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Abstract

Three different models of motile systems are studied: a vibrating legged
robot, a snake-like locomotor, and two kinds of flagellar microswimmers.

The vibrating robot crawls by modulating the friction with the substrate.
This also leads to the ability to switch direction of motion by varying the vibra-
tion frequency. A detailed account of this phenomenon is given through a fully
analytical treatment of the model. The analysis delivers formulas for the average
velocity of the robot and for the frequency at which the direction switch takes
place. A quantitative description of the mechanism for the friction modulation
underlying the motility of the robot is also provided.

Snake-like locomotion is studied through a system consisting of a planar,
internally actuated, elastic rod. The rod is constrained to slide longitudinally
without slipping laterally. This setting is inspired by undulatory locomotion
of snakes, where frictional resistance is typically larger in the lateral direction
than in the longitudinal one. The presence of constraints leads to non-standard
boundary conditions, that lead to the possibility to close and solve uniquely the
equations of motion. Explicit formulas are derived, which highlight the con-
nection between observed trajectories, internal actuation, and forces exchanged
with the environment.

The two swimmer models (one actuated externally and the other internally)
provide an example of propulsion at low Reynolds number resulting from the
periodical beating of a passive elastic filament. Motions produced by generic
periodic actuations are studied within the regime of small compliance of the
filament. The analysis shows that variations in the velocity of beating can
generate different swimming trajectories. Motion control through modulations
of the actuation velocity is discussed.
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Introduction

The study of the mechanics of walking, crawling, swimming, and flying has
been an active field of research for decades, and it is still developing. Pioneering
works include those by zoologists like J. Gray [1, 2] or R. M. Alexander [3] and
applied mathematicians like G.I. Taylor [4] or J. Lighthill [5]. Since their times
biological locomotion investigations have explored a wide range of phenomena,
from the swarms of bacteria to the migration of tumour cells [6]. Lessons learnt
from nature have been also used to design of bio-inspired robotic locomotors, to
the point that, now, boundaries between biologic and robotic motility studies
have become permeable and cross-fertilization between the two field is occur-
ring. Practical applications of bio-inspired engineering range from legged and
snake-like robots for search and rescue operations [7] to swimming microrobots
targeted to biomedical purposes, such as diagnostics or drug delivery [8, 9].

The field of locomotion mechanics is highly cross-disciplinary. It involves en-
gineering, physics, mathematics and biology, both experimental and theoretical.
From the theoretical viewpoint a modelling effort is often needed. In particular,
a reductionist approach in the description of (otherwise too complex) real sys-
tems can deepen the understanding of the key physical mechanism underlying
motility. This is the spirit guiding this thesis. Three different models of motile
systems are formalized and analysed: a vibrating legged robot [10], an active
elastic snake-like locomotor [11], and two kinds of flagellar swimmers [12].

The three systems exploit different locomotion strategies and they are anal-
ysed with different mathematical tools. They are unified by the fundamental
question: what makes locomotion possible? When we refer to locomotion we
are implicitly considering two things: the locomotor and the environment it is
interacting with. In particular, we need to formulate the physical laws describ-
ing the mechanical interactions between the two. In the case studies presented
here the interaction is given by friction. In general, an object interacting with
a frictional environment can be subject to forces that either oppose or sup-
port its motion in a given direction. We can define as a “frictional locomotor”
a propelling object undergoing periodic shape changes alongside with periodic
frictional interactions with the environment. Every frictional locomotor relies
on a general propulsion “principle” that can be stated in the following way.
In order to propel, a locomotor must mobilize at each period of interaction a
larger amount of frictional force supporting its motion in a given direction, and
a smaller amount of force opposing it. This “principle”, despite its apparent
simplicity, applies in many non-trivial ways due to a) locomotor kinematics,
leading to a restriction of possible movements enabling propulsion and b) dif-
ferent frictional laws of interaction with the environment. The three models
reported here illustrate this non-triviality.

9



10 INTRODUCTION

Consider the case of the body-and-legs crawler in Chapter 1. The model
describes a vibrating ‘bristle-bot’ consisting of body with an internal rotary
engine, driving vertical oscillations, and rigid legs attached to it by rotational
springs. Legs exert contact friction on the substrate, and friction is proportional
to the normal force on the ground. So, in this case, friction is modulated: it is
stronger when vertical inertia pushes down and it is weaker when inertial force
tends to lift the robot up. Legs slide on the substrate with the same frequency
of the rotary engine, and we have net propulsion in the direction opposite to
the sliding occurring during downward pushes. The question of which direction
of motion the system chooses is non-trivial. Indeed, the legged robot moves
backward for small frequencies, inverts the direction of motion, and forward for
larger frequencies of excitation. This happens because the phase of oscillation
between the forcing term and leg sliding changes, just like in the case of a driven
spring-mass-dumper system. The analysis in Chapter 1 puts in a quantitative
framework this physical picture. The governing equations are solved through a
rigorously proven asymptotic scheme, and a formula for the inversion frequency
is derived. A formula for the average robot velocity in terms of normal force
and legs relative velocity is also obtained.

For the snake-like locomotion and flagellar swimming, we consider no active
modulation of friction. Both cases consist in elongated bodies subjected to a
field of friction forces that depends on the direction of motion. Because of the
structural conformation of their bellies, real snakes are subject to a frictional
force opposing lateral slip that is larger compared to the force opposing lon-
gitudinal sliding. Fluid forces on a small and slender object like a flagellum
act, at first approximation, in the same way: friction is larger in the lateral
direction and smaller in the longitudinal one. The anisotropy of friction is cru-
cial for both system to apply the general “principle” stated earlier to generate
propulsion. Frictional forces are dry in the first case case and viscous in the
second, however. Moreover, the two model locomotors analysed differ in their
ability to move: the “snake” is modelled as an elastic inextensible rod which is
actuated by a distributed internal torque, while the flagellar swimmers consist
in a rigid head attached to a passive elastic tail. In spite of these similarities,
the two model systems are substantially different in the details, as explained
further below.

The analysis of snake-like locomotion in Chapter 2 is carried out in the for-
mal limit of infinite ratio between lateral and longitudinal friction, so that no
lateral slip is allowed. The model snake then moves along a curve on a plane,
which is created during motion. Once this curve is known the kinematics of
the system simplifies: since the active-rod-snake is inextensible, the system has
only one degree of freedom, namely the curvilinear coordinate of one end of
the rod. The force balance equations for material and external friction reac-
tions are, on the other hand, non-trivial. Previous studies did not contain a
derivation of such forces as a result of internal activity. We are able to close the
equations of motion thanks to a careful choice of boundary conditions, proving
the well-posedness of the problem and reducing the dynamics of the system to
the equation for the end-point coordinate only. The interplay between internal
activation, kinematics, and forces is captured and discussed.

Also flagellar swimming consists in an elastic structure interacting with the
environment in an anisotropic way. This is an approximation of the interaction
between a slender object and the surrounding fluid in the low Reynolds num-
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bers regime. In Chapter 3 two kinds of swimmers are analysed consisting of a
spherical rigid head and an elastic tail. In the first one, the tail is clamped to
the head and oscillations of the system are caused by external actuation. In the
second one, head and tail are connected by a joint allowing the angle between
them to vary periodically, as a result of internal actuation. Previous studies
on these models were restricted to sinusoidal oscillations of either the external
or the internal actuation, showing that the swimmers can in fact propel while
moving on average along a straight line, whose direction is given by the sym-
metry axis around which beating takes place. The study reported in Chapter
3 extends these results to motions produced by generic (non-sinusoidal) peri-
odic actuations within the regime of small compliance of the flagella. We find
that modulation in the velocity of actuation can provide a mechanism to select
different directions of motion. With velocity modulated inputs the externally
actuated swimmer can translate laterally with respect to the symmetry axis of
beating, while the internally actuated one is able to move along curved trajec-
tories. The results are presented in the spirit of geometric robotic locomotion,
and illustrated through the use of motility maps.





Chapter 1

Legged Crawling

Together with swimming, flying [3, 16, 17], walking, running and hopping [23],
research has focused on crawling gaits. Both soft and hard devices have been
designed in order to crawl over a surface in the presence of a directional (asym-
metric) dynamic friction coefficient, creating a mechanical ratchet [21, 28, 29].
A different example of crawling locomotion is given by gastropods, which glide
over a mucus layer by generating travelling waves of localized contraction: by
sliding over the rapidly contracting part and sticking in the remaining part they
produce the tractions necessary for propulsion [18, 26, 27]. Caterpillars [15] and
soft robots [31] can detach partially from the substrate: they move by exert-
ing a grip on the ground with their leading limbs, pulling forward the trailing
(detached) part of their bodies. In all these systems, a periodic internal activa-
tion can lead to sustained propulsion through a variable interaction between the
body of the locomotor and the environment, alternating high friction in some
parts and low friction in others during one period [32].

Vibrating legged robots provide a different, but related example of such sys-
tem. They have been proposed as model locomotors to study the emergence
of collectively organized motion [22]. Moreover, they have recently been the
subject of thorough theoretical and experimental investigations in the robotics
literature [13, 14, 25]. Nevertheless the study of their individual propulsion
mechanism still offers many interesting and challenging questions. It has been
suggested [22] that net displacements come from the modulation of friction in
time due to the oscillations of the normal forces, leading to a stick-slip motion
of their feet. A bristle-bot would move forward during the stick phase, which
occurs because of the larger frictional forces caused by the robot pushing more
forcefully downwards during one phase of its vertical oscillations. When such
oscillations causes a decrease of the vertical pushing, then the frictional force is
reduced and the robot feet slip on the ground. This results in a much smaller
horizontal force in the backward direction; the periodic vertical oscillations are
then accompanied by a net forward displacement. DeSimone and Tatone [19]
have proposed a simplified model to study this mechanism, in which the tan-
gential frictional force is given by

T = −µNẊ

13



14 CHAPTER 1. LEGGED CRAWLING

where N is the normal reaction force exerted by the (rigid) substrate, Ẋ is the
foot velocity and µ is a phenomenological proportionality constant. A striking
observation in [19] is that the robot may be able to switch direction of motion by
tuning the frequency of the engine powering the vertical oscillations. The goal
of this Chapter is to investigate this issue and the whole propulsive mechanism
of bristle-bots in detail.

Through a full analytical treatment of the bristle-bot model, we are able
to provide an approximate expression for the average velocity and an explicit
formula for the inversion frequency, namely,

Ωinv =

√
k

M

1

L cosα
(1.1)

where M is the total mass of the robot, L is the length of the legs, α is their
angle in the unloaded state and k is the rotational stiffness of the spring joining
the legs to the robot’s body (see Fig.??). As for the average velocity v̄, we prove
that the foot velocity Ẋ stabilizes after an initial transient, getting close to a
periodic function given by the sum Ẋ ≃ v̄ + Ẋosc where

v̄ ≃ −
1

N̄
⨏ NẊosc , (1.2)

with ⨏ denoting time average, and N̄ being the average value of the normal
force N (which is also close to a periodic function). Formula (1.2) puts in
a quantitative framework the stick-slip picture. Indeed, the average velocity v̄
proves to be the negative of a weighted average of Ẋosc, the feet velocity relative
to v̄, the weight being the reactive normal force N transmitted by the ground
during the oscillations. Therefore, in order to move, say, forward, the robot legs
exploit a stronger grip due to a larger normal force when sliding backwards, and
then recover when N is smaller.

The argument above explains why the average velocity of the robot may be
non-zero. The question of determining the actual direction of motion, i.e., the
sign of v̄, is more subtle and depends, as (1.2) indicates, on the relative phase
between the oscillations Ẋosc of the feet and of the normal force N . This is
discussed in detail in Section 1.3.

The rest of the Chapter is organized as follows. We set up the equations of
motion in Section 1.1 and solve them formally through an asymptotic expansion
in Section 1.2. Therein we calculate the first three orders of such expansion,
obtaining (1.1) and the expression for the approximate average velocity. The
convergence of our asymptotic solution, together with its regularity, periodicity
and stability are analysed in the Appendix. In Section 1.3 we derive (1.2) and
provide a quantitative description of the locomotion process.

1.1 The model

We consider the robot legs as massless and rigid, joined to the body with a
rotational spring of stiffness k, while we assume that their feet are in frictional
contact with the substrate. The system is driven by a force FΩ internal to the
body coming from a mass oscillating vertically at frequency Ω. For simplicity,
we assume that rotations of the body are not allowed and that the legs are
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Figure 1.1: Schematic description of the model bristle-robot.

always in contact with the substrate. So the only degrees of freedom in our
model are the horizontal coordinate of the body u, and the deviation ϕ from
the angle in the unloaded state α, namely the angle the legs form with the
vertical direction when no torque is exerted on the rotational springs. We remark
that real bristle-bots are known to display typically more complex dynamics.
Nevertheless, there exist settings (e.g., robots moving inside a closely fitting
channel or robots resting on rubber feet of large transversal width as in [28])
where our one-linear-degree-of-freedom assumption would not be too far from
reality.

Balancing all forces we end up with the following equations of motion

Mḧ = N(t) −Mg + FΩ(t) (1.3)

k ϕ = N(t)L sin(α + ϕ) − µN(t)ẊL cos(α + ϕ) (1.4)

Mü = −µN(t)Ẋ (1.5)

where N is the normal reaction force exerted by the (rigid) substrate, M is the
body mass, L is the length of the legs while

h = L cos(α + ϕ) and X = u +L sin(α + ϕ) .

We will first discuss a heuristic approach to solve the problem using an
asymptotic expansion in terms of a small parameter. Instead of solving the
problem directly, we will pursue the following strategy: we first give an ansatz
on N by choosing it in a suitable family of oscillatory functions depending on
parameters. Then we find an asymptotic solution to equations (1.4) and (1.5)
for the variables ϕ and v = u̇, that will depend on our choice of N . We then
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obtain the expression for FΩ from (1.3), and we find the appropriate N , after
tuning the parameters, in order to have an approximate solution to the system
in the case when the robot is driven by an oscillating internal force.

1.2 Formal asymptotics

Let us use the following ansatz for the normal force

N(t) = N∗
+ Ñ sin Ωt + (N c

2 cos 2Ωt +Ns
2 sin 2Ωt) + o.h.

Here N∗ stands for the approximate average of the normal force, for which we
take

N∗
=Mg .

This choice will be justified by the results in Section 1.3. The term o.h. stands for
“other harmonics” of any order, which can be neglected at first approximation.
Specifically, we are considering the normalized normal force n, where

N(t) = N∗n(Ωt) ,

to be a power series expansion in the parameter η in which the first three orders
are given

n(τ) = 1 + η sin τ + η2
(nc2 cos 2τ + ns2 sin 2τ) +O(η3

) . (1.6)

The coefficients (nc2, n
s
2) are the tuning parameters that will be chosen appropri-

ately later, while we assume that η, namely the ratio between the amplitude of
the first “relevant” harmonic and the average normal force, is a small parameter

Ñ

N∗
= η ≪ 1 .

1.2.1 Non-dimensionalization and orders of magnitude of
the parameters

We now normalize the dynamical variables, which can also be expanded into
power series of η, as show below. By defining the constants

σ = sin(α) and χ = cos(α)

together with the angle ε given by

ε =
N∗Lσ

k
(1.7)

we determine the new dynamical variables (θ,w) through the equalities

ϕ(t) = ε θ(Ωt) and v(t) = εLχΩw(Ωt) . (1.8)

Applying all the definitions above we can rewrite equations (1.4) and (1.5) as
the equivalent system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ = n(τ)
sin(α + εθ)

σ
− ξ n(τ)(w + θ̇

cos(α + εθ)

χ
)

cos(α + εθ)

χ

ẇ = −λn(τ)(w + θ̇
cos(α + εθ)

χ
)

(1.9)
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where τ = Ωt is the non-dimensionalized time, while

ξ =
µN∗L2χ2Ω

k
and λ =

µN∗

MΩ
. (1.10)

Finally we normalize equation (1.3), obtaining

−(
σω

χ
)

2

θ̈
sin(α + εθ)

σ
− ε

σω2

χ
θ̇2 cos(α + εθ)

χ
= n(τ) − 1 + f(τ)

(1.11)

where f and ω are, respectively, the normalized force and frequency defined by
the equations

FΩ(t) = N∗f(Ωt) and Ω =

√
k

M

ω

Lχ
. (1.12)

In the next section we will formally solve (1.9), by calculating the asymptotic
expansions up to the second order

θ = θ0 + ηθ1 + η
2θ2 +O(η3

) and w = w0 + ηw1 + η
2w2 +O(η3

) (1.13)

by first making the following assumptions on the parameters, needed in order
to enforce the separation between O(1) quantities and smaller ones. We take

ω , ξ , λ ,
σ

χ
= O(1) and ε = O(η2

) . (1.14)

Such a choice of orders is always possible. Indeed we can take σ,χ = O(1),
provided that we exclude the cases in which the legs are either close to perpen-
dicular or close to parallel to the body of the robot. Then we assume ω = O(1),
that is coherent with the fact that, as we will see, these are the order of values
of ω around which the inversion of the direction of motion occurs, and that this
is precisely the regime we are interested in. Finally, we can first set ε to be of
order O(η2), and then, exploiting the fact that ξ and λ are the only parameters
depending on µ, we can assume that the latter is in a range of values consistent
with (1.14).

We only stress here the fact that hypothesis (1.14), and specifically the one
on ε, are not strictly necessary to apply the solving technique developed here,
but they simplify consistently the formal developments. In particular, in the
case ε = O(ηK) with either K = 0 or K = 1 a similar analysis is still possible.
However, a more complicated function for n instead of (1.6) should be used,
making the solution of the formal asymptotics, as well as the calculations needed
for proving the rigorous results, more involved.

1.2.2 Asymptotic expansion

We remark again that up to now we have just rewritten equations (1.4) and (1.5)
in the completely equivalent system (1.9). From now on, we proceed formally to
find approximating solutions to our problem. In the Appendix we will provide
a rigorous proof that those solutions are indeed good approximations of the
solutions of the original system, by using theorems from perturbation theory of
periodic ODEs.
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Taking ε = cη2, with c being a fixed constant, we replace the series expansions
(1.13) of θ and w in (1.9) and develop both sides of the equations into power
series with respect to η. By matching coefficients of equal powers, we end up
with a sequence of systems to be solved successively. At zero-order we have

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

θ0 = 1 − ξ (w0 + θ̇0)

ẇ0 = −λ (w0 + θ̇0)

We will prove in the Appendix that this equation, and the others to come, have
only one periodic solution and every other solution converge asymptotically to
such periodic one. We take as (θj ,wj) with j = 0,1,2, . . . the only periodic
solution to the problem at each order. The zero-order periodic solution is

θ0 = 1 , w0 = 0 . (1.15)

A constant solution is coherent with the fact that, at this stage, only the non-
oscillating part of n is affecting the dynamics.

Proceeding with the calculation of our expansion, the first order system is

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

θ1 = sin τ − ξ (w1 + θ̇1 + sin τ(w0 + θ̇0))

ẇ1 = −λ (w1 + θ̇1 + sin τ(w0 + θ̇0))

Notice that sin τ is the first order term in the expansion (1.6), and that this is
the first time that the oscillating part of n enters in the problem. Solving these
equations, imposing that the zero-order terms be the one we just found, this
time we have the non-trivial periodic solution

θ1(τ) = θ
c
1 cos τ + θs1 sin τ , w1(τ) = w

c
1 cos τ +ws1 sin τ (1.16)

where
θc1 =

−ξ
1+(ξ−λ)2

, θs1 =
1−λ(ξ−λ)
1+(ξ−λ)2

,

wc1 =
λ(ξ−λ)

1+(ξ−λ)2
, ws1 =

−λ
1+(ξ−λ)2

.

(1.17)

Notice that the average velocity is still zero up to the first order, and that in
order to recover a non-zero average velocity we need to calculate the next order
expansion in η. We have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ2 = θ0c
χ

σ
+ ns2 sin 2τ + nc2 cos 2τ + 2ξ(w0 + θ̇0) θ0c

σ

χ

− ξ((w2 + θ̇2) + sin τ(w1 + θ̇1) + (ns2 sin 2τ + nc2 cos 2τ)(w0 + θ̇0))

ẇ2 = λ(w0 + θ̇0) θ0 c
σ

χ

− λ ((w2 + θ̇2) + sin τ(w1 + θ̇1) + (ns2 sin 2τ + nc2 cos 2τ)(w0 + θ̇0))

The only periodic solution is, in this case

θ2(τ) = c
χ

σ
+ θc2 cos 2τ + θs2 sin 2τ , w2(τ) = w

∗
+wc2 cos 2τ +ws2 sin 2τ (1.18)
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where

θc2 =
1
2
(
(1−θs1)−θ

c
1(2ξ−

λ
2 )

1+(2ξ−λ2 )2
) +

(1−λ2 (2ξ−λ2 ))nc2−2ξns2
1+(2ξ−λ2 )2

,

θs2 =
1
2
(
θc1+(1−θ

s
1)(2ξ−

λ
2 )

1+(2ξ−λ2 )2
) +

2ξnc2+(1−
λ
2 (2ξ−λ2 ))ns2

1+(2ξ−λ2 )2
,

wc2 = −
1
4
(
ws1+w

c
1(2ξ−

λ
2 )

1+(2ξ−λ2 )2
) + λ(

(2ξ−λ2 )ns2−n
c
2

1+(2ξ−λ2 )2
) ,

ws2 =
1
4
(
wc1−w

s
1(2ξ−

λ
2 )

1+(2ξ−λ2 )2
) − λ(

(2ξ−λ2 )nc2+n
s
2

1+(2ξ−λ2 )2
)

(1.19)

and

w∗
= −

1

2
(

ξ − λ

1 + (ξ − λ)2
) . (1.20)

This last equation provides us with an explicit formula for the approximate
(normalized) average velocity, and shows how its sign depends on that of the
difference between the two parameters (ξ, λ), and ultimately on the frequency.
It also allow us to calculate the frequency at which the inversion of motion
occurs, namely, ωinv = 1 for the normalized quantity, and

Ωinv =

√
k

M

1

Lχ

for the dimensional one. Notice that, unlike the rest of the coefficients of the
second order expansion, the average velocity does not depend on the two pa-
rameters ns2 and nc2, that can be now chosen in order to solve asymptotically
equation (1.11), in the case when f is a sinusoidal function.

1.2.3 Tuning the parameters

Just by rewriting (1.11) we have the following expression for the normalized
force

f(τ) = 1 − n(τ) − (
σω

χ
)

2

θ̈
sin(α + εθ)

σ
− ε

σω2

χ
θ̇2 cos(α + εθ)

χ
.

Substituting the expression (1.6) we assumed for n and the one we calculated
for θ, and then formally expanding into a power series, the second member of
the previous equation becomes

η {
sinusoidal

terms
} + η2

{(
σ2ω2

χ2
θc2 − n

c
2) cos 2τ + (

σ2ω2

χ2
θs2 − n

s
2) sin 2τ} +O(η3

) .

Now, in order to have a sinusoidal force to within O(η3), we must require that

σ2ω2

χ2
θc2 − n

c
2 = 0 and

σ2ω2

χ2
θs2 − n

s
2 = 0 .

