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Introduction

This thesis is devoted to the study of some models of fracture growth in elastic
materials, characterized by the presence of forces acting on the crack lips. The moti-
vation is the following: there are lots of applications in which different kinds of surface
forces, such as pressure or cohesive forces, affect the crack growth process. However,
the majority of the mathematical results on fracture evolution achieved up to now
deals with traction free cracks. Hence, the goal of this Ph.D. thesis is to discuss the
role played by surface forces in the fracture evolution through the study of some model
examples. The results presented in this work are contained in the papers [2, 3, 4, 5.

In the following discussions we focus our attention on quasi-static rate-independent
processes. The term quasi-static means that we neglect all the inertial effects, so that,
at every instant, the system is assumed to be at the equilibrium with the applied
external loadings. This is a reasonable approximation when the data which drive the
evolution, such as forces or prescribed boundary conditions, vary slowly in time. By
rate-independent system we intend that, if the time-dependent data are rescaled by a
strictly monotone increasing function, then the system reacts by rescaling the possible
evolutions in the same way.

The starting point of our analysis is the famous Griffith’s theory [44] of brittle
fracture in elastic materials: the system presents a perfectly elastic behavior outside
the cracked region and no force is transmitted across the cracks. The key assumption
of Griffith’s model is that the fracture growth is the result of the competition between
the elastic energy released in the process of crack production and the energy dissipated
in order to create a new portion of fracture. Therefore, the total energy of the system
associated to a displacement u and a crack set I' can be written, in its simplest form,
as

E(u,T) == &% u,T) + K(I), (1)

where £¢(u,T') and K(I') are the stored elastic energy (reversible) and the energy
dissipated by the fracture growth, respectively. Usually, the term IC(T') is supposed
to be proportional to the crack length (or area in higher dimension), with a positive
proportionality constant x to which we refer as the toughness of the material. The last
assumption on K is justified by the fact that, in the first model proposed by Griffith, no
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cohesive forces act between the fracture lips, i.e., once the crack is created the two faces
of the fracture do not interact between each other. Therefore, the energy required to
produce a new crack coincides with the energy spent to break the inter-atomic bonds,
which are uniformly distributed in space.

Griffith’s criterion of crack evolution is stated in terms of the energy release rate,
i.e., the negative of the derivative of the elastic energy £ with respect to the crack
variation. Let us suppose that the elastic body is 2-dimensional and that the frac-
ture set I" evolves only along a prescribed smooth curve A. Then, the crack can be
expressed as a function I'(s) of the arc-length s. As usual, the elastic energy at the
equilibrium E¢(s) is defined by

E(s) := min{€%(u,T(s)) : u admissible displacements}
and the energy release rate &(s) by

0E(s)
B(s) = ——12—~,

() P
Assuming in (1) that K(I'(s)) = ks, Griffith’s criterion reads as follows: if &(s) is
less than the material toughness x, then the crack is stable, otherwise it will grow. In
formulas, a quasi-static evolution t — I'(s(t)) has to satisfy:

(G1) drreversibility: $(t) > 0;
(G2) stability: &(s(t)) < k;
(G3) activation: (&(s(t)) —k)s(t) =0,

where the dot denotes the derivative with respect to time. The Griffith’s principle
has been studied in several papers assuming at least C''!-regularity of the crack path
(see, e.g., [47, 48, 49, 64, 67, 73] for the case of prescribed crack path, and [52, 53] for
a more general setting in linearized antiplane elasticity).

Griffith’s formulation (G1)-(G3) of the crack evolution problem can be interpreted
as a first order condition: one seeks a solution among all the critical points of the
energy (1). Since it is demanding to deal with stationarity in this context, Griffith’s
criterion typically works only in some particular situations, such as planar elasticity
with prescribed and sufficiently smooth crack path. Indeed, in dimension 2 the fracture
set can be parametrized by its length, while, in higher dimensions, such a strategy
cannot be easily generalized since the crack variation could be very “non-local”, even
in the case of prescribed path.

To deal with more general situations, in the late 90’s Francfort & Marigo [39]
proposed a new variational approach to the quasi-static crack evolution in brittle
materials which shows, as a byproduct, that the problem of fracture growth fits in
the general framework of rate-independent processes a la Mielke [57, 60]. Conditions
(G1)-(G3) are indeed rephrased in a derivative free setting in the form of global stability
and energy-dissipation balance:
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(GS) at every instant of time ¢, a solution I'(¢) has to minimize the total energy of
the system (1) among all other admissible cracks I' O I'(¢);

(E) the increment of the elastic energy plus the energy dissipated by the crack pro-
duction equals the work done by the external forces acting on the system.

In [39], the authors proposed also a time-discretization procedure to prove the exis-
tence of such an evolution: a continuous-time solution is approximated by discrete-
time solutions obtained by solving incremental minimum problems. This technique is
frequently used in the study of rate-independent processes [57, 60].

Francfort & Marigo’s approach permits to overcome some restrictions of the Grif-
fith’s principle, such as being 2-dimensional with a prescribed path. Indeed, the ener-
getic formulation (GS)-(E) is valid in any dimensions and allows the fracture set I'(¢)
to choose its way during the evolution process according to the variational principle of
energy minimization: the solutions we look for are now global minimizers of the energy
of the system, so that (GS) can be interpreted as a zero order condition. Therefore,
the regularity of the crack set is not needed anymore, and the class of competitors for
an evolution ¢ — I'(¢) may be very general (see, e.g., [23, 25, 38|, where the admissible
fractures are rectifiable sets with finite H"!-measure).

On the other hand, it has to be noticed that the energetic formulation (GS)-
(E) could produce unnatural discontinuities in the evolution. From a mathematical
point of view, this is due to the fact that we want the minimality condition (GS) to
be satisfied by an energy of the form (1) which is usually not convex with respect
to the crack set variable. As a consequence, it could happen that a solution ¢ —
I'(t) of (GS)-(E) jumps instantaneously from a stable configuration to another one
passing through an energetic barrier. On the contrary, Griffith’s principle is a sort
of differential condition on the fracture evolution, and thus is expected to produce a
more physical solution, i.e., a solution which jumps later than a globally stable one.
For this reason, the ongoing mathematical research on fracture mechanics still deals
with weaker notions of Griffith’s criterion obtained as limit of rate-dependent models
(see, for instance, [47, 48, 49, 52, 53, 64, 67, 68, 73]).

Since Francfort & Marigo’s variational approach was introduced, the mathematical
community has given more and more attention to the investigation of various aspects of
the mathematical model of brittle fracture. The key issue is, of course, the existence
of quasi-static evolutions satisfying (GS)-(E). The first result in this direction was
obtained by Dal Maso and Toader in [28] in antiplane linearized elasticity: the reference
configuration is an open subset Q of R?, the admissible cracks I' are one dimensional
closed sets with a finite number of connected components, and the displacements
u: © — R are Sobolev functions in Q\I'. The energy they considered is of the form

E(u,T) = ;/Q\|Fw12dx + wHNT). (2)

This existence result was then generalized by Chambolle [19] to the case of planar
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linearized elasticity, dealing with the energy

1
E(u,T) = 2/ CEu-Eudz + ~H (), (3)
O\l

where C is the usual elasticity tensor and Eu stands for the symmetric part of the
gradient of the displacement u:  — R2.

Later on, Francfort and Larsen [38] presented a more “unified” formulation in the
framework of SBV functions: working again in antiplane linearized elasticity with
driving energy (2), the fracture I' becomes a rectifiable set containing the discontinuity
set S, of the displacement v € SBV(Q2). This new formulation allowed them to
overcome the unphysical restrictions on the dimension (now @ C R"™) and on the a
priori bound on the number of connected components of the cracks used in [28].

In [23], Dal Maso, Francfort, and Toader generalized the above results, working
with a total energy of the form

E(u,T) = /QW(x, Vu)dr + /1“ Y(x, vr) dH™ ! + external forces, (4)

where the density ¢ of the energy dissipated by the crack production depends on the
orientation of the crack set I' through its unit normal vector vr (the usual Griffith’s
energy proportional to the measure of the fracture corresponds to ¢ (x,v) = k|v|), and
the stored elastic energy density W (zx,§) is a quasi-convex function with a polynomial
growth in &, uniformly with respect to x. Therefore, the bulk energy in (4) has a
nonlinear dependence on the gradient of the displacement u, according to the rules of
hyperelasticity. The functional setting they considered is the space of generalized spe-
cial functions of bounded variation GSBYV which permits, with suitable modifications
of the arguments developed in [38], to deal with vector valued displacements.

From the prototypical energies reported in formulas (2)-(4), we can deduce that
most of the mathematical results obtained up to now holds only for traction free
fractures: for instance, the equilibrium system resulting from (2) is

Au=10 in Q\ T,
ou

7 r
Bor 0 on I,

+ boundary conditions on 0f2.

The same holds for the energies (3) and (4) with suitable modifications. Our aim
is to understand, through some applied models which are presented below, how the
presence of surface forces applied on the crack lips may affect the evolution process.
In Chapter 2 we are interested in quasi-static evolutions satisfying (GS)-(E) in the
framework of hydraulic fracture. Chapter 3 is devoted to the application of Griffith’s
criterion (G1)-(G3) to a cohesive fracture model. Eventually, in Chapter 4 we deal
with a static problem: given an elastic body 2 C R"™, we consider an energy of the
form (4) and we study, from a “variational” point of view, the interaction between the
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energy dissipated by the crack production and the power spent by the surface forces
applied on the boundary 02 of the elastic system.
A more detailed presentation of these results is contained in the next paragraphs.

Hydraulic fracture

Hydraulic fracture studies the process of crack growth in rocks driven by the injec-
tion of high pressure fluids. This subject finds its main application in the extraction
of natural gas or oil. In these cases, a fluid at high pressure is pumped into a pre-
existing fracture through a wellbore, causing the enlargement of the crack. A similar
phenomenon has also been identified in epithelial tissues [55]. Here, an elastic body
with initial cracks (a cell monolayer) is bonded and hydraulically connected to a poroe-
lastic material, typically a hydrogel. The fracture growth is due to the motion of the
solvent inside the poroelastic body: when the system is under tension or compression,
the fluid experiences a change of pressure and is driven towards the existing cracks at
cell-cell junctions.

Hydraulic fracture has been largely studied from an engeneering and numerical
point of view, coupling the fluid equation, typically Reynolds’ equation, and the elas-
ticity system for the surrounding material (see for instance [43, 45, 54]). Particular
attention has been given to the tip behavior of a fluid driven crack (see [30, 40]). Some
numerical approaches (see, e.g., [20, 61, 62]) are inspired by Francfort & Marigo’s varia-
tional model of brittle fracture [39] and characterized by the phase field approximation
of the crack introduced by Ambrosio and Tortorelli [12].

In Chapter 2 we present a new energetic formulation (in dimension 2 and 3) of the
problem of quasi-static evolution in hydraulic fracture, adapting Francfort & Marigo’s
mathematical model [39] to our purposes. Contrary to the results obtained in [20, 61,
62], the model presented in this work is built on the sharp-interface version originally
developed in [39].

2-dimensional model. In Section 2.2 we study a 2-dimensional model of hydraulic
fracture, starting from the key ideas of [55], in which the authors investigate the crack
growth in epithelial tissues driven by the exchange of fluid between a cell monolayer
(elastic) and the surrounding poroelastic material.

In order to describe such a phenomenon, we consider an unbounded linearly elastic
body filling the whole R2 := {x = (z1,22) € R? : 29 > 0} adhered and hydraulically
connected to an infinite hydrogel substrate. The elastic part of the system is supposed
to be homogeneous, isotropic, impermeable, and presents an initial crack I'g starting
from the origin.

According to [39], we do not assume to know a priori the crack path. Therefore,
we are able to consider a sufficiently large class of admissible fractures, keeping some
regularity properties: every crack has to be the graph of a C'!-function starting from
the origin and with first and second derivatives uniformly bounded (see Definition 2.2.1
for further details and comments).
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Let us briefly describe the physical behavior of the system. Given T > 0, for every
t € [0,7] the system is supposed to be subject to a remote time-dependent strain
field €(¢)I, where €(t) € R and I denotes the identity matrix of order 2. Since the far
strain €(t) is stretching or compressing the whole system, a pressure gradient Vp(t)
is generated in the hydrogel, which drives the exchange of fluid volume V() between
the fracture and the poroelastic material according to Darcy’s law V(t) = —Vp(t).
Motivated by the small scale of the problem, we approximate the pressure gradient
with the finite difference (poo(t) —p(t))/¢, where poo(t) is the fluid pressure generated
by €(t) far from the crack inlet, p(t) is the pressure of the fluid inside the crack, and
¢ > 0 is a length scale which, for simplicity, we will assume to be equal to 1. For
technical reasons, we suppose pso, € € C([0,T7]).

Let us present the energy which describes the elastic response of the body. The
presence of the far strain field e(¢)I is intended in the following way: the elastic
body R? has to accommodate for a displacement u: R2 — R? close to €(t)id at
infinity, where id stands for the identity map in R?. Equivalently, the strain field Eu
induced by u has to be close to €(¢)I far from the origin. In our setting, we require
Eu — €(t)I to be an L?-function. This implies that the usual stored elastic energy

;/ CEu-Eudx (5)
R2\TI

cannot be finite. In order to deal with a finite energy, (5) is replaced by the renormal-
ized stored elastic energy

ENu, T, e(t)) := % / C(Bu — e(t)]) - (Bu — e(t)I) dz.. (6)
RZ\D

We refer to Proposition 2.2.3 for a rigorous derivation of (6). The crack evolution is
governed by the following total energy, sum of the renormalized stored elastic energy
and of the energy dissipated by the crack production:

E(u,Tye(t)) := Eel(u,F, e(t)) + IQ/HI(F) , (7)

where k is the toughness of the material.

We start by analyzing the static problem of a linearly elastic body filling R2 |
subject to a uniform strain field el, e € R, and with a fracture I' filled by a volume
V € [0,+00) of incompressible fluid. According to the variational principles of linear
elasticity, the static problem is solved by minimizing the total energy (7) among a
certain class of admissible displacements. We are able to show that a minimizer u
solves the equilibrium system

divCEu =0 in R2\T,
(CEu)vp = —pvp - on T,

where p = p(T", V, €) is the pressure of the fluid inside the crack (see Section 2.2.1).
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In this mathematical framework, a quasi-static evolution is described by two func-
tions defined on the interval [0,7]: the fracture ¢ — I'(¢) and the volume t — V(¢)
of the fluid inside the crack, to which corresponds a function ¢ — p(t) standing for
the fluid pressure into the fracture. The notion of evolution (see Definition 2.2.17) is
based on global stability, energy-dissipation balance, and the approximate Darcy’s law
V(t) = poo(t) — p(t) for t € [0,T]. The existence of such an evolution is shown in
Theorem 2.2.18.

3-dimensional model. In Section 2.3 we discuss a 3-dimensional model for hy-
draulic fracture, focusing our attention on the main differences between 3D and 2D.
We assume that the elastic body fills the whole space R? and has an initial crack lying
on a plane A passing through the origin. We allow the crack to grow only within A.
For technical reasons, we will need some regularity of the relative boundary of the crack
sets in A. This will be provided by the interior ball property (see Definition 2.3.1).
In order to simplify the exposition, we assume that the far strain field e(-) is null
and that the volume function V(-) is known, with V' € AC([0,T7; [0, +c0)), the space
of absolutely continuous function from [0,7] with values in [0,4+00). Also in this
context, we prove the existence of a quasi-static evolution based on global stability
and energy-dissipation balance (see Definition 2.3.5 and Theorem 2.3.6). We conclude
Section 2.3 with an explicit example of quasi-static evolution in the particular case of
circular fractures, the so-called penny-shaped cracks.

Quasi-static evolution via vanishing viscosity

In Chapter 3 we are interested in the application of the Griffith’s criterion to
a problem of quasi-static cohesive crack growth in the setting of planar linearized
elasticity. We consider a linearly elastic body €, where Q C R? is an open, bounded,
connected set with Lipschitz boundary 9€2. We assume that the crack can grow
only along a prescribed simple C?!-curve A C Q with H!(A) =: L. We denote by
A € C%L([0, L]; A) its arc-length parametrization and we consider admissible fractures
of the form I'y := {A(0) : 0 < o < s} for s € [0, L], so that each crack I's can be
parametrized by its length s. We set also Q5 := Q\ T';.

In this chapter we deal with Barenblatt’s cohesive model of fracture (see, e.g.,
[14, 16]), whose main feature is, in contrast with Griffith’s theory of brittle materials,
the presence on the crack lips of the so-called cohesive forces, which describe a sort of
residual interaction between the atoms of the material lying on the two faces of the
evolving fracture. In the mathematical model, the density of the energy spent by the
cohesive forces is represented by a function ¢: [0,+00) — [0,+00) which depends,
in its simplest form, only on the modulus of the jump of the displacement across A.
Moreover, ¢ should be monotone increasing, concave, bounded by a constant p > 0,
and such that

p(0)=0,  ¢(0) < +oo, im  o(f¢]) = p.
€] =400
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We notice that, for our purposes, these further hypotheses on ¢ are not needed.
Indeed, given T > 0, we consider a C'-function ¢: [0, 7] xR? — R such that o(t,0) =
0 and ¢(t,&) < c¢(1+ |£JP) for some ¢ > 0 and some p € (1,+00). In particular, ¢
could be time dependent and negative. Thus, with the model we are going to present
we are able to discuss also the case of an external time dependent force h : [0, 7] — R?
acting on both the fracture lips, namely (t,&) := —h(t)-§.

Different from the Barenblatt’s model, we assume, as in [18], that the energy spent
by the cohesive forces is completely reversible. Moreover, as in (7) we add to the surface
energy the dissipative term xs, that can be interpreted as an activation threshold, i.e.,
as the energy required to break the inter-atomic bonds along the fracture.

We stress that the coexistence of a cohesive term and of an activation threshold
has been noticed in several papers related to fracture mechanics: in [33] in the approx-
imation of fracture models via I'-convergence of Ambrosio-Tortorelli type functionals,
in [13, 29] in the study of the asymptotic behavior of composite materials through
a homogenization procedure, and in [24, 46] in the framework of fracture models as
I'-limits of damage models.

Let us describe the main features of the evolution problem. Let f:[0,7] —
L2(;R?) and w: [0,7] — H!(;R?) denote the volume forces and the Dirichlet
boundary datum, respectively. For every ¢ € [0,T], every s € [0, L], and every dis-
placement u € H'(,; R?), the total energy of the system is given by

E(t,s,u) ::;/Q (CEu-Eud:/c—/Q f(t)-udx—i—/ o(t, [u]) dH! + s,

s

where [u] denotes the jump of u across A.
For ¢t € [0,T] and s € [0, L], we define the reduced energy:

Em(t,s) :=min{E(t,s,u) : u € H(Qy,R?), u = w(t) on OQ} . (8)

In order to give a definition of quasi-static evolution for our cohesive fracture model via
Griffith’s criterion (G1)-(G3), we first study the differentiability of &,, with respect to
the crack length s. In Section 3.2 we show that, because of the non-convexity of ¢(¢,-),
the solution to the minimum problem (8) is not unique and, as a consequence, the
reduced energy &, is not differentiable in s. However, we can still compute its right
and left derivatives 9F¢&,, and 9; &, (see Theorems 3.2.2 and 3.2.3). In particular, we
are in a situation different from [48, 73], where the reduced energy is differentiable and
has a continuous derivative, and similar in this aspect to [47, 49], where finite-strain
elasticity in brittle fracture is considered.

In order to get a quasi-static evolution satisfying a weak version of the Griffith’s
principle, in Sections 3.3-3.6 we tackle the evolution problem by means of vanishing
viscosity. This procedure has been studied for instance in [11, 31, 58, 59] in an abstract
setting, and in [48, 49, 53, 73] for the problem of crack growth. It consists in the
perturbation of minimum problems with a viscosity term driven by a small positive
parameter ¢, enforcing a local minimality of the solutions. Let us briefly discuss how
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we exploit this technique. Given a partition {t¥}%_; of the time interval [0,7], we
consider, for 4 > 1, the incremental minimum problem

k e (s— sty kyi—1
min {gm(tZ,S) + 5 W ] Z SE’Z } , (9)
i bl
where s57! is a solution of (9) at time t¥ ; and sh0 = 80, the initial condition.

In (9), we are penalizing the distance between the new and the previous cracks with
the viscosity term driven by & > 0. Having constructed the discrete time solutions for
every € > 0, the scheme is to pass to the limit as £k — 400, in order to find the so-
called viscous evolution s. (Theorem 3.3.4), and, finally, let & tend to zero. In this way,
we obtain a quasi-static evolution for the cohesive fracture problem (Theorem 3.3.6)
satisfying a weak notion of the Griffith’s criterion stated in terms of left and right
derivatives 0FE™ of the reduced energy (see Definition 3.3.5).

Finally, in Sections 3.7-3.8, we generalize the previous results to the case of many
non-interacting cracks.

A free discontinuity functional with a boundary term

In the last chapter of this thesis we study a free discontinuity functional of the
form

G(u) := /QW(.CE,VU) dx—l—/

Q

f(z,u) d:):—i—/¢(:r,uu)d7-l"_1+/g(x,u) dH™ 1, (10)

Su o0

where () is a bounded open subset of R", n > 1, with Lipschitz boundary 992, «
belongs to GSBV (2; R™), S, denotes the discontinuity set of u, v, is the approximate
unit normal vector to S, and Vu stands for the approximate gradient of .

In the framework of fracture mechanics [23, 39] the functional (10) represents the
energy of an elastic body 2, with a crack S,, subject to a displacement u and to
external volume and surface forces whose potentials are given by f and g, respectively.
In particular, W is the density of the stored elastic energy, while ¢ stands for the
energy per unit surface needed to extend the crack, as in (4).

As usual in elasticity, the equilibrium condition of such a body is expressed in
terms of the minimum problem

min{G(u) : v € GSBV(Q;R™)}. (11)

To apply the direct method of the calculus of variations, we need to know the lower
semicontinuity properties of G.

The usual hypotheses on the first volume term of (10) (see, e.g., [23, Section 3])
are the ones given in Theorem 1.2.13, i.e., W(x,&) is quasiconvex in £ and satisfies
a p-growth condition for some p € (1,400). These assumptions on W imply that
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in (10) the approximate gradient Vu is p-summable when G(u) < 400, thus the
domain of G is actually GSBVP(Q;R™). Moreover, they guarantee that

W(u) ::/QW(:E,VU) dz

is lower semicontinuous with respect to the weak convergence in GSBVP(Q; R™) (we
refer to Definition 1.2.11 for this notion of weak convergence).

With mild hypotheses on f, such as continuity with respect to the second variable
and a g-growth condition for some ¢ € (1,+00), we may assume that the second
volume integral in (10) is lower semicontinuous with respect to the same notion of
convergence.

Therefore, to prove the existence of a solution to (11), we are led to study the
lower semicontinuity of the surface part of (10), namely

/ w(x,uu)dHnl—i—/ gz, u)dH" 1. (12)
Su o0

In this thesis, we consider a slightly more general free discontinuity functional of the
form
F(u) = (2, v) dH ! + / glx,u™ um)dH !, (13)
S\E pX

where ¥ is an orientable Lipschitz manifold of dimension n — 1 contained in Q with
H LX) < o0, HPH(EZ\X) =0, and H* (XN Q) NIN) =0, while u™ and u~
are the traces of u on the positive and negative side of ¥ (according to its orientation).
To give a precise definition of F when > N 9N # @, the function u is extended to 0
out of Q, so that u™ and u~ are well defined H" !-a.e. on ¥. The functional in (12)
corresponds to the case 3 = 9f).

In Section 4.2 we prove that F is lower semicontinuous with respect to the weak
convergence in GSBVP(Q;R™) under the following assumptions: 1 is a continuous
function on Q x R™ such that

Y(x,-) is a norm on R" for every z € Q,

_ 14
alyv| <Yz, v) < eolv| for every (z,v) € Q x R" (14)

for some 0 < ¢; < ¢9, and ¢ is a Borel function on ¥ x R™ x R™ satisfying
(s,t) — g(z,s,t) is lower semicontinuous on R™ x R™ for every x € 3, (15)

and, for H" '-a.e. x € ¥ and every s,s',t,t' € R™,
g(z,s,t) < gz, s, t) +(z,vs(x)) and g(x,s,t) < g(x,s,t') +Y(x,vs(z)), (16)

where v (x) denotes the unit normal to ¥ at x.
We notice that the hypotheses (14) on 1) are quite standard and guarantee that

U(u) := (2, vy) dH ! for u € GSBVP(; R™)
Su\S
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is lower semicontinuous (see [8, 9]). The novelty of our result is the presence of an
integral over a fixed surface ¥ which is not lower semicontinuous on its own because
of the lack of regularity of the function w near Y. Indeed, we only know that the
traces ut and u~ of w on the two sides of ¥ are measurable functions, but we do
not have any continuity or compactness property of the trace operator at our disposal,
due to the presence of the jump set. As a matter of fact, it could happen that,
along a sequence uy converging to u weakly in GSBVP(Q;R™), the jump set Sy,
approaches ¥ as k — 4o00. In this case, we have no information on the convergence
of the traces of ug. Condition (16) will allow us to control the behavior of F along
such sequences.

The proof of the lower semicontinuity theorem is divided into three steps. By the
blow-up technique introduced in [15, 36, 37] we first prove that

F(u) < liminf Fluy) (17)

whenever wuy converges to u pointwise and ug,u € BV (;N) for some finite subset N
of R™ (see Theorem 4.2.4). In Theorem 4.2.7 we extend (17) by approximation to
functions belonging to SBVP(Q; R™). The third step is a truncation argument, which
allows us to conclude in the general case v € GSBVP(Q;R™). In Theorem 4.2.8
we show that condition (16) is also necessary for the lower semicontinuity of the
functional F in GSBVP(); R™), provided that g is a Carathéodory function satisfying
the following properties:

there exists a € L'(X)* such that g(z,s,t) > —a(z) for H" l-ae. x € X

and every s,t € R™, (18)

g(-,5,t) € LY(X) for every s,t € R™.

We conclude Section 4.2 by proving that the minimum problem (11) admits a solution
(Theorem 4.2.9).

Finally, in Section 4.3 we prove a relaxation result for a functional F of the
form (13), i.e., we give an integral representation formula for s¢™F, defined as the
greatest sequentially weakly lower semicontinuous functional on GSBVP({; R™) which
is less than or equal to F. In (13) we still assume that v satisfies (14). As for g,
instead of (15) and (16), we suppose that g is a Carathéodory function such that
g(x,-,-) is uniformly continuous on R™ x R™, (18) holds, and, for every M > 0,
g(x,5,t) < ap(x) for H* L-ae. x € ¥ and every s,t € R™ with |s|, [t| < M, where
ay € Ll(E).

In Theorem 4.3.3 we show that

sc¢” F(u) = / Y(x,vy) dH L + / grz(z,ut,u)dH L,
Su\2 by
where, for (z,s,t) € ¥ x R™ x R™, we have set
g12(x, s,t) :== min {gl(x, s, 1), ierﬁfm g1(z,s,7) + Y(z, Vz(x))} ,

g1(x, s,t) := min {g(a:, s,t), inf g(z,0,t) + ¢Y(x, Vg(x))} )
ogeR™
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In this theorem the uniform continuity of g(z, -, -) is replaced by the weaker assumption
of continuity of gia(z,-,-).

Therefore, the relaxed functional sc™F is again of the form (13) and the den-
sity g12 on ¥ is a Carathéodory function which satisfies properties (15) and (16).
The mechanical interpretation of this result is that, if the potential g of the surface
force is too strong, it is energetically more convenient to create a new crack near the
surface 3.

We conclude Chapter 4 with a relaxation result for the functional G introduced
in (10). More precisely, we characterize the functional sc™G, defined this time as
the greatest lower semicontinuous functional in L9(£2; R™) which is less than or equal
to G. Assuming that W (z,§) is quasiconvex and has a p-growth with respect to &,
and that f(z,s) has a g-growth with respect to s, in Theorem 4.3.5 we prove that

sc”G(u) :/W(x,Vu)dx—i—/ f(ﬂs,u)da:—f—/ ¢(x,Vu)d’l-[”_1+/glg(as,u+,u_)d7-["_1
Q Q \s

P

if ue GSBVP(Q;R™) N LI R™), and sc~G(u) = +oo otherwise in LI(2; R™).



Chapter

Preliminaries and notation

1.1 Sets

For every set E, the symbol 1g stands for the characteristic function of F, i.e.,
the function defined by 1g(x) :=1 for x € E and 1g(x) := 0 for x ¢ E. For every
0 >0, we set

Is(E) :=={z e R": d(z,FE) < 40}, (1.1.1)

where d(-, F) is the usual distance function from the set E.

For every r > 0 and every = € R", we denote by B,(z) the open ball of radius r
and center z, and we set B (z) := B,(z) N R}, where R" := {(z1,...,z,) € R" :
x, > 0}. When z is the origin, we use the shorter notation B, and B .

For every = € R", every £ € S® !, and every p > 0, on the hyperplane orthogonal
to £ and passing through the origin we denote by QZ}?(@“) an (n—1)-dimensional cube
of side length p and centered in the projection z — (z-£)¢ of = onto that hyperplane.
Given C' > 0, we also define the n-dimensional rectangle centered in x by

Rg’zé(x) ={y+t:ye ngl(x), |t —x-&| < Cp}. (1.1.2)
We denote by K the set of all compact subsets of R”. Given Kj, Ko € K, the
Hausdorff distance dpy (K1, K2) between K; and Ky is defined by

dp (K1, K2) := max { max d(z, K3), max d(zx, Kl)} .

zeKq reEK2

We say that Kj — K in the Hausdorff metric if dy(Kp, K) — 0. We refer to [69] for
the main properties of the Hausdorff metric. The following compactness theorem is
well known (see, e.g., [69, Blaschke’s Selection Theorem)]).

Theorem 1.1.1. Let K be a sequence in K. Assume that there exists H € K
such that Ky C H for every h € N. Then there exists K € K such that, up to a
subsequence, K — K in the Hausdorff metric.

13
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We say that a function K: [0,7] — K is increasing if K(s) C K(t) for every
0 <s<t<T. We recall two results concerning increasing set functions which can be
found for instance in [28, Section 6].

Theorem 1.1.2. Let H € K and let K:[0,T] — K be an increasing set function
such that K(t) C H for every t € [0,T]. Let K~: (0,T] = K and K*:[0,T) = K
be the functions defined by

K (s) for0<t<T,
K(s) fot0<t<T.

K=(t):
K*(t) =

Us<
ﬂs<t

Then
K (t)CK@t)CK"(t) for0<t<T.

Let © be the set of points t € (0,T) such that Kt (t) = K~ (t). Then [0,T]\ © is at
most countable and K (t,) — K(t) in the Hausdorff metric for every t € © and every
sequence ty, in [0,T] converging to t.

Theorem 1.1.3. Let K} be a sequence of increasing set functions from [0,T] to K.
Assume that there exists H € K such that Kj(t) C H for every t € [0,T] and every
h € N. Then there exist a subsequence, still denoted by Ky, and an increasing set
function K:[0,T] — K such that Kp(t) — K(t) in the Hausdorff metric for every
te[0,7].

Throughout the thesis, £* and H* stand for the Lebesgue and the k-dimensional
Hausdorff measure in R™, respectively. For every E C R™, we denote by H*|E the
measure H* restricted to E, which is defined by H¥|E (F) := H*(F N E) for every
measurable set F'.

A set T' C R” is said to be countably (H" !, n — 1)-rectifiable if there exists
a sequence I'; of (n — 1)-dimensional C!-manifolds such that I' = (JI'; up to an
H" 1 -negligible set. It is well known that every countably (H"~! n — 1)-rectifiable
set T' admits an approximate unit normal vector vp(x) for H" !-a.e. x € T (see, for
instance, [32, Sections 3.2.14-16]).

In Chapter 4 we will need the following definition.

Definition 1.1.4. A subset ¥ C R"™ is said to be a Lipschitz manifold of dimension
n — 1 with Lipschitz constant less than or equal to L if for every x € X there exist a
vector £(x) € S*" ! an (n—1)-dimensional rectangle A, contained in the hyperplane
orthogonal to £(x) and passing through the origin, an interval I, and a Lipschitz
function ¢, : A, — I, with Lipschitz constant L such that

{y+té(x): ye Ay, teLNE={y+ . (v)é(x) : y € Ar}.

If ¥ is a Lipschitz manifold with Lipschitz constant L, for H" '-a.e. € ¥ there
exists a unit normal vector vy (z). The tangent space to ¥ at x is then

Tp(2) ={yeR": y-vn(x) =0}. (1.1.3)
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Definition 1.1.5. An orientable Lipschitz manifold is a pair (X, vy), where ¥ is a
Lipschitz manifold of dimension n — 1 and Lipschitz constant L and vs: % — S~}
is a Borel vector field with the following properties:

e vy () is normal to ¥ for H" t-ae. x € ¥;

o for every xg € ¥ there exist {(zo), Az, , and I, as in Definition 1.1.4 such that
vsi(z) - E(xg) > 0 for H* t-ae. z € {y+t&(xg): y € Apy, t € Iy} NI,

Every Lipschitz manifold ¥ is countably (H"~!,n — 1)-rectifiable (see, e.g., [10,
Proposition 2.76]) and its approximate unit normal coincides H" !-a.e. with the
vector vy, considered above.

If Q is an open set in R™ with Lipschitz boundary, vq(z) denotes the inner unit
normal to  at x, which exists for H" l-a.e. x € 9. It is easy to see that (9, vq)
is an orientable Lipschitz manifold.

1.2 Function spaces

For every m,n € N, we denote by M™*™ the space of m X n matrices with real
coefficients. For every F € M"™*"  F;; stands for the (i,j)-element of F. In the
case m = n, we use the shorter notation M" for M"*". The symbols My, and

nw stand for the subspaces of M™ of symmetric and skew-symmetric matrices,
respectively. For every F € M", we denote by cof F the cofactor matrix of F. Finally,

the scalar product between matrices is defined by
F-G:=tr(FGT) for every F,G € M",

where the symbol tr stands for the trace of a matrix and G is the transpose matrix
of G. Furthermore, we denote by I the identity matrix in M".

For every E C R™ measurable and every 1 < p < 400, the space LP(E;R™)
is defined as the set of functions u: F — R™ measurable and p-integrable. For
every function u € LP(E;R™), wu; indicates the i-th component of u. As before,
LP(E;M™*™) is the set of functions u: E — M™*™ measurable and p-integrable. In
both cases, we denote by || - |, or |||, the LP-norm on E with respect to L"
or H*, according to the context.

For every open set  C R™ and every 1 < p < 400, WHP(Q;R™) is the set of
functions u € LP(Q; R™) whose distributional gradient Vu belongs to LP(;M™*™).
The space W1HP(€;R™) is a Banach space equipped with the norm [ullwie) =
lullpo + |[Vullpo. In the case p = 2, the space WH2(Q;R™) will be denoted
by HY(Q;R™). In particular, H!(Q;R™) is a Hilbert space, and we denote its norm
by [ |g1(q)- As usual, when the functions take values in R we will use the shorter
notation LP(Q), WHP(Q), and H*(Q).

We say that u € L (Q;R™) (resp. u € WP(Q;R™)) if u € LP(QY;R™) (resp.

loc c

u € WHP(Q/; R™)) for every ) CC (.
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In the case n = m = 2, for every € open subset of R? we define, as in [72] and [19],

LD*(R?) = {u € L, (%4 R?) : Eu e L*(Q;M2,,,)}, (1.2.1)

loc

where Eu stands for the symmetric gradient of u, namely, Eu = %(Vu + VuT). For
every i,j = 1,2, E;ju stands for the (i, j)-component of Eu.
We recall the relationship between the spaces LD?(Q;R?) and H'(Q;R?).

Proposition 1.2.1. Let  be an open, bounded, and connected subset of R? with
Lipschitz boundary. Then LD?*(Q;R?) = H(;R?). In particular, there ervists a
constant C = C(Q) such that for every u € LD?*(2;R?)

/|Vu2dx§0</ |uy2dx+/ |Eu\2dx>. (1.2.2)
Q Q Q

Moreover, if E C Q is open, E # O, then there exists C' := C'(Q, E) such that
/ |Vu|? dz < C’/ |Eul? dz (1.2.3)
Q Q
for every u € LD?(;R?) with
/(Vu— Vul)dz =0.
E

Proof. See [34, Section 4] and [26, Appendix]. O

Since in the space LD?(2;R?) we can control only the symmetric part of the
gradient, we have that ||[Eul|2,0 is not a norm. Indeed, if we define

R:={v: Q—R?: v(z) = Az + b with bc R, Ac M?,},

S

the set of rigid motion in €, we have that R C LD?({%;R?) and |Eulj2q = 0 for
every u € R.

In Sections 2.2 and 2.2.3 we shall use the following subspace of LD?({;R?) on
which ||Eull2,q is a norm. Let © be an open subset of R? such that H!(9Q2NOR?) > 0.
For every open set ' C 2 we define

LD%(Q:R?) = {u € LD*(;R?) : /

upde =0 and ug =0 on 8Ri} . (1.24)
E

It is easy to see that LD%(Q;R?) N R = {0}.
In the following proposition, we prove that ||Eull2.q is a norm on LD%(;R?).

Proposition 1.2.2. Let  be an open, bounded, and connected subset of Ri with
Lipschitz boundary and let E C ) be open, E # @. Assume that H'(9QNORL) > 0.
Then there exists C = C(Q, E) such that

ull 1) < CllEull2,0 for every u € LD%(Q;R?). (1.2.5)
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Proof. By Proposition 1.2.1 we have that LD%(Q; R?) C H(;R?). To prove (1.2.5),
in view of (1.2.2) it is enough to show that

lullz0 < ClEu2,0

for some positive constant C'.

Let us assume by contradiction that there exists a sequence wuy in LD%(;R?)
such that [Jugll2,0 > k||Eugll2,0. It is not restrictive to assume that ||ugll2o =1 for
every k. From (1.2.2) we deduce that uy, is bounded in H'(2;R?). Therefore there
exists u € LD%(Q;RQ) such that, up to a subsequence, uj; converges to u weakly
in H'(;R?) and strongly in L*(Q;R?). In particular |jull2o = 1.

From the strong convergence of Eu, to 0 in L?({; ngm), we deduce that u € R,
and hence u = 0, which is a contradiction. ]

Remark 1.2.3. Let 2 and E be as in Proposition 1.2.2. For every A > 0 let us set
Q) := A2 and F)y := AE. Then, for every u € LD%A(QA;RQ) we have

[ullz.0y < CAl[Eull2.0,

where C' = C(Q; E) is the constant found in (1.2.5).
As a straightforward consequence of Proposition 1.2.2 we have the following corol-

lary.

Corollary 1.2.4. Let 2 be an open subset of Ri with Hl(ﬁﬁﬁaRi) >0. Let E CQ
be open, E # (. Then the space LD%(2;R?) is a Hilbert space equipped with the
norm ||Eull2.q.

We now state a stability property of the Korn’s inequality shown in Proposi-
tion 1.2.2.

Proposition 1.2.5. Let Q, Qo be bounded open subsets of R? with Lipschitz bound-
aries. Assume that H' (0, NORZ) > 0, H' (00 NORZ) > 0, QU — Qoo in the
Hausdorff metric and that 0y, 0 have Lipschitz constant L > 0. Let, in addi-
tion, E be an open subset of (\Q, E # @. Then, there exists C = C(FE) such that,
for n sufficiently large, (1.2.5) holds for every u € LD%(y; R?).

Proof. The proof can be carried out following the steps of [34, Theorem 4.2] using the
results of Proposition 1.2.1. ]

In the case n = m = 3, we will need (see Section 2.3) the following function space:
for every open set Q C R? we define, as in [56],

W%,G(QQ R3) := {u € L°(R3) : Vu € L*(Q;M3)}
equipped with the norm
lullwy g = llullog + IVul2a- (1.2.6)

The choice of the exponent 6 is due to the fact that in dimension 3 the exponent 2*
in the Sobolev embedding theorem is equal to 6.
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Proposition 1.2.6. Let ¥ be a plane in R? and let @ = R3 or Q = R3\ X. Then
W%76(Q;R3) is a Banach space and the norms ||Vu|2.0 and ||Eull2.q are equivalent to
the norm (1.2.6), thus W%ﬁﬁ(Q;R?’) is a Hilbert space.

Proof. When Q = R3? these results are proved in [56, Chapter 1.4], except for the
equivalence of the norm (1.2.6) with ||Eul|ygs, which is a consequence of Korn’s in-
equality.

To prove the results for 2 = R3\ ¥, assume for simplicity that X is the plane
z3 = 0. Fix u € Wj4(R?\ X;R?). We have u|R3+ € Wi4(R3;R?). Extending u by
reflection with respect to ¥ we obtain a function o € WiG(R?’;R?’). Hence, by the
previous step,

lullwy o) < lallwy @) < ClIVillaps = 2C(Vullozs

By the same argument we obtain this estimate also for u/ps .

The statement on ||Eulyrs\y; can be obtained by Korn’s inequality in a half-
space. ]

Let us now briefly present the function spaces used in Chapter 4. Given a bounded
open subset Q of R™, B(€)) denotes the set of Borel subsets of 2 and M;(2) stands
for the set of bounded Radon measures on ). For every p, A € M(Q2), we denote by
dp/dX the Radon-Nikodym derivative of p with respect to A.

Let n,m € N. For every measurable function u: 0 — R" we define the disconti-
nuity set .S, of u as the set of z € ) such that v does not have an approximate limit
at x (see [10, Section 4.5]).

The space BV (£2; R™) of functions of bounded variation is the set of u € L(Q; R™)
whose distributional gradient Du is a bounded Radon measure on 2 with values in
the space M™*™ . Given u € BV (Q;R™), we can write Du = D*u+ D%u, where D%
is absolutely continuous and D?®u is singular with respect to £". The function u is
approximatively differentiable £™-a.e. in €2 and its approximate gradient Vu belongs
to LY(Q;M™*") and coincides L£"-a.e. in 0 with the density of D% with respect
to L™. Note that the discontinuity set .S, agrees with the complement of the set of
Lebesgue points of w, up to an H" '-negligible set. For all these notions we refer
to [10, Sections 3.6 and 3.9].

The space SBV (€; R™) of special functions of bounded variation is defined as the
set of all u € BV (Q; R™) such that Du is concentrated on the discontinuity set .S,
ie., |D%u|(2\ Sy) =0.

As usual, SBV],.(2; R™) denotes the space of functions which belong to SBV (£; R™)
for every ' cc Q.

For p € (1,400), the space SBVP(Q; R™) is the set of functions u € SBV (Q2; R™)
with approximate gradient Vu € LP(; M™*") and H"1(S,) < +oo. We now give
the definition of weak convergence in SBVP(€;R™).

Definition 1.2.7. Let ug,u € SBVP(Q;R™) N L>®(;R™). The sequence uy con-
verges to u weakly in SBVP(Q;R™) if up — u pointwise L"-a.e. in Q, Vup — Vu
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weakly in LP(Q;M™ ") and ||ug|cc and H" 1(S,,) are uniformly bounded with
respect to k.

The following compactness theorem is proved in [6].

Theorem 1.2.8. Let p € (1,400) and let u; be a sequence in SBVP(;R™) such
that ||uklleo, |Vukllp, and H""1(Sy,) are bounded uniformly with respect to k. Then
there exists a subsequence which converges weakly in SBVP(Q;R™).

This result is in general not enough for some applications since it requires an a
priori bound on the L*-norm. To overcome this difficulty, we consider the larger
space GSBV (2;R™) of generalized special functions of bounded variation, defined as
the set of measurable functions u: 2 — R such that ¢(u) € SBV,.(£2; R™) for every
o € CY(R™;R™) whose gradient has compact support. If u € GSBV (£;R™), then
the approximate gradient Vu exists £L™-a.e. in ) and the jump set 5, is countably
(H" 1, n — 1)-rectifiable (see, e.g., [10, Section 4.5]). Its approximate unit normal
vector is denoted by v,.

In the case m = 1, we have that u € GSBV (Q) if and only if Ty, (u) € SBVie.(;R)
for every h € N, where T}, is the truncation function defined by

T1(s) := min {max {s, —h}, h} for s € R,

(see for instance [10, Section 4.5]).

For p € (1,+00), we define GSBVP(Q; R™) as the set of functions u € GSBV (Q; R™)
such that Vu € LP(Q;M™*") and H"1(S,) < +oo. In particular, if u belongs to
GSBVP(;R™), then p(u) € SBVP(;R™) N L>(Q;R™) for every ¢ € CH(R™;R™)
with supp(Vy) CC R™. We notice that GSBVP(Q; R™)NL>(; R™) = SBVP(Q; R™)N
L>®(Q;R™).

We now recall some basic properties of GSBVP(; R™), which can be found in [10,
Section 4.5] and [23, Section 2].

