (leading to a universal constant of the

interaction in the singlet channel). Finally, the last term represents the mul-

tiplet modes with the total number of those modes 4n2
ν − 1. Note that this

term includes a function of the e�ective interaction γ2 as the corresponding

interaction is not screened. γ2 and thus the value of that function are small at

small scale l, but grow monotonically with increasing the scale l, or lowering

the temperature T . This e�ect is described in Eq. (4.2) as the right hand side

is always positive.
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In Eq. (4.1), the �rst two terms favorable to localization come with a posi-

tive sign whereas the last term has a negative sign supporting anti-localization.

Due to the presence of the factor 4n2
ν − 1, the anti-localization tendency gets

enhanced dramatically in the case of multi-valleys while the total contribution

from terms favorable to localization increases much slower. That enhancement

together with the gradual increase of γ2 upon a larger scale can give a non-

monotonic scale dependence to the resistance, a growth (an insulating behav-

ior dρ/dl > 0) at small scale and a decrease (a metallic trend dρ/dl < 0) at

larger scale. Therefore, for a large number of �avors, at large scale, eventually,

the net e�ect is in favor of delocalization.

With nν = 2, Fig. (4.2), taken from Ref. [11], plots the rescaled resistivity

ρ/ρmax as a function of ρmax ln(T/Tmax), where the maximum value ρmax is

reached when the temperature T gets to a certain value Tmax. Experiment

data are provided for comparison also. In this case, if one starts from a

temperature above Tmax, upon decreasing the temperature, γ2 increases but

is still small, and thus the �rst two terms dominate the right hand side of Eq.

(4.1) leading to an enhancement of the resistivity. At T ∼ Tmax, γ2 is big

enough so that the contribution from the last term favoring antilocalization

is of the order of the one from the above two terms. From this point on, with

lowering the temperature further, the antilocalization term is dominant and

strengthened, resulting in a reduction of the resistivity.

Motivated by the above theory we carry out below a numerical study us-

ing Hartree-Fock treatment aiming at addressing the role of electron-electron

interactions in a 2D disordered system with multiple electron species. As we

will discuss later, at the Hartree-Fock approximation level, a correspondence

with the Finkel'stein's renormalization group equation can emerge.

Although the Hartree-Fock Hamiltonian is e�ectively a single-particle one,

it has been shown in Ref. [74] that the treatment in 3D systems is capa-

ble of demonstrating such subtle wavefunction correlations in the presence of

Coulomb interactions. In that work, the correlation fractal dimension re�ect-

ing the multifractality of the Hartree-Fock wavefunctions is determined. The

fractality is a characteristic of critical states, but also exhibits in o�-critical
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states within the localized region of the wavefunction.

4.2 Model and method

On a regular square lattice of size N = L × L, we consider a system of

Ne = pfL2 electrons, where p ≡ 2nν is the number of electron species, and f

denotes the �lling per species. The electrons in a random potential are subject

to Coulomb interactions and can hop between nearest neighbor sites with the

hopping amplitude t. The Hamiltonian describing this system reads

H =
∑
i,α

(εiα − µ) c†iαciα+
1

2

∑
i 6=j
αα′

Vij (niα − f)(njα′ − f)−
∑
〈i,j〉,α

t
(
c†iαcjα + h.c

)
.

(4.3)

c†iα, ciα are the creation and annihilation operators of an electron of �avor

α = 1, 2, . . . , p on site i, and niα = c†iαciα is the local occupation number op-

erator. The onsite disorder εi is uniformly distributed between [−W/2,W/2].

Vij = U/rij represents the Coulomb interaction between charges at two sites i

and j. To ensure the charge neutrality, each site of the lattice carries a com-

pensating background positive charge of fe per �avor. The chemical potential

is determined self-consistently according to the �lling f . We set t = 1 to be

the unit of energies and the lattice spacing a to be the unit of length.

