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Motivation

In the last two decades, a series of experimental and theoretical advances has

made it possible to obtain a detailed understanding of the molecular mechanisms

underlying the folding process of proteins [1, 2, 3, 4, 5, 6]. With the increasing

power of computer technology [7, 8, 9, 10], as well as with the improvements

in force fields [11, 12], atomistic simulations are also becoming increasingly im-

portant because they can generate highly detailed descriptions of the motions of

proteins [13, 14, 15]. A supercomputer specifically designed to integrate the New-

ton’s equations of motion of proteins, Anton [9], has been recently able to break

the millisecond time barrier. This achievement has allowed the direct calculation

of repeated folding events for several fast-folding proteins [16] and to characterize

the molecular mechanisms underlying protein dynamics and function [17]. How-

ever these exceptional resources are available only to few research groups in the

world and moreover the observation of few event of a specific process is usually

not enough to provide a statistically significant picture of the phenomenon.

In parallel, it has also been realized that by bringing together experimental

measurements and computational methods it is possible to expand the range of

problems that can be addressed [4, 18, 19, 20, 21]. For example, by incorporat-

ing structural informations relative to transition states (Φ values) as structural

restraints in molecular dynamics simulations it is possible to obtain structural

models of these transiently populated states [22, 23], as well as of native [24] and

non-native intermediates [25] explored during the folding process. By applying

this strategy to structural parameters measured by nuclear magnetic resonance

(NMR) spectroscopy, one can determine the atomic-level structures and charac-

terize the dynamics of proteins [26, 27, 28, 29]. In these approaches the experi-

mental information is exploited to create an additional term in the force field that
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8 Motivation

penalizes the deviations from the measured values, thus restraining the sampling

of the conformational space to regions close to those observed experimentally [22].

In this thesis we propose an alternative strategy to exploit experimental infor-

mation in molecular dynamics simulations. In this approach the measured param-

eters are not used as structural restraints in the simulations, but rather to build

collective variables within metadynamics calculations. In metadynamics [30, 31],

the conformational sampling is enhanced by constructing a time-dependent po-

tential that discourages the explorations of regions already visited in terms of

specific functions of the atomic coordinates called collective variables. In this

work we show that NMR chemical shifts can be used as collective variables to

guide the sampling of conformational space in molecular dynamics simulations.

Since the method that we discuss here enables the conformational sampling to

be enhanced without modifying the force field through the introduction of struc-

tural restraints, it allows estimating reliably the statistical weights corresponding

to the force field used in the molecular dynamics simulations. In the present im-

plementation we used the bias exchange metadynamics method [32], an enhanced

sampling technique that allows reconstructing the free energy as a simultaneous

function of several variables.

By using this approach, we have been able to compute the free energy land-

scape of two different proteins by explicit solvent molecular dynamics simulations.

In the application to a well-structured globular protein, the third immunoglobulin-

binding domain of streptococcal protein G (GB3), our calculation predicts the

native fold as the lowest free energy minimum, identifying also the presence of

an on-pathway compact intermediate with non-native topological elements. In

addition, we provide a detailed atomistic picture of the structure at the fold-

ing barrier, which shares with the native state only a fraction of the secondary

structure elements.

The further application to the case of the 40-residue form of Amyloid beta,

allows us another remarkable achievement: the quantitative description of the

free energy landscape for an intrinsically disordered protein. This kind of pro-

teins are indeed characterized by the absence of a well-defined three-dimensional

structure under native conditions [33, 34, 35] and are therefore hard to investigate

experimentally. We found that the free energy landscape of this peptide has ap-
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proximately inverted features with respect to normal globular proteins. Indeed,

the global minimum consists of highly disordered structures while higher free en-

ergy regions correspond to partially folded conformations. These structures are

kinetically committed to the disordered state, but they are transiently explored

even at room temperature. This makes our findings particularly relevant since

this protein is involved in the Alzheimer’s disease because it is prone to aggregate

in oligomers determined by the interaction of the monomer in extended β-strand

organization, toxic for the cells. Our structural and energetic characterization

allows defining a library of possible metastable states which are involved in the

aggregation process.

These results have been obtained using relatively limited computational re-

sources. The total simulation time required to reconstruct the thermodynamics

of GB3 for example (around 2.7 µs) is about three orders of magnitude less than

the typical timescale of folding of similar proteins [36], simulated also by Anton

in [16]. We thus anticipate that the technique introduced in this thesis will al-

low the determination of the free energy landscapes of wide range of proteins for

which NMR chemical shifts are available. Finally, since chemical shifts are the

only external information used to guide the folding of the proteins, our methods

can be also successfully applied to the challenging purpose of NMR structure

determination, as we have demonstrated in a blind prediction test on the last

CASD-NMR target [37].
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Chapter 1

Introduction

The great majority of the most relevant biological processes acts at the molecular

level. On this stage proteins has probably the most significant role, participating

in virtually every process within cells.

Many proteins are enzymes that catalyze biochemical reactions and are vital

for the metabolism. Proteins have structural or mechanical functions acting as

real cellular machinery, such as actin and myosin in muscle that are in charge of

motion and locomotion of cells and organisms. Transmembrane proteins regulate

the osmotic balance and the transportation of chemicals, nutrients and informa-

tion, acting as receptors and signaling transducers across the cellular membrane.

Others proteins are important for transporting materials, immune response, and

several other functions.

Characterizing the tertiary structure of a protein and the energy of the inter-

conversion between the different states can provide important clues about how

the protein performs its function and information about the biological mecha-

nisms in which it is involved. In particular, the knowledge of the interactions

between proteins involved in deadly pathologies will help designing drugs and

curing diseases, such as cancer, neurodegenerative diseases (Alzheimer, Hunting-

ton, Parkinson etc), virus infections. This explains why describing the structure

and the functionality of a protein is one of the most important challenges in

biophysics.

In this chapter we intend to provide the reader a background of the concepts
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12 Introduction

and terminology that will be presented and discussed throughout the thesis. Af-

ter a brief introduction to the biochemistry of proteins, in Section 1.1 we will

focus on the concept of folding and free energy landscape, analyzing the differ-

ences between well-structured and intrinsically disordered proteins. In Section

1.2 we will discuss the main techniques to characterize protein structure from

experimental and computational point of view, with a particular attention on

structure prediction methods. Finally, in Section 1.3 we will present some basic

concepts related to nuclear magnetic resonance spectroscopy, with a special focus

on chemical shifts and structure determination approaches.

1.1 Proteins: Life Building Blocks

A protein is a polymer chain of small subunits, called amino acids, which is defined

by the nucleotide sequence of a gene. The genetic information, contained in the

DNA, is first transcribed into messenger-RNA (mRNA) which is then translated

into a linear chain of amino acids inside the ribosome. Finally the protein acquires

its specific three dimensional structure which determines, in almost all cases, its

functionality.

Each segment of three nucleotide basis of the mRNA specifies one out of 20

natural amino acids, each with specific features. However all amino acids possess

common structural features (Fig. 1.1). They are composed of a central α carbon

(Cα) to which an amino group (NH+
3 ), a carboxyl group (COO−), a hydrogen

atom (Hα) and a variable side chain residue (R) are attached. In a protein, the

amino acids are linked together by peptide bonds between the carboxyl and the

amino groups of adjacent residues (lower part of Fig. 1.1). The serial assembly of

consecutive peptide bonds then constitutes the entire polypeptide chain. Apart

from the side chain ones, all these atoms constitutes the backbone of the protein

and their relative arrangements is determinant for the local structure of the chain.

The side chains, instead, are what actually distinguishes the physical-chemical

characteristics of the standard amino acids and, consequently, of the entire pro-

tein. They are usually classified based on their electrostatic properties, which can

favor the formation of hydrogen bonds, salts bridges and in general their propen-

sity to be exposed to the aqueous solvent, as for the charged (positive for Arginine,
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Figure 1.1: Representation of an amino acid (upper part) and of the peptide bond
formation (lower part) between two consecutive amino acids

Histidine, Lysine and negative for Aspartic and Glutamic Acids) and polar ones

(Serine, Threonine, Asparagine, Glutamine), or their propensity to be buried in

the core of the protein, as for hydrophobic residues (Alanine, Leucine, Isoleucine,

Methionine, Phenylalanine, Tryptophan, Tyrosine and Valine). Glycine, Proline

and Cysteine has instead special structural properties.

1.1.1 Sequence-Structure-Function Paradigm and Protein

Folding

Since the beginning of protein science [38, 39, 40, 41, 42] it has been clear that the

amino acid sequence encodes all the information about the protein, determining

univocally its structural characteristics and functions. As soon as the growing

unfolded polypeptide chain exits the ribosome where it is synthesized, it starts to

acquire a well defined three dimensional structure based on the sequence of the
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Figure 1.2: Schematic representation of the structural hierarchy in proteins. The
primary structure can determine the formation of secondary structure elements
which are then assembly to form the characteristic tertiary arrangement of a
globular protein. The further interaction of multiple single domains can the
generate the functional quaternary assembly of a complex

residues[42], through a folding mechanism. The acquisition of a stable structure,

also called native state, is usually a fundamental requirement for the protein

biological function [39].

This underlying hierarchy from sequence to function, is well represented by

the four distinct aspects of a protein structure, reported in Fig. 1.2. The first level

of protein structure is simply the amino acids sequence of a protein chain, which

is called primary structure. This sequence of amino acids is specific for each pro-

tein. Amino acids interact with each other locally leading to secondary structure
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elements such as α-helix or β-strands. The α-helix is formed by hydrogen bonds

between the backbone atoms of consecutive residues in a protein. Also β-strands

are determined by hydrogen bonding of the backbone atoms, but even for amino

acids distant in sequence: they are usual present in two arrangements, parallel

or anti-parallel. The assembly and the interaction of these structural motifs (α-

helix and β-sheets), together with the formation of a hydrophobic core, produce

the overall globular three dimensional shape of a protein, known as the tertiary

structure. The further arrangement of distinct folded domains in a multi-subunit

complex is called quaternary structure.

Protein Folding

This representation gives also a general view of the process by which a polypeptide

chain folds from a random coil into a functional tertiary structure, called protein

folding. At this first stage the polypeptide lacks any developed tridimensional

structure. Then, based on their physicochemical properties, the amino acids start

to interact with each other to produce the final stable conformation.

The early studies on the denaturation of proteins [43, 39, 40] and the relative

observation that a denaturated protein could acquired back its native state by

changing the solution conditions, led to the Anfinsen’s statement of a thermo-

dynamics hypothesis for protein folding. The reversibility of the process indeed

implies that the native (functional) and the denaturated protein (non functional)

can be treated as two separate thermodynamic states. Moreover this leads to the

interpretation that the protein’s function is determined by a well defined struc-

ture of the native state, which is the lowest in the Gibbs free energy for the whole

system [42].

The folding mechanism occurs therefore under the combined action of en-

thalpic and entropic contributions from the protein and the solvent. The native

conformation is determined by favorable interatomic interactions which lead to

the formation of hydrogen bonds, as in secondary structure elements, and the

neutralization salt bridges within the protein’s core. At the same time its stabi-

lization is enforced by the sequestration of hydrophobic amino acid side chains in

the interior of the folded protein: this allows the exposure of charged and polar
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Figure 1.3: Three different structural models for the folding of a protein. Starting
from an ensemble of unfolded conformations, the final native folds can occur: (a)
though assembly of already formed secondary structure elements; (b) through
the hydrophobic collapse in a central protein core and subsequent growth of the
secondary structure; (c) formation of an initial folding nucleus, consisting of spe-
cific contacts inside the protein, followed by the others folded structural elements.
Adapted from [44].

side chains on the solvent-accessible protein surface, and the water solvent to

maximize its entropy, lowering the total free energy.

Although the physics and the chemistry of these interactions are well un-

derstood, the folding pathway can be very complicated, because the extent of

the different contributions can determine way to reach the folding states. Three

are the most common models for a folding process, as schematized in Fig. 1.3

[45, 46, 47]: a) first the formation of the secondary structure occurs, followed
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Figure 1.4: Schematic representation of the folding free energy of a protein. Fold-
ing occurs through the progressive organization of ensembles of structures on a
funnel-shaped free energy landscape (right). Conformational entropy loss during
folding is compensated by the free energy gained as more native interactions are
formed. Kinetics is determined by the local roughness of the landscape, relative
to thermal energy. Adapted from [49]

by their assembly in the final structure; b) the hydrophobic collapse of the hy-

dropathic residues takes place before, then the secondary structure forms; c) the

fold is determined by the initial condensation of a folding nucleus formed by few

important contacts, which constitutes the seed for the native structure formation.

The amino acid sequence is the determinant of the choice of the followed pathway,

which can obviously result by the combination of these models, especially in large

protein where different region can adopt different folding strategies [48].

The Free Energy Landscape

The heterogeneity of the folding mechanism reflects the high complexity of the free

energy landscape of proteins. This theoretical concept was introduced [52, 1, 53]

to give a qualitatively description of protein folding, based on the “principle of

minimal frustration” [54]. According to this principle, nature selected amino acid
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Figure 1.5: Qualitative description of two typical free energy landscape for glob-
ular protein. (a) The folding can be quite complicated, exhibiting high kinetic
barriers and folding intermediates, following different folding pathway. (b) The
folding can occurs in a simple two-state system, in which the unfolded ensemble
and the native state are separated by only one high free energy barrier (sad-
dle point or transition state), following in practice a unique pathway. Adapted
respectively from [50] and [51].

sequences so that the folded state of the protein is very stable and the formation

of favorable interactions along the folding pathway makes the acquisition of the

relative structure a fast process. As shown in Fig. 1.4, the protein conformation

is initially unfolded and dominated by entropy, but at high Gibbs free energy;

the progressive collapse with a consequent loss in entropy is overcome by the

enthalpic contribution from electrostatics with the formation of more compact

structures (molten globule states), still very different and separated by high en-

ergetic barriers from the native state. The following formation of the secondary

structures, native contacts and of the hydrophobic core gives the final gain in in-

ternal enthalpy and solvent entropy which determines a deep energy gap between

the native state and the other conformations.

This perspective depicts the landscape as a global energy funnel [55] deter-

mined by these favorable contributions and directed towards the free energy min-

imum, which is highly stable and reachable through a large number of pathways
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instead of a single mechanism, which makes the folding a rapid process, usually

on the timescale of milliseconds or even microseconds. This overall picture, in-

deed, allows overcoming the paradox posed by Levinthal [56], who observed that

if a protein were folded by random sampling of all possible conformations (32(N−1)

only considering three possible orientations for the ψ and φ backbone angles), the

folding process would take a time longer than the age of the universe.

However, even though nature has reduced the level of frustration through se-

quence selection, depending on the protein, the landscape can be highly complex.

It can be a simple two state system, with the unfolded state separated from the

native one by a single free energy barrier (see Fig. 1.5b), which is populated by

structures with the fundamental folding nucleus already formed (transition state

ensemble). Or it can have several local energy minima (metastable states) with

intermediates which can act as kinetic traps for the folding process, as described

by Fig. 1.5a. In addiction, external factors can further complicate this picture:

temperature, pH, molecular crowding and the interaction with other molecules

can alter the free energy landscape, determining the changes in conformation

which are proper of the protein function, modifying the equilibrium between the

native state and an intermediate, or the denaturation of the protein, with the

associated loss of its functionality, or even the degeneration in misfolded state

which can then interact and aggregate with other proteins forming amorphous

compounds, that can be toxic and lethal for the cells.

