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Abstract

Determining the correct state of a protein or a protein complex is of paramount
importance for current medical and pharmaceutical research. The stable con-
formation of such systems depend on two processes called protein folding and
protein-protein interaction. In the course of the last 50 years, both processes
have been fruitfully studied. Yet, a complete understanding is still not reached,
and the accuracy and the efficiency of the approaches for studying these prob-
lems is not yet optimal.

This thesis is devoted to devising physical and statistical methods for recog-
nizing the native state of a protein or a protein complex. The studies will be
mostly based on BACH, a knowledge-based potential originally designed for the
discrimination of native structures in protein folding problems. BACH method
will be analyzed and extended: first, a new method to account for protein-
solvent interaction will be presented. Then, we will describe an extension of
BACH aimed at assessing the quality of protein complexes in protein-protein
interaction problems. Finally, we will present a procedure aimed at predicting
the structure of a complex based on a hierarchy of approaches ranging from
rigid docking up to molecular dynamics in explicit solvent. The reliability of
the approaches we propose will be always benchmarked against a selection of
other state-of-the-art scoring functions which obtained good results in CASP
and CAPRI competitions.






Preface

Chapter 2. Section 2.1 is a review of the methods presented in several works by
Miyazawa and Jernigan, [MJ85, MJ96|, Sippl [Sip90| and Baker and co-authors
[TBM*03, RSMB04, GMW™03]. Section 2.2 contains a summary of the work
presented in [CGL'12], here presented with the permission of authors, and
expands the concepts hereby mentioned. 2.1 is a Figure from Ref. [CGLT12],
copied with the permission of the authors. Section 2.3 is a summary of the
methods presented in the works whose citations can be found in the text.
Chapter 3. The work here presented has been published in [SZC*13].
Chapter 4. The work here presented has been published in [SGST15].
Chapter 5. Paper in preparation.
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Thesis outline

Proteins are a wide class of biological molecules of great importance for the
functioning of the cell. They are assembled by the rybosome as unfolded linear
chains of amino acids, and in order to perform their functions, they have to
assume a well-defined structure that they do not possess at the moment of
their assembly. The change from a stretched conformation to a more compact
one is called protein folding. For small proteins this process is independent of
external factors: it is proved that the correct, functional fold in many proteins
is only dependent on its amino acid sequence [AHSW61|. This confirms that
protein folding is based on mechanisms which are independent of the specific
system and can be studied from a physical point of view.

If a protein would have to explore randomly the conformational space until the
correct and stable state is found, the folding process would take a time longer
than the age of the universe [Lev69|. The fact that folding occurs in much
shorter times poses restrictions on the shape of the free energy landscape of
proteins, which have to someway drive the system towards the correct (native)
conformation. A strategy to study the process of protein folding is thus to
calculate the free energy of the system. However, an exact calculation of this
quantity is far too complex. Thus one has to rely on some kind of approximation
and compute some other quantity that mimics the properties of the true free
energy.

The same approach can be used to solve a related problem: protein-protein
interaction. The interaction network among proteins is fundamental for all
processes occurring inside the cell: notable examples are metabolic pathways,
signaling, channeling, motor skills.

Determining the correct state of a protein or of a protein complex is thus central
not only for basic science but most prominently for medical and pharmaceutical

research.



This thesis is devoted to devising physical and statistical methods for recogniz-
ing the correct conformation in problems of protein folding and protein-protein
interaction.

In Chapter 1 we will present an overview of the structural organization of
protein and protein complexes. Then, we will describe the most renowned
experimental and computational methods to investigate the protein folding and
protein-protein interaction. Particular attention will be reserved to computa-
tional methods based on physical laws and statistical concepts. Among them,
we will introduce the importance of scoring functions and their flexibility in a
vast range of different situations.

The subject of scoring functions will then be elaborated in Chapter 2. First,
we will propose a rigorous definition of scoring function, then we will describe
from a historical perspective the development of statistical scoring functions,
or knowledge-based potentials (KBPs), then we will focus on Bayesian Analysis
Conformation Hunt (BACH) [CGL*12], a statistical scoring function devised
for recognizing the native fold of monomeric proteins. Chapter 3, Chapter 4
and Chapter 5 will be dedicated to the description of improvements of the
BACH method and its application to different contexts.

Specifically, in Chapter 3 we will describe an alternative method to calculate
the solvent exposed surface area of a protein in order to account for the inter-
action between residues and solvent. The new method is based on the Linear
Combination of Pairwise Overlaps (LCPO) [WSS99| approach to calculate the
solvent accessible surface area (SASA) of a protein. We will describe how a
suitably modified implementation of the LCPO methods is able to confer to
the BACH algorithm a higher speed, a slight increase in accuracy and the
possibility of calculating derivatives of the scoring function with respect to
atomic coordinates.

In Chapter 4 we will describe an extension of BACH scoring function aimed
at studying protein-protein interaction (PPI) problems. We will justify the
possibility of applying BACH to PPI with the help of a formalism based on
information theory. This theoretical framework will also suggest manners to
refine BACH parameters in order to increase the accuracy of the score in both
protein folding and protein-protein interaction problems. Other improvements
will be presented as well: the introduction of a term accounting for steric
clashes and the formulation of an accurate procedure to assess the performance

of BACH and other state-of-the-art scoring functions on challenging test sets



of protein complexes.

After having assessed the performance of BACH in recognizing the native
structure of protein complexes, in Chapter 5 we will present the results of a
procedure aimed at predicting the structure of a complex from the unbound
structures of two monomers. Through increasingly accurate refinements, the
properties and performances of BACH and other two state-of-the-art scoring
functions will be investigated. The results of this study will highlight the
connection between the procedure used for generating the structures and the
function used to score them, and we will be able to draw some conclusions on

the characteristics of both.






Chapter 1

Computational protein structure

prediction

Figure 1.1: A protein rich in secondary structure: a-helices are colored in purple,
[B-sheets in yellow. The PDB code of the protein is 3D7L.

When observing the geometry of even a small globular protein like the one
in Fig. 1.1, one cannot miss to notice how convoluted the network described
by its backbone chain is and how apparently intricate and unordered are the
interactions between its parts. This complexity stems only from the sequence of
the amino acids of the protein, and allows the molecule to perform the function(s)
it was selected for. Knowing the structure of an active protein is thus of

enormous interest for the biological community and central for pharmacological



studies. Although during the past fifty years experimental techniques made huge
improvements in the field of protein structure determination, a consequence
of the slowness, difficulty and cost of the process is the very large number
of structures that still have to be determined. The ability of predicting the
structure of a protein from its sequence of amino acids is thus seen as both a
most wanted advancement for all sorts of practical purposes and an important
step in understanding the physical process underneath protein folding.

An even more awaited advancement is the ability of predicting the structure
of protein-protein complexes. Most of the functions performed by cells are
grounded on interaction processes among proteins: well-known examples are
signal transduction cascades, transport across membranes, metabolic processes,
all of them crucial targets for treating a large quantity of diseases. To predict if
two or more proteins will or will not interact with each other through a certain
interface is thus a problem taken into great consideration both in the biological

and medical fields.

1.1 The geometry of a protein

The intricate geometry of proteins shows three different levels of organization,
called primary, secondary and tertiary structure.

Under the name of primary structure goes the information about the distinc-
tive sequence of amino acids a protein is composed of. Knowing the primary
structure of a protein means knowing its topology, the information that a
chemical formula of the compound provides. Rigorously speaking, amino acids
can undergo many chemical reactions: in presence of catalyzers, ions, acidic
or basic solvents, some of their side chains can lose or gain protons. Proton
transfers often cause the start of cascade reactions which most of the times are
of great importance in order to carry on the main functionalities of the protein.
It is also common to observe hydrolization, phosphorylation or sulfur bridge
breaking processes, and this only to state some of the most important categories
of chemical reactions involving sidechains. Chemical reactions happen also
in the solvent surrounding the protein: water molecules at thermodynamic
equilibrium and at room temperature undergo autoionization with a certain
probability. Although these events may be very important from a chemical
perspective, they are rarely relevant in the framework of structural prediction.

Thus, we will ignore them. For our purposes, we will assume that the chemical



formula of a protein, and thus its primary structure, remains constant.

When assembled, a protein is a completely stretched and untangled chain
of amino acids. Although a non-negligible fraction of proteins partially main-
tains the initial lack of shape, most of them assume less flexible and more
ordered conformations. Locally, they can fold in a helical fashion (the majority
of which are a-helices) or can assume the shape of a slightly twisted sheet
(B-sheets). What these structures have in common is the spatial locality. They
are identified by the name of secondary structure. In the functional (namely,
native) conformation of proteins its presence can vary considerably, ranging
from 10% to as much as 90%. Secondary structure is the protein’s intermediate
level of structural organization, and is stabilized by hydrogen bonds created by
the backbone of the protein, which is the sequence of amide groups from which

the side chains (namely, residues) stem.

The secondary structure is organized in domains which can be connected
by what is called tertiary structure. This level of organization reflects the global
network of interactions which provide to the protein its final and stable form.
Even if the matter is still somehow debated, it is accepted by the majority
of the community that the main driving force for the creation of both the
secondary and tertiary structure is the degree of polarity of the side chains. 8
over the 20 types of residues are indeed hydrophobic, and 4 have hydrophobic
regions due to aliphatic carbons. Since water, which is by far the most common
solvent molecule, is polar, the hydrophobic parts are subject to a force which
pulls them together in the bulk of the protein, minimizing their exposition at
the protein-water interface. This implies that the stability of both secondary
and tertiary structure can be modified even without changing the chemical
composition of the protein. For example, most of the proteins whose native
conformation is ordered and stable lose much of their structural complexity
when immersed in a solvent with both hydrophobic and hydrophilic parts, like
ethanol or methanol. The hydrophobic part of the solvent will weaken the
interaction that stabilizes the tertiary structure, while the hydrophilic part will

compete with the solvent-solvent hydrogen bonds.



1.2 Systems at equilibrium

The nature of the solvent is indeed not the only factor that can alter the stabil-
ity of a protein. The protein-solvent system is prone to change its properties
in relation to changes in macroscopical observables like density, temperature
or pressure. Usually, an environment at constant temperature, pressure and
number of molecules is considered. This arrangement is defined as closed system,
meaning that the system cannot exchange matter with the environment, but
can exchange energy to keep some macroscopical quantities fixed. If these
quantities are temperature and pressure (or, sometimes, volume), the system is
at equilibrium and the set of different configurations the system can take is

called canonical ensemble.

In conditions of equilibrium, several proteins unfold and re-fold spontaneously
due to thermal fluctuations [HGMOT06]. The conformations contained in the
canonical ensemble still differ by secondary and tertiary structure arrangements.
Such sets of conformations are the object of interest in Biophysics. Statistical
mechanics offers powerful tools for the investigation of the properties of the
system: Gibbs’s and Helmoltz’s free energies have the property to be minimal
for the equilibrium conformation. Moreover, systems at equilibrium are easier
to study experimentally, hence estimates of their properties are more accurate.
Finally, the canonical ensemble of a protein at a specific temperature and
pressure can be used to recover all the physical quantities that characterize the
system, such as its free energy landscape, its entropy and the probability of

the system to be trapped in a metastable state.

1.3 Protein complexes

There is yet another level of complexity which involves proteins: they can form
complexes, and organize in what is called quaternary structure. Interaction
between proteins occur when two or more monomers bind together to carry on
their biological function. Proteins have been observed to interact in groups of
very different sizes. As an example, many transduction paths are operated by
complexes of only two subunits (dimers), while very large molecular machines
are usually found performing motor tasks like DNA replication [BB11], cargo
[Sch04] or motion [KBO04]. Protein folding and protein-protein interaction do

not necessarily happen separately: there are families of proteins whose unbound



state is partially unstructured and which complete their folding process upon
binding. In this case, we talk about obligate complexes, and usually they are
characterized by a much longer lifetime [NT03]. There is still much controversy
on the mechanism of binding for obligate complexes. Our attention will be
mainly focused on complexes formed by monomers which are already folded at

the moment of the interaction (non-obligate complexes).

1.4 Structure determination by X-ray and NMR

spectroscopy

Given the high degree of complexity of the three-dimensional structure of
proteins, the process of recovering it from experiments is also very lengthy
and complex. Among the many techniques used for this purpose, two of them
proved particularly successful during the years: X-ray diffraction [KBD 58] and
nuclear magnetic resonance (NMR) spectroscopies [Wut01]. The advantages
and drawbacks of these two approaches are usually believed to compensate.
X-ray spectroscopy provides an accurate estimation of the positions of all the
atoms except the hydrogens, but the protein needs to be condensed into a
crystal. The process of crystallization can modify the structure of the protein,
that will not be exactly in its native conformation anymore. It is usually
taken for granted that at least for completely folded, globular proteins, the
crystallization process does not alter much the shape of the protein, and that
for this class of proteins the crystallized state is thus close to the true native
state. Nonetheless, the crystallization process can be extremely time consuming
and entails the most relevant limitation of the technique.

If X-ray spectroscopy provides accurate tridimensional models at the cost
of crystallizing the protein, in NMR spectroscopy it is sufficient to isolate
the desired protein in a solvent. The drawback is that this technique allows
reconstructing the structure only by algorithms which use the information
enclosed in the spectra to recover distances between atoms. Provided there are
enough constraints, the problem of guessing a tridimensional structure from
distances between atoms has an exact solution. If the number of sufficient
constraints is not exactly reached but only approached, the conformational space
usually reduces enough to allow for reasonable guesses. Still, the algorithms
used in this procedure are complex, and work only for proteins of moderate

size.



1.5 Computational approaches to structure pre-
diction

Both X-ray and NMR spectroscopy require costly machineries. The experimen-
tal procedures are complex, long to perform and usually offer no guarantees
of success. Smaller costs in time and resources is what makes statistics-driven
computational approaches competitive with these well-established techniques.
Computational techniques do not involve the direct observation of a biomolecule,
rather they try to guess the structure of a protein based on the information
contained in the primary sequence. Indeed, the seminal studies performed
by Anfinsen in the 1960s [AHSW61| prove that the secondary and tertiary
structure of a protein only depend on its amino acid sequence. This implies
that the knowledge of the primary sequence is in principle sufficient to recover
the native tridimensional structure. In this section we will provide an overview
of the most important computational methodologies to approach the problem

of structure prediction.

1.5.1 Structure prediction by Bioinformatics

A remarkable progress in structure prediction was made by comparative model-
ing methods, which take as reference experimentally resolved structures. The
two most successful methodologies are homology modeling [FS03, MDT09| and
protein threading [XLX04, Zha08|.

Homology modeling is based on the assumption that proteins whose sequence
show similarities are prone to show structural similarities as well. Thus, from a
database of resolved structures, a library of matches between sequences and
structures is created. To make a prediction on a target protein whose structure
is unknown, its sequence is aligned with the ones in the database. If a match
in sequence is found, the structure of the protein is modeled on the equivalent
protein in the database. Three groups of methodologies can be identified: rigid
body assembly |Gre81|, segment matching [Lev92|, and modeling by satisfaction
of spatial restraints [SB93|.

In rigid body modeling algorithms the structure is assembled from a small
number of rigid bodies obtained from the core of the conserved regions |[Gre81].
The non-conservative parts are then rebuilt.

The segment-matching methods divide the sequence into small parts and then

model each of them against a database of known fragment structures [Lev92].

10



Unlike rigid body modeling, this method requires only a minimal degree of
similarity between the known structures and the unknown one [SB93].

The spatial restraints methods derives a set of restraints from the sequence
alignment and then builds the model which minimizes the number of violations
of these restraints.

While homology modeling aligns only sequences, and thus needs to have in
the database a sequence homologous to the target one, protein threading also
works with three dimensional structures [Zha08|. From a database of resolved
structures, a library of different protein folds is derived. The target structure is
then fitted to each fold in the library, allowing also for insertions and deletions.
The quality of each possible fit is calculated by a scoring function: the fold
with the highest quality will be the actual structure prediction for the target

sequelnce.

1.5.2 Scoring functions

The description of the techniques mentioned above allows stressing from the
very beginning the importance of scoring functions in the framework of protein
structure prediction. Algorithms that perform a selection over a large set of
possible models need some sort of decision-making step. Scoring functions
are functions used to select over a set of possible outputs the ones with the
best features. They can be divided into two categories: physical potentials
[SR95, HSL95, YD96| and knowledge-based potentials [MJ96, Sip90, SKHBI7|.
Physical potentials try to reproduce the free energy of a conformation by
considering actual physical terms combined through a limited quantity of
optimized parameters. An important example are the force fields for atomistic
simulations, that will be described in Section 1.5.6. The advantage of this
kind of approach is that they can usually provide clearer insights about the
systems studied. However, due to their explicit formulation, the complexity of
the interaction they can describe is limited by the functional form of the terms
used to model them.

Knowledge-based potentials instead possess a larger quantity of parameters
which are made to capture the relevant physical and chemical details through
a learning procedure. Since they do not contain explicit terms to model the
interactions, they can account for much more complex effects, whose limit is
only the statistical method used to estimate the value of the parameters. This

comes at the cost of losing a clear insight on what the potential is actually

11



describing.

The category of knowledge-based potentials (KBPs) will draw our interest
during this work. Tanaka and Scheraga, followed by Miyazawa and Jernigan,
introduced the method as a quasi-chemical approximation [TS76, MJ85]|, while
Sippl as a of potential of mean force [Sip90]. There have been controversies
on the use of the denomination "potentials" for these methods, as they do
not really provide meaningful free-energy estimates [TD96, BN76]. Thus, a
redefinition in terms of Bayesian probabilities was proposed by Baker et al. in
the Rosetta method [SKHB97]|, and is now commonly accepted. We will present
the concept in more detail in Chapter 2, where we will apply them to other kinds
of problems. Further developments in the construction of scoring functions were
devised in more recent times, many of them including system-specific terms
[DSZ*12]. Notably, the introduction of coevolution is proving very effective in
determining patterns of conserved native contacts [CT15, LT13, MPL*11]

1.5.3 Structure prediction of protein complexes

Interaction between proteins is such an important process that during the
last decades a large fraction of the computational community’s attention has
shifted from single proteins to protein superstructures. Indeed, protein-protein
interactions are the target of the vast majority of drugs, and are thus of great
importance for pharmaceutical studies. Limiting to the case of a dimer com-
posed of two already structured monomers, the two most important issues are
the following: understanding if two proteins interact, and, if they do, which is
the quaternary conformation adopted by the complex.

The first problem was studied from different perspectives, such as biochem-
istry [Gol02, HCK02|, quantum chemistry [QDWL11], signal transduction and
metabolic or genetic networks [SUS07|. Tools offered by bioinformatics were
used as well: again, a variety of sequence homology methods were developed.
Among them, genomic-based approaches [SUS07| integrate the data from dif-
ferent methods to build an interaction network. Then, they try to predict the
function of the complex from the analysis of the network structure. These
methods are the ones which brought to the discovery of hundreds of multipro-
tein complexes, but unlike homology-based models they do not provide hints

on the structure of the complexes.
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1.5.4 Docking algorithms

Docking algorithms [KKSE*92| try to predict the native conformation of a
protein complex by generating a large set of different poses which are then
evaluated by a scoring function. The first algorithms for macromolecular
docking were devised in the late "70s and were limited to assess the shape
complementarity of the possible interaction sites [JW78|. In the early "90s more
structures were determined and the available computational power increased
substantially: these premises led to the birth of the first algorithms able to
perform large-scale conformational searches. However, even nowadays sampling
the whole conformational space of two interacting subunits remains unfeasi-
ble. A thorough scan of the whole space is possible only if a rigid docking
technique is applied - that is, only if we consider the two subunits as rigid
bodies and we generate the poses only applying rotations and translations.
These algorithms are usually accelerated by the use of Fast Fourier Transforms
(FFT) [KKSE*92, MRP*01|, which enable the program to evaluate at once all
the conformations separated only by a translation, or by Geometric Hashing
[WNOO], which also allows to bring the computation cost of the conformational
search from O(n') to O(n?), where n is the number of putative sites. Other
approaches include the use of Boolean operations [PKWMO00| and genetic al-
gorithms [GWAO1]. Many of the state-of-the-art docking algorithms use rigid
docking in a first moment, and then select a subset of conformations whose
structure is refined. The selection is usually operated by scoring functions
which are based on additional information such as predictions of functional
sites [ZS01], estimations of the free energy of binding [NLO1| and additional
structural data [Clo00]. It is debated if rigid docking offers a reasonable
starting point to model protein-protein interactions among every couple of
ordered, globular monomers. In the case of intrinsically disordered subunits, or

in case of folding upon binding, the method clearly lacks the necessary precision.

It is rather well assessed that the regions close to a binding site have of-
ten a flexible conformation [LF00|, and that the binding site is likely to undergo
conformational changes upon binding in a mechanism denominated induced fit
and postulated in the 1950s [GLC94, Kosb8|. Flexible docking largely increases
the dimension of the conformational space by allowing some of the torsional an-
gles of the monomers to move. After a coarse conformational search, flexibility

is allowed on the most promising configurations through a variety of meth-

13



ods such as ensemble analysis [BRW95], normal mode analysis [ESDW0§],
molecular dynamics [DNRB94]| or essential dynamics [MRO05|. In most cases
flexible docking methods provide better conformations, but they have to rely
on internal scoring functions to focus on the most plausible interaction sites.

