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Introduction

This thesis is concerned with the study of singular Liouville systems on closed surfaces, that is
systems of second-order elliptic partial differential equations with exponential nonlinearities, which
arise in many problems in both physics and geometry.

Such problems are attacked by a variational point of view, namely we consider solutions as critical
points for a suitable energy functional defined on a suitable space.

We will first discuss the existence of points of minima for the energy functional, which solve the
problem. Then, in the cases when the energy cannot have global minimum points, we will look
for critical points of other kind, the so-called min-maz points. Finally, we will also give some non-
existence results for such problems.

Let (¥, g) be a compact surface without boundary. We will consider the following system of PDEs:

N
— Aui = Zaijpj <hj€ 7 — |E|) 47 Z Qim ( Dm |E> 5 1= 1,...,N (1)
j=1

Here, —A = —A, is the Laplace-Beltrami operator with respect to the metric g and the other
quantities have the following properties:

o A= (a;j)ij=1,. N € RM*N is a positive definite symmetric N x N matrix,

® p1,...,pN € Ry are positive real parameters,
® hi,...,hy € CZH(X) are positive smooth functions,
® pi,...,pym € X are given points,

o oy >—1fori=1,.... Nm=1,..., M.

Recalling that /(—Au)dVg =0 for any u € H*(X), by integrating both sides of (1) in the whole
b

surface ¥ we deduce / hie*'dVy=1foralli=1,...,N.

by
Therefore, under the non-restrictive assumption that the surface area of |X| of ¥ equals 1, (1) can
be re-written in the equivalent form

hyets M
Za”pj (f hyendV, )—477;&1‘7”((51,7”—1), i=1,...,N.

To better describe the properties of such systems, it is convenient to perform a change of variables.
Consider the Green’s function G, of —A, centered at a point p € 3, that is the solution of

CAG, =5, 1
/ GV, =0 2)
¥



and apply the following change of variable:

M
w; — u; + 4w Z im Gy,
m=1
The newly-defined u; solve
A Z Bt ith A := hye 4T Szt @imG (3)
— AUy QiP5 N W1 c = h.e m=1 XmSpm
' VI Jo e av, v

Basically, the new potentials EZ “absorbed” the Dirac deltas appearing in (1).

1 1 ~
Since G, blows up around p like o log 7 then h; will verify:
T

(’7]9)7
Ei e CH(EN\A{p1,- - pMm})s Ei ~d(-, pm)?* ™ around pyy,. (4)

Therefore, EZ will tend to 400 at p,, if and only if «;,, < 0 and it will tend to 0 at p,, if and only
if aj > 0.

The form (3) is particularly useful because it admits a variational formulation. In fact, all and only
its solutions are the critical points of the following energy functional defined on H 1(E)N :

Z Zﬂ/vuz Vu,dV, — Zm (log/he v, — /uZdV> (5)

1]1

Here, V =V, is the gradient given by the metric g, - is the Riemannian scalar product and a” are
the entries of the inverse matrix A~! of A. Sometimes, to denote the dependence on the matrix A,

we will denote the functional as J ,. We will also denote as Q a(u), or simply Q(u), the quadratic
N

1 g
expression - _Zl a’Vu; - Vu;.
i,j=
The functional J, is well defined on the space H 1(2)N because of the classical Moser-Trudinger
inequalities by [73, 63, 38], which ensure exponential integrability in such a space.

The system (3) is a natural generalization of the scalar Liouville equation

M
_Au = p(heu — 1) — 47 Z Oém(épm - 1)7

which is equivalent, by manipulations similar to the ones described before, to

u

—Auzp(?—l). (6)

fz hevdV,
Equation (6) arises in many well-known problem from different areas of mathematics.
In statistical mechanics, it is a mean field equation for the Euler flow in the Onsager’s theory (see
[17, 18, 46]). In theoretical physics, it is used in the description of abelian Chern-Simons vortices
theory (see [70, 76]).
In geometry, (6) is the equation of Gaussian curvature prescription problem on surfaces with con-
ical singularity (see [22, 23]). Here, each of the points p,, will have a conical singularity of angle
27(1 + oy, ), whereas h is the Gaussian curvature of the new metric and the parameter p is deter-
mined by the Gauss-Bonnet theorem, that is by the Euler characteristic x(X) of X.
The scalar Liouville equations has been very widely studied in literature, with many results concern-
ing existence and multiplicity of solutions, compactness properties, blow-up analysis et al., which
have been summarized for instance in the surveys [71, 58].



Liouville systems like (3) have several applications: in biology they appear in some models describ-
ing chemotaxis ([27]), in physics they arise in kinetic models of plasma ([47, 45]).

Particularly interesting are the cases where A is the Cartan matrix of a Lie algebra, such as

2 -1 0 0
1 2
A=Av=1 o o |-
o2 -
0 0 -1 2

which is the Cartan Matrix of SU(N + 1). This particular system is known as the SU(N + 1) or
the Ay Toda system.

The importance of the SU(3) Toda system is due to its application in algebraic geometry, in the
description of the holomorphic curves of CPY (see e.g. [19, 15, 26]), and in mathematical physics
in the non-abelian Chern-Simon vortices theory (see [37, 76, 70]).

The singularities represent, respectively, the ramification points of the complex curves and the
vortices of the wave functions.

Two further important examples are given by the following 2 x 2 systems

2 -1 2 -1
ne(hn) e (55)

which are known respectively as By and G5 Toda systems and can be seen as particular cases of
the A3 and Ag Toda system, respectively. Just like the As Toda, their study is closely related to
holomorphic curves in projective spaces.

Although the matrices By, G2 are not symmetric, their associated Liouville system is equivalent
to one with associated to a symmetric matrix and a re-scaled parameter, through the elementary

substitution: (_22 _21><ﬁ;):<‘22 _42><%>
() ()-(a (%)

Their energy functional will therefore be

Tp, p(u / Qp, (w)dV, — p <log / hye™dV, — / uldV> 2 (10 / hae2dV, — / ugdvg>,
Ja,,p(u /QG2 w)dVy—p1 (log/ hie"tdV, — /Euld‘/g)—[;)2 (log/zhge“QdVg—/Zungg>,
with
|VU1|2 Vui - Vug |VUQ|2 2 |VU2|2
Qp,(u) = ——+ —5— +— Qc,(u) = [Vur|" + Vur - Vug + == (7)

A first tool to attack variationally problem (6) is given by the Moser-Trudinger inequality, from the
aforementioned references [73, 63, 38] and, in the singular case, by [24, 72].
Such an inequality basically state that the energy functional, which in the scalar case has the form

1 ~
— 7/ |Vu|?dV, — p </ he"dV, —/udVg>, (8)
2 2 2 2

is bounded from below if and only if p < 87 min {1 1+ nlun e Moreover, if p is strictly
m=1,...,

smaller than this threshold, then I, is (weakly) coercive, that is all of his sub-levels are bounded.
Since I, is also lower semi-continuous, as can be easily verified, if this occurs then direct methods



from calculus of variations yield the existence of minimizers for I,,, which solve (6).

The first main goal of of this thesis is to prove Moser-Trudinger inequalities for singular Liouville
system like (3), that is to establish sufficient and necessary conditions for the boundedness from
below and for the coercivity of its energy functional J,.

Such issues were addressed in the papers [12] and [9]. The former considers the SU(3) Toda system,
that is the following system:

e et
7A'LL1:2p1 #71 — P2 #71
Is hietdVy Is haet2dV 9)
hoet2 hie* ’
J5; hoev2dV, Js hievrdV,
the latter studies the general case. Here, they are presented in Chapter 2.
They are inspired by some results obtained for particular systems with no singularities ([44, 74])
and for similar problems on Euclidean domains ([2¢, 29]), on the sphere S? ([65]) and on general

compact manifolds ([67]).

The arguments used to this purpose are roughly the following.

As a first thing, an easy application of the scalar Moser-Trudinger inequality gives boundedness
from below and coercivity for small values of p.

We then consider, for such values, the minimizing solutions u, of J, and perform a blow-up anal-
ysis. To this purpose, we first prove a concentration-compactness theorem for solutions of (3) and
then show that compactness must occur under some algebraic conditions on p and «;,,, which are
satisfied in particular as long as p is in the neighborhood of 0.

Therefore, J, must be coercive for all p’s which satisfy this condition. On the other hand, through
suitable test functions, we can show that such conditions are indeed also sufficient for the coercivity.

Next, we discuss whether J, can still be bounded from below when it is not coercive.

In particular, we will consider the case of fully competitive systems, that is when a;; < 0 for any
i # j (hence also for the Ay, By, Go Toda system described before).

The conditions for coercivity, which are in general pretty lengthy to state (which will be done in
Chapter 2), are much simpler under this assumption. In this case, coercivity occurs if and only

8 in{l,1 in,,— ;
if ;< mmin{1,1+ min,=1_. m Qm}

" , a condition which is also very similar to the one in the
scalar case. b

This is basically due to the following fact: under the assumption of A being non-positive out-
side the diagonal, the blow-up of minimizing sequences u, is locally one-dimensional, that it,
roughly speaking, each blowing-up component do not interact with any other. This means that
a sharper blow-up analysis can be done using a local version of the scalar Moser-Trudinger in-
equality, thus enabling to prove that J, is bounded from below even in the borderline case p; =

8rmin {1,1 4+ min,,—1, . am Qim} for i — 1 N

273

The next major problem considered in this work is the existence of non-minimizing solutions, in
case the parameter p exceeds the range of parameters which gives coercivity.

A first big issue which one encounters when looking for non-minimizing critical points is the lack
of the Palais-Smale condition, which is needed to apply most of the standard min-max theorems.

Actually, despite the Palais-Smale condition is not known to hold true for functionals like J,, we
can exploit a monotonicity trick by Struwe ([69], see also [34]). Basically, because of the specific

structure of J,, and in particular the fact that ¢ — 2 s non-increasing, we get the existence of

some converging Palais-Smale sequences at mountain-pass critical level.
Due to this result, to apply standard min-max methods for a generic value of p we only need a
compactness result for solutions of (3). In fact, if we had compactness of solutions, then we could



ake p" — psuch that bounded Palais-Smale sequences exist for such values, getting a mountain
take p" " h that bounded Palais-Smal ist f h val tti tai
n—-—+0o0

pass solutions u,» and then, by compactness, considering u, = 1i1J1r1 u,n, which would solve (3).
n——+0o0o

Non-compactness phenomena for the Liouville equation (6) have been pretty well understood.
The only possible scenario is a blow-up around a finite number of points, with no residual mass
(see [16]). N

Local quantization values, that is the portions of the integral of he* which accumulate around each
blow-up point, are also fully known: they equal 87 for blow-up at a regular point (see [49]) and
87 (1 + auy) in the case of blow-up at a singular point p,, (see [7, 5]).

Therefore, the only values of p which could generate non-compactness are all the possible finite sum
of such values. We get a discrete set on the positive half-line, outside of which we get compactness
of solutions. Min-max methods can thus be applied for a generic choice of p.

Concerning general Liouville systems, local quantization and blow-up analysis are still widely open

problems.
A classification of local blow-up values has been given only for very specific systems, namely the
Ao Toda system (9) ([13, 53]) and, in the case of no singularities, the By and (partially) G2 Toda

systems ([51]):

h16"1 h2€u2
—Au; =2 - — 1| - _— -1
“ & (fz hiet1dVy ) P (fz haet2dVy )

Aug = 2 hae™ 1) =2 e 1 1o
—AUo = -_ — -
27 P2\ T hoevav, P\ Jg hnemav,
hie“t hoe¥2
PO S
fE hleuldVg fE hg@uzd‘/g (11)

U h Ul
—Aus = 2ps 2¢ 1) ~3 1 1

[y hae=dV,, PL\ T e dv,
Anyway, the quantization results do not suffice, by themselves, to ensure a generic compactness re-
sults on p, due to the possibility of residual mass. Actually, in [30] it was proved that non-vanishing
residual may indeed occur for the regular Toda system.

The issue of residual has been rule out in the paper [14], where we showed that if it occurs, then it
does only for one component of the A Toda. Similarly, for N x N systems, there is at least one
component which has not residual mass. This result is presented in Section 2.2.

Ruling out the chance of a double residual implies that, for blowing up sequences of solutions of the
Ay, By, G4 Toda systems, at least one between p; and ps must be a finite combination of the local
blow-up values. Therefore, the set of parameters to be excluded for the purpose of compactness
is just a union of horizontal and vertical half-lines on the first quadrant so, similarly as before,
conditions to apply min-max methods are satisfied for almost every p € R2>0~

We are therefore allowed to search for min-max solutions, a goal to which Chapter 3 will be devoted.
The strategy we will follow will be based on analysis of energy sub-levels and application of Morse
theory, rather than usual mountain pass or linking theorems, as was usually done by many authors
who studied similar problems. The reason of such a choice is that, whereas the two arguments are
perfectly equivalent to prove existence of solutions, Morse theory gives also information about the
number of solutions, provided the energy is a Morse functional, which a generic assumption (in a
sense which will be clarified later).

We will actually show that a change of topology occurs between very high sub-levels of energy func-
tional, which are contractible, and very low sub-levels. The compactness assumptions discussed in
the previous paragraph ensure, thanks to [50], that a change of topology between sub-levels implies
existence of solutions.

Roughly speaking, if J,(u) is very negative, then the L'-mass of h;e" accumulates, for one or both
1’s, around a finite number of points, depending on the parameters p; and ayyy,.
This can be made rigorous by introducing a space X', a subspace of finitely-supported unit measures



on X, and by building two maps ®, ¥ from very low sub-levels to the space X and vice-versa, such
that their composition is homotopically equivalent to the identity on X. If X is not contractible,
then low sub-levels of J, will also be non-contractible, hence we will deduce existence of solutions.
Moreover, by estimating the ranks of the homology groups of X we will get an estimate on the
multiplicity of solutions.

Such a method has been introduced in [36] for a fourth-order elliptic problem and has been widely
used to study the singular Liouville equation. Through this argument, general existence results
have been proved for problem (6) in the case of no singularities ([35]) and in the case of positive
singularities on surfaces of non-positive Euler-Poincaré characteristic ([3]), as well as partial exis-

tence results in the case of negative singularities ([21, 20]) and of positive singularities on general
surfaces ([60, 4]). It has also been used in [59, 61, 12] to attack the regular SU(3) Toda system
in the cases when one or both between p1, p2 are less then 8w, and even in similar problems with
exponential nonlinearities, such as the Sinh-Gordon equation ([77, 41]) and the Nirenberg problem
(155, 33))-

Here, we will present the results obtained in the papers [11, 10, 13, 8], the last of which is in prepa-
ration.

In the first of such papers we study the SU(3) Toda system (9). We assume 3 to have non-positive
Euler characteristic, that is neither homeomorphic to the sphere S nor to the projective plane RP?,
and we assume that coefficients oy, to be non-negative.

Here, following [3], we exploit the topology of ¥ to retract the surface on a bouquet of circles. By
taking two of such retractions on disjoint curves we can by-pass a major issue which occurs in the
study of Liouville systems of two or more equations, that is the interaction between the concentra-
tion of two (or more) components. In fact, through the push-forward of measures, we can restrict
the study of w3 on a curve v; and of uy on the other vy,. Moreover, by choosing 71, v2 not containing
any of the singular points p,,, we also avoid the issue of singularities.

Performing such a retraction clearly causes a loss of topological information, but the partial char-
acterization we give on sub-levels suffices to get a generic existence result.

Furthermore, we can apply Morse inequalities to get an estimate from below on the number of
solutions. This can be done for a generic choice of the potentials hi, ho and of the metric g, since
J, is a Morse functional for such a generic choice, as was proved in [32] for the scalar case. In
particular, if the characteristic of ¥ is greater or equal than 2, namely its Euler characteristic is
negative, the number of solutions goes to +oco as either p; or ps goes to +oo.

In the paper [9] we give a partial extension of the results from [11] to the case of singularity of arbi-
trary sign. The main difference is that negatively-signed vortices actually affect the best constant
in Moser-Trudinger inequality, as will be shown in detail in Chapter 2, therefore they cannot be
simply “ignored” as was done before. On the contrary, we will have to take into account each point
Dm on 7y, if cim < 0.

This means that, since we need v; and 72 to be disjoint, we have to assume max{aqm, @am} > 0
for any m, as well as the characteristic of ¥ to be non-positive.

Moreover, we also need some algebraic condition on p and ay,, to let low sub-levels be not con-
tractible, much like [20].

By Morse theory, we also get another generic multiplicity result similar to the one before [11].

In [13], we consider the singular SU(3) system on arbitrary surfaces and we allow both ay,, and
Qa2 to be negative for the same p,,. Here, the methods which were briefly described before cannot
be applied anymore and we need a sharper analysis of sub-levels.

To this purpose, we introduce a center of mass and scale of concentration, inspired by [61] but
strongly adapted to take into account the presence of singularities. We basically show that, for
functions with same center and scale, Moser-Trudinger inequality holds with a higher constant. In
other words, we get a so-called improved Moser-Trudinger inequality.

Such improved inequalities allow, for sufficiently small values of p, to give a precise characterization
of sublevels, hence existence of min-max solutions also in this case.

Finally, in [8] the results from [11] are adapted to the regular By and G5 Toda systems (10), (11).
We get similar general existence and multiplicity results for surfaces with non-positive Euler char-



acteristic.

In Chapter 4 we give some non-existence result for singular Liouville systems (3), contained in the
paper [13].

The first two results, inspired by the ones in [1] for the scalar equation, are for general systems
defined on particular surfaces. The former holds on the unit Euclidean ball, equipped with the stan-
dard metric, with a unique singularity in its center; the latter holds on the standard unit sphere
with two antipodal singularities.

Concerning the result on the ball, we show, through a Pohozaev identity, that if a solution exists
then the parameters p, o; must satisfy an algebraic relation.

The argument used for the case of the sphere is similar. We exploit the stereographic projection
to transform the solution of (3) on S? in an entire solution on the plane. Then, we use another
Pohozaev identity for entire solutions to get again necessary algebraic conditions for the existence
of solutions.

These result show that in the general existence results stated before the assumptions on x(X) is
somehow sharp.

The last result, inspired by [20], is given only for the SU(3) Toda system, but it holds for any
surfaces. It basically states that the system has no solutions if a couple of coefficients (a1, @2m )
is too close to —1.

The result is proven by contradiction, using blow-up analysis. We assume that a solution exists
for avpm, oy, arbitrarily close to —1 and apply the Concentration-Compactness alternative from
Chapter 2 to this sequence. By ruling out all the alternatives we get a contradiction.

By comparing this result with the ones in Chapter 3 we deduce that, to have such a general exis-
tence result, we need to assume all the coefficients «;,, to be positive.

Before stating the main result of this thesis, we devote Chapter 1 to some preliminaries.

First of all, we introduce the notation we will use throughout the whole paper. Then, we present
some known facts which will be used in the rest, mostly from analysis and topology, and some of
their consequences which need very short proofs.

We will postpone some proofs in an Appendix: the proof of a Pohozaev identity for entire solutions
of singular Liouville systems and of the fact that being a Morse function is a generic condition for
the energy functional.

The reason of this choice is that such proofs are very similar to the ones for the scalar case, though
quite lengthy.



Chapter 1

Preliminaries

In this chapter we present some notation and some preliminary facts which will be useful in the
following.

1.1 Notation

The indicator function of a set Q C ¥ will be denoted as

1 ifzeQ
19(”3)_{ 0 ifzgQ

Given two points z,y € X, we will indicate the metric distance on ¥ between them as d(z,y).
Similarly, for any Q, ' C ¥ we will write:

d(z,Q) := inf{d(z,y) : = € Q}, d(Q,Q) :=inf{d(z,y): € Q,yeQ'}.
The diameter of a set 2 will be indicated as
diam(92) := sup{d(z,y) : =,y € Q}.
We will indicate the open metric ball centered in p having radius r as
B.(z):={yeX: dz,y) <r}.
Similarly, for Q C ¥ we will write
Bo(Q) = {y €% dy,9) <1}

For any subset of a topological space A C X we indicate its closure as A and its interior part as A.
For ro > r1 > 0 we denote the open annulus centered at p with radii 1,7 as

Ap r(p) i ={x €X: r <d(z,p) <12} =By, (p)\ Br, (D).

If Q C 3 has a smooth boundary, for any = € 9Q we will denote the outer normal at z as v(x). If
u € C1(09) we will indicate its normal derivative at = as d,u(x) := Vu(z) - v(z).

Standard notation will be used for the usual numeric set, like N,R,RY. Here, N contains 0. A
similar notation will be used for the space of N x M matrices, which we will denote as RV*M
The positive and negative part of real number ¢ will be denoted respectively as ¢t := max{0, t} and
t~ = max{0, —t}.

The usual functional spaces will be denoted as LP(2),C°°(X),C>°(X)Y,.... A subscript will be
added to indicate vector with positive component or (almost everywhere) positive functions, like



Rs0,CZH(X). Subscript may be also added to stress the dependence on the metric g defined on X.
For a continuous map f : ¥ — ¥ and a measure p defined on X, we define the push-forward of
with respect to f as the measure defined by

fer(B) = p (f71(B)) -

If 1 has finite support, its push-forward has a particularly simple form:

K K
k=1 k=1

Given a function u € L'(¥) and a measurable Q C ¥ with positive measure, the average of u on

will be denoted as )
udV, = —/ udV,.
]é el

In particular, since we assume |X| = 1, we can write

/udVg = ][ udVy.
b)) by

We will indicate the subset of H'(X) which contains the functions with zero average as

T (D) = {ueHl(E): /Zuo}

Since the functional J, defined by (5) is invariant by addition of constants, as well as the system

(3), it will not be restrictive to study both of them on Fl(E)N rather than on H'(Z)V.

On the other hand, for a planar Euclidean domain © € R? (or Q C X) with smooth boundary and
a function v € H*(Q) we will indicate with the symbol u|sq the trace of u on the boundary of Q.
The space of functions with zero trace will be denoted by

Hy(Q) == {ue H'(Q) : ulpg =0}. (1.1)

The sub-levels of J,, which will play, as anticipated, an essential role throughout most of the paper,
will be denoted as

Ji={ue H' )V : J,(u) <a}. (1.2)
We will denote with the symbol X ~ Y a homotopy equivalence between two topological spaces X
and Y.

The composition of two homotopy equivalences F; : X x[0,1] — Y and F5 : Y X [0, 1] — Z satisfying
Fi1(-,1) = F5(+,0) is the map Fy * F} : X x [0,1] = Z defined by

Fi(x,2s) if s <
Fyx Fy: (2,8) —

N | =

Fy(x,2s—1) if s >

The identity map on X will be denoted as Idx.

We will denote the ¢*® homology group with coefficient in Z of a topological space X as H,(X).
An isomorphism between two homology groups will be denoted just by equality sign.

Reduced homology groups will be denoted as H,(X), namely

Ho(X) = Hy(X) @ Z, Hy(X) = Hy(X) ifqg>1.

The ¢*® Betti number of X, namely the dimension of its ¢ group of homology, will be indicated
by bg(X) := rank(H,(X)).
The symbol b,(X) will stand for the ¢ reduced Betti number, namely the dimension of H,(X),
that is _

bo(X) = bo(X) — 1, be(X) =bg(X) ifg>1.



If J, is a Morse function, we will denote as C4(a, b) the number of critical points u of .J, with Morse
index ¢ satisfying a < J,(u) < b. The total number of critical points of index ¢ will be denoted as
Cq; in other words, C, := Cy(+00, —00).

We will indicate with the letter C' large constants which can vary among different lines and formu-
las. To underline the dependence of C' on some parameter «, we indicate with C, and so on.

We will denote as 0,(1) quantities which tend to 0 as « tends to 0 or to 400 and we will similarly
indicate bounded quantities as O, (1), omitting in both cases the subscript(s) when it is evident
from the context.

1.2 Compactness results

First of all, we need two results from Brezis and Merle [16].
The first is a classical estimate about exponential integrability of solutions of some elliptic PDEs.

Lemma 1.1. ([16], Theorem 1, Corollary 1)
Let Q C R? be a smooth bounded domain, f € L*(Q) be with 1 fllr ) < 4m and u be the solution

of
—Au=f inQ
u=20 on 0N

Then, for any q < there exists a constant C = Cy giam(q) such that / etlv@ldy < C.

47
Ifllzr o) 0

Moreover, el € L) for any q < +oo.

The second result we need, which has been extended in [5, 0], is a concentration-compactness the-
orem for scalar Liouville-type equations, which can be seen as a particular case of the one which
will be proved in Chapter 2:

Theorem 1.2. ([16], Theorem 3; [6], Theorem 5; [5], Theorem 2.1)
Let {u"}nen be a sequence of solutions of (6) with p" - Ry and h” = V"h with V" — 1
n (oo}

n—-+00
in C1(X) and S be defined by
S = {x €X: 32" — z such that u" (z") — log/ [ — —|—oo}. (1.3)
n—-+oo 5 n—-+oo
Then, up to subsequences, one of the following occurs:

o (Compactness) If S = 0, then u" — log/ E"e“ndVg converges to some u in W>4(X).
b

o (Concentration) If S # 0, then it is finite and u"™ —1og/ ﬁ"e“ndvg W T in Ly, (E\S).

s
Let us now report the known local blow-up quantization results for the systems (6), (9), (10), (11).
Theorem 1.3. ([/9]; [/8], Theorem 0.2; [6], Theorem 6; [5], Theorem 2.3)

Let {u"},en be a sequence of solutions of (6) with p = p", let S be defined by (1.3) and let, for
x €S8, o(x) be defined (up to subsequences) by

hreu"dv,
o(x):=lim lim "M.
r—0n—-+oo fE hneu™ dVg

Ifx & {p1,...,pm}, then o(x) = 8w, whereas o(pm) = 87 (1 + cuy,).
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Corollary 1.4.
Let ' =T, be defined by

F::Sw{n—i— Z (1+am),neN,MC{1,...,M}}.

meM

Then, the family of solutions {u,}pex C FI(E) of (6) is uniformly bounded in W>4(X) for some
q > 1 for any given K € Rso \T.

Proof.
Take p" —+> p € K and apply Lemma 1.2 to " = u,n.
n—-+oo

hrev”
e —\
fZ hreu™ dVg n——+oo

p= Z o(x) € T', which is a contradiction since we assumed p € £ C Ry \ T.

Z o(x)d,, hence

zeS

If Concentration occurred, then we can easily see that p"

zeS
Therefore, we must have Compactness for u™ — log / E”e“ndvg.
b
If u™ were not bounded in W?4(X), then log/zﬁ"e“ndvg e +oo.
Anyway, Jensen inequality gives log /2 TL”e“ndVg > /2 logﬁ"dVg > —C. Moreover, log /2 E"e“ndvg n—>—+>oo
400 would imply irzlf u” n_)—+>oo 400, in contradiction with /Eu"dVg =0. O

Definition 1.5.
Let (a1, a2) be a couple of numbers greater than —1 and let Ay 0y C R? as the piece of ellipse
defined by

Ap o = {(01, o9) C RQZO : O’% — 0109 + O’S —4n(14 a1)og —4n(l + ag)og = O}
We then define iteratively the finite set Zq, 0, C Day,a via the following rules:

® Z4, .0, contains the points

(0,0) 47 ((1 + ay),0) (0,47(1 + a2)) (A (2 + a1 + a2),47(1 + )
(A4r(1 4 a1),47(2 + a1 + a)) (4Ar(2 + a1 + a2),47(2 + a1 + a2)). (1.4)

o If (01,02) € Eay,as, then any (01,05) € Aq, o, with o7 = o1 + 47n for some n € N and
ol > og belongs to Za, .a,-

o If (01,02) € Ea,.as, then any (01,05) € Au, 0y With o = o9 + 47n for some n € N and
oy > o1 belongs to Za, as-

Theorem 1.6. ([/3], Proposition 2.4; [53], Theorem 1.1)
Let {u™ = (u],u8) tnen be a sequence of solutions of (9) with (p1,p2) = (p1, p5) and let, for x € X,
o(x) = (o1(x),02(x)) be defined (up to subsequences) by

hpet v,
oi(x) :=lim lim p?M.

D (1.5)
r—0 n—+4o0 fz h?eui dvg

Ifx & {p1,...,pm}, then o(x) € Eo o, whereas o(Pm) € ZEan,,.anm-
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Remark 1.7.
Notice that, if either a1 = ag = 0 or they are both small enough, then 2, o, contains only the set
=y of six points defined in (1.4).

—ag,az

The authors announced ([75]) that they refined the previous result by proving that o(p.,) € E.

A1m,X2m
if A1m, @am < C for some C > 0. They also conjectured that o(p,,) € E;lm%m for any a1, o, .

In [0}], the authors prove that, in the regular case, all the values in Zg o = 5670 can be attained in
case of blow-up (see also [31, 30]).

Theorem 1.8. (/51])

Let {u" = (uf,uy)}nen be a sequence of solutions of (10) with (p1,p2) = (pT, py) and let o(z) be
defined by (1.5).

For any x € X:

o(x) € 47{(0,0), (1,0), (0,1), (1,3), (2,1), (3,3), (2,4), (3,4)}.

Let {u" = (u}',ul) }nen be a sequence of solutions of (11) with (p1,p2) = (pT, p5) and let o(x) be
defined by (1.5).

If pt" < 4m <2+\/§),p§<47r (5—&—\f7), then for any x € X:

o(x) € 47{(0,0), (1,0), (0,1), (1,4), (2,1), (2,6)}.
Let us now state a couple of Lemmas from [56] concerning deformations of sub-levels.

Lemma 1.9. ([50], Proposition 1.1)
Let p € Rgo, a,b € R be given with a <b and let J;, JS be defined by (1.2).
Then, one of the following alternatives occurs:

o There exists a sequence {u"},en of solutions of (3) with p™ TP and a < Jn(u™) < b,
n—-+0oo

e J; is a deformation retract of Jll)’.

Corollary 1.10.
Let p € Rgo be given and let JpL be defined by (1.2).
Then, one of the following alternatives occurs:

o There exists a sequence {u" },en of solutions of (3) with p" — p and Iy (u") —> Ho0,
n—-+oo n—-+oo

o There exists L > 0 such that JpL is a deformation retract of FI(E)N. In particular, J[f 18
contractible.

In the scalar case the global compactness result (1.4) holds, hence for p ¢ I we can act as if Palais-
Smale condition holds:

Corollary 1.11.

Let T be as in Corollary 1.4, p € Rug\ T, a,b € R be given with a < b and such that (6) has no
solutions with a < I, < b.

Then, I7 is a deformation retract of Ig.

Moreover, there exists L > 0 such that IpL is contractible.
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Proof.
If p ¢ T then the second alternative must occur in Lemma 1.9, since the first alternative would give,
by Corollary 1.4, u" T U which solves (6) and satisfies a < I,(u) < b.

n—-+0oo

Moreover, by Corollary 1.4, we have [[u"| 1) < C for any solution u” € Fl(Z) of (6) with

p" — p, therefore by Jensen’s inequality every solution of (6) verifies

n—-+o0o

1 ~ 2 ~
I (u™) < 7/ |Vu™|*dV, — p/ log hdV, < “_ p/ log hdV, =: L;
2 2 b)) 2 z

Corollary 1.10 gives the last claim. O

1.3 Analytical preliminaries and Moser-Trudinger inequali-
ties

To study the concentration phenomena of solutions of (3) we will use the following simple but useful
calculus Lemma:

Lemma 1.12. ([//], Lemma 4.4)
Let {a"}, oy and {b"}, oy be two sequences of real numbers satisfying

n
a’ — oo, lim — <0.
n—+o0o n—+4oo q™

Then, there exists a smooth function F : [0,+00) — R which satisfies, up to subsequences,

O0<F'(t)<1 Vt>0, F'(t) — 0, F(a™)—-b — +oo.

t——+oo n—-+4oo

Now we recall the Moser-Trudinger inequality for the scalar Liouville equation.

Theorem 1.13. ([38], Theorem 1.7; [65], Theorem 2; [72], Corollary 9)
There exists C > 0 such that for any u € H*(X)

~ 1
1 hetdV, — dv, < 2qv, + C. 1.6
Og/z o /Zu 9 = 167 min {1, 1 + min,, a,, } /E [Vul*dVs + (16)

In other words, the functional I, defined in (8) is bounded from below if and only if p < 87 min {1, 1 4 min am}

and it is coercive on ﬁl(Z) if and only if p < 8m min {17 1 4 min am}.

In particular, in the latter case I, has a global minimizer which solves (6).

We will also need a similar inequality by Adimurthi and Sandeep [1], holding on Euclidean domains,
and its straightforward corollary.