1.1.2 Some Exceptions: Intrinsically Disordered Proteins

For decades the sequence-structure-function paradigm, together with its theoret-

ical justification, have constituted a solid dogma. The successes of X-ray crystal-

lography which provided the final physical representation of a protein [58, 59, 60],

literally crystalized the idea that every protein possesses a native state with a well

defined three dimensional structure, required for its biological function. But soon

some ambiguous observations started to appear: loops, known to be important

for function, were missing in high-resolution structures [61, 62]. Nuclear magnetic

resonance spectra also revealed that some proteins with known biological func-

tion did not have a stable and defined structure in solution [63]. These findings
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Figure 1.6: Difference in sequence composition between well-structured and in-
trinsically disordered proteins. The two-dimensional scatter plot shows a clear
separation between this two kind of proteins as a function of the mean hydropho-
bicity and of the net charge. The folded protein clusters in the low-right corner
(empty dots), characterized by a high hydrophobicity and a low net charge, the
disordered proteins (black dots) are instead characterized by low hydrophobicity
and a higher net charge. Adapted from [57]

were initially attributed to the dynamical properties of proteins (in particular to

loops, linkers or terminal regions), or even associated with misfolding-related dis-

eases, since several unstructured proteins, such as α-synuclein, β-amyloid, amylin

or p53, are involved in several human “disorders” (respectively Parkinson’s and

Alzheimer’s disease, diabetes, cancer) [64].

Instead, it is now well established that many proteins lack a specific tertiary

structure under functional conditions [33, 34, 35]. They exist as an ensemble of

flexible and mobile conformations. This flexibility can be localized in particular

regions of the protein (these are referred to as intrinsically disordered regions

or partially folded proteins), or can regard the entire protein length (natively

unstructured, natively unfolded, intrinsically disordered are the most common

nomenclature).
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Figure 1.7: Schematic representation of the energy landscape of a globular protein
(a) and a disordered protein (b). The energy of the system is sketched against a
single coordinate of the conformational space. Adapted from [67])

From a structural point of view these disordered proteins or regions, are not

simple random coils. Experimental evidences showed that they often populates

extended conformations but with local transient secondary structure elements

[65, 66], with short helical, β-bridges and in particular polyproline II helix.

Comparing the amino acid sequence, well-structured and intrinsically disor-

dered proteins show important differences [68, 57]. Unstructured proteins are

characterized by a low content of bulky hydrophobic amino acids and a high pro-

portion of polar and charged amino acids. Thus disordered sequences cannot bury

a critical hydrophobic core to determine the crucial solvent entropic gain like for

stable globular proteins. The graph in Fig. 1.6 show how these two categories

of proteins clusters in two well separated groups, simply based on the mean hy-

drophobic and net charged content of their primary structure, observation which

has been the basis of many disorder predictors [68, 69, 70, 71].

A possible schematic representation of the free energy landscape of an intrin-

sically disordered protein is reported in Fig. 1.7 [67]. While globular proteins

are usually characterized by a deep energy minima which sequesters the system

in a specific structures, the landscape of an intrinsically disordered protein can

be interpreted as very rugged, with several local minima separated by low en-

ergy gaps, comparable to the thermal fluctuations of the external bath. This

allows disordered proteins to adopt an ensemble of rapidly interconverting and
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easy-to-access conformations, instead of a single stable one. In this thesis we will

provide a complete and quantitative view of this naif picture, able to capture

more profound properties of intrinsic disordered proteins (see Chapter 6).

As discussed above for structured proteins, the interaction with ligands and

external factors usually define the functionality of a protein, modifying its free

energy landscape to favor conformational changes. This is even more striking for

intrinsically disordered proteins: the interaction with their natural targets allows

the selection of a particular structured conformation [72, 73], lowering its relative

free energy. The coupled folding and binding allows the complementary burial

of a large surface area involving a small number of amino acids: to achieve the

same surface burial with only folded proteins would require a much larger protein

[74], with a higher metabolic cost for the cell. In many cases they also shows

the ability to bind in different conformations to different partners [75], which can

be explained by their barrieless energy landscape. This is often done using also

different regions of the sequence [76], which means that they can link two targets,

acting as a sort of hub to favor their localization and interaction.

1.1.3 Revising the Protein Paradigm

The ability of disordered proteins to bind, and thus to exert their function, demon-

strates that stability and acquisition of a well-defined three dimensional structure

is not a required condition for all proteins. However the Anfinsen’s thermody-

namics hypothesis, with the protein in equilibrium between functional and non

functional states, is still valid, but in a statistical physics sense. While for globu-

lar proteins the native, functional states is both a structural and thermodynamic

state, for disordered protein is only a thermodynamic state, composed by an

ensemble of heterogeneous structural conformations. A particular three dimen-

sional structure should be thought, in a more loose way, as a single realization

of the system in equilibrium with all the other possible configurations. The pro-

found diversity between structured and unstructured proteins in sequence, and

consequently in energetics and structural characterization, indeed reflects the

functional purpose and role of these two kinds of proteins.

The standard view of the paradigm applies perfectly to enzymes. In catalytic
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reactions, enzymes usually works through the stabilization of their transition state

[77]: in a catalysis the protein binds more tightly to the transition state than to

the native one, in order to lower the activation barrier and to accelerate the reac-

tion rate. Transition states are usually derived from the native conformation by

very slight movements of atoms. This implies an accurate prior positioning of the

key amino acids and consequently a well-ordered protein structure is prerequisite

for activity.

The peculiar properties of disordered proteins are instead perfectly suitable

for signaling, regulation or control. Due to the absence of high barriers in their

free energy landscape, when disordered regions bind to signaling partners, the

energetic cost required to determine a transition from a disordered to an ordered

conformation is quite low and easily compensated by specific contact interactions

on a large surface area. Also the ability of these protein to readily bind to

multiple partners by changing shape to associate with different targets[75, 76] is

a characteristic feature of these proteins and of their energetic landscape, because

it allows them to regulate the association of two other targets. The combination

of high complementarity with low affinity and sometimes also with promiscuous

binding properties are fundamental for signaling and regulation and would be

very difficult to evolve between two ordered structures.

1.2 Protein Structural Characterization

The combination of experimental techniques and computational approaches em-

ploying the theoretical concepts described so far, has been able to clarify different

aspects of protein folding.

This task has been successfully achieved for proteins which possess a well-

defined structure like enzymes, but is still a great challenge in the case of highly-

dynamic proteins, such as partially-folded and intrinsically disordered ones. More-

over the high-throughput of new proteins due to the sequencing of entire genomes[78]

makes the application of standard experimental techniques unaffordable, because

too slow and expensive. This motivated the development of theoretical and com-

putational methods and bioinformatics tools capable of modeling or extracting

structural information only from the sequence by comparison of known structures,
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Figure 1.8: Examples of protein structures solved by X-ray crystallography (on
the left) and NMR spectroscopy (on the right) . Adapted respectively from [80]
and [81].

or even to fold protein ab initio, based only on physical principals.

1.2.1 Experimental Techniques

If we look at the Protein Data Bank (PDB)[79], the most important repository

for the 3-D structural data of proteins and nucleic acids, almost all solved macro-

molecular structure are obtained by X-ray crystallography (90%) and NMR spec-

troscopy (10%). At the moment these two methods are only capable of resolving

structure at atomic resolution. Nevertheless they present severe limitations.

X-ray Crystallography

In this method a macromolecule structure is determined from the diffraction

pattern of a X-ray beam on crystals which contain the protein[82]. By measuring

the angles and intensities of these diffracted beams, an electron density map of the

crystal can be reconstructed together with the protein structure, fitting the atoms

of the polypeptide chain into the map. This technique provides only a static

representation of the protein, with little information about its dynamics apart

from the presence of flexible regions which are missing in the diffraction pattern.

It is also important to stress that experimental conditions required for X-ray

crystallography can be critical: indeed several proteins are difficult or impossible

to crystalize, such as membrane and disordered proteins. This also means that

since X-ray structures are the most abundant in the PDB database, some protein
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families are overrepresented with respect to others. This has produced a bias in

our understanding of protein science, as we have already mentioned in Section

1.1.2. Even for easy target as globular proteins the unphysical tight packing of

the crystal can alter significantly the final structure.

NMR Spectroscopy

NMR experiments [83, 84, 85] provides structural information in the form of

distance and angular restrains which allow to infer and predict the local arrange-

ments of the protein atoms. All the restrains are then combined to produce the

final possible conformations, usually by solving a distance geometry problem.

This method allows to study proteins in solution and therefore closer to phys-

iological conditions. Moreover it can provide also important information about

the dynamics of the system, allowing also the characterization of folding inter-

mediates or transiently populated states, as for intrinsically disordered proteins.

However also this technique is affected by limitations: in particular as the size

of the system increases, the extraction of spatial restrains becomes harder, and

accurate structural prediction is limited to proteins of few hundreds of residues.

Since some aspects of this technique are central for this thesis, they are discussed

in more details in Section 1.3

Other techniques

Also electron microscopy (including cryo-electron microscopy and electron crys-

tallography) can produce lower-resolution structural information about very large

protein complexes, including assembled viruses [86] and two-dimensional crystals

of membrane proteins[87]. Finally, other experimental methods such as UV circu-

lar dichroism , small-angle X-ray scattering (SAXS), mass spectrometry, hydrogen

exchange, fluorescence resonance energy transfer (FRET) and atomic force mi-

croscopy (AFM) can provide important quantitative structural information for

secondary structure population, compactness, residues exposure and presence of

metastable states along the protein folding.
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1.2.2 Theoretical and Computational Approaches

Following the idea that the amino acid sequence determines the structural prop-

erties of the protein, many theoreticians started to deal with the challenging

problem of predicting the tertiary structure using only the notion of the primary

one [88]. The development of bioinformatics, in particular of sequence alignment

methods [89, 90, 91], and of effective potential for native folding discrimination

[92, 93, 94, 95, 96] gave important contributions in this direction. The perfor-

mance of current methods is assessed every two years in the CASP experiment

(Critical Assessment of Techniques for Protein Structure Prediction), where re-

search groups try to predict the structure from sequences of soon-to-be solved

proteins [97].

Two are the usual strategies to address this problem: comparative (or template-

based) modeling and de novo (or ab initio) structure prediction.

Comparative modelling

This approach is based on two converging observations. Although the number of

actual proteins is huge [79], they are characterized by a limited set of tertiary folds

[98, 99, 100]. The second observation follows directly from the protein paradigm,

that is similar sequence should determine similar structures. These considerations

originate two type of methods. Homology modeling tries to built the atomistic

description of a target sequence out of the experimental three-dimensional struc-

ture of one or more related homologous proteins [101, 102]. These are identified

through sequence alignments and since the protein’s fold is more evolutionarily

conserved than its amino acid sequence, a target sequence can be modeled with

reasonable accuracy also on a very distantly related template. The main bottle-

neck is actually represented by the accuracy of sequence alignment [103].

Threading algorithms [104, 105, 106] instead scan the amino acid sequence of the

target against a database of solved structures. In each case, a scoring function

is used to assess the compatibility of the sequence to the structure, thus yielding

possible three-dimensional models. Protein threading treats the template in an

alignment as a structure, and both sequence and structure information extracted

from the alignment are used for prediction. Protein threading can be still effective



1.3 NMR of Proteins 27

in case of no significant homology.

De novo structure prediction

These methods attempts building three-dimensional protein models “from scratch”,

based on general principles that govern protein folding energetics and/or statis-

tical tendencies of conformational features that native structures acquire, with-

out the use of explicit templates from previously solved structures. A general

paradigm for de novo prediction usually involves an efficient sampling algorithm

in the conformational space, guided by the minimization of physics-based or

knowledge-based scoring functions [94, 95] such that a large set of candidate

(“decoy”) structures are generated. Native-like conformations are then selected

from these decoys using scoring functions as well as conformer clustering. The

process can involve coarse graining and successive refinement stages [107]. These

procedures normally require vast computational resources, and have thus only

been carried out for tiny proteins and few research groups. To predict protein

structure de novo for larger proteins will require better algorithms and larger

computational resources, using powerful supercomputers (such as Blue Gene [7],

MDGRAPE [8] or Anton [9]) or distributed computing strategies (such as Fold-

ing@Home [10, 108] and Rosetta@Home [109]).

Also molecular dynamics simulations can be considered and applied as a par-

ticular case of ab initio predictions, as spectacularly shown by the recent result

obtained by the D.E. Shaw’s group [16]. This specific topic will be discussed in

the introduction to the next chapter.

1.3 NMR of Proteins

Nuclear magnetic resonance spectroscopy is an experimental technique that ex-

ploits the magnetic properties of certain atomic nuclei. It determines the physical

and chemical properties of atoms or the molecules in which they are contained,

and can provide detailed information about the structure, dynamics, reaction

state, and chemical environment of molecules[83, 110, 85]. For these reasons

NMR spectroscopy has a fundamental role in structural biology, being able to
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give atomic resolution description of biomolecule in solution, as we mentioned

previously in Section 1.2.1.

1.3.1 Chemical Shifts

Chemical shifts are the most readily and accurately measured NMR observables.

When placed in a magnetic field, atoms which possess a nuclear spin (such as
1H,13C, 15N) absorb electromagnetic radiation at a frequency characteristic of the

isotope and proportional to the strength of the external field. These resonance

frequencies are then registered on one or multi-dimensional spectra specific for

the nucleus type. The chemical shift quantifies the difference of the frequency for

a specific atom with respect to the known one of a reference compound: in this

way it provides information about the chemical environment of the corresponding

atom, because it reveals the local modification of the magnetic field induced by

the presence of neighboring atoms, due to shielding effects of their electrons. The

assignment of the peaks of the spectra to the corresponding atoms of the primary

structure allows then the reconstruction of the local arrangement of a molecule.

These properties are very useful in protein science. The high sensitivity to

the surrounding environment allows the chemical shift to indicate if the atom is

involved in a hydrogen bond, or the presence of a close aromatic ring. The use

of multi-dimensional NMR experiments [110], such as J-coupling, nuclear Over-

hauser effect (NOE) and correlation spectroscopy, permits in particular to analyze

the local dihedral conformation of the chemically bound atoms and to identify

the residues involved in secondary structure elements. In addiction, exploiting

the NOE spectroscopy (NOESY), it is possible to detect also specific contacts

between two atoms, providing upper limits on their distance and consequently

important information about the tertiary structure of the protein.

Since the acquisition time of the NMR signals is usually on the millisecond

time scale, the signal registered by the chemical shifts and other NMR observ-

ables is an ensemble average of all the conformations explored by the protein

during that time. This is particularly important because it allows NMR spec-

troscopy to provide quantitative information of the dynamics and on the folding

of the protein, revealing the presence of intermediates, domain fluctuations and
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transient population of different secondary structure elements. This is why this

experimental technique has been finding also a huge application in the study of

intrinsically disordered proteins.

1.3.2 Structure Determination Protocol

The typical protocol for protein structure determination by nuclear magnetic

resonance (NMR) spectroscopy involves a number of sequential steps [85, 111]:

• Resonance assignment. The chemical shifts observed in multidimensional

NMR spectra are assigned specifically to their corresponding atoms in the

protein sequence.

• Spatial restraints extraction. Thousands of nuclear Overhauser effects (NOEs)

are identified in multidimensional NOE spectroscopy spectra, assigned two

specific pair of interacting atom and converted into interatomic distance

restraints. Additional conformational restraints come, for example, from

measurements of residual dipolar couplings and scalar couplings, which pro-

vide information about the orientation of the backbone dihedral angles and

about the secondary structure of the macromolecule.