In short, some progress has been made through the years in building docking
algorithms, but much more work is needed to provide a quantitative picture of

the binding interaction sites and affinities of two monomers, as we will see in
Chapter 5.

1.5.5 Competitions for prediction and scoring of native

structures

CASP (Critical Assessment of protein Structure Prediction) [CKT09| and
CAPRI (Critical Assessment of PRedicted Interactions) [JHMT03] are two
community-wide experiments to judge the performances of methods for structure
prediction and structure quality assessment. While the former focuses on
problems of protein folding, the latter is dedicated to protein-protein (or
protein-nucleic acid) interaction problems. The two competitions follow the
same procedure: first, an unpublished native structure is communicated to the
organizers. In CASP, the amino acid sequence of the structure is supplied to
the participants, who will then try to predict the three-dimensional structure
of the protein. In CAPRI, either the bound/unbound conformations of the
monomers is supplied, or the amino acid sequence and some homology data.
Each predictor can send a small number of guesses to the organizers. The
guesses are then evaluated with the help of structural estimators: RMSD,
interface-RMSD, ligand-RMSD, fraction of native contacts. As a second part of
the competitions, the predictions submitted by the participants are shuffled and
given to another group of participants which will try to score the nearest-native
structure in the set. The difficulty of the scoring competition also depends on
the quality of the predictions.

The sets of predictions from CASP and CAPRI experiments constitute a very
challenging trial for methods of structure quality assessment, and are widely
used for test purposes throughout the community. We will make use of these

resources in Chapters 2, 3 and 4.
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1.5.6 Molecular Dynamics

Up to now we presented methods to infer the native structure of a protein or of
a protein complex based on probabilistic considerations. Although statistical
methods are a powerful and efficient tool to treat a large class of problems,
they suffer from several limitations. First, they need to rely on a solid statistics,
which may not be available, or may be incomplete or biased. As an example,
in the Protein Data Bank many classes of proteins are highly underrepresented:
although transmembrane proteins are thought to constitute roughly 40% of the
different types of proteins present in a cell, only 2% of the PDB is composed by
them. Second, we will see in the rest of this thesis that estimators to judge the
quality of a model are seldom exact. Lastly, probabilistic methods based on
information obtained from structural datasets are not able to investigate on all

sorts of quantities and mechanisms connected with the dynamics of the system.

One manner to address these issues is to rely on a physical rather than on
a statistical approach, and simulate the dynamics of the system by applying
Newton’s equations of motion. The method is called molecular dynamics (MD),
and has been for decades a central instrument of inquiry in biophysics as
well as in other branches of science. We briefly present the advantages and
disadvantages of relying on this approach by relating to our focus: recovering
the correct structure of a protein or of a protein complex. Indeed, one method
to tackle the problem is going through the core biological process, by simulating
the folding of the protein starting from a stretched conformation. MD operates
by applying the equations of motion and makes the system evolve in time
until the equilibrium conformation is reached. If the system was evolved with
respect to the correct Hamiltonian, this technique would produce exact results.
QM approaches, where both the nuclei and the electrons are treated with the
correct Hamiltonian, can be afforded only for small molecules. Among the
many approximations that can be considered, the Born-Oppenheimer one is
often used, assuming that the relaxation time for the electrons is much faster
than the one for the atomic nuclei. Thus the Schrédinger equation for the
electron system is solved at any time by considering the external field generated
by the nuclei as frozen. The energy of the system can thus be inferred by
only considering the movement of the electrons, and will be dependent on the
position of the atomic nuclei. Despite the greater simplicity of this method,

it still results in very expensive calculations, limiting its usefulness only to
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study systems of tens of atoms for as little as tens of picoseconds at most.
Calculations made through the density functional theorem (DFT) can be set up
for specific systems containing hundreds of atoms, which nowadays are the limit
for QM calculations. This is not sufficient for simulating a protein immersed
in a solvent, which can contain hundreds of thousands of atoms. This is the
reason why classical rather than quantum Hamiltonians is usually exploited.
The elimination of the electronic degrees of freedom enables enormous savings
of computational time, allowing the simulation of fully hydrated biomolecules.
Atoms are generally treated as hard spheres and chemical bonds are approxi-
mated by steep parabolic potentials. Clearly within this description, the system
cannot modify the chemical bonds during the run. The chemical formula of
the compound is thus bound to remain identical for the whole length of the
simulation. This restraint might seem exceedingly strict, and indeed it is if one
wants to study processes involving chemical reactions. On the other hand, if
the subject of the study is protein folding or protein-protein interaction, this
constraint helps limiting the already very large conformational space of the

system.

Passing from a QM to a classical description, one has to choose an empir-
ical form of the Hamiltonian, which is normally approximated with a sum of
analytical terms describing the chemical bonds, Van der Waals and electrostatic
interactions. The set of terms and parameters used to describe the energy of
the system is globally called force field (FF). The FF parameters are often
fitted on the potential energy evaluated with QM approaches in smaller systems
representing typical parts of the greater systems. In fifty years of development,
molecular dynamics passed from simulating thousands of atoms for tens of
picoseconds to simulating hundreds of thousands of atoms for milliseconds,
with the use of the most powerful state-of-the-art supercomputers [SGB*14].
By using molecular dynamics, the folding mechanisms of many specific systems
have been understood, and the structure of some small proteins have been
predicted [LLPDS11|. Furthermore, many other phenomena like transitions
of ions through channels or enzymatic reactions have been studied [KTS14].
Disregarding all quantum effects is though proved to be at times a too serious
assumption [LLMP*12|. Water, for example, has a prominent quantum nature
which results in its extraordinary properties, which are of utmost importance

in biochemistry and for all life-related events in general. Although great efforts
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have always been made to reproduce the important characteristics of water
(i.e. viscosity, surface tension, formation of clathrate structures, condensation
and evaporation temperatures, etc.), the parameters used in classical FFs to
describe a water molecule are simply too few to reproduce all these properties.
The compromise is usually choosing some of the feature the solvent is required
to have and treat the others less carefully. Many of the best known force fields
are tuned in order to reproduce accurately the dynamics of proteins in a folded
configuration. Indeed, folded structured proteins represent the class that can
be best observed by experimental techniques, and hence the systems on which

we have the most stringent measurements.

Molecular dynamics provides a very rich information. The position and velocity
of each atom can be tracked and analyzed. This incredible level of accuracy is
compensated by a manageable, but still high time cost: nowadays, a common
workstation is able to simulate a few nanoseconds per day of dynamics of
a typical system of tens of thousands of atoms. Unfortunately most of the
interesting conformational changes usually take place in much greater lapses
of times, ranging from microseconds to minutes. Methods for distributed
computing were devised [SP00] to exploit the unused cpu times of personal
computers. The approach turned out to be very successful. However, much of
the computational power is still employed to simulate uninteresting movements
of the system, such as the fluctuations of the solvent. In order to cope with
larger systems or with larger time scales, there are two approaches which can
be taken. The first is making the interesting events happen sooner, or more
frequently. The methods going in this directions are called enhanced sampling
techniques [KRBT04, KRBT02, SO99, LP02|. The second is sacrificing the
atomistic detail of the description, and grouping different atoms parts which

will move rigidly. This strategy is called coarse-graining [MRY 107, CPD12].

1.6 Statistical mechanics and probability

During this quick introduction to the problem of protein structure prediction we
made frequent use of concepts and methods derived from two distinct branches
of physics. Statistical mechanics is the chief theory beneath molecular dynamics
simulation techniques, as well as an important reference for many experimental

procedures. On the other hand, the approaches aimed at scoring large sets
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of structures, or at predicting the structure based on sequence similarity, are
mostly rooted in probability theory. The two fields deepen their roots in seminal
works appeared two-three centuries ago, and ran parallel ever since. Although
statistical mechanics, especially in its application to quantum theories, makes
constant reference to the concept of probability distributions, the methods and
the justifications of the theory seldom base on the concepts of probability theory
[Sco00]. During the past century, there have been notable efforts to connect
the two disciplines: for example, maximum entropy methods have been applied
to get rid of the necessity of the ergodic theory as a foundation for statistical
mechanics [Cat08|. Nonetheless, the results of a combined vision do not entirely
convince the community, mostly because they bring forth hard philosophical
issues, such as the definition of physical events as subjective (Bayesian)|Jay03|
instead of objective (Humean) [How00]. As it happens in other branches of
physics, there is thus a problem of reluctancy in merging two theories which
though seem to converge more and more. The arguments treated during this
work will often need to refer to both environments. Not to take for granted a
unification which has not been yet achieved, we will limit ourselves to consider
the two theories as separate, and to work by analogy when passing from one
to another. The author hopes that the general spreading of machine learning
and statistical methods in the context of biophysics will bring the community

towards a comprehensive view of these ever closer areas of knowledge.

18



Chapter 2
Methodological background

This thesis is devoted to the improvement and quality assessment of BACH, a
scoring function for protein folding and protein-protein interaction. We will
thus start by introducing formally the concept of scoring function. Then, we
will introduce the original formulation of BACH and describe the procedure to
assess its performance in protein folding problems. Since one of the main aims
of this work is to extend BACH to the treatment of protein-protein interaction
problems, we will then describe some of the state-of-the-art scoring functions

which proved to perform well in this task.

2.1 Scoring functions

A scoring function can be defined in a very general way. Consider a finite set of
objects E = {c1,ca, ..., ¢, } and a finite set of parameters P = {p1,pa, ..., Dm }-
A scoring function s : E — S C R is a function from E to a finite subset of
real numbers S = {s1, 59, ..., 5,} C R, |S| < |E|, such that the "best" object

cp € E maps into a predefined extremum of S, s(cg; p1,p2, ..., pm) = extr(S).

For this definition to be flawless, there must always be the possibility of
defining the concept of "best" object, in order to always have such object in
any possible set. As an example, we can consider the problem of rating the
quality of a business company. There is no unique definition of what the "best"
business company should be. The evaluation criteria may change substantially:
one could be interested in the ability to repay credit, or the ability to improve
sales, or again the ability to expand its market, or a combination of these and

many other factors. Independently of the criteria for choosing what "good"
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means in a certain context, there should always be the possibility of finding
the best object in any set. Following the example, we cannot define the best
company as the one which gives the highest amount of shares, provided that
these are at least $ 1.000.000 worth, because there may not be any company
in the set satisfying the condition. More specifically, if there are at least two
companies which do not fulfill the requirement of distributing $ 1.000.000 worth
shares, there will be at least one set in which one cannot tell which is the "best"
company: the one containing only those two companies.

If a "best" object can always be defined, it follows that for each set of objects
there is only one possible rank. This rank is iteratively built by identifying the
"best" object of the set, then taking the subset containing all the objects in
the original set except the one selected as "best" and identifying the "best"
among them, and so on. If a "best" object cannot be defined for each possible
set of objects, the definition still holds, but the map between a certain set of
objects and their rank is not bijective anymore: there could be more than one
possible rank, or there could also be none. We will see this is the case for free

energy scoring functions.

As we saw in the previous example, the definition of what is "best" depends on
what one wants to use the scoring function for: this is the reason why scoring
functions can be applied in so many different situations. One could also rewrite
the definition of a scoring function in the formalism of statistical mechanics:
let F be a finite set of configurations ¢; of a system taken from the canonical
ensemble at fixed T' = Ty and P = P, (or alternatively 7' = Ty and V' = Vj). Let
there be a finite set of parameters P = {k, ¢, e, h,...}. If we define the "best"
conformation as the one dominating the equilibrium ensemble, the definition
of scoring function becomes the definition of the Gibbs’ (or Helmholtz’s) free
energy. It is not granted that the equilibrium conformation be present in every
possible finite subset of E. Thus, this definition does not imply that for each
subset a unique rank exists. In order to define a rank in all the conditions, one
has to define the "best" conformation as the "closest" one to the equilibrium
conformation. Nonetheless, this introduces the problem of defining a proper
distance between two conformations of the same system. In the case of protein
folding and protein-protein interaction, one can simply choose the root mean
square distance (RMSD), or some analogous function. We will principally use
the RMSD for protein folding and the iRMSD (interface-RMSD) for protein-
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protein interaction.

Up to now we have introduced the concept of scoring function in a very
general and abstract manner, in order to stress that protein structure predic-
tion is just one of the many fields to which one can apply the same concept. In
the context of specific interest for this thesis, scoring functions can be divided

into two categories:

e physical scoring functions, which employ actual physical terms in order to
estimate the score of a conformation. In these methods, the parameters are
usually fitted over a learning database, but still conserve an appropriate
physical meaning. Well-known examples are the force fields used in

molecular dynamics.

o statistical scoring functions, or knowledge-based potentials (KBPs), which
are not based directly on physical premises. The physical and chemical
information is stored in a large set of parameters in the course of a learning
procedure. The parameters do not have a simple physical meaning, and
are only values in which the information is stored. A notable example is

the Miyazawa-Jernigan potential [MJ85].

The two categories are to be conceived as fluid: indeed, there are scoring
functions which combine features from both of them. For example, in the next
section we will describe the Rosetta potential [SKHBI7|, which is a KBP relying
on many different statistics, each of which accounting for a different type of
physical interaction. We will now introduce KBPs in their historical perspective,
which will help us understanding the roots of the theoretical formulation of the
BACH algorithm.

2.1.1 Potentials of mean force?

Tanaka and Scheraga |[TS76] were the first ones to extract effective interactions
from frequencies of contacts in X-ray resolved structures. Miyazawa and
Jernigan then proposed a first formalization of the theory estimating contact
interaction potentials by means of the quasi-chemical approzimation [MJ85].

The approximation is based on the assumption that, for residue types a and b,

= e % (2.1)



where 74, is the average number of contacts between residue types a and b, and
eay 18 the contact energy associated to that couple of residue types, and is a
parameter of the model. In their work, Miyazawa and Jernigan also include
the interaction with the solvent, which is treated as an extra residue.

Further developments of these concepts brought Sippl to justify KBPs based on
probability distributions of pairwise distances [Sip90]. His main contribution
was defining the concept of reference state, which will influence the development
of KBPs for decades. The reference state is a state of a hypothetical system
with which one compares the actual system. Usually, the reference system
does not include interactions, so that by calculating the free energy difference
between the state of the actual system and the state of the reference system, an
estimate of the interaction energy is provided. This is typically done through

the inverse Boltzmann formula:

AF,(r) = —kT (log S‘:Z((:)) + log ?—Z) (2.2)
where a and b are types of atoms or residues and r is the distance between
two units. The AF,,(r) are the parameters stored in the KBP which then,
depending on the contact occurrences in the test structure, have to be summed
in order to compute the score (a free energy estimate). During the learning
phase, P,,(r) is estimated from a database of known structures, and Qu(r) is
estimated with respect to a reference system. One of the first reference systems
treated the residues as if they were in gas phase inside a box. Many times, the
probability density () does not even depend on the contact distance r.

This approach is justified saying that the potential of mean force (PMF)
Wap(r) = AF,(r) is an estimate of the reversible work required to bring two
particles (or residues) of type a and b from infinite distance to a distance r.
However, most of the times this assumption does not apply [BN76]. For this
reason, the approach by Sippl was long debated and the definition of PMFs

was found not appropriate.

2.1.2 Rosetta and the Bayesian approach

An approach based on Probability Theory was proposed in a seminal work by
Baker and co-workers [SKHB97|. We can consider the score associated to a

specific conformation as the probability Py (€|£) of finding a certain structure
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¢ given a sequence of amino acids £. Applying Bayes’ theorem we get

Pp(£]¢)

Piest (€] £) = Polg)

Po(€) o Po(E]€) Po(©) (2.3)
where the subscript "test" indicates the probability distributions of the unknown
structure to score, while "D" the ones calculated on a database of known
structures. As always when using the Bayesian probability, caution must be
taken in considering labels. While the final probability distribution Pies(€|L)
refers to the structure which is being scored, the likelihood is estimated on a
database of known structures. But the Bayes’ theorem alone is nothing but the
identity P(A|B)P(B) = P(B|A)P(A), where all four probability densities refer
to the same system. Thus, by Bayes’ theorem alone, we should have written
Prost (€|L) = Piest(€) Prest (£]€) / Piest (£). This implies that the first and most
important assumption of the method is that the likelihood calculated on the
test system can be approximated by the likelihood estimated on the database
of known cases:

Pt (£]€) = Pp(£]C) (2.4)

This is a typical assumption in Bayesian approaches: indeed, the choice are
usually either to approximate the likelihood with an analytical formula (a
tentative probability distribution satisfying the properties of interest) or to
compute the likelihood on another system. If we further assume that the

likelihood can be approximated by a product of pairwise probabilities, we have

P 7 (2
Pr(LlC) ~ HPD a;a;|ri;) o H Polrislaia;) aj (2.5)

Py (r;
1<j 1<j D ”

where ¢ and j are indexes over the atoms or residues considered and a; and a;
are the type of atoms (or residues) i and j. Eq. 2.5 eventually recovers the
Sippl’s formula of PMFs. Rosetta method exploits two different databases:
while the database used to calculate the likelihood Pp(£|€) is a collection
of crystallographic structures, the prior Pp(€) is calculated on a database of

fragments of proteins, with the following assumption:

PD(Q:) ~ HPD(Tijaeij>¢ij>wij‘55i7SSj) (26)

i<j

where 7;;,0,;, ¢ij,w;; are the distance and the angles describing the relative

orientation of local structure elements ss; and ss;. By writing the learning and
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scoring, one obtains

Py(g|e
Pea(@19) = "B 1o (@) o Po(f0) o(©
~ Pp(€) H Pp(aga|ri) (2.7)
x % H Po(rij, 0i5, ¢ij, wij| S5, 555) H rklljfal

55;#85; k<

During the years Rosetta scoring function was further improved by the im-
plementation of additional terms to account for different types of interaction.
However, the improvements regarded mainly the implementation of the likeli-
hood and the prior probability, while the formalism presented in this section
was kept unchanged, and provides a sound explanation of Sippl’s PMFs from a

probabilistic point of view.

2.2 BACH: Bayesian Analysis Conformation Hunt

Bayesian Analysis Conformation Hunt (BACH) is a statistical scoring function
for protein folding based on residue-residue contacts and residue-wise exposure
to the solvent. The scoring function is described in its original form in an
article by Cossio and co-workers [CGL*12|, and more extensively in Cossio’s
Ph.D. thesis [Cosl1]. Another description can be found in Zamuner’s Ph.D.
thesis [Zam15], where again the method is presented in its original form, and
where some modifications are proposed. We will here summarize the statistical
method used in BACH scoring function in the light of the formalism described
in Section 2.1. Then we will expose the main results of the original BACH
method, along with the tools used to assess its performance with respect to

other state-of-the-art scoring functions.

2.2.1 BACH statistical method

BACH is a residue-wise knowledge-based potential founded on a Bayesian
formalism inspired to the one described in Section 2.1.2. The ideas at the
basis of the construction of BACH scoring functions can be summarized in the

following;:

e The score of a structure is composed by a contribution which accounts for

the interactions between amino acids and a contribution which accounts
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for protein-solvent interactions.

e Although the statistical method considers residue-wise probabilities, the
decision of the type of contact performed by two amino acids is made by

considering the full atomistic configuration of the system.

e The types of contact a couple of amino acids can make are mutually
exclusive and include secondary-structure-specific contacts, Van der Waals
contacts and also the absence of contacts. The type of contact is checked
with a system of priorities: first, contacts proper of secondary structure
elements are checked via the DSSP algorithm [KS83]. Then, sidechain-
sidechain Van der Waals contacts are searched, by considering the least
distance between the heavy atoms of the sidechains of the two residues.
If none of these types of contact is found, the two amino acids are labeled

as not in contact.

e The solvent interaction is accounted for by checking if each amino acid is
exposed to the solvent. This is done by calculating the solvent exposed

surface per residue.

The score associated to a structure is the sum of two contributions:
EBACH = pEpair + Esol (28)

where p is a parameter fixed at 0.6, and Ep,;; and Eg, are statistical potentials
that account for the pairwise contacts and the protein-solvent interactions,
respectively [CGLT12].

2.2.2 Pairwise contact term

For each residue (or couple of residues) considered, an appropriate free-energy-

like term 62(% is added to the score:

N

Epair = Z GZ%)J (2.9)

i<j

where N is the total number of residues of the protein being scored, 7 and j are
indexes running on the residues, a; and a; are the amino acid type of residue

i and j respectively and c(ij) is the type of contact between residues ¢ and
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(4)

j. The contributions g%, are calculated on a training set of native protein

structures (see Section 2.2.4) in the following way:

Do My
P b ) '«
6c — —lOg (C|CL ) — —IOg Za Zc nab (210>
- P(c) S o,
S S S ns

where a and b are indices which run on the 20 types of residues, ¢ runs on

the 5 types of contacts and a on the structures of the learning database. The
number n;;" is symmetric in the permutation of the indexes a and b, as it is

constructed as cor ca
nSo — #T@Sa}) + #Tesb;l
ab 2

where #res;;" is the number of residues of type a which make a contact of

(2.11)

type ¢ with a residue of type b, observed in structure number « of the learning
database.

