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Chapter 1

Introduction

1.1 Overview
The Standard Model of Particle Physics has asserted as our best model for understanding particle physics
with great experimental success. Consequently, the tools of Quantum Field Theory have proved to be
incredibly useful in describing - in a phenomenologically accurate and verifiable way - the sub-nuclear
phenomena. It became clear already in the ’70s that a further effort was necessary to incorporate the
theory of general relativity into a unique mathematical framework where gravity is quantized.

Among all attempts to unify the mathematical description of gravity with the other three fundamental
forces, String Theory has played and still plays a predominant role in modern theoretical physics. At
present day - and very presumably in the next future - it is still lacking any experimental evidence,
and thus it has yet to be understood whether it can help us in understanding how quantum gravity is
realized in Nature. Nonetheless the framework and the theoretical tools which have been developed in
the long process of understanding String Theory have become a valuable subject of interest on its own.
A great amount of progress has been made and nowadays the theoretical landscape is so varied and
diversified that, although the original motivation is still to find a complete theory of quantum gravity,
several branches have developed.

The mathematical strength and beauty of String Theory could be considered as a per se reason
for pursuing research in this area, however the directions where the theory has developed are so broad
and have touched almost all aspects of theoretical physics, ranging from abstract mathematics to the
groundings of quantum field theories, from phenomenology of relativistic quark-gluon plasma to the
study of high temperature superconductors.

In the last years, part of the field has seen some sort of paradigmatic shift where the ideas developed
in String Theory have been used as tools to provide a better understanding of theories where other
techniques have failed or are just too difficult to be used: this is true in the context of gauge/gravity
duality, where the behaviour of a strongly coupled quantum field theory can be characterized - at least
qualitatively - in terms of a theory of gravity.

The subject of this thesis falls in this framework: I have been dealing with holographic computations
of entanglement entropy, which is a measure of entanglement for pure states in quantum systems and
has been studied in the last decade in different areas of physics ranging from quantum information,
condensed matter and quantum gravity.

1.2 Gauge/gravity duality
The AdS/CFT conjecture states that certain classes of conformal field theories in d dimensions admit
a dual description in terms of a string theory living in a curved, higher-dimensional space-time. This
means that every possible observable quantity (correlators, expectation values and more) of both theories
match in a precise way, specified by a dictionary linking mathematical objects in the field theory to the
gravitational string theory. In this sense, the dual field theory can be seen as a holographic description
[1] of the gravity side, requiring one dimension less to describe the same phenomena.
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In its original formulation [2, 3] the conjecture relates N = 4 SYM theory with SU(N) gauge group
and type IIB string theory in an AdS5×S5 background with N units of F5 flux on the S5. The motivation
for the duality comes from considering type IIB string theory in a 10−dimensional Minkowski background
with a stack of parallel D3−branes: then one can either look at the low-energy effective action of open
strings attached to the branes or see the stack as a black-brane solution of type IIB supergravity in ten
dimensions and consider the low energy fluctuations from the near-horizon region. In the former case
[2] showed that the theory reduces to a super-Yang-Mills theory with special unitary gauge group of
rank N , while in the latter the theory is again a string theory where now the background is not flat but
AdS5 × S5.

The correspondence is a weak/strong duality, because small couplings on one side correspond to large
ones on the other. More precisely, in the large N limit of the gauge theory one has

λ

4πN = gs , (1.1)

where gs and λ = g2
YMN are respectively the string and the ’t Hooft coupling constants, and gYM is

the Yang-Mills coupling. At fixed λ, it is clear that a large N expansion corresponds to a small string
coupling. More precisely, if we take the planar limit of the gauge theory, i.e. we send N → ∞ while
keeping λ finite, equation (1.1) shows that the higher loops terms in a string amplitude can be discarded,
since a stringy loop of genus χ is weighted by a factor g−χs .

Since the black-brane radius L (corresponding to the radius of both AdS5 and of S5) is directly
related to the Ramond-Ramond flux, one can show that the following holds

λ =
(
L

`s

)4
. (1.2)

We see that in the planar limit of the gauge theory, or equivalently in the genus zero expansion of the
string theory amplitude, a small λ corresponds to both a weakly coupled SYM theory and a highly curved
background. Conversely, for λ→∞ the gauge theory becomes strongly coupled while in the string theory
one needs to consider only strings fluctuations which have `s � L, i.e. the strings can be considered
as point-like objects as measured in terms of the AdS radius. Reducing strings to non-extended objects
means that we need to take the zero-modes of type IIB String Theory, which are the ones of type IIB
supergravity (on AdS5 × S5). For large λ the string theory becomes an ordinary quantum field theory,
and given that we are in the limit of small gs, one can approximate quantum expectation values by
classical correlators. Thus we have a correspondence between a classical (super-)gravitational theory
and a strongly coupled (super-)conformal quantum field theory.

This crucial observation and the subsequent generalizations of the correspondence have led to the
hope that this duality may indeed just be a particular case of a broader set of dualities, relating quantum
field theories and classical gravitational theories. Such a consideration carries the name of gauge/gravity
duality.

The general expectation is that given a quantum field theory admitting such a dual, the following
relation holds

Zgrav[Φbdy] =
〈
e−
´
ddxΦbdy(x)O(x)

〉
QFT

, (1.3)

i.e. the partition function of the gravitational theory, with field content Φ, such that on the conformal
boundary Φ→ Φbdy, is exactly equal to the partition function of the field theory in presence of a source
Φbdy for a certain single-trace operator O. The field Φbdy is said to be dual to the operator O.
At first order in the large N expansion of the QFT (gs → 0 in the language of supergravity theory), the
duality relation can be approximated by

e−S
o.s.
grav[Φbdy] '

〈
e−
´
ddxΦbdy(x)O(x)

〉
QFT

, (1.4)

where the left-hand side of the equation stands for the on-shell value of the gravitational action with the
appropriate boundary conditions.

In the above discussion we intentionally specified that the duality is between a generic QFT and a
gravitational theory, somehow extending the requirement that the theory must be conformal. Namely,
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the gauge/gravity extends the AdS/CFT conjecture to theories which do not enjoy conformal symmetry,
and as we will see later this has been precisely one of the subject of my research1.

In fact the isometry group of AdSd+2 is SO(d + 1, 2) which is also the conformal group in d + 1
dimensions. For the dual field theory to be conformal, the requirement on the gravity side is that the
space-time must be AdS. Conversely, if we want to study a QFT without conformal symmetry, the
duality imposes to deal with geometries with less asymptotic isometries than Anti-de Sitter space-times.

Equation (1.4) not only gives a different way to look at strongly coupled field theories, but also
shows how it is possible to compute QFT correlators using classical (super-)gravity actions. We should
note however that for any asymptotically AdS space-time the conformal boundary is at infinite proper
distance from any point in the bulk. As consequence of this fact, the evaluation of on-shell actions
extending all the way down to the boundary gives a divergent quantity. From the gravity point of view,
this is clearly an infrared divergence, originating from the behaviour of the fields at infinity. On the
other hand, given that equation (1.3) has to hold, the QFT expectation value has to diverge as well, but
now from this perspective the divergences have to arise because of ultra-violet effects. This aspect of the
duality of divergences is called UV/IR connection [4]2.

From now on, in speaking of divergences we will always use the QFT language, so that UV will always
refer to the infrared behaviour of the bulk space-time.

The systematic way to get rid of divergences in computing holographic correlators undergoes the name
of holographic renormalization [5, 6]. The ideas behind this procedure have been extensively studied in the
literature and a working description of the technique is beyond the scope of this thesis. In this procedure,
the gravitational action is evaluated on-shell, arbitrarily close to the boundary, i.e. at arbitrarily small
values of the UV regulator, and then a proper counter-term has to be added in order to eliminate every
and each divergent term. The choice of the counter-term action reflects the scheme dependence of the
dual QFT, and thus it has to be chosen with the maximal amount of space-time isometries and internal
symmetries preserved. In AdSd+2 with d odd, the impossibility to choose a counter-term which preserves
all the isometries (in particular the one associated to dilatations and special conformal transformations)
reflects precisely the anomalous behaviour of the CFT Ward identities.

Already in the early days of the AdS/CFT correspondence it was understood that the duality goes
beyond the possibility to compute local correlators using gravitational on-shell actions. This was some-
what to be expected, because in general a theory is not completely characterized by correlators of local
operators. Indeed there are non-local quantities which carry non trivial information and are not acces-
sible from computations of inherently local quantities as n−point functions. One of these quantities are
Wilson loops, which in general are defined as

W (C) = Tr
(
P exp

˛
C
Aµ(s)σµds

)
, (1.5)

where P stands for path-ordered integration, Aµ is a gauge field, C is a generic a closed curve in Minkowski
space and σµ = σµ(s) is the vector tangent to the curve. The signature of C determines the nature of
the loop (space-, time- or light-like). In [7] it was shown how the expectation value of a Wilson loop
could be computed holographically by evaluating the on-shell value of a string world-sheet action, which
in the classical limit of the gravity theory amounts to finding a surface γC homologous3 to C whose area,
computed in the curved background, is extremal. Then, the correspondence says that

〈W (C)〉 ' e−Area[γC ] . (1.6)

As we will see later, this relation is kind of anticipating the holographic prescription for computing en-
tanglement entropy.

We should note that the asymptotic behaviour of bulk quantities is completely determined by the
UV physics of the dual QFT and the regularization procedure depends only on the small-scale behaviour

1We should also mention that in general the gauge/gravity duality does not require the theories to be necessarily
supersymmetric.

2This issue actually extends to other considerations and computations in the contest of AdS/CFT so that the UV/IR
connection is intended as the fact that to any infrared divergence in the the bulk theory corresponds an ultraviolet one on
the boundary. As we will see, this is also the case for the holographic entanglement entropy.

3Two (hyper-)surfaces are said to be homologous if they share the same boundary and are connected by a continuous
set of deformations.
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of the theory, and thus the physically interesting information about the IR of field theory quantities is
holographically linked to the dynamics in the inside of the AdS space. For this reason, in dealing with
holographic computations it is fundamental to find complete solutions which go deep into the bulk, so
that some non-trivial IR information about the dual theory can be found.

1.3 Entanglement Entropy
Entanglement is one of the most striking features of quantum mechanics and has no classical analogue,
and as such has no intuitive interpretation. It is natural to ask whether it exists a quantity which measures
to some degree how much a system is entangled with its environment. Such a quantity would therefore tell
also how much "non-classical" a system is, given that decoherence leads inevitably to disentanglement,
and ordinary macroscopic systems at room temperature do not appear to be entangled. Among all
possible measures, one is the entanglement entropy.

This concept, dating back to the early days of quantum mechanics and being extensively studied in
the context of quantum information (see e.g. [8]) has a simple definition: consider a generic quantum
system which is bipartite, i.e. its Hilbert space H is factorizable

H = HA ⊗HĀ , (1.7)

where A and Ā are (bi-)partitions of the system. As in any quantum system, the density matrix ρ is an
operator containing all information about the structure of H, and due to the factorization (1.7), tracing
over Ā is a well defined operation, which allows us to define the reduced density matrix

ρA ≡ TrHĀρ . (1.8)

The Von Neumann entropy computed out of ρA is the entanglement entropy of A

SA = −TrHAρA log ρA . (1.9)

This quantity has several interesting properties. First of all, it does what one expects: as we said at
the beginning of this section, the purpose of SA is measuring how entangled a system is. It can be
shown (see e.g. [9–11]) that in the case of a quantum system consisting of an arbitrary number of qubits
and partitioning the system by choosing a proper subset of those qubits (calling this partition A), SA
measures the number of entangled pairs between A and its complement. Otherwise stated [11], the
quantity SA is the logarithm of the minimal number of auxiliary states one would need to entangle with
A in order to obtain ρA from a pure state4.

The entropy of entanglement is always a non-negative quantity [8] and its value can be at most
min{log dA, log dĀ}, where dA = dimHA is the dimension of the partitioned Hilbert space. If the system
is in a pure state |ψ〉, then ρ = |ψ〉 〈ψ| and by Schmidt decomposition is easy to show

SA = SĀ . (1.10)

This is a remarkable property, because for spatial partitions5 this hints that, for pure states, SA can
depend on the only thing A and Ā have in common: the boundary ∂A = ∂A.

When the Hilbert space is partitioned in at least three regions, call them A, B and C = A ∪B, one
can define the mutual information

IA,B = SA + SB − SA∪B . (1.11)

For pure states, it can be shown that IA,B ≥ 0, with the equality holding if and only if ρA∪B = ρA⊗ρB ,
i.e. the two subsystems are completely disentangled.

The positivity of mutual information follows from a more general property of entanglement entropy,
the so called strong subadditivity [8, 12]

SA + SB ≥ SA∪B + SA∩B , (1.12)
4In quantum information language, SA counts the number of extra qubits necessary to purify ρA [10].
5By spatial partition we mean that A and Ā are partitioning the system in different spatial regions. In this case, SA is

often called geometric entanglement entropy.
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which is one of the so called entanglement inequalities, which are true for any quantum system and can
give non-trivial information about a specific theory, once the entanglement entropy is computed.

Another interesting inequality involving the mutual information is [13, 14]

IA,B ≥
1
2

(
< OAOB >c

||OA|| ||OB ||

)2
, (1.13)

where OA and OB are generic operators, < · >c stands for the connected Green’s function and ||·|| stands
for the operator norm. It shows how the knowledge of the mutual information allows to put bounds on
any correlator in a quantum theory.

1.3.1 Entanglement Entropy in QFTs
Although SA is a quantity introduced in quantum mechanics, in the last years there has been a growing
interest in computing the entropy of entanglement in quantum field theories. In the pioneering work of
[15–17] and later of [18] it was shown how to compute SA in field theories.

The first step is understanding how to represent ρ in field theory. The density matrix for a generic
QFT in d+ 1 dimensions can be written as an Euclidean path integral:

ρ (φ1(x1), φ2(x2)) = 1
Z

ˆ
Dϕ(t, x)

∏
x

δ (ϕ(0+, x)− φ1(x1))
∏
x

δ (ϕ(0−, x)− φ2(x2)) e−SE [ϕ] , (1.14)

where SE is the Euclidean action, Z is a normalization constant which ensures Trρ = 1 and the func-
tional Dirac δ’s fix the particular matrix element of the density matrix. Partial tracing over HA is
straightforward and can be formally written as

ρA (φ1(x1), φ2(x2)) = 1
ZA

ˆ
Dϕ(t, x)

∏
x∈A

δ (ϕ(0+, x)− φ1(x1))
∏
x∈A

δ (ϕ(0−, x)− φ2(x2)) e−SE [ϕ] ,

(1.15)
notice that the path integral integration variable Dϕ still involves integration over the whole space, while
the δ’s act only on points inside A.

Evaluating the trace of a logarithm of a field theory operator is not an easy task and the standard
trick is to compute the trace of the n−th power of the reduced density matrix ρA, which is an operator
defined on a replicated geometry of the original space-time.

One then can compute the so called Rényi entropies

S
(n)
A = log TrHAρnA

1− n , (1.16)

which in the limit n→ 1 converges to S(1)
A = SA. Strictly speaking, (1.16) is defined only for integer n.

One first has to analytically continue the Rényi entropies to non-integer values and take the limit n→ 1.
The Rényi entropies contain more information about the system than just the entanglement entropy,
since one could in principle reconstruct the whole spectrum of the reduced density matrix ρA.

Expression (1.14) is well defined in any dimension and for any QFT, however trying to compute
the entanglement entropy out of it turns out to be a very hard task. Major simplifications happen for
theories in two dimensions.

The remarkable result of [18] is that, if the theory enjoys conformal symmetry, the entanglement
entropy of an interval takes the simple form

SA = c

3 log `
ε
, (1.17)

where ε is a UV cut-off, ` is the interval width and c is the Virasoro central charge. This beautiful yet
simple formula retains all the power of two-dimensional conformal symmetry, and has generated a field of
active research. After that, many other results have been achieved in other two-dimensional theories and
for different entangling regions (e.g. two disjoint intervals, where it can be shown that the entanglement
entropy depends on the whole CFT data rather than just the central charge [19]).
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Nonetheless, (1.17) is true for any theory admitting a UV fixed point (i.e. for any theory which in the
small scale limit looks conformal). The central charge c can be promoted to an energy scale dependent
quantity, called c-function, which takes the value of the Virasoro central charge at any conformal fixed
point. This quantity has proven to be monotonically decreasing along flows from the UV to the IR, this
fact being known as the c-theorem [20].

We should note however that a complete and systematic procedure for computing entanglement
entropy in d+ 1 dimensions with d ≥ 2 is still missing.

One feature of SA computed on the ground state in a generic bosonic theory [21] is that it is expected
to obey the so-called area law

SA = γ
Area(∂A)
εd−1 + . . . , (1.18)

where γ is a dimensionless scheme-dependent quantity and the dots stand for less divergent terms. This
can be proven to be true for any conformal theory. The other subleading divergences are also known (for
smooth ∂A) although a general proof needs to rely on holographic considerations:

SA = γ
Area(∂A)
εd−1 + a3

εd−3 + · · ·+
{
ad d even
ad log ε d odd + subleading terms , (1.19)

where the various coefficients ai can sometimes be evaluated, depending on the theory under considera-
tion, the shape of A and the dimension d.

For example, for a CFT2+1 the entanglement entropy has only one divergent term (which has to obey
the area law), and takes the form

SA = Area(∂A)
ε

− FA , (1.20)

where the finite quantity FA does not depend on the choice of the UV cut-off. More generally, for theories
which admit a UV fixed point, the equation (1.20) is still valid and FA may provide, when A is a disk,
the definition for an analogue of the c-function in three dimensions. The conjecture that the finite part
of the entanglement entropy of a circular region decreases along RG flows is called F-theorem [22, 23].

Instead, for a CFT3+1 the entanglement entropy takes the form (see e.g. [24, 25])

SA = Area(∂A)
4πε2 − cA log ε/`+ finite terms , (1.21)

where ` is a typical length characterizing the entangling region. The coefficient of the logarithm is
proportional to the conformal anomaly of the CFT

cA = aF aA + bF bA + cF cA , (1.22)

where a,b and c are respectively the a-type, b−type and c−type anomalies. The coefficients F a,bA depend
on the geometry of A6:

F aA = π

8

ˆ
d2x

(
(Trk)2 − Trk2) , (1.23)

F bA = −π8

ˆ
d2x

(
(Trk)2 − 1

2Trk2
)
, (1.24)

where we assumed that the background of the CFT is flat and kij is the extrinsic curvature7 of ∂A
as embedded in R3 space8. We did not write an explicit expression for F cA because it depends on the
background geometry, and in flat space it is equal to zero.

In four dimensions the a−type anomaly is the quantity which monotonically decreases along the RG
flows [26] (this fact takes in this case the name of a-theorem and has been proved in [27, 28], where the
proof however did not rely on entanglement entropy). When the entangling region is a sphere we have
that F bA = 0, the entanglement entropy is eventually able to capture the right quantity to follow along
the flow.

6We assume here that A has a smooth boundary, otherwise other divergences may appear, in particular log2 ε terms.
7See equation (A.4) for the definition of the extrinsic curvature.
8Because of flatness of the background and because ∂A is embedded in a constant-time spatial slice, we have that the

extrinsic curvature computed with the time-like normal to the surface vanishes, i.e. k(t)
ij = 0.
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It is conjectured that any dimensions admit a particular c-function, i.e. a quantity which decreases
along the renormalization group flow from the UV to the IR. In even-dimensional theory this could be
always given by the A-type anomaly coefficient, although a proof even just for CFT5+1 is still lacking.

The computation of (1.16) in higher dimensions has not yet been achieved in a generic QFT or even
a CFT, although some results - with different techniques - have been obtained in free theories for disjoint
entangling regions either [29–33], for some universal9 coefficients of non-smooth boundaries [34, 35], some
perturbative calculations around spherical regions [36–38], the divergence structure of four dimensional
CFTs [24] and entanglement entropies for circular regions [39–41].

Another case of interest for the study of entanglement entropy is when the system is in a time
dependent setting. When the quantum system is prepared in a state which is not an eigenstate of the
Hamiltonian, SA will evolve with time. In [42] it was studied the behaviour of entanglement entropy in a
two-dimensional CFT following a quench: imagine to have the system to be in an eigenstate |ψ0〉 of some
Hamiltonian H = H(λ0), where λ is some coupling. At some given time t = 0 one suddenly changes λ0 to
λ and let the system evolve, with the new Hamiltonian still being invariant under conformal symmetry.
The reduced density matrix (1.8) becomes time-dependent

ρA(t) = TrHĀ
(
e−iH(λ)t |ψ0〉 〈ψ0| eiH(λ)t

)
. (1.25)

One then can proceed by evaluating the path-integral (1.15) and compute the Rényi entropies. It was
found that SA(t) grows linearly with time for a time t = `/s, where ` is the interval width. This
delay in the response can be explained by the fact that after the quench there are excited quasiparticles
propagating at the speed of light which propagate inside the entangling region. Afterwards, saturation
value is reached and the entanglement entropy becomes constant. Further studies on the time dependence
of entanglement entropy in two-dimensional CFTs were done in [43–45].

1.4 Holographic Entanglement Entropy
In the seminal work [46, 47] Ryu and Takayanagi proposed a simple way to compute holographically the
geometric entanglement entropy in a CFT with a gravitational dual:

SA = minγA Area[γA]
4G(d+2)

N

, (1.26)

where γA is any codimension-two hypersurface embedded in AdSd+2, homologous to A, i.e. it can be
continuously deformed into A while keeping ∂A = ∂γA. G(d+2)

N is the bulk Newton constant for AdSd+2.
This formula holds only for static backgrounds and for entangling regions embedded in constant-time

slices of the bulk space-time which are asymptotically AdS.
Note that both sides of (1.26) are infinite, because the boundary of AdS is at infinite distance from

any point in the bulk, and one has to regularize the area. This is achieved by cutting the bulk space-time
at some hyperplane at finite but arbitrary large distance of order 1/ε. This has the effect of reproducing
the known expansion (1.19) and in particular the area law is correctly reproduced.

For AdS3/CFT2 the result (1.17) is readily recovered, because of the relation (L here is the AdS3
radius) [48]

c = 3
2

L

G
(3)
N

, (1.27)

which can be proven by looking at the algebra of the generators of isometries in asymptotically AdS3
spaces and after the identifications with the full, infinite-dimensional Virasoro algebra in two dimensions.

The minimal area prescription is something which was already present in the early days of AdS/CFT ,
namely the Maldacena prescription for computing the expectation values of Wilson loop operators. Equa-
tion (1.6) is of the same nature of (1.26). Note that the Ryu and Takayanagi prescription works with
hypersurfaces at fixed codimension, while the Wilson loop expectation value is dual to a two-dimensional

9We call universal a quantity which does not depend on the choice of the UV cut-off.
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surface. However, for loops with Euclidean signatures, computing Wilson loops and entanglement en-
tropies in asymptotically AdS4 space-times is, at least at leading order, one and the same thing. For
this reason some results in holographic computations of entanglement entropy were already known in
the context of holographic Wilson loops.

Since formula (1.26) holds for asymptotically AdS space-times, it should allow to compute entangle-
ment entropy even in thermal theories. Indeed in [46] it was checked that in d = 1, i.e. for AdS3/CFT2,
the prescription continues to hold even for black-hole solutions in the bulk, which in AdS3 are known
as BTZ black holes [49]. In this case, the length of a minimal geodesic connecting two points on the
boundary takes precisely the same form as the expression for the entanglement entropy of an interval in
a thermal CFT (after the identification (1.27)). This resembles the fact that in general the gravitational
partition function of thermal AdS shows the same thermodynamical properties of the thermal CFT on
the boundary [50].

Note that the minimal area prescription is assumed to hold even in gauge/gravity in its broad sense.
In particular, and as we will see later, even for space-times which are not asymptotically AdS, like the
hvLif geometries which we will review in Section 1.5.

One natural question to ask is whether (1.26) holds in dealing with time-dependence, either of the
background or of the entangling region. This is a legitimate question, since in the case of Wilson loops
the prescription is clear even in time-dependent backgrounds: one has to compute the on-shell string
world-sheet action. In [51] Hubeny, Rangamani and Takayanagi answered to this question and what they
found is probably the most natural answer, although with some caveat. Indeed, one would say that the
obvious way to generalize the Ryu-Takayanagi proposal would be to extremize (rather than minimize)
the area functional and compute the on-shell value of the area, picking the surface with the smallest
area: this value would then provide the entanglement entropy in this time-dependent setting.

In particular, [51] gave motivations that computing the saddle points of the area functional is a well
defined procedure only for space-times which, although time-dependent in the bulk, are still looking
asymptotically like AdS, so that an asymptotic time-like killing vector exists on the boundary and there
is a well-defined space-like foliation of the conformal boundary. In other words, one has to assume that
the background metric of the CFT is not time dependent.

Another natural generalization is to consider gravity theories with higher derivative corrections to
the standard Einstein-Hilbert action. These terms naturally arise when one considers string amplitudes
involving higher modes (we recall that the zero modes of string theory are the ones which reproduce
standard ten-dimensional supergravity action). In view of the fact that the prescription for computing
the entanglement entropy holographically should exist at a stringy level, it is perfectly legitimate to try
to generalize (1.26) when the bulk gravity action contains e.g. squared curvature terms. Although a
final expression, valid at any order in Rµνρσ, is still under debate, proposals in this direction were given
in [52, 53].

We should mention that the Ryu-Takayanagi prescription is not the only way to compute entangle-
ment entropy in higher dimensions. Namely in [39, 40], for a spherical entangling region, it was shown
that entanglement and Rényi entropies were calculable by means of the standard gauge/gravity dictio-
nary: the reduced density matrix for the causal development of a sphere can be mapped to Rindler
space-time and as such mapped to a thermal theory. Then, the entanglement entropy corresponds to the
thermal entropy of a CFT in a hyperbolic background, which can be computed holographically as the
partition function of a topological black hole.

As a closing remark to this section, let us note that Maldacena and Lewkowycz [54] were able to
prove the conjecture of Ryu and Takayanagi by showing how to extend the replicated geometry on the
boundary inside the bulk, with the bulk metric having a singularity sitting on a hypersurface. They
showed that this hypersurface converges, as n → 1, towards the minimal area surface. However, even
the conjecture can be considered to be proven, the proof is not constructive, in the sense that does not
make it easier to compute entanglement entropies in higher dimensions.

1.4.1 A closer look at minimal hypersurfaces in AdS space-times
In all the work presented in this thesis, every computation has been based on (1.26) and its generaliza-
tions. Before going into the details of my project, it is worth mentioning some simple and generic facts
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about minimal surfaces in AdS space-times.
We have been working mainly with the Poincaré patch of anti-de Sitter, rather than its global cover.

As long as we are interested in local quantities, it makes no difference which patch one uses, although
the global behaviour (e.g. one cannot see the degeneracy of extremal surfaces ending on a given region in
the Schwarzschild black hole background) may be quite different. For our purposes, the Poincaré patch
always sufficed. In this case the metric reads

ds2 = L2

z2

(
dz2 − dt2 + dx2

i

)
, (1.28)

where L is the curvature scale of AdSd+2, the conformal boundary lies at z = 0 with i = 1, . . . , d
space-like flat dimensions.

Since (1.28) is the metric of AdSd+2, a constant-time slice is the (d+1)-dimensional hyperbolic space
Hd+1 and the Ryu-Takayanagi prescription tells that γA is now a codimension-one surface embedded in
Hd+1. We show in Appendix A that any surface which extremizes the area has to satisfy the equation

H = 0 , (1.29)

where H ≡ 1
dTrK is the hypersurface’s mean curvature. This equation is a second order non-linear

partial differential equation, and as such is very difficult to solve. There are cases where the symmetry of
∂A allows one to simplify considerably the equation and to find the explicit solution. When ∂A is either
rotationally invariant (i.e. a sphere) or translation invariant (i.e. the half-plane or an infinite strip),
(1.29) becomes an ordinary differential equation and can be solved analytically. Such cases were first
studied in [47]. For more general surfaces with less symmetry one has to rely on numerical methods: in
Chapter 2 we will extensively discuss a way to solve (1.29) for generic entangling regions.

Once the solution of (1.29) has been found, one needs to compute the area of the surface, namely
the quantity

A =
ˆ
γA

ddσ
√

deth , (1.30)

where σi are coordinates parametrizing the surface and h is the induced metric on γA.
To understand the UV behaviour of SA, we can solve the minimality equation and expand the solution

near the boundary at z = 0, and compute the expansion of the determinant of the induced metric. The
minimality requirement constrains the curvature of the surface near the boundary (see Fig. 1.1): we
derived equation (A.34) in Appendix A.2 (but see also e.g. [55–57]), from which it can be shown that
for d 6= 2

A = 1
d− 1

Area∂A
εd−1 − 1

2(d− 2)

´
∂A
dd−1σ

√
det γ(Trk)2

εd−3 + . . . , (1.31)

where the dots stand for subleading terms and γ and k are the first and the second fundamental forms of
∂A as embedded in Rd. For d = 3 one should substitute the power-law divergence with a logarithm, but
the dependence on ∂A of the coefficient remains the same. We proved that indeed the Ryu-Takayanagi
prescription reproduces the area law (1.18) and the first subleading term is proportional to the integral
of the square of the mean curvature of ∂A - except for AdS4 where there is no subleading divergence.

While computing the divergent terms of the area is a somehow straightforward procedure, computing
the finite terms (and thus getting information on the IR physics of the CFT) is extremely more difficult
and necessarily requires to find the full solution of (1.29). Besides the already mentioned case of the
sphere and infinite strip found in [47], there are few examples were explicit computations were carried
out. In [58, 59] SA was computed for angular regions in AdS4 (an analytic generalization of the results
to higher dimension is given in [60] and Appendix B.4). In [61] some perturbative results were obtained
for nearly circular regions. In [62, 63], using tools developed in [55], some analytical solutions were found
for a broad class of entangling regions in terms of generalized Riemann theta functions, although in their
case the shape of ∂A could not be fixed a priori but was rather an outcome of a particular choice of some
parameters in the solution.

1.4.2 Time-dependent holographic entanglement entropy
In [51], Hubeny, Rangamani and Takayanagi showed that, as long as one deals with asymptotically
static AdS space-times, saddle points of the area functional may provide a natural generalization of
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Figure 1.1: In asymptotically AdS4 space-times, the boundary of minimal surfaces ending at z = 0 are
umbilic lines (see A.2 for a definition): the two principal curvatures - i.e. the eigenvalues of the extrinsic
curvature - coincide at the boundary. This means that locally at any point close to z = 0, the surface
looks like a two-sphere, and in particular the direction of the bending along the z direction depends on
the concavity of ∂A. In the figure it is shown a close-up of a portion of a surface with wavy entangling
region.

the Ryu-Takayanagi prescription. Among all possible time-dependent backgrounds which asymptote to
anti-de Sitter space, of particular interests are the ones described by an AdS−Vaidya type of metric
[64, 65]. Such metric describes the formation of a black-hole after a collapse of a null shell of energy.
This geometry is obtained explicitly by re-expressing the metric for an AdS black hole in Eddington-
Finkelstein coordinates and promoting the emblackening factor to be time-dependent [66]:

ds2 = 1
z2

(
−f(v, z)dv2 − 2dvdz + dx2

i

)
, (1.32)

where f(v, z) → 1 for v → −∞, so to recover the empty AdS geometry, while for v → +∞ tends to a
static black hole solution with emblackening factor f(z). If we imagine that the black hole is formed by
the collapse of a shell of energy moving at the speed of light, we can set

f(v, z) = 1−M(v)zd+1 , (1.33)

with boundary conditions limv→−∞M(v) = 0 and limv→+∞M(v) = M , where M is the mass of the
AdS-Schwarzschild black hole. The exact expression is left undetermined as a specific M(v) corresponds
to a specific choice for the profile of the shell, even though the null energy condition requires it to be
monotonically increasing, M ′(v) ≥ 0. It should be remarked that (1.32) is not a solution of the vacuum
Einstein equations, except at v → ±∞, and thus it requires the support of matter fields to provide a
non-zero Tµν .

The dual interpretation of (1.32) is that at early times we start with a CFT in its pure state at zero
temperature which, as the time evolves, approaches a thermal theory with the temperature determined
by the black-hole mass M ,

T = d+ 1
4π M

1
d+1 . (1.34)

In this setup, studying the behaviour of geometric entanglement entropy as a function of time is something
which can be straightforwardly done. Since on the CFT side the interpretation of the Vaidya background
is an interpolation between a T = 0 and a thermal theory, the holographic study of quantities in the
background (1.32) undergoes the name holographic thermalization. Computations of holographic entan-
glement entropy in the AdS−Vaidya background has been done in [66–71].
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In Chapter 3 we considered geometries which are similar to (1.32), where the asymptotics of the
space-time is changed in order to take into account dual theories which exhibit the presence of the
strongly correlated analogue of a Fermi surfaces. The entanglement entropy computed for these systems
has some specific properties which we are going to review in the next section.

1.5 Hyperscaling violation and holography
We are going to briefly touch in this introduction the role of holography as a tool in studying condensed
matter systems, a branch of the gauge/gravity duality which is known as AdS/CMT . It is beyond the
scope of this thesis to give a general review here (see e.g. [72–74]), and we will give just some basic
information in order to let the reader understand what was done in Chapters 3 and 4.

In gauge/gravity there are two different approaches when searching for dual theories: top-down and
bottom-up.

The first one tries to derive some effective gravitational theory from a particular string theory, as
in the case of the original AdS/CFT correspondence. Each quantity in the low energy theory can
be computed and linked to string quantities: in other words there is a UV-completion of the gravity
side and, at least in principle, one is able to understand the origin of a given gravitational action in
terms of more fundamental objects. The problem of top-down models is that they are difficult to deal
with and more often than not are unnecessarily complicated when one tries to construct just effective
gravitational theories able to capture the relevant features - may they be thermodynamical properties
or linear responses - of some model QFT.

For this reason the more common approach in applications of holography is the bottom-up: ad-
hoc geometries are constructed to test whether they are able to reproduce some desired behaviour of
boundary quantities. In a bigger picture, any gravity theory should derive from some low-energy limit of
a string theory, but the usefulness of the bottom-up approach is that it allows to check in first instance
whether classical gravity can reproduce at all some known phenomena of some specific field theories.

In the latter years there has been some interest in understanding whether holography can describe
strongly correlated fermions, and in particular non-Fermi liquids. One of the features of field theories
with fermions is that they exhibit the so-called violation of the area law [75, 76]: the entanglement
entropy computed for the ground state, regardless the dimension of the system, diverges logarithmically
in the UV cut-off, and the leading term scales as

SA ≈ `d+1 log `/ε+ . . . , (1.35)

for large enough entangling regions of size `. This is expected to be true even in the case of strongly
correlated fermions [77]: therefore, in a theory which can be described via the gauge/gravity duality, this
behaviour of SA should emerge from gravitational computations.

On the other hand, in the previous section we showed that indeed any asymptotically AdS space-time
obeys the area law: if we want to change the leading divergent term for the area of a surface (assuming
that the Ryu-Takayanagi prescription still holds) we need to change the asymptotic behaviour of the
bulk space-time. This is what was suggested first in [78–80]. In those papers it was proposed that a
suitable dual gravitational theory should asymptote to hyperscaling-violating Lifshitz space-times10, for
which the metric reads

ds2 = 1
z2(1−θ/d)

(
−z2(1−ζ)dt2 + dz2 + dx2

i

)
, (1.36)

where θ, ζ are known as the hyperscaling-violation and Lifshitz exponent, respectively.
We will discuss extensively the implications of the so-called hvLif geometries for the entanglement

entropy in Chapter 3.

10The name hyperscaling, according to [81], refers to any relation between universal exponents of critical theories which
depends explicitly on the dimension of the theory; since in [78, 80] it was proved that the holographic entropy density of
these holographic models scales as s ≈ T d−θ, for θ 6= 0 we have a violation of the hyperscaling relation between entropy
density and temperature.
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1.6 Outline
The structure of this thesis follows the various arguments I have been dealing with during the years
of my PhD research. The common line has always been to give a better understanding of the shape
dependence of minimal surfaces - and thus of entanglement entropy - in backgrounds which are either
asymptotically AdS or hvLif.

• Chapter 2 reproduces [82]. We introduce for the first time in the context of holographic entangle-
ment entropy the use of Surface Evolver [83], a software created for computing energies of surfaces
in soft-matter applications. This software allows to compute numerically the area of a minimal
surface ending on any compact ∂A. We show we are able to reproduce any known exact result
in the literature, and furthermore show some new results on the holographic mutual information
between two disjoint regions consisting of two circles, ellipses and other geometrical shapes.

• Chapter 3 reproduces [60], where the time-dependence of entanglement entropy is studied in hvLif
space-times. We present extensive numerical computations of the renormalized area of of surfaces
ending on spherical and strip-like entangling regions. We present as well some semi-analytical re-
sults concerning the initial, intermediate and final stage of the holographic entanglement entropy
after a sharp quench.

• Chapter 4 reproduces [84]. We study the behaviour of entanglement entropy for non-smooth en-
tangling regions in hvLif space-times. As it was already known that in asymptotically AdS spaces
the presence of cusp-like regions induced new logarithmic divergences from which new universal
quantity can be extracted, we show when and for which values of the hyperscaling-violating expo-
nent θ we have the appearance of new universal terms. We also check how these terms get modified
by higher curvature corrections in the gravitational action for θ = 0.

• In Chapter 5 we finally set the conclusion of the thesis and give an outlook on possible future
developments.

• In the various Appendices, supplementary material is presented for each chapter.
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Chapter 2

Computing HEE for arbitrary
shapes in AdS4

As we saw in the Introduction, for d = 2 the minimal surfaces to compute for the holographic entan-
glement entropy (1.26) are the same ones occurring in the gravitational counterpart of the correlators
of spacelike Wilson loops. AdS4 is the lowest dimensional space-time where the shape of the entangling
region can be non-trivial. In this Chapter we will precisely present a method to compute numerically
the holographic entanglement entropy for - in principle - any shape. As we already mentioned, analytic
results have been found for the infinite strip and for the sphere when d is generic [46, 47]. Spherical
domains play a particular role because their reduced density matrix can be related to a thermal one [39].

We recall that for d = 2, the O(1) term in the expansion of SA as ε→ 0 for circular domains provides
the quantity F , which decreases along any renormalization group flow [22, 85, 86]. We should mention
that some interesting results have been found about AA for an entangling surface ∂A with somehow
generic shapes [24, 57, 87–91], but a complete understanding is still lacking, and in no way there has
been a direct way to compute the constant term of the area in AdS4 for a completely generic entangling
region.

When A = A1 ∪ A2 is made by two disjoint spatial regions, an important quantity to study is the
mutual information (1.12). The conneceted entanglement entropy SA1∪A2 provides a measure for the
entanglement between A1 ∪A2 and the remaining part of the spatial slice and does not quantify - as one
would expect - the entanglement between A1 and A2, which is measured by other quantities, such as the
logarithmic negativity [92–95]. In the combination (1.12), the area law divergent terms cancel and the
subadditivity of the entanglement entropy guarantees that IA1,A2 > 0. For two dimensional conformal
field theories, the mutual information depends on the full operator content of the model [19, 96–101].
When d > 2, the computation of (1.12) is more difficult because non local operators must be introduced
along ∂A [29–31, 33, 41].