• Structure generation. Software programs are then used to solve a geometry

constraint satisfaction problem and to generate a set of protein conforma-

tions (called bundle of conformers, or models) which satisfy the experimen-

tal and spacial restraints. This step is usually performed and reiterated

several times together with the previous one, in order to maximize the

agreement with the conformational restraints and to minimize the number

of violations.

• Structure refinement and validation. The bundle of conformers is usually

energetically refined through restrained molecular dynamics simulations or

through the minimization of pseudoenergy function. Finally the quality of

the models is assessed through standard validation tools [112, 113, 114].

Many attempts has been made to partially and fully automatize the different

stages of this protocol combining different strategies [115, 116, 117, 118] and com-
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putational resources [119, 120], trying also to simplify the protocol and skipping

the NOESY assignment step [121, 122]. Recently, a community-wide experiment,

CASD-NMR [37] (see Section 1.3.3), conceptually similar to CASP competition

[97], has been introduced to benchmark the different methodologies [111].

1.3.3 CASD-NMR

CASD-NMR [37] is a community-wide experiment involving developers of soft-

ware tools and protocols for the automated calculation of protein structures from

NMR data, with the scope of evaluating and favoring the improvement of the

different methodological strategies in the field [111]. CASD-NMR collects and

makes available to the participants NMR data sets (chemical shifts assignment,

residual dipolar coupling, and NOE peak lists) for which the corresponding pro-

tein structure, obtained with the traditional manually curated procedures, is not

publicly available at the time of release. These data can be used by the partic-

ipants for protein structure determination using fully automated methods as if

they would directly deposit them into the PDB. The results are then analyzed

through various validation tools and compared with the original released PDB

structure.

Using the method presented in this thesis and explained in the following chap-

ters, we have participated to the last submitted data set (HR2876C) to benchmark

our methodology on a blind test. The results are presented in Section 4.3.2.



Chapter 2

Theoretical and Methodological

Background

During the last decades, molecular dynamics (MD) simulations[123, 13] have

been optimized properly in order to obtain an accurate and reasonable picture

of biological systems in agreement with experimental results. But, as was men-

tioned previously, the major problem with MD is that it is a daunting task to

study phenomena, like protein folding, protein aggregation, ion channeling, etc,

that happen in time scales on average much larger than the commonly acces-

sible time scales in simulations, in the range of microseconds. Coarse-grained

approaches has been developed, schematizing groups of atoms in effective beads

and reducing the number of degree of freedom to be integrated. The pay off of

these approaches, which allow to access longer time scales, is the loss of a detailed

atomistic description exploiting generally empirical more than physics-based in-

teractions (often also difficult to be parametrized) and which can bring to less

reliable results. Especially in biomolecular simulation the main computational

cost is represented by water molecules, usually in a ratio 1:20 with solute atoms,

but the attempts to treat water implicitly[124] in the force fields weren’t able to

reproduce properly the properties of the system, as we also verified in our study

(see section 4.3.1).

Recently high-performance computing strategies like purpose built machines

[9, 7]or distributed computing [10] were able to reach time scales of millisecond

31
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in full-atom simulation in explicit solvent [16, 14]. However these exceptional

resources are available only to few research groups in the world and even in this

case the observation of few event of a specific process is usually not enough to

provide a statistically significant sampling of the phenomenon.

Powerful alternatives to these brute force approaches are provided by several

methodologies aimed at accelerating rare events and conformational transitions

using commonly available resources. Most of these approches can provide also

the statistical weights of the sampled configuration, allowing the reconstruction

of the thermodynamics of the system consistent with the one obtained by a plain

MD simulation.

In this chapter we will discuss the general basis behind our methodology, in

particular molecular dynamics (Section 2.1) and metadynamics (Section 2.3). Fi-

nally in Section 2.4 we will discuss the Bias-Exchange metadynamics, an extension

for problems with a huge number of degrees of freedoms, underlining especially

how it is possible to reconstruct the free energy of a system employing this tech-

nique, which the fundamental enhanced sampling approach that we employed in

this thesis.

2.1 Molecular Dynamics

Molecular dynamics is a computational technique aimed at simulating the time-

evolution of atoms and molecules, under the action of the forces generated by a

potential that provides approximations of the physics and chemistry of the sys-

tem under investigation[123]. Because molecular systems generally consist of a

vast number of particles, it is impossible to find the properties of such complex

systems analytically. MD simulation circumvents this problem by using numeri-

cal methods. The forces over a particle in MD are approximated with a sum of

analytical terms describing the chemical bonds, the van der Waals, the electro-

statics interactions, etc., globally called the force field. The force field parameters

are fitted on the potential energy surface evaluated with quantum approaches in

small molecules representing parts of the system or derived from experimental

data. During the last two decades, a lot of effort has been dedicated for the force

field parameter optimization[125, 126, 11, 127]. AMBER [126] and CHARMM
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[125] are most commonly used force fields. Even though these force field have

been quite successful in reproducing a lot of experimental systems, we note that

they still have important limitations [11, 128].

In a normal MD simulation, given a certain force field V (RN) and the po-

sitions and momenta of a particle i at time t as Ri(t), Pi(t), respectively, the

accelerations over the particles are computed using R̈i(t) = −∇iV/MI , and then

the equations of motion are numerically integrated on time step (∆t) to find the

final positions Ri(t + ∆t) and final momenta Pi(t + ∆t) . The most commonly

used integrator is the Velocity Verlet [129]:

Ri(t+ ∆t) = Ri(t) +
Pi(t)

Mi

∆t+
1

2
R̈i(t)∆t

2 (2.1)

Pi(t+ ∆t) = Pi(t) +Mi
R̈i(t) + R̈i(t)

2
∆t (2.2)

This procedure is repeated iteratively and the system is evolved in time. The

choice of the time step ∆t is quite crucial and depends on the kind of simulated

system. If it is too large the integration won’t be accurate resulting in a unrealistic

evolution and numerical instabilities in the simulation. If it is too small the

computational time and resources need to observe meaningful events along the

simulation will not be affordable (see also next Section). For atomistic simulations

the appropriate ∆t is usually of the order of 1-2 fs. Most of the MD simulations are

done within the canonical ensemble, where the number of particles (N), volume

(V) and temperature (T) are conserved. In the NVT ensemble, the energy of

endothermic and exothermic processes is exchanged with a thermostat. A variety

of thermostat methods are available to add and remove energy from a system in

a more or less realistic way. Popular techniques to control temperature include

velocity rescaling[130], the Nosé-Hoover thermostat [131, 132], and the Berendsen

thermostat [133]. In general the result of a MD simulation will depend crucially

on the force field, system size, thermostat choice and parameters, time step and

integrator.
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2.2 Rare Events and Computing Free Energy

Several methods have been developed to accelerate the rare events in MD or

Monte-Carlo simulation [31] and important successes have been achieved in vari-

ous fields, ranging from solid state physics to quantum chemistry [134, 135, 136,

137]. Most of these techniques are unfortunately only partially useful for bio-

physical applications, because of the enormous amount of degrees of freedom

involved. In the simulation of a normal size protein with explicit water, one has

to treat explicitly approximately 104 atoms, which correspond to a 104 dimen-

sional configuration space, while the more interesting processes depends usually

on concerted and very slow collective motions.

A methodology that seems to offer a general route for studying such complex

problems is rthe eplica exchange molecular dynamics (REMD, also known as par-

allel tempering, or multicanonical ensemble method [134, 138]). Several replicas

of the same system are run at different temperatures (usually between 270 and

500 K) to enhance the conformational sampling, then from time to time exchanges

between the replicas are attempted according a Monte-Carlo scheme: if the move

is accepted the two configuration are swapped and the two simulations continue

the new configurations. At the end the thermodynamics of the system is recon-

structed from the conformations sampled at the desired temperature. Depending

on the system, also this method can be extremely computationally demanding

because it requires a large number of replicas to guarantee an adequate accep-

tance rate, and the simulations have to be run for very long time to accumulate

enough statistics. Moreover the force field parameters are usually optimized at

room temperature and so artifacts in the sampling can arise from simulating it

at high temperature.

Other approaches try to address the problem reducing the dimensionality of

the system into a few reaction coordinates or collective variables (CVs), that are

assumed to provide a coarse-grained and (possibly) comprehensive description of

the system, and then to explore the free energy surface as a function of these

variables.
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2.2.1 Dimensional Reduction

Considering a system of particles of coordinates x coupled to a thermostat bath

of temperature T , it evolves under the influence of a potential V (x), following

the canonical equilibrium distribution:

P (x) =
1

Z
e−βV (x) (2.3)

where β = 1/kBT and Z =
∫
dxe−βV (x) is the partition function of the system.

For system characterized by a huge number of degrees of freedom, as for biological

ones, like proteins, the P (x) has an incredibly large dimensionality. In order to

describe the system in more simple terms, what is done is to consider the reduced

probability distributions in terms of some reaction coordinates or collective vari-

ables s(x). Namely, instead of monitoring the full trajectory x(t) of the system, a

reduced trajectory s(t) = s(x(t)) is analyzed. The probability distribution P (s)

can be written as:

P (s) =
1

Z

∫
dxe−βV (x)δ(s− s(x)) (2.4)

or for an infinitely long trajectory it can be evaluated by the histogram of s:

P (s) = lim
t→∞

1

t

∫
dte−βV (x)δ(s− s(t)) (2.5)

In real application P (s) is estimated as

P (s) ' 1

n∆s

n∑
t=1

χs(s(t)) (2.6)

where the characteristic function χs(x) = 1 if x ∈ [s, s+ ∆s] and zero otherwise.

If the system is ergodic and the dynamics allows an equilibrium distribution at

an inverse temperature β, the knowledge of P (s) allows to define the free energy

of the system in terms of the reduced coordinate s:

F (s) = − 1

β
lnP (s) (2.7)

allowing the description of the equilibrium properties of the system as a function
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of a relevant and smartly chosen set of variables. For instance, if one is interested

in the binding of two small molecules the distance between the corresponding

centers of mass can be a good reaction coordinates to describe and to study the

free energy profile of the process.

2.2.2 Computing the Free Energy

Different methods for computing free energy profiles have been developed. For

example, umbrella sampling [139] is a commonly used method to enhance the

sampling of rare events, in which the normal dynamics of the system is biased

by a suitably chosen bias potential VB(s(x)) that depends on x only via s(x) and

works as an extra term added to the potential V (x). For an appropriate choice of

the bias potential the system will be sampled more efficiently than in the normal

case. The biased probability distribution is

PB(x) =
1

ZB
e−β(V (x)+VB(s(x)) (2.8)

where ZB is the canonical partition function for the potential V (x)+VB(x). Mea-

suring a probability distribution in the presence of a bias VB(s(x)) will provide a

measure for the unbiased free energy and for the unbiased probability distribu-

tion. As in eq. 2.4 we can evaluate PB(s):

PB(s) =
1

ZB

∫
dxe−β(V (x)+VB(s(x)))δ(s− s(x)) = (2.9)

=
Z

ZB
e−βVB(s) 1

Z

∫
dxe−βV (x)δ(s− s(x)) = (2.10)

=
Z

ZB
e−βVB(s)P (s) (2.11)

and consequently P (s)

P (s) =
ZB
Z
eβVB(s)PB(s) (2.12)

So using eq. 2.7 we have:

F (s) = − 1

β
lnPB(s)− VB(s) + fB (2.13)
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where fB = 1
β

ln Z
ZB

is a constant which doesn’t depend on s. Finally PB(s) can

be estimated as in eq. 2.6 on the biased trajectory.

It can be shown[139] that the optimal efficiency is obtained when the biased

potential is VB(s(x)) = −F (s), because the resulting free energy landscape expe-

rienced by the system will be flat, able to diffuse in a barrierless conformational

space. Unfortunately in real systems F (s) is not known, so the main problem

that arises is how to construct VB(s(x)) without a detailed knowledge of the sys-

tem. In order to solve this problem, an efficient strategy to apply is the weighted

histogram method (WHAM) [140, 141], in which several histograms, constructed

with different umbrellas VBi(s(x)), are combined in order to reconstruct a single

estimate of F (s). The principal limitation of these and similar methods is that

the computational cost scales exponentially with the number of reaction coordi-

nates used. This is the case also for history-dependent search methods, such as

local elevation [137], Wang-Landau sampling [142]and metadynamics [30], which

allow a free energy reconstruction only as a function of a few variables.

2.3 Metadynamics

Metadynamics is a computational technique aimed at enhancing the sampling

of the conformational space of complex molecular systems [30]. Conceptually

it is a generalization of umbrella sampling. In fact the enhancement is obtained

through a bias that acts on a small number of parameters, referred to as collective

variables (CVs), s(x), which provide a coarse-grained description of the system,

and are explicit and differentiable functions of the Cartesian coordinates x. In

the case of metadynamics the bias takes the form of a history-dependent potential

constructed as a sum of Gaussian distributions centered along the trajectory of

the CVs [31]

VG(s(x), t) = w
∑

t′=τG,2τG,...

exp(−(s(x)− s(x(t′)))2

2σ2
s

) (2.14)

where the sum is for t′ < t. Three parameters enter into the definition of VG:

(i) the height w of the Gaussian distributions,

(ii) the width σs of the Gaussian distributions, and
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Figure 2.1: One dimensional example of the free energy profile filled by metady-
namics bias potential. The different profiles correspond to the bias potential at
t = NτG, where N is the number on top of each profile and represents the amount
of Gaussians deposited until time t

(iii) the frequency τ−1
G at which the Gaussian distributions are deposited.

These three parameters determine the accuracy and efficiency of the free en-

ergy reconstruction. If the Gaussians are large, the free energy surface will be

explored at a fast pace, but the reconstructed profile will be affected by large

errors. Instead if the Gaussian are small or are deposited infrequently, the recon-

struction will be accurate, but it will take a longer time. Typically the width σs

is chosen to be of the order of the standard deviation of the CV in a preliminary

unbiased simulation in which the system explores a local minimum in the free en-

ergy surface [31]. The bias potential, in time, fills the minima in the free energy

surface, allowing the system to efficiently explore the space defined by the CVs.

Fig. 2.1 reports an example of how metadynamics acts with an one-dimensional

bias potential.
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2.3.1 Free energy estimate and convergence

For any choice of the parameter w, the bias potential VG(s, t) can also represents

an unbiased estimator of the free energy as a function of the reaction coordinate s.

It has been demonstrated [143] that after a transient time teq, which corresponds

to the time needed to fill all the relevant free energy minima of the system (in

Fig. 2.1 teq = 320τG), VG (s, t) reaches a stationary state in which it grows evenly

fluctuating around an average. So if VG(s, t) after teq is an unbiased estimator of

−F (s), at finite t the time average of VG (s, t) defined as

VG (s) =
1

t− teq

∫ tsim

teq

dt′VG (s, t′) , (2.15)

show deviations from −F (s) which becomes smaller and smaller as t increases.

This time average represents the best estimate of the free energy that can be

obtained with metadyanmics.

2.3.2 Criticalities

To obtain an accurate description and free energy surface by this approach, the

choice of CVs (see also 2.4.1) is fundamental. If an important variable is missing,

the free energy estimate will be characterized by large fluctuations and errors.

Moreover, as long as the CVs are uncorrelated, the time required to reconstruct

a free energy surface for a given accuracy scales exponentially with the number

of CVs, like in ordinary umbrella sampling. Therefore, the performance of the

algorithm rapidly deteriorates as the dimensionality of the CV space increases.