Since we found that

(
θc2
θs2

) = (
θ̃c2
θ̃s2

) +Θ2(
nc2
ns2

) with Θ2 =

⎛
⎜
⎜
⎜
⎝

1−λ2 (2ξ−λ2 )

1+(2ξ−λ2 )2
−2ξ

1+(2ξ−λ2 )2

2ξ

1+(2ξ−λ2 )2

1−λ2 (2ξ−λ2 )

1+(2ξ−λ2 )2

⎞
⎟
⎟
⎟
⎠
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and (θ̃c2, θ̃
s
2) are constants, this requirement is fulfilled if the matrix

σ2ω2

χ2
Θ2 − Id

is invertible. As it can be easily checked, this is true under the only assumption
that ξ > 0, which is guaranteed by its definition (1.10).

Finally let us analyze the oscillating force that we found. We have the
following asymptotic equality

f(τ) = ηf1(τ) +O(η3
)

where f1 can be calculated to be

f1(τ) =
σ2ω2

χ2
θc1 cos τ +

σ2ω2

χ2
θs1 sin τ − sin τ = ω2ρω sin(τ − φω) (1.21)

with

ρω =
σ2

χ2

√

( θc1 )
2
+ ( θs1 −

χ2

σ2ω2
)

2
and φω = arctan

⎛

⎝

χ2

σ2ω2− θ
s
1

θc1

⎞

⎠
.

Now, since we consider our robot as driven by a vertically oscillating mass, we
have FΩ(t) = mAΩ2 sin(Ωt), where A and m are the amplitude and weight,
respectively, of the ocillating mass. From (1.12) follows that

f(τ) = ω2 mAΩ2
inv

N∗
sin(τ) .

In order to recover such expression for f (at least up to a O(η3) error), we must
require η to be ω-dependent by imposing

ηω =
mAΩ2

inv

ρωN∗
, (1.22)

and considering the new time variable τ ′ = τ −φω, where τ ′ can be viewed as the
proper (normalized) time of the internal oscillating force (1.21), while τ is the
time relative to the first order harmonic of the normal force (1.6). Notice that
both these operations do not affect the analysis we proposed. Indeed, the only
requirement we imposed on η is that of being a small parameter. We can then
consider it as ω-dependent and satisfying (1.22) if mAΩ2

inv/N
∗ is small enough,

and by eventually restricting the range of values of ω in order for mAΩ2
inv/N

∗ρω
to be small enough as well for all such values. Moreover, the transformation
τ → τ ′ leaves the form of the equation of motion (as well as the form of each
system of equations in the asymptotic expansion) invariant, therefore all the
presented results still apply.

Having found the expression for η in terms of the given dynamical parameters
of the problem, it is worth to check whether our hypothesis (1.14) is compatible
with the order of magnitude of variables relative to real physical systems. Taking
M = 42gr, L = 10mm, k = 20Nmm, α = 45○, A = 5mm, m = 2gr as in [14] and
µ = 3sm−1, instead of the value for the dry friction coefficient µdry = 0.9 used in
[14], the choice of order (1.14) in the paper is fulfilled for frequencies varying
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from 10Hz to 70Hz. This range contains our predicted inversion frequency
finv = Ωinv/2π ≈ 15.5Hz. With the value µ = 0.9sm−1 (1.14) is not fulfilled,
hence our estimate for finv is not directly relevant for the system studied in
[14].

In the following, we will continue to denote the small parameter as η, without
explicitly considering its dependence on ω, in order to avoid complications. Also,
we will keep τ as the normalized time variable of the system.

The expressions that we found for θ and w provide approximate solutions
to the equations (1.9)-(1.11) which are justified, at this stage, only through a
formal argument. In the Appendix we will prove that the system (1.9)-(1.11) has
a unique, asymptotically stable, periodic solution (θ,w) that can be expressed
by a power series in η whose first three orders of expansion are indeed given by
(1.15), (1.16) and (1.18).

1.3 Discussion of the physical implications

Let us turn back to the original, dimensional, equations. From the results in the
Appendix it follows that the dynamical variables (ϕ, v) converge asymptotically
to periodic functions, provided that their initial conditions at, say, t = 0 are close
enough to the equilibrium configuration of the non-actuated system. So, for
large enough values of t, after the initial transient, both variables can be written
in a unique way as a sum of a constant (the mean value) and an “oscillating”
periodic function with zero average

ϕ ≃ ϕ̄ + ϕosc v ≃ v̄ + vosc .

The same thing then must hold for any other function depending on them, in
particular

N ≃ N̄ +Nosc and Ẋ ≃
¯̇X + Ẋosc .

By looking at equation (1.5) we can see that N can be written as the sum of
the constant weight force Mg, the sinusoidal function FΩ and the derivative of
another periodic function, which therefore has zero average. So we have that

N̄ = N∗
=Mg .

The same kind of argument shows that the second term of the last member of
the equation

Ẋ = v + ϕ̇L cos(α + ϕ) ≃ v̄ + (vosc + ϕ̇L cos(α + ϕ))

has also zero average. Since the representation of a periodic function as a sum
of its average and of an oscillating part is unique, we have that

¯̇X = v̄ and Ẋosc = vosc + ϕ̇L cos(α + ϕ) .

Now we can use the asymptotic representations of the various relevant quantities
in equation (1.5), namely

Mv̇ = −µNẊ .
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Then, by integrating both members of the last equality and taking the time-
averages on an interval [T,T + 2π/ω], for T big enough, we obtain the formula
for the average velocity of the robot

v̄ ≃ −
1

N̄
⨏ NẊosc . (1.23)

This formula shows that net forward motion is due to the oscillation of N , which
biases the product NẊosc and leads to non-zero average speed even though
Ẋosc has zero average. In physical terms, the robot moves, say, more forward
than backward thanks to the stronger grip available while its feet slip backward
because, at these times, the robot is pushing more forcefully downwards. What
‘selects’ the direction of motion is therefore the relative oscillation phase between
normal force N and the foot velocity Ẋosc, the latter being the combination of
the velocity of the robot’s center of mass and the one of the feet with respect
to the body frame. From the first order system in Section 1.2 we have

w1(τ) = ρw1sin(τ − δw1) and θ̇1(τ) = ρθ̇1sin(τ − δθ̇1)

where all the involved quantities ρw1 , ρθ̇1 , δw1 and δθ̇1 can be deduced from (1.16)
and (1.17). All of these quantities are frequency-dependent. The functions w1

and θ̇1 can be viewed, respectively, as the approximate (and normalized) center
of mass velocity, and the feet velocity with respect to the body frame. Their
sum enters in the first approximation of the oscillating part of Ẋ according to
the following equation

Ẋosc = εLχΩη(w1 + θ̇1 +O(η)) .

The center of mass velocity and the feet velocity with respect to the body frame
have, at first order approximation, the typical behavior of a driven damped
oscillator: they both vary at the same frequency of the driving force with a
frequency-dependent delay and amplitude. In order to show how these delays
affect the direction of motion we must recover from (1.23) the approximate
average velocity (1.20). Let us notice first that

v̄ ≃ −εLχΩ(⨏ n(wosc+ θ̇ ) + O(η3
)) ,

where wosc is the oscillating part of w. Now, since sines and cosines average to
zero, we have

⨏ n(τ)(wosc(τ) + θ̇(τ)) = ⨏ η
2 sin τ (ρw1sin(τ − δw1) + ρθ̇1sin(τ − δθ̇1) )

+ ⨏ {sines and cosines} +O(η3)

=
η2

2
(ρw1cos(δw1) + ρθ̇1cos(δθ̇1) ) +O(η3)

Using (1.17) and (1.24) we can express w∗ as

w∗
∶= −

1

2
(ws1 − θ

c
1) = −

1

2
(ρw1cos(δw1) + ρθ̇1cos(δθ̇1) ) , (1.24)

therefore (1.23) becomes

v̄ ≃ εLχΩη2(w∗
+O(η)) . (1.25)
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Formulas (1.24) and (1.25) above show that the sign of w∗, and hence of v̄,
is selected by the relative magnitude of two constants that are affected by the
interplay of the two frequency-dependent delays δw1 and δθ̇1 . Both signs are pos-
sible, with positive sign prevailing in the frequency range [0,Ωinv) and negative
sign emerging in the range (Ωinv,∞).

1.4 Appendix. Existence, stability and unique-
ness of a periodic solution: rigorous conver-
gence results

Let us start by writing down the normalized equations of our system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(σω
χ

)
2
θ̈ sin(α+εθ)

σ
− εσω

2

χ
θ̇2 cos(α+εθ)

χ
= n(τ) − 1 + f(τ)

θ = n(τ) sin(α+εθ)
σ

− ξ n(τ)(w + θ̇ cos(α+εθ)
χ

)
cos(α+εθ)

χ

ẇ = −λn(τ)(w + θ̇ cos(α+εθ)
χ

)

(1.26)

The function n(τ) is now a derivative quantity, that can be written in terms of
f , θ and its derivatives from the first equation. On the other hand the active
force f is now given and we set it to be

f = ηf1

where f1 is given by (1.21).

We are going to prove that, for every η sufficiently small, this system has one
and only one 2π-periodic solution, which is asymptotically stable and analytic
in η. This result will put the expansion of Section 1.2 on firm grounds. In
fact, the uniqueness of the periodic solution together with the uniqueness of the
power series representation for the functions involved, guarantees that we have
constructed the actual solution of our problem.

By introducing the auxiliary variable y = θ̇ one can rewrite (1.26) obtaining
the standard system of ODEs

⎛
⎜
⎝

θ̇
ẏ
ẇ

⎞
⎟
⎠
= Gη(θ, y,w; τ) ,

where Gη is an analytic function with respect to all the variables, and it is
2π-periodic in τ . We first study the unperturbed case

⎛
⎜
⎝

θ̇0

ẏ0

ẇ0

⎞
⎟
⎠
= G0(θ0, y0,w0; τ) , (1.27)
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or, more explicitly,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇0 = y0

ẏ0 =
χ2

σ2ω2
(1 −

θ0

1 − ξ(w0 + y0)
)

ẇ0 = −λ(
θ0

1 − ξ(w0 + y0)
) (w0 + y0)

As we expected G0 is independent of τ because we ruled out the oscillating
force. It can be immediately checked that

q0 ∶=
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

is a solution, which is coherent with the results in Section 1.2.2. We calculate
now the Jacobian matrix DG0 at the point q0. This will give us information
about the stability of the autonomous system and will be crucial in the proof
related to existence. We have

DG0(q0) =
⎛
⎜
⎝

0 1 0
−χ2

σ2ω2
−χ2ξ
σ2ω2

−χ2ξ
σ2ω2

0 −λ −λ

⎞
⎟
⎠
.

The characteristic polynomial p associated with the matrix DG0(q0) then reads

p(x) = −det(DG0(q0) − xId) = x3
+
χ2(λ + ξ)

σ2ω2
x2

+ x +
χ2λ

σ2ω2
.

We can see that p has the form p(x) = p3x
3 + p2x

2 + p1x + p0 where all the
coefficients pj are strictly positive and, moreover, p1p2−p0p3 > 0. As a straight-
forward consequence of the Routh-Hurwitz criterion (see e.g. [30]) all the three
roots of p have strictly positive real parts. This proves that q0 is a (locally)
asymptotically stable solution of the unperturbed system. Nonetheless this is
also a sufficient condition (see [20], theorems 6.1.1, 6.1.2 and 6.1.3) to guarantee
the existence, uniqueness, periodicity and asymptotic stability of the solution
of the general (η-dependent) system (1.26). We give here a sketch of the proof
for the reader’s convenience.

We have to consider the solution

⎛
⎜
⎝

θ(τ)
y(τ)
w(τ)

⎞
⎟
⎠
= s(q, η, τ)

to the η-dependent problem with initial data

⎛
⎜
⎝

θ(0)
y(0)
w(0)

⎞
⎟
⎠
= q .
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The general theory of ODEs guarantees that such a solution exists locally for
small enough values of η and initial data q close enough to q0 and that, for
such values, it is analytic. In addition, we also know that s(q, η, ⋅) converges
to the solution of the unperturbed system as its maximal interval of definition
approaches the whole real line (since the solution to (1.27) with initial value
close to the equilibrium ones is defined on R). There are no restriction then
to suppose that s(q, η, ⋅) is defined on, say, the interval [0,2π], for every small
enough values of η. One can easily check that s(q, η, ⋅) is 2π-periodic (and
therefore defined on R) if and only if

s(q, η,2π) − q =
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
. (1.28)

Indeed, if s(q, η, ⋅) is a 2π-periodic solution, then (1.28) holds. Vice versa,
if we have a solution s(q, η, ⋅) of (1.26) defined on [0,2π] such that (1.28) is
verified, then we can extend (with regularity) the function on the whole line by
periodicity. The function so obtained is a solution of (1.26) for every τ .

Now, we already know that

s(q0,0,2π) = q0

since the solution of the unperturbed system is constant for the initial data q0.
To prove that there exists one and only one function

η ↦ qη

defined around η = 0 and such that

s(qη, η,2π) − qη =
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠

one needs to apply the implicit function theorem. We have to verify that

det (Dqs(q0,0,2π) − Id) ≠ 0 . (1.29)

From its definition we know that s(q,0, ⋅) is the solution to the problem

{
ṡ(q,0, τ) = G0(s(q,0, τ))

s(q,0,0) = q

We can therefore differentiate both members of the previous equations and
obtain that

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

d

dτ
Dqs(q0,0, τ) =DG0(q0)Dqs(q0,0, τ)

Dqs(q0,0,0) = Id

From this we have
Dqs(q0,0,2π) = e

2πDG0(q0) .

But then relation (1.29) is verified since all of the eigenvalues of DG0(q0) have
negative real part. Thanks again to the implicit function theorem we can con-
clude that the only periodic solution

(η, τ) ↦ s(qη, η, τ)
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to problem (1.26) is analytic in η being the composition of analytic functions.
The asymptotic stability of the general solution for small enough values of

η, which is inherited by the asymptotic stability of the unperturbed one, follows
now by applying classical theorems, see [20] (theorem 6.1.3).



Chapter 2

Snake-like Locomotion

Snake locomotion has fascinated natural scientists for a long time. More re-
cently, it has become a topic of great interest as one of the key examples of
soft bio-inspired robotics. This is a new and recent paradigm in robotic sci-
ence [33, 34], whereby inspiration is sought from nature to endow robots with
new capabilities in terms of dexterity (e.g., the manipulation abilities of an ele-
phant trunk or of an octopus arm) and adaptability (e.g., the ability of snakes
to handle unexpected interactions with unstructured environments and move
successfully on uneven terrains by adapting their gait to ground properties that
change from place to place in an unpredictable way).

The way snakes move has been the subject of seminal works by Gray [1, 2],
see also [35, 3]. In these early studies Gray described the mechanics underlying
snake locomotion inside closely fitting channels and on a surface in the presence
of external push-points. Subsequently, muscular activity as well as forces trans-
mitted by snakes to arrays of pegs among which they move have been measured
[36, 37]. More recently, focus has turned to the importance of anisotropy in the
frictional forces between snake ventral skin and flat surfaces on which they move,
stimulating both experimental and theoretical research [38, 39, 40, 41, 42].

The idea that frictional anisotropy plays a role in snake locomotion was put
forward long ago in the engineering literature [35] and, most notably, by Hirose
in his seminal work on robotic snake-like locomotion [44]. Hirose was among
the first to call attention on the potential of biological inspiration in designing
robots by studying snake-like locomotors and manipulators [44]. Technological
advances in this field have led to the development of models for snake robots
crafted with more and more jointed active segments, eventually leading to the
use of continuum theories [45]. In some more recent contributions [46, 47, 48, 49],
Cosserat models are used for the mechanics of slender flexible robots, described
as deformable rods.

Inspired by the literature on snake-like locomotion recalled above, in this
Chapter we study a model system similar to the one used in [50] in the context
of undulatory swimming, and consisting of a planar inextensible elastic rod that
is able to control its spontaneous curvature. This is the curvature the rod would
exhibit in the absence of external forces, which can be non-zero in the presence
of internal actuation (see the sketch in Fig.2.1B). Local control of this quantity
provides an internal actuation mechanism that can be used to mimic muscular
activity in undulatory locomotion. Travelling waves of spontaneous curvature

27
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can put the system in motion when the environment exerts constraints or forces
that the prevent the rod to be deformed everywhere according to its spontaneous
curvature.

To show how control of spontaneous curvature in the presence of external
constraints leads to locomotion, we use a Cosserat model, and derive the equa-
tions of motion for two special cases: one in which the rod can only move along
a prescribed curve (prescribed-path case), and one in which the rod is con-
strained to slide longitudinally without slipping laterally, but the path is not
fixed a-priori (free-path case). The first case corresponds to a rod confined in
a channel with frictionless walls. The second case is inspired by the slithering
motion of snakes, that interact through anisotropic frictional forces with a flat
surface on which they are free to move. Frictional resistance is typically larger
in the lateral direction than in the longitudinal one. Our setting corresponds to
the limiting case of infinite ratio between lateral and longitudinal friction coeffi-
cients, in which longitudinal sliding is allowed while lateral slipping is forbidden,
as in [42].

Our model is related to the ones studied in [40, 41, 42], with some important
differences. We do not allow for lateral slipping and for lifting of portions of
the body (hence neglecting the corresponding modulation of frictional forces) as
in [40] where, however, the curvature of the visible trajectory is assumed to be
known. By contrast, in our model, only the spontaneous curvature (the proxy
for muscular activity) is prescribed, and the curvature of the resulting trajec-
tory, which is a-priori unknown, emerges from the solution of the equations of
motion. We also do not consider internal viscous dissipations and non-linearities
of the longitudinal frictional force, as done in [42] where, however, only periodic
solutions are studied (effectively considering a system of infinite length) and the
equations are closed by imposing an ansatz on the lateral forces exchanged with
the ground surface. By contrast, our model deals with a system of finite length,
and the equations are closed by carefully considering edge-effects, which lead
to non-standard boundary conditions. Moreover, no a-priori assumptions are
made on the reactive forces imposing no lateral slipping, which emerge instead
from the solution of the equations of motion.

Our main new results are the following. We formulate direct and inverse
locomotion problems (direct: find the motion produced by a given actuation
history; inverse: find the actuation history required to produce a given mo-
tion), and show existence and uniqueness of the solution of direct problems,
non-uniqueness for the inverse ones. Our goal is to study the connection be-
tween observed motion, internal actuation, and lateral forces exchanged with
the environment, with the aid of a model system (active elastic rod). Our ap-
proach delivers explicit analytic formulas that enable us also to explore how this
connection is affected by the passive elastic properties of the system (the rod
bending stiffness).

In the prescribed-path case, we reduce the dynamics of the system to a sin-
gle ordinary differential equation for the tail end coordinate (the only degree of
freedom for an inextensible rod forced to slide along a given curve). This equa-
tion reveals clearly the mechanism by which a flexible rod can actively propel
itself inside a channel, whenever the channel exhibits a variation of curvature
along its track, and provides a quantitative framework to revisit some of the
classical findings on snake motility by Gray. In addition, we provide explicit
formulas to calculate the forces exchanged with the environment.
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In the free-path case, we are again able to close the equation of motion and
reduce the dynamics of the system to a single equation, this time an integro-
differential equation for the tail end coordinate. A particularly interesting out-
come of our analysis is the emergence of an asymmetry in the mechanical bound-
ary conditions at the (leading) head and the (trailing) tail. This is not only a
mathematical subtlety, but it is also deeply grounded in the physics of the prob-
lem. While the tail follows the path traced by the preceding interior points, the
head is free to veer laterally, ‘creating’ the path as the motion progresses. We
show that the curvature of this newly created path is set by the time history of
spontaneous curvatures at the leading head. Recognising this steering role of the
spontaneous curvature leads to a procedure to generate solutions for the free-
path case from those of the prescribed-path case, based on modifying them near
the leading head, in order to account for steering. Again, we provide explicit
formulas to calculate the lateral forces transmitted to the ground surface.

The rest of the Chapter is organized as follows. In Section 2.1 we present
our mathematical model of flexible robot as an active rod, and formulate di-
rect and inverse locomotion problems. In Section 2.2 we derive the governing
equations and the appropriate boundary conditions for motion inside a channel
with frictionless walls (prescribed-path), solve them in some simple geometries,
and discuss the physical implications of our results. In Section 2.3 we derive the
governing equations and corresponding boundary conditions for the motion of
an active rod sliding longitudinally without slipping laterally on a flat surface
(free-path) and propose a class of analytical serpentine solutions. Possible con-
nections of our results with observations made in the context of biological snake
locomotion are briefly summarised in the Discussion section, while the existence
and uniqueness of the solution of the equations of motion for the free-path case
is proved in the Appendix.

2.1 The flexible robot model

We consider a model consisting of a (long) chain of cross shaped elements
(Fig.2.1B) linked together by ideal joints connected by deformable springs. We
assume that each spring is able to actively change its rest length (the length
at which the tension in the spring is zero). Following [47, 46, 48, 49] we model
this system through a continuous description based on the planar Cosserat rod
theory.

A configuration of a Cosserat rod of reference length L on the plane is defined
by a pair of vector-valued functions

[0, L] × [0,∞) ∋ (s, t) ↦ r(s, t) , b(s, t) (2.1)

where b is a unit vector (Fig.2.1A). As in [51], we introduce also the unit vector
a ∶= −e3×b, where e3 is the unit vector normal to the plane. We then define the
strain variables ν and η through the following decomposition along the moving
orthonormal frame {a,b}

rs = νa + ηb

where the subscript s is used to denote the partial derivative with respect to the
space variable. The function ν = ν(s, t) describes the stretch, while η = η(s, t)
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Figure 2.1: A) Variables describing a Cosserat rod configuration. B) Schematic
model for the constitutive elements of the robot structure, illustrating a mech-
anism to produce non-zero curvature in the absence of external forces.

defines the shear strain. Finally the bending strain µ ∶= θs is obtained through
the scalar valued function θ(s, t) defined by

a(s, t) = cos θ(s, t)e1 + sin θ(s, t)e2

where {e1,e2} is a fixed basis in the plane containing the rod. We consider
our system as being made of an infinite number of elements like the ones in
Fig.2.1B, each of them being of infinitesimal length, and assembled along the
central curve r of the rod. Since we assume them to be rigid, we impose the
constraints that the rod is inextensible and unshearable:

ν(s, t) = 1 and η(s, t) = 0 . (2.2)

The ability of the robot to modify the equilibrium length of each of the connect-
ing springs can be naturally modelled macroscopically by considering an elastic
rod which can actively vary its spontaneous curvature, namely, the curvature
the rod would exhibit in the absence of external loads. This is similar to what
is done [50] in the context of swimming motility. We model this by introducing
the elastic potential density

U(µ, s, t) =
EJ

2
(µ − α(s, t))

2
(2.3)

where EJ is the bending stiffness of the robot. Notice that if (2.2) hold, then rs
always coincides with the unit vector a, and the bending strain µ(s, t) is equal to
the curvature of the rod at the point r(s, t). The function α in (2.3) therefore
can be viewed as the varying spontaneous curvature, which we assume to be
freely controllable in order to set the robot in motion. The bending moment
resulting from (2.3) is

M = EJ(µ − α) = EJθs +M
a (2.4)

and can be seen as the sum of a passive elastic term EJθs and of an active
one Ma ∶= −EJα which can be varied at will by suitably tuning α. An active
moment originating from muscular contraction is used also in the model of snake
locomotion in [42].

Along with the elastic potential we define also the kinetic energy density

T (rt, θt) =
ρA

2
rt ⋅ rt +

ρJ

2
θ2
t
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where the subscript t denotes the partial derivative with respect to time, ρA
is the linear mass density and ρJ the linear moment of inertia. Finally, the
Lagrangian density L of the system reads

L = T − U −N(ν − 1) −Hη (2.5)

where N = N(s, t) and H = H(s, t) are the reactive internal tractions (axial
tension and shear force, respectively) enforcing constraints (2.2).