The five classes of contacts are:

e Parallel B-sheet (¢ = 0): this kind of contact is identified by checking
the presence of the two hydrogen bonds between the two considered
residues using the DSSP [KS83| algorithm. If the hydrogen bonds have
energy Ep, < —0.5 keal, according to the potential energy function in
Ref. [KS83|, the bond is formed. This method is used also with the other

two secondary structure contact classes.
e Antiparallel B-sheet (¢ = 1).
o a-helix (c=2).

e Sidechain-sidechain Van der Waals contact (¢ = 3): this type of contact is
identified by checking the minimum distance between two atoms belonging
respectively to the first and to the second residue considered. If the
distance is smaller than 4.5 A, the bond is formed. By priority, this kind
of contact can be formed only if a secondary structure contact between

the same two residues is not present.

e Non-contact (¢ = 4): the two residues are considered in non-contact if

none of the previous types of contact is formed.

26



The kind of operation BACH makes to merge the information from all the
different structures contained in the learning database is an average. Indeed,
in Eq. 2.10 we can see that the sum on the structure index «a appears before
every occurrence of njy'. This implies that BACH extracts the same amount of
information by learning the parameters on one conformation or on a thousand
replicas of the same conformation. It also implies that, for an optimal learning,
the different features observed by BACH must be present in an appropriate
proportion in the database. In other words, if the learning database is biased
on some particular form of contact, BACH parameters will be biased as well.
This "bias transfer" is in fact desirable, as it gives a clear way to optimize the
parameters: the more reliable the learning set is, the better the parameters will

store the appropriate chemical and physical information.

2.2.3 Solvation term

The solvation term is a one-body score term constructed in an analogous way

of the pairwise term. Again, for each residue a term is summed to the score:
N
Eoo = Z /\Zgl) (212>

where the parameters )\Zgi) are calculated on the same training set used for the

parameters of the pairwise term, in the same fashion:

20 "

P e
A = —log ( <e|“)) — _log ZZ:Q Ze Re (2.13)
a a’ na;

Za Za’ Ze’ nceL//a

Here, the environmental classes are only two. The residue can be

e FExposed to the solvent (e = 0)
e Buried in the bulk of the protein (e = 1)

The exposure of the residue is inferred by the calculation of its solvent exposed
surface area. This quantity is computed by the SURF tool [VBW94] of the
Visual Molecular Dynamics (VMD) program [HDS96|. The tool calculates the

molecular surface area (MSA) of a protein by building a triangulation of its
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surface with the help of a solvent probe. The method will be described in
detail in Chapter 3. Here, we only report that the value chosen for the atom
and probe radii is 1.8 A, and that a residue exposed surface composed of 10 or

more triangles identifies the residue as exposed.

2.2.4 Training set

In order to learn the two sets of parameters, the TOP500 database [LDAT03]
was used. This collection includes 500 non-redundant single domain protein
conformations extracted from monomeric and multimeric PDB protein struc-
tures. Their size varies between 25 and 840 amino acids. The structures have
been solved with resolution better than 1.8 A by X-ray crystallography. The
conformations contain unstructured parts. It was checked that the information

extracted from this database is highly correlated with the one extracted from

the CATH database [OMJ*97].

2.2.5 Assessing the performance of BACH and other state-

of-the-art scoring functions

In order to assess the performance of a scoring function for protein folding,
one can try to discriminate the native state of a protein among a large set
of wrong conformations. These sets are usually called decoy sets, and can
contain conformations produced by a single algorithm or predictions coming
from different sources. Once every conformation in the decoy set (native state
included) has been scored, the scores are sorted from the lowest to the highest,
or viceversa, depending on the definition of the score. The position of the
native state in this rank determines the performance of the scoring function: if
the native state is the first one in the rank, the scoring function discriminates

it correctly. The lower the rank of the native conformation is, the better.

Thus, for each decoy set considered, a normalized rank is produced by
dividing the position of the native state in the rank by the number of structures
scored. Then, normalized ranks are sorted from the lowest to the highest. In
this way, a line will be produced in which the first point is the normalized rank
on the decoy set in which the scoring function performed better, and the last on
the decoy set in which the scoring function performed worse. Fig. 2.1 reports
such graph. In Ref. [CGL"12|, 33 decoy sets from CASP 8/9 [MFK*09] were

28



0.5 . [ 1 ; |
LA |
e—e BACH w
04 »—= QMEAN6 [
= | +—+ RF_CB_SRS_OD [ ]
& 4—a ROSETTA )
..D {]‘ - I| e
o | 3
T’d 5 II
02 Pl
£
=]
7 0.1

()
(

Figure 2.1: Normalized ranks sorted for the decoy sets in CASP 8-9, and calculated
for the BACH, QMEANG6, RF_ CB_SRS OD and Rosetta scoring functions (from
Ref. [CGL*12]).

considered. Such decoy sets were chosen because they were the most difficult
available ones for the discrimination of native structures [CGL"12|. The decoys
and the native state have all the same sequence.

The state-of-the-art scoring functions used to compare BACH performances are
QMEANG [BTS08], RE_CB_SRS_OD [RF10] and Rosetta [SRK*T99]. BACH
obtains the best performance of them all.

Every time we will need to assess the performances of BACH for problems of

protein folding (see Chapter 4), we will refer to this analysis.

2.3 Scoring functions for protein-protein inter-

action

Parallel to the development of scoring functions for protein folding problems is
the one of scoring function for protein-protein interaction problems. A large
variety of knowledge-based potentials are available, some of which will be
described in this section. Nonetheless, there are very few which can tackle
both PF and PPI problems. One of the scopes of this thesis will be deriving
such a scoring function, starting from the scoring function BACH presented in
Section 2.2.

In order to summarize the most used features of the state-of-the-art approaches

to PPI, we will now present six algorithms which will be used in Chapters 4
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and 5 for quality assessment. Although all six methods provide a complete
procedure for docking, only ZDOCK will be used for that scope (see Chapter 5),

while for the other five only the scoring function will be considered.

2.3.1 Rosetta

We already described the statistical method behind Rosetta in Section 2.1.2.
The Rosetta algorithm is used here for protein-protein interaction problems
with the set of weights "scorel2". This set of weights is the all-atom, "general
purpose" one and is not optimized for interface prediction. It is, nonetheless,

one of the most used by the community.

2.3.2 PIE/PISA

PIE [DE10] and PISA [VRE13] are recent scoring functions devised by Elber and
co-workers. They are founded on a residue-based and an all-atom description,

respectively. The approach is based on Sippl’s formalism:
U= Z Waivaj (Tij>

i>j (2.14)
Waa,(rij) = —log <—Paiaj mj)) |

Pref (rij)
where 7 and j are indexes running on the amino acids of the analyzed structure,
a; and a; are the types of amino acids and P;fij (14j) = Pu,Pa, P(r). The learning
method is based on solving a very large (~ 10'3) set of inequalities with a
maximum margin method [YJEPO7|. Specifically, the set of parameters 8 must

respect a large number of inequalities of the form

U(XaiB) = U(X B) > 1= (2.15)
n,d
(B,7) = min (!‘B!Q +C) nn,d) (2.16)

where X are the coordinates of a decoy, X,, are the coordinates of the native,
A, 4 is the iRMSD between the two conformations and 7, 4 is the number of
violated inequalities in the set composed by the native state and all its decoys.
The parameters 3 are then found by minimizing the score defined in the right
hand side of Eq. 2.16. This is accomplished via the primal-dual recursive
method.
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PISA [VRE13] is the atom-wise counterpart of PIE, and was added in a second
moment in order to enhance the performance of the re-scoring function in
the PIEDOCK algorithm. In the article presenting the new potential, three
methods to combine PIE and PISA scores are explored. We will use the first

one, which multiplies the two values given by the scoring functions.

2.3.3 IRAD

IRAD [VHW11] is the latest version of the well-known algorithm ZRANK
[PWO7]. The original scoring function was introduced to rank the structures
predicted by the docking program ZDOCK [PHW11]|. It considers a linear com-

bination of atom-wise energy terms weighted by a set of optimized parameters:

E = Wl . VdWattr + W2 : VdWrep + W3 : Qattr, or T W4 : Qattr, Ir

(2.17)
+ WS ' Qrep, ST + WG : Qrep, I+ W7 : ACE

The terms include Van der Waals attractive and repulsive terms, electrostatic
attractive and repulsive, long range and short range terms and ACE, a statistical
contact potential derived from monomeric protein structures and taken from
the ITASSER algorithm [Zha08]. The parameters Wi-W; are optimized by
minimizing the rank obtained by scoring 93 decoy sets of complexes extracted
from the ZLAB Benchmark 3.0 protein-protein database [HPM™08], with 54000
decoys each created by the program ZDOCK [PHW11].

IRAD also includes four residue-based potentials, three of which for protein-
protein interaction and one for protein folding. Its performances are shown to
be better than those of ZDOCK and ZRANK, which already attained a good
prediction power on many CAPRI decoy sets.

2.3.4 HADDOCK

HADDOCK is a well-known docking program [DBB03| which always partici-
pated to CAPRI competitions. The docking procedure is divided into different
stages in which various degrees of refinement are applied. The scoring has been
optimized for each stage of the protocol: we will consider the score of the last

refining stage. The energy estimate in the last stage is computed as a weighted
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sum of different physical terms:
E=10FEvyqw + 0.2Ec. + 0.1 EAR + 1.0Fgesolv (218)

The first two terms describe the Van der Waals and electrostatic contribu-
tions, respectively. The term Ear considers a set of ambiguous interaction
restraints which use specific structural data to guide the potential towards a
more restricted set of plausible conformations. The last term accounts for the
desolvation energy relative to the interface area.

The scoring function is not available as a standalone program, but the authors

use it in CAPRI scoring competitions, obtaining excellent results [JHM*03].

2.3.5 FireDock

Another docking program whose scoring function is used in CAPRI scoring
competitions is PatchDock [DNWO02|. The corresponding internal scoring func-
tion is called FireDock [ANWO7]. FireDock is a physical scoring function based
on binding free energy estimations, solvation (using the ACE algorithm from
ITASSER [Zha08]), electrostatics, Van der Waals, hydrogen bonds, rotamer
torsion energies, m-stackings, aliphatic interactions, and the degree of exposure
of the residues. The weights of the corresponding terms are optimized through
a linear programming - support vector machine approach. The scoring function
was tested also as a refinement algorithm for docking programs other than
PatchDock, notably ZDOCK and RosettaDock. In both cases, FireDock suc-
ceeds in refining the results of the docking programs better than their internal
scoring functions do. FireDock has also been tested in CAPRI competitions,

with positive results.

2.4 7ZDOCK rigid docking algorithm

In Chapter 5 we will need to generate a large set of conformations of a dimer
in order to assess the performance of BACH and other scoring functions in
discriminating the near-native conformations of a protein-protein complex. For
this scope, we decided to rely on a single rigid docking algorithm, in order to
eliminate biases due to the use of different algorithms and to internal scoring
functions employed in flexible docking procedures. We thus choose ZDOCK,
[PHW11] a rigid body docking algorithm based on Fast Fourier Transform
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(FFT) calculations. It takes into account shape complementarity, desolvation
and electrostatics and should be used in combination with ZRANK [PWO07|, an
energy minimization algorithm for refining and reranking ZDOCK results. The
separation between the rigid docking algorithm and the refinement methods
allows us to employ only the former. The rigid docking algorithm leaves the
receptor fixed and rotates the ligand around the receptor. The ligand is moved
by a constant amount of degrees in the direction of one of the three Euler
coordinates (6, ¢, ). Once the rotation has been performed, ZDOCK makes
use of FF'T calculation to account for translations: it shifts the two subunits
by uniform steps along the axis passing from the two centers of mass and
only retains the configuration which corresponds to the maximum value of the
internal scoring function of the algorithm. The scoring function is based on
three weighted terms which account for shape complementarity, desolvation
and electrostatics respectively. This results in pairing the configurations with
coordinates (0',¢’,1") and (—6¢',—¢',¢'): only one of them will be retained,
while the other will be discarded. In particular, the finest sampling that ZDOCK
can attain is by generating a configuration for each rotation of 6 degrees. Thus,
180 x 360 x 360/6% = 108000 configurations are expected, but since opposite
configurations are paired, only 54000 configurations are obtained. This is the

only source of unevenness that the algorithm introduces.
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Chapter 3

Estimating the solvation

propensity

Among the forces that guide the folding and the protein interaction processes,
solvent interactions are thought to be the most important [Kau59, Cha05,
Ball4]. To trigger folding, hydrophobic side chains localize into the core of the
protein, surrounded by the polar and charged functional groups, which interact
more favorably with water molecules. Despite its central role for the stability
of proteins and protein complexes, modeling the interaction with the solvent is
still considered a hard task. Treating the solvent classically, simulating a large
protein in a box of explicit solvent remains still very expensive. This hinders
the use of explicit solvation for massive screening. For example, in the contexts
described in Chapter 2, we need a method to estimate the solvent interaction
with a protein in a time comparable with the one needed to evaluate the other
energy terms. Going down the ladder of coarser and coarser approximations,
we find explicit coarse-grained water models, which groups small numbers of
water molecules (usually four) into pseudosolvent particles [MRY107]. If this
is still too slow one has to pass to a continuum representation. Models based
on the Poisson-Boltzmann equation are thought to be the most accurate of
this class [HN95|. Nonetheless, even numerical solutions of that equation can
prove to be too slow to meet the speed requirements of a scoring function.
Moreover, the Poisson-Boltzmann equation by itself does not model the entropic
contribution to the solvation energy, which many times is dominant [Cha05].
A faster class of models is instead based on the generalized Born equation
with surface area correction [CC84, DB02|. Alternatively, very fast approaches

based on interatomic distances or on the exposure of particles to the solvent
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have been considered [Cho74|. The solvation term contained in BACH and
introduced in Chapter 2 belongs to this last class: each residue is considered
exposed to the solvent or buried in the protein depending on the relative value
of the exposed surface area. Then, an "energy" is assigned to the residue taking
into account this attribute and the chemical nature of its side chain. In this
chapter we will describe the implementation in BACH of a suitably modified
LCPO method [WSS99| to calculate the exposed surface area of each residue.
The method is faster than the one exploited in the original implementation and
allows computing the derivative of the exposed surface area with respect to the
coordinates. In order to make the algorithm faster, we will limit the number
of the LCPO parameters to two: the probe radius and the threshold value to
determine if a residue must be considered buried or exposed to the solvent.
We will show that with an appropriate optimization of these two parameters,
the method can still attain an excellent precision. In order to assess the
performances of our implementation of the LCPO method, we will compare
its results with the ones provided by two algorithms for the determination
of the solvent exposed surface area: SURF [VBW94|, which is the algorithm
previously used in BACH, and GETAREA [FB97|, which is commonly used as
a reference [KTSW11].

3.1 Solvent accessible surface and solvent excluded

surface

solvent accessible surface

molecular surface

Figure 3.1: Solvent accessible surface (SAS) and molecular surface (MS).
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In order to calculate the contribution of each residue or atom to the solvation
free energy term, a method to calculate their exposed surface is needed. However,
there is a certain amount of ambiguity in defining this concept. There are
indeed two commonly used definitions of exposed surface: the solvent accessible
surface (SAS) and the solvent excluded surface, or molecular surface (MS).
Both are represented in Fig. 3.1. The SAS corresponds to the dotted line, and is
defined as the locus of points the centre of a probe sphere visits when it moves
in contact with the solid representing the molecule. The MS is composed by all
the points of the surface of the molecule with which the probe sphere can be in
contact. In the regions in which the probe sphere fails to touch the surface,
the MS is the surface of the probe. In Fig 3.1 these patches are represented in
red. One can also see the MS as the boundary of the volume not accessible by
the probe sphere.

Although their geometric properties differ, the estimations of the exposed
surface given by considering the definitions of SAS and MS are closely related,
and often applied with no distinction. We will see that, in specific situations,

the two measures can actually provide different results.

3.1.1 Methods to calculate the SASA

The solvent accessible surface area was introduced for the first time by Lee
and Richards in 1971 [LR71], who also provided a first procedure to estimate
it. Since then, many exact and approximate methods aimed at computing
it were developed: analytical and numerical approximations were proposed,
as well as exact analytical expressions. The Shrake-Rupley algorithm [SR73],
one of the most widely used numerical approaches, is also one of the earliest.
For each atom in the molecule the algorithm draws a fixed number of points
equidistant from the sphere representing the atom. The distance from the
atom is typically the radius of the solvent molecule one wants to use, which
in the case of water is usually set to 1.4 A. Each point is checked against
the distance from the surface of every neighboring atoms to determine if it
is buried or accessible to the solvent. The fraction of the points relative to
one atom that is considered accessible by the solvent determines the SASA
of that atom. The Shrake-Rupley algorithm and other numerical methods
can be simply implemented, but the calculation is usually lengthy and further
decreases its efficiency when also the derivative of the surface area with respect

to the coordinates must be computed.
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Instead of relying on approximated strategies one can carry out the analytical
calculation of the surface area of a solid resulting from the union of many spheres.
Among the exact methods, we recall the calculations through integration using
the Gauss-Bonnet theorem [Ric84, FB97| and more recently via the construction
of power diagrams [KTSW11|. GETAREA [FB97], a method based on the
Gauss-Bonnet theorem, proved to be very reliable over the past decades. We
will thus use it as a reference to benchmark our approach.

In general, exact analytical methods are very powerful: their estimates have
uncertainties of tenths of angstroms on the surface of whole proteins and
allow calculating the derivatives of the surface area with respect to atom
coordinates. However, they are often rather computationally expensive, and
are usually complex to implement. Approximated methods compensate their
coarser calculations with an increased overall speed and an ease in calculating
the derivatives of the area with respect to the coordinates of the atoms. Among
them, methods that reduce the analytical summation of intersections to a sum
of pairwise contributions have been explored for decades [Ric84]. A recent
method based on this strategy is the Linear Combination of Pairwise Overlaps
(LCPO) [WSS99], which we will describe more in detail in Section 3.1.4.

3.1.2 Methods to calculate the MSA

The molecular surface conveys a more complete information about the shape
of the molecule, but unlike the SASA it can be calculated only using approxi-
mations [Ric77]|. A well-known algorithm that estimates the molecular surface
area is the rolling-probe algorithm [Con83|. Another approach employed in
many recent algorithms is based on considering the cloud of points given by
the centers of the spheres that compose the solid and calculating its a-complex,
first defined by Edelsbrunner, Kirkpatrick and Seidel in 1983 [EKS83|. The
a-complex consists in a piecewise linear surface composed by triangles. Opera-
tively, a triangle is drawn for all the triplets of points that sit on the boundary of
a probe sphere of radius a'/? that contains no other point. The computational
cost of calculating an a-complex can be reduced significantly. For this reason
many algorithms first build the a-complex of the cloud of points and then
arranges surface patches on it in order to recover the molecular surface. It
must be stressed that in all these methods the radius of the probe sphere is a
crucial parameter and greatly affects the outcome. Among the methods which

use the a-complex to estimate the molecular surface area, we will consider
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SURF [VBW94|, an algorithm implemented in Visual Molecular Dynamics
(VMD) [HDS96] and used in the original BACH method for the estimation of

the solvation environmental class of the residues of a protein.

3.1.3 VMD SURF tool

SURF implements an algorithm based on a mixed approach, in which a pre-
liminary scan by power subgraphs is used in order to decide whether an atom
is buried or could be exposed. In a second moment, to each of the exposed
atoms is assigned a patch depending on the geometrical arrangement of their
neighbors. The patch is triangulated, and the number of vertices of the triangles
belonging to one atom allows estimating its molecular surface. Since the patches
are generated by an a-complex algorithm, their conformation depends on the
radius of the probe sphere, which is a parameter of the model. In the first
implementation of BACH we imposed that the radii of the probe sphere and of
all atoms be set to 1.8 A. The radius is thus larger than the typical one used
both for the water probe (1.4 A) and for the atoms in the protein (1.3-1.7 A).
This was made in order to avoid including internal cavities in the calculation
of the exposed surface area. The output of SURF is the number of triangle
vertices associated to each atom of the protein. These vertices are used in the
triangulated representation of the protein surface employed by VMD, and it was
calculated that the area associated with each vertex is approximately 0.15 A%,
However, this value is just for reference, for as we will show the dependence of
the molecular surface on the number of triangles is not linear. By summing
over all the atoms of a given residue, the number of vertices associated to that
residue is obtained. In the original BACH implementation, side chains must

have at least 10 vertices (~ 1.5 A2) to be considered exposed.

3.1.4 LCPO

SURF is proved to be accurate, but in this approach the derivative of the
surface area with respect to the atomic coordinates cannot be calculated. An
approach that allows computing derivatives is the LCPO [WSS99]| method.
This approach approximates the SASA of a solute as a linear combination of
the surfaces of its atoms, modeled as spheres of radius . The working principle
is to remove from the sum of the whole surfaces the estimated overlap of the

surfaces of nearby atoms. The exposed surface of the atom ¢ is approximated
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as follows:

Ai = P147T7"Z-2+P2 Z Aij—{—Pg Z A]k;“‘

JEN() J,kEN (3)
keEN(j)
k]
+Py Z Aij( Z Ajk) ) (3.1)
FEN(4) kEN(4)
kEN(5)
ki
where ) )
dij TP T
Az’j = 27'(7“1' (Ti — 7] — 2d” ]) ; (32)

r; is the radius of atom ¢, N (i) is the list of atoms that overlap with atom
i and d;; is the centre-to-centre distance of atom ¢ and j. In the original
work [WSS99| the four parameters P;-P, depend on the hybridization of the
atom and on its neighborhood and are estimated by linear regression on a
heterogeneous database of analytically calculated cases. Only the elements
appearing in amino acids or DNA bases are parametrized. This does not allow
using the original LCPO method to calculate the SASA of a generic molecule,

e.g. a drug binding to a receptor.