This makes impractical to obtain an accurate calculation of the free energy when

the dimensionality is high. Unfortunately, this is often the case for complex

reactions such as protein folding, in which it is very difficult to select a priori a

limited number of variables which describes appropriately the process.

2.4 Bias-Exchange Metadynamics

The bias-exchange metadynamics (BE-META) method allows to overcome the

difficulties discussed above [32]. The method is based a combination of replica
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exchange [138] and metadynamics. Multiple metadynamics simulations of the

system at the same temperature are performed. Each replica is biased with a

time-dependent potential acting on a different collective variable. Exchanges

between the bias potentials in the different variables are periodically allowed

according to a replica exchange scheme. Moves are accepted with a probability:

Pab = min(1, eβ(V
a
G(xa,t)+V bG(xb,t)−V aG(xb,t)−V bG(xa,t))) . (2.16)

If the exchange move is accepted, the trajectory that was previously biased in

the direction of the first variable, continues its evolution biased by the second and

vice versa. A 2-dimensional example is shown in Fig. 2.2. Two simulations are

performed on two replicas of the system at the same temperature, respectively

biased by x- and y-variable. From time to time, the two replicas are allowed

to exchange configurations, accepting the exchange according to Eq 2.16. As a

result, the metadynamics potential almost exactly compensates the free energy,

both as a function of x and y.

By this approach, a relatively large number of different variables can be bi-

ased, and a high-dimensional space can be explored after a sufficient number of

exchanges. Indeed the computational cost of adding an extra variable increases

just linearly, not exponentially as in a normal metadynamics.

The result of the simulation is not a free-energy hyper-surface in several di-

mensions, but several (less informative) low-dimensional projections of the free

energy surface along each of the CVs. The high-dimensional hyper-surface can

still be reconstructed [144] using the method summarized in Section 2.4.3.

2.4.1 Choice of the Collective Variables in the BE

Similarly to other methods that reconstruct the free energy as a function of a

set of generalized coordinates, in the BE-META the choice of the CVs plays an

essential role in determining the convergence and efficiency of the free-energy

calculation. If the chosen set of CVs does not distinguish different metastable

states of the system, the simulation will be affected by hysteresis as not all of

the important regions of the conformational space will be explored. To choose an

appropriate set, one needs to exploit some basic knowledge on the topological,
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Figure 2.2: An example of a bias-exchange metadynamics reconstruction per-
formed in a system with the potential depicted in the top panel. The simulation
is performed with two replicas, biasing with metadynamics x and y respectively.
F (x)+VG (x, t) and F (y)+VG (y, t), represented respectively in the bottom pan-
els, are approximately flat at all times indicating that the CV jumps introduced
by the exchange moves can efficiently lead to a good level of convergence in free
energy calculation.

chemical, and physical properties of the system. Although there is no a priori

recipe for finding the correct set of CVs, in the BE-META method the number

of variables can be relatively large, making the selection less critical.

2.4.2 Choice of the BE Parameters

As mentioned in Section 2.3, the choice of the parameters w and σs influences

the accuracy and efficiency of the free energy reconstruction. Artifacts tend to
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arise when the free energy landscape is highly inhomogeneous, being character-

ized by the simultaneous presence of very shallow and very narrow free energy

basins [145]. The parameters of the Gaussian distributions should be chosen in

such a way that the maximum force introduced by a single Gaussian distribution

(w/σs) is smaller than the typical derivative of the free energy [145]. To choose

these parameters, we follow a scheme previously proposed in [31] and [146]. In

particular, the width σs has to be chosen of the order of the standard deviation

of the CV, performing several preliminary unbiased simulations starting from dif-

ferent folded and unfolded configurations, in which the system explored a local

minimum in the free energy surface. Moreover the force introduced by a single

Gaussian distribution should be smaller than the typical derivative of the free

energy. In the cases studied in this thesis we verified that the choice of the pa-

rameters was correct (see Table 3.1 and Fig. 3.3 in Section 3.3). All the values

of the parameters used in this work are reported in Section 3.3.

2.4.3 Free Energy Reconstruction

The BE-META method allows the free energy of the system to be reconstructed

once the bias potentials reach convergence [32]. The convergence of the bias

potential VG (s, t) is monitored as in standard metadynamics [31, 143] (see Sec-

tion 2.3.1) and is evaluated independently over the profile reconstructed by each

replica. A lack of stationary fluctuations in the biased profile, typically due to

the neglect of some important slow degree of freedom, is a signal that allows to

improve the simulation setup. If an important degree of freedom is not explicitly

biased, VG does not converge to a stationary shape, and taking a time average

of the potential of the form in Eq 2.15 is not meaningful [147]. In this case, one

should analyze the trajectory and find the “hidden” variable responsible for the

large fluctuations of VG, and add it to the set of CVs.

In order to estimate the relative probability of the different states, the low-

dimensional free energy surfaces (FES) obtained from the BE-META calculations

are exploited to estimate, by a weighted-histogram procedure, the free energy of

a finite number of structures representative of all the configurations explored

by the system. The CV space is subdivided so that all the frames of the BE-
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META trajectories are grouped in sets (microstates) whose members are close

to each other in the CV space [144]. Since the scope of the overall procedure

is to construct a model to describe the thermodynamic and kinetic properties

of the system, it is important that the microstates are defined in such a way

that they satisfy three properties: i) the microstates should cover densely all the

configuration space explored in BE-META, including the barrier regions; ii) the

distance in CV space between nearest neighbor microstates centers should not

be too large; iii) the population of each microstate in the BE-META trajectory

has to be significant, otherwise its free energy estimate will be unreliable. A set

of microstates that satisfy these properties is defined dividing the CV space in

small hypercubes forming a regular grid. The size of the hypercube is defined

by its side in each direction: ds = (ds1, ds2, ..., dsn) where n is the number of

collective variables used in the analysis. This procedure determines directly how

far the cluster centers are in CV space. Each frame of the BE-META trajectory

is assigned to the hypercube to which it belongs and the set of frames contained

in a hypercube defines a cluster.

The free energy Fα of each microstate α is estimated by a weighted-histogram

analysis approach (WHAM) [139, 144], conceptually similar to what has been

described in eq. 2.11 and 2.13 . In the WHAM approach, the effect of the bias is

removed, thus resulting in the free energy of a finite number of clusters that are

representative of all the configurations explored by the system. The free energy

of a cluster α is given as

Fα = −T log

∑
i n

i
α∑

j e
1
T (fj−V jα)

(2.17)

where niα is the number of times the microstate α is observed in the trajectory

i and V i
α is the bias potential acting on microstate α in the trajectory i. As

described by eq. 2.15 V i
α is estimated as the time average of the history-dependent

potential acting on the trajectory i, evaluated in sα, the center of cluster α

V i
α = V i

G (sα) =
1

tsim − teq

∫ tsim

teq

dt′V i
G (sα, t

′) . (2.18)
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where tsim is the total simulation time and teq is the time after which the bias

potentials converge. The normalization constants f j appearing in Eq. 2.17 are de-

termined self-consistently like in the standard WHAM method [144]. Corrections

taking into account the variation of the bias over different structures assigned to

the same cluster α have also been described previously [144].

Once the free energy of the different microstates has been obtained, the en-

semble average of any observable that is function of the atomic coordinates of the

system can be calculated as

〈O〉 =

∑
αOαe

−Fα/T∑
α e
−Fα/T

(2.19)

where the sums run over all the bins, Oα is the average value of the observ-

able in the bin α, that is usually estimated as an arithmetic average on all the

configurations belonging to the bin.

An important issue is how many and which CVs should be used in the clus-

tering procedure. It is not necessary to use all the CVs that have been explicitly

biased in one replica, as some of these CVs might prove to be a posteriori less

relevant for the process, or strongly correlated with other variables. The variables

used for the cluster analysis must provide an accurate and effective description of

the system. An accurate description entails a set of clusters where each member

contains consistently similar structures, and thus with very similar free energy.

If the variables are too few, a cluster will contain structures that are very dif-

ferent from each other. On the other hand, performing the analysis in a very

high-dimensional CV space will lead to poor statistics. Finally, it is possible to

estimate the error of the free energy reconstruction looking at the root-mean-

square deviations of the two profile of VG in the first and second half of the

simulation after the teq, as shown by the errorbars in Fig. 3.3.

All the analysis has been done by METAGUI[148], a graphic user-interface for

VMD [149] for analyzing meta- and molecular dynamics simulations, visualizing

the structures assigned to each microstate for different choices of the CVs.



Chapter 3

NMR-guided Metadynamics:

Methods and Details

In this thesis we introduced an approach for integrating experimental data (in

particular NMR chemical shifts) in MD simulations to drive the sampling of

a biomolecular system, combining the experimental information with a pow-

erful enhanced sampling technique, bias exchange-metadynamics, which allow

reconstructing also the free-energy landscape. In this way, we were able to ad-

dress a very challenging problem as protein folding, usually extremely resources-

demanding, exploiting ordinary computational power, accelerating the sampling

by 2-3 orders of magnitudes in the case of the GB3 protein[16, 150] (see Chapter

4 and 5). Moreover this enables a high-quality structural description of the dif-

ferent states of the protein, in particular for the folded state corresponding to the

chemical shifts, designing NMR-guided metadynamics as a perspective method

also for chemical shifts-based structure determination.

In this chapter we will focus on the implementation of this method, describ-

ing the sets of collective variable suitable for a protein folding study, highlighting

in particular the novel collective variable introduced here, based on the chemical

shift predictor Camshift (see Section 3.1.1). We will describe also a slightly differ-

ent implementation of the general approach, Restrained metadynamics (Section

3.2), which can be very useful and computationally cheaper if one is interested

only in characterizing the structure corresponding to the given experimental data,

45
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rather than in the free energy reconstruction.

3.1 NMR-guided Metadynamics

This method is based on the introduction, within a BE-metadynamics framework,

of a new collective variable (Camshift CV) which is able to quantify the overlap

with known experimental chemical shifts of the structures sampled during the

simulation, This approach is immediately generalizable to any other experimen-

tal observables (for instance residual dipolar couplings, cryo-electron microscopy

map, fluorescence resonance energy transfer or small-angle X-ray scattering), pro-

vided that it is possible to predict or back-calculate the corresponding observable

as a differentiable function of the atomic coordinates at each step of the sim-

ulation. Differently from other methods which modify directly the force field

adding harmonic-like terms to favor the sampling of structure consistent with the

experimental data [151, 27], the free energy resulting from our approach repre-

sents properly the statistical weights of the underlying force field. This is very

important also from the search-algorithm point of view, because it does not in-

troduce any frustration in the sampling which could prevent the system to reach

the right fold if large conformational rearrangement are required, allowing the

system to explore configurations also with no overlap with the chemical shifts.

Since the chosen implementation chosen (see Section 3.1.1) relies on the general

agreement with the data, the technique can work also in the case of sparse, in-

complete, or even partially incorrect experimental data (as in a wrong chemical

shift assignment).

3.1.1 Camshift Collective Variable

To predict the NMR chemical shifts corresponding to a given structure we used

the Camshift method [152], which is based on an approximation of the chemical

shifts as polynomial functions of interatomic distances. Unlike other previously

developed methods for the semiempirical calculation of protein backbone chemi-

cal shifts [153, 154, 155], the functions used in Camshift are differentiable, thus

allowing the forces to be computed and the CV to be defined as a penalty function
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based on the differences between the experimentally measured and the calculated

backbone chemical shifts (1Hα, 13Cα, 13Cβ,13C’, 1HN , 15N) [27, 29]. Since the

chemical shifts are extremely sensitive to the details of the local configuration

and environment of the atoms (see Section 1.3.1), the aim of this CV is to re-

produce the local rearrangement of the protein compatible with the experimental

data, expecially when it approaches low values, which corresponds to a better

overlap between the predicted and the experimental chemical shifts. Even if the

calculation of the chemical shifts is restricted to the backbone atoms, some con-

tributions depends also on the orientation of the side-chains [152]. Therefore the

forces applied by metadynamics to all the atoms involved in the calculation of a

CV help also the slow transition of side-chain dihedral angles in finding the cor-

rect arrangement that is crucial to avoid a bad steric hindrance and to reach the

correct fold. In the following chapters we will discuss also how this last variable

is essential in the folding process to access the route towards the native basin of

a protein and consequently to reach convergence in the free energy calculations.

Implementation of the Camshift CV

The implementation of Camshift as a collective variable requires the structure-

based calculations of the chemical shifts. As described in [152] the chemical shift

of a given atom is calculated as

δcalc = δcoil + δdihedrals + δrings + δbackbone + δside−chains + δthrough−space (3.1)

where, δcoil is a residue-dependent constant, and δdihedrals is calculated using the

φ, ψ and χ1 dihedral angles as

δdihedrals = p1 cos(3(θ + p4)) + p2 cos(θ + p5) + p3 (3.2)

where pi are empirical coefficients. The δrings term, which takes into account

the ring current contributions, is defined using the classical point-dipole method

[156]. The δbackbone, δside−chains and δthrough−space terms are defined as

δX =
∑
j,k

αjkd
βjk
jk (3.3)
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Figure 3.1: Difference between the chemical shifts calculated with the Camshift
method [152] and the corresponding experimental values [157] for the structures
in the free energy minimum (black line) of Fig. 5.1 (see Chapter 5) and for the
experimental structure (PDB code 2OED, red line) reference. The values on the
y axis are in ppm.

where j, k defines a pair of atoms at distance d; α and β are empirical coefficients.

For δbackbone the atoms are selected from the neighbouring residues along the chain,

for δside−chains the atoms are those of the same residue, while for δthrough−space the

atoms are selected among those within a radius of 0.5 nm and do not belong to the

current and neighbouring residues. In Fig. 3.1 we report for a structure explored

during the simulation and the experimental reference (PDB code 2OED), the

difference between the chemical shifts calculated by the Camshift method and

the corresponding experimental values [157] for the different atom types.

Since all these terms are defined as differentiable functions of the atomic
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coordinates, it is possible to compute their derivatives and the corresponding

forces in molecular dynamics simulations [27, 29]. The collective variable is then

defined as

Camshift =
N∑
i=1

∑
j

Eij (3.4)

where i runs over the residues of the protein and j runs over the different atom

types (Hα, HN , N, Cα, Cβ and C’). Eij has the functional form [27, 29]:

Eij =


0 if |δijcalc − δijexp| ≤ nεj(

|δijcalc−δ
ij
exp|−nεj
βj

)2

if nεj < |δijcalc − δijexp| ≤ x0(
x0−nεj
βj

)2

+ γ tanh
(

2(x0−nεj)(|δijcalc−δ
ij
exp|−x0)

γβ2
j

)
for x0 < |δijcalc − δijexp|

(3.5)

where δexp and δcalc are the experimental and calculated chemical shifts, respec-

tively. The function Eij has a flat bottom (Fig. 3.2) so that the chemical shifts

calculated to within a given accuracy of the experimental value do not produce a

penalty. The width of the flat region of the potential is determined by the term

nεj, where n is a tolerance parameter and εj is the accuracy of the Camshift pre-

dictions used for the chemical shifts of type j [152]. The penalty is harmonic until

the deviation reaches a cutoff value x0, at which point the penalty grows according

to a hyperbolic tangent function defined to maintain a continuous derivative at

the point x0. The magnitude of the penalty is scaled for each chemical shift type

j by the variable βj, which is a function of the variability of that chemical shift

in folded proteins reported in the Biological Magnetic Resonance Bank (BMRB)

database [158]. The scaling factor βj is used to obtain relative contributions of

comparable magnitude of each chemical shift type to the CV value. The param-

eter γ determines how large the penalty can grow for deviations beyond x0. In

this investigation the simulation was run with n = 1 for all chemical shifts. The

harmonic truncation point x0 was set to 4.0 ppm for Hα and HN , and 20.0 ppm

for N, Cα, Cβ and C′. The penalty truncation factor γ was set to 20 for all chem-

ical shifts. These values of x0 and γ result in an essentially harmonic penalty for

most chemical shifts, with penalties only reaching the hyperbolic tangent region

of the penalty function in the case of very large outliers [27, 29].
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Figure 3.2: Graphical representation of the functional form of Eij used to calcu-
late the Camshift collective variable (adapted from [27])

The collective variable and the forces, which were derived analytically, have

been implemented explicitly into a modified version of PLUMED [159] that will

be made public in a future release.