Proposition 1.2.9. GSBVP(Q;R™) is a vector space. A function u:  — R™ be-
longs to GSBVP(Q;R™) if and only if each component wu; belongs to GSBVP(;R).

If Q has a Lipschitz boundary, for every u € GSBVP(Q; R™) there exists a func-
tion @: 0 — R™ such that, for H" l-a.e. x € 99, u(zx) is the approximate limit
of u at x, and we write

a(x) = apylglxl u(y) (1.2.7)
yeN
(see, e.g., [32, Section 2.9.12]). The function @ is called the trace of u on 0.

Remark 1.2.10. If (3, vy) is an orientable Lipschitz manifold of dimension n— 1, with
3 C Q, for every x € X there exists an open neighborhood V' of x contained in {2 such
that V' \ ¥ has two connected components V* and V~, with Lipschitz boundaries
and with v (z) pointing towards V. For every function u € GSBVP(Q;R™) the
traces on ¥ NV of the restriction of v to V* are denoted by u®. This allows us to
define the traces u* of u H" '-a.e. on X.
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We now recall the notion of weak convergence in GSBVP({2;R™).

Definition 1.2.11. Let ug,u € GSBVP(Q;R™). The sequence uj converges to u
weakly in GSBVP(Q;R™) if up — uw pointwise L"-a.e. in Q, Vu, — Vu weakly
in LP(Q;M™ ") and H"1(S,,) is uniformly bounded with respect to k.

The following compactness theorem has been proved in [7] (see also [10, Sec-
tion 4.5)).

Theorem 1.2.12. Let p € (1,+00) and let uy be a sequence in GSBVP(; R™) such
that ||ukll1, |Vukllp, and H""1(S,,) are bounded uniformly with respect to k. Then
there exists a subsequence which converges weakly in GSBVP(Q;R™).

We recall a lower semicontinuity result in GSBVP(;R™), proved in [51, Theo-
rem 1.2].

Theorem 1.2.13. Let W: Q x M"™*"™ — R be a Carathéodory function such that
W (z,-) is quasiconvex for every x € Q, (1.2.8)

a1|&|P — b1 (z) < W(x, &) < aglé|P + ba(z)  for every (x,§) € Q x M™*" (1.2.9)

for some 1 < p < +00, 0 < ay < ag, and by,by € L'(9).
Then the functional W: GSBVP(Q;R™) — R defined by

W(u) 1:/QW(£U,VU) dz (1.2.10)

is lower semicontinuous with respect to the weak convergence in GSBVP(Q; R™).

We conclude this preliminary section with a simple lemma on sets of finite perimeter
which will be useful in Chapter 4.

We say that £ C R" is a set of finite perimeter if the distributional gradient
of its characteristic function 1g is a bounded Radon measure on R"™. The essential
boundary 0*F of E is defined by

LB NnE L"(B E
O'FE = {$ € R™: limsup £(By(x) O E) >0 and limsup £1(By(@) \ E) > O}.
PO P PO P

For H" '-a.e. x € O*F, there exists the measure theoretical inner unit normal vec-
tor vg(x) to E at x. We refer to [10, Sections 3.3 and 3.5] for further properties of
sets of finite perimeter.

Lemma 1.2.14. Let Q) be an open set with Lipschitz boundary and let E C Q be a
set of finite perimeter. Let us set

t(E) == {z € 00 : 1g(z) =1},

where 1g is the trace on dQ of the restriction of 1g to Q. Then t(E) = 00N 9*E
up to an H" ! -negligible set.
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Proof. We first notice that the trace of 1 on 9 is either 1 or 0 for H' lae. x €
0Q. Therefore, for H" '-a.e. z € 00\ t(F) we have that 1g(z) = 0, hence, by
definition of trace,

"(B E
lim L1(By(2) N B) = lim L / 1g(y)dy =0. (1.2.11)
PNO p" PNO P JB,(x)

This implies that 92N 0*E C t(E) up to an H" !-negligible set.

Viceversa, let = € t(F) be such that the inner unit normal vo(x) to Q at x exists.
As in (1.2.11), by the properties of the trace we have that
L"(Bp(z) N (2\ E)) 1

lim = lim — 1p(y) —1|dy=0.
PNO pr PO P Bp(x)r‘TQ ) =1l

From the previous equality and the properties of v (x) we deduce that

L'{y € Bp(x)\ E: (y — x)-va(z) > 0})

lim ~0. (1.2.12)
PO p"
In view of (1.2.12) we obtain that
"B E 1
lim sup M > —. (1.2.13)
o Lr(Bp(x) T2

Moreover, since E C Q, by the properties of vq(x) we get

"(B E "(B Q
lim sup M > lim M — 1 (1.2.14)
oo Lr(Bp(x)) T N0 Lr(Bp(z) 2
Inequalities (1.2.13) and (1.2.14) imply that = € 9Q N O*E, and the proof is thus
complete. 0






Chapter

QQuasi-static evolution in hydraulic
fracture

2.1 Overview of the chapter

In this chapter we present a variational formulation of the problem of quasi-static
crack growth in hydraulic fracture based on the mathematical model of brittle fracture
introduced in [39].

In Section 2.2, we study a 2-dimensional model of hydraulic fracture, starting from
the key ideas of [55], where the authors investigate such a phenomenon in epithelial
tissues. We refer to [55] for more details on the physical interpretation of the model (see
also the Introduction). Here, we consider an unbounded linearly elastic body filling
the whole Ri adhered and hydraulically connected to an infinite hydrogel substrate
(poroelastic material). The elastic part of the system is supposed to be homogeneous,
isotropic, impermeable, and presents an initial crack I'g starting from the origin, while
the fluid inside the hydrogel is assumed to be incompressible.

In dimension two, we are able to develop a model in which we do not assume
to know a priori the crack path. However, for technical reasons we need to require
some regularity of the fracture sets: in Definition 2.2.1 we define the set of admissible
cracks C; as the class of graphs of CY!-functions starting from the origin and with
first and second derivatives uniformly bounded by a constant 7. Hence, the family C,
depends on a positive parameter 1 which is fixed once and for all.

The evolution problem is driven by a remote strain field €(¢)I, €(t) € R, and by the
pressure poo(t) of the fluid inside the hydrogel, far from the crack inlet. We assume
€(+) and ps(-) to be continuous functions from [0,7], T > 0, with values in R.

The presence of the far strain field €(¢)I is intended in the following way: the strain
field Eu associated to a displacement u: R2 — R? has to be close to €(t)I far from
the origin. In our setting, we require Eu — €(t)I to be an L*-function (see (2.2.4)

23



24 Quasi-static evolution in hydraulic fracture

and (2.2.18)). Therefore, the usual stored elastic energy

;/ CEu-Eudx (2.1.1)
2\1—\

cannot be finite. In Proposition 2.2.3 we rigorously prove that (2.1.1) has to be replaced
by the renormalized stored elastic energy

Elu, T, e(t)) := % C(Eu—€(t)]) - (Eu — €e(t)I) dz. (2.1.2)
R2\T

According to the pioneering work by Griffith [44] and to the mathematical model
developed in [39], given a displacement u: R — R?, a remote strain field €(¢)I, and
a crack I' € C,, the total energy of the system is now of the form

E(u,T,e(t)) := E%u, T, e(t)) + kHY(T), (2.1.3)

where k is the toughness of the material.

In Section 2.2.1 we start by analyzing the static problem of a linearly elastic body
filling R%r, subject to a uniform strain field eI, ¢ € R, and with a fracture I' € C,
filled by a volume V € [0,4+00) of incompressible fluid. According to the variational
principles of linear elasticity, the static problem is solved by minimizing the total en-
ergy among a certain class of admissible displacements (see (2.2.18)). In Remarks 2.2.7
and 2.2.8 we determine the equilibrium system satisfied by a solution u of the static
problem and make more precise the relation between the strain fields Eu and el,
showing that they are L*-close at infinity. Moreover, in Proposition 2.2.6 and Re-
marks 2.2.11 and 2.2.13 we determine the value of the pressure p = p(I', V,¢) of the
fluid inside the crack.

In Definition 2.2.17 we define a quasi-static evolution for the hydraulic crack growth
as a function ¢t — (I'(¢),V(t)) from [0,T] with values in C, x [0, +00) satisfying a
global stability condition, an energy-dissipation balance, and the approximate Darcy’s
law

V(t) = poo(t) = p(t)  for ¢ €[0,T],

where p(t) := p(I'(t),V(t),e(t)). The existence of such an evolution is proved in
Theorem 2.2.5.

In Section 2.3 we briefly discuss a 3-dimensional model for hydraulic fracture, fo-
cusing our attention on the main differences between 3D and 2D. We assume that
the elastic body fills the whole space R? and has an initial crack lying on a plane A
passing through the origin. We allow the crack to grow only within A. For technical
reasons, we need some regularity of the relative boundary of the crack sets in A. This
is provided by the interior ball property (see Definition 2.3.1). In order to simplify
the exposition, we suppose that the far strain field €(-) is null and that the volume
function V(-) is known, with V' € AC([0,T]; [0, +0c0)), the space of absolutely contin-
uous function from [0, 7] with values in [0,+00). Also in this context, we prove the
existence of a quasi-static evolution based on global stability and energy-dissipation
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balance (see Definition 2.3.5 and Theorem 2.3.6). We conclude Section 2.3 with an
explicit example of quasi-static evolution in the particular case of circular fractures,
the so-called penny-shaped cracks.

The results contained in this chapter have been presented in [3, 4].

2.2 2-dimensional model

We describe the mathematical framework we consider in our 2-dimensional model
inspired by [55], to which we refer for more details on the physical interpretation.

To fix the simplest possible geometry, we consider a system made of an elastic
body filling the whole ]Ri which is adhered to a poroelastic body occupying R? \]Ri
Throughout this section, we denote by X the set OR% = {(z1,22) € R? : 2o = 0} and
by vs the unit vector (0,1) normal to X.

As we have said in Section 2.1, we assume that the incompressible fluid inside the
poroelastic material is subject to a pressure po, € C([0,T]) far from the crack inlet.

Let us concentrate on the main features of the elastic part of the system. We
assume that it presents a regular enough initial crack I'y. More precisely, we suppose
that there exists a C!-function vy : [0,ar,] = R, ap, > 0, defined on the zy-axis
and such that v9(0) = 0, |7,(0)| < 400, and

['o = graph(yo0) = {(v0(72),72) : 2 € [0,ap,]}-

In particular, I'y C R%, 0 < H!(I'y) < 400, o NE = {(0,0)}, and |vp,-vs| # 1 at
the origin, where vp, denotes the unit normal to Iy and the dot stands for the usual
scalar product in R?. We refer to Remark 2.2.19 for further comments on I'y.

In our model, especially in the evolution problem studied in Section 2.2.2, we do
not suppose to know a priori the crack path, which will be a result of an energy
minimization procedure (see Definition 2.2.17), but we keep a technical regularity
assumption on the fracture set, which is specified in the following definition of the
class of admissible cracks.

Definition 2.2.1. Let n > 0. We define C, to be the set of all closed curves I' of
class C! in R? such that the following properties hold:

(a) T DTy and I'\ Iy cC R%;

(b) there exist ap > 0 and v € C*([0,ar]) such that [[7'[lo 0.ar]> 17" lloof0,ar] < 7
and T' = graph(y) = {(v(x2), z2) : x2 € [0, ar]}.

[0,ar] <
n and ||v{ HOO,[O,aFO} < 1. Clearly, the requirements of Definition 2.2.1 ensure that for
every I' € C, there are no self-intersections. Moreover, for every I' € C,, it is convenient
to fix an orientation and a unit normal vector vr to I'.

We show a compactness property of the class C, with respect to the Hausdorff

convergence of sets.

By definition of T'y, we can always find a sufficiently large 7 so that ||7(]s
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Proposition 2.2.2. Let I'y be a sequence in C;; such that HY(T}) is uniformly bounded
with respect to k. Then there exists I'oo € Cpy such that, up to a subsequence, I', — '
in the Hausdorff metric. Moreover, H'(T'x) — H'(T'so) -

Proof. Let I'y, € C,, be as in the statement of the proposition and let ar, > 0 and
v € CHY([0,ar,]) be as in Definition 2.2.1. Since H!(I'y) is bounded, we have that
the sequence ar, is bounded in R and

Sl]ip H7k||Wzv°°([0,apk]) < 400. (2.2.1)
Therefore, we may assume that, up to a subsequence, ar, — a. Moreover, we may
rescale ~y, on the interval [0, a] by

Za2ar,,

. ) for xzp € [0,al,

u(aa) = e

so that

I, = {(’yk(aﬁg), xQZ”) D X9 € [O,a]}.

By (2.2.1) we have that, up to a subsequence, 7, weakly*-converges in W?2°°([0, a])
to some 7. Let us set I' := graph(v). It is clear from the convergence of ar, to a
and of 43 to v that I' € C;, and that I'y converges to I' in the Hausdorff metric.
Moreover, since 4;, converges to 7' uniformly in the interval [0,a], we get that

lim 1 (T) = lilgn/oa \/((?)2 + 32 (y) dy = /Oa V1+7%(y)dy = HI(D),

and this concludes the proof of the proposition. O

We assume that outside the crack the elastic body is isotropic, homogeneous, and
impermeable. Therefore, the behavior of the elastic body is fully characterized by the
constant elasticity tensor C: M2, =~ — M2,  defined by

sym sym

CF := Mr(F)I 4 2uF for every F € M?

sym?

(2.2.2)

A and p being the Lamé coefficients of the body. As usual, we assume that CF = 0
for every F € Mgkw and that C is positive definite, that is, there exist two constants
0 < a < B < +oo such that
a|F? <CF-F < B|F|*  for every F € M?,,,. (2.2.3)
Our aim is now to define the set of admissible displacements and the energy of the
elastic body Ri subject to a remote strain field €I, e € R, and with a crack I' € C,
filled by a volume V € [0,+00) of incompressible fluid.
Let us start with a simpler case in which we do not consider the volume of fluid
inside the crack. As we have already mentioned in Section 2.1, the action of the
strain el is intended in the following way: the displacement w: Ri — R? of the
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elastic body has to induce a strain field Eu which is close to el at infinity. The
previous requirement is translated into the condition u—eid € LD? (Ri \I'; R?), where
LD?(R2 \T;RR?) is defined in (1.2.1) and id stands for the identity map in R?. For
what follows, we notice that, for every € open bounded subset of Ri with Lipschitz
boundary and every I' € C,, with I'\T'g CC 2, Propositions 1.2.1-1.2.5 are still valid
in LD?(Q\T;R?).

In view of the previous comments, for every e € R and every I' € C;, we introduce
the set of admissible displacements (without volume constraint)

AD(T,€) := {u: RY - R*:u — eid € LD*(RY\T;R?), uy = 0 on %, 594

[u] - vpr >0onT}, (2:2.4)
where [u] stands for the jump of u through T', that is, [u] := vt — u™, with u™
and u~ denoting the traces of u on the two sides I'" and I'™ of I', defined according
to the orientation of vp.

Let us give some comments on AD(T, €). The choice of the space LD*(R% \ I'; R?)
has some important consequences. First of all, it says that every admissible displace-
ment is Sobolev regular (see Proposition 1.2.1) outside of the curve I', hence the crack
is actually contained in I'. Furthermore, the fact that Eu — el € L*(R% \F;ngm)
means, in a suitable weak sense, that Eu has to coincide with the uniform strain el at
infinity. We refer to Remark 2.2.8 for further comments on the relation between FEu
and el. In what follows, we will assume, when needed, that Eu — el is a function
in L*(R%; ngm). For instance, this is true if we extend it by zero on I'.

The boundary condition us = 0 on % reflects the fact that, according to the model
studied in [55], the elastic body is adhered to the poroelastic substrate. Finally, the
inequality in formula (2.2.4), which is assumed to hold H!-a.e. in T, takes into account
the non-interpenetration condition: the fracture lips cannot cross each other.

Let us now define the elastic energy of the body for a displacement u € AD(T,¢).
Due to the summability hypothesis made on Eu — €I, we get that Eu ¢ L?(R%; ngm)
whenever € # 0. Hence, from (2.2.3) we deduce that the usual stored elastic energy

1
2/ CEu-Eudx
RZ\I

is not finite. Therefore, in order formulate our problem in the setting of rate inde-
pendent processes [57|, for every displacement u € AD(I',e) we have to define the
renormalized energy

el 1 u—cel)- (Bu—el)dz — [ o(e)vr-|u !
F(u,T' €)= /R?F(SF(E I)-(E I)d /F (€)vr - [u] dH (2.2.5)

where o (€) := €CI is the far stress field associated to €. For simplicity, we set also

o(e) :==2e(A+ ), (2.2.6)
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so that, by (2.2.2), o(€) = o(e)l and (2.2.5) becomes

Fel(u,T, ¢) = % [ CEu— ) (B0 ) de o0 /F Wlovndl. (2.2.7)

Besides F¢, it is useful to introduce also the renormalized stored elastic energy

1
Eu,T,€) = 3 [ S(Eu —el)- (Eu—el)dx. (2.2.8)
T

The definition of the renormalized energy given in (2.2.5) is also motivated by the
fact that F¢(u,T",€) can be obtained as limit of the stored elastic energy on bounded
domains which tend to Ri, as we show below. Let us consider R > 0 such that
Irc EE and let us set

1
Ed(u,T) := = | CEu-Eudx
+
BA\I

for every displacement u € ADg(T, €), where

ADg(T,€) :={u € H'(BL\T;R?) :u=eid on 9B} \ 5, us =0 on 9B N %,
[u] - vp >0onT}.

We notice that the Dirichlet condition v = eid on 8B;§ \ ¥ corresponds, in the
bounded case, to the condition u — eid € LD*(R% \T;R?) in (2.2.4). Indeed, if we
extend u € ADg(L,€) by eid in R% \ B}, it is straightforward to see that we obtain
an element of AD(I',¢). In what follows, we will denote by @ this extension.

An integration by parts shows that for every u € ADR(T', €) the following equality
holds:

£ (u,T) — £ (e id, T) = 2 (u — id,T) — / (- [u] dH! = F(u,T). (2.2.9)
I

The aim of the following proposition is to pass to the limit in (2.2.9) as R — 400,
recovering the renormalized energy defined in (2.2.5) and (2.2.7).

Proposition 2.2.3. Let I' € C;, and e € R. Then the following facts hold:
(a) for every sequence ur in ADg(T',€) such that

sup F&(ug,T') < 400 (2.2.10)
R>0

there exists uw € AD(T',€) such that, up to a subsequence, Eur — el — Eu — €l
weakly in L*(R%;M2,,,) and

sym

Fl(u,T,e) < gminf]:le(uR —eid,I');

—+o00
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(b) for every u € AD(L,€) there exists a sequence vy in ADR(I',€) such that Evg—
el = Eu—el in L*(R%;M2,,,) and

sym

Flu,T,e) = lim F¥(vg,T).

R—+o00

Proof. Let us prove (a). Let I', €, and ug be as in the statement of the proposition. It
is easy to see from (2.2.7) and (2.2.9) that F& (ug,T') = F(ug,T,¢€) for every R >0
such that T'\ 'y CC Bf.

Let £ CC Ri \T' be an open bounded set with Lipschitz boundary. For every
R > 0 such that £ CC BE, there exists a horizontal translation ¢t such that ur —
€id —tp € LD%(Ri \I';R?). In view of Proposition 1.2.2, for r > 0 sufficiently large
there exists a positive constant C, satisfying

for every R > 0 with E CC B}. By (2.2.3), (2.2.10), and (2.2.11), we have that
Etig—el is bounded in L?(R%). Hence, by Proposition 1.2.2 and by inequality (2.2.11),
there exist v € H}DC(REL\F; R?) and ¢ € L2(Ri; ngm) such that, up to a subsequence,
Etupg — el = ¢ weakly in L?(R%) and @g — €id — tgp — v weakly in H'(B/ \ I';R?)
for every r > 0. Therefore, Ev = ¢ and v € LD*(R% \I';R?). By continuity of the
traces with respect to the weak convergence in H', we have that vo =0 on ¥ and

[uR] ‘yp = [’IER —eid — tR] ‘vr — [1}] -vr in LQ(F) as R — +o0. (2.2.12)

Let us set u := v + e€id. From the previous convergences we deduce that u €
AD(T, €) and that, up to a subsequence, Eug —el — Eu—el weakly in L?(R%; ngm).
Moreover, by (2.2.12) we get

Fl(u,T,€) < Jim irgfele,r, €) =lim inf Fé(ug,T),
which concludes the proof of (a).

Let us now prove (b). Let u € AD(I',¢) and let £ CC BT/Z \ETM be an open set
with Lipschitz boundary. Let ¢ € C2°(B;/2) be a cut-off function such that 0 < ¢ <1
and ¢ =1 on Byy. Let us set Eg := RE and @g(x) := ¢(z/R) for every z € R?
and every R > 0. It is clear that

|v90 oo,R2
IVoRcor2 = ‘]IJI{’R. (2.2.13)

Let us restrict our attention to R > 0 such that I'\T'y CC BJ}%/4' Arguing as in

point (a), for such R we find a horizontal translation tr such that u —eid — tg €

LD? (R%\TI;R?). In particular, by Proposition 1.2.2 and Remark 1.2.3, there exists
R

a positive constant C' = C(E) such that

= cid — tall s 55 | < CRIBu= el g 51 - (2.2.14)
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We define vg := pr(u—tgr)+ (1 — pr)eid. By construction, we have vg = u—tpg
in BEM and vg = €id in R2 \ BE/Q. Therefore, for every R > 0 such that I' C ﬁ;ﬂl
we have vgp € ADR(T, €) and vr coincides with vr. Moreover,

|Evg — Eu”%,Rﬁ < ||Eu — dH;,Ri\B;M + / Vor ® (u—eid —tg)|>dz, (2.2.15)
T\ g+
Br\Bg/4

where the symbol ® denotes the symmetric tensor product. Combining (2.2.13)-
(2.2.15) we obtain

— 2 2 2
[Eon —Bullf g2 < [Bu—ell gy e+ ClBu—ell o e (2.2.16)

for some constant C' > 0 independent of R. Passing to the limit as R — +oo
in (2.2.16) we deduce that Evg — el — Eu — el in L*(R3; M2 ). Finally, it is clear
that
Flu,Tye) = lim Fg(vg,T)= lim Fog,T,e),
R—+4o00

R—+o0
and the proof is thus concluded. ]

We are now in a position to define the total energy of the system: for every I' € C,,,
every € € R, and every displacement u € AD(T,¢€), we set

F(u,T,€) := F(u,T,e) + s H(T), (2.2.17)

where k is a positive constant related to the fracture toughness.

We conclude this section considering the additional volume constraint in the defi-
nitions of admissible displacements (2.2.4) and of the total energy F in (2.2.17). Let
us assume that the elastic body R, subject to a far strain field €I, € € R, has a crack
I' € C, filled by a volume V € [0,+00) of incompressible fluid. Since we are dealing
with linearized elasticity, for the volume of the cavity determined by the crack lips we

use the approximate formula
/ [u] - vp dH!,
r

so that the class of admissible displacements becomes

AL, V,e) = {u e AD(T, ) : /

W] - vp dH = V}. (2.2.18)
T

It is clear that a result similar to Proposition 2.2.3 can be stated adding the volume
constraint of (2.2.18). Therefore, also in this case the use of the energy (2.2.5) is fully
justified. Moreover, thanks to the volume condition we have that

Flu,T,e) = E%u,T,€) — a(e)V for every u € A(I',V,€).
Since o(e) and V are given constants, as total energy of the system we consider
E(u,T,e) :=E%u,T,e) + kHI(T), (2.2.19)

for every displacement u € A(I",V,e¢). In particular, the energy (2.2.19) is the sum
of the renormalized stored elastic energy (2.2.8) and of the energy dissipated by the
crack production.
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2.2.1 Static problem

Here, we analyze the equilibrium condition for the elastic body Ri subject to
a far strain field eI, e € R, when a crack I' € C,, is filled by a prescribed volume
V € [0,+00) of incompressible fluid.

According to the variational principles of linear elasticity, the equilibrium of the
elastic body with a prescribed crack I' € C, is achieved if the displacement u is a
solution of the minimum problem

in  E(u,T,e), 2.2.20
we Do € ) (2:2.20)

where the set A(I',V,¢e) of admissible displacements is defined in (2.2.18) and the
energy £ is given by (2.2.19). The existence of solutions of (2.2.20) follows from
the direct method of the calculus of variations and Proposition 2.2.4 below, and is
discussed in Corollary 2.2.5. Proposition 2.2.4 is stated in a more general form than
the one needed here since we shall use it also in the study of the evolution problem in
Section 2.2.2.

Proposition 2.2.4. Let I',I';,I's, € C;, be such that I' C I'y, and 'y — I's in the
Hausdorff metric. Let Vi, Voo € [0,400) with Vi, — Vi, and let €, €00 € R with
€k — €. Assume that uy € ATy, Vi, €x) is such that

sup ||[Euy — GkIHZ,Ri < +00. (2.2.21)
k

Then, there exists too € A(Tso, Voo, €0o) such that, up to a subsequence, Euy — el

converges to Eusy — €5l weakly in LQ(R%F;szm).

Proof. By the Hausdorff convergence of I'y, to I', it is easy to see that I' C I'.

Since the sequence Euy, — €1 is bounded in L?(R?; ngm), we may assume that
there exists ¢ € Lz(Ra_; ngm) such that, up to a subsequence, Euy — eI — ¢ weakly
in L2(R%; M3,,,)-

Let r > 0 be such that I', \I' CC B;f'. Thanks to the regularity of the sets T'y., I's,
and to the convergence of 'y to 'y in the Hausdorff metric, arguing as in the proof
of Proposition 2.2.3 and applying Proposition 1.2.5 we have that there exist a positive
constant C, and a sequence t; of horizontal translations such that, for k large enough,

the following inequality holds:
Huk — €k id — tkHHl(Bj\I‘k) < C’rHEuk — GkIHZR%r . (2.2.22)

In view of (2.2.21) and (2.2.22), we may further assume that there exists a function
€ H} (R%\T'w;R?) such that for 7,6 >0

up — € id —t — v  weakly in H' (B \ Zs(Tw \T); R?), (2.2.23)

where Z5(I'oo \I') is defined in (1.1.1). Clearly, Ev = ¢ and v € LD?(R2 \ T'so; R?).
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Let us show that v satisfies the non-interpenetration and the volume constraints
appearing in (2.2.18). Let us fix Q, Qs bounded open subsets of R? with Lipschitz
boundaries such that 'y \I' CC Qp, I'no \I' CC Qoo and Q — Qo in the Hausdorff
metric. By the convergence of 'y to I'oo, we may split Qi (resp. Qs ) in two open
subsets Qf (resp. Qéﬁo) with Lipschitz boundaries such that the following properties
hold:

T COQEN\OY  and  To CI0E \ 0Qu, (2.2.24)
ﬁ: — ﬁoio in the Hausdorff metric, (2.2.25)
vr, points towards Q) and vp_ points towards Q7 . (2.2.26)

By (2.2.22), (2.2.25), and by a simple reflection argument, we get that
(up, — € id — ty) 192_.r —vlge  strongly in L*(RY). (2.2.27)

By Proposition 1.2.1, ug — e id — tp € H'(Q \T;R?) and v € HY(Qoo \ To; R?).
Thus, by the properties of the traces of Sobolev functions (see, e.g., [72]) and by (2.2.24)
and (2.2.26), for every k € N and every ¢ € C*(R?) with supp(x)) N 0%\ X = @ we
have

2 2
2/ (up — e id — tg);(V); do + Z V(Ejugp — €) de
i=1 Y % i=1 7% (2.2.28)
=— [ lug]-vr, dH! + Yty -vg dH = — | lu] - Ur, dH?t,
Tk SNOQy, Tk
where, in the last equality, we have used the fact that ¢; is a horizontal translation
and vy = (0,1) is the normal vector to X.

Let us consider ¢ € C1(R?) such that supp(y) NN \ L = @. Since QO — Qs
in the Hausdorff metric, for k large enough we have supp(y)) N9 \X = O, so
that (2.2.28) holds. Taking into account (2.2.27) and the weak convergence of Euy— el
to Ev in L?(R2; M2, ), passing to the limit in (2.2.28) as k — 400 we obtain

sym

— lim( Ylug) - vr, dH! — Wiy - Us d?—ll) = —lim [ ¥[ug]- vr, d!
k\ Jr, Ny, ko Jry,

2 2
= lilgn <;/Q£uk — eptd — tk)i(VQﬁ)idx + ;/Qzﬁ(E“uk — ek)dac>
2 2
= Z; /Q mvi(vwi)dx + Z; /Q O:/JEiivdx

= — [ Y] vr dH' — | Yv-vsdH,
T YNONso

(2.2.29)

where, in the last equality, we have used again the properties of the traces of Sobolev
functions.
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By (2.2.23) we have that

o:nm/ Yty -vsdH = | v-vs dHL,
E o Jyno YN0

which implies, in view of (2.2.29), that

lim [ 9ug]-vr, dH = [ o] -vr, dH (2.2.30)
koJr, Poo

for every ¢ € C1(R?) such that supp(1)) N0 \ X = @. By the hypotheses and the
arbitrariness of 1, from (2.2.30) we easily get that

[v] -vp, >0 on 'y and / [v] -vp, dH = Vi
In view of (2.2.23), we also have that v2 = 0 on X, hence v € A(l's, Vo, 0).
Thus, it is clear that use := v + €x id € A(Tso, Vo, €00) - Since Euso = Ev + €1, we
finally get that Eui — ex] = Euoo — €00l weakly in LQ(Ri;ngm), and the proof is
thus concluded.
O

We are now ready to discuss existence and uniqueness of solution of (2.2.20).

Corollary 2.2.5. The minimum problem (2.2.20) admits a unique solution, up to a
translation parallel to the x1 -axis.

Proof. We apply the direct method of the calculus of variations. Let uj; be a mini-
mizing sequence. It is clear that the sequence Euy — €l is bounded in L?*(R%; ngm).

Hence, by Proposition 2.2.4, there exists u € A(T', V, €) such that, up to a subsequence,
Euy, — el = Eu — el weakly in L?(R2; M2, ). Therefore,

sym

E(u,Tye) < limkinfé'(uk, Te),

and this concludes the proof of existence.

The uniqueness of solution up to a horizontal translation follows by the strict
convexity of the energy, by the convexity of the constraints on the crack I', and by
the boundary condition us =0 on X.

O

In the following propositions and remarks we study some properties of a solution «
of the minimum problem (2.2.20).

Proposition 2.2.6. Let u € A(I',V,¢€) be a solution of (2.2.20) with I € C;, V €
[0,+00), and € € R. Then, for every v € LD*(R% \T';R?) such that [v]-vr =0 on
I' and v9 =0 on ¥ it holds

C(Eu —€l)-Evdz =0. (2.2.31)
RIA\T
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Moreover, there exists a constant q(I',V,€) > 0 such that for every ¢ € C}(R?)

C(Eu — €el) - E(p(u —€id)) dx = ¢(T", V,€) / olu] -vp dH! . (2.2.32)
RIA\T r

Before proving Proposition 2.2.6, we briefly discuss some consequences of for-
mula (2.2.31).

Remark 2.2.7 (Equilibrium system). Let u be a solution of (2.2.20) and let us set
o(u) := CEu, (2.2.33)
the stress field associated to u. Formula (2.2.31) means that u is a weak solution of
div(o(u) —o(e)) =0  in RI\T, (2.2.34)

which reduces to
dive(u) =0 in RI\T, (2.2.35)

since o(€) is a constant matrix. Equation (2.2.35) says that u satisfies the usual
balance of forces.

Moreover, integrating by parts in (2.2.31), we deduce that u fulfills also the condi-
tion o(u)12 = 0 on X, that is, the shear stress applied on the boundary of the elastic
body is zero.

Remark 2.2.8 (Strain field). Since a solution u to (2.2.20) is also a weak solution of
the system (2.2.34), applying Proposition 1.2.1 and the standard regularity theory for
systems with constant coefficients (see, for instance, [41, Chapter 2]), we have that for
every R > 0 there exists a constant C' = C'(R) satisfying the following condition: for
every zog € RZ \T such that the open ball Bg(z¢) is compactly contained in R% \T

[Eu — dHoo,BR/g(xo) < COlBu - 6IH?:BR(IO) :

This implies that

13300 [Eu = €lllooB g p(x) = 0

|z

which means that at infinity Eu tends to coincide with the strain el. Therefore, the
choice of the function space LD?(R2 \ T';R?) is fully justified.

Remark 2.2.9. From (2.2.31) we deduce that for every v,w € LD*(R%\T';R?) such
that [v]-vr = [w]-vr on T' and ve = we on ¥ the following equality holds:

C(Eu—e€l)-Evdx = [ C(Eu—e€l)-Ewdz. (2.2.36)
RZ\T R2\T

This property will be extensively used in the sequel.
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Proof of Proposition 2.2.6. When V = 0 we have, up to a horizontal translation,
u = €id, thus we can take ¢(I',0,¢) = 0.

Assume now V > 0. Let v € LD*(R% \I';R?) be such that [v]-vp = 0 on T
and v = 0 on X. Then, for every ¢ € R the function u + dv belongs to A(I', V,¢).
Therefore,

E(u,Tye) < E(u+dv,Te),

which implies

2
Eu,T,e) < E%u+0v,T,¢) = E%u,T,€)+0 | C(Eu—el)-Ev dfv—l—(s— CEv-Evdzx,
R2\T 2 Jr2\r

where £¢ is defined in (2.2.8). By the arbitrariness of &, from the previous inequality
we get (2.2.31).
Let us now prove (2.2.32). We define two linear operators L and M on C}(R?):

L(p) := RQK\:IQEU —el)-E(pu) dzx,
M(p) = /Fgo[u] cupdH!.

For every ¢ € C}(R?) with M(p) = 0, we consider the function (1 + d¢)u. For ||
small enough, we have (1+dp)u € A(T",V,€). Arguing as in the previous step, we get
that

C(Eu — €I) - E(pu)dz = 0. (2.2.37)
RZ\D

Let us denote by ker(L) and ker(M) the kernels of the linear operators L and M,
respectively. Equality (2.2.37), which is satisfied for every ¢ € N (M), implies that
ker(M) C ker(L). Therefore, there exists ¢ = ¢(I", V,€) € R such that L = ¢qM.

It is clear that for every ¢ € CL(R?) we have

[o(u—€id)]-vr = [pu]-vr  on I. (2.2.38)
Recalling (2.2.31) and Remark 2.2.9, equality (2.2.38) implies that
/ C(Eu—€l) - (Ep(u —€id))dz = [ C(Eu— €l)-E(pu)dz
R2

s REAL (2.2.39)
= q/cp[u] cvpdH!,
r

which is (2.2.32). Taking in (2.2.39) a function ¢ € C}(R?) such that ¢ = 1 on T
and using again Remark 2.2.9, we get that

C(Eu — €l) - (Bu — el) dz = gV, (2.2.40)
R2\T

which implies that ¢ > 0. This concludes the proof of the proposition. ]
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Remark 2.2.10. In the case V > 0, from (2.2.40) we get immediately an explicit
formula for ¢(T",V,€) in terms of the elastic energy and of the volume V':

g, V.6) = = [ C(Bu—el)- (Bu— ) da. (2.2.41)
RZ\T

Remark 2.2.11 (Fluid pressure). Let us consider the constant
p(T,V,e) :==q(T,V,e) — a(e), (2.2.42)

where ¢(T",V,e) and o(e) are defined in Proposition 2.2.6 and in formula (2.2.6),
respectively. We want now to explain why p(I',V,e) can be interpreted as a fluid
pressure. It is clear that, if u is a solution of (2.2.20) without the non-interpenetration
condition, then ¢(I', V¢€) is a Lagrange multiplier due to the volume constraint, and
hence we have

C(Eu — el) - Evdz = q(T, V, ¢) /[v] vpdH! (2.2.43)

RZ\D r

for every v € LD?*(R%\T;R?) such that v = 0 on ¥. Thus, with the notation
introduced in (2.2.33), u satisfies the condition

o(uvr = o(e)vr — q(I', V, e)ur = (o(€) — q(I', V, €))vr

2.2.44
=—p(, V,e)vp onI". ( )

Formula (2.2.44) means that the total force that the elastic body exerts on the crack T’
has modulus —p(I', V,€) and is directed along vr. On the contrary, the fluid inside
the crack exerts a force p(I', V, €)vpr on the fracture lips. Therefore, we are allowed to
interpret p(I", V,¢€) as the fluid pressure. According to (2.2.44), the pressure p(T', V,€)
is acting on I' along its normal vp in the reference configuration rather than in the
deformed one. This does not affect our interpretation, since we are dealing with a
linearized model.

To justify the same interpretation of p(T", V| €) when the non-interpenetration con-
dition is considered, we have to show that (2.2.43) holds for a sufficiently large class
of functions in LD?(R2 \T;R?).

Proposition 2.2.12. Let u be the solution of (2.2.20) with T' € C,), V € [0, +00), and
€ € R. Then (2.2.43) holds for every v € LD*(R% \I';R?) such that supp(v) CC R%
and |[v]-vr| < Clu]-vr for some C > 0.

Proof. When V =0 we have u = € id and the statement is true with ¢(I",0,¢) = 0.
Let us assume that V > 0. Let v be as in the statement of the proposition, and
let us fix p € CL(R2) such that $ =1 on supp(v) and

/4,02[u] vpdH! > 0. (2.2.45)
r

If we set U := pu, thanks to Proposition 1.2.1 we have that u € H'(R2 \T;R?). In
view of (2.2.36), we now modify the functions @ and v, keeping the same values of
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[@]-vr and [v]-vp on I'. Let us fix  a bounded open subset of R? with smooth
boundary such that I'\ Ty CC €, supp(u) CC €2, and supp(v) CC Q2. We may assume
that there exists an extension I' of T' in Cy such that vy = vp on T, Q\f is the
disjoint union of two open subsets QF with Lipschitz boundaries and with v, pointing
towards Q. We consider a scalar function @ € H'(R% \I') such that supp(@) CC 2,
@>0onRY, 4=0on Q" ,and (@)" = [@ vr on I'. Similarly, we can find a scalar
function @ € H'(R2 \ T') such that supp(¢) CC Q, o =0 on Q~, (8)" = [v] -1 on
I', and

5| < Cla| ae. on RY. (2.2.46)

Besides @ and 7, we also fix a C%!-extension U of the unit normal vy to I'. We
further assume that 7 has compact support in R?. In what follows, we will consider
the functions @, v, @7y, and 00y, By construction, they belong to Hl(Rﬁ_ \T') and
have compact support in Ri.

We now need to approximate @ and © by truncation. Let Tjp: R — R be the
truncation function introduced in Chapter 1 and let Si: R — R be defined by Si(s) :=
s —Tk(s).

From (2.2.46) it follows that for every k € N

|81k (T(9))] < CTy(@) a.e. on R . (2.2.47)

In particular, S /(75 (9)) = 0 where @ < 1/(kC).
By the properties of @ and of vy, for every k we have

[Tk(ﬁ)ﬂf] v = [Tk(ﬂ)]VF v = Tk([ﬂ] . I/F) onI'.
The previous equality implies that
0< [Tk(ﬂ)ﬁf] cvp < [ﬁ] -vr < [u] -vp on I'. (2.2.48)
Taking into account (2.2.48), with the same technique used to prove Proposition 2.2.6
we deduce that there exists g, € R such that for every ¢ € C1(R?)
C(Bu — o) - E(¢Ti(@)ir) de = g / [Tu(@)ig] - vr dH (2.2.49)
REA\L r
We now show that ¢, — ¢(I',V,e). Since Tp(@)op — by in Hl(Ri \T'; R?),
passing to the limit in (2.2.49) as k — +oo and recalling (2.2.36), we obtain
C(Eu —€l)-E(pu)dz = | C(Eu — €l)-E(pur;) dx
RZ\D RZ\D

=lim | C(Bu — e) - B(pT(@)7) do = lim gy / Q[T (@) g - vp dH
r

AN (2.2.50)

= lim gy, / pluvp] - vp dH = lim qk/ ola] - vp dH!
k r k r

= lim g / ©P@lu) - vp dHL.
k r
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Taking ¢ = @ in (2.2.50), by (2.2.32) of Proposition 2.2.6 we get

q(T, V,e) / @[] -vpdH! = | C(Eu — €l) - E(G%u) dz
r R2\T
+ (2.2.51)

= lim g / ?2[u] - vp dH.
k r

Since (2.2.45) holds, from (2.2.51) we deduce that ¢, — ¢(I', V. €).
We now define the scalar function

Siw(Tk(0(2)) ., .
w(@) =4 Toa@) if u(x) #0,
0 if d(2) = 0.

Then, by (2.2.47), w, € H'(RZ \ T') N L°(R2) and supp(wy) C supp(?) CC Q. In
particular, wy = 0 in Q7. Hence, for every k there exists a sequence (gpfv) ; in CHR2)
such that H‘Pi”oo,Ri < ||11)/1€|\007R?F and gof; — wy, strongly in H'(QF) as j — +oo.

We consider the sequence @iTk(a)ﬂf in H'(R? \T;R?). By the dominated con-
vergence theorem, we have @) Ty (@) — Sy (T(0))04 strongly in H'(R% \ T;R?)
as j — +oo. Since Sy (T3(0))Pp — 0Pf strongly in H'(R3 \I';R?) as k — +00, by
a diagonal argument we find a sequence ¢y in C°(R%) such that ¢ T (@)0q — 00y
strongly in H'(RZ \I'; R?). Therefore, we get

C(Eu —el)-Evdz = | C(Eu — €l)-E(v7p) do
R2\T R2\T

=lim [ C(Eu — el)-E(ppTk(0)7p) dr = lim qk/ or[ T (@) 7] - vp dH?
k JR2\T k r

=q(I',V,e) /F[f}ﬂf] cvpdH! = q(T',V, €) /F[v] cupdH!,

and this concludes the proof. ]

Remark 2.2.13. Integrating by parts, thanks to Proposition 2.2.12 we get that a solu-
tion u of (2.2.20) satisfies the condition o (u)vp = (o(€) — q(T, V,€))vr on {[u] -vp #
0}, which is the part of the crack I' occupied by the fluid. Therefore, we can re-
peat the argument of Remark 2.2.11 on the set {[u]-vr # 0} and we conclude that
p(I',V,e) = q(T',V,€) — o(e) can be interpreted as the fluid pressure.

We conclude this section considering another static problem. In view of Proposi-
tion 2.2.6 and of Remarks 2.2.11 and 2.2.13, we know that to every triple (I',V)e¢) €
Cp x [0,400) x R corresponds a pressure p(I', V,€) = ¢(I', V,€) —o(€), with ¢(T', V,€) €
[0, +00).

What we want to do now is to briefly discuss the relationship between I', V', e,
and p studying the equilibrium problem of an elastic body filling R%r subject to a
uniform strain eI, e € R, and with a force pyr acting on the crack I' € C,,. According
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to the result presented in Proposition 2.2.3, in this case the total energy of the system
is of the form

8 T.p.) = Flu. 1) —p [ [ v a
r (2.2.52)
— (.~ (p+o(0) [ [l v d
r
where F is defined in (2.2.17). The class of admissible displacements is the set AD(T, ¢)
given by formula (2.2.4). As in (2.2.20), the equilibrium condition is expressed by the

minimum problem
i E(u, T p,e). 2.2.53
el (u, T, p,e) ( )
The existence of a solution of (2.2.53) follows by the arguments used to prove Propo-
sition 2.2.4 and Corollary 2.2.5. The solution is unique up to a translation along the
T1-axis.
Given u a solution of (2.2.53), we set

V([,p,e) = /F[u]-l/p dH', (2.2.54)

the volume between the crack lips. Then, the following proposition holds.

Proposition 2.2.14. For every I' € C,), every V € [0,+00), and every € € R, we
have
V(L p(T,V,e),e) =V. (2.2.55)

Proof. During this proof, we denote by uy a solution of (2.2.20) associated to (I', V,€),
and by u, a solution of (2.2.53) corresponding to (I, p(I',V,€),€).
First of all, we notice that, by (2.2.42), the energy defined in (2.2.52) reduces to

E(u, I, p(T',V,e),e) =E(u,I'e) —q(I', V,e) / [u] - vp dH! (2.2.56)
r
for every u € AD(T,¢).

If V =0, we have, by Remarks 2.2.11 and 2.2.13, that p(I', V,e) = —o(€). Hence,
it is clear by (2.2.19) and (2.2.52) that we can take uy = u, = €id, and (2.2.55) is
satisfied.