Within the Hartree-Fock approximation, the Coulomb interaction term

can be decoupled, and we obtain the following Hartree-Fock Hamiltonian

H =
∑
i,α

ε̃iαc
†
iαciα −

∑
i 6=j,α,α′

Vij〈c†iαcjα′〉c†jα′ciα −
∑
〈i,j〉,α

t
(
c†iαcjα + h.c

)
. (4.4)

The second term is the long-range Fock exchange interaction while the Hartree

energy is included in the e�ective onsite energy

ε̃iα = εiα − µ+
∑
j 6=i,α′

Vij〈c†jα′cjα′〉. (4.5)

The 〈. . . 〉 denotes the expectation value with respect to the Hartree-Fock
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ground state which has to be determined self-consistently. By using the

Hartree-Fock approximation, the interacting many-body Hamiltonian is re-

duced to an e�ective single-particle one.

As seen above, on one hand, the presence of the onsite energy Hartree

shift enlarges the �uctuation amplitude of the e�ective onsite disorder ener-

gies. This e�ect somehow favors localization. On the other hand, due to the

interaction-induced deterministic energy added, the e�ective onsite disorder

energies are no longer uncorrelated. The e�ective correlation indeed prefers

to delocalize an excitation. Adding to this picture, also there is a long-range

hopping due to the nature of long-range Coulomb interaction via the presence

of the exchange Fock term. The interplay between opposite tendencies favor-

ing anti-localization and localization can lead to a rather complex behavior of

the system.

To simplify the problem such that the computational cost can be reduced,

from Eq. (4.3) to Eq. (4.4), we have chosen to retain only the terms that obey

the �avor symmetry. Since it is diagonal in electron �avor space, the practical

Hilbert space is now reduced to N × N instead of a full size pN × pN . In

general, the �avor symmetry can be kept or broken.

To numerically determine the Hartree-Fock solutions of the above Hamilto-

nian for a given set of random realization of the onsite energies {εi}, we follow
a standard set of steps which are brie�y summarized as follows. First the pro-

gram creates randomly an initial input set for the density matrix nij = 〈c†icj〉,
and then forms a N × N Hamiltonian matrix given by Eq. (4.4) from that

input set. The Hamiltonian matrix is diagonalized to obtain the eigenvalues

{Em} and eigenvectors {ψm}, based on which one can calculate the output

density matrix

nii =
∑
m

|ψm(ri)|2f(Em), (4.6)

nij =
∑
m

ψ∗m(ri)ψm(rj)f(Em), (4.7)

where f(E) is the Fermi distribution function. The chemical potential µ is
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adjusted by choosing randomly a value between the highest occupied energy

ENe and the lowest empty one ENe+1. This choice helps to prevent an arti�cial

hard gap in the density of states. After this step, all eigenenergies are counted

from that chosen chemical potential, Em ≡ Em − µ. The iteration procedure

stops if the convergence criterion is satis�ed. This is the di�erence between

the density matrices n
(k),in
ij , n

(k),out
ij going in to and out from an iteration loop

k is smaller than a small error value δ = 10−4:

|n(k),in
ij − n(k),out

ij | ≤ δ. (4.8)

Otherwise, a new iteration p+ 1 is to start with an update from the previous

density matrices

n
(k+1),in
ij = (1− λ)n

(k),in
ij + λn

(k),out
ij . (4.9)

The parameter λ is chosen in the interval [0, 1] such that the iteration proce-

dure is stable and converges. Once the converged solutions are obtained, one

can compute the physical quantities that are expressed in terms of the eigen-

values {Em} and eigenvectors {ψm}. The numerical procedure is repeated for

other random realizations to �nally attain the disorder averaged quantities.

Following the formalism used in Refs. [74, 122] that focuses on the mul-

tifractality of the electronic wavefunctions, we are interested in the auto-

correlation of the local density of states, or the spatial correlation of the

Hartree-Fock wavefunctions, in a normalized form

K(R;E) =

∑
m,Em∈Ω(E)

∑
r |ψm(r)|2|ψm(r + R)|2∑

m,Em∈Ω(E)

∑
r |ψm(r)|4

. (4.10)

The overbar denotes the average over random con�gurations of the disorder.