3.1.2 Definition of the Collective Variables

In order to explore exhaustively the conformational space of a protein, together

with Camshift we used several other CVs:

• AlphaRMSD, ParaBetaRMSD, AntiBetaRMSD. These CVs count

how many fragments of 6 residues (6 in a row for α-helices and 3+3 for

β-sheets) belong to an α-helix and β-sheet, by computing their RMSD with

respect to an ideal α-helix and β-sheet conformation [160]:

S =
∑
α

n
[
RMSD

(
{Ri}i∈Ωα

,
{
R0
})]

(3.6)

n (RMSD) =
1− (RMSD/0.1)n

1− (RMSD/0.1)m
(3.7)

where n is a function switching smoothly between 0 and 1, the RMSD is

measured in nm, and {Ri}i∈Ωα
are the atomic coordinates of a set Ωα of six

residues of the protein, while {R0} are the corresponding atomic positions
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of ideal α-helical and β-sheet conformations; m, n are exponents that allow

to tune the smoothness of the function.

• Coordination Number. This CV, which is used to quantify the number

of contacts between the side chain heavy atoms of hydrophobic residues, is

defined as

CN =
∑
i,j

Cij

with

Cij =
1− (

rij
r0

)n

1− (
rij
r0

)m
(3.8)

where rij is the distance between atoms or groups i and j, r0 is the distance

value to consider two atoms in contact and m, n are exponents that allow

to tune the smoothness of the function.

• AlphaBeta Similarity. We considered two CVs of this type, correspond-

ing to the χ1 and χ2 side chain dihedral angles, respectively, for hydrophobic

and polar amino acids. These CVs are designed to enhance the side chain

packing searching, which is crucial for protein folding. The CVs are defined

as

ABSim =
∑
i

1

2
[1 + cos(χi − χrefi )] (3.9)

where we have chosen χrefi as the mean value of the corresponding dihedral

angle from a library of folded proteins extracted from the PDB.

• Camshift CV. This CV evaluates the overlap between experimental and

calculated chemical shifts of the sampled structure. Its implementation is

described in the previous Section 3.1.1.

The first three CVs act at the secondary structure level, by quantifying, re-

spectively, the fraction of α-helical, anti-parallel and parallel β-sheet content of

the protein. This allows a comprehensive sampling of the secondary structure for

all the backbone conformations of the protein. The following three CVs act at

the tertiary structure level through the exploration of the number of hydrophobic

contacts and of the packing of the side chain dihedral angles χ1 and χ2 for hy-
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drophobic and polar side chains. Combined together these CVs allows to rapidly

open and close the core of the protein, exploring new internal sidechain arrange-

ments of the protein, which are one of the slowest motion in protein dynam-

ics. The coordination number, since it is extended to the hydrophobic sidechain

atoms, quantifies also the degree of compactness of a structure, as we will discuss

in 6.

All these CVs are implemented in PLUMED [159] for Gromacs [161]. They are

publicly available and, apart from Camshift, have been used in several previous

protein folding studies by metadynamics [144, 160].

3.2 Restrained Metadynamics

In this thesis we introduce also a variant of the general approach aimed at achiev-

ing a rapid and efficient search if one is only interested to find the structure

corresponding to the experimental chemical shifts. It consists in a normal Bias-

Exchange procedure using ordinary variables, adding a restraining potential act-

ing on all the replicas. Since we are interested to bias the sampling towards

structures consistent with the experimental chemical shifts, the restraining po-

tential is the Camshift collective variable itself, applied to all the replicas. This

determines an oriented bias also on the other biasing potentials which speeds up

the conformational search towards the right fold. The approach is similar to the

one used in [27], where a restrained molecular dynamics simulation was applied

in a temperature replica exchange framework. In Section 4.3 we will show that

exploiting the sampling power of the Bias Exchange strategy with traditional vari-

ables in combination with a coupling to the restraining potential do not frustrate

the search and allows reaching better results in terms of accuracy due the direct

use of Camshift bias in the sampling, and exploiting only 7 seven replicas instead

of 21 of the method proposed in [27]. Also in comparison with the standard BE-

META approach (see Section 4.1) we gain on order of magnitude in simulation

time required to obtain the same structural accuracy, and even exploiting implicit

solvent simulation.

The approach has been implemented introducing an umbrella (see Section

2.2.2) on the Camshift CV which acts simultaneously with the metadynamics bias
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potentials on each replica of the Bias-Exchange simulation. Since the functional

form of the collective variable (eq. 3.1.1 and Fig. 3.2) is already similar to a

positively defined harmonic penalty, we used just a linear coupling to avoid too

strong forces which can lead to frustration and numerical instabilities. Thus the

bias acting on all the replicas is

VB(s(x)) = m(s(x)− s0) (3.10)

where s(x) = s(x(t)) is the value of the Camshift CV for a specific configuration

at time t, and s0 is the reference value, that we set to zero in order to push the

system towards the best agreement with the experimental data.

Within this approach we renounce to the free energy reconstruction because,

albeit theoretically feasible, sampling fluctuations in the exploration of structures

with large values of Camshift would dominate the reconstruction because of their

large weight eβVB(s) (see eq. 2.12).

3.3 Simulations Details

In this section we provide the simulation details for the simulations described in

Chapter 4, 5 and 6 for the third immunoglobulin-binding domain of streptococcal

protein G (GB3), and the 40-residue form of Amyloid beta (Abeta 40), for which

we were able to characterize the free energy landscape, and for the CASD-NMR

targets where we applied the Restraint Metadynamics approach to determine the

structure corresponding to the experimental chemical shifts. As force fields for

our molecular dynamics simulations we have used AMBER99SB-ILDN [127] and

CHARM22* [11] which are considered among the best force fields for protein

folding simulation [128]. The choice of the force field has been made based on the

state-of-the-art at the time we started the simulations. In particular we exploited

AMBER99SB-ILDN for well-structured proteins (GB3 protein and CASD-NMR

target) and CHARM22* for Abeta40, considering also that the latter force field

was successfully employed in an extensive molecular dynamics simulation of an

intrinsically disordered protein [162].
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Collective Variable (s) w/σs (kJ/mol) |∂F/∂s| (kJ/mol)
Camshift (σs=1) 0.3 3.4
Camshift (σs=0.5) 0.6 3.4
Coord. Number (σs=10) 0.03 0.35
ParaBeta-RMSD (σs=0.1) 3.0 13.7
AntiBeta-RMSD (σs=0.2) 6.0 13.0

Table 3.1: Comparison between the maximum force introduced by a single Gaus-
sian ( w

σs
) and the average of the derivative of the free energy with respect to the

specific collective variable (
∣∣∂F
∂s

∣∣). w is equal to 0.3 kJ/mol.

3.3.1 GB3 Protein

GB3 is a protein of 56 residues characterized by a fold with two β-hairpins, located

respectively in the N- and C-terminus, bridged together in a parallel β-strand,

and a central α-helix, which connects the two hairpins (see Fig. 4.1B in the next

chapter). Starting from an unfolded state at 5.7Å from the reference structure of

GB3 protein (PDB 2OED [163]), obtained by a simulated annealing procedure,

we ran 380 ns of molecular dynamics simulation enhanced by a BE-META scheme

for 7 different replicas (∼ 2.7µs in total), each one biased by a different history-

dependent potential acting on one of the collective variables described in Section

3.1.2:

• Camshift Parameters: Gaussian width σ = 1.

• AlphaRMSD. Parameters: m = 4, n = 2, R0=0.08, σ =0.2

• ParaBetaRMSD Parameters: m = 12, n = 8, R0=0.08, σ =0.1

• AntiBetaRMSD. Parameters: m = 12, n = 8, R0=0.08, σ =0.2.

• Coordination Number. Parameters: m = 8, n = 4, R0=0.4, σ =10

• Two AlphaBeta Similarities. Parameters: σ =0.5 for both replicas.

The simulations were performed using the GROMACS 4.5.3 package [161]

employing the AMBER99SB-ILDN force field [127] and the TIP3P water model
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[164]; the protein was solvated by 6524 water molecules in a 212 nm3 cubic pe-

riodic box. The particle-mesh Ewald method [165] was used for long-range elec-

trostatic with a short-range cutoff of 1 nm. A cut-off was used for Lennard-Jones

interactions at 1.2 nm. All bond lengths were constrained to their equilibrium

length with the LINCS algorithm [166]. The time step for the molecular dynam-

ics simulation was set at 2.0 fs and the Nose-Hoover thermostat [131, 132] with

a relaxation time of 1ps was used. The atomic coordinates and the energy were

saved every 1 ps. Concerning the metadynamics setup, one-dimensional Gaussian

functions of heightw = 0.30 kJ/mol were added every 4 ps, and exchanges of the

bias potentials were attempted every 20 ps.

After 120 ns of simulation, in which very wide regions of the CVs were ex-

plored, we introduced loose upper boundaries to help the convergence of the bias

potentials [147], to not waste time in meaningless region of the CVs space. At

this time we also reduced to 0.5 the Gaussian width of the Camshift CV, and

doubled the σ of the AlphaRMSD CV. A second BE-META simulation of 300

ns was run with the same setup on 6 replicas, excluding the Camshift CV, to

benchmark the importance and the power of this CV to fold the protein. Finally

a standard molecular dynamics simulation of 200 ns was performed to evaluate

the stability of the intermediate state.

In Table 3.1 we checked that the choice of the metadynamics parameters

were consistent with the explored free energy landscape. This is confirmed also

by the corresponding shape of the free energy projections along the collective

variables used in the analysis, showed in Fig. 3.3: the profiles are homogeneous

and smooth, with the minima wider than Gaussian width.

The implicit solvent simulations described in Section 4.3.1, has been performed

with the same setup, but by a stochastic dynamics with the Generalized Born

Solvent Accessibility (GBSA, [167]) approximation based on the OBC algorithm.

The starting configuration for the simulation was obtained with an equilibration

procedure in implicit solvent at 400 K from the same configuration used in the

explicit solvent simulation.
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Figure 3.3: Convergence of the free energy surfaces as function of different collec-
tive variables for GB3. The values on the x axis are relative to the corresponding
collective variable (CV) on the top right corner of each panel. The explicit forms
of the CVs are reported in Section 3.1.2

3.3.2 Abeta40

Amyloid beta is a peptide of 36-43 amino acids that is processed from a bigger

transmembrane glycoprotein, the amyloid precursor protein (APP). It usually

originated by sequential cleavage of the APP, and the 40-residue form of Amyloid

beta (we will refer to it as Aβ40 or Abeta40) is the most common isomorfs. These

kinds of peptides are well known for their propensity to aggregate into plaques

composed of a tangle of ordered structures obtained by the regular superposition

of parallel and anti-parallel β-strands, called fibrils, protein fold shared by other

peptides associated with protein misfolding disease. After a rapid growing these

aggregates becomes usually toxic for the cells. In particular the amyloid plaques

are the main component of the deposits found in the brains of patients affected
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by Alzheimer’s disease.

To characterize the free energy landscape of Abeta40, we used a setup similar

to the previous one, performing BE-metadynamics simulation of 310 ns on 8

replicas (∼ 2.5µs in total), the same as the previous case, just adding an extra

replica biased by Camshift CV:

• Camshift Parameters: Gaussian width σ = 1.

• AlphaRMSD. Parameters: m = 12, n = 6, R0=0.1, σ =0.2

• ParaBetaRMSD Parameters: m = 12, n = 6, R0=0.1, σ =0.1

• AntiBetaRMSD. Parameters: m = 12, n = 6, R0=0.1, σ =0.2.

• Coordination Number. Parameters: m = 8, n = 4, R0=0.4, σ =10

• TwoAlphaBeta Similarities. Parameters: σ =0.3 for hydrophobic residues

and σ =0.075 for polar residues.

The GROMACS 4.5.3 package [161] was used, employing the Charmm22*

force field [11] and the TIP3P water model [164]; the protein was solvated by

6461 water molecules and 3 sodium ions in a 203 nm3 dodecahedron periodic

box. The particle-mesh Ewald method [165] was used for long-range electrostatic

with a short-range cutoff of 0.9 nm. A cut-off was used for Lennard-Jones in-

teractions at 0.9 nm. All bond lengths were constrained to their equilibrium

length with the LINCS algorithm [166]. The time step for the molecular dynam-

ics simulation was set at 2.0 fs and the Nose-Hoover thermostat [131, 132] with

a relaxation time of 1ps was used. The atomic coordinates and the energy were

saved every 1 ps. Concerning the metadynamics setup, one-dimensional Gaussian

functions of heigth w = 0.30 kJ/mol were added every 5 ps, and exchanges of

the bias potentials were attempted every 20 ps. Also in this case, after 100 ns of

simulation, in which very wide regions of the CVs were explored, we introduced

loose upper boundaries to help the convergence of the bias potentials [147]. The

experimental chemical shifts [168] were taken from the BMRB databank [158],

code 17795.
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3.3.3 CASD-NMR Target

The simulations for the CASD-NMR target HR2876C, an unsolved 97-residue

long protein (PDB reference 2M5O, released after our model submission), de-

scribed in 4.3.2, has been performed by a stochastic dynamics employing the

Generalized Born Solvent Accessibility (GBSA, [167]) approximation based on the

OBC algorithm, with the same setup used for the GB3 simulations (AMBER99SB-

ILDN has been employed). The starting configuration for the simulation was ob-

tained by homology modeling from the amino acid sequence, using the HHpred

server [91] and Modeller [101, 102].



Chapter 4

Structure Determination using

Chemical Shifts

As we have discussed in Section 1.2.2, one of the field where computational ap-

proaches to biological issues played and still play a major role is in the prediction

and determination of the three dimensional structure of a protein. In particu-

lar, these approaches have been really useful in simplifying and speeding up the

experimental protocols for structure determination in X-ray crystalography and

NMR spectroscopy.

In this chapter we present the first results of the application to plain struc-

ture prediction of the methodology introduced in the previous chapter. Starting

from the simple knowledge of the backbone chemical shifts (1Hα, 13Cα, 13Cβ,13C’,
1HN , 15N), we show how it is possible to combine this experimental information

with an enhanced sampling technique based on molecular dynamics simulations to

determine the protein structure in NMR spectroscopy with the same atomistic ac-

curacy of an experimental structure. The application of this method could avoid

lots of time and resource demanding experiments for NOESY assignment and

structural restraints extraction, necessary in the standard structure generation

procedure, improving the prediction power of this experimental technique, espe-

cially for larger proteins. Moreover the molecular dynamics framework provides

also a “natural” way for the acquisition of the native conformation exploiting its

folding mechanism (see also chapter 5), and guarantees by itself a high quality of
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the stereochemical parameters, avoiding directly bad steric clashes and dihedral

angles violations by the force field.