Assume now V > 0. Let us first show that V(I',p(I', V,€),€) > 0. By contradic-
tion, if V(I', p(I', V,€),€) = 0, then, up to a horizontal translation, u, = eid. Thus,
by (2.2.19), (2.2.41), (2.2.52), (2.2.56), and by the minimality of wu,, we get that

& (up, T, p(T, V. €),€) = kH(T)

< E(uy,T,p(T,V,6)6) = + [ CBuy — ) - (Buy — el)dz — q(T, V, )V + kH (D)
R2\T

1
= —— [ C(Buy —€l)- (Buy — el)dz + sH (),
2 Jr2\r
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which, in view of (2.2.3), leads to a contradiction. Hence, V(I", p(T', V. €),€) > 0.
Arguing as in Proposition 2.2.6 and Remark 2.2.10, we can prove that

! C(Euy — €l) - (Eu, — €I) da (2.2.57)

q(I', Vie) =
Vo) = 0 T, V), ) S

Therefore, by the minimality of u, and by formula (2.2.56) we have

g(upa F7p(rv V'a 6)7 6) = g(upv F? 6) - Q(F7 V7 e)V(F,p(F, ‘/7 6)7 6)

2.2.58
< &(uy Tp(D,V,e),0) = E(uy. T ) — gDV, V. 25)
Combining (2.2.41), (2.2.57), and (2.2.58), we get
C(Euy —€l)- (Euy —el)da < [ C(Eup — €l) - (Eup, — el) dz,
BT RT
which implies, together with (2.2.58), that
VT, p(L,V,e),e) > V. (2.2.59)

Finally, let us set

;
= —eid id .
Ui T, Ve, e T ) e

Then v € A(T',V,¢€) and, by (2.2.8), (2.2.19), (2.2.41), (2.2.57), (2.2.59) and by defi-
nition of wuy

1% Z .
E(uy,T,e) <EW,T,e) = <V(F PO 6)> E% (uy, T, €) + kM (T)
V2q(T,V,e) 1 V ! 1
= F = e F F
W Tpr V.0, D =y mvg.g° e F R D)
SE(uV,F,e).

Therefore, the only possibility is V(I', p(T', V,€),e) = V', and this concludes the proof.
L]

Remark 2.2.15. With the notation used in Proposition 2.2.14, we also get that uy and
u,, coincide up to a horizontal translation.

Remark 2.2.16. Let us comment on the meaning of the result obtained in Proposi-
tion 2.2.14. When considering the equilibrium problem for the elastic body Ri sub-
ject to a far strain field el, € € R, with a crack I' containing an incompressible fluid,
we can, in principle, decide to work in two different settings: assume to know either
the volume V or the pressure p of the fluid inside I'. In the first case, we are led to
study the minimum problem (2.2.20), finding, according to Proposition 2.2.6 and Re-
mark 2.2.11, the fluid pressure p(I", V,¢€). If, viceversa, we know the pressure p acting
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on I', we can solve the minimum problem (2.2.53) and deduce from formula (2.2.54)
the volume V' (T, p, €) of the fluid between the crack lips. The equality (2.2.55) proved
in Proposition 2.2.14 means that the solutions obtained considering either (2.2.20)
or (2.2.52) coincide (same volumes, pressures, and displacements). Hence, we are
considering the same problem from two different viewpoints. As it will be clear in
Section 2.2.2 (see Remark 2.2.20), working with fixed fluid volume (2.2.20) is better
for our purposes.

2.2.2 Quasi-static evolution problem

We now describe the quasi-static evolution for our model of hydraulic fracture.
Given T > 0, for every t € [0,7] the elastic body is subject to a uniform strain field
e(t)I, €(t) € R, while a pressure ps(t) € R acts on the fluid far from the crack inlet.
For technical reasons, we assume €, ps, € C([0,7]). We denote by V(t) the volume of
fluid injected into the crack at time t.

It is convenient to introduce the reduced energy &,,(t,T', V) defined for every t €
0,77, every I € Cy, and every V € [0,+00) by

— 3 _ : el 1
Em(t, T, V) = ueAl(qFl,l\r/l,e(t))g(u’F’E(t)) = ueAg“l,l\I/l,e(t))g (u, T e(t)+xH (T'). (2.2.60)

Following [57] and [39], we state the problem in the general framework of rate-
independent processes. The evolution is described by a crack set function ¢ +— I'(¢)
and a volume function ¢t — V(¢). The Griffith’s stability condition is here expressed
in a derivative free setting in the following way: for every ¢ € [0, T]

Em(t,T(t), V(1) <En(t, T, V(1)) for every I' € C,, with I' D I'(¢t).

Since the process is irreversible, we require ¢ — I'(¢) to be an increasing set function.
Moreover, we impose an energy-dissipation balance: the rate of change of the reduced
energy (2.2.60) of the system along a solution equals the power of the pressure forces
exerted by the fluid plus the power expended by the far stress field o(e(t)) generated
by the strain €(t) (see (2.2.6)).

Finally, we have to give an evolution law for the volume function t — V(t). As
we have seen in Proposition 2.2.6 and Remark 2.2.11, the presence of a strain €(t)I
and of a volume V(¢) of fluid inside the crack I'(t) produces a pressure p(t) :=
p(L'(t), V(t),e(t)) acting on the fracture lips, which is also interpreted as the fluid
pressure inside the crack (see Remarks 2.2.11 and 2.2.13). As a consequence, a pressure
difference poo(t) — p(t) is created into the fluid, which drives the evolution of V(-)
according to the approximate Darcy’s law: V (t) = poo(t) — p(t).

This leads to the following definition.

Definition 2.2.17. Let 7" > 0, and let €,pc € C([0,7]). We say that a pair
(I, V): [0,T] = C,; x [0,400) is an irreversible quasi-static evolution for the hydraulic
crack problem if it satisfies the following conditions:

(a) irreversibility: T' is increasing, i.e., I'(s) CT'(¢) for every 0 < s <t < T,
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(b) global stability: for every t € [0,T],

En(t,T(1), V(1) < En(t,T,V(t)) for every I € C,, with T' D I'(¢) ;

(¢) Darcy’s law: the function V' is absolutely continuous on the interval [0,7"] and

V(1) = (poo(t) = p(t) Lvs0y (1)

for almost every ¢ € [0,T], where p(t) := q(I'(¢),V(t),e(t)) — o(e(t)) is the
pressure introduced in Remark 2.2.11;

(d) energy-dissipation balance: the function t — &, (¢t,I'(t), V(t)) is absolutely con-
tinuous on the interval [0,7] and
d

ZEm(tT(1), V(1)) = (p(t) + o (e(t))V(t) (2.2.61)

for almost every t € [0,7].
We are now in a position to state the main theorem of this paper.

Theorem 2.2.18. Let €,ps € C([0,T]) and let Ty € Cy and Vy € [0,+00). Assume
that (stability at time t =0)

Em(0,T0, Vo) < Em(0,T, Vo) (2.2.62)

for every I € C,, with I' O I'g. Then, there exists an irreversible quasi-static evolu-
tion (I, V') of the hydraulic crack problem, with I'(0) =Ty and V(0) = V}.

Let us comment on the initial condition of Theorem 2.2.18.

Remark 2.2.19. If the pair (I'g, Vo) € C; x [0,400) does not satisfy the stability con-
dition (2.2.62), we define a new initial condition (I'§, Vp), with I'jj solution of (2.2.62).
In particular, I'j minimizes &,(0,T',Vp) among all I € C, with I' O I'j. Therefore,
we can solve the evolution problem in Theorem 2.2.18 starting from (I'j, Vo).

A solution of (2.2.62) can be found by the direct method of the calculus of vari-
ations. Indeed, a minimizing sequence I';, € C,; has bounded H'-measure, and thus
is bounded in C,. By Proposition 2.2.2, we may assume that I'y; — I' in the Haus-
dorff metric, for a suitable I' € C,. For every k € N, there exists a unique (up to a
horizontal translation) uy € A(T', Vo, €(0)) solution of (2.2.20). Since Euy — €(0)I is
bounded in L*(R%;M?2 ), by Proposition 2.2.4 we have Euy — €(0)I — Ev — €(0)I

sym

weakly in L*(R%;M?2 ) for some v € A(T, Vp,€(0)), and

sym

Em(0,T,Vy) < E(v,T,€(0)) < limkinfé'm(O,Fk, W) .

Thus I' is a minimizer.

The following remark explains why it is convenient to state the evolution problem
in terms of the energy functional £ defined in (2.2.19) rather than working with & of
formula (2.2.52).
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Remark 2.2.20. Let us assume for a moment to know a priori the pressure p of the
fluid inside the crack I' € C,. Given t € [0,T], we may define the reduced energy

En(t,T,p) = in  &u,T,p,et), 2.2.63

m(t,Top) =  min G Tpe(t)) (2.2.63)

where & and AD(T',¢(t)) are defined in (2.2.52) and (2.2.4), respectively. The non-
interpenetration condition in (2.2.4) and the presence of the linear term

(p+ o(e(t))) /F[u] yp dH?
in (2.2.52) imply that the reduced energy &, is not bounded from below with respect to
the crack set variable. Indeed, when we try to repeat the argument of Remark 2.2.19,
it is possible (when p + o(e(t)) > 0) to construct a sequence I'y in C, such that
&En(t, Ty, p) — —oo and HY(Ty) — +oo. It is sufficient to consider, for instance,
'y = {0} x [0,1], €(0) =0, p(0) > 0, and a function u; € AD(Iy,0) such that

p(0) /F o] - vpy dH! > HMT) = 1. (2.2.64)

For every R > 0, let us set ug(x) := up(x/R) and I'p := RI'g. Then, it is easy to see
that up € AD(I'g,0) and that the following equalities hold:

/ CEug-Eugpdx = / CEug - Eugdz, (2.2.65)
R2\I' R2\T'o
/ [ug) - vr,dH' = R | [uo]-vr, dH', (2.2.66)
FR To
H'(Cr) = RH'(To). (2.2.67)

In view of (2.2.64)-(2.2.67), we get that &,,(0,I'r,p(0)) - —o0 as R — 4oo0. This
means that it is energetically convenient to have a catastrophic rupture of the elastic
body, which is in contrast with the quasi-static nature of the phenomenon we are
studying.

On the contrary, the energy &, defined in (2.2.60) is always positive, and this
simplifies our analysis.

To prove Theorem 2.2.18, and in particular to obtain the global stability condi-
tion of Definition 2.2.17, we need the following two technical lemmas. The first one
corresponds, in our setting, to the Jump Transfer Theorem [38, Theorem 2.1].

Lemma 2.2.21. Let F,Fk,Foo,foo € Cy be such that T' C I'y, I'y — I'c in the
Hausdorff metric, and I', C f‘oo. Let Vi, Voo > 0 and tg,too € [0, T] with Vi — Voo
and t, — ts, and let u € A(foo,V,e(too)). Then there exist a sequence L'y in Cy
and a sequence uj € A(f‘k,Vk,e(tk)) such that Ty — Do in the Hausdorff metric,
Ty C Iy, Eup—e(tp)] = Eu—e(too)I strongly in L*(R3;M2,,,), and & (uy, Twe(t)) =
E(u, T, €(tso)) -
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Proof. The proof is carried out following the steps of [65, Lemma 3.7]. The letter C
will denote a positive constant, which can possibly change from line to line.

First, we construct the sets I'y. Let ag, oo > 0, oo > Goos Yk € Cr([0, ax)),
Yoo € CHL([0,a00]), and Aoo € C11(]0,d00]) be as in Definition 2.2.1. In particular,
Tx = graph(vi), Teo = graph(ys), and T's = graph(4ss). It is also convenient to
define a W2 _extension of 4, to the interval [0,dso + 26], for some § > 0. For
instance, this can be done in the following way:

Aoo(22) if 25 € [0, doo),
oo (ioo) + (T2 — Goo) Al (Go) i T2 € (Goo, G + 26].

Yoo(T2) 1= {

In view of the Hausdorff convergence of I'y to I', we have that

Ak = ooy Vk(Ak) = Yoo(Goo) = Fool(@oo) s Vi(ak) = Yoo (ao0) = Ao (aoo) - (2.2.68)

Without loss of generality, we may assume that v; (ag) > 9., (@sc) > 0 (the other cases
can be dealt in similar ways). Let » > (14 %?)/n and

r

—(1,—7,;(%)) cR?.
1+ [7;(ax)? -

2z = (y(ag), ax) —

Let us consider the ball B,(z), which is tangent to I'y in (yx(ag),ax). In a neigh-
borhood of (vx(ak),ax), the circle 0B, (z) can be seen as the graph of the function

2
r Vi (ar)
Ce(w2) = Yk(ag) — ——mr—== + \/7“2 - (wz —ay -
VI [ (ar)? VI g ar)?
We deduce that there exists by > aj such that 7. (ae) = (;.(bg) and J. (@) <

C(x2) < vp(ag) for every zo € (ag,by). Moreover, by the choice of r we have
| (z2)| <7 in (ak,bx), and, by (2.2.68), by = oo -

We define
’WC(‘/EQ) if '1726[070%])
Ar(z2) =19 Ck(z2) if $2€(ak,bk],

'S/OO<I'2 + Qoo — bk) =+ Ck(bk) — ’A}/OO(CLOO) if QTQE(bk,&oo + 26 + bk — aoo].

For k large enough, we have that 4, is well-defined on the interval [0, do + 0], 4% €
CH1([0, oo + 0]) and, by construction of (j,

191l 00,0,800+8] < 1 and 195 ll oo, (0,400 0] < 1 (2.2.69)

It is easy to see that 94 — Yoo weakly™ in W2’°°(A[0, aoo). Therefore, if we set [y =

graph(9xj,4..]), we deduce that I'y C I'y, and I'y, — ' in the Hausdorff metric.
Moreover, by (2.2.69), 'y, € C,),

Let us fix p > 0 and let dy, := ||k — Yoollw.00([0,400+4]) - BY the weak™® convergence

in W2 of 4, to s, we have that d, — 0. For k large enough (so that fk -
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Ip(foo)), we want to construct a Ch!-function Ay, such that A;w,(f‘oo) =T and
App(z) = z for o € R2\ I,(T'x). Let us first fix a function vy € C(R?) such
that 0 <9, <1, 19p =1onZ, 2T \T), and supp(d,) cC Z,(T OO\F) For every
x = (z1,72) € Z,(Too \T), we deﬁne

Ag () =z + ( Ip(@) ((72) = oo(22)) ) : (2.2.70)

By the properties of ¥,, we have that Ay ,(z) = x for every x ¢ T ( s \I'), so that it
makes sense to extend Ay , with the 1dent1ty out of Z ( s \I'). Moreover, we notice
that, Ay, € CPH(R%R?) and Ay (Do) = [k

From (2.2.70) and the definition of dj, we deduce that

lim [[ A, — idlwr.oe ey = 0. (2.2.71)

limsup [[Ag, , — id|[yy2.00(m2) < C, (2.2.72)
k

where C' > 0 in (2.2.72) is independent of p. In particular, in view of (2.2.71), we can
apply Hadamard Theorem (see [50, Theorem 6.2.3]), to deduce that Ay, is globally
invertible with A,;}) € CY1(R?%;R?) and HA,;}) —id|[y1,00m2) — 0 as k — +o00.

We are now in a position to define the approximating functions. Let u belong
t0 AT oo, Voo, €(tos)) . We set

Uk,p = ((cof VA, T (u— e(teo) id)) o A}, }), (2.2.73)
1%
Upp = V—’“vk,p+e(tk) id . (2.2.74)

Thanks to [21, Section 1.7], uy , satisfies the non-interpenetration condition and the
volume constraint on 'y, hence uy,, € A(T'k, vk, €(ty)). Moreover, (2.2.71)-(2.2.74)
and Proposition 1.2.1 imply that

limksup HEU’“vPH?,Ip(foo) < Cllu — €(too) id||H1(Ip(fm)\fm) , (2.2.75)
Euy , — e(ti)l = “//—k(Eu — €(too)]) in R2\ Z,(T's0). (2.2.76)

In view of (2.2.74) and (2.2.76), we have that

|E (g py Ty €(t)) — E (1, Too, €(too))]

2
< ‘32 / CEu, - Evy, dz + = /C (Eu — e(too)]) - (Eu — €(too)I) dz
I,,(Foo Zp(l'eo) (2.2.77)
4= < )/(C (Eu — €(too)) - (Bu — €(teo)I) do
R2\Z (Foc)

+ 1 (%) = H (Too)]-
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Recalling that #'(I'y) = H'(T'so), Vi = Vi, and that (2.2.3) and (2.2.75) hold,
we pass to the limsup in (2.2.77) as k — +oo obtaining

im .6 kg P e(t1)) = £ Py ltoe))| < Cll = elton) il g - (2278)
Passing to the limit as p — 0 in (2.2.78), we deduce that
lim lim sup |E (g py Ty () — E (1, T, €(too))| = 0. (2.2.79)
p— k

Therefore, in view of (2.2.75) and (2.2.79), we can construct a sequence of functions
up € ALy, Vi, €(tx)) such that &(ug, [k, €(tr)) = (v, ', €(txo)) and Euy — e(ty)l —
Eu — €(too)! strongly in L*(R%; M2 ). This concludes the proof of the lemma. O

sym

The following lemma will be useful in the proof of the global stability condition (b)
of Definition 2.2.17.

Lemma 2.2.22. Let I''T';, ' € C,; be such that I' C I'y and I'y — TI's in the
Hausdorff metric. Let Vi, Voo > 0 and tg,teo € [0,T] with Vi — Vs and tx — too.
Assume that

Em (i, Ty Vi) < Emlte, T, Vi) for every T' e C, with DIy, (2.2.80)
Then
Em(toos Too, Vo) < Sm(too,f, Vo)  for every ['e C, with ' Dl.. (2.2.81)

Moreover, let ug, us be solutions of (2.2.20) corresponding to the triples (I'y, Vi, €(tx))
and (Too, Voo, €(too)), and let p(Ti, Viy €k), P(Too,s Voo, €0o) be the corresponding pres-
sures according to Remark 2.2.11. Then Eu,—e(ty)l = Euco—e(toso) in L*(RZ; szm) ,
P(Tk, Viey€k) = P(Toos Vioos €00) s and Ep (tr, Ty Vi) = Em(toos Loos Vo) -

Proof. Let us fix wy € A(T',1,0). Then,
wy, = Vywo + €(ty) id € ATy, Vi, €(tr))
and, by definition of uy,
E (up, T, €(tr)) < E%(wy, Try €(tr)) = V2E (wp, T, 0) . (2.2.82)

In view of (2.2.3), inequality (2.2.82) implies that the sequence Euy—e(tx)I is bounded
in L?*(R%;M?,,,). Hence, applying Proposition 2.2.4, we deduce that there exists

sym

Uoo € A(T oo, Voo, €(tao)) such that, up to a subsequence,
Eup, — €(t)] — Bueo — €(too)]  weakly in L*(RY). (2.2.83)

Let us prove (2.2.81). Let I e Cy, [’ D I'ss be fixed. Let us denote by up €
A(L, Vio, €(too)) a solution to (2.2.20) associated to (I, Vag, €(foo)). Applying Lemma
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2.2.21 to Fk,Foo,f, we can find a sequence fk € C, such that fk D I'y and f‘k. =T
in the Hausdorfl metric, as well as a sequence of functions vy € A(f‘k, Vi, €(tx)) such
that & (v, Tk, €(tr)) = E(up, T e(too))-

By (2.2.60), (2.2.80) and (2.2.83), we have that

Em(too, ooy Voo) < E(Uoo, oo, €(to)) < limkinf E(ug, Tk, e(tr))
= limkinf Em(ti, Tk, Vi) < limsup &y, (tk, 'k, Vi) < limsup Em(tk,fk, Vi) (2.2.84)
k k

< lim E(vp, Ty (i) = E(up, T, €(too)) = Emltoo, T, Voo) s

from which we deduce (2.2.81). Moreover, taking I' = 'y, in (2.2.84), we get that
Uso € A(l's0, Voo, €(to0)) s a solution of (2.2.20), Eug —e(tr)] = Euso —€(to)] strongly
in L2(R1;M§ym), and & (tg, Tk, Vi) — Em(too, Loos Voo). In view of these conver-
gences, of Remark 2.2.10, and of formula (2.2.42), we deduce that p(I'g, Vi, €x) —
P(Too, Vo, €x0) , at least in the case Vo, > 0.

It remains to prove that p(I'x, Vi, €x) = —0(€(tx)) = P(T's0, Voo, €(to)) if Voo = 0.
Without loss of generality, we may assume Vj, > 0 for every k € N. In view of (2.2.82),
we have that

C(Eug — €(tp)]) - (Bug — €(tp))dz < V2 | CEwyp-Ewydz,
R\ RZ\T'y

which implies, together with Remark 2.2.10 and formula (2.2.42), that

0 < p(Tk, Vi, ex) +o(e(ty)) < Vi | CEwo-Ewgdz.
R\

Since Vi — Vo = 0 and €(t;) — €(teo), we get p(Tk, Vi, €x) = —0(€(too)) - O
We are now ready to prove Theorem 2.2.18

Proof of Theorem 2.2.18. Let €, ps, ['g, and Vg be as in the statement of the theorem
and let vp, be the unit normal vector to I'y.

The proof is based on a time discretization process, see [39, 57]. For every k € N,
we introduce the time step 74 := T'/k and a subdivision of the interval [0,77] of the
form tf ;=17 for i =0,...,k. Let us describe the discrete problems. For every k we
define V¥ and T'¥ recursively with respect to i. For i = 0, we set Vi := Vp, 'k := T,
and p§ := p(To, Vo, €(0)) the pressure introduced in Remark 2.2.11. For i > 0, assume
that we already know Vi]il, Fi'tl’ and pffl = p(I‘fﬁl, V;]il, e(tfﬁl)). We define

VE = max {V;" 1 + (poo (t5_1) — pF 1) 71,0} . (2.2.85)

We notice that (2.2.85) is the discrete approximation of the Darcy’s law of Defini-
tion 2.2.17. Then, we set I'¥ to be a solution of

min {&,(tF,T,V¥) : T €C,, T DTF 1, (2.2.86)
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which can be found arguing as in Remark 2.2.19. In particular, (2.2.86) is the discrete
form of the global stability condition in Definition 2.2.17.

Finally, we denote by uf a solution of (2.2.20) with ' = I'¥, V = V¥ and
€ = e(th), and we set pF := p(I'F, VF €(tF)) to be the corresponding pressure, according
to Proposition 2.2.6 and Remark 2.2.11. Arguing as in the proof of Lemma 2.2.22, it
is possible to prove that

[Buf — ()5 < OVE,

—o(e(th)) < pk < CVF = o(e(th)), (2.2.87)

for some constant C' > 0 independent of k£ and 7.
We introduce the following piecewise constant interpolation functions: for ¢ €

k ik
t7 ti1)

uk(t) = fa Fk(t) = Ffv Vk(t) = ‘/z'kv ek(t> = E(ti'c)a
k

) =0, pE () = pes (), ow(t) == o(e(th)), (2.2.88)

and, for t € (tf,tfﬂ], Vi(t) = Vllil Furthermore, we will also use the piecewise
affine function

k k Vi -vE, k ko ok
Tk
Since pf > —a(e(tF)) for every k and every i, from (2.2.85) we easily deduce that
Vi < VEL+ [poo(tizy) + o (e(tia))me (2:2.90)

Iterating inequality (2.2.90), we get

VE<Vo+ 7 Ipoo(tfy) + o (e(th ). (2.2.91)
j=1

Taking into account the regularity of ¢ — poo(t) and of ¢ — o(e(t)), inequality (2.2.91)
implies that

Sup 1Vielloo, 0,77 < +00. (2.2.92)
Therefore, from (2.2.87) and (2.2.92) we obtain that
sup [Euf — e(ti)llopz < oo and SUP [[Pi oo 0,77 < 00 (2.2.93)
Z?

Moreover, thanks to (2.2.85) we have that
VL = VI < poo (1) 7k + [pF1 |7 - (2.2.94)
Combining (2.2.90), (2.2.93), and (2.2.94), we get that

sup V¥l oo o) < +00. (2.2.95)
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We now prove a discrete energy inequality. By (2.2.86) we have that

En(th,TE, V) < En(t8, T, VF). (2.2.96)

791

In order to estimate the right-hand side of (2.2.96), we fix wy € A(T'o,1,0) and we

define the functions
uf — e(tF) id

i : k
Uf = ‘/;k if ‘/Z # 07
wo if VF=o.
Notice that v¥ € A(T¥,1,0) and, by (2.2.87),
HEvfllz,Ri <M, (2.2.97)

where M > HEwOHlRi.
Since uf | + (e(tF) — e(tF |))id + (VF —VE )k | € ATE |, VEF e(th)), by (2.2.96)
we get

Em(t, T3, VE) < E(uiy + (e(t7) — e(tin))id + (V= VE Do T 1 e(8))

= (b T e(th )+ (VF — VE ) / C(Bub , — e(th )T)-Bob , da
R2\I'k

i—1

(2.2.98)

Vk _ Vk 2
+ (Zz_l)/ CEvf | -Euvf | dz.
2 R2 \Fk

Recalling (2.2.3), (2.2.97), and formula (2.2.41) which relates p¥ to o(e(t¥)) and to the
quantity ¢(I'¥, V¥, e(tF)) introduced in Proposition 2.2.6, we can continue in (2.2.98)
obtaining

k

Em(ty, TFVE) <Em(tF 1, TE 1, VD) + (0 + U(G(tf._l)))/ VE(s) ds
th
) " ! (2.2.99)
+BVkM2/k [Vi(s)| ds,
ti*l
where we have set
Vk = 1 sup |V«k—V~]’C -
21,k =
Iterating inequality (2.2.99) we obtain, for ¢ € [tf,tfﬂ),
t
Em(tF T(t), Vi(t) <Em(0,T0, Vo) +/ (pi(s) 4+ o (s))VF(s) ds
0 (2.2.100)

~ T .
+5VkM2/ VF(s)|ds.
0
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In particular, (2.2.100) implies that H'(T'x(¢)) is bounded uniformly with respect to
t€[0,7] and k € N.

By Theorem 1.1.3 and Proposition 2.2.2, we have that, up to a subsequence,
['y(t) — T(t) in the Hausdorff metric for every t € [0,7], HY(Tx(t)) — HY(T(t)),
and the set function I': [0,7] — C, is bounded and increasing. Moreover, in view
of (2.2.92) and (2.2.95), there exists a nonnegative function V € W1>([0,T]) such
that, up to a further subsequence, V¥ — V weakly* in W1°([0,T]) and V¥ V}, V) —
V' strongly in L°*°([0,7]). Let us also denote by wu(t) a solution (unique up to a
horizontal translation) to (2.2.20) associated to the triple (I'(¢),V(¢),e(t)), and let
p(t) == p(I'(t), V(¢),€e(t)) be the corresponding pressure, according to Proposition 2.2.6
and Remark 2.2.11.

Thanks to the previous convergences, from Lemma 2.2.22 we deduce that for
every t € [0,T] the pair (I'(t), V(t)) satisfies the global stability condition (b) of
Definition 2.2.17, that Eug(t) — ex(t)I — Eu(t) — e(t)I in L*(R3;MZ,,,), and that
Pr(t) — p(t).

In order to prove the energy-dissipation balance, we first pass to the limit in (2.2.100)
as k — +o00. The third term in the right-hand side of (2.2.100) tends to zero because
of (2.2.95). In view of (2.2.93), of the pointwise convergence of py to p, of the con-
tinuity of o(e(-)), and of the weak* convergence in L([0,T]) of V¥ to V, we get
that

En(t,T(t), V(1)) gem(o,ro,%)+/0 (p(s) + o (e(s)))V(s)ds. (2.2.101)

For the opposite inequality, for every t € [0,7] we consider a subdivision of the
interval [0,¢] of the form si = % for k,h € N, k # 0, and h < k. For every
h=0,...,k we set

Therefore, ||E1);§||2’R?F < M and u(stH) + (e(sk) — e(stH))id +(V(sF)— V(stJrl))v}’erl

belongs to A(T(sf, ),V (s}),e(sf)). Since I'(-) is increasing and satisfies the global
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stability condition, we have
Emlsh T(s3), V(sh)) < Em(sh, T(shsa), V(sh)

< E(u(sh i) + (e(sh) — e(shy))id + (V(s) = V(siy1))0hg1, T(shin)s €(sh)

= 5m(32+1’ F(52+1)> V(sfurl)) + (V(SZ) - V(warl))/ C(Eu(sllfb+1) - 6(52+1)I)'Evll§+1dx

RIAT(sh4p)
1% k -V k 2
+( (Sh) 5 ( h+1)) / (CEviljJrl'EUi’erl dr
Ri\F(sﬁJrl)
5ﬁ+1 ) N 52-0:1
< Enlshirs T(shin), Vshi)) / (P(sh1) + o (e(sh 1)) V(s)ds + BVEM? [ [V (s)|ds,
sh sh

where (3 is the constant defined in (2.2.3) and

~

V=< sup [V(sf) —V(sf_y)|.

h=1,...k

N | —

Iterating the previous inequality for h = 0,...,k and setting p*(s) := p(sﬁﬂ),
o (s) == o(e(sf,y)) for s € (s§,sF, ], we get

E1(0,To, Vo) < En(t,T(1), V(1)) — /0 (1 (5) + 0" (5))V (5) ds
(2.2.102)

t
+ﬂVkM2/ [V (s)|ds.
0

Since I': [0,T] — C, is an increasing set function, according to Theorem 1.1.2 there
exists a set © C [0,7] such that [0,7]\ © is at most countable and I'(:) is continuous
at every point in ©. By Lemma 2.2.22, we have that s — Eu(s) — e(s)I is strongly
continuous in L*(R%) at every point of © and s — p(s) is continuous at the same
points. Thus p¥(s) — p(s) for every s € ©. By the dominated convergence theorem
(pF + oWV — (p + o(e))V in L'([0,#]) and, passing to the limit in (2.2.102) as
k — +o00, we obtain

£10(0.T0, Vo) < Em(t,D(1), V(1)) — /0 (p(s) + o (e(s)))V(5) ds.

Recalling (2.2.101), this concludes the proof of the energy-dissipation balance (d) of
Definition 2.2.17.

It remains to prove the Darcy’s law (c) of Definition 2.2.17. Let us fix j € N,
Jj # 0, and let us set E; := {t € [0,T]: V(¢) > 1/j}. By the uniform convergences,
for k large enough we may assume that Vi (t),V*(t),Vi(t) > 0 for every t € Ej;.
Therefore, in view of (2.2.85) and of (2.2.89), for such ¢ we get, using the notation
introduced in (2.2.88),

VE(t) = pE.(t) — pa(t) (2.2.103)
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In view of (2.2.103), for every ¢ € [0,T] we have

k - t.kS s = .kS S k S) — S S. L.
V(t)VoJr/OV()d Vo+/[071t]/\bgj)d —|—/Ej(poo() pr(s))d (2.2.104)

Passing to the limit as & — +o0o in (2.2.104), by the continuity of p,, and by L!-
convergence of pr to p we obtain that

VO =Vo+ [ V(s st [ (pus) =plo)ds,

[Ovt}\Ej J

from which we deduce, passing to the limit as j — +o00 and recalling that V =0 ae.
in {V =0}, that

t
V() = Vot [ (nls) = o)1y () ds.
This concludes the proof of condition (c) of Definition 2.2.17. O

2.2.3 Derivatives of the energy and Griffith’s principle

In this section we discuss some properties of a quasi-static evolution (I', V'): [0,T] —
Cy x [0,400) given by Definition 2.2.17. In Theorem 2.2.25 we show that, under suit-
able regularity assumptions on the crack set, the reduced energy (2.2.60) is differen-
tiable with respect to time, to the crack length, and to the fluid volume. The main
result of this section is Theorem 2.2.31, where we prove that the evolution (I',V)
satisfies the Griffith’s criterion (see [44]).

Let us start with the computation of the derivatives of the reduced energy (2.2.60).
We do it in a quite general setting, assuming that the crack path is known a priori:
the crack set can only evolve along a curve A € C,. For technical reasons, we need A
to be of class C%1.

Remark 2.2.23. Since we are interested in the (a posteriori) properties of a quasi-static
evolution (I', V), we notice that it is not so strange to assume that the crack can only
move along a prescribed path. Indeed, once the crack set function I': [0,7] — C, is
given, it is clear that the fracture grows following I'(7"). Hence, the true assumption
is that T'(T) (or A)is a C*!-curve.

Let L :=H(A) >0, and let A: [0, L] — R? be an arc-length parametrization of A
of class C*! such that A(0) = (0,0). In what follows, we denote by A; and Ay the
components of A. Moreover, for every s € [0, L], we define

As :={\o): 0< o <s}. (2.2.105)

In order to do our computations, we will need to slightly move the crack tip along the
prescribed curve A. Thus, for s € (0, L) and § such that s+ ¢ € [0, L], we construct
a C?!-diffeomorphism Fj s such that Fs,a(Ri) = Ri, Fs 5y = id]y, and Fs5(As) =
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Agis. Indeed, by definition of the class C, and by our regularity assumption, there
exists Ag: [0, A2(L)] = R of class C*! such that A = graph(),).

Let us fix ¢ > 0 small and let ¢ € C2°(B¢/2(0)) be a cut-off function with ¥ = 1
on B¢/3(0). We define Fj5: R? — R? by

Ag(2 + (Aa(s +0) = Aa(8))D(A(s) — x)) = Ag(a2)

Fs,5(x) =T+ (
(A2(s +0) = Aa(s))I(A(s) — )

) (2.2.106)
if € Bea(X(s)), while Fys5(z) ==z if 2 € R?\ B¢/a(A(s)).
In the following lemma, we give some properties of Fy s (see, e.g., [48]).

Lemma 2.2.24. For every s € (0,L), there exists o > 0 such that:

(a) Fs. € C*1((—dp,00) x R%;R?) and, for every |§| < &y, the map Fss is a C%'-
diffeomorphism. Moreover, Fss(R2) = R%, F,5(\(s)) = A(s +6), Fss(As) =
Agys, and Fy5(z) = x for every x € R*\ B jo(A(s));

(b) the norms ||Fssllcea and ||F {21 are uniformly bounded with respect to &

and there exist c1, ca > 0 such that, for every |6| < do and every x € R?, we
have ¢; < det VFys5(x) < ca;

(¢) |lid — Fssllcz =0 as 6 = 0;

(d) some derivatives:

ps(x) := 05(Fs 5())|s=0 = Ny(s)I(A(s) — z) ( )\’g(lﬂzz) ) ,

O5(det VFy 5)|s=0 = divps, (2.2.107)
05(VFys5)|5=0 = —05(VFss) o—o = Vps,
85(00f VFS,é)T‘zS:O = —85(00f VFs,é)iT‘(S:O =divps I - Vps.

Proof. See [42] for the proof of (a), (b), and (d) in the case of C°° maps. The
same arguments are applicable with the C*! regularity of Fjs. Property (c) follows
immediately from the definition (2.2.106) of Fy ;. O

As we have seen in Corollary 2.2.5, a solution to the minimum problem (2.2.20)
which defines the reduced energy &, exists and is unique up to a horizontal translation.
In order to compute the derivatives of &,, with respect to the crack length s and to the
volume V', it is convenient to slightly modify the set of admissible displacements A
defined in (2.2.18) in such a way that the minimizer of (2.2.20) is unique. To do
this, it is enough, for instance, to fix the mean value of the first component of the
displacement in an open set F CC Ri \ A with Lipschitz boundary, E # (. Thus,
for every s € [0, L], every V € [0,+00), and every € € R we define

A(Ag, Vie) := {u € A(As,Vye) : /

up dz = 0} . (2.2.108)
E
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For simplicity of notation, when € = 0 we set A(Ag, V) := A(As, V,0). We notice that

A(Ag, V) = {u € LDERL\ A R?) : [u]-va, > 0o0n Ay, [[u]-va, dH' = V} .

s

In view of Corollary 2.2.5, for every s € [0, L] and every V € [0, +00) there exists
a unique uj, € A(Ag, V) solution of (2.2.20) for the triple (A, V,0). In particular, for
every € € R we have that

E(uir, As, 0) = E(ui + €id, Ag, €) .
This implies that, for every ¢ € [0,7],

Em(t, A, V) = in E(u, A, e(t
( ) = aealin, ) £ A e(®)

= min  E(u,As,0) = En(As, V).
u€A(As,V)

(2.2.109)

For every s € (0,L) and every V € [0,+00), we set

&(s,V):= | CEuy - V((divpsI — Vps) uf/) dx
R3\As

1
+ [ CEuj - (Vui Vps) dz — 3 CEuy, - Euy divpg da .
R2\A, R2\A,

In Theorem 2.2.25 we show that &(s, V') corresponds, in our context, to the so-called
energy release rate, that is, the derivative of the renormalized stored elastic energy
with respect to the crack length parameter s (see (2.2.111)).

In the following theorem we give explicit formulas for the derivatives of the reduced
energy (2.2.60) with respect to ¢, s, and V.

Theorem 2.2.25. Let t € [0,T], s € (0,L), and V € [0,+00). Then

IEm _ 0Em B
W(t’AS’ V)= W(AS,V) =0, (2.2.110)
0&n _ 0&n, B
W(t,A‘%V) = X(AS,V) =K 6(8,‘/), (22111)
where K is defined in (2.2.19).
If, in addition, V > 0, then
dEm  9En B
(1,80, V) = T (0 V) = plAs, Vo) + o (el0). (2:2.112)

To prove Theorem 2.2.25 we need to introduce, for every s € (0,L) and § €
(—d0,00) (see Lemma 2.2.24), the Piola transformation P;s associated to Fjs:

P, su:= (cof VFss) uoF,g for every u € A(Agys, V). (2.2.113)
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We refer to [21, Section 1.7] for the main properties of P 5. We notice that, at least
for |§] small, Ps s is an isomorphism between A(As;s, V) and A(As, V') whose inverse
is given by

PST; w:= ((cof VFy5) " u) oF;(S1 for every u € A(A,, V). (2.2.114)

Lemma 2.2.26. Let s € (0,L) and let us € LD%(R% \ A;R?). Assume that there
exists ug € LD%(RL \ A;R?) such that us — up in LDE(RZ \ A;R?) as § — 0.
Then the sequences uso Fy s, ulgoFs}l, P sus, and stdl ug converge to ug strongly
in LD%L(R2 \ A;R?) as § — 0.

Proof. Thanks to Proposition 1.2.2 and to the properties stated in Lemma 2.2.24, the
lemma can be easily proved by using the changes of coordinates x = F 5_61 (y) and
x=Fys5(y). ]

Before proving Theorem 2.2.25, we show the continuity of uj, with respect to the
parameters s and V.

Lemma 2.2.27. Let sg,s € (0,L) and Vi,V € [0,4+00) be such that s — s and
Vi = V. Let uf,’; € A(A(sk), Vi) be the sequence of solutions of (2.2.20) corresponding
to sy and Vi. Then uyf — uj, in LD%(R% \ A;R?).

Proof. Arguing as in the proof of Lemma 2.2.22, we can show that

HEuf/]ZHZRi < MVk (2.2.115)

for some M € R. Hence, by Propositions 1.2.2 and 2.2.4, there exists u € A(Ag, V)
such that, up to a subsequence, Euf/’z — Eu weakly in LQ(Ri;ngm). IfV =0 we
have that uj, = 0 and, by (2.2.115), uyf — 0 in LDL(RY\ A;R?).

Assume now that V' > 0. Let us prove that u = uj,. By Lemma 2.2.24 and by
the properties of the Piola transformation (2.2.113), for k large enough we have

Vie ~
V1= 7f)&slk_s Uf/ S A(A(Sk), Vk) .

Thanks to Lemma 2.2.26, v, — ui, in LD%(R%\ A;R?) as k — +oo. Thus, by the
minimality of uy} we obtain

Em(As, V) < E(u, As,0) < liminf E(uyf, A(sy),0)

k——+o0

< limsup &(uyf, A(sg),0) < lim  E(vg, Asg),0) (2.2.116)
k—+o00 k—+o0

= E(ui, As, 0) = En(As, V).
From (2.2.116) we deduce that u = u}, and that uyf — uj, in LDR(RY\ A;R?). O

We are now ready to prove Theorem 2.2.25.
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Proof of Theorem 2.2.25. In view of (2.2.109), it is clear that &, and &, do not
depend on ¢, hence (2.2.110) holds.

Let us prove (2.2.111). Let s € (0,L) and V € [0,400). Recalling the notation
introduced in (2.2.113) and (2.2.114), we set

ul = (cof VFys) Tuy = (P ujy) o Fis. (2.2.117)

By (2.2.114), we have that Psféluf/ € AV(ASJ,.é, V). Hence, by definition of Em and
by the change of variables x = F 3_51 (y), for § > 0 small enough we have

En(Ast5, V) = En(As V) _ E(P,juiy, Mys,0) — E(uiy, As, 0)
5 = 5

1
- / C(Vui? (VFys)™Y) -Vl (VF,5) 7! det VF, 5 da
25 R?'—\AS ) ) )

= Jeo &EuiEuf/dx) + K.
+ S

Thanks to the properties of Fys stated in Lemma 2.2.24, applying the dominated
convergence theorem we easily get that

Em(Nais, V) — Em(As,V
lim sup (549, V) = Em(As, V) <k—-6(s,V). (2.2.118)
SN0 o
On the other hand, if we set U‘S/"S = uff‘s oFy s, for § > 0 small we have, in view
of (2.2.113),

gm(Aeré, V) - gm(A57 V) > g(uie;ré’ As+6> O) - g(st(;ufﬁé, As> O)
1) - )

1 s _ s _
_ 1 / C(VUS (VE,5)") - VU (VE,5) ' det VF, 5 dx (2.2.119)
26 R2\A,

-/, \((IJXV(P&(; ui) - V(P s usv+5)dm) + 5.
+ S

By Lemmas 2.2.26 and 2.2.27 we have that U‘S/’(S and Ps75u‘€/+5 converge to uj, in
LD% (IR?F \ A;R?). Thus, by the dominated convergence theorem, passing to the limit
in (2.2.119) as 0 \, 0 and recalling (2.2.118), we obtain

é‘vm (As+5, V) - gm(As> V)

%1{(1(1) 5 =Kk—0(s,V). (2.2.120)
With the same argument we can prove that
Nm A - ~m A57
lip EnAst0 V) = €A, V) ®(s,V), (2.2.121)

5,0 )
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which, together with (2.2.120), implies (2.2.111).
Equality (2.2.112) can be proved with the same technique. For every V > 0, let
us show that

Em(As, V +0) —En(As, V)

lim < p(As, Vie(t)) + a(e(t)) . (2.2.122)

SN0

Since #uf, € A(As,V +6), from (2.2.109) we deduce that

Em(AsV +6) ~ En(As V) _ 1 [<M>2_1}

<% % CEuy, - Euj, dz.  (2.2.123)

R2\A,

Passing to the limsup in (2.2.123) as § N\, 0 and taking into account Remarks 2.2.10
and 2.2.11, we get (2.2.122). The rest of the proof can be carried out in a similar
way. O

Before stating a Griffith’s criterion for our model, we make a comment on for-
mula (2.2.111) of Theorem 2.2.25.

Remark 2.2.28. As we have seen in Proposition 2.2.6 and Remark 2.2.11, to every
te€[0,7], s€[0,L],and V € [0,+00), is associated a pressure p(Ag, V, €(t)) € [0, 400)
which acts on the fracture lips along the normal vy, . In order to determine the energy
release rate, what is usually done in fracture mechanics (see, e.g., [70]) when a force p
is applied to the crack is to compute the derivative of the reduced energy &, of (2.2.63)
with respect to the crack length s, keeping p fixed. On the contrary, in (2.2.111) we
have computed the derivative of the reduced energy &,, of (2.2.60) with respect to s,
keeping the fluid (or crack) volume V' fixed.

Let us show that, at least formally, the two derivatives coincide. Indeed, by defi-
nition (2.2.52) of &,, we notice that, for every t € [0,T], every s € [0, L], and every
p ER,

Enlt, Ag,p) = Em(t, As, V(As, p,e(t)) — (p+ 0 (€))V (As, p, (b)) - (2.2.124)

Since p(As, V(As, p,€(t)), €(t)) = p, computing the derivative of formula (2.2.124) with
respect to s and using (2.2.111) and (2.2.112) we obtain

(8 Aa.p) = = (s, V(A l6))) = S50 Ay, V(A1)

o0&,
0s

We are now ready to state a Griffith’s criterion for a quasi-static evolution (I', V)
of the hydraulic crack growth problem given by Definition 2.2.17. In view of the
regularity assumption of Theorem 2.2.25, we have to suppose that the curve I'(T)
is of class C%!. Let Lp := HYI'(T)) and let ~: [0,Lr] — R% be an arc-length
parametrization of T'(T) of class C%1. As in (2.2.105), we set (I'(T))s := ([0, s]) for
every s € [0, Lp]. We introduce the concept of failure time, which will be used also in
Chapter 3.
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Definition 2.2.29. Let a,b > 0 and let s: [0,a] — [0,b] be a monotone non-
decreasing function. We define the failure time T (s) of s by

T (s) :==sup{t €0,a]: s(t) <b}.