In the following sections, we will consider two types of locomotion problems
arising form the interaction of prescribed spontaneous curvature and external
constraints. The direct one can be formulated as follows: given a time history
of spontaneous curvatures α(s, t), together with initial and boundary condi-
tions, find the motion r(s, t) of the rod and the forces it exchanges with the
environment. In the inverse one, the motion is prescribed, and we want to find
a history α(s, t) that produces it, together with the corresponding forces. We
will consider two types of external constraints and see that, in both cases, the
direct problem has unique solution while, for the inverse one, the solution is not
unique.

2.2 The case of prescribed path:
sliding inside a channel

The first problem we consider is motion along a prescribed path. We place
our robot model inside a curved channel fitting exactly its body, assuming that
there is no friction between the walls of the channel and the active rod itself.
We model such a setting by imposing the external (holonomic) constraint

r ∈ Graph{Γ} or φΓ(r) = 0 (2.6)

where the equation φΓ = 0 defines (we assume, globally) the curve Γ which we
interpret as the central line of the channel. There is no loss of generality in
assuming ∣∇φΓ∣ = 1.

2.2.1 Derivation of the equations of motion

We derive the equations of motion through Hamilton’s Principle, adding to
(2.5) an external reactive potential −fφΓ(r), where f = f(s, t) is the Lagrange
multiplier enforcing (2.6). A solution (r, θ) must satisfy

δ∫
t2

t1
∫

L

0
L − fφΓ(r) dsdt = 0 (2.7)

for every variations δr and δθ defined on [0, L] × [t1, t2] and vanishing at its
boundary. If we define n ∶= Na +Hb, the Euler-Lagrange equations we obtain
from (2.7) are

ns − f ∇φΓ(r) = ρA rtt , Ms e3 + rs × n = ρJθtte3

where the bending moment M is defined in (2.4). These are the classical dynam-
ical equations for a planar Cosserat rod (see e.g. [51]) with an external force
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given, in our case, by the transversal reaction imposing the constraint (2.6).
The presence of a longitudinal frictional force per unit length

FY Y
= −γY Y

rs
∣ rs ∣

Sgn(rt ⋅ rs) , (2.8)

is handled by simply adding FY Y , where Sgn denotes the sign function, to the
left hand side of the first equation.

To close the equations of motion we use the Principle of Mechanical Bound-
ary Conditions (from now on: PoMBC) [52]. We define generalized edge loads
acting on the system by considering the rate at which work is expended at the
edges in virtual motions compatible with the constraints, and assume that all
generalized edge loads acting on the system are explicitly prescribed.

In view of (2.6), we have that

r(0, t) = Γ(s0(t)) , r(L, t) = Γ(sL(t)) , θ(0, t) = Θ(s0(t)) , θ(L, t) = Θ(sL(t))
(2.9)

where s0 and sL are the curvilinear coordinates relative to Γ of the two ends of
the rod, which we call generalized edge coordinates, and Θ is the angle between
the tangent vector to Γ and e1, so that

Γ(ξ) = Γ(ξ0) + ∫
ξ

ξ0
cos Θ(λ)e1 + sin Θ(λ)e2 dλ . (2.10)

Now, following the PoMBC, we write the work rate Pedge of the edge loads as

Pedge = n(s, t) ⋅ rt(s, t) ∣
s=L

s=0
+M(s, t)θt(s, t) ∣

s=L

s=0
. (2.11)

Using (2.9) to derive the expressions for rt and θt at s = 0, L we obtain

Pedge = ṡL(t)(n(L, t) ⋅Γs(sL(t)) +M(L, t)k(sL(t)))

− ṡ0(t)(n(0, t) ⋅Γs(s0(t)) +M(0, t)k(s0(t)))

where we used a “dot” to denote the time derivative of the generalized coordi-
nates, and k is the curvature of Γ. The coefficients multiplying the generalized
velocities ṡ0(t) and ṡL(t) are the generalized edge loads which, by the PoMBC,
have to be prescribed. Since we suppose that no external edge forces are doing
work on the system at either of the two ends, we enforce the condition Pedge = 0
by setting such loads equal to zero.

Finally, conditions (2.2) and (2.6) must be added to the equations of the
system. Since the active rod is assumed to be inextensible and unshearable, and
its backbone curve r is forced inside the graph of Γ, the constrained system can
be described with only one degree of freedom, namely, the curvilinear coordinate
relative to Γ of the first end of the robot model. Thus,

r(s, t) = Γ(s0(t) + s) , θ(s, t) = Θ(s0(t) + s) (2.12)

and substituting these expressions in the equations of motion we obtain, ac-
counting also for longitudinal friction,

Ns − kH − γY Y Sgn(ṡ0(t)) = ρA s̈0(t) (2.13)

kN +Hs − f = ρAkṡ0(t)
2 (2.14)

EJ(ks − αs) +H = ρJ(ks̈0(t) + ksṡ0(t)
2
) (2.15)
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where k = k(s0(t) + s). As for the boundary conditions, they now read

N(0, t) +EJ(k(s0(t)) − α(0, t))k(s0(t)) = 0 ,

N(L, t) +EJ(k(s0(t) +L) − α(L, t))k(s0(t) +L) = 0 .
(2.16)

Summarizing, in order to solve the (direct) locomotion problem stated at
the end of Section 2.1, we need to find the unknown functions N(s, t), H(s, t),
f(s, t) and s0(t). The equations we have for this purpose are the three equations
of motion (2.13)-(2.14)-(2.15), and the two boundary conditions (2.16). We’ll see
that, by integrating (2.13), a first order ordinary differential equation (ODE),
and using the two boundary conditions (2.16), we can derive an additional ODE
containing the only unknown s0(t), which completely determines the motion of
the system. This ODE is given below as equation (2.18), or (2.19) in a simplified
version. Once s0 is known, we can use (2.15), (2.13) and (2.14), together with
the boundary condition (2.16) holding at s = 0, to determine H, N , and f
respectively.

We show now how to obtain the ODE for s0(t). If we substitute in (2.13)
the expression of H given by (2.15) then, integrating on the space variable, we
have

ms̈0 = N ∣
L

0
+EJ ∫

L

0
(ks − αs)k ds − γ

Y Y Sgn(ṡ0)L − ρJ R − ρJ Qs̈0

= N ∣
L

0
+EJ(k − α)k∣

L

0
−EJ ∫

L

0
(k − α)ks ds − γ

Y Y Sgn(ṡ0)L − ρJ R − ρJ Qs̈0

where m = ∫
L

0 ρAds is the total mass of the rod,

R(ṡ0(t), s0(t)) =
ṡ0(t)

2

2
(k2

(s0(t) +L) − k
2
(s0(t)))

and Q(s0(t)) = ∫
L

0
k2

(s0(t) + s)ds .

(2.17)

If we now apply (2.16) we obtain the equation

(m + ρJ Q(s0(t))) s̈0(t) =
EJ

2
(k2

(s0(t)) − k
2
(s0(t) +L)) − γ

Y Y Sgn(ṡ0(t))L

−γY Y Sgn(ṡ0(t))L − ρJ R(ṡ0(t), s0(t)) (2.18)

+EJ ∫
L

0
α(s, t)ks(s0(t) + s)ds

which, complemented with initial position and velocity, defines s0 uniquely. The
shear force H is now uniquely defined by (2.15), while

N(s, t) =∫
s

0
{ρA s̈0(t) + γ

Y Y Sgn(ṡ0(t)) + k(s0(t) + λ)H(λ, t)}dλ

−EJ(k(s0(t)) − α(0, t))k(s0(t)) .

Using all the expressions above we can recover f from (2.14).

Let us now suppose that our active rod is stiff and slender enough, so that
EJ, ρA≫ ρJ . We can then neglect the terms containing ρJ in (2.18), obtaining
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the simplified equation

ms̈0(t) =
EJ

2
(k2

(s0(t)) − k
2
(s0(t) +L)) − γ

Y Y Sgn(ṡ0(t))L

+ EJ ∫
L

0
α(s, t)ks(s0(t) + s)ds .

(2.19)

Equation (2.19) shows that the dynamics of the robot model is reduced to that of
a point particle of mass m subjected to a force given by the sum of three terms.
The first one is a “potential” force depending exclusively on the geometry of
Γ, the second one is a friction term, while the third is an “active” force which
depends on the spontaneous curvature α. The following examples illustrate the
role played by these terms in the dynamics of the system.

2.2.2 Spiral channel

Let us consider only the first term in the right hand side of (2.19) by setting
α, γY Y = 0. The system described in this case is a passive elastic rod with straight
rest configuration placed inside a curved channel with frictionless walls. Because
of inextensibility, the driving force on the rod depends only on the curvature of
the channel at the two ends of the body. Moreover, the sign of this force is such
that the rod is always pushed towards the region of smaller curvature. As an
example, consider the case of a spiral-shaped channel where k(s) = K/s, with
K > 0 (see Fig.2.2). Then (2.19) with α = 0 reads

ms̈0(t) = −U
′
(s0(t)) where U(s0) =

EJLK2

2(s0 +L)s0
.

In order to thread the rod inside the spiral by varying the coordinate of the end
point from ξ2 to ξ1 we need to perform a positive work

W = U(ξ1) −U(ξ2) =
EJ

2
(

LK2

(ξ1 +L)ξ1
−

LK2

(ξ2 +L)ξ2
) > 0 (2.20)

since we have to increase the curvature at every point of the body. If we then
release the rod it will accelerate towards the exit and return back to ξ2 with a
positive velocity

V =

¿
Á
ÁÀEJ

m
(

LK2

(ξ1 +L)ξ1
−

LK2

(ξ2 +L)ξ2
) > 0 . (2.21)

In other words, the system moves towards a “straighter” configuration, decreas-
ing its elastic energy and therefore increasing its kinetic energy. Similar prob-
lems of passive elastic rods sliding inside frictionless sleeves have been studied,
both analytically and experimentally, in [53].

Let us suppose now that α, γY Y ≠ 0. The active force term in (2.19) can
assume any value if we suppose that we have no restrictions in the choice of
α. This means, in particular, that an active elastic rod can slide inside the
spiral without need of external pushing. More generally, the system can achieve
motion in a predetermined direction when placed inside any channel which does
not present circular or straight sections of length greater than L. This last
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(ξ  )
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V
2(ξ  )

A B

Γ 2(ξ  )Γ

1Γ 1(ξ  )Γ

Figure 2.2: A) Two configurations of the elastic rod inside a spiral channel:
initial (light grey) and final (dark grey). A positive work W is necessary to vary
the position of the end point from Γ(ξ2) to Γ(ξ1) and force the rod inside the
channel. B) Upon release, the first end point slides back from Γ(ξ1) to Γ(ξ2)
and the rod exits the channel with velocity V .

result is reminiscent of theoretical and experimental findings of J. Gray in his
study [1] of snake undulatory locomotion. Using an energy balance argument,
he concludes that it is possible for a snake to slide inside a channel closely
fitting its body only provided such a channel exhibits a variation of curvature
along its track. He then shows experimentally that snakes are able to move
in sinusoidal closely fitting channels, but motion in straight ones only occurs
through a different gait (concertina), which is impossible if the width of the
channel and of the snake body are comparable.

2.2.3 Sinusoidal channel

We address in this section an inverse locomotion problem. Let us consider a
sinusoidal channel meandering around the horizontal axis

Γ(ξ) = ∫
ξ

0
cos Θe1 + sin Θe2 where Θ(ξ) = −ζλ cos(

ξ

λ
) (2.22)

and therefore

k(ξ) = ζ sin(
ξ

λ
) . (2.23)

For small values of the geometric parameter ζ, the channel is close to a straight
tube while, as ζ grows, it becomes wavier and wavier. The wavelength λ dictates
how many turns the channel has per unit length.

We want to find a history of spontaneous curvatures α(s, t) that produces
motion along the sinusoidal channel (2.22) with constant longitudinal velocity

ṡ0(t) = V > 0 .

Assuming that the trailing edge of the active rod lies at the origin at t = 0, we
must have s0(t) = V t. If we also assume that L = 2πnλ, where n is a positive
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integer, then the potential term in equation (2.19) vanishes, and constant for-
ward motion is realized only if the active force exactly matches the frictional
one:

γY Y L = EJ ∫
L

0
α(s, t)ks(s + V t)ds =

EJζ

λ
∫

L

0
α(s, t) cos(

s + V t

λ
) ds . (2.24)

Once we find a function α that solves (2.24) then s0(t) = V t becomes automat-
ically a solution for the equations of motion, and N , H and f can be explicitly
written following the procedure illustrated in the previous section.

To show non-uniqueness of solution of this inverse locomotion, we generate
two different solutions α by solving two constrained minimization problems.
Among all α’s satisfying (2.24), find the ones that minimizes either Ibend (the
bending energy) or Iact (the activity), where

Iact [α] =
1

2
∫

L

0
α2

(s, t)ds , Ibend [α] =
EJ

2
∫

L

0
(k(s + V t) − α(s, t))

2
ds .

To solve, e.g., the second problem we consider the extended functional

Îbend [α; q] ∶= Ibend [α] + q∫
L

0
α(s, t)ks(s + V t)ds

where q is the Lagrange multiplier enforcing (2.24). The spontaneous curvature
αbend minimizing Îbend must then solve δÎbend [αbend; q] = 0, where the varia-
tion of the extended functional is taken with respect to α. A straightforward
calculation gives

αbend(s, t) =
q

EJ
ks(s + V t) + k(s + V t) , q =

γY Y L

∫
L

0 k2
s(s + V t)ds

(2.25)

where the second equality is obtained by plugging the expression for αbend in
(2.24). More explicitly, using (2.23), we get

αbend(s, t) = ζ sin(
s + V t

λ
) +

q

EJ
cos(

s + V t

λ
) with q =

γY Y L

nπζ
.

From the equations of motion and the boundary conditions, taking again ρJ = 0,
we then obtain

Hbend = −
2γY Y

ζ
sin(

s + V t

λ
) , Nbend =

γY Y L

4πn
( sin 2(

s + V t

λ
) + sin 2

V t

λ
)

and

fbend(s, t) = γY Y
ζL

4πn
( sin 2(

s + V t

λ
) + sin 2

V t

λ
) sin(

s + V t

λ
)

− γY Y
4πn

ζL
cos(

s + V t

λ
) − ρAV 2ζ sin(

s + V t

λ
) .

Notice that none of the external and internal forces depend on the bending
stiffness EJ . This allows us to consider the rigid limit EJ → ∞, for which the
observable motion and forces do not vary, while on the other hand αbend(s, t) →
k(s + V t). This limit case could be relevant for the steering of wheeled robots
in which curvature control is achieved through internal motors.
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Let us find αact that minimizes Iact by repeating the procedure above. We
obtain in this case that the optimal α is proportional to ks, whereby internal
actuation is concentrated around inflexion points of the trajectory. This is rem-
iniscent of patterns of muscular activity patterns observed in snake undulatory
locomotion [36, 37]. More in detail,

αact(s, t) =
q

EJ
ks(s + V t) =

q

EJ
cos(

s + V t

λ
) , (2.26)

with q given again by (2.25). In order to compare the two solutions we write

Hact(s, t) =Hbend(s, t) −EJ
2πn

L
cos(

s + V t

λ
) ,

Nact(s, t) = Nbend(s, t) +EJ
ζ2

4
( cos 2(

s + V t

λ
) + cos 2

V t

λ
)

and

fact(s, t) = fbend(s, t) +EJ (
2πn

L
)

2

ζ sin(
s + V t

λ
)

+EJ
ζ3

4
( cos 2(

s + V t

λ
) + cos 2

V t

λ
) sin(

s + V t

λ
)

for internal and external forces generated by αact, in terms of the corresponding
quantities we found for αbend. We observe that the two force fields differ by
terms proportional to EJ , while they become indistinguishable when EJ → 0.

A1 B1

A2

A3

B2

B3

Figure 2.3: Snapshots for solution generated by A) αbend and B) αact at three
times: 1) V t/λ = 0, 2) V t/λ = 2π/3 and 3) V t/λ = 4π/3. Grey segments indicate
the magnitude of the transversal force exerted by the active rod on the channel.
Spontaneous curvatures are represented through the shaded areas along the
rod’s body.

We give here a graphical representation of the two solutions, using ma-
terial parameters taken from the zoological literature. Based on [37] we set
L = 1.3m and γY Y = µY Y mg/L, where µY Y = 0.2 is the longitudinal friction coeffi-
cient, m = 0.8kg and g is the gravitational acceleration constant. Following [40],



38 CHAPTER 2. SNAKE-LIKE LOCOMOTION

we neglect the inertial terms in all the expressions setting ρAV 2 = 0. As for
the bending stiffness, we can explore a range going from EJ = 10−4Nm2 [54] to
EJ = 10−3Nm2 [42].

Results are shown in Fig.2.3. We set (arbitrarily) n = 3 and ζ = 18.5m−1,
while we choose the largest value of EJ in order to emphasises the difference
between the two solutions. Segments indicate the direction and magnitude of
the force exerted by the robot on the walls of the channel. The pattern and
amplitude of spontaneous curvatures are indicated by the dark shaded area along
the midline of the robot’s body. The two solutions give very different results in
terms of forces exerted on the channel walls. The force field fbend consistently
displays maxima in magnitude near the inflection points of curvature. On the
other hand, fact varies substantially during motion: at some times it displays
local maxima at the points of maximal concavity and convexity, while at some
other times maxima are located at the inflection points. Notice that at points of
maximal concavity and convexity f is perpendicular to the direction of motion
and does not contribute to the propulsive forces. We will comment further on
these features in the next sections.

2.3 The free-path case

We now turn to the case in which the path is not a-priori known and study an
active rod free to move on a flat surface through longitudinal sliding without
lateral slipping. Accordingly, we impose the (non-holonomic) constraint

r�s ⋅ rt = 0 (2.27)

where r�s = e3 × rs. We denote by −f r�s the transversal reactive force per unit
length (exerted by the ground on the rod) enforcing the no-slip condition, where
f is the Lagrange multiplier associated with constraint (2.27). At the same time,
we suppose that a frictional force FY Y given by (2.8) acts in the longitudinal
direction.

Real snakes [38, 39, 40], as well as real snake-like robots [44], cannot rely
on transversal frictional reactions of arbitrary magnitude to prevent lateral slip-
ping. Solutions of interest for the realistic description of these systems can be
considered, for instance, those for which the reactive force f imposing constraint
(2.27) does not exceed a maximum value, which can be determined experimen-
tally.

2.3.1 Derivation of the equations of motion

We deduce the equations of motion through the Lagrange-d’Alembert principle,
similarly to what is done in [55] and [56]. The principle states that, in the
presence of the dissipative force FY Y , a solution (r, θ) that satisfies constraint
(2.27) must solve

δ∫
t2

t1
∫

L

0
Ldsdt + ∫

t2

t1
∫

L

0
FY Y

⋅ δrdsdt = 0 (2.28)

for every variations δr and δθ that vanish at the boundary of [0, L] × [t1, t2],
while δr also satisfy

r�s ⋅ δr = 0 . (2.29)



2.3. THE FREE-PATH CASE 39

Calculating the variation on the left hand side of (2.28), after integration by
parts and reordering, we have

δ∫
t2

t1
∫

L

0
Ldsdt + ∫

t2

t1
∫

L

0
FY Y

⋅ δr(s, t)dsdt =

∫

t2

t1
∫

L

0
{−ρA rtt + (Ña)s + (H̃b)s +FY Y } ⋅ δrdsdt

+ ∫

t2

t1
∫

L

0
{−ρJθtt +EJ(θss − αs) + (νH̃ − ηÑ)} δθ dsdt

Since (2.28) holds for all the variations satisfying (2.29), it forces the coefficient
multiplying δθ to vanish, while the coefficient relative to δr must take the form
fr�s , where f = f(s, t) is the unknown Lagrange multiplier enforcing constraint
(2.27). The equations of motion then read

ns +FY Y
− fr�s = ρA rtt , Ms e3 + rs × n = ρJθtte3

We complement these equations with boundary conditions by relying again on
the PoMBC.

Let us consider a typical configuration of the robot model in motion while
subjected to the external constraint (2.27). We suppose that such a movement
is directed head-first, where we denote the head as r(L, t) and the tail as r(0, t).
As shown in Fig.2.4A, an asymmetry between head and tail emerges. Because
of (2.27), the tail position and director can change only by assuming the values
previously taken at an adjacent internal point. We can therefore impose on s = 0
the same conditions we had in the channel case, namely,

rt(0, t) = v0(t) rs(0, t) and θt(0, t) = v0(t)k(0, t)

where v0 is the (only) generalized velocity at s = 0 and k(0, t) is the curvature
of r evaluated in s = 0 at time t. As for the head configuration, since the path is
no longer predetermined, we have an extra degree of freedom. Condition (2.27)
requires rt and rs to be collinear, therefore this extra degree of freedom must
come from the rotation of the director. We then impose

rt(L, t) = vL(t) rs(L, t) and θt(L, t) = ωL(t)

where vL and ωL are the generalized velocities for the system at s = L. The
work rate of the external edge forces is

Pedge = n(L, t) ⋅ rs(L, t)vL(t) +M(L, t)ωL(t)

− (n(0, t) ⋅ rs(L, t) +M(0, t)k(0, t)) v0(t) .

Thus, there are two generalized edge loads at s = L, namely, the axial tension
n ⋅ rs and the bending moment M , and one at s = 0, with the same expression
it had in the channel case. We prescribe that they vanish because, just like in
the previous section, we suppose that no external edge force is doing work on
the system.

Alongside with the boundary conditions coming from the vanishing of the
generalized edge loads, the system must be complemented with equations (2.2)
and (2.27).
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Γ(s (t))
0

Γ(s (t)+L)

k = K

k(s (t)+L) α(L,t)=

r(0,t)

r(L,t)

BA

0

0

Figure 2.4: A) Sketch of the system moving while subjected to the constraint
(2.27). Arrows indicate the direction of motion. Tail position and director
change by assuming the values taken previously at an internal point. The head
configuration has an extra degree of freedom, since it is allowed to turn freely.
B) Motion generated by a given spontaneous curvature history α(s, t). The
curvature of the path at the leading edge is determined by the spontaneous
curvature at s = L.

The non-holonomic constraint (2.27) compels the active rod to move within
a curve in the plane, much like it was for the channel case in the previous section.
This time, however, the path is not a-priori determined but is created during
the motion, and it is an unknown of the problem. In fact, constraints (2.2) and
(2.27) lead to the existence of some function s0 and some curve Γ, which have
both to be determined, such that (2.12) holds. Since the boundary conditions
we derived hold only for head-first motions, we only consider solutions satisfying

ṡ0(t) > 0 . (2.30)

The equations of motion written in components are formally identical to the
ones derived for the channel case

Ns − kH − γY Y = ρA s̈0(t) (2.31)

kN +Hs − f = ρAk ṡ0(t)
2 (2.32)

EJ(ks − αs) +H = ρJ(k s̈0(t) + ks ṡ0(t)
2
) (2.33)

but k = k(s0(t) + s) is no longer predetermined. On the other hand, the equa-
tions are closed through the boundary conditions obtained by setting the three
generalized edge loads to zero

N(0, t) +EJ(k(s0(t)) − α(0, t))k(s0(t) = 0 ,

N(L, t) = 0 , EJ(k(s0(t) +L) − α(L, t)) = 0
(2.34)

together with the initial curvature k(s0(t0) + s) =K(s), with s ∈ [0, L], and the
initial values for s0 and ṡ0 at t = t0. Such values must satisfy the compatibility
relations

ṡ0(t0) > 0 , K(L) = α(L, t0) and Ks(L)ṡ0(t0) = α̇(L, t0) . (2.35)

In order to solve the locomotion problem, we need to find the unknown
functions N(s, t), H(s, t), f(s, t), together with s0(t) and k(s0(t) + s). The
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three equations of motion and the three boundary conditions (2.34) are sufficient
to solve this problem uniquely. This leads to a unique solution also for r and
θ, once the initial position r(0, t0) and orientation θ(0, t0) of the first end are
prescribed, by integrating the equations θs = k and rs = Γ as done, e.g., in
[40, 41]. The detailed proof is provided in the Appendix, and we only sketch
here the heuristic argument behind it.