In Section 4.1 we apply our approach to the case of a GB3 protein, showing in

particular how the use of the new collective variables based on the chemical shifts

(Camshift CV, see Section 3.1.1) is crucial to properly fold the protein. In the

attempt to validate the sampled model of the protein we were able also to establish

a new way to assess and rank the quality of different NMR models (Section 4.2),

demonstrating that we would been able to identify correctly the structure which

is more consistent with the experimental data even if we didn’t know the reference

PDB structure in advance. Finally we discuss a slight modification of the general

approach (NMR Restraint metadynamics) which is more computationally efficient

for structure determination and refinement, showing the results of a successful

application to a blind test on a CASD-NMR target.

4.1 Folding of GB3 using Chemical Shifts as

Collective Variables

We performed molecular dynamics simulations of GB3 at 330 K in explicit solvent

with the Amber99SB-Ildn force field [127]. In order to enhance conformational

sampling, we used the NMR-metadynamics scheme described in Section 3.1 and

[150], based on Bias-Exchange approach, with 7 replicas. We started the simu-

lations from a structure at 5.7 Å from the reference structure (PDB code 2OED

[163]), and run them for a total of 380x7 ns (∼ 2.7µs in total). For each replica we

used a different metadynamics history-dependent potential acting on a different

collective variable (see Section 2.4 and 3.1.2). Three CVs act at the secondary

structure level, by quantifying, respectively, the fraction of αhelical, anti-parallel

and parallel β-sheet content of the protein. Other three CVs act a the tertiary

structure level through the exploration of the number of hydrophobic contacts and

of the packing of the side chain dihedral angles χ1 and χ2 for hydrophobic and

polar side chains. The seventh CV, Camshift (see Section 3.1.1), measures the

difference between the experimental and calculated chemical shifts. The detailed

setup is described in Section 3.3.1
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Figure 4.1: A) Representation of the conformational sampling achieved by the ap-
proach introduced in this work. The conformations visited are shown as function
of the Camshift collective variable and of the backbone RMSD from the reference
structure (PDB 2OED). B) Structure with the lowest RMSD (0.5 Å) from the
reference structure. C) Illustration of the accuracy of the side-chain packing of
the structure in (B).
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Figure 4.2: Time series of the trajectories that achieve the lowest RMSD value
for the simulations with (black line) and without (red line) the Camshift CV.
Insets: A and B) Lowest RMSD structures, and C) Percentage of native contacts
in each conformation in the first 50 ns in the two simulations.

Our method allows to explore a wide range of structures, ranging from ex-

tended to compact. Representative examples are shown in Fig. 4.1A. Native-like

conformations are visited multiple times, reaching a backbone RMSD of 0.5Å

from the reference structure (PDB code 2OED). In these native-like structures

the internal packing of hydrophobic side-chains is practically identical to that

observed in the reference structure (Fig. 4.1C). In the calculations that we per-

formed, this level of accuracy could be reached only by using a Bias-Exchange

scheme in which the Camshift CV is included in the collective variables set. To

demonstrate this point, we performed another simulation with the same setup,

using the six CVs discussed above that describe the secondary and tertiary struc-

tures, but not the Camshift CV. The difference between the two simulations is
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substantial. In the simulation without the Camshift CV the best configuration

has a RMSD of 2.7Å (Fig. 4.2, inset B). After 50 ns the RMSD starts increasing

constantly (red line) and the folded state is not explored at all. By contrast,

the simulation with the Camshift CV visits several times the folded state, with

several unfolding-refolding events. During the first 50 ns, not only the latter sim-

ulation performed better, reaching a RMSD of 2.5Å, but it also forms the correct

secondary and tertiary contacts, in particular the ones involved in the formation

of the first β-hairpin (Fig. 4.2, inset A), which is critical for the folding of this

protein[169, 170]. The fraction of native contacts is also systematically higher in

the simulation employing Camshift CV (Fig. 4.2, inset C). These results indicate

that the folding events observed later in the simulation are due to the systematic

bias induced by the Camshift CV variable towards the correct local topology in

the native state. This is indeed the key of the success of the methodology: the

rapid formation of native contacts induced by the chemical shifts bias allows to

flatten the rugged free energy landscape and consequently to overcome barriers

and kinetic traps, pushing the folding process downward the funnel. This picture

is also confirmed by the correlation between Camshift CV and RMSD in Fig.

4.1A and 4.3 and by the results observed in Section 4.3.

4.2 A New Scoring Scheme for NMR Models

The correlation between Camshift CV and RMSD reveals that the new CV can

be used also as a scoring function to assess and rank the quality of different

NMR models. This would have allowed us to recognize the right fold for the

GB3 protein even if the reference structure were unknown, as in a blind structure

prediction starting only from the chemical shifts assignment.

The thermal average of Camshift CV allows ranking cor-

rectly a structure.

In Figure 4.3-A we plot the RMSD from the PDB structure against the value of

Camshift CV for an ensemble of structures generated by bias exchange metady-

namics. Clearly, all the conformations at low RMSD are also characterized by a
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Figure 4.3: Above the detail of Fig.4.1 for low value of Camshift and selected
structure for right fold discrimination. Below the probability distribution of
Camshift score for free MD of 10 ns starting from the PDB reference (black)
and the structures respectively at 0.7 (red), 1.4 (green), 2.2 (blue) and 3.5 (yel-
low) Å of RMSD
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relatively low value of Camshift CV. However, we also observe some structures

with a low value of similarity, but with a RMSD of 3 Å or more from the native

state. Visual inspection reveals that these structure are topologically and locally

similar to the native fold, but with differences involving, for instance, the packing

of the hydrophobic core.

Thus, simply selecting from the simulation the configurations corresponding to

a low Camshift value is not a sufficient criterion for localizing univocally the folded

state if the reference structure is unknown. However, the structure corresponding

to the folded state can be easily found by computing the probability distribution

of Camshift CV in relatively short finite temperature MD runs started from the

candidate structures. In order to demonstrate this point ee considered four dif-

ferent configurations with Camshift value smaller than 1 with different RMSDs

from the reference (respectively at 0.7, 1.4, 2.2 and 3.5 Å, marked with different

colors in Fig. 4.3-A) and we run a MD simulation of 10 ns starting from each

of these structures. The probability distributions of Camshift in these four runs

is shown in Fig. 4.3-B: clearly, the closer a structure is to the folded state, the

lower on average its Camshift value is. This is also pointed out in the inset of Fig.

4.3-B, where the average of Camshift CV is plotted as a function of the average

RMSD, which shown a striking linear correlation between the two variables. Re-

markably, the probability distribution of the run started from the configuration

at 0.7 Å (red line) is indistinguishable from the one of the run starting from the

PDB coordinates (black line), indicating once again that the structures obtained

by our procedure are statistically indistinguishable from the folded state, with

an accuracy beyond the experimental resolution. It is worth to be noticed from

the inset that also the variance of both Camshift and RMSD increase with the

distance from the reference, as shown by the error bars: the further a structure

is from the native state, the less stable it will be and viceversa.

The results shown in Fig. 4.3 clearly indicate that the value of Camshift in

a single configuration can be affected by relatively large fluctuations, similar to

those observed in the finite temperature value of any observable that depends

on the position of several atoms, but it demonstrates also that structures can be

unambiguously ranked by computing a thermal average of Camshift.

In our opinion this is a general result which is valid for all structure-based
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scoring functions, as we have already shown in [96]. On one side this cures

artifacts due to fluctuations of the atomic coordinates, quite common especially

in the scoring of a large number of structures and since these functions usually

rely on thresholds and cut-offs definitions; and more importantly the averaging

procedure represents an ensemble average in the neighborhood of a local energy

minimum which has a straightforward statistical physics meaning and takes also

in consideration that proteins and their structures are dynamical and not static

entities.

4.3 Structure Determination by Restrained Meta-

dynamics

In order to establish a method only for protein structure determination purpose

which is more competitive in terms of efficiency with the state-of-the-art pre-

diction techniques from NMR data [111], we applied to GB3 the same setup

described above but using implicit solvent approximation. This reduces drasti-

cally the degrees of freedom of the system (from ∼ 20000 to 862 atoms) but as

we will see without success in the right fold determination. Then we show that

the Restraint Metadynamics approach explained in Section 3.2, allows reaching

this goal for GB3. The same technique has been applied successfully in a real

blind test within CASD-NMR competition.

4.3.1 Implicit Solvent

We used the setup of the previous simulation for GB3 protein and described in

Section 3.3 with the same 7 replicas, but with an implicit solvent approximation,

Generalized Born Solvent Accessibility (GBSA, [167]), to reduce the computa-

tional cost. The simulation has been performed at a higher temperature T = 400

K to enhance the conformational transitions since usually folded proteins tends

to exhibit a higher melting temperature in implicit solvent simulation [171], over-

stabilizing folded states [172]. As it is shown by the black line of Fig. 4.4, in 120

ns of simulation the standard Bias-Exchange approach involving Camshift CV is

not able to fold properly the system, reaching in the best case structures at 2.6Å
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Figure 4.4: Time series of the trajectories that achieve the lowest RMSD value
from the reference state (PDB 2OED) for the implicit solvent simulations of
GB3 protein with standard NMR-metadynamics approach (black line) and with
Restrained metadynamics (red line)

of backbone RMSD from the reference PDB just in the first part of the simulation

and then drifting away from the folding basin, at variance with the previous sim-

ulation (Fig. 4.2). Even if the force field used is the same (Amber99SB-Ildn), the

implicit solvent approximation has a negative impact on the dynamical and fold-

ing properties of the system, which is not able to form the right native contacts

and, consequently, to access the folding basin. However adding a soft restraining

potential on the Camshift CV on all the replicas, the system folds with the same

accuracy of the explicit solvent simulation and in a shorter time (red line in Fig.

4.4), respectively at 60 and 240 ns for the same structural similarity. Despite

of the implicit solvent approximation, the great increase in the efficiency of the
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Figure 4.5: Effect of the temperature on Restraint metadynamics simulations in
implicit solvent for GB3 protein. In black the time series of lowest RMSD reached
by the simulation at 400 K, in red the one at 330 K and in blue the one at 450
K.

algorithm is due to the simultaneous action of the Camshift restraint on all the

replicas: this determines a sort of “oriented” bias on all collective variables act-

ing on the various walkers towards a general better agreement with experimental

data, accelerating the formation of the local native rearrangements.

We investigated also the role of the temperature in the sampling, performing

other two simulations with the same setup, but at 330 K and 450 K. As ex-

pected the amplitude of the RMSD fluctuations, and consequently of the struc-

tural changes, in the three runs is proportional to the temperature. In the sim-

ulation at 330 K (red line in Fig. 4.5) the relative low temperature affects the

sampling slowing down the dynamics and the conformational exploration, even
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Figure 4.6: Values of the Camshift CV (black dots) and of the relative RMSD (red
dots) from the reference structure for the configurations sampled in the replica
bias by Camshift CV, during the Restrained metadynamics simulation at 400 K
in implicit solvent.

in the first part of the run where all the performed simulations showed a net im-

provement in the structure similarity. The simulation at 450 K instead (blue line

in Fig. 4.5) is able to visit immediately structures with a better agreement with

the PDB reference, but in this time window the large fluctuations induced by

the temperature does not allow the correct formation of the contacts to descend

rapidly the funnel to the native fold.

The largest structural improvements usually happen in the first part of the

simulation and the improvement usually corresponds to a new minima of the

Camshift bias-potential, as shown in Fig 4.6. This suggests that selecting the

structure with the lowest value of Camshift in the beginning of the simulation

and starting a completely new simulation (without the previous deposited bias

potentials) can fasten the procedure to reach the folded state. Analyzing the first

5 ns of the simulation at 450 K (blue line in Fig.4.7, we selected the structure

with the minimum value of Camshift (which is at 3.1 Å of RMSD from the PDB
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Figure 4.7: Effect of starting a new Restrained simulation from a structure at
a low value of Camshift CV of a previous run. In black and in blue line the
time series of the lowest from the previous simulation at respectively 400 and
450 K, and in red the same time series for a new simulation started from the
configuration with the lowest Camshift value in the simulation at 450 K.

reference), and we started a new Restrained metadynamics simulation from this

configuration. The red line in Fig.4.7 shows that in this way also the simulation

at 450 K is able to obtain structures perfectly consistent with the experimental

structure in less than 20 ns of simulation for 7 replicas in implicit solvent, and

has been obtain with less than one day of computation on a total of 21 processors

of a normal computer.
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Figure 4.8: Time series of Camshift CV in the first Restrained metadynamics run
for HR2876C CASD-NMR target. The red circle show the selection in the first
Camshift minimum of the run of the structure, used then as starting configuration
for the second run

4.3.2 A Blind Test: CASD-NMR Target

We tested our approach also in a blind test, participating at the structure de-

termination of a CASD-NMR target (see Section. 1.3.3), HR2876C, an unsolved

97-residue long protein. After downloading the chemical shift assignment from

[173], we generated the starting configuration for our simulation by homology

modeling from the residues sequence, using the HHpred server [91] and Modeller

[101, 102]. Then two Restrained metadynamics simulation were run for 5 ns each

at 400 K in implicit solvent (see Section 3.3.3 for details). During the first run

we selected a structure from the first minimum explored by the Camshift replica

(red circle in Fig. 4.8), that has been used as starting configuration for the second
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Figure 4.9: Comparison between the submitted structure (in blue) with the lowest
backbone RMSD and the one of the model (in red) from the reference pdb (code
2M5O)

run. We finally submitted, as our solved structure, the centroids of the cluster

analysis of the structures belonging to Camshift minima in the two runs (like

the ones at 2.5 ns and 3.5 ns in Fig. 4.8): unfortunately the rescoring procedure

through MD simulations proposed in Section 4.2 was not affordable due to lack

of time and resources, so we ordered the structure based on the Camshift average

on the elements of the clusters, from the lowest to the highest.

In [174] the external analysis of the RMSD in the range between ASP16 and

ASP93 residue from the reference PDB (code 2M5O), released publicly after the

submission, and the quality assessment for our models are reported. The starting
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configuration obtained by the homology modeling was at 2.55 Å, the average

backbone RMSD of our models is 1.31±0.23 Å (1.73±0.24 Å for all heavy atoms)

with a best configuration at 0.84 Å ( 1.25 Å for all heavy atoms); the main defects

are on the borders of the range selected for the RMSD calculation, as shown in

Fig. 4.9. Moreover the similarity deteriorates with the model number, confirming

that, also in this approximation, the Camshift averaging is a good indicator to

rank the different models. Also the quality parameters (like distance, dihedral

or Ramachandran violations) show good values, that could be further improved

using the approach in explicit solvent simulation: indeed the Restrained NMR-

metadynamics approach can be obviously applied also in explicit solvent, with

likely better results in term of quality and structure similarity to the experimental

coordinates due to a more accurate force field.



74 Structure Determination using Chemical Shifts



Chapter 5

Free Energy Landscape of a

Globular Protein

As we have discussed in Section 1.1.1, the use of free energy landscapes rational-

izes a wide range of aspects of protein behaviour by providing, in particular, a

clear illustration of the different states accessible to these molecules, as well as of

their populations and pathways of interconversion. However, the quantitative de-

termination of the free energy landscapes of proteins by computational methods

is very challenging as it requires an extensive sampling of their conformational

spaces.