Remark 2.2.30. We notice that T is lower semicontinuous with respect to the pointwise
convergence, that is, if s — s pointwise, then

T(s) < limkinf T (sk) -

With the notation introduced above, we have the following theorem.

Theorem 2.2.31. Let (I',V): [0,T] = C,; x [0,400) be a quasi-static evolution of the
hydraulic crack growth problem with the properties stated above. Let s: [0,T] — [0, Ly]
be the function defined by s(t) := HY(T(t)) for every t € [0,T], and let Ty :=sup{t €
[0,7]: s(t) < Lr}. Then the following conditions hold:

(1) s(t) >0 for a.e. t €[0,T];
(2) &(s(t),V(t)) —rk <0 for every t € [0,Ty);
(3) (&(s(t),V(t)) —r)s(t) =0 for a.e. t €[0,Tf).

The first condition reflects the irreversibility condition of Definition 2.2.17. The
second condition says that the energy release rate has to be less than or equal to &
during the evolution. Finally, the last condition means that the energy release rate
has to be equal to x when the crack tip moves with a positive velocity. This is the
so-called Griffith’s criterion in our model.

Proof. Since t — s(t) is a monotone nondecreasing function, property (1) is clearly
satisfied.

Property (2) follows by the global stability condition of Definition 2.2.17: indeed,
for every t € [0,7;) we have that, for s(t) <o < Lr,

En(t,T(1), V(1)) < En(t,(T(T))s, V(1)) . (2.2.125)

Since (2.2.111) holds, dividing (2.2.125) by o—s(t) and passing to the limit as o ™\ s(¢)
we deduce (2).

In order to prove (3), we make more explicit the energy-dissipation balance (2.2.61):
for a.e. t € [0,7;) we have

(p(1) + (el V(1) = 56, TE), V(1)) = 5l (TN, V(D)

= (k= &(s(t), V(1)) 3(t) + (p(t) + () V (1),

where, in the last equality, we have used the results of Theorem 2.2.25. O
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2.3 3-dimensional model

In this section we present a 3-dimensional model of hydraulic fracture. Since the
aim is to stress the main differences between 3D and 2D, we now assume that the far
strain field ¢(-) is null and that the volume function V': [0,7] — [0, +00) is known a
priori (see also Section 2.3.1). We notice that the evolution result proved in Section 2.2
(Darcy’s law) can be obtained also in this context.

As in dimension 2, the body is linearly elastic, impermeable, unbounded, for sim-
plicity filling all of R3. Here, we suppose that the crack path is prescribed a priori:
the admissible cracks lie on the horizontal plane A passing through the origin. First
of all, we need to define a new class of admissible cracks. For technical reasons, we
need some regularity of the relative boundary of the crack sets in A. This is provided
by the interior ball property (see condition (c) below). In this section, all topological
notions (boundary, interior part, balls, etc.) are considered with respect to the relative
topology of A.

Definition 2.3.1. Fix n > 0. We say that I' € Adm,,(A) if it satisfies:

(a) T is a compact and connected subset of A;
(b) 0T
(c) for every x € T there exists y € I such that z € 0B, (y) and By(y) CT.

Remark 2.3.2. The inner ball property (c) is needed in Proposition 2.3.7 in order
to prove the continuity of the Hausdorff measure H? with respect to the Hausdorff
convergence of sets. We recall that the Hausdorff measure H? is always upper semi-
continuous with respect to the Hausdorff convergence of sets, while it fails to be lower
semicontinuous in general, even in the case of connected sets.

Remark 2.3.3. In [66] it is shown that condition (c) implies the existence of a radius
0 < n' < n such that every I' € Adm,(A) can be written as the closure of a union
of balls of radius n’. In particular, ’ can be taken equal to n/2. By the Lindeloff’s
theorem, this union can be assumed to be countable. This fact will be useful in the
proof of the continuity of the Hausdorff measure H? with respect to the Hausdorff
metric in Adm,(A) (see Proposition 2.3.8).

As in Section 2.2, the evolution is governed by linearized elasticity. Because of the
lack of homogeneity, the elasticity tensor is a function of the space variable, which will
be assumed to be measurable. As usual, for almost every z € R® C(z) is symmetric
and positive definite. Hence, we assume that there exist two constants 0 < a < 5 <
+00 such that for almost every z € R3

a|F|* < C(z)F-F < BIF|*>  for every F € M (2.3.1)

sym *

Therefore, recalling that we assume that the far strain field €(-) is null, the total energy
of the system is of the form

E(u,T) := L ng\Eu -Budzr + kH*(T), (2.3.2)
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where u € W%ﬁ(]R?’ \ A;R3) is the displacement and & is a positive constant related
to the fracture toughness.

We now describe the equilibrium condition for the elastic body with a crack
I' € Adm,(A) assuming that the region between the crack lips in the deformed con-
figuration is partially filled by a prescribed volume V' of an incompressible fluid. As
in the two dimensional case, for the volume of the cavity determined by the crack we

use the approximate formula
/ ] - v M2,
r

where v, is the unit normal vector to A and [u] denotes the jump of u through A.
Again, we consider the non-interpenetration condition [u]-vy >0 on A.

The equilibrium of the elastic body with a crack I' € Adm,(A) is achieved if the
displacement u is the solution of the minimum problem

in E(u,T), 2.3.3
m (u,T) (2.3.3)

where
AT, V) = {u € W%,G(RB \ A;R3) {[u] #0} CT, [u] - vy >0, /A[u] cupdH? = V}

is the set of admissible displacements. The choice of the function space W%’G (R3\A; R3)
implies, in a suitable weak sense, that the displacement is zero at infinity. In particular,
we notice that in dimension 3 we can work with Sobolev spaces since we have Sobolev
inequalities at our disposal.

The inclusion in the previous formula reflects the fact that the crack is contained
in I'. Finally, the last equality takes into account the volume constraint.

The existence of a solution of (2.3.3) can be obtained by the direct method of the
calculus of variations, taking into account Proposition 1.2.6. The uniqueness follows
from the strict convexity of the functional and the convexity of the constraints.

Remark 2.3.4. With the same techniques used to prove Propositions 2.2.6 and 2.2.12,
we have that if u is the solution of (2.3.3) with V' € [0,400) and I" € Adm,,(A), then
there exists a p(I', V) > 0 such that (2.2.43) holds for every v € VV%’G(]R3 \ A;R?) such
that {[v] # 0} C T' and |[v] - vo| < C[u] - vp for some constant C' > 0 (recall that
€(-) = 0). The constant p(I', V) can be interpreted as the fluid pressure, and, in the
case V > 0, we have the explicit formula

1
p(T,V)=— CEu-Eudx.
V Jra\a

Finally, arguing as in Remarks 2.2.10, 2.2.11, and 2.2.13, we have that w is also a
weak solution of dive(u) =0 in R?\ A, where o (u) is defined in (2.2.33).
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2.3.1 Quasi-static evolution

Let us now describe the quasi-static evolution of hydraulic cracks in this setting.
For every fixed T' > 0, for every ¢t € [0,7] we denote by V(¢) the volume of the
fluid present in the crack at time t. In order to present the simplest possible model,
we suppose that the volume function is a datum. For technical reasons, we assume
V e AC([0,T];[0,400)), the space of absolutely continuous functions from [0, 7] with
values in [0,+00). By the way, we notice that all the results presented in Section 2.2
can be stated also in the three dimensional case following the lines we are going to
discuss here.

It is convenient to introduce the reduced energy &, (I',V) which is defined for
every I' € Adm,(A) and V € [0,+00) by

En(T,V):= min &(u,T).
(r,v) L (u,T)

We notice that, with respect to (2.2.60), we have dropped the explicit dependence on
time ¢ since we assume €(t) = 0 on the interval [0,7].
Similarly to Definition 2.2.17, we define a quasi-static evolution as follows.

Definition 2.3.5. Let T'> 0 and V € AC([0,T7,[0,400)). We say that a set function
I': [0, 7] = Admy,(A) is an irreversible quasi-static evolution of the 8D-hydraulic crack
problem if it satisfies the following conditions:

(a) drreversibility: T' is increasing, i.e., I'(s) C I'(¢) for every 0 < s <t < T
(b) global stability: for every t € [0,T7,

En(T(t), V(1) < En, V(L)) for every I' € Adm,,(A) with T' D I'(¢) ;

(¢c) energy-dissipation balance: the function t — &, (I'(t), V(t)) is absolutely contin-
uous on the interval [0,7] and

for almost every t € [0, T], where p(t) := p(I'(¢), V(t)) is the pressure introduced
in Remark 2.3.4.

We are now in a position to state the main theorem of this section.

Theorem 2.3.6. Let V € AC([0,77],[0,4+00)) and I'y € Admy(A). Assume that
(stability at time t =0)
Em(To, V(0)) < En(T, V(0)) (2.3.4)

for every I' € Adm,(A) such that I' O T'g. Then there exists an irreversible quasi-
static evolution T' of the 3D-hydraulic crack problem, with T'(0) =Ty.
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In order to prove Theorem 2.3.6, we have to establish some properties of the admis-
sible cracks. In particular, we are interested in the continuity of the H? measure with
respect to the Hausdorff convergence of sets in the class Adm,(A) (Proposition 2.3.8).

Proposition 2.3.7. The following facts hold:
(a) T = r for every I' € Admy,(A);
(b) T'1,T'y € Admy(A) = T Uy € Admy,(A).

Proof. Property (a) follows immediately from the definition.

Let us prove property (b). Given I't,I'y € Adm,(A), the set I'y UT'y contains 0
and is closed and connected. Since for every z € 9(I'; UT'y), there exists i = 1,2 such
that x € dI';, by Definition 2.3.1, there exists y, € I'; such that By(y.) €Ty CT1UI
and = € 0By, (y,). Hence I't UTy € Admy(A). O

Proposition 2.3.8. Let Iy, be a sequence in Admy,(A) and let K,T" be compact subsets
of A such that T',T",, C K for every k € N and T'y, — I in the Hausdorff metric. Then
I' € Adm,(A) and H*(Tx) — HA(T).

Proof. Let us first prove that, if 'y — I' in the Hausdorff metric, then

lim sup d(y,0Tx) =0. (2.3.5)
k year

By contradiction, suppose that (2.3.5) is false, then there exist ¢ > 0 and a subse-
quence, still denoted by I'y, such that sup,car d(y,0Ty) > 2¢ for every k € N. We can
choose yi € O such that d(yk,dTx) > 2¢. Up to another subsequence, we can sup-
pose yr — 7 € OI'. By the triangle inequality, we can easily prove that d(g,dl'x) > &
for k large enough, hence

B.(y)nol, =0. (2.3.6)

To show that this is a contradiction, let us fix z € Bo(y) \I'. Since I'y — I' in
the Hausdorff metric, we have z ¢ I'y, for k large enough. On the other hand, since
y € I, there exists a sequence g, — ¥ with 7, € I'y. For k large enough, 7, € B.(7).
Since z ¢ Tk, in the segment between 7, and z there exists a point of 9Ty for k large
enough. This contradicts (2.3.6) and proves (2.3.5).

It is easy to see that I' contains O and is closed and connected. By (2.3.5), for
every y € JI', there exists a sequence y, € Oy such that y; — y. For every k € N,
by Definition 2.3.1 we can find zj € I}, such that B, (x) C Ty and yi, € 0By (zx). Up
to a subsequence, z;, — x € I' and B, (z;) — B, (z) in the Hausdorff metric. Hence
y € 0By (z) and B, (x) CT', which gives I € Adm,,(A).

It remains to prove that H?(T';) — H2(I'). The measure is upper semicontinuous
with respect to the Hausdorff metric, so we have only to prove

H2(T) < limkinf HA(Ty) .
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Thanks to [66], we have
Ty = |J Ba(zh), (2.3.7)

for some z,’j ely.

Consider {z,} C I' a countable dense set in I'. By the Hausdorff convergence,
for every h € N there exists a sequence xﬁ € I'y such that J:fl — xp. Using (2.3.7)
we deduce that there exists a sequence y’,i such that yﬁ € T, Bg(y}’j) C Ty, and

:Uﬁ € Eg (y,’j) Up to a subsequence, we can assume that y,’i — yp € I for every h € N|
so that Eg (yF) — Eg (yn) in the Hausdorff metric and z, € Eg(yh) CTI'. Therefore

I = UB% UBg(yh)-

heN heN

Let us consider the sets TN := [JI_ 0B§1( yp), TN = Utho Eg(y,lj) and the func-

tions
N
N ._ _
Z By T D la,0p-
h=0

By the dominated convergence theorem and the fact that H2(I') < +oo since T is
bounded (see Definition 2.3.1(a))

N

HZ(PN)=Z/ e ( ) AH>(x —hmZ/ d%2( )

h=0"/Bg By (yy) ) o (@

= lim H2(TY) < lim inf H2(T) .
If we pass to the limit as N — +oo, we get H2(T'V) — H?(Upen Eg( 1)), SO We are

led to prove that
22 (r\ | B:
heN

Assume, by contradiction, that (2.3.8) is false. Then there exists € I'\{Uj,cy Eg (yn)
such that ) o
— (Bo(2) NT\ Upen Bz (wn)) . (2.39)
b H2(B, () = &
We can find a ball Bg(y) C Unen Eg (yn) such that x € E%( ), hence

B,(z) NT\ | By(yn) € By(2) \ Ba(y),
heN

) (2.3.8)

l\)\\.

so we get

lim H?(By(2) NT\ Upen Ba(un)) < lim H?(By(z) \ B

n
2
p—0F H*(By(x)) ~ p—0t H?(By(z)) 2’
which contradicts (2.3.9). O
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Remark 2.3.9. In this way we get also 1r, — 1 in L'(A). Indeed, since

w2 (0 U By(u) =0,

heN

we have that 1p,(z) — 1p(z) for a.e. € A and, by the dominated convergence
theorem, we obtain the convergence in L'(A).

Proposition 2.3.10. Let I' € Adm,(A). Then diam(I') < %H%F) +7.

Proof. First we prove that I' € Adm,(A) is path-connected. Indeed we can follow the
standard proof for open sets and show by contradiction that for every two points z,y €
I, there exists a chain of balls joining them, i.e., there exist Bg(fl), e ,Bg({k) cr

such that x € Eg (&), y € Eg (&) and Eg (fi)ﬂﬁg (&iy1) # O forevery i =0,...,k—1.
Assume that this is not true, then there are two points x,y € I for which there is no
chain. We define

I'y :={z € I" : there exists a chain joining z,y},
I’y := {z € I": there is no chain joining z,y}.

Of course I' = Ty UTy and T'y N Ty = @. The set I'; is nonempty, since y € I'y,
and closed. Indeed, given zp in I' such that z; — z, then z € I' and there exists
a sequence &, in I' such that z, € Bg(ﬁh) CT. We can assume &, — &, £ € T,

hence Eg (&) — Eg (&) in the Hausdorff metric. This implies z € Eg (&),s0 z€Ty.
Also the set I's is nonempty, since x € I'y, and closed. Let z, be a sequence in I'y
such that z, — z. We have z € I'. By contradiction, assume that z ¢ TI's, then

z € I't, which implies the existence of a chain joining z and y. For every h € N we
can find &, € T" such that zj, € Bg(gh) CT and & — &. Then Bg(ﬁh) — Bg(ﬁ) in

the Hausdorff metric and z € Eg (&) CT'. We deduce that z, € I'y NI’y for h large
enough. Hence I's is closed and I' is the union of two closed, disjoint and nonempty
subset of I', which is in contradiction with the fact that I" is connected. Therefore I'
is path-connected.

Given z,y € I', we have to estimate the distance [ := d(x,y) in term of H?(I').
Let 7 :[0,1] — I' be a continuous curve such that v(0) = z and (1) = y. We take
the lines perpendicular to the segment [x,y| at distance from x a multiple of 1 and
intersecting [z,y]. They intersect the segment [z,y| in = = xo, z1,..., . Let us
define the segments I := [xg_1,2%] for k = 1,...,n. For h € [0,(n +1)/2] NN,
let &€5,41 be the middle point of the segment Io;11 and let sopy1 be the line perpen-
dicular to [x,y] passing through &s,11. These lines intersect the curve v in (o1 -
For every h, there exists a ball Bg<y2h+1) C TI' such that (opy1 € Eg (yan+1). These
balls are mutually disjoint, hence we have

l T o l 1|7 o 9
T — en? < |+ 2| Sn? < HA(T
g™l 8n_[2n+2]477 <H(T),
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which implies

8
1< —H*T)+1n,
™)

and the proof is thus concluded. O

Let us now comment on the initial condition of Theorem 2.3.6.

Remark 2.3.11. If the set I'y € Adm,,(A) does not satisfy the stability condition (2.3.4),
we define I'§ to be a solution of (2.3.4). In particular, I'j minimizes &, (I",V(0))
among all I" € Adm,(A) with T' D I'j.

Therefore we can solve the problem considered in Theorem 2.3.6 with initial con-
dition I'(0) = I'j. A solution of (2.3.4) can be obtained by the direct method of
the calculus of variations. Indeed, a minimizing sequence I'y is bounded by Propo-
sition 2.3.8, so, by Theorem 1.1.1, we can assume 'y — I' in the Hausdorff met-
ric. For every k € N there exists a unique u; € A(T';, V(0)) solution of (2.3.3).
Since uy is bounded in W%,G(R?’\A; R3) by Proposition 1.2.6, we have u, — v weakly
in W3 (R*\ A;R?), hence v € A(T,V(0)) and

En(T,V(0) <Ew,T) < limkinf En(Tk, V(0)),
which shows that I' is a minimizer.

To prove Theorem 2.3.6 we need the following lemma.

Lemma 2.3.12. Let I'g,I'y,I'sc € Adm,(A) be such that I'o C Iy, and I'y — I'ss in
the Hausdorff metric. Let Vi, Vo > 0 with Vi — V. Assume that

Em(Tr, Vi) < En(T, Vi) for every I' € Admy,(A) with T' D T, .
Then
Em(Toos Vo) < Em(T, Vi) for every I' € Admy,(A) with I' O T' . (2.3.10)

Let ug,us be the solutions of (2.3.3) corresponding to T'y, Vi and T, Voo and let
Tk, Vi), P(Tso, Vo) be the corresponding pressures according to Remark 2.3.17. Then
U = Uoo in Wy (RNA;R?), p(Tr, Vi) = p(Loo, Vio) s and En (T, Vi) = Em(Toos Voo) -

Proof. Let us fix wo € A(T'o,1).
For every I' € Adm,(A) such that I' O I'o, let vr € A(I', V) be the solution
of (2.3.3). For every k we define I'y, :==T'UT';, and
ur

or+ (Ve —Vo)— if Ve >0,
Vg = VOO
Viwg if Voo =0.

Then Iy € Admy(A) by Proposition 2.3.7, I'y C Tk, Tk — I' in the Hausdorff
metric, and, by Proposition 2.3.8, H2(I'y) — H?(T'), vy € ATk, Vi) and vy — vr
in W%76(R3 \ A;R3). By hypothesis we have

Em(Tis Vi) < Em(T, Vi) < E(up, T) - (2.3.11)
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This implies that u; is bounded in W%ﬁ(R?’ \ A;R3), hence, up to a subsequence,
up, = u weakly in W3 5(R3\ A; R?) and u € A(l'oo, Voo) . Taking into account (2.3.11),
we have

Em(Tooy Vo) < E(u, o) < limkinf Em Tk, Vi)
. . A (2.3.12)
<limsup &, (T, Vi) <limsup E(vg, I'x) = E(vp,T) = En(T, Vo) ,

k k

which proves (2.3.10). In particular, taking I' = ', (2.3.12) shows that u satisfies

5(“’7 Foo) = 5m(F007 Voo) = hlgn gm(rka Vk) = lilgn S(Uka Fk) :

By the uniqueness of the solution of (2.3.3), the whole sequence uy converges to uq
strongly in W%,G(R?’ \ A;R3). From this convergence and Remark 2.3.4, it follows that
p(Tk, Vi) = p(Tso, Vo), when Voo > 0.

As in the proof of Lemma 2.2.22, we have that p(I'y, Vi) — 0 = p(T'eo, Voo) if
Vs = 0. This concludes the proof of the lemma. ]

Remark 2.3.13. By the same argument we can show that the function V — &, (', V)
is continuous for every I' € Adm,,(A).

We are now ready to prove Theorem 2.3.6.

Proof of Theorem 2.3.6. We proceed following the lines of Theorem 2.2.18. We choose
a subdivision of the interval [0,7] of the form tf = % for : =0,...,k. For every k
we define Ff recursively with respect to i: we set F’g :=1Iy and, for i > 0, Ff to be
a solution of

min{&, (T, V(tF)) : T € Adm,(A), with T D T% }, (2.3.13)

whose existence can be proved as in Remark 2.3.11. We denote by uf’ the solution
of (2.3.3) for T =T% and V = V(¢F).

As in the proof of Lemma 2.2.22, we get that uf are uniformly bounded in
W§,6(R3\A;R3). Moreover, the pressure p(T'¥, V(tF)) associated to uf according to
Remark 2.3.17 is bounded.

We define the step functions

uk’(t) = U?, Fk(t) = Ffa pk(t) = p(rfa V(tf)) s for tf <t< tf—l—l .

We now prove a discrete energy inequality. As in the proof of Theorem 2.2.18
(recall that €(t) = 0), we can prove that

th

.
[ W@+ V) [ Vs,

1—1 i—1

< En(TE, Vi) + O [
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where > 0 is the constant defined in (2.3.1), C' > 0 does not depend on i, k, and

1 k k
Vie= 5 max, V() = V()] (2.3.14)

Iterating the previous inequality we get

tk

T 7 .
emwgquﬁ»ggm@mvm»+ﬁM%@AyV@nﬁwiéngvgym.@31@

In particular, (2.3.15) implies that H?(T'y(t)) is uniformly bounded in time, hence, by
Proposition 2.3.10, I'y(¢) is uniformly bounded.

By Theorem 1.1.3 and Proposition 2.3.8, up to a subsequence we have T'y(t) —
I'(t) in the Hausdorff metric for every t € [0,7] and the set function I': [0,7] —
Admy,(A) is bounded and increasing. Let w(t) be the solution of (2.3.3) and p(?)
be the corresponding pressure. By Lemma 2.3.12, I' satisfies the global stability
condition (b) and, in addition, wug(t) — w(t) strongly in W%(R?’\A; R3) and py(t) —
p(t) :=p(L(t),V(t)) for every t € [0,T].

To prove the energy-dissipation balance, we first pass to the limit in (2.3.15) as
k — 4+o00. The second term in the right-hand side of (2.3.15) tends to zero as k — 400
because V' is absolutely continuous. Since pj, is bounded in L*°([0,7]) and converges
pointwise to p, we have p,V — pV in L([0,T]) and

%MWWM§%QM@HAM$%M&

For the opposite inequality, for every ¢ € [0,7] we consider a subdivision of the
interval [0,] of the form 7/ := % defined for every k,h € N, k £ 0, such that h < k.
Since t — I'(t) is increasing, arguing as in the proof of Theorem 2.2.18 we obtain

Em (D(mh), V(7))

k
1 . Th+1 .
< &n (Ot Virko) + 0oV [ IV@lds— [ art v ds,

Th h

where Vj, has been defined in (2.3.14) and C is some positive constant indepen-
dent of h,k. Iterating the previous inequality and defining p*(s) := p(T}]f ) for
T,’f <s< T}];rl, we get

T ¢
&M@wmg%@mvm+mmjﬁww@/ﬁ@w@m.@3@
0 0
Since I'(+) is an increasing function, combining Theorem 1.1.2 and Lemma 2.3.12 we

deduce that p*(s) — p(s) for a.e. s € [0,t]. Using the dominated convergence theorem,
the continuity of V', and (2.3.14), we pass to the limit in (2.3.16) obtaining

&ﬂhWWS&ﬂ@N@%Ap@WWM

This concludes the proof of the energy-dissipation balance (c). O
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Let T': [0,7] — Adm,(A) satisfy Theorem 2.3.6. For every ¢t € (0,7] we con-
sider I'"(¢) defined, as in Theorem 1.1.2, by

I (t) = JT(s). (2.3.17)

We have I'(t) = I (t) and &,(I'7(¢),V(t)) = En('(t), V(t)) for every t € (0,7 out
of a countable set.

Proposition 2.3.14. Let I': [0,T] — Admy(A) satisfy Theorem 2.3.6 and let I'~(t)
be given by (2.3.17) for every t € (0,T]. Then

En(T™(1),V(t) =En(L(t), V(1)) for every t € (0,T]. (2.3.18)
Moreover,
En(T(t), V(1) < En, V(L)) for every T' € Admy,(A) with T D T (¢).
Proof. Since T'(s) — I'" () in the Hausdorff metric as s /¢, by Lemma 2.3.12 we get

Em(T (1), V(1) = 1}% Em(D(s), V(s)).

By the continuity of s — &, (I'(s), V(s)) we obtain (2.3.18).
Fixed I' € Admy(A) with I'"(¢t) C ', we have I'(s) C T for every 0 < s < t, hence

Em(L(s),V(s)) <En(T,V(s)). (2.3.19)
and passing to the limit as s 't we get the thesis. O

Remark 2.3.15. Thanks to Proposition 2.3.14 we have that if I": [0,7] — Adm,,(A)
satisfies Theorem 2.3.6, the same is true for the function

L, [ TO) fort=o0,
() for0<t<T,

where I'"(¢) is defined in (2.3.17). We notice that in the energy-dissipation balance
we have to replace p(t) with p~(¢) which satisfies Remark 2.3.4, extending it at t = 0
by p~(0) := p(0). Then the quasi-static hydraulic crack problem has a left-continuous
solution.

Remark 2.3.16. Repeating the same steps, for every t € [0,T) we define I'"(t) as in

Theorem 1.1.2. As in Proposition 2.3.14 we obtain &,,(T'(¢), V(t)) = En(TT(¢), V(1))
for every ¢t € [0,7) and finally, as in Remark 2.3.15, we define the function

L T fer0<i<T,
NT) fort=T,

which satisfies properties (a), (b), and (c¢) of Definition 2.3.5. Therefore, we get a right-
continuous solution of the problem. Note however that the right-continuous solution
does not necessarily satisfy the initial condition.
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2.3.2 The case of penny-shaped crack

Let us now briefly discuss a simplified 3D-model for which we can give an explicit
formula for the evolution: the case of penny-shaped cracks. The body is supposed to be
unbounded, filling R?. As before, we prescribe a priori the crack path: the admissible
cracks lie on the horizontal plane A passing through the origin.

We assume that the initial crack is a circle centered at the origin and contained
in A and that the body outside the crack is isotropic, homogeneous, and impermeable.
Due to the symmetry conditions, we also assume that the crack is circular and centered
at the origin at every time, so that every crack set is parametrized by its radius R > 0.

As in Section 2.3 the total energy of the body is defined by

1
E(u,R) :== = | CEu-Eudz + kwR?, (2.3.20)
R3\A

for a displacement u € W%’G (R3\ A;R3).
The equilibrium condition for the body with a prescribed crack of radius R is
expressed by the minimum problem

in Eu, R 2.3.21
i (u,R), ( )

where

AR, V) = {u e Whg(R3\ A) : {[u] # 0} C B, [u] - va >0, /

[u] - vy dH? = V} .
Br

The existence of a solution of (2.3.21) can be obtained by the direct method of the
calculus of variations, taking into account Proposition 1.2.6. The uniqueness follows
from the strict convexity of the functional and the convexity of the constraints.

Remark 2.3.17. All the results stated in Remark 2.3.4 holds also in this particular
case. We denote by p(R,V) the pressure of the fluid associated to the minimum
problem (2.3.21). for every

Let us now consider the quasi-static evolution problem. For every fixed T' > 0 and
for every ¢t € [0,T] let V(t) be the volume of the fluid present in the crack at time ¢.
We assume that V € AC([0,T7]; [0, +00)).

To describe the quasi-static evolution it is convenient to introduce the reduced
energy &£, (R,V) defined for every R € [0,+00) and every V € [0, +00) by

En(R,V) = in Eu,R). 2.3.22
(RV) = min £(uF) (23.22)

In order to make explicit the dependence of &,,(R,V) on R and V, let us denote
by ug the solution to the minimum problem defining &,,(R,1). It is then easy to see
that Vupg is the solution of (2.3.22) and

V2

En(R,V) = — [ CEug-Bugrdz + kwR?.
R3\A
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Moreover, by the uniqueness of the solution to (2.3.22) it follows that

1
ugp(z) = —w (E) and CEugr-Eurdx = CEu; -Eupdz.  (2.3.23)

R2\R RI\A R? Jgava

Therefore
& 9
Em(R,V) = Kﬁ + KkTR”, (2.3.24)

1
where K := — CEuq - Eup dx. Since

2 R3\A

d V2
o\ 1/5

we note that the unique minimum point of R — &,,(R,V) is R = (%2‘; ) .

Hence, if we fix R > 0, the unique solution to the minimum problem

min &, (R, V)
R>R

is given by

2Kk

R, = max {R, <3Kv2>1/5 } .

In this simplified setting, since the function R — &, (R, V) is convex, Griffith’s
stability condition expressed by the inequality

d

ﬁgm(R(t), V(t)) >0  forevery t € [0,T]

is equivalent to the global minimality condition: for every ¢ € [0, 7]
Em(R(t),V () < En(R,V (1)) for every R > R(t),
which in this case reduces to

2 1/5
3KV(t)> for every t € [0,T7]. (2.3.26)

R(t) > (

2KT

Since the fracture process is irreversible, we require that R(-) is increasing. Finally,
we impose an energy-dissipation balance: the rate of change of the total energy (stored
elastic energy plus energy dissipated by the crack) along a solution equals the power
of the pressure forces exerted by the fluid.

This leads to the following definition.

Definition 2.3.18. Let 7' > 0 and V € AC(]0,T];]0,+00)). We say that a func-
tion R: [0,7] — (0,400) is an irreversible quasi-static evolution of the penny-shaped
hydraulic crack problem if it satisfies the following conditions:



2.3. 3-dimensional model 71

(a) irreversibility: R is increasing, i.e., R(s) < R(t) for every 0 <s <t < T}
(b) global stability: for every t € [0,T],

Em(R(t), V(1)) < En(R, V(1)) for every R > R(t);

(c) energy-dissipation balance: the function t — &, (R(t),V (t)) is absolutely con-
tinuous on the interval [0,7] and

for almost every ¢ € [0, T, where p(t) := p(R(t), V(t)) is the pressure introduced
in Remark 2.3.17.

While in the technological applications to hydraulic fracture it is natural to suppose
that V is increasing, the problem makes sense even without this assumption. For
instance, if in a time interval V is decreasing, which means that some liquid is removed
from the cavity, by the irreversibility assumption we expect that R remains constant
in that interval and that the crack opening decreases to accommodate to the volume
constraint. This is a direct consequence of the formula (2.3.28) proved in the next
theorem.

We are now ready to state the main result of this section.

Theorem 2.3.19. Let V € AC([0,T7;[0,400)) and Ry > 0. Assume that (stability
at time t =0)

Em(Ro,V(0)) < En(R,V(0)) (2.3.27)
for every R > Ry. Then the unique irreversible quasi-static evolution R,: [0,T] —

(0,4+00) of the penny-shaped hydraulic crack problem, with R(0) = Ry, is given by

R.(t) = max {RO, (3£)1/° 1/3/5(75)} : (2.3.28)

2Kk

where Vi (t) is the smallest monotone increasing function which is greater than or equal
to V(t), i.e., Vi(t) = On<1a§tV(3).
<s<

When V' is increasing we recover the explicit solution considered, e.g., in [20], see
also [70].

Remark 2.3.20. In view of (2.3.26) condition (2.3.27) amounts to

K 2 1/5
Ro > (3V(0>> .
2K

To prove Theorem 2.3.19 we need the following lemmas. In the first one we prove
the absolute continuity of the function V.
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Lemma 2.3.21. Let V € AC([0,T];[0,+00)) and for every t € [0,T] set Vi(t) =

Orgai(tV(s). Then V, € AC([0,T7];[0,+00)) and

Vi(t) = V() ly—v,y(t) for a.e. t €10,T]. (2.3.29)

Proof. As V € AC(]0,T];]0,+00)), there exist two increasing absolutely continuous
functions Vi, Va: [0,T] — [0,400) such that V = V; — V5. Note that

V*(tz) — V*(tl) S Vi(tg) — Vl(tl) for every 0 S tl S tQ S T. (2330)
Indeed, for every t; < s <5

V(s) = Vi(t1) < V(s) = V(t1) = Vi(s) — Va(s) — Vi(t1) + Va(t1)
< Vi(t2) — Vi(t1) — (Va(s) — Va(t1)) < Vi(ta) — Vi(ta),

and by the definition of V, this implies (2.3.30). As Vj is absolutely continuous,
from (2.3.30) we deduce the absolute continuity of V.

Since the function V; is locally constant on the open set {t € [0,T] : Vi.(t) > V (¢)},
we have V, = 0 on this set, while V,(f) = V() for a.e. € {t €[0,T]: Vi(t) = V(t)}.
Therefore (2.3.29) holds. O

Lemma 2.3.22. Let V € AC([0,7];]0,4+00)) and Ry > 0. Assume that Ry satis-
fies (2.3.27). Then R.:[0,T] — (0,+00) given by (2.3.28) is the smallest increasing
function which satisfies the global stability condition (b), with R(0) = Ry.

Proof. Let R(t) be an increasing function with R(0) = Ry that satisfies the global

1/5
stability condition (b). In view of (2.3.26) we have R(t) > (M> for every

2km

t €[0,7T]. Since R(t) > R(s) for every s,t € [0,T] with s <t, we get

(VY (AN

2Km 2Kkm

which implies R(t) > R.(t).
As R.(t) satisfies (2.3.26) for every ¢ € [0,77], the function ¢ — R.(t) satisfies the
global stability condition (b). O

We now prove that R.: [0,7] — (0,+00) defined by (2.3.28) is an irreversible
quasi-static evolution of the penny-shaped hydraulic crack problem.

Proof of Theorem 2.3.19 (existence). It remains to prove the energy-dissipation bal-

ance (c). Let us set
oy = <2/€7T> v R5/2
3K o
By (2.3.28), if Vi (t) < ap then R.(t) = Ry. Assume there exists t € [0,7] such that
V(t) > ap and let ¢ := inf{t € [0,T] : V(¢) > ap}. Then R.(t) = Ry for t € [0,¢],

1/5
while R.(t) = <3KV*2(t ) / and V. (t) € [ag, +00) for t € [¢,T].

2KT
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2/5

By Lemma 2.3.21 and the Lipschitz continuity of the function a — a on

[, +00) we deduce that R.(-) is absolutely continuous on [0,7]. Then, as

V2(t
Em(R(t), V() = KR3Et§ + kT R2(t) for every t € [0,T7,
it follows that &, (R«(-), V(:)) is absolutely continuous on [0,7] and
d V)V ()

Ve
@ e (Ra(1), V(1)) = 2K D)

dt + R, (t) (2/@77R* (t)-3K

R0 for a.e. t € [0,77.

Since, by Remark 2.3.4 and (2.3.24), p(t) = QK;((?) for every t € [0,T], while
V2(t)

by (2.3.28) and Lemma 2.3.21 the product R,(t) (2/17rR*(t) —3K R4(t)> is equal to 0,
we get

d .
g Em(B(1), V(1)) = p(t)V (1),
and this concludes the proof of the existence of an irreversible quasi-static evolution

for the penny-shaped hydraulic crack problem. O

The next result establishes some regularity properties of a solution that will be
used to prove the uniqueness.

Lemma 2.3.23. Let V € AC([0,T7;[0,4+00)) and let R: [0,T] — (0,+00) be an
irreversible quasi-static evolution of the penny-shaped hydraulic crack problem with
R(0) = Ry. Then R(-) is continuous on [0,T] and is absolutely continuous on every
compact set contained in

I:={te[0,T]: R(t) > R.(t) and V(t) > 0} .

Proof. Let R:[0,T] — (0,+00) be an irreversible quasi-static evolution of the penny-
shaped hydraulic crack problem with R(0) = Ry. By condition (c) of Definition 2.3.18
the function t — &, (R(t), V(t)) is absolutely continuous and by Lemma 2.3.22 R(t) >
R«(t). Let us show by contradiction that R is continuous. Assume t € [0,7] is
a discontinuity point. Since ¢ — R(t) is increasing and, by (2.3.24), the function
R— &,(R,V(t)) is strictly increasing for R > R.(t), we have

lim Eq (R(5), V(s)) = Em(R(E), V(1)) < Em(R(ET), V(#)) = 1i\(m5m(R(8)7V(8))
s/t s\t

which contradicts the continuity of ¢ — &, (R(t), V(1)).
Let us define the function eg : [0,7] — R as

V2(0)
R

er(t) =K + wTR2 + /Ot pr(s)V(s)ds, (2.3.31)

where pg(t) is the pressure function introduced in Proposition 2.3.4 in the case R =
R(t) and V =V (¢). By Remark 2.3.4 and (2.3.23) we get

_ V() LV (s)V(s)
er(t) = K R +mR3+2K/O Rsi(s)ds.
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Since R(t) > Rp on [0,T] and V € AC([0,T7; [0, +00)), it follows that e € AC([0,T]).
By the energy-dissipation balance condition (c) of Definition 2.3.18 and by (2.3.24)

V2(t)
R3(t)

En(R(t), V() = + kT R%(t) = er(t) for every t € (0,7 . (2.3.32)

Let F(B) := 53 K 1 knB? for every B € (0,400). It is easy to see that F belongs to
1/5
C*°((0,400)), it is strictly increasing and strictly convex on J := ((%) ,+oo).

Therefore, F|; is invertible and F~!, the inverse of F|;, is C1.

For every t € I let B(t) := VQ/(fg) Thus, by (2.3.32)
K er(t)
F(B(t)) =
(B = g + B0 = P
. Rt 3K \1/5
Since t € I we have B(t) > V2/§(1) > (25)77 hence
_ o1( €r(t)

Bt)=F <V4/5(t)> for every ¢ € I. (2.3.33)
Since ;572‘().) is bounded and absolutely continuous on every compact set contained

in I, we deduce that B(-) is absolutely continuous on the same sets and so is R(-). O

To prove the uniqueness of the quasi-static evolution, we need the following lemma
on absolutely continuous functions.

Lemma 2.3.24. Let f,g: [a,b] — R be two functions satisfying the following proper-
ties: [ is absolutely continuous on [a,b], g is continuous on [a,b], and there exists an
open set A C (a,b) such that f =g on (a,b)\ A, and g is constant on each connected
component of A. Then g is absolutely continuous on |a,b].

Proof. Let us fix € > 0 and choose ¢ > 0 such that for every finite family of pairwise
disjoint intervals {(s;,t;)}icr, with s;,t; € (a,b) and X;cr(t; — s;) < d, we have
Sierlf(ti) = f(si)] <e.

If the interval (s;,t;) is contained in a connected component of A then, by our
hypotheses on g, we have g(t;) = g(s;). Let I' :={i € I: (s;,t;) ¢ A} andlet i € I'.
Then there exist s,t; € (a,b) \ A such that s; < s; <t/ <t; and (s;,s}), (t],t;) C A.
Indeed, if s; ¢ A we take s, = s;. In the opposite case s; belongs to a connected
component («;,5;) of A and we take s, = f;.

It follows that g is constant on (s;,s;) and, by continuity, g(s;) = g(s;) = f(s}),
where the last equality holds since s € (a,b) \ A. Analogously we get g(t;) = g(t}) =
f(#;). Hence Yicrlg(t:) — g(si)| = Sierlg(ti) — g9(si)| = Sier|f(#) — f(sp)] < e,
which shows the absolute continuity of the function g on (a,b), and, by continuity,
on [a,b]. O
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We are now ready to prove that R, defined by (2.3.28) is the unique irreversible
quasi-static evolution of the penny-shaped hydraulic crack problem with R.(0) = Ry .

Proof of Theorem 2.3.19 (uniqueness). Let R: [0,T] — (0,+00) be an irreversible
quasi-static evolution of the penny-shaped hydraulic crack problem with R(0) = Ry.
By Lemma 2.3.22 R(t) > R.(t) for every ¢t € [0,7] and by Lemma 2.3.23, R is
continuous on [0, T7].

Let us assume by contradiction that R # R,.. Then there exists an interval (a,b) C
[0,7] such that R(a) = R.(a) and R(t) > R.(t) for every t € (a,b). Let

A= {te (ab): V(t)>0}. (2.3.34)

By Lemma 2.3.23, the function R is absolutely continuous on every compact set
contained in A, hence it is almost everywhere differentiable on A. Recalling (2.3.24)
and the energy-dissipation balance condition (c) of Definition 2.3.18, we get

4
dt

V2(t)
RA(t)

En(R(1), V(1)) = pr(t)V () + R(t) <2H7TR(t) — 3K ) = pr(D)V (1)

for a.e. t € A, hence

R@K%mmw—3Kzzg):0 for a.e. t € A. (2.3.35)

Since R(t) > R«(t) for every t € (a,b), by the definition of R, we have

V3(t)  d
%m@ammw_ﬁ%m@wm>0mA

The previous inequality and (2.3.35) imply that R(t) = 0 for a.e. t € A, thus R is
constant on each connected component of A.

Moreover, by (2.3.32), we have kmR?(t) = eg(t) for every t € (a,b) \ A. Hence
applying Lemma 2.3.24 with

f= Z—R, g = R?%, and the set A defined in (2.3.34),
T

we obtain that R? is absolutely continuous on [a, ).
By (2.3.31), for every ¢ € (a,b) \ A we have

V2(0)
Rj

Rz(t) _ eR(t) _ i(K

KT RT

+ kTR2 + /OtpR(s)V(s) ds) :

Since V € AC([0,T7,[0,400)) and V(t) =0 for every t € (a,b) \ A, we obtain

%R%t} = %pR(t)V(t) =0 for a.e. t € (a,b) \ A. (2.3.36)
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As R(t) =0 for a.e. t € A, we deduce that R(t) =0 for a.e. t € (a,b), and therefore,
being continuous, the function R(-) has to be constant on [a,b]. As a consequence,
for every t € (a,b) we have

R(a) = R(t) > R.(t) > R.(a) = R(a),

which is a contradiction. Therefore, R = R, and the proof of uniqueness is concluded.
O



Chapter

Energy release rate and quasi-static
evolution via vanishing viscosity in a
fracture model depending on the crack
opening

3.1 Introduction and setting of the problem

In this chapter we are interested in the application of the Griffith’s criterion to
a problem of quasi-static cohesive crack growth in the setting of planar linearized
elasticity. We consider a linearly elastic body €, where @ C R? is an open, bounded,
connected set with Lipschitz boundary 9€). We assume that the crack can grow only
along a prescribed simple C%!-curve A C Q with H(A) =: L. Let A € C*1([0, L]; A)
be its arc-length parametrization and v, 7 be its unit normal and unit tangent vectors,
respectively. We make the following assumptions on the geometry of the model:

o I0NA={N0),\NL)};

e O\ A=0TUQ, where QF, Q~ are two connected open subsets of R? with
Lipschitz boundary, defined according to the orientation of the normal vector v,
with Q*NQ~ =0.

The admissible fractures are of the form
T,:={\o): 0< o< s} (3.1.1)
for s € [0, L]. We set Qg := Q\ I's and we denote by H'(Qs;R?) the set
{uec HY(Q\ A;R?) : [u] =0 H'-ae. on A\ T,}.

The body outside the crack is supposed to be linearly elastic, with elasticity ten-
sor C. Here, C is assumed to be C! on 2\ A and to be positive definite, in the sense

7
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of (2.3.1). For simplicity of notation, we will not specify the dependence on x € 2 of
the elasticity tensor.

The main feature of the Barenblatt’s cohesive model (see, e.g., [14, 16]) is the
presence of the so-called cohesive forces acting on the fracture lips. For every fixed
T > 0, in our model the density of the energy spent by the cohesive forces is represented
by a time-dependent function : [0,7] x R? — R satisfying the following properties:

ot (t,&) is continuous for every & € R?;
o (L, €) is CHR?) for every t € [0,T);
e ©(t,0) =0 for every t € [0,T];

e there exist p € (1,400) and ag > 0 such that for every t € [0,7] and every
¢ € R?
o(t,€) < ax(1+[€]F),

(3.1.2)
[Dep(t,€)| < ag(1+[€P71);

e for every € > 0, there exists b, > 0 such that for every t € [0,7] and every
£ cR?
o(t,€) > —b. —el¢]?. (3.1.3)

Remark 3.1.1. We notice that the first condition in (3.1.2) follows from the bound
on D¢y applying the mean value theorem on the segment joining £ and 0. Further-
more, in the case p € [1,2), condition (3.1.3) could follow from a bound on ¢ of the
form |p(t, §)| < aa(1 + [¢]7).