Theorem 1.14. ([1], Theorem 2.1)
Let r >0, a € (—1,0] be given.
Then, there exists a constant C = C,,, such that for any u € Hg(B,(0))

/ |Vu(z)Pde <1 = |x\2°‘e4”(1+°‘)”(m)2dx <C
B.(0) B-(0)
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Corollary 1.15.
Let r > 0, a € (—1,0] be given.
Then, there exists a constant C = C,,, such that for any u € Hg(B,(0))

1
(1+a) log/ z2*e" @ dr < — |Vu(z)]*de + C
B,(0) 167 /. (0)
Proof.
1 dm(1+ )
By the elementary inequality u < 6u? + — with § = ————— we get
40 Jo [Vu(y)dy

(1+a) log/ 2|2 e @) dx
Q

< (1 +Oé) log/ Mhﬁeu(aj)%ﬁdm

Q u(a) ?
< 1;.‘./Q|Vu(y)|2dy+(l+a)log/ﬂx|2"e4ﬂ(1+a)<\/m> "
<

1 2

Let us now state the Moser-Trudinger inequality for the regular SU(3) Toda system:

Theorem 1.16. ([//], Theorem 1.3)
There exists C > 0 such that for any u = (u1,us) € H*(X):

2

1
> (1og / edV, — / uidvq) < — / Qa, (w)dV, + C.

i=1

In other words, the functional J, defined by (5), in the case A = Az, am > 0, is bounded from

below on H'(X) if and only if p1, ps < 47 and it is coercive on Fl(Z)2 if and only if p1, p2 < 4.
In particular, in the latter case I, has a global minimizer which solves (9).

From this result, we deduce a Moser-Trudinger inequality for the SU(3) Toda system on domains
with boundary. This can be seen as a generalization of the well-known scalar Moser-Trudinger
inequalities on Euclidean domains from [23], which we report:

Theorem 1.17.
Let Q C R? be a smooth simply connected domain.
Then, there exists C > 0 such that, for any u € H'(Q),

log/ @ dy — ][ u(z)de < 8i/ |Vu(z)|?dz + C. (1.7)
Q Q T Ja

Before stating the inequality for the SU(3) Toda, we introduce a class of smooth open subset of ¥
which satisfy an exterior and interior sphere condition with radius § > 0:

s 1= {Q CY:VzedQIr eQ 2" €\ Q: 2= Bs(a') N0 = Bs(x") ﬂ@Q} (1.8)
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Theorem 1.18.
There exists C > 0 such that, for any u € H'(B1(0))?,

2

Z log/ e (@) dy 7][ ui(z)de | < L Qa,(u(z))dz + C.
B1(0) B1(0) 27 JB1(0)

i—1 By (0

The same result holds if B1(0) is replaced with a simply connected domain belonging to As for some
0 > 0, with the constant C' is replaced with some Cs > 0.

Sketch of the proof.

Consider a conformal diffeomorphism from Bj(0) to the unit upper half-sphere and reflect the image
of u through the equator.

Now, apply the Moser-Trudinger inequality to the reflected u/, which is defined on S?. The Dirichlet
integral of «’ will be twice the one of u on B;(0), while the average and the integral of e will be
the same, up to the conformal factor. Therefore the constant 47 is halved to 2.

Starting from a simply connected domain, one can exploit the Riemann mapping theorem to map
it conformally on the unit ball and repeat the same argument. The exterior and interior sphere
condition ensures the boundedness of the conformal factor. O

In Chapter 3, we will need to combine different type of Moser-Trudinger inequalities.
To do this, we will need the following technical estimates concerning averages of functions on balls
and their boundary:

Lemma 1.19.
There exists C > 0 such that for any u € H'(X), z € %, r > 0 one has

][ udV, —][ udVy| < C / [Vu|2dV,.
B, (z) OB (x) B, (z)

Moreover, for any R > 1 there exists C' = Cg such that

][ udVy, — ][ udVy| < Oy | |Vul2dV.
B, (z) Bry () B, (z)

The same inequalities hold if B.(x) is replaced by a domain Q C Bgry(x) such that Q € s, for
some § > 0, with the constants C' and Cr replaced by some Cs,Cr s > 0, respectively.

The proof of the above Lemma follows by the Poincaré-Wirtinger and trace inequalities, which are
invariant by dilation. Details can be found, for instance, in [39].

We will also need the following estimate on harmonic liftings.

Lemma 1.20.

Let vy > 1y >0, f € HY(B,,(0)) with / f(z)dxz =0 be given and u be the solution of
B, (0)

—Au=0 in A (0)
u=f on 0B, (0)
u=0 on 0By, (0)

Then, there exists C = C'ra > 0 such that
1

/ |Vu(z)|?dz < C/ |V f(z)*dz
A’V‘I,Tz (0) AT1,7‘2 (0)
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Finally, we give a result concerning entire solution of singular Liouville systems, which will be used
to prove the non-existence results in Chapter 4.

Unlike the previously stated results, this one has not been published, up to our knowledge, nor
it follows straightforwardly from any known results. Anyway, it can be proved similarly as in the
scalar case ([25], Theorem 1).

As anticipated in the introduction, the proof will be postponed to the Appendix.

Theorem 1.21.
Let Hy,...,Hy € CL. (R2 \ {O}) be such that, for suitable a,c > 0,b> —2, C > 0,

||

C
let U= (Uy,...,Un) be a solution of

< H;(z) < C|x\b V€ By(0)\ {0} 0 < Hi(z) < Clz|® Ve R*\ B(0);

N
—AU, = ZainjeUJ in R?
j=1 , i=1,...,N (1.9)
/ (Jz[® + |z]°) eVi@dy < 400
R2
and define
pi = H;(x)eV @ dz, T = / (z - VH;(x))eV @ dg, i=1,2.
R2 R2
Then,
N N
> aijpip; — ATy (2pi+7i) = 0. (1.10)
ij=1 i=1

1.4 Topological preliminaries, homology and Morse theory

We start with a simple fact from general topology, which anyway will be essential in most of Chapter
3:

Lemma 1.22.
Let X be a compact surface with x(X) < 0 and {p’m, . ,ngé,p’H, . ,p’lM{ Doy ,p;M{} be given
points of .

Then, there exist two curves 1,72, each of which is homeomorphic to a bouquet of 1 + [ 5

—X(E)}
circles and two global projections 11; : ¥ — ~; such that:
e 11Ny =0

o i, € forallm=1,..., M

79

i=1,2.

® Do €vi forallm=1,..., Mg, i=1,2.

Sketch of the proof.

If ¥ = TY is a g-torus, two retractions on disjoint bouquets of g circles can be easily built.

For instance, as in [3], X can be assumed to be embedded in R? in such a way that each hole contains
a line parallel to the x3 axis and that the projection P; on each plane {xg = (—1)i+1} is a disk with

16



Figure 1.1: The curves v, 72

g holes. Then, there exists two bouquets of circles v; C 3 such that P,
there exists retractions r; : P;(X) — P;(7;), and we suffice to define II; := Pi|%._1 or;oP;.

One can argue similarly with a connected sum ¥ = P?* of an even number of copies of the projective
plane, since this is homeomorphic to a connected sum of a T¥~! and a Klein bottle, which in turn
retracts on a circle; therefore, P?* retracts on two disjoint bouquets of k circles.

If instead ¥ is a connected sum of an odd number of projective planes, one can argue as before
setting the retractions constant on the last copy of P.

In all these cases,

~; are homeomorphisms and

k=14-—2— 2 =1+

2

Finally, with a small deformation, the curves 7; can be assumed to contain all the points p/,, and
they will not contain any of the other singular points. We can apply those deformations to v,
without intersecting 2 (or vice versa) because ¥ \ 72 is pathwise connected.

See Figure 1.1 for an example. O

In Chapter 3 we will often have to deal with the space M(X) of Radon measures defined on X,
especially unit measures.

Such a space will be endowed with the Lip’ topology, that is with the norm of the dual space of
Lipschitz functions:

||M||Lip'(2) = sup
¢€Lip(X),|#llLip(z) <1

/ ¢du’ . (1.11)
s

As a choice of this motivation, notice that by choosing, in (1.11), ¢ = d(-, y), one gets dp;p (0, 0y) ~
d(x,y) for any z,y € 3. This means that M(X) contains a homeomorphic copy of X.

Moreover, one can see immediately that L. ,(X) embeds into M(X).

Concerning v € H'(X)Y, there is a natural way to associate to any u, through the system (3), a
N-tuple of positive normalized L! functions, that is N elements of the space

A= {feLl(E): f>0ae. and /degl}. (1.12)
z

Precisely, we define

7116“1 %Ne“N
Ulye-ny, UN) = ey = = s JNu)- 1.13
(117 ) (fz hemdv,” [, hNeu:vdVg> (i o vl (19

Lemma 1.23.
Let A be defined by (1.12) and f; ., be defined by (1.13).
Then, the map u — f;,, is weakly continuous fori=1,...,N.
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Proof.

It will suffice to give the proof for the index ¢ = 1, which we will omit. We will just need to prove
the continuity of the map u +— he", since dividing a non-zero element by his norm is a continuous
operation in any normed space.

Let u™ € H' be converging weakly, and strongly in any LP(X), to u, and fix ¢ > 1 in such a way
that gy, > —1Vm.

From the elementary inequality e’ — 1 < |t|e‘t| we get, by Lemma 1.13 and Holder’s inequality,

he dV / he"dVj,

< /he “—“—de
< / het [u™ — u) e~ dv,
b))
_t .
~ q 2 n 1
< </ hqeq“dvg> (/ |u" *u|q 1dV) </ ea-1lU _uldvg)
> >
1 1_%
q q
< (Ceq [z: udV, +161rxn|n{l 1+qmmm am Y fz \Vu| dVy ) (/ ‘un — ulqqud‘/g>
>
2q g n q2 g n 2 1_L
<Ceql Js lu" —uldVy+ = [ [V (u" —u)] dV.q)
2 ]
< ¢ / ju” — 71 dV,,
b
— 0
n——+oo

From the proof of the previous Lemma we deduce the following useful Corollary:

Corollary 1.24.
The functional J, : H'(X)N — R defined in (5) is of class C* and weakly lower semi-continuous.

Speaking about unit measures, a fundamental role will be played by the so-called K-barycenters,
that is unit measures supported in at most K points of X, for some given K. They will be used in
Chapter (3) to express the fact that f;, concentrates around at most K points.

For a subset X C X, we define:

K K
(X)K = {Ztkémki :L‘kEX, thO,Ztkl}. (114)

k=1 k=1

If we choose X to be homeomorphic to a bouquet of g circles, such as for instance the curves 1, 2
defined in Lemma 1.22, the homology of the K- barycenters on X is well-known:

Proposition 1.25. ([9], Proposition 3.2)
Let v be a bouquet of g circles and let () be defined by (1.14).
Then, its homology groups are the following:

z ifqg=0
Hy(Mr) =14 25 ifg=2K —1
0 ifq#02K —1
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Remark 1.26.
In Proposition 1.25, when g = 1 we get not only a homology equivalence but a homotopy equivalence
between (Sl)K and S?K-1,

We will also need a similar definition, which extends the K-barycenters defined before. We still
consider unit measure with finite support, but we do not give a constraint on the number of the
points, but rather on a weight defined on such points.

Given a set X C X, a finite number of points p1,...,py € X and a multi-index a = (a1,...,ap)
with —1 < ayy, < 0 for any m =1,..., M, we define the weighted cardinality w, as
1+a, ifz=p,
wo({z}) = . , W T = wo({zr}).
)= { T o U o] = 3 wnlfon)
€T zreET

We then define the weighted barycenters on X with respect to the a parameter p > 0 and the
multi-index « as

(X)pa = { Z thlay, @ Tp € X, tp 20, Z ty =1, dmwo (J) < p}. (1.15)

€T €T
As a motivation for this weight, introduced in [21] to study the singular Liouville equation, consider

1
inequality (1.6). In the case of no singularities, the constant multiplying |Vu\2thq is 6 and
> Y

in case of one singular point p,, with «,, < 0, that constant is ——.
167(1 + o)

Roughly speaking, the weight of each point represents how much that point affects the Moser-
Trudinger inequality (1.6).

The space of weighted barycenters can be in general more complicated than the non-weighted
barycenters, which are a particular case given by defining w, ({z}) =1 for any € X and K as the
largest integer strictly smaller than 2

™
Anyway, both the weighted and the non-weighted barycenters are stratified set, that is, roughly
speaking, union of manifolds of different dimensions with possibly non-smooth gluings.
For this reason, they have the fundamental property of being a Euclidean Neighborhood Retract,
namely a deformation retract of an open neighborhood of theirs.

Lemma 1.27. (/21], Lemma 3.12)
Let, for p € Ruo, o = (a1,...,anm), (X),.a be defined as in (1.15).
Then, there exists eg > 0 and a continuous retraction

wp,g : {M € M(E) : dLip’ (Na (Z)p,g) < 50} — (Z)p,g

In particular, if u" — o for some o € (X),.q, then ¥, (") — 0.
n—oo - - n—oo

Another tool which we will take from general topology is the join between two spaces X and Y,
defined by

X xY 1
Xy = XXV ¥ 0] (1.16)
where ~ is the identification given by
(z,y,0) ~ (z,9y',0) Vxe X, Vyy €Y, (v,y,1) ~ (2',y,1) Vrx,2' € X,VyeY.

Basically, the join expresses a (non-exclusive) alternative between X and Y: if £ = 0 we only “see”
X and not Y, if t =1 we see only Y and if 0 < t < 1 we see both X and Y (for more details, see
[10], page 9). This will be used in Chapter 3 as a model for the alternative between concentration
of fLU and f2,u-

The homology of X xY depends from the homology of X and Y through the following:
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Proposition 1.28. ([/0], Theorem 3.21)
Let X and Y be two CW-complexes and X Y be their join as in (1.16).
Then, its homology group are defined by

q
Hy(X*Y) = @ Hy (X) © Hygqr 1 (Y).
q'=0
In particular,

by(X #Y) = fjﬁq«X)’quqq(Y)
q’'=0

and
+oo~ +oo " +oo "
D b(XHY) =D by (X) Y by (Y)
q=0 q’'=0 q""=0
Remark 1.29.
. . . ., D VN, D V Ny
By taking, in the previous Proposition, two wedge sum of spheres X = (S 1) andY = (S 2) ,

we find that X xY has the homology of another wedge sum of spheres (SD1+D2+1)VN1N2.

In the same book [/0] it is shown that actually a homotopically equivalence (SDl)VNl * (SD?)\/N2 ~

(SD1+D2+1)VN1N2 holds. In particular, from Remark 1.20, (Sl)K * (SI)K ~ S g2Ra+L
§2K1+2Ka—1 ! :

Remark 1.30.

Proposition 1.28 shows, in particular, that if both X and Y have some non-trivial homology, then
the same is true for X xY .

It is easy to see that a partial converse holds, concerning contractibility rather than homology: if
either X orY is contractible, that X Y is also contractible.

In fact, if F' is a homotopy equivalence between X and a point, then

((x,y,t),8) = (F(z,5),y,1)

is a homotopical equivalence between X xY and the cone based on Y, which is contractible.

Morse inequalities yield the following estimate on the number of solutions, through the Betti num-
bers of low sub-levels:

Lemma 1.31.
Let p € R%, be such that Ja,,, is a Morse functional and ||ul|gi(sy2 < C for any solution u €

—1
H (%)? of (9).
Then, there exists L > 0 such that

—+o0

# solutions of (9) > qu (J;jp) .

q=0

The same result holds if As is replace by By or Gs.

Proof.
By Corollary 1.24, —L < J,(u) < L for some L > 0. In particular, —L is a regular value for J,,
hence the exactness of the sequence

...—>IA—j'q(J;L)—>IA-jq(JpL)—)Hq(J;L,Jff)—)ﬁqfl(J;L)_>ITI‘I*1(JPL)_>"'
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reduces to
Therefore, Morse inequalities give:
—+oo —+o0 —+o0 +c>o~
# solutions of (10) =Y Cq(J,) =D Cq(Jos =L, L) = by (J; 5, TE) = by (J;71).
q=0 q=0 q=0 q=0
O
Finally, we need a density result for .J,, given in [32] for I,,, which will be proved in the Appendix.

Theorem 1.32.
Let M?(X) be the space of Riemannian metrics on X, equipped with the C* norm, and M3(X) its

subspaces of the metrics g satisfying / dv, =1.
b

Then, there exists dense open set D C M?(X)x C24(X) x C24(X), D1 C M3 () x C2(8) x C2(%)
such that for any (g, h1,he) € DU Dy the three of Ja, p, JBy.ps Jaa,p are all Morse functions from
H' (D)% to R.
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Chapter 2

New Moser-Trudinger inequalities
and minimizing solutions

This chapter will be devoted to proving two Moser-Trudinger inequalities for systems (3), namely
to give conditions for the energy functional J, to be coercive and bounded from below.

The first result gives a characterization of the values of p which yield coercivity for J, and some
necessary conditions for boundedness from below:

Theorem 2.1.
Define, for p € RJ;[O, xe€XandieZ C{l,...,N}:
. _ Qim if T = Pm
oi(w) = { 0 otherwise (2.1)
Az .(p) == 8m Z(l + a;(x))pi — Z AijPipj (2.2)
ieT i,j€T
Alp) = min Az (p) . (2.3)

Ic{1,...,N},zex

Then, J, is bounded from below if A(p) > 0 and it is unbounded from below if A(p) < 0.

Moreover, J, is coercive in " (E)N if and only if A(p) > 0. In particular, if this occurs, then it
has a minimizer u which solves (3).

By this theorem, the values of p which yield coercivity belong to a region of the positive orthant
which is delimited by hyperplanes and hypersurfaces, whose role will be clearer in the blow-up
analysis which will be done in this chapter.

The coercivity region is shown in Figure 2.1:

Theorem 2.1 leaves an open question about what happens when A(p) = 0. In this case one encoun-
ters blow-up phenomena which are not yet fully known for general systems.

Anyway, we can say something more precise if we assume the matrix A to be non-positive outside
its main diagonal. First of all, it is not hard to see that notice that in this case

Alp) = minN} (87r(1 + ;) pi — au‘ﬂ?) )

ie{l,...,
where
a; = min a;(z) = min {0, min aim} . (2.4)
me{l,....M},zeX me{l,...,M}

In particular, only the negative oy, play a role in the coercivity of .J,, like for the scalar case and
unlike the general case in Theorem 2.1.
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Figure 2.1: The set A(p) > 0, in the case N = 2.

Therefore, under these assumptions, the coercivity region is actually a rectangle and the sufficient

e . . . 8 (1l + oy )
condition in Theorem 2.1 is equivalent to assuming p; < M for any i:
i
_— T~
////< |

Figure 2.2: The set A(p) > 0, in the case N = 2, a;2 < 0.

With this assumption, the blow-up analysis needed to study what happens when A(p) = 0 is locally

one-dimensional, hence can be treated by using well-known scalar inequalities like Lemma 1.15.
Therefore, we get the following sharp result:

Theorem 2.2.
Let A(p) as in (2.3), a; as in (2.4) and suppose a;; <0 for any 4,5 =1,..., N with i # j.

Then, J, is bounded from below on H'(Z)N if and only if A(p) > 0, namely if and only if p; <
8m(1+ )

foranyi=1,...,N. In other words, there exists C > 0 such that
all

2 ~
1+ a; ~ 1
Zﬂ (log / hietidV, — / uidVg> < — / Qu)dV, + C (2.5)
a; » » 87T »

; 1
=1

Remark 2.3.

We remark that assuming A to be positive definite is necessary. If A is invertible but not symmetric
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definite, then J, is unbounded from below for any p.
N

In fact, suppose there exists v € RY such that Z aijvivj < —0Jv|? for some 6 > 0. Then, consider
i,j=1

the family of functions u™(z) :== \v - z.

By Jensen’s inequality we get:

N N
1 » ~ 0
A i A A 2012
J, (u?) §§ E aJ/EVui -VujdVy — E pi/gloghidvgg—§/\ ] —i—C'n_>—+>oO 00.

i,j=1 i=1

The proofs of Theorems 2.1 and 2.2 will be given respectively in Sections 2.3 and 2.4.

2.1 Concentration-compactness theorem

The aim of this section is to prove a result which describes the concentration phenomena for the
solutions of (3), extending what was done for the two-dimensional Toda system in [12, 57].

We actually have to normalize such solutions to bypass the issue of the invariance by translation

by constants and to have the parameter p multiplying only the constant term.
In fact, for any solution u of (3) the functions

v = U — 1og/ iNLie“idVg + log p; (2.6)
N

solve

—Av; = iaij (Eje“f - pj>
j=1

/ Eie”idVg = pPi
b

Moreover, we can rewrite in a shorter way the local blow-up masses defined in (1.5) as

, i=1,...,N. (2.7)

o;(z) = lim lim E?e”?dVg.
r—0n—+oo B, (z)

For such functions, we get the following concentration-compactness alternative:

Theorem 2.4. _ _

Let {u"}nen be a sequence of solutions of (3) with p" e P € RY, and h? = V"h; with
n—-—+0o0

Vi — 1in CY2)N, {v"}nen be defined as in (2.6) and S; be defined, fori=1,...,N, by

g n——+00

Si = {x €¥: 3" — x such that v} (z") — +oo}. (2.8)

n—s-+oo n—s+oo
Then, up to subsequences, one of the following occurs:
o (Compactness) If S := UN.|S; = 0, then v" WS ¥ in WH42)N for some ¢ > 1 and some
v which solves (2.7).

o (Concentration) If S # 0, then it is finite and
Bl = N oi(x)0s + fi

n—-+oo
€S
as measures, with o;(x) defined as in (2.8) and some f; € L*(%).

In this case, for any given i, either v — —oo in Lis (E\S) and f; =0, or v} — v
n— 00 n—+00

n WQ’Q(E \ §) for some g > 1 and some suitable v; and f; = hie’ >0 a.e. on 3.

loc
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M
Since h; is smooth outside the points p,,’s, the estimates in W?4(%) are actually in C’lgog <E \ U pm>
m=1

M
and the estimates in W,29(2\ S) are actually in % (E \ (8 U U pm> >

m=1

Anyway, estimates in W24 will suffice throughout all this Chapter.

To prove Theorem 2.4 we need two preliminary lemmas.
The first is a Harnack-type alternative for sequences of solutions of PDEs. It is inspired by [16, 57].

Lemma 2.5.

Let Q C X be a connected open subset, {f"}nen a bounded sequence in L () N L'(Q) for some
q > 1 and {w"},en bounded from above and solving —Aw™ = f™ in Q.

Then, up to subsequences, one of the following alternatives holds:

o w" is uniformly bounded in Lys. ().

n _ : o]
oW —— —ooin L. ().

Proof.

)

Take a compact set K € 2 and cover it with balls of radius ok with ¢ smaller than the injectivity

L
radius of X. By compactness, we can write I C U B% (x1).

1=1
If the second alternative does not occur, then up to re-labeling we get sup w" > —C.

Bs (171)

Then, we consider the solution z" of

—Az" = f" in Bs(z1)
2" =0 on 9Bs(z1)

which is bounded in L*°(Bj(x1)) by elliptic estimates.

This means that, for a large constant C, the function C' —w™+ 2™ is positive, harmonic and bounded
from below on Bs(z1), and moreover its infimum is bounded from above. Therefore, applying the
Harnack inequality for harmonic function (which is allowed since r is small enough) we get that

C —w"™ + 2" is uniformly bounded in L* (Bg (xl)), hence w™ is.

At this point, by connectedness, we can re-label the index [ in such a way that Bs (ml)ﬂB% (X141) #0
for any I =1,..., L —1 and we repeat the argument for Bs (z2). Since it has nonempty intersection
with B (z1), we have sup w"™ > —C, hence we get boundedness in L*° (B% (xg))

B(s (l‘g)
In the same way, we obtain the same result in all the balls B 3 (2;), whose union contains K; therefore

w™ must be uniformly bounded on K and we get the conclusion. O

The second Lemma basically says that if all the concentration values in a point are under a certain
threshold, and in particular if all of them equal zero, then compactness occurs around that point.
On the other hand, if a point belongs to some set S;, then at least a fixed amount of mass has to
accumulate around it; hence, being the total mass uniformly bounded from above, this can occur
only for a finite number of points, so we deduce the finiteness of the S;’s.

Precisely, we have the following, inspired again by [57], Lemma 4.4:

Lemma 2.6.
Let {v"}, oy and S; be as in (2.8) and 0; as in (1.5), and suppose o;(x) < o) for anyi=1,...,N,
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where ' '
o . Ammin {11+ minjep Ny me(1,.,M) Gm )

T SVl
i=1%j

Then, © € S; for any i€ {1,...,N}.

Proof.
N
First of all we notice that 0? is well-defined for any i because a;; > 0, hence Z ajj > 0.
j=1
Under the hypotheses of the Lemma, for large n and small § we have
/ hlrev AV, < o?. (2.9)
Bs(x)
Let us consider w;' and z;' defined by
N N
_ - : _ _ +7n vl s
—Aw} = — Zla”p? in Bs(z) 7 Azl = Zlaijh;}evj in Bs(x) C(210)
j= =
wp =0 on 0Bs(x) zZ'=0 on 9Bs(x)

Is it evident that the w]'’s are uniformly bounded in L*(Bs(z)).

As for the 2['’s, we can suppose to be working on a Euclidean disc, up to applying a perturbation to
Ef which is smaller as § is smaller, hence for § small enough we still have the strict estimate (2.9).
Therefore, we get

N N
=AZ 11 (B () = Za;rj/ h;-le”;dVg < Za;;v? <d4rmin{l, 1+ o;(x)},
j=1 B

5(z) j=1
and we can apply Lemma 1.1 to obtain / el 1qv, < C for some q > 1 .
Bs(x) 7= min{1, 1+ a;(7)}
4
If o;(x) > 0, then taking g € | 1, — il we have
| —Az] ||L1(B5(gc))
~ a4 n
/ (he') av, < 05/ el=llay, < C.
Bs () Bs(x)
On the other hand, if o;(x) < 0, we choose
c (1 4 - 4 1
q ) n ) q n ) )
[-Az HLl(Bé(z)) — dma;(x) Am — q[|-Az ||L1(35(x)) —a;(z)q

and, applying Holder’s inequality,

SN
/B,;(a;) (hie ) dv,

< Cs / d(-, )% @ etz qy,
Bs(z)
; e
< C / d(~7.’L‘)2qqlai($)dVg / e‘lﬁﬁ\z{‘\dvg
Bs(x) Bs(x)
< G,
/
4
because qq’'a;(z) > —1 and qqiai(x) < — T .
¢ -1 =227 1 (5,20
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Now, let us consider v;" — z;* — w;":

i1 it is a subharmonic sequence by construction, so for y € B g (z)

we get
vi'(y) — 2 (y) — wi'(y)
< f e,
Bs (v)
< C (v — 2" —w)TdV,
B (y)
2
< C ((of —2)" + (wf!) ™) dVy
Bs(z)
< C 1—|—/ (wr — zMtay,
B; ()
1 if o;(z) <0
Moreover, since the maximum principle yields z;* > 0, taking § = 0 1 if ai(z) >0 °
"1+ ai(z) !
we get

/ (uf — =) " av,
Bs(x)

< [y,
Bs ()
1 -
- e’V dV
o Bs(x) !
[
~ —0 ~ n
< CH(h") 1 / hrevt v,
LT-9(Bs(x)) Bs(x)
< C.

Therefore, we showed that vf' — 2{ — w;" is bounded from above in Bj (), that is evi TE Tl g
uniformly bounded in L*° (B s (a:)) Since the same holds for e*7, and %?ez? is uniformly bounded

in L9 (B%(a:)) for some ¢ > 1, we also deduce that

E?e”iﬂ = E?ezy eli TE Tl gl
is bounded in the same L7 (Bg (x))
2

Thus, we have an estimate on ||—Az]|| > for any ¢ = 1,..., N, hence by standard elliptic

La (B% (z)
estimates we deduce that 2" is uniformly bounded in L> (B s (z))

Therefore, we also deduce that

o = (0 = 27— wf) + 27+ ]

is bounded from above on B s (z), which is equivalent to saying = € S. O

From this proof, we notice that, under the assumptions of Theorem 2.2, the same result holds for
any single index ¢ =1,..., N.

In other words, for such systems, the upper bound on one o; implies that z ¢ S;. In particular,
o;(x) = 0 implies z € S;, whereas in the general case we could have blow-up of one component at
a point without that component accumulates any mass.

27



Corollary 2.7.
Suppose a;; < 0 for any i # j.

Then, for any given i =1,..., N the following conditions are equivalent:
e rcs;.
* oi(x) #0.
. 0i(z) > o = 47 min {1, 1 + min,, @, } '
Qg
Proof.

The third statement obviously implies the second and the second implies the first, since if v]" is
bounded from above in Bs(z) then he% is bounded in LI(Bs(x)).

Finally, if o;(z) < o/ then the sequence h'e defined by (2.10) is bounded in L? for ¢ > 1, so one
can argue as in Lemma 2.6 to get boundedness from above of v}* around z, that is = € ;. O

We can now prove the main theorem of this Section.

Proof of Theorem 2.4.
n 1
If S = 0, then e¥i is bounded in L*°(X), so —Av] is bounded in LY(X) for any g € |1, — |.
max; m o,
Therefore, we can apply Lemma 2.5 to v;" on X, where we must have the first alternative for every

i, since otherwise the dominated convergence would give / hi vi dVy, —+> 0 which is absurd;
n——+0oo

b
standard elliptic estimates allow to conclude compactness in W%4(X).

Suppose now S # ). From Lemma 2.6 we deduce, for any 1,

N N
[Silof < D maxoy(x) <30 Y7 05@) < 30,
Jj=1

hence S; is finite.

For any ¢ = 1,..., N, we can apply Lemma 2.5 on ¥\ § with f" = Z ajj ( pj) since the
last function is bounded in L (X\ S).

Therefore, either v} goes to —oo or it is bounded in L7, and in the last case we get compactness
in W21 by applying again standard elliptic regularity.

loc

Now, set f; := 0 in the former case and f; := ﬁie“i in the latter case and take r* — 0 such that

n—-+o0o
/ h} VAV, — o(x), sup hl'e’’ — hie¥i| —s 0.
n () norteo 2\Ues Brn (@) norteo

For any ¢ € C(X) we have

[ et oav, - 3 w)oa) + [ fioav,
= zeS =
- ¥ / Rt = o)V, + [ (Ret = i) 0dv, + of1)
IES B,n(x) B,n(z)
—
n—+oo
The proof is now complete. O
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Remark 2.8.

We can easily give a localized version of Theorem 2./, namely to take an open Q C ¥, V. —+> 1
n—-+0o0o

in C* (Q)N and to study v"|q.
The main difference with respect to the original form of Theorem 2./ is the following: in case of

Compactness we could have, for anyi =1,... N, v} —Jr) —o0 in LS (Q). This is because, at
n—-+0oo

the beginning of the proof of the Theorem, ﬁ?evdeg —+> 0 is allowed. All the rest of the proof
Q n—-+0oo

can be adapted step-by-step.
Such a localized version will be useful in Chapter 4.

2.2 Pohozaev identity and quantization for the Toda system

The main goal of this Section is to prove a Pohozaev identity for solutions of (3), namely an alge-
braic conditions which must be satisfied by the quantities o;(z). This was already done in [44, 53]
for some special cases.

Such a result is very important for two reasons. First of all, it is essential to prove Theorem 2.1
through blow-up analysis. Moreover, it allows to deduce a global compactness theorem for systems
(9), (10), (11) from the local quantization theorems (1.6), (1.8).

This global compactness result will be proved in the end of this Section.

The content of this Section is mostly from the paper [14].

Theorem 2.9.
Let {u"}nen be a sequence of solutions of (3), a;(x) and Az 4 asin (2.1) and o(z) = (01(x),...,on(2))
as in (1.5).

Then,
N

N
A nya(o(@) =87 Y (14 ai(@))oi(z) = Y aioi(x)o;(x) = 0.
i=1 i,j=1
As a first step, we prove that blowing up sequences {u"} resemble suitable combination of Green’s

functions plus a remainder term.

Lemma 2.10.
Let {v"}nen, S;i be as in Theorem 2.4, o;(x) as in (2.8) and G5 be the Green’s function of —A as
in (2); assume Concentration occurs in Theorem 2.4

Then, there exist wy,...,wyN such that / e dV, < 400 for any ¢ < +o0,i=1,...,N and
by

N
vy — /Z v dVy, njm Zaij Z 0j(2)Gy + w;,

j=1 €S

weakly in Wl’q/(E) for any ¢’ < 2 and strongly in W>9(2\ S) for some ¢ > 1.

Proof.
Define w; as the solution of

N
—Aw; = il fi— .
w ;aj (fj /ZdeVg)

/ w;dVy = 0
2
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Since f; € L* (%), then / e?dV, < 400 by Lemma 1.1.

P
/

Take now ¢’ € (1,2) and ¢ € Wl’#(z). Since ,qi > 2, ¢ € C(X), therefore:

qg —1
N
/ Vv — / vidV, — Z a;j Z 0j(2)Gy —w; | - VedV
z s j=1 €8
N

= / A v — Z a;j Z 0j(x)Gy —w; | ¢dV

s j=1 €8

N ~

= / Z a;j (h?e”i - Z oi(2)0: — fi +pj — pj> pdV,

zj=1 z€S
— 0,

n——+00

which gives weak convergence in Wh? ().
Strong convergence in W24(3\ S) follows from standard elliptic estimates. O

At this point, the main issue is given by the residual f; defined in Theorem 2.4.