Ω(E) = [E − ∆, E + ∆] is the interval energy centered at a given energy E

with the width of the order of the mean level spacing ∆ = W/L2.

The above correlation function can be used as an indicator to distinguish

between an insulating and a metallic behavior since it is related to the overlap-

ping the wavefunctions centered away from each other by a distance R = |R|,
see for example for 3D systems in Ref. [74]. Apart from being suppressed
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initially at short distance that is smaller than the correlation length ξ in both

cases, the larger distance behavior of the correlator is totally di�erent. In the

insulating regime, the correlator decays exponentially to zero at the distance

R � ξ demonstrating the zero overlap of the electronic wavefunctions. In

contrast, in the metallic regime, it saturates to a constant value re�ecting the

minimal correlation of electrons even at large distance in this regime.

4.3 Density-density correlation function

In this section we report our numerical results for the correlation function.

Starting with a non-interacting system of single �avor electrons, we then in-

crease both the number of �avors and the interaction strength to detect any

signal of delocalization. For all results presented below for interacting sys-

tems we have chosen a moderate disorder strength W = 12t for a lattice with

L = 28 at the �lling f = 0.1 and at a �xed distance to the Fermi energy

E = 0.1t. For the non-interacting case we are able to perform simulations for

a system of size L = 40 with various values of disorder strength. The disorder

average is done over 2000 realizations.

4.3.1 Non-interacting case

Without interaction, since this is a 2D system, it shows insulating behavior

for any disorder strength regardless of the number of electron �avor. The

correlator is suppressed further, and the localization length is reduced as the

interaction gets stronger.

As for this case and also in 3D case [74], the correlation function is expected

to obey a scaling behavior. This means the correlator should have a form

K(R;E) ∼ A(ξ)F (R/ξ), where the prefactor A(ξ) depends on the disorder

strength while F (x) is an universal function of x = R/ξ. After rescaling

the correlator by the factor A and the distance R by the disorder-dependent

localization length ξ, all the curves corresponding to di�erent values of the

disorder strength should collapse to a single curve.

Fig. (4.3) presents the data collapse after a proper rescaling with the uni-
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Figure 4.3: Data collapse of the correlation function for di�erent values of disorder
strength to a single scaling function F (R/ξ) (solid line) for non-interacting systems.
The disorder-dependent localization length is larger for a weaker disorder strength.

versal form of the scaling function found as follows. Given the localization

or correlation length ξ, for R > ξ, the correlation function decreases expo-

nentially with increasing distance while a weaker suppression is expected for

R < ξ since there is the overlapping of the wavefunctions within the localiza-

tion volume. Therefore, the following form has been suggested for the scaling

function:

F (x) ≡ K/A = x−ηe−x. (4.11)

The exponent η ≡ η(x) is chosen such that it correctly obeys asymptotic

behaviors.

For small distance R < ξ, the localization property of the wavefunction is

related to its multifractal nature expressed in terms of the fractal dimension

d2, and d2 < d, where d = 2 is the dimension of the space. The multifrac-

tal statistic of a single eigenstate corresponding to d2 is characterized by the

second moment of a single eigenstate at a given energy (i.e. the inverse par-

ticipation ratio). Due to the multifractality, the typical amplitude of the local

probability density is not just the inverse localization volume, but has the
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following form |ψm(r)|2 ∝ 1/ξd2 . Therefore, we have

∑
r

|ψm(r)|4 ∼ ad2−d

ξd2
, (4.12)

and ∑
r

|ψm(r)|2|ψm(r + R)|2 ∼ Rd2−d

ξd2
. (4.13)

Putting altogether one obtains the asymptotic form for the correlation func-

tion

K(R) ∝
(
ξ

R

)d−d2

. (4.14)

(Here the ξ-dependent constant has been absorbed into the proportional pref-

actor.) Therefore, the exponent in (4.11) is η(x) = 2− d2 for 2D.