Remark 3.1.2. At t fixed, the function ¢(t, ) represents the density of the energy spent
by the inter-atomic forces on the crack lips. It is concentrated on A and depends only
on the jump of the displacement across A.

We stress that in our model the function ¢ is time-dependent and, possibly, nega-
tive (see (3.1.3)). This means that we are able to discuss also the case of a given force
h: [0,T] — R? acting on both the fracture lips, namely ¢(t,€) := —h(t)-&.

Different from the Barenblatt’s model, we assume that the energy spent by the
cohesive forces is completely reversible. Moreover, we add to the surface energy the
dissipative term ks, x being the material toughness, that can be interpreted as an
activation treshold.

Besides ¢, we also consider a function g: [0,7] x Q x R? — R with the following
properties:

ot g(t,x, &) is continuous for every ¢ € R? and a.e. x € Q;
o x> g(t,x, &) is measurable for every t € [0,7] and every & € R?;
o & g(t,x,€) is CH(R?) for every t € [0,T] and a.e. z € ;

o t— Deg(t,z,€) is continuous for every ¢ € R? and a.e. z € Q;
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e > Deg(t,z,£) is measurable for every t € [0,T] and every & € R?;

e for every € > 0, there exists a. > 0 such that for a.e. z € Q, every t € [0,7],
and every ¢ € R?

lg(t, x,€)| < ac +elé]?; (3.1.4)
e there exists a; > 0 such that for a.e. € Q, every t € [0,7], and every ¢ € R?

[Deg(t, x,8)] < ar(1+[€]). (3.1.5)

Remark 3.1.3. We point out that the function g is a nonlinear generalization of the
power spent by the volume forces. Indeed, in Section 3.3 we will set

g(t,z,&) = f(t,x)-&, (3.1.6)

with f € AC([0,T]; L?(€;R?)). The function f will represent the body forces applied
on Q. In particular, g as in (3.1.6) satisfies all the properties previously listed.

We are now ready to define the total energy of the system which is considered in
this chapter: fixed t € [0,T], s € [0, L], and u € H'(Q,;R?), we set

1
E(t,s,u) = B (CEU-Eudm—/ g(t,x,u) dz—|—/ o(t, [u]) dH + ks.  (3.1.7)
QS S S

Hence, the energy is the sum of the stored elastic energy, a term which generalizes
the power spent by the volume forces, a surface term which can be interpreted as the
energy spent by the cohesive forces on the fracture I'y, and an activation threshold ks
proportional to the crack length.

Let us now briefly discuss the equilibrium condition of the system. Fix ¢ € [0, 7],
s € [0, L], and the Dirichlet boundary datum w € H'(£;R?) on 9Q. As usual, the
body is in equilibrium with an assigned crack I'y if the displacement u is a solution
of the minimum problem

uer}(igw)g(t,s,u), (3.1.8)
where
A(s,w) := {u € H'(Qs;R?): [u]-v>00n A, u=w on N} (3.1.9)

is the set of all admissible displacements associated to the crack I'y and the Dirichlet
boundary datum w. In (3.1.9), the inequality [u]-v > 0 takes into account the non-
interpenetration condition, while the equality u = w has to be intended in the trace
sense on Jf).

We now state a general lemma which proves the lower semicontinuity of £ and will
be useful also in next sections.



80 Energy release rate and quasi-static evolution in cohesive fracture

Lemma 3.1.4. Let t;,t € [0,T], sg,5 € [0,L], wp,w € H' (4 R?), up € A(sg, wy)
for every k, and u € A(s,w). Assume that t;, —t, s, — s, wp — w in H'(QR?),
and uy — u weakly in H*(Q\ A;R?). Then

E(t,s,u) < limkinf E(tk, Sk, uk) ,
1 _ 1 1
| et tpar = | el fu G110)

/g(t,x,u)dm:lim/ 9(tg, z,up) de .
Qs k- Jas,

If, in addition, we assume that

E(t,s,u) zlilgn E(tk, Sk, uk) , (3.1.11)

then uy — u strongly in H'(Q2\ A;R?).

Proof. Since we are in dimension 2, the compactness of the embeddings of Sobolev
spaces implies that uj — u strongly in LP(Q;R?) for every p € [1,+00). Moreover,
by the compactness of the trace operator (see, e.g., [1, Chapter 7]), we get that up — u
strongly in LP(A;R?) for p € [1,+00). Up to a subsequence, we may assume that
up — u pointwise in € and on A.

By the continuity properties of ¢ and g, we have the pointwise convergences

o(tg, [uk]) = o(t, [u]) and (g, x,ug) — g(t, z,u).

Thanks to the hypotheses (3.1.2)-(3.1.4) and to the strong convergences listed above,
applying the dominated convergence theorem we get the two equalities in (3.1.10).
Since the stored elastic energy is lower semicontinuous, we obtain also the first in-
equality in (3.1.10).

If we assume (3.1.11), then, by (3.1.10), we deduce that

/ CEu-Eudx = Iilgn CEuy - Eug dz .
S QSk

Hence, we have that uj, — u strongly in H'(Q\ A;R?). O

Thanks to Lemma 3.1.4, to the hypotheses (2.3.1), (3.1.2)-(3.1.4), and to the ap-
plication of Korn’s inequality in QF, the minimum problem (3.1.8) admits a solution
u € A(s,w). As in Chapter 2, we introduce the reduced energy

Em(t,s,w):= min E(t, s,u). (3.1.12)
u€A(s,w)

Since we are interested in the notion of quasi-static evolution via Griffith’s criterion
for our cohesive fracture model, in Section 3.2 we first have to study the differentiabil-
ity of &, with respect to the crack length s. To this end, we notice that, because of the
non-convexity of ¢(t,-) and g(¢,x,-), the solution to the minimum problem (3.1.12)
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could be not unique. This affects the computation of the derivative of the reduced en-
ergy &, with respect to s. Indeed, in Section 3.2 we will see that in general &, is not
differentiable in s. However, we can still compute its right and left derivatives 9} &,
and 05 &, (see Theorems 3.2.2 and 3.2.3). In particular, we are in a situation dif-
ferent from [48, 73|, where the reduced energy is differentiable and has a continuous
derivative, and similar in this aspect to [47, 49], where finite-strain elasticity in brittle
fracture is considered. In Proposition 3.2.10 we prove that the two derivatives 9} &,
and 0; &, satisfy a semicontinuity property which will play a key role in the proof
of existence of a quasi-static evolution for the cohesive crack growth problem, (see
Definition 3.3.5 and the proof of Theorem 3.3.6).

In Sections 3.3-3.6 we move to the evolution problem. In this context, the evolution
is governed by a Dirichlet boundary datum w € AC([0,T]; H'(Q;R?)) and by the
volume forces f € AC([0,T7]; L?>(Q;R?)). In particular, as mentioned in Remark 3.1.3,
in the energy (3.1.7) we consider g of the form (3.1.6). In order to get a quasi-static
evolution satisfying a weak version of the Griffith’s principle, we tackle the problem
by means of vanishing viscosity, as already discussed in the Introduction. We refer
to Definitions 3.3.3 and 3.3.5 for the notions of viscous and quasi-static evolution,
respectively. The existence of such evolutions is obtained in Theorems 3.3.4 and 3.3.6.

Finally, in Sections 3.7-3.8, we generalize the previous results to the case of many
non-interacting cracks, in the spirit of [53]. In order to get the same properties of
Definition 3.3.5, we use the notion of parametrized solution introduced in [59].

All the results contained in this chapter can be found in [2].

3.2 Energy release rate

The purpose of this section is to give precise formulas for the derivative of the
energy &, with respect to the crack length s. In order to do this, as in Sec-
tion 2.2.3 we need to slightly move the crack tip along the prescribed curve A. Hence,
fixed ¢t € [0,7], s € (0,L), and & such that s+ & € [0,L], we construct a C?!-
diffeomorphism Fjs s such that Fy5(Qs) = Qs45, and F 5laq = id|oq. Indeed, by our
regularity assumption, in a neighborhood of the crack tip A(s) the curve A can be
seen, up to a rotation, as the graph of a C%!-function, i.e., there exist n > 0 and
Vs € C21((A1(s) — 1, A1(s) +n)) such that

A= {(z1,¢%s(z1)) : 1 € (Mi(s) —n, Ai(s) +n)},

where x; and A; are the first components of x = (x1,x2) € R2 and of the arc-length
parametrization A = (A1, A2), respectively.

Choose a cut-off function ¥ € C°(B,/2(0)) with ¥ = 1 on B, /5(0). We define
Fi5: R? — R? by

(Ar(s +0) = Ai(s))I(A(s) — ) ) (3.2.1)
¥s(x1 + (Ails +0) = M(s))I(A(s) — 2)) — ¥s(21)

Fs5(x) :=a+ ( (
if  €B,2(A(s)), while F5(x) :=x if © € R*\ B, 2(A(s)).



82 Energy release rate and quasi-static evolution in cohesive fracture

Remark 3.2.1. The properties stated in Lemma 2.2.24 still hold in this case for Fjs
as in (3.2.1) with

ps() = D5(Fy 5(x))|s=0 = N (s)0(A(s) — ) ( ¢g<1x1> > '

In particular, formulas (2.2.107) will appear in the expressions of the right and left
derivatives of the reduced energy &, with respect to s, see (3.2.2), (3.2.6)-(3.2.9).

Let t € [0,7], s € (0,L), u € H'(Q4R?), and let ¥ be a cut-off function as
n (3.2.1). We set

1
G(t,u, ) :=— 2/ (DC ps)Vu - Vudzx
Qs
— / CV((Vps — divpsDu) - Vudz

S

1
+ C(VuVps) - Vudx — 3 CVu - Vudivps dz

Qs Qs
/ Deg(t,x,u)- [(Vps — divps I)u — Vu ps] dz (3.2.2)
/ Deip(t, [u]) - (Vps — divps Du) dH!

—/Sgo(t,[u])l/®7< - ) Vs dH!
-/ ot ) divp, a7’

where v and 7 are the unit normal and unit tangent vectors to A, respectively, I is
the identity matrix in M?, and DC p; is a fourth order tensor given by

OCijki
(D(C ps)ijkl = 817] Ps,m 5 Ps = (ps,17p5,2) . (323)

m=1

In particular, we notice that G depends on 9 through the definition of ps. We refer
to Proposition 3.2.11 and Remark 3.2.12 for some comments on G.

We introduce the right and left derivatives of &, with respect to the arc-length of
the crack s: for every t € [0,T] and every w € H'(£2;R?) we define

8:5m(t7 Saw) = lim gm(t,S + 6’ w) — gm(t7saw>

; L 2.4
lim 5 or every s € [0,L), (3.2.4)

and

0y Em(t, s, w) := lim Em(t, s +6,w) — Enl(t,s,w)

2 i 5 for every s € (0,L], (3.2.5)

if the two limits exist.
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From now on, for every t € [0,7], every s € [0, L], and every w € H'(Q;R?), we
denote by us a solution to the minimum problem (3.1.8) in A(s,w).
We are now ready to state the main results of this section.

Theorem 3.2.2. For every t € [0,T], every s € (0,L), and every w € H'(;R?),
the limit in (3.2.4) exists and

OFEn(t,s,w) =k — & (t,s,w), (3.2.6)
where we have set
&1 (t,s,w) := max {G(t,us, V) : us € A(s,w) is a minimizer of E(t,s,)}, (3.2.7)

for a given cut-off function ¥ as in (3.2.1).
Moreover, & (t,s,w) does not depend on the choice of .

Theorem 3.2.3. For every t € [0,T], every s € (0,L), and every w € H'(;R?),
the limit in (3.2.5) exists and

0; Em(t,s,w) =K — & (t,s,w), (3.2.8)
where we have set
& (t,s,w) := min {G(t, us, V) : us € A(s,w) is a minimizer of E(t,s,-)}, (3.2.9)

for a given cut-off function ¥ as in (3.2.1).
Moreover, 8~ (t,s,w) does not depend on the choice of V.

Remark 3.2.4. We notice that formulas (3.2.6)-(3.2.9) say that the function s —
Em(t, s,w) is not differentiable in the interval (0, L). This is due to the lack of unique-
ness of solution to (3.1.8) and, more in general, to the fact that a minimizer of £(¢, s, -)
might not be approximated by minima of £(¢,s 4+ d,+) as § — 0. The consequences
of this “non-approximability” will be clear in the proofs of Theorems 3.2.2 and 3.2.3,
and will be stressed in Remark 3.2.8.

Let us anticipate, as stated in Proposition 3.2.10 below, that we cannot expect
to have the continuity of 9F&,, and 9; &, as functions of ¢, s, and w, thus the
arguments used in [48, 53] have to be modified as in [49] in order to find a quasi-static
evolution as limit of viscous solutions (see Sections 3.3-3.6).

We finally notice that the terms & and &~ appearing in (3.2.6) and (3.2.8) are
the generalization of the energy release rate (see, e.g., [47, 52]). To be consistent with
the existent literature dealing with Griffith’s criterion, the definitions of viscous and
quasi-static evolutions will involve & and &~ (see Definitions 3.3.3 and 3.3.5).

As in Section 2.2.3, P;s; denotes the Piola transformation associated to Fj s,
see (2.2.113) and (2.2.114). In particular, P, is an isomorphism between A(s 4§, w)
and A(s,w) with inverse P;;.

Before starting the proofs of Theorems 3.2.2 and 3.2.3, we show some properties
concerning the behavior of &, with respect to time t, the parameter s, and the
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Dirichlet boundary datum w. We notice that Lemma 2.2.26 still holds in this context,
simply replacing LD?*(R%;R?) with H'(Q2\ A;R?).

In the next two lemmas, we prove the continuity of the energy &, in [0,7] x
(0, L) x H' (;R?).

Lemma 3.2.5. The reduced energy En : [0,T] x [0,L] x HY(Q;R?) — R is lower
semicontinuous.

Proof. Let tj,t € [0,T], sp,s € [0,L], wg,w € H'(;R?) be such that tp — t,
sy — s, and wy — w in H'(Q;R?) as k — +oo. For every k, let us fix uy € A(sy, wy,)
minimizer of £(tx,sk,:). Then, by Korn’s inequality and by the hypotheses (2.3.1)
and (3.1.2)-(3.1.4), we have, for some £ > 0 small enough and some c¢1,c2 > 0,

Cl”“«k“?{l(g\,\) —az — b: < E(tg, s, u) < E(tk, sk, wi) < CQHwkH%—Il(Q) +a.+ L.

The previous inequality and the convergence wy — w in H'(Q;R?) imply that the
sequence uy, is bounded in H1(Q\ A;R?). Therefore, there exists u € H!(Q\ A;R?)
such that, up to a subsequence, uj — u weakly in H'(2\ A;R?). By the compactness
of the traces, we deduce that u € A(s,w). Moreover, (3.1.10) holds. Hence

Em(t,s,w) < E(t,s,u) < limkinf E(ty, sk, ur) = limkinf Em (i, Sk, W)

and this concludes the proof. O

Lemma 3.2.6. Let t,t € [0,T], sp,s € (0,L), wg,w € H' (L R?) be such that
ty = t, s — 5, and wy, — w in HY(Q;R?) as k — +oo. Let up € A(sg,wy,) be
a sequence of minimizers of &E(ty,sk,-). Then, there exists u € A(s,w) minimizer
of E(t,s,-) such that, up to a subsequence, up — u in H'(Q\ A;R?).

In particular, the reduced energy &y, is continuous on [0,T] x (0,L) x H*(£;R?).

Proof. As in the proof of Lemma 3.2.5, we can find u € A(s,w) such that, up to a
subsequence, uy — u weakly in H(Q\ A;R?).

In order to prove that w is a minimizer of £(t,s,:) in A(s,w), we argue as in
the proof of Lemma 2.2.22. Fix ug € A(s,w) minimizer of £(t,s,-) and, for k large
enough, take as a competitor P, } __u,+w,—w € A(sy, wy). Repeating the argument

8,8 —S

of (2.2.84), we deduce that u is a minimizer of £(¢,s,-) in A(s,w) and that

E(t,s,u) =En(t,s,w) = lim &y (tg, sk, wr) = lm E(tg, sk, ug) - (3.2.10)

k——+o0 k—+4o00

Therefore, by Lemma 3.1.4 we get that u; — u strongly in H'(Q\ A;R?). More-
over, (3.2.10) implies that &,, is continuous on [0,T] x (0, L) x H*(Q;R?). O

In the proof of Theorem 3.2.2 we will need the following lemma.

Lemma 3.2.7. Let Q C R? be an open, bounded, and connected set with Lipschitz
boundary. Let 9 € C(Q) and 69 > 0 be fized as in (3.2.1) and in Lemma 3.2.1.
Then the following facts hold true:
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(a) there exists ¢ = c(9) > 0 such that for every u € H'(;R?):

Ha—l(uopsj; — ) Hm < ¢(9)]| V|2 (3.2.11)

Moreover, 6~ (uo F,§ —u) — —Vups in L>(Q;R?) as § — 0;

(b) assume that there exist & — 0, |0k| < 6o, and us,,u € HY(Q;R?) such that
us, — u weakly in H'(Q;R?) as k — +o00. Then 5];1(u(;k —us, 0 Fg5,) —
—Vu ps weakly in L*(;R?) as k — +o0.

Proof. We adapt the proof of [47, Lemma 4.1] to the case of a curved prescribed crack
path A.
Let us fix u € HY(Q;R?). For |§| < &y we define

Ls(u) := 51 (uo FST(;I —u), (3.2.12)
Lo(u) := —Vups. (3.2.13)
The function Ls: H'(Q;R?) — L?(2;R?) is a linear operator for every |6] < dy. We

want to prove that they are uniformly bounded.

To this end, for |§] < dp and h € R small enough, we set xj, = F8_51+h(y) and

x = stél (y) for y € . We compute

O ki
[
By definition of Fj ., we have
1
0= (Fsstn(zn) — Fs(2))
1 1 (3.2.14)
= (Fusen(on) = Fugon(@) + 3 (Fog (o) — Fug(a)).

By the mean value theorem, there exists ¢, € (0,1) such that

Fosin(zn) — Fssin(w) = Vs son(ay,)(Tn —2),

where x4, := x+t,(xp, — ). Since Fy54p is a C?!-diffeomorphism, for every h there
exists (VFsgsin(w,))"t. Hence, (3.2.14) becomes

Tp — X _, F z) — Fs5(x
0= hh + (VFS,(H-h(xth)) ! 76+h( )h ’5( ) : (3215)
Passing to the limit in (3.2.15) as h — 0, since z;, — x we get
. Tp— T ~1
pss(x) == lim = —(VFs5(x))  0sFs5(x). (3.2.16)

h—0 h
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Let now u € C®(Q;R?) be fixed. For every y € Q, by (3.2.12) and (3.2.16) we
have

1 1
L)) = 5 [ graFols)ah = [ VulELl) sl Flsw) ah. (3:217)

Taking the L? norm of Ls(u) in (3.2.17) and applying Holder’s inequality and the
change of coordinates y = Fj j5(x), we obtain

1
ILs(w)3q < / /Q [Vt popo|? det Ty ps dz < c(0)[Vulliq (3.2.18)
0

for some constant ¢(99) >0 independent of §. Since C°°(Q);R?) is dense in H'(2;R?),
we deduce that (3.2.18) holds for every u € H'(£;R?), which is exactly (3.2.11).
Moreover, thanks to (3.2.17), for every u € C*®(Q;R?) we have

1
HLa(U)—Lo(U)Hg,QS/O /Q!VU(FL;}@(y))ps,ha(F;ﬁg(y))+Vups(y)\2dydh- (3.2.19)

For (h,y) € [0,1] x Q fixed, the integrand in (3.2.19) converges to 0 pointwise as
d — 0, thus, by the dominated convergence theorem, we get that Ls(u) — Lo(u)
strongly in L?(Q;R?) for every u € C*®(Q;R?). By (3.2.18) and a density argument,
the same is true for u € H*(Q;R?). This concludes the proof of point (a).

Let us now prove (b). Recalling (3.2.12), for every v € C2°(Q;R?) it holds

/ 5,;1(u(;k —us, 0 Fg5,)-vde
Q
= _/Quék L, (v) dz + 6, " /Q us, - (Vo Fyy )(1—det VE ;) do (3.2.20)

det VFy 5, (F. 3 () — 1

875k

det VF, 5, (F, 5 ())

:—/Quék'Lék(v)dm"i_(sk_l/Quék'('UOFST;IC)

In the last integral of (3.2.20) we perform the change of coordinates x = F 5(y), thus
we obtain

/ 51;1(“5;@ —ug, 0 Fy5,)-vda
Q

det V5 1 (3.2.21)

:—/ugk-L(gk(v)dx—l—/(u(gkoFsﬁk)-v5dm.
Q 0 k

Passing to the limit in (3.2.20) as kK — +o00, taking into account point (a), Lemma 2.2.24,
and the weak convergence ug, o Fy 5, — u in Hl(Q; }RQ), we get

u- Vupsg d:r—l—/u-vdivps dx
@ (3.2.22)

:/u-div(v@ps)dx:—/U-Vupsd:v,
Q Q

lim/5,6_1(u5k—u(;koF3,5k)-vd:n:/
k- Ja Q
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where, in the last equality, we have used the divergence theorem.
Since
5k_1(u5k —ug, 0 Fy5,) = L, (us, 0 Fig,)
estimate (3.2.11) and the weak convergence of us, imply that there exists C' > 0 such
that for every k
10 (s, — s, 0 Fog )20 < C.

Therefore, taking into account the density of C2°(£;R?) in L?(£;R?), we deduce
that (3.2.22) holds for every v € L*(Q;R?), hence &, *(us, — us, © Fss,) — —Vu ps
weakly in L?(2;R?) as k — +o00, and the proof of the lemma is thus concluded. [J

We are now ready to prove Theorem 3.2.2.

Proof of Theorem 3.2.2. Fix t € [0,T], s € (0,L), and w € H'(Q;R?). Let us €
A(s,w) be a solution of (3.1.8) and let 0 < § < dp. For simplicity of notation, let us
set

u’ := (cof VFys5) Tu= (PST(S1 u)oFys for every u € A(s,w).

By definition of &, and by the change of variables = F_J(y), we have

Emltss +0,w) = Emlt,s,w) _ E(ts 49, P, 5 ug) — E(t, s, us)
1) - 1)
([ ClFsa) Vel (VR 9 (VFg) ™ aet Vs
Qs

_1
25

1
—/ (CEuS.Eusda:> —</ g(t,x,P5_51 us)d:c—/ g(t,x,us)dx> (3.2.23)
Qs 5 Qs+6 ’ QS

1 s V14 (WL oFy5)? 0
4+ t, [ul : det VF; s dH
5(/3“ [is]) V142 o

1 1 1
— / ot [us])dﬂl) +rh==- —=-Lh+=-I3+k.

) ) )

As in the proof of Theorem 2.2.25, by the dominated convergence theorem we get

1 1
lm=1 = - /(DC ps)Vug-Vusdx +/ (CV((VpS — divps I)us)-Vusdw
ON\0 1) 2 Q, Qs (3 9 24)

1
- C(VusVps) - Vusdr + B CVus - Vug divps dz .
Qs Qs

We now deal with the term Is of (3.2.23). In view of the regularity properties
of g, we can apply the mean value theorem: for a.e. x € Q there exists (s(x) € (0,1)
such that

g(t, Z, st(sl us(x)) - g(ta Z, Us('r))
= Dﬁg(t7$7 P;(sl Us(z) + C&(:U)(Pisl us(x) - us(l'))) : (Pstgl us(x) - us($))

S

(3.2.25)
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Let us set ug := stél Us + Q;(P;; us —us), where (5 is as in (3.2.25). We can continue
in (3.2.25), obtaining
g(t7 T, PST(SI Us(l‘)) - g(t7 x, u8($))
= Deg(t, x, us(x)) - [(PT; Us — Ug O Fs_,al) + (uso Fs;;l — ug)] .

S

(3.2.26)

By Lemma 2.2.26, usoF(;;1 and P‘;S1 us converge to us in H'(Q\ A;R?) as 6 \, 0.
Hence, we also have, up to a subsequence, @ — us pointwise. Thanks to Lem-
mas 2.2.24 and 3.2.7, to condition (3.1.5) on g, and to the dominated convergence

theorem, we get
1
lim = Ih, = / Deg(t, z, us) - [(V,os —divps ) us — Vus ps] dz. (3.2.27)
ON\0 0 Q,

We now consider the term I3 in (3.2.23). We can write it as

B s/ 1T+ (UL o Fys5)? - .
Iy = / At )Y (et VE — ) dK
5 \/1+(1/1§0Fs,5)2 B ) 1 3.2.98

+ /F Scp(t, [us])< T 1)dH ( )

" / (o(t, %)) — o(t, [us])) AHY = T+ Tos + I
I's

For the first two terms in (3.2.28) it is easy to see that

1 1
lim— I - I
61\1%5 1,3+5 2,3

— [ ettt aivnart + [ (el {25 16060 -2 (3220
:/ o, [us])divpsd?ll—i-/ o, [us])l/®7'<§] é) VpsdHL.

For the last term in (3.2.28), we exploit again the mean value theorem: for -
a.e. x € I'y there exists (s(x) € (0,1) such that

ot [ud] () —p(t, [us](x) = Dep(t, [ug] () +G (@) ([ul) () = [ (2))) - ([ul] ()~ [us] (=)
Arguing as in (3.2.27) and taking into account hypothesis (3.1.2) on ¢, we get

1
oN\0
Collecting (3.2.23)-(3.2.24) and (3.2.27)-(3.2.30) we deduce
Jim sup Em(t,s +0,w) —Enl(t,s,w)
5\ o
E(t,s+0,ud) — E(t, s, us)
o

im %13,3 = / D&O(t, [U’SD : ((Vps — divps I)us) dHl . (3'2'30)
Ts

(3.2.31)

< lim

= =k — G(t,us, ).
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Since we can repeat the previous argument for every us € A(s, w) minimizer of £(¢, s, -),
taking the infimum in the right-hand side of (3.2.31) we get

. Em(t, s+ 0,w) — Enl(t,s,w)
lim sup
5N\O 0 (3.2.32)
<k —sup{G(t,us,?) : us € A(s,w) is a minimizer of £(¢,s,-)} .

In particular, since the set of minimizers {us} is bounded in H'(Q4;R?) for every
s € (0, L), the supremum in (3.2.32) is finite.

To prove the converse inequality for the liminf, we argue in a similar way taking
into account Lemmas 2.2.24, 2.2.26, 3.2.6, and point (b) of Lemma 3.2.7. Indeed, let
0k \¢ 0 be such that

lim inf Em(t,s+0,w) — En(t,s,w) — lim Em(t,s + 0k, w) — Enl(t,s,w)  (3.233)
N0 1) k O

For every k € N we fix us5, € A(s + 0, w) minimizer of £(¢,s + d;,-). By
Lemma 3.2.6, we deduce that there exists us € A(s,w) minimizer of £(¢,s,-) such
that, up to a subsequence, usys, — us in HY(Q\ A;R?). Lemma 2.2.26 implies that
Usig, © Fis 5, — us in H'(Q;R?). For simplicity, we set Usgs, := usis, © Fsg, and
notice that Py usis, = (cof VFss, ) Uss, -

We can write

Em(t, s+ ok, w) — En(t, s,w) S E(t,s + 0k, usys,) — E(t, 8, Ps 5, Uss,,)
(Sk o 5k

</QC<F576k (:U))VUSﬁk(VFS’(;k)—l .VUsﬁk(VFS’(gk)_l det VF s, dx

_
20

- /S; CV(PS,ﬁk U3+6k) : V(PS,5k us—i—ék) d$>

1
- — / g(t,m,uer(;k)dx—/ g(t,z, Py 5, usys, ) do
ok \ Ja, Q,

1 1 "o Fss,)?
o ( [ et 0.a) VIR0 v, ant
k s

- / QO(t, [Ps,ék u8+5k]) d?‘[l) + K

(3.2.34)

Following step by step the proof of (3.2.31), in view of Lemma 2.2.24, of point (b)
of Lemma 3.2.7, and of the previous observations, we can pass to the limit as & — +o00
in (3.2.34) getting

hm g(t7 S + 6197 u8+(5k) - 5(t, S, Ps,ék Us+5k)
k O
>k —sup{G(t,us,?) : us € A(s,w) is a minimizer of £(¢,s,-)} .

=k —G(t,us, V) (3.2.35)
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From (3.2.33) and (3.2.35) it follows that

lim inf gm(tv s+ 57 w) - 5m(ta S, w)
5\0 1) (3.2.36)
>k —sup{G(t,us, ) : us € A(s,w) is a minimizer of (¢, s,-)}.

Thus, collecting inequalities (3.2.32) and (3.2.36), we get that the limit in (3.2.4) exists
and
OF Eml(t, s,w)

3.2.37
=k —sup{G(t, us, ) : us € A(s,w) is a minimizer of E(t,s,-)}. ( )

It remains to prove that the supremum in (3.2.37) is attained. Let us consider a
sequence of minimizers u? of £(t,s,-) in A(s,w) such that

s Ws

lim G(t,uy, V) = sup{G(t, us, V) : us € A(s,w) is a minimizer of £(¢,s,-)}.

Since Lemma 3.2.6 holds, there exist a subsequence, not relabeled, and a minimizer
u € A(s,w) of £(t,s,-) such that u? — u in H'(Q;R?). Since G is continuous with
respect to the strong convergence in H'(Q\ A;R?), we have

lim G(t,ul,9) = G(t,u,v) = sup {G(t,us,9) : us € A(s,w) is a minimizer of £(¢,s,-)} .

» s

This concludes the proof of (3.2.6).
Finally, in view of the definition (3.2.4) of 9f&,,, we notice that &+ does not
depend on the cut-off function . ]

Exploiting the arguments of Theorem 3.2.2, we can also prove Theorem 3.2.3.

Proof of Theorem 3.2.3. We just have to follow step by step the proof of Theorem 3.2.2.
In this case, since we are dealing with § < 0, we have

Em(t,s+ 0, w) — Enlt,s,w) < E(t, s+ 0,usys5) — E(t, 8, Ps 5 usys)
) - ) ’
E(t,s+ 0, st(sl us) — E(t, s, us) _ Em(tys+ 0, w) — En(t, s, w)
) - ) ’
for every us € A(s,w) minimizer of £(¢,s,-) and every usys € A(s + 0, w) minimizer
of E(t,s+9,-).
The second inequality in (3.2.38) can be treated as the corresponding one in the
first part of the proof of Theorem 3.2.2. This time, it leads us to

lim inf gm(t’ s+ 57 w) - gm(t’ S, ’LU)
5,0 )

(3.2.38)

>k — G(t,us, V). (3.2.39)

Since (3.2.39) holds for every us € A(s,w) minimizer of £(t, s, -), taking the supremum
we obtain
L inf Em(tys+ 6, w) — En(t, s,w)
570 5 (3.2.40)
>k —inf {G(t,us, V) : us € A(s,w) is a minimizer of (¢, s,-)}.
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For the first inequality in (3.2.38), we argue again as in the proof of (3.2.36). In
this case, we get

. gm(ta5+5>w) —gm(tasvw)
lim sup
5,70 0 (3.2.41)
<k —inf{G(t,us,?) : us € A(s,w) is a minimizer of £(¢,s,-)}.

Collecting the inequalities (3.2.40) and (3.2.41), we have that the limit in (3.2.5) exists.
Moreover, we have that

05 Em(t, s,w)

3.2.42
=k —inf {G(t,us,9) : us € A(s,w) is a minimizer of £(¢,s,-)} . ( )

As in the proof of Theorem 3.2.2, the infimum in (3.2.42) is actually a minimum,
thus (3.2.8) is proved. Finally, &~ does not depend on the cut-off function . This
concludes the proof of Theorem 3.2.3. O

Remark 3.2.8. As we have already noticed in Remark 3.2.4, the general non-existence
of the derivative of &,, with respect to the crack-length s is due to the lack of
approximability of the minimizers us, € A(s,w) of £(t,s,-), that is, it is not true
that for every us and every 6 > 0 there exist usys € A(s + J,w) minimizer of
E(t,s+0,) and us_5 € A(s—0,w) minimizer of E(t,s—49,-) such that ug s, us_g5 — us
in H'(Q\ A;R?) as 6 \, 0. If this approximation property were true, then, in the
inequalities (3.2.32), (3.2.36), (3.2.40), and (3.2.41), we could take both the infimum
and the supremum. As a consequence, it would be 97 &, = 9; &, and the reduced
energy would be differentiable with respect to s € (0,L). For instance, this is true
if the functions & — ¢(t,£) and & — g(t,x,&) are convex. Indeed, in this case the
minimum problem (3.1.8) has a unique solution us € A(s,w) and the function s — us
is continuous.

Remark 3.2.9. We briefly notice that if we drop the non-interpenetration condition in
the definition (3.1.9) of the admissible displacements A(s, w), Theorems 3.2.2 and 3.2.3
hold with a simpler formula for G, namely

1
G(t,u,9) = — /Q (DCps)Vu-Vudx—i—/Q C(VuVps) - Vudz

2
1
~3 CVu-Vudivpsdx — / Deg(t,z,u) - Vupsda
Qs Qs
0 1 1 : 1
— | et,u)rer Lo ) VpsdH™ — | @(t,[u])divps dH" .
S FS

The proofs present minor changes due to the fact that we do not need the Piola
transformation Ps 5 anymore. Indeed, uo Fy 5 € A(s,w) for every u € A(s + d,w) in
this case.

Moreover, we stress that a C?-regularity of the curve A is enough, and that we do
not need the differentiability hypothesis on .
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Thanks to Theorems 3.2.2 and 3.2.3, we are allowed to define the functions
BT &7 [0,7] x (0,L) x HY(;R?) - R,

whose expressions are given by (3.2.7) and (3.2.9), respectively.
We now state a property of semicontinuity of & and &~ which will be useful in
the next sections.

Proposition 3.2.10. The following facts hold:
(a) for every t € [0,T], every s € (0,L), and every w € H*(Q;R?)

&t (t,s,w) > & (t,s,w) > 0;

(b) the function &% is upper semicontinuous with respect to the strong topology of
R x R x H'(Q;R?);

(c) the function &~ is lower semicontinuous with respect to the strong topology of
R x R x H'(;R?).

Proof. To prove property (a), we just notice that &*(¢,s,w) and & (¢,s,w) are the
negative of the right and left derivatives of the function

s Em(t,s,w) —s.

Since this function is monotone non-increasing and Theorems 3.2.2, 3.2.3 hold, we
get (a).

Let us prove (b). We consider a sequence (tg, Sk, wy) — (t,s,w) in [0,T] x (0, L) x
H(;R?) and 9 a cut-off function defined as in (3.2.1). By Theorem 3.2.2, for every
k € N there exists us, € A(sk, wg) minimizer of &(t, sk, ) such that & (¢x, s, wg) =
G(ti, us,,?). By Lemma 3.2.6, there exists u, € A(s, w) minimizer of £(t,s,-) such
that, up to a subsequence, us, — us in H'(Q\ A;R?). Formula (3.2.2), together with
the hypotheses on g and on ¢, implies that

G(t,us,¥) = liin G(tg, us,, ).

By (3.2.7), G(t,us,9) < &1 (t,s,w), thus we deduce the upper semicontinuity of &*.
In the same way, taking into account (3.2.9), we obtain the lower semicontinuity
of &7, and this concludes the proof. O

We conclude this section with a proposition which helps us to give an interpretation

to G defined in (3.2.2). Let t € [0,T], s € (0, L), w € HY(4;R?), u € HY(Q\ A;R?),
and n > 0. We define

&n

loc

(t,s,u) :=1inf {E(t,s,v) : v € A(s,w), ||v—ul g <n}. (3.2.43)

By the direct method of the calculus of variations, we can prove that the infimum
in (3.2.43) is attained.
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Proposition 3.2.11. Let t € [0,T], s € (0,L), w € H' (QR?), us € A(s,w) a
minimizer of E(t,s,-), and let ¥ be a cut-off function as in (3.2.1). Then

E(t ) =& (t 5, g
G(t,us, ) — £ = lim lim inf (£ 5, us) = Ege(t, s + 6, us)
e : 3.2.44
Et,5,us) — &) (1,5 + 8, uy) (3.2.44)
= lim limsup oc .
N0 5N\ 0 )

In particular, G(t,us,¥) =: G(t,us) does not depend on V.

Proof. Let t, s, w, and us be as in the statement of the proposition. Let n > 0
be fixed. With the notation introduced in Lemma 3.2. 7 for § > 0 small enough we
have P__ 5 us € A(s + 0,w) and, by Lemma 2.2.26, ||P 5 us — us|| g < m. Thus, the
followmg estimate from below holds:

E(t,s,us) — E(t, s +0, Py g ') _ E(t,s,us) — & (t, s+ 6, us)
) - 1 )
Therefore, as in the proof of Theorem 3.2.2, passing to the liminf as 6 N\, 0 in (3.2.45)
we get

(3.2.45)

E(t s)— & (t 0, Us
Gt ua, ) — ki < liminf 05 ) loclt, 5+ 0,us) (3.2.46)
5\0 o
We now prove that
) E(t,s,us) — & (t, s+ 0, us)
lim sup
5\ 0 (3.2.47)

< sup {G(t, uy, 9) : uy € A(s,w) is a minimizer of & (¢, s,us)} — K.

Let us fix a sequence 0, \, 0. Since, for every k, 5;(7;1%(16, s+ 0, us) <& (t,s+
0k, us), the following chain of inequalities holds:
E(t,s,us) — & (t, s+ Ok, us) - E(t,s,ug) — Elztl/k(t, S+ O, Us)
6]@ o 5k
E(t,s,us) —E(t,s + 5k,ug)
Ok ’

(3.2.48)

where we denote by u’; € A(s + 0k, w) a minimizer of Egil/k(t,s + Ok, us). Since

E(t,s,us) = Ep(t, s, w) and Py, uf] € A(s,w), we can continue in (3.2.48) getting

k k
8(t, S, us) - gloc(t s+ O, us) < 5(t7 S, P8,5k un) - 5(t> s + Ok, un) . (3‘2.49)
Ok Ok
Up to a subsequence, we can assume that
E(t, s, Pss, ug) —5(t,s—|—5k,ug) . E(t,s, Psg, u’f]) — 5(t,s—|—5k,uf§)

lim sup = lim

k Ok k Ok
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By construction, we have that ug is bounded in H'(Q\ A;R?). Thus, we may
assume that, up to a subsequence, ufi — u weakly in H1(Q\ A;R?) as k — +oo for
some u € H(Q2\ A;R?). By the compactness of the trace operator and by the lower
semicontinuity of the H'-norm, we have u € A(s,w) and ||u — us| g1 < 7.

Let us prove that  is a minimizer of & (t,s,us): given v, € A(s,w) a minimum
of & (t,s,us), thanks to Lemma 2.2.26 we can find a sequence ¢ such that 0 <
ek < Ok, eky1 < €, and ||P;} vy — vyl g1 < 1/k for every k € N. Therefore, by the
triangle inequality we get

1P vy — usllgn <m+1/k.

5,€k

Moreover, by our choice of ¢, P;alk vy € A(s + ex, w) C A(s + i, w). Hence, in view

of (3.1.10) in Lemma 3.1.4 and of the definition of v, , we obtain

E(t,s,vy) =&/

loc

(t,s,us) < E(t,s,u) < limkinf E(t,s+ 5k,uf;)

3.2.50
<limsup &(t,s + 5k,uf§) < liin Et, s+ 6k, stslk vy) = E(t,5,vp). ( )
k

where, in the last equality, we have used the strong convergence of Ps_ﬁlk v, to vy,
in HY(Q\ A;R?) as k — +o0o. The chain of inequalities (3.2.50) implies that u €

A(s,w) is a minimizer of & (¢, s,u,) and that

E(t,s,u) = lilgn 5(t,s+6k,u§).

Thus, by Lemma 3.1.4 we get that u'; — u strongly in H'(Q\ A;R?) as k — +oo.
By Lemma 2.2.26, we also have P s, uf] —u in HY(Q\ A;R?).

Passing to the limsup in (3.2.49) as kK — 400 and taking into account the previous
convergences, we get, as in the proofs of Theorems 3.2.2 and 3.2.3,

. 5(t,8,’u,5) — ngc(t?S + 6k7u5)
lim sup s
k - ; Y Ets 4 8 (3.2.51)
y Sy L,y Uyy) — ) S ) U
< lim onl B0 G(tu, ) — k.
k

Taking the supremum in (3.2.51) among all the functions u minimizer of & (¢, s, us),
we deduce that

y E(t,s,us) — & (t, s + Op, us)
im su
oup 5 (3.2.52)

< sup {G(t, uy, ) : uy € A(s,w) is a minimizer of & (¢, s,us)} — k.

By a contradiction argument, (3.2.52) implies (3.2.47). It is easy to see that, as in
Theorem 3.2.2, the supremum in (3.2.47) is actually a maximum.

Finally, passing to the limit in inequalities (3.2.46) and (3.2.47) as n N\, 0, we
get (3.2.44), and the proof is thus concluded. O
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Remark 3.2.12. In view of Proposition 3.2.11, we can interpret G(t,us) as a “local”
energy release rate, in the sense that it takes into account only deformations which
are close to us in the H'-norm, while &% are “global” energy release rates.

Since we have explicit formulas for the right and left derivatives of the reduced
energy &, in terms of the generalized energy release rates &+ and &~ , we are now in
a position to study the problem of existence of a quasi-static evolution of our cohesive
fracture model with an activation threshold. Following the ideas of [49], we look for
an evolution satisfying a weak form of Griffith’s criterion.

3.3 Quasi-static evolution

We provide a notion of quasi-static evolution based on the technique of vanishing
viscosity. The solution is defined through a process of time discretization: we first
solve some incremental problems and then pass to the limit as the time step vanishes.
In order to enforce local minimality, the incremental problems are perturbed with a
viscous parameter € > 0 which tends to zero more slowly than the time step. This
approach was employed in [11, 31, 58, 59] in an abstract setting and in [48, 49, 53, 73]
for the problem of crack growth.

First of all, let us fix some notation which will be used from now on: the reference
configuration is described by Q, where © C R? is an open, bounded, connected set
with Lipschitz boundary. The crack path is given by the C*!'-curve A C Q. See
Section 3.1 for the properties of  and A and (3.1.1) for the definition of admissible
cracks. Given T > 0, we consider

we AC([0,T); HY(:;R?)  and  f € AC([0,T]; L*(Q;R?)) (3.3.1)

which represent the Dirichlet boundary datum and the volume forces applied to €2,
respectively. In particular, f(t,z)-¢ will substitute the function g(¢,z,£) defined in
Section 3.1. For simplicity of notation, we will not indicate the dependence of f and w
on the space variable x.

Finally, we assume that the function ¢: [0, 7] x R? — R satisfies a further property
of differentiability: we suppose that ¢(-,&) € AC([0,T];R) for every ¢ € R? and that
there exist p € (1,4+00) and a3 € L*([0,7]) with a3 > 0 such that

|Dip(t, )| < ag(t)(1+ |£P) for a.e. t € [0,T] and every ¢ € R?. (3.3.2)

Fixed s € [0, L] and t € [0,T], the energy of the system is, similar to (3.1.7),

1
Et,s,u) = 3 CEu-Eudzx — f(t) - udr + / o(t, [u]) dH' + ks,  (3.3.3)
Qs Qs s

for every uw € A(s,w(t)), the set of admissible displacements at time ¢, defined as
in (3.1.9).
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Since the boundary datum is a function of ¢ € [0,T], we slightly change the
notation for the reduced energy &, and for the energy release rates with respect to
Section 3.2: for every s € [0, L] and every ¢ € [0,T], we define, similar to (3.1.12),

Em(t,s) = in &t s,u). 3.3.4
(t,s) eAnm (t,s,u) (3.3.4)

Remark 3.3.1. By (3.3.1), all the results about &, proved in Section 3.2 hold: by
Lemmas 3.2.5 and 3.2.6 the reduced energy &, is lower semicontinuous on [0, 7] x [0, L]
and continuous on [0,7] x (0, L). By Theorems 3.2.2 and 3.2.3, it has right and left
derivatives with respect to the crack length s which are now denoted by 9} &, (t, s)
and 95 En(t, s) for every (t,s) € [0,T] x (0,L). Moreover,

OFEn(t,s) =k — & (t,5,w(t)),
0, Em(t,s) =Kk — & (t,s,w(t)),

where &% are defined as in (3.2.7) and in (3.2.9).

With an abuse of notation, we now set
G5 (t,s) == & (t,5,w(t)),

where, in the formulas (3.2.2), (3.2.7), and (3.2.9) for &*(¢,s,w(t)), the function
g(t,z,u) is replaced by f(¢,x)-u for an admissible displacement u.

Remark 3.3.2. Since w and f are continuous in time, a simple application of Propo-
sition 3.2.10 shows that & is upper semicontinuous and &~ is lower semicontinuous
on [0,7] % (0,L).