A key role is played by the third boundary condition in (2.34), coming from
the vanishing of the bending moment at the leading edge. This latter condition,
namely,

k(s0(t) +L) = α(L, t) (2.36)

assigns a crucial role to the spontaneous curvature at the leading edge in deter-
mining the path followed by the system. Thus, the value of α at s = L operates
as a “steering wheel” while the internal values of the spontaneous curvature
supply the active force for propulsion, as it was for the channel case.

Let us see how s0 and k can be determined. There is no loss of generality
if we take t0 = 0 and s0(0) = 0. On the other hand, let us assume ṡ0(t) > 0 for
t ∈ [0, t∗) so that s0 is invertible in the whole interval, and let’s also assume that
t∗ is small enough so that s0(t) < L for every t. Clearly, k(s) = K(s) is known
for s ∈ [0, L] from the initial condition. For s > L we can recover k from the
history of spontaneous curvatures at the leading edge because each point of the
path Γ(ξ) with ξ > L generated between t0 and t∗ is the location of the leading
edge at some time s−1

0 (ξ −L), see Fig.2.3B. Thus, setting

k(ξ) ∶= {
K(ξ) if 0 ≤ ξ ≤ L
α(L, s−1

0 (ξ −L)) if ξ ≥ L
(2.37)

we can recover k(s0(t) + s) from the initial conditions, the given α and the
knowledge of s0. In turn, s0 can be determined by substituting the expression
for H given by (2.33) into (2.31) and integrating with respect to s. Using (2.34),
we deduce

(m + ρJ Q(s0(t))) s̈0(t) =
EJ

2
(k2

(s0(t)) − k
2
(s0(t) +L))

−γY Y L − ρJ R(ṡ0(t), s0(t)) (2.38)

+EJ ∫
L

0
α(s, t)ks(s0(t) + s)ds

where R and Q are given by (2.17). Moreover, using (2.37) and the change of
variable s = ξ − s0(t), the last integral in (2.38) can be written as the sum

∫

L

s0(t)
α(ξ − s0(t), t)Ks(ξ)dξ + ∫

L+s0(t)

L
α(ξ − s0(t), t)ks(ξ)dξ

The second summand in the last expression can be rewritten further, using the
change of variable ξ = s0(τ) +L, as

∫

L+s0(t)

L
α(ξ − s0(t), t)ks(ξ)dξ = ∫

t

0
α(s0(τ) − s0(t) +L, t)ks(s0(τ) +L)ṡ0(τ)dτ

= ∫

t

0
α(s0(τ) − s0(t) +L, t) α̇(L, τ)dτ
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where we have used the identity ks(s0(t) + L)ṡ0(t) = α̇(L, t) following from
(2.36). Finally, observing that in view of our assumption s0(t) < L we have
k(s0(t)) =K(s0(t)) and k(s0(t) +L) = α(L, t), also

R =
ṡ0(t)

2

2
(α2

(L, t) −K2
(s0(t))) and

Q = ∫

L

s0(t)
K2

(ξ)dξ + ∫
t

0
α2

(L, τ)ṡ0(τ)dτ .

Equation (2.38) is in fact

(m + ρJ Q) s̈0(t) =
EJ

2
(K2

(s0(t)) − α
2
(L, t)) − γY Y L

− ρJ R +EJ ∫
L

s0(t)
α(ξ − s0(t), t)Ks(ξ)dξ

+EJ ∫
t

0
α(s0(τ) − s0(t) +L, t) α̇(L, τ)dτ

an integro-differential equation on s0 alone which can be uniquely solved in
terms of the data of the problem, as proven in the Appendix.

Just like in the channel case, once s0 and k are known, the unknown functions
H, N and f can be readily deduced from (2.33), (2.31) and (2.32) respectively.

2.3.2 Serpentine solutions

In this section we provide a class of explicit serpentine solutions for the free-path
locomotion problem, by exploiting solutions constructed for the channel case.
We obtain these solutions by solving an inverse locomotion problem, prescribing
the motion first and then looking for a history of spontaneous curvatures α(s, t)
that produces it.

Let us consider the sinusoidal path Γ given by (2.22) and assume s0(t) = V t.
As we did before, we set ρJ = 0 for simplicity. Following the arguments of
Section 2.2.3 we conclude that α must again solve (2.24). In addition, this time,
we must also require the boundary condition (2.36) to be satisfied. Notice that
none of the spontaneous curvatures we obtained in the channel case fulfils (2.36),
but we show in the following how to modify any α solving (2.24) so that also
(2.36) is satisfied.

We focus below on αact given by (2.26) since, as already remarked, it is the
one that more closely resembles the typical muscular activity patterns observed
in undulating snakes. If we consider a function

α(s, t) = αact(s, t) + α̃(s, t) (2.39)

with α̃ such that

α̃(L, t) = ζ sin(
L + V t

λ
) − αact(L, t) and

∫

L

0
α̃(s, t) cos(

s + V t

λ
) ds = 0 ,

(2.40)

then α satisfies both (2.24) and (2.36). With α having these properties, s0(t) =
V t becomes a solution for the equations of motion, and the expression for N ,
H and f can be deduced following the procedure of Section 2.2.1.
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The extra term α̃ in (2.39) satisfying (2.40) can be taken of the form

α̃(s, t) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if s ∈ [0, L − δ]

∑
Q
i=3 pi(t)(s −L + δ)

i if s ∈ [L − δ,L]
(2.41)

where δ is an arbitrary constant, which can be taken as small as we want, and
pi(t) with i = 3, . . . ,Q are coefficients explicitly depending on t and implicitly
depending also on δ and all of the other parameters. These coefficients can be
uniquely determined imposing (2.40) and any other Q − 5 linearly independent
relations between them (for example, in the numerical experiment we are about
to propose, we imposed α̃ss(L, t) = 0, which led to a smooth generated force
field f concentrated near the head). Notice that the function α̃ so defined is
twice continuously differentiable.

If we take δ small enough then α differs from αact only in a small neighbour-
hood of the leading edge where the steering term α̃ is non zero. The reactive
shear force and tension are now

H(s, t) =Hact(s, t) +EJα̃s(s, t) ,

N(s, t) = Nact(s, t) +EJζ ∫
s

0
sin(

ξ + V t

λ
) α̃s(ξ, t)dξ

and the force exerted on the ground is, in this case,

f(s, t) = fact(s, t) +EJζ
2
∫

s

0
sin(

ξ + V t

λ
) α̃s(ξ, t)dξ sin(

s + V t

λ
) +EJα̃ss(s, t) .

From the last equalities it follows that, if δ is small, also the forces (external
and internal) have the same values of the corresponding ones obtained in the
channel case with the exception of a small region near the leading edge.

We set δ/L = 0.25 and we give here two graphical comparisons of the same
solution fitted with different parameters (Fig.2.5 and Fig.2.6).

In Fig.2.5A and Fig.2.6A we take the same values we considered in Section
2.2.3 for all the parameters. When compared with that of Fig.2.3B, this solution
clearly shows the asymmetry that the steering term α̃ generates in the activa-
tion and force pattens in the proximity of the head (leading edge). In Fig.2.5B
we take the smaller value for the bending stiffness, EJ = 10−4Nm2. Notice that
this solution, besides the tail-head asymmetry associated with steering, displays
a similar force pattern to that of Fig.2.3A (as expected from the formulas we
derived in Section 2.2.3), which is generated by a different pattern of sponta-
neous curvature. Finally, in Fig.2.6B, we consider a rod with the same bending
stiffness but moving with a less tortuous gait (smaller ζ). Observe that, also in
this case, we obtain an almost stationary force pattern, which is qualitatively
similar to that of Fig.2.5B.

Summarizing, we see that a pattern consistent with the picture of snake un-
dulatory locomotion hypothesized in [42] (muscular activity and lateral forces
both concentrated near the inflection points of the trajectory, where the propul-
sive effect of the lateral forces is largest because their component along the
direction of motion is largest) emerges either automatically, for specific choices
of material parameters (Fig.2.5B), or through adjustment of the gait (Fig.2.6B).
Lateral forces near points of maximal and minimal convexity may also be ruled
out by eliminating ground contact (by lifting portions of the body near those
points), as it is done in [40, 41] and sometimes observed in undulating snakes.
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A1 B1

A2

A3

B2

B3

Figure 2.5: Solutions with different bending stiffness, A) EJ = 10−3Nm2 and B)
EJ = 10−4Nm2, at three times: 1) V t/λ = 0, 2) V t/λ = 2π/3 and 3) V t/λ = 4π/3.
To help visualization, the spontaneous curvatures are here not on scale: the
maximal width of the dark shades in B) should be ten times greater than A).

A1 B1

A2

A3

B2

B3

Figure 2.6: Solutions with the same bending stiffness and different path ge-
ometries, A) ζ = 18.5m−1 and B) ζ = 15m−1, at three times: 1) V t/λ = 0, 2)
V t/λ = 2π/3 and 3) V t/λ = 4π/3.

2.4 Discussion

We have studied the motion of an active rod (a planar inextensible elastic rod of
finite length with adjustable spontaneous curvature) arising from the interaction
between external constraints and internal actuation by spontaneous curvature.
Using Cosserat theory, we have formulated and solved both direct and inverse
locomotion problems for two cases: one in which the system is forced to move
along a prescribed path, and the other in which the path is not fixed a-priori and
the system slides along its tangential direction while subjected to lateral forces
preventing lateral slipping. We have obtained a procedure to generate free-
path solutions from solutions with prescribed-path, by recognising the dual role
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(pushing and steering) played by spontaneous curvature in powering undulatory
locomotion of the rod. Finally, we have obtained explicit analytic solutions and
formulas that can be used to study the connections between observed motion,
internal actuation, and forces transmitted to the environment, and to explore
how these connections are affected by the mechanical properties of the system
(its bending stiffness).

Although our results hold for a (very specific) model system, it may be
interesting to compare some of them with observations made in the context
of undulatory locomotion of snakes. For this exercise to make sense, we are
formulating the implicit assumption that our mechanism of internal actuation by
spontaneous curvature can provide a reasonable proxy for muscular actuation,
and that the free-path motion of the organism we are considering does not
cause lateral slipping, but only involves longitudinal sliding (as it is sometimes
observed).

The first example is formula (2.19), which provides a compact summary of
some classical observations on snake locomotion by Gray [1, 2]. Undulatory
locomotion in closely fitting channels is possible only if the channel presents
a variation of curvature along its track. The formula explains the mechanism
by which spontaneous curvature can provide the driving force for locomotion
inside a tightly fitting channel, and our analysis delivers formulas to calculate the
lateral forces exerted on the channel walls. It would be interesting to compare
these with experimental measurements.

A second example is the observation that, among various possible actuation
strategies producing the same prescribed motion, the one minimising actuation
effort (as measured by the integral norm of spontaneous curvature) is propor-
tional to the arc-length derivative of the curvature of the trajectory. This means
that local actuation is maximal at the inflexion points of the trajectory, and
zero at points of maximal and minimal curvature. This is closely reminiscent
of the typical pattern of muscular actuation emerging from experimental mea-
surements on snakes [36, 37], and it would be interesting to explore further the
reasons behind this analogy.

Finally, our analysis suggests that the connection between observed mo-
tions, internal actuation, and transmitted forces may be strongly affected by
the passive mechanical properties of the system, such as its bending stiffness.
The conceptual picture of snake undulatory locomotion in which both muscular
activity and lateral forces are concentrated near the inflection points of the tra-
jectory, previously theorised in [42], emerges either automatically, for specific
choices of material parameters, or through the adjustment of the gait.

Understanding the mechanisms that control gait selection and, in particular,
whether there are optimality criteria explaining gait selection in the biological
organisms, and whether some of them may be useful for the engineering of arti-
ficial devices represent interesting challenges. Adding some important ingredi-
ents, currently not present in our model, may prove necessary. One example is
some form of active local control of the frictional interactions between body and
ground, as is done in [40, 41]. Moreover, when considering real snakes behaviour
it is natural to speculate that muscular activity may be, at least to some extent,
a reaction to external stimuli (the forces exerted by the ground on the snake),
thereby creating an interplay between the two dynamical variables. It would
be interesting to study how our model could be extended to account for such
feedback mechanisms. All these questions will require further study.
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2.5 Appendix. Existence and uniqueness
of free-path locomotion solutions

For the sake of simplicity we take ρJ = 0. The following arguments can be easily
adjusted for the general case.

Suppose we have a solution of the free-path locomotion problem (2.31)-
(2.32)-(2.33) satisfying the boundary conditions (2.34) and the extra require-
ments (2.30) and (2.35) where K(s) = k(s0(t0) + s) for s ∈ [0, L]. Again, there
is no loss of generality taking t0 = 0 and s0(t0) = 0. Let us first suppose, by
restricting its domain of definition if necessary, that s0 is defined on a time
interval [0, t∗) such that s0(t) ≤ L for every t ∈ [0, t∗). The arguments used in
Section 2.3.1 show that, within this time interval, the equation for s0 in terms
of the data of the problem reads

ms̈0(t) =
EJ

2
(K2

(s0(t)) − α
2
(L, t)) − γY Y L +EJ ∫

L

s0(t)
α(ξ − s0(t), t)Ks(ξ)dξ

+ EJ ∫
t

0
α(s0(τ) − s0(t) +L, t) α̇(L, τ)dτ . (2.42)

The general case in which s0(t) > L may also occur (i.e., the trailing edge is no
longer contained in the image of the initial configuration, see Fig.2.3B) can be
handled by applying the following simple, yet technical, argument. As we will
show, a local solution s0 for (2.42) exists and is unique once a positive initial
velocity ṡ0(t0) is given, by requiring that s0(t) ≤ L. If a local solution s0 of (2.42)
exists and is unique then, for every given initial conditions, there exists only one
solution with a maximal interval of definition. For such maximal solutions we
can have either of two cases. In the first, the maximal interval of existence of
s0 with ṡ0 > 0 is of the type [0, t∗) and, for every t in the interval, s0(t) ≤ L
holds. If that occurs, the only solution of the free-path problem is defined in
the time interval [0, t∗), the curvature k can be derived through (2.37) while all
the other unknowns can be deduced by the the same procedure we employed
in the channel case in Section 2.2.1. In the second case, a solution s0 of (2.42)
satisfying ṡ0 > 0 and s0(t) ≤ L can be only defined in a maximal domain of the
type [0, t∗]. For a solution of this kind we must have s0(t

∗) = L, by maximality.
In this last case we can still define k through (2.37) as we did before. Then
we can reapply all the arguments of Section 2.3.1 finding an equation of the
type (2.42) for a new variable s∗0 with new initial conditions for the free-path
locomotion problem, namely s∗0(t

∗) = s0(t
∗), ṡ∗0(t

∗) = ṡ0(t
∗) and the new initial

curvature K∗(s) = k(L + s) with s ∈ [0, L]. After that we are able to solve the
new integro-differential problem uniquely for s∗0, recover the value for all the
unknowns, and then glue the solutions together. We repeat this procedure until
we reach eventually a maximal domain of existence for the general solution.

The existence and uniqueness of free-path locomotion solutions then follows
from the local existence and uniqueness of solutions of (2.42) with the extra
requirements ṡ0(t) > 0 and s0(t) ≤ L. This can be proved using standard
contraction mapping arguments. The result holds under the very reasonable
assumption of α and K being differentiable and uniformly bounded together
with their derivatives.
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Observe that we can recast (2.42) into a set of integro-differential equations
of the form

ẋ(t) = G(x(t), t) + ∫
t

0
H(x(τ) − x(t), τ, t)dτ , (2.43)

with

x(t) = (x(t), y(t)) , H(x, τ, t) = ( 0 , EJα(x +L, t) α̇(L, τ) ) and

G(x, t) =(
y

m
,
EJ

2
(K2

(x) − α2
(L, t)) − γY Y L +EJ ∫

L

x
α(ξ − x, t)Ks(ξ)dξ ) .

It is clear that x solves (2.43) if and only if s0(t) ∶= x(t) solves (2.42). We first
extend K and α outside [0, L]×[0,∞) while keeping their regularity properties.
Then we consider the Cauchy problem for (2.43) with initial conditions x(0) = x0

and no extra assumption on the solutions besides differentiability. The problem
can be easily proved to be equivalent to that of the existence of a fixed-point
for the operator C defined as

C [x] (t) = x0 + ∫

t

0
[G(x(λ), λ) + ∫

λ

0
H(x(τ) − x(λ), τ, λ)dτ] dλ .

We restrict the operator C to the space BM,T
x0

of continuous vector valued func-
tions t↦ x(t) defined on the interval t ∈ [0, T ] and such that

∥x − x0∥ = max
t∈[0,T ]

∣x(t) − x0∣ ≤M .

There is no loss of generality in assuming that the extensions we considered for
K and α lead to the existence of two constants MG and MH such that

∣G(x(t), t)∣ ≤MG and ∣H(x(τ) − x(t), τ, t)∣ ≤MH for every τ and t

and for every x ∈ BM,T
x0

. We can also assume that there are other two constants
LG and LH such that

∣G(x, t) −G(y, t)∣ ≤ LG∣x − y∣ and ∣H(x, τ, t) −H(y, τ, t)∣ ≤ LH∣x − y∣

for every τ and t and for every x,y ∈ BM,T
x0

. We have then

∣C [x] (t) − x0∣ ≤ TMG + T 2MH

and also

∣C [x] (t) −C [y] (t)∣ ≤ ∣∫

t

0
G(x(λ), λ) −G(y(λ), λ)dλ ∣

+ ∣∫

t

0
∫

λ

0
H(x(τ) − x(λ), τ, λ) −H(y(τ) − y(λ), τ, λ)dτ dλ ∣

≤ TLG ∥x − y∥ +LH ∫

t

0
∫

λ

0
∣x(τ) − x(λ) − (y(τ) − y(λ))∣ dτ dλ

≤ (TLG + 2T 2LH) ∥x − y∥ .

For small enough T the operator C is a contraction from BM,T
x0

into itself,
therefore it has only one fixed point. This proves local existence and uniqueness
for the extended version of (2.43). If we take x0 = (0, y0) with y0 > 0 then,
restricting the domain of existence to an interval [0, T ∗) if necessary, we have
by continuity x(t) ≤ L and ẋ(t) = y(t) > 0 for every t ∈ [0, T ∗), hence obtaining
the unique solution to the original (non-extended) problem.





Chapter 3

Flagellar Swimming

Flagella constitute the mean of propulsion for a large variety of swimming mi-
croorganisms, and they are at the base of bio-inspired designs of swimming
robots targeted to medical applications [8, 9]. In eukaryotes these long and
flexible appendages are typically actuated by distributed internal forces. Mam-
malian sperms, for example, propagate bending torques along their tails to
achieve propulsion [63, 64, 82]. Others, like the bi-flagellate Chlamydomonas,
perform a rhythmical breaststroke-like routine leading to a rocketing forward
motion [83, 84].

On the other hand, passive elastic flagella, when actuated only at the extrem-
ity, can also constitute an effective and simpler swimming device. A biological
example for that comes from bacteria like E.Coli, whose passive helical tail is
actuated at one end by a rotary motor inducing a cork-skew like propulsion [84].
Locomotion at very small scales is subject to the so called “Scallop Theorem”
[72], which states that the body of a swimmer must undergo time-irreversible
shape changes to produce net advancements. How the hydroelastic coupling
between a flagellum and the surrounding fluid constitute, by itself, a source of
time-irreversibility and propulsion stands as a fundamental problem to address.

Much has been done. Besides the pioneering work by Machin [71], the prob-
lem has been explored extensively in more recent years [58, 59, 60]. In [58, 59]
Wiggins et al. demonstrated that, apart from axial rotations, also the planar
beating of an elastic filament with one oscillating end can produce axial propul-
sive force. These findings have been put in the swimming context by Lauga in
[66], who analysed the locomotion capabilities of an internally actuated swimmer
model as the one in Fig.3.1B. Numerical experiments also focused on externally
actuated swimming of microrobot models, inspired by the geometry of sperm
cells, consisting of a cargo with a clamped passive elastica [69, 65] like the one
depicted in Fig.3.1A. Both externally and internally actuated elastic swimmers
were also analysed through discrete models by Or et al. in [73, 74] to grasp the
essentials of their motility mechanism. However, in all the aforementioned stud-
ies flagellar beating is always restricted to sinusoidal actuations; the swimmers
move “head-first” and, on average, on a straight line.

Many questions remain unanswered. For instance, what is the direction of
motion for a generic (non-sinusoidal) periodic actuation? Does swimming always
take place head-first, or can the sign of swimming velocity be controlled? In
this Chapter we provide an answer to these questions. Our analysis is based on

49
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a small-compliance assumption to obtain rigorous approximation of the general
continuum equations. Within this limit we provide explicit formulas whose
results are expressed through motility maps [78, 79, 80, 81], a visual approach
that allows deduction on equations outcome without the need to actually solve
them.

We find a sign reversal in direction for the externally actuated swimmer
for large enough actuation amplitudes. Moreover, we find that modulation in
the velocity of actuation can provide a mechanism to select different direction
of motion. Indeed, a flagellar oscillation composed by a fast turn in in one
direction and slow turn in the other produces generally a deviation from the
symmetry axis around which beating takes place. With these oscillatory inputs
the externally actuated swimmer in Fig.3.1A can translate laterally with respect
to this symmetry axis, while the internally actuated one in Fig.3.1B is able to
move along curved trajectories.

Dependency on the velocity of actuation is not surprising since previous
investigations on this kind of model swimmers [66, 73, 74] reported that different
displacements arise after different frequencies of oscillation. With our analysis
we can look deeper in to the relations between a) given (generic) actuation, b)
shape changes of the swimmers c) resulting displacements after every actuation
cycle, and we demonstrate how the actuation velocity can be considered as a
motion control parameter.

Take first the externally actuated swimmer. As mentioned earlier, in order
to obtain a net displacement, the swimmer must undergo non-reciprocal shape
changes to overcome the Scallop Theorem. Here the shape of the swimmer is
determined by the angle α between the head and the tail at the point of at-
tachment (see Fig.3.1B) and by the geometry of the tail itself. The latter is
a result of the dynamics. Because of our small-compliance assumption we do
not have propagating bending waves, instead tail geometry during motion is
“simple”. More precisely, we deduce an explicit formula for the tail deformation
at a given time depending only on two parameters: the internal angle α and its
velocity α̇. This last two quantities can be interpreted then as the shape param-
eters of the swimmer. Modulations of the actuation velocity lead to different
loops in the shape space, resulting in different displacements. Motion control is
possible as, given the loop geometry in the shape space (α̇, α), the resulting dis-
placement can be inferred with the aid of the motility maps provided in Section
3.3.2.