On the other hand, in the limit R < ξ, it is expected that the scaling

function follows the scaling theory of localization for non-interacting systems.

Namely, η(x) = 2− d2 is a function of the dimensionless conductance g which

obeys the renormalization group equation β(g) for g � 1. This leads to

η(x) = 2− d2
R�ξ
= 2/g(x)

g�1
= 2/[1− ln(x)] [123, 124].

For large distance R > ξ, the wavefunctions centered far away from each

other by distance R just overlap via their exponential tails as it is equivalent

to the case in the strongly insulating regime. The fractal dimension is thus

expected to approximately be zero [125], resulting in a asymptotic value two

for η, η(x)
R�ξ→ 2. Taking both the above limits into account, we have employed

the following function

η(x) =
2

c−1
1 ln(x−c1 + c2)e−x/c3 + c4

, (4.15)

where c1,2,3,4 ∼ O(1).

4.3.2 Interacting case

Figs. (4.4), (4.5), (4.6) plot the normalized correlation function for various

values of the interaction strength and for three values of the electron �avor

number p = 1, 2, 4, respectively. For the single �avor case p = 1, the corre-
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lation function is suppressed more with distance as the interaction gradually

gets enhanced.

However, the picture changes when there is more than one electron species

in the system. At small interaction strength, U/t < 0.8 for p = 2 in Fig. (4.5)

and U/t ≤ 0.4 for p = 4 in Fig. (4.6), the behavior of the correlation function

is almost similar to the single species case. In contrast, for larger interaction

strengths, after a drastic drop at small distance, the correlator slowly varies

with larger distance, even seems to saturate in the case p = 4. Upon increasing

the number of electron �avors, the above two-stage behavior of the correlator

with increasing distance occurs at smaller interaction strength and gets more

signi�cant.
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Figure 4.4: The normalized correlation function for di�erent values of interaction
strength for the single �avor case.

Our �rst attempt is to employ the same scaling ansatz presented above

for the insulating behavior that has been shown to work well for the non-

interacting case. However, it turns out that the one-parameter scaling function

is applicable to the current data only for the case with a single electron species,

p = 1, for any value of the interaction. The complex behavior apparently does

not allow the correlation function in the multiple electron �avor case to follow

the same simple ansatz as in the single �avor case.

Indeed, it seems counterintuitive that upon increasing the electron �avor

number, the Hartree term is strengthened, one sees a stronger drop of the cor-
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Figure 4.5: The normalized correlation function for di�erent values of interaction
strength for the �avor number p = 2.
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Figure 4.6: The normalized correlation function for di�erent values of interaction
strength for the �avor number p = 4.

relation function at short distance. However, this initial strong drop and the

following slow variation at larger distance of the function might correspond

to the non-monotonicity of the scale-dependent resistance predicted in Pun-

noose and Finkel'stein's renormalization group equations due to a complex

interplay of terms favorable to anti-localization and localization. In the case

with p = 2, 4, a drastic change happens, a steep derivative at small distance

is replaced by a much �atter one at large distance.
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Figure 4.7: The rough approximation for the logarithmic derivatives of the correla-
tion function as a function of distance R.

The possible scale l in our current problem is the minimum among lnL,

− ln(Tτ), and lnR. However, since the system we study is at zero temperature

T = 0 and initially is localized, the most relevant length scale is the distance R.

In Fig. (4.7), we demonstrate better the two-stage behavior of the correlator

in cases with multiple �avors by sketching its logarithmic derivative for a given

interaction strength U/t = 1.6. There is a similar tendency, gradually slightly

increasing, of the logarithmic derivative in the non-interacting and interacting

case with single �avor, although the amplitude of the derivative in the latter

is larger re�ecting an enhancement of localization. (Note that the employed

Hartree-Fock treatment does not include the (random phase approximation)

screening, and thus the interaction strength may enter.)