3.2 Scoring solvation by modified LCPO

The original BACH algorithm used the SURF tool of VMD to estimate the
exposure of the residues of a protein to the solvent. Although SURF provides an
accurate estimate of the solvent exposed surface area, it is rather slow and does
not allow to calculate the derivatives with respect to the atomic coordinates.
These drawbacks made us abandon the tool in favor of the approximated LCPO
[WSS99| method. While SURF calculates the molecular surface area (MSA),
LCPO calculates the solvent accessible surface area (SASA). This quantity can
be in principle evaluated exactly, for example with the algorithm implemented
in GETAREA. LCPO is a faster method which relies on an approximation of the
analytical formula. Likewise the exact method, LCPO provides an estimation of
the SASA explicitly dependent on the coordinates of the molecules. The main
drawback of the method is the dependence on a quite large set of parameters
(four for each different element and hybridization), which also limits the range

of possible molecules that can be evaluated: indeed, the parameters are only
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provided for the species contained in the amino acids and nucleic acids. We
thus decided to modify the method by reducing the quantity of parameters
to only two. We then optimize these parameters in order to achieve a good
performance. During all the procedure, we assess the quality of the exposed
surface area estimations both with SURF and with the standard reference
algorithm GETAREA.

3.3 Modified-LCPO (mLCPO)

We decided to drastically reduce the number of parameters in the model

imposing:
e a constant radius r; for all the heavy atoms;
e a constant set of four parameters P;-Pj for every heavy atom.

Specifically, the parameters for the sp3-carbon bound to three heavy atoms
were used, since it is one of the most common atom species throughout the 20
types of amino acids. Since the parameters P, and P3 are negative, the value
of A; can also be negative. Thus, the value estimated by Eq. 3.1 is meaningful
only in a relative way. To account for this coarse approximation, we promote

the radius of the atoms to a free parameter, and we optimize its value with an

iterative procedure. We call this method modified-LCPO (mLCPO).

3.3.1 Coherence score

For optimizing the radius we need to devise a meaningful estimator to assess the
performance of the mLCPO algorithm. For this scope, we define the coherence
score as the fraction of residues over the proteins of the TOP500 dataset for
which SURF and the mLCPO algorithm agree on the environmental class
assignation (exposed or buried).

The coherence score is an indirect estimator: in order to produce an outcome,
a threshold between the two environmental classes must be set. The analysis
must then be performed by taking into consideration two free parameters rather
than only one: the atomic radius and the buried/exposed (in/out) threshold.

We eventually take the couples of values that maximize the coherence score.
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3.3.2 Using GETAREA as reference

In order to benchmark the general consistency of this method, we also repeat
the procedure by taking the GETAREA estimation of the exposure instead of
the SURF one. We do this in order to compare the mLCPO estimation with
another estimation of the same quantity (the SASA) instead of an estimation of
a slightly different one (the molecular surface computed by SURF). Moreover,
we believe the GETAREA estimation of the exposed surface to be more precise

than that of SURF, both because it is based on an exact analytical calculation.

3.4 Results

The method mLCPO described in Section 3.2 allows estimating very quickly
the SASA. Its reliability is tested against two algorithms for the calculation of
the exposed surface area of a protein, SURF and GETAREA. To be able to
apply the coherence score defined in Section 3.2, we have to define a suitable
buried /exposed (in/out) threshold for these two approaches. For the method
SURF, we rely on the choice made in [CGLT12] to consider a residue as exposed
if more than 10 vertices are found. For the method GETAREA, we choose a
threshold by looking at the distribution of residue-wise SASA values calculated
by the two algorithms for the residues of the proteins of the TOP500 database.
The frequency distributions for both SURF and GETAREA estimations of
the exposed surface areas of the residues of all the proteins in the TOP500
database are reported in Fig. 3.2. Both distributions present a peak at zero
value corresponding to the deeply buried residues. However, the shape of the
distributions for small but positive values differs significantly: SURF does not
assign small nonzero values, while GETAREA has a more continuous transition.
This implies that while for low threshold values SURF is not sensitive to
small variations, GETAREA is. This confirms the need of properly tuning
the threshold parameter in order to have consistent estimates. By setting the
threshold for GETAREA such that the number of residues considered buried is
the same than the one obtained with SURF we find a value of 1.9 A.
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Figure 3.2: Probability distribution of SURF and GETAREA estimates of the MSA
and SASA of each residue in the protein of the TOP500 database.

3.4.1 Coherence score between different estimates of residue

exposure

We now benchmark the reliability of mLCPO with respect to the recognition
of residues that are exposed to the solvent. We accomplish this task by com-
puting the coherence score defined in Section 3.2. We first compare SURF
and GETAREA in order to assess the reliability of the two reference methods.
We find a coherence score of 0.96, indicating a very good agreement: the two
functions disagree on the environmental class for roughly 1 out of 25 residues.
In Fig. 3.3 we plot the coherence of mLCPO with respect to SURF as a
function of the probe radius, for different values of the threshold. The two

estimates are in good agreement, and the maximum value of the coherence
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score is (.84, meaning that less than 1 residue out of 5 is assigned to the wrong

environmental class according to SURF.

The graph shows that the maximum value has a one-dimensional quasi-
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Figure 3.3: Coherence score of the mLCPO method with respect to SURF. The
coherence score is defined as the fraction of residues of the proteins of the TOP500
dataset for which SURF and the mLCPO algorithm agree on the environmental class
assignation (exposed or buried). It is a function of the mLCPO probe radius and
the in/out threshold. Here, the coherence score is shown as a function of the probe
radius, for different fixed values of the in/out threshold.

degeneracy, indeed the maximum value decreases only slowly as the threshold
value increases. Moreover, for low thresholds the maximum is broader. Lastly,
the coherence score is higher on the left of the peak area at low threshold
values. For these values of the threshold the dependence on the radius is thus
less marked. All these observations make us decide to consider a threshold
value of 0 and a radius of 3.08, for which the coherence score is maximum. By
repeating the analysis with respect to GETAREA we find that the two optimal

parameters are almost undistinguishable (Fig. 3.4).
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Figure 3.4: Coherence score of the mLCPO method with respect to SURF (red dots)
and GETAREA (blue lines). See caption of Fig. 3.3. The scores with respect to the
two reference methods are almost undistinguishable.

3.4.2 Optimizing the performance of mLCPO in protein

structure prediction

To validate the choice of the threshold we test the performance of the solvation
part of BACH on a selection of 10 decoy sets from the ones belonging to CASP
rounds 8 and 9 [CKTO09]. As explained in Chapter 2, we make use of the
normalized ranking as the preferred estimator to compare the performances of
the scoring functions. In this framework, we extend the use of this estimator
to evaluate the performances of the BACH solvation part only. Throughout
this section, the score of BACH will thus coincide just with F,, defined in
Section 2.2.3. To perform the optimization by ranking, we choose the 10
decoy sets reported in Table 3.1 from the ones in CASP 8-9 and evaluate the
performance of BACH by looking at the rank of the native conformation.

As it was done for the coherence score, we scan the average rank landscape
by varying the threshold and radius parameters. In Fig. 3.5 we show the
average solvation rank and the SURF coherence score as a function of the
probe radius, fixing the threshold at three representative values: thr = 0 (first
panel), thr = 20 (second panel), thr = 40 (third panel). The trend of the
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Figure 3.5: Coherence score and average solvation rank as a function of the probe
radius for three fixed values of the in/out threshold. For both quality measures,
a shift towards higher values of the optimal probe radius is visible for increasing
threshold values.
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CASP code | PDB code
TO0388 3cyn
T0397 3d4r
T0415 3d6w
T0425 3czx
T0427 3d3y
T0432 3dai
T0433 37dl
T0437 2k3i
T0440 3dcp
T0445 3dao

Table 3.1: 10 CASP decoy sets used to calculate the average solvation rank.

average solvation rank

coherence score

Figure 3.6: Correlation plot between the average solvation rank and the coherence
score, for each pair of probe radius and threshold values.
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two estimators is very similar, as highlighted in Fig. 3.6, where the correlation
between the two estimators is reported for each combination of parameters
considered. We also observe a shift between the peaks of the two estimators.
Nonetheless, for the case in which thr = 0 the coherence score peak selects a
value of the probe radius for which the average solvation ranking is below 0.1,

and the fourth smallest value.

3.4.3 Comparison of the residue-wise SASA estimates

Now that we fixed the radius parameter we can look at the distribution of the
residue-wise SASAs of the TOP500 proteins as estimated by mLCPO.
In Fig. 3.7 we report the mLCPO distribution and the GETAREA distribution
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Figure 3.7: Frequency distributions of the SASAs of each residue belonging to the
TOPH00 database proteins. The distribution for mLCPO is obtained by equating all
negative value to zero. Even with the coarse approximations introduced in mLCPO,
there is a marked similarity in the shape of the two distributions.

for reference. Since the mLCPO algorithm produces a significant quantity of
negative SASA values, we replaced them with zero. We can see that the two
distributions are similar, thus confirming that the approximations introduced

in the mLCPO method do not change significantly the quality of the estimates.
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3.5 Assessing the quality of the solvation rank

As a last but important step, we benchmark the mLCPO-based functional form
of E,u, by the same procedure followed in the article by Cossio and co-workers

[CGL*T12] and reported in Chapter 2. For all the 33 CASP 8/9 decoy sets,

BACH u/ LCPD ———
BACH u/ SURF ——

normalized rank

T L L
1] 3 1@ 15 20 2% 30 35

CASP 8-9 decoy sets

Figure 3.8: Normalized rank calculated on 33 CASP 8-9 decoy sets for the two
versions of BACH: with the SURF algorithm and with the mLCPO algorithm. We
can see a slight increase in the performance of BACH with mLCPO with respect to
the original method.

in Fig. 3.8 the solvation rankings of BACH with SURF and with LCPO are
shown. We can see that the new solvation term is slightly more accurate in
predicting the native structure on most of the decoy sets, but also that its

errors are slightly more relevant when the prediction becomes poor.

3.6 Discussion

In this chapter we implemented and tested mLCPO, a modified version of the
LCPO method [WSS99| to calculate the SASA of the residues of a protein.
The ability of choosing the correct residue-wise environmental class (buried or
exposed) is tested against two reference methods: SURF [VBW94|, which is the

method previously employed in the molecular surface area calculation in BACH,
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and GETAREA [FB97|, an exact analytical method for SASA calculation. The
comparison is performed in order to choose a suitable value for the two free
parameters of the model: the buried/exposed threshold and the radius of the
atoms, which is kept constant for every element and includes the radius of the

water probe.

The optimization process via the coherence score is thus equivalent to a maxi-
mization process in a two-dimensional manifold. In more than one dimension,
this kind of problem may have degeneracies if two parameters are not indepen-
dent. Since the in/out threshold depends on the size of the spheres (and thus
on their radius), a degeneracy is likely to show. Indeed, Fig. 3.3 presents such
a situation, and thus proves the relation between the optimal threshold and the
optimal radius. The degeneracy is not exact as one observes a slight increase
of the maximum value of the coherence score as the threshold value decreases.
This and the shape of the curve at fixed threshold makes us choose as optimal
threshold and radius the values 0 and 3.08, respectively. These values do not

differ significantly from the ones reported in [SZC*13|.

The coherence score as defined in this chapter is a biased estimator. Indeed,
according to SURF (or GETAREA) the TOP500 database is not composed of
an even ratio of buried and exposed residues, rather of 20% buried and 80%
exposed residues, because of the strict definition of the buried class imposed by
the low threshold values. In this case, a scoring function that assigns to every
residue the "exposed" environmental class obtains a coherence score of 0.8.
This is indeed visible in the saturation value of the graph in Fig. 3.3 and 3.5.
A high value of saturation implies a reduction in the robustness of the method.
Indeed, the optimal value of the radius is just 0.04 A away from the saturation
point. To remove this bias one can follow two different approaches: changing
the in/out threshold of the SURF and GETAREA methods or modifying the
database in order to have an equal amount of residues considered buried and
exposed by one of the two functions.

By changing the threshold value of SURF we would disrupt the optimization
procedure of previous studies [CGLT12| and we would go against intuition,
since a natural in/out threshold for SURF is clearly visible in Fig. 3.2. Thus,
we decided to consider a subset of the TOP500 database: for each protein,

we consider the largest possible amount of residues for which a one-to-one
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ratio between exposed and buried can be attained. For example, in a protein
containing n exposed residues and m buried residues (according to SURF), and
m < n, we will consider 2m residues: all the buried ones and a subset of m

exposed residues chosen randomly among the n total.

In Fig. 3.9 is reported the coherence score of LCPO with SURF when

=

AVERAGE SOLVATION RANK ——
SURF COHERENCE SCORE
SURF UNBIASED COMERENCE SCORE ——

coherence score
average solvation rank

2.8 2,85 2.9 2,95 3 3.85 3.1

probe radius [A]

Figure 3.9: Coherence score (green line) and average solvation rank (red line) as a
function of the probe radius with the threshold fixed at 0. The unbiased coherence
score estimator is represented by the blue line. The coherence score is always
calculated as described in Section 3.2, but the unbiased estimator considers a subset
of TOP500 in which according to SURF there are as much residues in the exposed
environmental class as there are in the buried environmental class.

an equal number of buried and exposed residues is considered. We see that the
minimum is more robust, and the optimal value for the radius shifted from
Topt = 3.08 A to Topt = 3.02 A. The difference from the optimal probe radius
estimated in Section 3.4.2 (3.05 A) is still small (0.03 A), but the value is
now further from the critical value that corresponds to the saturation of the
estimator. The maximum value of the coherence score decreases slightly, from
0.84 to 0.81. We thus conclude that the new definition of the coherence score

is preferable.

The average solvation ranking estimator shows to be more noisy than the

coherence score. It is however a precious indication: as we mentioned above, a
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shift of the optimal radius value is visible independently of the estimator used
for the coherence score. Remarkably, for the selected parameters the native

state is found on average in the top 10% of the score of the solvation part only.

The frequency distribution of the residue-wise solvent exposed surface area
values of LCPO is similar to that obtained with GETAREA, while it differs
from the one obtained with SURF. This is expected: likewise GETAREA,
mLCPO calculates the SASA, while SURF calculates the MSA. The peculiar
qualities of the SURF distribution are as well possibly given by the mixed
method it employs: the residues that are assigned with a null area are selected
separately by considering a power graph based on a Voronoi tessellation, then
the remaining residues are assigned with a non-zero area depending on the
number of triangles their accessible surface is divided into [VBWO94]. This
could generate the separation of the distribution into a delta at zero and a wide
peak at large positive values. This separation is not present in the mLCPO
and GETAREA methods, in which instead the peak overlaps significantly with
the rest of the distribution. The properties of the distribution of SASA values
make BACH more sensitive to changes in the definition of the threshold value.
This is however a positive fact, since we can choose the threshold value as one

of the two free parameters to optimize the model.

Our coarse implementation of the mLCPO method is shown to have a com-
parable performance to the previous SURF-based algorithm. The rank of the
solvation part of BACH score on the 33 CASP 8-9 decoy sets reported in
Fig. 3.8 is very similar to the one of the previous version. A little improvement
is noticeable for most of the decoy sets. This further validates our approach
and definitely allows us to opt for the mLCPO method, which gives us the
possibility to implement the derivatives with respect to the SASA. This is
an important step towards a version of BACH in which it can be used as an

effective potential in enhanced sampling molecular dynamics simulations.
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Chapter 4

Extending BACH to

protein-protein interaction

problems

In Chapters 2 and 3 we presented a scoring function for quality assessment of
structures in protein folding (PF) problems. This chapter will be dedicated to
extending the scoring function’s ability to discriminate the native pose among a
set of decoys of protein-protein interaction (PPI). Many knowledge-based scoring
functions for PPI already exist [VRE13, VHW11, GMW103, DBB03, ANW07],
but up to our knowledge they are always built specifically for that problem:
their parameters are trained on sets of complexes or interfaces. We instead
want to develop a scoring function able to discriminate the native pose both for
protein folding and for protein-protein interaction problems, without changing
the set of parameters.

The reason to pair the quality assessment of PF and PPI processes comes from
the observation that, at molecular level, the two kinds of interactions should be
indistinguishable: the same sets of atoms produce the same kind of forces (elec-
trostatic, Van der Waals, etc.). However, statistical mechanical considerations
reveal substantial differences that could play against this intuitive hypothesis.
Indeed, in the two problems enthalpy and entropy differ in magnitude, if not
in quality. The enthalpy of protein folding is dominated by the creation of
hydrogen bonds in the backbone of the protein as well as by electrostatics
and Van der Waals interactions between the residues [Bal07|. Although both
interactions are also present in PPI, their relative strength differs significantly:

the contribution of electrostatics often dominates, because of the polar and
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charged residues present on the surface of the protein [LCCJ99]|, the hydrogen
bonds are less stable [XTN97], and are at times mediated by molecules of water
trapped on the interface. There are yet specific classes of heterodimers and
homodimers which display interface regions similar to the protein bulk [JT97].
The entropy part is what differs the most: while the conformational entropy
of protein folding is dominated by the space spanned by the backbone angles,
the entropy in PPI is dominated by the sidechain movements and the loss of
rotational and translational degrees of freedom [BS97, Bal07]. The entropy of
the solvent also plays a different role, as reported for example in the 2002 review
by Scheraga [FS02|. We will show that, despite these important differences
documented in the literature, a scoring function built on statistical observations
of globular monomers is able to predict the free energy of the different poses of
a protein complex. We will base our derivation on a formalism of Information

Theory, that we will outline in the next section.

Although these considerations encouraged us to test our scoring function on
PPI problems, we were aware that discriminating the native pose of a protein
complex presents new issues we were not confronting in the case of single

monomers. We identified three of them:

e The different poses of a dimer differ by much less contacts than the
different folds of a monomer. Indeed, only the contacts on the interface
change, along with a limited number of bulk contacts due to the internal
rearrangement of the two subunits. In order to discriminate one pose
from another basing on a smaller number of contacts, we had to refine

the statistical method on which the scoring function is based.

e Due to the lower quality of the state-of-the-art prediction methods for
PPI problems, there is an increased probability to observe steric clashes in
the available decoy sets. Clashes are highly disruptive for a contact-based
scoring function, because they produce a large quantity of false contacts
which are likely to favor unphysical conformations over more correct ones.

We thus had to devise a new term to account for steric hindrance.

e The available decoy sets to test the performance of BACH and other state-
of-the-art scoring functions often present inhomogeneity with respect to
the amino acid sequence of the poses. Many times, poses miss some

fragments, often in correspondence with flexible parts. Since the score
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is based on extensive properties, it is not fair to compare the score of
structures having different amounts of atoms or residues. Thus, we had
to devise a method to produce meaningful ranks for the inhomogeneous

test sets.

Each of these issues is treated in the next three sections.

4.1 Deriving a scoring function from Informa-

tion Theory

In this section, an alternative formalism for deriving a scoring function will
be proposed. First, we will summarize some useful concepts from Information
Theory. Then, we will relate these concepts to the context of BACH statistical
method, and we will prove that the formalism can be applied to this special
case. The new approach will allow us to improve and extend BACH method in
order to devise a scoring function for both protein folding and protein-protein

Interaction.

4.1.1 The cross-mutual information approach

This section is inspired by the very clear introduction to information and
entropy given in [Bial2|. According to the formulation attributed to Shannon,
the information that an observed event x gives about a certain system is
quantifiable as X

I(x) =log @) (4.1)
where P = p(x) is the probability that the event x occurs. It is important to
note from the beginning that at the moment of the observation one can ignore
the probability of that event to happen. Then, the probability p(x) will be the
supposed probability to observe such an event. The definition of information
given in Eq. 4.1 confers to this quantity some important properties: first, the
information given by the occurrence of an event we consider certain is zero
(p(x) =1 = I(z) = 0). Second, the information given by two independent
events is the sum of the information given singularly by each occurring event
(p(z1, w2) = p(x1)p(22) = I(21, 22) = I(71) + I(22)).
Let’s consider a system that can produce a set of events X = {1, xs, ..., 2., }.

We suppose that these events happen with probability p(z;) (i.e., they follow the
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probability distribution P). After an appropriate amount of N tries, we observe
that these events really occur according to the probability distribution P. Then,
the information collected after N observations will be — >~ | Np(z;) log p(;).
The entropy of the system is then the average amount of information we collect

when we observe an event:

m

S(P) == plxi)logp(x:;) = (I(P)) (4.2)
i=1

The second equality allows us to state an even more general definition of this
quantity: entropy is the expected value of the information we can get out of
the probability distribution P. If we take a flat probability distribution, we will
have the least hint on what event could occur. Then, when one of those events
occurs, we will get the largest amount of information. If we take a probability
distribution that associates a probability p = 1 to one event and p = 0 to all
the others, when we will observe that event we will not get any information at
all: we already knew the outcome before its occurrence. From this example
we understand that the entropy of a probability distribution is inversely pro-
portional to the quantity of information the probability distribution already

contains.

Most times we do not know a priori which is the correct probability dis-
tribution of the events we are observing. We thus proceed to evaluate these
same quantities using a tentative probability distribution P = p(z), with P+ P.
From our point of view I(z) = log[1/p(x)], and when we try to calculate the

entropy, we will instead get the quantity

m

S(P;P) == p(x;)logp(x;) = (I(P))p (4.3)

i=1

which is the expected value (calculated on the actual probability distribution
P) of the information of the probability distribution P. Indeed, the events
will occur according to the actual probability distribution P, yet we are still
considering the events as if they were occurring with our tentative probability
distribution. The quantity S(P; ]5) is sometimes called cross entropy between
the distributions P and P.