If we had w; = 0, then Theorem 2.9 would follow quite easily by an integration by parts. Anyway,
the w;’s could in principle play a role in the double limit which is taken in the definition of o(x),
because we do not know whether it belongs to L>(X) or H'(X).

Some information on the residuals is given by the following Lemma.

Lemma 2.11.

Let v™ and f; be as in Theorem 2.4, o;(x) as in (1.5) and w; as in Lemma 2.10 and assume
Concentration occurs.

Then, for anyi=1,...,N, one of the following holds true:

e fi=0 and/v?dVg — —00.
)

n—-+o0o

o fi >0 and / v'dVy is uniformly bounded.
b

Moreover, in the latter case, there exists h; € LE (2\S) for some g > 1 such that f; = hie® and
Ty aijoi (@)

i ~ d(-, x)? @)= 2 and h; ~ h; around any z € ¥ \S.
Proof.
First of all, by Jensen’s inequality
/ vV, < / vV, + log / hrdV, 4+ C < log / hlre’' AV, + C < C.
b b s b

Therefore, up to subsequences, there exists L := lim elzvi'dVy,

n—-+oo
Now, fix 2 € £\ § and write:
| g,
Q

-~ n
— hi'e't dVj
n—-+o0o Q

= efz vi'dVy / E?eﬂzﬂ*fz v dVy dVg
Q
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— L/ ’BieZ?{:1 @ij Ypes 03 (2)Gatws dVg )
Q

n——+oo

€(0,+00)

n——+oo

Therefore, r = 0 if and only if L = 0, that is if and only if / vdV, — —o0.
b

For the last statement, just set By = Lﬁiezyzl @ij 2ges 75 ()G O
A key step in the proof of Theorem 2.9 is given by the following result:

Lemma 2.12.
Let v™ and f; be as in Theorem 2.4, oi;(x) as in (1.5) and w; as in Lemma 2.10 and assume
Concentration occurs.

N
If fi £ 0, then it belongs to LY(X) for some ¢ > 1 and Zaijaj () < 47 (14 a;(x)) for any x € S.
j=1
Moreover, w; € W24(%) forany j=1,...,N.

To proof this Lemma, we need a couple of results about matrices.
We believe such results are both well-known, but we could not find any references, so we will give
a new proof.

Lemma 2.13.
Let B = (bij)i j=1,.m € REXL be such that bi; >0 for any i # j.
Then, there exists v = (vy,...,vr) € RL) such that Bv € Ry URE U {0}.

Proof.

We proceed by induction in L.

In the case L = 1 there is nothing to prove.

If L > 2, the lemma can be proved easily if b;; > 0 for some ¢. In fact, if b1; > 0, it suffices to take
L

b=
v; =1for¢>2and v; > max % Zbljvj > 0 holds for any v; > 0, and for ¢ > 2
i=2,...,L bil i
=

L
Zbijvj > bj1v1 + bi;v; = bjqvr + by > 0.
=1

The same argument obviously works if instead b;; > 0 for some i > 2.
Suppose now that b; < 0 for all é’s.
Then, the system

is equivalent to

S}:
UL;

-3 Mo Vie{l,...,L-1}

AV

vr

which in turn is solvable if and only if

L—-1
> " (bizbr; — bijbi)v; =0, foranyi=1,...,L—1. (2.12)
j=1
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Consider now the matrix B’ € RE=U*E=1) defined by bi; = birbr; — bijbrrL.

For i # j it verifies b;j > bir,br; > 0, therefore by inductive hypothesis the system (2.12) is solvable
for at least one between <,=,>.

This means that the system (2.11) is also solvable for that choice of the sign, hence the Lemma is
proved. O

Lemma 2.14.
Let B = (bij)i j=1,..1 € RE*E be a positive definite symmetric matriz.
Then, there exists v = (v1,...,vL) € Réo such that Bv € Réo-

Proof.

We will argue, as in the previous Lemma, by induction and, as before, we have nothing to prove if
L=1.

If L > 2, we consider, for any [ = 1,..., L, the sub-matrix B; € RE-D*(L=1) — (bi;)i,j1 obtained
by removing to B the {*" row and column.

By inductive hypothesis, for every [ there exists v; = (vi,...,V-11, Vi41,1,---,vL,) such that

Z birvg, > 0 for all ¢ £ [.

k£l

Now, define the matrix T € RE*E as (Y);; = vy, for i # j and (Y);; = 0. By what we showed
before, the matrix B’ := BT verifies b;j > 0 for any i # j, so it satisfies the hypotheses of Lemma
2.13.

We then get v’ € RL, such that B'v' € RLjURL U {0}. Actually, it must be B'v" € RL; in fact,
since Yo' € R, B'v € RE ) would imply B(Yv') - (Yo') = B'v'- Yo' <0, in contradiction with
the fact that B is positive definite.

Therefore, we conclude by setting v := Tv'. O

Proof of Lemma 2.12.
N
Ej:l aijoj(z)

We first notice that the Lemma will follow by showing that a;(z) := «a;(x) — D — is
T

greater than —1 for all 4,z such that f; # 0.

1

max; {max {az_; maXm, ai_m} }

In fact, this would imply hi € Lq/(E) for ¢ € (1, ) and, since

e“i € L9 for any ¢ < 400, then by Hélder’s inequality f; € LI(%) for ¢ € (1,¢').

Moreover, we would get —Aw; € LI(X) for any j, hence w; € W9(X).

Assume, by contradiction, that @;(x) < —1 for some 4, z. Up to re-labeling indexes, this will occur
if and only if 4 € {1,..., L} for some L > 1.

Consider now the matrix B given by inverting the first L rows and columns of A, namely b;; =

fln{...L)x(l...L)'
Then, fori=1,...,L,

L N
—A Zbij’wj = fl—/zfdeg—i-Z Z bijajk (fk—/szdvg>

j=1 j=1k=L+1

L N
> _/Efidvg‘f'z Z bijajk <fk_/2f}chq> ELq(E)

j=1k=L+1

for some g > 1 as at the in the beginning of this proof. Therefore, by the Green’s representation
L

formula, Zbijwj > —C.
j=1
Now, apply Lemma 2.14 to B and take vy, ...,vr given by the Lemma. Up to multiplying by a
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L L
suitable positive constant, we may assume Z bijv; = 1, and clearly Z bijwv; > —C.
i,j=1 4,5=1
Therefore, for € S and 6§ > 0 small enough, by the convexity of ¢ — e’ we get:

Bs(x)

< C’/ d(-, z)Q maxi—1,...,L ai(I)eziLzl(ZjLzl bz‘.;’vj)widvg
Bs(z)
L L ~
< o (St ) [ deapranay,
i=1 \j=1 Bs(z)
L
< oy [ v,
i=17%
< Ho0;
which means @&; > —1 for some i € {1,..., L}. This gives a contradiction and proves the Lemma. [

Proof of Theorem 2.9.

To compute the limits in the definition of ¢; it is convenient, and not restrictive, to work on a small
Euclidean ball B, (). We will therefore write |y — z| in place of d(y, z).

Since r is small, we can write EIL = —x|2°‘i(x)h;" for some smooth h." converging to h/ in
c* (B,(@).

From Lemma 2.12 and the Green’s representation formula we deduce d(-, z)|Vw;| = o(1), therefore
it is negligible when integrating the gradient terms on 0B,

lim lim r/ &,Uf&,v;}da
OB, ()

r—0n—+o0

r—0n—-+oo

N N
= }1_1% "ETOOTABT(;C) (Z aikak(x)VG:E) . (lzzl ajlal(x)VGa:) do

k=1
2

1 N
= 5 > aioy(@)

i,5=1

= lim lim r/ Vo' - Voido
OB, (z)

From Lemma 2.12 we also know that w; € L>(X) and h; ~ d(-, #)2*®) around z, with &;(z) > —1.
Therefore, for a fixed r > 0, we will have hl'e”" < Cr?¥(*) on @B, (x). This implies that

lim lim r/ E?(y)ev?(y)da(y) =0.
OB, (z)

r—0n—+oo
Moreover, since v;' is bounded in Wl’q/(E) for ¢’ € (1,2) and h}e” is bounded in L'(X), we find:

lim lim (y—x)-Vul'(y) =0,

r—0n—+oo B (w)

lim lim (y —z) - VA" (y)|y — z|>*@ e Wdy = 0.

r—0n—-+4o0 B, (z)

After these consideration, Theorem 2.9 follows by an integration by parts and some computations:

1 N
I 2 aiioi(@);()

i,j=1
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Proof.
Assume, by contradiction, that f; £ 0 for all i’s, and take € S. By Lemma 2.6, o;,(z) > 0 for
some 7.

N

N
Z GUE Z a;jo;(z)

i,j=1 i,5=1

N Vol - Vo >

: : ij n no__ J
N S N e
ij=1 9B (z)

N n n
. . 17 n n VUZ- ) VUJ
lim lim Z a¥ ((y =) Vo' )V — ———(y —x) | - v(y)do(y)
1 OBy () 2

r—0n—+oo 4+
7

N
B Vol - Vot
lim lim a" / div (((y —z)- Vv )Vuj — %(y - a:)) dy
BT(I)

r—0n—+oo 4+
2,j=1

N
i i ij — 7). n n
liy i 3 / B <<<y 2) - Vol (y) A (y)

(y—z)

D2 (y) Vo (y) — D%?(y)Vv?(y)) 1
. . )

N ..
i >0 ¥ [ (=) D) A )y

r—0n—+oo 4+
3,7=1

N
lim lim (p? / (y =) - Voi'(y) - / ((y — @) - Voy (y))h?(y)e"?(”dy>
1 By (2) By (x)

r—0n—-+oo 4
1=

N

. o — VT () eVE () —2)-V (h? vi' W)
}1_% nll)rfooz (/Br(w) div(y — 2)h (y)e dy + /BT(JJ) ((y r)-V (hz (y))) e dy

i=1

r / T (y)e” W do(y)
9B, (z)

N
lim lim (2 / R (y)e™ W dy + 204 () / R (y)e W dy
B, (z)

r—0n—+oco | B, (z)

/ " ((y—x)- VR (9)) ly — x|2ai<m>ev?(y>dy>
B, (x

N
22(1 + ai(z))oi(z).

O

From Lemma 2.12 and Theorem 2.9 we deduce a simple but very important fact about the residuals

It is described by Figure 2.2:

Corollary 2.15.
Let v™, f; as in Theorem 2.4 and assume Concentration occurs.
Then, there exists i =1,..., N such that f; = 0.
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Figure 2.3: The algebraic conditions satisfied by o(z), in the case N = 2.

N

Moreover, by Lemma 2.12, for any ¢ = 1, ..., N we must have Z a;;0j(z) < 4r(1+a;(x)). Multiply
j=1
each of these inequality by o;(z) and sum over i = 1,..., N. Since the o(z) is not identically 0, the

following strict inequality is preserved:

N N
> aioi(x)oj(z) < 4w 2(1 + ai(a))oi(z);

ij=1

this is in contradiction with Theorem 2.9. [
Now we are in position to prove a global compactness result for the A, Bs, G Toda systems.

Theorem 2.16.
Let 24, o, be as in Definition 1.5 and m; : R? — R the projection on the i'" component, fori = 1,2,
and define:

T := {47m+ Z Om;neNMCA{L,...,M}, o, € m(Emm,agm)},
meM

I =T, =1 X RUR x Ty, Ty := 47N x RUR x 47N, (2.13)

Then, the family of solutions {u,} C T (£)2 of (9) is uniformly bounded in W*9(2)? for some
q > 1, for any given K € R2>0 \T.
The same holds true for solutions of (10), under assuming KC € RiO\FO, and for solutions of (11),

provided K € (0,47r (2—|—\/§)> X (0,47r (5—|—\ﬁ>) \ Tp.

Proof.

We will just show the proof for (9).

Take p" —+> p € K, apply Theorem 2.4 and assume, by contradiction, that Concentration occurs.
n—-+0oo

Then, by Corollary 2.15, we must have E;‘ LN Z 0;(x)d, for either i = 1 or ¢ = 2, therefore
Py — Z o;(x) for that i. By construction, Z o;(x) € T; for any possible S, hence we would

v n—-+o00
reS zeS
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get p; € I'; for some 4, which is a contradiction.
Therefore, Compactness must occur for v". Now, write

ul' = vl + log/ hire" AV, + log pl' =: v} + 7,
>

with ¢]' > —C by Jensen’s inequality.

If u™ were not bounded in W%4(X)?, then we had ¢ o ~+oo for some ¢, but this would mean
n—-+00

irzlfu? — 400, contradicting/uidVg:O. O
b

n—-+oo

Corollary 2.17.

Let T',T'g be as in Theorem 2.16, p € R2>0 \T,a,b e R be given with a < b and such that (9) has no
solutions with a < J, <b.

Then, J, is a deformation retract of Ifj.

Moreover, there exists L > 0 such that IpL is contractible.

The same result holds true for solutions of (10) if p € R\ I'g and for solutions of (11) if

e (O,47r (2+\/§)) x (0747r (5+\f7)) \ To.

Proof.

If p ¢ T then the second alternative must occur in Lemma 1.9, since the first alternative would give,
by Corollary 2.16, u" — wu which solves (6) and satisfies a < I,,(u) < b.

n—-+oo
Moreover, by Corollary 1.4, we have [[u”|[z:5) < C for any solution u" € Fl(E)2 of (9) with

p" — p, therefore by Jensen’s inequality every solution of (6) verifies

n—-+o0o

2 2
1 ~ C? ~

Jon (u") < 5/ (\Vu1|2 + |Vuz\2) dv, — E pi/ log h;dV, < CE E pi/ log h;dV, =: L;

X i=1 > i=1 >

Corollary 1.10 gives the last claim.
The same argument works for the cases of (10), (11). O

2.3 Proof of Theorem 2.1

Here we will prove the theorem which gives conditions for the functional J, to be bounded from
below and coercive.

Setting
E:={peRY,: J, is bounded from below on H'(£)N}, (2.14)
E = {p € RY, : J, is coercive on Iin (E)N} ) (2.15)

then E' C E, so we will suffice to prove that £ = {A > 0} and E C {A > 0}.

As a first thing, we notice that E' is not empty and it verifies a simple monotonicity condition.

Lemma 2.18.
The set E defined by (2.14) is nonempty.
Moreover, for any p € E then p' € E provided p, < p; for anyi € {1,...,N}.
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Proof.
Let 6 > 0 be the biggest eigenvalue of the matrix (a;;). Then,

N
1 ~
Tp(w) =Y (29/Z|Vui|2dVg — i (log/zhie“’idVg —/ZuidVg)>.
i=1

Therefore, from scalar Moser-Trudinger inequality (1.6), we deduce that J, is bounded from below
1 -

if p; < w, hence F # ).

Suppose now p € E and p; < p; for any i.

Then, through Jensen’s inequality, we get for any v € H(X)V

Jor (u)

N ~
= Jo(uw+Y (pi—p}) <log / hie"idV, — / uidVg>
i=1 = =

N
—C+> (pi — ) /Z log hydVy
=1

_07

Y

Y

hence the claim. O

It is interesting to observe that a similar monotonicity condition is also satisfied by the set {A > 0}
(although one can easily see that it is not true if we replace A with Az ).

Lemma 2.19.
Let p,p' € RY| be such that A(p) > 0 and p; < p; for anyi € {1,...,N}.
Then, A(p') > 0.

Proof.
Suppose by contradiction A(p") < 0, that is Az .(p") < 0 for some Z, z.
8m(1 + a;(x))

Qg

This cannot occur for Z = {i} because it would mean p; > , so the same inequality

would for p;, hence A(p) < Az, (p) <O0.
Therefore, there must be some Z,z such that Az, (p") <0 and Az (53,.(p") > 0 for any i € Z; this
implies
0
< Angiye(p) = Aza(p)
= 2 aipipl — aip;” — 8m(1+ ci(x))p}
JjeET
< QZaijp; —8m(1 + a;(2)) | - (2.16)
jeT

It will be not restrictive to suppose, from now on, pj < p; and p, = p; for any i > 2, since the
general case can be treated by exchanging the indices and iterating.
Assuming this, we must have 1 € Z, therefore we obtain:

0
< AI,z(p) - AI,m(pl)
= 8r(l+ai(@))(pr = i) —an (p’l2 - ,0?) =2 ) ay(pl—pes

JET\{1}
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= (pr—p)) [87(1+ar(2) —an(ph +p1) =2 D ayp

JET\{1}
< (p—ph) [ 81+ au(2) =2 ai;p) |,
je€T
which is negative by (2.16). We found a contradiction. O

We will now show that relation between E and E’: the interior part of E is contained in E’.
On the other hand, if p € F, then J, has a different behavior.

Lemma 2.20. )
Let E, E' be as in (2.14), (2.15) and take p € E.
Then, there exists a constant C = C, such that

N
1 2
J(w) > = ;1:/2 Vu[2dV, — C.

In particular, ECE.

Proof.

Take & € (0, dp (p, OF)

—————= | so that (1+)p € E. Then,
VN|p| )
Jp(u)

5N 1
= vJ . . R
En PG JL v Vs + e

v

b )

hence F C E'.

Lemma 2.21.
Let E be as in (2.14) and take p € OF.
Then, there exists a sequence {u™}nen C HY ()Y such that

ol J, (u™)
Z/ Vul|?dV, — oo, lim ——7* 5 <0,
=172 noee noteo S Je [Vup|tdv

Proof.

We first notice that (1 —d)p € E for any ¢ € (0,1). In fact, otherwise, from Lemma 2.18 we would
get p' € E as soon as p} > (1 — d)p; for some i, hence p € IE.

Now, suppose by contradiction that for any sequence u™ one gets

Jp (u")

S varfav, 57
1=1JY [ g

N
Z/|Vu?\2dVg — +oo =
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Therefore, we would have
N
£ 2
u) > 2;/2 |V, |?dV, — C.

Hence, indicating as 6’ the smallest eigenvalue of the matrix A, for small § we would get

']p(u)
= (1+0)Ja+s,(u Z / Vu; - Vu;dV,
'L] 1
2

> <(1 +0)= 29,> Z/ Vg |? —

Z 703
therefore (1+d)p € E.
Being also, by Lemma 2.18, (1 — d)p € E, we get a contradiction with p € OF. O

To see what happens when p € OF, we build an auxiliary functional using Lemma 1.12.

Lemma 2.22.
Define, for p' € OE:

N
n 1 %3 n n n n
Uy =5 Z aJ/EVui -VuidVy, by = Jp (u"),
i,j=1
1 N
Ty p(1) = Jyp(u) = Fy 5 a’ / Vu; - Vu;dVy |,
1,7=1

where u" is given by Lemma 2.21 and F, by Lemma 1.12.
If p€ E, then J;),’p is bounded from below on H*(X)N and its infimum is achieved by a solution of

N al het
—A ui_Za”ij :Za”p]<fﬁje“(ﬂ/_1>7 7::17"'7N7
x €7 AVy

ij=1 j=1
with f = Z ”/ Vu; - Vu;dV,
2] 1

On the other hand, J 18 unbounded from below.

Proof.

For p € E, we can argue as in Lemma 2.20, since the continuity follows from the regularity of F
and the coercivity from the behavior of F’ at the infinity.

For p = o/, if we take u™ as in Lemma 2.21 we get

Ty g (W) = b3 — Fy (ay) — —oc.

Now we can prove the first part of Theorem 2.1, that is J, is bounded from below if A(p) > 0.
Moreover, being the set {A > 0} open, we also get coercivity.
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Proof of {A >0} C E'. )
We will show that {A > 0} C E.
Suppose by contradiction there is some p’ € OF with A(p) > 0 and take a sequence p™ € E with
Pt — pl
n—-+o0o
Then, by Lemma 2.22, the auxiliary functional J, ,» has a minimizer u™, so the functions v;" defined

as in (2.6) solve

N
—Av = Z aijbjk’” (hje”-? — p?)
G k=1 , i=1,....,N

/TL? U?qu = pi
. .

where "™ is the inverse matrix of b}; := §;; — a’ f", hence b""" - dij-
n—-—+0oo
We can then apply Theorem 2.4. Compactness is excluded, since otherwise we would get, for any

ue HY D)V,

Ty p(u) = ngrfoo Ty o (u) > ngrfoo T o (V") =T} (v) > —o00,
thus contradicting Lemma 2.22.
Therefore, Concentration must occur. This means, by Lemma 2.6, that o;(x) # 0 for some i €
{1,...,N} and some z € X.
By Theorem 2.9 follows A(o(z)) < 0. On the other hand, since by its definition o;(z) < p) for any
i, Lemma 2.19 yields A(p") < 0, which contradicts our assumptions. O

To prove the unboundedness from below of J, in the case A(p) < 0 we will use suitable test func-
tions. Their profile is inspired by the well-known entire solution of the Liouville equation on R?;
here we use truncated versions of the standard bubbles, rather than the smooth ones, because they
yield the same estimates with simpler calculations.
Similar test functions are considered in Section 3.3.

The properties of such test functions are described by the following:

Lemma 2.23.
Define, for x € ¥ and X\ > 0, ¢ = o™ as
i = —2(1+ a;(x)) logmax{1, \d(-, z)}. (2.17)

Then, as A — +00, one has

[ Vi VsV, = 871+ as(a)) (1 + ay0)) o A + O(1)
2
/ 0idVy; = —2(1 4+ ai(z)) log A+ O(1)
>

N
/ hieXim1 9323 QY ~ A~2(1 e (@) it > 0;(1+a(@) > 1+ a().
) =1

Remark 2.24.

When using normal coordinates near the peaks of the test functions, the metric coefficients will
slightly deviate from the Euclidean ones. We will then have coefficients of order (1+o0x(1)) in front
of the logarithmic terms appearing below. To keep the formulas shorter, we will omit them, as they
will be harmless for the final estimates.

The same convention will be adopted in Chapter 3, Section 3.5.
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Proof.

It holds 1
0 ifd(-,xz) < -
Vi = Vd(-,z) 1
—2(1 + a;(x)) d(-,;v) ifd(-,z) > X

Therefore, being |Vd(-, z)| = 1 almost everywhere on X:

/ Vi - Vp;dV,
b

dv,

- 4(1+a¢(a:))(1+0‘j(f”))/2\3 (@) d(-, z)?

= 87(1+ oy(2))(1 + a;(x)) log A + O(1).

For the average of ¢;, we get

/ oV, = —2(1 + ai(2)) / (log A + log d(-,2))dV, + O(1) = —2(1 + () log A + O(1).
) S\B (@)

For the last estimate, choose r > 0 such that Bs(x) does not contain any of the points p,, for
m=1,..., M, except possibly x.

Then, outside such a ball, IR <COA? 3551 0;(1tay (@)

Therefore, under the assumptions of the Lemma,

/ RieSia02sqy, — o (,\72<1+ai<w>>) ,
3\ Bs(x)
hence
/ hie>ie1 9954V,
b

~ / heXia 0i%iqV,
Bs ()

%,5(‘7;)

1 N
- dle )20 @) q17 / Al 220 @2 N 6,1y @) g
/Bl(l.) (@) 9T oS 6 (e, ) J () ' Yo
by
~ )\—2(14—@1:(96))7

which concludes the proof. O

Proof of E C {A >0} and E' C {A > 0}.
Let us start by the first assertion.
Take p,Z,z such that Az .(p) < 0 and Az\(;3..(p) > 0 for any i € Z, and consider the family of

functions {u’\} \=0 defined by

A 4ijPj Az
u; - Z4w(1+ai(x))% .

JE€T
By Jensen’s inequality we get
o (u?)
1N, ~
< 5”2:21 a’l /E Vu; - Vuldvy, —i—;pi (log /E hie'i AV, — /E u?d{@) +C
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1 aijPiPj /
= = Vi - VpdV,
2mzez16w2<1+ai<x>><1+aj<x>> SRR
QijPiPj T Tier Tty P
* Z 4 (1 + oy )/%dv ;pzlog/z:hie I AV, + O

At this point, we would like to apply Lemma 2.23 to estimate .J, (u*).
To be able to do this, we have to verify that

1
? E aiipj > 1—|—Oéi(.13), VieT.
/I
JET

8m (1 + ai(z))

i

If 7 = {i}, then p; > , 50 it follows immediately. For the other cases, it follows from

(2.16).
So we can apply Lemma 2.23 and we get:
o (u?)
1 1
= ar Z @ijPiPj — 51 Z aijpipj+229i(1+ai(x)) log A+ C
»J€T i,j€T ieT
Az
= _I77(p) 10g A + C
47
— —00.

n—-+oo

To prove the second assertion, we still use family {u)‘} A>0°

If A(p) > 0, then by the previous estimate we get:

N
2 Az (p)
Z/Z Vui| dvy — oo, Jp (u*) < —%1ogx+c <C.

2.4 Proof of Theorem 2.2

Here we will finally prove a sharp inequality in the case when the matrix a;; has non-positive entries
outside its main diagonal.

As already pointed out, A(p) can be written in a much shorter form under these assumptions, so
87(1 + oy
M for any i € {1,...,N}.

Moreover, thanks to Lemma 2.18, in order to proZ\Z/e Theorem 2.2 for all such p’s it will suffice to

consider _ ~
20— (87r(1—|—oq) 87r(1+aN)>

the condition A(p) > 0 is equivalent to p; <

(2.18)

PR

ai1 GNN

By what we proved in the previous Section, for any sequence p” * p° one has
n—-+o0o

f n = n > — n
HII?E)NJ T ) 2 =Cor

so Theorem 2.2 will follow by showing that, for a given sequence {p"}
can be chosen independently of n.

nens the constant Cp, = Cpn
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As a first thing, we provide a Lemma which shows the possible blow-up scenarios for such a sequence
u™.

Here, the assumption on a;; is crucial since it reduces largely the possible cases.

Lemma 2.25.
Let p° be as in (2.18), {p"},cn such that p" 2 p°, u™ a minimizer of J,» and v™ as in (2.6).
Then, up to subsequences, there exists a set T C {1,..., N} such that:

o Ifi €T, then S; = {x;} for some x; € ¥ which satisfy &; = a;(x;) and o;(x;) = pY, and

v — —oo in Ly, E\U{xj}

n—-+oo A
Je€T

o Ifi ¢ I, then S; = 0 and v} T i in Wi [ 2\ U{xj} for some ¢ > 1 and some
n—+oo jeT
suitable v;.

Moreover, if a;; <0 then x; # ;.

Proof.
From Theorem 2.4 we get a Z C {1,..., N} such that S; # 0 for i € Z.
If S; # 0, then by Corollary 2.7 one gets

Qi
for all x € &;, hence
0
= Ap,. Nya(o(z))
N
>3 (871 + (@) (@) — ajy05(0)?) (2.19)
j=1
> 81(1+ ai(x))os(z) — azoi(x)?
> 0.

Therefore, all these inequalities must actually be equalities.
o _ 8m(1+ai(x))

From the last, we have o;(z) = p; , hence a;(xz) = @;. On the other hand, since

Qii
Z oi(z) < p?, it must be o;(z) = 0 for all but one z; € S;, so Corollary 2.7 yields S; = {z;}.
z€eS;

Let us now show that v}’ — —oo in Li,.
n——+400

It this were not the case, Theorem 2.4 would imply v —+> v; almost everywhere, therefore by
n—-+0oo

Fatou’s Lemma we would get the following contradiction:
by b
Since also inequality (2.19) has to be an equality, we get a;;0;(z;)o;(z;) for any 4, j € Z, so whenever

a;; < 0 there must be o;(x;) =0, so z; # z;.
Finally, if S; = (), the convergence in Wli’f follows from what we just proved and Theorem 2.4. O

We basically showed that if a component of the sequence v™ blows up, then all its mass concentrates
at a single point which has the lowest singularity coefficient.

We will now consider particular combinations of the v]* which have some good blow-up properties:
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Lemma 2.26.

N
Let v" and x; be as in Lemma 2.25 and w™ be defined by w] = Zaij (v;‘ — / v?d%) for
j=1 =

ie{l,...,N}.
If i € T, then w} is uniformly bounded in W7 () and in W2\ {z:}), for any ¢’ € (1,2) and
some q > 1, and if i € T then it is bounded in W>9(X).

Proof.
The boundedness in W% () follows from the boundedness of vy — / v;'dV, in the same space,
by

which was proved in Lemma 2.10.
Moreover, w;' solves

i n
~Aup et - g

/w?dVg:O ’

b
with E?’e”? e LL. X\ {z;})ifieZ, or E?e“? € LX) if i ¢ Z, for some ¢ > 1.
Therefore, boundedness in W27 or Wi’f follows by standard elliptic estimates. O

The last Lemma we need is a localized scalar Moser-Trudinger inequality for the blowing-up se-
quence.

Lemma 2.27.
Let w} be as in Lemma 2.20 and x; as in the previous Lemmas.
Then, for any i € T and any small § > 0 one has

dii (Vw2 dV, — p7 log / hie®i i 4V, > —Cs.

2 Jgs (24) Bs(x;)

Proof.

Since ¥ is locally conformally flat, we can choose J small enough so that we can apply Corollary
1.15 up to modifying hj'. We also take 0 so small that Bjs(z;) contains neither any x; for z; # x;
nor any p,, form=1,..., M (except possibly x;).

Let z™ be the solution of

—Az" = hPe¥ — p? in Bs(x;)
zi' =0 on 0Bs(z;)

Then, w — 2 is harmonic and it has the same value as w]' on dBs(z;), so from standard estimates
lwi' =zt ller(Bs (@) < Cllwiller @) < C-

From Lemma 2.26 we get

[, [ ety
B (z4) B (x:)

/ IV (wl — zM) > dV, + 2/ Vuwl -V (w} — 2" dV,
Bs () Bs(x:)

IN

/B( )IV(w?—Z?)IQdVgﬂL?HVw?IILl(z) IV (Wi = 20) | Lo (Bs 21
s\

Cs.

IN

Moreover,

/ Tliea”w?d‘/g < eaiin?*Z?”Lw(Bé(zi)) / Ei@aiizZLdVg < C&/ d('7$i)2aieaiiZ?dVg.
Bs(zi) Bs(z:) Bs(wi)
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Therefore, since a; < 0 and a;;pl' < 8w (1 + @;), we can apply Corollary 1.15 to get the claim:

5 - )Vw?leVg—p?log/B( )%e“””?dVg
s(@s 5(&i
1 ~ n
> o [ V@ av, - pttos [ e av, - ¢
A5 Bs(xi) Bs(z4)
> —Cs.

Proof of Theorem 2.2.

As noticed before, it suffices to prove the boundedness from below of J,» (u™) for a sequence

p" 2 p?and a sequence of minimizers u" for Jon. Moreover, due to the invariance by addition
n—-+00

of constants, one can consider v™ in place of u”.

Let us start by estimating the term involving the gradients.

From Lemma 2.26 we deduce that the integral of [Vw?|* outside a neighborhood of z; is uniformly

bounded for any ¢ € Z, and the integral on the whole ¥ is bounded if 7 ¢ 7.

For the same reason, the integral of a;;Vw;" - Vw} on the whole surface is uniformly bounded. In

fact, if a;; # 0, then x; # x;, then

/E Vw! - Vw'dV,

< / [Vw}| |V} |dV +/ [Vw} | |[Vw] | dV,
T\ Bs(z;) T\ Bs(zi)
< va?HLq/(E) ||Vw?||Lq,,(E\Bé{xj}) + | vw?”LQ”(E\B(;{a:i}) ||vw?||Lq’(z)
< C(Sa
2q . 2q .
with ¢ as in Lemma 2.26, ¢’ = 3q—2<2 ifg<2 and ¢ =< 2—gq ifg<2 )
1 ifg>2 00 ifg>2

Therefore, we can write

N N
3 am‘/ Vol VoV, = > aij/ Vw} - VwldV, > Zaii/ [Vwp|* dVy — Cs.
by = Bs (i)

b=l i,j=1 e

To deal with the other term in the functional, we use the boundedness of w}" away from z;: choosing
r as in Lemma 2.27, we get

/ Brett = s vtV gy,
b

< 2 / hlrei I vidVaqy,
By (x4)

2/ Eiezj\;la”w;d‘/g

Bs (i)

< Cs / hie® T AV,
Bs(z;)

Therefore, using Lemma 2.27 we obtain

Jpn (’l}n)
N N
1 ’ o
= 5> a” / Vop - VoidVy — > plf (log / hie’ dV, — / v?d%)
ij=1 % i=1 z z
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Qg 2 T asuwl
> |[Vwi|” dV, — p}! log/ h;e®i dV, | — Cs
Z < 2 /Bg(;v,i) ’ B () J

i€
> —Cs
Since the choice of § does not depend on n, the proof is complete. O
Remark 2.28.