4.4 Discussion and summary

At this primary stage, our message here is that at the Hartree-Fock level

there is a clear di�erence in the localization property between cases with

single and multiple �avors of electrons. In the single �avor case where the

Hartree and Fock terms are on an equal footing, only localization tendency is

observed as the interaction increases as expected. In contrast, in the case with
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multiple �avors that emphasizes the Hartree term, a complex behavior of the

correlation function has emerged: a strong suppression at short distance and

a very slow variation at larger distance for a moderate or large interaction

strength.

It is worth to notice that the above two-stage characteristic of the cor-

relation function may re�ect the non-monotonic scale-dependent resistance

obtained in Punnoose and Finkel'stein's theory. It all comes from the striking

competition between opposite tendencies that support localization or anti-

localization in two dimensional systems.

Our unsuccessful attempt to employ the one-parameter scaling that has

worked well in 3D case for the correlation functions in the current setting

raises some related questions. Firstly, does it mean that the scaling with

one-parameter is not adequate to detect the e�ect here? One could also sus-

pect that the correlation length is also scale-dependent, and thus, requires a

di�erent approach for the scaling function.

As for next step, one could try to work out a suitable interpolating function

for the correlation function to obtain the characteristic length of the system.

Or there might be other quantities that describe better the non-monotonicity

of the resistance. On the numerical side, a further implementation of the

Hartree-Fock procedure is needed in order to incorporate better the correlation

and the many-body physics in the study. For example, to take into account a

proper screening treatment via the random phase approximation is certainly

relevant for a better result.





Appendix A

Period doubling in the

magnetoresistance of

non-interacting fermions

This appendix recalls the period-doubling in the magnetoresistance of non-

interacting fermions on regular lattices, as evaluated within the forward scat-

tering approximation. If the disordered onsite energies are uncorrelated and

symmetrically distributed around ω = 0, one can prove that the localization

length as a function of �ux, ξ(B), is a periodic function of B with the reduced

period B0/2, B0 corresponding to one �ux quantum threading a unit cell of

the lattice. We show this for the cases of square and honeycomb lattices, see

Fig. A.1. In both lattices we marked a fraction of the sites with blue spots.
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Figure A.1: Analyzing fermionic localization on two di�erent lattices. For local-
ization at energy ω = 0, adding half a �ux quantum per unit cell is equivalent
to having no �ux and changing the sign of onsite disorder on the subset of sites
marked by circles, which yields a statistically equiprobable disorder con�guration.
For a symmetric disorder distribution, this property implies a period doubling of the
magnetoresistance for non-interacting fermions, when evaluated in forward scatter-
ing approximation.
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Appendix A. Period doubling in the magnetoresistance of

non-interacting fermions

Consider the sum over shortest paths Γ connecting site 0 to site i, in the

presence of a magnetic �eld B. Adding half a �ux quantum per plaquette, one

easily checks that the extra Aharonov-Bohm phase between two paths Γ and

Γ′ is given by (−1)Ns , where Ns is the number of marked sites that are not

shared by both paths. One can verify that the same relative phase is obtained

if the signs of all locators on the marked sites is reversed. This implies that up

to a global sign the sum over paths at ω = 0 is equivalent to a sum in a �eld

B + B0/2, but with reversed sign of the onsite energy on marked sites. This

change of sign leaves the measure of uncorrelated random energies invariant,

provided the disorder distribution is symmetric around ω = 0, ρ(ε) = ρ(−ε).
From this, one concludes that ξ(B) = ξ(B + B0/2) is periodic with period

B0/2 for a symmetric disorder distribution and for ω = 0.

For featureless densities of states and energies in the bulk of the spectrum

the doubling of the periodicity is not exact, but nevertheless holds to a very

good approximation.

Note that time reversal symmetry further implies the symmetry ξ(B) =

ξ(−B).

As we discuss in the main text, the above proof breaks down when the

onsite energies are correlated, even if the density of states remains symmetric.
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