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Introduction

Algebra is the o�er made by the devil to the

mathematician. The devil says: "I will give

you this powerful machine, it will answer any

question you like. All you need to do is give

me your soul: give up geometry and you will

have this marvellous machine."

Michael Atiyah

This thesis is dedicated to the study of non-commutative integration, in the sense of

spectral triples, for some non-commutative spaces associated to quantum groups. It seems

appropriate then, as an introduction, to brie�y explain what is the meaning of this statement.

Let us start with non-commutative spaces. One way of thinking about them is as an

extension of the duality between spaces and functions to the non-commutative setting. In-

deed to any (compact Hausdor�) topological space X we can associate the algebra C(X) of

continuous functions from X to C. This algebra comes naturally with some extra structure,

which makes C(X) into a C∗-algebra. To what extent can we recover the space X from the

C∗-algebra C(X)? The answer to this question is given by the Gelfand-Naimark theorem,

which can be phrased as the equivalence of the category of locally compact Hausdor� topo-

logical spaces with the category of commutative C∗-algebras. Therefore we can think about

these topological spaces in terms of their associated C∗-algebras. In view of this equivalence,

we can declare a non-commutative space to be a non-commutative C∗-algebra.

Many notions related to topological spaces can be rephrased in algebraic terms, in such

a way that they can be generalized to non-commutative spaces. An example is provided by

the Serre-Swan theorem, which gives an equivalence between the category of vector bundles

over a compact space X and the category of �nitely generated projective modules over C(X).

The latter makes sense even without commutativity, so it can be considered as a de�nition of

vector bundles over non-commutative spaces. For other examples of topological notions that

can be generalized to the non-commutative setting we refer to the book [GVF].

In order to go beyond topology, and describe for example the metric properties of a non-

commutative space, we can use the approach to non-commutative geometry developed by

Connes [Con], which is based on the notion of spectral triple. This notion can be motivated by

1



Introduction 2

the observation that, for Riemannian manifolds, much geometric information can be retrieved

from di�erential operators naturally de�ned on them. The de�nition is as follows.

De�nition. A spectral triple (A,H, D) is given by a unital ∗-algebra A, represented on a

Hilbert space H, and by a self-adjoint operator D satisfying the following conditions:

1. the commutator [D,x] = Dx− xD extends to a bounded operator for each x ∈ A,

2. the operator (D2 + 1)−1/2 is compact.

A similar de�nition can be given for non-unital algebras, corresponding to non-compact

spaces. Thanks to its properties, the operator D allows to de�ne many geometrical notions

in an algebraic or analytic fashion. For example, when A = C∞(M) for a compact spin

manifold M , and D is a Dirac operator, the distance between two points p, q ∈M (which in

turn completely characterizes the metric) can be obtained as

d(p, q) = sup{|f(p)− f(q)| : f ∈ C∞(M), ‖[D, f ]‖ ≤ 1}.

This formula can be thought as dual to the usual expression for the distance, where we take

the in�mum over the lengths of all paths connecting p and q.

Among the many notions that can be de�ned in terms of D, two of them will play a key

role in this thesis: they are the dimension of a manifold and the integral of a function with

respect to the volume form associated to a metric. To illustrate how this works, we consider

the canonical spectral triple (C∞(M), L2(M,S), D) associated to a compact spin manifold

M , where D is the Dirac operator associated to a metric.

One way of obtaining the dimension of the manifoldM in consideration, from the spectral

point of view, is from the spectrum of the operator (D2 + 1)−1/2, which intuitively can be

thought as the line element ds. Indeed, it turns out that the operator (D2 + 1)−z/2, with

z ∈ C, is trace-class for all Re(z) > n, where n is the dimension of M . Similarly, using the

operator (D2 + 1)−1/2 we can recover the integral of a function f ∈ C∞(M). There are many

ways of doing so, and one of them is to consider the residue of the zeta function associated

to this operator. That is, we consider the linear functional ψ on C∞(M) de�ned by

ψ(f) = Res
z=n

Tr(f(D2 + 1)−z/2).

It turns out that ψ(f) coincides with the integral of f , up to a multiplicative constant.

Generalizing these notions to the case of a not necessarily commutative spectral triple, we

will speak of spectral dimension and non-commutative integral. Clearly, as in the discussion

above, in the commutative case these coincide with the dimension and the integral on the

space under consideration. The discussion of how these two notions behave for certain non-

commutative spaces, related to quantum groups, will be a central aspect of this thesis.
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Coming back to the case of manifolds, an important result is the reconstruction theorem.

It states that, given a spectral triple (A,H, D) with some additional conditions, if A is

commutative then it is of the form C∞(M), for some compact spin manifold M , and where

D is the Dirac operator determined by the spin structure and the Riemannian metric. This

result shows that this notion is able to capture the geometry of this class of manifolds.

Up to this point, our discussion of non-commutative geometry has been centered on re-

formulating classical notions, in such a way that they make sense also for non-commutative

algebras. In principle these can be adopted as axioms, and simply declare that all the interest-

ing non-commutative spaces are those which satisfy them. However this point of view misses

an important aspect: there are many new phenomena which appear in the non-commutative

world and which have no analogue in the commutative one. It is not di�cult to imagine that

such new phenomena might be important in the description of non-commutative spaces.

For example, for a commutative C∗-algebra a linear functional obviously satis�es the trace

property, simply because the algebra is commutative, while satisfying the trace property for

a non-commutative algebra is a non-trivial condition. It turns out that for non-commutative

spaces, like for example compact quantum groups, the more natural notion is often a state

which is not tracial. This obviously has no analogue in the commutative case.

Therefore it makes sense to look for modi�cations of the conditions de�ning a spectral

triple, with the understanding that they should reduce to the usual ones for a commutative

space. In this thesis we will consider various extensions of the notion of spectral triple, which

modify in di�erent ways some of its axioms. We will consider the framework of twisted spectral

triples [CoMo08], which modi�es the commutator condition by requiring the boundedness of

a twisted commutator, with the twist being an automorphism of the algebra. On the other

hand, the framework of modular spectral triples [CPR10, CRT09, CNNR11] modi�es the

resolvent condition, roughly speaking by replacing the operator trace with a weight having

a non-trivial modular group. This in turn is a generalization of semi�nite spectral triples

[BeFa06], where the operator trace is replaced by a semi�nite trace.

Another important role in this thesis is played by the theory of quantum groups, for a

general reference see for example [KlSc]. They can be seen, as far as we are concerned, as a

generalization of the theory of Lie groups. The "quantum" aspect comes from the fact that we

do not have a manifold associated to them, but a non-commutative space. Therefore quantum

groups and their homogeneous space provide a rich class of examples of non-commutative

spaces. It is then very natural to try to describe their geometry using spectral triples.

However, it is fair to say that a general understanding of how quantum groups should

�t into the framework of spectral triples is still lacking. This is related to the fact that,

in several aspects, they behave di�erently from the non-commutative spaces that are well

understood from the point of view of spectral triples, for example the non-commutative tori.

A particular feature of compact quantum groups, which plays a leading role in their theory, is

the existence and uniqueness of the Haar state, which is the analogue of the Haar integral for
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compact Lie groups. However, di�erently from the commutative case, the Haar state has a

non-trivial modular group, so that it is not tracial. A recurring theme throughout this thesis

will be the investigation of the compatibility of non-commutative integration, in the sense of

spectral triples, with such states.

This thesis is divided in two parts, which have distinct roles in the presentation. The �rst

part, which starts in chapter 1 and ends in chapter 4, provides some background material on

non-commutative integration, spectral triples and their extensions. The second part, on the

other hand, contains new results obtained by the author.

In chapters 5 and 6 we will consider the case of κ-Minkowski space, which can be seen

as a quantum homogeneous space for the κ-Poincaré quantum group. These Hopf algebras

are obtained as deformations of the familiar Minkowski space and Poincaré group, which

play a forefront role in theoretical physics. For this reason, they have been much studied

from the point of view of quantum gravity, with the deformation parameter being related

to the Planck length. It is then interesting to describe (the Euclidean version of) this non-

commutative space in terms of a spectral triple.

The starting point is an algebra A, originally introduced in [DuSi13], which is naturally

associated with the commutation relations of κ-Minkowski space. We use a KMS-weight ω,

which is motivated by the κ-Poincaré symmetries, to introduce a Hilbert space H via the

GNS-construction. We emphasize that the choice of this weight is one of the main di�erences

with respect to other approaches. The necessity of a modi�cation to the conditions of a

spectral triple, as in our discussion above, appears upon the introduction of a Dirac operator.

Indeed, to satisfy a boundedness condition and have the correct classical limit, the use of a

twisted commutator turns out to be necessary. Moreover these requests, together with some

symmetry conditions, single out a unique Dirac operator D and unique twist.

However the triple (A,H, D) is not �nitely summable, an outcome which is hinted at by

the mismatch in the modular properties of the weight ω and the non-commutative integral.

We will repeat and emphasize this argument later, so we do not elaborate further here. This

mismatch also hints at the possibility that, by choosing an appropriate weight in the sense of

modular spectral triples, we can obtain a �nite spectral dimension. This is indeed the case and

we �nd that, in this setting, the spectral dimension is �nite and coincides with the classical

one. Moreover, by computing the residue at the spectral dimension of the corresponding zeta

function, we recover the weight ω up to a constant.

This construction is performed in full detail in chapter 5 for the two-dimensional case,

while in chapter 6 it is streamlined for the general n-dimensional case. In chapter 6 we also

analyze some additional properties of the zeta function de�ned in terms of the Dirac operator.

We show that, by considering the limit of vanishing deformation parameter, it reduces as it

should to the corresponding one of the classical case. Also, as in the commutative setting,

this zeta function can be analytically continued to a meromorphic function on the complex

plane, with only simple poles. It turns out to have all the poles of the commutative case, but
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also additional ones due to the presence of the deformation parameter. The signi�cance of

these additional poles remains to be investigated.

Another important aspect that we investigate in chapter 6 is the homological dimension

of this geometry. In the framework of non-commutative geometry, this notion corresponds

to the dimension of the Hochschild homology, which in the commutative case coincides with

the classical dimension. However in many examples, coming in particular from quantum

groups, one �nds that the homological dimension is lower than the classical dimension, a

phenomenon known as dimension drop. In many cases it is possible to avoid this drop by

introducing a twist in the homology theory, as seen for example in [HaKr05, Had07]. Here

we compute the twisted Hochschild homology [BrZh08] of the universal enveloping algebra

associated to κ-Minkowski space. Similarly to the examples we mentioned above, we show

that the dimension drop occurs at the level of Hochschild homology, but can be avoided by

introducing a twist. More interestingly, the simplest twist which avoids the drop is the inverse

of the modular group of the weight ω, while the other possible twists are given by its positive

powers. This is very similar to what happens in [HaKr05, Had07], where the simplest twist

is given by the inverse of the modular group of the Haar state, and therefore seems to be a

general feature of these non-commutative geometries.

In chapter 7 we leave non-compact spaces and consider instead compact quantum groups.

As we mentioned above, in this setting it there is a unique state, the Haar state, which is

the non-commutative analogue of the Haar integral for compact Lie groups. We remark that

the choice of a state gives a natural notion of non-commutative integration, as it is known

from the theory of von Neumann algebras [Tak]. Therefore it would seem natural, from the

point of view of spectral triples, to require that the non-commutative integral coincides with

the Haar state. However it is clear that this is not possible in the usual setting: indeed,

from general properties of spectral triples, it follows that the non-commutative integral is a

trace, while the Haar state does not satisfy the trace property. On the other hand, in the

extended frameworks we mentioned above, the non-commutative integral need not be a trace.

Therefore such a requirement can be in principle satis�ed.

In particular, this observation can be used to give a tentative answer to the following

question, which naturally arises by considering the framework of modular spectral triples: if

we are allowed to replace the operator trace by a weight, are there any preferred choices?

In view of the discussion above, a reasonable criterion is to require that the corresponding

non-commutative integral should coincide with the Haar state.

Here we will consider in detail this question for the case of the quantum group SUq(2).

More speci�cally we consider the Dirac operator Dq introduced in [KaSe12], which gives a

(twisted) modular spectral triple. We observe that this Dirac operator has an interesting

property, namely it implements one of the left covariant di�erential calculi on SUq(2).

The non-commutative integral will be de�ned as the residue at the spectral dimension of a

certain zeta function. More precisely, we de�ne a family of zeta functions using the operator
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Dq and a family of weights depending on two parameters a, b ∈ R. These two parameters

essentially parametrize the most general diagonal automorphism of SUq(2), and we remark

that the modular group of the Haar state is of this form.

First of all we discuss for which values of the parameters the zeta function is well de�ned,

and determine its spectral dimension. Then we impose the requirement of recovering the

Haar state from the non-commutative integral. A necessary condition is that their modular

groups coincide. We will show that this condition �xes b = 1, but leaves a undetermined.

Moreover the non-commutative integral, once properly normalized, turns out to coincide with

the Haar state, independently of a.

This result shows that we can partially �x the arbitrariness in the choice of the weight. We

still have freedom in the choice of the parameter a, which disappears in the non-commutative

integral. On the other hand the spectral dimension depends on a. In particular, after �xing

b = 1, we have that n = a+1. Therefore a preferred choice is a = 2, which makes the spectral

dimension equal the classical one n = 3.

We now argue that there is another requirement, more spectral in nature, that also turns

out to �x this value uniquely. Up to this point we have only used the information contained

in the residue at z = n of the zeta function, that is the residue at the spectral dimension. But

the analytic continuation of the zeta function contains much more information than that.

Indeed, from the point of view of the heat kernel expansion on a compact manifold, the

residue at z = n corresponds only to the �rst coe�cient of the expansion. Therefore we can

look at the next non-trivial coe�cient which, in terms of the zeta function, corresponds to

computing the residue at a di�erent value. It is easy to see that, for the classical limit of

the operator Dq, this coe�cent vanishes non-trivially. Therefore we can require an analogue

condition for the non-commutative case. It turns out that this condition is satis�ed only in

the case a = 2, which was the value we considered above.

Finally in chapter 8 we consider quantum projective spaces, which are examples of quan-

tum homogeneous spaces. This class of spaces provides an excellent testing ground to study

how quantum groups �t into the framework of spectral triples. An important result in this

respect is given in [Krä04], where a Dirac operator D is de�ned on quantized irreducible

generalized �ag manifolds, which yields a Hilbert space realization of the covariant �rst-order

di�erential calculus constructed in [HeKo04]. This in particular means that the commutator

of D with an element of the coordinate algebra is a bounded operator, which is one of the

de�ning properties of a spectral triple. The other essential property, compactness of the re-

solvent of D, has not been proven, even though it is expected to hold. In particular it can

be checked for the simplest case to which this construction applies, that is the Podle± sphere.

In this case the Dirac operator D coincides with the Dirac operator introduced in [D¡Si03],

which has compact resolvent.

Among the class of q-deformed irreducible �ag manifolds are the quantum projective spaces

CP `q , the simplest example of which is again the Podle± sphere, which is obtained for ` = 1.
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The case of CP 2
q has been studied in [DDL08] and then generalized for the case ` ≥ 2 in

[D'AD¡10]. We now brie�y recall this construction. The starting point is the introduction of

the q-analogue of the module of antiholomorphic di�erential k-forms Ωk. More generally the

modules Ωk
N are considered, with N ∈ Z, corresponding essentially to Ωk = Ωk

0 twisted by

certain line bundles. The Hilbert space completion of these is denoted by HN . For each of

these an unbounded self-adjoint operator DN is introduced, which has bounded commutators

with the coordinate algebra A(CP `q ). The main result is that (A(CP `q ), HN , DN ) is a family

of equivariant spectral triples.

It turns out that these spectral triples are 0+-summable, in the sense that the operator

(D2
N + 1)−ε/2 is trace-class for every ε > 0. The detailed computation of the spectrum

clearly reveals why this is the case: the eigenvalues of this operator grow like a q-number, so

exponentially, while their multiplicities grow like a polynomial. We recall that in the classical

case it is the balance between the growth of the eigenvalues and their multiplicities that allows

to recover the dimension of the manifold in consideration. In this case the eigenvalues grow

much faster than their multiplicities, which explains the 0+-summability.