The same arguments used to prove Theorems 2.1 and 2.2 can be applied to get the same results in
the case of a compact surface with boundary X for the functional

Jp(u) =3 ”/Vul Vu;dVy — Zpllog/he“’dv
4,j=1

on the space H}(X) defined by (1.1).
Its critical points solve

he]
—Au; = a;ipj m X .
Z ijghejdv i=1,...,N.
u; =0 on 0%

As in Remark 2.8, we could also have Vanishing in Theorem 2./, but this can easily be excluded for
MANIMIZING SEeqUences.

The main issue in adapting the argument seems to be the blow up at a point x € 0X. Anyway, in
[52] this phenomenon has been ruled out for the SU(3) Toda system and the same can also be done
in the general case.

This can be seen by arguing as in Theorem 2.9 and applying to B,.(x)NX a conformal diffeomorphism
which flattens B, (x) N 0%, as was done in [05].
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Chapter 3

Existence and multiplicity of
min-max solutions

The largest chapter of this work is devoted to the existence of min-max solutions for some particular
systems, namely the A Toda system (9) and the regular By and G5 Toda systems (10), (11).

As anticipated in the introductions, the results we present are based on a variational analysis of
the sub-levels J- L of the energy functional.
We recall that the functional Jg, , is defined by

2
Ja, p(u) = / Q(u)dV, — Zpi <log/ hie*idVy — / uidVg> ,
b — b b

with )
Q(u) = 3 (|VU1|2 + Vup - Vug + |Vuz|2) ,

whereas Jp,, Jag, have been defined by (7).

To use such variational techniques we need a compactness theorem like 2.16 (or 1.4). This is the
reason why we can consider only these three specific systems. We will also have to assume p ¢ T’
or p & Iy, with T', T'g as in Theorem 2.16, which is a generic assumptions due to the construction
of F, Fo.

We will follow a standard scheme which has been widely used for problems with exponential non-
linearities. Roughly speaking, we need a non-contractible space X which roughly resembles very
low sub-levels. Then, we build, for large L, two maps ® : X — J;L, v J;L — X such that
® oW ~ Idy. This will prove that J L is not contractible, hence, by Corollary 2.17, existence of
solutions.

The first result we present is from [11]. We consider the Ay Toda system on compact surfaces with
x(X) < 0 and non-negative coeflicients a;,, > 0.

The assumption on the topology of ¥ allows to retract it on two disjoint bouquets of circles which
do not contain any of the singular points p,, (see Lemma 1.22). Roughly speaking, this permits
to study w; only on v, and ug only on 9, thus avoiding both the issue of concentration around
singular points and interaction between concentration of u; and us.

We then “compare” (in the sense describe above) low sub-levels J ” L with the join of the barycenters
on v and v2 X = Xk, K, := (71)k, * (72)K,, which are well-known to be non-contractible (see
Lemma 1.25 and Remark 1.29).

In this way, we get existence of solution without any further assumption, and also multiplicity in
dependence of the homology groups of X' (see Lemma 1.31).
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Theorem 3.1.
Let 3 be a closed surface with x(X) <0, T be as in (2.13) and assume oy > 0 for all i,m and

p € (AKym, 4(K1 + 1)7) x (4Kam, 4(K + 1)7) \ T.

Then, the problem (9) has solutions and, for a generic choice of (g, h1,hs), it has at least
Ko+ [ 22 K+ [ 242

SERANES

solutions.

This result was generalized in the paper [10] to allow the coefficients «;,, to attain negative values.
The main issue is due to the fact that negatively-signed singularities actually affect the Moser-
Trudinger inequality (2.5). Notice that, in the case of the SU(3) Toda, such an inequality holds
if and only if p; < 4n(1 + ;) for both 4’s, with &; as in (2.4), whereas for the By and G5 Toda

systems it holds for pi, po < 4. Precisely, we have

2
Ay (1+ @) <1og/i~1ie"idVg—/uiqu) < / Qa,(w)dV, + C, (3.1)
i1 ) = b))

4w <log/ e“ldVg—/uldVg> + 27 (log/ e*2dV, —/quVg) < / Qp,(w)dVy, +C, (3.2)
b b b b )
4
4 <10g/ e"1dV, /uldVg) + o (log/ e2dV, /quVg> < / Qc,(w)dVy, +C. (3.3)
b b 3 b b b

For this reason, negative singularities cannot be “forgotten” as was done in the previous theorem.
Conversely, we have to take them into account when we retract of each of the two curves. We want
p € v if a1 <0 and p € vy if agy, < 0.

Clearly, since we must assume y; Ny = @), we cannot have both ay,, and as,, negative for the same
m.

Following these considerations, it is convenient to divide the points p,, in three subsets, depending
on whether aq,,, as,, or none of them is negative, and we order each subset so that the respective
Qm are not decreasing.

Precisely, we write

{p17 o .. 7PM} = {p/017 ... 7pE)Méap/117 ... 7pl1M{7p/217 oe. 7pl2Mé} (34)

with pp, = pj,,, for some i = 1,2, m’ = 1,..., M if and only if o, := @i, < 0 and oy < --- <
We therefore modify the curves «y; so that each contains, among the singular points, all and only
the p,,, as in Lemma 1.22. To take into account such points, we consider the weighted barycenters

defined by (1.15). Precisely, we replace Xk, k, with
X =X 0, pa0ay = (V)p1,ay * (12) p2ras» (3.5)

where the multi-indexes o, are defined by o) := (o/n, . O/lM{) , Oy 1= (0/21, e oz/QMé).
With respect to Theorem 3.1, the weighted barycenters may be contractible, therefore we have to
make some extra assumptions to get existence of solutions.

Theorem 3.2.
Let Y be a closed surface with x(X) < 0, T be as in (2.13) and pl,,,, o, as before, and max{ a1, a2} >

K2
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0 foranym=1,..., M.
Then, the problem (9) has solutions provided p satisfies

Ar (Ki—k > (1+a;m)> <p<dr [Ki+ > (l+aj,). | i=12 (36

meM,; meM,;U{1}

for some K; € N and M; C {2,...,M/}.

Through Morse theory, we again get multiplicity of solutions. Although the statement of next theo-
rem looks quite complicated, it basically says that, the more are the quadruples (K7, M1, Ko, M>)
for which (3.6) is verified, the higher is the number of solutions.

Theorem 3.3.
Assume the hypotheses of Theorem 3.2 hold, and suppose that fori = 1,2 there exist L;, K1, ..., K1, €
N and M;1,...,M;p, C{2,..., M/} such that any |l =1,..., L; verifies

i (Kim + Z (1+ a’im)> < p; < 4rmin { K, + Z (1+a},), Kim+1+ Z (1+ca,)

meMim meM;mU{1} meEMim \{max M., }

Then, for a generic choice of (g, h1,ha) € D (in the sense of Theorem 1.32), the problem (9) has
at least

Ky + M, [+ [ X(E)} Ko, + [ Mo, | + [ Z)]
11l Mg, | + [ E)] | Moy, | + [ X(Z):|

solutions.

Since Theorem 3.1 is a particular case of Theorems 3.2, 3.3, obtained setting o) = af = 0, we will
just prove the latter two.

The same argument used in the proof of Theorems 3.2, 3.3 will allow to treat some other cases,
both again from [10].

First of all, we can remove the hypotheses max{a1,, @2n} > 0 if we suppose one of the parameter
p; to be small enough so that concentration of both component around p,, with aq,,, @z, < 0 is
excluded (hence, in particular, if it is under the coercivity threshold 4w (1 + as)). Precisely, this
occurs when po < 47 (1 + @omax ), with

Qmax := min{ay,, : max{aym, agm} < 0}, Qomax := min{ag,, : max{aim, aam} <0} (3.7)
In this case we have to keep the assumption on x(X) to retract on ~;.
Theorem 3.4.

Let 3 be a closed surface with x(X) < 0, T be as in (2.13), @imax as in (3.7) and assume p ¢ T,
p2 < Am(1 4+ aomax) and

47T<K+ Z (1+a’1m)><p1<4ﬂ' K+ Z (1+a),,)

meMy meMU{1}
dr > (I+ah,) <pa<4m > (1+ab,) (3.8)
meMs meMoU{1}

for some K € N and M; C {1,...,M]}.

K3

Then, the problem (9) has solutions.
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If moreover the condition (3.8) is satisfied by Moy, ..., Mayr, and there exist L1, Ki,..., K1, € N
and M1, ..., Myp, C{2,...,M]} satisfying, for any l =1,..., Ly,

4mr (KH- > (1+o/1m)> <pr<4drmin{ K+ > (1+al,) K+1+ > (1+ah,,) s,
meMy; meMyU{1} meMy;\{max My}
then a generic choice of (g, hi,ha) yields at least

K + Myl + {7X2(2)}
22 e 2]

solutions.

A similar statement can be proved in the case both p; under 47 (1 + max), even without the as-
sumption on x(X). Anyway, such configurations will be covered by a more general theorem which
will be stated later on.

In [13], we remove the restriction on the topology of ¥ and the coefficients .

We perform a sharper analysis of sub-levels, focusing on the case when both u; and uy concentrate
at a point p,, with aq.,, as;, < 0.

Inspired by the regular Toda system [61], we define a suitable center of mass f; and scale of
concentration ¢; for each component. We then get an improved Moser-Trudinger inequality (see
Section 3.5), namely we proved that, if (1,61) = (82,<2), then J,(u) is bounded from below for
01, p2 < 4m(24+ a1 + @2m), namely for values which are higher than the usual coercivity threshold.
For simplicity, we will consider only relatively low values of p, in such a way that the space of
weighted barycenter is finite and it contains only Dirac deltas centered at points p,,. This will be
the case under the following assumptions:

Py := 47 min {1, n;éin/(Q +a1m + alm/)} Dy := 47 min {1, n;inl(Q + agm + agm/)} . (3.9)

With respect to the previously stated results, we will consider weighted barycenters on the whole
surface ¥. Anyway, in view of the improved Moser-Trudinger inequalities, we will have to “punc-
ture” their join in some points.

We will consider the following object:

1
X' = Ypr.a; * Xps,a, \ {(pmaprru 2) D p1,p2 < AT(2+ um + O‘Qm)} : (3.10)

Notice that, by the upper bound (3.9) we are assuming on p, only the negative coefficients
actually play a role, therefore the multi-indexes «;, a, could be replaced by o], ob introduced
before. Anyway, we are no longer allowed to split the set of singular points like (3.4).

As for (3.5), we will have to make some assumptions to ensure X’ is not contractible. In particular,
this will depend on the number of points in the two X, ,. and on the number of punctures.

We get the following existence result: '

Theorem 3.5.
Let T as in (2.13), (py,P2) be as in (3.9), and let p € RZ )\ T satisfy p; < p; for both i = 1,2.
Define integer numbers My, Mo, M3 by:

My = #{m 47T(1+O[1m) <p1} My = #{m 47T(1+C¥2m) <p2}
My = #{m : 47 (1 4+ qim) < pi and p; < 47(2 + 1 + Q2m) for both i = 1,2}. (3.11)

Then system (9) has solutions provided the following condition holds

(My, Ma, M3) & {(1,m,0),(m,1,0),(2,2,1),(2,3,2),(3,2,2), m € N}.
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Finally, in the work in progress [8], we extended, with few modifications, both the existence and
multiplicity result of Theorem 3.1 to the regular By and G5 systems.

Theorem 3.6.
Let ¥ be a closed surface with x(X) < 0, Ty be as in (2.13) and assume p ¢ 47N x RUR x 47N.
Then, the problem (10) admits at least a solution and, if

p € (4K m 4(Ky + 1)) x (4Kom, 4(Ky + 1)7), (3.12)

for a generic choice of (g, h1,ha) it has at least

o[22 (s [22]
SIANES
solutions.
The same results hold true for the system (11), provided p; < 4w (2 + \/5) , p2 < Am (5 + \f?)

This chapter is sub-divided as follows.

In Sections 3.1, 3.2 we prove that the the spaces X', X’ defined by (3.5), (3.10) are not contractible.
In Section 3.3 we build a family of test functions ®* from X and X’ to arbitrarily low sub-levels of
Jp. In Sections 3.4 and 3.5 we proved the improved Moser-Trudinger inequalities which lead to the
construction of the map @ : J, L 5 x,X'. Finally, in Section 3.6, we put together all these result
to prove the theorems.

3.1 Topology of the space X

In this section, we will provide information about the topology and the homology of the space
X = ('Vl)pl.,g’l * (72)/)2@/2'

First of all, we notice that most information can be deduced by studying the weighted barycenters
spaces (i), .o~ Proposition 1.16 shows how the homology groups of the join depend on the ones
of the spaces which form it.

Some of the results contained in this section will be inspired by [20], where weighted barycenters
centered at ¥ are studied.

As pointed out in Remark 1.30, the join of two spaces, one of which is contractible, is itself con-
tractible. Therefore, for our purposes, we will just need to give conditions under which both the
spaces (7i),, o, are contractible.

In the following, we will omit the indices ¢ = 1,2 and consider a generic weighted barycenters

set (7)p,or with the multi-indices o = (o], ..., /) such that o, < aj,,, and singular points
Phye .., Py satisfy wer(pl,) =1+al, < 1.
To start with, following [20] we consider (), o as a union of strata of the kind
K K
()M = {Ztkéqk 3y G €S 20,1, >0, it Y H, = 1},
k=1 meM k=1 meM

for K e NU{0}, M C{1,...,M'}.
One can easily notice that each of these strata is a union of manifolds whose maximal dimension
is 2K + |M| — 1. Considering only the strata which are maximal with respect to the inclusion, we

write a unique decomposition
L

('7)p,g’ = U('Y)KIVMR (3.13)

=1

51



It is easy to see how the strata depend on the position of p with respect to the o, ’s. A stratum
(7)%M is contained in (), if and only if

p >4 (K + Yy (1+ a;n)> . (3.14)

meM

Moreover, we notice that a stratum (v)%X* is contained in (7)™ if and only if [M\M'| < K'—K.
Therefore, the maximality of an existing stratum is equivalent to the condition

p<4rmin K+ 1+ Z 1+al,), K+ Z 1+al,)y,
meM\{max M} meMU{min({1,..., M}\M)}

and the equality sign is excluded if we take p € T'.
Notice that in the regular case the decomposition in maximal strata is just (), = (7)* P = (y)k,

with K such that p € (4Km,4(K + 1)7), and all the strata are of the kind (7)5"? = (7)X for
K =1,... K.

However, in the regular case Proposition 1.25 gives already full information about homology of the
barycenters.

In the general case the decomposition in strata makes more difficult the computation of the ho-
mology groups. Nonetheless, we can still obtain information on the homology of (), with an
estimate from below of its Betti numbers.

Precisely, we will prove the following result:

Theorem 3.7.
Suppose (7)o has the following decomposition in mazimal strata:

L

L/
(Vpar = U('Y)KZ’MZ U U (’Y)Kl/’Mua (3.15)
=1 I'=1

with 1 ¢ My for anyl=1,...,L. Then,
:| 6q,2Kl+Ml71'

In particular, if | > 1, then Eq ((’y)p,g/) # 0 for some q # 0.

We will start by analyzing the cases which are not covered by the previous theorem, that is when
every maximal stratum is defined by a multi-index containing the index 1.

In this case, we find out that (), is contractible, so in conclusion we get a necessary and sufficient
condition for the contractibility of (7), -

Lemma 3.8.
Suppose (V) p.ar has the decomposition (3.13) in mazimal strata, with py,...,pys such that of <
-+ < yyr. Then, the following conditions are equivalent:

(1) (7)p,ar is star-shaped with respect to dp, .
(2) There exists some m € {1,...,M'} such that (v),.a is star-shaped with respect to 8, .
(8) (y)%vMi s star-shaped with respect to 5,, for anyl € {1,...,L}.

(4) There exists some m € {1,..., M'} such that (y)5™ is star-shaped with respect to 5, for
anyle{l,...,L}.

Moreover, each of these conditions implies that (), q s contractible.
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Proof.

The contractibility of (), follows trivially from its star-shapedness, so it suffices to prove the
equivalences between the conditions.

The following implications are immediate:

(1) = (2), (3) = (1), (3) = (4), (4) = (2);

therefore, we suffice to show that (2) implies (1) and (1) implies (3).

We will start by showing that if (), o is star-shaped with respect to some py;,, then the same holds
with Pi1-

We notice immediately that star-shapedness of (), o is equivalent to saying that for any stratum
(MEM C (7). Wwe have (v)KMIT < (), o; moreover, we recall that the existence of a stratum
within (), means (3.14). Let us now suppose condition 2 occurs for m > 1, that is

p>47T<K+ Z(Ha;n)) = p>ar ([ K+ > (1+a},) |,

meM meMuU{m}

and let us recall that we are assuming o), < a, ., for any m. This implies

p>dr [ K+ > (I+d,) |24 K+ > (1+a},) ],
meMuU{m} meMU{1}

that is star-shapedness of (), o With respect to p;.

Suppose now, by contradiction, that condition (3) holds but condition (1) does not, that is (7).’
is star-shaped with respect to p; but it contains a maximal stratum (’y)K M
Then, star-shapedness of (), o With respect to d,, implies the existence of a stratum ()
(7)p,a’» which contains properly (v)%M | thus contradicting its maximality. O

which is not.
K, MuU{1} c

Let us now see what happens if we are in a scenario which is opposite to the previous lemma, that
is some index j is not contained in any multi-index which defines the strata.
The following lemma shows that this situation produces some non-trivial homology.

Lemma 3.9.
Suppose K € N, M C {1,...,M'} and m & M and define

(y)feMm = U (yfe.
M 'CMUu{m}, |M'|=|M|

Then, it holds

(K+|M\+[%@)])
zZ\ MR ) e — oKk M| 1
if q# 2K + M| -1

o

The proof of the lemma will use the Mayer-Vietoris exact sequence.

Actually, when applying the Mayer-Vietoris sequence the sets A and B should be open. If they are
not, we are implicitly considering two suitable open neighborhoods in their stead.

The existence of such neighborhoods follows from the properties of the weighted barycenters, which
can be deduced by arguing as in [20], Section 2 and [21], Section 3.
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Proof.
We proceed by double induction on K and |[M].
If M =0 we have (7)%%™ = (7)%? = (y)k so the claim follows by Proposition 1.25.

If K = 0, any stratum (7)*™’ is actually the (|M’| — 1)-simplex [(5p . if we can write

M|

myo

M = {my,...,mrv}. Therefore, (7)>M™ is the boundary of the |M|-simplex with vertices in

|M[-1

dp,, for m € MU {m}; hence, it is homeomorphic to the sphere S and the claim follows also

in this case.

Suppose now that the lemma is true for K — 1, M and for any K, My with |[Mg| = |M]| — 1.
Being ()%™ union of manifolds of dimension less or equal to 2K + |M| — 1, all the higher
homology groups are trivial.

To compute the other groups, we write (W)K’M’771 = AU B with

A= (n)fM, B= [ (yfimim
meM

and consider the Mayer-Vietoris sequence. The set B is star-shaped with respect to d,, whereas A
is star-shaped with respect to §,, for any m € M, hence we can write

0= Hy(A) ® Hy(B) = Hy(AUB) — Hy 1(ANB) — Hy 1(A) ® Hy1(B) =0,
that is H,(AU B) = H,_1(AN B). Moreover, this set can be written as

ANB=CUD, C = (y)K-tMU{m} D= U (y) M}
meM

As before, C' is contractible, whereas we can write D = (V)K’M\{m}’{m} for any m € M and
CnD= ('y)K_LM’m. Therefore, by inductive hypothesis we know the homology of these sets and
we can apply again Mayer-Vietoris. If ¢ < 2K + |[M]| — 1 we get

0=H, 1(C)® H, (D) — H, 1(CUD) = H, 5(CND)— H, 5(C)& H, 5(D) =0,

that is _ _ _ _
H,(AuB)=H, 1(ANnB)=H, 1(CUD)=H, »,(CND)=0.

Finally, for the last homology group we get
0= Hog 4 |m-2(C N D) = Hogyatj—2(C) ® Hog | atj—2(D) = Hogeyjpg)—2(C UD) —

— Hagepipm=3(C N D) = Hageypaj=3(C) © Hogeojaj—3(D) = 0.

Hence, by the inductive hypothesis and the properties of binomial coefficients,

Hygeyjpm-1(AUB)
= Hygiim—2(CUD)
= Hogjmj—2(D) ® Hageyja—3(C' N D)

KM [ =22 ] KM+ [ =X
AN B o7 M=)
K+\MH—[%(E)]_1 K+\M\+[_X§Z>}—1
+
— g\ [P ] Imi+[ =X
KM+ =X
AN e

which is what we wanted. ]

)

Finally, we see how the sets defined in the previous lemma affect the homology of (), '
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Proof of Theorem 35.7.

We proceed by induction on L. If L = 0 there is nothing to prove.

Suppose now the theorem holds true for L — 1. Then it also holds for H when ¢ # 2Ky, + |[Mp|—1.
For ¢ = 2K, + |[My| — 1, we notice that (y)5=Mz:l  (5), ./, since the coefficients oy, are
non-increasing; hence we can apply Mayer-Vietoris sequence by writing (7)o = AU B with

L-1 L
A= (y)feMet, B=JmfMu ] mreM
=1

By a dimensional argument we have I;TQKL+|ML|,1(A N B) =0, so we get

0= Hag,1m, -1 (AN B) = Hagy a1 -1(A) © Hage, i amy <1 (B) = Hare 4 ipay —1(AUB) —

which means, by the exactness of the Mayer-Vietoris sequence,

Hogey sy |-1(A) & Hage, 1 jaty —1(B) = Hogpjpay -1 (AU B).

Therefore, applying the inductive hypothesis and Lemma 3.9, we get

bo,+ 1My -1(AU B)

Z ’I;QKL‘HMLI*l(A)+’52KL+|ML|71(B)
K+\M|+[ (m} L-1 Kz+|Ml|+[ (g)}
R R S A B B
L (Ki+ M|+ [ 22
- — M, |+{ X(z)} 52KL+‘ML‘_172K1+M1—17
hence the claim. o

Finally, by Proposition 1.16, we get some information on the homology of the join.

Corollary 3.10.
Suppose (Vi)p, o, has the decomposition (3.15) in maximal strata, with L;, K1,..., Ky, € N and
Mii,..., M, C{1,...,L;}. Then, it holds

+o00 Li Lo Kll+|./\/lll|+[ X(E)} Ky, + My, | + |:_X2(E)i|
APy M| + [ 2] My, + [ =42

In particular, if L1, Lo > 1, then Fl;q (X) # 0 for some q # 0.

3.2 Topology of the space X’

In this Section, we will prove that, under the assumptions of Theorem 3.5, the space X’ defined by
(3.10) is not contractible. In particular, we will prove that it has a non-trivial homology group.
By the assumption p; < p;, the weighted barycenters 3,, . are actually discrete sets, hence their
join will be just a finite union of segments. Therefore X’ will be a quite simple object, especially
compared with the spaces studied in the previous section. Some examples are pictured in Figures
3.1 and 3.2.

The main result of this section is the following;:
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Theorem 3.11.
Let My, Mo, M3 be as in (3.11) and X' be as in (3.10) and suppose

(M, Ma, M3) & {(1,m,0), (m,1,0),(2,2,1),(2,3,2),(3,2,2), m € N}. (3.16)

Then, the space X' has non-trivial homology groups. In particular, it is not contractible.

The assumptions on the Mi, My, M3, that is, respectively on the cardinality of ¥, o ; ¥p, 0, and
on the number of midpoints to be removed, are actually sharp.

This can be seen clearly from the Figure 3.1: the configurations M; = 1, M3 = 0 are star-shaped,
and even in the two remaining case it is easy to see X’ has trivial topology. On the other hand,
Figure 2 shows a non-contractible configuration.

2 3 4 2 2

Figure 3.1: The space X’ in the cases (M, Mz, M3) € {(1,3,0),(2,2,1),(2,3,2)} (contractible).
1

2

Figure 3.2: The space X’ in the case M1 = 2, My = 4, M3 = 2 (not contractible).

Proof of Theorem 3.11.

The spaces X, o, are discrete sets of M; points, for ¢ = 1,2, that is a wedge sum of M; — 1 copies

of S°. Therefore, by Theorem 1.28, Yp1.a, * Xp,.a, has the same homology as (Sl)v(Ml_l)(Mz_l).

The set we have to remove from the join is made up by M3 singular points {p,,,... ,pmM3} for
some {mq,...,mp,} C{1,...,M}.

M3
1 1
Defining then, for some fixed § < 3 Y= U Bs (pmj,pmj, 2)7 Y retracts on {pml, e ,pmMs}.
j=1
On the other hand, X’ N'Y is a disjoint union of M3 punctured intervals, that is a discrete set of
2Ms points, and X’ U Y is the whole join. Therefore, the Mayer-Vietoris sequence yields

Hi(X'NY) = H(X)®H (V) » Hi(X'UY) = Ho(X' NY) = Hy(X')® Ho(Y) — Ho(X' UY).
N———— N—— N—— N————’
0 0 7(M1—1)(Mg—1) 72M3z—1 7M3z—1 0

The exactness of the sequence implies that by (X’) — bo(X’) = (My — 1)(My — 1) — Ms, so if the
latter number is not zero we get at least a non-trivial homology group.

Simple algebraic computations show that, under the assumption My, My > M3, (M7 —1)(My—1) #
M3 is equivalent to (3.16), therefore the proof is complete. O
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3.3 Test functions

In this section, we will introduce some test function from the spaces X, X’ to arbitrarily low sub-
levels of J,,.

Such test functions will be mostly inspired to the standard bubbles (2.17) introduced in Chapter 2,
though with several modifications.

As a first thing, in both the case of X and X’, we have to be careful about the two endpoints of
the join, that is when one of the two weighted barycenters is identified to a point. In this case, the
test functions must depend only on the elements of the other barycenters set.

When we are dealing with (7;),, «,, We have to interpolate the parameter a;(z), which cannot switch
suddenly from 0 to o, in presence of a singular point p,, .. Moreover, here we will take smooth
bubbles rather than truncated because, since they are centered in more than one point, truncating
does not simplify calculations.

Concerning the cases considered in Theorem 3.5, we will need two more profiles for the construction
of test functions. These profile are quite a natural choice, since they resemble the entire solutions
of the singular Liouville equation and of the A, Toda system:

s0/)\,913 = —2log max {17 ()\d('7x))2(2+a1(m)+a2(z))}

(p//k,x - _9 log max {17 )\2(2+()¢1(m)+()12(51)))d(.7 x)2(1+a1(m))} )

This is because, when u; and uy are centered in the same points, a higher amount of energy is due
to the expression of Q(u) which penalizes parallel gradients.

The test functions needed in Theorem 3.6 are very similar to the ones used in Theorem 3.2, though
simpler in their definition because of the lack of singularities.

Since the explicit definition of such test functions is quite lengthy, it will be postponed in the proof
of the theorems, rather than in its statement.

Theorem 3.12.
Let X be defined by (3.5).
Then, there exists a family of maps {<I>’\}A>2 : X — HY(X)? such that

Jaq.p (@A(C)) — —00 uniformly for ( € X.

A——+o0

Proof.
To define ®* we first fix a ¢ > 0 sufficiently small to make negligible the interaction between the
singular points p,,. A suitable choice is:

mini:1,27m¢m/:17..,,M{ d(p;mvp;m’) } (3 17)

0 = min min d(vs,

{7)—1,2,7n—1,4..,]%(’) (717p0m), 2
We then need to define, as stated before, an exponent 3;(x) which interpolates between 0 and af,,
for € 7; near a point p},,,: we define

0 if d := mind(z, p},,) > 9
07 108 § . { - )
= T fd=d(z,p\-) € |max{2,\(1 —t)} ™= 4,0
bul@) log max{2, A(1 — )} — o/~ log 2 ' (@, p17) € |max{2, X )
A if d < max{2,\(1— )} "*"im g

(3.18)
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and similarly Sa(z).
Such a choice will verify the condition

_A@® 4 - 1C) N
max{2, A\(1 — t)} 1w A1) = i max{2, At} “2m 152G = 7

Given an element

0, = Z tik(sftik € (’Yi)p“gé for i = 1727 C = (017U2at) eXx
zik€Ti

we define, for A > 0,
ON¢) = (901 — 2 - ﬂ) ;

2 2
with t
A 1k
p1=¢1(C) = log (3.19)
1 $1kZ€.71 (1 + ()‘(1 - t))Qd('; xlk)2(1+51k))2
t
v2 = ¢3(¢) =log Z 2k

wared (1F ()‘t)Qd(wIzk)Q(”B%))Q’

with B := Bi(wik).
The proof of this theorem will be a consequence of the three following lemmas, each of which
provides estimates for a different part of the functional J4, ,. O

Lemma 3.13.
Let ¢, ®() be as in the proof of Theorem 3.12. Then,

/ Qa, (<p1 - %, P2 — %) dVy < 87wy (J1) log max{1, (\(1—1))}+87wqy (J2) logmax{1, At} +C.
)

Proof.
First of all, we write

(IVe1> = Voor - Voo + |V |?) . (3.20)

1
QAz (‘pl*ﬂv@Qfﬂ) = Z

2 2

Since |Vd(-,x;;)| = 1 almost everywhere, then

|V901|
> —4(14B1e) bt A1) 2d(,21)  H2P1R V(-2 1k)
I N )

t1k
2 LHA(1=1))2d(-,w15) 2T FP1)

3 4(14-B11) b1 A1 —1))2d(-,@15)  T2P1k
(1+()\(17t))2d(.111k)2(1+51(wik,)))2

< Z tig
k1o (1—t)2d(-,z15) (1AL ER)
_ 279(. 14251
< max AQ A Bue) A = 1))"d(, 21p) T (3.21)
ET L+ (M1 — £))2d(-, 21) 2051
=:Mi

In view of these estimates, we divide ¥ into a finite number of regions depending on which of the
M;i’s attains the maximum:

Qup = {x eX: Mg(x) = n}glek/(x)} .
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By similar estimates on |Vsa| we get |Vpa| < My, and we will define:
Qop = {{L‘ SN Mgk(x) = H}CE}XMQk’(x)} .

Moreover, we can easily see that the following estimates hold for M;:

40+ Be)
My, < d(-,z1x) 7 (3.22)
A1+ Bur) AL = 0)2d(-, 1) H2P

40+ )
Mok < d(-,zan)
4(1 + B2k)(/\t)2d(-, :132k)1+232k

We will estimate the mixed term first. Basically, since the points x;; belong to ~; and the curves
v;’s are disjoint, we only have summable singularities and therefore the integral of Vi - Vs is
uniformly bounded.

Therefore, from (3.21) and the first inequality in (3.22), one finds

/ V(,O1 . Vg@zdvg
b

<3 / Ve |[ViplaV,
K,k Qlkmﬂzk/
dV.
< 16<1+ﬂlk)<1+ﬁ%)/ R
; Q1Mo s d('axlk)d('aka’)

We then notice that, by the definition of (3.17), the distance between v; and ~, is at least 24, so
Bs(x1x) N Bs(z2xr) = 0 for any choice of k, k’. Therefore,

/ dv;
01enQy,, A0 T18)d (- Tokr)

/ dv, / av,
< _ 4y Ay,
1N, \Bs (z1x) 080 T2k7) S 1m0\ Bs (2a0r) 040 T1k)
1 1 1
< = + dV,
0 /Z (d('aka/) d(wﬂﬁlk)) g
< Cs,

hence, being the number of k, k" bounded from above depending on p and «,,’s only, we obtain

<c. (3.23)

/ V1 - VadV
>

Now, we consider the term involving |V |?. We split the integral into the sets Q1 defined above.
[ Ivaray,

by

< M2V,
Lk Yk

< Y / MZdv, + / ME.dV, (3.24)
& S\B 1 (mg) B 1 (mag)

(A(1—t)) TFPix (-1 FPik

Outside the balls we will apply the first estimate in (3.21):

/ A
S\B 1 (z1x)

(a-t) 01k
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dV,
< 16(1+7 2/ 9
( 1k) S\B L () A mk)?
(A(1—t)) +Pik
< 327(1+ 511«)2 log max {1, (A1 —=1)) T } +C
< 327(1 4 Bi) logmax{1, (A(1 —¢t))} + C. (3.25)

The integral inside the balls is actually uniformly bounded, as can be seen using now the second
estimate in (3.21):

/ Ve [dV,
B _ 1 (w1k)
(Aa-t) HPik
< 16(1 4 Bu)>(A(1 - t))4/ 0y 02028004V
B 1 (xlk)

(-t Pk

< O (A1 - 1) (- gy )

< C (3.26)

Observing that, from the definitions of (1.15) and (3.18), one has Z(l + B1x) < woy (J1), one can

k
now deduce from (3.24), (3.25), (3.26):

/ |V |2 < 3271wy (J1) log max{1, (A\(1 - 1))} + C. (3.27)
by

The same argument gives a similar estimate for / |Vp2|?, therefore putting together (3.27) with
b
(3.23) and (3.20) we get the conclusion. O

Lemma 3.14.
Let {, p; be as in the proof of Theorem 3.12. Then,

/ p1dV, = —4logmax{1,A(1 — )} + O(1), / padV, = —4log max{1, At} + O(1).
by b
Proof.