The holographic mutual information is (1.12) with SA given by (1.26). The crucial term to evaluate
is SA1∪A2 , which depends on the geometric features of the entangling surface ∂A = ∂A1∪∂A2, including
also the distance between A1 and A2 and their relative orientation, being ∂A made by two disjoint
components. It is well known that, keeping the geometry of A1 and A2 fixed while their distance
increases, the holographic mutual information has a kind of phase transition with discontinuous first
derivative, such that IA1,A2 = 0 when the two regions are distant enough. This is due to the competition
between two minima corresponding to a connected configuration and to a disconnected one. While the
former is minimal at small distances, the latter is favoured for large distances, where the holographic
mutual information therefore vanishes [102–104]. This phenomenon has been also studied much earlier in
the context of the gravitational counterpart of the expectation values of circular spacelike Wilson loops
[105–108]. The transition of the holographic mutual information is a peculiar prediction of (1.26) and
it does not occur if the quantum corrections are taken into account [109]. A similar transition due to
the competition of two local minima of the area functional occurs also for the holographic entanglement
entropy of a single region at finite temperature [110–112].

Here we focus on d = 2 and we study the shape dependence of the holographic entanglement entropy
and of the holographic mutual information (1.26) in AdS4, which is dual to the zero temperature vacuum
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state of the three dimensional conformal field theory on the boundary. This reduces to finding the minimal
area surface γ̃A spanning a given boundary curve ∂A (the entangling curve) defined in some spatial slice
of the boundary of AdS4. The entangling curve ∂A could be made by many disconnected components.
When ∂A consists of one or two circles, the problem is analytically tractable [7, 58, 59, 113, 114].
However, for an entangling curve having a generic shape (and possibly many components), finding
analytic solutions becomes a formidable task. In order to make some progress, we tackle the problem
numerically with the help of Surface Evolver [83], a widely used open source software for the modelling
of liquid surfaces shaped by various forces and constraints. A section at constant time of AdS4 gives the
Euclidean hyperbolic space H3. Once the curve embedded in H3 is chosen, this software constructs a
triangular mesh which approximates the surface spanning such curve which is a local minimum of the
area functional, computing also the corresponding finite area. The number of vertices V , edges E and
faces E of the mesh are related via the Euler formula, namely V − E + F = χ, being χ = 2 − 2g − b
the Euler characteristic of the surface, where g is its genus and b the number of its boundaries. In the
following we will deal with surfaces of genus g = 0 with one or more boundaries.

The rest of the Chapter is organized as follows. In 2.1 we state the problem, introduce the basic
notation and review some properties of the minimal surfaces occurring in our computations. In 2.2 we
address the case of surfaces spanning simply connected curves. First we review two analytically tractable
examples, the circle and the infinite strip; then we address the case of some elongated curves (i.e. ellipse,
superellipse and the boundary of the two dimensional spherocylinder) and polygons. Star shaped and
non convex domains are also briefly discussed. In 2.3 we consider ∂A made by two disjoint curves. The
minimal surface spanning such disconnected curve can be either connected or disconnected, depending
on the geometrical features of the boundary, including the distance between them and their relative
orientation. The cases of surfaces spanning two disjoint circles, ellipses, superellipses and the boundaries
of two dimensional spherocylinders are quantitatively investigated for a particular relative orientation.
Further discussions and technical details are reported in the Appendix B.

2.1 Minimal surfaces in AdS4

Finding the minimal area surface spanning a curve is a classic problem in geometry and physics. In
R3 this is known as Plateau’s problem. A physical realization of the problem is obtained by dipping a
stiff wire frame of some given shape in soapy water and then removing it: as the energy of the film is
proportional to the area of the water/air interface, the lowest energy configuration consists of a surface
of minimal area. In this mundane setting, the requirement of minimal area results into a well known
equation (1.29), i.e.

H = 0 , (2.1)

where H = kii/2 is the mean-curvature given by the trace of the extrinsic curvature tensor defined in
(A.3), such that the induced metric tensor hij is given in (A.21)

The metric of AdS4 in Poincaré coordinates can be obtained from (1.28) by setting d = 2, reading

ds2 = −dt
2 + dx2 + dy2 + dz2

z2 , (2.2)

where the AdS radius has been set to one for simplicity. The spatial slice t = const provides the Euclidean
hyperbolic space H3 and the region A is defined in the z = 0 plane. According to the prescription of
[46, 47], to compute the holographic entanglement entropy, first we have to restrict ourselves to a t = const
slice and then we have to find, among all the surfaces γA spanning the curve ∂A, the one minimizing the
area functional

A[γA] =
ˆ
γA

dA =
ˆ
UA

√
h̃ du1du2

z2 , (2.3)

where UA is a coordinate patch associated with the coordinates (u1, u2) and h̃ = det(h̃ij) is the determi-
nant of the induced metric of the surfaces seen as embedded in R3. We denote by γ̃A the area minimizing
surface, so that A[γ̃A] ≡ AA provides the holographic entanglement entropy through the Ryu-Takayanagi
formula (1.26). Since all the surfaces γA reach the boundary of AdS4, their area is divergent and therefore
one needs to introduce a cut-off in the holographic direction to regularize it, namely z > ε > 0, where
ε is an infinitesimal parameter. The holographic dictionary tells us that this cut-off corresponds to the
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ultraviolet cut-off in the dual three dimensional conformal field theory. Considering z > ε > 0, the area
A[γA] and therefore AA as well become ε dependent quantities which diverge when ε → 0. Important
insights can be found by writing AA as an expansion for ε → 0. When ∂A is a smooth curve, this
expansion reads

AA = PA
ε
− FA + o(1) , (2.4)

where PA = length(∂A) is the perimeter of the entangling curve and o(1) indicates vanishing terms when
ε → 0. When the entangling curve curve ∂A contains a finite number of vertices, also a logarithmic
divergence occurs, namely

AA = PA
ε
−BA log(PA/ε)−WA + o(1) . (2.5)

The functions FA, BA and WA are defined through (2.4) and (2.5). They depend on the geometry of ∂A
in a very non trivial way. We remark that the section of γ̃A at z = ε provides a curve which does not
coincide with ∂A because of the non trivial profile of γ̃A in the bulk.

As the area element in AdS4 is factorized in the form dA = du1du2
√
h̃/z2, a surface in AdS4 is

equivalent to a surface in R3 endowed with a potential energy density of the form 1/z2. By using the
standard machinery of surface geometry (see B.1), one can find an analog of (2.1) in the form

H + ẑ ·N
z

= 0 , (2.6)

where ẑ is a unit vector in the z direction. The relation (2.6) implies that, in order for the mean curvature
to be finite, the surface must be orthogonal to the (x, y) plane at z = 0: i.e. ẑ ·N = 0 at z = 0. As a
consequence of the latter property, the boundary is also a geodesic of γ̃A (see B.1).

2.2 Simply connected regions
In this section we consider cases in which the region A is a simply connected domain. We first review
the simple examples of the disk and of the infinite strip, which can be solved analytically [46, 47]. In
2.2.1 we numerically analyze the case in which A is an elongated region delimited by either an ellipse, a
superellipse or the boundary of a two dimensional spherocylinder, while in 2.2.2 we address the case in
which ∂A is a regular polygon. In 2.2.3, star shaped and non convex domains are briefly discussed.

If A is a disk of radius R, the minimal area surface γ̃A is a hemisphere, as it can be easily proved from
a direct substitution in (2.6). Taking N = r/|r|, with r = (x, y, z) and |r| = R, one finds ẑ ·N = z/R,
hence H = −1/R, which is the mean curvature of a sphere whose normal is outward directed. The area
of the part of the hemisphere such that ε 6 z 6 R is

AA = 2πR
ε
− 2π . (2.7)

Comparing this expression with (2.4), one finds that FA = 2π in this case. It is worth remarking , as
peculiar feature of the disk, that in (2.7) o(1) terms do not occur.

A special case of (2.6) is obtained when the surface is fully described by a function z = z(x, y)
representing the height of the surface above the (x, y) plane at z = 0. In this case

A[γA] =
ˆ
γA

1
z2

√
1 + z2

,x + z2
,y dxdy , (2.8)

and (2.6) becomes the following second order non linear partial differential equation for z (see B.1 for
some details on this derivation)

z,xx(1 + z2
,y) + z,yy(1 + z2

,x)− 2z,xyz,xz,y + 2
z

(1 + z2
,x + z2

,y) = 0 , (2.9)

with the boundary condition that z = 0 when (x, y) ∈ ∂A. The partial differential equation (2.9) is very
difficult to solve analytically for a generic curve ∂A; but for some domains A it reduces to an ordinary
differential equation. Apart from the simple hemispherical case previously discussed, this happens also
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for an infinite strip A = {(x, y) ∈ R2, |y| 6 R2}, whose width is 2R2. The corresponding minimal surface
is invariant along the x axis and therefore it is fully characterized by the profile z = z(y) for |y| 6 R2.
Taking z,x = 0 in (2.9) yields

z,yy + 2
z

(1 + z2
,y) = 0 . (2.10)

Equivalently, the infinite strip case can be studied by considering the one dimensional problem obtained
substituting z = z(y) directly in (2.8) [46, 47, 115]. Since the resulting effective Lagrangian does not
depend on y explicitly, one easily finds that z2

√
1 + z2

,y is independent of y. Taking the derivative with
respect to y of this conservation law, (2.10) is recovered, as expected. The constant value can be found
by considering y = 0, where z(0) ≡ z∗ and z,y(0) = 0. Notice that z∗ is the maximal height attained by
the curve along the z direction. Integrating the conservation law, one gets

y(z) =
√
π Γ(3/4)
Γ(1/4) z∗ −

z3

3z2
∗

2F1

(
1
2 ,

3
4 ; 7

4 ; z
4

z4
∗

)
, z∗ = Γ(1/4)√

π Γ(3/4)
R2 , (2.11)

where Γ is the Euler gamma and 2F1 is the hypergeometric function. Thus, the minimal surface γ̃A
consists of a tunnel of infinite length along the x direction, finite width R2 along the y direction and
whose shape in the (y, z) plane is described by (2.11). Considering a finite piece of this surface which
extends for R1 � R2 in the x direction, whose projection on the (x, y) plane is delimited by the dashed
lines in the bottom panel of Fig. 2.1, its area is given by [7, 46, 47, 116]

AA = 4R1

ε
− R1s∞

R2
+ o(1) , s∞ ≡

8π3

Γ(1/4)4 , (2.12)

where ε 6 z 6 z∗. Comparing (2.4) with PA = 4R1 and (2.12), one concludes that FA = s∞R1/R2.
In order to compare (2.12) with our numerical results, we find it useful to construct an auxiliary

surface by closing this long tunnel segment with two planar “caps” placed at x = ±R1, whose profile is
described in the (y, z) plane by (2.11), with a cut-off at z = ε. These regions are identical by construction
and their area (see B.4.1) is given by Acap = 2R2/ε − π/2 + o(1). Thus, the total area of the auxiliary
surface reads

AA + 2Acap = 4(R1 +R2)
ε

− R1s∞
R2

− π + o(1) , (2.13)

where the coefficient of the leading divergence is the perimeter of the rectangle in the boundary (dashed
curve in Fig. 2.1). It is worth remarking that this surface is not the minimal area surface anchored on
the dashed rectangle in Fig. 2.1. Indeed, in this case an additional logarithmic divergence occurs (see
2.2.2).

Since in the following we will compute numerically AA for various domains keeping ε fixed, let us
introduce

F̃A ≡ −
(
AA −

PA
ε

)
. (2.14)

From (2.4) one easily observes that F̃A = FA + o(1) when ε → 0. Notice that for the disk we have
F̃A = FA.

In Fig. 2.2 the values of F̃A for the surfaces discussed above are represented together with other ones
coming from different curves that will be introduced in 2.2.1: the black dot corresponds to the disk (see
(2.7)), the dotted horizontal line is obtained from (2.12) for the infinite strip, while the dashed line is
found from the area (2.13) of the auxiliary surface.

2.2.1 Superellipse and two dimensional spherocylinder
The first examples of entangling curves ∂A we consider for which analytic expressions of the corre-
sponding minimal surfaces are not known are the superellipse and the boundary of the two dimensional
spherocylinder, whose geometries depend on two parameters. The two dimensional spherocylinder nicely
interpolates between the circle and the infinite strip.
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y

R1

R2

Figure 2.1: Top panel: Minimal surfaces constructed by using Surface Evolver where the entangling
curve ∂A is a circle with radius R = 1 (red), an ellipse (orange), a superellipse (2.15) with n = 8 (purple)
and the boundary of a spherocylinder (green) with R1 = 3R2. The cut-off is ε = 0.03 and only the y > 0
part of the minimal surfaces has been depicted to highlight the curves provided by the section y = 0.
Bottom panel: In the (x, y) plane, we show the superellipses with R1 = 3R2 with n = 2 (orange), n = 4
(blue), n = 6 (magenta) and n = 8 (purple), the circle with radius R1 (red curve) and the rectangle
circumscribing the superellipses (dashed lines). The green curve is the boundary of the two dimensional
spherocylinder with R2 = 3R1.

In Cartesian coordinates, a superellipse centered in the origin with axes parallel to the coordinate
axes is described by the equation

|x|n

Rn1
+ |y|

n

Rn2
= 1 , R1 > R2 > 0 , n > 2 , (2.15)

where R1, R2 and n are real and positive parameters. The curve (2.15) is also known as Lamé curve and
here we consider only integers n > 2 for simplicity. The special case n = 2 in (2.15) is the ellipse with
semi-major and semi-minor axes given by R1 and R2 respectively. As the positive integer n increases,
the superellipse approximates the rectangle with sides 2R1 and 2R2. When R1 = R2, the curves (2.15)
for various n are known as squircles because they have intermediate properties between the ones of a
circle (n = 2) and the ones of a square (n → ∞). In the bottom panel of Fig. 2.1, we show some
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Figure 2.2: Numerical data for F̃A, defined in (2.14), corresponding to domains A which are two
dimensional spherocylinders or delimited by superellipses. Here ε = 0.03. In the main plot R2 = 1, while
in the inset, which shows a zoom of the initial part of the main plot in logarithmic scale on both the axes,
we have also reported data with R2 = 2. The horizontal dotted black line corresponds to the infinite
strip (2.12) and the dashed one to the auxiliary surface where the sections at x = ±R1 have been added
(see (2.13)). The red and blue dotted horizontal lines come from the asymptotic result (B.17) evaluated
for n = 2 and n = 3 respectively.

superellipses with R1 = 3R2, the circle with radius R1 included in all the superellipses and the rectangle
circumscribing them.

In order to study the interpolation between the circle and the infinite strip, a useful domain to consider
is the two dimensional spherocylinder. The spherocylinder (also called capsule) is a three dimensional
volume consisting of a cylinder with hemispherical ends. Here we are interested in its two dimensional
version, which is a rectangle with semicircular caps. In particular, the two dimensional spherocylinder
circumscribed by the rectangle with sides 2R1 and 2R2 is defined as the set S ≡ d ∪ C+ ∪ C−, where the
rectangle d and the disks C± are

D ≡
{

(x, y) , |y| 6 R2 , |x| 6 R1 −R2
}
, C± ≡

{
(x, y) ,

[
x± (R1 −R2)

]2 + y2 6 R2
}
. (2.16)

The perimeter of this domain is PA = 2πR2 +4(R1−R2) and an explicit example of ∂S with R2 = 3R1 is
given by the green curve in the bottom panel of Fig. 2.1. When R1 = R2, the curve ∂S becomes a circle,
while for R1 � R2 it provides a kind of regularization of the infinite strip. Indeed, when R1 → ∞ at
fixed R2 the two dimensional spherocylinder S becomes the infinite strip with width 2R2. Let us remark
that the curvature of ∂S is discontinuous while the curvature of the superellipse (2.15) is continuous.
Moreover, the choice to regularize the infinite strip through the circles C± in (2.16) is arbitrary; other
domains can be chosen (e.g. regions bounded by superellipses) without introducing vertices in the
entangling curve. A straightforward numerical analysis allows to observe that a superellipses with n > 2
intersects once the curve ∂S in the first quadrant outside the Cartesian axes.

In Fig. 2.2 we show the numerical data for F̃A, defined in (2.14), when A is given by the domains dis-
cussed above: disk, infinite strip, two dimensional spherocylinder and two dimensional regions delimited
by superellipses. In particular, referring to the bottom panel of Fig. 2.1, we fixed R2 and increased R1.
For the two dimensional spherocylinder, this provides an interpolation between the circle and the infinite
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Figure 2.3: Minimal area surfaces constructed with Surface Evolver whose ∂A is a polygon with three
(left), four (middle) and eight (right) sides. The red polygons ∂A lie in the plane at z = 0 and the z
axis points downward but, according to our regularization, the triangulated surfaces are anchored to the
same polygons at z = ε. The pair (V, F ) giving the number of vertices V and the number of faces F for
these surfaces is (1585, 3072) (left), (2113, 4096) (middle) and (4225, 8192) (right). The number of edges
can be found from the Euler formula with vanishing genus and one boundary.

strip. Surface Evolver has been employed to compute the area AA and for the cut-off in the holographic
direction we choose ε = 0.03. Below this value, the convergence of the local minimization algorithm
employed by Surface Evolver becomes problematic, as well as for too large domains A, as discussed in
B.2.

When R1 = R2, we observe that F̃A for the squircles with different n > 2 increases with n. For
large R1/R2, the limits of F̃A/(R1/R2) for the domains we address are finite and positive. The values
of these limits associated with the superellipses are ordered in the opposite way in n with respect to
the starting point at R1 = R2 and therefore they cross each other as R1/R2 increases. We remark that
the curve corresponding to the two dimensional spherocylinder stays below the ones associated with the
superellipses for the whole range of R1/R2 that we considered. In Fig. 2.2 the horizontal black dotted line
corresponds to the infinite strip (see (2.12)) while the dashed curve is obtained from the auxiliary surface
described above (see (2.13)). The latter one is our best analytic approximation of the data corresponding
to the two dimensional spherocylinder.

Focussing on the regime of large R1/R2, from Fig. 2.2 we observe that the asymptotic value of
F̃A/(R1/R2) for the two dimensional spherocylinder is very close to the one of the auxiliary surface
obtained from (2.13) and therefore it is our best approximation of the result corresponding to the infinite
strip. This is reasonable because the two dimensional spherocylinder is a way to regularize the infinite
strip without introducing vertices in the entangling curve, as already remarked above. As for the minimal
surfaces spanning a superellipse with a given n > 2, in B.3 an asymptotic lower bound is obtained (see
(B.17)), generalizing the construction of [91]. In Fig. 2.2 this bound is shown explicitly for n = 2 and
n = 3 (red and blue dotted horizontal lines respectively). Since this value is strictly larger than the
corresponding one associated with the infinite strip (see (2.12)), we can conclude that F̃A/(R1/R2) for
the superellipse at fixed n does not converge to the value s∞ associated with the infinite strip.

2.2.2 Polygons
In this section we consider the minimal area surfaces associated with simply connected regions A whose
boundary is a convex polygon withN sides. These are prototypical examples of minimal surfaces spanning
entangling curves with geometric singularities. For quantum field theory results about the entanglement
entropy of domains delimited by such curves, see e.g. [34, 117, 118].

The main feature to observe about the area AA of the minimal surface is the occurrence of a loga-
rithmic divergence, besides the leading one associated with the area law, in its expansion as ε→ 0. We
find it convenient to introduce

B̃A ≡
1

log(ε/PA)

(
AA −

PA
ε

)
. (2.17)

Since (2.5) holds in this case, we have that B̃A = BA + o(1).
When ∂A is a convex polygon with N sides, denoting by αi < π its internal angle at the i-th vertex,
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Figure 2.4: Left: Section of the minimal surfaces anchored to an equilateral triangle (red, magenta and
purple points), a square (blue points) or an octagon (green points) inscribed in a circle, as indicated in
the inset by the black line. The continuos lines are z = ρ/f0(αN ), where f0(α) is found from (2.21) with
N = 3 (red), N = 4 (blue) or N = 8 (green). The dashed black curve is the hemisphere corresponding
to the circle circumscribing the polygons at z = 0 (dashed in the inset), while the dashed grey horizontal
line corresponds to the cut-off ε = 0.03. Right: A zoom of the left panel around the origin, placed in the
common vertex of the polygons. For the triangle, three different values of ε ∈ {0.03, 0.02, 0.01} has been
considered to highlight how the agreement with the analytic result improves as ε→ 0.

for the coefficient of the logarithmic term in (2.5) we can write

BA ≡ 2
N∑
i=1

b(αi) . (2.18)

The function b(α) has been first found in [119], where the holographic duals of the correlators of Wilson
loops with cusps have been studied, by considering the minimal surface near a cusp whose opening angle
is α. Notice that (2.18) does not depend on the lengths of the edges but only on the convex angles of the
polygon. Further interesting results have been obtained in the context of the holographic entanglement
entropy [59, 120].

Introducing the polar coordinates (ρ, φ) in the z = 0 plane, one considers the domain {|φ| 6 α/2 , ρ <
L}, where L� 1. By employing scale invariance, one introduces the following ansatz [119]

z = ρ

f(φ) , (2.19)

in terms of a positive function f(φ), which is even in the domain |φ| 6 α/2 and f → +∞ for |φ| → α/2.
Plugging (2.19) into the area functional, the problem becomes one dimensional, similarly to the case of
the infinite strip slightly discussed in 2.2. Since the resulting integrand does not depend explicitly on φ,
the corresponding conservation law tells us that (f4 + f2)/

√
(f ′)2 + f4 + f2 is independent of φ. Thus,

the profile for 0 6 φ < α/2 (the part of the surface with −α/2 < φ 6 0 is obtained by symmetry) is
given by

φ =
ˆ f

f0

1
ζ

[
(ζ2 + 1)

(
ζ2(ζ2 + 1)
f2

0 (f2
0 + 1) − 1

)]− 1
2

dζ , (2.20)

being f0 ≡ f(0). When f → ∞, we require that the l.h.s. of (2.20) becomes α/2 and, by inverting the
resulting relation, one finds f0 = f0(α). In this limit the integral in (2.20) can be evaluated analytically
in terms of elliptic integrals Π and K (see B.5 for their definitions) as follows

α(f0) = 2f̃0

√
1− 2f̃2

0
1− f̃2

0

[
Π
(
1− f̃2

0 , f̃
2
0
)
−K

(
f̃2

0
)]
, f̃2

0 ≡
f2

0
1 + 2f2

0
∈ [0, 1/2] . (2.21)

Notice that when f0 → 0 we have α→ π, which means absence of the corner, while α→ 0 for f0 →∞.
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Figure 2.5: The quantity B̃A in (2.17) with AA evaluated with Surface Evolver when the entangling
curve ∂A is either an isosceles triangle whose basis has length ` (top panel) or a rhombus whose side
length is ` (bottom panel). Here ε = 0.03. The black continuous curves are obtained from (2.18) and
(2.22).

As for the area of the minimal surface given by (2.19), one finds that

b(α) ≡
ˆ ∞

0

(
1−

√
ζ2 + f2

0 + 1
ζ2 + 2f2

0 + 1

)
dζ =

E
(
f̃2

0
)
−
(
1− f̃2

0
)
K
(
f̃2

0
)√

1− 2f̃2
0

, (2.22)

where f0 = f0(α) can be found by inverting numerically (2.21). The function (2.22) has a pole when
α→ 0 (in particular, b(α) = Γ( 3

4 )4/(πα) + . . . ) while b(π) = 0, which is expected because α = π means
no cusp and the logarithmic divergence does not occur for smooth entangling curves.

An interesting family of curves to study is the one made by the convex regular polygons. They are
equilateral, equiangular and all vertices lie on a circle. For instance, a rhombus does not belong to this
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Figure 2.6: The quantity B̃A in (2.17) corresponding to ∂A given by polygons with N equal sides
circumscribed by a circle with radius R. The cut-off is ε = 0.03 and the values of N are indicated above
the corresponding series of data points. The black curve is given by (2.18) and (2.22).

family. Denoting by R the radius of the circumscribed circle and by N the number of sides, the length
of each side is ` = 2R sin(π/N) and all the internal angles are αN ≡ N−2

N π. When N →∞ we have that
αN → π and the polygon becomes a circle. Thus, the area of the minimal surface spanning these regular
polygons is (2.5) with PA = N` and BA = 2Nb(αN ).

It is interesting to compare the analytic results presented above with the corresponding numerical
ones obtained with Surface Evolver. Some examples of minimal surfaces anchored on curves ∂A given
by a polygon are given in Fig. 2.3, where the triangulations are explicitly shown. In Fig. 2.4 we take as
∂A an equilateral triangle, a square and an octagon which share a vertex and consider the section of
the corresponding minimal surfaces through a vertical plane which bisects the angles associated with the
common vertex, as shown in the inset of the left panel. Focussing on the part of the curves near the
common vertex, we find that the numerical results are in good agreement with the analytic expression
z = ρ/f0, where f0 = f0(αN ) is obtained from (2.20). It would be interesting to find analytic results for
the profiles shown in the left panel of Fig. 2.4.

By employing Surface Evolver, we can also consider entangling curves given by polygons which are
not regular, as done in Fig. 2.5, where we have reported the data for B̃A (defined in (2.17)) corresponding
to the area of the minimal surfaces γ̃A when ∂A is either an isosceles triangle (top panel) or a rhombus
with side ` (bottom panel). These examples allow us to consider also cusps with small opening angles.
The size of the isosceles triangles has been changed by varying the angles α adjacent to the basis. Thus,
the limiting regimes are the segment (α = 0) and the semi infinite strip (α = π). As for the rhombus,
denoting by α the angle indicated in the inset, its limiting regimes are the segment (α = 0) and the
square (α = π). The cut-off in the holographic direction has been fixed to ε = 0.03 (see the discussion
in B.2). Increasing the size of the polygon improves the agreement with the curve given by (2.18) and
(2.22), as expected, because ε/PA gets closer to zero. Moreover, the agreement between the numerical
data and the analytic curve gets worse as α becomes very small.

In Fig. 2.6 we report the data for B̃A found with Surface Evolver for regular polygons with various
number N of edges. The agreement with the curve given by (2.18) and (2.22) is quite good and it
improves for larger domains.

It is worth emphasizing that, for entangling surfaces ∂A containing corners, the way we have employed
to construct the minimal surfaces with Surface Evolver (i.e. by defining ∂A at z = ε) influences the term
WA in the expansion (2.5) for the area, as already remarked in [119].

It could be helpful to compute the length Pε of the curve defined as the section at z = ε of the
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z

Figure 2.7: Minimal surface constructed with Surface Evolver corresponding to a star convex domain
delimited by the red curve given by r(φ) = R0 + a0 cos(kφ) in polar coordinates in the z = 0 plane, with
R0 = 1, a0 = 0.7 and k = 4. Here the cut-off is ε = 0.03 and (V, F ) = (6145, 11776). Only half of the
minimal surface is shown in order to highlight the section given by the green curve.

minimal surface anchored on the long segments of a large wedge with opening angle α, which has been
introduced above. From (2.19) we find that, in terms of polar coordinates whose center is the projection
of the vertex at z = ε, this curve is given by ρ = εf(φ). Being L� 1, we find that Pε reads

Pε = 2
ˆ αε/2

0

√
ρ2 + (∂φρ)2 dφ = 2ε

ˆ αε/2

0

√
f2 + (∂φf)2 dφ = 2ε

ˆ L/ε

f0

√
1 + f2(∂fφ)2 df = 2L−2f0ε+. . . ,

(2.23)
where αε ' α is defined by the relation L = εf(αε/2) and in the last step a change of variable has been
performed. It is easy to observe that αε < α. Considering the integral in the intermediate step of (2.23),
one notices that it diverges because of its upper limit of integration (see the text below (2.19)), while
the lower limit of integration gives a finite result, providing a contribution O(ε) to Pε. The expression
of ∂fφ can be read from the integrand of (2.20), finding that f2(∂fφ)2 = O(1/f6) when f → +∞.
Since L/ε � 1, by expanding the integrand in (2.23) for large f , we obtain that this integral diverges
like L/ε − f0 + . . . , where the finite term has been found numerically. As a cross check of the finite
term, we observe that f0 = 0 when α = π (see below (2.21)), as expected. Thus, we can conclude that
Pε = 2L+O(ε), being PA = 2L the length of the boundary of the wedge at z = 0. Notice that, performing
this computation for the minimal surface anchored on a circle of radius R, which is a hemisphere, one
finds that Pε = 2πR+O(ε2).

Let us remark that Pε is not related to the regularization we adopt in our numerical analysis, as it
can be realized from the right panel of Fig. 2.4. Indeed, in order to analytically the profiles given by
the numerical data in the right panel of Fig. 2.4 the ansatz (2.19) cannot be employed and a partial
differential equation must be solved.

2.2.3 Star shaped and non convex regions
The crucial assumption throughout the above discussions is that the minimal surface γ̃A can be fully
described by z = z(x, y), where (x, y) ∈ A. Nevertheless, there are many domains A for which this
parameterization cannot be employed because there are pairs of different points belonging to the minimal
surfaces γ̃A with the same projection (x, y) /∈ A in the z = 0 plane. In these cases, being the analytic
approach quite difficult in general, one can employ our numerical method to find the minimal surfaces
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Figure 2.8: Minimal surfaces corresponding to entangling curves ∂A at z = 0 given by (2.27) with
R = 3, k = 4, µ = 0 and for different values of the parameter a, which delimit star shaped domains (red
curves in the inset). In the inset, where the z direction points downward, we show the minimal surfaces
constructed through Surface Evolver with ε = 0.03. In the main plot, the solid curves are their sections
of the minimal surfaces of the inset at φ = π/4 (like the green curve in Fig. 2.7), while the curves made
by the empty small circles are obtained from the linearized solution of [61]. The colors in the main plot
correspond to different values of a ∈ {0.2, 0.4, 0.6, 0.8} (red, green, blue and black respectively), while
in the inset a increases starting from the top left surface and going to the top right, bottom left and
bottom right ones.

and to compute their area. The numerical data obtained with Surface Evolver would be an important
benchmark for analytic results that could be found in the future.

An interesting class of two dimensional regions to consider is given by the star shaped domains. A
region A at z = 0 belongs to this set of domains if a point P0 ∈ A exists such that the segment connecting
any other point of the region to P0 entirely belongs to A. As for the minimal surface anchored on a
star shaped domain A, by introducing a spherical polar coordinates system (r, φ, θ) centered in P0 (the
angular ranges are φ ∈ [0, 2π) and θ ∈ [0, π/2]), one can parameterize the entire minimal surface. Thus,
we have ρ = r sin θ and z = r cos θ, being (ρ, φ) the polar coordinates of the z = 0 plane. Some interesting
analytic results about these domains have been already found. In particular, [61] considered minimal
surfaces obtained as smooth perturbations around the hemisphere and in [87] the behaviour in the IR
regime for gapped backgrounds [121] has been studied. Our numerical method allows a more complete
analysis because, within our approximations, we can find (numerically) the area of the corresponding
minimal surface without restrictions.

In Fig. 2.7 we show a star convex domain A delimited by the red curve at z = 0, which does not
contain vertices, and the corresponding minimal surface γ̃A anchored on it. Notice that there are pairs
of points belonging to γ̃A having the same projection (x, y) /∈ A on the z = 0 plane. It is worth recalling
that in our regularization the numerical construction of the minimal surface with Surface Evolver has
been done by defining the entangling curve ∂A at z = ε.

In order to give a further check of our numerical method, we find it useful to compare our numerical
results against the analytic ones obtained in [61], where the equation of motion coming from (2.3) written
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Figure 2.9: Minimal surfaces constructed with Surface Evolver corresponding to non convex domains at
z = 0 delimited by the red and blue curves, which are made by arcs of circle centered either in the origin
or in the points identified by the black dots. The green and magenta curves are sections of the minimal
surfaces anchored on the red and the blue curves respectively.

in polar coordinates (r, φ, θ) has been linearized to second order around the hemisphere solution with
radius R, finding

r(θ, φ) = R+ a r1(θ, φ) + a2r2(θ, φ) +O(a3) , (2.24)

where the r1(θ, φ) and r2(θ, φ) are given by [61]

r1(θ, φ) = [tan(θ/2)]k(1 + k cos θ) cos(kφ) , (2.25)

r2(θ, φ) = [tan(θ/2)]2k

4R

{
(1 + k cos θ)2 +

[
µ (1 + 2k cos θ) + k2 cos2 θ

]
cos(2kφ)

}
, (2.26)

being k ∈ N and µ ∈ R two parameters of the linearized solution. The minimal surface equation coming
from (2.3) is satisfied by (2.24) at O(a2). Notice that r1(θ = 0, φ) = r2(θ = 0, φ) = 0, which means that
the maximum value reached by the linearized solution along the z direction is R, like for the hemisphere.
Neglecting the O(a3) terms in (2.24), one has a surface spanning the curve r(π/2, φ) ≡ R2(φ) at z = 0,
which reads

R2(φ) ≡ R+ a cos(kφ) + a2

4R
[
1 + µ cos(2kφ)

]
. (2.27)

In Fig. 2.8 we construct the minimal surfaces providing the holographic entanglement entropy of some
examples of star shaped regions A delimited by (2.27) where R and µ are kept fixed while a takes different
values, taking the φ = π/4 section of these surfaces (see also the green curve in Fig. 2.7). Compare the
resulting curves (the solid ones in the main plot of Fig. 2.8) with the corresponding ones obtained from
the second order linearized solution (2.24) (made by the empty circles), we observe that the agreement
is very good for small values of a/R and it gets worse as a/R increases, as expected.

Our numerical method is interesting because it does not rely on any particular parameterization of
the surface and this allows us to study the most generic non convex domain. In Fig. 2.9 we show two
examples of non convex domains A which are not star shaped: one is delimited by the red curve and
the other one by the blue curve. We could see these domains as two two dimensional spherocylinders
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Figure 2.10: Minimal surface constructed with Surface Evolver for a domain A = A1 ∪ A2 delimited
by two disjoint and equal ellipses at z = 0 (blue curves). Here ε = 0.03 and the minimal surface is
anchored on ∂A defined at z = ε, according to our regularization prescription. The minimal surface has
(V, F ) = (18936, 37616) (the number of edges E can be found from the Euler formula with vanishing
genus and two boundaries). Only half surface is shown in order to highlight the curves given by the two
sections suggested by the symmetry of the surface.

which have been bended in a particular way. Constructing the minimal surfaces γ̃A anchored on their
boundaries and considering their sections given by the green and magenta curves, one can clearly observe
that some pair of points belonging to the minimal surfaces have the same projection (x, y) /∈ A on the
z = 0 plane, as already remarked above. An analytic description of these surfaces is more difficult with
respect to the minimal surfaces anchored on the boundary of star shaped domains because it would
require more patches.

2.3 Two disjoint regions
In this section we discuss the main result of this Chapter, which is the numerical study of the holographic
mutual information of disjoint equal domains delimited by some of the smooth curves introduced in 2.2.1.
For two equal disjoint ellipses, an explicit example of the minimal surface whose area determines the
corresponding holographic mutual information is shown in Fig. 2.10.

Let us consider two dimensional domains A = A1 ∪A2 made by two disjoint components A1 and A2,
where each component is a simply connected domain delimited by a smooth curve. The boundary is
∂A = ∂A1 ∪ ∂A2 and the shapes of ∂A1 and ∂A2 could be arbitrary, but we will focus on the geometries
discussed in 2.2. Since the area law holds also for SA1∪A2 and PA = PA1 + PA2 , the leading divergence
O(1/ε) cancels in the combination (1.12), which is therefore finite when ε→ 0.

Considering the mutual information (1.12) with the entanglement entropy computed through the
holographic formula (1.26), we find it convenient to introduce IA1,A2 as follows

IA1,A2 ≡
IA1,A2

4GN
, (2.28)

where GN is the four dimensional Newton constant. Since ∂A1 and ∂A2 are smooth curves, from (2.4)

28



and (2.14) we have

IA1,A2 = F̃A1∪A2 − F̃A1 − F̃A2 = FA1∪A2 − FA1 − FA2 + o(1) . (2.29)

In the following we study IA1,A2 when ∂A is made either by two circles ( 2.3.1.2) or by two superellipses
or by the boundaries of two two dimensional spherocylinders. Once A1, A2 and their relative orientation
have been fixed, we can only move their relative distance. A generic feature of the holographic mutual
information is that it diverges when A1 and A2 become tangent, while it vanishes when the distance
between A1 and A2 is large enough.

2.3.1 Circular boundaries
In this section we consider domains A whose boundary ∂A is made by two disjoint circles. The corre-
sponding disks can be either overlapping (in this case A is an annulus) [58, 59, 113] or disjoint [114].

2.3.1.1 Annular regions

Let us consider the annular region A bounded by two concentric circles with radii Rin < Rout. The
complementary domain B is made by two disjoint regions and, since we are in the vacuum, SA = SB .
The minimal surfaces associated with this case have been already studied in [58, 113] as the gravitational
counterpart of the correlators of spatial Wilson loops and in [59] from the holographic entanglement
entropy perspective.

In B.4.2 we discuss the construction of the analytic solution in d dimensions for completeness, but
here we are interested in the d = 2 case. Because of the axial symmetry, it is convenient to introduce
polar coordinates (ρ, φ) at z = 0. Then, the profile of the minimal surface is completely specified by a
curve in the plane (ρ, z).

A configuration providing a local minimum of the area functional is made by the disjoint hemispheres
anchored on the circles with radii Rin and Rout. In the plane (ρ, z), they are described by two arcs
centered in the origin with an opening angle of π/2 (see the dashed curve in Fig. B.4). Another surface
anchored on ∂A that could give a local minimum of the area functional is the connected one having the
same topology of a half torus. This solution is fully specified by its profile curve in the plane (ρ, z), which
connects the points (Rin, 0) and (Rout, 0). Thus, we have two qualitatively different surfaces which are
local minima of the area functional and we have to establish which is the global minimum in order to
compute the holographic entanglement entropy. Changing the annulus A, a transition occurs between
these two types of surfaces, as we explain below. This is the first case that we encounter of a competition
between two saddle points of the area functional.

The existence of the connected solution depends on the ratio η ≡ Rin/Rout < 1. As discussed in
B.4.2, a minimal value η∗ can be found such that for 0 < η < η∗ only the disconnected configuration
of two hemispheres exists, while for η∗ < η < 1, besides the disconnected configuration, there are two
connected configurations which are local minima of the area functional (see Fig. B.4). In the latter case,
one has to find which of these two connected surfaces has the lowest area and then compare it with the
area of the two disconnected hemispheres. This comparison provides a critical value ηc > η∗ such that
when η ∈ (ηc, 1) the minimal surface is given by the connected configuration, while for η ∈ (0, ηc) the
minimal area configuration is the one made by the two disjoint hemispheres.

Let us give explicit formulas about these surfaces by specifying to d = 2 the results found in B.4.2
(in order to simplify the notation adopted in B.4.2, in the following we report some formulas from that
appendix omitting the index d). The profile of the radial section of the connected minimal surface in the
plane (ρ, z) is given by the following two branches{

ρ = Rin e
−f−,K(z/ρ) ,

ρ = Rout e
−f+,K(z/ρ) ,

(2.30)

where, by introducing z̃ ≡ z/ρ, the functions f±,K(z̃) are defined as follows (from (B.28))

f±,K(z̃) ≡
ˆ z̃

0

λ

1 + λ2

(
1± λ√

K (1 + λ2)− λ4

)
dλ , 0 6 z̃ 6 z̃m , z̃2

m =
K +

√
K(K + 4)
2 .