A similar analysis is carried out in Section 3.2 for the swimmer in Fig.3.1A.
It must be noted that, because of the presence of an external torque, in this
case the Scallop Theorem does not apply, see [74, 85]. Indeed, for example, a
two-link swimmer (“Purcell Scallop”) can display net motions if an oscillating
external moment is acting on it. Non-reciprocity is, on the other hand, still
crucial. For the two-link swimmer we have net displacements if, as a result
of external activation, the angle of one link with respect to an external frame
and the internal angle between the two links undergo a non-reciprocal cycle.
Motions arise, for our externally activated swimmer, in a similar way. We can
assimilate the link angle of the Purcell Scallop with the angle φ (see Fig.3.1A),
and the internal angle between the links with the geometry of the tail. Also in
this case, in fact, the tail geometry is “simple” and it is completely determined
by only one parameter: the velocity φ̇. Modulating loops in the space (φ̇, φ)
leads to different resulting displacements that can be inferred from the motility
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maps of Section 3.2.2.

The Chapter is organized as follows. In Section 3.1 we set up the governing
equations for both models, following closely the derivation in [66], and we for-
malize the assumptions on the dynamical parameters. In Section 3.2 we derive
an explicit solution for the externally actuated swimmer in Fig.3.1A, we derive
and comment the motility maps and also address some optimization problems
related to efficiency and velocity of swimming. The same kind of analysis and
results are carried out in Section 3.3 for the internally actuated swimmer in
Fig.3.1B.

3.1 Governing equations

As mentioned in the introduction, the model microswimmers subject to our
study are those illustrated in Fig.3.1A and Fig.3.1B. We restrict ourselves to
planar motions of such model swimmers (although the analysis we present here
can be carried out also in three dimensions) and we consider the plane of loco-
motion as the one spanned by the couple of orthonormal vectors {e1,e2}. Both
of the models consist of a spherical cargo of radius a attached to a passive elastic
filament of length L, which we shall refer to as the “flagellum”. Both swimmers
are surrounded by a Newtonian fluid and moving at a low Reynolds number
regime.

Φ
q

x

y

Φ
q

α
a

L

y
x

A B

e

e

2

1

e

e

2

1

θ=Φ
θ=Φ+α

Figure 3.1: Schematic description of A) the externally actuated and B) the
internally actuated swimmer model.

In the case of Fig.3.1A, the swimmer’s flagellum is clamped orthogonally
to the cargo, and the swimming propulsion is achieved thanks to an external
torque acting on the sphere. We suppose that such a torque modulates the
angle φ formed by the horizontal line and the line joining the centre of the
cargo q and the point of attachment. We define the angle φ for the swimmer
in Fig.3.1B in the same way. Here, however, we suppose that the flagellum is
connected to the sphere by a joint, and that the angle θ of the flagellum at the
point of attachment can vary. The action of an internal torque modulates the
angle difference α = θ − φ.

In both cases the elastic flagellum is supposed to be inextensible and slender,
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that is, denoting rf the radius of its cross-section, we assume

rf

L
≪ 1 . (3.1)

As proven experimentally in [67] the dynamics of interaction between the fluid
and such a slender filament can be well described by “resistive force theory”,
which is the lower order approximation in the parameter rf /L of the more
general “slender body theory” [70, 5], which is derived directly from the Stokes
equations. In the limit of small ratio rf /L long range interactions are neglected,
and hydrodynamic forces are assumed to be acting locally. We also neglect
hydrodynamic interactions between the flagellum and the cargo. The two key
dynamical parameters are the viscous drag coefficients ξY Y and ξ� which are the
force exerted by the fluid per unit length of the flagellum for motion parallel and
perpendicular to its length. The mass of the swimmers is neglected as viscous
and elastic forces dominate the dynamics.

Our analysis relies on yet another hypothesis, previously stated in the in-
troduction: we assume that the flagellum, in both cases, has a large bending
resistance compared with the viscous forces it is subjected to. More precisely, if
we denote B as the bending stiffness of the flagellum and ω as the frequency of
actuation (either internal or external), then we assume that the ratio between
the typical normal viscous force ξ�L

2ω and the typical elastic force L−2B acting
on the flagellum

ε =
ξ�L

2ω

L−2B
(3.2)

is small. As a consequence, the flagellum does not deviate largely from a straight
line. This last assumption is consistent with the use of resistive force theory, as
the theory is proven more accurate for slender bodies for which any two point
of the system are kept “as far away as possible” [67, 66]. Moreover, the small-
slope regime leads to a substantial simplification of the governing equations of
the system, allowing the theoretical treatment we propose here.

3.1.1 The small-slope approximation

In setting the equations of motion we follow closely Lauga’s derivation in [66].
The arguments leading to the equations do not differ greatly from those pre-
sented in [66], and the equations themselves present little discrepancy. In order
to elucidate on the few differences we propose here the main passages of the
derivation. First we consider the flagellum dynamics, for which the same “bulk”
equations hold both for the externally and the internally actuated case.

We denote by r the curve on the plane describing the position of the middle
line of the flagellum. As mentioned in the previous section, we restrict our
analysis to the case in which the flagellum is varying mildly around a moving
axis of reference. We assume that the direction of the reference axis is given at
time t by the normal vector

eθ = cos θ(t)e1 + sin θ(t)e2

and that the curve r has the following expression

r = r(0, t) + xeθ + y(x, t)e
�
θ (3.3)
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where e�θ = − sin θ(t)e1 + cos θ(t)e2 is the normal vector orthogonal to the refer-
ence axis and r(0, t) determines the position of the point of attachment between
the cargo and the flagellum. We suppose

y(0, t) = 0 and
∂y

∂x
(0, t) = 0 (3.4)

so that, in particular, the orientation of the flagellum at the point of attachment
is determined by θ. Notice that, with this assumption, for the externally driven
swimmer the angle θ and the orientation of the cargo φ coincide. The small-slope
approximation consists in the hypothesis

∣
∂y

∂x
∣ ≪ 1 . (3.5)

In this regime the variable x can be considered as the arc-length coordinate of
the curve r, and it is taken to vary in the interval [0, L]. We denote with vx and
vy the longitudinal and the transversal velocity (respectively) of the flagellum
with respect to the reference axis direction. The two quantities are defined by
the formula

∂r

∂t
= vxeθ + vye

�
θ . (3.6)

Following [66], in the small-slope approximation the projections on eθ and e�θ
of the force balance equation on the flagellum read

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ξY Y vx + (ξY Y − ξ�)vy
∂y

∂x
=
∂σ

∂x

ξ�vy + (ξY Y − ξ�)vx
∂y

∂x
= −B

∂4y

∂x4
+
∂

∂x
(σ
∂y

∂x
)

(3.7)

The left hand sides of the equations account for the viscous forces, while the
right hand sides for the elastic ones. The function σ is the Lagrange multiplier
enforcing the inextensibility constraint, and it is determined (see again [66]) by
the equation

∂2σ

∂x2
+B (

ξY Y
ξ�

− 1)
∂2y

∂x2

∂4y

∂x4
= B

∂y

∂x

∂5y

∂x5
. (3.8)

The boundary conditions at the free edge x = L are given by the vanishing of
the applied elastic force σeθ + (−B∂3y/∂x3 + σ∂y/∂x)e�θ and elastic moment
B∂2y/∂x2, which give

σ(L, t) = 0 ,
∂2y

∂x2
(L, t) = 0 and

∂3y

∂x3
(L, t) = 0 . (3.9)

Force and moment at the point of attachment x = 0 are determined by the
interaction with the cargo.

As we stated in the previous section, the cargo does not interact with the
flagellum through hydrodynamics. Therefore the viscous force on the sphere is
given by −νq̇ where ν is the viscous drag coefficient and where we denoted with
a ‘dot’ the derivative with respect to time. For both the externally and the
internally actuated swimmers the forces acting on the cargo are the viscous one
and the contact force σeθ + (−B∂3y/∂x3 + σ∂y/∂x)e�θ exerted by the flagellum
on the sphere. If we apply (3.4) the force balance on the cargo reads

−νq̇(t) + σ(0, t)eθ −B
∂3y

∂x3
(0, t)e�θ = 0 . (3.10)
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The difference between the systems of equations of the two model swimmers
lies in the moment balance between the cargo and the flagellum. For the exter-
nally actuated swimmer the moments acting on the cargo are: the viscous one,
given by −νrotφ̇ where νrot is the rotational drag coefficient for the sphere; the
contact one a(−B∂3y/∂x3+σ∂y/∂x)+B∂2y/∂x2 coming from the flagellum; and
the one given by the external torque τext. Using (3.4) and (3.10), the moment
balance equation on the cargo reads

−νrotφ̇(t) + νae�φ ⋅ q̇(t) +B
∂2y

∂x2
(0, t) + τext(t) = 0 (3.11)

where e�ϕ = − sinφ(t)e1 + cosφ(t)e2. As for the internally activated swimmer
there are only viscus and contact moments acting on the cargo, when, on the
other end, we assume that there is internal couple τint acting on the flagellum
to enforce the angle difference α = θ − φ. We have

−νrotφ̇(t) + νae�φ ⋅ q̇(t) +B
∂2y

∂x2
(0, t) = 0 and τint = −B

∂2y

∂x2
(0, t) . (3.12)

In the next section we non-dimentionalize all the above equations of motion.

3.1.2 Non-dimensional equations

To avoid notational excess we use the same variables we adopted in the deriva-
tion of the dimensional equations to denote their respective normalized quanti-
ties. We scale by L the space variables x, y, r, q, and by ω−1 the time variable t.
The Lagrange multiplier σ is scaled by the elastic force L−2B while τext and τint

by the viscous torque ξ�ωL
3. We keep the angle variables φ and θ (themselves

in non-dimensional units) unscaled.
The normalized equations for the flagellum are

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ε(γvx + (γ − 1)vy
∂y

∂x
) =

∂σ

∂x

ε(vy + (γ − 1)vx
∂y

∂x
) = −

∂4y

∂x4
+
∂

∂x
(σ
∂y

∂x
)

(3.13)

(3.14)

where γ = ξY Y /ξ� is the drag anisotropy factor and ε is given by (3.2). The
non-dimensional equation for σ becomes

∂2σ

∂x2
+ (γ − 1)

∂2y

∂x2

∂4y

∂x4
=
∂y

∂x

∂5y

∂x5
. (3.15)

while the non-dimensional force balance on the cargo reads

−εηq̇(t) + σ(0, t)eθ −
∂3y

∂x3
(0, t)e�θ = 0 (3.16)

where we set η = ν/ξ�L to be the total viscous drag ratio between the sphere
and the flagellum. The moment balance on the cargo for the externally actuated
swimmer in non-dimensional units is

−εηrotφ̇(t) + εηρe�φ ⋅ q̇(t) +
∂2y

∂x2
(0, t) + ετext(t) = 0 (3.17)
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while for the internally actuated swimmer we have

−εηrotφ̇(t) + εηρe�φ ⋅ q̇(t) − ετint(t) = 0 with ετint(t) = −
∂2y

∂x2
(0, t) (3.18)

where ηrot = νrot/ξ�L
3 is the total rotational viscous drag ratio and ρ = a/L.

Finally, the following boundary conditions must hold

y(0, t) =
∂y

∂x
(0, t) =

∂2y

∂x2
(1, t) =

∂3y

∂x3
(1, t) = σ(1, t) = 0 . (3.19)

We conclude this section with a few comments on the relevant quantities that
arise from the non-dimensionalization of the equation of motion.

In the slender limit (3.1) the two viscosity coefficients on the flagellum have
the following expressions

ξY Y =
2πµ

log(L/rf) − 1/2
and ξ� =

4πµ

log(L/rf) + 1/2
, (3.20)

where µ is the dynamic viscosity of the fluid [70, 5]. In the same slender limit
then the drag anisotropy ratio γ is approximately ∼ 0.5. As for the spherical
cargo we have ν = 6πµa and νrot = 8πµa3 [77], therefore from (3.20) and the
definitions of η and ηrot we have

η =
3

2
ρ( log(L/rf) + 1/2) and ηrot = 2ρ3( log(L/rf) + 1/2) . (3.21)

Once the slenderness L/rf of the flagellum is set, the two parameters η and ηrot

depend solely on ρ = a/L.

Finally, let us consider ε given by (3.2). As mentioned in the first section,
this parameter measures the compliance of the flagellum while subject to a
viscous force of order ξ�ωL

2. In the following, we shall refer to ε as the “Machin
number” and always assume

ε≪ 1 . (3.22)

We point out that this assumption is not always satisfied for material parameters
of known manufactured or biological flagellar swimmers; for sperm cells ε ∼

102 − 105 [64], while for the artificial swimmer in [62] ε ∼ 100 − 103. However,
considering a flagellum with L/rf ≃ 102−103 and Young modulus E ≃ 1011Nm−2,
the value for permalloy as in [85], beating in water µ = 8.90 × 104Nm−2s then
(3.22) is satisfied for a reasonable range of frequencies. Indeed, using (3.20) and
the formula B = πEr4

f /4, we have

ε =
ξ�ω

B
L4

=
8µω(L/rf)

4

( log(L/rf) + 1/2)E
≲ ω × 10−6s − ω × 10−2s .

Besides, the hypothesis (3.22) will enable us to develop an asymptotic ap-
proximation scheme for explicit analysis. Moreover, it justifies the adoption of
the small-slope equations, as it is explained in the next section. This is the
major difference between our analysis and the one presented in [66] where small
deviations of the flagellum comes as a consequence of small actuation.
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3.1.3 Further simplifications

Following again [66], we further simplify the governing equations by estimating
the scaling in ε of the various quantities and retaining only on the leading order
terms.

If the data driving the motion τint, τext are of order ∼ 1 then, from the
physics of the problem and the hypothesis of quasi-rigidity (3.22), we have that
the quantities q̇, φ̇, θ̇, vx, vy, y are at most of the same order, as it is verified
a-posteriori. From (3.17) and (3.18) we have that ∂2y/∂2x ∼ ε at x = 0 in both
the externally and the internally driven case. If we project (3.16) on eθ and e�θ
then, with the same argument, we obtain σ ∼ ε and ∂3y/∂3x ∼ ε at x = 0. Given
that the other boundary conditions for y and σ are null (3.19), we can conclude
from (3.13) and (3.14) that σ, y ∼ ε. Notice that (3.5) is therefore verified.

It will turn out that in the externally driven case σ is in fact of order ε2,
but in the internally driven one it is actually of order ε. Anyhow, we can drop
higher order terms in ε from equation (3.14), obtaining

εvy = −
∂4y

∂x4
(x, t) (3.23)

Because of this simplification we can rule out σ from the equation of motion.
Indeed, observe that from (3.3) and (3.6) we have

vx = u
x
− θ̇y and vy = u

y
+ θ̇x +

∂y

∂t
(3.24)

where we defined ux and uy as the longitudinal and transversal velocity of the
attachment point respectively

ux =
∂r

∂t
(0, t) ⋅ eθ , uy =

∂r

∂t
(0, t) ⋅ e�θ . (3.25)

Therefore, using (3.19) (3.23) and (3.24), if we integrate (3.13) we obtain

σ(0, t) = − ∫

1

0

∂σ

∂x
= −∫

1

0
ε(γvx + (γ − 1)vy

∂y

∂x
)

= −εγux + ε∫
1

0
γθ̇y + ∫

1

0
(γ − 1)

∂4y

∂x4

∂y

∂x

= −εγux + ε∫
1

0
γθ̇y + (γ − 1)

⎡
⎢
⎢
⎢
⎢
⎣

∂y

∂x

∂3y

∂x3
−

1

2
(
∂2y

∂x2
)

2⎤
⎥
⎥
⎥
⎥
⎦

1

0

= −εγux + ε∫
1

0
γθ̇y +

γ − 1

2
(
∂2y

∂x2
)

2

(0, t) .

Substituting the above expression for σ(0, t) in the projection along eθ of (3.16)
we have

ε(η + γ)ux(t) − ε ηρ sinα φ̇(t) = εγθ̇(t)∫
1

0
y(x, t)dx +

γ − 1

2
(
∂2y

∂x2
)

2

(0, t) (3.26)

where α = 0 in the externally actuated case.
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3.2 Externally actuated swimmer

The natural problem for the case of the externally actuated swimmer is that of
finding the motion given the external actuation τext. We study here first the
problem in which φ is given, for two reasons: first, it simplifies the asymptotic
calculations; second, and more important, the geometry behind the propulsion
capabilities of the swimmer is better understood when treated in terms of the
configurational parameter φ.

Observe that, in this case, the moment balance equation on the cargo (3.17)
can be ruled out. More precisely, (3.17) stands to define the external torque τext

needed to impose the oscillation of φ we prescribe. The system of equations for
the swimmer therefore consists in: the (simplified) balance of transversal forces
on the flagellum (3.23), the projection on e�θ of (3.16), and (3.26). Since φ = θ
then, using (3.24), the system reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε(uy(t) + φ̇(t)x +
∂y

∂t
(x, t)) = −

∂4y

∂x4
(x, t)

εηρφ̇(t) − εηuy(t) =
∂3y

∂x3
(0, t)

ε(η + γ)ux(t) = εγφ̇(t)∫
1

0
y(x, t)dx +

γ − 1

2
(
∂2y

∂x2
)

2

(0, t)

(3.27)

(3.28)

(3.29)

In order to solve for the unknowns ux, uy and y, the previous equations must
be accompanied to the boundary conditions (3.19).

As we show in the Appendix, given a periodic actuation φ(t), the system
(3.27)-(3.29) admits only one periodic solution. All the analysis and results
we present in the following regard this solution alone. In the next section we
propose a perturbation scheme to obtain a formal asymptotic solution, which
approximates the unperturbed periodic one in a sense defined rigorously in
Appendix I.

3.2.1 Asymptotics

We now proceed formally in finding an asymptotic solution of our problem,
applying standard perturbation techniques [75]. We look for solutions in the
form of a power series in the Machin number

y = y0+εy1+ε
2y2+. . . , ux = ux0+εu

x
1+ε

2ux2+. . . , uy = uy0+εu
y
1+ε

2uy2+. . . (3.30)

We can also think the given periodic angle φ as coming in power series form
φ = φ0 + εφ1 + ε

2φ2 . . ., taking φ0 = φ and φk = 0 for k ≥ 1. Substituting these
expression in the equations of motion, and expand all members of the equations
in power series in ε, we then make coefficient of equal power equal. We obtain
a series of problems to be solved successively: equation (3.27) becomes

0 = −
∂4y0

∂x4
(x, t) and uyk−1(t) + φ̇k−1(t)x +

∂yk−1

∂t
(x, t) = −

∂4yk
∂x4

(x, t) (3.31)

for every k ≥ 1, while (3.28) gives

0 = −
∂3y0

∂x3
(0, t) and ηρφ̇k−1(t) − ηu

y
k−1(t) =

∂3yk
∂x3

(0, t) (3.32)
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for k ≥ 1. These series of equations come with the following boundary conditions

yk(0, t) =
∂yk
∂x

(0, t) =
∂2yk
∂x2

(1, t) =
∂3yk
∂x3

(1, t) = 0 for k ≥ 0 . (3.33)

Notice that ux is completely decoupled from uy and y, as it appears only in
(3.29). We can then solve (formally) for uy and y from (3.31) and (3.32),
and subsequently recover the asymptotic expression for ux though the equality
(3.29).

In the following we calculate explicitly the asymptotic solution up to order
k = 1. Clearly, at the zero order we must have

y0(x, t) = 0 .

Equation (3.31) for k = 1 then reads

uy0(t) + φ̇(t)x = −
∂4y1

∂x4
(x, t) .

The unique solution for y1 satisfying the previous equation and the boundary
conditions (3.33) can be written as

y1(x, t) = −∫
x

0
∫

x1

0
∫

1

x2
∫

1

x3

(uy0(t) + φ̇(t)x4)dx4dx3dx2dx1 . (3.34)

Substituting (3.34) in (3.32) we have

ηρφ̇(t) − ηuy0(t) = ∫
1

0
(uy0(t) + φ̇(t)x)dx

which gives

uy0(t) =
ηρ − 1

2

η + 1
φ̇(t) . (3.35)

Plugging the above expression for uy0 back in (3.34) we obtain

y1(x, t) = −p1(x)φ̇(t) where

p1(x) = ∫
x

0
∫

x1

0
∫

1

x2
∫

1

x3

(
ηρ − 1

2

η + 1
+ x4) dx4dx3dx2dx1 .

(3.36)

Notice that the solution we have just found for y1 states that, at first approxi-
mation, the shape of the flagellum during motion is completely determined by
the actuation velocity φ̇(t). This is not entirely surprising, since the bending of
the flagellum must be proportional to the total moment applied to it, which it-
self depends on the velocity of the swimmer. We will return on this observation
in the next section.

We find now an explicit solution for uy1, by considering the k = 2 order
problem in (3.31), which now reads

uy1(t) − p1(x)φ̈(t) = −
∂4y2

∂x4
(x, t) .

Following the same arguments as in the case of y1 we obtain the integral formula

y2(x, t) = −∫
x

0
∫

x1

0
∫

1

x2
∫

1

x3

(uy1(t) − p1(x4)φ̈(t))dx4dx3dx2dx1
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which, substituted in (3.32) for k = 2, gives

−ηuy1(t) = ∫
1

0
(uy1(t) − p1(x)φ̈(t))dx .

From the previous equation we have

uy1(t) =
φ̈(t)

η + 1
∫

1

0
p1 . (3.37)

We can know find the solution for the first orders of ux. If we replace the
asymptotic expansion of y in (3.29) we get

ε(η + γ)ux = ε2γ ∫
1

0
φ̇y1 + ε

2 γ − 1

2
(
∂2y1

∂x2
)

2

(0, t) +O(ε3) ,

from which we obtain the expressions for the orders k = 0 and k = 1 of the ux

asymptotic expansion

ux0 = 0 and ux1 = −(
γ

η + γ
∫

1

0
p1 +

1 − γ

2(η + γ)
p′′1(0)

2
) φ̇2 , (3.38)

where we denoted with a ‘prime’ the derivative of p1 with respect to x.

3.2.2 Motility maps

Having found the first order of approximation for ux and uy we turn now on
the analysis of motion of the swimmer. Specifically, we study here the resulting
approximated solution for the coordinate q of the cargo, and we show how a
given (periodic) actuation φ can lead to propulsion. The quantity we shall
consider is

∆q ∶= q(1) − q(0) = ∫
1

0
q̇(t)dt

namely the net displacement of the cargo after one period.
Before entering in the explicit calculations we make here two important

remarks on the definition of ∆q. Firstly, since from (3.25) we have

q̇ =
d

dt
(r(0, t) − ρeφ) = u

xeφ + u
ye�φ −

d

dt
ρeφ ,

where {ux, uy} is the (periodic) solution to the unperturbed problem, then if we
consider ∆nq, namely the net displacement of the cargo after the nth period,
we obtain

∆nq ∶= ∫

n+1

n
q̇ = ∫

n+1

n
(uxeφ + u

ye� −
d

dt
ρeφ) = ∫

1

0
uxeφ + u

ye�φ = ∆q

because of the periodicity of ux, uy and φ. The definition of ∆q is well defined,
as it gives the net displacement of the cargo after any period of the actuation.
Secondly, we observe that we can restrict our analysis to the case in which the
activated angle φ oscillates around 0 (i.e. the flagellum is beating around the
horizontal axis) without loss of generality. Indeed, for a general periodic function
φ we can always find φ̃ oscillating around zero such that φ(t) = φ∗ + φ̃(t) for
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some constant φ∗. Since the equations (3.27)-(3.29) only depend on the time
derivative of the prescribed angle, the two inputs φ and φ̃ generates the same
velocities ux and uy. Therefore, if we denote q the coordinate of the cargo when
the controlled angle is φ and q̃ when the angle evolution is given by φ̃, we have

∆q = ∫

1

0
uxeφ∗+φ̃ + u

ye�
φ∗+φ̃

= R(φ∗)∫
1

0
uxeφ̃ + u

ye�
φ̃
= R(φ∗)∆q̃

where R(φ∗) is the rotation on the plane by the angle φ∗, which reads

R(φ∗) = (
cosφ∗ − sinφ∗

sinφ∗ cosφ∗
) (3.39)

in matrix form for the basis {e1,e2}. As it is intuitive, an oscillation about a
given angle produces the same kinematics of swimming, up to a rotation, as
when the same oscillation is performed about the horizontal.