We will give the proof for ¢ = 1, since the argument for the case ¢ = 2 is the same.
From the elementary inequality max{1,z2} <1+ 2 < 2max{l,z} for z > 0 we deduce

tik
w=log 3 +0(1).
1 Tk €T max {1, A\(1 — t)d(-, 15 ) 1Pk }4 (1)

Therefore, we can give an estimate from above:

/ L)Dldvvg
P
1

/ log max 1
b k| max {1, \(1 — t)d(-, z1x )1 HFPx}

1
logmin 4 1 v, +C
/E og mln{ "ML — )4 ming d(-, 21,)30+Bre) } g T
1
- lo - +
/E\U,c B 1 (z1) s (A1 —t))4ming d(-, 215 )21 +F1r)

(A@a-t)) TFPik

IN

}dvg+c

C
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= —4log (la(l —t)

)

B 4/ min{(1 + B) log d(-, 1)} + C
S\U, B i

__1 (=)
(-t Pk

= LkJ B(A(l—t)f ey (@18)

< —4logmax{1,\(1—1¢)} + C.

We conclude the proof getting, in a similar way, a lower estimate:

/ p1dV,
b
. 1
/log min 7 ¢ dVy +C
= k max{l,)\(l — t)d('7gj1k)1+51k}
1

= 1 in<1 dv, +C

/)E Ogmm{ "1 — 1)) maxy d(-,xlk)4(1+51k)} gt

1
= 1 C
/;J\ﬂkB ©8 ()\(1 —t))4 maxy, d(-,$1k>4(1+ﬂlk) +

1 (zx)

(x1-t) TPk
_ 4/ max{ (1 + Bix) logd(-, z11)} + C
S\Ng B k

v

—4log (m —1) |2\ OB(M%)),H}M (z1x)
1 (z1k)

(r-t) Pk

—4logmax{1,\(1 —¢)} + C.

Y

Lemma 3.15.
Let ¢, p; be as in the proof of Theorem 3.12. Then,

log/zﬁwwr%dVg = —2logmax{1, \(1 — t)} + 2log max{1, At} + O(1).

log/ ﬁle“"r%dvg = —2log max{1, At} + 2logmax{1, A\(1 — )} + O(1).
b

Proof.
As in the proof of Lemma 3.14, it is not restrictive to suppose ¢ = 1.
It is easy to notice that

C

hie?1dV, < .
/E\Uk Bs(z1k) 9~ max{1,\(1 —t)}*

Moreover, since

p2 > —4logmax{1, At} —C on X, w2 < —4logmax{l, Xt} + C' on UBg(aclk),
k

then we can write

/ E16W1*%dvg ~ C'max{1, )\t}2 Ztlk/
3 k Bs(

Therefore, the lemma will follow by showing that, for any &, the following holds true:

ha
eu) (L4 (M1 — t))?d(',g;lk)%lwlk)f

dv,.

/ I v, !
Bs(ewe) (14 (A1 = 1))2d(-, 21)20+510))? 9 max{1,\(1 —t)}2’
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We will provide the estimate in three cases depending on how Sy is defined in (3.18).
In the first case the ball Bs(x1;) does not contain any singular point, therefore using normal
coordinates and a change of variables we get

J EI |

Bs(ew) (14 (A1 = 1))2d(-, 215)20+610))?
dz

- /Bé<o> (1+ (AL = 1))?|z])?

#/ _dy

AT =) Vs (14 [yf2)°
1

max{1,\(1 —¢)}?"

If instead z1y, is distant at most § from a point p = p/;, with a singularity o = o, by the definition
of § this will be the only singular point in the ball we are considering, so arguing as before we find:

/ . 54V,
Bs(a1r) (1 + (A1 —¢))2d(-, 215) 2(1H51))

/ |z — p[** .
Bs5(0) (14 (A(1 —t))2|x|20+518))
_Big—e B |2«
1 ’()\(1 — t)) (1+81k)e y— ()\(1 _ t)) (1+51k)up
()\(1 — t))2 /B 1 (0) (1 + |y|2(1+61k))2

(A(1—1)) 1Pk s

To conclude the proof, it will suffice to show that the last integral is bounded from above and below
when A(1 — t) is large, since the starting quantity is clearly bounded if A(1 — t) is small. If we are
in the second alternative in the definition of (3.18), we have

14+«
1 [
X1 (W) Y= On

Bya-o(g)*© (1+ y|20+61))

2a

dy,

which is uniformly bounded because in this case 6(A(1 — t))fﬁ < |p| <4, so the radius of the ball
is greater or equal to A(1 —¢) and the quantity which multiplies y is less or equal to 1.
Finally, when $1; = a, we find

1 2a
ly— (1= )T
/ s—dy,
B 1 (0) (1 + |y|2(l+o¢))

A(1—t)) 1+as

which again is bounded because this time the vector preceded by the minus sign has a norm smaller
or equal than §. O

Proof of Theorem 3.12, continued.

A
Since on (7;),, ¢ one has p; < 4rw, (J;), and moreover max{A(1 —t), At} > 5 Lemmas 3.13, 3.14
and 3.15 yield

P2 Y1
To(o1 =G =3)

= /EQ (801 <'022 P2 — —) dV sz <]og/ hie#i™ dV / 903 i dV)
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< (87war (1) — 2p1) logmax{1, A\(1 — t)} + (87wqy (J2) — p2) log max{1, At} + C
< max{8mwy (J1) — 2p1, 8Tway (J2) — 2p2} log max{1, \(1 —t), At} + C
< max{8rwy (J1) — 2p1, 87wy (J2) — 2p2} logmax{1, A} + C
>\—>—+><X> >
uniformly in { € X, which is what we wished to prove. O

The following theorem will use truncated test functions centered at only one point, therefore it will
use some estimates from Lemma 2.23.

Theorem 3.16.
Let X' be defined by (3.10).

Then, there exists a family of maps {‘I”A})\ c X — HY(X)? such that
>2

Jas.p (@’A(()> — —00 uniformly for ¢ € X'.
A—+4o0
Proof.
Let us start by defining ®*(¢) = (901 — %, P2 — %) when ¢ = (P, Pm, t) for some m. ®* will be

defined in different ways, depending on the relative positions of p1, p2, @1, @2y, in R.

(<<) p1,p2 <AT(2 + a1 + Qom):

—2log max {1, ()\d(-,pm))z(Ho‘“”)} if t <

pr 1=
0 if ¢ >

0 ift <
p2 =

DO N =D 0| =

—2log max {17 ()\d(-,pm))2(1+°‘2"'b)} ift >

(<>) p1 <A4A7(2 4 a1m + aom) < pa:

1 := —2logmax { 1, max {1, ()\t)2(1+0‘2m)} (/\d(-,pm))2(1+alm)}
pg := —2logmax 1, (Atd(-,pm))2(2+a1”‘+°‘2m)} .

(><) p2 < A4Am(2 4 a1m + aom) < p1:

1 := —2logmax {1, (A(1— t)d(-7pm>)2(2+o‘1m+0(2m)
2 := —2logmax 4 1, max {17 (A1 — t))2(1+(¥1'm)} ()\d(.’pm))2(1+a2m)} )

(>>) p1,p2 > 47(2 + a1 + @om):

max{1, At} ) FFermtesn

max{1, A\(1 — t)}>

max{1, \(1 — ¢)} ) 2Formtaem
max{1, At} )

p1 := —2logmax< 1, ()\ d(-,pm)z(“ro‘“’”“)7 (Ad(-,pm))2(2+o”m+o‘2m)

g := —2logmax 1 1, ()\ d(-,pm)Q(Ho‘Qm), (/\d(-,pm))2(2+o‘1m+°‘2’")
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By arguing as in the proof of Lemma 2.23, we deduce the following estimates, which will be presented

in three separates lemmas. O

Lemma 3.17.
Let o1, 2 be as in Theorem 5.16.

Then, in each case the following estimates hold true for Q := / Qa, ((pl — %, 2 — %) dVy:
b
(<)
1
87(1 4 aim)?log A+ O(1) ift < =
8(1 + agm)?log A+ O(1) ift > 3
(<>)
1
Q = 87(2 + a1 + agm)? logmax{1, Mt} + 87 (1 + ay,,)? log min {)\, t} +0(1).
(><)
1
Q = 87m(2 + 1 + o) log max{1, \(1 — t)} + 87(1 + az,,)? log min {)\, 1t} +O(1).
(>>)
Q = 87(2 4+ a1y + azm)?log A + O(1).
Lemma 3.18.

Let @1, p2 be as above. Then, in each case we have:

(<<)
1
—4(1 4 aim)logA+0(1) ift< =
by ; -
0 ift > 3
1
0 ift <=
/‘PZdVg = %
s —4(1 + agm)logA+0O(1) ift > 7
(<>)
/ 01dVy = —4(1 4 a1m) log A — 4(1 + agy,) log max{1, At} + O(1),
)
/ p2dVy = —4(2 + a1, + a2 log max{1, At} + O(1).
b
(><)

/ p1dVy, = —4(2 + a1 + aom) logmax{1, A(1 — t)} + O(1),
)

/ 02dVy = —4(1 4 azm) log A — 4(1 + a14,) log max{1, A\(1 — ¢)} + O(1).
)
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(>>)
/ p1dVy = / w2dVy + O(1) = —4(2 + i + a2m) log A + O(1).
b )

Lemma 3.19. Let 1, po be as above. Then, in each case we have:

(<<)
1
- s —2(14 o) logA+0(1) ift < =
log/ hie? =7 dV, = 1,
by 2(1+ agm)logA+0(1)  ift> 3
2(1 + Ylog A+ O(1) if t < L
~ 1 a7 ) -
log/ hoe2~ 2 AV, = " 2

b —2(14 agm)logA+0O(1) ift > 3

(<>)
log/ Elew_%dvg = —=2(1+ a1m) log A — 2(1 + agy,) logmax{1, At},
b
7 _e1 . 1
log/ hoe¥?~ 2 dV, = 2(1 + aq,y,) min {)\, t} .
b
(><)
~ ° 1
log/ hle‘/’l_%dVg = 2(1 + aay,) min {)\, } ,
. 1t
log/zﬁgeWZ_%dVg = —2(1 4 agm)log A — 2(1 + a1s,) logmax{1, A(1 — t)}.

(>>)

T2 _ max{1, At}
log/Z hie dv, (24 a1m + aom) log ( max{L (1= 1) +0(1)

T el _ max{1,\(1 —¢)}
log/Z hoe dv, (2 + a1 + o) log ()\ max{L, ] +0(1)

Proof of Theorem 5.16, continued.
We can now easily prove the Theorem in the case z; = x2. In fact, by the explicit expression of J,,,

we get, in each case,
(<<)

)

. 1

; ((pl e oy — ﬂ) B 21+ a1m) (A (2 + a1m) — p1)log A+ O(1) ift < =
P ) -

2 2 2(1 + a2m) (47(2 + azi) — p2) log A+ O(1) if ¢ > &

©2 ¥1
J ( N 7’ N 7)
ALZ! 5 P2 B)

1
= 2(14+ a1m)@r(l 4+ a1m) —pl)logmin{)\,t}
+ 224+ apm + aom)(AT(2 + a1 + aom) — p2) log max{1, At} + O(1),
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¥2 ©1
J ( N 7, N 7)
p | P1 9 P2 5

2+ aqm + aom) (AT (2 + a1m + aom) — p1) logmax{1, A\(1 — t)}

2(
+ 2(1+ agm)(@m(1 4+ agym) — p2) log min {)\, 1it} + O(1),

(>>)

_ P2 _ﬂ)
J”<901 21¥27

max{1, \(1 — t)}>
max{1, At}
max{1, At}

max{1,A\(1 —1¢)}

= (24 aim + @2m) @ (2 + a1 + a2m) — p1) log <)\

+ (2 + a1m + 042771)(477(2 + a1m + a2m) - 02) 10g <)\ ) + 0(1)7

which all tend to —oo independently of ¢.

Let us now consider the case x1 # x5.
Here, we define ® just by interpolating linearly between the test functions defined before:

ANy, w2, 1) = PV (21,21, 0) + O (22, 29, 1).

Since d(pm, pms) = 6 > 0, then the bubbles centered at p,, and p,,, do not interact, therefore the
estimates from Lemmas 3.17, 3.18, 3.19 also work for such test functions.

We will show this fact in detail in the case p1, p2 < 47(2 4+ @1m + @2m), 47(2 + Q1 + Q2m).
Writing

(1, 2) = (~2logmax {1, (A(1 = )d(-, p))2 1) |, ~2log max {1, (Xtd(-, pr )2+ 1)

by the previous explicit computation of V1, Vs we get

Q

1 1

1 / |V<p1|2dVg + Z/ |V@2|2dVg + 0(1)
Bs (p'm) Bs (pm/)

= 87(1 + aim)?logmax{1, A\(1 — t)} + 87(2 + g, )? logmax{1, At} + O(1).  (3.28)

Moreover, by linearity,

/ ©1dV, = —4(1 + a1m) logmax{1, A(1 — t)} + O(1)
)

/ w2dV, = —4(1 + agpy ) logmax{1, At} + O(1). (3.29)
by

Finally, as before the integral of 7@1 1T s negligible outside Bs(ps,), and inside the ball we have

1
<P2—/<P2dVg
)

— < < C on Bjs(pm), hence
Cs
log/ ﬁleW1_%dVg
b

= log maX{L)‘t}2(1+a2MI)/ d('7pm)2almdvg
__ 1 _(pm)
max{TA(I=D

av,

d(.7pm)2(2+alm) + 0(1)

+ max{l,At}2<”“2m’>max{l,m—t)}””m’")/A ()
%yg Pm
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= 2(1+ agm)logmax{1, Xt} — 2(1 + a1, ) logmax{1,A\(1 —t)} + O(1) (3.30)
and similarly
log/zﬁge“’r%d‘/g =2(1+ a1m) logmax{1, A(1 — t)} — 2(1 + a,mr) logmax{1, At} + O(1).
Therefore, by (3.28), (3.29) and (3.30) we deduce
J, (@1 “; g — %) = 2(1+ aum)(@r(1 + aim) — p1) log max{1, A(1 — )}
+  2(1 4 agm ) (Ar(1 4 agm) — p2) logmax{1, At} + O(1).

This concludes the proof. O

To prove the last main result of this section we will not need new auxiliary lemmas, but rather we
will use the ones used to prove Theorem 3.12.

Theorem 3.20.
Let X" be defined by

X" = X i = () (2) ks (3.31)

with K1, Ky such that (3.12) holds.
Then, there exist two a family of maps {‘I)gz})\>2, {® }A>2 X" — HY(X)? such that

JBz,p ((I)?\BQ(O) —r —0

A— 400 : : "
A uniformly in ( € X",
JGa.p (92, () e
Proof.
We define
P2 ©2 3
o3,(0) = (@1—77302—@1) 3,(0) = (@1—2,@—2@1),
with
Ky ;
= log Lk P2 = ¢5(C) = log 2 :
Z AL = 8)d(-, 211))%) ’ kz::l (1+ (Md(-, 221))2)”

Notice that the 1, o are defined in the very same way as in Theorem 3.12 when there are no
singularities.
Since there holds

@B, (%’1 - %,@2 —801) = / V1 [?dV, — */ V1 - VipadVy + = / Vs |?dV,

3 1 1 1
Qa, | p1 — ﬂﬂm — -1 | = */ V1 2V, — */ V1 - VipadVy + */ Vo |2dVy,
2 2 4 ) 4 ) 12 /s

then arguing as in Lemma 3.13 gives

/Q32 <p1 ,<p2 4,01) dV, < 8K mlogmax{l,A\(1 —t)} + 4Kymlogmax{1l, At} + C

3 8
/ Qc, (gal 22 00— 2apl> dV, < 8K mlogmax{l,A\(1 —1t)} + gKgﬂlogmax{l, A+ C.

Moreover, from Lemma 3.14 we deduce

/ p1dV, = —4log max{1,\(1 —t)} + O(1), / p2dV, = —4log max{1, At} + O(1).
) b
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Finally, the same argument as Lemma 3.15 yields

log/ hle“ol_%dVg = —2log max{1, \(1 — t)} + 2logmax{1, At} + O(1),
)

log/ hoe??™91dVy = —2logmax{1, At} + 4logmax{1, A\(1 —¢)} + O(1),
b

log/ hgem_%“oldVg = —2log max{1, At} + 6logmax{1, A\(1 — t)} + O(1).
b

From these estimates the theorem follows easily. O

3.4 Macroscopic improved Moser-Trudinger inequalities

Here we will perform an analysis of the sub-levels of the functional J,, which will permit to prove
the existence of a map ¥ = Jp_L — X in the cases covered by Theorems 3.2, 3.6.

We prove an improved Moser-Trudinger inequality, that is we show that, under certain conditions
on the spreading of u; and ug, the constant in Moser-Trudinger inequalities (3.1), (3.2), (3.3) can
be improved. This fact will give, after some technical work, some information about the sub-levels.

Theorem 3.21.
Let T,Tg as in (2.13), fi, as in (1.13) and p € RZ)\ T be given.
Then, for any € > 0 there exists L = L. > 0 such that any u € JXZL’p verifies, for some i = 1,2,

dLip' (fi,uvzpi,g;) <e.

The same holds true if p € R2>O \To and u € Jgip oru € Jéjp.

To adapt the original argument to the case of Toda system we first need a covering lemma, inspired

by [59], [61].
With respect to the previous works, we have to take into account the singularities and consider sets
which contain at most one negative singularity.

Lemma 3.22.
Let § > 0, J1, K1, Jo, Ko € N be given numbers, {m1,...,m;;,} C{1,..., M/} selections of indices,

f1, f2 € L'() be non-negative functions with / fidVy =1 and {Qij}zzf”é"’Ji+K" be measurable
b>

subsets of ¥ such that

d(QijaQij’) > o Vi= 172, Vjaj/ = 17~ . -,Ji +K17 j #jla
d(p;m,Q”) 25 VZ:].,?, V]zl,7JZ+KZ,Vm:17,MZ’,m7ém”,
/ £idV, > 6 Vi=1,2,Yj=1,...,Ji + K.
Then, there exist 6’ > 0, independent of f1, f2, and {5} j=1,.... max; {Ji+K,} such that
d(Q;,Q) >4 Vi, = 17...,@&11>§{Ji + K}, j#7,
d(p;m’QJ) >0 Vi=1,2, v.] = laanl?‘)g{']’t +Ki}7 Vm = 17~'~7M1'/7 m 7& Mg,
Q; i=1,
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Proof.
It is not restrictive to suppose J; + K1 > Js + Ko.

We choose §; = 3 and we consider the open cover {Bj, ()}, of ¥. By compactness, we can

extract a finite sub-cover {Bs, (ml)}lf;l with L = L, ».
We then take, for ¢ and m as in the statement of the Lemma, z;; € {x;}£, such that

/ fidV, = max {/ fidVy : By, (z1) Ny # 0} :
Bs, (wij5) Bs, (z1)

Since we have, for any j # j,
d(wij, wij) 2 d(Qij, Qijr) — d(@iz, Qig) — d(wijr, Qijr) > 6 — 261 = 601,

then for a given j = 1,...,J; + K there exists at most one j'(j) satisfying d(z1;,22;:) < 361, with
j + 7'(j) being injective as long as it is defined.
We can then reorder the indices j and j' so that j'(j) = j. Now, we define

O = Bs/(x1j) UBgs (z25) ifj=1,...,Ja+ Kz
J - Bs/(x15) fj=b+Ky+1,...,J1 + K3

Basically, we built these sets by joining two balls Bs, (x1,), Bs, (z2;) if they are close to each other
or, if there are no disks sufficiently close to Bs, (x1;), making arbitrary unions.

Let us now check that the theses of the Lemmas are verified. The sets €2;’s are distant at least d;
one to each other since

d(;,Q) = inf  d(Bs, (2i5), Bsy (wvyr)) 2 inf  d(wig, wig) — 200 2 61

1,4/ =1,2
Moreover, for m # m;;,

APl ) > Ai_nlfzd(PQmaBél (zij)) = inf (APl Qi) — d (Qij, Bs, (x45))) > 6 — 201 > 01

Finally, from the choice of the points z;;,

1 )
[z [ gz pavz =
Q; B (zi5) L Qij L

The lemma follows by choosing §’ := min{dy, d2} O

The next lemma is what is usually called an improved Moser-Trudinger inequality.

It essentially states that if both u; and us are spread in sets which contain at most one singular
point, then the constant 47 in (3.1) can be multiplied by a number depending on how many these
sets are and on the singular points they contain. Such a phenomenon was first pointed out by Moser
[63] and Aubin [2] for the scalar case.

It will be the most important step towards the proof of Theorem 3.21.

Lemma 3.23.
Let 6 > 0,My, Ky, My, Ky € N be given numbers, {m;1,...,miz,} C {1,..., M/} selections of
indices and {Qw}f;lz‘]ﬂ( be measurable subsets of ¥ such that

d(Qij,Qij/) >0 Vi= 1,2, Vj,j/ = 1,...7Ji +Ki7 ] 75_7'/,
d(p;mvﬂlj) >0 Vi= 1,2, v] = 177J1+K17 Vm = 17"'7M1'/7 m%mija

Then, for any € > 0 there exists C > 0, not depending on u, such that any u = (u1,us) € H'(X)?
satisfying

/ findVy > 6 Vi=1,2,Vj=1,....Ji+K;
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verifies

2 Ji

T 1+¢
K; +Z (1 +am”) (log/zhle v, /EuZdVg) < /ZQ(u)dVg +C.

1 Jj=1

(3

Proof.
It will not be restrictive to suppose J; + K1 > Jo + Ks.

We apply Lemma 3.22 with f; = f; , and we get a family of sets {Q; }3]1:"1'1( ! satisfying
d(Q;,Q) >8>0 Vj#j, /Q fiw>6>0 Vi=1,....J; + K.
j
Let us now consider, for any j =1,...,J; + K3, a cut-off function satisfying
0<x;<1 Xjlo, =1 Xjlsye; =0 with @ = By () IVx;| < Cor. (3.32)

We now take v; € L*(X) with / v;dVy = 0 and we set w; = u; — v; — / u;dV, (which will also
o o
have null average). Therefore, we find

log / hiedV, — / w;dV,
b b
1[5
log 5 ; hie*dVy — EuidVg
J
1

= log yA] hzevl+w1dvg>

_ 1
< log [ hie" dVy + vl Lo (q;) +1og

IA

8’

/,
< log / T dV, + gl = i) + C. (3.33)
>

Since x; € Lip(¥), then x;w; € H'(X), so we can apply a Moser-Trudinger inequality on it.
To this purpose, we notice that, for any € > 0,

/E IV (ywn)PdV,

/E Ix;Vwr + w1VXj|2dVg

/E (OCIVan 2 + 200 Van) - (un V) + w? |95 12) 4V,

1
/z ((1 + 6))(§|Vw1|2 + <1 + e) w%|VXj2> dv,

(1 + €)/ |V’I,U1|2qu + 0575/72 / w%qu

IA

IN

In the same way, writing

1 2 2\ _ 1 2 1 2
3 (el + @y +[yP) = 712 + Fle =29, (3.34)
we get
1
/ZQ(ij)dVg <(1+¢) o Qw)dVy + Ce o0 / 3 (w? 4+ wiwy + w3) dV,. (3.35)
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At this point, we choose properly w; (hence v;) in such a way to have a control of its L? norm.
Taking an orthonormal frame {¢"}>°; of eigenfunctions for —A on ﬁl(Z) with a non-decreasing

sequence of associated positive eigenvalues {A\"}>° ; and writing u; = / u;dVy + Z u ", we set
b

N
vy = g ul™ for
n=1

n=1

N=N.s5:= max{neN;)\n < CM’E}
€

This choice gives
CE,M/ widV, < e/ |V, |?dV, < s/ |V, [2dV,
b b b
and, through (3.34),
1
Cey /2 3 (0} 4+ wiwe + w3) dV, < 5/2 Qw)dV, < E/EQ(u)dVg. (3.36)
Moreover, we get
/ wsldVy, < CxllVarl| 2y < 5/ Qw)dV, + C < 5/ Qu)dV, +C (3.37)
b b b
and, since v; belongs to a finite-dimensional space of smooth function,
loillz=cs) < CxlVeilia <= [ Quiav,+C <= [ Quuav,+c. (339)
b b
Now, if m = 1,...,Ja + K5, we apply the Moser-Trudinger inequality (3.1) to x;w. Since these

functions are supported on Q;-, we can replace h; by a smooth interpolation which is constant
outside a neighborhood of Q; we take n; € C*°(X) satisfying

1 ifxe ~ ~ h; ifxzeq
i\r) ‘= : ) hii i=n:h; +1 —1n; = v J
() { 0 ifo¢ By g 3= MEN L i By o)

In this way, we can consider only the singularities p},, " Dom ., Which lie inside €; (if there are any);
from (3.35) and (3.37) we get

M

(1—|—a log/heX7 ‘v,

)
i, ) 10 / higeXividv,
)

> (1+
(1+am” /x]wldV +—/ Q(x;w)dV, + C
(

1+e
L) (Il [ uiav, ) + 12 [, Qv
i=1

Ces 1
N g/ 5 (0F +wiws + wd) AV, +C

=1

Mw

o
Il
=

M

1

.
Il

M)

47

1+¢ Ces 1
< / |w;|dV, +/ lwa|dV, + —/ Q(w)dV, + ﬂ/ = (w? + wiwg +wd) dV, + C
471' Q; 471' 3 3
1 Ces 1
< 26/ Quw)dVy + +E Q(w)dVy + Z(;’Z / 3 (w} + wiws +w3) dV, + C.
2 :
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Therefore, from (3.33) and (3.38) we deduce

2
Z (1 +a§mij) (log/zhieuz'dvg — /EuidV_,,)

=1

2
S Z (1 + a;’wﬂi) (lOg‘/E hierwidVg + ||UiHL°°(E) + C)

i=1

1 C.s 1
< 35/ Q(u)dV, + re Q(w)dV, + Ze0E / = (w] 4+ wiws + w3) AV, + C.(3.39)

’
J

For m = Jo + Ko +1,...,J1 + K; we have estimates only for u; on €2;, so we apply the scalar
Moser-Trudinger inequality (1.6). By (3.34) we get the integral of Q(x;w), then we argue as before.
Notice that if j > M;, then pgm]_ is not defined so these calculations would not make sense, but in
this case both the previous and the following calculations hold replacing O‘;m,- with 0.

(1 + o/lmlj) log/ hievwidy,
3

= (1 + o/lmlj) log/ ElmerwldVg
: b

1
S (1 + allmlj) /X:ijldvg + ﬁ L |V(ij1)|2dVg + C
1
< / lwq|dVy + 7/ Q(xjw)dVy +C
= A Js
1 C. s 1

< 5/ Q(uw)dV, + tre Q(w)dV, + —=2% / = (0] + wiwy + w3) dV, + C.

) 47T Q. 47T Q. 3

Then in this case we deduce

(1 + o, > (log/ hietdV, — / uldV£,>
! ) b

(14 af,) (log /2 XAV, + o | oo ss) + c)

IN

IA

1 Cey 1
25/ Q)AV, + 5 [ Quw)av, + 223 / = (w? + wywy + w) AV, + C. (3.40)
) 4 Q; 4 Q 3

l.
J

Finally, we sum up together (3.39) and (3.40) for all the m’s, exploiting (3.36) and the disjointness
of the Q'
j

Ji ~
3ok 2 (o) ) (e [ - )

i=1 j=1

= Z Z (1“'0‘;7:11:3-) (IOg/E%ie“"’dVg—/EuidVg)

i=1 m=1

J1+Ky "
+ Z (1 —&-oz&mij) (log/ hierdV, — / u1dVg)
m=Jo+Ka+1 x by
1+
< (2 42Ky + o+ K)e / Qu)dv, + -5 / Qw)dv,
b b
0675/72 1 2 2
+ —= f(wl —|—w1wg+w2)dVg—|—C
471' b 3

142
+ E/Q(u)dVg+C'
47T »

< (2N 42K+ Tt Kg)e/ Qu)dv, +
>

which is, renaming e properly, what we desired. O
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Now we need another technical lemma, which relates the condition of spreading, needed for Lemma
3.23, and of concentration around a finite number of points.

Through this lemma, we can then use the improved Moser-Trudinger inequality to get information
about the concentration which occurs on sub-levels J - L

The following results will be extensions of the ones contained in [36, 59, (1] with suitable changes
to take into account the singularities.

Lemma 3.24.
Leti=1,2,wy >0, € >0 small enough, be such that any J C X satisfying wg;(j) < wy verifies

/ fiadVy <1—e.
Usper Be(an)

Then, there exist €',r" > 0, not depending on w;, J,K € N, {mq,...,my;} C {1,..., M} and

J+K .,
{x;}jzl satisfying

J
K+Z (1+o¢§mj) > wp, d(:c;-,pgmj) <2 <d (2, pi,) Vi=1,...,J+ K, m#my,
=1
Baow () N By () =0 V5 # 7. / fndVy > Vi=1,.. J+K (341)
Br’ a:;
Proof.

We fix ' = 15—0 and we cover ¥ with a finite number of disks {B,(y)}; with L = L, 5. Up to
relabeling, there exists a L' < L such that

/ fi,udVgZE:ze’ = I<L.
By () L

In fact, if none of the y;’s satisfied the above condition, this would imply

L
findV, < / FindV, < L' = ¢,
Jm=d ],

that is a contradiction if € < 1.
Now, select inductively the points {x;} C{y}E,: we set x} := y; and define

L/
0 o= | J{Bw(w) : Baw (1) N Baw (2}) # 0} C By ().
=1

If there exists y;, such that Ba, (y;,) N Bay (x)) = 0, then we set x, := y;, and define

LI
O = | J{Br(w1) : Bay (y1) N Bay () # 0} C By ().
=1

/
f and sets €2;.

APl Diny ) €ach s can have at most one of the pi,, at a distance strictly

In the same way, we find a finite number of points x

Ife < min
m,m’€{1,...,M; } ,;m#m/'

€
smaller than 27" < =, and each p/,_ can have at most one 2’ closer than 2r'; if it exists we call this
9 ) pzm J

point pgmj. Denote the number of points for which the 27’'-close point exists as J and the number
of points for which it does not as K.
Therefore, we get d (x;, pgm) > 2r' for any m # m;, whereas condition (3.41) holds by construction,
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J
so the thesis will follow by showing K + Z (1 + ozgmj) > wp.
j=1
Take now x; = pj,, for j € {1,...,J} and z; = 2 for j € {J +1,...,J + K} and suppose by

J
contradiction K + Z (1 +af ) = Wy (J) < wo. By hypothesis, this would imply

j=1 '
/ fim,dVg =€
E\Umkgj Be(zk)

However, since

L’ J+K J+K J+K

UBT/(yl) - U Qj C U Bs, (l‘;) C U B% (x;) C U Be(l‘k),

1=1 j=1 j=1 j=1 k€T
then we find

/ fiudVg < / fiudVg < / fiwdVy <(L—L')e <,
2\U,, e Be (@) S\UE, B (1) U /1 B (w0)

that is we get a contradiction, hence the proof is complete. O

This is the last step needed to prove Theorem 3.21. We see that, if J,(u) is very very low, then
either f ., or fa,, has all its mass concentrated around a finite number of points, depending on p;, a.

Lemma 3.25.
For any € > 0 small enough, there exists L > 0 such that, if u € J;;jp, then for at least onei = 1,2
there exists J C X satisfying 4wy (J;) < pi and

/ fdeg Z 1—e.
U

2L €T; Be(zk)

Proof.
Suppose by contradiction that the statement is not true. This means that there exist £ > 0 small
enough and {u"},en C H*(X)? such that Jyu, ,(u") — —oo and

n

—+o0

/ frandVy <1—c¢
Uqu €T Be(wir)

for any J1,J2 C ¥ satisfying 4rw,/ (J) < pi. Then, we can apply Lemma 3.24 to f;,» with
Pi '

wo = 5 we find &',7" > 0, not depending on n, K;, M; € N, {m;1,...,m;s,} C {1,..., M/} and
Ji+K; . .
{a}; }j:1 satisfying
Ji
an | K; + (1 + a;mij) > pi, d (xgj,pgm) >2r" Ym # myj,
j=1

Bo, (x;j) N Bo,.s (x;j,) =0 Vj#j, /B ) fiundVy >¢€" Vi

We can then apply Lemma 3.23 with § = min{e’, 7'} and Q;; = B, (zi;) to obtain an improved
Moser-Trudinger for the u™. Moreover, Jensen’s inequality yields

log / hie" dV, — / updv, > —C.
3 b))
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Therefore, choosing

J’.
. A - ,
€€ 0,2_123125 KZerZ(lJraimij) -11,

j=1
we get, for both 1 =1, 2,
47 Ji
e Ki+ Y (1+ah,) | —n>0
j=1
hence
—00
n<—:oo JA2’p(un)
4 J: ~
> - K+ (1 +a;mw_) — p; (log/ hae dV, — / u?dVg> —C
i=1 Te j=1 2y by
2 47 J:
> —C K; (1 / ) P G2
> O | e (K (M relny) | -
i=1 j=1
> -C
which is a contradiction. O

Now we have all the tools to prove Theorem 3.21 in the case of As.