Together with the accurate structural characterization of the folded state that

we discussed in the previous chapter (Section 4.1), the NMR-guided metadynam-

ics that we introduce in this thesis allows also the description of the free energy

landscape of a protein with relatively limited computational resources. As in this

approach the chemical shifts are not used as structural restraints, the resulting

free energy landscapes correspond to the force fields used in the simulations.

In this chapter we illustrate this approach for the third immunoglobulin-

binding domain of protein G from streptococcal bacteria (GB3). Our calculations

reveal the existence of a folding intermediate of GB3 with a partially non-native

topology (Section 5.1.1). Furthermore, the availability of the free energy land-

scape enables the folding mechanism of GB3 to be elucidated by analyzing the

conformational ensembles corresponding to the native, intermediate and unfolded
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states, as well as the transition states between them (Section 5.1.2). Taken to-

gether these results show that by incorporating experimental data as collective

variables in metadynamics simulations it is possible to enhance the sampling ef-

ficiency by two or more orders of magnitude with respect to standard molecular

dynamics simulations[16], and thus to estimate free energy differences between

the different states of a protein with a kBT accuracy by generating trajectories

of just a few microseconds.

5.1 Thermodynamics of GB3 Folding

Bias-Exchange Metadynamics allows the free energy of a system to be recon-

structed once the bias potentials become stable [32]. In order to obtain such

a characterization for GB3 protein, we have analyzed the simulation obtained

by standard NMR-guided metadynamics approach and described in Section 4.1,

following the scheme explained in Section 2.4.3). After selecting the CVs that

are most effective to discriminate different states of the system, the CVs space is

divided in hypercubes which represent microstates of the system. All the frames

explored after the equilibration time teq are then assigned to the corresponding

microstates according to their CV values: the relative conformations within each

hypercube should be structurally consistent to define a proper microstate of the

system, otherwise the hypercube size must be reduced, repeating the frames as-

signment. Then a free energy value is computed for the microstate as described

by eq. 2.17, based on the values of the bias potentials and on the number of

assigned frames in that specific microstates. In our study we have chosen the

Camshift, Coordination Number, Anti- and Para-BetaRMSD CVs; the relative

free energy profiles are reported in Fig. 3.3. The error on the free energy differ-

ence of the microstates corresponding to the three local free energy minima in

Fig. 5.1 is approximately of 3 kJ/mol.

The molecular dynamics simulations reached convergence after approximately

240 ns, as at this point the bias potentials acting on all the replicas started to

become stationary [144]. We then continued the simulations for further 140 ns

in order to acquire enough statistics: so a total of approximately 2.7µs (380 ns

on 7 replicas) has been spent to fully describe the free energy landscape and
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Figure 5.1: A) Three dimensional representation of the free energy landscape of
GB3 as function of three collective variables (see main text). Along the folding
pathway (black dashed line) the most relevant structures are reported with their
relative free energy values: the native state N in green, the transition state TS2
in blue, the intermediate state I in red, the transition states TS1 in cyan and the
unfolded ensemble U in yellow.
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Figure 5.2: Hydrophobic solvent-accessible surface area (SASA), relative number
of native contacts and free energy along the folding pathway.

the folding mechanism of a protein which folds on the millisecond time scale

[169]. In Fig. 5.1 the free energy landscape is represented as a function of three

collective variables, the fraction of antiparallel β-sheet, the fraction of parallel

β-sheet, and the coordination number between the hydrophobic side chains (Fig.

5.1). This representation reveals the organization of the free energy landscape,

with a deep minimum corresponding to native-like structures, separated by a

relatively high barrier from other minima. The lowest free energy minimum

includes configurations very similar to the reference structure (on average, at

1.3 Å RMSD). This result is confirmed by the analysis of the deviations of the

calculated chemical shifts from the corresponding experimental values, both for

the reference structure (PDB code 2OED) and for the structures belonging to the

free energy minimum (Fig. 3.1). The agreement is excellent in both cases, thus

confirming that by our procedure we were able to find structures that are very

close to the X-ray structure. These results provide also evidence of the excellent

quality of the Amber99SB-ILDN [127] force field that we used for modeling GB3.
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The shallow minimum immediately after the free energy barrier that sepa-

rates the folded state from the rest of the conformational space includes compact

structures with a high secondary structure content, but with a fold that is rather

different from the native, as will be discussed in detail below. This second mini-

mum is separated by another free energy barrier from a further minimum, which

includes more disordered structures with a much smaller secondary structure

content. In these conformations, the native C-terminal β-hairpin appears to be

present, confirming its high stability, while the helix and the N-terminal β-hairpin

are completely disrupted [175, 176, 177]. The folded-like and unfolded-like states

have a free energy difference of only 2.3 kJ/mol, which is comparable with the

error of our free energy estimates. The similarity in the free energies of the folded

and unfolded states reflects the conformational properties of the protein at the

temperature at which the simulation has been performed (330 K), which is about

30 K below the experimental melting temperature of GB3 [36].

5.1.1 An Intermediate State in the Folding of GB3

The free energy landscape that we calculated illustrates explicitly the presence of

three distinct states of GB3. In addition to the native (N, in dark green in Fig.

5.1) and unfolded (U, in yellow in Fig. 5.1) states, we identified the presence of

an intermediate state (I, in red in Fig. 5.1) with a free energy 3.8 kJ/mol higher

than the N state. From the relative free energies we calculated the populations

of the three states at 330 K, which are 59% for N, 14% for I and 26% for U.

An unbiased molecular dynamics simulation of 200 ns starting from a structure

corresponding to the intermediate free energy minimum remains extremely stable,

with an average RMSD of 2.4 Å from the equilibrated initial structure. These

results are consistent with the observation of the presence of an intermediate

state of GB1 [178, 179], which shares a 88% of sequence identity with GB3. In

particular the latter work, which was based on the measurement of the kinetic

folding constant as a function of the pH and denaturant concentration, reported a

folding behaviour consistent with the presence of an on-pathway intermediate and

two different transition states (TS). However, the structure of the intermediate

of GB1 is more native-like than the one that we find here. The ensemble of
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conformations making up the intermediate state characterized by our approach

contains compact structures, which do share specific secondary elements with the

native state, including the C-terminal β-hairpin. The N-terminal extension is

instead less structured with only an incipient parallel pairing of the first β-strand

[178] and the N-terminal region of the α-helix (residues 22-30). In addition, the

C-terminal part of the α-helix exhibits a non-native configuration by forming

an anti-parallel β-strand paired with the third β-strand of the protein (residues

41-47).

5.1.2 Identification of the Transition States

we tried to provide a qualitative characterization of the protein kinetics out of

free energy landscape reconstructed by our procedure. This has been done by

means of a kinetic Monte Carlo approach [180]. Based on our multidimensional

reconstruction, at each step the system jumps from a microstate to another, based

on the free energy difference with the nearest neighbors in the CV space. In this

way it is possible to explore the connectivity between the different states on the

free energy landscape, evaluating also the most probable pathways.

In order to better characterize the folding mechanism of GB3, we simulated by

a kinetic Monte Carlo approach [180] the dynamics on the multi-dimensional free

energy landscape reconstructed by our procedure. All the trajectories connecting

the folded and the unfolded states go through the intermediate state, confirming

it is an on-pathway intermediate, like the one observed in GB1 [179]. The black

dashed line in Fig 5.1 represents the three-dimensional projection of the trajectory

of highest probability connecting the folded and the unfolded state. Consistently

with this topology, the trajectory crosses two transition states, TS1 between the

unfolded state and the intermediate (in cyan in in Fig. 5.1), and TS2 between

the intermediate and the native state (in blue in Fig. 5.1). The rate limiting step

is represented by TS2, with a barrier of 19.5 kJ/mol from the native state, while

TS1 is at a free energy of 12 kJ/mol.

The hydrophobic solvent-accessible surface area (SASA) reveals how the two

TSs are less compact than the N and I states, but still quite structured (Fig.

5.2 ). A similar conclusion was reached by the experimental Tanford β-values
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Figure 5.3: Comparison of the experimental φ-values (blue circles) of GB1 [169]
and of the φ-values for GB3 calculated from the TS2 (black line) e TS1 (red line)
structures determined in this work.

for the two transition states of GB1, βTS1 = 0.76± 0.04 and βTS2 = 0.93± 0.04

[179]. These values are consistent with those computed by the ratio of the total

SASA between N and the corresponding TS (as proposed in [179]) obtained in

the present study for GB3, βTS1 = 0.82± 0.03 and βTS2 = 0.91± 0.03.

We found that the TS2 of GB3 is more compact than TS1 (Fig. 5.1), at

least in part because of the presence of a native salt bridge between Lys-10 and

Glu-56 that is missing in TS1. This aspect was also suggested in the case of

GB1 [179] to explain the differences in the pH-dependence for the unfolding rate

constant of the two transition states. Indeed a visual inspection of the TS1, I and

TS2 structures reveals how this salt bridge can trigger the correct arrangement

between the C-terminus and the first β-strand (residues 1-10). The formation of
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the salt bridge, which is absent in TS1, in I acts as an anchor that allows the

parallel pairing of the first β-strand, increasing the fraction of native contacts

from 29% in I to 37% in TS2. On this view, the second β-hairpin represents

the initial native element in the folding process, followed by the formation of the

N-terminus of the native helix and the parallel pairing of the first β-strand to the

C-terminus β-hairpin, in order to stabilize then the formation of the first-hairpin.

These findings are consistent with the φ-values measured for GB1 [169]. A

comparison between the experimental φ-values of GB1 and those calculated for

GB3 for TS1 and TS2 is presented in Fig. 5.3 through the fraction of native

contacts of amino acid side-chains [22, 23]. Despite the differences in sequence

between GB1 and GB3, the structure of the TS2 of GB3 exhibits a pattern

approximately consistent with experimental φ-values of the transition state of

GB1 (Fig. 5.3 ), especially in the two β-hairpin regions. These results, which are

consistent with previous conclusions [169], indicate that in the transition state

the C-terminal harpin is completely formed as well as the parallel pairing of the

first β-strand. Instead the φ-values in the α-helical region shows a more complex

behaviour compatible with a variety of conformations in the transition ensemble,

and so less native-like.



Chapter 6

Free Energy Landscape of an

Intrinsically Disordered Protein

The results shown in Chapter 5 motivated the attempt to use NMR-guided meta-

dynamics to explore the conformational space of an intrinsically disordered pro-

tein. As we mentioned in Section 1.1.2 intrinsically disordered proteins are charac-

terized by the absence of a well- defined three dimensional structure under native

conditions [33, 34, 35]. Despite the great challenge to probe experimentally their

structural features, by bringing together experiments and computations it has

been recently possible to make progress in determining the conformational space

available to them [181, 182, 183, 184, 185, 186, 187]. However, characterizing the

free energy landscape of these proteins is still an open problem.

Exploiting our methodology, we are able to provide a structural and energetic

characterization for the 40-residue form of Amyloid beta (we will refer to it as

Aβ40), involved in Alzheimer’s disease because prone to aggregate in oligomers

and fibrils, which can be toxic for the cells. We found that the free energy

landscape of this peptide is inverted with respect to that of folded proteins, as it

is characterized by a global minimum consisting of highly disordered structures

and by a series of local minima corresponding to partially folded conformations.

These structures are kinetically committed to the disordered state, but their free

energies are quite low, indicating that they are transiently explored even at room

temperature and may be involved in the aggregation process. The presence of
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an inverted free energy landscape suggests that intrinsically disordered proteins

should become more compact when the temperature is increased.

6.1 Thermodynamics of an Intrinsically Disor-

dered Protein: Abeta40

We apply the NMR-guided metadynamics strategy introduced in this thesis (Sec-

tion 3.1) to characterize the structural ensembles and the free energy landscape

of Abeta40 (see Section 3.3.2 for simulation detail). Since in this approach the

chemical shifts are not used as structural restraints, the resulting free energy

landscape represents the Boltzmann distribution of the force field used in the

simulations. We performed our simulations in explicit solvent at 350 K using

the Charmm22* force field [11]. The simulation has been run for 310 ns on 8

replicas (∼ 2.5µs in total) each biased by a different history-dependent poten-

tials acting on a specific collective variable: two replicas use the CamShift CV,

which measures the deviations between experimental (bmrb file 17796 [168]) and

calculated chemical shifts; three for the exploration of the secondary structure

elements (α-helix, parallel and anti-parallel β-sheet) ; the number of hydrophobic

contacts, which counts the number of contacts between the heavy atoms of the

hydrophobic residues and measures the degree of compactness of the protein; two

AlphaBeta similarities which evaluates the deviation from the average χ1 and χ2

torsion angles values for the hydrophobic and polar residues side chains.

The simulation showed a high level of convergence in the free energy, verified

by calculating the differences in free energy of the two halves of the trajectories

for each replica after the equilibration phase, around 150 ns. In Fig. 6.1 we

report the free energy profiles for all the 8 CV variables used in the sampling.

From these calculations we estimate that up to 30 kJ/mol the free energies that

we obtained are accurate within 2-3 kJ/mol.

6.1.1 Free Energy and Structural Characterization

Also in this case the procedure is able to provide a comprehensive representation

of the conformational space of Aβ40, producing a wide range of structures, from
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Figure 6.1: Free energy landscapes for the eight CVs used in the simulations:
(A,B) Two replicas use the CamShift CV, which measures the deviation be-
tween experimental and calculated chemical shifts; (C) AlphaRMSD; (D) Anti-
BetaRMSD; (E) and ParaBetaRMSD (E) for the corresponding secondary struc-
ture content; (F) Hydrophobic contacts, which counts the number of contacts
between the heavy atoms of the hydrophobic residues; (G,H), deviation from the
average χ1 and χ2 torsion angles values for the Hydrophobic and Polar residues
side chains. All the free energy landscapes are shown with the relative error bars,
which are in all cases below 2.9 kJ/mol.
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Figure 6.2: Inverted free energy landscape of the Aβ40 peptide. The free energy
landscape is shown as a function of three of the eight collective variables used in
the NMR-guided metadynamics simulations: anti-parallel beta-sheet content (X-
axis), α-helical content (Y-axis) and degree of compactness (Z-axis). Isosurfaces
are shown at 5 (red), 10 (blue), 18 (yellow) and 25 kJ/mol (cyan); white re-
gions are not visited as they have higher free energies. Representative structures
sampled during the simulation are also shown.

completely open to compact ones, as it is pointed out in Fig. 6.2. In this figure we

represent the free energy of the system projected in the space defined by three vari-

ables, the anti-parallel β-sheet content, the α-helical content and the number of

hydrophobic contacts. As expected from the intrinsically disordered nature of the

Aβ40 peptide and from previous studies, the global free energy minimum in this

landscape corresponds to an ensemble of highly disordered structures. At higher
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Figure 6.3: Two dimensional projection of the free energy of Abeta40 as a function
of antiparallel beta-sheets content (X) and degree of compactness (Y) of the
structure. The isoline are drawn every kT.

free energies, the landscape includes a large amount of partially structured con-

formations. These structures are kinetically committed to the disordered state,

but their free energy is in many cases only 5-10 kJ/mol higher, indicating that

they are transiently explored even at the simulation temperature.

In Fig. 6.3 we plot the free energy as a function of the β-sheet content and

compactness. We observe just a funnel towards the global disordered minimum,

without any other local minima. In fact up to 10 kJ/mol only short β structures

are observed, with two or three β-bridges formed. Extended β-strand have a

free-energy higher than 30 kJ/mol.