(2.31)
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Figure 2.11: Left panel: Radial profiles of the connected surfaces anchored on the boundary of an
annulus A which are local minima of the area functional. Comparison between the section of the surfaces
constructed with Surface Evolver (black dots) and the analytic expressions reported in 2.3.1.1. While the
external radius is kept fixed to Rout = 1, for the internal one the values Rin = 0.38 (red), 0.5 (green) and
0.7 (magenta) have been chosen. The cut-off is ε = 0.03 and, according to our regularization prescription,
∂A has been defined at z = ε in the numerical construction. Right panel: The sign of ∆A establishes the
minimal area surface between the connected surface and the two disjoint hemispheres. The black curve
is obtained from (2.39) by varying K > 0 and it is made by two branches joining at η = η∗, where the
lower one corresponds to the connected solution which is not the minimal one between the two connected
ones. The data points have been found with Surface Evolver for various annular domains. Notice that
in the left panel η < ηc only for the red curve.

The integral occurring in f±,K can be computed in terms of the incomplete elliptic integrals of the first
and third kind (see B.5), finding

f±,K(z̃) = 1
2 log(1 + z̃2)± κ

√
1− 2κ2

κ2 − 1

[
F
(
ω(z̃)|κ2)−Π

(
1− κ2, ω(z̃)|κ2)] , (2.32)

where we have introduced

ω(z̃) ≡ arcsin
(

z̃/z̃m√
1 + κ2(z̃/z̃m − 1)

)
, κ ≡

√
1 + z̃2

m

2 + z̃2
m

. (2.33)

The matching condition of the two branches (2.30) provides a relation between η > η∗ and the constant
K, namely (from (B.30))

log(η) = −
ˆ z̃m

0

2λ2

(1 + λ2)
√
K(1 + λ2)− λ4

dλ = 2κ
√

1− 2κ2

κ2 − 1

(
K
(
κ2)−Π

(
1− κ2, κ2)) , (2.34)

where K(m) and Π(n,m) are the complete elliptic integrals of the first and third kind respectively.
The relation (2.34) tells us η = η(K) and κ ∈ [1/

√
2, 1]. As discussed in B.4.2, where also related

figures are given, plotting this function one gets a curve whose global minimum tells us that η∗ = 0.367.
From this curve it is straightforward to observe that, for any given η ∈ (η∗, 1), there are two values of
K fulfilling the matching condition (2.34). This means that, correspondingly, there are two connected
surfaces anchored on the same pair of concentric circles on the boundary which are both local minima of
the area functional. We have to compute their area in order to establish which one has to be compared
with the configuration of disjoint hemispheres to find the global minimum.
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Performing the following integral up to an additive constant (from (B.37) for d = 2)
ˆ

dz̃

z̃2
√

1 + z̃2 − z̃4/K
=
√

(z̃2
m − z̃2)(z̃2

m + z̃2z̃2
m + z̃2)

z̃ z̃3
m

+
E
(

arcsin(z̃/z̃m)|κ2)+ (κ2 − 1)F
(

arcsin(z̃/z̃m)|κ2)
√

2κ2 − 1
,

(2.35)
one obtains the area of the connected surface [113, 119]

Acon = 2π
(ˆ z̃m

ε/Rout

dz̃

z̃2
√

1 + z̃2 − z̃4/K
+
ˆ z̃m

ε/Rin

dz̃

z̃2
√

1 + z̃2 − z̃4/K

)
(2.36)

= 2π(Rin +Rout)
ε

− 4π√
2κ2 − 1

(
E
(
κ2)− (1− κ2)K

(
κ2))+O(ε) . (2.37)

Plotting the O(1) term of this expression in terms of K, it is straightforward to realize that the minimal
area surface between the two connected configurations corresponds to the smallest value of K.

As for the area of the configuration made by two disconnected hemispheres, from (B.40) one gets

Adis = 2π
(ˆ ∞

ε/Rin

dz̃

z̃2
√

1 + z̃2
+
ˆ ∞
ε/Rout

dz̃

z̃2
√

1 + z̃2

)
= 2π(Rin +Rout)

ε
− 4π +O(ε) . (2.38)

We find it convenient to introduce ∆A ≡ Adis − Acon, which is finite when ε → 0. In particular,
∆A → 2π∆R as ε→ 0, where ∆R is (B.44) evaluated at d = 2. From (2.37) and (2.38), we have

lim
ε→0

∆A = 4π
(
E
(
κ2)− (1− κ2)K

(
κ2)

√
2κ2 − 1

− 1
)
. (2.39)

Considering as the connected surface the one with minimal area, the sign of ∆A determines the minimal
surface between the disconnected configuration and the connected one and therefore the global minimum
of the area functional. The root ηc of ∆A can be found numerically and one gets ηc = 0.419 [58, 107].
Thus, the connected configuration is minimal for η ∈ (ηc, 1), while for η ∈ (0, ηc) the minimal area
configuration is the one made by the disjoint hemispheres.

By employing Surface Evolver, we can construct the surface anchored on the boundary of the annulus
at z = 0 which is a local minimum, compute its area and compare it with the analytic results discussed
above. This is another important benchmark of our numerical method.

In the left panel of Fig. 2.11 we consider the profile of the connected configuration in the plane (ρ, z).
The black dots correspond to the radial section of the surface obtained with Surface Evolver, while the
solid line is obtained from the analytic expressions discussed above. Let us recall that the triangulated
surface is numerically constructed by requiring that it is anchored to the two concentric circles with radii
Rin < Rout at z = ε and not at z = 0, as it should. Despite this regularization, the agreement between
the analytic results and the numerical ones is very good for our choices of the parameters. It is worth
remarking that, when η > η∗ and therefore two connected solutions exist for a given η, Surface Evolver
finds the minimal area one between them. Nevertheless, it is not able to establish whether it is the
global minimum. Indeed, for example, the red curve in the left panel of Fig. 2.11 has η∗ < η < 1 and
therefore the corresponding surface is minimal but it is not the global minimum. Instead, considering
an annulus with η < η∗, even if one begins with a rough triangulation of a connected surface, Surface
Evolver converges towards the configuration made by the two disconnected hemispheres.

In the right panel of Fig. 2.11 we compare the values of ∆A obtained with Surface Evolver with the
analytic curve from (2.39), finding a very good agreement. Numerical points having η∗ < η < ηc are also
found, for the reason just explained.

2.3.1.2 Two disjoint disks

In this section we consider domains A made by two disjoint disks by employing the analytic results for
the annulus reviewed in 2.3.1.1 and some isometries of H3. This method has been used in [122] for the
case of a circle, while the case of two disjoint circles has been recently studied in [114]. The analytic
results found in this way provide another important benchmark for the numerical data obtained with
Surface Evolver.
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Figure 2.12: The connected surface anchored on the boundary of an annulus at z = 0 (top left panel),
which is a local minimum of the area functional, can be mapped through (2.40) into one of the connected
surfaces anchored on the configurations of circles at z = 0 shown in the remaining panels, depending on
the value of the parameter of the transformation (2.40), as discussed in 2.3.1.2. The mapping preserves
the color code. The green circle in the top left panel corresponds to the matching of the two branches
given by (2.30) and (2.34) (see the point Pm in Fig. B.4) and it is mapped into the vertical circle in the
bottom right panel.

Let us consider the following reparameterizations of H3, which correspond to the special conformal
transformations on the boundary [122]

x̃ = x+ bx(|v|2 + z2)
1 + 2b · v + |b|2(|v|2 + z2) , ỹ = y + by(|v|2 + z2)

1 + 2b · v + |b|2(|v|2 + z2) , z̃ = z

1 + 2b · v + |b|2(|v|2 + z2) ,

(2.40)
being b ≡ (bx, by) a vector in R2 and v ≡ (x, y).

When z = 0 in (2.40), the maps (x, y) → (x̃, ỹ) are the special conformal transformations of the
Euclidean conformal group in two dimensions. These transformations in the z = 0 plane send a circle C
with center c = (cx, cy) and radius R into another circle C̃ with center c̃ = (c̃x, c̃y) and radius R̃ which
are given by

c̃i = ci + bi(|c|2 −R2)
1 + 2b · c + |b|2(|c|2 −R2) i ∈ {x, y} , R̃ = R∣∣1 + 2b · c + |b|2(|c|2 −R2)

∣∣ . (2.41)

Notice that the center c̃ is not the image of the center c under (2.40) with z = 0. Moreover, when c is
such that the denominator in (2.41) vanishes, the circle is mapped into a straight line [122].

Considering two concentric circles at z = 0 with radii Rin < Rout, their images are two different circles
at z = 0 which do not intersect. In order to deal with simpler expressions for the mapping, let us place
the center of the concentric circles in the origin, i.e. c = (0, 0). By introducing η ≡ Rin/Rout < 1 for the
initial configuration of concentric circles centered in the origin and denoting by R̃1 ≡ Rin/|1 − |b|2R2

in|
and R̃2 ≡ Rout/|1 − |b|2R2

out| the radii of the circles after the mapping, the distance between the two
centers reads

d = (1− η2)β
|(1− β2)(β2 − η2)| Rin = (1− η2)β

|β2 − η2|
R̃1 , (2.42)
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Figure 2.13: Two examples of minimal surfaces (constructed with Surface Evolver) corresponding to A
made by two disjoint and equal disks (∂A is given by the red and blue circles). Only half of the surfaces
is shown in order to highlight their section through a plane orthogonal to z = 0 and to the segment
connecting the centers. This section provides a circle whose radius and center are given in (2.47). In
this figure ε = 0.03, the red circles have radius R = 1 and the distance between their centers is d = 2.16,
while for the blue ones R = 0.75 and d = 1.68.

where β2 ≡ |b|2R2
in. Thus, η and β fix the value of the ratio δ̃ ≡ d/R̃1. The final disks are either disjoint

or fully overlapping, depending on the sign of the expression within the absolute value in the denominator
of (2.42). In particular, when β2 ∈ (η2, 1) the two disks are disjoint, while when β2 ∈ (0, η2) ∪ (1,+∞)
they overlap. As for their ratio η̃ ≡ R̃1/R̃2, we find

η̃ =


β2 − η2

η(β2 − 1) β2 ∈ (0, η2) ∪ (1,∞) overlapping disks ,

β2 − η2

η(1− β2) β2 ∈ (η2, 1) disjoint disks .
(2.43)

Notice that η̃ → 1/η > 1 for β2 → ∞. Thus, given η and β, the equations (2.42) and (2.43) provide
δ̃ and η̃. By inverting them, one can write η and β in terms of δ̃ and η̃. The system is made by two
quadratic equations and some care is required to distinguish the various regimes.

When the disks after the mapping are disjoint, i.e. η2 < β2 < 1, an interesting special case to discuss
is R̃1 = R̃2, namely when the disjoint disks have the same radius R̃ = Rin/(1 − η) = Rout/(η−1 − 1),
being Rin < Rout the radii of the two concentric circles at z = 0 centered in the origin. Setting η̃ = 1 in
(2.43), one finds that it happens for β2 = η, i.e. |b|2 = 1/(RinRout). The distance corresponding to this
value of β can be found from (2.42) and it is given by d/Rin = (1 + η)/

[√
η(1− η)

]
or, equivalently, by

δ̃ = (1 + η)/√η. By inverting this relation, one finds η(δ̃) =
{
δ̃2 − 2−

[
(δ̃2 − 2)2 − 4

]1/2}
/2, where the

root η(δ̃) < 1 has been selected and δ̃ > 2 must be imposed in order to avoid the intersection of the two
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Figure 2.14: Left: Sections of minimal surfaces when A is made by two equal disjoint domains with
smooth boundaries, like the red curves in Fig. 2.10. The coloured solid lines are the numerical results
found with Surface Evolver for the shapes indicated in the common legend in the right panel. Here
R2 = 1 and ε = 0.03. The black dots (notice that they reach z = 0) correspond to the minimal surface
for two disjoint circles and they have been found by mapping the connected minimal surface for the
annulus through the transformations (2.40) (see 2.3.1.2 and Fig. 2.12). The dashed curve corresponds to
two infinite strips. Right: Zoom of the part of the left panel enclosed by the black rectangle.

equal disks.
Once the vector b = (bx, by) = |b|(cosφb, sinφb) is chosen by fixing the initial and final configurations

of circles at z = 0, the transformations (2.40) for the points in the bulk are fixed as well and they can be
used to map the points belonging to the minimal surfaces spanning the initial configuration of circles.
In particular, let us consider a circle given by (R? cosφ,R? sinφ, z?) for φ ∈ [0, 2π), lying in a plane at
z = z? parallel to the boundary. This circle is mapped through (2.40) into another circle Ĉ whose radius
is given by

R̂ = R?√
1 + 2|b|2(z2

? −R2
?) + |b|4(z2

? +R2
?)2

, (2.44)

and whose center ĉ ≡ (ĉx, ĉy, ĉz) has coordinates

ĉi = |b|2(R2
? + z2

?)2 + z2
? −R2

?

1 + 2|b|2(z2
? −R2

?) + |b|4(z2
? +R2

?)2 bi i ∈ {x, y} , ĉz = [1 + |b|2(R2
? + z2

?)] z?
1 + 2|b|2(z2

? −R2
?) + |b|4(z2

? +R2
?)2 .

(2.45)
Setting z? = 0, R? = R and R̂ = R̃ in (2.44) and (2.45), the expressions in (2.41) with c = (0, 0) are
recovered. The circle Ĉ lies in a plane orthogonal to the following unit vector

v⊥ = (− cosφb sin θ⊥,− sinφb sin θ⊥, cos θ⊥) , θ⊥ ≡ arcsin(2z?|b|R̂/R?) , (2.46)

where 2z?|b|R̂/R? < 1, as can be easily observed from (2.44).
In the top left panel of Fig. 2.12 we consider as initial configuration the annulus at z = 0 for some

given value of η and the corresponding connected minimal surface in the bulk anchored on its boundary,
which has been discussed in 2.3.1.1. The transformation (2.40) with β = √η maps this surface into
the connected surface anchored on two equal and disjoint circles (bottom right panel in Fig. 2.12). It is
interesting to follow the evolution of the former surface into the latter one as β ∈ [0,√η] increases: in
Fig. 2.12 we show two intermediate steps where the surfaces are qualitatively different and they corre-
spond to different regimes of β separated by β = η. For 0 < β < η the disks at z = 0 are still overlapping
but they are not concentric (top right panel of Fig. 2.12). Within this range of β, the radius of the largest
disk, which is Rout/|1 − β2/η2|, increases with β and it diverges when as β → η. When η < β 6

√
η,

instead, the disks at z = 0 are disjoint and the images of the initial surface through (2.40) are shown
in the bottom panels of Fig. 2.12, where the surface on the left has η < β <

√
η, while the one on the
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right corresponds to the final stage of disjoint equal disks (β = √η). In Fig. 2.12 the mapping preserves
the color code and we have highlighted the green circle because in the top left panel it corresponds to
the circle at z = zm along which the two branches given by (2.30) match, as imposed by the condition
(2.34). When β = √η, this matching circle is mapped into the vertical one shown in the bottom right
panel, whose radius R̃v and whose coordinate zv > R̃v of its center along the holographic direction are
given respectively by

R̃v = 1− η
2z̃m
√
η
R̃ , zv =

(1− η)
√

1 + z̃2
m

2z̃m
√
η

R̃ , (2.47)

where R̃ is the radius of the two equal disjoint disks written above and z̃m is a function of η (see (2.31)
and (2.34)). In Fig. 2.13 we show two examples of minimal surfaces constructed with Surface Evolver
which provide the holographic mutual information of two equal disjoint disks. Considering the section
of these surfaces through a vertical plane which is orthogonal to the boundary and to the line passing
through the centers of the disks, we find a good agreement with (2.47).

As for the finite part of the area, once η and β have been written in terms of η̃ and δ̃ by inverting
(2.42) and (2.43), the limit ε→ 0 of either ∆A or IA1,A2 (depending on whether the final disks are either
overlapping or disjoint respectively) is given by the r.h.s. of (2.39), where κ = κ(η) is obtained through
the numerical inversion of (2.34), being η = η(δ̃, η̃) found above.

The special case of two equal disjoint disks corresponds to η̃ = 1 and δ̃ = (1+η)/√η, and therefore the
limit ε→ 0 of IA1,A2 depends only on the parameter δ̃, as expected. The relation δ̃ = (1 +η)/√η can be
used to find the critical distance dc between the centers beyond which the holographic mutual information
vanishes and also the distance d∗ > dc beyond which the connected surface does not exist anymore. They
correspond to ηc and η∗ respectively and, in particular, one gets δ̃c = 2.192 and δ̃∗ = 2.256.

In order to check that the surfaces obtained through (2.40) are local minima of the area functional, one
can compare the analytic results found as explained above against the corresponding surfaces constructed
by Surface Evolver. In Fig. 2.14 we have performed this check for a section profile: the black dots come
from the surface obtained as in the bottom right panel of Fig. 2.12 (notice that the black dots reach z = 0),
while the red curve is the section of the corresponding surface constructed by Surface Evolver (see also the
red curves in Fig. 2.10 for a similar construction with different A). In Fig. 2.15 we have performed another
comparison between the analytic expressions and the numerical data of Surface Evolver by computing
the holographic mutual information of a domain A made by two equal disjoint disks. The black triangles
have been found by mapping the black curve for the annulus in the right panel of Fig. 2.11 (which is
given by the r.h.s. of (2.39)) through η = η(δ̃) found above. The agreement with the corresponding
data obtained with Surface Evolver (red curve) is very good. Notice that, as already observed for the
annulus in 2.3.1.1, also in this case Surface Evolver finds a surface which is a local minimum of the
area functional, even if it is not the global minimum. Let us conclude by emphasizing that, while this
numerical method is very efficient in finding surfaces which are local minima for the area functional when
they exist, it is not suitable for studying the existence of a surface with a given topology.

2.3.2 Other shapes
In 2.3.1.2 we have considered the holographic mutual information of two disjoint circular domains, for
which analytic results are available. When A = A1 ∪ A2 is not made by two disjoint disks, analytic
results for the corresponding holographic mutual information are not known and therefore a numerical
approach could be very useful. Here we employ Surface Evolver to study IA1,A2 (defined in (2.28)) of
disjoint regions delimited by some of the smooth curves introduced in 2.2.1.

The holographic mutual information of non circular domains depends on the geometries of their
boundaries, on their distance and also on their relative orientation. Independently of the shapes of
∂A1 and ∂A2, once the domains and their relative orientation have been fixed, the holographic mutual
information vanishes when the distance between A1 and A2 is large enough. The critical distance dc
beyond which IA1,A2 = 0 depends on the configuration of the domains. This transition occurs because,
for a generic distance d between the centers of A1 and A2, the global minimal area surface comes from a
competition between a connected surface anchored on ∂A and a configuration made by two disconnected
surfaces spanning ∂A1 and ∂A2, which are both local minima. Beyond the critical distance between the
centers, the disconnected configuration becomes the global minimum and therefore IA1,A2 vanishes.
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Figure 2.15: Holographic mutual information of two disjoint and equal domains delimited by squircles
for various n. The coloured points are the numerical data obtained with Surface Evolver, while the black
triangles correspond to the solid black curve of Fig. 2.11 (right panel) mapped through the transformation
(2.43) with β2 = η. The transition between the connected surface and the configuration of disconnected
surfaces occurs at the zero of each curve. A point having IA1,A2 < 0 corresponds to a connected surface
which is a local minimum of the area functional but it is not the global minimum for the corresponding
entangling curve.

In Fig. 2.10 we show an example of a connected surface constructed with Surface Evolver where ∂A
is made by two equal and disjoint ellipses at z = 0. Let us recall that in our numerical analysis we have
regularized the area by defining ∂A at z = ε, as discussed in B.2. In the figure, we have highlighted two
sections of the surface suggested by the symmetry of this configuration of domains, which are given by
the red curves and by the green one.

We have constructed minimal area connected surfaces also for configurations of equal disjoint domains
with other shapes and in Fig. 2.14 we have reported the corresponding curves obtained from the section
giving the red curves in Fig. 2.10. The red curves in Fig. 2.14 are associated with circular domains and
they can be recovered analytically (black dots), as explained in 2.3.1.2. Instead, for the remaining curves
analytic expressions are not available and therefore they provide a useful benchmark for analytic results
that could be found in the future.

Besides the profiles for various sections, Surface Evolver computes also the area of the surfaces that
it constructs. Considering a configuration of disjoint domains with given shapes and relative orientation,
we can compute IA1,A2 while the distance d between their centers changes. In Fig. 2.15 we show the
results of this analysis when ∂A1 and ∂A2 are squircles (i.e. (2.15) with R1 = R2 ≡ R). As for their
relative orientation, drawing the squares that circumscribe ∂A1 and ∂A2, their edges are parallel. Since
IA1,A2 > 0, the critical distance dc corresponds to the zero of the various curves and IA1,A2 vanishes
for d > dc. Thus, IA1,A2 is continuos with a discontinuous first derivative at d = dc. The points found
numerically which have IA1,A2 < 0 correspond to connected surfaces that Surface Evolver constructs
but they are not the global minimum for the area functional because the disconnected configuration is
favoured for that distance.

Once the relative orientation has been chosen, a configuration of two equal and disjoint squircles is
completely determined by two parameters: the distance d between the centers and the size R of the
squircles. Instead, when A1 and A2 are two equal two dimensional spherocylinders or equal domains
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Figure 2.16: Holographic mutual information of two equal and disjoint domains delimited by ellipses
(top panels) or superellipses with n = 4 (bottom panels), which are defined by R1 and R2 (see the bottom
panel of Fig. 2.1 and (2.15)), while d is the distance between their centers. The relative orientation is like
in Fig. 2.10. Left panels: Density plots for IA1,A2 whose zero provides the corresponding transition curve
(solid black line) in the plane (d/R2, R1/R2). The straight vertical line indicates the transition when
A is made by two equal and disjoint infinite strips whose width is 2R2 and the distance between their
central lines is d. Right panels: IA1,A2 in terms of d/R2 for various fixed values of R1/R2 indicated by
the horizontal dashed lines in the corresponding left panel, with the same color code. The lower curves
(orange) in the right panels correspond to the squircles (R1 = R2) with n = 2 (top) and n = 4 (bottom)
and therefore they reproduce the red and orange curves in Fig. 2.15 respectively. The data reported here
have been found with R2 = 1 and some checks have been done also with R2 = 2.

delimited by two disjoint superellipses and the relative orientation has been chosen, we have three
parameters to play with: the distance d between the centers and the parameters R1 and R2 which specify
the two equal domains (see the bottom panel of Fig. 2.1). In Fig. 2.16 we show IA1,A2 for two disjoint
domains delimited by ellipses and superellipses with n = 4, whose relative orientation is like in Fig. 2.10.
In the left panels, the black thick curve is the transition curve along which the holographic mutual
information vanishes, while the continuos straight line identifies the transition value corresponding to
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Figure 2.17: Holographic mutual information of two equal and disjoint two dimensional spherocylinders
oriented like the two ellipses in Fig. 2.10. The parameters R1 and R2 specify the domains (see the bottom
panel of Fig. 2.1 and (2.16)) and d is the distance between their centers. The same notation and color
coding of Fig. 2.16 has been adopted.

two disjoint infinite strips [104]. Comparing the transition curve in the top left panel with the one in
the bottom left panel, it is evident that the one associated with the superellipses having n = 4 is closer
to the value corresponding to the infinite strips than the one associated with the ellipses. In Fig. 2.17
we study IA1,A2 for a domain A made by two equal and disjoint two dimensional spherocylinders. In
this case the transition curve is closer to the line corresponding to the transition for two infinite strips
with respect to the transition curves of Fig. 2.16. Nevertheless, from our data we cannot conclude that
the transition curve for the two dimensional spherocylinders approaches the value corresponding to the
infinite strips as R1/R2 →∞. It would be interesting to have further data and some analytic argument
to understand whether some bounds prevent the transition curves to approach the value associated with
the infinite strips for R1/R2 →∞. Let us remark that the lowest curves (orange) in the right panels of
Figs. 2.16 and 2.17 correspond to disjoint squircles with n = 2 (i.e. circles) or n = 4 and therefore they
reproduce the red and the orange curves of Fig. 2.15. Configurations of domains having smaller values
of d than the ones shown in the plots provide unstable numerical results.

By employing Surface Evolver, we could also study the holographic mutual information of disjoint
domains whose boundaries contain corners. In particular, one could take both A1 and A2 bounded
by polygons, but also A1 bounded by a smooth curve and A2 by a polygon. In Fig. 2.18 we show the
minimal area surfaces corresponding to ∂A made by two equal and disjoint squares having different
relative orientation. As discussed in 2.2.2, when ∂A has vertices a further logarithmic divergence occurs
after the area law term in the ε→ 0 expansion (see (2.5)). If the coefficient of the logarithmic divergence
in (2.5) is additive, i.e. BA1∪A2 = BA1 + BA2 for two disjoint regions, then the holographic mutual
information is finite. An expression like (2.18) with the sum extended over the vertices of both the
components of ∂A is additive, leading to a finite IA1,A2 . Also for these cases we could find plots similar
to Figs. 2.16 and 2.17 but the curves would not be suitable for a comparison with an analytic formula
because of the regularization procedure that we have adopted. Indeed, in our numerical computations
∂A is defined at z = ε and this regularization affects the O(1) term in (2.5) [119], as already mentioned
in the closing part of 2.2.2.

Summarizing, in this Chapter we have studied the area of the minimal surfaces in AdS4 occurring in
the computation of the holographic entanglement entropy and of the holographic mutual information,
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Figure 2.18: Minimal surfaces obtained with Surface Evolver for a domain A = A1 ∪ A2 made by the
interior of two disjoint and equal squares. All the squares have the same size but the relative orientation
of A1 and A2 is different in the two panels.

focussing on their dependence on the shape of the entangling curve ∂A in the boundary of AdS4.
Our approach is numerical and the main tool we have employed is the program Surface Evolver, which

allows to construct triangulated surfaces approximating a surface anchored on a given curve ∂A which is
a local minimum of the area functional. We have computed the holographic entanglement entropy and
the holographic mutual information for entangling curves given by (or made by the union of) ellipses,
superellipses or the boundaries of two dimensional spherocylinders, for which analytic expressions are
not known. We have also obtained the transition curves for the holographic mutual information of
disjoint domains delimited by some of these smooth curves (see Figs. 2.15, 2.16 and 2.17), providing a
solid numerical benchmark for analytic expressions that could be found in future studies. We focused
on these simple examples, but the method can be employed to address more complicated domains.

Besides the fact that the surfaces constructed by Surface Evolver are triangulated, a source of approx-
imation in our numerical analysis is the way employed to define the curve spanning the minimal surface.
Indeed, once the cut-off ε > 0 in the holographic direction has been introduced to regularize the area of
the surfaces, the numerical data have been found by defining ∂A at z = ε. It would be interesting to
understand better this regularization with respect to some other ones and also to decrease ε in a stable
and automatically controlled way in order to get numerical data which provide better approximations of
the analytic results.
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Chapter 3

Time-dependent hvLif backgrounds

One of the interesting questions regarding quantum information is how fast quantum correlations can
propagate in a physical system. In a groundbreaking study in 1972, Lieb and Robinson [123] derived an
upper bound for the speed of propagation of correlations in an interacting lattice system and in recent
years there has been growing interest in this and related questions in connection with a number of new
advances. The study of ultracold atom systems has developed to the level where experiments on the
time evolution of quantum correlations are possible (see e.g. [124]), new techniques have been developed
for the theoretical study of time evolution of observables in perturbed quantum lattices (see e.g. [125]),
analytical results have been obtained for the time evolution of observables after quenches in conformal
field theory [42–44] and entanglement entropy has been given a geometric interpretation [46, 47, 51, 126]
in the context of the holographic duality of strongly interacting conformal field theory [2].

In the context of holographic duality, different ways of introducing quenches in a conformal theory
have been studied. One line of work focuses on constructing holographic duals for quenches in strongly
coupled theories [127–131], in the spirit of similar work in weakly coupled quantum field theory involving
a sudden change in the parameters of the Hamiltonian [42–44, 132–135]. In another approach, the focus
has instead been on perturbing the state of the system by turning on homogeneous sources for a short
period of time. By a slight abuse of terminology, this process has also been called a “quench”, although
perhaps a “homogenous explosion” would be a closer term to describe the sudden change in the state
of the boundary theory. There are two good reasons to study this model. One of them is that there is
an elegant and tractable gravitational dual description of such a process in terms of the gravitational
collapse of a thin shell of null matter to a black hole, the AdS-Vaidya geometry. The other good reason
is that the time evolution of quantum correlations manifested in the holographic entanglement entropy
following such an explosion was found to behave in the same manner as in the 1+1 dimensional conformal
field theory work [42–44] – in a relativistic case quantum correlations were found to propagate at the
speed of light [66–70, 136–139]. The interesting lesson there is that even a strongly coupled conformal
theory with no quasiparticle excitations may behave as if the correlations were carried by free-streaming
particles. The model also allows for an easy extrapolation of the results to higher dimensional field
theory at strong coupling. In generic dimensions, it turns out that the time evolution of holographic
entanglement entropy has a more refined structure, characterized by different scaling regimes [140, 141]:
(I) a pre-local equilibrium power law growth in time, (II) a post-local equilibration linear growth in time,
(III) a saturation regime. For entanglement surfaces of more general shape, one can also identify late-
time memory loss, meaning that near saturation the time-evolution becomes universal with no memory
on the detailed shape of the surface.

Many condensed matter and ultracold atom systems feature more complicated critical behavior with
anisotropic (Lifshitz) scaling [142], characterized by the dynamic critical exponent ζ > 1, or hyperscaling
violation characterized by a non-zero hyperscaling violation exponent θ [78, 80, 143]. Hyperscaling
violation leads to an effective dimension dθ = d − θ. It was found that for a critical value dθ = 1 the
entanglement entropy exhibits a logarithmic violation from the usual area law [79], which is also generic
for compressible states with hidden Fermi surfaces [75–77, 144].

By now there exist various holographic dual models for critical points involving Lifschitz scaling
and hyperscaling violation [78–80, 143, 145–161]. In the light of the rich scaling structure in the time
evolution of entanglement entropy, it is interesting to see how it carries over to systems with Lifshitz
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scaling and hyperscaling violation. In [162] a Lifshitz scaling generalization of the AdS-Vaidya geometry
was constructed, and it was found that time evolution of entanglement entropy still contains a linear
regime, where entanglement behaves as if it was carried by free streaming particles at finite velocity. This
is non-trivial, since in the non-relativistic case ζ > 1 there is no obvious characteristic scale like the speed
of light in relativistic theories. The authors of [140, 141], on the other hand, considered a relativistic
system with hyperscaling violation, and found that their previous analysis easily carries over to that
case, with the spatial dimension d replaced by the effective dimension dθ. In this Chapter we extend
the analysis to systems that exhibit both Lifshitz scaling and hyperscaling violation. We do this by
first constructing the extension of the Lifshitz-AdS-Vaidya geometry to the hyperscaling violating case,
and then analyzing the time evolution of the entanglement entropy for various boundary regions. We
compute numerically the evolution of the holographic entanglement entropy for the strip and the sphere
in backgrounds with non-trivial ζ and θ. We then extract some analytic behavior in the thin shell limit for
the temporal regimes (I), (II) and (III), generalizing the results of [140, 141] to the case of ζ 6= 1 and θ 6= 0.
In Appendix C.4, we also consider briefly quench geometries where the critical exponents themselves are
allowed to vary. This can be motivated from a quasiparticle picture and one could, for instance, consider
a system where the dispersion relation is suddenly altered from ω ∼ k2 + · · · to ω ∼ k + · · · or vice
versa, by rapidly adjusting the chemical potential. We take some steps in this direction by considering
holographic geometries where the dynamical critical exponent and the hyperscaling violation parameter
are allowed to vary with time and show that such solutions can be supported by matter satisfying the
null energy condition, at least in some simple cases. We leave a more detailed study for future work.

This Chapter is organized as follows. Hyperscaling violating Lifshitz-AdS-Vaidya solutions are intro-
duced in Section 3.1 and parameter regions allowed by the null energy condition determined. In Section
3.2 the holographic entanglement entropy for a strip and for a sphere is analyzed in static backgrounds
and Vaidya-type backgrounds are considered in Section 3.3. In Section 3.4 scaling regions in the time
evolution of the entanglement entropy are studied for differently shaped surfaces. The details of some
of the computations are presented in appendices C along with a brief description of holographic quench
geometries where the hyperscaling violation parameter and the dynamical critical exponent are allowed
to vary with time.

3.1 Backgrounds with Lifshitz and hyperscaling exponents
The starting point of our analysis is the following gravitational action [162]

S = 1
16πGN

ˆ (
R− 1

2(∂φ)2 − V (φ)− 1
4

NF∑
i=1

eλiφF 2
i

)√
−g dd+2x , (3.1)

which describes the interaction between the metric gµν , NF gauge fields and a dilaton φ. The simplest
d + 2 dimensional time independent background including the Lifshitz scaling ζ and the hyperscaling
violation exponent θ is given by equation (1.36) (see also [78, 80, 143])

ds2 = z−2dθ/d(−z2−2ζdt2 + dz2 + dx2
i ) , (3.2)

where z > 0 is the holographic direction and the cartesian coordinates xi parameterize Rd. Hereafter
the metric (3.2) will be referred as hvLif. In (3.2) we have introduced the convenient combination

dθ ≡ d− θ . (3.3)

When θ = 0 and ζ = 1, (3.2) reduces to AdSd+2 in Poincaré coordinates.
In the following, we will consider geometries that are asymptotic to the hyperscaling violating Lifshitz

(hvLif) space-time (3.2). In particular, static black hole solutions with Lifshitz scaling and hyperscaling
violation have been studied in [78, 158, 159]. The black hole metric is

ds2 = z−2dθ/d
(
−z2−2ζF (z)dt2 + dz2

F (z) + dx2
i

)
, (3.4)

where the emblackening factor F (z), which contains the mass M of the black hole, is given by

F (z) = 1−Mzdθ+ζ . (3.5)

41



0 1 2 3 4

0

2

4

6

0 1 2 3 4

0

2

4

6

0 1 2 3 4

0

2

4

6

ζζζ

θ θ θ

d = 2 d = 3 d = 4

Figure 3.1: The grey area is the region of the (ζ, θ) plane defined by (3.7) and (3.8), obtained from the
Null Energy Condition, and also (3.6). The panels show d = 2, 3, 4. The red dots denote AdSd+2 and
the horizontal dashed lines indicate the critical value θ = d− 1. The blue lines denote the upper bound
defined by the condition (3.86).

The position zh of the horizon is defined as F (zh) = 0 and the standard near horizon analysis of (3.4)
provides the temperature of the black hole T = z1−ζ

h |F ′(zh)|/(4π). In order to have F (z) → 1 when
z → 0, we need to require

dθ + ζ > 0 . (3.6)

The Einstein equations are Gµν + gµνΛ = Tµν , where Gµν is the Einstein tensor and Tµν the energy-
momentum tensor of the matter fields, i.e. the dilaton and gauge fields in (3.1). The Null Energy
Condition (NEC) prescribes that TµνNµNν > 0 for any null vector Nµ. On shell, the NEC becomes
GµνN

µNν > 0 and, through an astute choice of Nµ, one finds [78]

dθ(ζ − 1− θ/d) > 0 , (3.7)
(ζ − 1)(dθ + ζ) > 0 . (3.8)

In the critical case θ = d− 1, they reduce to ζ > 2− 1/d. In Fig. 3.1 we show the region identified by
(3.7) and (3.8) in the (ζ, θ) plane.

In order to construct an infalling shell solution, it is convenient to write the static metric (3.4) in
an Eddington-Finkelstein-like coordinate system, by introducing a new time coordinate v through the
relation

dv = dt− dz

z1−ζF (z) , (3.9)

and rewriting (3.4) as

ds2 = z−2dθ/d(−z2(1−ζ)F (z)dv2 − 2z1−ζ dv dz + dx2
i ) . (3.10)

The dynamical background that we are going to consider is of Vaidya type [64, 65] and it is obtained by
promoting the mass M in (3.10) to a time dependent function M(v), namely

ds2 = z−2dθ/d(−z2(1−ζ)F (v, z)dv2 − 2z1−ζ dv dz + dx2
i ) , (3.11)

where
F (v, z) = 1−M(v)zdθ+ζ . (3.12)

The metric (3.11) with the emblackening factor (3.12) is a solution of the equation of motion Gµν = Tµν ,
where the energy-momentum tensor is given by the one of the static case with M replaced by M(v),
except for the component Tvv, which now contains the following additional term

T̃vv = dθ
2 zdθM ′(v) . (3.13)
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Now consider the null vectors Nµ = (Nv, Nz,Nxi) given by

Nµ
I = (0, 1,0) , Nµ

II =
(
− 2zζ−1

F (v, z) , 1,0
)
, Nµ

III =
(
± zζ−1√

F (v, z)
, 0,n1

)
, (3.14)

where n1 is a d − 1 dimensional vector with unit norm. The NEC for the vectors (3.14) leads to the
following inequalities

dθ(ζ − 1− θ/d) > 0 , (3.15)
dθ
[
(ζ − 1− θ/d)F 2 − 2zζFv

]
> 0 , (3.16)

2(ζ − 1)(dθ + ζ)F 2 + [zFzz − (dθ + 3(ζ − 1))Fz]zF − zζdθFv > 0 , (3.17)

where the notation Fz ≡ ∂zF , Fv ≡ ∂vF and Fzz ≡ ∂2
zF has been adopted. When F (v, z) = 1 identically,

(3.16) and (3.17) simplify to (3.7) and (3.8) respectively. Plugging 3.12 into (3.16) and (3.17), we get

dθ
[

(ζ − 1− θ/d)(1−M(v)zdθ+ζ)2 + 2zdθ+2ζM ′(v)
]
> 0 , (3.18)

2(ζ − 1)(dθ + ζ)(1−M(v)zdθ+ζ) + zdθ+2ζdθM
′(v) > 0 . (3.19)

In the special case of θ = 0 and ζ = 1 we recover the condition M ′(v) > 0, as expected. Notice that the
NEC for the AdS-Vaidya backgrounds modeling the formation of an asymptotically AdS charged black
hole also leads to a non trivial constraint [163], similar to the ones in (3.18) and (3.19).
Here we will choose the following profile for M(v)

M(v) = M

2
(
1 + tanh(v/a)

)
, (3.20)

which is always positive and increasing with v. It goes to 0 when v → −∞ and to M when v → +∞.
The parameter a > 0 encodes the rapidity of the transition between the two regimes of M(v) ∼ 0 and
M(v) ∼ M . In the limit a → 0 the mass function becomes a step function M(v) = Mθ(v). This
is the thin shell regime and it applies to many of the calculations presented below. We have checked
numerically that the profiles (3.20) that we employ satisfy the inequalities (3.18) and (3.19) for all v and
z.