To treat the case of By, G3 we need the following counter-part of Lemma 3.23. From this and
Lemma 3.24 will follow the counterpart of Lemma 3.25.

Since the proof will be similar to the one of Lemma 3.23, we will be sketchy.

Lemma 3.26.
Let 6 >0, K1, Ky € N, {Qu1. 112, {Qai 112, satisfy

d(Qik,Qikr)Z(S Vi=1,2, kj,k/ZL...,Ki,k‘;ékjl,
/ fiudVy > § Vie1,2,k=1,..., K.
Qik

Then, for any € > 0 there exists C > 0, not depending on u, such that

Ar K, (log/ e dv —/uldVg) +27 K> (log/ e*2dV, —/ungg> < (1—|—8)/ @B, (u)dVy,+C,
b b b 5 b
4
AT Ky <log/ erdV —/uldVg)+7rK2 <log/ e*2dV —/quVg) < (1—1—5)/ Qa,(w)dV,+C.
b b 3 b b b

Proof.
We apply Lemma 3.22 to fi 4, fo,., and we get {Qk}kK:ll such that

d(Qp, Q) >0 fiudVy >0
Qp
We then consider, for k¥ = 1,..., K7, some cut-off functions xj satisfying (3.32) and we split
w; — / u;dVy = v; + w; as in the proof of Lemma 3.23. As before,
b

log/ erdV, — / u;dV, < log/ e AVy 4 [Jvg]| oo (z) + C
b ) b
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and

[ vtawpav, < e [

2,

|Vw;|*dV, + C/ w?dV,.
Q
Using the elementary equalities

2> -y |yl 2P eyl 5 > [=[* | 37+ 2y[?
s Ty Ty T T Pl te oyt =t
we similarly get
w% wi1W2 ’U}%
/ Q32 (ka)dVg < (1 =+ 6) Q32 (w)dVg + 0575// —_— 4+ — + — dVg
> Q) o, \ 2 2 4
w2
/ Qa,(xxw)dVy < (1+¢) [ Qa,(w)dV, +Ce 5 / (wf +wiws + 32) dvy.
b o Q.

By the choice of v;, w; we have:

w?  wiw w?
C’E’(gl/ <21 n 12 2 4 42) dv, < 5/ Qp,(w)dV, < 5/ Qp,(u)dV,
Y Y Y

2
Ce,é'/ (wf + wiwz + U;f) dVy < 8/ Qa,(w)dVy < 6/ Qa, (w)dVy,
Y Y Y
/ Jw;|dV, < Emin{/ QBz(u)dVg,/ QGQ(u)dVg} + C.,
b s s

l|lvill Lo (30 < smin{/ QBQ(u)dVg,/ QG2(u)dVg} + C..
Y Y

At this point, for £k =1,..., K5 we apply Theorem 3.2 to yrw:

47 (log/ et dV, /uldVg> + 27 <log/ e"2dV, /quVg>
b b b b

4r log/ eXk 1 dVy + 21 log/ X2 L Ag|lu|| pee(ny + 27 ||v2 || Lo (z) + C
3 s

IN

IN

QB, (w)dV, + 5’/ Qp,(w)dV, + C.
o b

(3.42)

(3.43)

For k = Ko + 1,...,K; we apply the scalar Moser-Trudinger inequality (1.6). By (3.34) we get

again the integral of @p,:

4 <log/ e"tdV, —/uldVg)
N N

< 47T10g/6ka1dvg+47T||Ul||Loo(g)+C
P
1
< 1) IV6awPav; + [ Quwav, + 0
Q by
<

Qe (w)V, + ' [ Qu(waV, +C.
Q by

Putting together (3.43) and (3.44) we concluded the proof for Jg, ,.
The improved inequality concerning Jg,, , can be proved in the very same way.
When K > K consider, in place of (3.42),
x z- 2 2 2z + y|?
o oy WD ety

2
2| 1 3 S |z +2 -y +

3 12 4
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Proof of Theorem 3.21.
It suffices to prove the statement concerning JZ; o for small e.

3
We apply Lemma 3.25 with —. It is not restrictive to suppose that the thesis of the lemma holds

for + = 1, since the case ¢ = 2 can be treated in the same way. Therefore, we get J C X, and we

define
Oy = Z L0z,
rLET
where )
th = / frudVy + — f1udV.
B (ex)\US 2, Bg (1) TV, ,, s B

Notice that o, € ¥,, 4/ because, from Lemma 3.25 we find wy; (J) < p1 and the last inequality is
actually strict because we are supposing p ¢ I'.
To conclude the proof it would suffice to get

< e||9llLips) V¢ € Lip(¥). (3.45)

/ (Frw — o) BV,
>

In fact, following the definition of dp,;p, this would imply

duip' (fru Ep1,0r) < duip (fru ou) = sup
¢€Lip(B),|#llLip(s) <1

<e. (3.46)

/ (Fru — 00) 6V,
>

We will divide the integral in (3.45) into two points, studying separately what happens inside and
outside the union of the —-disks centered at the points z,,’s.
Outside the disks, for any ¢ € Lip(X) we have

/ (i — 7260,
NUe,er Bg (@)
- |/ fru6dV,
NUe,er Bg (@)
< @llre(m) / frudV,
zL €T B% (k)
€
< §||¢||Lip(2)- (3.47)
On the other hand, we also find
/ (fl,u - Uu)¢dvg
Uzper Be(@r)

/ Fru¢dVy — Y < / FraudVy+
U Be (k) Be (zx)\Upr_, B (zy)

zp €T €T
1

+ fLudVg) o)

|j‘ E\Urk/EJ B%(.’Ek/)

1

= Z (/ X fru(@ — ¢(zr))dVy — m fl,uqu¢(mk)> |

erneg \’Bs@\Up_, Bs (z1r) 2\U,,, eq B (@)
< Vol Y [ Frad(0)aV, 0l < + [ fiudV,

IN=NA g(wk)\Uﬁlzl B%(xk/) = ©, €T B%(£k’)

3 3
< IVl | F1adVy + S8l cs)

opreT B (@gr)

7



g 13
< gHvéf’HLM(z) + §||¢||Loo(z)

2
< geleliipe)- (3.48)

Therefore, from (3.47) and (3.48) we deduce (3.45), hence (3.46). O

3.5 Scale-invariant improved Moser-Trudinger inequalities

In this section we will prove a new kind of improved Moser-Trudinger inequality, which will be es-
sential for the analysis of sub-levels of the energy functional J, in the case considered by Theorem
3.5. Since we will only consider the As Toda system, we will omit the subscript A throughout all
the section.

The main difference with respect to the results proved in the previous section is basically the follow-
ing: in Section 3.4 we got improved inequalities under the assumption that f; , attains some mass
in a Bs(x) for some § > 0, but we did not really need to know how large or small § was; this led us
to call macroscopic such inequalities. On the other hand, here we want to get new information on
how fast f; ., concentrates around x.

To this purpose, we need a suitable definition of center of mass and scale of concentration. The idea
is taken from [61] (Proposition 3.1), but with several modifications which take into account that
we want to choose the center of mass in a given finite set F C 3 (which will be, in our application,
the set of weighted barycenter ¥,, o ). As in [01], we map the space A of positive normalized Lt
functions (defined by (1.12)) on the topological cone based on F of height &, namely

e = 22100 (3.49)

~

The meaning of such an identification is the following: if a function f € A does not concentrate
around any point x € F, then we cannot define a center of mass; in this case we set the scale equals
0, that is large.

Lemma 3.27.
Let F :={x1,...,xx} C X be a given finite set and A, Cs be defined by (1.12) and (3.49).
Then, for § > 0 small enough there exists a map ¢ = (8,¢) = (Br,sx) : A — CsF such that:

o Ifs(f) =4, then either/ fdV, > 8 or there exists ', 2" € F with 2’ # z" and
AN\Uzer Bs(@)

/ fav, > 6 / fdv, > 46
Bs(a') Bs(a")

o If¢(f) <9, then

/ fdVy > 6 / fdv, > 6.
Be(s) (B(f)) E\Bg(s) (B(f))
Moreover, if f™ :) 0z for some x € F, then (B(f™),s(f™)) I) (z,0).

Proof.
1 i x,x’ x z’d ) !
Fix 7 € (2,1>,take(5<mm weF wta A2, 7')

2

and define, for k =1,..., K,

k
I = dVy; I = dv, =1-— 1
o(f) /Bg(mf g o(f) /E\UmBm)f 1 ; W(f).
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Choose now indices E, % such that

L(f) = ke{mﬁfK}Ik(f) L(f) = I}?:%(Ik(f)'

We will define the map v depending on k and L(f):

e k = 0. Since f has little mass around each of the points z;, we set ¢(f) = ¢ and do not
define B(f), as it would be irrelevant by the equivalence relation in (3.49). The assertion of
the Lemma is verified, up to taking a smaller §, because

1
FAV, = Io(f) > )
/E\Uze; Bs(x) K+1

~ K
e k>1,L(f) < 1 _TT Iz (f). Here, f has still little mass around the point x; (which could not

be uniquely defined), so again we set ¢(f) :=J. It is easy to see that I;(f) >

1—71
K

, SO

1—7
v, > av, > —L > 4.
/Bé(z%)f g_/zag(%)f A
~ Kr

o k> 1,I(f) > 171'@(‘)‘). Now, Iz(f) > 7, so one can define a scale of concentration
-7
s (zg, f) € (0,6) of f around z, uniquely determined by

/Bs(m,;,f) o fdv, =r.

We can also define a center of mass 3(f) = 2z but we have to interpolate for the scale:

2K
— Case I(f) < 1 7—Ig(f): setting
T

1—71
K(l+7)

/ fav, = | AV, =7 >
Bop) (B(f) B, (o) (78)

we get s (7, f) < <(f) < &; moreover, I(f) > , hence

1—-7
fdvy > / fAV, > ——— >4
/E\B<<f'>(ﬂ(f)) T Sy T K(147)

— Case I;(f) > fﬁlz(f): we just set <(f) : s (7, f) and we get

/ fdv, =7>46 / fdv, =1-7>4.
By (B(F)) S\Be () (B(F)

To prove the final assertion, write (up to sub-sequences), (8oo,$00) = lim (B(f"),s(f™)).

n——+oo
For large n we will have

6 é
/ frav, < 3 / frav, < 3 for any 2" € F\ {z},
S\U,r e Bi(a) Bs (@)
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which excludes ¢, = 6.
We also exclude ¢, € (0,0) because it would give

/ v, >0 / v, > 6.
B%‘oo (IBOC) Z\Bg‘m (ﬁoc)

2

which is a contradictions since F N (A%o% (Boo)) = (.

Soo

Finally, we exclude B, # x because we would get the following contradiction:

/ frdv, > 6.
Bé(IBOC)

The number 7 in the proof of Lemma 3.27 will be chosen later in Section 3.6 in such a way that it
verifies some good properties when evaluated on the test functions introduced in Section 3.3.
O

The main result from this section is the following: we will prove that if both 51 = (2 and ¢; = ¢,
then J,(u) is bounded from below for a largest range of p.

Theorem 3.28.
Let 6,9 be as in Lemma 3.27 and define, for v € H*(X)?,
Bi(u) = Bs,, o, (f1u), si(u) =65, a0, (f2,u)

ﬂQ(U) = 52,)2&2 (f?,u)v Q(u) = S, a0 (f2,u)'
There exists L > 0 such that if

{ Bi(u) = Ba(u) = pm  with p1, p2 < 47(2 + a1 + a2m)
s1(u) = ca(u) ’

then J,(u) > —L.

A first piece of information can be deduced from the macroscopic improved inequalities. In par-
ticular, if the scale of concentration is not too small, Lemma 3.23 gives an upper bound with few
difficulties.

Corollary 3.29. Let 8;(u),s;(u) be as in Theorem 3.28.
Then for any &' > 0 there exists Ls: such that if ¢;(u) > & for both i = 1,2, then J,(u) > —Le.

Proof.
Assume first ¢;(u) = §: from the statement of Lemma 3.29, we get one of the following:

5
L4 / fl,udvg Z a)
S\ULL, Bs(pm) 2

0
) f1,udVy > —— for some p,, € £y, 4,
/Bmm) ST aM o

. / J1,udVy >4, f1,4dV, > 8 for some m’ #m”".
Bs(p1,) Bs (1)

Depending on which possibility occurs, define respectively

M
o Uy =3\ Bs(pm),

p=1
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° Qll = B(S(p’m)7
e Q11 := Bs(pm'), Q12 := Bs(pm~)-
It is easy to verify that such sets satisfy the hypotheses of Lemma 3.23, up to eventually redefining

i m m’d ms Pm’ . 1
MMz (P, P ) Notice that Lemma 3.23 still holds under

4
the assumptions of Theorem 3.5; all singular points are allowed ({pm,,---,Pm.;, } C {P15---,pM})

the map 1 with a smaller § <

J;
but the best constants are multiplied by K; + Z (1 — a;mij), since positive singularities do not

j=1
affect Moser-Trudinger inequality (3.1) In the first case, we have J; = 0,K; = 1, in the second
case either J; =0,K; =1or J; =1,K; =0 but p < 47(1 + a14,), and in the third case we have
J1=2,K; =0.
If & <¢(u) < d, then / f1,4dVy > 6, so we have one between:

E\ B (B1(u))

P
i / fl,udVg > -
S\UM_, Bs(x) 2

m=1

5
. / fr..dVy > 6, / f1,.dVy > —— for some p,,, # F1(u).
Bs(Br(w)) Bs(pm) 2M

° / fl,ud‘/;]-
Agr 5(B1(u))

Depending on which is the case, define:

M
o Q1 =3\ | Bs(pm)-

m=1

[ ] Qll = Bg(u)(ﬂl(u)), ng = B(g(pm)
o () = A&/,é(ﬁl(u))

Repeat the same argument for us to get similarly {291, and possibly 295. Now apply Lemma 3.23
and you will get J,(u) > —Lg. O

To prove Theorem 3.28 we will study the behavior of u around a small neighborhood of the center
of mass (8, we will need a localized version of the Moser-Trudinger inequality.

It can be deduced by the standard Moser-Trudinger inequality by arguing via cut-off and Fourier
decomposition, very similarly to the proof of Lemma 3.23.

We will give a version holding on the Euclidean unit disk, since we will use Theorem 1.18 which
holds in a Euclidean setting.

Lemma 3.30.
For any € > 0, a1, a € (—1,0] there exists C = C. such that for any u € H*(B1(0))?

2
4 Z(l + ;) log/ 2|2 et (@) dg — ][ ui(x)dz | < (1+¢) (u(z))dz + C,
i=1 B%(O) B1(0) B1(0)

(3.50)

A7(1+ aq) log/ |2t (@) g —][ up(x)de | + 27 log/ eu2(@)dy —][ ug(z)dz
B%(O) Bl(O) Aiyl(o) Bl(o)

< (1+5)/BQ(u(x))dx+C.
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Proof.
Consider a closed surface ¥ in which Bj(0) is smoothly embedded and a cut-off function x defined
on ¥ satisfying

0< X < 13 X|B%(O) = 1) XlE\Bl(O) = 07 |VX| < C.

We split u; similarly as the proof of Lemma 3.23, but using truncations in Fourier modes on
il (B1(0)): we take an orthonormal frame {¢"}>° ; of eigenfunctions for —A on il (B1(0)) with a

o0
non-decreasing sequence of positive eigenvalues {\"}°2 ;. Writing u; = / w;(x)da + Z ul o™,
B1(0) n=1

N
C
we set v; = E ul@™ for N := max {n eN: A" < } Such a choice gives
€
n=1

/ |w(z)|dz < ¢ (u(z))dz + C, lvill Lo (B, (0)) < 5/ Q(u(r))dz + C, (3.52)
B1(0) B1(0) B1(0)

/ Q(xw)dVy < (1+¢) (u(z))dz + C.
= B1(0)

Therefore, by arguing as in the proof of Lemma 3.23,

2
Z 1+ ay) log/ |2 et (@) dg — ][ u;(z)dx
B4 (0) B1(0)

1=

=

2
< 14+ a;)lo /d -, 0)2%eXWi vV + ||v; +C
2 (( ) log . (-,0) gt |L°°<B%(O)>>
2 1
< Y (e [xwavy+ - [ Qv+ [ Qs ) +o
P = 4 Jx, B1(0)
14+¢
< u(x))dx + C,
preal A (u(z))

which proves the first inequality.

For the second inequality, we consider two similar cut-off on B, (0) and A1 ;(0), respectively:

0<x' <1, XI|B%(O) =1, XI‘E\B%(O) =0 VX' < C,
0<x"<1, X'lay 0 =1, X'lsag L0 =0 Vx| < C.
We then argue as before, writing u; — ][ up(x)de = v1 + wy and ug — ][ ug(z)de =
B%(O) A%,I(O)

va+wo, With v1, v9 obtained via Fourier decomposition of —Aw on 2R (B% (O)) and H' (A%)l(O)),

respectively. In such a way, v; and w; can be estimated by means of s/ |Vuy|? as in (3.52).
B1(0)
For the terms involving uy, we suffice to apply to x’w; a scalar inequalities, much like in (3.40):

(I1+aq) log/ |22t e @) dg — ][ uy(x)dx
B

(0) B 3 (0)
16

1
8

< (1+a)l d(-,0)201 X w14y, C
T e N A
16
1
< (ran) [ udly o [ V0P ce [ Quuieds+
by T % B

(0)

Gke
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1

< — |Vu1(x)\2dx+5/ Q(u(x))dz + C
16 J5 4 0 B (0)
1 /
< LIt / Q(u(z))dz + C. (3.53)
47'(' B% (0)

As for ug, we want to localize the inequality (1.7).
Therefore, we study ug only on B1(0) and we apply (1.7) to (x"w2)|s, (0):

log/ 2@y — ][ ug(z)dx
A1 ,(0) As 41(0)

log/ ex/z(x)u;Q(r)d$+ H'UQH
B1(0) L”(A%,Am)

1
< / X' @wa(@)ds + — [ |V (@)wa(@))Pds + C
B1(0) 3 B1(0)
1
< L |Vu(x)|2dx+6/ Q(u(x))dz + C
8T Ja s ,(0) As L (0)
16’ 16’
1 !
< 1fe / Qu(z))dz + C. (3.54)
47T A%,I(O)

The conclusion follows by summing (3.53) and (3.54) and by applying Lemma 1.19 to replace the
two averages with the ones taken on Bj(0). O

The proof of Theorem 3.28 is based on the following two lemmas, inspired by [61].

Basically, we assume u; and us to have the same center and scale of concentration and we provide
local estimates in a ball which is roughly centered at the center of mass and whose radius is roughly
the same as the scale of concentration. Inner estimates use a dilation argument, outer estimates
use a Kelvin transform.

With respect to the above-cited paper, we also have to consider concentration around the boundary
of the ball, hence we will combine those arguments with Theorem 1.18 and Lemma 3.30.

Lemma 3.31.

For any € > 0, ay,ap € (—1,0] there exists C = C. such that for any p € ¥, s > 0 small enough
and u € H'(£)? one has

2
4r Z(l + ;) (log/ d(-,p)*“ie"idV, — uidVg> +8m ((1+0a1)*+ (14 a2)?) log s
P B (p) Bs(p)
< (149 / Qu)av, + C, (3.55)
Bs(p)

dr(l+ aq) <log/ d(~,p)2ale“1dVg _ ][ U1dVg>
Bg (p) Bs(p)

+ 27min{l,2+ a1 + s} <log/

A%,s(p)

d(-,p)**2ev2dV, — ][ uzdV,
Bé(p)
+ 47 (2(14 1)® + min{1,2 + a1 + a2 }(1 + az)) log s
1+ s)/ Q(w)dV, + C, (3.56)
Bg(p)
2

2#2min{1,2+a1 +as} (log/ d(.’p)QaieUid% _ uidVg>
As s(p) B (p)

i=1
+  4mmin {2 +a1+a, (24 a7 + a2)2} log s
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< (14¢) (w)dV, + C. (3.57)
Bs(p)

The last statement holds true if Bs(p) is replaced by Qs simply connected belonging to Ass (see
(1.8)) and such that B(%M)S(p) C Qs C Bs(p) for some § > 0, with C replaced with some Cs > 0.

Proof.

By assuming s small enough, we can suppose the metric to be flat on Bs(p), up to negligible
remainder terms.

Therefore, we will assume to work on a Euclidean ball centered at the origin: we will indicate such
balls simply as B, omitting their center, and we will use a similar convention for annuli. Moreover,
we will write |z| for d(z,p).

Consider the dilation v;(z) = u;(sz) for z € By. It verifies, for r € {;, i, ;}

/ ‘Z|2ai evi(z)dz — 8_2_26” / |(E|2ai6ui($)dx,

s rs

/ |Z‘2aievi(z)dz _ 87272% / |x|2ai6ui(w)d1’.
A, A

78,8

. Q(v(z))dz = /BS Q(u(x))dz, ]{31 v(z)dz = ]{B u(z)de,

s

To get (3.55), it suffices to apply (3.50) to v = (v, v2):

2
47TZ(1 + ai) (10g/ ‘x|2aiem(r)dx — ][ ul(x)dx + 2(1 + Oéi) log 5)
pr B B,

2

2
4 Z(l + ;) log/ |z)?¥ievi(®)dz — f vi(2)dz
Py By By

(1+9) [ Qu()dz+C

IN

IN

= (1+¢) /B Q(u(zx))dz + C.

1
For (3.56), one has to use (3.51) on v, and the elementary fact that ol < |2[?*2 < C on Ay

4r(1+ o) <log/B

+ 27min{l,2+4 a1 + a2} <log/
A

s

|,’L‘|2a1€ul(x)dm_][ ul(x)d$+2(1+041)10g5>
£

ofre v, a) ~

uz(x)da + 2(1 + a) log s)
B

§o

IA

1
8

dr(1+ ay) log/ |z|221ev1(*)dz —][ vl(z)dx)
B By
22)qV, (2) —

+ 27min{l,2+ a1 + a2} 1og/ ][vg(z)dz +C
A B

1
1!

IN

(+e) | Qu)dz+cC

_ (1+5)/B Q(u(x))de + C.
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Finally, (3.57) follows by Theorem 1.18:
2

271'Zmin{1,2 + a1+ as} <10g/
A

=1

|x|2°‘ie""’(z)dx —][
B

s

wi(x)dx + 2(1 + a;) log s)

s
bR

2

< 27erin{172—|—a1+a2} log/ e”i(z)dz—][ vi(z)dz | +C
i=1 AL, B
< (1+¢) Qv(z))dz+C
By
_ ﬂ+d/‘meWM+C.
BS
The final remark holds true because of the final remarks in Lemmas 1.18 and 1.19. O

Lemma 3.32. J
Foranye > 0, ay,as € (—1,0], d > 0 small there exists C = C. such that for anyp € &, s € (O, 8)

and u € H'(X)? with u;|pp,p) = 0 one has

2

2
47TZ(1 + az_;) 10g/ d(-,p)*¥ie*idV, + 4r(1 +¢) Z(l + ai)f u;dVj
Bs(p)

i=1 Azs.a(p) i=1
— 8n(l+e)((1+a1)*+ (1+az)?®)logs

< [ Quav,+e (w)dV, +C., (3.59)
As,a(p) Ba(p)
4m(1+ ay) log/ d(-,p)**re"rdVy + 4r(1 +€)(1 + aq) ][ urdVy,
Ass,a(p) B, (p)
+ 27min{l,2+ a; + as} <log/ d(',p)2a2e“2dVg +(1+4¢) ][ quVg>
As,45(p) B:(p)
— Ar(1+¢e) (2(14+ 1)® + min{1,2 + a; + e }(1 4+ a2)) log s
< / Qu)dV, + (w)dV, + C, (3.59)
As,a(p) Ba(p)
2
2y min{1,2+ a1 +aa) (log [ dlpprendly (14 £ wdy
i=1 As,25(p) J Bs(p)
— dr(l+e)min {24 a; + a2, (2+ a; + a2)’}logs (3.60)
< / Q(u)dVy +¢ (w)dV, + C.
As,a(p) Ba(p)

The last statement holds true if Bs(p) is replaced by a simply connected domain Qg belonging to
Ass and such that Bss(p) C Qs C B(2+l)s(p) for some § > 0, with the constant C is replaced with
5

some Cs > 0.

Proof.
Just like Lemma 3.32, we will work with flat Euclidean balls, whose centers will be omitted. More-
over, it will not be restrictive to assume ][ u;(xz)da = 0 for both i’s.

By
Define, for z € By and ¢1,c0 < —2(2 4+ a1 + aw),

(2¢; — c3—;)log s if z € B
vi(2) == U; (dszZ'Q) + (2¢; —c3—;)loglz| ifz€ Agqy
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111
By a change of variable, we find, for r € {8 T 2}

[ e Oa = [ e (i), = g [ e
As ra B ra

Aiyd
T

/ eui(z)dz ~ / |Z‘7472ai72ci+03,ievi(z)dz _ (d5)7272ai / |l"2ai eul(‘r)dl’
Ard,d Ard,d A, s

S5

Moreover, by Lemma 1.19, we get

]is u;(z)dx — ]{Bd v;(z)dz

< ][S u;(z)dx — ]éBS u;(z)dz| + fe;Bs w;(x)dz — ]in vi(z)dz| + ]id vi(z)dz — ]id v;(z)dz
= C / [Vu(z)Pdz +[(2¢; — c3-i) logd| + C [Vo(2)[2dz <

By
< / Q(u(z))dz + €' Q(v(z))derCd.

Concerning the Dirichlet integral, we can write

Vu;(z) - Vo (z)dz

Ba

EaCORAC) v ()
= —Vu; (ds—= | - Vu,; [ ds—= )| — (2¢; — c3_;)ds——= - Vu,; | ds—=
Lm<vw pz) Ve \ B )~ B )b Ve (A

z z (2¢; — e3-4)(2¢5 — c3—5)
- (2¢; — 63_j)dsW -V, <d8|22> + 22 4 22 ) dz

= [ V) Vu@de - Ga-a [
Ao Ag.a ||

x
— (26 —c3_ )/ —
! Y 2P
+ 27T(2(3i — C3—i)(2cj — Cg_j) logd

- V() - Vg (x)dz + 27m(2¢; — c3_4)
/.. /

0B

-Vu,(x)dz — 2m(2¢; — c3—i)(2¢; — c3—;) log s

uj(z)dr + 27 (2¢; — 03_j)][ u;(x)dx
0B,
— 27‘(’(26,; — C3—i)(2cj — Cg_j) 10g5 + Cd,

therefore, since v has constant components in By,
dz-/ Q(u dx+27chz][ x—ZW(c%—clcQ—Fc%)logs—i—C.
Asd

The assertion of the Lemma follows by applying Lemma 3.30 on By to v with different choices of
C1,C2.
If we take ¢; = ¢ca = —2(2 + a1 + a2), then we get

2
4 Z(l +a3,i)log/ |2 e (@) dg:

i=1 Azs.a

IN

2
4 Z(l + az—;) log/ 2|22V () dz + 2(1 4 a;) logs | +C
; By

2

2
< (1+¢€) : Qv(2))dz + 47 Z(l +a3_;) ]{3 vi(2)dz 4+ 167(1 + 1) (1 + a2)logs + C
a i=1 d
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IN

(1+€") / Qu(z))dz + &” Q(u(:v))dx

2

+ Ar Z(l + Oés—i) ][ ul(m)dx — 47‘((1 + 6”)(2 + a1 + 042) Z ][B ul(x)dx

s

+ 81 (2(14+ a)(l+az) — (L+£")(2+ ar + a2)?) logs + C
(1+€") / Qu(z))dz +&" [ Qu(z))dx
By

2

+ 47 Z(a +az_;)— (14" 2+ o +az)) ]{B w;(x)da

IN

+ 8T (2(14+ a)(l+az) — (L+£")(2+ a1 + a2)?) logs + C,

that is, re-naming ¢ properly, (3.58).

Choosing ¢; = —2(24 a1 + ag) and ¢o = —2min{1,2 4+ a3 + aa} =: —2m, we get

IN

IN

IN -+

_|_

+

+

47(1 4 a9) log/

Asgs,a

|Z|max{2+2a1+4a2,2a2}6v1(z)dz+27rmlog/ evz(z)dz
Aid
vl

|m|2"“e“1(”’)dx + 2mm log/ |w\2a26“2(w)dx
As,4s

4 (1 1
(1 + ag) og/Bg
Ar(2(1 + a1)(1 + a2) + m(1 4+ az)) logs + C
(1+¢€") Q(v(z))dz +47(1 + as) ][ v1(2)dz + 2mm 4 wva(z)dz
By By
47 (1+a2 1+a1)+m)10gs+0
(1+¢&") / Q(u(x))dz + £” Q(u(z))dz+47r(1 +a2)][

up (z)dz + 27rm][ ug(z)dx
B, B,

Ar(14+€")(2+ a1 + ag) ][ uy(z)dr —4n(1 4+ €")m ug(z)dx
OB OB,

dr (14 a2)(2(L+ 1) +m) —2(1+ ") (2 + a1 + a2)® = m(2+ o1 + az) + m?)) logs + C
(1+&") Qu(z))dz +&" [ Qu(z))dx

As.a By

dr((14a2) — (1+") (24 a1 + ag))]i uy(x)dz — 27 (1 + 2" )m f ug(z)dx

Ar((1+a2)(2(1 + 1) +m) —2(1+ ") (1 + 1) (2 + a1 + a2) + (1 + az)m)) log s + C,

namely (3.59).

Finally, taking ¢; = ca = —2m one finds (3.60):

2
27erin{1,2+a1+a2}1og/ 2P e (D g

i=1 As 2

2
27 Z m log/
i=1 A

(1+¢) i Q(u( dz—|—27rmZ][ 2)dz + 4mm(2 4+ a1 + az)logs + C
d

IN

4.4

" dz + 2(1 4 a;) log s) +C

IN

IN

1+ [ Qe +e [ Qupa sy ]{3 e

By

- 1—|—€”mz][ (z)dz + 47 (m(2+ a1 + az) — 2(1 +&”)m?) log s + C
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2

< (1+4¢€") . Q(u(z))dz + " . Q(u(z))dz — 27 (1 —I—25”’)mz]€3 w;(z)dx
d d i=1 s

— Ar(1+2¢")m(2 + a1 + az2) log s + C.

The final remark holds true, like in Lemma 3.31, because of the final remarks in Lemmas 1.18 and
1.19.
In particular, when integrating by parts, one gets

/ % -Vui(z)de = / u;(x) % -v(z)da,
Bs\ Qs || GIoR |z
—_———
=:f(x)
C C

<
§ |92

[ w2 [ ui(y)dy‘
[ i CCE . (i) ) dy

oi;suxm-iﬁ 1Awd4dx

C |V (x)|*dz
Q,

< e Q(u(z))dzx + C¢,

ﬁ%m@mﬁ&m@m

To prove Theorem 3.28 we also need the following lemma.
It basically allows us to divide a disk in two domains in such a way that the integrals of two given
functions are both split exactly in two.

with / f(z)de =27 and |f(x)] < , therefore, by the Poincaré-Wirtinger inequality
a9,

IN

IN

Q
and < 5/ Q(u(x))dx + C; by Lemma 1.19. O
Qs

Lemma 3.33.
Consider B := B1(0) C R? and fi, fo € L'(B) such that f; > 0 a.e. x € B for both i = 1,2 and

/ fi(z)dx z/ fo(x)dz = 1.
B B
Then, there exists 0 € S' and a € (—=1,1) such that

1
/ fi(x)da = / fa(x)da = 3
{z€B:z-0<a} {z€B:2-0>a}

Proof.
Define, for (6,a) € S' x (—1,1),

L(0,a) := / fi(x)da.
{z€B:x-0<a1(0)}
1

For any given 6 there exists a unique a1 (6), smoothly depending on 6 such that I;(0,a,(6)) = 3

Define similarly I5(0,a) and as(0).
Let us now show the existence of § such that a1(0) = a2(6) := a, hence the proof of the Lemma
will follow. Suppose, by contradiction, that a;(0) < as(6) for any 6. Then, by definition, we get

al(—¢9) = —a1(9) > _CLQ(G) = a2<—9),

which is a contradiction. One similarly excludes the case a1(6) > a2(9). O

38



Proof of Theorem 5.28. From Lemma 3.27 we have 8 € X, o N %), o,,¢ € (0,06) such that

/ FrudV, > 6, / FradV, > 6,
B.(B) S\ B.(B)

/ f2,udVg > 67 / f2,ud‘/g > 0.
B (B) T\ B (B)

Moreover, from Corollary 3.29, we will suffice to prove the Theorem for ¢ < 92— 45
We have to consider several cases, roughly following the proof of Proposition 3.2 in [61].