We now discuss briefly the time incremental minimum problems and then give our
definitions of wviscous and quasi-static evolutions.

For every k € N we fix a subdivision {t¥}*_, of the time interval [0,7] with
tf = i1, and 7 = T/k. Given ¢ > 0, we define recursively the solution sf’i

0

to incremental minimum problems: let sf’ := 89, where sg € (0,L) is the initial

condition, and, for ¢ > 1, let slg’i be a solution to

k=12 )
min {gm(tf, 5) + g sz’ ) e [sf”_l,L]} . (3.3.5)

Tk

We postpone the proof of existence of a solution to (3.3.5) to the next section, see
Proposition 3.4.1, to comment briefly on the function which appears in (3.3.5). This
function is the sum of two terms: the reduced energy &,, defined by (3.3.4), which
represents the energy of the system at the equilibrium for a fixed s € [0, L], and a
perturbation term driven by € > 0 which enforces a local minimization of the energy
with respect to s. This kind of approximation should guarantee that the evolution in
the limit follows “local minimizers” of the energy (see [27, 31, 49, 53, 58, 59, 71] for
further discussions and applications).
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The passage to the limit will be performed in two steps: we let first £ — 400 and
find a viscous evolution for every € > 0, and, finally, we obtain a quasi-static evolution
as the parameter ¢ tends to zero.

We now give a definition of wviscous evolution and quasi-static evolution for the
cohesive crack growth problem. We refer to Definition 2.2.29 for the definition of the
failure time 7 (s) of a monotone non-decreasing function s: [0,7] — [0, L].

Definition 3.3.3. Let € > 0 and s € (0, L). We say that a monotone non-decreasing
function s. € H'([0,T]) is a wviscous evolution for the cohesive crack growth problem
with s.(0) = s if it satisfies the following rate-dependent Griffith’s criterion:

for a.e. t € (0,7 (sc))

(1) gs(t) > 0;
(2) B (t,s:(t)) — Kk —es(t) <0;
(3) (BT (¢ s=(t)) — r —es:(t)) 5(t) = 0.
In Section 3.5 we prove the following existence theorem.

Theorem 3.3.4. Let ¢ >0, f € AC([0,T]; L*(;R?)), and w € AC([0, T); H'(Q; R?)).
Then, for every so € (0,L) there exists a viscous evolution s. € H'([0,T]) for the
cohesive crack growth problem with s¢(0) = sq.

Given s: [0,7] — [0, L] monotone non-decreasing, we define the jump set of s by
J(s):={t€[0,T]: s(t7) < s(th)}.

Definition 3.3.5. Let so € (0,L). We say that a monotone non-decreasing function
s € BV([0,T]) is a quasi-static evolution for the cohesive crack growth problem with
s(0) = sp if it satisfies:

(1) for every t €[0,7(s)) \ J(s):
&~ (t,s(t)) < k;

(2) for every t € [0,7(s))NJ(s):

&t (t,0) > kK for every o € [s(t7),s(t")];

(3) if t €[0,7(s)) and &F(¢,5(t)) < k, then s is differentiable at ¢ and 3(t) = 0.
We can now state the main theorem of this section.

Theorem 3.3.6. Let f € AC([0,T); L*(;R?)) and w € AC([0,T); HY(Q;R?)).
Then, for every so € (0, L) there exists a quasi-static evolution s € BV ([0,T]) for the
cohesive crack growth problem with s(0) = sq.

Remark 3.3.7. We notice that in the proof of Theorem 3.3.6 we also show that if
{sc}e>0 is a sequence of viscous evolutions for the cohesive crack growth problem

with s¢(0) = sg, then, up to a subsequence, s. converges pointwise to a quasi-static
evolution s € BV ([0,T7).
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3.4 The discrete-time problems

We now discuss the properties of the discrete-time solutions sk

Section 3.3. First of all, we have to prove that they are well defined.

introduced in

Proposition 3.4.1. For every e >0, k€N, and i =1,...,k, there exists a solution
o (3.3.5).

Proof. We exploit the direct method of the calculus of variations. Let € > 0, k € N,
and ¢ = 1,...,k be fixed. Let s; € [s’E“ 'L L] be a minimizing sequence for the

minimum problem (3.3.5). Up to a subsequence, we may assume that there exists
s € [s¥7! L] such that s; — s. Taking into account Lemma 3.2.5, we have that

Em(th,s) < liminf £, (tF,s;),
J

hence s is a solution to (3.3.5). O

We now provide some a priori bounds on the incremental solutions. In what follows,
wk = w(tF) and fF .= f(tF).

Proposition 3.4.2. There exists C > 0 such that, for every k € N and every € > 0,
the following inequality holds

€ i 7j_ k’.j 1)2
2

Jj=1

<C. (3.4.1)

Proof. During the proof of this proposition, we will denote by u} a minimizer of
E(th, sk ‘1) in .A(:s6 ,wF) and by QF T¥ the sets Qi I ki, Tespectively.
First, let us prove that the minimizers u¥ are bounded in H'(Q\ A; RQ) uniformly

with respect to k € N, i = 1,...,k, and ¢ > 0. Indeed, wf € A(sE ,wF) and,
by (2.3.1), (3.1.2), the hypothesis o(t¥,0) = 0, and Holder’s inequality, we get

’L’E

B
Em(th, 1) < £tk 0h) < Sy + I ol + L. (342
From (3.3.1) and (3.4.2), we deduce that, for some ¢ > 0,
g (tk k,z) _ g(tk‘ gkt uk) <ec. (3.4.3)

Z’€

Therefore, since (2.3.1) holds and ¢ satisfies (3.1.3) uniformly in ¢, applying Holder’s
and Korn’s inequalities to (3.4.3) we obtain

crlluf 3 o) — IFF l2elluf o) — c2 < Em(tF, s27) < ¢ (3.4.4)

for some c1, ca > 0. By the absolute continuity of f and by Young’s inequality,
from (3.4.4) it follows that there exists M > 0 such that for every k, every i = 1,...,k,
and every ¢ > 0:

[ufl gy <M and  En(th,sb) > —M. (3.4.5)
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Let k€N, i=1,...,k,and € > 0 be fixed. Since u¥ | +wf—wk | € A(s?’iil,w’?),

7

we have, by definition of sB% and of the reduced energy &,

ko gk, € (Slgl Slsm;l)Q
En(th bty 2222 ¢ J
( KA E ) + 2 Tk

< E(t], 88 17ui-21 +wy — wi-il)

Z’E

= &t 4 OBy Bk k) ar

’L7E

(3.4.6)
/(CEw —wf ) E(wf —wk )dx—/(fk )k da

11
tk

—/ff«wf—wé’_l)dw/’ Dyp(r. [ub_]) dH" dr |
Q t

k k
i—1 F —1

Thanks to (3.3.1), (3.3.2), (3.4.5), to Holder’s inequality, and to the continuity of the
trace operator, (3.4.6) becomes

g(kl kl 1)2

S — S
RO

Tk
th th
< &t 1,557 + 801 [ i) nopdr + 80 [ it (3.4
1—1
tk

1—1
: 0
—l—M/ Hf ||2’QdT+F/k |0 (T) | dT+(L+CMp)/ as(T)dr,
t t

k
i—1 i—1

where L = H!(A), C is a positive constant independent of k, and

1
Wy = 3 sup wa — wfleHl(Q) and F:= sup ||f(®)ll2.0-
j=1,....k te[0,T]

kyi—1 k,i72)2

Adding to both sides of (3.4.7) the term § (se” —se” )

- and iterating the previous

argument, we get

2 4 Tk
J:

T
< (0, 50) + (BM + Wy + F) /0 (1) 11

Em(th, sBh) +

(3.4.8)

T T
—|—M/0 ||f(t)H2,th+(L+CMP)/O az(t) dt.

By (3.3.1), FF < 400 and W), — 0 as k — +00, so (3.4.5) and (3.4.8) imply (3.4.1),
and the proof is thus concluded. O
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For every k and every € > 0, let us define the piecewise constant interpolations
tr(t) := t¥ and 3%(t) := s¥ for t € (t¥ |, tF], and the piecewise affine interpolation

[
function , ,
) Sk,z N Sk,zfl
sP(t) = s8¢ %(t —th ) forte (tF o th].
k

The next proposition is the equivalent of the Griffith’s criterion in the discrete
setting.

Proposition 3.4.3. For every k € N, every e > 0, and every t € [0, T (55)) we have:
(a) $E(t)>0;
(b) &*(Tu(t),55(1) — K —esk(t) <0;
() (&*(tr(t),55(t)) — k —e5E(t)) sE(t) = 0.

Proof. Property (a) follows immediately from the definition of s¥.

Let us prove (b). Fix ¢ € (t# ,,t¥] such that t < T(5%). By construction, for every

k,i—1
o> 52" we have

c ( ki Sk,i—l)g

ko ki se’ — Se e (g — st
Em(ti, s") + 3 —_—

S 5m(t§7 J) + 5
T 2 Tk

(3.4.9)

If o > s?’i, dividing (3.4.9) by o — slg’i, we obtain

k,i k,i— ki k,i—
Em(ti‘cv 5872) B gm(tfvo-) o i (U B 5571 1)2 — (3€,z — SEJ 1)2 <0
o — sk 27 o — sk -

so, passing to the limit as o \ slg’i and taking into account Theorem 3.2.2, we get (b).

If §%(t) = 0, then (c) is clearly satisfied. Otherwise, st > g% hence we can

consider (3.4.9) with ¢ € (slg’i_l, s¥"). Dividing by o — s® and passing to the limit

as o N slg’z, from Theorem 3.2.3 it follows that
& (tF,55t) — k —est(t) > 0. (3.4.10)
Thanks to point (a) of Proposition 3.2.10 and to the previous step, we deduce that
O (tF, 55 (1) = & (¢, 5L (1))

hence (c) holds. O

3.5 Viscous evolution

This section is devoted to the proof of Theorem 3.3.4. For every ¢ > 0, we pass to
the limit as kK — +oc, in order to find a viscous evolution.
Let us prove the following compactness result.



3.5. Viscous evolution 101

Proposition 3.5.1. For every € > 0, there exists s. € H'([0,T]) such that

(a) up to a subsequence, s¥ — s. weakly in H'([0,T]) and s¥,5% — s. uniformly
in [0,T];

(b) sc is monotone non-decreasing;
(¢) 5:(0) = s0;
(d) €||$:|13 is uniformly bounded with respect to € > 0.

Proof. Proposition 3.4.2 implies that ¢[[$¥||2 is uniformly bounded with respect to
k € N and & > 0, thus the sequence (s¥); is bounded in H'([0,7]). Therefore, for
every € > 0 there exists s. € H'([0,T]) such that, up to a subsequence, sf — 5
weakly in H'([0,7]). In particular, by (3.4.1) and by the lower semicontinuity of
the L?-norm, property (d) holds.

Applying the Ascoli-Arzela theorem, up to a further subsequence we can assume
that s¥ — s. uniformly in [0,7] as k — +o0. Since, by (3.4.1),

ki ki—1
Se — Se

|sE(t) — sE(1)] < (t— 5 )|+ |5 — b1 < Oyme

Tk
for some C' > 0, we deduce that 5% — s. uniformly in [0, 7], hence (a) is proved.
Since, by construction, s¥(0) = s¢ for every k, it follows that s.(0) = so. Finally,
from the monotonicity of 5% and the uniform convergence proved in (a), we deduce
that s is monotone non-decreasing. O

We are now ready to prove Theorem 3.3.4

Proof of Theorem 3.3.4. Fix ¢ > 0. Let us prove that s. € H'([0,T]) found in Propo-
sition 3.5.1 is a viscous evolution for the cohesive crack growth with s:(0) = s¢.
Since s. € H([0,T]), its derivative $. exists a.e. in [0,7] and is nonnegative by
monotonicity (see (b) of Proposition 3.5.1).
To prove properties (2) and (3) of Definition 3.3.3, in view of Remark 2.2.30 we
have to distinguish between two possibilities:
T (sc) = lilgn T (%) or  T(s:) < limksup T(5%). (3.5.1)

Let us consider the first case. By properties (a) of Proposition 3.2.10 and (b) of
Proposition 3.4.3, for every 1 € L?([0,T]) with ¥ > 0 we have

/ " et 0) 4 5 - 000, 0 Vi) 2t > 0. (352)
0

By the weak convergence s — s. in H'([0,7]), taking the limsup as k& — o0
in (3.5.2) we get

T(se) T
/0 (32 (t) 1) (t) dt — lim in /0 &~ (F (1), 85(8)) (1) Lo 7y () dE > 0. (3.5.3)
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By Proposition 3.2.10,

& (L (1), 55(1) P(t) Lo sty (t) 20 for ace. t € [0,7].

Therefore, applying Fatou’s lemma to the last term in (3.5.3), taking into account (a)
of Proposition 3.5.1, the convergence tx(t) — t for every t € [0,7], and the lower
semicontinuity of &, we deduce that

T(s0)
/0 (e5.(t) + 1k — &~ (£, 5.(1))) () dt > 0. (3.5.4)

Inequality (3.5.4) holds for every ¢ € L2([0,T]), ¢ > 0, hence we have proved prop-
erty (2) of Definition 3.3.3.

In order to prove condition (3), we first notice that, thanks to the bound (3.4.5),
to the definition of &* (see (3.2.2) and (3.2.7)), and to the hypotheses (2.3.1), (3.1.2),
and (3.3.1), there exists C' > 0 such that

& (t(1),55(t) < C (3.5.5)

uniformly with respect to k € N, ¢ > 0, and t € [0, T (5%)).
Integrating (c) of Proposition 3.4.3 over the interval [0, 7 (5%)), we obtain

J et ), ) - - ety @t =0. (350
0

Passing to the limsup in (3.5.6) as kK — +oo, by Proposition 3.5.1 and the lower
semicontinuity of the L?-norm, we get

(&)
0 = lim sup / (B (F(t), 5 (8)) — 1 — esE(1))sh (1)t
k 0
T (55) T (se)
< lim sup / & (1), 5 (1))55 (1)t — / (0t — climinf #1703 357
k 0 0
T T(SE)
Slimsup/ ®+(Ek(t)a§’;(t>)é§<t)1[07T(s§))(t)dt_/ (K +e:(t)) se(t)dt .
k 0 0

By property (a) of Proposition 3.4.3, we can continue the chain of inequalities (3.5.7),
obtaining

. T ke T(se) . .
0 < limsup /0 Fu(t) 5ty dt — /O (5 + £5. (1)) bo(1) dt (3.5.8)

where we have set

Fi(®) := sup &F(En(1), 5L (1) Lo 75 (1)

for every ¢t € [0,T] and every k € N.
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By definition, Fj(t) converges pointwise to
F(t) := limksup &F(1(1), 55(1)) Lio,7(sty)(t) = limksup &t (1(1), 55(t)) 1o, 7(s.)) () -

By estimate (3.5.5) and the dominated convergence theorem, Fj — F strongly in
L?([0,T]). Therefore, by Proposition 3.5.1, (3.5.8) becomes

T (se)
/0 (F(t) — Kk — €5:(1)) 3:(t) dt > 0.

Finally, by Proposition 3.2.10, we deduce that F(t) < & (t,5.(t)) 1j,7(s.))(t), hence,
thanks to the nonnegativity of $., we obtain

T (se)
/ (G (£, 5.(8)) — K — £5.(£)) 5o (£) dt > 0. (3.5.9)
0

With the same argument, we can prove that (3.5.9) holds on every I C [0,7 (s:))
measurable. This implies property (3) of Definition 3.3.3.

For the second case in (3.5.1), we can assume, up to a further subsequence, that
T(s.) < T(3%) for every k. Therefore, we just have to replace 7 (5F) with 7 (s.)
in (3.5.2) and (3.5.6) and repeat the previous arguments. This concludes the proof of
the theorem. O

3.6 The quasi-static evolution

We now pass to the limit as the parameter € tends to zero. This allows us to prove
the existence of a quasi-static evolution of the cohesive crack growth problem in the
sense of Definition 3.3.5.

In order to prove the properties of Definition 3.3.5, we need the following technical
lemma.

Lemma 3.6.1. Let z,zi : [0,T] — R be non-decreasing monotone functions such that
2p(t) — z(t) for every t € [0,T]. Let z be continuous at t € [0,T]. Then, for every
ty =t in [0,T] it is zx(ty) — 2(1).

Proof. Fix n > 0. By continuity, there exists § > 0 such that |z(f) — z(t)| < n for
every |t —1t <26, t €[0,T]. ) )
Since t; — £, there exists k& € N such that |t — | < § for every k > k, so that

|2(te) — 2(D)] <

for every k > k. By monotonicity, z(f —6) < z(t) < z(f + 6) for every k > k.
Pointwise convergence implies that, up to a redefinition of &,

|zp(t —6) — 2(t = 9)| < and |zp(t+6) — 2(t4+6)| <7

for every k > k.
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By continuity of z and the choice of §, we have |z(f) — z(f £ )| < 1. Then, by
monotonicity and the above inequalities, we get

2(t) = 2n < z2(t —8) —n < 2p(t — 0) < z(ty) < zp(E+0) < 2(E+6) + 1 < z(f) + 27
for k > k. Being n > 0 arbitrary, the thesis follows. O
We are now ready to prove Theorem 3.3.6.

Proof of Theorem 3.3.6. Let €, \, 0 and let s., be a sequence of viscous evolutions
for the cohesive crack growth problem. Since s, are monotone non-decreasing and
uniformly bounded in time, by Helly’s theorem there exists s € BV ([0, T]) monotone
non-decreasing such that, up to a subsequence, s., — s pointwise in [0,7]. Let us
prove that s is a quasi-static evolution of the cohesive crack growth problem with
s(0) = sp.

Since s, (0) = sg, of course s(0) = s9. We already know that s is monotone
non-decreasing, thus it remains to prove that s satisfies the weak Griffith’s principle,
that is, properties (1), (2), and (3) of Definition 3.3.5.

Let us prove condition (1). We argue as in the proof of Theorem 3.3.4. By
Remark 2.2.30, we distinguish between the two possibilities

T(s) = li}gn T (se,.) or  T(s)< 1imksup T (se,,) - (3.6.1)

In the first case, by property (2) of Definition 3.3.3 we have, for every ¢ € L?([0,T])
with ¢ > 0,

Sgk)
/ T e e (1) — B (150 (8))) (8) dE > 0. (3.6.2)
0

Thanks to (d) of Proposition 3.5.1, we deduce that €., — 0 in L?([0,7]) as k —
+00. Therefore, passing to the limsup as k — 400 in (3.6.2), we get

T (s¢,)
0< limsup/ (K4 erée, (1) — & (t, 55, (1)) (t)dt
k70 (3.6.3)

T(s) T
= / k(t) dt — lim inf/ & (¢, Sep, (1)) ¥(t) 1[0,T(Ss ) (t)dt.
0 ko Jo .

Applying Fatou’s lemma to (3.6.3), taking into account the lower semicontinuity of &~
and the convergence 7 (s, ) — 7T (s), we obtain

T(s)
/0 (1 — & (1, 5(£)) H(t) dt > 0
for every 1 € L?([0,T]) with ¢ > 0, hence
& (t,s(t) <k for a.e. t € [0,7(s)). (3.6.4)

In particular, (3.6.4) is true for every t € [0, 7 (s))\J(s).
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For the second case of (3.6.1), we may assume, up to a subsequence, that 7 (s) <
T (s, ) for every k. Then, we have to replace T (s;,) with 7 (s) in (3.6.2) and repeat
the previous argument. Thus, property (1) of Definition 3.3.5 holds.

We now prove property (2). Let ¢ € [0,7 (s)) N J(s) be a jump point of s. Since
Se, — s pointwise, we may suppose that ¢t < T (s;,). By the monotonicity of s,
s(t7) < s(tt). For every s(t7) < a < b < s(tT), there exist two sequences ¢, — t
such that s, (t¢) = a and s, (t2) = b for every k € N. For every ¢ € L?([so, L]) with
1 > 0, we have, by (3) of Definition 3.3.3,

th
/ (&7 (7, 56,(7) = K — ere, (7)) P56, (7)) 3¢, (T) dT > 0. (3.6.5)

t

Since $., >0 a.e. in [0,77], from (3.6.5) we deduce that

/ (@ (7, 5., (7)) = K) (50, (7)) e (T) dr > 0. (3.6.6)

t

We perform a change of variable setting o := s., (1) and

~

te(0) ;== min {1 € [t{,1}] : 5., (7) =0},

so that (3.6.6) becomes

b
/ (6 (i(0), ) — k) (c) do > 0. (3.6.7)

Passing to the limsup in (3.6.7) as k — +o0o, applying Fatou’s lemma and recalling
Proposition 3.2.10, we get

/ @+ (t.0) — 1) (o) do > 0. (3.6.8)

Since (3.6.8) holds for every 1 € L?([so, L]), ¥ > 0, and every a < b in [s(t7),s(t")],
then
&t (t,0) >k for every o € [s(t7),s(tT)].

It remains to prove property (3) of Definition 3.3.5. Let ¢ € [0, 7 (s)) be such that
&1 (t,s(t)) < 1. By the previous step, ¢t ¢ J(s). Let us prove that s is constant in a
neighborhood of t. To this end, we first prove that there exists é > 0 such that, for k
large enough,

&1 (1,5, (7)) <k for every 7 € (t —9,t+9). (3.6.9)

Assume by contradiction that this is not the case. From the pointwise convergence
Se, — 8, we deduce that, for k large enough, ¢t € [0,7(ss,)). Therefore, we may
assume that there exist a subsequence €5, “\, 0 and a sequence 0y, \, 0 such that (3.6.9)
is not satisfied in the interval (¢t —dp,t+dp), i.e., we can find t; € (¢t — d0p,t+ Jp,) such
that, for every h,

& (th, 5ey, (tn)) > K- (3.6.10)
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Since tj, —t and t ¢ J(s), by Lemma 3.6.1 we have s, (ty) = s(t) as h — +o0. By
the upper semicontinuity of &' we get, passing to the limsup in (3.6.10) as h — +o0,
&1 (t,s(t)) > k, which is a contradiction.

Combining (3.6.9) and properties (1) and (3) of Definition 3.3.3, we deduce that,
for k large enough, $., (7) =0 for every 7 € (t —0,t+ ), thus s., is constant in this
interval. Since s., — s pointwise in [0,7] as k — 400, we get that s is constant in
the same interval. Therefore, s is differentiable in ¢ and $(¢) = 0. This concludes the
proof of the theorem. ]

We conclude this section with a remark on the energy balance.

Remark 3.6.2. At this stage, we do not have any energy balance. This is due to the
fact that we cannot ensure that along a quasi-static evolution s € BV ([0,7]) the
generalized energy release rates & and &~ coincide.

We give the hypotheses on the energy functional (3.3.3) which guarantee, applying
the abstract results in [49], the existence of a special quasi-static evolution satisfying
an energy balance and a more restrictive Griffith’s criterion. Let C be Cb!, A be a
simple C31 curve, and let ¢ € C11([0, T] x R%; R) be such that (3.1.2) and (3.3.2) hold
with p = 2. Moreover, let f € CH1([0,T] x ;R?) and w € CHL([0, T); H(;R?)).
Then, with the arguments used in [49, Sections 3.1, 3.2], it is possible to show that
for every t € (0,7T") and every s € (0, L) there exists the left derivative 9, &,, of the
reduced energy with respect to time. In particular,

0; Em(t,s) =min{H (t,s,u) : u € A(t,s) is a minimizer of (¢, s, w(t))},

where we have set
= u - Ew T— () - uda — “w T U L
H(t,s,u) = /Q(CE Ew(t)d /Qf(t) d /Qf(t) (t)d +/FS Dyo(t, [u]) dH

Applying the results in [49, Section 5.2], we can also prove that for every sg € (0, L)
there exists a quasi-static evolution s € BV([0,T]) for the cohesive crack growth
problem with s(0) = so, which satisfies a refined Griffith’s criterion: condition (1) in
Definition 3.3.5 is replaced by

(1) for every t € [0,7(s)) \ J(s):
BT(t,s(t) < k.
Moreover, we have the following energy balance:
for every t € (0,7 (s))
s(01) s(t)
Em(t,s(t)) + rs(t™) — ks(0T) +/ &7(0,0) d0+/ &t (t,0)do

S0 s(t)

+ > <,{5(T—)ms(f+)+/ss(T+)

7€(0,6)NJ(s) (m)

=&Emn(0, s0) —|—/0 Op Em(T,8(7))dT.

&*(r,0) da)
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In [49], such an evolution is called special local energetic solution.

3.7 The case of many curves

In this section we address the study of the evolution of multiple non-interacting
cracks.

We assume that the fractures grow along a prescribed number of pairwise disjoint
simple C%1-curves Aq,...,Ay with HY(A;) =: L;. The assumptions on every A;
are the same of Section 3.1. For [ = 1,..., M, we denote by X;: [0, L;] — R? the
arc-length parametrization of the [-th curve A; and by v;, 7; the unit normal and unit
tangent vectors to A;, respectively.

Let us set = :=[0,L1] x ... x [0,Ly] € RM. For every s = (s1,...,51) € Z, we
set

FS::I‘;U...UI‘M and Qs :=Q\ Ty,

SM

where Fi,l C A; is asin (3.1.1). Then, the set of admissible fractures is given by
{T's:seZ=}. (3.7.1)

In this setting, we generalize the activation threshold considered in the energy (3.1.7)
with the norm defined by

M
|s|1 ::Z|sl| for every s € RM .
=1

Therefore, for every t € [0,T], s € Z, and u € H'(Qg;R?), the total energy of the
system is

E(t,s,u) = ;/ﬂ CEu-Eudx —/Q g(t,x,u)dz —|—/ o(t, [u]) dH + |s|1,
s s Ts
where C, ¢, and g have the usual hypotheses stated in Section 3.1 and 3.3, and,
for simplicity, x = 1. Given the Dirichlet boundary datum w € H'(Q;R?), we
define A(s,w) and the reduced energy &, (¢, s, w) asin (3.1.9) and in (3.1.12), respec-
tively.

We now show how to extend the results of Section 3.2 to this setting. In particular,
we are interested in the analogous of the energy release rates. For [ =1,..., M, let us
define =; := [0, L1] % ... x [0, L;—1] x (0, L;) X [0, Ly41] X ... x [0, Lps]. Let I =1,..., M
and s € Z; be fixed. By hypothesis, there exists n > 0 such that the curve A; is the
graph of a C*!-function 1% on (A} (s;) —n, Al (s;)+n), where A} is the first component
of Ay = (A}, A?). We may also assume that d(X\,(s;), Ap) > 2n for every h # 1. Given
§ € R such that s; +d € [0, ;] and a cut-off function ¥ € C2°(B, /2(0)) with ¥ =1
in B, /3(0), we define, as in (3.2.1), Fsl#;: R? — R? by

(51 8) ~ AL (s0) DN 1) — o) ) 572)

Fli(z):=x
5.5() + ( Yz + A (s1+6) = AL (s0)9(Ni(s1) — 2)) — bL(21)
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if ¥ = (71,22) € Byj2(Mi(s1)), while Fi’é(x) = for x € R?\ B, ;o(Mi(s1)).
Lemma 2.2.24 holds also in this context for every [ =1,..., M setting

@w»:a&dﬂwﬂﬁo=0b%ﬂ“N“”‘”(<%;@n>'

Similar to (3.2.2), for | = 1,...,M, t € [0,7], s € 5, w € H'(;R?), and
u € A(s,w), we set

Gi(t,u, ) :=— (DC pL)Vu - Vudz

N | —
—
w

(CV((VpZS — divpl Du) - Vudz

®

+

1
C(VuVpl)-Vudz — 5 CVu- Vudivp! dz
Qs

_l’_

o

Deg(t,x,u) - [(Vpl — divpl Du — Vu pl| da (3.7.3)

»

Dep(t, [u]) - ((Vph = divpl T)u) dH!

et (§ o) v

(t, [u]) divpl dH,

s

where 9 is as in (3.7.2) and DC p is as in (3.2.3).
Moreover, we define

Em(t, s+ dej,w) — Enl(t, s, w)

ailé'm(t, S,w) 1= %i{% 5 , (3.7.4)
gm ta J ) B gm t: )
0, ,Em(t, s,w) := lim (5 + der,w) (t,5,w) , (3.7.5)
5 5,0 )
where {e1,...,ey} is the canonical basis of RM. With the same techniques used in

Theorems 3.2.2, 3.2.3, and in Proposition 3.2.10, we can prove that the limits in (3.7.4)
and (3.7.5) exist and have explicit formulas similar to (3.2.6) and (3.2.8).

Theorem 3.7.1. For every t € [0,T], every l =1,...,M, every s € Z;, and every
w € HY(Q;R?), the limits in (3.7.4) and (3.7.5) exist and

(9;l5m(t, s,w)=1-— QS;r(t, s,w),

3.7.6
O i€m(t,s,w) =1 =& (t,s,w) ( )

where we have set

& (t,s,w) = max{Gi(t, us,V) : us € A(s,w) is a minimizer of E(t,s,-)},

3.7.7
&, (t,5,w) := min{G(t, us, V) : us € A(s,w) is a minimizer of £(t,s,-)} ( )
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for a given cut-off function ¥ as in (3.7.2). In particular, Qﬁfr and &, do not depend
on the choice of 9.

Moreover, &, &, : [0,T] x £ x H'(;R?) — [0, +00) are upper and lower semi-
continuous on [0,T] x int(Z) x H'(Q;R?), respectively.

Remark 3.7.2. The functions Qﬁf and &; introduced in Theorem 3.7.1 can be inter-
preted as partial energy release rates, in the sense that they characterize the partial
derivatives with respect to the variable s; € [0, L;] of the reduced energy &,,.

Also in this setting, the notion of quasi-static evolution will be related to the
properties of 6?5, see Theorems 3.7.6 and 3.8.1.

We now deal with the construction of a quasi-static evolution. As in Section 3.3,
we replace g with the power spent by the body forces f € AC([0,T]; L?(Q;R?)).
Given a boundary datum w € AC([0,T]; H(£;R?)), we redefine the reduced energy
Em: [0,T] x 2 — R and the energy release rates ®;°: [0, 7] x Z; — [0, +00) by

Em(t,s) == En(t,s,w(t)) and QSli(t, s) == Q5li(t, s,w(t)).

We notice again that &, is continuous on [0,7] X int(ZE), while, for every | =

1,.... M, Qﬁf and &; are upper and lower semicontinuous, respectively.
For every k € N, we consider a time discretization {t¥}%_, of the form ¥ := i,
where 71, := T/k. Fixed £ > 0, we define recursively stlem: V=g e int(2),

the initial condition, and, for ¢ > 1, we set s’?i to be a solution of the incremental
minimum problem
k,i—1|2

min{c‘?m(t?,s) +5 sz b =, 5> (s for =1, .. .,M} , (3.7.8)

2 Tk

where
M 1/2
|s]o := (Zs?) for every s € RM .
=1

The proof of existence of solution to (3.7.8) is similar to the proof of Proposition 3.4.1.
We introduce the interpolation functions: for every ¢ € (t¥ |, t¥] we set

In particular, as in Proposition 3.4.2, we get
T
e/ SRt < C (3.7.9)
0

uniformly in ¢ and k, where $¥(t) := (é’g’l(t), . .,é’;’M(t)).

As in Proposition 3.4.3, we have a discrete Griffith’s criterion.
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Proposition 3.7.3. For every € > 0, every k € N, every l = 1,..., M, and every
t €10,7((58%))) we have

(a) 52,(t) 2 0;
(b) &/ (tu(t),55(t)) — 1 — ek (t) <0;
(c) (& (E(t), 5E(t)) — 1 — e 5L, (1)) 8%, (t) = 0.
Proof. 1t is sufficient to repeat the argument of Proposition 3.4.3 componentwise. [

We define the failure time and the jump set for a vector valued function whose
components are monotone non-decreasing.

Definition 3.7.4. Let a,by,...,byy > 0 and let s; : [0,a] — [0,b,,] be a monotone
non-decreasing function for I =1,..., M. Let s = (s1,...,8ar). We define

e the failure time of s as

T(s):= minM T(s1),

=1,...,

where T (s;) is as in Definition 2.2.29;
e the jump set of s as

J(S) = J(Sl) )

=

N
Il
—_

We can now pass to the limit as k — 4+o00. As in Proposition 3.5.1, for fixed € > 0,

we find s. € H'([0,7]) such that, up to a subsequence, s* converges to s. weakly

in H'([0,T]) and uniformly in [0,7]. Moreover, 58¥ — s. uniformly. By (3.7.9) and
the lower semicontinuity of the L?-norm, there exists C' > 0 such that for every ¢ > 0

T
s/ s.(t)3dt < O, (3.7.10)
0

where $.(t) := (51(t),...,5M(1)).
The map t — s.(t) is a viscous evolution with s.(0) = sg, see Definition 3.3.3.
Indeed, taking into account Proposition 3.2.10, the following result holds.

Proposition 3.7.5. For every ¢ >0, every l=1,...,M, and a.e. t € [0,T (s:)):
(a) $L(t) > 0;
(b) & (t,s:(t)) — 1 —esk(t) <0;
() (& (t,se(t)) — 1 —esl(t)) 5L(t) > 0.

Proof. Argue componentwise as in Theorem 3.3.4. O
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As in the proof of Theorem 3.3.6, there exist a subsequence €5 — 0 and a function
s € BV([0,T],E) such that s., — s pointwise. Moreover, every component s, is
monotone non-decreasing in [0, 7.

Repeating componentwise the argument of Theorem 3.3.6, we can prove a Griffith’s
criterion in the continuity points of s.

Theorem 3.7.6. The following facts hold:
(a) s; is monotone non-decreasing for every l =1,..., M ;
(b) for every l=1,...,M and every t € [0,7(s))\ J(s), &, (t,s(t)) < 1;

(¢) if t € [0,7(s))\ Js and & (t,s(t)) < 1 for some m = 1,...,M, then s is
differentiable in t and $;(t) = 0.

However, in this setting it is difficult to state the properties of Qili in the jump
points: in particular, we do not have the equivalent to condition (2) of Definition 3.3.5.
Therefore, following the steps of [48, 53, 59], we define a reparametrization that shall
give some information on the behavior of the cracks at the jump points.

3.8 Parametrized solutions

We perform a change of variable which transforms the lengths in absolutely con-
tinuous functions. Roughly speaking, this is done by a parametrization of time on the
jump points of the viscous solution s..

For e > 0 and ¢ € [0,T], we set

oo(t) i=t + |se(t)]1 — |sol1 =t + 2 —sh) (3.8.1)

Thanks to the properties of s., see Proposition 3.7.5, o, is strictly increasing, con-
tinuous, and 6.(t) > 1 for every € > 0 and a.e. t € [0,7], hence we can find its
inverse o + t.(0) for 0 < o < 8. := 0.(T). We deduce that t. is strictly increasing,
continuous, and 0 < t.(o) < 1 for every € > 0 and a.e. o € [0,S.] (here, the symbol /
denotes the derivative with respect to o).

For [=1,...,M and o € [0, S|, we set

5(0) = s(E(0)), 5(0) = (BH(0), .., 8 (0),
§i(0) = ((8)(0),- .-, (52 )'(0))
By (3.8.1), we have o = t.(0) + |3-(c)|1 — |so|1. Deriving this relation, we obtain
t(o) +|5L(o)1 =1 (3.8.2)

for every € > 0 and a.e. o € [0,S.]. By (3.8.2) and the monotonicity of 3., we get
0< (8 (o) <1 for every € >0, every [ =1,...,M, and a.e. o € [0,S.]. Moreover,
in view of (3.8.2), £. and 3. are Lipschitz functions.
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We define éfa(a) = &5 (t:(0),3.(0)) for o € [0,7(3)) and S := sup..oS:,
which is bounded by a constant depending on 7" and on the lengths L;. Since in the
limit € \, 0 it will be useful to deal with functions defined on the same interval, we
extend the functions f., 5, {., and 5. on (S, 8] by tc(0) :=1(S:), 5-(0) := 5.(S-),
t' (o) :=0, and §.(0) := 0. In the sequel, we will also need T (3.) := min{S., T(3.)}.

Recalling that .(c) > 0 on [0,8.], the Griffith’s criterion stated in Proposi-
tion 3.7.5 reads in the new variables as

(3 (o) >0, (3.8.3)
&, .(0)1L(0) — (o) — (5L) () <0, (3.8.4)
(&}.(0) (o) = E(0) — e(5L)(0)) (31)' (o) > 0 (3.8.5)

for every [, every ¢, and a.e. o € [0,7(3.)).

We now pass to the limit along a subsquence e \, 0. The sequences fgk, ¢, are
bounded in W1°([0,S]) and in WH>([0,S];RM), respectively. Therefore, up to a
further subsequence, we have that f., (resp. 3., ) converge weakly* in W1°°(]0,S])
(resp. in WhH*([0,S];RM)) to some functions ¢ (resp. 5). We can also assume
that S, — S and t € Wh*([0,S]) (resp. ,5 € WH>([0,S];RM)). In particular,
writing (3.8.2) in an integral form and passing to the limit, we deduce that for a.e. o €
[0, 5]

t'(o)+ |5 (o)1 =1. (3.8.6)

We set 7(3) := min{S,7(3)} and, for [=1...,M and o € [0,7(3)),
B (0) = B (i(0), 5(0))
As in Remark 2.2.30, we have

T(3) < lim inf T(5e,) - (3.8.7)

Finally, we observe that (3.7.10) gives

Sekr SEk ~ ~
o [N do e [ (@) B, do
0 0 (3.8.8)

Sgk B ~ T
<& / ey (e ()BT, (0) dor = & / i, (D3t < ©
0 0

uniformly in k. Therefore, 45, 1ps. ] — 0 in L%([0,S]; RM).

Passing to the limit as £k — +o00, we are now able to show that the parametrized
solution s satisfies a Griffith’s criterion involving also the jump points of 5. This is
the aim of the following theorem.

Theorem 3.8.1. The Lipschitz continuous functions t and § satisfy for a.e. o €

[0,7(3)):
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(a) t'(0) >0 and §j(0) >0 forl=1,...,M;

(b) if ¥'(0) >0, then Qi (6) <1 forl=1,...,.M;

(¢) if t'(0) >0 and 3)(c) > 0 for some | € {1,..., M}, then (‘N5[+(U) >1;

(d) if '(0) = 0, then there exists | € {1,...,M} such that §)(c) > 0. Moreover,

(’~5l+(<7) > 1 for such .

Proof. By the monotonicity of £ and 3, we have #(¢) > 0 and &, (o) > 0 for every m
and a.e. o € [0,S]. Moreover, by (3.8.6) they cannot be simultaneously zero.

As in the proofs of Theorems 3.3.4 and 3.3.6, we have to distinguish between two
possibilities:

’?(5):11}31 T(5.,) or %(§)<nmksup T(5,). (3.8.9)

Let us consider the first case. Let us fix [ = 1,...,M and v € L?([0,S]) with
1 > 0. Thanks to (3.8.4), for every k we have

T(3e,) _ ~ -,
/0 (I, (0) - B, ()L, (0) + (3L, )'(0)) (o) do > 0, (3.8.10)

where ¢, is the subsequence previously fixed. B
Since T(Sgk) - T(3), tL, converges to ¢’ weakly* in L>([0,S]), and erst, ljo,s., ] =
0 in L2([0,S]; RM), passing to the limsup in (3.8.10) as k — +oo we get

T(ssk) ~ ~ -
0 <lim sup/ (t, (o) — 6., (o)t (o) + Ek(gék)/(o')) (o) do
K0 ) (3.8.11)

T(s)~/ S _ ,
:/O t(a)w(a)da—limkinf/o 81, (O, (0) L 75, ) V(o) do

By the monotonicity of #., we can continue the chain of inequalities in (3.8.11)

TG S ,
0< /0 t'(o)y(o)do — limkinf/o Fy(o)tL, (0)(o)do, (3.8.12)

where we have set

Fi(0) := inf B1en (7 Lo 75 ()

The sequence Fj, is uniformly bounded and converges pointwise to
F(o) := limkinf &, (o) 1[077—(5%))( o) = hm inf Qﬁl L (0)1 o, ,f(g))(a) .

Therefore, applying the dominated convergence theorem, we get Fj, — F in L? and

T(5) _ .
/0 (t'(0) — F(o)t'(0))¢(o)do > 0. (3.8.13)



114 Energy release rate and quasi-static evolution in cohesive fracture

By Proposition 3.2.10, we deduce that F(o) > ng(a) Hence, in view of prop-
erty (a), (3.8.13) becomes

T(3) N - B
/0 (7(0) — & (0) 7(0)) (o) do > 0,

which proves (b) by the arbitrariness of .

For the second case of (3.8.9), we may assume, up to a subsequence, that 7~’(§) <
T(3.,), hence it is sufficient to replace T (3.,) with 7(3) in (3.8.10) and repeat the
previous argument. Thus property (b) is proved.

We notice that if (a), (b) and (3.8.6) hold, then (c) and (d) are equivalent to the
following property:
if @3;“(6) <1 for some m and some & € [0,7(3)), then 3 is locally constant around &-.
Let us assume that (’3?(6—) < 1. Then, arguing as in the proof of Theorem 3.3.6, there

exist £ € N and § > 0 such that Q~5l+€k(a) < 1 for every o € (6 — 9,0 + 0) and

every k > k. From (3.8.5) we deduce that §._is constant in (& — 6,5 + 4). Since 8L,

converges to §; weakly* in W1>°([0,S]), we get that §; is locally constant around &,
and this concludes the proof of the theorem. O

Remark 3.8.2. As usual in these cases, since the reduced energy &, is continuous only
on [0,7] x int(Z) and, as a consequence, Qﬁli are not upper and lower semicontinuous
on the whole [0,7] x =, the evolution we have described is meaningful up to the failure
time 7(3).



Chapter

Lower semicontinuity result for a free
discontinuity functional with a boundary
term

4.1 Introduction and setting of the problem

In this last chapter we are interested in the lower semicontinuity of free disconti-
nuity functionals of the form

F(u) = (2, v) dH ! + / glz,u™ um)dH L, (4.1.1)
S\ 5

defined on GSBVP(Q;R™), for p € (1,400) and © an open bounded subset of R"
with Lipschitz boundary. In (4.1.1), (¥, vx) is a prescribed orientable Lipschitz man-
ifold of dimension n — 1 and Lipschitz constant L (see Definition 1.1.5) with ¥ C Q
and

H U (E) < 400, HIE\D)=0, H"H(ENQNI) =0, (41.2)

while u are the traces of u on X, defined according to the orientation of vy (see
Remark 1.2.10). To give a precise definition of F when ¥ N0Q # O, the function wu is
extended to 0 out of €, so that the traces ut and ™ are well defined H" '-a.e. on ¥

Remark 4.1.1. When ¥ = 012, the functional (4.1.1) reduces to

= T,V n—1 T. U n—1 1.
Flu) ._/Suw( ) dH —1—/899( u) dH (4.1.3)

Remark 4.1.2. Let us set

NE:={z€2ndN: vs(z) = +va(z)}. (4.1.4)

115
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In view of our convention on the traces u®

that

on X NJN, it is not restrictive to assume

if z € N'*, then g(x,s,t) = g(x, s,0) for every s,t € R™,

4.1.5
if x € N7, then g(z,s,t) = g(z,0,t) for every s,t € R™. ( )

In Theorem 4.2.1 we prove that F is lower semicontinuous with respect to the
weak convergence in GSBVP(Q;R™) under the following set of assumptions:

(H1) 9: Q x R™ — [0, +00) is continuous;
(H2) there exist 0 < ¢; < ¢o such that
aly| <Yz, v) < colv|
for every (z,v) € Q x R™;
(H3) ¢ (z,-) is a norm on R™ for every x € ;
(H4) g: ¥ xR™ xR™ — R is a Borel function;
(H5) g(-,0,0) € L'(%);
(H6) g(z,-,-) is lower semicontinuous for every x € 3;

(H7) for H" l-a.e. z € X and for every s,t,s',t' € R™

g(z,s,t) < g, 8, t) +Y(z,vs()), (4.1.6)
g(z,s,t) < g, s, ') +Y(x,vs()).

Remark 4.1.3. We notice that the functional F defined by (4.1.1) takes finite values
on GSBVP(Q;R™) as a consequence of (H1)-(HT).