3.2 Holographic entanglement entropy for static backgrounds
3.2.1 Strip
Let us briefly review the simple case when the region A in the boundary theory is a thin long strip,
which has two sizes ` � `⊥ [46, 47, 78]. Denoting by x the direction along the short length and by yi
the remaining ones, the domain in the boundary is defined by −`/2 6 x 6 `/2 and 0 6 yi 6 `⊥, for
i = 1, . . . , d − 1. Since ` � `⊥, we can assume translation invariance along the yi directions and this
implies that the minimal surface is completely specified by its profile z = z(x), where z(±`/2) = 0. We
can also assume that z(x) is even. Computing from (3.4) the induced metric on such a surface, the area
functional reads

A[z(x)] = 2`d−1
⊥

ˆ `/2

0

1
zdθ

√
1 + z′2

F (z) dx . (3.21)

Since the integrand does not depend on x explicitly, the corresponding integral of motion is constant
giving a first order equation for the profile

z′ = −
√
F (z)

[
(z∗/z)2dθ − 1

]
. (3.22)

Here we have introduced z(0) ≡ z∗ and we have used that z′(0) = 0 and z′(x) < 0. Plugging (3.22) into
(3.21), it is straightforward to find that the area of the extremal surface is

A = 2`d−1
⊥ zdθ∗

ˆ `/2−η

0
z(x)−2dθdx = 2`d−1

⊥

ˆ z∗

ε

zdθ∗

zdθ
√
F (z)

[
z2dθ
∗ − z2dθ

] dz , (3.23)
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with z(x) a solution of (3.22). A cutoff z > ε > 0 has been introduced to render the integral (3.23) finite,
and a corresponding one along the x direction

z(`/2− η) = ε . (3.24)

The relation between z∗ and ` reads

`

2 =
ˆ z∗

0

dz√
F (z)

[
(z∗/z)2dθ − 1

] . (3.25)

The vacuum case of F (z) = 1 can be solved analytically. Indeed, one can then integrate (3.22), obtaining

x(z) = `

2 −
z∗

1 + dθ

(
z

z∗

)dθ+1

2F1

(
1
2 ,

1
2 + 1

2dθ
; 3

2 + 1
2dθ

; (z/z∗)2dθ
)
, (3.26)

where 2F1 is the hypergeometric function. Imposing x(z∗) = 0 in (3.26) one finds

`

2 =
√
π Γ( 1

2 + 1
2dθ )

Γ( 1
2dθ )

z∗ . (3.27)

The area (3.23) with F (z) = 1 is then [78]

A =


2`d−1
⊥

dθ − 1

[
1

εdθ−1 −
1

`dθ−1

(√
π Γ( 1

2 + 1
2dθ )

Γ( 1
2dθ )

)dθ ]
+O

(
ε1+dθ

)
dθ 6= 1

2`d−1
⊥ log(`/ε) +O

(
ε2
)

dθ = 1

(3.28)

The critical value dθ = 1 is characterized by this divergence, which is logarithmic instead of power-like.

3.2.2 Sphere
If the perimeter between the two regions in the boundary theory is a d− 1 dimensional sphere of radius
R it is convenient to adopt spherical coordinates in the bulk (we denote by ρ the radial coordinate) for
Rd in (3.2) and (3.4), namely dx2

i = dρ2 + ρ2dΩ2
d−1. In this case, the problem reduces to computing

z = z(ρ). The area functional reads

A[z(ρ)] = 2πd/2

Γ(d/2)

ˆ R

0

ρd−1

zdθ

√
1 + z′2

F (z) dρ , (3.29)

where the factor in front of the integral is the volume of the d − 1 dimensional unit sphere. The key
difference compared to the strip (see (3.21)) is that now the integrand of (3.29) depends explicitly on ρ
and one has to solve a second order ODE to find the z(ρ) profile,

z
[
ρFz − 2(d− 1)z′

]
z′2 − 2F

[
ρ z z′′ + (d− 1)z z′ + dθρ z

′2]− 2dθρF 2 = 0 , (3.30)

subject to the boundary conditions z(R) = 0 and z′(0) = 0. For a trivial emblackening factor F (z) = 1
the equation of motion (3.30) simplifies to

ρ z z′′ +
[
dθρ+ (d− 1)z z′

](
1 + z′2

)
= 0 . (3.31)

In the absence of hyperscaling violation (θ = 0) it is well known that z(ρ) =
√
R2 − ρ2 describes an

extremal surface for any dimension d [46]. Since the extremal surface is computed for t = const., the
Lifshitz exponent ζ does not enter in the computation but equation (3.31) does involve the hyperscaling
exponent through the effective dimension dθ. The extremal surface cannot be found in closed form for
general values of dθ 6= 0 but the leading behavior of the extremal surface area, including the UV divergent
part, can be obtained from the small z asymptotics when ρ = R is approached from below. We find it
convenient to rewrite (3.31) in terms of a dimensionless variables z = R z̃(x), ρ = R(1− x),

(1− x)z̃ ¨̃z +
[
dθ(1− x)− (d− 1)z̃ ˙̃z

](
1 + ˙̃z2) = 0 , (3.32)
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where ˙̃z denotes dz̃/dx.
In the appendix §C.1 we construct a sequence of parametric curves {xi(s), z̃i(s)} for i ∈ N such that
the asymptotic one {x∞(s), z̃∞(s)} solves (3.32). These curves are obtained in order to reproduce the
behavior of the solution near the boundary (i.e. small x) in a better way as the index i increases.
Unfortunately, when i is increasing, their analytic expressions become difficult to integrate to get the
corresponding area. Nevertheless, we can identify the following pattern. Given an integer k0 > 0, which
fixes the order in ε that we are going to consider, the procedure described in C.1 leads to the following
expansion for the area (3.29)

A[z(ρ)] = 2πd/2Rd−1

Γ(d/2) εdθ−1

{
k0∑
k=0

ωk(d, dθ)
( ε
R

)2k
+O

(
ε2(k0+1))} , dθ 6= {1, 3, 5, . . . , 2k0 + 1} , (3.33)

where
ωk(d, dθ) ≡

γ2k(d, dθ)∏k
j=0

[
dθ − (2j + 1)

]αk,j , αk,j ∈ N \ {0} . (3.34)

The coefficients γ2k(d, dθ) should be found by explicit integration. For k = 0, we get γ0(d, dθ) = 1/(dθ−1).
The peculiar feature of the values of dθ excluded in (3.33) is the occurrence of a logarithmic divergence,
namely, for 0 6 k̃ 6 k0 we have

A[z(ρ)] = 2πd/2Rd−1

Γ(d/2) ε2k̃


k̃−1∑
k=0

ωk(d, dθ)
( ε
R

)2k
+ β2k̃(d, dθ)

( ε
R

)2k̃
log(ε/R) +O

(
ε2k̃
) , dθ = 2k̃ + 1 .

(3.35)
In C.1.1 the result for i = 2 is discussed and it gives (see C.1.1.1)

A[z(ρ)] =



2πd/2Rd−1

Γ(d/2) εdθ−1

[
1

dθ − 1 −
(d− 1)2(dθ − 2)

2(dθ − 1)2(dθ − 3)
ε2

R2 +O(ε4)
]

dθ 6= 1, 3

− 2πd/2Rd−1

Γ(d/2) log(ε/R)
[

1 + (d− 1)2

4
ε2

R2 log(ε/R) + . . .

]
dθ = 1

2πd/2Rd−1

Γ(d/2) ε2

[
1
2 −

(d− 1)(d− 5)
8

ε2

R2 log(ε/R) + o(ε2)
]

dθ = 3

(3.36)

Notice that the first expression in (3.36) for θ = 0 provides the expansion at this order of the hemisphere
[46].
Comparing the result (3.36) for the spherical region with the one in (3.28), which holds for a strip, it is
straightforward to observe that, while for the sphere logarithmic divergences occur whenever dθ is odd,
for a strip this happens only when dθ = 1. The logarithmic terms lead to an enhancement of the area
for dθ = 1, but only contribute at subleading order for higher odd integer dθ.

3.3 Holographic entanglement entropy in Vaidya backgrounds
3.3.1 Strip
In this section we consider the strip introduced in 3.2.1 as the region in the boundary and compute
holographically its entanglement entropy in the background given by the Vaidya metric (3.11), employing
the prescription of [51]. The problem is more complicated than in the static case considered in 3.2.1
because the profile is now specified by two functions z(x) and v(x) which must satisfy v(−`/2) = v(`/2) =
t and z(−`/2) = z(`/2) = 0, with t the time coordinate in the boundary. Since in our problem v(x) and
z(x) are even, the area functional reads

A[v(x), z(x)] = 2`d−1
⊥

ˆ `/2

0

√
B

zdθ
dx , B ≡ 1− F (v, z)z2(1−ζ)v′2 − 2z1−ζz′v′ , (3.37)

and the boundary conditions for v(x) and z(x) are given by

z′(0) = v′(0) = 0 , v(`/2) = t , z(`/2) = 0 . (3.38)
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Figure 3.2: The profiles z(x) of the extremal surfaces for a strip with ` = 8 for different boundary times:
t = 0 (hvLif regime, red curve), t = 3.6 (intermediate regime, when the shell is crossed, blue curve) and
t = 5 (black hole regime, black curve). The final horizon is zh = 1. These plots have d = 2, θ = 2/3 and
ζ = 1.5. The left panel shows the situation in the thin shell limit (a = 0.01), while in the right panel
a = 0.5.

Since the integrand in (3.37) does not depend explicitly on x, the corresponding integral of motion is
constant, namely zdθ

√
B = const. By recalling that z(0) ≡ z∗, this constancy condition can be written

as (z∗
z

)2dθ
= B . (3.39)

The equations of motion obtained extremizing the functional (3.37) are

∂x
[
z1−ζ(z1−ζFv′ + z′)

]
= z2(1−ζ)Fvv

′2/2 , (3.40)
∂x
[
z1−ζv′

]
= dθB/z + z2(1−ζ)Fzv

′2/2 + (1− ζ)z−ζ(z′ + z1−ζFv′)v′ . (3.41)

In Fig. 3.2 the typical profiles z(x) obtained by solving these equations numerically are depicted. For
t 6 0 the extremal surface is entirely in the hvLif part of the geometry. As time evolves and the black
hole is forming, part of the surface enters into the shell and for large times, when the black hole is formed,
the extremal surface stabilizes to its thermal result. In the special case of θ = 0 and ζ = 1, (3.40) and
(3.41) simplify to

Fvv
′2 = 2

[
Fv′′ + (Fvv′ + Fzz

′)v′ + z′′
]
, (3.42)

2zv′′ = zFzv
′2 + 2d(1− Fv′2 − 2z′v′) . (3.43)

Once a solution of (3.40) and (3.41) satisfying the boundary conditions (3.38) has been found, the surface
area is obtained by plugging the solution into (3.37). By employing (3.39), one finds that the area of the
extremal surface reads

A = 2`d−1
⊥

ˆ `/2

0

zdθ∗
z2dθ

dx . (3.44)

The integral is divergent and we want to consider its finite part. As in the static case, one introduces a
cutoff ε along the holographic direction and a corresponding one η along the x direction, as defined in
(3.24). One way to obtain a finite quantity is to subtract the leading divergence, which, for the strip, is
the only one (see (3.28) for the static case),

dθ 6= 1 A(1)
reg ≡

ˆ `/2−η

0

zdθ∗
z2dθ

dx− 1
(dθ − 1) εdθ−1 , (3.45)

dθ = 1 A(1)
reg ≡

ˆ `/2−η

0

zdθ∗
z2dθ

dx− log(`/ε) .
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Figure 3.3: Strip and a = 0.01 (thin shell). Regularizations (3.45), (3.46) and (3.47) of the area for
d = 1 (dashed red), d = 2 (blue) and d = 3 (green) with θ = d− 1 and ζ = 2− 1/d. Left panels: areas as
functions of `/2 for fixed t = 1.5 (bottom curves) and t = 2.5 (upper curves). Right: area as functions of
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Another way to get a finite result is by subtracting the area of the extremal surface at late time, after
the black hole has formed

A(2)
reg ≡

ˆ `/2−η

0

zdθ∗
z2dθ

dx−
ˆ `/2−η̃

0

z̃dθ∗
z̃2dθ

dx , (3.46)

or by subtracting the area of the extremal surface at early time, when the background is hvLif, namely

A(3)
reg ≡

ˆ `/2−η

0

zdθ∗
z2dθ

dx−
ˆ `/2−η̂

0

ẑdθ∗
ẑ2dθ

dx . (3.47)

The quantities corresponding to the the black hole are tilded, while the ones associated to hvLif are
hatted. In particular, z̃(`/2 − η̃) = ε and ẑ(`/2 − η̂) = ε. In Fig. 3.3 we compare the regularizations
(3.45), (3.46) and (3.47) as functions of ` and of the boundary time t at the critical value θ = d− 1.

3.3.1.1 Thin shell regime

Let us consider the limit a→ 0 in (3.20), which leads to a step function

M(v) = Mθ(v) . (3.48)

The holographic entanglement entropy in this background has been studied analytically for θ = 0, ζ = 1
and d = 1 in [67, 68]. For more general values of θ and ζ the thin shell regime is obtained by solving the
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differential equations (3.40) and (3.41) in the vacuum (hvLif) for v < 0 and in the background of a black
hole of mass M for v > 0. The solutions are then matched across the shell. Thus, the metric is (3.11)
with

F (v, z) =
{

1 v < 0 hvLif ,
F (z) v > 0 black hole , (3.49)

where F (z) is given by (3.5). Recall that the symmetry of the problem allows us to work with 0 6 x 6 `/2.
From Fig. 3.2 and by comparing Fig. 3.3 with Fig. 3.5, one can appreciate the difference between the
thin shell regime and the one where M(v) is not a step function. Denoting by xc the position where the
two solutions match, we have

v(xc) = 0 , z(xc) ≡ zc . (3.50)
Thus, when the extremal surface crosses the shell, the part having 0 6 x < xc is inside the shell (hvLif
geometry) and the part with xc < x 6 `/2 is outside the shell (black hole geometry).
The matching conditions can be obtained in a straightforward way by integrating the differential equa-
tions (3.40) and (3.41) in a small interval which properly includes xc and then sending to zero the size
of the interval. In this procedure, since both v(x) and z(x) are continuous functions with discontinuous
derivatives, only a few terms contribute [164]. In particular, Fv = −Mzdθ+ζδ(v) is the only term on the
r.h.s.’s of (3.40) and (3.41) that provides a non vanishing contribution. Thus, considering (3.41) first, we
find the following matching condition

v′+ = v′− ≡ v′c , at x = xc . (3.51)

Then, integrating across the shell (3.40) and employing (3.51) (we have also used that δ(v) = δ(x −
xc)/|v′c|, where v′c > 0, as discussed below), we find (notice that the term containing v′ on the l.h.s.
provides a non vanishing contribution)

z′+ − z′− = z1−ζ
c v′c

2
(
1− F (zc)

)
, at x = xc . (3.52)

Since Fv vanishes for v 6= 0, the differential equation (3.40) tells us that

z1−ζ (v′z1−ζF + z′
)

= const ≡
{

E− 0 6 x < xc hvLif ,
E+ xc < x 6 `/2 black hole .

(3.53)

Let us consider the hvLif part (v < 0) first, where F = 1. Since v′(0) = 0 and z′(0) = 0, (3.53) tells us
that E− = 0. Thus, (3.53) implies that

v′ = − zζ−1z′ , 0 6 x < xc . (3.54)
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Figure 3.5: Regularized area (3.47) for the strip with a = 0.5. These plots should be compared with
Fig. 3.4, because the parameters d, θ and ζ and the color code are the same.

Plugging this result into (3.39) with F = 1, it reduces to the square of (3.22) with F = 1, as expected.
Taking the limit x → x−c of (3.54), one finds a relation between the constant value v′c defined in (3.51)
and z′−, i.e.

v′c = − zζ−1
c z′− > 0 , (3.55)

where we have used that z′− < 0. Integrating (3.54) from x = 0 to x = xc, we obtain that

zζc = zζ∗ + ζv∗ . (3.56)

Now we can consider the region outside the shell (v > 0), where the geometry is given by the black hole.
From (3.53) with F = F (z) given in (3.5) we have that

v′ = 1
z1−ζF (z)

(
E+

z1−ζ − z
′
)
, xc < x 6 `/2 . (3.57)

Then, plugging this result into (3.39), one gets

z′2 = F (z)
[(

z∗
z

)2dθ
− 1
]

+
E2

+
z2(1−ζ) , xc < x 6 `/2 . (3.58)

We remark that (3.58) becomes (3.22) when E+ = 0. The constant E+ can be related to z′− by taking
the difference between the equations in (3.53) across the shell. By employing (3.51), the result reads

E+ − E− = z1−ζ
c

[
z′+ − z′− + z1−ζ

c v′c
(
F (zc)− 1

)]
. (3.59)

Then, with E− = 0, the matching conditions (3.52) and (3.55) lead to

E+ = z1−ζ
c

2
(
1− F (zc)

)
z′− , (3.60)

where E+ < 0 because of (3.54). Moreover, from (3.39), one finds that

B+ = B− =
(
z∗
zc

)2dθ
, at x = xc . (3.61)

Finally, the size ` can be expressed in terms of the profile function z(x) (we recall that z′ < 0) by
summing the contribution inside the shell (from (3.58) with F (z) = 1) and the one outside the shell
(from (3.58))

`

2 =
ˆ z∗

zc

zdθ
(
z2dθ
∗ − z2dθ

)−1/2
dz +

ˆ zc

0

{
F (z)

[(
z∗
z

)2dθ
− 1
]

+
E2

+
z2(1−ζ)

}−1/2
dz . (3.62)

49



0. 0.2 0.4 0.6 0.8 1. 1.2
0.

0.1

0.2

0.3

0.4

0.5

�0.4 �0.1 0.2 0.5 0.8 1.1 1.4 1.7 2.
0.

0.05

0.1

0.15

0.2

0.25

0.3A(3)
reg A(3)

reg

�/2 t

Figure 3.6: Regularized area (3.47) for the strip in the thin shell regime (a = 0.01.) with θ = d− 1 and
ζ = 2− 1/d for various dimensions d = 1, 2, 3, . . . , 8. The darkest curve within each group has d = 1 and
the brightest one has d = 8. Left panel: the red curves have t = 0.15 and the blue ones have t = 0.7.
Right panel: the red curves have ` = 1 and the blue ones have ` = 2.

Notice that we cannot use (3.58) for the part outside the shell because E+ 6= 0. Similarly, we can find
the boundary time t by considering first (3.38) and (3.50), and then employing (3.57). We find

t =
ˆ t

0
dv =

ˆ `/2

xc

v′dx =
ˆ zc

0

zζ−1

F (z)

[
1 + E+z

ζ−1
{
F (z)

[(
z∗
z

)2dθ
− 1
]

+
E2

+
z2(1−ζ)

}−1/2
]
dz , (3.63)

where in the last step (3.57) and (3.58) have been used (we recall that z′ < 0).
The area of the extremal surface (3.44) is obtained by summing the contributions inside and outside the
shell in a similar manner. The result is

A = 2`d−1
⊥ zdθ∗

( ˆ z∗

zc

z−dθ
(
z2dθ
∗ − z2dθ

)−1/2
dz +

ˆ zc

ε

z−2dθ
{
F (z)

[(
z∗
z

)2dθ
− 1
]

+
E2

+
z2(1−ζ)

}−1/2
dz

)
,

(3.64)
where the cutoff ε must be introduced to regularize the divergent integral, as already discussed. In Fig.
3.6 we show A(3)

reg for various dimensions. It seems that a limiting curve is approached as d increases.
It is straightforward to generalize the above analysis to the case of n dimensional surfaces extended in

the bulk which share the boundary with an n dimensional spatial surface in the boundary, i.e. surfaces
with higher codimension than the extremal surface occurring for the holographic entanglement entropy.
For a strip whose sides have length ` in one direction and `⊥ in the remaining n − 1 ones, the area
functional to be extremized reads

A[v(x), z(x)] = 2`n−1
⊥

ˆ `/2

0

√
B

zndθ/d
dx , (3.65)

where B has been defined in (3.37). This functional reduces to the one in (3.37) for the holographic
entanglement entropy when n = d. The extrema of the functional (3.65) with n = 2 are employed
to study the holographic counterpart of the spacelike Wilson loop, while the n = 1 case describes the
holographic two point function.
The equations of motion of (3.65) are simply given by (3.40) and (3.41) where the dθ in the r.h.s. of
(3.41) is replaced by ndθ/d, while F (v, z) is kept equal to (3.12). Similarly, we can adapt all the formulas
within 3.3.1 to the case n 6= d by replacing dθ by ndθ/d whenever it does not occur through F (v, z) or
F (z), which remain equal to (3.12) and (3.5) respectively.

3.3.2 Sphere
Let us consider a circle of radius R in the boundary of the asymptotically hvLif space-time. As discussed
in 3.2.2 for the static case, it is more convenient to adopt spherical coordinates in the Vaidya metric
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Figure 3.7: Holographic entanglement entropy for the sphere in the thin shell regime with a = 0.01 (see
3.3.2). The parameters d, θ and ζ are the same of Fig. 3.4 (same color coding). Left panel: fixed t = 1.5
(lower curve) and t = 3 (upper curve). Right panel: fixed R = 2 and R = 4 (larger spheres thermalize
later).

(3.11) for Rd. The area functional is given by

A[v(ρ), z(ρ)] = 2πd/2

Γ(d/2)

ˆ R

0

ρd−1

zdθ

√
B dρ , B ≡ 1− F (v, z)z2(1−ζ)v′2 − 2z1−ζz′v′ , (3.66)

where now the prime denotes the derivative w.r.t. ρ. An important difference compared to the strip, as
already emphasized for the static case, is that the Lagrangian of (3.66) depends explicitly on ρ. This
implies that we cannot find an integral of motion which allows to get a first order differential equation
to describe the extremal surface. Thus, we have to deal with the equations of motion, which read

zdθ
√
B

ρd−1 ∂ρ

[
ρd−1z1−ζ−dθ
√
B

(v′z1−ζF + z′)
]

= z2(1−ζ)

2 Fvv
′2 , (3.67)

zdθ
√
B

ρd−1 ∂ρ

[
ρd−1z2(1−ζ)−dθ

√
B

v′
]

= dθ
z
B + z2(1−ζ)

2 Fzv
′2 + 1− ζ

zζ
(z′ + z1−ζFv′)v′ . (3.68)

These equations have to be supplemented by the following boundary conditions

v(R) = t , v′(0) = 0 , and z(R) = 0 , z′(0) = 0 . (3.69)

We are again mainly interested in the limiting case of a thin shell (3.48).

3.3.2.1 Thin shell regime

Considering the thin shell regime, defined by (3.48), we can adopt to the sphere some of the observations
made in 3.3.1.1 for the strip. Again, there is a value ρc such that for 0 6 ρ < ρc the extremal surface is
inside the shell (hvLif geometry), while for ρc < ρ 6 R it is outside the shell (black hole geometry).
The matching conditions can be found by integrating (3.67) and (3.68) across the shell, as was done in
3.3.1.1 for the strip. Introducing

v̌′ ≡ v′√
B
, ž′ ≡ z′√

B
, (3.70)

we can use (3.68), whose r.h.s. does not contain Fv, to obtain

v̌′+ = v̌′− , at ρ = ρc , (3.71)

while from (3.67) and employing (3.71) as well, we get

ž′+ − ž′− = z1−ζ
c v̌′c

2
(
1− F (zc)

)
, at x = xc . (3.72)
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Considering (3.67), since Fv = 0 for v 6= 0, we have

ρd−1z1−ζ−dθ
√
B

(v′z1−ζF + z′) = const ≡
{

E− 0 6 ρ < ρc hvLif ,
E+ ρc < ρ 6 R black hole ,

(3.73)

where E− = 0 because v′(0) = 0 and z′(0) = 0. By using (3.70), one can write

1/B+ = 1 + v̌′+z
(1−ζ)
c

[
z(1−ζ)
c v̌′+F (zc) + 2ž′+

]
, (3.74)

1/B− = 1 + v̌′−z
(1−ζ)
c (z(1−ζ)

c v̌′− + 2ž′−) . (3.75)

Taking the difference of these expressions and using (3.71) and (3.72), one finds

B+ = B− . (3.76)

By using (3.71), (3.72) and (3.73), we get

E+ = ρd−1
c z

2(1−ζ)−dθ
c

2
√
B+

(F (zc)− 1)v′c . (3.77)

Then, from (3.73) in the black hole region, one obtains

v′ = zζ−1

F (z)

(
AE+

√
1 + z′2/F (z)√

1 +A2E2/F (z)
− z′

)
, A ≡ zdθ+ζ−1

ρd−1 . (3.78)

Plugging this expression into (3.68) leads to

2dθρF 2 + z
[
ρFz − 2(d− 1)z′

]
z′2 − 2F

[
ρ z z′′ + (d− 1)z z′ + dθρ z

′2] (3.79)
+E2

+A
2ρ
[
z(Fz + 2z′′)− 2(ζ − 1)(F + z′2)

]
= 0 ,

which reduces to (3.30) when E+ = 0, as expected. The boundary time t is obtained by integrating
(3.78) outside the shell ρc 6 ρ < R (see e.g. (3.63) for the strip)

t =
ˆ R

ρc

zζ−1

F (z)

AE+
√

1 + z′2/F (z)√
1 +A2E2

+/F (z)
− z′

 dρ . (3.80)

Notice that we cannot provide a similar expression for R, like we did for the strip in (3.62). Finally, the
area of the extremal surface at time t is the sum of two contributions, one inside (finite) and one outside
(infinite) the shell, and is given by

A = 2πd/2

Γ(d/2)

ˆ ρc

0

ρd−1√1 + z′2

zdθ
dρ+

ˆ R

ρc

dρ
ρd−1

√
1 + z′2/F (z)

zdθ
√

1 +A2E2
+/F (z)

 . (3.81)

Numerical results for the regularized extremal area A(3)
reg for a sphere (defined via an appropriate adap-

tation of (3.47)) in the thin shell regime are shown in Fig. 3.7.

3.4 Regimes in the growth of the holographic entanglement en-
tropy

In this section we extend the analysis performed in [140, 141] to θ 6= 0 and ζ 6= 1. For t < 0 we have
A(3)

reg = 0 because the background is hvLif. When t > 0, it is possible to identify three regimes: an initial
one, when the growth is characterized by a power law, an intermediate regime where the growth is linear
and a final regime, when A(3)

reg (t) saturates to the thermal value. We report our results for the different
regimes in the main text while the details of the computation are described in Appendix C.2.
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Figure 3.8: Initial growth of the holographic entanglement entropy for d = 2 (see 3.4.1). The points
come from the numerical solution of (3.40)-(3.41) for the strip (left) and (3.67)-(3.68) for the sphere
(right) in the thin shell regime. The black dashed lines are obtained through the formula (3.84), which
is independent of θ and of the shape of the region in the boundary. Left panel: strip with ` = 4. Right
panel: sphere with R = 4.

3.4.1 Initial growth
The initial regime is characterized by times that are short compared to the horizon scale

0 < t� zh . (3.82)

In Appendix C.2.1, following [141], we expand A(3)
reg around t = 0 and consider the first non trivial order

for an n dimensional spatial region whose boundary Σ has a generic shape. Given the metric (3.11) with
(3.49), the final result for this regime is (see (C.44))

A(3)
reg (t) = MAΣ(ζt)[dθ(1−n/d)+ζ+1]/ζ

2[dθ(1− n/d) + ζ + 1] , (3.83)

where AΣ is the area of Σ. Notice that for the holographic entanglement entropy n = d, for the
holographic counterpart of the Wilson loop n = 2 and for the holographic two point function n = 1.
Explicitly, for the holographic entanglement entropy, (3.83) becomes

A(3)
reg (t) = MAΣ ζ

1+1/ζ

2(ζ + 1) t1+1/ζ , (3.84)

which is independent of d and θ. This generalizes the result of [141] (see [112] for d = 1). In Fig. 3.8 we
show some numerical checks of (3.84) both for the strip and for the sphere.

3.4.2 Linear growth
When z∗ is large enough, the holographic entanglement entropy displays a linear growth in time. The
computational details for the strip are explained in Appendix C.2.2. The result for (3.49) is that, in the
regime given by

zh � t� ` , (3.85)
and if the following condition is satisfied

dθ > 2− ζ , (3.86)
we find a linear growth in time for the holographic entanglement entropy, namely

A(3)
reg (t) ≡ 2`d−1

⊥ vlinear t . (3.87)

The method of [141] for the thin shell regime, extended to θ 6= 0 and ζ 6= 1, tells us that

A(3)
reg (t) = 2`d−1

⊥ A(3)
reg (t) , A(3)

reg (t) =
√
−F (zm)
zdθ+ζ−1
m

t ≡ vE

zdθ+ζ−1
h

t , (3.88)
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We can investigate one of the points more carefully and plot the actual data points for one of the
parameter pairs. Let us choose θ = 1 and ζ = 2 and plot two of the data sets.

5
10

15x

0
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10

t

0

5

10

15

S

FIG. 7: Two sets of data points in the case θ = 1 and ζ = 2

We can flatten this plot to see the time development more clearly.
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FIG. 8: The two sets of data points in the case θ = 1 and ζ = 2 flattened. The slope seems to be rather independent
of x, as predicted by theory.

14

Even more illuminating is the S/t-ratio as a function of time.
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FIG. 9: The S/t ratio of data points in the plot 8 as a function of t. Pink line is the analytic prediction for the
linear regime. The data points appoach the predicted value as the initial nonlinear offset becomes more and more
negligible.

2A(3)
reg

t

t

2A(3)
reg /t

Figure 3.9: Typical example of linear growth for the holographic entanglement entropy in the thin shell
regime. Here d = 2, zh = 1, θ = 1 and ζ = 2 for two large strips: ` ∼ 16 (green squares) and ` ∼ 20
(blue squares). In the bottom panel, the dashed line is obtained through (3.88) and (3.89).

where, for F (z) given by (3.5), vE reads

vE = (η − 1)
η−1

2

η
η
2

, η = 2(dθ + ζ − 1)
dθ + ζ

. (3.89)

It can be easily seen that vE = 1 when η = 1 and vE → 0 as η → +∞ monotonically. Notice that the
linear regime depends only on the combination dθ + ζ. In Fig. 3.9, where the points are computed using
the numerical solutions of (3.40) and (3.41), we see a typical linear behavior in time for two strips with
large `. The agreement between the slope of the numerical data and the value computed from (3.89) is
quite good. In Fig. 3.10 we compare the slopes of the numerical curves with the values obtained from
(3.89) for other values of θ and ζ. We consider the linear growth regime for more generic backgrounds
in Appendix C.3 In order to get a better understanding of the origin of the ζ dependence in (3.88).

The functional form of the velocity in (3.89) suggests that η < 1 corresponds to qualitatively different
behavior than the η > 1 and our calculations are not easily extended to cover this case. In particular,
we are not able to determine whether there is linear growth in the holographic entanglement entropy for
η < 1. We note that when combined with the null energy condition (as displayed in Fig. 3.1), this case
corresponds to dθ < 0 which is problematic for several reasons. This includes finiteness of SA in the UV,
negative specific heat for black branes, and lack of a decoupling limit in string theory realizations of the
hvLif metric [78]. Specifically, we run into problems when trying to extend our calculations to η < 1,
both in implementing the methods of [140, 141] as described in C.2.2 and in setting up initial conditions
for the numerical shooting method in C.2.4.
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Figure 3.11: Saturation time as a function of the transverse length scale ` for geodesic correlators. The
dashed black line is a reference line with slope equal to 1, while the colored ones are obtained through
(3.92) with n = 1, ζ = 2 and the corresponding values of θ indicated in the legend. The agreement
improves for large `.

3.4.3 Saturation
We define the saturation time ts as the boundary time such that, for t > ts, the extremal surface probes
only the black hole part of the geometry. It is possible to estimate ts as a function of z∗ for sufficiently
large regions with generic shapes. The relevant computations for this regime are explained in Appendix
C.2.3. To leading order, ts is given by

ts = −
zζ−1
h

F ′h
log(zh − z∗) , (3.90)

where F ′h ≡ −∂zF (z)|z=zh . Since the relation between z∗ and the characteristic length of the boundary
region depends on its shape, we have to consider the strip and the sphere separately. For a strip, if
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Figure 3.12: Saturation regime for the holographic entanglement entropy in the thin shell limit (a =
10−4) for a spherical region of radius R in the boundary. In this plot θ = 0 and ζ = 1, which is the
situation considered in [140, 141]. The continuos black curves are obtained through (3.95) with the
corresponding values of d. The inset shows the entire sets of data describing the complete evolution of
the four cases considered (the plots are shown in the same positions of the corresponding points in the
legend). The gray regions have ∆t = 0.5 and show the parts of the curves which have been reported in
the main plot.

∂tAreg(t) is continuous at t = ts, we find the following linear relation

ts = zζ−1
h

√
dθ

2zhF ′h
`+ . . . , (3.91)

where the dots denote subleading orders at large `. Notice that (3.91) can be generalized to n dimensional
spatial surfaces in the boundary according to the observation made in the end of 3.3.1.1, namely dθ should
be replaced by ndθ/d while F (z) kept equal to (3.5). This gives

ts = zζ−1
h

√
ndθ

2dzhF ′h
`+ . . . . (3.92)

It can also be shown that, whenever ∂tAreg(t) is continuous at saturation, we have

A(2)
reg (t) ∝ (t− ts)2 + o((t− ts)2) , (3.93)

for a strip for any values of ζ and θ (see Appendix C.2.3.3).
The saturation time has also been evaluated numerically for the geodesic correlator, with the following
procedure from [162]. The action for the geodesics has solutions with turning points either inside or
outside the horizon. We first choose turning points z∗ inside the horizon, generate the corresponding
geodesic and find the coordinates of the endpoints at the boundary and the length of the geodesic. The
results are regulated by subtracting the vacuum value. For sufficiently large `, at early times the bulk
geodesics will all have turning points inside the horizon, and also pass through the infalling shell extending
into the part of the space-time with vacuum geometry. In this case the corresponding observable will
not be thermal. At later times the turning point will be outside the horizon and the observable takes a
thermal value. The conversion between these two types of behavior is sharp and defines the saturation
time. Following [162], the saturation times can be calculated by fitting surfaces to the data of the above
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Figure 3.13: Saturation regime for the holographic entanglement entropy in the thin shell limit (a =
10−4) for a spherical region of radius R in the boundary. Here (θ, ζ) = (0, 2) (top panel) and (θ, ζ) =
(d − 1, 2 − 1/d) (bottom panel). The plots are constructed as in Fig. 3.12. The agreement with the
continuos black curves from (3.95) indicates that the saturation regime is independent of (θ, ζ).

solution. The intersection of the surfaces then defines the curve for the saturation time as a function of
the transverse length scale. In Fig. 3.11 the numerical results for the saturation time of the geodesics
are compared with the corresponding results from (3.92). Notice that the agreement improves for large
`, as expected.
When the boundary region is a sphere and in the regime of large R, the transition to the saturated value
is always smooth. In Appendix C.2.3.2, we show that

ts = zζ−1
h

√
2dθ
zhF ′h

R− zζ−1
h

(d− 1)
F (1)(zh)

logR+ . . . . (3.94)
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Moreover, by extending the analysis of [141] to backgrounds with non trivial ζ and θ, in C.2.3.4 we find
that

A(2)
reg ∝

{
−(ts − t)2 log(ts − t) d = 2

(ts − t)1+d/2 d > 2
(3.95)

telling us that the saturation regime is independent of ζ and θ. In Figs. 3.12 and 3.13 we show the
saturation regime for the holographic entanglement entropy in the thin shell limit (a = 10−4) for the
two cases of R = 2 and R = 4 with the dimensionality given by either d = 2 or d = 3. The agreement
between the numerical data and the expression (3.95) is quite good.
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Chapter 4

Singular Surfaces in hvLif

The central charge of a two-dimensional CFT is an important quantity. It is ubiquitous in many ex-
pressions such as the central extension of Virasoro algebra, the two point function of energy-momentum
tensor, in the Weyl anomaly and is the coefficient of the logarithmically divergent term in the entangle-
ment entropy (as we saw in (1.17)). The number - because it is dimensionless - c may be thought of as
a measure of the number of degrees of freedom of the theory, and the c-theorem shows explicitly that
along any renormalization group flow connecting two fixed points, the central charge decreases along the
flow, indicating that IR fixed points are characterized by fewer degrees of freedom.

In higher dimensional conformal field theories the situation is completely different. First of all the
conformal group in higher dimensions does not have a central extension and thus it is finite dimensional,
namely being SO(d + 1, 2). Moreover the parameter which appears in the two point function of the
energy-momentum tensor is not generally related to the one multiplying the Euler density in the Weyl
anomaly in even dimensional conformal field theories, nor is directly related to the cut-off independent
terms of the entanglement entropy computed for a smooth entangling region.

Indeed if one computes entanglement entropy for a given smooth entangling region in a d + 1-
dimensional conformal field theory, one finds that the divergence structure is given by (1.19), which
can be rewritten in a compact way as

SE =
[ d2 ]−1∑
i=0

A2i

d− 2i− 1
1

εd−2i−1 + δ2[ d2 ]+1,d A2[ d2 ] log H
ε

+ finite terms, (4.1)

where ε is a UV cut-off, Ai’s are some constant parameters (in particular A0 is proportional to the area,
see (1.18)) and [x] denotes the integer part of x1. H is a typical scale in the model which could be the
size of entangling region. For an even dimensional field theory (odd d in our notation) the coefficient of
the logarithmic term, A2[ d2 ], is a universal constant in the sense that it is independent of the UV cut-off:
in other words it is fixed by the intrinsic properties of the theory. Two-dimensional CFTs fall in this case
since the central charge is indeed a universal quantity.

In general for an even dimensional conformal field theory it can be shown that the coefficient of the
universal logarithmic term is given in terms of the Weyl anomaly (see for example [24, 39]). In particular,
when the entangling region is a sphere the coefficient is exactly the same as the one multiplying the Euler
density. For odd dimensional space-times (even d) one still has a universal constant term which might
provide a generalization of the c-theorem for odd dimensional conformal field theories [34, 165].

Having said this, it is natural to pose the question whether one could find further logarithmic di-
vergences in the expression of the entanglement entropy whose coefficients, being universal in the sense
specified above, could reflect certain intrinsic properties of the theory under consideration. Moreover, if
there is such a universal term, it would be interesting to understand if any relation between it and other
charges of the theory is present. Indeed these questions, for some particular cases, have been addressed in
the literature (see for example [59, 119, 120]). In particular, it was shown that there is also a logarithmic
term in three dimensions for sets of entangling regions with non-smooth boundary. More precisely, for

1By integer part here and in the following we mean the floor function, i.e. the decimal digits are simply discarded.
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an entangling region with a cusp in three dimensions one has [59, 119, 120]

S = S1
L

ε
+ a(ϕ) log ε+ S0 (4.2)

where the cusp is specified by an angle defined such that ϕ = π/2 corresponds to a smooth line. Here
L is the length of the boundary of the entangling region and S1 is a constant which depends on the UV
cut-off, while a(ϕ) and S0 are universal parameters.

More recently based on early results [59, 119, 120] it was shown that “the ratio a(ϕ)
CT

, where CT is
the central charge in the stress-energy tensor correlator, is an almost universal quantity” [166, 167](see
also [168]). Indeed it was conjectured in those works that in a generic three-dimensional conformal field
theory there is a universal ratio [166]

σ

CT
= π2

24 , (4.3)

where σ is defined through the asymptotic behaviour of a(ϕ), i.e. a(ϕ→ π/2) ≈ σ (ϕ− π/2)2.
The aim of the present Chapter is to extend the above consideration to higher dimensional field

theories2. Nonetheless, we will consider cases where the dual field theory does not even have conformal
symmetry. More precisely here we shall explore different logarithmic divergences for the entanglement
entropy of strongly coupled field theories whose gravitational dual are provided by geometries with a
hyperscaling violating factor[143, 145]. The corresponding geometry in d+ 2 dimensions is given by (see
Appendix D.1)

ds2 = r−2 θd

(
−r2zdt2 + r2

d∑
i=1

dx2
i + dr2

r2

)
, (4.4)

where the constants z and θ are dynamical and hyperscaling violation exponents, respectively. This
is the most general geometry which is spatially homogeneous and covariant under the following scale
transformations

t→ λzt, r → λ−1r, xi → λxi, dsd+2 → λ
θ
d dsd+2. (4.5)

Note that with a non-zero θ, the line element is not invariant under rescalings which in the context of
AdS/CFT correspondence indicates violations of hyperscaling in the dual field theory. More precisely,
while in (d + 1)-dimensional theories without hyperscaling violating exponent the entropy scales as T d
with temperature, in the present case, where the metric has a non-zero θ, the entropy scales as T (d−θ)/z

[80, 143].
Holographic entanglement entropy [46, 47] for hyperscaling violating geometries has been studied in

e.g. [78, 79, 169]. An interesting feature of metric (4.4) is that for the special value of the hyperscaling
violating exponent θ = d− 1, the holographic entanglement entropy shows a logarithmic violation of the
area law[79, 80], indicating that the background (4.4) could provide a gravitational dual for a theory
with an O(N2) Fermi surface, where N is the number of degrees of freedom.