(o)

Case 1 : / fiudVy > = for both ¢ = 1,2, where ¢’ := 27 25.
A T2
<6 (B)

2
As a first thing, we modify u so that it vanishes outside Bs(5): we take n € [1, } such that
€

/ Q(u)dV, < e / Q(u)dVy
Azn,—15112n+15/(18) z

and we define u; as the solution of

—Au, =0 in Agn-15 9n+145(8)

u, = u; — ][ uw;dVy  on 0Bang (B)
Bansi(B)

U;’ =0 on 8Bgn+15/(6)

w;, verifies, by Lemma 1.20,

/ Qu)dV, < C/ Q(u)dV, < Ca/ Q(u)dVy.
Agn—14/ gn+15(B) Agn—14/ gn+15(8) )

We obtained a function for which Lemma 3.32 can be applied on Bs(5). This was done at a
little price, since the Dirichlet integral only increased by &; moreover, u’ and u coincide (up
to an additive constant) on B (8), which is where both f; ,,’s attain most of their mass.

1)
Case l.a : / fiudVy > = for both i =1,2.
Bs () 2

We apply Lemma 3.31 to u on By (s), with ; := i, for i = 1,2. From (3.55) we get
2 ~
47 Z(l + @im) log/ hie*dVy —
i=1 x Bs(8)

2
4w Z(l + Qim) (log/ hie®idV, — f uidVg>
i=1 Bs(8) Bs (8)

2
+ 87 ((1+ arm)? + (1 + azm)?) log % +47(2 + a1 + aom) log 5

4 Z(l + Qim) <log/;

+ 87 (14 caum)® + (1 + azm)?) log% +C

uidVg> + 87 ((1 + a1m)? 4+ (14 a2m>2) log %

IN

S
4

IN

(-, 5)2aime“idVg - uidVg>
®) B ()

<
4

IA

(1+¢) /B » Q(u)dv, + C. (3.61)
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We then apply Lemma 3.32 to u" on B;(83) \ Bs(8).

— 8m(l+4¢) ((1 + a1m)? 4+ (14 Oégm)Q) 1og =

2
4m Z(l + a3_im) log/
i1

IN

— 8n(l+¢) ((1 + a1m)? 4+ (14 azm) ) 1og 5 +47(2 + a1 + aom) log =

IN

4 Z(l + a3—im) log/

2
4772 14+ as—im) log/he idV, —|—47r1+521+ozm][ u;dVy
=1 B

=1 %(5)

2

2
hiet dV —|—4ﬂ'1—|—621—|—am][ u;dV,
=1

A, 5(8) Bs ()
2
5

2

2
d(-, B)** et dVy + dn(1+ ) Y (1 + ctim) f wdV,
i=1 Ag 50 (B) i=1 B

5(8)

— 87(1+2) (L+a1m)® + (14 azm)?) log 5 +C

IN

IN

/ Qu")dV, + 8/ Qu)dV, + C
As 5/(B)

Bs/(B)

/ Q(u)dV, + Ce / Q(u)dV, + C. (3.62)
Ag 51(B) =

By summing (3.61) and (3.62) and re-naming properly € we get J,_, (u) > —L for
pe = 4m(2 + oy + o) — €, which means, being € arbitrary, J,(u) > —L.

)
Case 1.b : / fiudVy > — for both i =1,2.
Ay ,s0(B) 4

The result follows arguing as before, still applying Lemmas 3.31, 3.32, but this time on
Bsc(B) and Az 5(8).

Case l.c :

1)
/ fLudVg > §a / fLud
By (®) Ase ()

P
/ fQ,Uthq Z 5 / f2 udV >
A5 (B) 2 Ac.1(B)

sS

> 0
~ 1
o
1

We still apply Lemmas 3.31 and 3.32, respectively on B (8) and A 5 (8), but this time
we will exploit (3.56) and (3.59): we get

IN

4r(1+ a1pm) 1og/ iNLle’“dVg 7][ urdVy
= B.(B)

27 min{1,2 + a1 + aom } log/ EgerVg - updVy
N Bs(B)

4 (2(1 + 1)? 4+ min{1, 2 + a1y, + o H1 + Oégm)) logs + C

471'(1 + Oélm) <1og/ d(.7ﬁ)2a1meu1d‘/g _ ulqu>
Bg B) B (B)

2w min{l, 24+ a1, + Ozzm} (10g/ d(.yﬁ)Qagmevndvg _ f u2dvg>
G B.(5)

4 (2(1 4 a1m)? 4+ min{1, 2 + a1 + aom H1 + a2m)) logs + C

(1+¢) Q(u)dv, + C, (3.63)
B.(8)
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and

47 (1 4 o) log/ Eleuldvg +4r(1+€)(1 4+ aim) ][ u1dVy,
= B.(p)

+ 27min{l,2+ a1, + @2} log/ Egervg +(1+ 5)][ urdVj,
b B;(p)
— Amr(l1+4¢) (2(1 + Q1)? 4+ min{1, 2 + aq,, + o H1 + agm)) log ¢

47 (1 + aom) log/
Asq,a(p)

IN

d(-,p)Qo‘lme“/ldVg +4r(1+&)(1 + a1m) ][B ) uydVy
<(p

+ 27rmin{l,2 4 a1;m + @2m} <log/ d(.’p)QazmeuédVg +(1+ 5)][ u'QdVg>
A Bq(p)

<,45(P)
— Ar(1+¢e) (2(1 4 aim)?® + min{1,2 + a1y + aom H1 + asm)) logs + C

< [ Quavre [ Quav e
A 51(B) Bs/ (B)

< / Qu)dV, + Ce / Qu)dV, + C, (3.64)
Agy(;/(,B) >

As before, J,(u) > —L follows from (3.63), (3.64) and a suitable redefinition of .

Case 1.d :
)

/ fl,udVg Z 57 / fl,udVg Z
Ai’,c(ﬁ) As‘As‘(ﬁ)

5
/ f2,udVg > 57 / f2,ud‘/g >
Bs () 2 Asg 57 (B)

Here we argue as in case 1.b, just exchanging the roles of u; and us.

e o

)

IR

1)
Case l.e : / fi,udVy > — for both i =1,2.
As 5.(8) 4

We would like to apply (3.57) and (3.60) and argue as in the previous cases. Anyway,
we first need to define 2. such that both components have some mass in both sets.

L
We cover Ag s¢(8) with balls of radius 6—1; by compactness, we have A s.(8) = U B (1),
=1

with L not depending on ¢, therefore there will be x;,, z;, such that/ fiudVy >
B& (Qﬁli

KB

4L°

We will proceed differently depending whether x;, and z;, are close or not.

Case 1.¢’ : d(x,,21,) > l
We divide each of the balls B
with 6; € S and a; € (

(21,), B< (2;,) with a segment {x : (x—xy,)-0; = a;},

S
64

), in such a way that

81
s s
64’ 64

1) 1)
v, > / v, >
/{wemwu»(ww”>-ei<ai}f’ (T R YR VI S

64

We can define €. as the region of Bs/(3) delimited by the curve defined in the
following way:

Since d (Bg (z1,), Bg (21,)) > Si’ we can attach smoothly one endpoint of each
segment without intersecting the two balls. We then join the other endpoint of each
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segment winding around f.
Since B (1,) C Ag 9¢(8), we can build Q¢ in such a way that 0% C A< 1045
and Q¢ € Asc (see (1.8) pictures below). Moreover, by construction,

/B(;/(ﬁ)\Q fzu g = 8 / fzu g = 8L

hence Lemmas 3.31 and 3.32 still yield the proof.

l.e” :d < —.
Case l.e (z1,,21,) < T .
: o o hie"t
Since B (21, )UB g (1,) C B s (1), we apply Lemma 3.33 to f; :=

Jp

(Ill ) TLZ evi dVg

5
64

to find € S, a € (— g) such that

5.5
64°" 64

/ i : / i i
{xEB%g(ml),(m—xll).9<a} udVy 2 8L {xEB%g(l‘ll)7(ﬂf—l‘ll).9>a} iudVy > 3L

We now join smoothly (and without intersecting the balls) the endpoints of the
segment {z : (x —x;,) -0 = a} with an arc winding around 3. Then, we define Q. as
the region of Bs/(8) delimited by the curve made by such an arc and that segment.
Since Bﬁ%g(a:gl) CAs  ¢.0c(B), as before we will have B (8) C Q¢ C Bio () and
Q. € Ase, and we can argue again as before because clearly

1) 1)
fradV, > 2 / fradV, > 2
/;y(ﬁﬂﬂg 77 8L o, ’T 8L

Figure 3.3: The set (), respectively in the cases 1.’ and 1.e”.

o
Case 2 : / fi,udVy > - for some i.
S\By (8) 2 5
It will be not restrictive to assume ¢ = 1. If we also have / foudVy > -, with
S\By (8) 2

8" : 2728, then we get J,(u) > —L by applying Lemma 3.23, as in the proof of Corollary
3.29. Therefore will will assume

)
/ f?,udvg > .
A s (B)
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The idea is to combine the previous arguments with a macroscopic improved Moser-Trudinger
inequality.
As a first thing, define u” as the solution of

_AU;I =0 in A2n716//72’"~+16// (6)
ul = u; — ]{g %) u;idVy  on 9Bansi ()

angs’’
U;/ = O on 8Bgn+15// (B)

2
with n € [1, J such that

/ Qu")dv, < C/ Q(u)dV, < C’a—:/ Q(u)dV,.
AQn—15//Y2n,+15/(ﬂ) Agn—15//12n+15//(5) 2

0
Suppose u satisfies the hypotheses of Case 1.a, that is / fiuwdVy > 3 for both 1 =1, 2.

A s (B)
Then, clearly (3.61) still holds, whereas (3.62) does not because we cannot estimate the

integral of / EleuldVg with the same integral evaluated over A s..

bl
Anyway, by Jensen’s inequality and Lemma 1.19 we get

1og/ TLleulldVg
AC,(;” (ﬁ)

> log / hie*dV, — udV,
A%”,(;//(B) 32"5//(6)
> f wdV, +log |4y 5, (9)] + F gl — fway
A%”’é”(ﬁ) 27 A%ﬂ,gu(ﬁ) Ban g (B)
>

75/ Q(u)dV, — C,
b))
hence we obtain

4 (1 + agm)][

widVy + 47 (1 + aim) log/ EgerVg
Bon s (B) =

2
+ 4dn(l1+¢) Z(l + aim)][ wdVy —8m(1+¢€) (14 a1m)® + (1 + azm)?) log%
i1 B (8)

< / Qu)dV, + Ce / Qu)dV, + C. (3.65)
g (®) 2

Now, by Jensen’s inequality and a variation of the localized Moser-Trudinger inequality (3.50),

4r <1—|— min 041m/) 1og/ iNLle“ldVg - / u1dVy,
ml#Em S\ By (8) by

2
< 47TZ (1,1—1— min aim/> log/ Eie”"dVg —/uidVg +C
im1 m'#m S\Bj (B) s
< (1+¢) / Qu)dVy + C. (3.66)
Z\B%(ﬁ)

By summing (3.61), (3.65) and (3.66) we get J,,_ p,. (u) > —L, with
Ple := 4mmin {2 + a1m + aom, 1 + aym + IIll;iéIl (1+ alm/)}e poe = Am (24 a1 mtaom)—¢,

therefore J,(u) > —L.

We argue similarly if we are under the condition of Cases 1.0, 1.b, 1.d, 1.e.
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The proof is thereby concluded. O

3.6 Proof of Theorems 3.2, 3.3, 3.5, 3.6

We are finally in position to prove all the theorems stated at the beginning of this chapter.
All such proofs will follow by showing that low energy sub-levels are dominated (see [10], page 528)
by the space X X’ or X" which is not contractible.

Lemma 3.34.

Let X be defined by (3.5).

Then, there exists L > 0 and two maps ® : X' — JXZL’p and VU : JXQL’p — X' such that ¥ o ® is
homotopically equivalent to Idx.

Lemma 3.35.

Let X' be defined by (3.10).

Then, there exists L > 0 and two maps ® : X' — J;,fp and U’ : J;;jp — X' such that V' o @ is
homotopically equivalent to Id .

Lemma 3.36.
Let X" be defined by (3.31).
Then, there exists L > 0 and maps

. " —L . 7—L " . " —L . "
Op, : X" =I5l Up,:Jg , =X, O, X" = Jgl, Vg, Jgk, = X

such that Up, o ®p, and Vg, o Pg, are homotopically equivalent to Idx.

Proof of Theorems 3.2, 3.5, 3.6 (first part).
Suppose by contradiction that the system (9) has no solutions under the hypotheses of Theorem
3.2.
By Corollary 2.17, J L'is a deformation retract of J f{gy p» Which is contractible for large L.
Let F(¢,s) : X x [0,1] — X be the homotopy equivalence defined in Lemma 3.34 and let F’ be a
homotopy equivalence between a constant map and Id Tik

N

Then F"(¢,s) = U(F'(®(¢),s)) : X x [0,1] — X is an equ1valence between the maps ¥ o ® and
a constant and F” x I is an equivalence between Idy and a constant map. This means that X is
contractible, in contradiction with Corollary 3.10.

The same argument proves Theorems 3.5 and the part of 3.6 concerning existence of solutions. It
suffices to use the homotopy equivalence from Lemmas 3.35, 3.36 and the fact that X', X are not
contractible, by Proposition 1.25, Remark 1.29 and Theorem 3.11, respectively. O

Such Lemmas give also easily the proof of multiplicity results.

Proof of Theorems 3.3, 3.6 (second part).
Under the assumptions of theorem 3.3, we can decompose each (v;) pi,a) 1N maximal strata

(W)prat = U M | ()M,

li=1 =1
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Take the set of initial data such that J, is a Morse function, which by Theorem 1.32 is a dense open

set.
P,
By the functorial properties of the homology, then H, (X) Ry H, (Jp_ L). Therefore, applying

Lemma 1.31 and Theorem 3.7 we get:

#Solutions of (9)

“+o0
> 3 b, (73k)
q=0
Hoo
> Y by (X)
q=0
oy Kuy o+ M|+ [ (K M|+ [ 242 |

S\ M [ M|+ [242)]

that is the thesis of Theorem 3.3.
As for theorem 3.6, we use Proposition 1.25 and Remark 1.29:

. - x(2) x(X)
#Solutionsof(l())z;rzogq (Jgjp)zzz(:)gq(?f")z KlerE@ﬁ | KTXE(zﬁ | ’

“+o0 “+o0
#Solutions of (1) > 35, (JgL,) = Dby (¥) =
q=0

q=0

To prove Lemmas 3.34, 3.35, 3.36 we will need a few technical estimates.
In the case of Lemmas 3.34 and 3.36, we need to consider the distance between f; ,, and the space
of (weighted) barycenters. The following Lemma gives some information in this direction.

Lemma 3.37.
Let o5,C, ®(C), B be as in Theorem 3.12.
Then, there exists C > 0 such that, for anyi=1,2, A >2, (€ X,

1
6H(0’1, /\(1 - t)) S dLip’ (-fL‘I”\(C)’ E[’l,ﬂ'l) S CH(O’l, /\(1 - t)),

1
6H(O—23 )‘t) < dLip’ (.f2,<1>’\(()5 Epz,gfz) < CH(UQ; At)a

with
tik

min 2,%} ’
ik €T; max{l, )\/} { 1+B;k

]{(O'i7 )\/) =

Moreover, if t <1 we have

! . /
fl,q>k(c) )\joo g1 = Z tlk(swlk,
1 €T

and if t > 0 we have

!
J2,87(¢) \To, 02 = Z ok 0y »
Tor €T

t,
for some t;;, verifying ék < th < Ctig.
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Proof.
It clearly suffices to give the proof for ¢ = 1 and for large A(1 — ¢t).
For the upper bound, we will show that

tik

1k €T ()\(1 — t))min{&ﬁ}

dip’ (f1,<1>k(c);01\) <C

with
P2

hy e~ 7 dV,.
Js (1+(a-)2d(: wlk)2(1+ﬁlk)) Rt

Z ti\kéxlw ti\k =tk

1k €T1 fZ hleSDl_Tdvg

From Lemma 3.15, given any ¢ € Lip(X) with |[¢[|rips) < 1 we find

‘/E (frer) —o1) 6dV,

1 —w -
= - h PY1—5 __ h tpl—Td A d
fz hlesol—%dvg 5 ( 1e /E 1€ VgUl) edV,
AL=02 [~ . e .
meﬂJﬂ2Ahw¢ 0- T thoten)
(AL —1)) i L
m / < ZE:JI e (A(L = 1))2d(-, 1) 20+51)) >(¢ 9(@1))dVy
< OC(A1-1)° / St I (¢ — d(a1x))dV
257 (T+ (A1 = 0))2d(-, 215)2(Hw))
_ Eld(Hxlk)
: 1 t Zt / (A(l - t))zd('7l‘l/’~c)2(1"‘/31k/))2dvg7

hence the estimate will follow if we show
hid T C
oa-o [ L)y < o
2 (L4 (AL = )% 2)(+9) (@ — gyl

for any x = w1k, 8 = Bik-
We easily find

B 2 Tlld(ax) L
(A1 —1)) /E\Bé(m) (1+ (A(1 _t))zd(.7x)2(1+6))2dv'q = (A1 —1))2’

on the other hand, using normal coordinates and a change of variable we get

(A(1 —t))"’/ udl, ) v,
Bs(o) (14 (A1 — 1))2d(-, 2)20+5))
B—a 8 2c
. A )y - A )Tl
PN Y,
Q=75 s O (1+ p20+9)°

where p = p!,,, a = af,, is the closest to z.
The last integral can be verified to be bounded from above by arguing as in the proof of Lemma
3.15. This concludes the proof of the upper bound.

To give a lower bound, it suffices to prove that, however we take o = ¢, there exists a 1 — Lip
function ¢, which satisfies

‘/Z (frer) — o) dodV,

1 t
252 L

1k €T ()\(1 — t))mm{z’ﬁ} .
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Precisely, we choose

¢ = min d(-, zp) ifo= Z trrOp,, -

x €T’
k T, €T’

It holds

’/E(fl,wc)—ff) PV

__r hie?= 7 — [ hie?~ T dV,o | ¢,dV,

fzﬁle‘”l*%d‘/y ) Y g 7
1

= — | he 7 ind(-, zp )dV,
fzhle“’l?dVg/ 1€ min (2 )dV,

A1—1)?% [~ er .
CM/ hief1™ 2 Irllcllnd(-,xk/)dVg

El ming d(-, xg)
k
€T ( +d( Z‘lk)Q(l"‘ﬁlm))Q

Vv
Q
>
~
|
N
e
=
S—

Again, it is easy to see that any single integral outside a ball Bs(x1 %) is greater or equal to constant
times (A(1 —¢))72
Therefore, since the number of k" is at most K = K (p1, ), we will suffice to show that any integral

on the same ball can be estimated from below with constant times (A(1 — t))71+131k . Arguing as
before,

iy ming d(-, 2x0)

2

dVy

2a
ming:-

1

y— (A1 =)z

>

. (A(1 — )Ty — (A(1 — #)) T p
/ dy.
B

1 2
C(A1—1t))T+5 0 1 2(1+8)
Ca-F s (1 -+ ly20+)
To see that the last integral is bounded from above, we restrict ourselves to a portion of a ball
where the minimum is attained by ' = z/. Since the number of &’ is uniformly bounded, for at

1
least one index the portion we are considering measures at least e of the measure of the whole

ball.

If we take 2’ = 2’* so that (A(1 — ¢)) T 2 goes to infinity, the integral will tend to +oo as well.
If instead the last quantity converges, we will get the integral of a function which is uniformly
bounded from both above and below, as in the proof of the upper estimates a few lines before.

To get the last claim, just set ¢}, := AILH;O t),. We have t}), ~ t;; because of the estimates proved in

Lemma 3.15. O
With the same argument we can also prove:

Lemma 3.38.
Let <I>B2, (I>)C‘,2 be as in Theorem 3.20 and suppose p € (4K 1m,4(K1 + 1)7) x (4Kam,4(Ko + 1)7).
Then, there exists C > 0 such that for any ¢ € (71)k, * (72)k, one has

1
Cmax{1,\(1 —t)} (fl ®3 (O ) = max{1, )\ 11—t}
1
Cmax{1,\(1 —t)} (fl (DGQ(O ) = max{l )\ 1—1)}
1
Cmax (1, ni} =4 (faoy, 00 (D)) < max{l N}
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1 C
< < — .
Cmax{1,\t} — d (f27q>é2(o’ (Z)K2> ~ max{1, \t}

Moreover, if t <1 one has

K
A / /
fl,@’éz(() N Ztlk@m f1,¢>g2 (©) o0 1
k=1
whereas if t > 0 one has
K>
r ! /
faey, © Aae 02 Zt2k61‘2k frey © Nt
k=1

A 7
for some t;;, verifying ék < th, < Ctig.
We are now in a position to prove Lemmas 3.34, 3.36.

Proof of Lemmas 3.3/, 3.56.
Take C' as in Lemma 3.37, g9 and 1; := Yp, o as in Lemma 1.27 and apply Theorem 3.21 with

€= %; take L = L, > 0 as in Theorem 3.21. Define ® := ®*° as in Theorem 3.12, with Ay such
that ®*(X) C J,* for any A > A.

Asfor ¥ :J ;S L — X, consider the push-forward (TI;), of the maps IT; = ¥ — 7; defined by Lemma
1.22 and

0 ifdy > ¢
e—d .
t/(d17d2) = m lf dl7 dQ <e€ WheI‘e dl - dLip/ (fi,lh (E)p“g;) N
1 ifd; > ¢
then, define

W(u) = () (V1 (frw)s (M2)w(P2(f2,u), ' (d1, d2)) -

First of all, ¢’ is well-defined and continuous, because on J Y L at least one of dy and ds is less than
€.

This map is well-defined as well because, from the construction of ¢, when 1, is not defined one
has d; > ¢ > ¢, hence t' = 1, and similarly t' = 0 when 1 is not defined.

Let us now compose the maps ® and ¥ and see what happens if we let A tend to +oo.

From the previous corollary, f; ¢x(¢) converges weakly to a barycenter o} centered at the same points
as 0y, and the same convergence still holds after applying ¢; and (II;)., since both are retractions.
However, the coefficients in o} are different from the ones in o;, and moreover the parameter ¢ in
the join will be different in general from ¢'.

Following these considerations, we will construct the homotopy between ¥ o ® and the identity in
three steps: first letting A to +oo, then rescaling the coefficients in o, and finally rescaling the
parameter ¢ in the join.

Writing @ (U*(¢)) = ((I1)« (¥72(€)) , ()« (¥2(¢)) ,#2(¢)), the homotopy map H : X x [0,1] — X
will be the composition F := Fj % (Fy x F}), where:

H«@@Mﬁm>ﬁ(mm@%@)mﬁ<?w0ﬁﬂ

By ((o7,05,t7),s) = ((1—s)of +s01), (1 — s)oh + s02), )
Fy: ((01,02,t™),s) = (01,00, (1 =)t +st)).

Let us now verify that the maps are well defined.
In the definition of the map Fj, Lemma 3.37 ensures that the retraction ; is defined if we have
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Ao(l—1t €
H | oy, % < EO. If the latter quantity is greater or equal to

defined, but in this case we have

%0, then 1 might not be

=00]
dy > dpip <f17¢lxos(0,2pl,a/l> > =5

hence t' = 1 and therefore everything makes sense. For the same reason we can compose 1, and t'.
In Hs, the convex combination of o), and o; are allowed in (v;) pi.a) Decause the centers of the Dirac
masses which define them are the same.

Finally, it is immediate to see that the composition makes sense because the last assertion of Lemma
3.37 yields Fi(-,1) = F5(-,0); it is immediate to verify and Fy(-,1) = F5(-,0), that F(-,0) = ¥ o ®
and F(-,1) = Idy, and that everything is continuous.

A very similar construction proves Lemma 3.36: we consider @%2, <I>é~2 in place of ®* and we use
Lemma 3.38 rather than Lemma 3.37 to verify the well-posedness of the homotopy equivalence. [J

To get Lemma 3.35 we will need some estimates on the scales of concentration ¢, ¢s.

Due to the different definition of the test functions ®”*, we do not have uniform estimates like
Lemma 3.37. Anyway, a suitable choice of 7 will give a large first scale of & for ¢ close to 1 and a
similar result for ¢.

1
Notice that no assumption have been made up to now on 7, except for being strictly between 3

and 1 (see the proof of Lemma 3.27). Its value plays a role only in this lemma, hence it will be
chosen here to let the following result be true.

Lemma 3.39.
Let & be as in Lemma 3.27, Bi(u),<i(u) be as in Theorem 3.28 and ® as in Theorem 3.16.
Then, for a suitable choice of T, there exists Coy > 0,8" € (0,6) such that:

1
Co b>3 A
. / /.
o [f eithert>1— ~ O 4 2 = 29 = pm , then 1 (<I> (C)) >0';
p1, p2 < 47‘&'(2—|—O&1m—|—052m)

otherwise, s (2'*(¢)) < § and B1 ("(¢)) = z1.

1
C t < 5
o If either t < TO or , then ¢ (®(¢)) > ¢';

Tl = T2 =:Pm
p1sp2 < AT(2 + o + o)
otherwise, < (‘P/A(C)) < d and B> (‘I’/A(C)) = T2.

Proof.

We will only prove the statements involving ¢; and fi ¢ (¢), since the same proof will work for the
rest, up to switching indexes i = 1, 2.

We will show the proof only in the case zo = pl,, p2 > 47(2 + a1/ + Qo ), which is somehow

trickier because ¢1 does not vanish when ¢t > 1 — 3

Let us write
o1 = (P00 +es) = (2107 = 2logmax {1, )2+ d( 20t L)

Y2 = (@;,(;m_t) + (pg\,tpm/> = (@;,(plm_t) -2 IOg max {17 ()‘td('aan'))2(2+alml+a2m/) }) :

C
From the definition of ¢;, we have to show that, if t > 1 — 70, then
/ f17@/)\(<)dVg <T vm//:17...7M.
B(;/ (pm//)
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It is not hard to see that, for any m” # m,m’,
/ f17q>//\(<)dVg S 0,5/2(14»0(17”//)7
B(sl (p'VYL/I

which is smaller than any given 7 if ¢’ is taken small enough.

Roughly speaking, fi /x(¢) cannot attain mass too near p,, because its scale depends on A1 —1)
A(1=t) .

which is bounded from above. Moreover, ¢7 ,,

is constant in B _2taimtany (Pm), hence for
(Aa-t)  Hem
large Cy

a 1
f1 o odV, < cc2Fean) A pm) 2 dV, < = < 7.
PAMOM g 0 g
B (2+o<1m+o<2m) (Pm) 2

B _ (CHaimtagry) (pm)
S, a1m S It+oim

On the other hand, a part of the mass of f; /2 (¢) could actually concentrate near P, but not all
of it. Here, we will have to take 7 properly.

Since
7 _ P2
/ hle“"l 2 dVg
Bs (Pmr)
2
A(1—t) ‘P;(l "
Je | #1m gm— | dVy 2.
< Ce d('apm’) tm dVg
B 2tay stay s (Pmr)
(A1) T+ ms
+ (M)~ 424y, +azm) / d(~,pm)72(2+o‘1m’)dVg
A 2tagitag (Pwr)
(At) Itay 0 %
+ ()\t) 4(240ry s g, ) / s Dt )QOézm’dV
Al s Pm/)
2
f <<pi\(1—t) P ;jmt)>dvg
< e = b 4(2+aypyr tagy,s )’
and
Iy _¥2
/ hle“’l 2 dVg
A%’g(pm/)
1 f <¢)\(1 t) k‘pé\(,:-mf)>dv
z 1,pm 2
> 66 ()\t) 4240ty g, ) / d(.7pm/)2a2m/ dVg
As 5(0m)
1 f (@i(l t) ‘PQ(P;Lt))dVJ
= Pm 2 9 _
> e ()\t) 4(2—|-<)¢1m/—i—o¢2m/)7
then

f35 (P01 f1 e ()dVy o2
f neydV, < <
/Bg(pm/) ot fgé(p e odVy 1+C’2

02
1+C?%’
Co

Let us now assume t <1 — N

Therefore, setting 7 := we proved the first part of the Lemma.

fBS (an) fl"i)»\ (C) dVg

JBst,y Frem0dVg
increases arbitrarily as A(1 —t) increases. Therefore, for large Cp, most of the mass of f; g/ () will

be around py,, hence by definition we will have and 1 (2*(¢)) = py and ¢ (2'*(¢)) < 4. O

From the proof of Lemma 3.19 (and of Lemma 2.23), we deduce that the ratio
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Proof of Lemma 3.55.

Take ¢ as in Lemma 3.27, 3;(u),s;(u) as in Theorem 3.28, §’ be as in Lemma 3.39 and L so large
that Corollary 3.29 and Theorem 3.28 apply.

Define @’ := ®* as in Theorem 3.16, with A such that ®*(X") C J; " for any A > A.

As for W' : J 20 — X', define

0" — ¢ (u)
20" — ¢1(u) — sa(u)
1

t'(c1(u), 2 (u)) =

and
' (u) = (Bi(u), B2(u), ' (s1(u), s2(u))) -

Let us verify the well-posedness of ¥'.

The definition of ¢’ makes sense because, from Corollary 3.29, J,(u) < —L implies min{c; (u), c2(u)} <
§'. Moreover, if ' > 0 (respectively, ' < 1), then ¢; < § is well-defined (respectively, co < J is
well-defined), hence f; (respectively, 33) is also defined.

Finally, ¥’ is mapped on X’ because, from Theorem 3.28, when .J,(u) < —L we cannot have

(B1(w), Ba(u), t' (c1(u), s2(w))) = (pm7pm7 ;) with p1, p2 < 47(2 + a1 + a2m).

To get a homotopy between the two maps, we first let A tend to 400, in order to get 1 and xo,
then we apply a linear interpolation for the parameter ¢.
Writing ¥ (®(¢)) = (87(C), 52 (), t"(€)), we have F = Fy x F1, with

Ao A

Fii(Cs) = (znaat)s) o ( RN <<>,t'%<<>>
Byt (21,22,79(0)) (21,22, (1 —s)t(C) +st) .

We have to verify that all is well-defined.
A

2o Co(1 — C
If we cannot define 8, ~°({), then by Lemma 3.39 we either have t > 1 — Gl =) 0

>1- W or we
0 0
are on the first half of the punctured segment. By the same Lemma, we get ¢ (<I>'>‘0 (C)) > ¢’ that

g

is 20 (¢) = 1. For the same reason, if B3 ° (¢) is not defined, then t**(¢) = 0, so F} : X’ x [0,1] —
Yp1.a, * Xpsy.a, makes sense.
Its image is actually contained in X’ because, from Lemma 3.39, if 21 = 22 and p < 47 (wa, () + wa, (2)),

1
then either 20 (¢) € {0, 1}, hence in particular it does not equal 3

Ao

Concerning Fs, the previous Lemma implies 5, °(() = 1 if t < 1 — =%(1 - s), hence in par-

ticular passing to the limit as s — 1, if £ < 1. A similar condition holds for £, which gives
Fy(-,0) = Fi(, 1).

If x; is not defined then #*°(¢) = 1, hence (1 — s)t'’*°(¢) + st = 1, and similarly there are no
issues when x5 cannot be defined. Finally, by the argument used before, if ;1 = zo = p,, and

p1,p2 < AT(2 4 arp + o), then (1 — s)t'2 () + st # 7 O
We conclude by giving the proof of Theorem 3.4, which is mostly a variation of Theorem 3.2.

Proof of Theorem 3./.
Due to the assumption ps < 47(1 4+ @omax), We can write

(V2) 2,0y = { > tambpy, c tom =0, > tom =1,47 Y (1 +ab,) < p}-

meM meM meM
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If this set is not empty, that is if agmax > @2, we can still consider " as in Theorem 3.12, since
again, by construction, d(vy1,p5,,) > & > 0 for any [ € {0,..., Lo}.

Therefore we have, as in Theorem 3.12, a map ® : X — J;L and, as in Lemma 3.34, ¥ : J;L - X
such that ¥ o ® ~ Idy. Hence, the sub-levels inherit the homology of the join, so existence and
multiplicity of solutions follow by the estimating the Betti numbers as in Theorem 3.7.

On the other hand, if agymax = min aos,,, then the set (’yg)p%a/2 is empty. However, d* can still be
pro o

defined on (71),, o by restricting the map in Theorem 3.12 to the end ¢ = 0 of the join. Since we
are just considering a restriction of the map, the estimates of the theorem still hold.

Moreover, being ps small enough, Lemma 3.25 can only hold for ¢ = 1, so in Theorem 3.21 we
must have f1, to be arbitrarily close to 3, ., as J, is lower. Therefore, we can define ¥ : JP_L —
Wl)m,g’l by U(u) = (II1)«¥1(f1,.) (with ¢ := Yp,,0q as in Lemma 1.27).

A homotopy map between ¥ o ® and Id(’n)pl,g/l is given by restricting to ¢t = 0 the map F' defined
in the proof of Lemma 3.34. Therefore, we can again deduce existence and multiplicity of solution
by estimating the number of solutions as in the proofs of Theorems 3.2 and 3.3. O

102



Chapter 4

Non-existence of solutions

The last chapter of this thesis is devoted to proving three different non-existence result for systems
(3). All these result are from the paper [13].