Remark 4.1.4. If ¥ =00 and g: 01 x R™ — R satisfies

s+ g(z, s) is lower semicontinuous for every = € X,
g(x, 8) < g(z,t) + Y(z,va(x)) for H* ta.e. z € ¥ and every s,t € R™,

then (z,s,t) — g(z,s+t) fulfills (H6) and (H7).
Remark 4.1.5. The inequalities (4.1.6) and (4.1.7) in (H7) are equivalent to

oscg(a, - t) < d(a,vn(z))  and  oscg(e,s,) < gz, (),
where for every function v: R™ — R

oscy:= sup [y(s) —7(t)] = sup y(s) — inf ~(s).
s,teR™ sER™ sER™
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The proof of the lower semicontinuity theorem is divided into three steps. By the
blow-up technique introduced in [15, 36, 37] we first prove that

F(u) < limkinf F(ug) (4.1.8)

whenever uy, converges to u pointwise and ug,u € BV (2;N) for some finite subset N
of R™ (see Theorem 4.2.4). In Theorem 4.2.7 we extend (4.1.8) by approximation to
functions belonging to SBVP(2;R™). The third step is a truncation argument, which
allows us to conclude in the general case v € GSBVP(Q;R™). In Theorem 4.2.8
we show that condition (HT7) is also necessary for the lower semicontinuity of the
functional F in GSBVP(Q;R™), provided that g satisfies the following properties:

(H8) there exists a € L'(X)* such that g(z,s,t) > —a(x) for H* l-ae. x € ¥ and
every s,t € R™;

(H9) g(-,s,t) € LY(X) for every s,t € R™.

Finally, in Section 4.3 we prove a relaxation result for a functional F of the
form (4.1.1), i.e., we give an integral representation formula for sc™F, defined as
the greatest sequentially weakly lower semicontinuous functional on GSBVP(Q; R™)
which is less than or equal to F. In (4.1.1) we still assume that 1 satisfies (H1)-(H3).
As for g, instead of (H4)-(HT7), we set for every (z,s,t) € ¥ x R™ x R™

g12(x, s,t) := min {gl(x, s,t), Tierﬁfm g1(xz,s,7) + Y(x, Vg(x))} ,

g1(x, s,t) := min {g(m, s,t), inf g(z,o0,t)+ Y(x, 1/2(56))}
ocR™

and we suppose that
(A1) g is Borel measurable;
(A2) g(z,-,-) is continuous on R™ x R™ for every x € ¥;

(A3) there exists a € L'(X)* such that g(z,s,t) > —a(x) for H" '-a.e. z € ¥ and
every s,t € R™;

(A4) for every M > 0 there exists ay € LY(X) such that g(x,s,t) < ap(z) for
H" l-a.e. 2 € X and every s,t € R™ with |s|, |t| < M;

(A5) gia(z,-,-) is continuous on R™ x R™ for every x € X.

Remark 4.1.6. Note that (A5) is not a consequence of (A2). Indeed, there are easy
examples where g1 and gi2 are not even lower semicontinuous. However, if g(z,-,-)
is uniformly continuous on R x R™ for every = € X, then the functions g;(z,-, )
and g¢i12(z, -, ) are uniformly continuous on R x R™ for every = € X.
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In Theorem 4.3.3 we show that

s¢” F(u) = w(x,yu)dﬂn_l+/912(x wtu”)dH L.
S\ b

Therefore, the relaxed functional sc¢™F is again of the form (4.1.1) and the density g12
on ¥ is a Carathéodory function which satisfies (H4)-(H7). The mechanical interpre-
tation of this result is that, if the potential g of the surface force is too strong, it is
energetically more convenient to create a new crack near the surface X.

We conclude the chapter with a relaxation result for the functional G: L4(£2; R™) —
R, q € (1,+0c0), defined by

G(u) ::/ W(x,Vu)da:—l—/f(x,u)dx—i—/w(x,uu)d’H"_1+/g(x u,uT)dH !

Q Q Su\S %

for u e GSBVP(Q;R™) N LI(;R™) and G(u) = +oo otherwise in LI(€2;R™). More
precisely, we characterize the functional sc™G, defined this time as the greatest lower
semicontinuous functional in L?(Q;R™) which is less than or equal to G. We assume
that W (x,&) is quasiconvex and has a p-growth with respect to £, and that f(z,s)
has a ¢-growth with respect to s. In Theorem 4.3.5 we prove that

sc”G(u /W:J:Vu)dx—i—/f(:rudx—i-/wxuu)’H”1/912(xu ,uT ) dH !

Q Su\E b

if ue GSBVP(Q;R™) N LI R™), and sc”G(u) = +oo otherwise in LI(2; R™).
The results reported in this chapter are contained in the paper [5] in collaboration
with G. Dal Maso and R. Toader.

4.2 Lower semicontinuity
This section is devoted to the proof of the following lower semicontinuity result.

Theorem 4.2.1. Let p € (1,+00) and F be defined as in (4.1.1) with ¢ and g satis-
fying (H1)-(H7). Then F is lower semicontinuous with respect to the weak convergence
in GSBVP((; R™).

As already mentioned, the strategy of the proof of Theorem 4.2.1 is the following;:
by the blow-up technique developed in [36, 37] we first prove the lower semicontinuity
property for functions belonging to BV (€;N) for some finite set N C R™. Then we
extend this result to SBVP(Q;R™) by approximation and, finally, to GSBVP(Q; R™)
by a simple truncation argument.

The following lemma shows that, in order to prove Theorem 4.2.1, it is not re-
strictive to assume that ¢ is a nonnegative Carathéodory function satisfying (H5)
and (H7).
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Lemma 4.2.2. There exists a sequence gy: % X R™ x R™ — R of nonnegative Carathé-
odory functions satisfying (H5) and (H7) such that gx(x,-,-) is Lipschitz continuous
with Lipschitz constant X\, and, setting

Fia(u) := o w(x,vu)d’;'-lnfl +/Zg,\(x,u+,u)d7-1”1

for every uw € GSBVP(Q;R™), the following property holds: if ug,u € GSBVP(Q; R™)

satisfy
Fia(u) < limkinf Fa(ug) for every X\,

then
F(u) < limkinf F(ug) - (4.2.1)

Proof. For every (z,s,t) € ¥ x R™ x R™ and every A € N let

gr(z,s,t) == irellf&m {9(z,0,7) — g(2,0,0) + 2¢c2 + A|(s,t) — (o, 7)|}, (4.2.2)
where ¢ is the constant in (H2). Let us prove that gy is a Carathéodory function.
For every s,t € R™ and every c € R, we have that

{z € X: g\(z,s,t) < c}
={z € X: Jo,7 € R™ such that g(x,0,7) — g(x,0,0) + 2c2 + A[(s,t) — (0,7)| < ¢}
= HE({(x,O',T) EXXR"XR": g(x,0,7) — g(,0,0) 4+ 2¢c3 + A|(s,t) — (0, 7)| < c}) ,

where IIy: X X R™ xR™ — ¥ denotes the projection onto 3. Since ¢ is Borel,
applying the projection theorem (see, e.g., [22, Proposition 8.4.4]), we get that the
set {z € X : gx(w,s,t) < c} is H" !-measurable. Hence gy (-, s,t) is H"!-measurable
for every s,t € R™. It is easy to see that for H" !-a.e. x € ¥ the function g, (z,-,-)
is Lipschitz continuous with Lipschitz constant A, thus g, is a Carathéodory function.

By (H2) and (H7) for g we have that gy is nonnegative and satisfies (H7). The
inequalities 0 < gx(2,0,0) < 4cp imply that gy(-,0,0) € LY(X). Since g(x,-,-) is
lower semicontinuous and g is the Yosida approximation of g(z,-,-) —g(z,0,0)+2c2,
we have that gy(z,s,t) / g(z,s,t) — g(z,0,0) +2¢y for every (x,s,t) € ¥ xR™ x R™
(see for instance [17, Section 1.3]).

Let ug,u be as in the statement of the lemma. Then, by definition of gy and F),

Fia(u) < limkinf Flug) < limkinf Fug) — / g(2,0,0) dH" 1 + 2c, H (D). (4.2.3)
X
By the monotone convergence theorem, we get that
lim Py (u) = F(u) - / g(z,0,0) dH™ ™ + 2c, HH(D) .
by

The previous equality, together with (4.2.3), implies (4.2.1). O
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In the sequel, we will also need the following technical lemma, where Rgg(az) is
defined as in (1.1.2).

Lemma 4.2.3. Let g: ¥ X R™ xR™ — R be a Carathéodory function satisfying prop-
erties (H5) and (H7). Then, for every C > 0 and for every compact subset K of
R™ x R™ we have that

1
ey sup gy, ,1) — g(w,5,8)| AH"1(y) = 0 (4.2.4)
JANUN SNRS (@) (s,t)€K

for H" '-a.e. x € X and every £ € S*1L.
Proof. For every (z,0) € ¥ x (0,4+00) we set

W(SE, 6) = sup |g(CC, Svt) - g($7077)| : (425)
(s,t),(o,7)EK
[(s,t)—(o,7)|<S
Then w(z,d) — 0 as § N\, 0 for every x € ¥ such that g(zx,-,-) is continuous
on R™ x R™. Moreover, by properties (H2) and (H7), we have that w(:,§) € L}(X)
for every § > 0.
Fix a sequence d;, \, 0. For every k € N, let (s¥,t¥),..., (sfk,tfk) € K satisfy

Ik
K C UBék(Sfat?%
i=1
where, in this proof, B,(s,t) denotes the open ball in R™ x R™ of radius r and
center (s,t).

Fix = € ¥ with the following properties: z is a Lebesgue point of w(-,d;) and
of g(-, s¥,tF) for every k and every i = 1,..., 1, w(z,8;) — 0 as k — 400, and vg(z)
is normal to ¥ at . Note that these properties are satisfied by H" '-a.e. z € ¥.

Finally, fix k € N. For every (s,t) € K, let js € {1,...,l;} be such that |(s,t) —
(s?s,té? )| < k. Then, for H* l-ae. y € ¥ we have that

|g(y>87t) - g(x,s,t)|
< ‘g(yasat) - g(y,s?s,tiﬂ + |g(y7 Sivtﬁ;) _g($78§sat?s)|

4.2.6
+|g(x,s§5,t§5)—g(x,s,t)] ( )
Sw(y,0) + sup g(y, s tF) — gla, s t9)| + w(z, ) -
i=1,...,l%
Inequality (4.2.6) implies that, for every & € S*~! and every C > 0,
1 _
= sup[g(y.5.1) — gla. 5.0)| 4" (1)
P BNRY (2) (s,t)eK
1 / -1
< == (w(y, 0k) + w(z,6x)) dH" ™ (y)
7 Jseme, o (4.2.7)
b
+Z _ |g(ya$§7t§)_g(xasi?vti?”dfﬂn_l(y)'
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Since, by assumption, = € ¥ is a Lebesgue point of w(-,dx) and of g(-,sf,tf),
passing to the limsup as p \ 0 in (4.2.7) we obtain that for every k € N

lim sup

1 o
e / sup [g(y, 5.1) — g(z, 5, 1) dH(y)
N0 P SRS, (@) (

st)eEK (4.2.8)
< 2H"HTo(2) N R (0) w(w, dk)

where T, (X) is the tangent space defined in (1.1.3). Passing to the limit as k — +oo
in (4.2.8) we get (4.2.4). O

Let us introduce some notation which will be useful in the sequel. Let N be a finite
subset of R™, U an open subset of 2 such that {x € Q: d(z,XUIN) <n} CU for
some 1 > 0, and let €’ be a bounded smooth open subset of R™ such that Q cc €.
For every u € BV(U;N) := {v € BV(U;R™) : v(z) € N for L"-a.e. x € U}, its
extension to 0 on Q' \ Q is still denoted by u. We notice that U’ := (Q'\ Q) U U
is open and that this extension belongs to BV (U’;N’), where N’ := N U {0}. For
every B € B(U') we set

Fu(u, B) :—/ Y(x, vy) dH" ! —I—/ glx,ut um)ydH !, (4.2.9)
UNS.NB\E SNB

where, in the second integral, u* denote the traces on the two faces of ¥ of w,
according to Remark 1.2.10.

Since 1 and ¢ satisfy (H2), (H5), and (HT7), we have that Fy(u,-) is a measure
defined on B(U’). If, in addition, H"1(S,) < +o0, in view of (4.1.2) Fy(u,-) belongs
to My(U’) (this is always the case if v € BV (U;N) for some finite set N C R™).
Finally, we notice that if ¢ is nonnegative, then F/(u,-) is nonnegative.

We are now ready to state the lower semicontinuity result on BV (U;N).

Theorem 4.2.4. Let ¢ and g be functions satisfying (H1)-(H7). Assume in addition
that g is a nonnegative Carathéodory function. Let N be a finite subset of R™ and
let U be an open subset of Q0 such that {x € Q: d(z, 2U0N) <n} CU for somen > 0.
Then

Fr(u,UUX) < limkinf Fu(ug, UU)

for every ug,u € BV (U;N) such that up converges to u pointwise L™-a.e. in U.
In order to prove Theorem 4.2.4, we need the following blow-up lemma.

Lemma 4.2.5. Let ¢, g, N, U, n, ug, and u be as in Theorem 4.2.4 and let
U == (U\QUU. For every z € X, let £(x) € S*! be as in Definition 1.1.5.
Assume that Fy(ug, U UX) is bounded and that Fy(ug,-) — p weakly* in My(U")
for some p € My(U'). Then

de:zj/JlLE(x) > g(a,u"(z),u” () (4.2.10)
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for H" '-a.e. x €%, and

dp
dHT[(Sy \ &) (z) = ¥(z, vu())

(4.2.11)

for H' 1-a.e. 2 € S,\ 2.

Proof. Let us perform the blow-up on . Let L > 0 be the Lipschitz constant of X
and A := L/n. Let xy € ¥ be such that vs(xg) is normal to ¥ at z¢ and (H7) holds.

We introduce the simplified notation R,(zg) := Rﬁg(xo)(xg), R, = R/f)\é(wo)(O)7 and

R;t(:co) = {y € Ry(xo) : (y — x0)-vs(x0) = 0}, where Rgg(x) is defined in (1.1.2).
We assume in addition that z( satisfies the following conditions:

xo ¢ (XN N)NIN (4.2.12)
im vs(z) — vs(x)|dH" () =0, 4.2.13
tm e [ o) st @) (42,13
1 / +
lim — u(x) —us(xg)|dxr =0, 4.2.14
ti o ) o) (1.2.14)
1(Rp(z0)) dp

there exists lim

pNO HP L I_E (Rp(x())) B dHr—1 LE (.’Bo) ’

. 1 / -1
lim sup |g(z,s,t) — g(xo, s,t)|dH" " (z) =0. 4.2.16)
PNO P SR, (20) s,teT‘ ( ( | ( (

(4.2.15)

We notice that conditions (4.2.12)-(4.2.16) are satisfied for H" '-a.e. z9 € ¥ as a
consequence of the properties of the traces of BV functions (see, e.g., [10, Theorem
3.87]), of hypotheses (4.1.2), of Lemma 4.2.3, and of a generalized version of Besicovitch
differentiation theorem (see [63] and [35, Sections 1.2.1-1.2.2]).

Since vx(xg) is normal to ¥ at xo, we have that

o P E (R ()

P = = 1" (T () N R) (4.2.17)

where Ty,(X) is the tangent space defined in (1.1.3) and, according to the notation
introduced above, Ry = R‘Zl\f(zo)(o)' Let

o PRy (20))
Zp) = lim . 4.2.18
From (4.2.15) and (4.2.17) we get that the limit in (4.2.18) exists and
R
Y(x0) = H" 1 (Te (Z) NRy) lim #Bplo) (4.2.19)

PO H X (Ry(20))

Using the definition (4.2.18), we shall first express y(zg) as limit of suitable rescalings
of the functional Fy;. Then we shall estimate 7(zg) from below using g, and finally
we shall deduce (4.2.10) thanks to (4.2.19).
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By the weak*-convergence of Fyr(ug,-) to p, we have that
Fu(uk, Rp(20)) = w(Rp(20)) (4.2.20)

for every p > 0 out of an at most countable set. Thus, we can fix a sequence p; ~\, 0
such that Q N R, (z9) € U, (4.2.20) holds for every p;, and

li]m W = v(zp) . (4.2.21)
J

Since ¥ is a Lipschitz manifold with Lipschitz constant L, for j sufficiently large
the function ¢, of Definition 1 1.4 is well-defined and Lipschitz continuous on the
(n — 1)-dimensional cube Qp < IO)(l‘o) with Lipschitz constant less than or equal

to L. Let T = x9 — (x0-&(z0))&(x0) be the center of p 5( )( xo). Then, for every
y € p 5(:;: (@ 0) we have that

- A
|20 (y) = a0 ()] < Lly = Z[ < 505 - (4.2.22)
In view of the definition of the rectangle R, (zo), inequality (4.2.22) implies that

Ry, (20) NZ = {y + ¢ae (1)E(w0) : y € Q) g, (0)}-

We define
AL = {y +t&(xo) : y € Qp (o) (@), [t =0~ E(xo)| < Apj, t 2 pay(y)} - (4.2.23)

It is easy to see that Aij and A" are connected, have Lipschitz boundaries, and
that vx(z) points towards A7 for H" l-ae. z € Ry, (zo) N . Moreover, thanks
to (4.2.12), it is not restrictive to assume that if xo € ZNOQ, then A7 = R, (z0) NQ
and A” = Ry, (z0) \ ©, or viceversa, according to the orientation of vq(zg) with
respect to vs(zo). Conversely, if zg € X\ 092, we assume that R, (zo) C €.

It is now convenient to rescale Fy to the rectangle R; and, consequently, to define
the corresponding rescaled sets and functions: let Q; := {y € R" : x¢ + pjy € Q},
X = {y e R™: .’L’o—i—pijZ},

AZ ={y € R": zo+ pjy € AT}, (4.2.24)

and ui(y) = ug(xo + pjy) for y € Ry, noticing that ui(y) =0 for y € R1 \ ;. By
the change of variables * = x¢ + p;y with y € Ry we have

fU(uk’nR’f 7)) /w 20+ pjy, v, (y) dH" L(y)
J mS le\E
. . 4.2.25
s [ gteot o 0w @) e
EjﬂRl

= FPr (u?le) )
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where

Fri(v.B) = [ w0+ psy,valy) dH" (y) + / 9o+ piy, vt (y), v (1) AH " (y)

for every j € N, every v € BV(Ry;N’), and every B € B(R;).
Let us introduce v (y) := u(xo + p;y) and

ut(z9) ifyeRS,

u”(xo) ifyeRy, (4.2.26)

)= {

where we have set RY := {y € Ry : y-vs(z9) = 0}. By hypothesis, ui/, —

in L'(Ry;N’) as k — +o00 and, by (4.2.14), v/ — u* in L*(Rqy;N’). Therefore, we
can find a sequence k; /* 400 such that ui;j — u® in L'(Rq;N') as j — +o0 and,
by (4.2.20) and (4.2.25),

TP (uy,, Ra) — W‘ <5 (4.2.27)
J
By (4.2.21) and (4.2.27) we get that
V(o) = lim ¥ (u, Ry). (4.2.28)

Besides F?i (v, B), it is convenient to consider also the functional F4? (v, B) defined
by “freezing” the value of the first argument of ¢ and ¢ at zg:

ffg (v, B) ::/ 1/}(x0,1/v)d7-["_1 —|—/ g(mo,v+,v_)d7-ln_1
QjﬂSUﬂB\Ej ZjﬁB

for every j € N, every v € BV (Ry;N’), and every B € B(Ry).
Equalities (4.2.16) and (4.2.28), together with the uniform continuity of 1 on
Q xS imply that '
Y(zo) = li;n Faj (s Ra) - (4.2.29)

The next step of the proof is to show that, in order to give an estimate of y(zp) in
terms of g, we can restrict ourselves to functions which are equal to u™ (zg) or u™ ()
near JR;. To this end, let us define, for every j € N, the functions

2 ut(zo) ifye AT,
) u(zo) ifye Ay,

where A;.t are introduced in (4.2.24). The difference between this definition and (4.2.26)
is that in (4.2.26) the interface is flat and coincides with T,(¥) N R, while here the
interface is the rescaled version ¥; of ¥. It is clear that ufo € BV(Ry;N') and
u;® — u in L'(R1;N') as j — +oo.
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Given ¢ > 0, we now modify the functions uij near JR; in order to obtain
new functions v; in BV (Rq;N’) such that v; — u® in L'(Ri;N'), v; = ui® in a
neighborhood of 0R;, and

lim sup Fi (vj,R1) < lijm Fui (uij,Rl) +e=7(x) +¢. (4.2.30)
J

This will be done following the lines of an interpolation argument proposed in [8,
Lemma 4.4].

To this aim, we consider the distance function d: N x N’ — {0,1} defined by
d(i,j) =1 for i,j € N’ with i # j and d(i,7) :==0. Let us fix 0 <71 <7rg <1 and a
function ¢ € C*(R;) such that 0 < p <1, ¢ =11in Ry \R,,, and ¢ = 0 in R,,. By
Sard Lemma [32, Section 3.4.3] and Coarea Formula [10, Theorem 2.93], for every j
we can find t; € (0,1) such that

He<tj}={p=tj}is C™, (4.2.31)

H"  {p =t;}) < +oo, (4.2.32)

(S, e = 4] = U N {e = 1) =0, (4.2.33)
/d uk ’H”l</d |ch|dx

{99 t; }mRrg\er RTQ\er (4234)

< CL"{uj* # uij} MR \Rr)

where C := [|[V¢||o. For such a t; we set

s () o { uk, () 1 plw) <t
ui®(z) if p(z) > t;.
Then v;""™ € BV(R;N'), i = u}® in Ry \ Ry, vj""? = uij in Ry, and 0" —

u* in Ll(Rl,N’) as j — +oo. By (4.2.32), Fr;(v;"",-) is a nonnegative bounded
Radon measure on Ry. Thus, to estimate Fi. (U;I’TQ,Rl), we integrate separately
on the sets {¢ < t;} and {¢ > t;}, and on the interface {¢ = t¢;}. Taking into

account (H2) and (4.2.31)-(4.2.34), we get that

J
(o=t 3Ry \Rry (4.2.35)

< T2 (uf, . Re) + Fi (uf° R1\Ry,) + e2C L ({uf” # ul } N Ry \Ry,)

Fey (0" Ra) < 23 (uf, , Rey) + 23 (05, R1\Ry,) + 02 / d(u,uy ) A"

Slnce ufﬁ ,uz’ converge to u™ in LY(R1;N’), passing to the limsup as j — +oo

n (4.2. 35) we deduce that

lim sup Fi3 (074", Ry) < limsup (Fry (uij,Rl) + Fop(ui®, Ri\Ryy)) . (4.2.36)
j j



126 A free discontinuity functional with a boundary term

Obviously, u;-”‘) does not have jump points in Ry \ ¥;. Hence, recalling that (3, vy) is

an orientable Lipschitz manifold, we have that

Fay (uj®, R1 \ Ryy) = g(zo, (uj*) ", (u*)7) dH
=3 NR1\Rry (4.2.37)
= g(wo, u" (o), u (x0)) H"H(£; NR1 \ Ry, ).

Since v (z0) is normal to ¥ at xo, H" 1(Z;NR1\Ryy ) = H" Ty (Z)NR1\ Ry, )
as j — +00. Therefore, given € > 0, we can choose 0 < r; < ro < 1 such that

g(zo,ut (20),u” (z0)) lim H”_l(Ej NR1\Ry) <e,
J
and set v; := v;'"?. By (4.2.36) and (4.2.37), we get (4.2.30).

We now study the behavior of v; and Fo (vj,-) on the interface between the sets
{vj =uj°} and {v; # ui°}. To this aim, we define, for every j,

+ +
E]- = Aj N {’Uj %+ u?o}.
Since vj,u;® € BV (R1;N') and v; = ui° in a neighborhood of 9R1, the sets E’]i have
finite perimeter and EJjE CC Ry. We set also

6(E;) == {y € 047 : 1pa(y) =1},

where 1;; is defined in (1.2.7).
J

By the definitions of Aj:, of E;E, and of t(E;E), for H" l-ae. z €% \‘D(E]i) we
have that

o1 .1
i [ o) w o)l dy =l [ Jus(o) — w (ool dy
B

B, (z)NAT r(@)NEE
o LCB@0E) e
el S e [ 1wy =0,

where ¢ := 2max{|s| : s € N}. Equality (4.2.38) implies that for H" l-ae. x €
X \t(EJlL) the traces U;t (z) on the two sides of X; are equal to u®(z), respectively.
We now prove that

/ Vs AR = :F/ s, dH™ L. (4.2.39)
O*EX\t(EF) t(EF)

By Lemma 1.2.14 and by the definition of v;, we have that, up to an H"!-negligible
set,

t(E7) =%;N0"E; . (4.2.40)
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Since E]i have finite perimeter, we get that

/E’*Equji dH™ ! = (D12)(R") =0, (4.2.41)

J

where v+ are the inner unit normals to EJi By the definitions of A% and of A;.t

J
given in (4.2.23)-(4.2.24), by Definition 1.1.5, and by the equality (4.2.40), for j large
enough v+ = tvy, H" '-ae. on t(E]i) Hence, by (4.2.41) we have that
J

0= / Ve dH" ! = / Ve dH" T+ / Ve dH"!
o*EF I o*EEns; o EX\x;

=+ / vy, dH" 1 + / Vs dH" L,
t(EF) O*EF\t(EF)

which implies (4.2.39).
From (4.2.13) we obtain that

lim / v, (y) — (o) dH" (y)
7 IUED) (4.2.42)

<tim [ fus, (y) — vs(wo)| M (y) = 0.
J EjﬂRl

Therefore, thanks to the continuity of 1, to hypothesis (H3), and to equalities (4.2.39)
and (4.2.42), we get that

i . [, ) 41 9)) = () 1 0L

t(E5)

and, by Jensen inequality, for every j it holds

w(xo, / v, (y) d’H”_l(y)> =¢<xo, / Vi (y) dH”_l(y))

(Ef) 0" EX\t(EF) ! (4.2.44)
< [ vl ) A ) = [ bl g ) aH ),
0*EF\$(EF) AFNo*EF

where in the last step we have used the equality G*Ej-c \t(E]i) = A;t N 6*Ef.
We are now ready to estimate from below ~(zg) in terms of g(zo,u™ (x¢),u™ (x))
and then to conclude the blow-up argument on ¥. Recalling inequality (4.2.38) and
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the inclusions (“)*EAi \X; €Sy, N A»i C Sy, NR1\ By, we can write (4.2.30) as

v(zo) + € > hmsup / 0 a:o,l/E+( ) dH™ ()

A+ma*E+
[ b0, @) A )+ [ v (1) 41 )
Q;NAT (S, \6*E+)I’1R QNA; NI E; (4.2.45)
/ (o, v, () AH (y >+/ 90,0} (), 05 (1)) M ()
Q;NAT (S, \a* )le t(EUGE;)

g, u (o), u(20)) KM (25 \ () UH(E} ) N Ry))

Taking into account (4.2.38)-(4.2.44) and splitting the set t(E;r) U t(E;) into the

union of the pairwise disjoint sets t(Ej) \t(E; ), t(E)) \t(E;r), and t( ]Jr) Nt(E; ),
from (4.2.45) we obtain

)+ > Timsup (1o, (o) (LU ) + 7 (4(E7)

+ / g(wo,vF (y), ™ (20)) AR () + / 9o, ut (20), v} (1)) AR ()

HEN\(E;) t(E7)\t(E)
+ [ a7 @)y oy ) )
t(ENL(E;)

+g(o, u™ (z0), u (wo) 1" ((Z\ (t(E") Ut( ]))0R1)>

= timsup (4 (o, v (w0)) (K" (((EDNUCE]) + - ((E) (B )
o W EDMED) + [ g0, vt (4), u (20))dH (y)
t(E‘.")\t(Ej_)
+/ g(z0,u™ (z0), vy (y))dH" ™ (y )+/ g(z0, v} (y), v; ())dH" ™ (y)
t(E; \t(E]) t(E)NH(E;)
+ g, u (o) u™ (x0)) "~ (B (H(E])UH(E; )Ry
Using (H7) in the previous inequality we get

y(x) + & > g(xo, u™ (x0),u™ (20)) lim sup ’H”_I(Ej NRy)
j (4.2.46)
= g(xo,u" (o), u (z0)) H" ' (T (£) NRy),

where in the last equality we have used the fact that vs(zg) is normal to X at xz.
Passing to the limit in (4.2.46) as € \, 0 we get

Y(x0) > glzo, u™ (x0), u™ (x0)) H" ' (Tey (X) N R1)
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for H" !-a.e. 29 € ¥. In view of (4.2.19) we have (4.2.10).
Let us define the functional

Uy (v) = /Ums Q/J(x,yv)d’}-ln_l

for every v € BV (U;N), and its localized version
V@B = [ ) dn!
UnS,NB

for every v € BV (U;N) and every B € B(U’), where we recall that U’ = ('\ Q) U
U. We already know that Uy is lower semicontinuous in BV (U;N) with respect to
the pointwise convergence (see [7, 9]). Now we show, using the blow-up technique,
that (4.2.11) holds for H" t-a.e. z € S, \ X. Indeed, let x € S, \ ¥ be such that

r¢ 3, (4.2.47)

there exists the approximate unit normal vector v, (z) to S, at =, (4.2.48)

1
lim / vu(y) — vu(z)| dH Y (y) =0, 4.2.49
Nm Sume|(x)( ) — vu(z)| () ( )

there exists lim K (Bp (z)) _ du
p\O 'anl(Bp(q:) NS, \Y)  dH P 1[(S,\X)

(z). (4.2.50)

We notice that properties (4.2.47)-(4.2.50) are satisfied by H" 1-a.e. z € S, \ ¥ as
a consequence of hypotheses (4.1.2), of the rectifiability of S, (see, e.g., [10, Theo-
rem 3.78]), and of the Besicovitch differentiation theorem.

Let p; "\, 0 be such that, for every j € N, B, (z) CU \ ¥ and Fy(ug, By, (z)) —
(B, (z)) as k — +o00. Then, in view of the continuity of 1, of the definition (4.2.9)
of Fy, and of conditions (4.2.47) and (4.2.49), we have

. 1(B,(z)) _ (B, ()

PO H T (Bp(z) N (S \B)) 5 HH(B, (2) N Su)
= lim lim Fu e, By, (@) = lim lim Yo (ur, By, (@)
Gk H1(B,, () N Sy) Gk H LBy, (2) N Sy)

) Yy (u, By, (7)) _
=0 geis, (2) ngy ~ Y vu(@).

(4.2.51)

Since (4.2.50) holds, the previous inequality implies (4.2.11). This concludes the proof
of the lemma. O

We are now ready to prove Theorem 4.2.4.

Proof of Theorem 4.2.4. Let v, g, N, U, n, ur, u be as in the statement of the
theorem, and let U’ := (' \ Q) U U, as in Lemma 4.2.5.
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Assume that
limkinf Fu(ug, UUX) < 400. (4.2.52)

Up to a subsequence, we may suppose that the liminf in (4.2.52) is a limit and
that there exists M > 0 such that Fy(ug,U UX) < M. Then the sequence of
nonnegative measures Fy(ug,-) is bounded in My(U’). Therefore, there exists a
nonnegative measure p € My(U’) such that, up to a subsequence, Fy(ug,:) — u
weakly* in M,(U").

Applying Lemma 4.2.5 and recalling the definition (4.2.9) of Fy, we get that

Fu(u,UUY) :/ (2, v,) dH ! +/ glz,ut u™ ) dH P < p(U UX) < uU)
UNS,\S >

< limkinf Fulug, U') = limkinf Fu(ug, UUX),
and the proof is thus concluded. O

Remark 4.2.6. We notice that, if we assume g to be symmetric on R™ x R, that
is, g(z,s,t) = g(x,t,s) for H" l-ae. € ¥ and every s,t € R™, then the ori-
entability property given in Definition 1.1.5 is not needed to prove Theorem 4.2.4 and
Lemma 4.2.5: indeed in this case it is enough to assume X to be a Lipschitz manifold
of dimension n — 1.

In the following theorem we prove the lower semicontinuity of the functional F
with respect to the weak convergence in SBVP(Q;R™), p € (1,+400).

Theorem 4.2.7. Let p € (1,+00). Let ¢ and g satisfy (H1)-(H7). Then the func-
tional F is lower semicontinuous with respect to the weak convergence in SBVP(Q; R™).

Proof. Through this proof, the superscript j, with 1 < 57 < m, stands for the j-th
component of a vector in R".

Thanks to Lemma 4.2.2 we restrict our attention to the case of a nonnegative
Carathéodory function g.

We apply the approximation argument of [7, Theorem 3.3]. Let ug,u € SBVP(2; R™)
be such that wuy converges to u weakly in SBVP(; R™). By Definition 1.2.7, we have
that

sup |luglloo < +00, sup || Vug|p, < 400, sup H" 1(Sy,) < +00. (4.2.53)
k k k

Hence, for the sake of simplicity, we may assume that wuj takes values in (0,1)™ for
every k. Moreover, thanks to (4.2.53) and to hypotheses (4.1.2), (H2), (H5), and (HT),
we have

lim inf F(ug) < +oo. (4.2.54)

By the second inequality in (4.2.53) for every [ € N, [ > 1, we can find an open
subset A; of  such that

USukuSugAl, Sup/ Vug|dze < 27,
keN k Ay
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and {z € Q: d(z,2U00) <} C A for some n; > 0. We also set By := A;\ Sy, -
Let us fix [ € N. By the Coarea Formula, for every k € N, every i =1,...,[, and

every j =1,...,m, we can find £f7k, such that
(-1 21
. —_— 4.2.
z,k:€< 1 9 :|7 ( 55)
{r eq: ufc(x) > §fk} is of finite perimeter, (4.2.56)
LMz eQ:u(z)=¢,}) =0, (4.2.57)

H" Y (Br, N {reQ: ui(x) > ffk})

: ‘ l (4.2.58)
<2l /;Hnl(Bk,l N 8*{3; SV uij(a:) > t}) dt < QZ‘DUM(B;CJ) .
e

We set also fgk :=0 and §lj+1’k =1.
We denote by S the family of functions o: {1,...,m} — {0,...,1}. For every
o € S we define 1} := o(j)/l and

Qo i ={s€R™: 5 k<s <£U(J+1kforj:1,...,m},

(4.2.59)
Emk = {.%’ €N uk( ) S Qa,k} :

We notice that 7, € @a,k and the sets {E, 1 }ses are pairwise disjoint and of finite
perimeter by (4.2.56).
For every k we define a piecewise constant function v by

(4.2.60)

| ne ifx e E,y for some o € S,
vk(®) = { 0 otherwise.

If we set N := {1y }ses, from (4.2.56) we infer v, € BV (; N). Moreover, by construc-
tion of 7, and of vy, we have that ||ur — vg|leo,0 < 2m/l and ||uki - U,f”oo,z <2m/l.
We now estimate Fu,(vg, A UX). Since A; \ Br; C S, , we get

/w(x,z/vk)dHn_l—i—/ g(x, vk,vk) dH !

A;NSy, \(B » b
150\ %) (4.2.61)
n— 1 + - n—1 2\/>m n—1
Y(x, vy, )dH gz, ul  u ) dH" ™ + w( )d?—[
Sup \X b b

where w is a modulus of continuity defined as in (4.2.5) with K = [0,1]™ x [0, 1]™
We recall that w(-,8) — 0 in L'(X) as § — 0. By (H2) and (4.2.58), on the set By
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we have

(v A < @ H T (B 8y,) < @1 (B n | 0°Eox)
Sy, NB 1\ Z ceS
l

SCQZZ H ' (Bryno{w e Q:ul(x) > ¢, (4.2.62)

< 202l Dl Bi1) < 2caml|Dug|(By,) < 124
k b K

for some C' > 0 independent of /. Summing up (4.2.61) and (4.2.62) and recalling
definition (4.2.9) of Fj4,, we obtain

Fa, (v, AAUYE) = / (z, vy, ) dH"™ Ly /g(:ﬁ,v;,vlz)d’i—[”_l

ANSy, \B s
/ Y(x, vy, ) dH"™ 4 / (x,ulj,u,;) dunt
Sup\D

(4.2.63)

/w(w, Qfm) dH" ! 4+ C12t!
>

)+ / Q‘fm dH"—l Tt
>

Assumptions (4.1.2) and (H2), together with inequalities (4.2.54) and (4.2.63),
imply that
sup H”fl(Svk NA) < +oo.
k

Hence vy, satisfies the hypotheses of the compactness Theorem 1.2.8 in SBV (A;; R™):
there exists w; € SBV(A;;R™) such that, up to a subsequence, vy — w; pointwise
L"-a.e. in A;. Moreover, w; € BV(A;;N). Thus, we are in a position to apply
Theorem 4.2.4 on A;:

Fa, (wl, AUY) < limkinf fAl(Uk, AU E)

/2 (4.2.64)
< limkinf F(ug) + / w(m, \{m) dH" !+ o2t
b
Since up — uw and v — w; pointwise L"-a.e. in A;, we have that
|lw; — ul|oo,4, < 2m/l and lei - uiHoo,g <2m/l. (4.2.65)

In addition, for every o € S there exists E,; of finite perimeter such that

= Zno 1Eo‘,l'

c€ES
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Up to a subsequence, we may assume that

1—1 20-1
I 72

Jo— & e (4.2.66)

We define the cube
Qo = {seR™: gi(].) <sl < £i(j)+1}.

Recalling the pointwise convergences of uy to u and of vy, to w; in A4, from (4.2.55),
(4.2.59), (4.2.60), and (4.2.66) we easily deduce that L"(E,; \ v 1(Q,)) = 0. Thus,
up to a negligible set, we have

E,; CANnu(Q,). (4.2.67)

We now pass to the limit as | — +oo. For every € > 0, let lp € N be such that
diam(Q,) < €/3 for every o € S and every [ > lg. Then, for H" '-a.e. x € S, such
that |ut(z) —u™(z)| > ¢ we have that the sets

{yeQ: luly) —u(2)| <e/3}  and  {yeQ: |uly) —u (z)| <e/3}

have density 1/2 at x. Therefore, from (4.2.67) we deduce that, up to an H" -
negligible set,

S.:={x€Sy: ut(z)—u ()| >e} C A NSy, . (4.2.68)

In view of (4.2.68), we have that v, = %, H" oae. in S, for every I > Iy, and,
by (4.2.65), ||wif — u*|lsex — 0 as | — +oo. Thus, recalling (4.2.64) and applying
Fatou Lemma, we get

/ Y(x, vy) dH ! +/g(x,u+,u_)d7-["_l

S\ b

< limlinf/ V() dH™ 1 + limlinf /g(x,wf,wl_) dH™ ' (4.2.69)
SA\E >

< limlinf Fa,(w, AU < limkinf Flug) .

Since S; Sy, we conclude the proof of the theorem by passing to the limit in (4.2.69)
as € \(0. U

We now conclude with the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. Let us assume that ¢ is a nonnegative Carathéodory func-
tion such that, for H" !-a.e. 2 € ¥, g(x,-,-) is Lipschitz continuous with Lipschitz
constant A > 0. Let ug,u € GSBVP(Q2;R™) be such that uj converges to u weakly
in GSBVP(Q;R™) and liminfy F(uy) < 400.
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By Proposition 1.2.9, for every h,k € N we have that
Ty(uy) = (Th(ub), ..., Th(ull)) € SBVP(QR™) 1 L¥(Q;R™).

By definition of T, and by the weak convergence of u; in GSBVP(Q;R™), for ev-
ery h the sequences {71} (ux)}r and {V(T}(ux))}r are bounded in L*>°(£2;R™) and
in LP(Q;M™*™), respectively. Moreover, St, () € Sy, for every h,k € N. There-
fore, by the compactness Theorem 1.2.8, we deduce that T}, (uy) converges to Tj(u)
weakly in SBVP(Q;R™) as k — +o0.

Let h € N be fixed. We now construct a new function gp: ¥ x R™ x R™ — R such
that 0 < g, < g and gy, satisfies (H4)-(H7). For every z € ¥ and every s,t € R™ we

set
.

g(x,s,t) if |s], |t| < h,
inf g(z,o,t) if [s| > h,|t| <h,
o€R™

gn(@, s,t) := inf g(w,s,7) Al [s| <hft| = h,
E m

inf if |s], [t > .
o inf g(w,07) ifs|, [t 2

It is clear that 0 < g, < g. Let us prove that g, satisfies properties (H4)-(H7).
By construction, gy, is a Borel function and gp(-,0,0) = g(-,0,0) € L*(X), hence (H4)
and (H5) hold.

To prove (H6) we consider two sequences s;,t; € R converging to s and ¢,
respectively. By definition of g, and by the continuity of g(z,-,-), there is only one
non-trivial alternative:

|sjl, |s| > h and [t;], |t] < h.
In this case, by the Lipschitz continuity of g(z,-,-) we have that for H" l-a.e. z €

and every 7,7 € R™

inf g(z,0,7)— inf g(x,o,7)| <A77,
oeR™ o€eR™

which implies that

hm gh(xasjvtj) = hm inf g(x,a, t]) = inf g(l’,O’, t) = gh(l’,s,t) :
J Jj o€Rm g€R™

This concludes the proof of (H6).
To prove (4.1.6), we fix s,5',t € R™ and distinguish between the cases [t| < h
and [t| > h. If |t| < h, since g satisfies (H7) we have that, for H" -a.e. z € %,

gn(z,8,t) < g(z,s,t) < inf g(x,0,t)+P(z,vs(x))
gER™ (4.2.70)
S gh(xa S/a t) + ¢(‘T7 VE(.I‘)) .
Otherwise, if |t| > h,
gn(z,s,t) < inf g(z,s,7) < inf g(z,0,7)+ U(z,vs(x))
TeR™ O',TER"” (4271)
S gh(xa 3,7 t) + ¢(33a VE(':U» .
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Thanks to (4.2.70) and (4.2.71), we get that gj, satisfies (4.1.6). Inequality (4.1.7) can
be proved in the same way. Therefore, g, fulfills property (H7).
Finally, it is easy to see that for H" '-a.e. x € &, every s,t € R™, and every h € N

gn(w, s,t) = gn(w, Tn(s), Tn(t)) - (4.2.72)

Let us define the functional Fj,: GSBVP(Q;R™) — R by

Fr(v) = i \E;Z)(:E,Vv)d”z'-["_l —|—/Zgh(:n,v+,v_)d7-[”_1.

Since ¢ and gy, satisfy (H1)-(HT7), we can apply Theorem 4.2.7 to Fj,. Hence, in view
of the weak convergence of T, (ux) to Th(u) in SBVP(Q;R™), we get that

Fn(Th(u)) < limkinf Fn(Th(ug)) . (4.2.73)

As a consequence of (4.2.72), of the inclusion STy (uy) S Su,, and of the inequality
gn < g, we have that Fp (T} (ux)) < F(ug) for every h,k. Thus, from (4.2.73) we
deduce that

/ Y(x, vy) dH L+ / gn(z,ut u) dH™! < liminf F(uy) . (4.2.74)
S, () \Z b k

Since gp(-,ut,u™) 7 g(-,ut,u”) pointwise H" t-ae. in ¥ and Sp, ) S Su,
passing to the limit in (4.2.74) as h — +o0o0 we obtain

F(u) < limkinf Flug),

which concludes the proof of the theorem in the particular case of a nonnegative
Carathéodory function g with g(z, -, -) Lipschitz continuous with Lipschitz constant A.
The general case follows by Lemma 4.2.2. O

We now show that condition (H7) is also necessary for the lower semicontinuity of
the functional F.

Theorem 4.2.8. Let ¢ satisfy (H1)-(H3) and let g be a Carathéodory function such
that (4.1.5), (HS), and (HY) hold. Let F: GSBVP(Q;R™) — R be the functional
defined in (4.1.1). Assume that F is lower semicontinuous with respect to the weak
convergence in GSBVP(Q;R™). Then ¢ and g fulfill property (H7).

Proof. Let L > 0 be the Lipschitz constant of ¥ and A := Ly/n. Let us prove that
g satisfies the inequality (4.1.6) on X N Q. Let zp € ¥ N Q be such that vs(xp) is
normal to ¥ at xg, and let &(zg) € S*~! be as in Definition 1.1.5. As in the proof

of Lemma 4.2.5, we set R,(zg) := Rﬁg(mo)(xo), where Rg:g(m) is defined in (1.1.2). In

particular, for p sufficiently small we may suppose that R,(z¢) C Q, that H" (X N



136 A free discontinuity functional with a boundary term

OR,(x0)) = 0, that the function ¢, of Definition 1.1.4 is well-defined and Lipschitz
continuous on the (n — 1)-dimensional cube Q"_l )(xo), and that

Ry(w0) N Y = {y + ¢z, (¥)€(20) : yer{(azo( 0)}-

We assume in addition that z( satisfies the following conditions:

xo is a Lebesgue point for g(-, 0, 7) for every o,7 € Q™ (4.2.75)
g(xo,-,-) is continuous on R™ x R™ | (4.2.76)

1
lim / vs(x) — vs(xo) | dH* H(z) = 0. 4.2.77
tim ey [ et st @277

We notice that properties (4.2.75)-(4.2.77) are satisfied for H" !-a.e. mp € LN Q.
2

)
We define the sets A4 as in (4.2.23). For every k € N we set
Sk = (Ry(0) NT) + 1€(wo)
) (4.2.78)
= {y+ (a0 (y) + 7)&(w0) 1 y € ,,g(xo)(fco)},

and
APk {y +t6(z0) : y € Qg (20), @ug(y) + & <t < o -E(zo) + Ap} . (4.2.79)

It is easy to see that for k large enough we have X, Ai’k C Ai and

vs, (z) = tvg(z — %5(3}0)) (4.2.80)
for H" lae. z € Xy.
Let us fix three distinct points s, s',t € Q™ \ {0}. We introduce the functions
"ifze A7\ APF
§ ?fx A:k\ + s if:z:EAﬁ_,
up(z) =4 ° HTEA wz) =4 t ifze A, (4.2.81)

: P
t ifze A’ 0 ifxeQ\Ry(zo).
0 if.%GQ\Rp(xO)?