Here we consider a simple modi�cation of the above construction, which �ts into the

framework of modular spectral triples. The idea is to consider the action of the element K2ρ,

which implements the modular group of the Haar state of A(CP `q ). In particular we compute

the spectral dimension associated to D with respect to the weight Tr(K2ρ·), with the result

that it coincides with the classical dimension. This computation is linked with an important

concept in the theory of quantum groups, that of quantum dimension. We also point out that,

as a consequence of a property of the quantum dimension, the same result for the spectral

dimension is obtained by considering K−1
2ρ . This in turn is connected with some results from

twisted Hochschild (co)homology.



Part I

Background material

8



Chapter 1

In�nitesimals and Dixmier traces

In this section we introduce the basic notions of a particular theory of integration, formulated

in a Hilbert space setting, which is used in the approach to non-commutative geometry intro-

duced by Connes [Con]. It is based on a notion of in�nitesimal de�ned in terms of compact

operators, with the integral being de�ned in terms of linear functionals called Dixmier traces.

This theory of integration is di�erent from the more familiar one developed by Segal [Seg53],

which provides a natural analogue of the Lp spaces of functional analysis. Before getting to

the de�nitions, we spend some time giving motivations in the form of an informal discussion.

A general reference for this section is the book [Con]. The informal discussion on in�nites-

imals and integration is based on [Con2]. The examples are taken from [Lan].

1.1 Informal discussion

One of the reasons for developing a theory of non-commutative geometry is to put together

the classical notions of geometry with the principles of quantum mechanics. In the latter an

observable is a self-adjoint operator on a Hilbert space, which is the setting that we want to

use. Since all the Hilbert spaces of a given dimension are isomorphic, the setting is canonical

at this stage. To seek guidance for a formulation of a theory of integration for operators on

a Hilbert space, let us consider the fundamental theorem of calculus in the form

ˆ b

a
df = f(b)− f(a),

which clearly relates integral and di�erential calculus. At the most intuitive level we have

a picture of summing over "in�nitesimal variations" of the function f . Therefore, if we can

formulate a notion of "in�nitesimal" for an operator on a Hilbert space, then an integral will

be a map (with some properties) that associates a number to such an operator.

What could then be a notion of in�nitesimal for an operator on an in�nite-dimensional

Hilbert space? Since in our naive picture an in�nitesimal is something "arbitrarily small",

a �rst guess would be to look for operators which are arbitrarily small with respect to the

9
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operator norm. But this is not a good guess, since if an operator T is such that ‖T‖ < ε for

any ε > 0, then T = 0. Thus we need a weaker notion.

We can slightly weaken it as follows: for any ε > 0 there exists a �nite dimensional

subspace E ⊂ H such that ‖T �E⊥ ‖ < ε. Here the symbol � denotes restriction and E⊥ is

the orthogonal complement of E. There are plenty of operators which satisfy this condition.

Indeed this condition characterizes the class of compact operators, which can be alternatively

considered as the norm limit of �nite-rank operators. Therefore before proceeding it is worth

reviewing some facts about compact operators on a Hilbert space.

1.2 Compact operators

In the following we consider an in�nite-dimensional and separable Hilbert space H. We

denote the ideal of compact operators by K(H).

We start by discussing a canonical form for compact operators. Let A be a positive

compact operator on H. It can be proven that the spectrum of A consists of the number

zero and countably many positive eigenvalues of �nite multiplicity, which can be arranged in

decreasing order. In particular we can �nd a complete orthonormal basis {uk} for H, such

that Auk = µkuk and µk → 0 as k →∞. So we have a norm convergent expansion

A =

∞∑
k=0

µk(A)(uk, ·)uk,

where (·, ·) denotes the inner product on H, linear in the second variable. Moreover we have

arranged the eigenvalues as µ0 ≥ µ1 ≥ · · · , with µk → 0.

Now for a generic compact operator T ∈ K(H), we de�ne its absolute value as the compact

positive operator |T | = (T ∗T )1/2. Then |T | admits an expansion of the form

|T | =
∞∑
k=0

µk(T )(uk, ·)uk.

The polar decomposition T = U |T | is obtained by de�ning U(|T |ψ) = Tψ and Uφ = 0 for

φ ∈ ker|T |, that is U is a partial isometry uniquely determined by T . Then it follows that,

by setting vk = Uuk, we have an expansion of the form

T = U |T | =
∞∑
k=0

µk(T )(uk, ·)vk.

This is therefore a canonical expansion for a compact operator. We call µk(T ) the k-th

singular value of T , which coincides with the k-th eigenvalue of the compact positive operator

|T | = (T ∗T )1/2. Note that µ0(T ) = ‖T‖, since it is the largest eigenvalue. Also if U1, U2 are
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unitary operators then we have

U1TU2 =

∞∑
k=0

µk(T )(U∗2uk, ·)U1vk,

which shows that µk(U1TU2) = µk(T ), that is the singular values are unitary invariant.

Let us discuss now some some ideals of compact operators. An operator T is called trace-

class, which we write as T ∈ L1, if the following series converges

‖T‖1 = Tr|T | =
∞∑
k=0

µk(T ).

More generally, for 1 < p <∞, the Schatten classes Lp consist of operators such that

‖T‖p = (Tr|T |p)1/p =

( ∞∑
k=0

µk(T )p

)1/p

is �nite. It is possible to prove a Hölder's inequality of the form

Tr|TS| ≤ ‖T‖p‖S‖q, p−1 + q−1 = 1.

The case with p = 1 immediately shows that L1 is an ideal, since q =∞ corresponds to the

operator norm. This is true also for the other Schatten classes, and moreover we have the

inclusions L1 ⊂ Lr ⊂ Lp ⊂ K(H) for 1 < r < p <∞.

1.3 Order of in�nitesimals

We can now re�ne the notion of in�nitesimal by introducing a notion of order.

De�nition 1.1. We say that a compact operator T ∈ K(H) is an in�nitesimal of order α,

for α > 0, if its singular values are such that µn(T ) = O(n−α) as n→∞.

In other words there exists a constant C such that µn(T ) ≤ Cn−α. Let us comment on

why this is a natural notion. The following inequality holds for the singular values

µn1+n2(T1T2) ≤ µn1(T1)µn2(T2).

Then it immediately follows from the de�nition that, if Tj is of order αj , then T1T2 is of

order ≤ α1 + α2, which is what we would expect from a naive picture of in�nitesimals. This

inequality also shows that in�nitesimals of a given order form an ideal in B(H).

We de�ne the Dixmier ideal as the space

L1+ =

{
T ∈ K(H) : sup

N>1

1

logN

N−1∑
n=0

µn(T ) <∞

}
.
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The reason for this de�nition will be apparent in the next subsection, when we will consider

integration. Notice that, as de�ned, the space L1+ is not the space of in�nitesimals of order

one but is strictly larger. Note also that we have the inclusion L1 ⊂ L1+, which can be seen

as a justi�cation for the notation.

Finally we want to warn the reader that in the literature there are many variations on

the above theme, both in notation and in de�nition. A comparison of the notations and

de�nitions used in the main papers in the subject is contained in [CaSu12, subsection 4.1].

1.4 Dixmier traces

We now discuss the introduction of an appropriate notion of integral. With the emphasis put

on the notion of in�nitesimal, we can now explain why such a theory of integration will be

di�erent from that of [Seg53]. Indeed, the operator trace does not satisfy two properties that

we would intuitively expect from an integral, namely:

1. in�nitesimals of order one are not in its domain,

2. in�nitesimals of higher order are not in its kernel.

This follows from the fact that for an in�nitesimal of order one we have µn(T ) = O(n−1), so

that its trace is essentially the (divergent) harmonic series. Since in this case the divergence

is logarithmic, we would like to have a way to extract a number from this divergent quantity.

One possibility is to use a Dixmier trace, see the discussion in [Con].

To arrive at this notion let us notice that for in�nitesimals of order one we have

N−1∑
n=0

µn(T ) ≤ C logN.

Then the simplest thing to do is to divide by logN and take the limit N →∞, that is

lim
N→∞

1

logN

N−1∑
n=0

µn(T ).

There is a problem with this proposal, however, since not all such sequences will be convergent

(although they are bounded). It is also far from clear that such a procedure gives a linear

functional, which is clearly a property that we want to have for an integral.

We will now show that when sequences are convergent this is a linear functional. Let us

mention in passing that, since the singular values µn(T ) are unitary invariant, the same will

be true for the result of this procedure.
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1.4.1 Linearity

Let us start by de�ning some useful notation

σN (T ) =
N−1∑
n=0

µn(T ), γN (T ) =
σN (T )

logN
.

Let us also recall the following characterization of the singular values of an operator T

µk(S) = inf{‖S(1− P )‖ : P is a projection,Tr(P ) ≤ k}.

From it it is not hard to obtain the following characterization of σN (T ), for the proof see for

example [GVF].

Lemma 1.1. If T is a compact operator then

σN (T ) = sup{‖TP‖1 : P = P ∗ = P 2, rankP = N} .

If T is also positive then we have

σN (T ) = sup{Tr(PTP ) : P = P ∗ = P 2, rankP = N} .

From this lemma it immediately follows that

σN (T1 + T2) ≤ σN (T1) + σN (T2) ,

since we have ‖(T1 + T2)P‖1 ≤ ‖T1P‖1 + ‖T2P‖1.
The triangle inequality is not good enough for our purposes, because we would like to

obtain an additive functional. The next step is to prove a �wrong-way triangle inequality�.

Lemma 1.2. For T1, T2 positive compact operators we have

σM (T1) + σN (T2) ≤ σM+N (T1 + T2) .

Proof. On the left-hand side we have to take the supremum over projections P, P ′ with

rankP = M and rankP ′ = N . We have rank(P + P ′) ≤ M + N so, if we take a projection

P ′′ of rank M + N whose range includes PH + P ′H, then we have the inequalities P ≤ P ′′

and P ′ ≤ P ′′ as operators. Therefore

Tr(PT1P ) + Tr(P ′T2P
′) ≤ Tr(P ′′T1P

′′) + Tr(P ′′T2P
′′) = Tr(P ′′(T1 + T2)P ′′) .

Using this inequality we obtain

σM (T1) + σN (T2) ≤ sup{Tr(P ′′(T1 + T2)P ′′) : rankP ′′ = N} = σM+N (T1 + T2) .
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Notice that this argument requires additivity, so that it works for Tr but not for ‖ · ‖1, hence
the restriction to positive operators.

In particular it follows from this lemma that σN (T1) + σN (T2) ≤ σ2N (T1 + T2). Now we

show that in some good cases we can obtain an additive functional.

Proposition 1.3. Let T = T1 + T2 with T1, T2 compact and positive. Suppose the limit

N →∞ of γN (T ) exists and denote it by γ(T ). Then we have

γ(T ) = γ(T1) + γ(T2) .

Proof. Let us consider the two inequalities proven above

σN (T1 + T2) ≤ σN (T1) + σN (T2) ,

σN (T1) + σN (T2) ≤ σ2N (T1 + T2) .

The second property holds for positive operators. From the �rst one it follows that

γN (T1 + T2) ≤ γN (T1) + γN (T2) .

If we divide the second one by logN we get

γN (T1) + γN (T2) ≤ σ2N (T1 + T2)

logN
=
σ2N (T1 + T2)

log 2N

(
1 +

log 2

logN

)
.

Therefore we have obtained the inequalities

γN (T1 + T2) ≤ γN (T1) + γN (T2) ≤ γ2N (T1 + T2)

(
1 +

log 2

logN

)
.

Now taking the limit N →∞ we get

γ(T1 + T2) ≤ γ(T1) + γ(T2) ≤ γ(T1 + T2) ,

which proves the claimed relation.

1.4.2 The general case

In general the sequence γN (T ) will not converge, so we need to proceed in a di�erent way.

To this end we can consider a linear form limω on the space `∞(N) such that

1. limω{γN} ≥ 0 if γN ≥ 0,

2. limω{γN} = limN{γN} if {γN} is convergent,

3. limω{γ1, γ1, γ2, γ2, · · · } = limω{γN}.
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The �rst and second conditions are pretty obvious requests, while the third condition, the

so-called scale invariance, is more obscure but actually crucial for this procedure to work.

We do not get into the details of actually de�ning the limiting procedure, but just mention

that that Dixmier proved that there exists an in�nity of such scale invariant forms. For more

details we refer to the book of Connes [Con].

For a �xed choice of the generalized limit lim ω we de�ne the Dixmier trace as

Trω(T ) = lim
ω

1

logN

N−1∑
n=0

µn(T ).

Notice that in general the value of Trω(T ) will depend on the choice of lim ω, unless of course

the sequence {γN} is convergent, in which case all the generalized limits give the same value.

Using the "four parts" argument it is easy to show that L1+ is generated by positive

operators. Since the Dixmier trace is additive on positive operators, it can be extended by

linearity to the entire L1+. We now list some of its general properties.

Proposition 1.4. The Dixmier traces satisfy the following properties:

1. TrωT ≥ 0 if T ≥ 0,

2. Trω(λ1T1 + λ2T2) = λ1Trω(T1) + λ2Trω(T2),

3. Trω(BT ) = Trω(TB) for any B ∈ B(H),

4. Trω(T ) = 0 if T is of order higher than 1.

This more general de�nition is interesting from the theoretical point of view, but not very

useful in applications. Indeed such a limiting procedure cannot be exhibited in general, and

therefore the trace cannot be computed in practice. However, as we mentioned previously, it

is clear that there are operators such that the value of Trω(T ) does not depend on the choice

of the generalized limit, and therefore can be computed using the usual limit.

De�nition 1.2. An operator T ∈ L1+ is called measurable if the value Trω(T ) does not

depend on the choice of ω.

This is clearly the case if the sequence {γN} is convergent. It was actually shown in

[LSS05] that a positive operator T ∈ L1+ is measurable if and only if the sequence {γN} is
convergent. In practice this is always the case in non-commutative geometry.

1.5 Some examples

We now compute the Dixmier trace of some operators as examples. We will consider the

case of powers of the Laplacian on the n-torus and on the n-sphere. Even though they are



Chapter 1. In�nitesimals and Dixmier traces 16

elementary examples, the actual computations will take some e�ort. Later on we will rederive

these results in a considerably easier way, but for the moment we will stick to the de�nition.

This is also a good place to spend a few words on the issue of invertibility of operators.

Indeed in the following we will often consider negative powers of a positive operator T , like

the Laplacian in these examples, which make sense only if T is invertible. In practice T might

not be invertible, but will have a �nite-dimensional kernel. We can deal with this annoyance

by considering an invertible operator which has essentially the same role as T .

There are at least two ways to proceed. The �rst one is to consider the operator (T 2+ε)1/2,

with ε > 0. The second way is to consider the operator T +P , where P projects on the kernel

of T . In both cases we obtain the same value for the Dixmier trace, therefore we will just

pretend that the operators in consideration are invertible in this sense.

Example 1.1. The Laplacian ∆ on the n-dimensional torus Tn has eigenvalues ‖lj‖2, where
lj is a point of the lattice Zn with multiplicity one. We will remove the zero eigenvalue, as

discussed above. We want to compute the Dixmier trace of ∆s, where s is a real number.

Since this is a positive operator, the Dixmier trace will exists if and only if the ordinary limit

exists, so we want to compute the limit N →∞ of

γN =
1

logN

N−1∑
j=1

‖lj‖2s.

It is easier to rephrase this sum in a di�erent way. Let NR be the number of lattice points

in the ball of radius R centered at the origin of Rn. Then it is not di�cult to see that we

have NR ∼ Vn(R) for R → ∞, where Vn(R) denotes the volume of the n-ball of radius R.

Therefore we can index the sum by NR and consider the limit R→∞ of the quantity

γNR =
1

logNR

∑
1≤‖l‖≤R

‖l‖2s.

Before proceeding we extract the dependence of NR on R. Let us denote by Ωn the area of the

unit (n − 1)-sphere, which is given explicitely by Ωn = 2πn/2/Γ(n/2). The volume and the

area of the n-ball are related by Vn(R) = n−1ΩnR
n, therefore NR ∼ n−1ΩnR

n.