We are now interested to measure how much our model distribution P matches

o6



the actual one. One approach is to use the Kullback-Leibler divergence:

Dgi(P||P) = S(P; P) — S(P) = <log (@» (4.4)
p@)) /[ p
This quantity is not a metric, as it is not symmetric in P and P and it
does not satisfy the triangle inequality. However, it can still be used to
measure the "distance" between two distributions, because Dy (P|[P) > 0
and Dy (P||P) = 0 < P = P. Moreover, we stress that

Dy (P||P) > 0= S(P;P) > S(P) (4.5)

from which we understand that the entropy of a probability distribution P
is the lower bound of the cross entropy between P and a tentative probabil-
ity distribution P. This suggests that a specific succession of events gives
us more information if we are expecting the events to occur with a proba-
bility distribution very different from the actual one, and gives us the least
quantity of information possible (for that succession of events and for that
actual probability of occurrence P) if we are already expecting them to occur
according to the right probability distribution. This somehow concurs with
our intuition: the more we already know what will happen, the less we will
learn when we experience the outcome. The Kullback-Leibler distance can be
then interpreted as the additional "surprise" we get when we observe events

occurring with a probability density which does not agree with our expectations.

Suppose now that a certain set of events X = {xi,...,2,,} occurs accord-
ing to a probability distribution Py = px(z), and consider another set of events
Y = {w1,...,yx}. If the observation of an event y; tells us something more
about the set of events X, the entropy S(Pxjy,) of the conditional probability
distribution pxyy, (z|y;) will be smaller than S(Px). We identify this reduction

in entropy as the information flux:
I(y; — x) = S(Px) — S(Pxyy,) (4.6)

The expectation value over the observations Y of this quantity is called mutual

information:

(I(y = x))py = S(Px) = (S(Pxy)) py (4.7a)
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= S(Px) + S(Py) — S(Pxy) (4.7b)
= Z pry(x, y) log [Ml (4.7¢)

px(@)py (y)
This estimator holds some useful properties:
L Iy = 2))p, = {I(x = y))py
2. (I(y > ))py, 2 0, and (I(y — 2))p, =0 < pxy(2,y) = px(2)py (y)
3. (I(y = )y < S(Px) and (I(y = x))p, < S(Py)

The symmetry with respect to the two distributions is particularly notable,
since it implies that the average amount of information that Py provides when
Py is known is the same than the one that Px provides when Py is known.
To stress this property even more, from now on we will refer to the mutual
information with the symbol Zxy (x,y). The third property tells us two things:
first, that the average amount of information that we can get from Py when
knowing Py cannot exceed S(Px). This was expected, since S(Px) measures
the number of possible states that X can be in, and we cannot learn more
than we would learn by choosing one among this whole set of possibilities (i.e.
by making one event in X certain and all the others impossible). Second, it
tells that the average amount of information that we can get from Py when
knowing Px cannot exceed S(Py). This is a far less trivial statement, and
implies that we cannot learn more on X than what our set of events Y can tell.
To state it more clearly, the information we can get about a set of events X
(e.g. the states of a physical system) by means of another set of events Y (e.g.
the values of an instrument of measure) cannot exceed what the set of events
Y can reveal (e.g. the accuracy of the measure). This powerful implication will

be exploited in Section 4.1.2.

Lastly, it is important to note that one can also generalize the above men-
tioned definitions by considering cross entropies instead of normal entropies. A

generalized version of the information flux will then be:
[P;P(yém)ES(PXSISX>_S(PX\y5pXIy) (4.8)

This cross information flur tells us how much information we gain on the

occurrence of the events X when we observe another event y, considering
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that we are estimating probabilities with inexact probability distributions Py
and 15X|y instead that with the actual ones Px and Pxy,. The cross-mutual

information can be defined analogously:

Ixy(w,y) = S(Px; Px) = (S(Pxy; Pxy)) py (4.9a)

pxy(z,y)
2 2 porlay os | ZERts]

This quantity can be interpreted as follows: we first model the joint probability
distribution Pxy. We do not have elements to know if ours will be a good
approximation of the real joint probability distribution yet. Suppose we also
know the real probability distribution Px = px(z) = >, pxv(z,y). We can
thus calculate the cross entropy S’(Px; Px). Then, the information the proba-
bility distribution Py adds to our knowledge is the cross-mutual information
Ixy(x,y).

The clearer manner to show what this quantity is calculating is probably by

relating it to Eq. 4.3:

Ixy(z,y) = (I(Px))py — (I (Pxpy))py,,) Py (4.10)

The cross-mutual information is thus the difference between the expectation
value of the information we get by knowing the tentative probability distribution
Py and the expectation value of the information we get by knowing the same
probability distribution, given a certain value of y. The greater this quantity
is, the more information will IBX‘y contain with respect to Px. Since the two
terms are definite positive, for fixed Py and Py the only way to maximize the
cross-mutual information is to reduce as much as possible the second term, i.e.

the entropy of PX‘y. For this to happen, two conditions must be met:

e The knowledge of each event y € Y must select a subset of elements of

X as small as possible, to minimize the entropies S(Px|y);

e The expected and real conditional probability distributions must be as

similar as possible: Py, ~ Px‘y V.

The cross-mutual information is still symmetric in X and Y. Indeed,

Ixy(w,y) = S(Px; Px) — (S(Pxy; Pxjy))py (4.11a)
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= S(Px) + Dgr(Px||Px) — (S(Px)y) + Drcr(Pxiyl|Pxpy)) py
(4.11D)

=TIxy(z,y)+ DKL(PXHPX) + DKL(PYHpY) - DKL(PXYHpXY)
(4.11c)

The last line clearly shows the symmetry.
Note also that, unlike the mutual information, the cross-mutual information
can be negative: indeed, while it is true that S(Px) > (S(Pxyy))py, it is not
true that S(Px; Px) > (S(Px1y; Pxjy))py -

4.1.2 Application of the cross-mutual information to BACH

We will now apply the formalism we described to our specific case. Let
]E’AB’C = pap.c(ab,c) be the distribution probability of a contact of type ¢
between a couple of types of amino acids ab observed in the learning database
TOP500, and Pap,c = pap,c(ab, c) be the real probability distribution observed
for a certain conformation of which we want to assess the quality. Since we
never observed that specific conformation before, but we know its amino acid
sequence as it does not vary from a pose to another, we want to measure the
cross information flux given by observing a certain contact ¢, knowing the

probability distribution Psp = pap(ab):
]P;Iz.<c — ab) = S(PAB; pAB) — S(PAB\C; PAB\C) (412)

where S(Pyp; Py p) is the cross entropy of the probability distribution of the
couples of types of amino acids ab, as it was calculated on the training set. By

calculating the cross-mutual information we obtain:
Zapc(ab,c) = S(Pap; Pag) — ZPC S(Pap|c; Papc) (4.13a)

= ZZPABC (ab, c) log [ Pas,clab,) ] (4.13b)

Pas(ab)pe(c)

_ Z Z pan.c(ab, o), (4.13¢)
Z Z neyeC, (4.13d)

E alr
— __;[ (4.13e)

60



where E,;, is the BACH pairwise score as presented in Section 2.2, €/, is the
BACH parameter relative to the couple of types of amino acids ab and the type
of contact ¢, and N is the total number of contacts of the target structure. N
is constant for every conformation of a same protein, due to the presence of
the class of non-contact.

Let us then rephrase in this context the explanation given in Section 4.1.1:

1. In the training phase, we construct our tentative joint probability dis-

tribution Pyp c(ab,c) and we store the information in the parameters

€cp-

2. When assessing the quality of a conformation in a decoy set, we suppose
to know the actual probability distribution pag(ab): indeed, we know the
sequence of the protein and we want to discriminate the best conformation

(more appropriately, the contact map).

3. The score is thus proportional to how much information adds the knowl-
edge of the contact map contained in the true probability distribution
po(c), given that we are basing our estimation on another probability

distribution pag c(ab, c).

We point out that in this context, the more information we get, the more
the test structure complies with our expectations, and thus has chances to be

correct.

4.1.3 Ranking the scores

Now that we reformulated our score in terms of information flows, we are
interested in understanding what makes a certain conformation "1" be scored
lower than another conformation "2", given a set of conformations of a same
protein. We find that, if E! . < E?

pair pair?

S(Php; Pap) = (S(Phpiei Papie)) s, > S(Pig; Pag) = (S(Papie; Page)) 2

(4.14a)

(S(Pipyei Paie))py < (S(Pigie; Pasie))p2 (4.14b)
> pb(0) [S(Phse) + Dape(PYIP)| < 3 p2(0) [S(Pisie) + Dapie (P P)]

C C (4.14c)
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where D 4p|.(P!||P) = DKL(PQB‘CHPAB‘C) for i = 1,2. The inequality 4.14a
reduces to 4.14b because it is always true that Pz = Pig = S(Pig; Pap) =
S(Pip; Pag).

We can conclude that there are two factors which contribute to associating a

better score to conformation "1" rather than "2":

o (S <P31B|c)> pz > (S (PjB|c)> p.: the probability distributions of the couples
of amino acids (given they are in a certain class of contact c) relative to
conformation "1" convey on average more information than the probability

distribution relative to conformation "2"

o (DAB|C(P2||}3))P% > (DAB‘C(P1||ﬁ))Pé: the average of the Kulback-
Leibler divergence of those same distributions from the probability distri-
bution observed in the learning database is larger for conformation "2"

than for conformation "1".

These are analogous to the two conditions we pointed out at the end of Sec-
tion 4.1.1.

The two factors grasp different aspects: if on average the information gained
with the knowledge of the contact class ¢ is higher, it means that there are
differences among the kinds of contacts formed by the different residues. For
example, if in one test conformation the "a-helix contact" shows to be almost
equiprobable among all the couples of residue types, while in another it shows
to prefer a subset of them, the best score will be assigned to the latter confor-
mation. But, what if the subset of couples of residue types selected is wrong?
This term will equally prefer the more selective conformation. However, the
second term will disfavor that conformation, since the distribution PXETZ‘g will

be very different from the distribution ]5A Ble observed in the training database.

In order to score different configurations of known sequence and unknown
contact map, it is more convenient and straightforward to think in terms of
conditional probabilities of the form Pg, rather than of the form Pyp.. We

note that instead of Eq. 4.14a we could have written

S(Ph; Po) = (S(Phjay; Peran))py, > S(P&; Pe) = (S(Pijuyi Poja))p2,, (4.15)
(S(Pliass Pojan) = S(Péiay; Poran)) pan < S(PE; Po) — S(Ph; Pe) (4.15b)

where we put Pyp = Pjp = Pig. This equation is dependent on the unknown

cross entropies of the distributions of contacts of the two conformations consid-
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ered, unless PL ~ P2 = S(P}; Po) ~ S(PZ; Po). This condition is met both
in protein folding and in protein-protein interaction for conformations that do
not differ significantly: for example, for all the conformations in the vicinities
of the native state, and in protein-protein interaction for basically all possible
poses, since the only contacts that vary are the few at the interface. For these

classes of configurations, if E! . < E?

pair pair @b least one of these two conditions

must be met:

o (S(PZu(clab))pyy > (S(Phy(clad)))p,y: the probability distributions of
the contacts relative to conformation "1" convey on average more infor-

mation than the same probability distributions relative to conformation
HQH

o (Dcjan(P?||P)) > (Dejap(PY|P)) the average of the Kulback-

Leibler divergence of those distributions from the probability distribution

Pap Pap:

observed in the learning database is greater for conformation "2" than

for conformation "1".

The first of these two conditions tells something qualitatively different from
the previous ones: to be scored better than another one, a conformation must
display, on average, a smaller entropy in the distribution of contacts once the
couple of types of amino acid is known. Thus we are saying that, if PL ~ P2
holds, the reverse of what we stated when commenting Eq. 4.14b is also valid:
on average, the more selective is the given couple of amino acids on the set of
contact classes, the better score the conformation will get. It follows that the
scoring function favors conformations displaying specific kinds of interactions,
assuming that these interactions are among the set of contact classes considered
(see property 3. of the mutual information estimator, reported in Section 4.1.1,
which still holds for the cross-mutual information). We will see the implications

of this inequality in the next section.

4.2 Refining statistics
4.2.1 Upper and lower bounds of the cross-mutual infor-
mation Z,z.c(ab, c)

Whatever probability distribution we may choose to bias our estimator, it always
holds that Zsp c(ab,¢) < S(Pg; Pe). This follows directly from applying the
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Figure 4.1: The twenty amino acids and the polarity associated to each atoms of
their side chains: red=apolar; blue=polar.

ab <> ¢ symmetry property to the definition of cross-mutual information given
in Eq. 4.13a, because the second term is always positive. The inequality implies
that the information we can have by acquiring data may never be greater than
the entropy of the distribution of the data. For the cross-mutual information an
even stricter bound holds, since the term >, pap(ab)S(Pejas; p()\ab) cannot be
zero unless Pojq, = f’c‘ab Yab and the entropy of each probability distribution
Pc|ab is null, which is impossible, as it would require to have as many elements
in the set of contact types C' as in the set of couple of residue types AB. The
second term is minimized only if Pgqp = ISCW, Vab: thus the generalized mutual

information is upper-bounded by
j—ABc(ab, C) S S(PC; pc) — ZpAB(ab)S(PC|ab) (4.16)
ab

To define the lower bound of the estimator, we recall that, unlike the ordinary
mutual information, it can assume negative values. This means that the
knowledge of a second probability distribution may cause a loss of information,

if the observed data are in net contrast with the ones acquired from the learning
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database. The lower bound can be defined quite simply by looking at Eq. 4.13c,

as the case in which all contacts observed are of the least favorable type:

Zapc(ab,c) > —maxe;, = —maxlog
ab,c ab,c

(4.17)

4.2.2 Extending the upper bound

Adding a new contact class in BACH is likely to increase the upper bound
of the estimator. Indeed, this would increase both terms of Eq. 4.13a. Yet,
if the additional class is appropriately chosen, the majority of residues will
prefer one of the two classes over the other. Thus we expect that the term
Y ar PaB(ab)S(Peap; anb) will increase more than the term S(Pg; Pc)

We also remark that this additional "segregation" goes in the direction of the

requirements we stated in Section 4.1.2.

4.2.3 Reducing the noise of the estimator: polar/apolar

contact classes

The most important contribution to the accuracy of the scoring function is
that of reducing the noise, namely the false-positive cases of favorable and
unfavorable interactions. We here present an heuristic motivation based on
physical and chemical observations on the quality of the contacts defined by
BACH.

The simple classification used in [CGL112, SZC*13] is effective for distinguish-

Figure 4.2: A case in which a hydrophilic residue (LYS) and a hydrophobic one (PHE)
make a hydrophobic contact at the interface between two subunits, here colored in
blue and red. To this contact a favorable energy value should be associated.

ing the folded state of a globular protein among a set of misfolded structures,
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but is not sufficiently detailed to capture more subtle structural differences,
like those observed between putative complex structures of the same dimer.
An important detail that is not accounted for in the original functional form is
that some residues are large and inhomogeneous with respect to their chemical
properties. An example is shown in Fig. 4.2, where the same residue, LY'S, forms
a hydrophobic contact with the hydrophobic residue PHE, and a hydrogen
bond with the hydrophilic residue ARG.

Clearly, this configuration is favorable, since no hydrophobic group is in con-
tact with a hydrophilic group. However, in the original formulation of BACH
this configuration is not distinguished by a case in which, for example, PHE
competes with ARG for a contact with the polar part of LYS, which of course
is a less stable conformation. Since cases in which polar residues can make
both polar and hydrophobic contacts are far from being uncommon, we split
the sidechain-sidechain contact class into two distinct ones, which account for
apolar and polar contacts. The algorithm first checks the polarity of the two
atoms which make the closest contact between the considered residue pair. If at
least one of them is polar, then the contact is defined polar. Otherwise, if both
are apolar (namely are alyphatic carbons or sulfur atoms), the contact is defined
as apolar. Two residues make contact if the distance between their two closest
sidechain heavy atoms is less than 4.5, as in the original version. In BACH-S,
we consider polar and apolar contacts only for residue pairs separated at least
five along the sequence. The splitting between polar and apolar contacts does
not affect all the parameters, since pc(cl3W) = pe(c2) + po(ckoer). For the
sake of clarity, in Fig. 4.1 is reported the complete list of residue atoms and

their polarity.

As we see, there are many couples of of amino acids which can only per-
form one of the two types of contact. For them, the advantage described above
does not count and the noise in the score remains unchanged. Although it
might seem a waste, it is not so: in the previous section we stated that whenever
Pe ~ Pg can apply, a conformation "1" would be scored more favorably of
a conformation "2" if (S(PZ ;) pap > (S(Pg)4)) pas- This is true in the case
that the average frequencies of two contact classes differ more: for the two
new classes of polar and apolar VAW contact, this is true when there is a
net preference for one kind of those contacts. This could help in recogniz-

ing hydrophilic hotspots, close packings of apolar atoms near the interface
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or hotspots stabilized by charged and polar residues. In protein folding, the
same effect could help inducing the formation of a hydrophilic bulk of the
protein. Although this condition tends to favor radically polar or apolar con-
tact maps, it does not favor unphysical conformations over physical ones: its
counterpart {Dejay(P?||P))pyy > (Dejan(PY|P))p,, balances it by preventing
the algorithm from choosing contact distributions too different from the one

observed in the learning database.

4.3 Accounting for clashes

In the original version of BACH, it is implicitly assumed that all the structures
that are compared are viable protein structures, without sizable steric clashes
between atoms. This condition is verified by most of the decoys presented for the
CASP competition, which are normally refined by molecular dynamics or similar
approaches prior to submission. Conversely, in protein-protein interaction
studies many docking algorithms typically produce structures compenetrating
each other, as a result of the optimization of scores based on interface contacts.
The energy terms of the original BACH algorithm are not able to deal with this
issue: the pairwise contact term will associate to the compenetrated structures
a more favorable energy, because of the larger number of contacts. Therefore,
we introduced a term in the energy function that penalizes the clashes among
residues. This penalty term is a quadratic function of the distance between
two atoms, when this is smaller than a certain threshold, and identically zero
otherwise. The threshold and the force constant of the quadratic penalty
depend on the species of the two atoms, but not on residue type. We derived
these parameters by computing, as a function of the distance, the distributions
of contact frequencies between atom pairs of given elements on TOP500, the
same data set of single chain globular proteins used for deriving the other
parameters. The logarithm of these frequency distributions up to its first
maximum is then fitted to a quadratic curve, as can be seen in Fig 4.3. We
also verified that very similar frequency distributions are found when we use a
dataset of homo- and heterodimers [HVJW10|. Thus, derived parameters do
not depend on whether single chain globular proteins or protein complexes are

used as datasets.
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Figure 4.3: a) To calibrate the parameters of the quadratic clash term, the frequency
distribution of distances between two fixed types of atoms (here oxygen and oxygen)
is computed. b) Then, the logarithm is taken and the tail for small distances of the
distribution is fitted with the quadratic curve. c¢) The clash term will then be zero for
distances greater than a threshold determined by the x-coordinate of vertex of the
fitted parable, and will grow quadratically for smaller distances, according to the fit.
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The new BACH energy function can then be written as

Egacu = p1Epar + Esorv + p2Ecrash- (4.18)

We keep p; = 0.6, used for the pairwise term in [CGL*12, SZC*13]. The
new clash penalty term is weighted by a prefactor in order to have the same
standard deviation of the pairwise term on the decoy sets analyzed. To avoid
overfitting, we calibrated this parameter on a decoy set from CASP 9 that was
not included in the test set (T0629), this gave ps/p; = 0.03. Subsequently, we
checked that this choice was consistent also with other decoy sets used in our

tests.

4.4 Testing on CAPRI and CASP decoy sets

The need of reliable test sets to assess the quality of potentials for protein-protein
interaction has driven the community to set up several databases of decoy sets
and several docking algorithms able to produce challenging conformations.
As we will see in Chapter 5, the choice of relying on only one algorithm for
the production of the decoy structures always creates a bias on the scoring
functions quality assessment. In order to avoid this, to validate our scoring
function we look for decoy sets created in the most inhomogeneous way. CAPRI
[JHM™03] is a popular community-wide experiment which counts more than
30 separate competition rounds and more than 60 targets. We obtained by
the competition organizers 26 targets, and, among these, we selected the 17
characterized by a number of chains equal to two and the absence of RNA,
DNA or other non-amino-acid-based molecules. We merged the couples of
decoy sets corresponding to Target 11 and 12, Target 24 and 25 and Target 35
and 36, since for each of these couple of targets the same complex structure
was to be predicted. The complete list of target decoy sets used in this thesis,
along with the number of poses contained in each one, is provided in Tab. 4.1.
Importantly, we also checked that the performance of BACH was maintained
also for protein folding problems. We thus tested the new version of the
algorithm against the 33 CASP 8-9 decoy sets used in the tests for the original
version of the method. For protein folding problems, we applied the same
procedure described in [CGLT12] and in Chapter 2.
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Table 4.1: The CAPRI targets together with the corresponding PDB structure code,
the number of docking poses in the decoy set (used for the native pose recognition
test), the native rank for the different scoring functions analyzed in this thesis, and
the number of poses selected for the model quality tests (fraction enrichment and
lowest iRMSD within best 30 poses).