We will study holographic entanglement entropy in the background (4.4) for an entangling region with
the form of cn ×Rd−n−2 where cn is an n-dimensional cone. We will see that holographic computations
indicate the presence of new divergences which could include both log and log2 terms. Such terms could
provide a new universal charge for the model. Unlike the Weyl anomaly, this charge can be defined in
both even and odd dimensional theories. We also note that there is another quantity, defined in arbitrary
dimensions, which is the coefficient entering in the expression of stress-energy tensor two-point function.
Following the ideas in [166], we investigate whether there is a relation between these two charges. We
further show that there is a relation between them that remains unchanged even when we add corrections
due to the presence of (certain) higher curvature terms. Therefore it is reasonable to conjecture that
the relation between these two charges is an intrinsic property of the underling theory. It is worth
mentioning that although we will mainly consider a theory with hyperscaling violation, when it comes
to the comparison of charges we will restrict ourselves to θ = 0, though making a comment on generic θ.

The rest of the Chapter is organized as follows. In the next Section we will study entanglement
entropy of an entangling region consisting of an n-dimensional cone. In Section 3 we will compare the

2 Holographic entanglement entropy for certain singular surfaces in various dimensions has been studied in [120] where
it was shown that some specific non-smooth entangling regions exhibit new divergences that include logarithmic ones (see
Table1 there).
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results with that of smooth entangling region where we will see that the corresponding entanglement
entropy for the singular surfaces exhibit new divergent terms which include certain logarithmic terms.
In Section 4, from the coefficient of logarithmic divergent terms, we will introduce a new charge for the
theory which could be compared with other central charges in the model. The last section is devoted to
conclusions.

4.1 Entanglement entropy for a higher dimensional cone
In this section we shall study holographic entanglement entropy on a singular region consisting of an
n-dimensional cone cn. To proceed it is convenient to use the following parametrization for the metric
in d+ 2 dimensions

ds2 = L2

r
2 θd
F

−r2(1−z)dt2 + dr2 + dρ2 + ρ2(dϕ2 + sin2ϕ dΩ2
n) + d~x2

d−n−2

r2(1− θd )
. (4.6)

Here L is the radius of curvature of the space-time and rF is a dynamical scale. Indeed the above metric
could provide a gravitational dual for a strongly coupled field theory with hyperscaling violation below
the dynamical scale rF [78].

The entangling region, which we choose to be cn × Rd−n−2, i.e. an n-cone extended in d − n − 2
transverse dimensions, may be parametrized in the following way

t = fixed 0 ≤ ϕ ≤ Ω . (4.7)

When n = 0 the entangling region, which we call a crease, will be delimited by −Ω ≤ ϕ ≤ Ω.
Following [46, 47], in order to compute holographic entanglement entropy one needs to minimize the

area of a codimension-two hypersurface in the bulk geometry (4.6) whose boundary coincides with the
boundary of the entangling region. Given the symmetry of both the background metric and of the shape
of the entangling region, we can safely assume that the corresponding codimension-two hypersurface can
be described as a function r(ρ, ϕ) and therefore the induced metric on the hypersurface is

ds2
ind = L2

r
2 θd
F

(1 + r′2)dρ2 + (ρ2 + ṙ2)dϕ2 + 2r′ṙdρdϕ+ ρ2 sin2 ϕ dΩ2
n + d~x2

d−n−2

r2(1− θd )
. (4.8)

where r′ = ∂ρr and ṙ = ∂ϕr. By computing the volume element associated to this induced metric we are
able to compute the area of the surface, and thus the holographic entanglement entropy, as follows

A = εn
ΩnVd−2−nL

d

rθF

ˆ
dρ dϕ

ρn sinnϕ
rd−θ

√
ρ2(1 + r′2) + ṙ2, (4.9)

where Vd−n−2 is the regularized volume of Rd−n−2 space and Ωn is the volume of the n−sphere, Sn. We
introduced εn = 1 + δn0 to make sure that for n = 0 there is a factor of 2, as for n = 0 the integral over
ϕ still span from 0 to Ω.

Treating the above area functional as an action for a two-dimensional dynamical system, we just
need to solve the equations of motion coming from the variation of the action to find the profile r(ρ, ϕ).
Note, however, that since the entangling region is invariant under rescaling of coordinates, dimensional
analysis allows to further constrain the solution to take the form

r(ρ, ϕ) = ρ h(ϕ) (4.10)

so that h(Ω) = 0 and, given radial symmetry of the background and of the entangling region, h′(0) = 0.
To find the area one should then compute the on-shell integral (4.9). However, given that the integral
is UV-divergent, we have to restrict the integration over the portion of surface r ≥ ε, and eventually
perform the limit ε → 0 only after a regularization. In this regard, the domain Σε over which the
integration has to be carried out becomes

Σε =
{
ρ ∈ [ε/h0, H] and ϕ ∈ [0, h−1(ε/ρ)]

}
(4.11)
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where h0 ≡ h(0) and H � ε is an arbitrarily big cut-off for the length of the sides of the singular surfaces.
Moreover from the positivity of r it follows h−1(ερ) < Ω.

To solve the equation of motion derived from the action (4.9) it is more convenient to consider ϕ as
a function of h, i.e. ϕ = ϕ(h). In this notation, setting r = ρh, the area (4.9) reads

A = εn
ΩnVd−n−2L

d

rθF

ˆ H

ε/h0

dρ

ρdθ−n−1

ˆ h0

ε/ρ

dh
sinnϕ
hdθ

√
1 + (1 + h2) ϕ′2, (4.12)

where dθ ≡ d− θ. The equation of motion for ϕ(h) is then

nh

(
ϕ′2 + 1

1 + h2

)
cotϕ+ϕ′

[ ((
h2 + 1

)
dθ − h2)ϕ′2 + dθ −

2h2

(h2 + 1)

]
−hϕ′′=0, (4.13)

For n = 0 this equation, and the expression for the area (4.9), simplify significantly, and become equiva-
lent to the equation and area functional first studied e.g. in [59]. Indeed in this case the corresponding
singular surface is a pure crease k × Rd−2.

Since (4.13) is invariant under h→ −h we have that ϕ(h) is an even function. Therefore, if we want
to understand the behaviour of the solution near the boundary, we can Taylor expand ϕ(h) as follows

ϕ(h) =
+∞∑
i=0

ϕ2i h
2i, (4.14)

so that, by substituting it in (4.13), the solution can be found order by order by fixing the coefficients
ϕ2i. Indeed for the first three orders one finds(

2(dθ − 1)ϕ2 + n cot Ω
)
h (4.15)

+
[
8ϕ3

2dθ + n cot Ω
(
4ϕ2

2 − ϕ2 cot Ω− 1
)
− ϕ2(n+ 4) + 4ϕ4(dθ − 3)

]
h3

+
[
− n

(
4ϕ3

2 − ϕ2 + ϕ4
)

cot2 Ω + ϕ3
2(8dθ − 4n− 8) + 48dθϕ2

2ϕ4 + n
(
ϕ2

2 + 16ϕ2ϕ4 + 1
)

cot Ω

+nϕ2
2 cot3 Ω + (n+ 4)ϕ2 − (n+ 8)ϕ4 + 6(dθ − 5)ϕ6

]
h5 + · · · = 0.

It is clear from this expression that for dθ = 2k + 1 with k = 0, 1, · · · , the coefficient ϕ2k+2 cannot be
fixed by this Taylor series. In fact when dθ is an odd number one has to modify the expansion by allowing
for a non-analytic logarithmic term, as in [120]. More precisely for generic dθ one has

ϕ(h) =
[ dθ2 ]−1∑
i=0

ϕ2i h
2i + ϕ2[ dθ2 ]h

2[ dθ2 ]
(
c+ 1

2δ2[ dθ2 ]+1,dθ
log h2

)
+O(h2[ dθ2 ]+2), (4.16)

where we denote with [y] the integer part of y. With this Taylor expansion the equation of motion can
be solved up to order O(h2[ dθ2 ]) which is enough to fix all ϕ2i for i = 1, · · · , [ dθ2 ]. Note the constant c in
the above expansion remains undetermined. The explicit expression for the coefficients ϕ2i for the few
first terms is presented in the Appendix D.2.

Since the solution is regular at the boundary, we can expand in the same manner the integrand of
the area functional (4.12) around h = 0

sinnϕ
hdθ

√
1 + (1 + h2)ϕ′2 =

[ dθ2 ]−1∑
i=0

a2i

hdθ−2i +
a2[ dθ2 ]

h
δ2[ dθ2 ]+1,dθ

+ finite terms, (4.17)

where the coefficients a2i can be expressed in terms of ϕ2i. The explicit expression of the coefficients a2i
for few first terms are presented in Appendix D.2.
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To regularize the area functional one may add and subtract the singular terms to make the integration
over h finite. Denoting the regular part of the integrand by Areg the equation (4.12) reads

A = εn
ΩnVd−n−2L

d

rθF

ˆ H

ε/h0

dρ

ρdθ−n−1

ˆ h0

0
dh Areg +

ˆ h0

ε/ρ

dh

[ dθ2 ]−1∑
i=0

a2i

hdθ−2i +
a2[ dθ2 ]

h
δ2[ dθ2 ]+1,dθ


 ,
(4.18)

where

Areg = sinnϕ
hdθ

√
1 + (1 + h2)ϕ′2 −

[ dθ2 ]−1∑
i=0

a2i

hdθ−2i +
a2[ dθ2 ]

h
δ2[ dθ2 ]+1,dθ

 . (4.19)

It is then straightforward to perform the integration over h for the last term. Doing so, one arrives at

A = εn
ΩnVd−n−2L

d

rθF
A0

ˆ H

ε/h0

dρ

ρdθ−n−1 + εn
ΩnVd−n−2L

d

rθF

ˆ H

ε/h0

dρA1(ρ), (4.20)

where

A0 =
[ dθ2 ]−1∑
i=0

−a2i

(dθ − 2i− 1)hdθ−2i−1
0

+ a2[ dθ2 ]δ2[ dθ2 ]+1,dθ
log h0 +

ˆ h0

0
dh Areg ,

A1(ρ) =
[ dθ2 ]−1∑
i=0

a2i

(dθ − 2i− 1)
ρn−2i

εdθ−2i−1 + a2[ dθ2 ]δ2[ dθ2 ]+1,dθ

log ρ
ε

ρdθ−n−1 . (4.21)

In order to evaluate the last integral in the equation (4.20) special care is needed. Indeed if n is an odd
number then one may get a logarithmically divergent term from integration over ρ when i = [n2 ] + 1,
which may happen only if [n2 ] ≤ [ dθ2 ] − 2, which can happen only for dθ ≥ 4. Therefore it is useful to
rewrite A1(ρ) as follows

A1(ρ) =
[ dθ2 ]−1 ′∑
i=0

a2i

(dθ − 2i− 1)
ρn−2i

εdθ−2i−1 + δ2[n2 ]+1,n
a2[n2 ]+2 ε

3−dθ+2[n2 ]

(dθ − 2[n2 ]− 3)ρ + δ2[ dθ2 ]+1,dθ

a2[ dθ2 ] log ρ
ε

ρdθ−n−1 , (4.22)

where the prime in the summation indicates that when n is an odd number the term at position i = [n2 ]+1
should be excluded from the sum. With this notation and for dθ − n 6= 2 one finds

ˆ H

ε/h0

dρ A1(ρ) =
[ dθ2 ]−1 ′∑
i=0

a2i

(n− 2i+ 1)(dθ − 2i− 1)

(
Hn−2i+1

εdθ−2i−1 −
h2i−n−1

0
εdθ−n−2

)
(4.23)

−
a2[ dθ2 ]δ2[ dθ2 ]+1,dθ

(dθ − n− 2)2

(
1 + (dθ − n− 2) log

(
H
ε

)
Hdθ−n−2 − 1− (dθ − n− 2) log h0

(ε/h0)dθ−n−2

)

+δ2[n2 ]+1,n
a2[n2 ]+2

(dθ − 2[n2 ]− 3)
log Hh0

ε

εdθ−2[n2 ]−3 .

Moreover from the first term in (4.20) and for dθ − n 6= 2 one gets

ˆ H

ε/h0

dρ

ρdθ−n−1 = 1
dθ − n− 2

(
hdθ−n−2

0
εdθ−n−2 −

1
Hdθ−n−2

)
. (4.24)

Altogether the divergent terms of the holographic entanglement entropy for dθ 6= n+ 2 are obtained

S = εn
ΩnVd−n−2L

d

4GrθF

[[ dθ2 ]−1 ′∑
i=0

a2i

(n− 2i+ 1)(dθ − 2i− 1)

(
Hn−2i+1

εdθ−2i−1 −
h2i−n−1

0
εdθ−n−2

)
+
δ2[n2 ]+1,na2[n2 ]+2

(dθ − 2[n2 ]− 3)
log Hh0

ε

εdθ−2[n2 ]−3
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+ A0

dθ − n− 2
hdθ−n−2

0
εdθ−n−2 −

a2[ dθ2 ]δ2[ dθ2 ]+1,dθ

dθ − n− 2

(
log
(
H
ε

)
Hdθ−n−2 −

1− (dθ − n− 2) log h0

(dθ − n− 2)(ε/h0)dθ−n−2

)]
+finite terms. (4.25)

From this general expression we observe that the holographic entanglement entropy for a singular sur-
face shaped as cn × Rd−n−2 contains many divergent terms including, when dθ is an odd number3, a
logarithmically divergent term whose coefficient is universal, in the sense that it is ε independent. This
is the same behaviour for a generic entangling region where in even dimensional CFTs the entanglement
entropy contains always a logarithmically divergent term.

On the other hand when dθ = n + 2 the holographic entanglement entropy gets new logarithmic
divergences. Indeed in this case the last two terms in (4.25) get modified, leading to

S = εn
ΩnVd−n−2L

d

4GrθF

[[ dθ2 ]−1 ′∑
i=0

a2i

(n− 2i+ 1)(dθ − 2i− 1)

(
Hn−2i+1

εdθ−2i−1 −
h2i−n−1

0
εdθ−n−2

)
+
δ2[n2 ]+1,na2[n2 ]+2

(dθ − 2[n2 ]− 3)
log Hh0

ε

εdθ−2[n2 ]−3

+A0 log Hh0

ε
+
a2[ dθ2 ]

2 δ2[ dθ2 ]+1,dθ
log2

(
H

ε

)]
+finite terms. (4.26)

It is easy to see that for θ = 0 these results reduce to that in [120]. In particular for θ = 0 and odd
d (even dimension in the notation of [120]) where d = n + 2 one finds a new log2H/ε divergent term.
Comparing with the table 1 in [120] this divergent term appears in background space-times R4 and R6

with cones c1 and c3 respectively. For both cases we have d = n+ 2.
It is, however, interesting to note that in the present case the condition to get squared logarithmic

terms is dθ = n + 2 (for dθ ≥ 2) which allows us to have this divergent term in any dimension if the
hyperscaling violating exponent, θ, is chosen properly.

4.2 New divergences and universal terms
In the previous section we have studied possible divergent terms which could appear in the expression
for the area of minimal surfaces ending on singular boundary regions. However, we should be able to
distinguish which new logarithmic divergences arise because of the singular shape of the entangling region
and which arise because of the choice of a non trivial hyperscaling violating exponent θ. To this purpose
and to isolate the universal terms coming from the choice of the shape and not of the background, we
study, in this section, the behaviour of the divergences in the HEE for a smooth region, and compare
with the results of the previous section.

To find the divergent terms for a smooth surface, following our notation, we will parametrize the
metric as follows

ds2 = L2

r
2 θd
F

−r2(1−z)dt2 + dr2 + dρ2 + ρ2(dϕ2 + sin2 ϕdΩ2
n) + d~x2

d−n−2

r2(1− θd )
. (4.27)

We would like to compute the holographic entanglement entropy for a smooth entangling region given
by

t = fixed ρ ≤ H, (4.28)

with this condition it is clear that the entangling region consists of the direct product between a ball and
an infinite hyperplane, namely Bn × Rd−n−2. Notice that the procedure outlined here is way different
than the technique adopted in Section 3.2.2 of Chapter 3, since there we kept z as a function of ρ. The
final result for the divergences of the area is, of course, the same.

To compute the entanglement entropy again we should essentially minimize the area which in our
case is given by

Asmooth = ΩnVd−n−2L
d

rθF

ˆ π

0
dϕ sinn ϕ

ˆ
dr

ρn+1
√

1 + ρ′2

rdθ
. (4.29)

3It is worth noting that although the dimension d is an integer number, the hyperscaling violating exponent, θ, does
not need to be an integer number. Therefore the effective dimension, dθ, generally, may not be an integer. For non-integer
dθ we do not get any universal terms.
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Using this expression and following the procedure we have explored in the previous section one can find
the divergent terms of holographic entanglement entropy for the smooth entangling surface (4.28) as
follows

Ssmooth =εn

√
πΓ
(
n+1

2
)

ΩnVd−n−2L
d

4GrθFΓ
(
n
2 + 1

)
[ dθ2 ]−1∑

i=0

b2i
dθ − 2i− 1

1
εdθ−2i+1 +b2[ dθ2 ]δ2[ dθ2 ]+1,dθ

log H
ε

+finite terms.

(4.30)
where b2i’s are coefficients appearing in the expansion of the area

ρn+1
√

1 + ρ′2

rdθ
=

[ dθ2 ]−1∑
i=0

b2i
rdθ−2i + δ2[ dθ2 ]+1,dθ

b2[ dθ2 ]

r
, (4.31)

which can be found from the equation of motion deduced from (4.29). In particular the coefficient of the
universal term for different (odd) dθ is found to be

dθ = 1 : b0 = Hn+1,

dθ = 3 : b2 = − (1 + n)2

8 Hn−1. (4.32)

Setting n = d − 2 in the above expressions we find the universal term of the holographic entanglement
entropy for a sphere.
We can make another choice of a smooth entangling region, that is an infinite strip (i.e. the product
between an interval and an hyperplane). Denoting the width of the strip by `, the corresponding
entanglement entropy for dθ 6= 1 is [78, 169]

Ssmooth = LdVd−1

4(dθ − 1)Grd−dθF

 2
εdθ−1 −

2
√
πΓ
(
dθ+1
2dθ

)
Γ
(

1
2dθ

)
dθ

1
`dθ−1

 , (4.33)

while for dθ = 1 one has

Ssmooth = LdVd−1

2Grd−1
F

log `
ε
. (4.34)

It is worth noting that when dθ = 1 the leading divergent term is logarithmic, indicating that the dual
strongly coupled field theory exhibits a Fermi surface [79, 80].

Comparing these expressions with equations (4.25) and (4.26) one observes that beside the standard
divergences, there are new divergent terms due to singular structure of the entangling region. In partic-
ular there are either new log or log2 terms, whose coefficients are universal in the sense that they are
independent of the UV cut-off. To proceed note that for dθ 6= n + 2 the universal term should be read
from equation (4.25), that is

Suniv = −δ2[ dθ2 ]+1,dθ
εn

ΩnVd−n−2a2[ dθ2 ]L
dHn+2−dθ

4(dθ − n− 2) rθF G
log
(
H

ε

)
, (4.35)

which is non-zero for odd dθ. On the other hand for dθ = n + 2 the universal term can be found from
(4.26) to be

Suniv = εn
ΩnVd−n−2L

d

4G rθF

[
A0 log Hh0

ε
+
a2[ dθ2 ]

2 δ2[ dθ2 ]+1,dθ
log2

(
H

ε

)]
. (4.36)

Observe that in this case for any (integer) dθ the first term is always present though the log2 term appears
just for odd dθ. As already noted in [120], it is important to note that when dθ is odd the universal term
is given by log2 and the term linear in log ε is not universal any more.

Using these results one may define the coefficient of the logarithmic term, normalized to the volume
of the entangling region, as follows

CEE
singular = −εn

3Ld

4(dθ − n− 2)G a2[ dθ2 ], for dθ odd, and dθ 6= n+ 2,
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CEE
singular = −εn

3Ld

4G

a2[ dθ2 ]

2 , for dθ odd, and dθ = n+ 2,

CEE
singular = −εn

3Ld

4G A0, for dθ even, and dθ = n+ 2, (4.37)

where the explicit form of A0 and a2[ dθ2 ] are given in the previous section and in the Appendix D.2. The
factor of 3 in the above expressions is due to our normalization, which has been fixed by comparing with
the entanglement entropy of 2D CFT written as c

3 log `/ε.
Although the general form of the coefficients of the universal terms are given in the equation (4.37)

it is illustrative to present their explicit forms for particular values of n and dθ.

4.2.1 dθ = 1
As we have seen the holographic entanglement entropy for a hyperscaling violating metric exhibits a log
term divergence for dθ = 1 even for a smooth surface. This may be understood from the fact that the
underlying dual theory may have a Fermi surface [79, 80]. For θ = 0 (that is d = 1) we indeed recover the
logarithmic term of 2D conformal field theories[18]. When θ 6= 0 the physics is essentially controlled by
the effective dimension dθ = d− θ. Therefore even for higher dimensions d ≥ 2 with a proper θ such that
dθ = 1 the holographic entanglement entropy always exhibit a leading logarithmically divergent term.

In this case for an entangling region with a singularity, which clearly is meaningful only for d ≥ 2,
using the explicit expression for a0 one gets

CEE
singular = εn

3Ld

4G
sinn Ω
n+ 1 , (4.38)

while for a smooth surface one has
CEE

smooth = εn
3Ld

4G (4.39)

Note that for n = 0 both charges become the same. Note that for n > 1 the coefficient of universal term
CEE

singular is smaller than the one of the strip by a factor of sinn Ω
2(n+1) and it vanishes in the limit of Ω→ 0.

4.2.2 dθ = 2
For dθ = 2 being an even number, the holographic entanglement entropy has a universal logarithmic
term only for n = 0 which is

CEE
singular = 3Ld

2G A0, (4.40)

where

A0 = − 1
h0

+
ˆ h0

0
dh

(√
1 + (1 + h2)ϕ′2

h2 − 1
h2

)
. (4.41)

Actually since the expressions we have found are independent of θ one may use the results of d = 2, θ = 0
to compute the above universal term. Indeed in this case one has (see for example [59, 120, 166])

CEE
singular =


3Ld

2πG
Γ( 3

4 )4

Ω Ω→ 0,
3Ld

8πG (π2 − Ω)2 Ω→ π
2 .

(4.42)

4.2.3 dθ = 3
In this case when n 6= 1 the holographic entanglement entropy has a log term whose coefficient may be
treated as a universal factor given by

CEE
singular = 3n2Ld

32G
cos2 Ω

(1− n) sin2−n Ω
. (4.43)

66



On the other hand for n = 1 the universal term should be read from the log2 term with the coefficient

CEE
singular = 3Ld

32G
cos2 Ω
2 sin Ω . (4.44)

which in the limit of planar and zero angle behaves as

CEE
singular =


3n2Ld

32G
1

(1− n)Ω2−n Ω→ 0,

3n2Ld

32G
(π2 − Ω)2

1− n Ω→ π
2 .

(4.45)

Note that for n = 1 the factor of 1 − n in the denominator should be replaced by 2. It is worth noting
that for n = 0 the universal charge is zero identically. Therefore for a singular surface containing a crease
there is not a universal term.

4.2.4 dθ = 4
In this case we get only for n = 2 a universal term, which should be read from the equation (4.36), that
is

CEE
singular = 3Ld

4G A0, (4.46)

where

A0 = sin2 Ω
3h3

0
− 4

9
cos2 Ω
h0

+
ˆ h0

0
dh

(
sin2 ϕ

√
1 + (1 + h2)ϕ′2
h4 + sin2 Ω

h4 − 4
9

cos2 Ω
h2

)
. (4.47)

Since we have n = 2 this result is valid for d ≥ 4.
The computation of A0 cannot be performed analytically, since we are not able to find a closed

expression for the profile h(ϕ), however it can still be found numerically.
We solved the equation of motion for ϕ and found it as a function of h0, thus founding the dependence
of Ω on h0. Then we computed the area and by shooting the solution we were able to find A0 as a
function of the opening angle Ω. The results are shown in Fig. 4.1. One observes that qualitatively
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Figure 4.1: Ω as a function of h0 (left) and A0 as a function of Ω (right). It shows that the function A0
diverges at Ω = 0 while vanishes at Ω = π

2 .

A0 diverges at Ω = 0 while vanishes at π/2. To make this statement more precise we have numerically
studied asymptotic behaviours of the function A0 for Ω→ 0 and Ω→ π

2 limits as shown in Fig 4.2. The
results may be summarized as follows

CEE
singular =


3Ld

4G
0.116

Ω , Ω→ 0,
3Ld

4G
1.683

4π

(π
2 − Ω

)2
, Ω→ π

2 .

(4.48)
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Figure 4.2: Asymptotic behaviours of A0 at Ω → 0 (left) and Ω → π
2 (right). In these plots the dashed

lines correspond to test functions to probe the limiting value of A0. The corresponding functions are
given by y = −x− 2.15 (left) and y = 2x− 2.01 (right), in agreement with equation (4.48).

4.2.5 dθ = 5
In this case and when n 6= 3 we get

CEE
singular = 3n2Ld

4G

(
7n2 − 64

)
cos(2Ω) + n(7n− 32) + 64

4096(3− n)
cos2Ω

sin4−nΩ
(4.49)

while for n = 3
CEE

singular = 3Ld

4G
9(31− cos 2Ω)

4096
cos2 Ω
sin Ω . (4.50)

Therefore the corresponding universal term has the following asymptotic behaviours

CEE
singular =


3n2Ld

4G
2n(7n− 16)
4096(3− n)

1
Ω4−n , Ω→ 0,

3n2Ld

4G
32(4− n)

4096(3− n)

(π
2 − Ω

)2
, Ω→ π

2 ,

(4.51)

with an obvious replacement for n = 3.

It is also straightforward to further consider higher dθ. The lesson we learn from these explicit
examples is that for a singular surface of the form cn × Rd−n−2 and for dθ ≥ 2 the coefficient of the
universal term given in the equation (4.37) has the following generic asymptotic behaviour

CEE
singular ∼


3Ld

4G
1

Ωdθ−n−1 , Ω→ 0,
3Ld

4G

(π
2 − Ω

)2
, Ω→ π

2 .

(4.52)

We see that for a generic opening angle Ω, we can infer the following expression for the coefficient of the
universal term

CEE
singular = fdθ,n(Ω) 3Ld

4G
cos2Ω

sindθ−n−1Ω
, (4.53)

where fdθ,n(Ω) is a function of Ω which is fixed for given dθ and n by requiring it to be finite at Ω = 0
and Ω = π

2 .

4.3 Higher derivatives corrections
In the previous section we showed that the area of minimal surfaces ending on singular entangling
regions may present logarithmic divergences for specific choices of the extension of the singularity, the
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dimensionality of the space time and the value of θ. The coefficients of these divergent terms depend on
the opening angle of the region, and we were able to compute their value in the nearly smooth limit.

Based on these results and using the general expression given in the equation (4.37) for dθ ≥ 2 one
may define a new charge as follows

Cnd = lim
Ω→π

2

CEE
singular

cos2 Ω . (4.54)

Note that this is a well defined limit, leading to a finite quantity which is proportional to Ld

G up to a
numerical factor of order of one. Note also that as soon as we fixed dθ the resulting charge is independent
of θ, and may be defined in any dimension by setting n = dθ − 2.

As we have already mentioned there is another central charge which could be defined in any dimension:
the coefficient of the < TT > two-point function of the stress-energy tensor, which we denote by CT .
Following the idea of [166, 167], we can compare these two charges4. Unlike two-dimensional CFT where
CT is the same as the one appearing in the central extension of the Virasoro algebra, in higher dimensions
it should be read from the explicit expression of the two-point function. Indeed, in the present context,
the corresponding two-point function may be found from the quadratic on-shell action of the perturbation
of the metric above a vacuum solution using holographic renormalization techniques[6].

We note, however, that since we do not have a well defined asymptotic behaviour of metric (D.4) in
the sense of Fefferman-Graham expansion, in general it is not an easy task to compute the stress-energy
tensor’s two-point function for space-times with generic θ and z. Nevertheless setting z = 1, where one
recovers the Lorentz invariance, we can still use the holographic renormalization procedure to find (see
Appendix D.1)

CT = Ld

8πG
d+ 2
d

Γ(dθ + 2)
π
d+1

2 Γ
( 1+2dθ−d

2
) . (4.55)

Note that for z = 1, from the null energy condition one gets θ(d−θ) ≤ 0 which has only a partial overlap
with the parameter space of the model we are considering at θ = 0. Therefore using the above expression
we really should only compare it with the new central charge of the model for θ = 0.
Since however the new charge defined in (4.54) for given dθ is independent of θ, the comparison still
makes sense. In particular for dθ = 2, 3 and dθ = 4, respectively, one finds5:

C0
d

CT
=
d π

d+1
2 Γ

( 5−d
2
)

2(d+ 2) ,
C1
d

CT
= −

d π
d+3

2 Γ
( 7−d

2
)

64(d+ 2) ,
C2
d

CT
= 1.683

d π
d+1

2 Γ
( 9−d

2
)

80(d+ 2) (4.56)

For z 6= 1, CT depends explicitly on z and thus the above ratio will be z dependent, even though Cnd
will not.

Since both central charges considered above are proportional to Ld

G , it is evident that their ratio is a
purely numerical constant. In [167] it was conjectured that for three-dimensional CFTs this ratio could
be completely universal, regardless of the strength of the coupling so to hold in both known statistical
models and in QFTs with gravity duals. It is thus interesting to understand whether this ratio, which
could characterize whatsoever CFT of fixed dimensionality, is still universal even in the higher dimen-
sional cases we are considering.
The easiest step we can make in this direction is to look at gravity theories with higher curvature terms
in the action, and see whether the corrections alter the ratio (4.56) .

To proceed let us consider an action containing the most general curvature squared corrections as
follows

I = − 1
16πG

ˆ
dd+2√−g

(
R+ V (φ) + λ1R

2 + λ2RµνR
µν + λ3RµνρσR

µνρσ

)
+ Imatter (4.57)

where Imatter is a proper matter action to make sure that the model admits hyperscaling violating
geometry. It is then straightforward, although lengthy, to compute holographic entanglement entropy for

4Note that in even dimensions one may have another central charge, the coefficient of Euler density arising in the
computations of the Weyl anomaly. It also appears as the universal term in the expression of entanglement entropy for a
sphere.

5Due to our normalization of Cd for dθ = d = 2 there is factor 1
3 mismatch with the result of [167].
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this model6. Indeed following [53], the holographic entanglement entropy may be obtained by minimizing
the following entropy functional

SA= 1
4G

ˆ
ddζ
√
γ

[
1 + 2λ1R+ λ2

(
Rµνn

µ
i n

ν
i −

1
2K

iKi
)

+2λ3

(
Rµνρσn

µ
i n

ν
jn

ρ
i n

σ
j −KiµνK

µν
i

)]
, (4.58)

where with i = 1, 2 we denote the two transverse directions to a codimension-two hypersurface in the
bulk, nµi are two mutually orthogonal unit vectors to the hypersurface and K(i) are the traces of two
extrinsic curvature tensors defined by

K(i)
µν = πσµπ

ρ
ν∇ρ(ni)σ, with πσµ = δσµ + ξ

∑
i=1,2

(ni)σ(ni)µ , (4.59)

where ξ = −1 for space-like and ξ = 1 for time-like vectors. Moreover γ is the induced metric on the
hypersurface whose coordinates are denoted by ζ.

Although so far we have been considering a theory with hyperscaling violation, as we have already
mentioned the holographic renormalization for generic hyperscaling exponent has not been fully worked
out and thus we have restricted ourselves to to consider backgrounds with z = 1. In this case the most
interesting case allowed by the null energy condition is θ = 0. Therefore in what follows we just examine
the relation between the two charges for θ = 0 in an arbitrary dimension.

To compute higher curvature corrections to the entanglement entropy we note that in our case the
normal vectors are given by (note that we set θ = 0)

n1 = L

r

(
1, 0, 0, 0 · · ·

)
, n2 = L

r

1√
1 + h(ϕ)2 + h′(ϕ)2

(
0, 1,−h(ϕ),−ρh′(ϕ), 0, · · ·

)
. (4.60)

It is then straightforward to extremize the functional (4.5) and evaluate it. In fact one only needs
to expand the above entropy functional around h = 0 to find its divergences and read the universal
coefficient of the logarithmic (or log2) term to find the corrections to the central charge Cnd . Doing so
one arrives at

C̃ n
d = Υ C n

d , (4.61)

where C̃ is the corrected central charge and

Υ = 1 + 4(d− 2)
L2 λ3 −

2(d+ 1)
L2 (λ2 + (d+ 2)λ1) . (4.62)

Now one needs to compute the corresponding corrections to the central charge CT . To do so one first
needs to linearize the equations of motion deduced from the action (4.57) (see for example [171])

Rµν −
1
2gµν(R+ V (φ)) + 2λ1

(
Rµν −

1
4gµνR

)
R+ 2λ2

(
Rµσνρ −

1
4gµνRσρ

)
Rσρ

+(2λ1 + λ2 + 2λ3)
(
gµν�−∇µ∇ν

)
R+ (λ2 + 4λ3) �

(
Rµν −

1
2gµνR

)
+2λ3

(
2RµσνρRσρ +RµσρτR

σρτ
ν − 2RµσRσν + 1

4gµν(R2
αβρσ + 4R2

αβ)
)

= 0 (4.63)

Using the notation of Appendix D.1 one can linearize the above equations around the vacuum solution
given by (D.4) with θ = 0. The result is

Υ G(1)
µν + (2λ1 +λ2 + 2λ3)

(̄
gµν�̄− ∇̄µ∇̄ν −

d+ 1
L2 ḡµν

)
R(1) + (λ2 + 4λ3)

(
(�̄+ 2

L2 )G(1)
µν + d

L2 ḡµνR
(1)
)

=0,

(4.64)
where Υ is exactly the one given in equation (4.62), and

G(1)
µν = R(1)

µν −
1
2 ḡµνR

(1) + d+ 1
L2 hµν . (4.65)

6Holographic entanglement entropy for a strip entangling region in theories with hyperscaling violation in the presence
of higher curvature terms has also been studied in [170].
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In the transverse-traceless gauge the above equation reads[
Υ + (λ2 + 4λ3)

(
�̄+ 2

L2

)](
�̄+ 2

L2

)
hµν = 0 (4.66)

which has to be solved in order to find the linearized solution. Since we are interested in the correlation
function of the energy momentum tensor, we should still look for a solution of (�̄ + 2

L2 )hµν = 0. This
equation is exactly the same one gets from purely Einstein gravity, and thus the linearized equation
of motion reduces essentially to solving standard linearized Einstein equations. On the other hand, to
evaluate the two-point function one needs to find the quadratic action which has an effective Newton
constant Υ/G. Indeed going through the computations of the two-point function one finally finds that

C̃T = Υ CT , (4.67)

and thus we may conclude that
C̃ n
d

C̃T
= C n

d

CT
. (4.68)

for arbitrary dimensions but with θ = 0.
Although we have examined the relation between the two central charges CT and C n

d just for squared
curvature modifications of Einstein gravity, based on our observations and the three-dimensional results
of [167], it is tempting to conjecture that the the central charge C n

d is directly related to CT for a generic
CFT.

4.4 New charge
We have studied the holographic entanglement entropy of an entangling region cn × Rd−n−2, i.e. an
n-dimensional cone extended in d−n−2 transverse directions, for a d+1-dimensional theory in a hyper-
scaling violating background. We have observed that due to the presence of a corner in the entangling
region the divergence structure of the entropy gets new terms.

In particular for certain values of θ, d and n the divergent terms include log or log-squared terms
whose coefficients are universal, in the sense that they are independent of the UV cut-off.

Given that we have been able to extract new regularization independent quantities, it is tempting to
conjecture that some information can be obtained about the underlying dual field theory. This might be
compared with the case of two-dimensional conformal field theories where the central charge appears in
the coefficient of the (leading) logarithmic divergence of the entanglement entropy for an interval.

Motivated by this similarity we proceed by analogy and, denoting the coefficient of the logarithmic
term appearing in the expression for the entanglement entropy by CEEsingular (see equation (4.37)), we find
that for dθ ≥ 2 we can define a new "central charge" as follows

C n
d = lim

Ω→π
2

CEE
singular

cos2 Ω , (4.69)

which is proportional to Ld/G. As soon as the effective dimension dθ is fixed, the proportionality constant
only depends on d and n, while it is independent of θ. Therefore it remains unchanged even if we set
θ = 0, reducing the dual theory to a d + 1-dimensional conformal field theory. It is natural to expect
that this central charge may provide a measure for the number of degrees of freedom of the theory. Note
that, unlike the one obtained from Weyl anomaly, this central charge can be defined for both even and
odd dimensions when dθ = n+ 2.

Another central charge which could be defined in any dimension is the one entering in the expression
for the stress-energy tensor’ two-point function. We checked whether the ratio between these charges is
a pure number and we also have computed corrections to both Cnd and CT for theories with quadratic
correction in the curvature. We have shown that the relation between these two charges remains un-
changed.

Based on this observation and the results for three-dimensional CFTs [166, 167], one may conjecture
that the relation between these two central charges ( CT and Cnd ) is a somehow intrinsic property of the
field theory. In fact this relation is reminiscent of the relation between Weyl anomaly of a conformal field
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theory in even dimension and the logarithmic term in the entanglement entropy of the corresponding
theory. If there is, indeed, such a relation one would expect to have a general proof for it independently
of an explicit example.
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Chapter 5

Conclusions

In this work we dealt with several aspects of the computation of holographic entanglement entropy. We
developed numerical and semi-analytical techniques to find the area of minimal surfaces which gives the
value of the entanglement entropy for strongly interacting field theories via the Ryu-Takayanagi pre-
scription (1.26).

In Chapter 2 we employed Surface Evolver (see [83] and Appendix B.2) to compute numerically the
shape dependence of holographic entanglement entropy in AdS4 space-times. Any known result in the
literature on minimal surfaces in three-dimensional hyperbolic spaces has been reproduced, including
annular regions, disjoint circles and non-smooth boundaries. Moreover, we were able to find the transi-
tion curves of the mutual information between disconnected regions interpolating from two circles and
two infinite strips, for which analytic results were previously known. The numerical computation is best
summarized by Fig. 2.16 and Fig. 2.17. Our results were also useful to check in [172] the correctness of
some perturbative computations for elliptical regions.

In Chapter 3 we studied the time-dependence of strip- and sphere-like entangling regions in asymp-
totically hvLif space-times, monitoring the transition from a theory at zero temperature to a thermal
one. In gauge/gravity this can be achieved using time-dependent metrics which model the collapse of
a null shell of energy up to the formation of a black-hole. Using a modification of asymptotically AdS
Vaidya metrics, we found numerically the time evolution of entanglement entropy with non-trivial Lif-
shitz exponent ζ and hyperscaling violating factor θ. In the limit of a sharp transition (what we called
the thin-shell limit) we generalized the results of [140, 141] and obtained analytic expressions for the
three temporal regimes of entanglement entropy: initial, linear growth and saturation, given respectively
by equations (3.84), (3.88) and (3.95).