We now turn into the calculations involving the asymptotic solution we found
in the previous section. As a first thing we expand q̇ into a power series in the
Machin number up to the order k = 1, that is q̇ = q̇0 + εq̇1 +O(ε2). From (3.35)
and (3.38) we have

q̇0 = u
x
0eφ + u

y
0e�φ −

d

dt
ρeφ =

ηρ − 1
2

η + 1
φ̇e�φ −

d

dt
ρeφ = (

ηρ − 1
2

η + 1
− ρ)

d

dt
eφ (3.40)

while from (3.37) and (3.38) we obtain

q̇1 = u
x
1eφ + u

y
1e�φ = U

x
1 φ̇

2eφ +U
y
1 φ̈e�φ (3.41)

where

Ux1 = −
γ

η + γ
∫

1

0
p1 − (

1 − γ

η + γ
)
p′′1(0)

2

2
and Uy1 =

1

η + 1
∫

1

0
p1 (3.42)

are constants. From this expansion we can deduce an approximated formula for
the displacement, that is ∆q = ∆q0 + ε∆q1 +O(ε2). We have

∆q0 = ∫

1

0
(
ηρ − 1

2

η + 1
− ρ)

d

dt
eφ = 0 . (3.43)

Notice that q0 can be seen as the trajectory of the cargo of a swimmer with
a rigid straight flagellum, since for ε = 0 equations (3.27)-(3.29) describe pre-
cisely this system. The result in (3.43) then says that a rigid swimmer, whose
orientation is controlled externally, always undergoes reciprocal motions.

Now, the expression (3.41) for q̇1 has the following form

A(φ)φ̇2
+B(φ)φ̈ . (3.44)

We can draw a simple, yet general, argument about whether (3.44) gives a
non-zero result when integrated over one period. Observe that

A(φ)φ̇2
+B(φ)φ̈ =

d

dt
(B(φ)φ̇) + (A(φ) −

dB

dφ
(φ))φ̇2 .

So, if A − dB/dφ = 0 then the integral of (3.44) over a period of φ gives always
a null result. On the other hand, whenever A − dB/dφ ≠ 0 we can always find
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a periodic φ such that the integral is non-zero. Indeed, suppose that the curve
given by t → (φ̇(t), φ(t)) ⊂ R2 parametrizes the boundary ∂Ω of a domain Ω in
R2 (which it is not to be confused with the plane of locomotion). Then, with
the position ψ = φ̇, from the Stokes theorem we have

∫

1

0
A(φ)φ̇2

+B(φ)φ̈ = ∫
1

0
A(φ)ψφ̇ +B(φ)ψ̇

= ∫
∂Ω

A(φ)ψdφ +B(φ)dψ = ∫
Ω

A(φ) −
dB

dφ
(φ)dψdφ .

(3.45)

It is easy to see that, using for instance a function φ of the form φ(t) = φ∗ +
A sin(2πt), we can always find a set Ω that gives a non-zero result in (3.45)
whenever A − dB/dφ ≠ 0.

Taking A(φ) = Ux1 eφ and B(φ) = Uy1 e�φ we have A − dB/dφ = Ceφ where

C = Ux1 + Uy1 . Applying the definitions (3.36) and (3.42) we have, after some
calculations,

C = −(1 − γ)(
5 + 12η(2 + 5ρ) + 4η2(7 + 42ρ + 45ρ2)

1440(1 + η)2(γ + η)
) . (3.46)

From (3.45) then we obtain

∆q1 = ∫
Ω

V(φ)dψdφ where V(φ) = C (cosφe1 + sinφe2) (3.47)

is a vector field that has to be interpreted as a map from R2 in the variables
ψ and φ (although being independent from ψ) with values in the locomotion
plane, while Ω is the planar domain in R2 whose boundary is given by

∂Ω = {(φ̇(t), φ(t)) ; t ∈ [0,1]} ⊂ R2 . (3.48)

Observe that since γ ≠ 1 then C is non-zero: as in [66, 61] drag anisotropy is
essential to achieve locomotion. We can write the approximated expression for
∆q through the following formula

∆q = ε∫
Ω

V(φ)dψdφ +O(ε2) (3.49)

which is the most important result of our analysis for the externally actuated
swimmer model.

Observe that the vector field V defined in (3.47) is independent from the
given actuation φ. The integral in (3.49), and therefore the direction and magni-
tude of the displacement ∆q, can be estimated with the visual aid of the vector
field plot and by guessing the geometry of Ω. In the following we show some
examples of that, illustrating the “motility maps” for various angle actuations.

This formulation [78, 79, 80, 81] embrace the spirit of robotic locomotion
analysis, with one important difference. The typical robotic locomotion problem
is to find the time evolution of a body coordinate as a result to a given cycle of
shape or body parameters, where such parameters are assumed to be completely
controllable. It is not the case here, since the shape of the swimmer flagellum
is rather a result of the dynamics. However, we somehow can control the shape
of the flagellum, although indirectly. Indeed, as we mentioned in the previous
section, at first approximation the deviation of the flagellum from its reference
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axis y = −εp1φ̇ + O(ε2) is fully described by the angle velocity; this because of
the elasticity of the flagellum and the viscous nature of the forces applied to
it. We can then refer to φ̇ as the flagellum “shape” parameter. By modulating
the orientation φ and the shape φ̇ we can vary Ω, and in turn determine ∆q in
magnitude and direction, at least at the first the order in the Machin number.

Notice that we have a finite displacement only if the measure of the set Ω
is non-zero. In other words: locomotion is enabled if the orientation φ and the
shape φ̇ undergo a non-reciprocal cycle. As mentioned in the introduction, this
have been pointed out in the case of a two-link model swimmer in [74]. What
we gain with our analysis in this matter is that shape and orientation are one
the time derivative of the other, and non-reciprocity happens naturally exactly
because of this fact, indeed

∫
Ω
dψdφ = ∫

∂Ω
ψ dφ = ∫

1

0
φ̇2dt > 0 . (3.50)

Notice that this result implies that, whenever the curve t→ (φ̇(t), φ(t)) parame-
trizes the boundary of a domain in the plane, then it is always circuiting it in
the counter-clockwise direction.

A

B CV

Figure 3.2: A) Sinusoidal actuation. B) Resulting domain Ω (orange) on the
space (ψ,φ) and normalized vector field V (grey arrows). C) Various snap-
shots of the swimmer as seen in the frame {e1,e2} moving with the centre of
the cargo. In orange, the trajectory of the cargo (as seen in a fixed frame) given
by the truncation at first order q0 + εq1.

Let us consider first the most simple example, namely that of a sinusoidal
actuation φ(t) = sin 2πt as in Fig.3.2A. Here Ω is the set contained in the ellipse
∂Ω centred in the origin (see Fig.3.2B). From (3.46) we have that C < 0, therefore
the horizontal component V ⋅ e1 of the vector field is always negative for every
point in Ω in this case. On the other end, the projection V ⋅e2 is an odd function
with respect of the variable φ. Because of the symmetry of Ω the integral in
(3.49) has a null component in the e2 direction. The motion is then horizontal
and the swimmer moves head-first, from right to left, as shown in Fig.3.2C. We
recovered here the known result from previous numerical investigations [65, 69].

Observe now what happens if we take the non-sinusoidal actuation shown in
Fig.3.3AI. The amplitude of the oscillation is the same as the previous example,
however, now when φ > 0 the oscillation runs slower, while when φ < 0 it goes
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faster. We have an asymmetric set of integration Ω that gathers more points
in which V ⋅ e2 > 0 rather than points where V ⋅ e2 < 0, as Fig.3.3BI illustrates.
As a result the swimmer moves sideways with respect to the axis of symmetry
of the oscillation, with a positive displacement in the vertical direction at every
period (see Fig.3.3CI). In order to obtain a negative displacement in the vertical
direction we can consider the “negative” of the previous angle evolution, such
as the one shown in Fig.3.3AII. This time the oscillation is faster for φ > 0 and
slower for φ < 0, and the resulting set Ω is the reflection about the ψ axis of
the previous one. The motion of the swimmer is depicted in Fig.3.3CII. In all
numerical calculations in the Chapter we set L/rf = 103 and γ = 0.5. For the
simulation in this Section we took ε = 0.7 and ρ = 0.2.

AI

BI CIV

AII

BII CIIV

Figure 3.3: A) Non-sinusoidal actuations. B) Resulting domains Ω and normal-
ized vector field V. C) Swimmer kinematics.

In all the examples we have seen so far we had the swimmer moving in the
negative horizontal direction, head-first. Equation (3.49) tells that this is in
fact the case for every actuation such that ∣φ∣ < π/2. Indeed, since V ⋅ e1 < 0
for every point in the domain Ω generated by such an oscillation, and since the
signed area of Ω is always positive (3.50), the projection on e1 of the integral
in (3.49) is negative.

We conclude this section showing that, in addition to be able to control
the vertical displacement of the swimmer, we can also control the sign of the
horizontal motion, making the swimmer going from left to right or from right
to left. We exploit here the fact that V ⋅ e1 = C cosφ changes sign for ∣φ∣ > π/2.
Indeed, if we consider the sinusoidal actuations φ(t) = A sin(2πt) and we denote
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Ω(A) their generated domains, we have

∆q1 ⋅e1 = ∫
Ω(A)

V(φ) ⋅e1 dψdφ = C ∫
Ω(A)

cos(φ)dψdφ = C(2π)2AJ1(A) (3.51)

where J1 is the first Bessel function of the first kind. So, at first order approxi-
mation, the horizontal displacement ∆q ⋅e1 = ε∆q1 ⋅e1+O(ε2) do change sign, as
∆q1 ⋅ e1 has the graph illustrated in Fig.3.4A. In fact, as A grows, the horizon-
tal displacement goes from being negative to being positive and then negative
again, passing from local maxima to local minima that grow in modulus. In
Fig.3.4B we show what happens with the integral in (3.51) as we vary A. While
the domains Ω(A) grow larger and larger, they end up to gather, alternatively,
more points in which V ⋅ e1 < 0 or more points where V ⋅ e1 > 0.

A B V

Figure 3.4: A) ∆q1 ⋅ e1 as a function of the amplitude A of oscillation. The
first order horizontal displacement attains both positive (orange) and negative
(grey) values, passing from local maxima to local minima (dotted lines). B)
Domains generated by the actuations relative to local maxima and minima of
∆q1 ⋅ e1. Vectors for which V ⋅ e1 < 0 (V ⋅ e1 > 0) are plotted in grey (orange).

3.2.3 Optimality

Since our analysis provides some novel explicit formulas for the dynamics of the
microswimmer, it is worth considering whether they can deliver some results
regarding the optimization of the locomotion process.

First we recall that, if we fix the slenderness parameter L/rf for the flagellum,
then η can be written solely in terms of ρ as in (3.21). In turn, substituting
(3.21) in (3.46), we have that also the parameter C = C(ρ) can be seen as a
function of the ratio ρ = a/L. By restricting ourselves to sinusoidal actuations of
the type φ(t) = A sin(2πt), we can endure to optimize some dynamical quantities
in the parameters A and ρ.

From the last example in the previous section we see (3.51) there is no
amplitude A that maximizes the displacement ∆q, which displays local maxima
growing larger and larger as A → ∞. This is not entirely surprising because,
since we work with fixed frequencies, as A becomes larger the velocity φ̇ in
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which the oscillation is driven tends to infinity. In view of this observation we
then consider here V, namely the ratio between the average velocity in body-
length of the swimmer units ωL∣∆q∣/(2a+L) and the velocity ωA related to the
oscillation

V ∶=
ωL∣∆q∣

(2a +L)ωA
= ε

∣C(ρ)∣

2ρ + 1
(2π)2

∣J1(A)∣ + O(ε2) . (3.52)

At the first order in the Machin number velocity ratio V can be written as a
product CV(ρ)JV(A) where

CV(ρ) =
∣C(ρ)∣

2ρ + 1
and JV(A) = (2π)2

∣J1(A)∣ (3.53)

are two coefficients that can be maximized independently in ρ and A respec-
tively. Their graphs and their maximum points are displayed in Fig.3.5.

A B

Figure 3.5: A) Ratio ρopt maximizing coefficient CV and relative swimmer. B)
Amplitude Aopt maximizing coefficient JV . Dotted lines indicate maximum
values.

The other quantity that we can optimize is the locomotion efficiency E .
We define E as the ratio between: the total power expended by the external
(dimensional) torque ωξ�L

3τext during one period, and the power needed to
move an inactive swimmer along its reference axis by a distance L∣∆q∣ with
average velocity Lω∣∆q∣; the distance and average velocity, respectively, that
the external actuation produces. We have

E ∶=
(ωL∣∆q∣)2(ν + ξY Y L)

∫ (ωξ�L3τext)(ωφ̇)
.

Here we consider τext as the external torque needed to generate the sinusoidal
oscillation φ(t) = A sin(2πt). By expanding the first three terms in equation
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(3.17) we obtain the following approximated expression

τext = (ηrot + ηρ
2
)φ̇ − ηρuy0 −

∂2y1

∂x2
(0, t) +O(ε)

= (ηrot + ηρ
2
− ηρ(

ηρ − 1
2

η + 1
) + p′′1(0)) φ̇ +O(ε)

=
⎛

⎝
ηrot +

4η (1 + 3ρ + 3ρ2) + 1

12 (η + 1)

⎞

⎠
φ̇ +O(ε)

= T0φ̇ +O(ε) where T0 = ηrot +
4η (1 + 3ρ + 3ρ2) + 1

12 (η + 1)
. (3.54)

Using again (3.21), we have T0 = T0(ρ). With τext = φ̇ T0 +O(ε), the formula for
the efficiency gives

E = ε2
(η + γ)

T0

⎛

⎝

∣∫Ω V dψdφ∣
2

∫
1

0 φ̇
2dt

⎞

⎠
+O(ε3)

= ε2
(η + γ)

T0

⎛

⎝

∣C(2π)2AJ1(A) ∣
2

2(πA)2

⎞

⎠
+O(ε3)

= ε2
(η + γ)

T0
C28π2J1(A)

2
+O(ε3) .

As it was for the previous case, also the efficiency can be written, at first ap-
proximation, as a product CE(ρ)JE(A) of two functions

CE(ρ) =
C2(ρ)(η(ρ) + γ)

T0(ρ)
and JE(A) = 8π2J1(A)

2

that can be maximized autonomously, one for the actuation amplitude A and
the other for ρ. Graphs of the two coefficients and optimal values for A and
ρ are given in Fig.3.6. Notice that V and E are optimized by the same angle
amplitude.

A B

Figure 3.6: A) Coefficient CE and the optimal swimmer. B) Coefficient JE .
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3.2.4 Prescribed torque

We consider here the analysis of the problem for the externally actuated swim-
mer in the case where τext is given. The system of equations in this case consists
in (3.27)-(3.29) and the equation for the moment balance on the cargo (3.17).
As we prove in Appendix I, this problem admits only one periodic solution in
the unknowns ux, uy, y and φ̇, if the prescribed torque τext is periodic. Such
a solution can be approximated using the asymptotic approach we adopted in
the case of prescribed angle actuation. We obtain a formal series expression for
ux, uy and y of the type (3.30) and φ can also be computed in the power series
form

φ = φ0 + εφ1 + ε
2φ2 . . . (3.55)

We provide the explicit calculations of the asymptotic coefficients in Appendix
II, while we discuss here the main results.

An important formula we derive is the zero-order expression for the resulting
angle evolution φ(t), that reads

φ0(t) = φin + T
−1
0 ∫

t

0
τext (3.56)

where T0 is given by (3.54) and φin is the angle at time t = 0. Not surprisingly
we recover the same zero-order relation we have in the case in which φ is given
and τext is the torque needed to produce it. Interpreting formula (3.56) we can
say that we can bring ourselves back to the case of prescribed angle as the angle
can, in a sense, be prescribed, at least up to a multiplicative constant and an
integration in the time variable.

We can combine (3.56) with another result of the asymptotic calculations,
that is the expression for the displacement ∆q. If τext has zero average during
one period, the formula we obtain for ∆q is in fact the same as in (3.49) with
φ replaced by φ0, namely

∆q = ε∫
Ω

V(φ0)dψdφ0 +O(ε2)

where V is given by (3.47) and Ω is the domain contained in the closed curve

∂Ω = {(φ̇0(t), φ0(t)) ; t ∈ [0,1]} ⊂ R2 . (3.57)

Clearly, then, all the motility results deduced in Section 3.2.2 applies here with
with φ replaced by φ0.

As for the optimality, we can consider sinusoidal actuations of the kind
τext = Λ cos(2πt) then, since we have

φ0 =
ΛT −1

0

2π
sin(2πt) ,

the two quantities considered in the previous section now read

V = ε
∣C(ρ)∣

2ρ + 1
(2π)2

∣J1 (
ΛT −1

0

2π
) ∣ + O(ε2) and

E = ε2
(η + γ)

T0
C28π2J2

1 (
ΛT −1

0

2π
) +O(ε3) .
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We can optimize the least order approximation of V and E in terms of the
actuation amplitude Λ and the parameter ρ, although not independently as
it is for the prescribed angle case. In particular, given ρ, in both cases the
optimal torque amplitude is Λopt = 2πT0(ρ)Aopt, where Aopt is the optimal
angle amplitude for V and E .

3.3 Internally actuated swimmer

For the swimmer in Fig.3.1B we do not treat the case of prescribed (internal)
torque, and we consider only the problem in which the angle difference α = θ−φ
is given. We restrict our analysis to the physically significant case ∣α∣ < π/2.

The governing equations reduce to (3.23), the projection on e�θ of (3.16),
(3.26) and the first equation in (3.18), together with boundary conditions (3.19).
Setting θ ∶= φ + α, we obtain the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε(uy(t) + θ̇x +
∂y

∂t
(x, t)) = −

∂4y

∂x4
(x, t)

εM(α)
⎛
⎜
⎝

ux

uy

φ̇

⎞
⎟
⎠
=

⎛
⎜
⎜
⎜
⎝

εγθ̇∫
1

0 y +
γ−1

2
(
∂2y
∂x2 )

2
(0, t)

−
∂3y
∂x3 (0, t)
∂2y
∂x2 (0, t)

⎞
⎟
⎟
⎟
⎠

(3.58)

(3.59)

where

M(α) =
⎛
⎜
⎝

η + γ 0 −ηρ sinα
0 η −ηρ cosα

−ηρ sinα −ηρ cosα (ηrot + ηρ
2)

⎞
⎟
⎠

System (3.58)-(3.59) defines a set of equations in the unknowns ux, uy, φ̇ and
y that, given a periodic α, has only one periodic solution. As for the externally
driven case, the periodic solution can be approximated using standard series
expansion methods. All these technical results are proven in Appendix I.

3.3.1 Asymptotics

We look again for formal solutions where ux, uy and y are given by (3.30). While
writing also φ and θ as a power series of ε, we assume that their coefficients
satisfy θ0 = φ0 + α and θk = φk for k ≥ 1. We provide here the main passages of
the calculation of the expansions up to the order k = 1, providing the mean to
obtain explicit solutions. We do not report the final formulas because of their
excessive complexity.

The equation for the coefficients yk is given by (3.31) with θ̇k instead of φ̇k,
together with the boundary conditions (3.33). As in the externally actuated
case we have y0 = 0, while y1 can be written as in (3.34) with φ̇0 + α̇ instead of
φ̇. In turn

∂3y1

∂x3
(0, t) = uy0(t)+

1

2
(φ̇0(t)+α(t)) and

∂2y1

∂x2
(0, t) = −

uy0(t)

2
−

1

3
(φ̇0(t)+α(t))

Notice that the first order term in the expansion of the first component in the
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right hand side of (3.59) is zero. Therefore, the first order in ε of (3.59) reads

M0(α)
⎛
⎜
⎝

ux0
uy0
φ̇0

⎞
⎟
⎠
= α̇

⎛
⎜
⎝

0
− 1

2
− 1

3

⎞
⎟
⎠

where M0 is given by (3.80). We can invert the matrix M0 obtaining that ux0 ,
uy0, φ̇0 and θ̇0 can be written in the following form

ux0 = Ux0 (α)α̇ , uy0 = U
y
0 (α)α̇ , φ̇0 = ϕ0(α)α̇ and θ̇0 = ϑ0(α)α̇ (3.60)

where Ux0 , Uy0 and ϕ0 are functions that can be calculated explicitly, while
ϑ0 = ϕ0 + 1. Taking two primitives Φ0 and Θ0respectively for ϕ0 and ϑ0 that
are compatible with the initial conditions we can write

φ0 = Φ0(α) and θ0 = Θ0(α) . (3.61)

In turn, we have that

y1(x, t) = −p1(x,α)α̇ where

p1(x,α) = ∫
x

0
∫

x1

0
∫

1

x2
∫

1

x3

(Uy0 (α) +Θ′
0(α)x4)dx4dx3dx2dx1

(3.62)

Notice that the bending of the flagellum, at first approximation, depend both
on the internal angle α and its velocity α̇.

Proceeding with the calculations, we can write y2 as

y2(x, t) = −∫
x

0
∫

x1

0
∫

1

x2
∫

1

x3

(uy1(t) +
∂y1

∂t
(x4, t) + φ̇1(t)x4)dx4dx3dx2dx1 .

(3.63)
which gives

∂3y2

∂x3
(0, t) = uy1(t) +

φ̇1(t)

2
− α̇2

∫

1

0

∂p1

∂α
(α,x)dx − α̈∫

1

0
p1(α,x)dx and

∂2y2

∂x2
(0, t) = −

uy1(t)

2
−
φ̇1(t)

3
+ α̇2

∫

1

0
∫

1

z

∂p1

∂α
(α,x)dxdz + α̈∫

1

0
∫

1

z
p1(α,x)dxdz .