Decoys for
PDB | Total quality

Target code | decoys | BACH-S | PIE*PISA | IRAD | Rosetta | HADDOCK | FireDock | assessment
(114+12) | 1lohz 405 1 12 43 33 55 73 405
22 1syx T 2 4 6 15 4 17 7
23 2bbw 84 46 1 8 45 37 5 84
(24+25) 2j59 751 26 48 213 350 328 51 532
26 2hgs 427 54 16 87 112 96 60 405
28 2oni 453 28 93 96 86 162 158 399
29 2vdu 526 118 54 202 280 179 56 495
32 3bx1 474 298 103 155 331 134 82 474
(35+36) 2whf 839 7 30 256 19 146 165 681
41 2wpt 457 17 127 112 80 52 117 457
46 3q87 557 6 29 114 76 141 27 537
47 3u43 405 71 24 129 20 120 39 370
53 4jw2 514 17 58 61 79 91 11 507
54 4jw3 507 89 150 211 104 224 311 496

4.4.1 Interface BACH-SixthSense score

We also calculated scores by only summing the contributions of the residues
at the interface between the two subunits. This measure is interesting for
two reasons: first, because many of the analyzed methods only take into
consideration interfaces, second because by restricting to that specific region
the approximation Pj(c) ~ P»(c) behind the inequality Eq. 4.15b does not hold
anymore, and provide us with an estimation of the difference between relying
only on the two conditions given by Eq. 4.14c and being able to rely also on
the other two conditions expressed by Eq. 4.15b. Lacking these, we expect a
decrease in the performance. Interface scores are computed using the pairwise
and clash terms for all residue pairs, that involve interface residues. Interface
residues are those with a heavy atom within 10 A of distance from any heavy

atom of the other subunit.

4.4.2 Comparison with other scoring functions

We compared the performances of BACH-S with five scoring functions that
achieved good results in protein-protein interaction in the last few years: IRAD,
PIE*PISA, Rosetta, HADDOCK and FireDock. In Chapter 2 we provided a
detailed description of these scoring functions. IRAD [VHW11] is the latest
version of the well-known ranking algorithm ZRANK [PWO07|. The original

scoring function was introduced to rank the structures predicted by the docking
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program ZDOCK [PHW11]. It includes Van der Waals and electrostatic
terms calculated using parameters from the CHARMM19 [BBOT83] force field,
together with statistical contact potentials, atomic and residue based, the latter
of whom is taken from I-TASSER algorithm |[Zha08]. PIE [DE10] and PISA
[VRE13] are more recent scoring functions, founded on a residue-based and an
all-atom description, respectively. The Van der Waals potential is modeled, in
PISA, through the OPLS [JTRS&8| force field, while the contact potential, in
PIE, is defined through a sum over residue pairs of a smoothed step function of
their distance with a set of residue-dependent parameters, learned on a training
set of native structures of protein complexes together with different associated
sets of decoy structures. The Rosetta scoring function [GMW™03] is used in one
of the most popular methods for native state recognition and protein docking.
The scoring function is built by exploiting Bayes’ theorem to determine the
probability of having a certain structure of a protein complex, given the amino
acid sequence and the structure of the monomers. It also accounts for the
interaction with the solvent by using an implicit solvation score according to
the model of Lazaridis and Karplus [LK99|. We described in detail the Rosetta
statistical foundations in Chapter 2. HADDOCK |[DBBO03| and FireDock
[ANWO7] are scoring functions extracted from the corresponding docking
programs. They are not available as standalone programs, but the authors
use it in CAPRI scoring competitions, obtaining excellent results [JHMT03].
HADDOCK energy function is a weighted sum of physical terms that keep
into account Van der Waals and electrostatic forces, geometrical restraints,
solvation and binding energies. Similarly, FireDock energy function implements
almost the same variety of interactions. For the analysis of the CASP decoy
sets for monomeric proteins we have used the same scoring functions analyzed
in [CGLT12]: QMEANG6 [BTS08, BST09, BBS11], RE_CB SRS OD |[RF10|
and Rosetta [TBM™03], which we had already considered as representative of
the state-of-the-art for single chain native state discrimination. It is important
to note that, within the Rosetta framework, the parametrizations used for
evaluating alternative docking models or the single chain CASP targets are
different.
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4.4.3 Assessing the performance in CAPRI decoy sets:

native pose discrimination

An important technical difficulty in working with CAPRI decoy sets is related
to the great extent of structure inhomogeneity present for the same target.
The number of residues in different complex structures, within the same decoy
set, is often uneven, while scoring functions based on any kind of extensive
quantity need to compare structures with an equal, or at least similar, number
of fundamental units (these being atoms or residues depending on the scoring
function). A rough energy score ranking would thus favor the structures having
more residues, neglecting the conformation-dependent features of the prediction.
In the CASP decoy sets used in [CGL*12, SZCT13| and in this thesis, targets
were selected and decoy sets filtered in order to fairly compare the scores only
of structures sharing the same residues. A similar filtering would essentially
strip the CAPRI decoy sets. Thus, we propose a different way to overcome
this difficulty. In order to compare the native pose with each decoy in the set,
only the residues present in both the native and the considered decoy pose are
selected. We checked that this procedure never results in cutting more than
20% of one of the structures. Then, we compute the score only for the selected
residues. This allows deciding unambiguously if a docking pose has a higher or
lower score than the native one, even when there are missing residues in one or
both of them. The native normalized rank in a given decoy set is then given
by one plus the number of times that the native pose scores less favorably than
a decoy, divided by the total number of structures in the set, including the
native. As usual, the lower the rank, the better the performance. For a set of
homogeneous structures, the rank described above is just the usual one. The

same strategy is used for all the scoring functions analyzed in this thesis.

4.4.4 Assessing the performance in CAPRI decoy sets:

fraction enrichment and best pose selection

In order to evaluate the quality of the decoy poses as selected by BACH-S best
scores, we need to use estimators that can be computed without any knowledge
of the native structure. To this aim, we first analyzed the fraction enrichment,
calculated as the number of good structures as a function of the fraction of
best-scored structures considered. The quality of the structures is assessed via
the standard CAPRI criteria, by evaluating iRMSD (interface RMSD), IRMSD
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(ligand RMSD), and fnat (fraction of native interface contacts) [MLLWO5]. In
order to assess the quality of the best poses selected by a scoring function,
we then computed the minimum iRMSD among the best 30 scored structures.
This number corresponds to approximately one tenth of the average number of
decoys. Within the perspective of exploiting a scoring function to select a set
of models for further refinement, this is roughly the number of structures that
one can viably consider.

As already discussed in the previous section, the performance of scoring func-
tions based on extensive quantities defined on the whole complex structure,
such as BACH-S, may be biased by the presence of significant differences in
residue numbers within the compared poses. Indeed, the above estimators
(fraction enrichment and lowest iRMSD within the best 30 poses), as any other
based on interface structural features, are not sensitive to residues away from
the interface. On the other hand, scoring functions that evaluate extensively
the whole structure are affected. In order to reduce this bias, we first operated
a selection to avoid comparing poses with too different residue numbers. We
selected the poses whose lengths lie within the most populated 25-residue
long interval of lengths. Then, in computing fraction enrichment and lowest
iRMSD, we considered scores rescaled by the number of residues for BACH-S
and Rosetta, because they are based on the whole structure. We did not rescale
the other four scoring functions because they produce interface scores. Rescaled
scores are used to compute their correlations with iRMSD as well.

We checked that the considered estimators (fraction enrichment and lowest
iRMSD within the best 30 poses) are robust for small changes in the selection
procedure described above. The discarded decoys usually represent at most
10% of the entire decoy set (see Tab. 4.1). In just two cases we discard a higher
fraction: in Target 35+36 30% and in Target 24+25 20% of the decoy set.

4.5 Results
4.5.1 Native state recognition for monomeric proteins:
CASP decoy sets

We first tested BACH-S on the 33 CASP 8-9 targets [CKT09] with the same
filtering of decoy sets used to test the original algorithm for monomeric proteins
[CGL*12, SZC"13]. The results are presented in form of normalized ranks:
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Figure 4.4: a) Normalized ranks of scoring functions for native structure prediction of
monomeric proteins in CASP 8-9 decoy sets. Note that the same decoy set does not
generally occupy the same position along the x-axis, since the ranks are ordered from
the best to the worst independently for each scoring function. The lines are only guides
for the eyes. b) Normalized ranks of scoring functions for protein-protein structure
prediction in the CAPRI decoy sets listed in Tab. 4.2, in the same representation of
Panel a. ¢), d) Same data as a), b) presented target by target. Here the decoy sets
are sorted according to the performance of BACH-S

after having associated an energy score to each decoy conformation and to
the native one, the scores are sorted from the lowest to the highest, and the
position of the native in the rank is assessed and normalized with the number
of structures in the set. The lower the rank, the better the performance. In
Fig. 4.4a we report the ranks of BACH-S, along with the original version of the
algorithm and the other tested competitor scoring functions for protein folding
problems. We see that results from the modified algorithm even outperform
the quality of the original version. In particular the native state has the lowest

score and is thus correctly discriminated in 22 out of 33 decoy sets (67%).
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Table 4.2: The CAPRI targets together with the corresponding PDB structure code,
the number of docking poses in the decoy set (used for the native pose recognition
test), the number of poses selected for the model quality tests (fraction enrichment
and lowest iRMSD within best 30 poses), and the rank of the native structure for
BACH-S scoring function and for only its interface contribution.

Target | PDB code | Total decoys | BACH-S | BACH-S int.
(11+12) | lohz 405 1 21
22 1syx 7 2 13
23 2bbw 84 46 1
(24+-25) 2j59 751 26 39
26 2hqs 427 54 50
28 2oni 453 28 312
29 2vdu 526 118 31
32 3bx1 474 298 149
(35+36) 2whf 839 7 162
41 2wpt 457 17 115
46 3q87 557 6 114
47 3u43 405 71 80
53 4jw2 514 17 7
54 4jw3 507 89 191

4.5.2 Native docking pose recognition: CAPRI decoy sets

Secondly, we tested BACH-S on decoy sets of docked protein-protein complexes
for native pose recognition. In order to avoid possible biases due to uneven
residue numbers in the compared poses, we devised a ranking method where
each pose is separately compared to the native pose, using only the residues
shared by the two poses (see Section 4.4.3 for details).

In Fig. 4.4b we plot the normalized ranks for the six analyzed scoring functions
on 14 CAPRI decoy sets, 3 of which consisting of two targets merged together.
On these test cases, BACH-S performs significantly better than IRAD, Rosetta,
HADDOCK and FireDock and marginally better than PIE*PISA. In the
top panels targets are sorted in order of performance separately for each
scoring function. We choose this ordering to underline the general trend of the
performance of the scoring functions, which would otherwise be unintelligible.
Lines are only guides for the eyes. The same data of panels 4.4a and 4.4b are
presented also in panels 4.4c and 4.4d, respectively. In these panels, the ordering
of the decoy sets along the x-axis is fixed, to better compare the performance
of each scoring function on the same target. Details of the performances for

each target are reported in Tab. 4.2. BACH-S has the best performance in 8
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decoy sets out of 14 with respect to the other scoring functions. The native
complex is ranked by BACH-S as first in one case, in the top 10 structures
in 4 cases (29%), and is within the best 10% in 8 cases (57%). PIE*PISA
has a similar performance, but unlike BACH is specific for protein-protein
interaction and cannot be used also for monomeric proteins. Fig. 4.4d and
Tab 4.1 show a mild correlation between the scoring functions we analyzed.
This complementarity could be exploited to build a consensus scoring function,
based on the combination of many. This strategy has already been explored
by several groups, and the optimal combination is often far from trivial and
requires an ad hoc statistical analysis (see for example QMEANCclust [BST09]).

We also checked if the capability of BACH-S of discriminating the correct
structure derives dominantly from a single term of the scoring function or from
their combination. As shown in Fig. 4.7, the clash component and the pairwise
component are able to score properly the correct structure even when used
on their own, even if their combination is marginally better. The solvation
component achieves instead marginally worse scores, comparable to those of
IRAD and FireDock. We also verified that the performances of BACH-S are
not correlated with the size of the interface or with the volume of the protein
complex. We found only a mild correlation with the ratio interface/volume.
Remarkably, the performance of the BACH-S scoring function is crucially
based on evaluating the whole complex structure. Indeed, if only interface
residue pairs are scored using the pairwise and clash terms (see Section 4.4.1

for details), the performance in native pose recognition is worse (see dedicated

table Tab. 4.2).

4.5.3 Model quality assessment: CAPRI decoy sets

Finally, we tested the ability of BACH-S in recognizing "good" near-native
poses within the CAPRI decoy sets. The tests described in this section were
performed after filtering decoy sets, in order to compare structures with not
too different residue numbers, and using scores rescaled by the number of
residues for BACH-S and Rosetta (see Section 4.4.4 for details). As a result,
residue numbers differ at most by 24. The number of selected decoys for each
CAPRI decoy set is reported in Tab. 4.2. Remarkably, neither BACH-S nor any
other scoring function we analyzed show a significant correlation between the
interface-RMSD (or equivalently ligand-RMSD) of the decoys with the native

complex and the corresponding scores, as we can see in Fig. 4.8 and Fig. 4.9.
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scoring function. Decoy sets are sorted independently for each scoring function. Lines
are only guides for the eyes. ¢) Same data shown in b), target by target. Here the
decoy sets are sorted according to the performance of BACH-S.

Yet, significant features regarding the scoring of near-native structures can be
captured by the fraction enrichment (Fig. 4.5a).

Computed as a function of the fraction of poses that are best-ranked by
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each scoring function, the fraction enrichment measures the number of "good"
structures found, where the quality of the structures is assessed by means of the
standard CAPRI criteria on iRMSD, IRMSD and fraction of native contacts
fnat [MLLWO5|. For structures of medium-high quality, according to CAPRI
criteria, our scoring function exhibits a performance that is significantly better
than all the competitors when a fraction of up to the 5% of the best-ranked

poses is selected. For higher fractions of best-ranked selected poses, and, in
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general, for all "good" structures (i.e. including high, medium, and low quality
hits), PIE*PISA performs better.

We finally assessed the ability in recognizing near-native decoys by finding
how much close-to-native a pose can be found among the top N poses as ranked
by the scoring function in use. In Fig. 4.5b and 4.5¢ we report, for each scoring
function and each decoy set, the minimum iRMSD value among the top 30
scored structures. The data are presented like in Fig. 4.4. Thus, in panel 4.5b
targets are ordered differently for each curve. In this task, the best performance

is achieved by FireDock, followed very closely by our scoring function.
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Figure 4.8: BACH, PIE/PISA and Rosetta energies as a function of the iRMSD
(in A). BACH and Rosetta energies are divided by the number of residues in each
structure. Each panel corresponds to one of the 14 CAPRI decoy sets analyzed.
Targets 11 and 12, 24 and 25 and 35 and 36 are merged, as explained in Section 4.4.
The targets are presented in the same order of Tab. 4.2. Apart from isolate cases, no
significant correlation between these two quantities is observed for any of the scoring
functions.
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Figure 4.9: IRAD, HADDOCK and FIREDOCK energies as a function of the iRMSD
(in A) Each panel corresponds to one of the 14 CAPRI decoy sets analyzed. Targets
11 and 12, 24 and 25 and 35 and 36 are merged, as explained in Section 4.4. The
targets are presented in the same order of Tab. 4.2. Apart from isolate cases, no
significant correlation between these two quantities is observed for any of the scoring
functions.
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4.6 Discussion

BACH-S is a new version of the BACH scoring function [CGL*12, SZC*13]
that can be used to evaluate protein conformations in the context of both
single protein chains and protein-protein complexes. Two distinctive features
of BACH-S are the splitting of polar and apolar sidechain contacts into two
different classes, and a potential energy term disfavoring steric clashes. Including
these modifications is crucial in the protein-protein interaction problem, and

significantly improves the performance also for monomeric proteins.

4.6.1 Information flow

Polar contacts

Apolar contacts
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Figure 4.10: Magnitude of BACH-S parameters for the polar, apolar and non-contact
classes. The residues are sorted by decreasing hydrophobicity, from left to right and
from bottom to top.

From the theoretical point of view we provided a novel framework to ratio-
nalize the statistical method used in BACH. The gain in performance attained
by splitting the Van der Waals contact class into polar and apolar contact

classes is supported by theoretical considerations. Within this framework, we
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conclude that a conformation will be scored more favorably than a second one
if

e the frequencies with which the couples of types of residues are observed in
a certain contact class is more similar to the ones observed in the learning
data set. This guarantees that the right types of residues are making the
right types of contacts;

e there is more "segregation" between types of contacts and associated cou-
ples of types of residues, i.e. the classes of contact select more specifically
the types of residues involved. The condition holds unless it violates the

previous one.

To have an idea of how these frequency distributions look like, in Fig. 4.10 we
report the ones relative to the TOP500 dataset. The polar, apolar and non-
contact parameters are visually compared. The residues are disposed along the
axes in order of decreasing hydrophobicity. We can see the primary information
contained in the apolar parameters is about polarity. In the polar parameters,
we can observe that specific kinds of contacts have very high or very low values,
thus reducing the entropy of the contact distribution. We also note that the
two frequency distributions are uncorrelated. This proves that they do not
contain the same kind of information. Unsurprisingly, the non-contact class is
the least informative: its role is mainly enforcing normalization (see Section
4.2). Yet, there are at least three specific couples of types of amino acids for
which this class of contact contains a sharp information: the residues CYS,
PHE and TRP, when present, are very disfavored if not paired. We can explain
the first one for the propensity of CYS to make sulfur bridges, and the other

two because of their size and their propensity to form pi stacks.

4.6.2 A unified scoring function for protein folding and

protein-protein interaction

We performed tests on decoy sets from the CASP [CKT09] and CAPRI
[JHM*03] competitions, showing that our scoring function performs better in
recognizing the native conformation than some of the most popular state-of-
the-art scoring functions in both problems. The performance is particularly
remarkable in the docking context, since the relatively few parameters entering

our scoring function are derived from TOP500, a dataset of monomeric proteins.
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Further, the parameters weighting the relative contribution of different energy
terms are not optimized. The remarkable portability of our potential is an
indirect evidence that protein complexes are stabilized by the same fundamental
interactions of monomeric proteins, as already shown in a similar way within
the context of amyloid fibril aggregation [TCMSO06]. In order to deal with the
highly inhomogeneous nature of CAPRI decoy sets, we introduced a way to
rank the native complex by comparing pairs of curated structures that share
the same residue set. We suggest that the generalized ranking procedure intro-
duced in this thesis could be useful for comparing inhomogeneous structures in
general.

The success of the features that were introduced in BACH-S highlights the
stabilizing role of the 'Janus face’ ability of polar side chains in establishing
favorable interactions with both their polar and non-polar moieties for both
single chain proteins and protein complexes. Proper discrimination of unrealis-
tic steric clashes in computational models is likewise crucial in both contexts.
Our results suggest that the availability of higher quality decoy sets, with
homogeneous models, refined and purified from bad steric clashes, is highly
desirable for a proper benchmark of the different methods.

The importance of the contribution to the BACH-S score coming from residues
that are distant from the interface underlines the role of the rearrangement of
those residues in complex formation. From a practical perspective, a scoring
function able to weigh on the same ground the contacts formed at the complex
interface and the structural rearrangements occurring far from it may prove
useful for addressing problems in which induced fit or allosteric regulation of the
binders are crucial in determining the correct docking pose. These tasks are not
conceivable for scoring functions that evaluate only the interface. Furthermore,
we proved that by only considering the interface, the discrimination power of

the statistical method weakens significantly.

4.6.3 Protein-protein interaction is still a challenge

In the more general perspective of protein-protein structure prediction, our
analysis underlines once more that this task is extremely challenging for com-
putational approaches. Even if our scoring function is capable of discriminating
the correct structure, no significant correlation between the score and the

interface RMSD with the experimental structures is visible. For most of the
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decoy sets the Pearson correlation between the iRMSD and the score is below
0.3. Even more importantly, structures with low score seem to be present
at any iRMSD, making the value of the score a poor guide in a structural
search carried out in the whole conformational space. A possible interpretation
of these results is that some important ingredient is missing in our scoring
function. However, all the scoring functions we analyzed in this thesis show a
behavior that is qualitatively similar to the one observed for ours. In particular,
in all cases several structures with low score are present at high value of iRMSD
(see Figures 4.8 and 4.9. This is a remarkable difference with respect to what is
observed in decoy sets of monomeric proteins, where all the scoring functions,
including ours, show a significant correlation between the score and the RMSD
towards the native structure [CGL*12].