In Chapter 4 we computed analytically how the presence of non-smooth boundaries affects the di-
vergence structure of entanglement entropy in hvLif space-times, generalizing previous work of [120]
which focused on generic dimensional AdS spaces. We checked when and how new logarithmically di-
vergent terms arise. The coefficients of these new divergent terms may provide new universal quantities
characterizing the UV properties of the dual field theory, since they are scheme independent. Indeed,
generalizing a conjecture of [166, 167], we also checked that in the limit of nearly-smooth boundaries the
coefficient of the logarithmic term is proportional to the coefficient CT of the stress-energy two-point
function < TT >. We worked out the results for arbitrary θ and d, which is given inequation (4.37).
Finally, we also checked that for θ = 0 some class of higher curvature corrections to the gravitational
action do not affect the ratio between this new central charge and CT , finding agreement with subsequent
work [173, 174].

There are several directions along which this research could be continued. Regarding the use of Surface
evolver, the most important ones concern black hole geometries, higher dimensional generalizations,
domain wall geometries and time dependence for generic shapes. An interesting extension involves
domains A made by three or more regions (see [175] for some results in two-dimensional conformal field
theories and [176–178] for a holographic viewpoint), which become now numerically accessible: in Fig. 5.1
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Figure 5.1: Minimal surface corresponding to three disjoint and equal red circles in the plane z = 0 (the
z axis points downward). This surface has 13147 vertices and 26624 faces, while the number of edges
is given by Euler formula with vanishing genus and 3 boundaries. This kind of surfaces occurs in the
computation of the holographic tripartite information for the union of three disjoint disks.

we show a minimal surface anchored to an entangling curve made by three disjoint circles. The area
of this surface provides the holographic entanglement entropy between the union of the three disjoint
disks and the rest of the plane, which is the most difficult term to evaluate in the computation of the
holographic tripartite information [176].

In [62, 63] it was shown how to compute a new set of analytic solutions for minimal surfaces in
three-dimensional hyperbolic spaces. Since the technique proposed there involves the use of complicated
algebraic functions, one has little control on the shape of the entangling curve. Our numerical tools could
be used to check and further investigate the properties of these solutions.

A further direction of study would be to try to find a way to compute the shape dependence of the
entanglement entropy in a CFT2+1 by directly employing quantum field theory techniques.

Finally, let us mention that it remains to check whether the conjecture [166, 167] can be extended
to higher-dimensional CFTs, computing the entanglement entropy for singular entangling regions in
non-holographic theories, like e.g. for free bosons and fermions.
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Appendix A

Hypersurfaces

A.1 Minimality implies TrK = 0
In this section we follow slightly the notation of [179], although we keep the computation for arbitrary
dimension and backgrounds. Consider a d-dimensional smooth hypersurface γ embedded in a (d +
1)−space of arbitrary geometry. The surface can be parametrized implicitly by a position vector, let it
be

γ = {xµ(σi)| ti ∈ Id} , (A.1)

where Id is some direct product of intervals (eventually non-compact) which defines the parameter space.
Any smooth surface can be parametrized in this way without loss of any generality. From xµ(σi) we can
define d tangent vectors tµi ≡ ∂ix

µ and a normal vector nµ such that nµtµi = 0 and n2 = 1. Together,
tµi and nµ form a basis for the embedding space. From the tangent vectors we can define the induced
metric to be

hij = tµi t
ν
j gµν , , (A.2)

where gµν is the metric of the embedding space where γ lives, and clearly gµν does not depend on the
surface. From the condition 0 = tµi ∇µn2 = 2nνtµi ∇µnν we get that the tangential projection of the
covariant derivative of nµ is entirely tangent to the surface, and we define its components to be the
extrinsic curvature of γ

tνi∇νnµ = Kijt
µj , (A.3)

where we raised the j index with the inverse of the induced metric, i.e. tµj = hjitµi . This equation can
be rewritten as to properly define the extrinsic curvature (also known as second fundamental form) as

Kij ≡ tνj tνi∇νnµ . (A.4)

It is easy to see that Kij is a symmetric tensor. Taking the derivatives of the tangent vectors is a bit more
involved. Decompose the tangential variation in the following way (since tangent and normal vectors
form a basis)

tνi∇νt
µ
j = Aijn

µ +Bkijt
µ
k , (A.5)

then, from ∇µ(nµtµj) = 0 and using (A.3) it is easy to show that Aij = −Kij . From differentiating
hij one obtains instead Bkij = Γkij , where Γkij is precisely the Levi-Civita connection computed with the
induced metric. We then get the final expression

∇itµj = −Kijn
µ , (A.6)

where with ∇i we indicated both the projection of the covariant derivative on the tangent vectors and
the contribution coming from the connection constructed with the induced metric. Equations (A.3) and
(A.6) are known as Weingarten-Gauss relations. We want to find the equation which minimizes the area,
and therefore we need to consider fluctuations of the surface away from γ, and eventually compute the
variation of the area under these fluctuations. In general, a variation of γ can be written in parametric
form as

xµ → xµ + δxµ = xµ + anµ + bitµi , (A.7)
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where again we split the variation in tangent and normal components, and a, bi are arbitrarily (small)
quantities. The variation of the tangent vectors is then

δtµi = ∂iδix
µ = (∂ia)nµ + (∂ibj)tµj + a∂in

µ + bj∂it
µ
j (A.8)

=
(
∂ia− bjKij

)
nµ +

(
∇ibj + aKj

i

)
tµj , (A.9)

and thus, the variation of the induced metric can be computed to be

δhij = gµνt
µ
(iδt

ν
j) (A.10)

= ∇ibj +∇jbi + 2aKij , (A.11)

where we used the fact that the extrinsic curvature is a symmetric tensor.
Now, given that the area of γ can be written as the integral over the hypersurface of the squared root

of the determinant of the induced metric, i.e.

A =
ˆ
γ

ddσ
√

deth , (A.12)

we have that the variation of the area under the transformation (A.7) changes as1

δA =
ˆ
γ

ddσδ
√

deth (A.13)

=
ˆ
γ

ddσ
√

dethhijδhij (A.14)

= 2
ˆ
γ

ddσ
√

deth
(
∇ibi + aTrK

)
. (A.15)

This is the expression for the general first variation of the area of a hypersurface, which as we see
consists of two components: one along the tangent vectors and one along the normal. The tangent
variation however does not modify the actual shape of the surface, since it corresponds more to a change
of coordinates with which we parametrize the surface (namely, the change under bi of hij is precisely the
change of a metric under a general diffeomorphism). For this reason, the area will not change and we
are allowed to set bi = 0. The only relevant changes are the ones along the normal, and we see that a
variation is zero if and only if

H = 0 , (A.16)
where we used the common definition H = 1

dTrK for the hypersurface mean curvature. We remark that
in order to derive this equation we did not assume anything about the geometry of the embedding space,
i.e. it holds for arbitrary gµν . A minimal (or rather, extremal) surface in any space is always a zero
mean-curvature surface. The explicit expression for TrK will however depend on the geometry, since gµν
enters in the definition of hij .

A.2 Minimal surfaces and umbilical lines
In this section we want to understand the implications of the minimality equation (A.16) when γ is
a surface with boundary, ending on the conformal boundary of (asymptotic) AdSd+2 space-times, as
this kind of surfaces are the ones we need to study in order to compute entanglement entropy, as in
(1.26). We will follow the computation of [56], who first computed the asymptotic behaviour of minimal
hypersurfaces of arbitrary dimension. Here we will consider however only surfaces of codimension two,
which admit only one space-like normal vector, although the generalization is straightforward.

Suppose we have a surface embedded in Hd, let it be γA, such that at z = 0 (in Ponicaré metric) ends
on ∂γA = ∂A. Since Hd+1 is conformally flat, we can choose as representative of the conformal class of
∂Hd+1 the flat Euclidean space Rd.

We want the condition ∂A = ∂γA to be implemented so that the expansion near the boundary is
easily computed: to this purpose we will locally parametrize the surface as a vertical graph over ∂A.

1We assume that any variation is zero at the boundary.
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We assume that the region ∂A is a submanifold of Rd of dimension d − 1. As such, it can be
parametrized as XM (τa) where M = 1, . . . , d refers to components in Rd and a = 1, . . . , d − 1 are the
world-sheet coordinates for the hypersurface. We can extend ∂A to the bulk by lifting it along the z
direction, creating the cylinder over ∂A

rµ(σa, z) = {X(σa) , z} . (A.17)

Here and in the following, any bold quantity refers to vectors of Rd. In analogy with Section A.1 we can
define the tangent and normal vectors to the entangling region: the tangent space of a point in ∂A is
spanned by the basis Tb(σa) = ∂bX(σa) and the induced metric on ∂A is γab = Ta ·Tb. We can promote
the normal vector to a vector of Hd+1 with zero z component, i.e. qµ(σa) = {N(σa) , 0}, where the
boundary normal vector is fixed by the conditions N2 = 1 and N ·Ta = 0. We can finally parametrize
the surface as a one-dimensional vertical graph over ∂A

xµ(σa, z) = rµ(σa, z) + u(σa, z)qµ(σa) = {X(σa) + u(σa, z)N(σa), z} . (A.18)

Any surface can be expressed in this way - at least locally - so that the minimality equation can be
written as just a single partial differential equation for u. The tangent space of γA is then

tµa = ∂ax
µ = {Ta + uaN + u∂aN, 0} =

{
(δba + ukba)Tb + uaN, 0

}
, (A.19)

tµ = ∂zx
µ = {uzN, 1} , (A.20)

where we used the Weingarten-Gauss relation (A.3), i.e. ∂aN = kbaTb with kab the extrinsic curvature
of ∂A as embedded in Rd and ua ≡ ∂au, uz ≡ ∂zu. The induced metric on the hypersurface can then be
computed as (the index i = 1, . . . , d refers to comoving coordinates on γA)

hij =
(
tµatbµ tµa tµ
tµtbµ tµtµ

)
= 1
z2

(
γab + uaub + 2ukab + u2kcakcb uauz

ubuz 1 + u2
z

)
. (A.21)

From (A.19) we can compute the normal vector nµ to γA in Hd+1. We can parametrize it as

nµ = {AN +BaTa, n
z} , (A.22)

where A,Ba and nz are coefficients to be determined from the conditions nµtµa = nµtµ = 0 and n2=1.
These imply (recall that gµν = z−2δµν for the Poincaré patch)

Aua +Bb(γab + ukab) = 0 , (A.23)
Auz + nz = 0 , (A.24)

A2 +BaBbγab + nz2 = z2 . (A.25)

The solution is

nµ = z√
1 + u2

z + ua[(I + uk)−2]abub

{
−N + [(I + uk)−1]abubTa, uz

}
, (A.26)

where I is our shorthand notation for the identity matrix, and we used the symmetry of kab. Computing
the extrinsic curvature Kij of γA is cumbersome using these confidantes, and therefore writing explicitly
the equation H = 0 is rather lengthy.

Since we are going to cut γA along a plane lying at z = ε with ε → 0, there is a particular vector
among the tangent ones (A.19) which is of particular interest: the tangent normal vector. The tangent
space of γA is d-dimensional, and there are d− 1 linearly independent vectors which also belong to the
tangent space of the z = ε hyperplane: the tangent normal bµ is defined as the only unit vector which is
orthogonal to the intersection between γA and the hyperplane and is tangent to γA2. Therefore, it has
to satisfy bµtaµ = 0 and b2 = 1. It is possible to write it formally but its expression for arbitrary z is not
particularly illuminating.

2In general the tangent normal is a vector defined at intersections of hypersurfaces: it is tangent to just one of the
surfaces but is orthogonal to any other vector which is tangent to both.

77



We want to focus however only on the near-boundary behaviour of the surfaces, and thus we will
compute Kij in the limit of ε → 0. Firs of all we have that the surface has to satisfy the boundary
condition3

z2hij
∣∣
z=0 = γab ⊗ 1 , (A.27)

which imposes that u(σa, z) ∝ z2 as z → 0, and thus we can expand (A.21) to first order in u,ua and up
to second order in uz, finding

hij = 1
z2

(
γab + 2kabu 0

0 1 + u2
z

)
+O(z) . (A.28)

Now, since for any two matrices A and B we have det(A + λB) = detA(1 + λTr(A−1B) + O(λ2)), we
have that the square root of the determinant of h can be expanded as

√
deth = z−d

√
det γ

[
1 + 1

2u
2
z + uTrk

]
+O(z3−d) . (A.29)

It is then much easier to work out the variation of the area element, finding

δ
√

deth = z−d
√

det γ [uzδuz + Trkδu] +O(z3−d) (A.30)
= z−d

√
det γ

[
−uzz + dz−1uz + Trk

]
δu+O(z3−d) , (A.31)

where we are allowed to integrate by parts since we set to zero variations at the boundary. We see then
that u has solve the equation

− uzz + dz−1uz + Trk = 0 . (A.32)

Since we can write u = u2(σa)z2 +O(z3), we have that the solution is given by

u2(σa) = − 1
2(d− 1)Trk = −1

2H . (A.33)

We remark that H is the mean curvature of ∂A which is a d − 1-dimensional manifold. This relation
tells us the way the surface "bends" toward the bulk direction from the boundary. γA will lean toward
the outside of averagely concave portions of ∂A and toward the inside of averagely convex ones. We
say averagely because H is the arithmetic mean of the eigenvalues of the extrinsic curvature, which can
either be negative or positive.

One consequence of (A.33) is that for spherical entangling regions, the minimal surface will look
precisely like a sphere. Namely in this case the full solution is a half sphere of one dimension higher.

Another consequence of (A.33) is that for d = 2 and any entangling curve, the minimal surface will
look locally like a two-sphere, and thus the direction where the surface bends is fully determined by the
geodesic curvature of the curve ∂A. In the theory of surfaces any point where the values of the two
principal curvatures coincide is called umbilical: (A.33) tells that ∂A is an umbilical line for γA[55].

Moreover, by plugging (A.33) into (A.29) we get that the area element of γA can be expanded as

√
deth = z−d

√
det γ

[
1− d− 2

2 H2z2
]

+O(z3−d) . (A.34)

We can also compute the behaviour of the normal nµ and of the tangent-normal bµ as z → 0,

nµ

z
= − 1√

1 + z2H2
{N, zH}+O(z3) , (A.35)

bµ

z
= 1√

1 + z2H2
{−zHN, 1}+O(z3) . (A.36)

3Actually, looking back at equation (A.18), the boundary condition ∂A = ∂γA implies just u(σa, 0) = 0. The condition
(A.27) assumes also that γA ends orthogonally on the z = 0 hyperplane, which can be proved either by keeping linear
terms in the following discussion and showing they have to be zero, or by the consideration that a sufficiently small portion
of ∂A always looks flat - the extrinsic curvature is a second-order quantity (for another proof see [180]).
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Appendix B

Further details on shape dependence
in AdS4

B.1 Further details on minimal surfaces in H3

In this appendix we provide a derivation of (2.6) and describe some additional properties of minimal
surfaces in AdS4. Let us consider the area of a two dimensional surface γA embedded in spatial slice
t = const

A[γA] =
ˆ
γA

dA =
ˆ
UA

√
h du1du2

z2 , (B.1)

where UA is a coordinate patch. As mentioned in 2.1, A can be interpreted as the energy of a two
dimensional interface immersed in R3 endowed with a potential energy of density 1/z2. To find the
surface γ̃A minimizing A we consider a small displacement along the normal direction N , parametrized
as: R → R + wN , where R represents the position of a point on the surface and w is a small normal
displacement. The linear area variation can be straightforwardly calculated using classic differential
geometry [181]

δA[γA] =
ˆ
UA

δ
(√
h du1du2) 1

z2 +
ˆ
UA

δ

(
1
z2

)√
h du1du2 = − 2

ˆ
UA

1
z2

(
H + ẑ ·N

z

)
w du1du2 , (B.2)

where H is the surface mean curvature. Setting δA[γA] to zero yields (2.6).
In a Monge patch (u1, u2) = (x, y) and the surface can be represented as the graph of the function

z = z(x, y) representing the height of the surface above the (x, y) plane. In this case the mean curvature
reads

H =
z,xx(1 + z2

,y) + z,yy(1 + z2
,x)− 2z,xyz,xz,y

2(1 + z2
,x + z2

,y)3/2 , (B.3)

while the outward directed normal vector is given by

N = −z,xx̂ + z,yŷ − ẑ√
1 + z2

,x + z2
,y

. (B.4)

Using Eqs. (B.3) and (B.4) in (2.6) yields the Cartesian equation (2.9).
In 2.1 we argued that a surface described by (2.6) must be orthogonal to the z = 0 plane. This

orthogonality implies that the boundary curve ∂γ̃A is a geodesic of γ̃A. To see this we can recall that
the curvature κ of a curve that lies on a surface can be decomposed as

κn = κnN + κg(N × t) , (B.5)

with t the tangent vector of ∂γ̃A, κn = t,s (with s the arc lenght) and κn and κg the normal and
geodesic curvature respectively. Since ∂γ̃A lies on the z = 0 plane and ẑ ·N = 0 at z = 0, then N = ±n
where the choice of the sign is conventional. By virtue of (B.5) this implies that κg = 0. Thus ∂γ̃A is a
geodesic over γ̃A.
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Figure B.1: Example of a typical evolution obtained by Surface Evolver in the case of a circular boundary.
The initial configuration consists of an octagonal prism composed of 40 triangles (left). The shape is
then optimized and refined as described in B.2, finding the final configuration given by the rightmost
surface, which consists of 10240 triangles and yields F̃A = 1.99843π whereas FA = 2π is the exact value
from the analytic result (2.7). In this example the radius of the circle is R = 1 and ε = 0.03.

An interesting consequence of the previous statement is that the total Gaussian curvature of the
surface is constant, regardless the shape of the boundary in the z = 0 plane. The Gauss-Bonnet theorem
tells us that ˆ

γ̃A

KG

√
h du1du2 +

˛
∂γ̃A

κg ds = 2πχ , (B.6)

where KG is the Gaussian curvature and χ is the Euler characteristic. Since κg = 0 in our case, we have
ˆ
γ̃A

KG

√
h du1du2 = 2πχ . (B.7)

Let us recall that the Euler characteristic is χ = 2− 2g − b, where g is the genus of the surface and b is
the number of its boundaries.

B.2 Numerical Method
The numerical results presented in 2.2 and 2.3 have been obtained with Surface Evolver [83]. This is
a multipurpose shape optimization program created by Brakke [83] in the context of minimal surfaces
and capillarity and then expanded to address generic problems on energy minimizing surfaces. A surface
is implemented as a simplicial complex, i.e. a union of triangles. Given an initial configuration of the
surface, the program evolves the surface toward a local energy minimum by a gradient descent method.
The energy used in our calculations is the H3 area function given in (2.3).

The initial configuration is preferably very simple and contains only the least number of triangles
necessary to achieve a given surface topology (Fig. B.1). A typical evolution consists in a sequence of
optimization and mesh-adjustment steps. During an optimization step, the coordinates of the vertices are
updated by a local minimization algorithm (conjugate gradient in our case), resulting in a configuration
of lower energy. The topology of the mesh (i.e. the number of vertices, faces and edges) is not altered
during minimization. A mesh-adjustment step, on the other hand, consists of a set of operations whose
purpose is to render the discretized surface smooth and uniform. These operations can be broadly
divided in two class: mesh-refinements and mesh-repairs. In a mesh-refinement operation a finer grid is
overlaid on the coarse one. This is obtained, for instance, by splitting a triangle in four smaller triangle
obtained by joining the mid points of the original edges. In a mesh-repair operation, the triangles that
are too distorted compared to the average are eliminated. This operation can change the topology of the
mesh and possibly also the topology of the surface which can then breakup into two or more connected
parts. This happens, for instance, in the case of the surfaces described in 2.3. As explained, the minimal
surface spanning a disconnected boundary curve can be either connected or disconnected depending on
the shape of the boundary. Evolving an initially connected surface in the regime of geometric parameters
where the only stable solution is disconnected causes the surface to form narrow necks and eventually
pinches off once the triangles around the necks become too squeezed.

Due to the divergence of the area element dA =
√
h/z2 du1du2 at z = 0, the boundary curves used

in the numerical work have been defined on the plane z = ε. In order to maximize the accuracy of the
numerical solution, it is preferable to choose value of ε that is much smaller than any other length scale
in the problem and yet large enough to allow the convergence of the optimization steps. With this goal
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Figure B.2: The quantity F̃A (see (2.14)) computed with Surface Evolver for ellipses having R1 = 2R2
(see the bottom panel of Fig. 2.1), for various R2 and ε. When ε/R2 is too small, our numerical data are
not stable. The fitted value on the vertical axis is 3.728.

in mind, we have adopted an empirical selection criterion based on the following procedure. Let ∂γ̃A be
an ellipse and let R1 and R2 = R1/2 be the semi-major and semi-minor axes. Using Surface Evolver we
have calculated the finite part of the area F̃A for various choices of ε and R1. In the limit of ε→ 0 the
ratio F̃A/R1 is expected to approach a finite value, but from the data shown in Fig. B.2 we see that for
ε/R2 < 0.02, the accuracy of the numerical calculation starts to drop. Based on this numerical evidence
we have set in most of our numerical calculations ε/R = 0.03, where R is the typical length scale of the
boundary. It is worth remarking that in our numerical computations it is easier (namely the evolution is
more stable) to deal with smaller values of ε/R by increasing R than by decreasing ε. Smaller values of
ε/R obtained by decreasing ε keeping R fixed can be achieved by setting up ad hoc evolutions, tailored
for a specific type of boundary shape. This has been done only for the triangles in Fig. 2.4, while in
the remaining figures we have increased R keeping ε = 0.03 fixed. Nevertheless, for ε fixed, numerical
instabilities are encountered when R is too large as well. The values of ε/R adopted in our numerical
calculations have been chosen to guarantee both stable evolutions and a satisfactory precision to compare
the data with the analytic results, when they are available.

Other alternative methods are available to construct minimal surfaces. A popular one by [182] consists
of evolving the surface level sets under the surface mean curvature flow. A variant of this method has
been employed in [112] to study minimal surfaces in the Schwarzschild-AdSd+2 background.

B.3 Superellipse: a lower bound for FA

In this appendix we provide a lower bound for the quantity FA (see (2.4)) associated with the entangling
curves ∂A given by the superellipses (2.15), that we have discussed in 2.2.1.

If A is a simply connected domain without corners in its boundary, let us consider a surface γ∗A
anchored on ∂A, but different from γ̃A, and such that A[γ∗A] = PA/ε − F ∗A + o(1) as ε → 0. Being γ̃A
the minimal area surface anchored on ∂A, it is immediate to realize that F ∗A < FA. Here we consider
the superellipses (2.15), whose perimeter is given by

PA = 4R1

ˆ 1

0

√
1 + (R2/R1)2

hn(x̃)2 dx̃ , hn(x̃) ≡ x̃n−1

(1− x̃n)1−1/n , (B.8)

where the integration variable x̃ = x/R1 as been employed. Let us adapt to this case the choice of the
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trial surface suggested in [91] for the ellipse, namely we consider γ∗A such that any section along the x
direction provides the profile of the infinite strip whose width is given by y(x) obtained from (2.15), i.e.

y(x̃) = R2 (1− x̃n)1/n
. (B.9)

Given the symmetries of the superellipse, we are allowed to restrict ourselves to x > 0 and y > 0. From
(B.19) for d = 2, we construct the trial surface γ∗A by requiring that we have that any section at x = const
is given by

y(z, x̃) = z∗(x̃)
ˆ 1

z/z∗(x̃)

Z2
√

1− Z4
dZ , z∗(x̃) ≡ 2 y(x̃)

√
s∞

, (B.10)

where the integration variable Z ≡ z/z∗ has been employed and z∗(x̃) has been introduced by taking
z∗ in (2.11) with s∞ defined in (2.12) and replacing R2 with y(x̃) defined in (B.9). From (B.10), it is
straightforward to show that y(0, x̃) = y(x̃) and this guarantees that the trial surface is anchored on the
superellipse (B.9).

The occurrence of the cutoff ε in the holographic direction influences the integration domain along
the x direction. In particular, by employing (B.9) and (B.10), the requirement z∗(x̃) > ε becomes x̃ 6 x̃ε,
where

x̃ε ≡
[
1−

(√
s∞

2R2
ε

)n ]1/n

. (B.11)

Plugging (B.10) inside the area functional, being y written in terms of x and z, we get

A[γ∗A] = 4
ˆ x̃ε

0
dx̃

ˆ z∗(x̃)

ε

dz

√
1 + (∂zy)2 + (∂xy)2

z2 =
2R1
√
s∞

R2

ˆ x̃ε

0

Mε(x̃)
(1− x̃n)1/n dx̃ , (B.12)

where

Mε(x̃) ≡
ˆ 1

ε/z∗(x̃)

√
1 + (R2/R1)2

hn(x̃)2 C(Z)2

Z2
√

1− Z4
dZ , C(Z) ≡ 2

√
s∞

( ˆ 1

Z

√
1− Z4

1− u4 u
2 du− Z3

)
.

(B.13)
Computing (B.12) analytically is too hard, but one can check that the area law is satisfied. When ε→ 0,
from (B.11) we have that x̃ε = 1+O(εn). In this limit, the most divergent term ofMε(x̃) comes from the
limit of integration ε/z∗(x̃) and it can be found by considering an integration on the interval [ε/z∗(x̃), a],
where Z is infinitesimal if a� 1. The remaining integral provides O(1) terms. For Z → 0 we have that
C(0) = 1 and therefore the leading term in (B.12) is given by

A[γ∗A] =
2R1
√
s∞

R2

ˆ 1

0
dx̃

√
1 + (R2/R1)2

hn(x̃)2

(1− x̃n)1/n

ˆ a

ε/z∗(x̃)

dZ

Z2 +O(1) = PA
ε

+O(1) , (B.14)

where PA given in (B.8) can be recognized after (B.10) and (B.9) have been employed. We are not able
to find F ∗A analytically but it can be obtained numerically as F ∗A = limε→0(PA/ε − A[γ∗A]), with A[γ∗A]
given by (B.12), getting a lower bound for FA associated with the superellipse.

It is interesting to consider F ∗A in the limit of a very elongated superellipses, namely when R1/R2 →
∞. This means that (B.12) must be studied in the double expansion ε→ 0 and R2/R1 → 0. Assuming
that the order of this two limits does not matter, let us set R2/R1 = 0 in the expressions of Mε(x̃) in
(B.13) and expand it for small ε, finding

Mε(x̃)
∣∣
R2/R1=0 = z∗(x̃)

ε
−
√
s∞
2 +O(ε2) , (B.15)

where z∗(x̃) is given in (B.10). By plugging (B.15) into (B.12) and expanding the resulting expression
for ε→ 0, we have that

A[γ∗A] = 4R1

ε
− s∞

R1

R2

ˆ x̃ε

0

dx̃

(1− x̃n)1/n + o(ε) = 4R1

ε
− πs∞
n sin(π/n)

R1

R2
+ o(ε) . (B.16)
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Notice that, from (B.8), one can observe that PA = 4R1
[
1 + o(1)

]
when R1/R2 →∞. We conclude that

the leading term of F ∗A as R1/R2 →∞ reads

F ∗A = πs∞
n sin(π/n)

R1

R2
+ . . . . (B.17)

When n = 2, the result of [91] is recovered, as expected. Moreover, the expression (B.17) in the special
cases of n = 2 and n = 3 has been checked in Fig. 2.2 against the data obtained with Surface Evolver
(see respectively the red and the blue dotted horizontal lines), finding a good agreement. Notice that
the expression in the r.h.s. of (B.17) is strictly larger than the value of FA corresponding to the infinite
strip (see (2.12)), which is approached as n→∞.

B.4 Some generalizations to AdSd+2

B.4.1 Sections of the infinite strip
In this section we discuss the computation of the area of the domain identified by an orthogonal section
of the minimal surfaces associated with the infinite strip.

The metric of AdSd+2 in the Poincaré coordinates reads

ds2 = − dt
2 + dz2 + dx2

1 + · · ·+ dx2
d

z2 . (B.18)

Considering an infinite d-dimensional strip on the spatial slice t = const extended along the x2, . . . , xd
directions whose width is given by 2R2, i.e. |x1| 6 R2, the minimal area surface associated with this
domain is characterized by the profile z = z(x1). Because of the symmetry of the problem, z(x1) is even
and therefore we can restrict to 0 6 x1 6 R2. The profile is obtained by solving the following differential
equation [46, 47]

z′ = −
√
z2d
∗ − z2d

zd
. (B.19)

where z∗ is the maximum value of z, which is reached at x1 = 0.
A way to get an orthogonal section of the infinite strip is defined by x2 = · · · = xd = const. Then,

one considers the two dimensional region enclosed by the profile z(x1) and the cutoff z = ε in the plane
(x1, z). The domain along the x1 axis is |x1| 6 R2 − a, where a is defined by z(R2 − a) = ε. Its area
reads

Â = 2
ˆ R2−a

0
dx1

ˆ z(x1)

ε

dz

z2 = 2(R2 − a)
ε

− 2
d

[
π

2 −arctan
(

εd√
z2d
∗ − ε2d

)]
= 2R2

ε
− π
d

+o(1) , (B.20)

where (B.19) has been employed.
Another section of the infinite strip to study is defined by xi = const for some 2 6 i 6 d and |xj | 6 R1

for j 6= i. In this case we are interested in the volume of the d dimensional region enclosed by the profile
z(x1) and z = ε, whose projection on the z = 0 hyperplane is included within the section of the infinite
strip we are dealing with. It is given by

Â = 2(2R1)d−2
ˆ R2−a

0
dx1

ˆ z(x1)

ε

dz

zd
= (2R1)d−2(d− 1)

[
2R2

εd−1 −
√
π Γ(1 + 1/d)

zd−2
∗ Γ(1/2 + 1/d)

+ o(1)
]
. (B.21)

Notice that for d = 2 the expressions (B.20) and (B.21) coincide, as expected, and the result is employed
in 2.2 to study the auxiliary surface, which corresponds to the dashed curve in Fig. 2.2.

B.4.2 Annular domains
In this appendix we consider the surfaces anchored on the boundaries of annular domains which are local
minima of the area functional because some analytic expressions can be found for them.
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The metric of AdSd+2 in Poincaré coordinates (2.2) written by employing spherical coordinates for
the spatial part Rd of the boundary z = 0 is

ds2 =
dz2 − dt2 + dρ2 + ρ2dΩ2

d−1
z2 , (B.22)

where ρ ∈ [0,∞) and the AdS radius has been set to one.
A spherically symmetric spatial region A in the AdS boundary is completely specified by an interval

in the radial direction. Because of the symmetry of A, the minimal surface anchored on ∂A is given by
z = z(ρ) and, for a generic profile z = z(ρ), the corresponding area of the two dimensional surface γA
reads

A[γA] = Vol(Sd−1)Rd , Rd ≡
ˆ
ρd−1

zd

√
1 + (z′)2 dρ , (B.23)

where Vol(Sd−1) is the volume of the (d−1)-dimensional unit sphere and Rd is the integral in the radial
direction. We remark that the integration domain in Rd is not necessarily the interval defining A in the
radial direction, as it will be clear from the case discussed in the following. In order to find the minimal
surface γ̃A, one extremizes the area functional (B.23), obtaining

zz′′ + (1 + z′2)
[
d+ (d− 1)zz

′

ρ

]
= 0 . (B.24)

When A is a sphere of radius R, we have that 0 6 ρ 6 R and it is well known that the corresponding
minimal surface is a hemisphere [46, 47].

Here we consider the region A delimited by two concentric spheres, whose radii are Rin and Rout,
with 0 < Rin < Rout. In this case Rin 6 ρ 6 Rout and A is not simply connected. For d = 2 and
d = 3, the corresponding minimal surface extending in the bulk and anchored on ∂A has been studied
in [58, 59, 113]. In order to solve (B.24) for this configuration, we find it convenient to introduce [58, 59]

z(ρ) ≡ ρ z̃(ρ) , u ≡ log ρ , z̃u ≡ ∂uz̃ . (B.25)

Notice that z̃ = tan θ is the angular coefficient of the line connecting the origin to a point belonging to
the surface. Given (B.25), the differential equation (B.24) becomes

z̃ z̃u
(
1 + ∂z̃ z̃u

)
+
[
1 + (z̃ + z̃u)2][d+ (d− 1)z̃(z̃ + z̃u)

]
= 0 . (B.26)

Integrating this equation, we find two solutions, namely

z̃u,±(z̃) = −1 + z̃2

z̃

[
1± z̃d−1√

K(1 + z̃2)− z̃2d

]−1

, K > 0 , (B.27)

which correspond to two different parts of the profile. As for the integration constant K, it must be
strictly positive because z̃ = 0 corresponds to the boundary z = 0, which is included in the range of z.
The domain for z̃ is 0 6 z̃ 6 z̃m, where z̃m is the first positive zero of the polynomial under the square root
in (B.27). For d = 2 we are lead to solve a biquadratic equation, which gives z̃2

m =
(
K+

√
K(K + 4)

)
/2.

Notice that z̃m → 0 when K → 0.
The differential equation (B.27) can be solved through the separation of the variables. In particular,

from the r.h.s. of (B.27), we find it convenient to introduce

f
(d)
±,K(z̃) ≡

ˆ z̃

0

λ

1 + λ2

[
1± λd−1√

K(1 + λ2)− λ2d

]
dλ . (B.28)

Then, the profile of the radial section is given by the following two branches{
ρ = Rin e

−f(d)
−,K(z̃) ,

ρ = Rout e
−f(d)

+,K(z̃) .
(B.29)
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Figure B.3: Curves for η as function of K obtained from the matching condition (B.30) for various
dimensions 2 6 d 6 7. For any d, a minimal value η∗ > 1 occurs, which is shown in the inset. Given a
value η ∈ (η∗, 1), two values of K correspond to it, providing two different radial profiles (see an example
for d = 2 in Fig. B.4).

Imposing that these two branches match at the point Pm, whose (ρ, z) coordinates are (ρm, zm ≡ z(ρm)),
where zm has been found above, we get the following relation

− log(η) = f
(d)
+,K(z̃m)− f (d)

−,K(z̃m) =
ˆ z̃m

0

2λd

(1 + λ2)
√
K(1 + λ2)− λ2d

dλ , η ≡ Rin

Rout
. (B.30)

Since z̃m depends on K, from (B.30) we get a relation between η and K, which is represented in Fig. B.3
for 2 6 d 6 7. The first feature to point out about (B.30) is the existence of a minimal value for η that
will be denoted by η∗ > 0. For instance, we find η∗ = 0.367, η∗ = 0.542 and η∗ = 0.643 for d = 2,
d = 3 and d = 4 respectively (see the inset in Fig. B.3 for other d’s). Then, for any η∗ < η < 1, there
are two values of K giving the same η, while for 0 < η < η∗ connected solutions do not exist. The two
different K’s associated with the same η∗ < η < 1 provide two different radial profiles and therefore two
connected surfaces having the same ∂A. In order to find the global minimum of the area functional, we
have to evaluate their area. Through a numerical analysis, one observes that zm is an increasing function
of K.

Beside Pm, another interesting point of the profile is P0 = (ρ0, z0 ≡ z(ρ0)), where |z(ρ0)′| diverges.
From (B.27), this divergence occurs when√

K(1 + z̃2
0)− z̃2d

0 ± z̃
d−1
0 = 0 =⇒ K = z̃2d−2

0 ≡ (tan θ0)2d−2 . (B.31)

This tells us that K has a geometric meaning because it provides z̃0.
Let us also introduce the point P∗, with coordinates (ρ∗, z∗ ≡ z(ρ∗)) as the point having the maximum

value of z, which corresponds to the maximal penetration of the minimal surface into the bulk. The
coordinate z∗ can be found by considering the branch z(ρ) characterized by f

(d)
+,K in (B.29) and then

computing its derivative w.r.t. ρ, which is given by

dz

dρ
= d(z̃ρ)

dz̃

(
dρ

dz̃

)−1
= z̃ −

(
df

(d)
+,K(z̃)
dz̃

)−1

, (B.32)
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Figure B.4: Radial profiles in the (ρ, z) plane for the connected surfaces anchored on the boundary of
the same annulus A having Rin < Rout. They correspond to local minima of the area functional and they
are characterized by the two different values of K associated with the same η. These connected surfaces
are obtained through (B.29) and (B.30), where different colours are used for the various branches. The
dashed curves represent the two concentric hemispheres anchored on ∂A as well. The continuous grey
curves are the paths in the (ρ, z) plane of the points P0, Pm and P∗ asK ∈ (0,∞). Here d = 2, Rin = 0.43,
Rout = 1 and the values ofK areK = 0.81 (global minimum) andK = 2.05 (local minimum). Comparing
the area of the two connected surfaces, we find that the one having minimal area has P∗ closer to the
boundary.

where in the last step (B.29) has been used. When d = 2 the root of (B.32) can be found and it reads

z̃∗ = K1/4 . (B.33)

An explicit example in d = 2 is given in Fig. B.4, where we have shown the two connected radial
profiles having the same η > η∗ but different values of K. The two different branches in (B.29) at fixed
K, supported by the matching condition (B.30), have been denoted with different colours: the red and
cyan curves are obtained through f

(2)
+,K while the blue and the green ones through f

(2)
−,K . In Fig. B.4

the grey curves denote the paths described by the three points Pm, P0 and P∗ introduced above as K
assumes all the positive real values.

We find it instructive to consider the limitK → +∞. From (B.28), in this limit one finds f (d)
+,∞ = f

(d)
−,∞

for any d, which reads

lim
K→∞

f
(d)
±,K(z̃) =

ˆ z̃

0

λ

1 + λ2 dλ = 1
2 log(1 + z̃2) , (B.34)

and therefore η → 1 from (B.30), i.e. Rin = Rout ≡ R (see also Fig. B.3). From (B.34), both the branches
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in (B.29) become
ρ = R√

1 + z̃2
, (B.35)

which is the well known spherical solution z2 = R2 − ρ2. As for the points Pm, P0 and P∗, they tend to
the same point when η → 1, as can be seen from Fig. B.4, where the gray lines show the paths of these
points in the (ρ, z) plane as K varies in (0,∞).

Given the radial profile (B.29), we can compute the area of the corresponding surface obtained by
exploiting the rotational symmetry. From (B.25), the radial integral in (B.23) can be written as

Rcon
d =

ˆ ε̃+

z̃m

√
1 + (z̃ + z̃u,+)2

z̃d z̃u,+
dz̃ +

ˆ ε̃−

z̃m

√
1 + (z̃ + z̃u,−)2

z̃d z̃u,−
dz̃ , ε̃+ ≡

ε

Rout
, ε̃− ≡

ε

Rin
,

(B.36)
where z̃u,± have been defined in (B.27) and 0 < ε � 1 is the ultraviolet cutoff of the boundary theory.
Notice that the domains of integration are different for the two branches of the profile. Plugging (B.27)
into (B.36), the integrands become the same and, by splitting the first integral, (B.36) becomes

Rcon
d =

ˆ z̃m

ε/Rout

√
K dz̃

z̃d
√
K(1 + z̃2)− z̃2d

+
ˆ z̃m

ε/Rin

√
K dz̃

z̃d
√
K(1 + z̃2)− z̃2d

(B.37)

= 2
ˆ z̃m

ε/Rin

√
K dz̃

z̃d
√
K(1 + z̃2)− z̃2d

+
ˆ ε/Rin

ε/Rout

√
K dz̃

z̃d
√
K(1 + z̃2)− z̃2d

. (B.38)

In the second integral of (B.38), we can employ the expansion of the integrand for z̃ ∼ 0, which reads

1
z̃d
√

1 + z̃2 − z̃2d/K
= 1
z̃d

+ γd,d−1

z̃d−2 + γd,d−3

z̃d−4 + · · ·+


γd,log

z̃
+O(z̃) odd d,

γd,−1 +O(z̃2) even d,
(B.39)

finding that it provides a non trivial contribution γd,log log(Rout/Rin) to the finite term for odd d.
Given Rin and Rout, besides the two connected surfaces having the same η but different K, we have

also another surface γA which is a local minimum for the area functional (B.23) such that ∂γA = ∂A: it
is made by two disjoint concentric hemispheres in the bulk with radii Rin and Rout which are anchored
on the boundaries of the concentric spheres in the boundary (see the dashed curves in Fig. B.4). The
area of a hemisphere of radius R in the bulk anchored on the boundary of a sphere with the same radius
at z = 0 can be found by integrating (B.23) for 0 6 ρ 6 R− a, where z(ε) ≡ a, finding

Rsph
d (R) =

ˆ ε/R

∞

√
1 + (z̃ + z̃u)2

z̃dz̃u
dz̃ =

ˆ ∞
ε/R

dz̃

z̃d
√

1 + z̃2
, ε =

√
R2 − (R− a)2 � 1 , (B.40)

where z̃u is (B.27) in the limit K → +∞, namely z̃u = −(1 + z̃2)/z̃.
Thus, the factor coming from the radial integration in (B.23) for this configuration of two disjoint

hemispheres is Rdis
d = Rsph

d (Rout) +Rsph
d (Rin).