It is clear that ug, u € GSBVP(Q; R™) and that uy converges to u weakly in GSBVP(Q); R™)
as k — +o00. Moreover,

Sup = OR,(20) UELU(ENR,(20)) and Su = OR,y(20)U(XNR,(x0)) . (4.2.82)

Thanks to the lower semicontinuity of the functional F, to hypothesis (H3), and
0 (4.2.80)-(4.2.82), we have that

/ V(2, VR, (20)) AH"™ Ty / gz, s, t)dH" ! —l—/g(x,0,0) dH™ 1

8Rp .to Rp($0)ﬂz Z\Rp(l‘o)
= F(u) < limkinf Flug) = limkinf/ z/J(a:, vs (a: — %f(xo))) dxt (4.2.83)
Xk

/w T, VR, (w0) y) dH"™ Ly /g(x,s’,t) d?—["l—i-/g(x,0,0)dHnl.

ORp(z0) Rp(zo)NE S\Rp(zo)
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Therefore, by the change of coordinates y =z — %f (zo) and taking into account the
uniform continuity of ¥ on Q x S"~!, from (4.2.83) we get

/ g(z,s,t)dH !

Rp (Io)ﬁz

< lim inf/ ¥(2 + £&(w0), vx(z)) dH —I—/ glx,s' ) AH"™"  (4.2.84)
p(:vo)ﬁz Rp(xo)ﬂz

k
R,
:/ w(m,ug(:r;))d%n_l—i-/ gz, s’ t)dH L.
Rﬁ( )QE Rp(xo)ﬂz

Dividing (4.2.84) by p" ! and passing to the limit as p \, 0, thanks to proper-
ties (4.2.75)-(4.2.77) and to (H1), we obtain that

g(xg,s,t) < g(xo, s, t) + ¥(x0, vs(x0)) (4.2.85)

for every triple of distinct points s,s’,t € Q™ \ {0}. By density and by (4.2.76), we
conclude that g satisfies (4.1.6) for H" '-a.e. z € XN Q. To prove the same result
for H" t-a.e. x € XN IN, we use a similar argument and take into account (4.1.5).
The proof of (4.1.7) is analogous. O

We conclude this section with an existence result whose proof follows directly from
Theorems 1.2.13 and 4.2.1. Let W: Q x M™*" — R satisfy (1.2.8) and (1.2.9), and
let f: Q@ xR™ — R be a Carathéodory function such that

asls|? —bz(x) < f(x,s) < aa|s|?+bs(x) for a.e. z € Q and every s € R™ (4.2.86)

for some 1 < q¢ < +00, 0 < ag < ayq, and b3, by € L*(9).
We define the functional G: LY(Q;R™) — R by

G(u) := /W(w, Vu)dz + /f(x,u) de+ [ w(z,v,)dH" ™ + /g(m,u*, u”)dH" !
Q Q Su\Z >
(4.2.87)
for every u € GSBVP(; R™)NLY(Q;R™), and G(u) := +oo otherwise in LI(Q2;R™).
In the following theorem we state an existence result for the minimum problem

min{G(u) : v e LY R™)}. (4.2.88)

Theorem 4.2.9. Let ¢ and g satisfy (H1)-(H7). Let W: QxM™" — R sat-
isfy (1.2.8) and (1.2.9), and let f: QA xR™ — R be a Carathéodory function such
that (4.2.86) holds. Then the minimum problem (4.2.88) admits a solution.

Proof. The proof is based on the direct method of the calculus of variations. Let uy €
L7(Q;R™) be a minimizing sequence for (4.2.88). Then uy € GSBVP(Q;R™) and,
by hypotheses (1.2.8), (1.2.9), (4.1.2), (H1)-(H7), and (4.2.86), we have that ||ul|q,
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[Vugllp, and H"~1(S,,) are bounded uniformly with respect to k. By the compact-
ness Theorem 1.2.12, there exists u € GSBVP(Q; R™) N L2(; R™) such that, up to a
subsequence, uy converges to u weakly in GSBVP(Q;R™).

Applying Theorems 1.2.13 and 4.2.1, and the Fatou Lemma, we get that

G(u) < limkinf G(ug),

thus w is a solution of (4.2.88). O

4.3 Relaxation result

In this section we give a relaxation result for functionals of the form (4.1.1)
in GSBVP(Q;R™), p € (1, +00).

Let us recall the setting of the problem. Let €2 be a bounded open subset of R"
with Lipschitz boundary, let (3, vy) be an orientable Lipschitz manifold of dimen-
sion n — 1 and Lipschitz constant L with ¥ C Q and such that (4.1.2) holds. We
consider a function ¢: Q x R™ — [0, +00) satisfying properties (H1)-(H3), and a func-
tion ¢g: ¥ x R™ x R™ — R such that (A1)-(A4) hold (we refer to Section 4.1).

In the statement and in the proof of Theorem 4.3.3 we will use the following

functions
g1(x, s,t) := min {g z, s, t), ierﬁgfm g(x,0,t) + (x, I/E(.%'))}, (4.3.1)
g2(x, s,t) := min {g x,s,t), ierﬁ%fm g(xz,s,7) + w(x,ug(:r))}, (4.3.2)
g12(z, s, t) {gl x,s,t), gﬁfm g1(z,8,7) +1/J(:L',Vg(l’))}, (4.3.3)
g21(x, s,t) :== min {gg(a:, s, ), aieIIlRifm g2(z,0,t) + Y(z, I/E(x))} . (4.3.4)

We will prove in Lemma 4.3.2 that g1 = g21. In Theorem 4.3.3 we need g12 to satisfy
the additional hypothesis (A5) stated in Section 4.1.

Remark 4.3.1. If (4.1.5) holds, it is easy to see that for every s,t € R™
g1(z,s,t) = g1(z,5,0) and go(w,s,t) = g(z,s,0) ifxeNT,
91(55 s t):g(x O?t) and gg($,8,t):gg($,0,t) ifoN_,
gi12(x, s,t) = ga1(z, s,t) = g1(x, 5,0) ifx e NT,
gi2(z, s,t) = ga1(x, s,t) = g2(x,0,1) ifre N,
where N'* are as in (4.1.4).

In the following lemma we discuss some properties of the functions introduced
n (4.3.1)-(4.3.4).
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Lemma 4.3.2. Assume (A1)-(A4). Then the functions g1,92,912,g21: £ X R™ x R™ —
R are Borel measurable and satisfy the inequalities

91, 92, 912, g21 = —a,
g1, 92, 912, 921 < 9.

Moreover, for every x € ¥ they are upper semicontinuous with respect to (s,t). Fi-
nally, gi2 and go1 fulfill property (H7) and

g12(, 5,t) = ga1(w,s,t) = sup y(x,s,t), (4.3.7)
7€ly

where T'y is the set of all functions v: ¥ x R™ x R™ — R satisfying (H7) and such
that v < g.

Proof. Since for every x € ¥ the function g(z, -, ) is upper semicontinuous on R x R™
we have that

g1(z, s,t) := min {g(x, s,t), inf g(z,o,t)+Y(x, 1/2($))} .
oceQm

Since ¢ is also Borel measurable, this implies that g7 is Borel measurable and, for
every x € X, gi(x,-,-) is upper semicontinuous. The same argument applies to ga,
912, g21. The inequalities (4.3.5) and (4.3.6) follow immediately from (A3) and (4.3.1)-
(4.3.4).

Let us prove that gjo fulfills property (H7). By definitions (4.3.1) and (4.3.3), it is
easy to see that ¢; satisfies (4.1.6) and g12 satisfies (4.1.7). Therefore, for every x € ¥
and every s,s’,t € R™ the following inequalities hold:

g12(x,5,t) < g1(x,5,t) < gi(w,8',t) + Y (x,v()), (4.3.8)
g12(x, s,t) < rierﬁfm gi(z,s,7) +Y(x,vs(x)) < TiEIgm g1(z,s',7) + 2¢(z,vn(x)). (4.3.9)

From (4.3.3), (4.3.8), and (4.3.9), we infer that gio satisfies (4.1.6), which completes
the proof of (H7). A similar argument can be used for ga;.
We now prove (4.3.7). To this end, we first check that

012, 5,1) = sup A(z,5,1), (43.10)
VGFé

where I’; is the set of all functions v: ¥ x R™ x R™ — R satisfying (4.1.6) for every
z € ¥ and such that v < g. Let Gi(z, s,t) be the right-hand side of (4.3.10). Since g1
satisfies (4.1.6) and ¢; < g, we have that g1 < G;. Conversely, let v € I‘;. Then

V(@ s,t) < b y(z,0,8) + Pz, vs(@)) < inf g(z,0,) + (2, v2(2))

for every x € ¥ and every s,t € R™. Since v < g, the previous inequality implies

that v < ¢g1. Taking the supremum for ~ € I‘}J, we deduce that G; < g;. Since the
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opposite inequality has already been proved, we have that (4.3.10) holds. With the
same argument it is possible to show that

g2(x,s,t) = sup v(z,s,t), (4.3.11)
ver?

where I‘g is the set of all functions v: ¥ x R™ x R™ — R satisfying (4.1.7) for every
x € ¥ and such that v < g.
Since g9 satisfies (H7) and g12 < g, we have that

g12(z, s,t) < sup v(x,s,t). (4.3.12)
v€ly

For the converse inequality, let us fix v € I'y and let G(z,s,t) be the right-hand side
of (4.3.12). Then, in view of (4.3.10), we have that v < g; and

v(x,s,t) < inf y(z,s,7)+Y(x,ve(x) < inf gi(z,s,7)+Y(z,ve(z)) (4.3.13)
TER™ TER™

for every € ¥ and every s,t € R™. In view of (4.3.13) we get that v < gi2.

Thus, G < g12, which, together with (4.3.12), gives g12 = G. In the same way,

using (4.3.11), we can show that go; = G, and this concludes the proof of the lemma.
O

Given p € (1, +00), we define the functional F: GSBVP(Q; R™) — R as in (4.1.1)
and the functional sc™F: GSBVP(Q;R™) — R as the greatest sequentially lower
semicontinuous functional on GSBVP(Q;R™) which is less than or equal to F. We
are now ready to state the main theorem of this section.

Theorem 4.3.3. Let ¢ and g satisfy (H1)-(H3), (A1)-(A5), and (4.1.5). Then we
have

sc¢” F(u) = 1/1(3:,Vu)d7-["1—|—/ gro(z,ut,u”) dH ! (4.3.14)
5\ 5

for every u € GSBVP(; R™).

For what follows, it is convenient to define the functionals Fi9, F1: GSBVP(Q; R™) —
R by

Fia(u) := g \Ew(x,uu)dHnl—i-/Egm(x ut u”)dH" (4.3.15)

Fi(u) = w(x,uu)d"}-["_l—i—/gl(x 't u”)dH (4.3.16)
S, \Z b
for every u € GSBVP(Q;R™). The functional F; is “intermediate” between F

and Fio and will be used in the proof of Theorem 4.3.3.
In order to prove Theorem 4.3.3 we need the following approximation lemma.
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Lemma 4.3.4. Let r € [1,4+00). Then for every u € SBVP(Q;R™)NL>(Q;R™) and
every € > 0 there exists v € SBVP(Q; R™) N L>°(Q; R™) such that

v —ull0<e, Vv — Vulpa < ¢, (4.3.17)
H(S,) < HH(S,) +4H () + ¢, (4.3.18)
F(v) < Fra(u) +¢€. (4.3.19)

Proof. Let us set X' := (£\(ENQ))U(ENQ). In view of hypotheses (4.1.2), we have
HH(Z\ ) =0. (4.3.20)

Moreover, ¥’ is open in the relative topology of 3.

By Definition 1.1.5 and by Lindel6ff theorem, there exists a sequence of points x; €
¥ and corresponding (n—1)-dimensional rectangles A,, , intervals 1, , vectors (z;) €
S*~!, and Lipschitz functions ¢, : A,, — I, such that the following conditions hold,
where, for simplicity of notation, we have set V; := {y +t&(z;) : y € Ay, t € 1, }:

VinX={y+ P, (y)€(xi) : y € Am}v (4.3.21)
vs(z) - &(z;) has constant sign for x € V;N X, (4.3.22)
2 Hy + en(W)élzi) - y € As} (4.3.23)

1€N
V,iNYccQ or V,NLcc¥noq. (4.3.24)

As in the proof of Lemma 4.2.5, we define
A =y +t€(zi) : y € Agy t € Ly t 2 90, (y)} - (4.3.25)

Therefore, for every i € N, X splits the set V; into two disjoint connected open
subsets A and A; , with vs(x) pointing towards A} for H" l-ae. z € V;N Y.
Let u be as in the statement of the lemma. We set
Bg1 = {IE ex’: gl($7u+($),ui($)) > ll’]g gl(xaqu(x)aT) +¢($,I/E($))}, (4326)
TER™

where g is defined in (4.3.1). Clearly, By, is an H" !-measurable subset of ¥'.
By Remark 4.3.1, we have that B, N 02 C N, where the set N~ is defined
in (4.1.4). This implies that vs(z) = —vo(x) for H" t-a.e. x € By, NON. Therefore,
from (4.3.24) and (4.3.25) we deduce that

H" L (ViN By, N0N) >0

. . _ (4.3.27)
= vy =-vg H" -ae. in V;NE¥ and A, C Q.
Moreover, by (4.3.3), (4.3.20), and (4.3.26), for H" !-a.e. z € & we have
g1(,u (@), u™ (2)) ifo e\ By,
+ () —
gi2(z, u” (2),u (2)) = { Tielgm gi(z,ut (2),7) + ¥(z,vs(z) ifze By, (4.3.28)
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Given € > 0, our first aim is to construct a new function w € SBVP(Q;R™) N
L>(Q;R™) such that

lw—ullrg < % IVw — Vo < % (4.3.29)
H71(S,) < H'L(S,) + 2H™ (D) + % , (4.3.30)
Fi(w) < Fia(u) + % : (4.3.31)

where Fj is defined in (4.3.16). Roughly speaking, the idea of the proof of (4.3.29)-
(4.3.31) is to construct a sort of copy of the “bad” set By, inside © near . This
modified version of B, will be part of the jump set of the new function w which
will be constructed in such a way that w = u far from By, w" = ut on X, and
g1(z, wh(z),w (z)) is close to infrepm g1(x,u™ (z),7) for z € By, .

We now start our construction. Let us fix an auxiliary parameter § > 0 which will
be chosen at the end of the proof in order to get (4.3.29)-(4.3.31) and (4.3.17)-(4.3.19).
Given an enumeration {g;};en of Q™, for every j we define

7j—1
B = {z € By, : gi(z,u"(x),q;) < inf gr(@,ut(z),7)+ 03\ | Bl . (4.3.32)
=1

The sets {Bg1 }ien are pairwise disjoint H"~!-measurable subsets of %’ such that
By, =U; B}, . By taking suitable intersections with the sets V; and their Complgments,
it is not restrictive to assume that for every j there exists i; € N such that By, C Vi,
and By, NV, =0 for | #1;.

The next step is to approximate By, with the union of a finite number of relatively

open subsets of ¥/. Let us set M := ||ullso.q. Since {BJ, }jen are pairwise disjoint
and H"1(X) < 400, we can find H € N such that

H’H( U Bgl) <94, / adH™ ! <4, / aydH" P <§.  (4.3.33)
j>H Ujsu B, Ujsu B,
where a, aps € L'(X) have been defined in (A3) and (A4), respectively. ‘
For every j € {1,...,H}, we choose a compact set K; C X’ such that K; C By,
and

1 o _ ] _ J
H" 1(B;I\Kj)<§, /‘adH” 1<§, /‘aMdH" 1<§. (4.3.34)
Bgll\Kj ng\K]'
Let us set M := max{M,|qi|,...,|qu|}, where g; are associated to each Bgl

through definition (4.3.32). Since H"!|¥ is a bounded Radon measure, we can find
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a family {Uj}f[:1 of relatively open subsets of ¥ such that the following conditions
hold, where OxU; denotes the boundary of U; in the relative topology of X:

K;CU;ccVyny, UNU;=0 forl+#j, (4.3.35)
n—1 6 n—1 6 n—1 (5
Uj\K; Uj\K;
H"2(0xU;) < +00, (4.3.37)

where ag; € LY(¥) has been defined in (A4).
We now move each U; inside 2\ ¥ by translation. Let j € {1,...,H} be fixed.
Thanks to (4.3.24), (4.3.25), (4.3.27), and (4.3.35), we may choose 7; > 0 such that

Uj = C&(xi;) € A and Uj — (&(zi;) CC Vi; NQ - for every ¢ € (0,7;].  (4.3.38)

Moreover, by the uniform continuity of 1 on Q x S*~! and by (4.3.37), we may assume
that:

0

Su[I]) ‘w(x - njf(xij)7 Vz(x)) - ¢(% VZ(‘T))’ < 27 ) (4‘3'39)

zcU;
2, <0,5 min{l, L 21 }> . (4.3.40)

lq;|"" 1 —2(0xUj)
We denote by C; the open “cylinders”
Ci= J (U —&ay)). (4.3.41)
CE(Ovnj)

By possibly changing 7;, by (4.3.38) we may assume that

C; C A NQ, (4.3.42)
{U; — njf(xij)}le are pairwise disjoint, (4.3.43)
{Cj}JH:l are pairwise disjoint, (4.3.44)
J J
ullrc; < o and  ||Vull,c; < % (4.3.45)

Moreover, if
L= |J (0U; - (&(x)))
CE(Ovnj)

is the lateral surface of the cylinder Cj, by (4.3.40) we have that

H H H S
anl( U L]) < an HniQ(aEUj) < Z 27 <9J. (4346)
j=1 J=1

Jj=1
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Note that the trasversality condition vs(z)-£(z;,) > 0 for H" '-a.e. z € U; implies
that
0C; =U; U (U — njg(l’ij)) ULj. (4.3.47)

We are now ready to define the function w € SBVP(; R™)NL>®(; R™) satisfying
inequalities (4.3.29)-(4.3.31). For every z € €2, we set

qj if x € Cj for some j € {1,...,H},

H
= 4.3.4
w(z) u(x) ifxEQ\UCj. (4.3.48)
j=1
By definition, [|w|ec,0 = M, Vw € LP(Q; M™ ™), and
H
Sw € Sy UBU | (L U(U; = nié(x,))) (4.3.49)
j=1
thus, by (4.3.35) and (4.3.46), we get that
HH(Sy) < HPH(S,) + 2H"H(D) + 6. (4.3.50)

Estimate (4.3.50) implies that H"~1(S,,) < +o00, hence w € SBVP(Q; R™)NL>®(; R™).
Thanks to (4.3.40), (4.3.41), (4.3.45), and (4.3.48), we have that, for some ¢, > 0 in-
dependent of ¢,

[w = ullr,0 = Z lg; — ullrc, < Z lg;] (£™(C' 1/T + [lullrc;
H
1/r n— r
< Z gl " (HPHU)T +6 (4.3.51)

H 1/r
<3 ( )TN 6 < e g,
=1

.

and
H
IVw = Vulpo=>_ [IVulpe, <6 (4.3.52)
j=1
We now have to estimate F(w) in terms of F(u). Let us start with the the jump
term in Fj(w). Since U; C ¥ for every j =1,...,H, for H" '-ae. z € U, —ni&(xi;)
we have
vo(r) = vs(@ +n;€(xi;))

which implies that

vw(z) = 2vs(z +nié(x;,)) for H' 'ae. x € S, N (U; — n;é(wi,)). (4.3.53)
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Moreover, it is clear that

vw(z) = 2ve,(z) for H" l-ae. x € Sy N Ly,

4.3.54
vw(z) = Fvy(z)  for H lae. x € S,y N Sy. ( )
Therefore, thanks to (H3), (4.3.49), (4.3.53), and (4.3.54), we deduce that
/@Z)l‘l/w ’H”l</¢x1/u ydH L+ /1/1331/0)7'{”1
L
(4.3.55)
+Z [ vl st g o
Uj—n;€(@i;)
Hypothesis (H2) on ¢ and inequality (4.3.46) imply that
H
/ Y(x,ve,) AH ! < ey M 1(ULJ-)<CQ5. (4.3.56)
U L Lj Jj=1

By (4.3.35), (4.3.39), and by the change of variables y = z + 1;{(;;) in the last term
of (4.3.55), we obtain that

H
> [ bl vsto+ o, ))an @

J=1"Uj—n;&(ms;)

I
Mm

/ Oy — my€ (s ) vs(@)dH () (4.3.57)
U,

17U;

.
Il

M=

/w y,vs) dHP 4+ 5HPL(E).
U,

1 J

<.
Il

By (4.3.35), we can split the sum in the right-hand side of (4.3.57) in the following
way:

H

H H
Z/ w(x,yz)dH’“l :Z/ Y(x,vs) dH" 1+Z/ x,vy) 7—["*1. (4.3.58)
U. j=1"U;\K;

J=1"U; j=1"K;
In view of (H2) and of (4.3.36) and recalling that the sets K; are pairwise disjoint

and contained in By, , (4.3.58) becomes

H
Z/ Y(z,vg) dH ! §/ Y(z,ve) dH" ™ + o6
i=170; Uit K; (4.3.59)

g/ Y(x,vs) dH 420
BQl
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Therefore, collecting inequalities (4.3.55)-(4.3.57), and (4.3.59), we get that the jump
term in Fj(w) can be controlled from above by

P(z, 1) dH T
S\ (4.3.60)

< O(w, vy) dH L + Y(x,vs) dH L+ 6 (2c0 + HH(D)) .
Su\Z By,

Finally, we give an estimate of the integral over X of Fj(w). We first split it into
the contribution on UJH:1 K; and on X\ Ule K

/gl(a:w w”) dH" !

. (4.3.61)

:/gl(a:w w”)dH" !+ /gl(acfw w™)dH" L.
Ujil K; E\Uj:l K;

We notice that by (4.3.25) and (4.3.42), for every j = 1,..., H and for H" l-ae. x €
U; the unit normal vx(z) to ¥ at z points outside C;. Thus, by (4.3.48), we have
that w™(z) = g; for H" !-a.e. € U;. Moreover, since w = u in Q \ Ule Cj,

wh =ut for H" '-ae x €. (4.3.62)

Therefore, recalling that the sets K; are pairwise disjoint, we can write the first
integral in the right-hand side of (4.3.61) as

H

/ gr(z,wh,w™)dH ! :Z/ g1(z,ut, q;)dH" . (4.3.63)

H — .
Ujz1 K Jj=1"K;

Taking into account definition (4.3.32) of the sets Bgl, the inclusion K; C Bgl,
and inequalities (4.3.5), (4.3.33), and (4.3.34), we can continue (4.3.63) in the follow-

ing way:

H
/gl(xw w™ ’H”lSZ/Tgﬁg g1 (z,ut ) dH" T+ oHH(K)
UL K =1
S/ Hﬁ@f gr(z,ut, Ty dH T+ / adH" 1+ HHE)
reRm
I Uity B3, \K; (4.3.64)

i1

91
§/ Hﬁf gr(z,ut, T)dH T+ / adH" L+ 5(HHE) + 1)
TE )
By Uj># By
§/ inf g1 (z,u™, 7)dH" + 5 (HHE) +2).
Bgl'rER
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We now consider the last term in (4.3.61). By (4.3.35), (4.3.37), and (4.3.48), we
have that w™ =u~ H" l-a.e. on ¥\ Ule Uj. Thus, by (4.3.62), we obtain

| oy

Z:\UJ':1KJ'
:/ gl(x,er,w)dH"l—i-/ g1(z,wh,w™)dH" ! (4.3.65)
S\UL, U; UiL, Uj\K;
:/ gr(z,ut u”)dH T+ / gi(z,ut, g;)dH" .
S\ULL, U5 i1 Us\K;

In view of (A4), (4.3.5), (4.3.6), and of (4.3.33)-(4.3.36), inequality (4.3.65) becomes

/ g1 (@, wt,w) dHP ! < / g, ut ) dHY 4 / agr K"

S\UIL, K; \UL, U; Ui, Uj\K;

</ g1(z,ut,u”)dH" Ly / adH™ 1 46
E\Uj:l K; UJH:1 Uj\K;

</ gl(x ut,uT)dH ! 4 / ap dH" 1+ 25 (4.3.66)
E\U]':1 91 U;{:1 351\Kj

</ gr(z,uT um)dH ! + / ap dH" 1 430
I\Bg, Uj>H Bgl

</gl(xu cu” ) dH T 446
\Bg,

Therefore, (4.3.61), (4.3.64), and (4.3.66) imply that

/gl(x wh w)dH ! < /gl(w ut u”)dH !

P ¥\ By,

(4.3.67)
—|—/ inf g1 (2, u, 7)dH"t + 6 (H" () +6).
Bgl TR

Collecting inequalities (4.3.60) and (4.3.67) and using (4.3.28) in the last equality,
we obtain that, for some ¢ > 0 independent of ¢,

/¢xuwd’H"1 /gl(a:w ,w”)dH!

S\

/¢xuu ’H”l /wmug 7-["1
By, (4.3.68)

S\
-I-/ gr(z,u™,u”)dH ! + / ir%&fm g1(z,ut, 7)dH" 4 ¢6
E\BQ1 Bgl T
= Fia(u) + cd.



148 A free discontinuity functional with a boundary term

Choosing 0 < § < £/2 such that ¢§ < £/2 and ¢,0'/7+8 < £/2 in estimates (4.3.50), (4.3.51),
(4.3.52), and (4.3.68), we deduce (4.3.29)-(4.3.31).

If we repeat the above argument replacing u and Bg, of (4.3.26) with the func-
tion w and the set

By:={ze¥: gz, v’ (z),w (z)) > Jierﬁgmg(azja, w”(z)) + ¢(z,vs(z))}

= {ze ¥ glo,ut (@), w @) > inf g(w0,0 (@) + ¥le,vs(@)}

we are able to construct a new function v € SBVP(; R™) N L*>®(Q; R™) such that:

€ 3
lo-wlo <5, Vo~ Volpa <,
HL(S,) < HTH(Sw) + 2H (D) +

F(v) < Fi(w) + g .
The previous inequalities, together with (4.3.29)-(4.3.31), imply that v satisfies (4.3.17)-

(4.3.19). This concludes the proof of the lemma. t

Proof of Theorem 4.3.3. By the hypotheses of the theorem and by Lemma 4.3.2, the
functions ¢ and g2 satisfy hypotheses (H1)-(H7). Hence, from Theorem 4.2.1 we
deduce that the functional Fio defined in (4.3.15) is lower semicontinuous with respect
to the weak convergence in GSBVP(Q2;R™). Since gi2 < g, we have that Fio < F.
Thus, by definition of sc™F, we easily get that Fio < sc™F on GSBVP(Q;R™).
Therefore, we only need to show the converse inequality, that is,

sc” F(u) < Fra(u) for every u € GSBVP(; R™). (4.3.69)

Let us first prove (4.3.69) for v € SBVP(;R™) N L*>(;R™). To this end, we
need to construct a recovery sequence for u. Applying Lemma 4.3.4, we can find
a sequence v € SBVP(Q;R™) N L*®(Q;R™) such that v, converges to u weakly
in GSBVP(Q;R™) and

F(vg) < Fio(u) + % for every k. (4.3.70)

Passing to the liminf as k — +o0 in (4.3.70) we get

sc” F(u) < limkinf sc” F(ug) < limkinf F(vg) < Fiz(u) .

This concludes the proof of (4.3.69) for uw € SBVP(Q; R™) N L*°(Q;R™).

Let us now consider v € GSBVP(;R™). Given a function ¢ € C°(R™;R™)
with ¢(s) = s if |s|] < 1, we can approximate u in GSBVP(Q;R™) with the se-
quence @i(u) € SBVP(Q;R™) N L>®(Q;R™), where we have set ¢ (s) := kp(s/k).
Clearly, ¢ (u) converges to u pointwise L™-a.e. in Q and Vg (u) — Vu in LP(Q; M™*™).



4.3. Relaxation result 149

Moreover, S, () € Sy for every k. Hence, by Definition 1.2.11, ¢y (u) converges to u
weakly in GSBVP(Q;R™) and

hmsup/ V(@ Vg () dH™ ! </ Y(x,v,) dH L (4.3.71)

wg(U)\E Su\%

Recalling that ¢, € C°(R™;R™), we have that ¢ (u)* = ¢p(u®) H" '-a.e.in 2.
Therefore, since g2 is a Carathéodory function, we get that

gr2(z, o)™ (@), i (u) ™ () = gra(w,ut (x),u”(2)) for H" '-ae z €.

Thanks to hypothesis (A4) and to inequalities (4.3.5) and (4.3.6) of Lemma 4.3.2, we
can apply the dominated convergence theorem to deduce that

i [ guaCo o) pnla) VA = [ gt ) @)
b P

Collecting (4.3.71) and (4.3.72), we get that

sc¢” F(u) < lirnkinf sc¢” Fpg(u)) < limsup Fio(pr(u)) < Fio(u),
k

which concludes the proof of (4.3.69) in the general case.
O

We conclude this section with a generalization of Theorem 4.3.3 which takes into
account also the presence of volume terms. Let ¢ € (1,4+00), let W: Q x M"™*" — R
satisfy (1.2.8) and (1.2.9), and let f: Q@ xR™ — R be a Carathéodory function
such that (4.2.86) holds. We consider the functional G: LI(Q;R™) — R defined as
n (4.2.87). With the same notation used before, sc”G denotes the greatest sequen-
tially lower semicontinuous functional on L?(€2; R™) which is less than or equal to G.
Moreover, we define

Gia(u /W x Vu)da:—i—/ f(z,u) dx—i—/ w(a:,l/u)dH"1+/ gro(z,ut,u)dH" !
Q S\

b
for uw e GSBVP(Q;R™) N LI(Q;R™). We extend Giz to +00 out of GSBVP(Q;R™).

Theorem 4.3.5. Let ¢ and g satisfy (H1)-(H3), (A1)-(A5), and (4.1.5). Then the
functionals sc=G and Gia coincide on LI(;R™).

Proof. By (4.3.6) of Lemma 4.3.2, G2 < G. Recalling that g2 satisfies proper-
ties (H4)-(HT7), from Theorems 1.2.13 and 4.2.1 and from the hypotheses on f we de-
duce that Gio is sequentially lower semicontinuous in L4(Q; R™). Thus Gio < s¢™G.
By Lemma 4.3.4 and by the hypotheses on the volume densities W and f, we get also
the opposite inequality in SBVP(Q;R™)N L>*(Q;R™). The conclusion follows by the
truncation argument used in the last part of the proof of Theorem 4.3.3. O






Bibliography

1]

[10]

R. A. Abpams AND J. J. F. FOURNIER, Sobolev spaces, vol. 140 of Pure and

Applied Mathematics (Amsterdam), Elsevier/Academic Press, Amsterdam, sec-
ond ed., 2003.

S. ALMI, Energy release rate and quasi-static evolution via vanishing viscosity
in a fracture model depending on the crack opening, To appear ESAIM: COCV,
(2016).

S. ALMI, Quasi-static hydraulic crack growth driven by Darcy law, Preprint SISSA
29/2016/MATE, http://cvgmt.sns.it/paper/3093/ (2016).

S. ALMI, G. DAL MASO, AND R. TOADER, Quasi-static crack growth in hydraulic
fracture, Nonlinear Anal., 109 (2014), pp. 301-318.

S. AuMmi, G. D. Maso, AND R. TOADER, A lower semicontinuity result for a free
discontinuity functional with a boundary term, Preprint SISSA 61/2015/MATE,
http://cvgmt.sns.it/paper/2863/ (2015).

L. AMBROSIO, A compactness theorem for a mew class of functions of bounded
variation, Boll. Un. Mat. Ital. B (7), 3 (1989), pp. 857-881.

L. AMBROSIO, FEzistence theory for a new class of variational problems, Arch.
Rational Mech. Anal., 111 (1990), pp. 291-322.

L. AMBROSIO AND A. BRAIDES, Functionals defined on partitions in sets of finite
perimeter. 1. Integral representation and I"-convergence, J. Math. Pures Appl. (9),
69 (1990), pp. 285-305.

L. AMBROSIO AND A. BRAIDES, Functionals defined on partitions in sets of fi-
nite perimeter. II. Semicontinuity, relaxation and homogenization, J. Math. Pures
Appl. (9), 69 (1990), pp. 307-333.

L. AMBROSI0, N. Fusco, AND D. PALLARA, Functions of bounded variation and
free discontinuity problems, Oxford Mathematical Monographs, The Clarendon
Press, Oxford University Press, New York, 2000.

151



152

Bibliography

[11]

[14]

L. AMmBROSIO, N. GIGLI, AND G. SAVARE, Gradient flows in metric spaces

and in the space of probability measures, Lectures in Mathematics ETH Ziirich,
Birkhauser Verlag, Basel, second ed., 2008.

L. AMBROSIO AND V. M. TORTORELLI, Approzimation of functionals depending

on jumps by elliptic functionals via I' -convergence, Comm. Pure Appl. Math., 43
(1990), pp. 999-1036.

M. BARCHIESI, G. LAZZARONI, AND C. I. ZEPPIERI, A bridging mechanism

in the homogenization of brittle composites with soft inclusions, SIAM J. Math.
Anal., 48 (2016), pp. 1178-12009.

G. 1. BARENBLATT, The mathematical theory of equilibrium cracks in brittle
fracture., in Advances in Applied Mechanics, Vol. 7, Academic Press, New York,

1962, pp. 55-129.

G. BOUCHITTE, I. FONSECA, AND L. MASCARENHAS, A global method for re-
lazation, Arch. Rational Mech. Anal., 145 (1998), pp. 51-98.

B. BOURDIN, G. A. FRANCFORT, AND J.-J. MARIGO, The variational approach
to fracture, Springer, New York, 2008. Reprinted from J. Elasticity 91 (2008), no.
1-3, With a foreword by Roger Fosdick.

G. BuTTAZzZz0, Semicontinuity, relaxation and integral representation in the cal-
culus of variations, vol. 207 of Pitman Research Notes in Mathematics Series,
Longman Scientific & Technical, Harlow; copublished in the United States with
John Wiley & Sons, Inc., New York, 1989.

F. CAGNETTI, A wanishing viscosity approach to fracture growth in a cohesive
zone model with prescribed crack path, Math. Models Methods Appl. Sci., 18
(2008), pp. 1027-1071.

A. CHAMBOLLE, A density result in two-dimensional linearized elasticity, and
applications, Arch. Ration. Mech. Anal., 167 (2003), pp. 211-233.

C. CHUKWUDOZIE, B. BOURDIN, AND K. YOSHIOKA, A wvariational approach
to the modeling and numerical simulation of hydraulic fracturing under in-situ

stresses, Proceedings of the 38th Workshop on Geothermal Reservoir Engineering,
(2013).

P. G. CIARLET, Mathematical elasticity. Vol. I, vol. 20 of Studies in Mathematics
and its Applications, North-Holland Publishing Co., Amsterdam, 1988. Three-
dimensional elasticity.

D. L. CoHnN, Measure theory, Birkhduser, Boston, Mass., 1980.

G. DAL MAso, G. A. FRANCFORT, AND R. TOADER, Quasistatic crack growth
in nonlinear elasticity, Arch. Ration. Mech. Anal., 176 (2005), pp. 165-225.



Bibliography 153

[24]

[25]

28]

[35]

[36]

[37]

G. DAL MAso AND F. IURLANO, Fracture models as T -limits of damage models,
Commun. Pure Appl. Anal., 12 (2013), pp. 1657-1686.

G. DAL MAsO AND G. LAZZARONI, Quasistatic crack growth in finite elasticity
with non-interpenetration, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010),
pp- 257-290.

G. DAL MAsSO AND M. MORANDOTTI, A model for the quasistatic growth of
cracks with fractional dimension, Nonlinear Anal., (2016).

G. DAL MAso AND R. TOADER, A model for the quasi-static growth of brit-
tle fractures based on local minimization, Math. Models Methods Appl. Sci., 12

(2002), pp. 1773-1799.

G. DAL MAso AND R. TOADER, A model for the quasi-static growth of brittle
fractures: existence and approximation results, Arch. Ration. Mech. Anal., 162
(2002), pp. 101-135.

G. DAL MAso AND C. I. ZEPPIERI, Homogenization of fiber reinforced brittle
materials: the intermediate case, Adv. Calc. Var., 3 (2010), pp. 345-370.

J. DESROCHES, E. DETOURNAY, B. LENOACH, P. ParaNAsTASIOU, J. R. A.
PEARSON, M. THIERCELIN, AND A. CHENG, The crack tip region in hydraulic
fracturing, Proceedings of the Royal Society of London. Series A: Mathematical
and Physical Sciences, 447 (1994), pp. 39-48.

M. A. EFENDIEV AND A. MIELKE, On the rate-independent limit of systems with
dry friction and small viscosity, J. Convex Anal., 13 (2006), pp. 151-167.

H. FEDERER, Geometric measure theory, Die Grundlehren der mathematischen
Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.

M. FOCARDI AND F. IURLANO, Asymptotic analysis of Ambrosio-Tortorelli en-
ergies in linearized elasticity, STAM J. Math. Anal., 46 (2014), pp. 2936-2955.

I. FonsEcA, N. Fusco, G. LEONI, AND M. MORINI, Equilibrium configurations
of epitaxially strained crystalline films: existence and regularity results, Arch.
Ration. Mech. Anal., 186 (2007), pp. 477-537.

I. FONSECA AND G. LEONI, Modern methods in the calculus of variations: LP
spaces, Springer Monographs in Mathematics, Springer, New York, 2007.

I. FONSECA AND S. MULLER, Quasi-convex integrands and lower semicontinuity
in L', STAM J. Math. Anal., 23 (1992), pp. 1081-1098.

I. FONSECA AND S. MULLER, Relazation of quasiconvez functionals in BV(Q, RP)
for integrands f(x,u,Vu), Arch. Rational Mech. Anal., 123 (1993), pp. 1-49.



154

Bibliography

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

G. A. FRANCFORT AND C. J. LARSEN, Ezistence and convergence for quasi-static
evolution in brittle fracture, Comm. Pure Appl. Math., 56 (2003), pp. 1465-1500.

G. A. FRANCFORT AND J.-J. MARIGO, Revisiting brittle fracture as an energy
minimization problem, J. Mech. Phys. Solids, 46 (1998), pp. 1319-1342.

D. GARAGASH AND E. DETOURNAY, The tip region of a fluid driven fracture in
an elastic medium, Journal of Applied Mechanics, 67 (1999), pp. 183-192.

M. GIAQUINTA, Introduction to reqularity theory for monlinear elliptic systems,
Lectures in Mathematics ETH Ziirich, Birkhauser Verlag, Basel, 1993.

M. GIAQUINTA AND S. HILDEBRANDT, Calculus of wvariations. I, vol. 310 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], Springer-Verlag, Berlin, 1996. The Lagrangian formal-
ism.

E. GORDELLIY AND A. PEIRCE, Coupling schemes for modeling hydraulic fracture
propagation using the XFEM, Comput. Methods Appl. Mech. Engrg., 253 (2013),
pp. 305-322.

A. A. GRIFFITH, The phenomena of rupture and flow in solids, Philosophical
Transactions of the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character, 221 (1921), pp. 163-198.

M. J. HUNSWECK, Y. SHEN, AND A. J. LEw, A finite element approach to the
simulation of hydraulic fractures with lag, International Journal for Numerical
and Analytical Methods in Geomechanics, 37 (2013), pp. 993-1015.

F. IURLANO, Fracture and plastic models as T -limits of damage models under
different regimes, Adv. Calc. Var., 6 (2013), pp. 165-189.

D. KNEES AND A. MIELKE, Energy release rate for cracks in finite-strain elas-
ticity, Math. Methods Appl. Sci., 31 (2008), pp. 501-528.

D. KNEES, A. MIELKE, AND C. ZANINI, On the inviscid limit of a model for
crack propagation, Math. Models Methods Appl. Sci., 18 (2008), pp. 1529-1569.

D. KNEES, C. ZANINI, AND A. MIELKE, Crack growth in polyconver materials,
Phys. D, 239 (2010), pp. 1470-1484.

S. G. KranTz AND H. R. PARKS, The implicit function theorem, Birkh&user
Boston, Inc., Boston, MA, 2002. History, theory, and applications.

J. KRISTENSEN, Lower semicontinuity in spaces of weakly differentiable functions,
Math. Ann., 313 (1999), pp. 653-710.

G. LAzzZARONI AND R. TOADER, Energy release rate and stress intensity factor
in antiplane elasticity, J. Math. Pures Appl. (9), 95 (2011), pp. 565-584.



Bibliography 155

[53]

[54]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

G. LAZZARONI AND R. TOADER, A model for crack propagation based on viscous
approximation, Math. Models Methods Appl. Sci., 21 (2011), pp. 2019-2047.

B. LECAMPION AND E. DETOURNAY, An implicit algorithm for the propagation
of a hydraulic fracture with a fluid lag, Comput. Methods Appl. Mech. Engrg.,
196 (2007), pp. 4863-4880.

A. LucaNTONIO, G. NOSELLI, X. TREPAT, A. DESIMONE, AND M. ARROYO,

Hydraulic fracture and toughening of a brittle layer bonded to a hydrogel, Phys.
Rev. Lett., 115 (2015), p. 188105.

V. G. MAZ’JA, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-
Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova.

A. MIELKE, Fvolution of rate-independent systems, in Evolutionary equations.
Vol. II, Handb. Differ. Equ., Elsevier /North-Holland, Amsterdam, 2005, pp. 461—
559.

A. MIELKE, R. RossI, AND G. SAVARE, Modeling solutions with jumps for rate-
independent systems on metric spaces, Discrete Contin. Dyn. Syst., 25 (2009),
pp- 585-615.

A. MIELKE, R. RossI, AND G. SAVARE, BV solutions and viscosity approxima-
tions of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012),
pp. 36-80.

A. MIELKE AND T. ROUBICEK, Rate-independent systems, vol. 193 of Applied
Mathematical Sciences, Springer, New York, 2015. Theory and application.

A. MikeLIC, M. F. WHEELER, AND T. WICK, A phase field approach to the fluid
filled fracture surrounded by a poroelastic medium, ICES Report 13-15, (2013).

A. MikeLICc, M. F. WHEELER, AND T. WICK, A quasistatic phase field approach
to fluid filled fractures, ICES Report 13-22, (2013).

A. P. MORSE, Perfect blankets, Trans. Amer. Math. Soc., 61 (1947), pp. 418-442.

M. NEGRI AND C. ORTNER, Quasi-static crack propagation by Griffith’s crite-
rion, Math. Models Methods Appl. Sci., 18 (2008), pp. 1895-1925.

M. NEGRI AND R. TOADER, Scaling in fracture mechanics by BazZant law:
from finite to linearized elasticity, Math. Models Methods Appl. Sci., 25 (2015),
pp. 1389-1420.

C. NOUR, R. J. STERN, AND J. TAKCHE, Validity of the union of uniform closed
balls conjecture, J. Convex Anal., 18 (2011), pp. 589-600.

S. RAacca, A viscosity-driven crack evolution, Adv. Calc. Var., 5 (2012), pp. 433
483.



156

Bibliography

[68]

[69]

S. RAaccA, A model for crack growth with branching and kinking, Asymptot.
Anal., 89 (2014), pp. 63-110.

C. A. ROGERS, Hausdorff measures, Cambridge Mathematical Library, Cam-
bridge University Press, Cambridge, 1998. Reprint of the 1970 original, With a
foreword by K. J. Falconer.

I. N. SNEDDON AND M. LOWENGRUB, Crack problems in the classical theory of
elasticity, John Wiley & Sons, Inc., New York-London-Sydney, 1969.

U. STEFANELLI, A wvariational characterization of rate-independent evolution,
Math. Nachr., 282 (2009), pp. 1492-1512.

R. TEMAM, Problemes mathématiques en plasticité, vol. 12 of Méthodes
Mathématiques de I'Informatique [Mathematical Methods of Information Sci-
ence|, Gauthier-Villars, Montrouge, 1983.

R. TOADER AND C. ZANINI, An artificial viscosity approach to quasistatic crack
growth, Boll. Unione Mat. Ital. (9), 2 (2009), pp. 1-35.