We begin by considering a simple situation: the unit disk of R? with a singularity at the origin, and
solutions satisfying Dirichlet boundary conditions. We find that, to ensure existence of solutions, p
must satisfy an algebraic condition which involves the same quantities defined in (2.2).

Theorem 4.1.

Let (BZ,go) be the standard unit disk, suppose h; = 1, M = 1 and let aq,...,an > —1 be the
singular weights of the point p =0 € B.

If p satisfies

A{ N},p = SWZ 1 +az Pi Z aijpip; < 0,

1,j=1

then there are no solutions for the system

|2o¢J eli

—Au; = Za”pjf|x|2%e“adx B (4.1)

u; =0 on OB

This result is proved via a Pohozaev identity, and extends a scalar one from [1] (Proposition 5.7).

With a similar argument, one can find non-existence for (3) on the standard sphere with one sin-
gular point or two antipodal ones. We get again necessary algebraic conditions of p, similar as
Theorem 4.1 but weaker.

It is still inspired by [4] (Proposition 5.8).

Theorem 4.2.
Let (Z,9) = (SQ,go) be the standard sphere, suppose hi,he = 1, M = 2, let (a11,...,an1) #
(12, ..., an2) be the weights of the antipodal points p1,ps € S?, with ajm > —1, and let Az, be
defined by (2.2).
If either

AIapl (,0) > A{l,..A,N}\I,pz (P) VIC {1’ R N} (42)

and at least one inequality is strict, or if all the opposite inequalities hold, then system (3) admits
no solutions.

The last result we present makes no assumptions on the topology of ¥ but it only works for the
SU(3) Toda system (9).
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In fact, its proof will use a localized blow-up analysis around one singular point, which in turn uses
the compactness theorem 2.16. This argument recall [20], Theorem 1.10.

Theorem 4.3.

Let Ty - a,; C R2, be as in (2.13), with az = (ai2,..., i) and let p € REG\T
12, ..., Q1M , Q22, . .., Qop be fized.

Then, there exists o, € (—1,0) such that the system (9) is not solvable for a1, a12 < a.. Moreover,
a, can be chosen uniformly for p in a given K € R2>0 \Ta,:a;

Q47,Q07 and

This result shows in particular that in Theorem 3.1 the assumption of having all the singularities
to be non-negative is sharp. In fact, the statement still holds true if we allow all the coefficients
12, ..., Q1 0, 22, . . ., Qg 1O be positive and only a1, a2 < 0.

This chapter is divided into two sections. The first contains the proof of Theorems 4.1 and 4.2, the
second contains the proof of Theorem 4.3.

4.1 Proof of Theorems 4.1, 4.2

Before showing the proof of Theorems 4.1, 4.2, let us compare such results with the existence result
proved in Chapters 2, 3.

We start by considering the case of the unit disk (B, gg) with one singularity in its center.

Even though it is not a closed surface, most of the variational theory for the Liouville equations and
systems can be applied in the very same way to Euclidean domains (or surfaces with boundary)
with Dirichlet boundary conditions. This was explicitly pointed out in [4, 9] for the scalar equation,
but still holds true for systems, in view of Remark 2.28.

We can extend both Theorem 2.1, to get minimizing solution for Liouville systems on any Euclidean
domain, and Theorems 3.1, 3.2, 3.5, 3.6 can be extended, for the case of (9), (10), (11), to get min-
max solutions.

Theorems 3.1, 3.2, 3.6, which require the surface 3 to have non-positive Euler characteristic, also
give existence of solutions on any non-simply connected open domain of the plane, because such
domains can be retracted on a bouquet of circles.

It is interesting to notice that multiplicity results cannot hold in the same form because, for instance,
a twice-punctured disk retracts on a “figure-eight”, but does not on two disjoint ones. Anyway,
retracting on a single circle avoids issues for the purpose of existence of solutions.

From Theorem 4.1 we see that, whereas Theorem 2.1 gives existence of solutions for p in the bounded
region {A > 0} (colored in orange in Figure 4.1), solutions cannot exist outside the bigger bounded
region {A{L,_?N}’p > 0} (colored in blue).

For the case of the SU(3) Toda system, Theorem 3.5 gives min-max solutions in the configuration
(My, Ma, M3) = (1,1,0), namely on the green rectangle (p1, p2) € (Adr(1+a1),p1) X (dn(14+az), py)-
Something similar also holds if a; = ag = 0, that is if we consider the regular Toda system. Here,
arguing as in [61], we still have solutions in the second square (47, 87)?, because we get low sub-
levels being dominated by a space which is homeomorphic to R® \ R? ~ S2. This was confirmed in
[50], where the degree for the Toda system is computed and in this case it equals —1.

Figure 4.1 shows that there might not be solutions in each of all the other squared which are de-
limited by integer numbers of 4. In particular, this shows that the degree is 0 in all these regions.

Proof of Theorem 4.1.
Let u = (u1,...,un) be a solution of (4.1). Since both components vanish on the boundary, then
for any « € 0B one has Vu;(z) = (Vu;(z) - v(z))v(z) =: d,u;(z)v(x) for all i’s.
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Figure 4.1: Values of p which yield existence and non-existence results for (IB%Q, go).

Therefore, one can apply a standard Pohozaev identity:

N ..

Z a” Oyu;0,ujdo

ij—l OB

-Vu;

= 2 ”/ <8u8u J)d(f

”231 OB v 2
= 22 ”/x Vu,(x))Au;(x)dz

1,j=1

= —-92 I R— -V, 2 pui(x) q
Z fma |x\2aleul ) do /IB(I ui(z))]z** e x
Jop |- P¥ietido )
= 4> pi ( : +1+ai).
; f]B |(L‘|2a‘€u"($)dl’

For the boundary integral, take a orthogonal matrix M = (m;;); j=1,... n which diagonalizes A_l,
N 2
namely such that Z avxx; = Z Ai Zmijxj , for positive Aq,..., An.
i,j=1 ; j
By performing an algebraic manipulation, using Holder’s inequality and then integrating by parts
we get

N ..
Z a% Oyu;iOyu;do

ig=1 7B

> ;T;/\Z /6)]32771,]8 u;do

= 1§:aij( 8uda>< 8udo’>
27rij:1 o ’

= LN (/Au dx)(/Au dx)
27T Pt ! I

- ;ﬁi;aijpipj.
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Therefore, we get as a necessary condition for existence of solutions:

Jop | -1**e" do -
Z aiipip; > 87‘(‘2[21 e+ 14 ) >8n Z(l + ;) pi-

i,5=1 fIB || evi () da i=1

This concludes the proof. O]

Let us now consider the standard sphere (SQ, go) with two antipodal singularities.

In Theorem 4.2 we perform a stereographic projection which transforms the solutions of (9) on
S? on entire solutions on the plane, and then we use a Pohozaev identity for the latter problem
(Theorem 1.21), getting necessary algebraic condition for the existence of solutions.

We get non-existence of solutions for the parameter p belonging to some regions of the positive
orthant.

In particular, if we consider the SU(3) Toda system and compare Theorems 4.2 and 3.1, we see
that, to get such a general existence result, we need to assume that x(X) < 0, not only that a;,, >0
for all i, m.

On the other hand, considering Theorem 3.5, we see that, in most of the regions where we the
variational analysis gives no information, system (9) may actually have no solutions.

As before, regions where no solutions exist are blue, regions with minimizing solutions are orange
and regions with min-max solutions are green.

i —

Figure 4.2: Values of p which yield existence and non-existence results for (82, go), in two different
configurations of aq1, s, o1, o

Proof of Theorem 4.2.
Let u = (ug,...,un) be a solution of

el 1 1 1 .
Za”pj ( e“JdVgo 47r> —47oy (5,,1 — 477) —4moyg (5p2 - 47r> 1=1,...,N,

and let IT: S?\ {p2} — R? the stereographic projection.
Consider now, for z € R?,

N
1
Us(z) := u (H_l(x))+log(4pi)—log/ e AV, —2a;1 log |z |+ y Zaijpj — a1 — g | log (1+z)?).
s2 ;
Jj=1
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U= (Uy,...,Uy) solves
N
—A(]z = Zainjer
j=1 with H(x) :=
H;(2)eY @ dx = p;
R2

x|20¢i1

(1 + |a|2)2 o tai = Dol aiips

We are in position to apply Theorem 1.21, hence a necessary condition for existence of solutions is
(1.10).
By the definition of Hy, ..., Hy, we have

N

1 |z

€T - VHZ(I') = 2ai1Hi(l‘) -2 2+ i1+ ain — In j;aijpj T+ |1‘|2HZ($)

for both i’s, hence we get
1§ d
—_— . J— . . —_ — .. . / j /  — R .
T =201 — 2 | 2+ a1 + ayo y ; aijp; | T with T = /R2 T ‘x|2Hl(a:)dx.

Therefore the necessary condition (1.10) becomes

N N | X

”z:;a]ppfr W; + i1 + aio 4ﬂ;am 7= (1 +an)p (4.3)

N
1
Since 0 < TZ-/ < pi, one can discuss the cases 2 + ay1 + ;o é o Zaijpj and see, by tedious but
j=1
not difficult algebraic computation, that (4.2) and their opposite inequalities are in contradiction
with the aforementioned necessary condition.

N
1
Notice that if 2 + a;1 + aye = y Zaijpj for all ¢, then (4.3) just becomes Agy . Ny, (p) = 0.
i=1

Anyway, one can easily see that these two conditions are equivalent to Az, (p) = A1, NP\Zps (P)
for all Z; this is the reason why we need to assume at least one inequality to be strict.

4.2 Proof of Theorem 4.3

We will prove Theorem 4.3 by arguing by contradiction, following [20] (Theorem 4.1).

Basically, we will assume that a solution exists for some a7y, a]s — —1. We will consider such
n—-+00

a sequence of solutions u", we will perform a blow-up analysis, following Theorem 2.4 and we will
reach a contradiction.

Proof of Theorem 4.35.
Assume the thesis is false. Then, for some given a,7,57,0 € Ta 50,7
(afy,ah;) — (—1,—1) and a sequence u" = (uf,u}) of solutions of

there exist a sequence

n—-+oo
hheut hievs
Js hireridV, Js hieddVy
~neu;‘ Tlnefuf ’
—Aug =2p; . - P !

L —°
[y hpeav, [y, hirevi v,
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with E’f,ﬁg such that E? ~ d(-,p1)?*1. Tt is not restrictive to assume

/E’fe“?dVg = / %Se“gdvg =1.
b b

We would like to apply Theorem 2.4 to the sequence u".
Anyway, since the coefficients o]y are not bounded away from —1, we cannot use such a Theorem
on the whole ¥, but we have to remove a neighborhood of p;. This can be done with suitable
modifications, as pointed out in Remark 2.28. A first piece of information about blow-up is given
by the following Lemma, inspired by [20], Lemma 4.3.

O

Lemma 4.4.
Let 6 > 0 small be given and u™ be as in the proof of Theorem 4.3.
Then, ul,ul cannot be both uniformly bounded from below on OBs(p1).

Proof.
- . n . n._ 2uy +ug
Assume by contradiction that 8Bln(f )ui > —(C for both 7’s and define v" := —3
s(P1
Then _
—Av" = py (h’fe“? — 1) > —p; in Bs(p1)
" > —C on 0Bs(p1)

By the maximum principle, v" > —C on Bj(p1), therefore by the convexity of the exponential
function we get the following contradiction:

“+00
- / d(7 p1)2 max{aﬁ,agl}dv
n—+oo Bs(p1) !
S C d(, p1)2 max{a?l,ozgl}ev" dvg
Bs(p1)
2 n n n 1 n n n
< cl|= / d(.7p1)2max{a11,a21}6u1 dVg + ,/ d(.’pl)QmaX{au’O‘zl}e“'z d{/g
3 JBs(m) 3 JBs(p)
< C / Re"i dV, + / hie": dv,
Bs(p1) Bs(p1)
< C.
This concludes the proof. O

Proof of Theorem 4.3, continued.

Let us apply Theorem 2.4 to u™ on := %\ B; (p1) for some given small § > 0.

By Lemma 4.4, boundedness from below cannot occur for both component, therefore we either have
Concentration or (up to switching the indexes) u} A uniformly on ¥\ Bs(p1). In other

—+00
words,
N’fe“? ~§Le“3
PlT - Zal(x)(sx Pzﬁ — f2+202($)5za
fZ hl et dvg Y\ Bs(p1) norteo €S fE h26 2 d‘/g Y\ Bs(p1) notee zeS

where we set S = () if Concentration does not occur. Anyway, being § arbitrary, a diagonal argument
gives
nouy

> o1(2)da+01 (p1)p, —2 = ot Y oa(2)datoa(p1)dy,

E'izeui‘
P2 ﬁn u"d n—+oo
zeS Js hieddvy zeS

Pl
Js hrevidV, noteo
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with o1(p1) = p1 — Z o1(x) and oa(p1) = p2 — Z oo(x) — /2 f2dVj.

€S €S
By arguing as in the proof of Theorem 2.9, we get

o1(p1)? — o1(p1)o2(p1) + o2(p1)? = 0,

that is o1(p) = o2(p) = 0.
In particular, we get p; = Z o1(z), which means either p; = 0 or p € I'y . o,. This contradicts

zeS
the assumptions and proves the Theorem. O
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Appendix A

Appendix

A.1 Proof of Theorem 1.32

We will prove here the density result stated in Chapter 1. It will be mostly and adaptation from
the proof given in [32] for the scalar case.

The proof will consider only the SU(3) Toda system with M?(X), since all the other cases can be
treated in the very same way.

Theorem 1.32 will be proved by applying to the suitable objects the following abstract transversal-
ity result. The same argument was used, other then in [32], also in [62] for a higher dimensional
problem with polynomial nonlinearities.

Theorem A.1. ([66])
Let X, Y, Z be Banach spaces, U C X,V CY be open subsets, zo € Z and F: V xU — Z a ck
map, for k > 1, such that:

e VyeV, F(y,) : x — F(y,z) is a Fredholm map of index l, with | < k;
o The set {x €U : F(y,x) =0, y € K} is relatively compact in U for any K € V;

o 2y is a reqular value of F, namely F'(yo,w0) : Y x X — Z is onto at any point (yo,xo) such
that F(yo,xo) = 20-

Then, the set
D:={yeV: z is a regular value of F(y,-)}

is a dense open subset of V.

As a first thing, let us introduce the space S?(X) of the C? symmetric matrices on X.
To define the norm of this space, take an open coordinate neighborhood {Uy, ¥4 }aca and denote
by {gij}i j=1,2 the components of any g € S?(¥) with respect to the coordinates (x1,22) on Uy;

then, define
lglls2 == 3 s
acA,|B<2,i,j=1,2 Ve (Us)

32927'
O 9

Such a space can be proved to be a Banach space, as well as the space of the symmetric C* I-
covariant tensors on a n-dimensional manifold, which can be defined in the same way.

We then define M?(X) C S?(X) as the open subset containing all the positive definite matrices.
We similarly define S?(¥) C S%(X) as the closed affine subspace of the metrics g such that
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/ dVy =1 and M3(X) as its open subset of positive definite matrices.
b

Before proving Theorem 1.32, we notice that the property of being a dense open set is local, namely
D is dense and open if and only if, for any x, D N Bs(x) is dense in Bs(x) for some 4.
In view of this, we fix gg € M%(2), ho = (h1,0,ha,0) € C24(X) and take § so small that

Gs :=1{9€8%(D): g — golls2(x) < I} € M2(%), (A1)

Hs :={h = (h1,h) € C*(2)* : ||h1 — haollc2) + 1he — haol
Then, we just consider (g, h) € Gs x Hs.

c2(x) < (S} C Ci()(Z) (AQ)

We will now define the objects for which Theorem A.1 will be applied.

For any g € Gs we will consider the spaces H, ;(E), Li(%), with the subscript underlining the
dependence on the metric. Anyway, by the smallness of §, they will coincide respectively with
H, (%), L% (2).

Moreover, unlike in all the rest of the paper, such metrics will not give, in general, the surface area

of ¥ equal to 1; therefore, we will write ][ fdVy to indicate the average of a function f € L;(E)
by

and we will write / dVj for the area of .
b

We define, for g € Gs, the operator A, : Lfm 2 — H;U (X) as the adjoint of the embedding
H)(S) < L%(2), namely

(Agu, v)pi(s) = / Ve(Agu) - VyudV, = / uwdVy =: (u,v)r2(s), (A.3)
b by

for any u € Lzo (®),ve HglO (X). From Sobolev embeddings, the domain of A, can be extended to
Ll (%) for any ¢ > 1.
Such an operator depends regularly on g:

Lemma A.2. ([02], Lemma 2.3)

Let ¢ > 1 be given, A, be defined by (A.3) and L (LgO(E),Hglo(E)) be the space of linear operators
between L{ (¥) and Hgl0 ().

Then, the map A : g — A, is of class C* from Gs to L (Lgo (2), Hglo(Z)).

Concerning Hs, it is convenient to observe that the presence of the singular points p,, does not
really affect this analysis.
In fact, the map h — h, defined by (4), is linear and continuous from C*(X) to L(X), for a suitable

[FRE N R 2 R

q > 1. Therefore, assuming h € H;s will imply o)

La(x)
Take now R > 0 such that all the solutions of (9) in F;O(Zf are contained in B := Bg(0).
Theorem A.1 will be applied to X := Z := H, (%), Y = SX(£)xC*(%), U := B, V = Gs x Hs, 20 =
Oand F :Gs x Hs x B — F;O(Z)Q defined in the following way.

Consider the map S, : ﬁ;g (%) = F;(Ef

Sy(ur,ug) := (S;(ul),S’g(ug)) = <u1 — ][ urdVy, ug — ][ ungg> ,
) b

. -1.7 2 7l 2.
and his inverse S, : H  (¥)* — H, (¥)™:

Sg_l(vl,vg) = (S'g_l(vl),S’g_l(vg)> = (m — ][EvldVgo,vg — ][EvnggO> ;
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define F, : Hs x B — F;(E)Q by

ur = Ag | 201 AECCE S B C N S
Fy(h,v) == Jshenavy 5 dVy Johaer2dv,  JydVs |
v2 — Ag | 202 zLQsz - ! — P jllevl - ! + u2
s haer2dVy 5 dVy [ohienndV,  [zdVg
finally, set
Fg,hu) =8, (Fy(h,S,(w) (A4)

Such an application of Theorem A.1 would actually prove Theorem 1.32.

In fact, 9, F (g, h,u) : F;U — ﬁ;g is invertible as long as F'(g, h,u) = 0 is equivalent to saying that
all the solutions of (9) belonging to B are non-degenerate, and B is chosen so that it contains all
the solutions. Theorem A.1 states that this condition holds on a dense open subset of G5 x Hs.
Therefore, we just suffice to show that the three hypotheses of Theorem A.1 are satisfied, that is
to prove the following three Lemmas.

Lemma A.3.
Let Gs be as in (A.1), Hs be as in (A.2) and Fy as in (A.4).
Then, for any (g,h) € Gs X Hs the map u > F(g,h,u) is Fredholm of index 0.

Proof.
We will prove that u — F(g, h,u) is a Fredholm map of index 0. In particular, we will show that

0uF (g, h,u) can be written as Id (=)~ K for some compact operator K.
90

We can write
_ S/g71 (S;(ul) - Ag (2p1K1’u
Sg ) = Ag (

—1

with K, : H,,(X) = LI(X) defined by

iNLie“iwi fE Eie“idVg — Eie“i fE iNLZ-e“f‘widVg

(fz ﬁieuidvgy

Ki,u(wi) =

Take now {w" = (w}, wy)}nen bounded in F;O (£)? and converging to w = (wy,ws) in L’g’(Z)2 for

any p < +00.

By the continuity of S,, Sy(w) is bounded in F;O(E)Q and Sg(w™) e Sg(w) in any LSO(E)z;
n 3 >3 -1 n

therefore, A (S (w}")) el Ay (S,(w;)) in Hy (3)? for both i’s, hence S', " (Ag (S}, (w]"))) —

n—+oo
-1 .
S’y (Ag (Sh(wy))) in Hy ()%
Similarly, by the continuity of S;l and Ay, we will suffice to show that K; ,(wj") — K;.(w;) in

n—-+oo

LT (%) for some ¢’ > 1:

||K’L,u(w1n - wl) HLZI(Z)
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E_eui w; — wn theul theul (wn _ ,wl)
H e (wi = w) L7 (2) Ly (%) ’ LL(D)
= ~ ~ 2
Hhie“t 1 ‘ haets
Ly (%) L1(%)
|# e
hie lwl —w;i|| e ‘ hiet wit — wj; /
7 7 qq” ? ’ k3 7 q
< L§(%) Ly~1(%) L (%) L (=)
= ~ — 2
‘ h;eti theul
L (%) LY(D)
— 0
n—-+o0o

Remark A.4. _
The very same argument used in the proof of Lemma A.3 also shows that v — 0,Fy(h,Sq(u))[v] is
also a Fredholm map of indez 0.

Lemma A.5.
Let G5 be as in (A.1), Hs be as in (A.2), Fy as in (A.4) and B as before.
Then, the set

{ueB: F(g,h,u) =0, (g,h) € K}

is relatively compact in B for any K € Gs X Hs.

Proof.
Take {¢g",h" }nen C K and u™ € B. Up to subsequences, we may assume g" —+> g in S*(¥) and
n—-+0oo
h" oy h in C%(X)? for some (g, h) € K, and u™ T Y in Lg(2)2 and LY ()? for all ¢ < +oo.
n—+o00 n—1+00
To prove the Lemma we will suffice to show that, for both 4 = 1,2 and some ¢’ > 1,

n—-4oo

Rnedd hee% in LY W AVm Tt
hile"s — he" in Li (%), /Zhl dv, n_}—+>oo/2hle dvj. (A.5)

In fact, from this we would get that

) hped 1 e LY
P1 e — — — P2 2 . un
= Js hj{leul dVgn fE dVn Js hgeuz dVyn fz dVgn
2p hgets L p pet LI
2 ~— - — e B "
fz hye'zdVyn Js, dVgn fz heut dVyn Js dVgn
converges in Lg; (£)% to
2p Eleul 1 P 7126“2 1 .
1 = - — Py i _ )
= Js fnerdvy J= Y s haet2dV, JedVy
hoe2 1 hiett 1
2p2 + uso

S haevzav,  [5dVy Jsenav,  JsdVy

Since, by definition u™ = Agn (f"), setting u := A4(f), by the continuity of A, and Lemma A.2 we
get:

[[u™ — U||H;O(z)2
< A (F7) = Ag(f) Iy (292 + A6 (F") = Ag (Pl ()2
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= ||Agn — AQHE(LZL (E),H;O(E)> anHLgO (£)2 + 0(1)

IN

”A/”E(Q(;,E(LZ/O(ELH;()@))) 19" = 9lls2 2y 17" g, (2 + 0(1)

— 0.
n—-+oo

5 ; N 7 q in L4
To prove (A.5), notice that h WS h and L{(¥) in LI (¥).

Moreover, from Lemma 1.13 (see also the proof of Lemma 1.23), any u € H;(E) verifies

2
/ eIV, < b F Vot B [ IV ulPaV o oo
b

and the same holds if it is replace by a sequence which is bounded in F;(Z). Therefore,

i
/ epui
b

p
av,

e — i

n p
et -] ay,

< / el |ult — u;l? eplu?_“ildVg
>
1 1 1
) 3 3 3 plul —u| 3
< ePUidy, uf — ;| dV PPl —uilqyy
b > >
— 0.
n—-+oo

From this estimate, we deduce:

/ Bt AVyn — / hie®dV,
b)) 2

< / Bt AVyn — / hl "?dvg‘ + ' / Bt AV, — / Eie"?dvg‘
b3 b b b3
+ }Nlieu;LdVg —/ﬁie"idVg
b b
< 0(1)+’%?7Ei le“ || _a. Jr‘N? ev — et || o
Lg(%) L™ () Lg(%) L3~ (%)
— 0,
n—-+oo
and
’ E?e“? — hyet ,
Li (%)
o [rer—ine, +[ite —hen
Li,(2) Li, (2)
S S 3 R
LGy (%) L;?F ) Lo (%) L;ﬁf‘?(E)
— 0,
n—-+oo
hence (A.5).
Lemma A.6.

Let G5 be as in (A.1), Hs be as in (A.2), F, as in (A.4) and S*(X), B as before.
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Then, for any (g, h,u) € Gs X Hs x B such that F(g, h,u) =0 and for any w € F;a (£)? there exists
(Guw» huw, ) € SA(X) x C%(X)? x F;(E)Q such that

8(gJL)F’(gv h, U’) [gwa hw] + 8uF(g7 h, u) [Uw] =w.

Proof.
As a first thing, we notice that, if v € F;(Z)Q satisfies

(S99.m F(gs hsw)[0, 1), 0) 1 )2 = 0 VI € C3(%)?,

then v = 0. This follow by writing

0

<Sga(9,h)F(g’ h7 U)[O, h/}’ U>
Il /

(nEolhs8o (D 0)

_ [ 2mC(h1, By, 01) = paCl(ha, By, v2)
2p2C (ha, hy,v2) — p1C(ha, by, v1)

HY(D)?

namely, for both ¢ = 1,2,

Js R (v fy hie vy — [ hie v,V ) av,

0 C(hl, h;7 ) = — 2 )
(fz hiedeg)
) fz hie%iv; AV, L )
that is v; = , but since the only constant in H (), the claim follows.
[ hiemsdV,

Now, take g, h,u such that F(g,h,u) = 0. From Remark A .4, &jﬁg(h, Sg(u)) is a Fredholm map of
index 0, namely we can write

—1

H,(2)? = Ker (&,ﬁg(h, sg(u))) & Im (avﬁg(h, sg(u))) ,

and we indicate as Pker, P the two orthogonal projections. In this way, any w € F;O (£)? can be
written uniquely as a w = S;l(PKer(Sg(w))) + S;l(PIm(Sg(w))).
We claim that there exists h,, € C?(X)? such that

PKer(Sg(w)) = PKer(Sg(a(g,h)F(ga h,u)[0, h.y))).
In fact, taking a orthonormal basis {v1,...,vp} of Ker (avﬁq(h,sg(u))>, the linear functionals
Li,...,Lp on C*(X)? defined by

Li[h/] = <Sga(g,h)F(ga h, U)[O, h/], vi>Hé (£)?

are linearly independent, by what was shown at the beginning of this proof. Therefore, taking
N N
1+ -+ hp such that Li[h}] = 05, if Pker(Sy(w)) = Zcivi, we will suffice to take h,, = Zcih;.

i=1
Now, taking v,, defined by

Piwn (Sg (w — 8tg.ny F (g, by ) [0, 1)) = 8y Fy(hy Sy (w))[va]

one gets
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= S, (Prer(Sg(w))) + S, ! (Prmn(Sy(w)))
= S, (Pker (Sg (O(gm) F(g: b, w)[0, 1)) + Syt (Prn(Sy(w)))

= 851 (84 (o F (9,1 0)) [0, ] = Prm (S (D, F (9, ) [0, hus])) + 85 (Prm(Sg(0))
= gnF(g,h,w)[0,hy] + S5 (Prn (Sg (w — O(gn) F (g hy 1)) [0, 7))

= g Flgs 1y )[0, ) + 857 (90, (1, Sy () [vu])

= g F (g, h,w)[0, hoy] + 0uF (g, h,u) [S, " (vu)] -

Therefore, setting g, := 0, Uy, = S;l(vw), the proof is complete. O

A.2 Proof of Theorem 1.21

Here we will prove the algebraic condition (1.10) which has to be satisfied by the masses of the
entire solutions of (1.9).

Notice the similarities between (1.10) and (2.2): in particular, if H;(z) = |z|*>*, then (1.10) can be
read as Agi,. ny,0(p) = 0.

Theorem 1.21 is an extension of the results from [25] (Theorems 1, 2, 3) for the case N = 1. The
proof we will show follows quite closely the one of such results. A similar result was also given in
[54] for some regular Liouville systems.

As a first thing, we show that solutions of (1.9) are bounded from above. The following Lemma is
inspired by [16], Theorem 2.

Lemma A.7.
Let U = (Uy,...,Un) be a solution of (1.9) and c be as in Theorem 1.21.
Then, |- [°e" € L= (R?) for all i’s.

Proof.
We will suppose, at first, ¢ = 0.

We fix g € R? and we show sup U; < C for all i’s, with C' not depending on .
B (z0)
2

Write H;eVi = F, + G; with F;, € L™ (Rz) and G;(y)dy < g, with € to be chosen later.
R2
Consider now V;, W; defined by

—AV; = Fi in B1 (.1‘0) —AWZ‘ = Gi in Bl (.1'0)
V,' =0 on 8B1 (1‘0) Wz =0 on 8B1 (1‘0)
|Vi(@)]
By Lemma 1.1, / e = dx < C, and moreover ||[W| po (B, (z)) < C-
By (x0)
o N N
Consider now Z; := U; —Z a;;-(Vj—i—Wj). Since —AZ; = Z a;jHjer > 0, the mean value theorem
j=1 j=1

for subharmonic functions gives, for € By (o),

Zi()

IA
Q
N
S
(o8
<

IN
Q
@“
Jr
M=
&
\

m+2%/ W, (y)ldy

Bl(l’



N
C ) .
< G emmayrey ([ M0y Wl oo
B% (z) j=1 B%(I)
0
< C||H || Hie"dv, | +C
¢ LT (Bi(20)) Bi(z0)
< C,
1 ifa=0
= 2
where 0 € (o) ifa>0 "
2+4+a
Tk 2\ | / Naqq' +.
ake now ¢ € [ 1, 5= )80 that || H;|lLe(, (z0)) < C, ¢ €(1,q) and e < p— max a,;:
HieU"
I )
_ HHiezwz;Llafj(VﬁWj)
o (By o))
[Era N\ afliwl ,
< . L (B%(zo)) L (B%(10)> HHie JN=1 a;;Vj
= o (Bya0))
N +
S C H’L eaij“/j‘ aq’
H HLq (B%(aco)> 1];[1 L% (B%(w0)>
< C.

Therefore, by elliptic regularity, V; and W; are uniformly bounded in L (B 1 (xo)), hence

N
sup U; < sup Z + Y af [ [IVjl + ||[W5]] <C.
B%(Io) B%(Jco) ; ! I pee (B%(mo)> A (B%($0)>
For ¢ > 0, we modify the argument as in [25], Lemma 1.2.

If |xo] < 2, then |z|® < 3° on Bj(x), hence we can argue as before.
If |zo| > 2, we consider Uj(z) = U;(x) 4 alog |xo|, which solves

N
’
—AU; = g ainj{eU-f in R?
Jj=1 ) i

H(z)eVi @ dz < 400
R2

Since, for x € Bi(xg), one has

0<H’(x)<C<|x|> <C<1+ |m_w°> < 92¢0,

|0l |0

then by the previous argument we get sup U’ < C with C not depending on x., therefore for
B (o)
2

z € By (o)
Ui(z) + clog|z| < Ui(z) 4 clog|zo| — clog2 < C — clog 2,

which concludes the proof. O

Let us now define

1 +1 )
USa) = 5>y [ 1o M e Wy (4.6)



Thanks to Lemma A.7, U is well-defined in R? and it verifies —A (U; — UZ-O) = 0 on R?. Since U;
is bounded from above and U it has a sub-logarithmic growth, then by Liouville’s Theorem their
difference must be constant.

Therefore, the estimates of the derivatives on U; can be done, equivalently, on UlO , which is easier
because of its explicit expression.

All such considerations are summarized by the following lemma, which we do not prove explicitly
because its can be done in the very same way as Lemmas 1.1, 1.2, 1.3 in [25].

Lemma A.8.
Let UY be defined by (A.6).
Then, the following estimates hold true:

N N

Ui(x) 1 1 x
sup +— ) aypj| — O. sup |z|VU;(z) — — ) aijpj—| — O
z€R2\ B,.(0) log |{E| 2w ]z:; T3 r——+o00 z€R2\ B,.(0) 2w ; T3 |:L'| r——+00

Such estimates allow to argue similarly as Theorem 2.9, though integrating by parts on B,.(0) and

then letting r go to +o0.
N

In fact, by the integrability condition in (1.9) implies that Z a;jp; > 2m(2 + ¢), therefore
j=1

1"/ Hi(x)eV @ do(z) — 0.
9B, (0)

r—400

This and Lemma A.8 allow to perform the following calculations, which conclude the proof:

1 N

i,j=1
N
= lim a¥ / (z - VU;(2)) AU, (x)dx
r—+00 i;l B.(0) 7
N
= lim —/ (z - VU;(z))Hy(z)eV @ dz
r——+00 pat B,(0)
N
= lim 2 H;(z)eV @ dz + / (z - VH;(z))eVi @ da
oo ; ( B.(0) B, (0) '
+ r/ H;(x)eV @ do(z)
0B, (0)
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