Having found three surfaces anchored on ∂A for any given Rin < Rout such that η∗ < η < 1 which
are local minima of the area functional, the holographic entanglement entropy can be found by selecting
the global minimum among them.
Considering a connected surface and the configuration made by the two disjoint hemispheres, we find it
useful to introduce the following finite quantity

∆Rd ≡ lim
ε→0

(Rdis
d −Rcon

d ) . (B.41)

From (B.37) and (B.40), it can be written as

∆Rd = J (in)
d + J (out)

d , (B.42)

where we have introduced

J (j)
d = lim

ε→0

( ˆ ∞
ε/Rj

dz̃

z̃d
√

1 + z̃2
−
ˆ z̃m

ε/Rj

dz̃

z̃d
√

1 + z̃2 − z̃2d/K

)
. (B.43)
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Splitting the second integral, we can take the limit, finding that J (in)
d = J (out)

d and then

∆Rd = 2
[ ˆ ∞

z̃m

dz̃

z̃d
√

1 + z̃2
−
ˆ z̃m

0

1
z̃d
√

1 + z̃2

(
1√

1− z̃2d/[K(1 + z̃2)]
− 1
)
dz̃

]
. (B.44)

Since zm = zm(K) and K depends on the ratio η only, also ∆Rd is a function of η. Nevertheless, as
discussed above, there are two values of K associated with the same η and, by computing ∆Rd for both
of them, we can easily find which surface has the minimal area between the two connected ones. It turns
out that it is the one associated with the lowest value of K. Since zm is an increasing function of K, the
minimal area surface between the two connected ones has the lowest zm. In the example in Fig. B.4 for
d = 2, both the radial profiles of the two connected surfaces which are local minima of the area functional
and which have the same η are shown. The one described by the red and the blue curves characterizes
the minimal area surface between the two connected ones.

Once the connected surface having minimal area has been found, the sign of the corresponding ∆Rd
determines the configuration with minimal area, providing therefore the global minimum of the area
functional, and its root (which can be found numerically) gives the value of η = ηc which characterizes
the transition. For d = 2, d = 3 and d = 4 we get respectively ηc = 0.419 [58, 107], ηc = 0.562 [59] and
ηc = 0.652. Thus, for any η ∈ (η∗, 1), we have ηc > η∗ and ∆Rd > 0 when η ∈ (ηc, 1). This tells us that
for η < ηc the configuration occurring in the holographic entanglement entropy for the annular domains
is the one made by two disjoint hemispheres.

B.5 Elliptic integrals
When d = 2, the integrals encountered in 2.2.2 and in B.4.2 can be computed analytically in terms of
elliptic integrals. Here we report their definitions for completeness, following [183] (notice that Mathe-
matica adopts the same notation).

The incomplete elliptic integrals of the first, second and third kind are defined respectively as follows

F(x|m) ≡
ˆ x

0

dθ√
1−m sin2 θ

, (B.45)

E(x|m) ≡
ˆ x

0

√
1−m sin2 θ dθ , (B.46)

Π(n, x|m) ≡
ˆ x

0

dθ

(1− n sin2 θ)
√

1−m sin2 θ
. (B.47)

Setting x = π/2 in these expressions, we have

K(m) ≡ F(π/2|m) , E(m) ≡ E(π/2|m) , Π(n,m) ≡ Π(n, π/2|m) , (B.48)

which are the complete elliptic integrals of the first, second and third kind respectively.
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Appendix C

Explicit computations for
hvLif-Vaidya backgrounds

C.1 Spherical region for hvLif
In this appendix we construct a sequence of curves {xi(s), zi(s)} for i ∈ N defined in a parametric way,
whose asymptotic one {x∞(s), z∞(s)} is the solution of (3.31).
The extremal surface ending on the sphere of radius R and extended in the t = const section of the d+ 2
dimensional space-time hvLif obeys (3.31) with the boundary conditions z′(0) = 0 and z(R) = 0. We
recall that for hvLif without black holes the Lifshitz exponent ζ does not enter in the equation. The
equation (3.31) can be rewritten as

d

(
z′

ρ
+ 1
z

)
+
(

z′′

1 + z′2
− z′

ρ

)
= θ

z
. (C.1)

We find it convenient to introduce

z̃(x) ≡ z(ρ(x))
R

, x ≡ 1− ρ

R
∈ [0, 1] =⇒ z′(ρ) = − ˙̃z(x) , z′′(ρ) =

¨̃z(x)
R

. (C.2)

By employing (C.2), (C.1) becomes (3.32), which can be written as follows

d

(
1
z̃
−

˙̃z
1− x

)
+

¨̃z
1 + ˙̃z2 +

˙̃z
1− x = θ

z̃
, z̃(0) = 0 , ˙̃z(1) = 0 . (C.3)

The well known hemispherical solution for θ = 0 becomes

z̃(x)
∣∣
θ=0 =

√
x(2− x) =

√
2x
(+∞∑
n=0

Γ(n− 3/2)
Γ(−3/2)n! x

n

)
, (C.4)

which evidences that z̃(x) =
√

2x when x → 0. Also for θ 6= 0 we have z̃ ' 0 near the boundary x ' 0
and here we are interested in the way it vanishes. First, from (C.3) one observes that, when d − θ 6= 0
(the case d − θ = 0 is not allowed by NEC), the solution must have a divergent z̃′(0). Introducing the
following ansatz for the solution close to the boundary

z̃(x) = c0x
α , 0 < α < 1 , x ∼ 0 , (C.5)

and plugging it into (C.1), the first order for x→ 0 provides the following equation(
d− θ + 1− 1

α

)
x−α + c20α(1− d)xα−1 = 0 . (C.6)

We can recognize three cases:
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1. d = 1. In this case we find
z̃(x) ' c0x

1
2−θ , (C.7)

where the condition 0 < α < 1 becomes θ < 1. In particular, for θ = 0 we recover the expected√
x behaviour, although the overall constant is not fixed. Since for d = 1 the calculations from the

strip hold, we have that (see (3.26))

x(z̃) = z̃∗
2− θ

(
z̃

z̃∗

)2−θ

2F1

(
1
2 ,

1
2 + 1

2(1− θ) ; 3
2 + 1

2(1− θ) ; (z̃/z̃∗)2(1−θ)
)
, (C.8)

where the constant z̃∗ reads
z̃∗ = Γ(1/(2− 2θ))√

π Γ(1/2 + 1/(2− 2θ))
. (C.9)

Since the hypergeometric function in (C.8) goes to 1 at the boundary, from (C.7) we can write

c0 =
(
z̃1−θ
∗ (2− θ)

) 1
2−θ , (C.10)

which simplifies to c0 =
√

2 when θ = 0 because z̃∗|θ=0 = 1.

2. d 6= 1 and dθ 6= 1. In this regime one finds that

z̃(x) =
√
dθ − 1
d− 1 2x

[
1− 1

4

(
1 + d− 1

dθ − 1 −
d− 3
dθ − 3

)
x+O(x2)

]
, (C.11)

again, notice how when dθ = d we recover the AdS solution but now with even the correct value of
the coefficient, c0 =

√
2. We included also the c1 correction to show the emergence of poles in the

coefficient for any odd integer value of dθ. It is possible to compute the expansion up to arbitrary
order, but it appears the terms in the series cannot be written in any compact or recursive form.

3. d 6= 1 and dθ = 1. In this case (C.6) becomes

x−α
2α− 1
α

+ xα−1c20α(1− d) = 0 , (C.12)

which gives α = 1/2 and c0 = 0. This tells us that the ansatz (C.5) is meaningless in this case.

C.1.1 A parametric reformulation
In order to improve this analysis and understand better the last case, following [184] (where the d = 2
case has been studied) we introduce

s ≡ 1
z̃dθ
√

1 + ˙̃z2
. (C.13)

This allows to write the term containing ¨̃z in (C.3) as follows

¨̃z
1 + ˙̃z2 = −dθ

z̃
−
(
s
dz̃

ds

)−1
. (C.14)

Thus, the equation (C.3) can be written as

d− 1
x− 1

dz̃
ds
dx
ds

−
(
s
dz̃

ds

)−1
= 0 . (C.15)

From (C.13) it is straightforward to write that

dx

ds
= sz̃dθ√

1− s2z̃2dθ

dz̃

ds
. (C.16)

Then, by isolating x in (C.15) and employing (C.16), the differential equation (C.15) becomes

x = 1 + (d− 1)
√

1− s2z̃2dθ

z̃dθ
dz̃

ds
. (C.17)
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We find it convenient to rewrite (C.17) and (C.16) respectively as follows
d

ds
z̃(s)−(dθ−1) = (dθ − 1)[1− x(s)]

(d− 1)
√

1− s2z̃(s)2dθ
dθ 6= 1

d

ds
log z̃(s) = − 1− x(s)

(d− 1)
√

1− s2z̃(s)2
dθ = 1

,
d

ds
x(s) = − [1− x(s)] sz̃(s)2dθ

(d− 1)[1− s2z̃(s)2dθ ] .

(C.18)
Integrating these equations, one finds

z̃(s) =



(
dθ − 1
d− 1

+∞∑
n=0

Γ(n+ 1/2)√
πn!

ˆ s

smin

[1− x(r)]r2nz̃(r)2dθndr

)− 1
dθ
−1

dθ 6= 1

exp
(
− 1
d− 1

+∞∑
n=0

Γ(n+ 1/2)√
πn!

ˆ s

smin

[1− x(r)]r2nz̃(r)2ndr

)
dθ = 1

(C.19)

and

x(s) = − 1
d− 1

+∞∑
n=0

ˆ s

smin

[1− x(r)]r1+2nz̃(r)2dθ(1+n)dr , (C.20)

where the expansion of (1 − w)−α for w → 0 has been used. This can be done because (C.13) implies
that sz̃dθ is infinitesimal when s is large. Moreover, smin is the value of s at which the tip of the minimal
surface is reached and it can be found from (C.13)

smin = z̃−dθ∗ . (C.21)

It is evident that (C.19) and (C.20) is only a formal solution and it does not even allow to plot the
solution numerically. Nevertheless, this form allows us to construct the solution {z̃(s), x(s)} recursively
through an inductive procedure.
Since large s corresponds to the boundary, we have that x(s) = o(1) for large s. This allows us to observe
that the leading order of the integrals in (C.19) and (C.20) can be obtained by neglecting x(r) within
the square brackets occurring in the integrands. We find it convenient to define the first pair of functions
in the inductive process through the boundary conditions x(s)→ 0 and z̃(s)→ 0 for s→∞, namely

z̃0(s) = 0 , x0(s) = 0 . (C.22)

Then for i > 0 we define

z̃i+1(s) =



(
dθ − 1
d− 1

i∑
n=0

Γ(n+ 1/2)√
πn!

ˆ s

smin

[z̃i−n+1(r)2dθn − xi−n(r)z̃i−n(r)2dθn]r2ndr

)− 1
dθ−1

dθ 6= 1

exp
(
− 1
d− 1

i∑
n=0

Γ(n+ 1/2)√
πn!

ˆ s

smin

[z̃i−n+1(r)2n − xi−n(r)z̃i−n(r)2n]r2ndr

)
dθ = 1

(C.23)
and

xi+1(s) = − 1
d− 1

i∑
n=0

ˆ s

smin

[z̃i−n+1(r)2dθ(1+n) − xi−n(r)z̃i−n(r)2dθ(1+n)]r1+2ndr . (C.24)

Given the pairs {z̃j(s), xj(s)} for j 6 i, this equation give {z̃i+1(s), xi+1(s)}. Notice that xi+1 depends
on z̃i+1 through the n = 0 term and this means that one has to solve (C.23) first and then (C.24).
This procedure defines a sequence of pairs {z̃i(s), xi(s)} for i ∈ N and the exact solution of (C.18) is
the asymptotic one {z̃∞(s), x∞(s)} for i → +∞. The pair {z̃i(s), xi(s)} for some finite i gives a better
approximation of the asymptotic solution the higher i is, starting from the regime of large s.
Given (C.22), for i = 1 we find

z̃1(s) =


(
d− 1
dθ − 1

) 1
dθ−1

(s− smin)−
1

dθ−1

e−
s−smin
d−1

, x1(s) =


1
2

(
dθ − 1
d− 1

) dθ+1
dθ−1

(s− smin)−
2

dθ−1 dθ 6= 1

2s+ d− 1
4 e−2 s−smin

d−1 dθ = 1
(C.25)
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Figure C.1: The black curve is the numerical solution z̃ = z̃(x) of (C.3) for d = 2 and dθ = 1. The
remaining curves are (xi(s), z̃i(s)) for i = 1, 2, 3, 4, 5, 6 (respectively orange, brown, magenta, green, blue
and red), constructed in C.1.1.

From (C.25) for dθ 6= 1 and large s, we can write

s =
(
d− 1
dθ − 1

) 1+dθ
2

(2x1)−
dθ−1

2 . (C.26)

Plugging this back into the corresponding z̃1 in (C.25), we get the first term of (C.11) and the first term
of (C.4) when θ = 0, as expected. By employing (C.22) and (C.25), for i = 2 in the regime of large s we
find

z̃2(s) =



(
d− 1
dθ − 1

) 1
dθ−1

s
− 1
dθ−1

1−
(
d− 1
dθ − 1

) dθ+1
dθ−1 θ s

− 2
dθ−1

2(dθ − 3)

− 1
dθ−1

dθ 6= 1, 3

e−
1
d−1 s + (d− 1)(d− 3) + 2(d− 2)s+ 2s2

8 e−
3
d−1 s dθ = 1[

2s
d− 1 + (d− 1)(d− 3)

8 log s
]− 1

2

dθ = 3

(C.27)

The expression for x2 is quite complicated even at large s and we do not find it useful to write it here.
We have neglected smin because s is large, but it must be taken into account properly to obtain the plot
in Fig. C.1. Higher orders are rather complicated as well and therefore we do not write them. Repeating
the procedure we can find the various curves in Fig. C.1, from which it is evident that the exact solution
of (3.32) is better approximated as i increases.

C.1.1.1 Area

The area functional is given by (3.29) F (z) = 1), namely

A = 2πd/2Rθ

Γ(d/2)

ˆ 1

0

(1− x)d−1

z̃dθ

√
1 + ż2 dx = 2πd/2Rθ

(d− 1)Γ(d/2)

ˆ +∞

smin

(1− x)d

1− s2z̃2dθ
ds . (C.28)

Since the integral is divergent, we must introduce the UV cutoff ε̃ = ε/R in the z̃ variable. It corresponds
to a large value smax such that z(smax) = ε. By employing the expressions {z̃i(s), xi(s)} discussed above
in (C.28), one gets a corresponding area Ai. Thus, we have

A = lim
i→∞

Ai , Ai ≡
2πd/2Rθ

(d− 1)Γ(d/2)

ˆ smax

smin

(1− xi−1)d

1− s2z̃2dθ
i−1

ds . (C.29)
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A crucial point consists in finding smax(ε), but the relation z̃i(smax) = ε̃ is typically transcendental and
therefore it cannot be inverted. Introducing smax,i as the solution of z̃i(smax,i) = ε̃, we have that for i = 1
the inversion can be performed, giving

smax,1 =


d− 1

(dθ − 1)ε̃dθ−1 dθ 6= 1

− (d− 1) log ε̃ dθ = 1
(C.30)

which gives

A1 =


2πd/2

(dθ − 1)Γ(d/2)
Rd−1

εdθ−1 dθ 6= 1

− 2πd/2

Γ(d/2) R
d−1 log(ε/R) dθ = 1

(C.31)

For i = 2, it is clear from (C.27) that z̃2(smax,2) = ε̃ cannot be inverted. Nevertheless, we can find the
first terms of the expansion of smax(ε̃) for ε̃→ 0 as follows. The relation z̃2(smax,2) = ε̃ can be written as

ε̃ = f1(s) + f2(s) , (C.32)

where both f1 and f2 vanish for s→∞, while f1/f2 → 0. Assuming that f1 is invertible, we have that

s = f−1
1 (ε̃−f2(s)) = f−1

1 (ε̃)−[∂ε̃f−1
1 (ε̃)]f2(s)+O

(
f2(s)2) = f−1

1 (ε̃)−[∂ε̃f−1
1 (ε̃)]f2(f−1

1 (ε̃))+. . . (C.33)

where in the second step we have employed that f2/ε̃ = (f2/f1)/(1 + f2/f1)→ 0 when s→∞, while in
the last one the first order of the expansion has been used. The dots denote higher orders that we are
neglecting. Thus, for i = 2 we find

smax,2 =



d− 1
(dθ − 1)ε̃dθ−1

[
1− (d− 1)θ

2(dθ − 1)(dθ − 3) ε̃
2 + . . .

]
dθ 6= 1, 3

− (d− 1) log ε̃
[

1− (d− 1)2

4 ε̃2 log ε̃+ . . .

]
dθ = 1

d− 1
2ε̃2 −

(d− 1)2(d− 3)
8 log ε̃+ . . . dθ = 3

(C.34)

As for the integral (C.29) with i = 2, we find

A2 =



2πd/2Rd−1

Γ(d/2) εdθ−1

[
1

dθ − 1 −
(d− 1)2(dθ − 2)

2(dθ − 1)2(dθ − 3)
ε2

R2 +O(ε4)
]

dθ 6= 1, 3

− 2πd/2Rd−1

Γ(d/2) log(ε/R)
[

1 + (d− 1)2

4
ε2

R2 log(ε/R) + . . .

]
dθ = 1

2πd/2Rd−1

Γ(d/2) ε2

[
1
2 −

(d− 1)(d− 5)
8

ε2

R2 log(ε/R) + o
(
ε2
)]

dθ = 3

(C.35)

As a check of this formula, notice that the first expression for θ = 0 provides the expansion at this
order of the hemisphere [46]. Moreover, we have also checked that the first expression in (C.35) can be
found by plugging (C.11) into (C.28), properly regulated through the introduction of xmin > 0 such that
xmin = x(smax).

C.2 Computational details for the entanglement growth
C.2.1 Initial growth: generic shape
Let us consider a n dimensional region embedded into Rd, which is the spatial part of the boundary (i.e.
z = 0) of the Vaidya background (3.11). The boundary of such region will be denoted by Σ and it has a
generic shape. The submanifold Σ is n − 1 dimensional and therefore it can be parameterized through

93



a n − 1 dimensional vector of intrinsic coordinates ξα. Thus, being xa the cartesian coordinates of Rd,
the submanifold Σ is specified by

xa(ξα) , a ∈ {1, . . . , d} , α ∈ {1, . . . , n− 1} . (C.36)

The surface ΓΣ we are looking for is also n dimensional and it extends into the bulk, arriving to the
boundary along Σ, i.e. ∂ΓΣ = Σ at certain time t. It is described by the functions

v(ξα, z) , Xa(ξα, z) , (C.37)

satisfying the following boundary conditions

v(ξα, 0) = t , Xa(ξα, 0) = xa(ξα) . (C.38)

We remark that for the holographic entanglement entropy n = d, for the holographic counterpart of the
Wilson loop n = 2 and for the holographic two point function n = 1 (ΓΣ is a geodesic and Σ is made by
two points spacelike separated).
The area AΣ of ΓΣ is given by

AΓΣ =
ˆ z∗

0
dz

ˆ
dξα
√

det γ
zndθ/d

, (C.39)

where z−2dθ/dγab is the induced metric on ΓΣ and det γ denotes the determinant of γab. Differentiating
(C.37) and plugging the results into (3.11), we find that

γzz = −z2(1−ζ)Fv2
z − 2z1−ζvz + Xz ·Xz , (C.40)

γαz = −z2(1−ζ)Fvαvz − z1−ζvα + Xα ·Xz , (C.41)
γαβ = −z2(1−ζ)Fvαvβ + Xα ·Xβ , (C.42)

where X denotes the vector whose components are Xa, the dots stand for the scalar product and the
subindices indicate the corresponding partial derivatives.
Here we consider the analogue of A(3)

reg defined in (3.47), namely the area of ΓΣ regularized through the
area of Γ̂Σ computed in hvLif, when F = 1. Given that the hatted quantities refer to hvLif, it reads

A(3)
reg (t) =

ˆ [ˆ z∗

0

√
det γ

zndθ/d
dz −

ˆ ẑ∗

0

√
det γ̂

zndθ/d
dz

]
dn−1ξ . (C.43)

The initial regime is characterized by 0 < t� zh and we want to compute A(3)
reg (t) for small t. Keeping

the first order in (C.43) and repeating the same arguments discussed in [141], we find

A(3)
reg (t) =

ˆ [ ˆ ẑ∗

0

∂F
(√

det γ
)∣∣
F=1

zndθ/d
δF dz +

√
det γ̂

z
ndθ/d
∗

δz∗ +
∑
A=0,a

∂

∂XA,z

(√
det γ̂

zndθ/d

)
δXA

∣∣∣∣ẑ∗
0

]
dn−1ξ ,

(C.44)
where X0 ≡ v, XA,z ≡ ∂zXA and only the first term within the square brackets provides a non-vanishing
contribution. In order to find it, we employ the well known formula for the variation of the determinant

∂F
(√

det γ
)

=
√

det γ
2 Tr

(
γ−1∂F γ

)
. (C.45)

From (C.40), (C.41) and (C.42), we get respectively

∂F (γzz)
∣∣
F=1 = − v2

z

z2(ζ−1) , ∂F (γαz)
∣∣
F=1 = − vαvz

z2(1−ζ) , ∂F (γαβ)
∣∣
F=1 = − vαvβ

z2(1−ζ) . (C.46)

Now, from (3.9) with F = 1 we find that v̂ = t − zζ/ζ. Since t is a constant in terms of ξα, in (C.46)
we have that vα = o(t) and vz = −zζ−1 + o(t). Plugging these behaviors into (C.46), only the first
expression is non vanishing and equal to −1. Then, by using that Xa(ξα, z) = xa(ξα) + o(z), where o(z)
vanishes fast enough when z → 0, we have

γαβ = hαβ + o(z) , γαz = o(z) , γzz = 1 + o(z) , (C.47)
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where hαβ ≡ ∂αxa∂βxa is the induced metric on Σ. Notice that (C.47) tells us that the contribution of
the term Tr(γ−1∂F γ) to ∂F (

√
det γ )|F=1 is equal to −1. Collecting these observations, we find

∂F
(√

det γ
)∣∣
F=1 = −

√
deth
2 . (C.48)

Finally, since in our case δF = F (z)− 1 = −Mzdθ+ζ is non vanishing only for 0 < z < zc, the first term
in (C.44) becomes

A(3)
reg (t) = MAΣ

2

ˆ zc

0
zdθ(1−n/d)+ζdz = MAΣ z

dθ(1−n/d)+ζ+1
c

2[dθ(1− n/d) + ζ + 1] = MAΣ(ζt)[dθ(1−n/d)+ζ+1]/ζ

2[dθ(1− n/d) + ζ + 1] . (C.49)

In the last step we have used that zc = (ζt)1/ζ to the first order, which is obtained from v̂ = t − zζ/ζ
and the condition v = 0 at the shell.

C.2.2 Linear growth
In order to study this regime, we consider the strip (see 3.3.1). Following [141], let us start from (3.58)
for the black hole regime. By employing (3.60) and (3.22) with F (z) = 1, we can write it as follows

z′2 = F (z)
[(

z∗
z

)2dθ
− 1
]

+ g(z)
[(

z∗
zc

)2dθ
− 1
]
≡ H(z) , xc < x 6 `/2 , (C.50)

where

g(z) ≡ (F (zc)− 1)2

4

(
zc
z

)2(1−ζ)
. (C.51)

Notice that the dependence on z of g(z) disappears when ζ = 1. Assuming that H(z) has a minimum
at z = zm with zm < z∗, its defining equation ∂zH(z)|zm = 0 gives

z2dθ
∗ = zmF

′(zm) + 2(ζ − 1)g(zm)
zmF ′(zm)− 2dθF (zm) + 2(ζ − 1)(zm/zc)2dθg(zm) z

2dθ
m . (C.52)

Assuming also that at z = zm, it is possible to find zc = z∗c such that H(zm) = 0 (thus z∗c = z∗c (zm)).
Then, z∗c is given by

2dθF (zm)
[
F (zm) + g(zm)|zc=z∗c

]
+
[
(zm/z∗c )2dθ − 1

][
2(1− ζ)F (zm) + zmF

′(zm)
]
g(zm)|zc=z∗c

zmF ′(zm)− 2dθ(zm)F (zm) + 2(ζ − 1)(zm/z∗c )2dθg(zm)|zc=z∗c
= 0 .

(C.53)
When F (z) is given by (3.5), (C.52) and (C.53) become respectively

z2dθ
∗ = 2(dθ + ζ)(zm/zh)dθ+ζ + (1− ζ)(zc/zh)2(dθ+ζ)(zc/zm)2(1−ζ)

4dθ − 2(dθ − ζ)(zm/zh)dθ+ζ + (1− ζ)(zm/zh)2(dθ+ζ)(zc/zm)2 z
2dθ
m , (C.54)

and

2dθ
[
1− (zm/zh)dθ+ζ]2 = (C.55)

= − (z∗c/zh)2(dθ+ζ)

(z∗c/zm)2(1−ζ)

{
1−

(
zm
zh

)dθ+ζ
+
[(

zm
z∗c

)2dθ
− 1
][

2(1− ζ)− (dθ + 2− ζ)
(
zm
zh

)dθ+ζ
]}

.

We note that the expression (C.54) simplifies dramatically for ζ = 1 and provides a simple relation
between z∗ and zm without any reference to zc in this case.
At this point, let us consider the limit z∗ →∞ with both zm and z∗c kept fixed. For the moment we just
assume to be in a regime where this is allowed. The equations (C.52) and (C.53) become respectively

zmF
′(zm)− 2dθF (zm) = 2(1− ζ)

(
zm
zc

)2dθ
g(zm) , F (zm) = −

(
zm
z∗c

)2dθ
g(zm)

∣∣
z∗c
. (C.56)
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Figure C.2: Thin shell regime: v∗ and zc for the strip in terms of z∗ at constant size `. Here d = 2
and The horizon is zh = 1. Dashed curves correspond to θ = 0 and ζ = 1, while continuous curves have
θ = 1 and ζ = 3. Different colors denote different strips: ` = 4 (black), ` = 5 (blue), ` = 6 (red) and
` = 7 (green).

Plugging the second equation in (C.56) into the first one, one finds

zmF
′(zm) + 2(1− ζ − dθ)F (zm) = 0 , at zc = z∗c , (C.57)

which can be written also in the following form

∂zm

(
F (zm)

z
2(dθ+ζ−1)
m

)
= 0 . (C.58)

For F (z) given by (3.5) this equation tells us that

zm
zh

=
(

2(dθ + ζ − 1)
dθ + ζ − 2

) 1
dθ+ζ

=
(

η

η − 1

) 1
2 (2−η)

, η ≡ 2(dθ + ζ − 1)
dθ + ζ

. (C.59)

Notice that in this expression, the dimensionality, the Lifshitz and the hyperscaling exponents occur only
through the combination dθ + ζ. In order to have a positive expression within the brackets of the first
equation in (C.59), we need to require η > 1, i.e.

dθ + ζ > 2 . (C.60)

Plugging (C.59) into the second equation of (C.56) computed for (3.5), we find that

z∗c
zh

= 2(η − 1) 1
2 (η−1)

η
1
2η

. (C.61)

It is useful to plot curves C` with constant ` in the plane (z∗, zc) or (v∗, zc) as done in Fig. C.2. As t
evolves, z∗ decreases along each curve. After some time (which changes with `), all the curves lie on a
limiting one C∗. For any fixed `, it will be shown that Areg(t) is linear when the curve C` coincides with
C∗. From Fig. C.2 it is clear that, as ` increases, also the linear regime increases. Thus, now we are
considering

z∗ →∞ , η > 1 , zc = (1− ε)z∗c , (C.62)
where 0 < ε� 1. When z∗ is large, for F (z) given by (3.5), from (C.59) and (C.61) we have that

zm
z∗c

= η

2
√
η − 1

> 1 . (C.63)

This tells us that the solutions z(x) are not injective for 0 6 x 6 `/2, which implies that we cannot
employ (3.62), (3.63) and (3.64) because they have been derived assuming that z(x) is invertible. In this
case we have to use the following ones (see [141] for a detailed discussion)

`

2 =
ˆ z∗

zc

zdθ√
z2dθ
∗ − z2dθ

dz +
ˆ zm

zc

dz√
H(z)

+
ˆ zm

0

dz√
H(z)

, (C.64)
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t =
ˆ zm

zc

1
z1−ζF (z)

(
E+

z1−ζ
√
H(z)

+ 1
)
dz +

ˆ zm

0

dz

z1−ζF (z)

(
E+

z1−ζ
√
H(z)

+ 1
)
dz , (C.65)

A = 2`d−1
⊥ zdθ∗

(ˆ z∗

zc

dz

zdθ
√
z2dθ
∗ − z2dθ

ˆ zm

zc

dz

z2dθ
√
H(z)

+
ˆ zm

0

dz

z2dθ
√
H(z)

)
. (C.66)

Comparing these equations with (3.62), (3.63) and (3.64), notice that only the part outside the shell is
different.
Since the point z = zm and zc = z∗c is a quadratic zero of H(z), it provides a leading contribution to the
integrals in (C.64), (C.65) and (C.66). Thus, expanding H(z) around z = zm, we find

H(z) = H2(z − zm)2 + bε . (C.67)

By employing that for a smooth function f(z) we have
ˆ

f(z)√
H2(z − zm)2 + bε

dz = f(zm)√
H2

arcsinh
(
H2(z − zm)/(bε)

)
+ · · · = −f(zm)√

H2
log ε+ . . . , (C.68)

we conclude that

`/2 =
√
π Γ
(
1/(2dθ) + 1/2

)
Γ
(
1/(2dθ)

) z∗ −
log ε√
H2

, (C.69)

t = − E+(z∗c )
z

2(1−ζ)
m F (zm)

√
H2

log ε = − zdθ∗

zdθ+1−ζ
m

√
−H2F (zm)

log ε , (C.70)

A(3)
reg = −2`d−1

⊥
zdθ∗

z2dθ
m

√
H2

log ε , (C.71)

where in the second equality of (C.70) we used the second equation of (C.56). Combining (C.70) and
(C.71), we also obtain that

A(3)
reg = 2`d−1

⊥

√
−F (zm)
zdθ+ζ−1
m

t ≡ 2`d−1
⊥

vE

zdθ+ζ−1
h

t . (C.72)

For a F (z) given by (3.5), the linear growth velocity reads

vE =
(
zh
zm

)dθ+ζ−1√
−F (zm) = (η − 1)

η−1
2

η
η
2

, (C.73)

where η has been defined in (C.59) and (C.60) guarantees that η > 1.

We note that the turning point in C.61 admits a nontrivial limit for η → 1, namely z∗c = 2zh. Given
this limit, we can solve (C.54) when dθ > 0, finding that

zm = d
1

2(dθ+1)
θ zh

(
z∗
zh

) dθ
dθ+1

, (C.74)

which tells us that zm diverges when z∗ →∞, while z∗c remains finite. This implies that a linear regime
is still possible and its velocity is vE = 1, consistent with taking η → 1 in (C.73).

Let us briefly comment on what happens when instead η < 1. Fig. C.3 shows numerical results for
z∗c obtained from (C.55) for several different η values. When η < 1 there is no turning point and z∗c
diverges as z∗ → ∞. This means that ε, as defined in (C.62), is not small anymore and therefore the
method of [140, 141] cannot be applied.
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Figure C.3: Numerical solution of (C.54) and (C.55) for d = 2, zh = 1 and some values of (ζ, θ). The
curves for ζ = 3, θ = 0 (purple), ζ = 1, θ = 0 (blue) correspond to η > 1, while ζ = 1, θ = 4 (red) and
ζ = 1, θ = 6 (orange) have η < 1 and violate the condition (C.60). The green curve with θ = ζ = 1
corresponds to the limiting case η = 1. In the curves for η > 1 the turning point z∗c approaches a finite
value for large z∗ but this is not the case for the η < 1 curves.

C.2.3 Saturation
C.2.3.1 Large regions in static backgrounds

In order to understand the regime of saturation, when the holographic entanglement entropy approaches
the thermal value, let us consider the static case when the size of the boundary region is large with
respect to zh. In this case a large part of the extremal surface is very close to the horizon.
Starting with the strip, when ` � zh, we have that (we recall that tilded values of z refer to the static
black hole case, following the notation introduced in 3.3.1)

z̃∗ = (1− ε)zh , (C.75)

where ε is a positive infinitesimal parameter. Expanding (3.25), we find

`

2 = − zh log ε√
2dθzhF ′h

+ . . . , F ′h ≡ −∂zF (z)
∣∣
z=zh

. (C.76)

In a similar way, plugging (C.75) into (3.21) and keeping the first divergent term as ε→ 0, we get

A = −
√

2 `d−1
⊥ log ε

zdθ−1
h

√
dθF ′h

+ · · · =
`d−1
⊥ `

zdθh
+ . . . . (C.77)

For a sphere, the analysis is slightly more complicated because we have to expand the differential equation
for the minimal surface [185]. Setting

z(ρ) = zh − ε a(ρ) +O(ε2) , (C.78)

and expanding (3.30), the first order reads

2zh
[
(d− 1)a′ + ρa′′

]
a− zhρa′2 − 2dθF ′ha2 = 0 . (C.79)

This equation cannot be solved exactly, but, at large ρ, we can find that the solution behaves as

a(ρ) = C
eρ
√

2dθF ′h/zh

ρd−1 + . . . , (C.80)

where C is an arbitrary constant. Keeping only the first order in ε in (C.78) and imposing z(R) = 0,
one finds a(R) = zh/ε, whose logarithm gives

− log ε = R
√
−2dθF ′(zh)/zh − (d− 1) logR+ . . . . (C.81)
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As for the area, plugging (C.78) into (3.29) and keeping the first divergent term as ε→ 0, (C.81) allows
us to conclude that

A = 2πd/2Rd

dΓ(d/2)zdθh
+ . . . . (C.82)

C.2.3.2 Saturation time

In the thin shell regime and whenever the saturation to the thermal value of the holographic entanglement
entropy is smooth (the derivative does not jump), we can define the saturation time ts as the time such
that ṽ∗ = 0. For t > ts, the extremal surface is entirely within the black hole region. Thus, the equation
for ts reads

0 = ṽ∗(ts) = ts −
ˆ z̃∗

0

dz

z1−ζF (z) . (C.83)

For F (z) given by (3.5) the integral can be solved explicitly, finding

ts = (z̃∗)ζ

ζ
2F1

(
1, ζ/(dθ + ζ); 1 + ζ/(dθ + ζ); (z̃∗/zh)dθ+ζ

)
. (C.84)

For very large regions, z̃∗ = zh(1− ε) and therefore (C.84) expanded to the first order in ε gives

ts = −
zζ−1
h log ε
F ′h

= −
zζh log ε
dθ + ζ

, (C.85)

where in the second step we have employed (3.5). If the region on the boundary is a strip, we can use
(C.76) to obtain

ts = zζ−1
h

√
2dθ
zhF ′h

`

2 + · · · = z
ζ−dθ

2 −1
h

√
dθ

2(dθ + ζ) `+ . . . . (C.86)

For a sphere, (C.81) gives us

ts = zζ−1
h

√
2dθ
zhF ′h

R−
(d− 1)zζ−1

h

F ′h
logR+ . . . . (C.87)

C.2.3.3 Saturation of the holographic entanglement entropy: strip

In this section we try to estimate A(2)
reg (t) as a function of t− ts, being ts the saturation time computed

above. As the holographic entanglement entropy approaches its thermal value, the extremal surface is
almost entirely within the black hole region. This means that the point zc, where the extremal surface
crosses the shell, is very close to z∗.
Let us consider the strip first and introduce a positive infinitesimal parameter ε as follows

zc = z∗

(
1− ε2

2dθ

)
. (C.88)

Plugging this expansion into (3.60), at first order we get

E+ = z1−ζ
c (F (zc)− 1)

2

√(
z∗
zc

)2dθ
− 1 = z1−ζ

∗ (F (z∗)− 1)
2 ε+O(ε2) . (C.89)

Since we are approaching the extremal surface corresponding to the one of the static black hole, z∗ is
close to its thermal value z̃∗, namely we are allowed to introduce another positive infinitesimal parameter
δ as

z∗ = z̃∗

(
1− δ

2dθ

)
. (C.90)

We want to estimate t− ts in terms of the infinitesimal parameters ε and δ. Using (3.63) and (C.84), we
find that

t− ts =
ˆ zc

0

zζ−1

F (z)

(
E+

z1−ζ
√
H(z)

+ 1
)
−
ˆ z̃∗

0

zζ−1

F (z) dz , (C.91)
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=
ˆ zc

z̃∗

zζ−1

F (z) dz +
ˆ z∗

0

E+z
2(ζ−1)

F (z)
√
H(z)

dz −
ˆ z∗

zc

E+z
2(ζ−1)

F (z)
√
H(z)

dz , (C.92)

= − z̃ζ∗
2dθF (z̃∗)

δ + z̃1−ζ
∗ (F (z̃∗)− 1)Q1(z̃∗)

2 ε+ . . . , (C.93)

where H(z) is defined as the r.h.s. of (3.58) (see also (C.50)), Q1(z∗) is defined as follows

Q1(z∗) ≡
ˆ z∗

0

z2(ζ−1)

F (z)
√
F (z)

[
(z∗/z)2dθ − 1

] dz , (C.94)

and the dots denote higher orders in ε and δ. Following [141], one can find a relation between δ or ε
from the expansion of (3.62). The presence of ζ does not modify the result, which reads

δ = 1− F (z̃∗)
F (z̃∗)Q′2(z̃∗)

ε+O(ε2) , (C.95)

where (see [141] for further details)

Q2(z∗) ≡
ˆ z∗

0

dz√
F (z)

[
(z∗/z)2dθ − 1

] . (C.96)

Thus, plugging this result into (C.93), one finds

t− ts ∝ ε+O(ε2) , (C.97)

where the coefficient in front of ε depends on ζ and θ, as can be clearly seen from (C.93), but the power
of ε does not. Given this result, one can repeat precisely the computation of [141] and show that in this
regime

A(2)
reg (t) ∝ ε2 +O(ε3) , (C.98)

i.e.
A(2)

reg (t) ∝ (t− ts)2 +O
(
(t− ts)3) . (C.99)

Notice that the exponent is independent of θ and ζ.