If the behavior observed above is at least qualitatively correct, one has to
conclude that the free energy landscape for protein-protein interaction does
not possess a clear funnel, at least for large iRMSD. While the protein fold-
ing process, to take place efficiently, must follow an energy-guided pathway
towards the native state, one can argue that protein-protein pairs can meet
each other by simple diffusion, making the need of a funnel-shaped landscape
biochemically less stringent. Under this hypothesis, the attempt of correlating
a scoring function with the quality of a non-native structural model might be
misleading. Indeed, decoy complex structures with low score and high iRMSD
might signal physically viable docking poses that may transiently occur in the
complex formation process [YPVVO08|. The performance of BACH-S in model
quality assessment makes it a reliable tool to refine the structural search in
the close proximity of the native pose. BACH-S exhibits an excellent ability
in recognizing high quality structures that are very similar to the native pose
when a small fraction of best ranked poses is selected. This is benchmarked by
all the three tests we illustrate in the present thesis: recognition of the native
pose, fraction enrichment and lowest iRMSD within the best poses. The perfor-
mance of BACH-S is particularly good in selecting very few best-ranked poses.
Several high quality structures may be missed, but the true positives found
by BACH-S are more numerous and of higher quality than for the competing
scoring functions considered in this thesis. FireDock performs very well in
finding structures with the lowest iRMSD within the best poses, but its fraction
enrichment is significantly lower than the one of BACH-S when a fraction of

up to the 5% of the best-ranked poses is selected, and lower than the one of
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PIE*PISA above this threshold. PIE¥*PISA displays the best performance in
the high sensitivity /low specificity setting implied by selecting a large fraction
of best-ranked poses, when many more false positives are present. Moreover,
PIE*PISA is also more reliable when similarity is present, but less marked.
These results are possibly related to the way parameters are derived in the
two scoring functions: while BACH-S parameters are obtained from a set
of crystallographic structures, PIE*PISA is trained on misfolded structures.
Thus, the former scoring function performs better at establishing whether a
structure is correct (native or very near native), whereas the latter is more
suitable in recognizing to which extent a structure is incorrect. Interestingly,
an optimal performance in the high specificity setting is displayed by PASTA,
in the quite different context of protein aggregation prediction. PASTA is
an algorithm based on a scoring function that adopts essentially the same
parameters as BACH-S for g-bridge residue-residue pairwise contact classes
[TCMS06, WSTT14|. It may be possible that this behavior is due to deriving
parameters only from a data set of native conformations, as in BACH-S, without
boosting the high sensitivity performance by explicit training on a data set of
competing conformations, as in PIE*PISA.

We conclude with an example of how the ability of BACH-S in specifically
detecting high-quality structures can be fruitfully used in a realistic refinement
procedure. Molecular dynamics runs could be performed on a small set of
putative high quality structures pre-selected among the many possible poses
generated by docking algorithms. We will apply these ideas in the next chapter,
where we will follow a refinement procedure and we will assess the performance
of BACH-S, PIE/PISA and Rosetta. The efficiency and the reliability of the
approach crucially depends on how close these starting conformations actually
are to the native state; in that respect, BACH-S appears a very promising

tool.
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Chapter 5

Recognizing the correct structure

of a protein-protein complex

Recognizing the native structure of a complex among a set of decoy structures
does not solve the problem of protein-protein interaction, in the same way
as discriminating the native fold of a protein among a set of decoys does not
solve the problem of protein folding. The standard procedure to tackle both
issues can indeed be divided into two separate steps: first, a set of plausible
conformations must be generated. Then, the best prediction must be selected
out of the set. The two parts are both crucial, and the quality of the results
obtained in the second part depends greatly on the quality of the conformational
search performed in the first one.

In Chapter 4 we focused on the second task, and compared the performances
of some state-of-the-art scoring functions in discriminating the correct pose
in a series of challenging decoy sets. This is indeed the moment in the pro-
cedure where a scoring function is more needed. Nonetheless, the ability of
discriminating the native state is not, by itself, sufficient: if only the correct
state is discriminated, while the almost-correct conformations are completely
ignored, the practical use of the scoring is compromised. To be useful, a scoring
function should reproduce at least on a local scale the shape of the free energy
funnel around the native state. This implies that a correlation should be
visible between the score assigned to a conformation and its proximity to the
native state. As a direct continuation of the study described in Chapter 4, we
hereby test our scoring function BACH and the competitors PIE/PISA and
Rosetta along a complete docking procedure. The aim here is not to compare

the performances of sampling algorithms, but to characterize the correlation
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between the quality of the poses and the discriminatory power of the scoring
functions. To generate the poses we will make use of a rigid docking algorithm.
The poses will then undergo different cycles of refinement through more and

more accurate molecular dynamics simulations.

As we discussed in Chapter 2, rigid docking [KKSET92, MRP*01, WNOO,
PKWMO00, GWAO1] does not change the internal structure of the two sub-
units, and spans the 6-dimensional conformational space given by the rela-
tive rotations of one monomer around the other. Restricting to this space,
one can obtain a dense and uniform scan of all possible poses. Nonethe-
less, the majority of monomers modify their internal structure to optimize
the interaction with their partner. Therefore, flexible docking methodologies
[BRW95, ESDWT08, DNRB94, MR05| are often more accurate. Being the
conformational space too large, flexible docking schemes cannot scan the entire
space, but can be applied to the study of a suitably chosen subset.

In this study, our first step will be performed by a rigid docking algorithm, for

two reasons:

e To avoid or limit biases given by internal scoring functions of the docking
algorithm. Since the focus of the study will be on the predictive power
of protein-protein interaction scoring functions, it is important to limit
the influence of any other filtering method. However, as we explained,
often it is not possible to completely remove the bias: even rigid docking
programs make use of minimal filtering methods which are intrinsic to the
algorithm. For example, all FF'T methods include an evaluation through
convolution in order to retain only one configuration among the set of

configurations generated by shifts in a fixed direction.

e To sample the whole accessible conformational space. One of the main
problems of flexible docking methods is that they risk to completely ignore
the native state conformation if the site is not recognized among the
plausible ones in the filtering process. In order to provide for a better test
for the scoring functions, we instead wanted to retain as many different

conformations as possible, and let the scoring functions act as filters.

Therefore, in order to generate a dense set of poses we chose the algorithm
ZDOCK 3.0 [PHW11], already described in Chapter 2. ZDOCK generates 54000

poses of a dimer by rotating and translating the ligand around the receptor.
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In doing this, it introduces only one source of unevenness, which is inherent
to the FFT-based method. We will subsequently refine the conformations
generated by docking by using molecular dynamics simulations. In particular,
we will first use MD in vacuum to allow for relaxation of the internal degrees
of freedom of the two subunits. Then, we will concentrate on a subset of the
conformations that will be chosen with the help of the scoring functions used.
The conformations in this subset will undergo a more refined and longer MD
dynamics in explicit water. Throughout the whole procedure, we will analyze
the conformations with the selected scoring functions. This will provide us
hints about both the quality of the docking poses and the characteristics of the
algorithms used to score them. We will analyze in detail the performances of
some state-of-the-art scoring functions, namely BACH [SZC*13|, PIE/PISA
[VRE13| and Rosetta [RSMBO04], described in Chapter 2, on decoys of a CAPRI
Target.

5.1 Methods

5.1.1 Choice of the target

Among the targets proposed in CAPRI, we choose the dimer (PDB code: 1syx)
composed by the spliceosomal U5 snRNP-specific 15 kDa protein (PDB code:
1qgv) and the CD2 antigen cytoplasmic tail-binding protein 2 (PDB code: 1gyf).
The dimer was the object of CAPRI Target 22, belonging to Round 8. The
round was subsequently canceled because of the leak of unauthorized pictures of
the dimer on the internet before the conclusion of the competition, but the data
about the predictions are available on the site. Possibly due to the cancellation
of the competition, the total amount of predictions available is fairly small
(77), and they are of poor quality: according to CAPRI criteria, only 4 out
of 77 complexes are "acceptable, while all the others are "incorrect. Target
22 is also part of the test set we used to assess the quality of different scoring
functions in a previous work [SGST15] and described in Chapter 4. Because
of the characteristics of the decoy set, it is quite easy for a scoring function
to discriminate from the rest of the structures the native conformation, if the
latter is added to the decoy set. Indeed, 4 scoring functions (BACH-SixthSense,
PISA/PIE, IRAD, HADDOCK) out of the 6 we analyzed ranked the native
in the top 10%. For the same reason, finding the structure which is nearest

to the exact conformation is a hard task. The only scoring function that,
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for the decoys at low iRMSD from the native, exhibits a Pearson correlation
coefficient higher than 0.1 between the iRMSD and the score is FireDock, which
in contrast is the worst in detecting the native state when it is added to the

prediction set.

5.1.2 Choice of the scoring functions

We will consider three scoring functions already tested in the previous study

(Chapter 4).

e BACH is the scoring function described throughout all this work. We
will consider here the version described in Chapter 4 and previously
denominated BACH-SixthSense.

e PIE/PISA obtained good results in the tests described in [SGS*15] and
reported in Chapter 4. It is the only scoring function among those
considered whose performance competes with the one of BACH. For a

more detailed description of the algorithm, see Chapter 2.

e Rosetta did not perform as well as BACH and PIE/PISA in our tests, but
obtained good results in true CAPRI competitions and is the reference
method for the whole class of scoring functions to which the other two
methods belong. The algorithm is based on the same statistical premises,
but the functional form differ greatly from the ones used in BACH and
PIE/PISA, thus providing an even more interesting comparison. We use
Rosetta with the same settings employed in the previous chapter: Rosetta
3.4 with the "standard" set of scorel2 weights.

5.1.3 Quantifying performances

In order to assess the quality of the predictions of the scoring functions we
made use of the same quantities described in Chapter 4: our main tool will be
the correlation plot between the interface root mean square deviation (iRMSD)
from the crystallographic native state and the value of the scoring function.
The iRMSD is the root mean square distance of the C, atoms placed at the
interface in the native conformation. These are defined as those C,s whose
amino acid has at least one atom closer than 10 A from an atom of the other
subunit [Jan10].

The second manner of assessing the performance is the fraction enrichment
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[WFLS04], already presented in Chapter 4. The fraction enrichment is based on
ranking the conformations from the lowest to the highest and then computing
the number of near-native conformations found in the first n% of the rank.
Differently from our previous studies, we hereby consider as near-native the
poses with an iRMSD smaller than 5 A. Albeit this threshold may seem
exceedingly high, less than 1% of the poses generated via rigid docking respect
the constraint. We remark that the correct threshold for this analysis is

dependent on the size of the complex.

5.1.4 Generating a large set of rigid poses

The first step of our analysis procedure consists in generating a large set of
rigidly docked binding poses. At this scope we employed the well-established
docking algorithm ZDOCK 3.0 [PHW11| whose performances have been tested
throughout the years in all CAPRI competitions. See Chapter 1 for a description
of the competition. We generate 54000 conformations, which is the maximum
possible number of poses that ZDOCK can provide. This is done in order not
to make ZDOCK apply any additional filter to the already halved number of
conformations and to span the largest possible fraction of the conformational

space given by the three Euler angles (6, ¢, ).

5.1.5 Equilibrating the binding poses by short MD simu-

lations in vacuum

The structures generated by ZDOCK are then equilibrated by performing
40 ps of plain MD in vacuum. We use GROMACS 4.6.7 [HKVASLO08| to
perform the simulations. Since the receptor has a hole of six amino acids in the
sequence, we keep the position of the two Cs next to the hole fixed. We rescale
the masses of every atom to be equal to 2 Da. This allows exploring more
conformations per unit time, but does not affect thermodynamics quantities.
We run the simulation at a temperature of 300 K, and with a cutoff for the
electrostatic interactions of 1.2 nm. Of the initial 54000 conformations, 39286
complete the molecular dynamics simulation. The conformations that do not
complete the dynamics are normally characterized by serious steric clashes
between the subunits, that our computational protocol is not able to cure. This
conformations are excluded from any further analysis. The conformations that

complete this step are then scored by three different scoring functions, as we
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will discuss in detail in the next section.

5.1.6 Equilibrating the system by MD in water solution

For all the poses reaching the end of the equilibration in vacuum we split the
trajectory into four parts of 10 ps each and calculate the average BACH energy
and its standard deviation on these four parts: E%, ok, for i = 1,2,3,4. We

select only those trajectories that satisfy these conditions:

EL > E}
2 4
B g < %

In this manner we exclude from any further analysis the conformations whose
score significantly increases during the first relaxation step. We therefore
assume that a conformation that violates these conditions is unstable. After
applying this filter, 34253 conformations remain. We then take the top 2000
structures satisfying this criterion and simulate them in explicit water for a
total time of 1.3 ns. Again, we use GROMACS 4.6.7 [HKVdSLO0g|, with a 2
fs time step. We freeze the C,s of the receptor and we put the masses of the
atoms to 2 Da, as in the previous step. Each system undergoes temperature
and pressure equilibration phases of 100 ps and 200 ps respectively. We use
a velocity-rescale algorithm as thermostat, Berendsen barostat [BPvGT84|
for the NPT equilibration and Parrinello-Rahman barostat [PR81| during the
dynamics. The relaxation time for the velocity-rescale thermostat is 0.1 ps, the
one for the Berendsen barostat is 2 ps, and the one for the Parrinello-Rahman
is 2 ps. The cutoff for electrostatic interactions is 1 nm.

1990 of the simulated structures complete the dynamics. Some of the simulations
are then continued for other 100 ns in order to perform additional analyses on

the stability of the structures.

5.1.7 Scoring the crystallographic structure

The docking procedure is carried out as if the native structure was unknown.
Yet, we use the crystallographic structure of the dimer as a reference to evaluate
the quality of the models. As we proceed through the different steps, we process

the PDB dimer structure as well, in order to produce a consistent score of
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for the native pose at each stage. This additional analysis will also provide
information about the stability of the crystallographic conformation, thus

providing a benchmark of the estimators we are using.

5.2 Results

The analysis we present in this work is aimed at benchmarking the separate
importance in a protein-protein prediction problem of two elements: the quality
of the scoring function and the quality of the structures that are scored. For
performing the analysis we choose a single target from the CAPRI competition,
the dimer of PDB code 1syx composed by the spliceosomal U5 snRNP-specific
protein (PDB code: 1qgv) and the CD2 antigen cytoplasmic tail-binding protein
2 (PDB code: 1gyf). This target was selected because the size of the monomers
is not too small and not too large (130 and 62 residues), and because the quality
of the predictions available in CAPRI for this case is rather poor (see previous
section).

We evaluate the quality of the structures with three different scoring functions:
BACH-SixthSense, PISA /PIE and Rosetta. BACH-SixthSense was proved to
have the best discrimination power among other scoring functions (PISA/PIE,
IRAD, Rosetta, FireDock, HADDOCK) when near-native states are present,
while for more distant conformations it is overcome by PISA /PIE. Rosetta is
an extremely popular protein/protein interaction tool, whose usefulness was
demonstrated several times even in blind predictions [FCS*10].

The main scope of this work is benchmarking the relative importance of the
quality of the scoring functions and the quality of the structures. Since different
algorithms generate high quality structures with a different efficiency, we here
on purpose to avoid generating structures by any advanced importance sampling
technique as those implemented in Rosetta [WSFB05] and HADDOCK |[DBBO03|.
We instead perform the analysis starting from all the conformations that are
geometrically possible, generated by a rigid docking algorithm. The first
refinement step is performed "blindly" on all these structures. The subsequent
step is based on costly atomistic simulations in explicit solvent. In order to
limit the computational burden, the data set was reduced by selecting the best
poses according to BACH-SixthSense. However, in order to avoid as much as
possible biases induced by the selection procedure, we performed the refinement

step on the largest number of structures we could afford with our computational
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Figure 5.1: Native conformation surrounded by the cloud of the centers of mass of
the 54000 generated conformations. The red dots and blue dots represent the centers
of mass of the receptor around the ligand and of the ligand around the receptor,
respectively.

resources.

5.2.1 Step 1: analysis of the poses generated by rigid
docking

The first step of our analysis procedure consists in generating a large set of
rigidly docked binding poses by ZDOCK 3.0 (see Section 2). Figure Fig 5.1
shows the position of the centers of mass of the ligand around the receptor
and viceversa, for each of the 54000 poses. Some density holes can be found
in both clouds, showing that ZDOCK 3.0 depopulates some areas and favors
others. This is due to the selection procedure described in Chapter 4. One of
the holes is spatially close to the native state configuration, yet not enough to
compromise the search: at his stage, 257 near-native poses are present in the
set.

Fig. 5.2 reports the iRMSD as a function of the score of the three scoring
functions, for each one of the refinement stages considered. The first row of the

graph represents the initial situation. We show that at this stage none of the
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three scoring functions considered display any visible correlation between the
two quantities: the near-native poses are randomly placed halfway through the
rank. The graph also reports the score of the native conformation, visualized in
each panel as a black diamond. We can see that BACH and Rosetta correctly
discriminate the crystallographic native state at this stage, while PIE/PISA
assigns to it a lower score than the near-native conformations but a higher
score than some other decoy. A certain similarity in the shape of BACH and
Rosetta point clouds is also noticeable. In fact, the two scores display a Pearson
correlation coefficient of 0.87. We will see that the correlation will be lost as

the refinement proceeds.

5.2.2 Step 2: analysis of the poses after structural relax-

ation in vacuum

For each of the 54000 poses we than performed a 40ps dynamics in vacuum, with
the scope of relaxing the structures and curing the steric clashes unavoidably
generated by rigid docking. 39286 simulations complete this step without errors,
while the remaining exploded due to too extreme steric clashes (see previous
section). The second row of Fig. 5.2 shows the iIRMSD versus the average value
of the scoring function computed on the last 10 ps of these simulations. At this
stage, Rosetta is the only scoring function which discriminates as top-ranked a
near-native state. We will see, however, that when the structures are further
refined this does not happen anymore. In all the scoring functions, at low
iRMSDs a very mild correlation starts to emerge. This change highlighted by
the fraction enrichment estimator represented in the first row of Fig. 5.3. In
each panel of the first row, the solid line represents the fraction enrichment
during Step 1 and the dashed line the fraction enrichment during Step 2. The
fraction enrichment for the configurations after the 40 ps dynamics grows more
rapidly, thus showing that a larger number of near native poses can now be
found in the high part of the rank. The total amount of poses and the total
amount of near-native states differ in the two stages: originally, 257 out of
54000 initial poses are near-natives, while after the dynamics the near-natives
are 192 out of 39286 remaining poses. The correlation between the scores of
BACH and Rosetta completely fades during this stage, passing from a Pearson
correlation coefficient of 0.87 in the previous step to a value of 0.07 at the end
of this step.

The analyses show that, even after the MD relaxation, two out of three scoring
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Figure 5.2: iRMSD vs. the scoring functions in the different steps of the procedure:
a) for the 54000 generated decoys, b) for the 39286 decoys after the equilibration in
vacuum, ¢) for the 1990 best-scored decoys after the equilibration in explicit water.
In all panels is reported the score of the native conformation (marked in black), which
underwent the same procedure as the decoys.

functions cannot predict the correct conformation of the dimer. Indeed, the
best near-native pose is ranked 222 by BACH and 36 by PIE/PISA. Yet, the
success of Rosetta and the emerging correlation are hints that MD could help
the discrimination process. Moreover, in all three cases the fraction enrichment
is significantly better after the MD relaxation than before. The natural next

step to do is to increase the accuracy of the simulations.

5.2.3 Step 3: analysis of the top-2000 poses by a 1 ns

MD in explicit water

We then selected the top-2000 poses with the lowest BACH score from the
previous step (see Section 5.2.2). The chosen poses are colored in black in the
second row of Fig. 5.2. We can see that, due to the very low correlation between
the scores of the three scoring functions, the poses are randomly distributed in
the ranks of PIE/PISA and Rosetta. The choice of these 2000 poses constitutes
a source of bias in the comparison of the performances of the scoring functions.

From now on, we will therefore only discuss how the refinement steps impact the
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behavior of the scoring functions, without comparing their relative performances.
The bias is mitigated if we keep in mind the properties of the distributions
of the chosen points during Step 2 (the black clouds in Fig. 5.2). Among the
selected poses, PIE/PISA ranks the first near-native as 172th, and Rosetta as
5th.

Each structure was solvated in a box containing on average 10400 water
molecules and equilibrated at room temperature and pressure for 0.3 ns, followed
by 1 ns of production (see Section 5.1.6). Since this procedure is computationally
expensive, it was not possible to select the top-2000 poses for each scoring
functions independently, and we carried on this procedure only for BACH. A
molecular dynamics of 1 ns in explicit solvent contributes to thermalize and
relax the originally coarse structures, stabilizing the contacts that are chemically
viable, and breaking the ones that are stable only in vacuum. Comparing the
second and the third row of Fig. 5.2 we see that while for BACH there is
no qualitative change, for PIE/PISA and for Rosetta there are substantial
differences. PIE/PISA now ranks the first near-native conformation as 77th,
thus improving the initial situation. However, the PIE/PISA panel in the
third row of Fig. 5.2 shows that the fraction of low-ranked wrong predictions
increased. Regarding Rosetta, we notice that it is not able to rank in the
first places a near-native conformation anymore, placing the first one as 90th.
Also in this case, some of the wrong predictions got a much lower score. The
discrimination power of BACH remains qualitatively the same, even if now
the first near-native can be found as 16th in the rank. All the three scoring
functions still exhibit a mild correlation between iRMSD and score at low values
of iRMSD. We remark that in this section we are discussing the impact on the
rank of the refinement step on a set that includes the same structures but is
optimal only for BACH.

The analysis of the fraction enrichment is reported in the second row of Fig. 5.3.
The dashed lines here represent the fraction enrichment during Step 2, but only
limited to the selection of 2000 structures that will then undergo the dynamics
in explicit solvent. The dotted lines represent instead the fraction enrichment
during Step 3, after the dynamics in explicit solvent. This analysis reveals that
in the quantity of top-ranked near-natives slightly increases for BACH and
PIE/PISA, while greatly decreases for Rosetta, for the same reasons we stated
during the analysis of the ranking.