Now we need to use some asymptotic formulae. We consider the number of eigenvalues in

the thin shell between the radii r and r + dr. This can be estimated as

Nr+dr −Nr ≈
dNr

dr
dr = Ωnr

n−1dr .

We can replace, in the limit R→∞, the sum over ‖l‖ ≤ R with an integral over r. Explicitely

we have ∑
‖l‖≤R

‖l‖2s ∼
ˆ R

1
r2sΩnr

n−1dr =

Ωn logR s = −n/2

Ωn
R2s+n−1

2s+n s 6= −n/2
.



Chapter 1. In�nitesimals and Dixmier traces 17

Now we can �nally consider the R → ∞ limit of γNR . Let us consider �rst the case

s = −n/2. Then, using the fact that logNR ∼ n logR, we �nd

γNR ∼
Ωn logR

n logR
=

Ωn

n
.

Therefore in this case we have Trω∆−n/2 = Ωn/n. On the other hand it easy to see that for

the cases s > −n/2 and s < −n/2 we get respectively γNR →∞ and γNR → 0.

Example 1.2. The Laplacian ∆ on the n-sphere has eigenvalues l(l + n − 1), with l ∈ N,
and with multiplicity

ml =

(
l + n

n

)
−

(
l + n− 2

n

)
=

(l + n− 2)!

(n− 1)!l!
(2l + n− 1) .

As in the previous example, if the Dixmier trace exists, it is given by the limit

Trω∆−n/2 = lim
N→∞

∑N
l=1ml[l(l + n− 1)]−n/2

log
∑N

l=1ml

.

Let us start with the sum of the multiplicities

N∑
l=1

ml =

(
N + n

n

)
+

(
N + n− 1

n

)
− 1

=
1

n!N !
(N + n− 1)!(2N + n)− 1 ∼ 2Nn

n!
,

from which we �nd that

log
N∑
l=1

ml ∼ n logN .

For the other sum we have

N∑
l=1

ml[l(l + n− 1)]−n/2 =
1

(n− 1)!

N∑
l=1

(l + n− 2)!

l![l(l + n− 1)]n/2
(2l + n− 1)

∼ 1

(n− 1)!

N∑
l=1

2ln−1

[l(l + n− 1)]n/2

∼ 2

(n− 1)!

N∑
l=1

l−1 ∼ 2

(n− 1)!
logN .

Putting these results together we arrive at

Trω∆−n/2 = lim
N→∞

∑N
l=1ml[l(l + n− 1)]−n/2

log
∑N

l=1ml

= lim
N→∞

2
(n−1)! logN

n logN
=

2

n!
.
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In this particular examples, the Dixmier trace can be also computed using Weyl's law,

which describes the asymptotic behaviour of the eigenvalues of the Laplace-Beltrami operator.

Indeed it can be seen as one of the �rst general results on spectral geometry.



Chapter 2

Non-commutative integration

In the previous section we have introduced a notion of in�nitesimal and an abstract notion of

integration via the Dixmier traces. However, to prove that this is a sensible notion, we still

have to show that in the commutative case we recover the usual integration of functions. We

will show that this is the case, at least for smooth functions, by using Connes' trace theorem,

which provides a link between Dixmier traces and pseudo-di�erential operators. In particular

using the Wodzicki residue we will be able to easily prove this claim.

We will also introduce the zeta function of an operator and mention how it relates to the

Wodzicki residue and the Dixmier traces. In fact the residue of the zeta function provides an

alternative way of de�ning an abstract notion of integration. It is actually de�ned in greater

generality than the Dixmier traces, as we will brie�y mention. Moreover this notion can be

easily adapted to formulate a notion of integral which is not tracial. For these reasons we

will make extensive use of the zeta function approach to integration in the rest of this thesis.

2.1 Pseudo-di�erential operators

Pseudo-di�erential operators are a generalization of di�erential operators born out of the

construction of approximate inverses for elliptic di�erential operators. Here we will consider

only the simplest case, that of the so called classical pseudo-di�erential operators.

Let us �x �rst some notation. We denote by U an open subset of Rn and by C∞c (U) the

smooth (complex-valued) functions with compact support in U . We employ a multi-index

notation and for any multi-index α ∈ Nn we de�ne the operators

Dα = (−i∂1)α1 · · · (−i∂n)αn .

With these notations we de�ne a di�erential operator of order d as

P =
∑
|α|≤d

aα(x)Dα ,

19
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where the functions in the expansion are aα(x) ∈ C∞(U). When acting with P on a function

ψ ∈ C∞c (U) we have, using the Fourier transform, that

Pψ(x) =
∑
|α|≤d

aα(x)Dαψ(x)

=
∑
|α|≤d

aα(x)Dα

ˆ
eiξxF(ψ)(ξ)dnξ

=

ˆ
eiξx

∑
|α|≤d

aα(x)ξα

F(ψ)(ξ)dnξ .

Finally using the inverse Fourier transform we can write this as

Pψ(x) =
1

(2π)n

ˆ ˆ
eiξ(x−y)p(x, ξ)ψ(y)dnξdny , (2.1)

where we have de�ned the symbol p(x, ξ) of the operator P as

p(x, ξ) =
∑
|α|≤d

aα(x)ξα .

A pseudo-di�erential operator is an operator of the general form (2.1), but with a symbol

p(x, ξ) belonging to a more general class of functions.

De�nition 2.1. A function p(x, ξ) is a symbol of order d, written p ∈ Sd(U), if for any

compact subset K ⊂ U and multi-indices α and β there is a constant CKαβ such that

|∂αξ ∂βxp(x, ξ)| ≤ CKαβ(1 + |ξ|)d−|α| . (2.2)

A pseudo-di�erential operator P of order d is an operator of the form (2.1) with symbol

p ∈ Sd(U). We write P ∈ Ψd(U) for such an operator.

We also write p ∈ S−∞(U) if p ∈ Sd(U) for all d ∈ R and write P ∈ Ψ−∞(U) for the

corresponding operator. Such pseudo-di�erential operators are called smoothing.

It is possible to give an asymptotic expansion of symbols which is unique modulo smoothing

operators. If pj ∈ Sdj (U), where {dj} is a decreasing sequence of real numbers with dj → −∞,

then one can �nd p ∈ Sd0(U), which is unique modulo S−∞, such that

p−
k−1∑
j=0

pdj ∈ S
dk(U)

for all k ∈ N. In this case we write

p ∼
∞∑
j=0

pdj .
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At this level of generality it is not always possible to compose two pseudo-di�erential

operators. Here we restrict to the simple class of classical pseudo-di�erential operators, for

which composition is always possible. Let us �rst take another look at ordinary di�erential

operators. If P is a di�erential operator of order d then the symbol p(x, ξ) is a polynomial of

order d in the ξ variable, so that we can isolate its homogeneous parts as follows

p(x, ξ) =

d∑
j=0

pd−j(x, ξ) ,

where each function pd−j(x, ξ) is homogeneous of degree d − j in ξ, that is pd−j(x, λξ) =

λd−jpd−j(x, ξ). The leading term is called the principal symbol and we denote it by σ(P )(x, ξ).

For a di�erential operator of order d it is clearly given by

σ(P )(x, ξ) = pd(x, ξ) =
∑
|α|=d

aα(x)ξα .

After this observation we give the following de�nition.

De�nition 2.2. A symbol p is called a classical symbol if the terms pdj in its asymptotic

expansion are homogeneous in ξ of degree dj and their degrees di�er by integers. We call the

corresponding operators classical pseudo-di�erential operators.

In this case we can set dj = d− j and rewrite the expansion as

p(x, ξ) ∼
∞∑
j=0

pd−j(x, ξ) .

We have pd−j(x, λξ) = λd−jpd−j(x, ξ) and we call pd(x, ξ) the principal symbol of p.

One can compose operators, therefore this operation induces a composition of the symbols.

Proposition 2.1. Let P,Q be two classical pseudo-di�erential operators with symbols p ∈
Sd1(U) and q ∈ Sd2(U). Then P ◦ Q is again a classical pseudo-di�erential operator whose

symbol p ◦ q belongs to Sd1+d2(U). Moreover we have

(p ◦ q)(x, ξ) ∼
∑
α∈Nn

i|α|

α!
Dα
xp(x, ξ)D

α
ξ q(x, ξ) .

In particular for the principal symbol we have

(p ◦ q)d1+d2(x, ξ) = pd1(x, ξ)qd2(x, ξ) .

We give one more de�nition of general nature regarding pseudo-di�erential operators.

De�nition 2.3. A pseudo-di�erential operator P is called elliptic if the principal symbol

σ(P )(x, ξ) is invertible when ξ 6= 0.
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Elliptic pseudo-di�erential operators are characterized by possessing a parametrix, that is

an inverse modulo smoothing operators, which is a very useful property in applications.

We now brie�y discuss the de�nition of pseudo-di�erential operators on manifolds. To do

this it is important to study the behaviour of P ∈ ψd(U) under the action of a di�eomorphism.

Let φ : U → V be a di�eomorphism between two open subsets of Rn. Then it can be

shown that φ∗P (f) = P (φ∗f) ◦ φ−1, where φ∗f is the pullback of the function f , de�nes an

operator φ∗P : C∞c (V )→ C∞(V ) that is actually a pseudo-di�erential operator. In particular

φ∗P ∈ Ψd(V ) and if P is classical then φ∗P is also classical. Therefore, for a compact manifold

M , we require that for each coordinate chart (U, φ) we have φ∗P ∈ Ψd(φ(U)).

The operator can recovered from its components via a partition of unity. The symbol will

depend on the chosen charts, but it can be shown that the principal symbol transforms as a

function on the cotangent bundle T ∗M . In particular an operator is elliptic if it is elliptic in

each chart. It is also easy to extend this construction to the case of matrix-valued symbols.

As an example, let us look at the Laplace-Beltrami operator. In local coordinates can be

written as

∆f = −gµν ∂2f

∂xµ∂xν
+ lower order terms .

Then we immediately �nd that the principal symbol is given by

σ(∆)(x, ξ) = gµνξµξν = ‖ξ‖2 .

It is not di�cult to show that for the operator ∆−n/2 the principal symbol is given by

σ(∆−n/2)(x, ξ) = ‖ξ‖−n .

These expressions show that they are elliptic pseudo-di�erential operators.

2.2 Wodzicki residue and examples

An important notion in the theory of pseudo-di�erential operators is the Wodzicki residue,

that we now de�ne. Its relevance to the topic on non-commutative integration will be ex-

plained shortly. We use the notation S∗M for the unit "co-sphere", which is de�ned as

S∗M = {(x, ξ) ∈ T ∗M : ‖ξ‖ = 1}.

De�nition 2.4. Let M be an n-dimensional compact Riemannian manifold. Let P be

a pseudo-di�erential operator of order −n, acting on sections of a complex vector bundle

E →M . Then we de�ne the Wodzicki residue of P as

ResW (P ) =

ˆ
S∗M

TrEσ(P )(x, ξ)dxdξ .
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Here σ(P )(x, ξ) = p−n(x, ξ) denotes the principal symbol of the operator P : it is a matrix-

valued function on T ∗M which is homogeneous of degree −n in the �bre coordinates. By

TrE denotes the trace over the matrix indices. The measure is de�ned as follows: by dx we

denote the volume form on M and the integration over the ellipsoid ‖ξ‖ = 1 is such that

ˆ
‖ξ‖=1

dξ = Ωn ,

where Ωn = 2πn/2/Γ(n/2) the area of the unit sphere Sn−1. There are numerous other

possible conventions, for example one can put explicitely the integration over the sphere

|ξ| = 1, but then one needs a change of variables to make explicit the volume form of M .

Its importance in the theory of pseudo-di�erential operators is motivated by the following

result, due to Wodzicki.

Theorem 2.2. The Wodzicki residue is a trace on the algebra of classical pseudo-di�erential

operators. If dim(M) > 1 it is the only such trace, up to multiplication by a constant.

Remark 2.1. The condition dim(M) > 1 is related to the fact that for dim(M) = 1 the

cotangent bundle T ∗(M) is disconnected, so there are actually two residues, which may be

linearly combined.

We now compute the Wodzicki residue in a few simple cases.

Example 2.1. We consider the Laplacian ∆ on the n-torus Tn. Since ∆ is a second order

di�erential operator, we have that ∆−n/2 is a pseudo-di�erential operator of order −n. More-

over its principal symbol is σ−n(∆−n/2) = ‖ξ‖−n, which is the constant function 1 on S∗Tn.

So

ResW (∆−n/2) =

ˆ
S∗Tn

σ−n(∆−n/2)dµ =

ˆ
S∗Tn

dxdξ

= Ωn

ˆ
Tn
dx = Ωn(2π)n .

Example 2.2. We repeat the same computation for the Laplacian ∆ the n-sphere Sn. The

arguments given for the n-torus hold also in this case. Therefore the computation is

ResW (∆−n/2) =

ˆ
S∗Sn

σ−n(∆−n/2)dµ =

ˆ
S∗Sn

dxdξ

= Ωn

ˆ
Sn
dx = ΩnΩn+1 =

2(2π)n

(n− 1)!
.

We can compare these expressions with those obtained by computing the Dixmier trace

of the same operators, and observe that the following relation holds

Trω(∆−n/2) =
1

n(2π)n
ResW (∆−n/2).
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2.3 Connes' trace theorem

In the examples we considered above, the Wodzicki residue turned out to be related to the

Dixmier trace of the operator in consideration. The precise statement of this correspondence

is the content of Connes' trace theorem, which is proven in [Con88].

Theorem 2.3. Let M be an n-dimensional compact Riemannian manifold. Let P be an

elliptic pseudo-di�erential operator of order −n, acting on sections of a complex vector bundle

E →M . Then P belongs to L1+, is measurable, and we have the equality

Trω(P ) =
1

n(2π)n
ResW (P ) .

This result greatly simpli�es the computation of Dixmier traces on compact manifolds. In

particular we can easily show how to recover the usual integration of functions in this setting.

We will consider the case corresponding to a canonical spectral triple, which will appear in

the next chapter dedicated to spectral triples.

We consider a compact Riemannian spin manifoldM of dimension n. We will be concerned

with the integration of functions in C∞(M), the algebra of smooth functions. We consider the

Dirac operator D associated to a certain metric. In this case we need to take in consideration

the bundle E appearing in the theorem above, which will be the spinor bundle of dimension

2[n/2]. The Dirac operator D can be written locally as

D = −iγµ∂µ + lower order terms .

Here γµ = γ(dxµ) and γ is the Cli�ord multiplication. It is clearly a �rst order operator

whose principal symbol is γµξµ. Using the relations of the Cli�ord algebra we obtain that

the principal symbol of D2 is given by

σ(D2) = γµγνξµξν = gµνξµξν1m = ‖ξ‖21m .

Therefore the principal symbol of |D|−n is given by

σP (|D|−n) = ‖ξ‖−n1m .

Proposition 2.4. For any f ∈ C∞(M) we have

Trω(f |D|−n) = cn

ˆ
f(x)dx ,

where cn = 2[n/2]Ωn/(n(2π)n).

Proof. The Dirac operator D is a �rst order elliptic operator. Since f is a bounded mul-

tiplication operator we have that f |D|−n is a pseudo-di�erential operator of order −n. Its
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principal symbol is σ(f |D|−n) = f(x)‖ξ‖−n. Therefore we can apply Connes' trace theorem.

Computing the Wodzicki residue we get

Trω(f |D|−n) =
1

n(2π)n

ˆ
S∗M

TrEσ(f |D|−n)dµ =
2[n/2]

n(2π)n

ˆ
S∗M

σ(f |D|−n)dµ

=
2[n/2]

n(2π)n

ˆ
S∗M

f(x)dxdξ =
2[n/2]Ωn

n(2π)n

ˆ
M
f(x)dx = cn

ˆ
M
f .

Therefore we can recover the integral of f by computing the Dixmier trace of f |D|−n. We

remark that the same outcome would be obtained, up to the constant, if we had considered

instead f∆−n/2, with ∆ the Laplacian. Here we used the Dirac operator since it is the

situation one commonly encounters when dealing with spectral triples.

2.4 Zeta functions and integration

We now introduce the notion of zeta function associated to an operator and discuss its role

in the theory of non-commutative integration. In particular we consider the case of pseudo-

di�erential operators on compact manifolds, which provides a connection with the Wodzicki

residue and justi�es the name "residue".