The projection on the alpha-helical content in Fig. 6.4 shows instead a dif-

ferent picture. Beside the funnelled shape with only short helical structures, we

observe a local minimum with a higher helical content, with a free energy around

8-10 kJ/mol. This region is populated by several structures similar to the pdb

2LFM [188] with an RMSD of 1.3 A for the central 10-residue long helix (Fig.
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Figure 6.4: Two dimensional projection of the free energy landscape of Abeta40
as a function of the degree of compactness(X) and the helical content (Y) of the
structure. The isoline are drawn every kT.

6.5).

In order to benchmark the goodness of our structural exploration and the

consistency with experimental structure, we compute the chemical shifts of our

ensemble by the averaging procedure described in Section 2.4.3 (eq. 2.19): the

shifts for all the backbone atoms are computed with a simple average over all the

structure of each microstate and then weighted according the free energy of the

microstate. Chemical shifts were calculated by a different chemical shift predictor,

SPARTA+ [155], to avoid possible systematic errors from Camshift predictor. As

it reported in the first column of Table 6.1 and in Fig 6.6, the agreement between

the back calculated and the experimental chemical shifts [168] is remarkable.

Moreover the chemical shifts of our ensemble are consistent with a random coil

conformation: in fact comparing the theoretical values corresponding to a random

coil configuration with the experimental ones (second column of Table 6.1) we

obtain the same agreement. These results shows that the force-field is overall not
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Figure 6.5: Alignment of a sampled structure (in blue) in the local minimum with
an NMR solved structure (pdb code 2LFM [2], in red), with a RMSD of 1.3 Å
for the central 10-residue long helix.

over-structuring the disordered state of Aβ40.

In Fig. 6.7 we report a more quantitative analysis of the secondary structure

content on the reconstructed landscape. The secondary conformation of each

residue is again computed first averaging over all the structure of each microstate

and then weighting the obtained average with the corresponding free energy.

At low free energy ( panel b) and c) ) helical configurations are preferred with

respect to β-bridges; the picture changes at higher free energy where the β-

sheets population increases notably. These results show that few kcal/mol above

the completely opened and disordered global minimum, the system populates

more easily helical rather than β-sheet conformation. Fibril-like structure with

extended strand appears only at higher free-energy.
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Atom Ensemble CS Coil CS Pred. error
HA 0.10 0.08 0.25
HN 0.30 0.28 0.46
N 1.25 1.45 2.36

CA 0.35 0.36 0.88
CB 0.45 0.28 0.97

Table 6.1: Average deviation of the ensemble averaged chemical shifts calculated
by SPARTA+ [155] from the experimental chemical shifts [168]. In the second
column the same comparison is performed based only on the sequence, consid-
ering the residue to which the atom belong in a random coil conformation. The
expected error of the predictor is also reported. All the numerical values are
expressed in ppm

6.1.2 An Inverted Free Energy Landscape

The most striking feature that can be extracted from Fig. 6.2 and 6.7, is that the

overall shape of the free energy landscape of the Aβ40 peptide seems inverted with

respect to that of globular folded proteins. The latter ones usually show a global

minimum with a well-defined secondary and tertiary arrangements, surrounded

by slightly defective states which shares however the same topology of the folded

one; as the free energy increases, the native structure is gradually lost in the

metastable states, determining progressively misfolded and completely unfolded

configurations, as depicted in chapter 5 by the free energy landscape of GB3.

Conversely, in our reconstruction of the Aβ40 free energy landscape the global

minimum consists of an ensemble of highly unstructured conformations, rather

than of a well-defined structure. At higher free energies microstates with relatively

compact and structured configurations appear. As it is shown in Fig. 6.7, the

amount of structure gradually increases with the free energy, in a manner that is

opposite to what happens in folded proteins. The secondary structure populations

indeed grow progressively from the lower free energy region (Fig. 6.7b) to the

higher ones of the free energy landscape (Fig. 6.7c-e), until 18-24 kJ/mol.

These results suggest a remarkable phenomenon: at increasing temperatures

the Aβ40 peptide becomes more structured and hence more compact, as it be-

comes possible for it to explore the regions of higher free energy. At even higher
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Figure 6.6: Difference between the experimental chemical shifts and the ones
obtained by the ensemble average of our sampled structure. The dashed line
indicate the expected error of the predictor, SPARTA+ [155]. The chemical shift
value for C’ atoms were missing in the experimental data (bmrb file 17796). All
the values on the y-axis are expressed in ppm.

free energies, above 24kJ/mol, the secondary populations begin to decrease (Fig.

6.7f). This behaviour is reminiscent of the cold denaturation of structured pro-

teins, which in the case of intrinsically disordered proteins we predict to take

place at high temperatures. In order to prove this scenario, we computed the

average number of hydrophobic contacts and of the gyration radius, based on

the reconstructed landscape, as a function of the temperature with a quadratic

approximation around the simulation temperature T0 = 350 K. For the number

of hydrophobic contacts n we have

n(T ) = n|T0
+
dn

dT

∣∣∣∣
T0

(T − T0) +
1

2

d2n

dT 2

∣∣∣∣
T0

(T − T0)2 (6.1)
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Figure 6.7: Secondary structure populations of the Aβ40 peptide at increasing
values of the free energy. The lines indicate different secondary structure types:
sheets are shown in red, α-helices in blue and polyproline II in green. The different
panels report the secondary structure populations corresponding to different slices
of the free energy landscape: (a) entire free energy landscape, (b) lower region of
the free energy landscape (0-6 kJ/mol), (c) 6-12 kJ/mol region, (d) 12-18 kJ/mol
region, (e) 18-24 kJ/mol region and (f) higher region (above 24 kJ/mol).

where

n = 〈n〉 =

∑
α nαe

−Fα/T∑
α e
−Fα/T

(6.2)

and using eq. 2.19 it is possible to show that:

dn

dT
=

1

T 2
(〈nV 〉 − 〈n〉〈V 〉) (6.3)
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Figure 6.8: The two panels show respectively the behavior of the number of
hydrophobic contacts (above) and of the radius of gyration (below) as a function
of the temperature, with a parabolic approximation around the temperature of
the simulation (350 K). This allows capturing the variation of the compactness
of the system. The error is estimated comparing the two parabolas obtained
computing the three relative coefficients on the first and the second halves of the
trajectory after the equilibration time (150 ns)
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d2n

dT 2
=

1

T 4

(
〈nV 2〉 − 〈n〉〈V 2〉

)
− 2

T 2
(T + 〈V 〉) dn

dT
(6.4)

where E is the potential energy. The previous equations are valid for any other

observable, including the gyration radius. The errors are estimated from the dif-

ference between the two parabolae evaluating the corresponding three coefficients

on the two halves of the trajectory after the equilibration time.

Fig. 6.8 confirms our hypothesis: as the temperature decreases towards the

room temperature, the size of the hydrophobic core decreases (and correspond-

ingly the gyration radius increases).

Based on the results of our simulations, at room temperature the protein is

predicted to visit less structured and more open conformations; at higher tem-

perature, the protein access configurations which are more compact and with

an higher content in secondary structure. Increasing again the temperature, the

open conformations returns to be favored by the entropic contribution.



Chapter 7

Conclusions and Perspectives

Combining the information contained only in the backbone chemical shifts with

an advanced conformational search technique we have been able to provide the

structural characterization for different proteins, without any other knowledge

on the target structure. Exploiting the ability of our approach to estimate the

free energy of the visited states, we have been also able to reconstruct with

high accuracy the folding landscape for a well-structured globular and for an

intrinsically disordered protein.

The introduction of the new collective variable, Camshift CV, which mea-

sures the difference between experimental and calculated chemical shifts, helped

the protein to find the route to its native state. The bias introduced by this

collective variable allows the system to form rapidly the correct local topology

encoded in the chemical shifts. The consequent formation of critical native con-

tacts coupled with the fast exploration of the secondary structure and of the

tertiary assembly induced by the other collective variables, allows mimicking the

fundamental mechanisms of the folding theory, described in Fig. 1.3, and explains

the success of our methodology.

Thanks to the molecular dynamics framework, this kind of approach can be

generalized by incorporating other experimental data in a metadynamics frame-

work, including NOEs, J-couplings, and residual dipolar couplings, or indeed data

from other experimental techniques, such as SAXS or FRET methods. We antic-

ipate that these developments will enable obtaining molecular dynamics descrip-
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tions of the behaviour of a variety of proteins for which only sparse experimental

data are available.

NMR Structure Determination

As we have shown in Chapter 4, the NMR-guided metadynamics is able to con-

struct highly accurate structural models of proteins, based only on the chem-

ical shifts assignment. Both for GB3 protein and for the blind test from the

CASD-NMR experiment (in Section 4.1 and 4.3.2), we produced structures with

a root-mean-square deviation lower than 1 Å from the experimental solved ones .

The use of Camshift as a scoring function allows to rank and distinguish even

small structural differences (Section 4.2), assessing as native the state with the

lowest mean value in the CamShift in a short plain molecular dynamics sim-

ulation. This result confirms the methodological importance of evaluating a

structural-based score not only on a single structure but on an ensemble, as

we also proposed in [96].

In perspective, the computational cost reduction introduced by exploiting im-

plicit solvent simulations and the Restrained Metadynamics approach (Section

4.3) can lead to a new automatic and fast method for structure determination

from NMR spectroscopy. As schematically shown in Fig. A 7.1, after the build-

ing of the starting configuration by comparative modeling (either homology- or

threading-based), a short NMR Restrained metadynamics simulation, based only

on the known chemical shifts, can be run for 5 ns. A configuration found in the

lowest Camshift minimum can then be used to start a new run, reiterating the

procedure until several sampled minima converge towards the same topology. Af-

ter a clustering in RMSD, the best candidate can be selected ranking the different

possible models based on the corresponding mean CamShift value on a 1 ns plain

MD run.

Since only the chemical shifts assignment stage is required, our methods could

simplify the standard NMR structure determination protocols avoiding lots of

resource- and time-consuming experiments such as NOESY, correlation spec-

troscopy, which becomes more and more complicated as the protein size increases,

due to the superimposition and broadening of the resonance peaks, allowing the
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Figure 7.1: Structure determination protocol by NMR Restrained metadynamics.
Starting only from the prior knowledge of the amino acids sequence and of the
chemical shifts assignment, an initial configuration for the simulation is built by
comparative modeling. Several stages of NMR Restrained metadynamics are then
run improving progressively the structure until the Camshift minima converge
towards similar structures. The differerent models can be finally scored to find
the one which overlap better the chemical shifts.

investigation of larger systems.

Free Energy Landscape of Proteins

The possibility to characterize the free energy landscape of proteins by explicit

solvent molecular dinamics simulations is the most important achievement of this

thesis. The accurate description of the folding landscape of GB3 protein shown in

Fig. 5.1, is obtained by limited computational resources (with a total simulation

time of 2.7 µs) for a protein which folds on the millisecond timescale. It exhibits a
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Figure 7.2: Schematic diagram of how α-helical intermediates might promote
amyloid formation. Since in our landscape reconstruction the helical confor-
mations (schematized as cylinders) are more abundant than β-strands ones
(zigzagged lines). Initial oligomerization can be driven by the interaction between
self-association and helix formation. This generates the high local concentration
of regions of the peptide chain which has a high propensity to adopt β-structure.
The consequent propagation of β-structure leads to the formation of β-sheet-rich
assemblies. The figure is adapted from [189]

global free energy minimum consisting of structures effectively indistinguishable

from the experimental reference, providing evidence of the excellent quality of

current force fields. Our calculations revealed also the presence of an on-pathway

partially non-native intermediate state and allowed the characterization of the

two transition states, all consistent with recent experimental results about the

system [179].

In the application to well-structured protein, our method can investigate pro-

tein states otherwise invisible both to simulations and experiments, including

intermediates, denaturated and transition state ensembles, describing also the

relative interconversion pathways. The approach can be used in particular when

the chemical shifts of a state different from the native one are know, or more

extensively to characterize the free energy landscape of already solved structures,

calculating “synthetic” chemical shifts on the native state by predictors such as

Sparta+ [155], ShiftX [153] or CamShift [152] itself, and then using them in a

NMR-guided metadynamics.

The ability to reproduce landscapes highly consistent with the underlying

experimental data, appears to be particularly crucial to describe quantitatively

the structural ensembles of intrinsically disordered proteins. The calculations per-

formed on the monomeric form of Aβ40 peptide, depicted a free energy landscape
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with a global minimum composed of highly disordered and open conformations.

At higher free energy we observed several partially folded conformations with a

relatively high secondary structure content and a free energy only 5-10 kJ/mol

higher than the disordered minimum. While conformations rich in β-strands ar-

rangement compatible with oligomers and fibrils formation possess a quite high

free energy, the great abundance of helical states described by our reconstruc-

tion suggests a possible explanation for the aggregation process. Following the

hypothesis proposed in [189] and shown in Fig. 7.2, the transient formation of

helical intermediates can favor the interaction and the initial oligomerization of

several Aβ peptides. This high localization of specific region of the protein chain

can indeed be the crucial seed for the further β-sheet assembly. Moreover, since

with our approach we assessed the relative free energy of partially structured

metastable states, we are able to define a library of structure that could be used

to obtain a list of targets for docking studies to design inhibitors to bind the Aβ40

peptide in partially structured conformations in order to prevent the aggregation

process.

The characterization of the free energy landscape of this disordered protein

gave us the opportunity to hypothesize a remarkable phenomenon about the

folding theory of this kind of proteins. The temperature-induced collapse is just

a direct consequence of the picture described in Fig. 6.2: the raise in temperature,

together with the absence of any significant energy barrier, provide an easy access

to the plateau-like scenario of ordered states just few kcals/mol above the global

disordered minimum. This temperature effect is indeed a strong signature of

the inversion of the free energy landscape for intrinsically disordered proteins,

that we hypothesize: their native states, in thermodynamic sense, tend to be

stabilized by entropy, while those of ordered ones by enthalpy. Consequently

while the high-energy states of ordered proteins are partially disordered, those of

disordered proteins are partially ordered.

Completing the Protein Paradigm

The inversion of the landscape is therefore based on the reversal of the role of en-

tropy and enthalpy between ordered and disordered proteins. Revising the rough
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Figure 7.3: Representation of the free energy landscape of an intrinsically disor-
dered protein according our hypothesis, characterized by an entropic dominated
minimum at the bottom of wide and barrierless funnel composed at the top of an
almost flat region populated by more structured metastable states.

comparison between the free energy of well- and un-structured proteins shown in

Fig. 1.7, the landscape of an intrinsically disordered protein resembles more to

a very wide and smooth funnel, as the one schematized in Fig. 7.3. Although

the energetics of the disordered proteins is usually depicted as highly rugged and

locally frustrated like in Fig. 1.7b, the case is actually the opposite: the entropic

predominance removes any energy barriers determining a low global frustration

in the system which is therefore able to change conformation rapidly. This pro-

vides to disordered proteins the properties to perform their peculiar functions of

signaling and regulation inside the cell, which would be hard to address with the

high stability of a well structured protein.

By taking a general view about the protein folding problem, nature has been

able to finely tune the protein properties though the selection of the amino acid se-

quence. Changing the relative composition in charged and hydrophobic residues,

it is able to change as needed the balance between entropy and enthalphy, shaping

the final free energy scenario, ranging in a continuous manner from enthalphy-

dominated, as in the case of enzymes, to entropic-dominated landscape, as in

the case of intrinsically disordered proteins, in order to determine the immense

repertoire of biological functions needed for life.
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