The second order term in the expansion of the first component in the right hand
side of (3.59) is

γθ̇0∫

1

0
y1+

γ − 1

2
(
∂2y1

∂x2
)

2

(0, t) =
⎛

⎝
−γΘ0(α)∫

1

0
p1(⋅, α) +

γ − 1

2
(
∂2p1

∂x2
)

2

(0, α)
⎞

⎠
α̇2

therefore

M0(α)
⎛
⎜
⎝

ux1
uy1
φ̇1

⎞
⎟
⎠
=

⎛
⎜
⎜
⎝

−γΘ0(α)∫
1

0 p1(⋅, α) +
γ−1

2

∂2p21
∂x2 (0, α)

∫
1

0
∂p1
∂α

(α,x)dx

∫
1

0 ∫
1
z
∂p1
∂α

(α,x)dxdz

⎞
⎟
⎟
⎠

α̇2
+

⎛
⎜
⎜
⎝

0

∫
1

0 p1(α, ⋅)

∫
1

0 ∫
1
z p1(α, ⋅)

⎞
⎟
⎟
⎠

α̈

We can invert again the matrix M0 obtaining the solution for ux1 , uy1 and φ̇1 = θ̇1.
It is easy to conclude that these expressions have a common form, that is

ux1 = Ax1(α)α̇
2 +Bx1 (α)α̈ (3.64)

uy1 = A
y
1(α)α̇

2 +By1(α)α̈ (3.65)

φ̇1 = A
φ
1(α)α̇

2 +Bφ1 (α)α̈ (3.66)

where all the functions of α in the right hand sides can be calculated explicitly.
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3.3.2 Motility maps

A first consequence of the asymptotic analysis of the previous section is that the
internal angle α and its velocity α̇, at first approximation, completely determine
the shape of the swimmer in motion. The angle α gives the relative orientation
of the reference axis of the flagellum with respect to the cargo. The bending
deformation is given by (3.62) as the product of the input velocity α̇ times a
shape function p1, depending also on α.

In the following we show how the geometry in the shape space (α̇, α) of the
actuation plays a crucial role in the resulting swimming behaviour.

We start by considering the orientation φ of the cargo. Since we know that
the unperturbed problem has a periodic solution φ̇, we can consider the net
variation of the angle φ over one (and indeed any) period of the actuation

∆φ ∶= ∫
1

0
φ̇ .

Expanding the solution ∆φ = ∆φ0 + ε∆φ1 + O(ε2) we have that, using (3.60)
and (3.61),

∆φ0 = ∫

1

0
ϕ0(α)α̇ = [Φ0(α)]

1
0 = 0 .

Next, we notice that formula (3.66) for φ̇1 has the form (3.44). Using (3.45),
with the position α̇ = ψ, we obtain

∆φ1 = ∫
Ω
W (α)dψdα where W = Aφ1 −

dBφ1
dα

(3.67)

and Ω is a domain in R2 such that

∂Ω = {(α̇(t), α(t)) ; t ∈ [0,1]} ⊂ R2 . (3.68)

Numerical calculations show that W is non-zero for every ρ > 0, it is odd with
respect to α and negative for α > 0. As a result, the net variation of the angle

∆φ = ε∫
Ω
W (α)dψdα +O(ε2) . (3.69)

is in general non-zero, and the swimmer can change its orientation. Observe
that in this case, while φ̇ is periodic,

φ(t + n) = φ(t) + n∆φ (3.70)

is not periodic since ∆φ is non-zero.
Let us consider now the q coordinate of the cargo given by the solution of

the unperturbed problem (3.58)-(3.59). Using (3.70), the displacement ∆nq at
the nth actuation cycle is

∆nq = ∫

n+1

n
q̇ = ∫

n+1

n
(uxeθ + u

ye�θ −
d

dt
ρeφ)

= ∫

1

0
(uxeθ+n∆φ + u

ye�θ+n∆φ − ρφ̇e�φ+n∆φ)

= R(n∆φ)∫
1

0
(uxeθ + u

ye�θ − ρφ̇e�φ) = R(n∆φ)∆0q
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Figure 3.7: A) Sinusoidal actuation. B) Resulting domain Ω (orange) on the
shape space (ψ,α) and normalized vector field V (grey arrows). C) Resulting
loop in shape space and W (shaded colours). D) Various snap-shots of the
swimmer as seen in the frame {e1,e2} moving with the attachment point r(0, t).
In orange, the trajectory of the cargo (as seen in a fixed frame) given by the
truncation at first order q0 + εq1.

where R is the rotation matrix (3.39). If ∆φ ≠ 0 and ∆0q ≠ 0 the swimmer moves
along a curve passing through the points ∑

n
i ∆iq with n ≥ 0. In the following we

deduce the first order approximation formula for ∆0q = ∆0q0+ε∆0q1+O(ε2). It
must be noted that the formula holds only for actuations α such that α(0) = 0.
However, for actuations such that α ≠ 0, the following construction can be
modified accordingly.

Expanding q̇ = q̇0 + εq̇1 +O(ε2), from (3.60) and (3.61) we have that

q̇0 = (ux0eθ0 + u
y
0e�θ0) − ρφ̇0e

�
φ0

has an expression of the form P(α)α̇, which gives always a null result when
integrated over a period. Therefore ∆0q0 = 0. The first order coefficient in the
expansion for q̇ reads

q̇1 = (ux1eθ0 + u
y
1e�θ0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

+φ1(u
x
0e�θ0 − u

y
0eθ0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II

−ρφ̇1e
�
φ0

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
III

+φ1ρφ̇0eφ0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
IV

.

Now, from (3.61) and (3.64)-(3.66) we see that terms I and III have again the
form (3.44). Using (3.45) they can be written, respectively, as integrals of two
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α > 0 α < 0

A

**

BW

Figure 3.8: A) Loops in shape space generated by two sinusoidal beating around
a non-zero internal angle α∗. When α∗ > 0 (α∗ < 0) the generated loop circles
an area in which W assumes negative (positive) values. B) Sign of resulting
rotations is consistent with sign of torque generated by miss-alignment of viscous
and propulsive forces.

vector fields VI and VIII over Ω, where the boundary ∂Ω is given by (3.68).
On the other hand, terms II and IV are products of φ1 times an expression of
the type P(α)α̇. If we choose a function Π0(α) with dΠ0/dα = P such that
Π0(0) = 0, then we have

∫

1

0
φ1Π

′
0(α)α̇ = [φ1Π0(α)]

1
0 − ∫

1

0
φ̇1Π0(α) = −∫

1

0
φ̇1Π0(α) .

Since φ̇1Π0(α) has now the form (3.44), then II and IV can be written, re-
spectively, as integrals of two vector fields VII and VIV over Ω. Taking
V = VI +VII +VIII +VIV we have

∆q1 = ∫
Ω

V(α)dψdα . (3.71)

Combining (3.71) with the expansion R(n∆φ) = Id + εn∆φ1R (π/2) + O(nε2)
for the rotation we obtain

∆nq = ε( Id + nε∆φ1R (π/2) )∫
Ω

V(α)dψdα +O(ε2, nε3) . (3.72)

Together with (3.67), formula (3.72) allows for a motility analysis solely based
on the geometry of Ω.

As a first result from (3.69) we have that for domains Ω that are symmetric
with respect to the ψ axis there are, at first approximation, no net rotations
of the swimmer after any cycle. This happens, for example, with a sinusoidal
actuation around 0. In Fig.3.7 we show the case where α(t) = π/2 sin(2πt),
ε = 0.5 and ρ = 0.27. Since V ⋅ e1 < 0 for every ∣α∣ < π/2 while V ⋅ e2 is odd with
respect to α, the swimmer moves head-first and, on average, on the horizontal
axis. We recover here the same swimming behaviour described by previous
studies [66, 67].

A second result we deduce from (3.69) is that the swimmer rotates when
it performs sinusoidal beating of the flagellum α(t) = α∗ +A sin(2πt) around a
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Figure 3.9: A) Non-sinusoidal actuation. B) Resulting domain Ω on the shape
space and normalized vector field V. C) Resulting loop in shape space with
respect to W . D) Various snap-shots of the swimmer during two different cycles
of actuation, as seen on the frame {e1,e2} moving with the point of attachment.
The q coordinate after every cycle (orange dots) is obtained summing the leading
order values of the displacements (3.72).

non-zero internal angle α∗. The sign of W leads to a counter-clockwise rotation
of the swimmer for α∗ < 0 and a clockwise rotation for α∗ > 0. This can be
interpreted with the following heuristic argument, sketched in Fig.3.8B. Sup-
pose that a sinusoidal beating always pushes the cargo with a force that is, on
average, directed along the mean direction of the flagellum, as in the case when
α oscillates around 0. Such a force must always oppose an equal and opposite
one given by the viscous resistance on the cargo. If the flagellum is not perpen-
dicular to the cargo on average, the two forces are not aligned and a moment is
created. The sign of such a moment is consistent with the rotation directions
dictated by (3.69). While this effect has never been discussed before (to our
knowledge), it does not rely on large actuation amplitudes and, we remark, it
can also be deduced within the small-actuation regime presented in [66].

The novel physical insight that (3.69) and (3.72) give is related to non-
sinusoidal actuations, when Ω is non-symmetric with respect to its horizontal
axis. Taking again ε = 0.5 and ρ = 0.27, let us consider the actuation in Fig.3.9A,
for which α̇ is much larger when α < 0. The part of the resulting domain Ω where
W is positive is larger then the part of Ω where W is negative. As a result the
swimmer rotates counter-clockwise at every actuation cycle. The displacement
∆0q is, at first approximation, directed in the negative direction in the plane of
locomotion since V ⋅ e1 < 0 for every point in the space (ψ,α). Moreover, since
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V ⋅ e2 > 0 for α < 0, ∆0q displays in this case also a positive component in the
vertical direction. The composition of rotations and translations at every cycle
generates the curved path illustrated in Fig.3.9D.

3.3.3 Optimality

An interesting feature of the internally actuated swimmer is its ability to move
along curved paths. It is natural to consider whether there exists a design for
the swimmer (the parameter ρ) that maximizes this effect (the angle ∆φ1).

As shown in the previous section, there are two distinct strategies by which
the swimmer can rotate: one is through actuations around a non-zero internal
angle (Fig.3.7A), and the other is through non-symmetric actuations around
α = 0 (Fig.3.9C). To optimize the first turning strategy the actuation α has to
produce a set Ω that is located around the maximum of ∣W ∣. A good choice
for ρ is then the one that maximizes maxα ∣W ∣. For the second strategy we can
argue that the best ρ is the one for which W displays the steepest gradient in
values around α = 0. The good choice in this case is that of ρ that maximizes
∣dW /dα(0)∣. Fig.3.10 illustrates the graphs of maxα ∣W ∣ and ∣dW /dα(0)∣ as
functions of ρ, showing the existence of optimal values for both.

A B

Figure 3.10: Variations of A) maxα ∣W ∣ and B) ∣dW /dα(0)∣ as functions of ρ
and resulting optimal swimmers.

Finally, we consider sinusoidal actuations of the form α(t) = A sin(2πt),
leading to no net rotation. We test the values for different A and ρ of the fol-
lowing quantities: velocity ratio V given by (3.52), displacement after one cycle
DL = ∣∆q∣ (measured in flagellum length units), displacement Da = L∣∆q∣/a (in
units of cargo radii), and the efficiency

E =
(ωL∣∆q∣)2(ν + ξY Y L)

∫ (ωξ�L3τint)(ωα̇)

defined in an analogous way as in the case of the externally actuated swimmer.
Taking the lowest order terms in ε of

V = ε
∣∆0q1∣

(2ρ + 1)A
+O(ε2) , D

L
= ε∣∆0q1∣ + O(ε2)

D
a
= ε

∣∆0q1∣

ρ
+O(ε2) , E = ε2

(η + γ)∣∆0q1∣
2

∫
1

0
∂2p1
∂x2 (0, α)α̇2dt

+O(ε3) ,
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and denoting them V1, DL1 , Da1 and E2 respectively, we plot their graphs as
functions of ρ for different values of A, from 0 to π/2. The results are shown in
Fig.3.11. For every fixed ρ each quantity grows as A gets larger, so the optimal
amplitude is A = π/2 for all cases. For any given amplitude A, we can detect
optimal values for ρ for all the quantities. Such optimal values vary as A varies,
but mildly. The swimmer designs resulting from the average of the optimal ρ’s
are displayed in Fig.3.11E.

A

C

B

D

E

Figure 3.11: Variations as functions of ρ for different amplitudes A of: A)
velocity V1, B) displacement DL1 , C) displacement Da1 and D) efficiency E2.
For every fixed ρ each quantity grows monotonically as A ranges from 0 to
π/2 (linear steps), however, optimal values for ρ vary mildly as A varies. E)
Swimmer geometries resulting from the average of such optimal values.
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3.4 Appendix I. Rigorous approximation results

We propose here a scheme for the proof of existence and uniqueness of a periodic
solution for the problems treated in Section 3.2, 3.2.4 and 3.3. After that, we
show how the formal asymptotic solutions we proposed for each case approxi-
mate the unperturbed periodic ones. We provide the detailed proof for the case
of the internally actuated swimmer (3.58)-(3.59). The other two cases can be
treated following the same passages with minor changes.

Let us start by setting some notations. We denote Wj , with j ≥ 0, the
normalized eigenfunction of the operator −∂4 with boundary conditions (3.19),
relative to the eigenvalue λ4

j . For an exhaustive discussion on the operator −∂4

and its eigenfunctions we refer the reader to [58]. In our case we have

Wj(x) = (cosλjx − coshλjx) − (sinλjx − sinhλjx)
cosλj + coshλj

sinλj + sinhλj
(3.73)

where the λj ’s are given implicitly by the following formula

cosλj coshλj = −1 (observe that λj ≠ 0 and λj ≃ (2j + 1)
π

2
as j →∞).

The Wj ’s are mutually orthogonal and together form a base of the square inte-
grable functions space L2([0,1]). Finally, we denote with C0

per and C1
per, respec-

tively, the space of continuous and continuously differentiable periodic functions
on [0,1].

Consider now equation (3.58). We first proceed formally, substituting in
(3.58) the expression

y(x, t) = ∑
j

ŷj(t)Wj(x) (3.74)

and supposing that we can interchange the order of differentiation and sum-
mation, thereby deriving (3.74) term by term. Then, we substitute uy and
θ̇x = (φ̇ + α̇)x in the left end side of (3.58) with

∑
j

uy(t)1̂jWj(x) and ∑
j

(φ̇(t) + α̇(t))x̂jWj(x) ,

where {1̂j} and {x̂j} are the Fourier coefficients relative to the orthonormal base
{Wj} of the functions 1 and x respectively. By matching coefficients relative to
same eigenfunctions, we obtain the following sequences of ODEs

ε
dŷj

dt
(t) = −λ4

j ŷj(t) − ε (u
y
(t)1̂j + (φ̇(t) + α̇(t))x̂j) , for every j ≥ 0. (3.75)

Given the initial conditions ŷj(0), coefficients ŷj can be written as

ŷj(t) = e
−λ4

j t/εŷj(0) − e
−λ4

j t/ε
∫

t

0
eλ

4
js/ε [uy(s)1̂j + (φ̇(s) + α̇(s))x̂j] ds . (3.76)

Suppose now that uy and φ̇, along with the given function α, are periodic.
Then, there exist only one periodic solution for (3.75), namely the one that
corresponds to the initial condition

ŷj(0) = −
e−λ

4
j/ε

1 − e−λ
4
j/ε
∫

1

0
eλ

4
js/ε [uy(s)1̂j + (φ̇(s) + α̇(s))x̂j] ds
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as one can check by substituting the expression above in (3.76). If we also
suppose that uy, φ̇ ∈ C0

per and α ∈ C1
per then, a simple analysis gives

∥ŷj∥∞ ≤
ε

λ4
j

(∥uy∥∞ 1̂j + ∥φ̇ + α̇∥
∞
x̂j)

where we denoted with ∥⋅∥∞ the uniform norm on [0,1]. The previous inequality

shows that, given uy, φ̇ ∈ C0
per and α ∈ C1

per, and considering periodic solutions
ŷj of (3.76), then series (3.74) converges absolutely and uniformly with respect
to t and x. The same holds the derivatives in x of (3.74) up to the third order.
Moreover, equation (3.58) is solved by (3.74) in the weak sense. By construction,
the periodic solution given by (3.74) is unique.

A crucial result for the remaining of our proof is summarized in the following

Lemma. Consider the one parameter family of operators Tε defined for
every u ∈ C0

per as the only periodic solution v = Tε(u) of the equation

ε
dv

dt
(t) = −λv(t) + u(t)

where λ > 0 and ε ≥ 0. Then, we have that a) Tε ∶ C
0
per → C

0
per are bounded

operators with ∥Tε∥ ≤ 1/λ for every ε ≥ 0, and b) the function ε ↦ ∥Tε∥ is
continuous for ε→ 0.

Proof. Let us observe that, following the same arguments we adopted ear-
lier, we can write

Tε(u)(t) = e
−λt/εu0 + ε

−1e−λt/ε∫
t

0
eλs/εu(s)ds (3.77)

where u0 = ε
−1 e−λ/ε

1 − e−λ/ε
∫

1

0
eλs/εu(s)ds .

Moreover, we have ∥Tε∥ ≤ 1/λ, which proves a). In order to prove b) we have to
show that, for every u ∈ C0

per,

Tε(u) ÐÐ→
ε→0

T0(u) in the uniform norm, where T0(u) =
u

λ
. (3.78)

We first check the limit above for u ∈ C1
per. Let us observe that, after an inte-

gration by parts,

ε−1e−λt/ε∫
t

0
eλs/εu(s)ds =

u(t)

λ
− u0

e−λt/ε

λ
−
e−λt/ε

λ
∫

t

0
eλs/εu′(s)ds .

Now, since Tε(u) − T0(u) is a continuous periodic function, we can evaluate its
uniform norm in any of the intervals [k, k + 1] with k ≥ 0. We have

∥Tε(u) − T0(u)∥∞ = sup
t∈[k,k+1]

∣u0e
−λt/ε

(1 −
1

λ
) −

e−λt/ε

λ
∫

t

0
eλs/εu′(s)ds∣

≤ e−λk/ε ∣u0∣ (1 −
1

λ
) + sup

t∈[k,k+1]

∣
e−λt/ε

λ
∫

t

0
eλs/ε ds∣ ∥u′∥∞

= e−λk/ε ∣u0∣ (1 −
1

λ
) +

ε

λ2
(1 − e−λk/ε) ∥u′∥∞ .



78 CHAPTER 3. FLAGELLAR SWIMMING

The previous inequality must hold for every k ≥ 0, therefore

∥Tε(u) − T0(u)∥∞ ≤
ε

λ2
∥u′∥∞ ,

which proves (3.78) for every continuously differentiable u. To generalize the
same result for every u ∈ C0

per we can approximate u with a function in C1
per and

apply a classical “ ε
3

argument” thanks to the uniform bound for the operator
norms ∥Tε∥ ≤ 1/λ.

Finally, let us observe that from (3.78) we have

∥T0(u)∥∞ = lim
ε→0

∥Tε(u)∥∞ ≤ lim inf
ε→0

∥Tε∥ ∥u∥∞ .

But then, since ∥T0∥ = 1/λ we obtain

1

λ
= ∥T0∥ ≤ lim inf

ε→0
∥Tε∥ ≤ lim sup

ε→0
∥Tε∥ ≤

1

λ

which proves b). ◻

We put here in evidence the dependence of the periodic solution y of (3.58)
on the parameter ε, and also the (functional) dependence on uy, φ̇, and α by
writing

y(x, t) = yε [u
y, φ̇;α] (x, t).

After that, we define the following

y∗ε [uy, φ̇;α] (x, t) ∶= ε−1yε [u
y, φ̇;α] (x, t) and

σ∗ε [uy, φ̇;α] (t) ∶= γφ̇(t)∫
1

0
y∗ε [uy, φ̇;α] (x, t)dx +

γ − 1

2
(
∂2y∗ε
∂x2

[uy, φ̇;α])

2

(0, t) .

Notice that, for every fixed x, y∗ is a uniformly convergent sum of operators of
the kind discussed in the lemma. The same is true for each of its derivatives in
x up to the third order, and also for the integral term (multiplying γφ̇) in the
expression of σ∗.

Now, with y given by (3.74), system (3.59) reads

M(α(t))
⎛
⎜
⎝

ux(t)
uy(t)

φ̇(t)

⎞
⎟
⎠
−

⎛
⎜
⎜
⎝

εσ∗ε [uy, φ̇;α] (t)

−
∂3y∗ε
∂x3 [uy, φ̇;α] (0, t)
∂2y∗ε
∂x2 [uy, φ̇;α] (0, t)

⎞
⎟
⎟
⎠

=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
.

Denoting U = (ux, uy, φ̇) we write the left hand side of the above set of equations
as Gε [U ;α], so that

Gε [U ;α] = 0 . (3.79)

From the lemma we can prove that Gε is a family of (non-linear) operators in

the parameter ε defined in X × Y with values in X, where X ∶= (C0
per)

×3
and

Y ∶= C1
per. The operators Gε are continuous and continuously differentiable with

respect to U . Moreover, the map ε ↦ ∂Gε/∂U is continuous for ε → 0. Now,
the existence and uniqueness of a periodic solution for the system (3.58)-(3.59)
follows if, for every fixed α ∈ Y , there exist only one U = Uε[α] ∈ X that solves
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(3.79). We prove this last statement by applying the implicit function theorem
for Banach spaces (see for instance [76] Th,7.13-1). For the theorem to apply,
we recall,

∂Gε
∂U

[U ;α]

must be continuous as a function of U and α, and invertible as a linear operator
from X to itself at a given point (U,α). We show that the invertibility condition
holds for the case ε = 0 which, by continuity, proves the hypotheses of the
theorem for every small enough values of ε. Observe first that y∗ε [uy, φ̇;α] (x, t)
is the only periodic solution of

uy(t) + (φ̇(t) + α̇(t))x + ε
∂y∗ε
∂t

= −
∂4y∗ε
∂x4

satisfying the boundary condition (3.19). For ε = 0 the solution can be written
explicitly as

y∗0 [uy, φ̇;α] (x, t) = −∫
x

0
∫

x1

0
∫

1

x2
∫

1

x3

uy(t) + (φ̇(t) + α̇(t))x4 dx4dx3dx2dx1

= −
x2

120
(uy(t)(30 − 20x + 5x2

) + (φ̇(t) + α̇(t))(20 − 10x + x3
))

therefore, in particular, we have

∂2y∗0
∂x2

[uy, φ̇;α] (0, t) = −
uy(t)

2
−
φ̇(t) + α̇(t)

3
and

−
∂3y∗0
∂x3

[uy, φ̇;α] (0, t) = −uy(t) −
φ̇(t) + α̇(t)

2
.

At ε = 0 the operator Gε then becomes

G0 [U ;α] =M0(α)U +
⎛
⎜
⎝

0
α̇/2
α̇/3

⎞
⎟
⎠

where M0(α) is the following matrix

⎛
⎜
⎝

η + γ 0 −ηρ sinα
0 η + 1 1/2 − ηρ cosα

−ηρ sinα 1/2 − ηρ cosα (ηrot + ηρ
2 + 1/3)

⎞
⎟
⎠
. (3.80)

We have ∂G0/∂U =M0, which shows that the derivative of Gε is invertible for
ε = 0 and, indeed, for every small enough values of ε. The hypotheses of the
implicit function theorem are fulfilled, and the uniqueness and existence of a
periodic solution Uε is verified.

Let us now prove that the truncated asymptotic solution U1 we have calcu-
lated in Section 3.3.1, where

U1 =
⎛
⎜
⎝

ux0 + εu
x
1

uy0 + εu
y
1

φ̇0 + εφ̇1

⎞
⎟
⎠
,
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approximates the periodic unperturbed solution Uε. We assume here, for sim-
plicity, that α is periodic and smooth. Notice that every results we stated above
still apply. Moreover, from the calculations in Section 3.3.1, we have that U1 is
itself also smooth and periodic.