Let us recall that the Riemann zeta function is de�ned by the series

ζ(z) =
∞∑
n=1

n−z,

which converges for Re(z) > 1. It can be continued analytically to a function which is

holomorphic everywhere except at z = 1, where it has a simple pole with residue equal to 1.

We now want to de�ne an analogue of the zeta function for certain operators, essentially by

replacing the terms n−1 in the series with the eigenvalues λn of the operator in consideration.

In general complex powers of an operator can be de�ned using the holomorphic functional

calculus, but here we can proceed with a more hands-on approach.

Let M be compact manifold of dimension n. We consider a positive elliptic pseudo-

di�erential operator P of order −n. Such an operator is compact, see for example [Shu01].

We can assume that λ = 0 is not an eigenvalue of P , removing its kernel if necessary. The

important example to keep in mind is given by ∆−n/2, where ∆ is the Laplacian for a �xed

Riemannian metric on M . For such an operator P , we de�ne its zeta function as

ζP (z) = Tr(P z) =
∞∑
n=1

λzn,

where λn are the eigenvalues of P . An important result is the following.
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Theorem 2.5. With P as above, the zeta function ζP (z) is holomorphic for Re(z) > 1. It

has a simple pole at z = 1 and moreover

Res
z=1

ζP (z) =
1

n(2π)n
ResW (P ).

The zeta function ζP (z) can be extended to a meromorphic function, but in general will

have additional poles with respect to the Riemann zeta function. These additional poles

provide much geometric information about M , and can be also connected with the heat

kernel expansion. As a historical remark, this kind of zeta function, for the case of the

Laplacian, was investigated for the �rst by Minakshisundaram and Pleijel in [MiPl49].

Using this theorem we can give another formulation of integration in terms of the zeta

function. Indeed it is not di�cult to prove that, for f ∈ C∞(M), we have

Res
z=n

Tr(f∆−z/2) = cn

ˆ
f(x)dx,

where cn is a constant depending only on the dimension n of M . A similar result can be

obtained using |D|−z in the case of a spin manifold, where D is the Dirac operator.

The theorem above also provides a connection between the residue of the zeta function

associated to certain operators and their Dixmier traces, since as we have seen the Wodzicki

residue is related to the Dixmier trace via Connes' trace theorem. This connection continues

to hold more generally, even without making reference to the Wodzicki residue. As we have

mentioned when discussing Dixmier traces, a positive operator is measurable if and only if

the associated sequence has an ordinary limit. The connection with the zeta function comes

from the following Tauberian theorem, see [Con].

Proposition 2.6. Let T be a positive operator such that T ∈ L1+. Then the following two

conditions are equivalent:

1. (s− 1)ζ(s)→ L as s→ 1+,

2. 1
logN

∑N−1
n=0 µn(T )→ L for N →∞.

Under these conditions, the value of Trω(T ) is independent of ω and coincides with the

residue of ζ(s) at s = 1.

The zeta function approach to integration has several features which make it very useful

in non-commutative geometry. For example, the additional poles can be used to extract geo-

metric information about the space in consideration, as for the scalar curvature in [CoMo11].

In this sense it can be used to extend the Dixmier trace to operators which do not lie in the

Dixmier ideal, as in the formulation of the local index formula [CoMo95]. Another feature,

as we will see in the following, is that it can be easily modi�ed to account for some modular

properties of the non-commutative spaces in consideration.
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Finally, it is worth mentioning that the zeta function approach to integration is de�ned

in greater generality than the one in terms of the Dixmier trace. Recall that in the previous

sections we have shown that, for functions in C∞(M) with M compact, the integral can be

computed as the Dixmier trace of a certain operator. However, from the point of view of

measure theory, integration should be de�ned for functions in L1(M). It is then natural to

wonder if the result concerning the Dixmier trace can be extended to this class of functions. It

can be shown that the correspondence between the Dixmier trace and the integral continues

to hold for L2(M), but fails for L1(M). On the other hand, the correspondence holds in

general for the residue of the zeta function, see [LPS10] for details.
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Spectral triples

In this section we introduce the notion of spectral triple and discuss some of its proper-

ties. Spectral triples provide the building blocks for the description of the geometry of

non-commutative spaces. We will motivate their de�nition by reformulating some aspects

of Riemannian manifolds in a operator algebra setting, which lends itself to a natural gen-

eralization to the non-commutative case. Then we will see how this de�nition is connected

with index theory, which provides a broader perspective for this notion.

General references for this section are [Con] and [GVF].

3.1 Motivation and de�nition

We begin by discussing brie�y how to reformulate the notion of Riemannian manifold in an

operator algebra setting. For simplicity we restrict to the case of compact manifolds. The

space of continuous functions C(M) on a compact manifold M is a unital C∗-algebra and,

on the other hand, from the Gelfand-Naimark theorem it follows that any commutative and

unital C∗-algebra is of the form C(X), where X is a compact Hausdor� space. Therefore

commutative C∗-algebras provide an algebraic reformulation of topological spaces.

Any C∗ algebra A (and therefore any subalgebra of A) can, after the choice of a state, be

represented as bounded operators on some Hilbert space H. Therefore A and H provide two

natural ingredients for the description of topological spaces.

To go beyond that, and introduce a metric aspect to this reformulation, we need some

new element. Since much information about Riemannian manifolds can be retrieved from

di�erential operators naturally de�ned on them, it is a good idea to include such an operator

in this reformulation. This operator, which we denote by D, must have some compatibility

with the algebra A, as will emerge from a more detailed analysis. We will consider �rst

order di�erential operators, since they are easier to handle. That said, the choice of such an

operator really depends on the manifold under consideration.

For simplicity, and in view of the many results available in this case, we will consider

the case of spin manifolds, where one natural operator that �ts these requests is the Dirac

28
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operator (this motivates the choice of the symbol D). We now mention a result that allows

the reconstruction of the metric from the Dirac operator, see [Con]. Let us recall that in

di�erential geometry the distance between two points p, q ∈M is given by

d(p, q) = inf{length(γ) : γ is a path from p to q}.

It is possible to obtain another expression for the distance, in a certain sense dual to this one,

by considering functions on M whose commutator with D satis�es a certain bound.

Proposition 3.1. The distance between two points p, q ∈M can be obtained as

d(p, q) = sup{|f(p)− f(q)| : f ∈ C∞(M), ‖[D, f ]‖ ≤ 1}.

Since the distance function on a manifold determines its metric (Myers-Steenrood theorem)

then this shows that we can recover the metric from a spectral triple. A similar result can be

obtained also using the Laplacian, but the formula becomes more complicated.

The de�nition of spectral triple follows by abstracting some of the essential properties that

emerged in this discussion.

De�nition 3.1. Let A be a unital ∗-subalgebra of B(H), where H is a Hilbert space. We

call the triple (A, H,D) a spectral triple if

1. D is a self-adjoint operator,

2. [D, a] extends to a bounded operator for all a ∈ A,

3. (D2 + 1)−1/2 is compact.

Remark 3.1. By [D, a] extends to a bounded operator we mean the following: for every a ∈ A
we have a dom(D) ⊂ dom(D), so that [D, a] is densely de�ned. Since [D, a] is bounded on

dom(D) it extends to a bounded operator in B(H).

The de�nition of spectral triple can be re�ned in many ways to capture more information

about the space under consideration. An example of this is given by the notion of parity.

De�nition 3.2. We say that (A, H,D) is even if there exists a Z2 grading such that A is

even and D is odd. By this we mean that there exists an operator γ ∈ B(H), with γ∗ = γ

and γ2 = 1, such that γa = aγ for all a ∈ A and Dγ + γD = 0. Otherwise (A, H,D) is odd.

Spin manifolds, which we focused on in this presentation, clearly provide examples of

commutative spectral triples. We now give some additional details of this construction.

Example 3.1. Let M be a compact spin manifold with metric g. We can associate to it

the so-called canonical spectral triple, which is given by (C∞(M), L2(M,S), D). Here the

∗-algebra of smooth functions C∞(M) acts by multiplication on the Hilbert space L2(M,S)
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of square-integrable sections of the spinor bundle. The operator D is the Dirac operator

associated to (M, g), which is a self-adjoint operator on this Hilbert space.

It is not di�cult to show that all the properties de�ning a spectral triple are satis�ed in

this case. Notice that, in order to satisfy the condition of boundedness of [D, a], we have to

restrict to the subalgebra C∞(M) of the C∗-algebra C(M). Indeed this tension between the

continuous and smooth setting is a recurring theme with spectral triples.

Let us note that such a spectral triple is even or odd depending on its dimension n, where

the grading is provided by the Cli�ord algebra grading.

As we brie�y discussed, the choice of focusing on spin manifolds at this stage is arbi-

trary. Indeed it is not di�cult to construct spectral triples for more general compact oriented

Riemannian manifolds, as in the next example.

Example 3.2. (Hodge-de Rham) Let M be a compact oriented Riemannian manifold with

metric g. Let L2(Λ∗M, g) be the Hilbert space completion of the exterior bundle Λ∗T ∗CM with

respect to the inner product

(ω, ρ) =

ˆ
M
ω ∧ ∗ρ̄,

where ∗ is the Hodge dual. Let d be the exterior derivative and d∗ the adjoint with respect to

this inner product. Set D = d+ d∗. Then (C∞(M), L2(Λ∗M, g), D) is a spectral triple.

Thus far we have seen how to construct spectral triples from Riemannian manifolds. This

raises the natural question: given a spectral triple (A, H,D) with A commutative, can we

associate a Riemannian manifold to it? It turns out that it is not possible at this level of

generality, so that additional conditions are needed to characterize Riemannian manifolds

among commutative spectral triples. What these conditions are really depends on which

class of Riemannian manifolds we want to recover. In this sense the cases of spin and spinc

manifolds are the best understood ones.

The most general result in this sense is obtained in [Con13], which is based on previous

results contained in [Con96] and [ReVa06]. Given a spectral triple (A, H,D) with A com-

mutative, and satisfying some additional conditions, there exists a compact oriented smooth

manifold M such that A is the algebra C∞(M) of smooth functions on M . Conversely any

such manifold appears in this spectral manner. Furthermore, by re�ning these conditions to

capture the spinc case, it is also possible to recover the metric from the operator D.

3.2 Summability

Let (A, H,D) be a spectral triple, with the algebra A not necessarily commutative. It is

useful to have additional analytical control over D, since a priori we only know that it has

compact resolvent. For example, when D is the Dirac operator on a spin manifold, we have

that (D2 + 1)−s/2 is trace-class for s > n, where n is the dimension of the manifold. This
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easily follows from previous results on pseudo-di�erential operators and the associated zeta

functions. Therefore from the spectrum of D we can extract the dimension of the manifold,

which motivates the following general de�nition.

De�nition 3.3. A spectral triple (A, H,D) is called �nitely summable if there exists some

s0 > 0 such that Tr((D2 + 1)−s0/2) <∞. In this case, we de�ne the spectral dimension as

p = inf{s > 0 : Tr((D2 + 1)−s/2) <∞}.

We have used (D2 + 1)−1/2 in place of |D|−1 since we do not assume invertibility of

D. Equivalently we can consider (D2 + µ2)−1/2 for any non-zero µ ∈ R, with the spectral

dimension being independent of this choice.

We can also give a notion of summability in terms of the Dixmier ideal. Recall that in a

previous chapter the Dixmier ideal was introduced as

L1+ =

{
T ∈ K(H) : sup

N>1

1

logN

N−1∑
n=0

µn(T ) <∞

}
.

Equivalently, it is the space of all T ∈ K(H) such that σN (T ) = O(logN), where σN denotes

the sum over the �rst N singular values. Similarly, for p > 1 the ideals Lp+ can be introduced

by real interpolation theory. Concretely, they are the spaces

Lp+ = {T ∈ K(H) : σN (T ) = O(N1−1/p)}.

De�nition 3.4. A spectral triple (A, H,D) is called p-summable if (D2 + 1)−p/2 ∈ L1(H).

It is called p+-summable if (D2 + 1)−p/2 ∈ L1+(H).

Remark 3.2. A variant of the second de�nition, found for example in [GVF], is given by

requiring that (D2 + 1)−1/2 ∈ Lp+(H). It is true that if T ∈ Lp+ then T p ∈ L1+, while the

converse is false, therefore these two de�nitions are not equivalent. It follows, according to

our de�nition, that if a spectral triple is p+-summable then the spectral dimension is p.

It is always possible to associate, to the unbounded operator D, the bounded operator

F = D(D2 + 1)−1/2, which can be called the bounded transform of D. In the case when D

is invertible we can consider instead F = D|D|−1, which is called the phase of D, in clear

analogy with the polar decomposition for complex numbers. In both cases the operator F is

a Fredholm operator, whose de�nition we will review in a moment.

We now show that the commutator of F with an element of the algebra A turns out to

be compact and, moreover, inherits a certain summability from D. This is crucial for the

de�nition of the Chern character, as we will see. We also take this opportunity to introduce

a property of regularity for D, which is useful in many cases.
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De�nition 3.5. A spectral triple (A, H,D) is called Lipschitz regular if [|D|, a] is bounded

for any a ∈ A.

Proposition 3.2. Let (A, H,D) be a spectral triple. Then we have that [F, a] is compact for

all a ∈ A. Moreover if the triple is n+-summable then [F, a] ∈ Ln+1(H).

Proof. We use the extra assumption of Lipschitz regularity to make the proof elementary.

This assumption can be removed as in [CP98]. For the same reason we consider the case in

which D is invertible. We rewrite the commutator [F, a] as follows

[F, a] = D[|D|−1, a] + [D, a]|D|−1

= −F [|D|, a]|D|−1 + [D, a]|D|−1.

The compactness immediately follows from the fact that |D|−1 is compact. Similarly from

the fact that the triple is n+-summable we get that [F, a] ∈ Ln+1(H).

3.3 Spectral triples and index theory

Spectral triples are intimately related to index theory. Even though the latter does not play

an important role in this thesis, a brief outline of this connection sets the notion of spectral

triple into a broader setting. The material of this section is mainly taken from [CPR].

3.3.1 Fredholm operators

Let us start by giving the de�nition of Fredholm operators.

De�nition 3.6. Let H1 and H2 be Hilbert spaces and F : H1 → H2 a bounded linear

operator. We call F Fredholm if:

1. ran(F ) is closed in H2,

2. ker(F ) is �nite dimensional,

3. coker(F ) = H2/ran(F ) is �nite dimensional.

If F is Fredholm we de�ne its index as

Index(F ) = dim ker(F )− dim coker(F ).

Example 3.3. A very simple (and non-trivial) Fredholm operator is given by the shift operator

S : l2(N)→ l2(N). It is de�ned by

S
∞∑
i=1

aiei =

∞∑
i=1

aiei+1.
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The range of S is of codimension 1, so it is closed. Moreover the kernel consists only of 0, so

that Index(S) = dim ker(S)− dim coker(S) = −1.

Example 3.4. If F : H → H is a self-adjoint Fredholm operator then Index(F ) = 0. This

is because in general we have coker(F ) = ker(F ∗).

There is a useful characterization of Fredholm operators, due to Atkinson.

Proposition 3.3. Let F : H1 → H2 and S : H2 → H1 be bounded linear operators such that

FS − 1H2 and SF − 1H1 are compact operators (on their respective Hilbert spaces). Then F

and S are Fredholm operators. The converse is also true.

Given F and S as above, we say that S is a parametrix or approximate inverse for F ,

and vice versa. Thus the Fredholm operators are precisely those which are invertible modulo

compact operators. This characterization shows that the operators F = D(D2 + 1)−1/2 or

F = D|D|−1 for D invertible are Fredholm.

We now summarize the important properties of the index of a Fredholm operator.

Theorem 3.4. Let F denote the set of Fredholm operators on a Hilbert space H. Let π0(F)

denote the norm connected components of F . Then the index is locally constant and induces

a bijection Index : π0(F)→ Z. Moreover the index satis�es

Index(F ∗) = −Index(F ), Index(FS) = Index(F ) + Index(S).

Therefore the map Index gives a group isomorphism.

It is worth noting that if F is Fredholm and T is compact then F + T is Fredholm and

Index(F + T ) = Index(F ).