Particular attention should also be given to the position of the native structure
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Figure 5.3: Fraction enrichment for the three scoring functions at different stages
of the procedure: in the first row the fraction enrichment relative to the rigid poses
of Step 1 (solid line) is compared with the fraction enrichment relative to the poses
relaxed with a 40 ps MD in vacuum of Step 2 (dashed line). In the second row, the
enrichment factor relative only to the 2000 poses selected by BACH is reported after
that the structures underwent the MD in vacuum of Step (dashed line) and after also
the MD in explicit solvent is performed in Step 3 (dotted line). We consider as "near
native" those conformations having iRMSD < 0.5 nm

in the graph. The iRMSD of the simulation started from the native state
(black diamond) is drifting towards higher values, while this is not happening
for some of the near-native conformations. This implies that the equilibrium
conformation is actually at more than 2 A of iRMSD from the alleged native
state, and that not even the simulation which takes as starting configuration

the crystallographic structure has reached convergence yet.

5.2.4 Scoring by 100 ns of MD in explicit water

The previous step is computationally expensive, since it is based on running
a total of 2.6 us of molecular dynamics in explicit solvent. However, this
procedure revealed not yet sufficient to find the native structure. Apparently,
the poor quality of the results does not depend on the specific scoring function,
but is primarily determined by the quality of the configurations. Indeed, the
predicting power of BACH and PIE/PISA scoring functions increases whenever

the conformations become more and more realistic. Remarkably, this happens
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Figure 5.4: iRMSD vs. the scoring functions for 33 selected decoys which underwent
a 100 ns dynamics in explicit solvent. The score is averaged on the final 50 ns of the
dynamics. In all panels is reported the score of the native conformation (marked in
black), which underwent the same procedure as the decoys.

also for the crystallographic structure, that is scored relatively badly by BACH,
indicating that it is at least partially distorted by crystal packing effects, and
is therefore not fully representative of the thermal ensemble in water solution.
In order to investigate how important this effect is we extend the dynamics of
some representative conformations up to 100 ns. We choose to perform this
additional dynamics on a restricted set of near-native states and the far-from-
native conformations associated with the lowest energy scores. We simulate the
native conformation as well. It is found that 100 ns allow most conformations
to reach stability. Except for few cases, after 50 ns the score as a function
of time reaches a plateau. Thus, the score can be estimated as an average
on the second half of the dynamics. Fig. 5.4 shows the final situation: in all
three scoring functions the native and near-native states have similar scores.
Their rank improved but is not yet optimal, indeed in all three cases there are

structures at higher iRMSD that display lower scores.

5.3 Discussion

In this study we compared the performance of different state-of-the-art scoring
functions for docking pose prediction on a binary complex already proposed in
CAPRI as Target 22. Starting from a very large set of poses generated by the
rigid docking algorithm ZDOCK 3.0, we performed molecular dynamics with
an increasing degree of accuracy. At each step, we assessed the discrimination

proficiency of some scoring functions in recognizing the native pose. For
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BACH and PIE/PISA the predictive power increases with the accuracy of
the simulation, while for Rosetta it decreases after the 1 ns optimization in
explicit solvent. After 100 ns of dynamics in explicit water the predictive
power of all three scoring function increases, but the native structure cannot

be discriminated from all the decoys yet.

5.3.1 Generation of rigid poses

We chose to rely on a rigid docking procedure for two reasons: first, this
approach allows generating a large set of decoys which span most of the rigid
conformational space, thus providing a rough but complete overview of the
possible docking poses. Second, in this way we avoid the biases that a flexible
docking method implies. However, we did not succeed in removing all the
biases from the docking algorithm, as we can see from Fig 5.1. There is indeed
one type of bias which is intrinsic to the use of Fast Fourier Transforms. For
two average-sized monomers, a uniform and fine conformational search in the
6-dimensional space of translations and rotations would imply the generation
of hundreds of billions of poses (see for example [MRP*01]), most of which
would be completely unphysical. Thus, the current methods which rely on
such a search usually perform explicit rotations and then use FFTs and the
convolution theorem to compute at once the score of all poses separated only
by a translation in a same direction. As we explained in Section 2.4, this
implies that poses in which the ligand happens to be on opposite sides of the
receptor fall in the same set of translations. There is no way to ensure that
both configurations are recognized: if the algorithm retains only the best scored
pose for each set of translations, one of them is lost. If the algorithm retains
more than one, still there is no guarantee, because it could (and possibly does)
retain only configurations of the ligand on the same side of the protein, where
the scoring function is more favorable. With an angular step of 6 degrees, 54000
poses are generated. If the translational shifts are 1 A long, to be somehow
sure to retain at least one pose of the ligand on each side of the protein one
should retain on average 10 structures for each translational set, which would
imply to have an output of 540000 poses. The current analysis would not be
feasible with such a number of candidates. Although we are aware that specific
methods could be devised in order to select the two poses, the effort demands a
study by itself, and falls outside the scope of our work. The choice of the rigid
docking algorithm fell on ZDOCK because it provides the best compromise
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between refinement of the search and quality of the selection. DOT [RTP*13|
was a good alternative, but produces a larger number of candidates without

eliminating the source of bias described above.

5.3.2 Performance of the scoring functions through the

different refinement steps

We analyzed the performance of three scoring functions along the whole docking
procedure. The results are summarized in Fig. 5.2 and 5.3, where we can see
the iIRMSD vs. score correlations and the fraction enrichments respectively,
for each scoring function during each of the refinement steps. We already
concluded that after the relaxation in vacuum the performances of all three
scoring functions improve. In particular, during Step 2 Rosetta is able to
discriminate as top-ranked structure a near-native pose. Although this is a
very good result, the iRMSD vs. score plot for Rosetta reveals that there might
be also a fortuitous component: indeed the distribution does not show features
as outstanding as the ones of the rank. The correlation is mild and broad as in
the other cases. While BACH and PIE/PISA are based on contact counting,
Rosetta is based on more complex structural considerations. This can represent
a hint on the fact that contacts are not the best feature to discriminate between
semi-rigid poses, while they become more informative as the quality of the
poses increases, as we will see hereafter.

After the stage of refinement in vacuum the procedure becomes biased by the
selection of the best 2000 poses according to BACH. We can see from the second
row of Fig. 5.2 that the selected poses are not among the best-scored ones for
the other two scoring functions. Fig. 5.6 shows for each scoring function the
score distributions for both the whole set of 39286 poses (solid line) and for
the subset of 2000 selected poses (dotted line). The fourth panel reports the
distribution of the iRMSD for the two sets considered. We can see that for both
PIE/PISA and Rosetta the selection of the best-scored 2000 poses in BACH
does not differ significantly from a random selection. The distributions relative
to the iRMSD report differences in the height of the peaks: there is a slight
increase in the fraction of near native poses (it is higher in the selection for Step
3) and there is a higher percentage of poses with iRMSD > 1.5 nm. The small
peak at low iRMSDs is only a consequence of the improved BACH fraction
enrichment profile: by taking the 2000 top-scored structures, there is a sligthly

higher percentage of near-native structures than by taking 2000 randomly cho-
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sen poses. Interestingly, it seems that BACH selects also structures with higher
iRMSD. We suppose that this effect could be attributed to conformational
entropy: in the case of a uniform sampling of the conformational space, the
number of poses with iRMSD between a value v and v+ A nm is lower than the
number of poses with iRMSD between a higher value V and V + A (v < V),
independently of the choice of the reference structure.

If these considerations prevent us from comparing the performance of BACH
with the other two scoring functions after Step 2, they do not prevent us from
comparing the performance of each single scoring function throughout the whole
procedure. Fig. 5.3 shows that the dynamics in explicit solvent favors BACH
discriminative power the most, while also favoring the one of PIE/PISA. On
the other hand, Rosetta greatly loses the efficiency shown during the previous
step. This can also be seen in Fig. 5.5, where the fraction enrichments already
shown in Fig. 5.3 are reported together for Step 2 and Step 3, allowing a
visual comparison of the performances of the three methods. We can see that,
after the 1 ns dynamics in explicit solvent are performed, for low values of the
fraction enrichment BACH is the best scoring function, while its performances
are overcome by PIE/PISA in the rest of the graph. Rosetta, which was by far
the most performing scoring function after the simulation in vacuum, attains
now the worse results. This suggests that, as the quality of the structure
proceeds, the information stored in the contact map and used by BACH and
PIE/PISA becomes more and more useful, while the one provided by Rosetta

seems less reliable

5.3.3 The native state differs from the crystallographic

structure

Another important observation to make on the data shown in Fig. 5.2 is that
the native state displays a significant variability both in iRMSD from the
crystallographic structure (i.e., from its starting configuration) and in the score,
for all the scoring functions considered. At the end of the 100 ns dynamics in
explicit solvent, the structure seems to have reached stability at approximately
2.5 A of iRMSD from the crystallographic structure. For all three scoring
functions, the final score of the native state is lower than most of the other
structures that also underwent the 100 ns dynamics, and is comparable to the

score of the near-natives. However, the score of the native state during the
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Figure 5.5: Comparison of the fraction enrichment for the three scoring functions. The
analysis is restricted to the 2000 poses selected by BACH. The two panels summarize
two different stages: after that the structures underwent the MD in vacuum of Step 2
and after also the MD in explicit solvent is performed in Step 3.

first 1 ns dynamics in vacuum shows a significant rise in BACH and PIE/PISA,
while Rosetta displays a constant decrease of the native score throughout the

whole procedure.

5.3.4 Characteristics of the contact features

The previous observations indicate that there is a substantial difference be-
tween the predictive power of BACH and PIE/PISA on one side and Rosetta
on the other side. The 1 ns dynamics in vacuum is shown to enhance the
predictive power of BACH and PIE/PISA. This is expected, since allowing
for more flexibility helps the structure to recover the favorable contacts if
the pose is stable, and to be driven adrift by the entropy if the conformation
is unstable. However, we observe that Rosetta reacts differently, by losing
almost all its predictive power, which instead was found to be the highest for
structures relaxed in vacuum. While BACH and PIE/PISA are only based on
the observation of contacts, Rosetta also grasps different structural features
such as rotamers probability and secondary structure elements, from which
orthogonal information can be extracted. This additional information seems
to improve the performance of Rosetta when the structures are similar to the
crystallographic ones, but to make the scoring function lose accuracy when the
structures become more realistic due to the interaction with the solvent. In

contrast, relying only on the contact map makes BACH and PIE/PISA less
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Figure 5.6: Probability density distributions of the three scoring functions BACH
(red), PIE/PISA (green), Rosetta (blue) and of the iIRMSD, both for the complete
set of 39286 poses of Step 2 and for the selection of 2000 poses used in Step 3. Since
the selection has been made by considering the 2000 top-ranked by BACH, the PDFs
for that scoring function largely diverge. For the other two scoring function, the two
PDFs display a marked similarity. The PDFs relative to iRMSD display noticeable
differences, but the overall shape remains the same.

accurate when dealing with rigid structures, but subsequent refinement of the

quality of the poses entails a steady improvement in the accuracy of the rank.

5.3.5 Docking and scoring as part of a single procedure

If methodologically it is convenient to separate the docking procedure and the
refinement, it is not clear whether the division into two complementary tasks
also leads to the best results [VHK13]. The results presented in this chapter

brings two important messages:

e The quality of the docking poses largely affects the predictive power of

the scoring function used for refinement

e The best scoring function at different refinement steps is not necessarily

the same
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These evidences suggest that current docking procedures are optimized when
coupled to specifically devised scoring functions. This however implies that
the predictive power of current docking methods does not depend on the
realization of a general "physical fitness", rather on a specific fitness which
is defined by internal criteria, which may or may not correspond to actual
physical characteristics of the structure. We are confident that an objective
set of features to correctly discriminate the native state of a protein complex
from decoy states must exist. In our opinion, the quantity and quality of
inter-residue contacts should be part of this information. The results show to
support this hypothesis, though improvements in the quality of the information

extracted from the contact map should be pursued.

105






Chapter 6
Conclusion

Protein folding and protein-protein interaction are two of the fundamental
processes in cell biology. They are both central in the field of medical treat-
ments: many neurological syndromes are caused by a disruptive folding of some
proteins, while knowledge of the interaction mechanisms and the protein-protein
interaction network in the cell are of key importance for pharmaceutical studies,
indeed most of the currently used and developed drugs act by enhancing or
preventing proteins to interact. This makes the two processes interesting to

study by means of a physical approach.

The main goal of this thesis was to inspect the connection between the pro-
cesses of protein folding and protein-protein interaction through computational
methodologies. In particular, we made use of BACH, a scoring function con-
ceived for protein folding problems. We proposed a series of improvements that

made it suitable also for studying protein-protein interaction:

e The solvent interaction was studied by implementing a new calculation
of the residue-wise solvent accessible surface area (SASA), in order to
better discriminate between the residues which are exposed to the solvent

and the ones which are buried in the core of the protein;

e The ability to recognize the correct conformation in protein-protein
interaction problems was achieved by implementing in BACH a term
taking into account steric clashes and a term describing the interactions
involving sidechains with a partially hydrophilic and partially hydrophobic

character;

e The ability to recognize the most correct pose among the ones calculated
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by a single docking algorithm was tested by following a protocol involving
docking and molecular dynamics at various levels of accuracy, using
BACH and other two state-of-the-art scoring functions in each step of

the refinement process.

The thesis can thus be divided into three parts, each of which focused on one

of these three subjects.

Implementing the mLCPO method to account for the residue-wise
exposure to the solvent We devised and tested a simplified version of
the LCPO method [WSS99| to calculate the solvent exposed surface area of
the residues of a protein. We call our version of the method modified LCPO
(mLCPO). In order to produce an estimate of the solvent accessible surface
area (SASA), the original LCPO method uses four parameters for each atom
element and type of hybridization. Instead, we used the same set of four
parameters for every heavy atom. We then promoted the water probe radius
and the buried/exposed threshold on the SASA value to free parameters, and
used them to optimize the coherence score of mLCPO with respect to two
reference methods: SURF [VBW94|, which is the method previously employed
in the molecular surface area calculation in BACH, and GETAREA [FB97]|, an
exact analytical method for SASA calculation. Although the maximum was
quasi-degenerate, a meaningful value could be found for these parameters. We
chose as optimal threshold and radius the values 0 and 3.08 A, respectively.
These values do not differ significantly from the ones reported in [SZC*13].
The implementation of mLCPO conferred to BACH a speed 10 times larger
than the original version, and a slightly better accuracy. Moreover, mLCPO
allows to compute the derivatives of the SASA with respect to the atomic
coordinates. This is important in view of an implementation of BACH as a

collective variable in enhanced sampling methods.

Protein folding and protein-protein interaction by the same scoring
function We devised a new version of the BACH scoring function [CGL*12,
SZC*13| that can be used to evaluate protein conformations both for single
protein chains and for protein-protein complexes. Two distinctive features of
this version are the splitting of polar and apolar sidechain contacts into two
different classes, and a potential energy term disfavoring steric clashes. Including

these modifications is crucial in the protein-protein interaction problem, and
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significantly improves the performance also for monomeric proteins. The BACH

score introduced in this thesis is then
Epacu = p1Epair + Esol + P2 Eclash (6.1)

where p; = 0.6 and p, = 0.018. p; was optimized in a previous work [CGL112],
while ps was introduced and optimized in the work described in Chapter 4. The
optimization followed the same criterion of the optimization of the weight p;.

We summarize here the three contributions to the total score:

e [, is the pairwise interaction term already contained in the original
BACH algorithm [CGL*12]. However, in the current version there are
six types of contact between residues: parallel and anti-parallel S-sheet,
a-helix, sidechain-sidechain Van der Waals polar and apolar contact,
non-contact. The introduction of the separation between polar and apolar
contact was justified by a theoretical point of view and was proved to
enhance the performance of the algorithm both in protein folding and in

protein-protein interaction problems.

e F, is the protein-solvent interaction term based on the new method
to calculate the solvent exposed surface area described in Chapter 3.
This conferred more speed to the algorithm and gave the possibility to
calculate derivatives of the solvent exposed surface area with respect to

the atomic coordinates.

e [ .n is a new term that accounts for steric clashes. Unlike the other ones,
it is not a knowledge-based potential built on the concepts explained in
Chapter 2. The clash term is atom-wise, and is equal to zero if two atoms
of a certain element are further than a certain threshold. Otherwise,
a disfavoring quadratic term is added to the score. The parameters of
the quadratic formula depend on the element of the two atoms involved
and are extracted from the probability distributions of the distances of

couples of atoms in the proteins of the TOP500 database.

We performed tests on decoy sets from the CASP [CKT09] and CAPRI
[JHM™ 03] competitions, showing that our scoring function performs better in
recognizing the native conformation than some of the most popular state-of-
the-art scoring functions in both problems. In particular, on protein-protein

interaction problems we tested BACH against five renowned scoring functions:
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PIE/PISA, Rosetta, IRAD, HADDOCK and FireDock. The performance is
particularly remarkable in the docking context, since the relatively few pa-
rameters entering our scoring function are derived from TOP500, a dataset
of monomeric proteins. Furthermore, the parameters weighting the relative
contribution of different energy terms are not optimized for protein-protein
interaction. The remarkable portability of our potential is an indirect evidence
that protein complexes are stabilized by the same fundamental interactions of

monomeric proteins.

Recognizing the structure of a protein-protein complex To further
validate BACH performance on protein-protein interaction problems, we com-
pared the performance of different state-of-the-art scoring functions for docking
pose prediction on a binary complex already proposed in CAPRI as Target
22. Starting from a very large set of poses generated by the rigid docking
algorithm ZDOCK 3.0, we performed molecular dynamics with an increasing
degree of accuracy. At each step, we assessed the discrimination proficiency of
BACH, PIE/PISA and Rosetta scoring functions in recognizing the native pose.
For BACH and PIE/PISA the predictive power increases with the accuracy
of the simulation, while for Rosetta it decreases after the 1 ns optimization in
explicit solvent. After 100 ns of dynamics in explicit water the performance
of the three scoring functions increases, yet they still cannot discriminate the
native structure from some of the decoys. This suggests that the quality of the
docking poses largely affects the predictive power of the scoring function used
for refinement.

Moreover, the best scoring function at different refinement steps is not neces-
sarily the same: indeed, there is a substantial difference between the predictive
power of BACH and PIE/PISA on one side and Rosetta on the other side. The
1 ns dynamics in vacuum is shown to enhance the predictive power of BACH
and PIE/PISA, while we observe that Rosetta reacts differently, by losing
almost all its predictive power, which instead was found to be the highest for
structures relaxed in vacuum. This difference can in part be attributed to the
different approaches by which the three scoring functions are built: while BACH
and PIE/PISA are only based on the observation of contacts, Rosetta also
grasps different structural features such as rotamers probability and secondary
structure elements, from which orthogonal information can be extracted.
These results confirm that current algorithms for prediction the structure of

protein-protein complexes are optimal when coupled to specifically devised
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scoring functions. This however implies that the predictive power of current
docking methods does not depend on the realization of a general "physical
fitness", but rather on a specific fitness which is defined by internal criteria,
which may or may not correspond to actual physical characteristics of the

structure.

6.1 Future perspectives

The algorithm BACH for the discrimination of native and near-native conforma-
tions of proteins and protein complexes already proved to be quite reliable: it
achieved top performances against other state-of-the-art scoring functions when
tested on two collections of CASP and CAPRI decoy sets. However, especially
for protein-protein interaction problems, the quality of the predictions of all
the algorithms tested is still to be improved. It is indeed possible that BACH
and other scoring functions lack some important ingredient. Here we list some
of the ideas that could be developed.

e The possibility to add a term to account for the vibrational entropy
change between the docked and undocked configurations of a dimer was
explored, but up to now did not give positive results. Yet, we think
that a better insight on entropic contributions might improve the current

estimates of the free energy of binding.

e The ideas contained in the statistical approach presented in Chapter 4
can be further expanded and generalized, in order on one side to supply
an original overview of the current knowledge-based potentials, and on
the other to provide a theoretical basis for further improvements of the

BACH scoring function.

e The introduction of system-specific terms accounting for coevolutionary
data could improve the accuracy of the contact potential. Recent works
[CT15, LT13, MPL*11] show how patterns of co-evolving amino acids
highlight important contacts in native structures. The inclusion of this
kind of information in the theoretical framework delineated in Chapter 4
poses an interesting challenge, and goes in the direction of the upgrade

from the noiseless to the noisy information formalism [Sha49].

Another direction that might be explored in the future is developing a BACH

scoring function capable of predicting the interactions between proteins and
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small ligands, a central matter in pharmaceutical studies. However, this implies
to change from a residue-wise description to one which considers chemical
functional groups as fundamental units. An early implementation can be
already found in Zamuner’s Ph.D. thesis [Zam15].

The advancements proposed in Chapter 4 also prelude to a further possible
improvement: using BACH scoring function as a collective variable for enhanced
sampling molecular dynamics. The implementation in Plumed [BBB*09]| and
Plumed2 [TBB*14] has been already completed, and preliminary tests on long
molecular dynamics have already been performed.

We also considered using BACH as an energy term in a coarse grained force field.
A first implementation in Gromacs 4.6.7 evidenced problems in the stability of
the secondary structure and issues with the portability of the parameters of
the model. Currently, new approaches are being developed in order to cope
with these difficulties.
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