C.2.3.4 Saturation of the holographic entanglement entropy: sphere

Given a black hole in the hvLif space-time, the corresponding area functional is (3.29), whose extremiza-
tion gives (3.30). Since (3.30) is invariant under the change ρ→ −ρ, its solution z(ρ) is an even function.
In particular, its Taylor series expansion contains only positive even powers of ρ. Introducing z(0) = z̃∗,
the expansion of z(ρ) for ρ ∼ 0 gives

z(ρ) = z̃∗ −
dθ

2dz̃∗
F (z̃∗)ρ2 +O(ρ4) . (C.100)

For the Vaidya space-time in the thin shell regime, the equation for z(ρ) for 0 < ρc < ρ < R is (3.79),
where E+ has been defined in (3.77). We recall that the quantities associated to the hvLif vacuum part
can be obtained by sustituting E+ with E− = 0 in all the corresponding expressions for the black hole
part. The relation defining v in the black hole part of the metric is (3.78). The total area is (3.81), while
the boundary time t is obtained by integrating v′ (see (3.78)) outside the shell, i.e. (3.80).

The assumption in the following is that we are at a boundary time such that the minimal surface lies
almost entirely outside the shell and has almost reached its static configuration, that is

z(ρ) = z0(ρ) + δz1(ρ) +O(δ2) , (C.101)

where δ is supposed small and z0 is solution of (3.30) which is just (3.79) with E+ = 0. The boundary
conditions are such that z0(R) = z1(R) = 0. Expanding (3.79) to the first order in δ, we find the
following differential equation for z1

z′′1 + P (ρ)z′1 +Q(ρ)z1 = S(ρ) , z′1(0) = z1(R) = 0 , (C.102)
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where

P (ρ) = d− 1
ρ

+
(

2dθ
z0

+ 3(d− 1)z′0 − ρF ′(z0)
ρF (z0)

)
z′0 , (C.103)

Q(ρ) = dθ
z0

(
F ′(z0)− F (z0) + z′20

z0

)
− 1

2F (z0)

(
z′20 F

′′(z0)−
F ′(z0)z′20

[
ρF ′(z0)− 2(d− 1)z′0

]
ρF (z0)

)
,(C.104)

S(ρ) =
E2

+
δ

(
1 + z′20

F (z0)

)(
(dθ + ζ − 1)ρ

z0
+ 2(d− 1)z′0 − ρF ′(z0)

2F (z0)

)
ρ2(1−d)z

2(dθ+ζ−1)
0 . (C.105)

Notice that S(ρ) depends on E2
+/δ. Indeed, since E+ → 0 when δ → 0, we could have E2

+/δ = O(1) as
δ → 0. In the following the correct relation between E+ and δ will be obtained and E+/δ = O(1) (see
(C.127) and (C.133)).
It is useful to remind that, given a second order linear differential equation

f ′′(x) +A(x)f ′(x) +B(x)f(x) = C(x) , (C.106)

a solution can be written in terms of the solutions fj(x) (j = 1, 2) of the corresponding homogenous
differential equation (i.e. (C.106) with C = 0). It reads

finh(x) = f1(x)
ˆ x

x0

f2(y)C(y)
f1(y)f ′2(y)− f2(y)f ′1(y) dy − f2(x)

ˆ x

x0

f1(y)C(y)
f1(y)f ′2(y)− f2(y)f ′1(y) dy , (C.107)

where x0 is arbitrary and finh(x0) = 0 is trivially satisfied. Then, since (C.106) is linear, its most general
solution is finh +Af1 +Bf2.

C.2.3.4.1 Expansion for ρ ' 0. In this regime we can expand z0(ρ) as in (C.100). Then, (C.103),
(C.104) and (C.105) become respectively

P (ρ) = d− 1
ρ

+ dθ
d

(d− 3)F (z̃∗) + z̃∗F
′(z̃∗)

z̃2
∗

ρ+O(ρ3) , (C.108)

Q(ρ) = dθ
z̃∗F

′(z̃∗)− F (z̃∗)
z̃2
∗

+O(ρ2) , (C.109)

S(ρ) =
E2

+
δ

[
2(θ − ζd)F (z̃∗) + dz̃∗F

′(z̃∗)
]
z̃

2(dθ+ζ)−3
∗

2dF (z̃∗) ρ2(d−1) +O(1/ρ2(d−2)) . (C.110)

The homogeneous equation is

z′′1 (ρ) + d− 1
ρ

z′1(ρ) +Q0z1(ρ) = 0 , Q0 ≡ Q(0) = dθ
z̃∗F

′(z̃∗)− F (z̃∗)
z̃2
∗

. (C.111)

The independent solutions j1, j2 of this equation can be expressed in terms of Bessel functions as follows

j1(ρ) = Γ(d/2)
(
√
Q0ρ/2) d−2

2
J d−2

2
(
√
Q0ρ) , j2(ρ) =


−π2Y0(

√
Q0ρ) d = 2

− π

Γ(d−2
2 )

(√
Q0

2ρ

) d−2
2

Y d−2
2

(
√
Q0ρ) d > 2

(C.112)
whose behavior for ρ→ 0 is given respectively by

j1(ρ) = 1− Q0

2d ρ
2 +O(ρ4) , j2(ρ) =

{
log ρ+ log(

√
Q0/2) + γE + . . . d = 2

ρ2−d + . . . d > 2
(C.113)

Considering only the first terms of the expansions (C.113) and (C.110) and plugging them into (C.107),
one finds

z1,inh(ρ) =


E2

+
δ

z̃
2(1−θ+ζ)−1
∗ (z̃∗F ′(z̃∗)− (2ζ − θ)F (z̃∗))

4F (z̃∗)
log2 ρ d = 2

E2
+
δ

z̃
2(dθ+ζ−1)−1
∗ (dz̃∗F ′(z̃∗)− 2(dζ − θ)F (z̃∗))

4d(d− 2)2F (z̃∗)
ρ−2(d−2) d > 2

(C.114)

In the following j1, j2 of z1,inh will indicate only their ρ dependence.
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C.2.3.4.2 Expansion for ρ ' R. First, let us consider the case dθ 6= 1, when (C.11) can be applied.
Introducing the variable σ ≡ R− ρ, from (C.103), (C.104) and (C.105) we find

P (ρ) = dθ − 3
2σ +O

(
σ0) , (C.115)

Q(ρ) = − dθ
4σ2 +O

(
σ−1) , (C.116)

S(ρ) =
E2

+
δ

(
2(dθ − 1)σ
(d− 1)R

)dθ+ζ−5/2
ζ(d− 1)R2(ζ−θ−1/2)

dθ − 1 + . . . . (C.117)

Near the boundary we find the following homogeneous equation

z′′1 (σ)− dθ − 3
2σ z′1(σ)− dθ

4σ2 z1(σ) = 0 , (C.118)

whose solutions read
k1(σ) = σ−1/2 , k2(σ) = σdθ/2 . (C.119)

Since z1(R) = 0 and k1(σ) diverges when σ → 0, the solution of (C.118) is proportional to k2. Adapting
(C.107) to this case through (C.119) and (C.117) we obtain that

z1,inh(σ) =
E2

+
δ

4ζR3/2−d−θ+ζ

(dθ + ζ)(dθ + 2ζ − 1)

(
2(dθ − 1)
d− 1

)dθ+ζ−7/2
σζ−1/2+dθ + . . . , (C.120)

which vanishes for σ → 0 because ζ > 1.
Note that (C.120) in the limit σ → 0, z1 is well behaved and thus in the following calculation the
boundary contribution will be ignored being E+/δ ∼ δ → 0 when approaching saturation. We have
checked that, by employing the parametric reformulation (C.22), this happens also when dθ = 1. This is
not the case for (C.114) which will play an important role in determine the late time behaviour of the
entanglement entropy.

C.2.3.4.3 Approaching saturation. Let us now try to put things together. First, notice that as
the solution approaches its thermal value, we have that

zc → z̃∗ , z∗ → z̃∗ , (C.121)

where z̃∗ is associated to the tip of the static black hole geodesic, and at the same time

ρc → 0 , E+ → 0 , δ → 0 . (C.122)

In the following we will try to relate the above quantities in their approach to equilibrium values. To
this purpose it turns out to be useful to relate the three infinitesimal quantities ρc, δ and E+ among
themselves.
First, one introduces a new infinitesimal parameter ε

ρc ≡ zcε . (C.123)

From (C.100) with F = 1 we have that

z∗ = zc

(
1 + dθ

2dε
2 +O(ε4)

)
, (C.124)

and also
z′−(ρc) = − dθ

dz∗
ρc +O(ρ3

c) = −dθ
d
ε+O(ε3) , (C.125)

where we recall that z− refers to the value of the solution at ρ = ρc coming from the hvLif part living in
[0, ρc]. From (3.78) with E+ = 0 and F = 1 we find

v′c = dθz
ζ
c

dz∗
ε+O(ε3) = dθ

d
zζ−1
c ε+O(ε3) , (C.126)
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and finally, plugging (C.126) and (C.123) into (3.78), we get that

E+ = dθ
2d (F (zc)− 1)zθ−ζc εd . (C.127)

By employing (C.101), (C.112) and (C.113) we can write z(ρ) at ρ = ρc as follows

z(ρc) = z0(ρc) + δ
[
α1j1(ρc) + α2j2(ρc) + z1,inh(ρc)

]
, (C.128)

where the constants α1 and α2 are constrained by the boundary condition z1(R) = 0. Since z′(ρ) has a
jump at ρ = ρc, the matching constraint (3.72) allows to relate (C.125) and (C.128) (the latter one gives
z′+(ρc)), namely we have

z′+(ρc)− z′−(ρc) = z1−ζ
c v′c

2
(
1− F (zc)

)
, (C.129)

which gives

z′+(ρc) = z′−(ρc) + z1−ζ
c v′c

2
(
1− F (zc)

)
= z′0(ρc) + δ

[
α1j
′
1(ρc) + α2j

′
2(ρc) + z1,inh

′(ρc)
]
. (C.130)

When d > 2, (C.128) and (C.130) become respectively

zc = z̃∗ −
dθ
2dF (z̃∗)

z2
c

z̃∗
ε2 + δ

(
α1 + α2z

2−d
c ε2−d)+O(ε4) , (C.131)

dθ
d

(
1− F (zc)

2 − 1
)
zc
z∗
ε = −dθ

d
F (z̃∗)

zc
z̃∗
ε+ δα2(2− d)z1−d

c ε1−d +O(ε3) , (C.132)

Since zc → z̃∗ when ε→ 0, at first order we have zc/z̃∗ = 1 in (C.132), and therefore

δ = dθ(1− F (z̃∗))z̃d−1
∗

2dα2(d− 2) εd +O(εd+2) . (C.133)

Plugging this result into (C.131) we obtain

zc = z̃∗

[
1− dθ

2d

(
F (z̃∗) + 1− F (z̃∗)

2− d

)
ε2 +O(ε4)

]
. (C.134)

Instead, for d = 2 (C.128) and (C.130) become respectively

zc = z̃∗ −
2− θ

4 F (z̃∗)
z2
c

z̃∗
ε2 + δ

[
α1 + α2

(
log ε+ γE + log

√
Q0zc
2

)]
+O(ε4 log2 ε) , (C.135)

2− θ
2

(
1− F (zc)

2 − 1
)
zc
z∗
ε = −2− θ

2 F (z̃∗)
zc
z̃∗
ε+ α2δ

zcε
+ . . . . (C.136)

Notice that the constant factor multiplying α2 in (C.135) can be reabsorbed by a redefinition of α1

α̃1 ≡ α1 + α2γE + α2 log
√
Q0

2 . (C.137)

From (C.136) we find

δ = − (2− θ)[1− F (z̃∗)]z̃∗
4α2

ε2 +O(ε4 log ε) , (C.138)

which can be plugged into (C.135), giving

zc = z̃∗

{
1− (2− θ)[1− F (z̃∗)]

4 ε2 log ε− 2− θ
4

[
F (z̃∗) + 1− F (z̃∗)

α2
(α̃1 + α2 log z̃∗)

]
ε2
}
. (C.139)
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C.2.3.4.4 Time. Now we can proceed by evaluating the boundary time at first nontrivial order in ε.
By using (3.80) we get

t = ts + zc − z̃∗
z̃1−ζ
∗ F (z̃∗)

+ E+

ˆ R

ρc

z
dθ+2(ζ−1)
0

√
1 + z′20 /F (z0)

ρd−1F (z0) dρ+O(E2
+) , (C.140)

where we have employed the definition of saturation time given in (C.83) and we have approximated z
with z0 in the integral occurring in (C.140) because E+ ∝ εd. The integrand in (C.140) can be written
as h(ρ)/ρd−1 where h(0) is finite. Thus, when ρc → 0, the divergent part of the integral can be computed
as h(ρc) times the divergent part of integral of 1/ρd−1 between ρc and R. This gives for (C.140) the
following result

t− ts = zc − z̃∗
z̃1−ζ
∗ F (z̃∗)

+ E+z̃
dθ+2(ζ−1)
∗

F (z̃∗)
×


− log ε− I0 + . . . d = 2
(z̃∗ε)2−d

d− 2 + . . . d > 2
(C.141)

where I0 is a numerical constant containing the O(ε0) terms of the expansion. Now, using (C.127),(C.134)
and (C.139) we obtain

t− ts =


− (2− θ)z̃ζ∗

4

[
1 + 1− F (z̃∗)

F (z̃∗)

(
α̃1

α2
+ I0

)]
ε2 d = 2

− dθ
2d z̃

ζ
∗ε

2 d > 2
(C.142)

C.2.3.4.5 Area. The same strategy can be followed to compute the area. From (3.81) we find

A = 2πd/2

Γ(d/2)

ˆ ρc

0

ρd−1√1 + z′2

zdθ
dρ+

ˆ R

ρc

dρ
ρd−1

√
1 + z′2/F (z)

zdθ
√

1 +A2E2
+/F (z)

 (C.143)

= 2πd/2

Γ(d/2)

[
C0 + C1 −

E2
+

2 C2 +O(E4
+)
]
, (C.144)

where we have kept only the first non trivial order in E+ ∝ εd and the Ci are defined as follows

C0 ≡
ˆ ρc

0

ρd−1√1 + z′2

zdθ
dρ , C1 ≡

ˆ R

ρc

ρd−1

zdθ

√
1 + z′2

F (z) dρ , C2 ≡
ˆ R

ρc

dρρ1−dzdθ+2(ζ−1)
√

1 + z′2/F (z)
F (z) .

(C.145)
From (C.123), (C.125), (C.134) and (C.139) we get

C0 '
ρd−1√1 + z′2

zdθ

∣∣∣∣∣
ρ→ρ−c

ρc = zθcε
d

d
− d2

θz
θ
cε
d+2

2d2(d+ 2) +O(εd+4) . (C.146)

As for the functional C1, notice that its integrand is the same occurring in (3.29) (which is minimized by
z0) but the integration domain is (ρc, R) instead of (0, R). Since ρc → 0, we have that C1 is equal to the
static black hole area Abh plus small corrections, which can be originated both from the fact that now
the integration domain is not (0, R) and also from evaluating the integral at z = z0 + δz1. The second
kind of contribution, obtained by computing the variation of the integrand on z0, gives only a boundary
term (computed at ρ = ρc). Thus we have

C1 = Abh −
ˆ ρc

0

ρd−1

zdθ0

√
1 + z′20

F (z0) dρ+ δz1

(
ρd−1

zdθ
∂z′
√

1 + z′2/F (z)
∣∣∣
z=z0

) ∣∣∣∣
ρ=ρc

(C.147)

= Abh −
zθcε

d

d
− d2

θ[(d+ 1)F (zc)− (d+ 2)]
2d2(d+ 2) zθcε

d+2 + dθ
d

[zc − z0(ρc)] zθ−1
c εd +O(εd+4) , (C.148)
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where

zc − z0(ρc) =


− (2− θ)[1− F (zc)]

4 zc log ε d = 2

dθ[1− F (zc)]
2d(d− 2) zc ε

2 d 6= 2
(C.149)

As for C2, since it is already multiplied by E2
+ in (C.144), it is enough to compute it at z = z0 and

keep only the most divergent term (at ρ = ρc). This turns out to provide the same integral occurring in
(C.141) and for C2 we find

C2
∣∣
z0

= −z
dθ+2(ζ−1)
c

F (zc)
×


log ε+ I0 + . . . d = 2
(zcε)2−d

2− d + . . . d > 2
(C.150)

where I0 is the same quantity as in (C.141).
Finally, putting (C.146),(C.148) and (C.150) together we find

A(2)
reg = 2πd/2

Γ(d/2)
d2
θ[1− F (z̃∗)]z̃θ∗

2d2 ×


1− F (z̃∗)

4F (z̃∗)
ε4 log ε+ . . . d = 2(

d− 2
d+ 2 + 1− F (z̃∗)

4F (z̃∗)

)
εd+2

2− d + . . . d > 2
(C.151)

Finally, comparing (C.142) and (C.151), we find (3.95).

C.2.4 Initial conditions for the shooting procedure
The numerical analysis of the ordinary differential equations (3.40) and (3.41) for the strip and (3.67)
and (3.68) for the sphere employs the shooting method to relate {z∗, v∗} to {`/2, t} for the strip or {R, t}
for the sphere. The numerical procedure does not allow us to impose initial conditions at x = 0, so we
instead start from x = ε̃, where ε̃ is a small positive number.
Expanding the solution (z(x), v(x)) for both the strip and the sphere around x = 0, we have that

v = v∗ + 1
2 v
′′
∗ x

2 + o(x2) , z = z∗ + 1
2 z
′′
∗ x

2 + o(x2) , (C.152)

where z′(0) = v′(0) = 0 for parity and we have introduced the notation v′′∗ ≡ v′′(0) and z′′∗ ≡ z′′(0).
Plugging (C.152) into (3.40) and (3.41), for the strip we find

v′′∗ = dθz
ζ−2
∗ , z′′∗ = −dθ

z∗
F (v∗, z∗) , (C.153)

while for the sphere, from (3.67) and (3.68) we obtain

v′′∗ = dθ
d
zζ−2
∗ , z′′∗ = − dθ

z∗d
F (v∗, z∗) . (C.154)

From these expressions we can then read off initial conditions (v(ε̃), v′(ε̃)) and (z(ε̃), z′(ε̃)) for the shooting
algorithm.
Note that for both the strip and the sphere the sign of z′′∗ is opposite to that of dθ. It follows that we
must have dθ > 0 for our numerics to converge to a solution ending on the boundary at z = 0.

C.3 Strip in more generic backgrounds
In order to understand the terms of the metric determining the linear regime, let us consider the following
static background

ds2 = 1
z2dθ/d

(
−Q(z)dt2 − P (z)2

Q(z) dz2 + dx2
)
, (C.155)
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which reduces to the black hole (3.4) when Q(z) = z2(1−ζ)F (z) and P (z) = z1−ζ . By introducing the
time coordinate v as

dv = dt− P (z)
Q(z) dz , (C.156)

the metric (C.155) can be written as

ds2 = 1
z2dθ/d

(
−Q(z)dv2 − 2P (z)dvdz + dx2) . (C.157)

Here we consider the Vaidya background obtained by promoting Q to a time dependent function, i.e.

ds2 = 1
z2dθ/d

(
−Q(v, z)dv2 − 2P (z)dvdz + dx2) . (C.158)

Considering a strip in the spatial part of the boundary z = 0, its holographic entanglement entropy is
obtained by finding the extremal surface of the following functional area

A[v(x), z(x)] = 2`d−1
⊥

ˆ `/2

0

√
B

zdθ
dx , B ≡ 1−Q(v, z)v′2 − 2P (z)z′v′ , (C.159)

and the boundary conditions for v(x) and z(x) are given by (3.38). We only have to adapt the analysis
performed in 3.3.1 to the background (C.158). The equations of motion of (C.159) read

∂x
[
Qv′ + Pz′

]
= Qvv

′2/2 , (C.160)
∂x
[
Pv′
]

= dθB/z +Qzv
′2/2 + Pzv

′z′ . (C.161)

Choosing the thin shell profile

Q(v, z) = P (z)2 + θ(v)
[
Q(z)− P (z)2] , (C.162)

we have that for v < 0 the backgrounds is

ds2 = 1
z2dθ/d

(
− P (z)2dt2 + dz2 + dx2) , (C.163)

while for v > 0 the metric becomes (C.155). The equation (C.160) tells us that Qv′ + Pz′ is constant
for v 6= 0 but we recall that it takes two different values E− (for v < 0) and E+ (for v > 0). Since
v′(0) = z′(0) = 0, we have that E− = 0. Integrating across the shell as in 3.3.1, (C.161) implies again
that

v′+ = v′− ≡ v′c , at x = xc . (C.164)
Then (C.160) leads to

z′+ − z′− = − 1
2P (z) (Q(z)− P 2(z))v′c . (C.165)

From these equations, we get

E+ = (Qc − P 2
c )v′c

2 = −
(Qc − P 2

c )z′−
2Pc

, (C.166)

where Pc ≡ P (zc), Qc ≡ Q(zc) and again z′− = −
√

(z∗/zc)2dθ − 1. Thus, in the black hole part
xc < x 6 `/2 we have

v′ = E+ −Q(z)z′

P (z) , (C.167)

z′2 = Q(z)
P (z)2

[(
z∗
z

)2dθ
− 1
]

+ (Qc − P 2
c )2

4P 2
c P (z)2

[(
z∗
zc

)2dθ
− 1
]
≡ H(z) . (C.168)

Repeating the steps explained to get (3.63) and (3.64), in this case we find

t =
ˆ zc

0

P (z)
Q(z)

(
E+

P (z)
√
H(z)

+ 1
)
dz , A = 2`d−1

⊥ zdθ∗

ˆ zc

0

dz

z2dθ
√
H(z)

. (C.169)
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C.3.1 Linear growth
At this point we take the limit of large z∗, keeping zm and zc finite. In this limit, (C.168) becomes

z′2 =
(
Q(z)
z2dθ

+ (Qc − P 2
c )2

4z2dθ
c P 2

c

)
z2dθ
∗

P (z)2 = H(z) . (C.170)

The equation ∂zmH(zm) = 0, which defines zm, reads

(Q′mPm − 2QmP ′m)zm − 2dθPmQm − 2P ′mγcz2dθ+1
m = 0 , (C.171)

where the subindex m denotes that the corresponding quantity is computed at z = zm and we defined

γc ≡
(Qc − P 2

c )2

4z2dθ
c P 2

c

. (C.172)

Introducing γ∗c ≡ γc|zc=z∗c , the equation for z∗c reads

γ∗c = −Qm
z2dθ
m

, (C.173)

which reduces to the second equation of (C.56) for the case considered in the Appendix C.2. Then,
plugging (C.173) into (C.171) we find

Q′mzm − 2dθQm = 0 , at zc = z∗c , (C.174)

which can also be written as
∂zm

(
Qm

z2dθ
m

)
= 0 . (C.175)

Repeating the steps done to get (C.69), (C.70) and (C.71), in this case we obtain

`/2 =
√
π Γ(1/(2dθ) + 1/2)

Γ(1/(2dθ))
z∗ −

log ε√
H2

, (C.176)

t = − E+

Qm
√
H2

log ε = − zdθ∗

zdθm
√
−H2Qm

log ε , (C.177)

A(3)
reg = − 2`d−1

⊥
zdθ∗

z2dθ
m

√
H2

log ε . (C.178)

Thus, (C.177) and (C.178) allow us to find that

A(3)
reg = 2`d−1

⊥

√
−Qm
zdθm

t . (C.179)

We conclude that P (z) does not affect the linear growth regime.

C.4 Vaidya backgrounds with time dependent exponents
In this appendix we consider the following generalization of (3.11)

ds2 = z2θ(v)/d−2
(
−z2(1−ζ(v))F (v, z) dv2 − 2z1−ζ(v) dv dz + dx2

)
, (C.180)

where we have introduced a temporal dependence in the Lifshitz and hyperscaling exponents. Let us
discuss the energy-momentum tensor when the metric (C.180) is on shell. For simplicity, we consider
only the backgrounds (C.180) with F (v, z) = 1 identically.
The first case we consider is given by θ(v) = const. The associated energy-momentum tensor reads

Tµν = T (hs)
µν + T (ζ)

µν , (C.181)
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where T (hs)
µν is the part containing the hyperscaling exponent, which occurs also when ζ(v) is constant,

namely

T (hs)
µν =

 −z−2ζ(dθ + 1 + θ/d)dθ/2 −z1−ζ(dθ + 1 + θ/d)dθ/2 0
− z1−ζ(dθ + 1 + θ/d)dθ/2 z−2dθ(θ/d− ζ + 1) 0

0 0 z−2[d2
θ(d− 1)/d+ 2ζ(ζ − 1 + dθ)] Id/2

 ,

(C.182)
(we have denoted by Id the d dimensional identity matrix), while T (ζ)

µν is the term due to ζ ′ 6= 0

T (ζ)
µν =

 0 0 0
0 0 0
0 0 zζζ ′ Id

 . (C.183)

Similarly, we can consider the situation where ζ(v) = const. It leads to

Tµν = T (hs)
µν + T (θ)

µν , (C.184)

where T (hs)
µν is (C.182) and

T (θ)
µν = θ′

z

 zζ−1[2 + log z
(
ζ − dθ − θ/d+ (θ′/d) log z

)]
(1− dθ log z) 0

(1− dθ log z) 0 0
0 0 zζ−1[2 + (d− 1)(dθ/d) log z

]
Id

 ,

(C.185)
which vanishes when θ(v) is constant, as expected. When both θ′(v) 6= 0 and ζ ′(v) 6= 0, we find that

Tµν = T (hs)
µν + T (ζ)

µν + T (θ)
µν + T (θζ)

µν , (C.186)

where T (hs)
µν , T (ζ)

µν and T (θ)
µν have been defined respectively in (C.182), (C.183) and (C.185), while T (θζ)

µν is
given by

T (θζ)
µν =

 −ζ ′θ′ log2(z) 0 0
0 0 0
0 0 0d

 , (C.187)

being 0d is the d× d matrix whose elements are zero.
It could be interesting to analyze the Null Energy Condition for these kind of backgrounds. Unfortunately,
since the inequalities turn out to be lengthy and not very illuminating, we will consider here only the
case of θ(v) = const. First, since a null vector with respect to the metric (C.180) is null also with respect
to (3.11), we can employ the vectors (3.14). Secondly, given the additive structure of Tµν in (C.181), we
can consider the results of 3.1 and add to them the contribution of T (ζ)

µν NµNν . The resulting inequalities
read

dθ
[
ζ(v)− 1− θ/d

]
> 0 , (C.188)[

ζ(v)− 1
][
dθ + ζ(v)

]
+ zζ(v)ζ ′(v) > 0 , (C.189)

which reduce respectively to (3.7) and (3.8) when ζ(v) = const, as expected. When θ = 0, the inequality
(C.188) tells us that ζ(v) > 1. As for (C.189), it allows, for instance, a profile with ζ ′(v) > 0. In the
critical case θ = d−1, (C.188) becomes ζ(v) > 2−1/d > 1 while (C.188) becomes [ζ(v)2−1]+zζ(v)ζ ′(v) >
0. Thus, for instance, profiles having ζ ′(v) > 0 are again allowed.
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Appendix D

Non-smooth boundaries and
hyperscaling

D.1 Backgrounds with hyperscaling violating factor
In this section we will review certain features of gravitational backgrounds with hyperscaling violating
factor[78, 143, 145]. In what follows we will follow the notation of [158] and consider a minimal dilaton-
Einstein-Maxwell action, that is

S = − 1
16πG

ˆ
dd+2x

√
−g
[
R− 1

2(∂φ)2 + V (φ)− 1
4e

λφFµνF
µν

]
, (D.1)

where, motivated by the typical exponential potentials of string theories, we will consider the following
potential

V = V0e
γφ. (D.2)

The equations of motion of the above action read

Rµν + V (φ)
d

gµν = 1
2∂µφ∂νφ+ 1

2e
λφ
(
F ρµFρν −

gµν
2d F

2
)
,

∇2φ = −dV (φ)
dφ

+ 1
4λe

λφF 2, ∂µ
(√
−geλφFµν

)
= 0. (D.3)

It is straightforward to find a solution to these equation, namely the black brane

ds2 = L2

r2

(
r

rF

)2 θd (
−f(r)dt2

r2(z−1) + dr2

f(r) + d~x2
d

)
, f(r) = 1−m rdθ+z,

Ftr =
√

2(z − 1)(dθ + z)rdθ+z−1, φ =
√

2dθ(z − 1− θ/d) log r. (D.4)

which solve (D.3) if we choose the parameters in the action to be

V = (dθ + z)(dθ + z − 1)
L2

(rF
r

) 2θ
d

, λ = −2 θ + ddθ√
2ddθ(dz − d− θ)

, γ = 2θ
d
√

2dθ(z − 1− θ/d)
. (D.5)

Here L is the radius of curvature of the space-time and rF is a scale which can be interpreted as
the gravitational dual of the Fermi radius of the theory living on the boundary. A charged black brane
solution would need more gauge fields to support its charge, although in what follows we restrict ourselves
to the neutral background.

This geometry is a black brane background whose Hawking temperature is

T = dθ + z

4π rzH
, (D.6)
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where rH is the horizon radius defined by f(rH) = 0. In terms of the Hawking temperature the thermal
entropy can be computed to be

Sth =
(

4π
dθ + z

) dθ
z LdVd

4G rd−dθF

T
dθ
z . (D.7)

It is also interesting to evaluate the quadratic action for a small perturbation above the vacuum
solution (D.4). This may be used to compute two point function of the energy momentum tensor. To
proceed we will consider a perturbation over the vacuum in which we let vary only the metric

gµν = ḡµν + hµν , φ = φ̄, Aµ = Āµ. (D.8)

where the “bar” quantities represent the vacuum solution (D.4). It is then straightforward to linearize
the equations of motion, leading to

R(1)
µν + V (φ̄)

d
hµν = 0, 1√

ḡ
∂µ

(√
ḡhµν∂ν φ̄

)
= 1

2 ḡ
µν∂µh∂ν φ̄, F̄µν∂µh = 0. (D.9)

Here the linearized Ricci tensor is given by

R(1)
µν = 1

2
(
−∇̄2hµν − ∇̄µ∇̄νh+ ∇̄σ∇̄νhσµ + ∇̄σ∇̄µhσν

)
(D.10)

= 1
2
(
−∇̄2hµν − ∇̄µ∇̄νh+ ∇̄ν∇̄σhσµ + ∇̄µ∇̄σhσν + R̄σνh

σ
µ + R̄σµh

σ
ν − 2R̄λµσνhλσ

)
.

Moreover for the Ricci scalar one gets

R(1) = ḡµνR(1)
µν − R̄µνhµν = −∇̄2h+ ∇̄µ∇̄νhµν − R̄µνhµν . (D.11)

In order to solve the equations of motion one needs to properly fix the gauge freedom. In our case it
turns out to be useful to choose a covariant gauge ∇µhµν = 1

2∇νh, which however still does not fix
all redundant degrees of freedom. Indeed, we fix the remaining ones by setting hri = h = 0 and thus
∇µhµν = 0 so that we reduce to a transverse and traceless gauge. It is easy to see, with this constraint
and gauge choice, that the equation of motion of the scalar field at first order will be identically satisfied
and one only needs to solve the Einstein equations, which, generally, reduce to further equation of motion
for a scalar field. Indeed taking into account that

R̄µσh
σ
ν = −1

d

(
V (φ̄) + 1

4e
λφ̄F̄ 2

)
hµν + 1

2h
σ
ν

(
∂µφ̄∂σφ̄+ eλφ̄F̄ ρµ F̄ρσ

)
(D.12)

and using the transverse-traceless gauge we arrive at

∇̄2hµν + 2R̄αµβνhαβ + 1
2de

λφ̄F̄ 2hµν −
1
2e

λφ̄F̄ρσF̄
ρ
(µh

σ
ν) = 0. (D.13)

Using the parameters of the vacuum solution, one could in principle solve the above differential equations
with given boundary condition. Then by making use of AdS/CFT correspondence from the quadratic
action one can compute the two point function of the energy momentum tensor for a strongly coupled
field theory whose gravitational dual is provided by a geometry with hyperscaling violating factor using
holographic renormalization.
In general (D.13) cannot be solved analytically, and since for z 6= 1 we do not have a good control on
the asymptotic behaviour of the metric (in ananlogy with the Fefferman-Graham expansion), it is hard
to use holographic renormalization techniques (see however [186] for a related issue).

On the other hand, setting z = 1, and thus recovering Lorentz symmetry in the bulk metric, we can
rely on the holographic renormalization to compute the stress-energy tensor two point’s function, namely
because the action reduces to a dilaton-Einstein model with a simpler equation of motion

∇̄2hµν + 2R̄αµβνhαβ = 0. (D.14)
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It is however important to note that the null energy condition for z = 1 implies that θ(d− θ) ≤ 0, that
is either θ ≤ 0 or θ ≥ d. In all our computations we implicitly assumed dθ ≥ 1, playing dθ the role of
the effective dimension, although a solution with θ > d may not be consistent[78].

Moreover, for θ = 0 it is clear that all equations reduce to that of Einstein gravity. In particular one
gets [187]

hlk(r, x) = Γ (d+ 1)
π
d+1

2 Γ
( 1+d

2
) ˆ dyd+1

(
r

r2 + (x− y)2

)d+1
J ik(x− y)J lj(x− y)Pijab hab(y), (D.15)

where hab is the boundary value of metric and (see [187])

Jji (x) = δij − 2xjx
i

|x|2
, Pijab = 1

2(δiaδjb + δibδja)− 1
d+ 1δijδab. (D.16)

Since the quadratic on-shell action is a divergent quantity one needs to consider both boundary and
counterterms in order to properly compute the two point function. In the present case for z = 1 the
terms of the renormalized action which could contribute to quadratic order perturbatively in the metric
are1

Stotal = S − 1
8πG

ˆ
dd+1x

√
γK − 1

8πG

ˆ
dd+1x

√
γ
(rF
r

) θ
d dθ
L
, (D.17)

where S is the original action (D.1). To evaluate the quadratic action it is also useful to noteˆ
dd+1x

√
γ K = ∂n

ˆ
dd+1x

√
γ = r

L

(rF
r

) θ
d

∂r

ˆ
dd+1x

√
γ, (D.18)

with
√
γ =

(
L

r

)d+1(
r

rF

)θ+ θ
d
(

1 + 1
2h−

1
4h

i
jh
j
i + 1

8h
2 + · · ·

)
. (D.19)

By plugging the linearized solution back into the action one finds (see [187] for more details)

Stotal = 1
4

Ld

16πG
d+ 2
d

Γ(d+ 2)
π
d+1

2 Γ
( 1+d

2
) ˆ dd+1x dd+1y

hab(x)Gabcd(x, y)hcd(y)
(x− y)2(d+1) , (D.20)

where Gabcd(x, y) = J ia(x− y)Jbj (x− y)Pijcd. Having found the quadratic on-shell action the two point
function of the energy momentum tensor can be found as follows

〈Tab(x)Tcd(y)〉 = CT
(x− y)2(d+1)Gabcd(x, y). (D.21)

where
CT = Ld

8πG
d+ 2
d

Γ(d+ 2)
π
d+1

2 Γ
( 1+d

2
) , (D.22)

For z = 1 and θ 6= 0 one can still find a solution for the equation of motion and evaluate the quadratic
action. In this case going through the all steps mentioned above, one arrives at

CT = Ld

8πGrd−dθF

d+ 2
d

Γ(dθ + 2)
π
d+1

2 Γ
( 1+2dθ−d

2
) . (D.23)

It is worth noting that the above expression may also be found from the fact that the equations of motion
of metric perturbations in traceless-transverse gauge reduce to the equation of motion for a scalar field
and therefore the corresponding two point function may be read from the one of a scalar field [78].

For z 6= 1, although it is not possible to find holographically the general form of the two point function
of Tµν , we may still have a chance to compute the equal time correlator. Although we have not gone
through the details of this idea, but from the analogous results of the scalar field [78] one might expect
to get the following expression

CT ∝
Ld

8πGrd−dθF

Γ(dθ + z + 1)
π
d+1

2 Γ
( 2z−1+2dθ−d

2
) . (D.24)

We see that here, differently from the holographic entanglement entropy, the coefficient does in fact
depend on the Lifshiz exponent z.

1Note that we are using Euclidean signature for the metric (see for example [188, 189]).
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D.2 Explicit expressions for ϕ2i and a2i for i = 1, 2, 3
In this appendix we will present the explicit form of the coefficients ϕ2i for the first few orders. To
proceed let us start with the following series Ansatz for ϕ

ϕ(h) = Ω + ϕ2h
2 + ϕ4h

4 + ϕ6h
6 +O(h8). (D.25)

Plugging this series in the equation of motion of ϕ one arrives at the equation (4.15) which can be solved
order by order. Doing so one finds

ϕ2 = − n cot Ω
2(dθ − 1) , ϕ4 = −n cot Ω[(−2n+ (dθ − 1)2)n cot2 Ω + (dθ − 1)2(6− 2dθ + n)]

8(dθ − 3)(dθ − 1)3 ,

ϕ6 = −8(dθ + 2)n2 − 22(dθ − 1)2n+ (3dθ − 7)(dθ − 1)3

48(dθ − 5)(dθ − 3)(dθ − 1)5 n3 cot5 Ω

−2(dθ(dθ + 3)− 20)n− (3dθ − 13)(dθ − 1)2 − 11n2

24(dθ − 5)(dθ − 3)(dθ − 1)3 n2 cot3 Ω

− (2dθ − n− 6)(4dθ − n− 20)
48(dθ − 5)(dθ − 3)(dθ − 1) n cot Ω. (D.26)

It is clear from these expressions that the solution breaks down for dθ = 2k + 1, k = 0, 1, · · · . In this
case one needs to modify the Anstatz by adding a logarithmic term. For example for dθ = 3, using the
Ansatz

ϕ(h) = Ω + ϕ2h
2 + ϕ4h

4
(
c+ 1

2 log h2
)

+O(h6), (D.27)

one finds2

ϕ2 = −n4 cot Ω, ϕ4 = −n
2

64 (n− 4 + n cos 2Ω) cot Ω csc2 Ω, (D.28)

where c remains unfixed. Similarly for dθ = 5 for the Ansatz

ϕ(h) = Ω + ϕ2h
2 + ϕ4h

4 + ϕ6h
6
(
c+ 1

2 log h2
)

+O(h8) (D.29)

one arrives at

ϕ2 = −n8 cot Ω, ϕ4 = n

512 [(n− 8)n cot2 Ω− 8(n− 4)] cot Ω,

ϕ6 = (n− 4)(7n− 16) n cot4 Ω− 4(n(11n− 40) + 32) cot2 Ω + 32(n− 4)
12288 n2 cot Ω, (D.30)

with unspecified c.
Having found the coefficients ϕ2i it is straightforward to find the coefficients a2i appearing in the

equation (4.17). The results are

a0 = sinnΩ, a2 = ϕ2(2ϕ2 + n cot Ω) sinn Ω (D.31)

a4 = 1
2[n

(
2ϕ3

2 + ϕ4
)

sin 2Ω− ϕ2 sin2 Ω
(
ϕ2
(
4ϕ2

2 + n− 4
)
− 16ϕ4

)
+ ϕ2

2(n− 1)n cos2 Ω] sinn−2Ω.

Note that for the particular values of dθ = 1, 3 one needs to use the proper results of ϕ2i given in this
appendix.

2See also [120]
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