Therefore the index is constant under compact perturbation and su�ciently small norm

perturbations. This gives us strong invariance properties for the index. In particular, by

considering operators on manifolds which give rise to Fredholm operators, we can construct

invariants of the underlying manifolds.

3.3.2 K-homology and K-theory

One of the main techniques employed by Atiyah and Singer to compute the index of elliptic

di�erential operators on manifolds is K-theory. This cohomology theory makes sense also

in the non-commutative case, and so does its dual theory called K-homology. The latter is

strictly related to spectral triples, as we will see in a moment.

De�nition 3.7. Let A be a ∗-algebra. A Fredholm module over A is given by a Hilbert space

H with A ⊂ B(H) and an operator F : H → H such that (F 2 − 1)a, (F − F ∗)a and [F, a]
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are compact operators. We say that (H,F ) is even if there is an operator γ : H → H such

that γ2 = 1, γ∗ = γ, γF + Fγ = 0 and γa = aγ. Otherwise we say that (H,F ) is odd.

Notice that, if A is unital, then F is Fredholm by Atkinson's theorem. In the even case

we can use the grading γ to decompose the Hilbert space as H = H+ ⊕H−. Similarly, using

the fact that F anticommutes with γ, we obtain the operators F± : H± → H∓.

By de�ning an equivalence relation for Fredholm modules it is possible to introduce an

abelian group structure, which is called K-homology and is denoted by Kp(A), with p = 0 in

the even case and p = 1 in the odd case. It follows from Proposition 3.2 that one can assign

a Fredholm module to a spectral triple, and therefore a class in K-homology.

For simplicity in the following we will deal only with normalized Fredholm modules. We

say that a Fredholm module (H,F ) is normalized if F 2 = 1 and F = F ∗. It is not di�cult

to show that from every Fredholm module one can obtain a normalized Fredholm module

belonging to the same class in K-homology.

We also brie�y mention the K-theory groups K0(A) and K1(A), which are respectively

made of projections and unitaries in Mk(A), that is matrix algebras with entries in A, for

each k. Also in this case there are appropriate equivalence relations to be required.

3.3.3 Index pairing and Chern character

A pairing between K-theory and K-homology can be de�ned. To de�ne it we need to handle

matrix algebras over A. It is easy to show that if (H,F ) is a Fredholm module over the

algebra A then (Hk, F ⊗ 1k) is a Fredholm module over the algebra Mk(A).

Let (H,F, γ) be an even Fredholm module and p ∈Mk(A) a projection. Then the pairing

between [p] ∈ K0(A) and [(H,F, γ)] ∈ K0(A) is given by

〈[p], [(H,F, γ)]〉 = Index(p(F+ ⊗ 1k)p).

Similarly, when (H,F ) is an odd normalized Fredholm module and u ∈ Mk(A) is a unitary,

the pairing between [u] ∈ K1(A) and [(H,F )] ∈ K1(A) is given by

〈[u], [(H,F )]〉 = Index(PkuPk).

where Pk = 1
2(1 + F )⊗ 1k. Notice that Pk is a projection.

It is possible to obtain a simpler formula for the pairing under some assumptions on the

Fredholm module. This requires a notion of summability for Fredholm modules.

De�nition 3.8. A Fredholm module (H,F ) for A is (p+ 1)-summable, with p ∈ N, if for all
a ∈ A we have [F, a] ∈ Lp+1(H).
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It follows from Proposition 3.2 that, for a spectral triple (A,H,D) with spectral dimension

n, the operator F de�ned in terms of D is (n + 1)-summable. Therefore �nitely summable

spectral triples correspond to �nitely summable Fredholm modules.

For �nitely summable normalized Fredholm modules we can de�ne cyclic cocycles, whose

class in periodic cyclic cohomology is called the Chern character.

De�nition 3.9. Let (H,F ) be a (p+ 1)-summable normalized Fredholm module for A. For

any n ≥ p with the same parity of the Fredholm module we de�ne

Chn(a0, · · · , an) =
λn
2

Tr(γ[F, a0] · · · [F, an]),

for some normalization constants λn. We call the class of Ch∗ in periodic cyclic cohomology

the Chern character.

Finally we can compute the pairing between K-theory and K-homology using a represen-

tative of the Chern character, as shown in the following theorem of Connes [Con].

Theorem 3.5. Let (H,F ) be a �nitely summable normalized Fredholm module over A. Then

for any [e] ∈ K0(A) we have

〈[e], [(H,F, γ)]〉 =
1

(n/2)!
Chn(e, · · · , e),

for n large enough. Similarly, for any [u] ∈ K1(A) we have

〈[u], [(H,F )]〉 = − 1√
2i2nΓ(n/2 + 1)

Chn(e, · · · , e).

It is possible to go further and obtain a more computable form of the pairing. This consists

in producing a local index formula, which is the analogue of the Atiyah-Singer index theorem.

We do not go into this important topic, but just mention that the added �exibility of having

an unbounded operator D is crucial to obtain such a formula.



Chapter 4

Generalizations of spectral triples

After having de�ned and discussed the notion of spectral triple in the previous chapter, we

now turn to some generalizations. After all, this notion was obtained by considering the case

of manifolds, but we expect that the non-commutative world will produce new phenomena

that we have to take into account. We will discuss the framework of twisted spectral triples

[CoMo08] and that of modular spectral triples [CPR10, CRT09, CNNR11], which in turn is

a generalization of semi�nite spectral triples [BeFa06].

4.1 Twisted spectral triples

Let us begin with a motivating example. Let M be a compact spin manifold, with Rieman-

nian metric g, and consider the associated canonical spectral triple (C∞(M), L2(M,S), D).

Consider now a self-adjoint element h ∈ C∞(M) and de�ne the rescaled metric g′ = e−4hg,

which is conformally equivalent to g. We can construct again a canonical spectral triple out

of this metric and it is not di�cult to see, after properly identifying the new Hilbert space,

that the new Dirac operator is related to the old one by D′ = ehDeh.

We can try to repeat this construction for the case of a general spectral triple (A, H,D),

with A not necessarily commutative. We consider a self-adjoint element h = h∗ ∈ A and set

D′ = ehDeh. We now wonder if the "perturbed" triple, where we replace D with D′, is again

a spectral triple. It is easy to see that D′ is still self-adjoint and has compact resolvent, but

on the other hand [D′, a] is not bounded unless h is in the center of A.
Therefore this procedure does not give rise to a spectral triple in general. On the other

hand we now show that we can obtain a boundedness condition "with a twist".

Lemma 4.1. Let σ(a) = e2hae−2h. Then D′a− σ(a)D′ is bounded for any a ∈ A.

36
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Proof. This follows immediately from the following computation

[D′, a]σ = ehDeha− e2hae−2hehDeh

= eh(Dehae−h − ehae−hD)eh

= eh[D, ehae−h]eh.

(4.1)

Indeed eh is a bounded operator and the fact that [D, ehae−h] is bounded follows from the

fact that (A, H,D) is a spectral triple.

Motivated by this example we give the following de�nition [CoMo08].

De�nition 4.1. Let A be a unital ∗-subalgebra of B(H), where H is a Hilbert space. Let σ

be a automorphism of A. We call the triple (A, H,D) a twisted spectral triple if

1. D is a self-adjoint operator,

2. [D, a]σ = Da− σ(a)D extends to a bounded operator for all a ∈ A,

3. (D2 + 1)−1/2 is a compact operator.

It is clear that when σ is equal to the identity we obtain the usual de�nition of spectral

triple. The notion of grading can be given as in the case of usual spectral triples. The

property of regularity is de�ned as follows.

De�nition 4.2. A twisted spectral triple is called Lipschitz regular if moreover |D|a−σ(a)|D|
is bounded for any a ∈ A.

The presence of the twist has interesting consequences, for example for the notion of

integration de�ned in terms of the operator D.

Proposition 4.2. Let (A, H,D) be a twisted spectral triple, where we denote the twist by σ.

Suppose that D−1 ∈ Ln+. Then we have the following properties:

• the linear functional ϕ(a) = Trω(aD−n) is a σn-trace on A, that is

ϕ(ab) = ϕ(σn(b)a),

• more generally for any bounded operator T ∈ B(H) we have

Trω(TaD−n) = Trω(σn(a)TD−n),

• if we have Lipschitz regularity then the same is true when D−n is replaced by |D|−n.

Proof. For simplicity we show it for the case n = 1, the general case can be similarly proven

as in [CoMo08]. We only need to notice that

aD−1 −D−1σ(a) = D−1(Da− σ(a)D)D−1.
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Since the term in parentheses is bounded, it is easy to see that aD−1 −D−1σ(a) is of trace-

class, therefore it vanishes when we take its Dixmier trace.

The other two claims are proven similarly.

Therefore we see that the presence of the twist σ makes the integral non-tracial. This hints

at the fact that such a notion might prove useful in the case of compact quantum groups,

where one has to deal with non-tracial states. In practice these results hold independently of

the choice of the generalized limit ω, similarly to the untwisted case.

Finally we mention that a twisted spectral triple still de�nes a class in K-homology, at

least if we have Lipschitz regularity. We consider again the case of invertible D.

Proposition 4.3. Let (A, H,D) be a twisted spectral triple which is Lipschitz regular. Then

(H,F ) with F = D|D|−1 is a Fredholm module over A. Moreover if (A, H,D) is �nitely

summable then so is (H,F ).

Proof. To show it we rewrite the twisted commutator as

[D, a]σ = Da− σ(a)D = Da− |D|aF + |D|aF − σ(a)D

= |D|(Fa− aF ) + (|D|a− σ(a)|D|)F

= |D|[F, a] + [|D|, a]σF.

(4.2)

Therefore we have

[F, a] = |D|−1[D, a]σ − |D|−1[|D|, a]σF.

The compactness and summability properties follow at once from those of |D|−1.

4.2 Semi�nite spectral triples

The notion of semi�nite spectral triple was introduced in [BeFa06], motivated by the study

of foliations and by the L2-index theorem of Atiyah. The idea is to generalize the setting of

spectral triples to semi�nite von Neumann algebras.

To see what this generalization should entail, let us consider the condition of compactness

of the resolvent of the operator D, which requires (D2 + 1)−1/2 to belong to the ideal of

compact operators in B(H). From the point of view of von Neumann algebras, the space

B(H) is a type I factor. Then we can consider replacing B(H) by any semi�nite von Neumann

algebra, that is possibly a type II factor. Accordingly, the notion of compact operator should

be formulated with respect to this semi�nite von Neumann algebra.

Before getting into that, we need to recall some notions relative to traces on von Neumann

algebras. A trace τ is called normal if, for every bounded increasing net of positive elements

xλ → x, we have τ(xλ)→ τ(x). It is called semi�nite if, for all positive a ∈ N , we have that

τ(a) is the supremum of τ(b) over all b ≤ a such that τ(b) < ∞. Semi�nite von Neumann

algebras can be characterized as those admitting a normal semi�nite faithful trace.
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In the following we will consider a semi�nite von Neumann algebra N , considered as a

subspace of B(H), and �x a normal semi�nite trace τ on this algebra. We say that an

operator is τ -compact if it is in the norm closure of the ideal generated by the projections

p ∈ N such that τ(p) < ∞. Finally a closed and densely de�ned operator is a�liated with

N if it commutes with every unitary operator in the commutant of N .

Armed with these notions, we can now de�ne semi�nite spectral triples.

De�nition 4.3. Let A be a unital ∗-subalgebra of N , where N is a semi�nite von Neumann

algebra acting on a Hilbert space H. Fix a normal semi�nite faithful trace τ on N . We call

the triple (A, H,D) a semi�nite spectral triple if

1. D is a self-adjoint operator a�liated with N ,

2. [D, a] extends to a bounded operator in N for all a ∈ A,

3. (D2 + 1)−1/2 is compact with respect to the trace τ .

Notice that for N = B(H) this de�nition reduces to that of spectral triples.

Example 4.1. One of the motivating example in [BeFa06] is that of measured foliations,

that is an application of spectral triples to di�erential geometry. Non-commutative examples

coming from graph algebras are discussed in [PaRe06].

To de�ne the analogue of the Dixmier ideal L1+ we need a notion of singular values for

τ -compact operators. Such a notion is provided in [FaKo86].

De�nition 4.4. For S ∈ N we de�ne, for each t > 0, the t-th generalized singular value as

µt(S) = inf{‖SE‖ : E is a projection in N, τ(1− E) ≤ t}.

This de�nition is motivated by an analogue characterization of the singular values based

on the projections in B(H). Indeed, when N = B(H), we have that Tr(1 − E) is a natural

number, and we recover the usual de�nition of singular values. On the other hand, in the

general semi�nite case, we have a di�erent singular value for each t > 0. This "continuous

geometry" is indeed one of the de�ning characteristics of type II von Neumann algebras.

Note also that, using this notion, we can alternatively de�ne the τ -compact operators as the

operators T ∈ N such that limt→∞ µt(T ) = 0.

The analogue of the Dixmier ideal is de�ned as

L1+(N) =
{
T ∈ N : ‖T‖L1+ = sup

t>0

1

log(1 + t)

ˆ t

0
µs(T )ds <∞

}
.

It is possible to de�ne Dixmier traces by taking generalized limits as in the type I case.

We now introduce some spaces, denoted by Zp for p ≥ 1, which are strictly related to the

Dixmier ideals [CRSS07]. They are interesting because their de�nition is based on the zeta
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function, which can be de�ned in the generality of the semi�nite setting. Given a faithful

semi�nite normal trace τ , the zeta function of a positive τ -compact operator is de�ned by

ζ(z) = τ(T z) for z ∈ C, under the assumption that there exists some s0 > 0 for which the

trace is �nite. In this case it is also �nite for all Re(s) ≥ s0. Then we de�ne

Z1 = {T ∈ N : ‖T‖Z1 = lim sup
s↓1

(s− 1)τ(|T |s) <∞}.

Similarly for p ≥ 1 the spaces Zp are de�ned as

Zp = {T ∈ N : ‖T‖Zp = lim sup
s↓p

((s− p)τ(|T |s))1/s <∞}.

The spaces Zp can be obtained from Z1 via the procedure of p-convexi�cation. It can be

seen as a generalization of the procedure by which the Lp spaces of classical analysis can

be obtained from L1. Several properties of these spaces are proven in [CRSS07], and we

summarize some of them in the following theorem.

Theorem 4.1. (i) The spaces Z1 and L1+ coincide.

(ii) For p ≥ 1, we have T ∈ Zp if and only if T p ∈ Z1.

(ii) For p > 1, the space Zp is strictly larger than Lp+.

Therefore the spaces Zp behave well under taking powers. We remark that, in contrast

with the Schatten ideals, for the Dixmier ideals it is not true in general that if T ∈ L1+ then

T 1/p ∈ Lp+. It is possible to give explicit formulae which link zeta functions, heat kernel

expansion and Dixmier traces, see [CRSS07].

4.3 Modular spectral triples

There are several reasons to go beyond semi�nite spectral triples. One obvious reason is that

there are algebras that do not admit a non-trivial trace, so that a state (or more generally a

weight) is needed to study them. This is the motivation that led to the introduction of the

concept of modular spectral triple in [CPR10]. Here the motivating example is that of the

Cuntz algebra, which does not admit a non-trivial trace but has a canonical KMS-state.

Similarly, while an algebra might admit a non-trivial trace, it might be non-faithful and

therefore better analyzed using a faithful state. This is the case for the quantum group

SUq(2), which is studied in [CRT09] in the graph algebra picture. In this case a faithful state

is given by the Haar state, which is non-tracial, and again one can build a modular spectral

triple for this example, which behaves in di�erent way from the semi�nite version.

Before getting into the de�nition of modular spectral triples, we need to review a few facts

about weights and the modular theory of von Neumann algebras. Weights are an unbounded

version of positive linear functionals (or states, once normalized). The simplest example is

given by the operator trace. In general a weight on a von Neumann algebra N is a map
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ω : N+ → [0,∞] satisfying the linearity conditions ω(x + y) = ω(x) + ω(y) for x, y ∈ N+

and ω(λx) = λω(x) with λ ≥ 0. Here N+ denotes the positive elements of N and we use the

convention 0(+∞) = 0. The set nω = {x ∈ N : ω(x∗x) <∞} is a left ideal of N .