As a first step we show that there is a triplet Rε, bounded in the norm of X
uniformly for every ε small enough, such that

Gε [U1] = ε
2Rε(t) . (3.81)

The equality (3.81) follows by asymptotic construction, however, we check the
details here in the following. It is easy to verify that the periodic solution y of
(3.58) can be written as

yε [u
y, φ̇;α] (x, t) = −ε∑

n,j

ũyn1̂j + (
˜̇
φn + ˜̇αn)x̂j

εi2πn + λ4
j

ein2πt
W

(0)
j (x)

where
˜̇
φn, ũyn and ˜̇αn are the Fourier coefficients of φ̇, uy and α̇ respectively.

Observe now that

1

εi2πn + λ4
j

=
1

λ4
j

−
εi2πn

(εi2πn + λ4
j)λ

4
j

=
1

λ4
j

−
εi2πn

λ8
j

+
ε2(i2πn)2

(εi2πn + λ4
j)λ

8
j

therefore, denoting u1 = (uy0 + εu
y
1, φ̇0 + εφ̇1), we have

yε [u1;α] (x, t) = −ε∑
n,j

ũy0,n1̂j + (
˜̇
φ0,n + ˜̇αn)x̂j

λ4
j

ein2πt
W

(0)
j (x)

+ε2∑
n,j

⎛
⎜
⎝
i2πn

ũy0,n1̂j + (
˜̇
φ0,n + ˜̇αn)x̂j

λ8
j

−
ũy1,n1̂j +

˜̇
φ1,nx̂j

λ4
j

⎞
⎟
⎠
ein2πt

W
(0)
j (x)

+ε3∑
n,j

⎛
⎜
⎝
i2πn

ũy1,n1̂j +
˜̇
φ1,nx̂j

(εi2πn + λ4
j)λ

4
j

− (i2πn)2
ũy0,n1̂j + (

˜̇
φ0,n + ˜̇αn)x̂j

(εi2πn + λ4
j)λ

8
j

⎞
⎟
⎠
ein2πt

W
(0)
j (x) ,

where
˜̇
φ0,n,

˜̇
φ1,n, ũy0,n and ũy1,n are the Fourier coefficients of φ̇0, φ̇1, uy0 and

uy1 respectively. It is straightforward to verify that can rewrite the previous
equality as

yε [u1;α] (x, t) = εy1(x, t) + ε
2y2(x, t) + ε

3yRε [u1;α]

where y1 and y2 are the asymptotic coefficient for y that we have calculated
in Section 3.3.1. Replacing y∗ε [u1;α] = ε−1yε [u1;α] into the expression for
Gε [U1;α], we can verify that we have (3.81) where Rε can be calculated explic-
itly. The resulting Rε is bounded in the norm of X uniformly for every ε small
enough.

Finally observe that, from previous augments, the operator Gε is locally
invertible in U for every fixed α. So, from (3.79) and (3.81), by eventually
restrict our set of choice for ε, we have

U1 −Uε = G
−1
ε [ε2Rε;α] −G

−1
ε [0;α] = ε2 ∫

1

0

∂G−1
ε

∂U
[τε2Rε;α] dτ ⋅Rε .
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The integral term in the right hand side of the equality can be shown to be
bounded in the norm of X by a constant C

∥∫

1

0

∂G−1
ε

∂U
[τε2Rε;α] dτ ⋅Rε∥

X

≤ C

which can be taken independent from ε for a small enough set of values of the
parameter. For such set of values of ε then we have the following inequality

∥U1 −Uε∥X ≤ ε2C ,

which state rigorously that the asymptotic solution actually furnish an approxi-
mation for the only periodic solution of the unperturbed problem. An analogous
result can be deduced for the difference between the truncated asymptotic so-
lution for y and its unperturbed counterpart.

3.5 Appendix II. Prescribed external torque:
formal asymptotic solution.

The unperturbed equation of the system in the case of the external given torque
are those listed in the beginning of Section 3.2.4. As it was for the prescribed
angle case ux is decoupled from the other unknowns of the problem. If we take
ux, uy, y as in (3.30) and φ as in (3.55), the coefficients of uy, y and φ must
solve

−ηrotφ̇k + ηρ(u
y
k − ρφ̇k) +

∂2yk+1

∂x2
(0, t) + τk = 0 for k ≥ 0 , (3.82)

where we assumed τ0 = τext and τk = 0 for k ≥ 1, together with (3.31), (3.32)
and the boundary conditions (3.33). Then, each coefficient of ux can be directly
calculated expanding (3.29). If the initial value φin for the angle at t = 0 is
prescribed, we impose φ0(0) = φin and φk(0) = 0 for k ≥ 0.

At the zero-order we have y0(x, t) = 0, therefore y1 can be written as (3.34)
with φ̇0 instead of φ̇. Substituting this expression for y1 in (3.32) and (3.82) we
obtain the following linear system

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ηρφ̇0 − ηu
y
0 = u

y
0 +

1

2
φ̇0

− ηrotφ̇0 + ηρ(u
y
0 − ρφ̇0) −

1

3
φ̇0 −

1

2
uy0 + τext = 0

which allow us to solve for uy0 and φ̇0 in terms of τext. If we consider the
constants Uy0 = (ηρ + 1/2)/(η + 1) and T0 given by (3.54), then we have

uy0(t) = U
y
0 φ̇0(t) and φ̇0(t) = T

−1
0 τext(t)

which gives (3.56). In turn y1(x, t) = −p1(x)φ̇0(t) with p1 given by (3.36), thus
the k = 2 order problem in (3.31) is solved by

y2(x, t) = −∫
x

0
∫

x1

0
∫

1

x2
∫

1

x3

(uy1(t) + φ̇1(t)x4 − p1(x4)φ̈0(t))dx4dx3dx2dx1 .
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Substituting the previous in (3.32) and (3.82) we obtain

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ηρφ̇1 − ηu
y
1 = u

y
1 +

1

2
φ̇1 − (∫

1

0
p1) φ̈0

− ηrotφ̇1 + ηρ(u
y
1 − ρφ̇1) −

1

3
φ̇1 −

1

2
uy1 + (∫

1

0
∫

1

x
p1) φ̈0 = 0

Defining the following constants

ϕ1 = T
−1
0 (∫

1

0
∫

1

x
p1 +

ηρ − 1
2

η + 1
∫

1

0
p1) and Ũy1 = Uy0ϕ1 +U

y
1 ,

where Uy1 is given by (3.42), we can write the solutions of the previous system
as

uy1(t) = Ũ
y
1 φ̈0 and φ̇1(t) = ϕ1φ̈0(t) .

If we now expand the right hand side of (3.29) we get

ε(η + γ)ux = ε2γ ∫
1

0
φ̇0y1 + ε

2 γ − 1

2
(
∂2y1

∂x2
)

2

(0, t) +O(ε3)

therefore obtaining
ux0 = 0 and ux1 = Ux1 φ̇

2
0

where Ux1 is given by (3.42). In the following we suppose that τext has zero
average, thus φ0 is periodic. For simplicity we also assume τext(0) = 0 so that
φ1(t) = ϕ1φ̇0(t), but the result we propose here holds for any initial value of the
external torque.

Let us consider the expansion q̇ = q̇0 + εq̇1 + O(ε2). At the zero-order we
have

q̇0 = u
x
0 eφ0 + u

y
0 e�φ0

− ρφ̇0 e�φ0
= (Uy0 − ρ) φ̇0 e�φ0

while at the first order

q̇1 = (ux1 eφ0 + u
y
1 e�φ0

+ ux0φ1 e�φ0
− uy0φ1 eφ0 − ρφ̇1 e�φ0

+ ρφ̇0φ1 eφ0
)

= (Ux1 −Uy0ϕ1 + ρϕ1) φ̇
2
0eφ0 + (Ũy1 − ρϕ1) φ̈0e

�
φ0
.

If we now expand ∆q = ∆q0 + ε∆q1 +O(ε2), then

∆q0 = ∫

1

0
(Uy0 − ρ) φ̇0 e�φ0

= (Uy0 − ρ) [eφ0]
1
0 = 0

because of the periodicity of φ0. On the other hand, since q̇1 has the form (3.44)
with A(φ0) = (Ux1 −Uy0ϕ1 + ρϕ1)eφ0 and B(φ0) = (Ũy1 − ρϕ1)e�φ0

, if we apply

(3.45) we obtain

∆q1 = ∫
Ω
(A(φ0) −

dB

dφ0
(φ0))dψdφ0 = (Ux1 −Uy0ϕ1 + Ũ

y
1 )∫

Ω
eφ0dψdφ0

where ∂Ω is given by (3.57). Since Ux1 −Uy0ϕ1 + Ũ
y
1 = Ux1 +Uy1 = C we conclude

∆q = ε∫
Ω

V(φ0)dψdφ0 +O(ε2)

where V is given by (3.47).



Bibliography

[1] Gray J (1946). The mechanism of locomotion in snakes. Journal of Exper-
imental Biology. 23, 101.

[2] Gray J, Lissmann H W. (1950). The kinetics of locomotion of the grass-
snake. Journal of Experimental Biology. 26, 354.

[3] Alexander R M N (2003). Principles of Animal Locomotion. Princeton
University Press.

[4] Taylor G. (1951). Analysis of the swimming of microscopic organisms.
Proceedings of the Royal Society of London A. 209, 447.

[5] Lighthill J (1976). Flagellar hydrodynamics. Siam Review. 18, 161.

[6] Fletcher D. A., Theriot J. A. (2004). An introduction to cell motility for
the physical scientist. Physical Biology. 1, T1.

[7] Murphy R. R., Tadokoro S., Nardi D., Jacoff A., Fiorini P., Choset H.,
Erkmen A. M. (2008). Search and rescue robotics. In: Springer Handbook
of Robotics. Springer Berlin Heidelberg.

[8] Roper M, Dreyfus R, Baudry J, Fermigier M, Bibette J, Stone H A (2008).
Do magnetic micro-swimmers move like eukaryotic cells?. Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering
Sciences. 464, 877.

[9] Pak O S, Gao W, Wang J, Lauga E (2011). High-speed propulsion of
flexible nanowire motors: Theory and experiments. Soft Matter. 7, 8169.

[10] Cicconofri G, DeSimone A (2015). Motility of a model bristle-bot: A
theoretical analysis. International Journal of Non-Linear Mechanics. In
press.

[11] Cicconofri G, DeSimone A (2015). A Study of Snake-like Locomotion
Through the Analysis of a Flexible Robot Model. Submitted for publi-
cation.

[12] Cicconofri G, DeSimone A (2015). Motion planning and motility maps for
flagellar microswimmers. In preparation.

[13] Altshuler E, Pastor J M, Garcimartn A, Zuriguel I, Maza D (2013). Vibrot,
a simple device for the conversion of vibration into rotation mediated by
friction: preliminary evaluation. PloS one. 8, e67838.

83



84 BIBLIOGRAPHY

[14] Becker F, Boerner S, Lysenko V, Zeidis I, Zimmermann K (2014). On
the Mechanics of Bristle-Bots-Modeling, Simulation and Experiments. In:
ISR/Robotik: 41st International Symposium on Robotics: Proceedings of
(pp. 1-6), June 2014. VDE.

[15] Casey T M (1991). Energetics of caterpillar locomotion: biomechanical
constraints of a hydraulic skeleton. Science. 252, 112.

[16] Childress S, Hosoi A, Schultz W W, Wang Z J (2012). Natural Locomotion
in Fluids and on Surfaces: Swimming, Flying, and Sliding. The IMA
Volumes in Mathematics and its Applications, no. 155. New York, NY:
Springer.

[17] Childress S (1981). Mechanics of swimming and flying. Cambridge, UK:
Cambridge University Press.

[18] DeSimone A, Guarnieri F, Noselli G, Tatone A (2013). Crawlers in viscous
environments: Linear vs nonlinear rheology. International Journal of Non-
Linear Mechanics. 56, 142.

[19] DeSimone A, Tatone A (2012). Crawling motility through the analysis of
model locomotors: two case studies. The European Physical Journal E.
35, 85.

[20] Farkas M (1994). Periodic motions. New York, NY: Springer-Verlag.

[21] Gidoni P, Noselli G, DeSimone A (2014). Crawling on directional surfaces.
International Journal of Non-Linear Mechanics 61, 65.

[22] Giomi L, Hawley-Weld N, Mahadevan L (2013). Swarming, swirling and
stasis in sequestered bristle-bots. Proceedings of The Royal Society A. 469,
20120637.

[23] Holmes P, Full R J, Koditschek D, Guckenheimer J (2006). The dynamics
of legged locomotion: Models, analyses, and challenges. SIAM Review.
48, 207.

[24] Hosoi A E (2011). Locomotion at low Reynolds numbers. In: Ben Amar
M et al., eds. New Trends in the Physics and Mechanics of Biological
Systems: Lecture Notes of the Les Houches Summer School: Volume 92,
July 2009. Oxford University Press.

[25] Klingner J, Kanakia A, Farrow N, Reishus D, Correll N (2014). A stick-
slip omnidirectional powertrain for low-cost swarm robotics: Mechanism,
calibration, and control. In: Intelligent Robots and Systems (IROS 2014):
IEEE/RSJ International Conference on (pp. 846-851), September 2014.
IEEE.

[26] Lai J H, del Alamo J C, Rodrguez-Rodrguez J, Lasheras J C (2010).
The mechanics of the adhesive locomotion of terrestrial gastropods. The
Journal of Experimental Biology. 213, 3920.

[27] Lauga E, Hosoi A E (2006). Tuning gastropod locomotion: Modeling the
influence of mucus rheology on the cost of crawling. Physics of Fluids. 18,
113102.



BIBLIOGRAPHY 85

[28] Noselli G, DeSimone A (2014). A robotic crawler exploiting directional
frictional interactions: experiments, numerics and derivation of a reduced
model. Proceedings of the Royal Society A. 470, 20140333.

[29] Mahadevan L, Daniel S, Chaudhury M K (2004). Biomimetic ratcheting
motion of a soft, slender, sessile gel. Proceedings of the National Academy
of Sciences. 101, 23.

[30] Polderman J W, Willems J C (1998). Introduction to mathematical sys-
tems theory: a behavioral approach. New York, NY: Springer-Verlag.

[31] Shepherd R F, Ilievski F, Choi W, Morin S A, Stokes A A, Mazzeo A D,
Chen X, Wang M, Whitesides G M (2011). Multigait soft robot. Proceed-
ings of the National Academy of Sciences. 108, 20400.

[32] Tanaka Y, Ito K, Nakagaki T, Kobayashi R (2012). Mechanics of peri-
staltic locomotion and role of anchoring. Journal of The Royal Society
Interface. 9, 222.

[33] Trivedi D, Rahn C D, Kier W M, Walker I D (2008). Soft robotics: Bio-
logical inspiration, state of the art, and future research. Applied Bionics
and Biomechanics. 5, 99.

[34] Kim S, Laschi C, Trimmer B (2013). Soft robotics: a bio-inspired evolution
in robotics. Trends in Biotechnology. 31, 287.

[35] Bekker M G (1956). Theory of Land Locomotion. University of Michigan
Press.

[36] Jayne B C. (1988). Muscular mechanisms of snake locomotion: an elec-
tromyographic study of lateral undulation of the Florida banded water
snake (Nerodia fasciata) and the yellow rat snake (Elaphe obsoleta). Jour-
nal of Morphology. 197, 159.

[37] Moon B R, Gans C (1998). Kinematics, muscular activity and propulsion
in gopher snakes. Journal of Experimental Biology. 201, 2669.

[38] Baum M J, Kovalev A E, Michels J, Gorb S N (2014). Anisotropic Fric-
tion of the Ventral Scales in the Snake Lampropeltis getula californiae.
Tribology Letters 54, 139.

[39] Berth R A, Westhoff G, Bleckmann H, Gorb S N (2009). Surface structure
and frictional properties of the skin of the Amazon tree boa Corallus
hortulanus (Squamata, Boidae). Journal of Comparative Physiology A.
195, 311.

[40] Hu D L, Nirody J, Scott T, Shelley M J (2009). The mechanics of slithering
locomotion. Proceedings of the National Academy of Sciences. 106, 10081.

[41] Hu D L, Shelley M J (2012). Slithering locomotion. In: Natural Loco-
motion in Fluids and on Surfaces, S.Childress et al. (editors), pp. 117-
135, The IMA Volumes in Mathematics and its Applications. Vol 155.
Springer-Verlag.



86 BIBLIOGRAPHY

[42] Guo Z V, Mahadevan L (2008). Limbless undulatory propulsion on land.
Proceedings of the National Academy of Sciences. 105, 3179.

[43] Alouges F, DeSimone A, Giraldi L, Zoppello M (2013). Self-propulsion
of slender microswimmers by curvature control: N-link swimmers. Int.J.
Nonlinear Mechanics. 56, 142.

[44] Hirose S (1993). Biologically inspired robots: snake-like locomotors and
manipulators. Oxford University Press.

[45] Chirikjian G S, Burdick J W (1995). The kinematics of hyper-redundant
robot locomotion. IEEE Transactions on Robotics and Automation 11,
781.

[46] Boyer F, Shaukat A, Mathieu P (2012). Macrocontinuous dynamics for
hyperredundant robots: Application to kinematic locomotion bioinspired
by elongated body animals. IEEE Transactions on Robotics. 28, 303.

[47] Boyer F, Porez M, Khalil W (2006). Macro-continuous computed torque
algorithm for a three-dimensional eel-like robot. IEEE Transactions on
Robotics. 563.

[48] Trivedi D, Lotfi A, Rahn C D (2008). Geometrically exact models for soft
robotic manipulators. IEEE Transactions on Robotics. 24, 773.

[49] Renda F, Cianchetti M, Giorelli M, Arienti A, Laschi C (2012). A 3D
steady-state model of a tendon-driven continuum soft manipulator in-
spired by the octopus arm. Bioinspiration and Biomimetics. 7, 025006.

[50] Chrispell JC, Fauci LJ, Shelley M (2013). An actuated elastic sheet inter-
acting with passive and active structures in a viscoelastic fluid. Physics of
Fluids. 25, 013103.

[51] Antman S S (2005). Nonlinear problems of elasticity. Vol 107. New York:
Springer.

[52] Libai A, Simmonds J G (2005). The nonlinear theory of elastic shells.
Cambridge University Press.

[53] Bigoni D, Dal Corso F, Bosi F, Misseroni D (2014). Eshelby-like forces act-
ing on elastic structures: theoretical and experimental proof. Mechanics
of Materials (in press).

[54] Long, J H (1998). Muscles, elastic energy, and the dynamics of body
stiffness in swimming eels. American zoologist. 38, 771.

[55] Gay-Balmaz F, Vakhtang P (2012). Dynamics of elastic rods in perfect
friction contact. Physical Review Letters. 109, 244303.

[56] Vankerschaver J (2007). A class of nonholonomic kinematic constraints in
elasticity. Journal of Physics A: Mathematical and Theoretical. 40, 3889.

[57] Shapere A, Wilczek F (1989). Geometry of self-propulsion at low Reynolds
number. Journal of Fluid Mechanics. 198, 557.



BIBLIOGRAPHY 87

[58] Wiggins C H, Riveline D, Ott A, Goldstein R E (1998). Trapping and wig-
gling: elastohydrodynamics of driven microfilaments. Biophysical Journal.
74, 1043.

[59] Wiggins C H, Goldstein R E (1998). Flexive and propulsive dynamics of
elastica at low Reynolds number. Physical Review Letters. 80, 3879.

[60] Wolgemuth C W, Powers T R, Goldstein R E (2000). Twirling and
whirling: Viscous dynamics of rotating elastic filaments. Physical Review
Letters. 84, 1623.

[61] Becker L E, Koehler S A, Stone H A (2003). On self-propulsion of micro-
machines at low Reynolds number: Purcell’s three-link swimmer. Journal
of fluid mechanics. 490, 15.

[62] Dreyfus R, Baudry J, Roper M L, Fermigier M, Stone H A, Bibette J
(2005). Microscopic artificial swimmers. Nature. 437, 862-865.

[63] Camalet S, Julicher F (2000). Generic aspects of axonemal beating. New
Journal of Physics. 2, 24.1.

[64] Gadelha H, Gaffney E A, Smith D J, Kirkman-Brown, J C (2010). Non-
linear instability in flagellar dynamics: a novel modulation mechanism in
sperm migration?. Journal of The Royal Society Interface. 7, 1689.

[65] Gadelha H (2013). On the optimal shape of magnetic swimmers. Regular
and Chaotic Dynamics. 18, 75.

[66] Lauga E (2007). Floppy swimming: Viscous locomotion of actuated elas-
tica. Physical Review E. 75, 041916.

[67] Yu T S, Lauga E, Hosoi A E (2006). Experimental investigations of elastic
tail propulsion at low Reynolds number. Physics of Fluids. 18, 0917011.

[68] Keaveny E E, Maxey M R (2008). Spiral swimming of an artificial micro-
swimmer. Journal of Fluid Mechanics. 598, 293.

[69] Abbott J J, Peyer K E, Lagomarsino M C, Zhang L, Dong L, Kaliakatsos
I K, Nelson B J (2009). How should microrobots swim?. International
Journal of Robotics Research. 28, 1434.

[70] Cox R G (1970). The motion of long slender bodies in a viscous fluid Part
1. General theory. Journal of Fluid mechanics. 44, 791.

[71] Machin K E (1958). Wave propagation along flagella. Journal of Experi-
mental Biology. 35, 796.

[72] Purcell E M (1977). Life at low Reynolds number. American Journal of
Physics. 45, 3.

[73] Passov E, Or Y (2012). Dynamics of Purcells three-link microswimmer
with a passive elastic tail. The European Physical Journal E. 35, 1.

[74] Gutman E, Or Y (2014). Simple model of a planar undulating magnetic
microswimmer. Physical Review E. 90, 013012.



88 BIBLIOGRAPHY

[75] Nayfeh A H (2008). Perturbation methods. John Wiley & Sons.

[76] Ciarlet P G (2013). Linear and nonlinear functional analysis with appli-
cations (Vol. 130). SIAM.

[77] Batchelor G K (2000). An introduction to fluid dynamics. Cambridge uni-
versity press.

[78] Desimone A, Heltai L, Alouges F, Lefebvre-Lepot A. (2012). Computing
optimal strokes for low Reynolds number swimmers. In: Natural Locomo-
tion in Fluids and on Surfaces. Springer New York.

[79] Burton L J, Hatton R L, Choset H, Hosoi A E (2010). Two-link swimming
using buoyant orientation. Physics of Fluids. 22, 091703.

[80] Hatton R L, Choset H (2010). Connection vector fields and optimized
coordinates for swimming systems at low and high Reynolds numbers. In:
ASME 2010 Dynamic Systems and Control Conference. American Society
of Mechanical Engineers.

[81] Avron J E, Raz O (2008). A geometric theory of swimming: Purcell’s
swimmer and its symmetrized cousin. New Journal of Physics. 10, 063016.

[82] Gaffney E A, Gadlha H, Smith D J, Blake J R, Kirkman-Brown J C (2011).
Mammalian sperm motility: observation and theory. Annual Review of
Fluid Mechanics. 43, 501.

[83] Goldstein R E (2015). Green Algae as Model Organisms for Biological
Fluid Dynamics. Annual Review of Fluid Mechanics. 47, 343.

[84] Guasto J S, Rusconi R, Stocker R (2012). Fluid mechanics of planktonic
microorganisms. Annual Review of Fluid Mechanics. 44, 373.

[85] Alouges F, DeSimone A, Giraldi L, Zoppello M. Can Magnetic Multilayers
Propel Artificial Microswimmers Mimicking Sperm Cells? SoRo. 2, to
appear.