Given a von Neumann algebra N and a normal semi�nite faithful weight ω on N , the

modular theory allows to create a one-parameter group of ∗-automorphisms of the algebra

N , which we call the modular automorphism group associated to ω and denote by σω, which

assigns to each t ∈ R an automorphism of N which we denote by σωt . Consider the Hilbert

space Hω obtained via the GNS construction for ω, with πω the corresponding representation

of N on Hω. Then the modular automorphism group σω is implemented by a unitary one-

parameter group t 7→ ∆it
ω ∈ B(Hω). This means that for each a ∈ N and for all t ∈ R we

have πω(σωt (a)) = ∆it
ωπω(a)∆−itω . We call ∆ω the modular operator associated to ω.

The modular automorphism group σω has a very important property: it is the unique one-

parameter automorphism group that satis�es the KMS condition with respect to the weight

ω at inverse temperature β = 1. The KMS condition is de�ned as follows.

De�nition 4.5. Let N be a von Neumann algebra, ω a normal semi�nite faithful weight on

N and t 7→ αt a one-parameter group of automorphisms of N . Then ω satis�es the KMS

condition at inverse temperature β with respect to α if the following conditions are satis�ed:

1. for every t ∈ R we have ω ◦ αt = ω,

2. for every x, y ∈ nω ∩ n∗ω there exists a bounded continuous function Fx,y from the

horizontal strip {z ∈ C : 0 ≤ Imz ≤ β} to C, which is analytic in the interior of the

strip and such that for every t ∈ R we have

Fx,y(t) = ω(xαt(y)), Fx,y(t+ iβ) = ω(αt(y)x).

The idea is then to choose a weight on N to ensure compatibility with the algebra in

consideration. Before giving the de�nition of modular spectral triple, we need to recall one

more notion relative to weights: we say that a semi�nite weight φ is strictly semi�nite it its

restriction to the �xed point algebra Nσφ is a semi�nite trace.

De�nition 4.6. Let A be a unital ∗-subalgebra of N , where N is a semi�nite von Neumann

algebra acting on a Hilbert space H. Fix a normal strictly semi�nite faithful weight φ on N

with modular group σφ. We call the triple (A, H,D) a modular spectral triple if

1. A is invariant under σφ and consist of analytic vectors for σφ,

2. D is a self-adjoint operator a�liated with the �xed point algebra Nσφ ,

3. [D, a] extends to a bounded operator in N for all a ∈ A,

4. (D2 + 1)−1/2 is compact with respect to the trace τ = φ|
Nσφ .
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It is worth noting that if A is pointwise invariant under the modular group σφ then we

reduce to the semi�nite case. This observation makes clear the fact that the �xed point

algebra plays an important role in this de�nition. However, in examples it might well be that

no element of A is invariant under the modular group. We will return to this point later on.

Regarding summability, the notion of spectral dimension can be adapted straightforwardly

to this case by replacing the trace with the weight under consideration.

De�nition 4.7. A modular spectral triple (A, H,D) is called �nitely summable if there exists

some s > 0 such that

φ((D2 + 1)−s/2) <∞ .

We de�ne the spectral dimension as the number

p = inf{s > 0 : φ((D2 + 1)−s/2) <∞} .

Example 4.2. A class of examples, which use in an essential way the presence of a circle

action, are given in [CNNR11]. The operator D is the generator of the circle action, and

as a consequence these modular spectral triples are one dimensional. A di�erent example is

given in [ReSe11] for the case of the Podle± sphere. In this case the Dirac operator is the one

previously introduced in [D¡Si03], but the use of a weight avoids the dimension drop.

A modi�cation of this notion has appeared in [Kaa11], by replacing the condition of bound-

edness of the commutator with the analogue one for a twisted commutator. An interesting

example that makes use of this condition is the one given in [KaSe12] for SUq(2), to which

we will return in the second part of this thesis.



Part II

New material
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Chapter 5

A modular spectral triple for

κ-Minkowski space

In this chapter we consider the problem of describing, in the framework of spectral triples, the

geometry of κ-Minkowski space, which is a non-commutative space associated to a quantum

deformation of the Poincaré group. Restricting our attention to the two-dimensional case,

for simplicity, we will show how this geometry is more naturally described using the notion

of modular spectral triple. This is based on the paper [Mat1].

5.1 Introduction

The κ-Poincaré algebra was introduced by Lukierski, Ruegg, Nowicki and Tolstoi in [LNRT91,

LNR92]. It is a Hopf algebraic deformation of the Poincaré algebra, with a deformation

parameter having physical dimension of mass and denoted by κ. A few years later Majid

and Ruegg [MaRu94] clari�ed the bicrossproduct structure of the κ-Poincaré algebra: it

consists of a semidirect product of the classical Lorentz algebra, which acts in a deformed

way on the translation subalgebra, and a backreaction of the momentum sector on the Lorentz

transformations. This allows the introduction of a homogeneous space for the κ-deformed

symmetries, as the quotient Hopf algebra of the κ-Poincaré group by the Lorentz group. The

result is a non-commutative Hopf algebra, which can be interpreted as the algebra of functions

over a non-commutative spacetime, which is called κ-Minkowski.

It is interesting to study how (the Euclidean version of) κ-Minkowski space �ts into

the framework of non-commutative geometry developed by Connes. Despite some attempts

[D'An06, IMSS11, IMS12], it is fair to say that a spectral triple that encodes the geometry

of this space in a satisfactory way has not yet been constructed. In particular, in none of the

spectral triples proposed so far the spectral dimension coincides with the classical one, which

makes problematic the status of the classical limit. The aim of this chapter is to provide
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a new construction of a spectral triple, which uses tools that have been developed to study

non-commutative geometries with modular properties.

As a starting point for our construction we consider the ∗-algebra introduced in [DuSi13],

which we denote by A, built using the commutation relations associated to κ-Minkowski

space. There is an action of the κ-Poincaré algebra on it, which leaves invariant the integral

with respect to the Lebesgue measure on R2, which we denote by ω. Via the GNS construction

for this weight we construct a Hilbert space associated to A. We remark that the choice of

this weight is an important di�erence with respect to other approaches. We show that ω is

a KMS weight for the algebra A, with the corresponding modular operator playing a major

role in the following.

The next step is the introduction of a self-adjoint operator D, which in the classical

setting is given by the Dirac operator. We immediately face a di�culty in satisfying the

condition of boundedness of the commutator with D, which is related to the structure of the

coproduct of the κ-Poincaré algebra. One can relax this condition and consider the framework

of twisted spectral triples, which requires the boundedness of the twisted commutator de�ned

by [D,π(a)]σ = Dπ(a) − π(σ(a))D, where σ is an automorphism of the the algebra A. We

prove that, under some assumptions related to symmetry and to the classical limit, there is

a unique Dirac operator D and a unique automorphism σ such that the twisted commutator

is bounded. We also discuss the relations between D, the Casimir of the κ-Poincaré algebra

and the equivariant Dirac operator which has been considered in the literature.

We then study the property of summability of this spectral triple. We show that it is not

�nitely summable in the usual sense of spectral triples. We argue that this problem can be

related to a mismatch in the modular properties of the weight ω, which we de�ned on our

algebra A, and the non-commutative integral de�ned by the trace on the Hilbert space. This

situation can be reconsidered in the framework of modular spectral triples. To this end, we

consider a speci�c weight Φ which should correct the mismatch mentioned above.

Strictly speaking, our case does not �t in this framework, because the action of the modular

group is not periodic. Indeed it is given by translation in one variable, with the only �xed

point under this action being the zero function. Here we do not dwell on how this framework

should be modi�ed to treat this case. Nevertheless, we show that we can fruitfully borrow

some of its ingredients, and that they give interesting results when applied to our case.

For this reason we are going to refer to this construction, loosely speaking, as a modular

spectral triple. In particular, we adapt the notion of spectral dimension in terms of the weight

Φ to our case. This weight has the role of �xing the mismatch in the modular properties

mentioned above. We �nd that, in this sense, our spectral triple is �nitely summable and its

spectral dimension coincides with the classical one. Moreover we show that, by computing

the residue at the spectral dimension of an appropriate zeta function de�ned in terms of D

and Φ, we recover the weight ω up to a constant. These results provide some preliminary

evidence that these are the right tools to describe the geometry of κ-Minkowski.
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Finally we discuss the introduction of a real structure. We de�ne an antilinear isometry

J on the Hilbert space and check the conditions de�ning a real structure. We show that they

are modi�ed, with the most interesting modi�cation being the commutation relation between

D and J , which is related to the antipode structure of the κ-Poincaré algebra.

5.2 The ∗-algebra

The aim of this section is to introduce a ∗-algebra, which provides the �rst ingredient for

a spectral triple describing the geometry of κ-Minkowski space. We start by recalling some

basic facts about the κ-Poincaré and κ-Minkowski Hopf algebras, and some notions related to

the implementation of Hopf algebra symmetries on a Hilbert space. After this short review we

describe the ∗-algebra A, which was introduced in [DuSi13], and recall some of its properties

which are relevant for the construction of a spectral triple.

5.2.1 The κ-Poincaré and κ-Minkowski algebras

In this subsection we summarize the algebraic properties of the κ-Poincaré algebra Pκ in two

dimensions. First we give the usual presentation that appears in the literature, that is as the

Hopf algebra generated by the elements P0, P1, N satisfying

[P0, P1] = 0 , [N,P0] = P1 ,

[N,P1] =
κ

2
(1− e−2P0/κ)− 1

2κ
P 2

1 .

The coproduct ∆ : Pκ → Pκ ⊗ Pκ is de�ned by the relations

∆(P0) = P0 ⊗ 1 + 1⊗ P0 , ∆(P1) = P1 ⊗ 1 + e−P0/κ ⊗ P1 ,

∆(N) = N ⊗ 1 + e−P0/κ ⊗N .

The counit ε : Pκ → C and antipode S : Pκ → Pκ are de�ned by

ε(P0) = ε(P1) = 0 , ε(N) = 0 ,

S(P0) = −P0 , S(P1) = −eP0/κP1 , S(N) = −eP0/κN .

An important role is played by the Hopf subalgebra generated by P0 and P1, which we denote

by Tκ, that is the generators of the translations. Indeed the κ-Minkowski space is de�ned

by a Hopf algebra in non-degenerate dual pairing with this subalgebra [MaRu94], which we

denote byMκ. If we denote the pairing by 〈·, ·〉 : Tκ ×Mκ → C, then the structure ofMκ

is determined by the duality relations

〈t, xy〉 = 〈t(1), x〉〈t(2), y〉 ,

〈ts, x〉 = 〈t, x(1)〉〈s, x(2)〉 .
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Here we have t, s ∈ Tκ, x, y ∈Mκ and we use the Sweedler notation for the coproduct

∆x =
∑
i

x
(1)
(i) ⊗ x

(2)
(i) = x(1) ⊗ x(2) .

From the pairing we deduce thatMκ is non-commutative, since Tκ is not cocommutative. On

the other hand, since Tκ is commutative we have thatMκ is cocommutative. The algebraic

relations for the κ-Minkowski Hopf algebraMκ are then

[X0, X1] = −κ−1X1 , ∆Xµ = Xµ ⊗ 1 + 1⊗Xµ .

This concludes the usual presentation of the κ-Poincaré and κ-Minkowski Hopf algebras.

It is important to point out that, using these de�nitions, κ−1 must be considered as a formal

parameter in order to make sense of the power series of elements like e−P0/κ. As a consequence,

the tensor product we have to use is that over the ring C[[κ−1]] of formal power series. On

the other hand it is possible to give a di�erent presentation, see for example [DuSi13], where

κ−1 can be considered as a number, and the tensor product as the usual algebraic tensor

product over C. Indeed, instead of considering the exponential e−P0/κ as a power series in

P0, we consider it as an invertible element E and rewrite the de�ning relations as

[P0, P1] = 0 , [P0, E ] = [P1, E ] = 0 ,

∆(P0) = P0 ⊗ 1 + 1⊗ P0 , ∆(P1) = P1 ⊗ 1 + E ⊗ P1 , ∆(E) = E ⊗ E ,

ε(P0) = ε(P1) = 0 , ε(E) = 1 ,

S(P0) = −P0 , S(P1) = −E−1P1 , S(E) = E−1 .

In this presentation we call the subalgebra generated by Pµ and E the extended momentum

algebra, and denote again by Tκ. An appropriate pairing de�ning κ-Minkowski space can be

easily written in terms of these generators. It can be made into a Hopf ∗-algebra by de�ning

the involution as P ∗µ = Pµ and E∗ = E .
In the following we will consider the case of Euclidean signature and so, strictly speaking,

we should refer to the Euclidean counterpart of the κ-Poincaré algebra, which is known as

the quantum Euclidean group. However the boost generator N is not going to play a central

role in our discussion, which is going to be based on the extended momentum algebra, and

therefore most of our relations do not depend on the signature. Henceforth we only make

reference to the κ-Poincaré algebra and make some remarks when needed.

One more remark on the notation: we will write all formulae in terms of the parameter

λ := κ−1, instead of κ. The motivation comes from the fact that the Poincaré algebra is

obtained in the �classical limit� λ → 0, in a similar fashion to the classical limit ~ → 0 of

quantum mechanics. This makes more transparent checking that some formulae reduce, in

this limit, to their respective undeformed counterparts.
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5.2.2 De�nition of the ∗-algebra A

Now let us describe the ∗-algebra introduced in [DuSi13] (but see also [D¡Pi10]). We summa-

rize some of the main results and �x the notation for the other sections. In two dimensions

the underlying algebra of κ-Minkowski is the enveloping algebra of the Lie algebra with gen-

erators iX0 and iX1 full�lling [X0, X1] = iλX1. It has a faithful representation ϕ given

by

ϕ(iX0) =

(
−λ 0

0 0

)
, ϕ(iX1) =

(
0 1

0 0

)
.

The corresponding simply connected Lie group G consists of 2× 2 matrices of the form

S(a) = S(a0, a1) =

(
e−λa0 a1

0 1

)
, (5.1)

which are obtained by exponentiating ϕ as follows

eiϕ(a0X0+a′1X1) =

(
e−λa0 1−e−λa0

λa0
a′1

0 1

)
.

The group operations written in the (a0, a1) coordinates are given by

S(a0, a1)S(a′0, a
′
1) = S(a0 + a′0, a1 + e−λa0a′1) , S(a0, a1)−1 = S(−a0,−eλa0a1) .

We have that the Lebesgue measure d2a is right invariant whereas the measure eλa0d2a

is left invariant on G, so that G is not unimodular. We denote by L1(G) the convolution

algebra of G with respect to the right invariant measure. We identify functions on G with

functions on R2 by the parametrization (5.1). Then L1(G) is an involutive Banach algebra

consisting of integrable functions on R2 with product ?̂ and involution ∗̂ given by

(f?̂g)(a) =

ˆ
f(a0 − a′0, a1 − e−λ(a0−a′0)a′1)g(a′0, a

′
1)d2a′ ,

f ∗̂(a) = eλa0f(−a0,−eλa0a1) .

Any unitary representation π̃ of G (assumed to be strongly continuous) gives rise to a repre-

sentation of L1(G), denoted with the same symbol, obtained by setting

π̃(f) =

ˆ
f(a)π̃(S(a))d2a .

It is indeed a ∗-representation, since it obeys the relations

π̃(f?̂g) = π̃(f)π̃(g) , π̃(f ∗̂) = π̃(f)† ,

for any f, g ∈ L1(G), where here † denotes the adjoint. Now, following the same procedure
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as in the Weyl quantization, we can de�ne the map Wπ̃(f) := π̃(Ff), where f ∈ L1(R2) ∩
F−1(L1(R2)) and F denotes the Fourier transform on R2. It then follows that

Wπ̃(f ? g) = Wπ̃(f)Wπ̃(g) , Wπ̃(f∗) = Wπ̃(f)† ,

where the product ? and the involution ∗ are de�ned by

f ? g = F−1(Ff?̂Fg) , f∗ = F−1(Ff)∗̂ . (5.2)

Here the formulae are given using the unitary convention for the Fourier transform.

It is important to remark that, although Wπ̃ depends on the choice of π̃ (and therefore

on the choice of the unitary representation of G), the product ? and the involution ∗ do not

depend on such a choice. This is the same strategy which is employed to de�ne the deformed

product in quantum mechanics. Indeed, as in that case, one needs to exercise care about the

domain of de�nition of the operations ? and ∗, so in the following we restrict ourselves to a

subset of Schwartz functions which have nice compatibility properties with those operations.

De�nition 5.1. Denote by Sc the space of Schwartz functions on R2 with compact support

in the �rst variable, that is for f ∈ Sc we have supp(f) ⊆ K × R for some compact K ⊂ R.
We de�ne A = F(Sc), where F is the Fourier transform on R2.

Proposition 5.1. For f, g ∈ A we can write (5.2) in the following form

(f ? g)(x) =

ˆ
eip0x0(F0f)(p0, x1)g(x0, e

−λp0x1)
dp0

2π
,

f∗(x) =

ˆ
eip0x0(F0f)(p0, e

−λp0x1)
dp0

2π
.

(5.3)

We have that f ? g ∈ A and f∗ ∈ A, so that A is a ∗-algebra.

Here F0 denotes the Fourier transform of f in the �rst variable, de�ned as

(F0f)(p0, x1) =

ˆ
e−ip0y0f(y0, x1)dy0 .

Notice that for λ = 0 we recover the pointwise product (f ?g)(x) = f(x)g(x) and the complex

conjugation f∗(x) = f(x), giving the correct classical limit for the algebra. The de�nition

of A implies that any f ∈ A is a Schwartz function, but does not have compact support in

the �rst variable. However, by the Paley-Wiener theorem, the compact support of Ff in the

�rst variable implies analiticity of f in the �rst variable.

The extended momentum algebra Tκ has a natural action on the algebra A. To see this let
us �rst recall some notions related to the implementation of Hopf algebra symmetries [Sit03].

In particular we are interested in the case in which a Hopf algebra H acts on an algebra A.

The following de�nitions are compatibility conditions between the two structures.
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De�nition 5.2. An algebra A is a left H-module algebra if A is a left H-module and the

representation respects the algebra structure of A, that is h . (ab) = (h(1) . a)(h(2) . b) for all

h ∈ H and a, b ∈ A.

De�nition 5.3. A ∗-algebra A is left H-module ∗-algebra if A is a left H-module algebra

and moreover the action is compatible with the star structure, that is (h . a)∗ = S(h)∗ . a∗

for all h ∈ H and a ∈ A.

With these de�nitions we can state the following theorem, proven in [DuSi13].

Theorem 5.2. The algebra A is a left Tκ-module ∗-algebra with respect to the following

representation of the extended momentum algebra

(Pµ . f)(x) = −i(∂µf)(x) , (E . f)(x) = f(x0 + iλ, x1) .

Notice that the action of E on f ∈ A is well-de�ned, since these functions are analytic in

the �rst variable. This result can actually be extended to the whole κ-Poincaré Hopf algebra

Pκ (see again [DuSi13]), but we do not need the explicit formulae here.

5.3 The Hilbert space

Having at our disposal the algebra A, the next step is to introduce a Hilbert space together

with a faithful ∗-representation of the algebra on it. In this section we choose a weight ω,

which is motivated by symmetry considerations, and use it to obtain a Hilbert space H via

the GNS construction. We show that H is unitarily equivalent to L2(R2) and determine the

corresponding unitary operator U . Then we introduce an unbounded ∗-representation ρ of

the extended momentum algebra Tκ on A, and prove that ρ(Pµ) and ρ(E) are essentially

self-adjoint on H. We show that the weight ω satis�es the KMS condition with respect to a

certain action α, and determine the corresponding modular operator ∆ω. Finally we prove

some useful formulae that will be used extensively in the rest of this chapter.

5.3.1 De�nition of the Hilbert space H

We can introduce a Hilbert space, naturally associated with the ∗-algebra A, via the GNS

construction. In our case, which is non-unital, one chooses a �nite weight ω on the algebra

A. After taking the quotient by the left ideal {f ∈ A : ω(f∗ ? f) = 0}, if non-trivial, one
de�nes an inner product in terms of ω by setting (f, g) := ω(f∗ ? g). The Hilbert space H is

then de�ned as the completion of the algebra A in the norm induced by the inner product.

A natural choice for ω is given by the weight used in the commutative case

ω(f) :=

ˆ
f(x)d2x ,
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where the integration is with respect to the Lebesgue measure. This is motivated by simplicity,

but more importantly by the invariance of ω under the action of the κ-Poincaré algebra

[DuSi13], which we recall in the next proposition.

Proposition 5.3. The weight ω is invariant under the action of Pκ, that is for any f ∈ A
and for any h ∈ Pκ we have ω(h . f) = ε(h)ω(f).

We recall two additional results obtained in [DuSi13], which we need in the following.

Proposition 5.4. For any f, g ∈ A the weight ω satis�es the twisted trace property

ω(f ? g) = ω((E . g) ? f) .

Moreover we have

ω(f ? g∗) =

ˆ
f(x)g(x)d2x .

Later the twisted trace property will be rewritten in the language of KMS weights. Now

we construct the Hilbert space using the GNS construction for the weight ω.

Proposition 5.5. The sesquilinear form (·, ·) de�ned by (f, g) = ω(f∗ ?g) is positive-de�nite

on A. The completion in the induced norm gives a separable Hilbert space H, which is unitarily
equivalent to L2(R2) via

(Uf)(x) =

ˆ
eip0x0(F0f)(p0, e

λp0x1)
dp0

2π
.

Proof. From the second part of Proposition 5.4 we have

(f, g) = ω(f∗ ? g) =

ˆ
f∗(x)g∗(x)d2x .

In particular if we set f = g we have

‖f‖2 = (f, f) =

ˆ
|f∗(x)|2d2x ≥ 0 . (5.4)

We have that ‖f‖ is clearly �nite, since f∗ ∈ A is in particular a Schwartz function. To show

that (·, ·) is positive-de�nite notice that f∗ = 0 if and only if f = 0, due to the properties

of the involution, and that the Lebesgue integral is faithful on functions vanishing at in�nity

on R2. Therefore (·, ·) is an inner product on A and, by completing with respect to the norm

‖ · ‖, we obtain a Hilbert space which we denote by H.
Now we prove that it is unitarily equivalent to L2(R2) and determine the corresponding

unitary operator U : H → L2(R2). De�ne Jψ := ψ∗, where ∗ is the involution in A, and set

U := JcJ , where Jc is complex conjugation. From the formula (5.3) we obtain

(Uf)(x) =

ˆ
eip0x0(F0f)(p0, e

λp0x1)
dp0

2π
.
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From equation (5.4) it follows that U is an isometry from A ⊂ H to L2(R2). Indeed

‖f‖2 =

ˆ
|(Jf)(x)|2d2x =

ˆ
|(Uf)(x)|2d2x = ‖Uf‖2L2(R2) .

Since A is a dense subset of H it follows that U can be extended by continuity to an isometry

from H to L2(R2). We still need to prove that U is surjective. We have that U is invertible in

A since J = JcU is invertible in A, therefore the image of U contains A. Notice that A is also

a dense subset of L2(R2). Then, since U is continuous, it contains the closure of A, which is

indeed L2(R2). So we have shown that U is isometric and surjective, therefore unitary.

Corollary 5.6. The involution J extends to an antiunitary operator from H to L2(R2).

Proof. It follows immediately from the previous proposition. Indeed we have that U is unitary

from H to L2(R2) and complex conjugation is an antiunitary operator in L2(R2) so, since

J = JcU , it follows that J it is an antiunitary operator from H to L2(R2).

For the construction of a spectral triple we need the following condition: for any f ∈ A
the ∗-representation π(f) in H, given by the multiplication π(f)ψ = f ? ψ for ψ ∈ H, should
be a bounded operator. This follows from the next proposition.

Proposition 5.7. For any f ∈ A the operator π(f) is bounded on H.

Proof. Recall that the ∗-algebra A is built from L1(G), the convolution algebra of the Lie

group G associated to the κ-Minkowski space in two dimensions. Any convolution algebra

can be completed to a C∗-algebra, for example the group C∗-algebra C∗(G) or the reduced

one C∗r (G). In this case they coincide, since G is amenable, and we denote by ‖ · ‖C∗(G) the

associated C∗-norm. Now we can de�ne a C∗-norm on A by setting ‖f‖ := ‖Ff‖C∗(G) for

any f ∈ A. Indeed using the formulae in (5.2) we have

‖f ? f∗‖ = ‖F(f ? f∗)‖C∗(G) = ‖Ff?̂Ff∗‖C∗(G)

= ‖Ff?̂(Ff)∗̂‖C∗(G) = ‖Ff‖2C∗(G) = ‖f‖2 .

In the second line we have used the C∗-property of the norm ‖ · ‖C∗(G). Then, since H is the

Hilbert space associated to A via the GNS construction, it follows from the general properties

of this construction that the operator norm of π(f) is bounded by ‖f‖.

5.3.2 The representation of Tκ

In this subsection we want to extend the representation of the extended momentum algebra

Tκ, previously de�ned only on the algebra A, to the Hilbert space H. This representation

will be unbounded in general, so we will have to specify the appropriate domains. Let us give

some de�nitions to handle this situation.
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De�nition 5.4. Let H0 be a dense linear subspace of a Hilbert space H with inner product

(·, ·). An unbounded ∗-representation of H on H0 is a homomorphism ρ : H → End(H0) such

that (ρ(h)ψ, φ) = (ψ, ρ(h∗)φ) for all ψ, φ ∈ H0 and h ∈ H.

Now suppose that we have a representation π of a ∗-algebra A on H. Moreover suppose

that A is a left H-module ∗-algebra, which is the case of interest for a spectral triple with

symmetries. We want the representation π to be compatible with the structure of a Hopf

algebra H. This leads to the notion of equivariance, given in the next de�nition.

De�nition 5.5. Suppose A is a left H-module ∗-algebra. A ∗-representation π of A on H0

is called H-equivariant (or also covariant) if there exists an unbounded ∗-representation ρ of

H on H0 such that

ρ(h)π(a)ψ = π(h(1) . a)ρ(h(2))ψ , (5.5)

for all h ∈ H, a ∈ A and ψ ∈ H0.

Finally we give a de�nition of equivariance for operators in H.

De�nition 5.6. A linear operator T de�ned on H0 is said to be equivariant if it commutes

with ρ(h), that is Tρ(h)ψ = ρ(h)Tψ for all h ∈ H and ψ ∈ H0.

An obvious choice for the dense subspace is A, which by construction is dense in H. Recall
that by Proposition 5.2 we have that A is a left Tκ-module ∗-algebra, where the representation
. of Tκ on A is de�ned by the formulae

(Pµ . f)(x) = −i(∂µf)(x) , (E . f)(x) = f(x0 + iλ, x1) . (5.6)

Then if we set ρ(h)ψ := h.ψ, for every h ∈ Tk and ψ ∈ A, we get an unbounded representation
of Tκ on A. Note that A is invariant under the action of Tκ and the equivariance property for

the representation π is automatic, since π is given by left multiplication and the equivariance

property is just a restatement of the fact that A is a left Tκ-module algebra.

To prove that ρ is an unbounded ∗-representation we need to show that the equality

(ρ(h)φ, ψ) = (φ, ρ(h∗)ψ) holds for all φ, ψ ∈ A and h ∈ Tκ. We only need to check this

condition for the generators of Tκ, that is for the operators ρ(Pµ) and ρ(E) with domain A.
We are going to prove the stronger statement that these operators are essentially self-adjoint

on H, from which the previous equality follows. First we need a simple lemma.

Lemma 5.8. For any ψ ∈ A we have Uρ(P0)U−1ψ = ρ(P0)ψ and Uρ(P1)U−1ψ = ρ(E)ρ(P1)ψ.

Proof. Recall that, since A is a left Tκ-module ∗-algebra, we have the compatibility property

with the involution given by (h.ψ)∗ = S(h)∗.ψ∗. Here S is the antipode map and the equality

is valid for any h ∈ Tκ and ψ ∈ A. In particular we have the equality (Pµ .ψ
∗)∗ = S(Pµ)∗ .ψ.

Then, using the Hopf algebraic rules of Tκ, one immediately shows that S(P0)∗ = −P0 and
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S(P1)∗ = −E−1P1. Now for any ψ ∈ A we have

Jρ(Pµ)Jψ = (Pµ . ψ
∗)∗ = S(Pµ)∗ . ψ .

As a consequence we obtain the relations Jρ(P0)Jψ = −ρ(P0)ψ and Jρ(P1)Jψ = −ρ(E−1)ρ(P1)ψ.

Using the de�nition of the representation . we obtain the following formulae

(Jρ(P0)Jψ)(x) = i(∂0ψ)(x) , (Jρ(P1)Jψ)(x) = i(∂1ψ)(x0 − iλ, x1) .

Now recall that we have the relations J = JcU and J = U−1Jc, where Jc stands for complex

conjugation. We can use the relations to easily compute the following

(Uρ(P1)U−1ψ)(x) = (Jρ(P1)Jψ)(x) = −i(∂1ψ)(x0 + iλ, x1) .

Notice that this can be rewritten as Uρ(P1)U−1ψ = ρ(E)ρ(P1)ψ. In a similar way one shows

that the identity Uρ(P0)U−1ψ = ρ(P0)ψ holds. The lemma is proven.

Before starting the next proof we recall that U is a unitary operator from H to L2(R2)

and that A is dense in both Hilbert spaces.

Proposition 5.9. The operators ρ(Pµ) and ρ(E), with domain A, are essentially self-adjoint
on H. Therefore ρ is an unbounded ∗-representation of Tκ on A.

Proof. We can consider ρ(P0) and ρ(E)ρ(P1) as unbounded operators on L2(R2) with domain

A. An easy computation shows that they are symmetric operators on this Hilbert space.

From the previous lemma it follows that for any φ, ψ ∈ A we have

(φ, ρ(E)ρ(P1)ψ)L2(R2) = (φ,Uρ(P1)U−1ψ)L2(R2) = (U−1φ, ρ(P1)U−1ψ) .

Now, since ρ(E)ρ(P1) is symmetric on L2(R2) and U is invertible in A, it follows that ρ(P1) is

symmetric in H. The same argument applies to ρ(P0). Then, using Nelson's analytic vector

theorem, it follows that ρ(P0) and ρ(P1) are essentially self-adjoint on H, since it easy to

show that each element in A is an analytic vector for them.

For ρ(E) we observe that, for any ψ ∈ A, we have

(ρ(E)ψ)(x) = ψ(x0 + iλ, x1) =

∞∑
n=0

(iλ)n

n!
(∂n0ψ)(x) ,

where we have used the fact that ψ ∈ A is analytic in the �rst variable. This equality can be

rewritten in the form ρ(E)ψ = e−λρ(P0)ψ. It follows then, using the Borel functional calculus

for unbounded self-adjoint operators (see for example [Sch12]), that the operator e−λρ(P0) is

essentially self-adjoint on H. Alternatively one can check, by direct computation, that any

ψ ∈ A is also an analytic vector for e−λρ(P0) and apply Nelson's theorem again.
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In the following we are going to denote the closure of these operators by the same symbols,

and we are also going to use the notation P̂µ := ρ(Pµ).

5.3.3 The KMS property of the weight ω

One relevant property of the weight ω is that it satis�es the so-called twisted trace property,

given in Proposition 5.4. This property can be recasted in the language of KMS weights

[Kus97], which provides great insight into the modular aspects of the spectral triple we are

constructing. This is related to the Tomita-Takesaki modular theory, for a review see [BCL10],

which moreover contains material on modular spectral triples.

In the next lemma we introduce a one-parameter group of ∗-automorphisms of A, which
we denote by σω. This is going to be the modular group of ω, which justi�es the notation.

Lemma 5.10. For any t ∈ R and f ∈ A de�ne (σωt f)(x) := f(x0−λt, x1). We have that σω

is a one-parameter group of ∗-automorphisms of A.

Proof. To prove that σω is one-parameter group of automorphisms of A we have to show

that, for any f, g ∈ A and t ∈ R, the property σωt (f ? g) = σωt (f) ? σωt (g) is satis�ed. This

can be shown by a direct computation

(σωt (f) ? σωt (g))(x) =

ˆ
eip0x0(F0σ

ω
t (f))(p0, x1)σωt (g)(x0, e

−λp0x1)
dp0

2π

=

ˆ
eip0x0

ˆ
e−ip0q0f(q0 − λt, x1)g(x0 − λt, e−λp0x1)dq0

dp0

2π
.

After the change of variable q0 → q0 + λt we obtain

(σωt (f) ? σωt (g))(x) =

ˆ
eip0(x0−λt)

ˆ
e−ip0q0f(q0, x1)g(x0 − λt, e−λp0x1)dq0

dp0

2π

=

ˆ
eip0(x0−λt)(F0f)(p0, x1)g(x0 − λt, e−λp0x1)

dp0

2π
= (σωt (f ? g))(x) .

Finally to prove that σωt is a ∗-automorphism we need to check the additional property

σωt (f)∗ = σωt (f∗). This can again be checked by a direct computation

σωt (f)∗(x) =

ˆ
eip0x0(F0αt(f))(p0, e

−λp0x1)
dp0

2π

=

ˆ
eip0x0

ˆ
e−ip0q0f(q0 − λt, e−λp0x1)dq0

dp0

2π

Using again the change of variable q0 → q0 + λt we obtain

σωt (f)∗(x) =

ˆ
eip0(x0−λt)

ˆ
e−ip0q0f(q0, e

−λp0x1)dq0
dp0

2π

=

ˆ
eip0(x0−λt)(F0f)(p0, e

−λp0x1)
dp0

2π
= σωt (f∗)(x) .
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Proposition 5.11. The weight ω satis�es the KMS condition at inverse temperature β = 1

with respect to σω. The corresponding modular operator is given by ∆ω = e−λP̂0.

Proof. We de�ne the function Ff,g(z) := ω(f ? σωz g). It is bounded continuous and analytic,

since σω acts on the �rst variable and functions in A are analytic in the �rst variable. To

prove that ω satis�ed the KMS condition with respect to σω we need to show that

Ff,g(t) = ω(f ? σωt (g)) , Ff,g(t+ iβ) = ω(σωt (g) ? f) .

Notice that the action of E can be rewritten in terms of σω, that is

(E . f)(x) = f(x0 + iλ, x1) = (σω−if)(x) . (5.7)

Then using the twisted trace property we have

Ff,g(t+ i) = ω(f ? σωt+i(g)) = ω((E . σωt+i(g)) ? f)

= ω((σω−iσ
ω
t+i(g)) ? f) = ω(σωt (g) ? f) .

This proves the KMS condition. To determine the modular operator ∆ω associated with ω

consider f, g ∈ A. Using the fact that σωt is an automorphism of A we have

π(σωt (f))g = σωt (f) ? g = σωt (f ? σω−t(g)) = σωt (π(f)σω−t(g)) . (5.8)

Now, using the fact that P̂0 = −i∂0, we have the following equality

(σωt f)(x) = f(x0 − λt, x1) = (e−iλtP̂0f)(x) .

Then we see that equation (5.8) can be rewritten as

π(σωt (f))g = e−iλtP̂0π(f)eiλtP̂0g = ∆it
ωπ(f)∆−itω g .

This implies that the modular operator is given by ∆ω = e−λP̂0 .

5.3.4 Some useful formulae

We have seen that the Hilbert space H, constructed via the GNS construction for ω, is

unitarily equivalent to L2(R2), where the unitary operator is given by

(Uf)(x) =

ˆ
eip0x0(F0f)(p0, e

λp0x1)
dp0

2π
.

We can associate, to any densely de�ned operator T on H, the densely de�ned operator

UTU−1 on L2(R2). Many properties of operators de�ned on H are conserved by this unitary

transformation: for example, if T belongs to the p-th Schatten ideal on H, then UTU−1
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belongs to the p-th Schatten ideal on L2(R2). This is useful, since we can use results which

are formulated for the Hilbert space L2(R2) to establish some properties of operators on H.
For example, to prove that an operator is Hilbert-Schmidt in L2(R2), one can write it in the

form of an integral operator and check that the kernel belongs to L2(R2 × R2).

Here we collect some useful formulae used extensively in the rest of this chapter.

Lemma 5.12. For f ∈ A and ψ ∈ H we have

(Uπ(f)U−1ψ)(x) =

ˆ
eipx(Uf)(x0, e

λp0x1)(Fψ)(p)
d2p

(2π)2
.

Proof. Consider �rst ψ ∈ A. From the de�nition of π(f) and the properties of the involution

J we obtain that Jπ(f)J acts by multiplication from the right, that is we have Jπ(f)Jψ =

ψ?Jf . To compute Uπ(f)U−1 we use the fact that U is related to the involution by J = JcU ,

where Jc denotes complex conjugation. We have the following equality

Uπ(f)U−1ψ = JcJπ(f)JJcψ = Jc(Jcψ ? Jf) = Jc(Jcψ ? JcUf) .

Using the formula (5.3) for the product and after a change of variable we obtain

Jc(Jcψ ? JcUf)(x) =

ˆ
e−ip0x0(F0ψ)(p0, x1)(Uf)(x0, e

−λp0x1)
dp0

2π

=

ˆ
eip0x0(F0ψ)(p0, x1)(Uf)(x0, e

λp0x1)
dp0

2π
.

Finally this expression may be rewritten as

(Uπ(f)U−1ψ)(x) =

ˆ
eipx(Uf)(x0, e

λp0x1)(Fψ)(p)
d2p

(2π)2
.

This formula extends by continuity to any ψ ∈ L2(R2). Indeed since π(f) is a bounded

operator in H and since U is a unitary operator from H to L2(R2) it follows that Uπ(f)U−1

is bounded in L2(R2). Therefore Uπ(f)U−1 may be extended by continuity to L2(R2).

The following lemma gives an explicit expression for a function of P̂µ.

Lemma 5.13. For g a bounded function, de�ne g(P̂ ) by the functional calculus. We have

(Ug(P̂ )U−1ψ)(x) =

ˆ
eipxg(p0, e

−λp0p1)(Fψ)(p)
d2p

(2π)2
.

Proof. We know that in L2(R2) the Fourier transform F is the unitary operator (up to factors

of 2π, depending on the normalization) that turns the operators P̃µ = −i∂µ into multiplication
operators. This means that for ψ ∈ L2(R2) we have

(g(P̃ )ψ)(x) =

ˆ
eipxg(p)(Fψ)(p)

d2p

(2π)2
.
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From the results of the previous section we have that UP̂0U
−1 = P̃0 and UP̂1U

−1 = e−λP̃0P̃1,

so we obtain Ug(P̂ )U−1 = g(P̃0, e
−λP̃0P̃1). The result follows by using the functional calculus

for the commuting operators P̃µ in L2(R2).

Finally we are interested in operators of the form π(f)g(P̂ ).

Proposition 5.14. The Schwartz kernel associated to the operator Uπ(f)g(P̂ )U−1 is given

by

K(x, y) =

ˆ
eip(x−y)(Uf)(x0, e

λp0x1)g(p0, e
−λp0p1)

d2p

(2π)2
.

Proof. Using Lemmata 5.12 and 5.13 we obtain

(Uπ(f)g(P̂ )U−1ψ)(x) = (Uπ(f)U−1Ug(P̂ )U−1ψ)(x)

=

ˆ
eipx(Uf)(x0, e

λp0x1)(FUg(P̂ )U−1ψ)(p)
d2p

(2π)2

=

ˆ
eipx(Uf)(x0, e

λp0x1)g(p0, e
−λp0p1)(Fψ)(p)

d2p

(2π)2
.

The Schwartz kernel corresponding to this operator is given by

K(x, y) =

ˆ
eip(x−y)(Uf)(x0, e

λp0x1)g(p0, e
−λp0p1)

d2p

(2π)2
.

5.4 The Dirac operator

The next step in the construction of a spectral triple is the introduction of a self-adjoint

unbounded operator D on the Hilbert space, which we call the Dirac operator. In the next

subsection we brie�y recall the ingredients used in the commutative case, mainly to �x some

notation. We show that there is a problem in obtaining a bounded commutator, which is

solved by considering instead a twisted commutator with twist σ. Finally we prove that,

under some assumptions related to symmetry and to the classical limit, there is a unique pair

of a Dirac operator D and automorphism σ such that the twisted commutator is bounded.

5.4.1 A problem with boundedness

Let us brie�y recall some facts concerning the Dirac operator D in the two dimensional

Euclidean space R2. Here we consider the algebra of Schwartz functions A = S(R2) with the

∗-representation π on Hr = L2(R2) given by pointwise multiplication, that is (π(f)ψ)(x) =

f(x)ψ(x). We consider the following representation of the Cli�ord algebra

Γ0 := σ1 =

(
0 1

1 0

)
, Γ1 := σ2 =

(
0 −i
i 0

)
.
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These matrices satisfy the anticommutation relations {Γµ,Γν} = 2δµν . To consider spinors

we de�ne the Hilbert space H = Hr ⊗ C2, corresponding to the trivial spinor bundle. The

representation π of A is extended as pointwise multiplication on the two copies of Hr, and
we denote it again by π. The inner product is given by

(ψ, φ)H =

ˆ (
ψ1(x)φ1(x) + ψ2(x)φ2(x)

)
d2x ,

where ψi, φj are the components of the spinors ψ, φ. The Dirac operator for this space is

built using the Γ matrices and the operators P̂µ = −i∂µ as follows

D = ΓµP̂µ = −

(
0 i∂0 + ∂1

i∂0 − ∂1 0

)
.

The Dirac operator D is essentially self-adjoint with respect to the inner product de�ned

above. Since the dimension is even there is a self-adjoint operator χ, called the grading,

which satis�es χ2 = 1 and the following properties: it commutes with the algebra, that is

for any f ∈ A we have [χ, π(f)] = 0, and it anticommutes with the Dirac operator, that is

{χ,D} = 0. In terms of the Γ matrices it is given by

χ = −iΓ0Γ1 =

(
1 0

0 −1

)
.

One of the requirements in the de�nition of a spectral triple is that [D,π(f)], for f ∈ A, should
extend to a bounded operator in H. From its de�nition we obtain [D,π(f)] = Γµ[P̂µ, π(f)].

Using the Leibnitz rule for the derivatives we obtain

P̂µπ(f)ψ = (P̂µf)ψ + f(P̂µψ) = π(P̂µf)ψ + π(f)P̂µψ .

The previous equation can be rewritten in the form [D,π(f)] = Γµπ(P̂µf). This is a bounded

operator, since π(f) is bounded for f ∈ A and P̂µf ∈ A, since f is a Schwartz function.

Now let us discuss the deformed case. We refer to the Hilbert space introduced in the

previous section as the reduced Hilbert space, and we denote it by Hr. The algebra A is

represented on Hr by left multiplication, that is (π(f)ψ)(x) = (f ?ψ)(x). To consider spinors

we de�ne the Hilbert space H = Hr ⊗ C2, corresponding to the trivial spinor bundle. The

representation π of A is trivially extended to the two copies of Hr, and we denote it again

by π. The inner product of two spinors ψ, φ ∈ H is given by

(ψ, φ)H =

ˆ
((ψ∗1 ? φ1)(x) + (ψ∗2 ? φ2)(x)) d2x .

As a �rst attempt, we can try to use the classical Dirac operator D = ΓµP̂µ. Then, as in

the commutative case, we have [D,π(f)] = Γµ[P̂µ, π(f)]. The di�erence with the commutative
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case comes from the fact that the representation π is not pointwise multiplication. Indeed,

using the fact that the representation π is Tκ-equivariant, we obtain

P̂1π(f)ψ = ρ(P1)π(f)ψ = π(P1 . f)ψ + π(E . f)ρ(P1)ψ .

As a consequence of the non-trivial coproduct of the κ-Poincaré algebra, P1 does not obey the

Leibnitz rule. Then the commutator [D,π(f)] is not bounded, since ρ(P1) is an unbounded

operator. Explicitly we have

[D,π(f)] = Γµπ(Pµ . f) + Γ1π((E − 1) . f)ρ(P1) .

One can hope to evade this problem by considering a di�erent Dirac operator D. To have a

good classical limit we require that, in some technical sense that we will specify later, in the

limit λ → 0 this Dirac operator D reduces to the classical one. Since we are dealing with a

non-commutative space associated to a quantum group, it is natural, as argued for example

in [KrWa11, D'An07], to consider this problem in the framework of twisted spectral triples.

Then we require the boundedness of

[D,π(f)]σ = Dπ(f)− π(σ(f))D .

Here σ is an automorphism of the algebra A. Since the algebra A is involutive one also

requires the compatibility property σ(f)∗ = σ−1(f∗), for f ∈ A. In the next subsection we

investigate what are the possible choices for the Dirac operator D and the automorphism σ.

5.4.2 The deformed Dirac operator D

Now we state our assumptions for the Dirac operator D and the automorphism σ. The �rst

assumption is of general nature, that is we require that D is self-adjoint on H = Hr ⊗ C2

and that it anticommutes with the grading χ. This implies that D is of the form D = ΓµD̂µ,

where D̂µ are self-adjoint operators on Hr. The second assumption is that, in the limit

λ → 0, D and σ should reduce respectively to the classical Dirac operator and the identity.

The technical statement of this assumption is going to be given later. Next, motivated by

the fact that D and σ should be determined by the symmetries, we assume that D̂µ = ρ(Dµ),

for some Dµ ∈ Tκ, and that the automorphism σ is given by σ(f) = σ . f , for some σ ∈ Tκ.
The requirement that σ is an automorphism implies that its coproduct is ∆(σ) = σ ⊗ σ.

We recall that we do not consider any topology on Tκ, therefore any element can be written

as a �nite sum of products of generators. Since the algebra is commutative, any such element

is a sum of terms of the form P i0P
j
1Ek, with i, j ∈ N and k ∈ Z. Notice that, in our de�nition

of Tκ, the element E is not the formal series e−λP0 in P0, as usually given in the de�ning

relations of κ-Poincaré, but is considered as one of the generators of the algebra.
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Lemma 5.15. Suppose that A, σ ∈ Tκ. Then [ρ(A), π(f)]σ = ρ(A)π(f) − π(σ . f)ρ(A) is

bounded if and only if the coproduct of A is ∆(A) = A′ ⊗ 1 + σ ⊗A, for some A′ ∈ Tκ.

Proof. Using the fact that the representation π is equivariant we have

[ρ(A), π(f)]σ = ρ(A)π(f)− π(σ . f)ρ(A)

= π(A(1) . f)ρ(A(2))− π(σ . f)ρ(A) .

For some Bi, Cj ∈ Tκ this can be rewritten in the form

[ρ(A), π(f)]σ =
∑
ij

π(Bi . f)ρ(Cj) . (5.9)

Now we show that the operator ρ(Cj) is bounded if and only if Cj is a multiple of the unit.

Indeed, from their de�nition, we have that ρ(Pµ) and ρ(E) are unbounded operators, while

the unit corresponds to the identity operator. Using our previous remark on the structure of

Tκ, we have that a general operator ρ(h), with h ∈ Tκ, can be written in the form

ρ(h) =
∑
ijk

cijkρ(P i0)ρ(P j1 )ρ(Ek) .

This is unbounded unless all its coe�cients are zero, except possibly for c000. Then it follows

from equation (5.9) that [ρ(A), π(f)]σ is bounded if and only if all the elements Cj are

multiples of the unit. Setting Cj = cj1, with cj ∈ C, we can rewrite equation (5.9) as

[ρ(A), π(f)]σ = π(A′ . f) , A′ :=
∑
ij

cjBi .

Using the de�nition of the twisted commutator, we have that [ρ(A), π(f)]σ = π(A′.f) implies

ρ(A)π(f) = π(A′ . f) + π(σ . f)ρ(A) .

Finally, using the equivariance of π, this implies that ∆(A) = A′ ⊗ 1 + σ ⊗A.

The previous lemma tells us that the requirement of boundedness of the twisted commu-

tator severly restricts the form of the coproduct of Dµ. Now we characterize which elements

of Tκ have a coproduct of this form.

Lemma 5.16. Consider an element A ∈ Tκ. Suppose that ∆(A) = A′ ⊗ 1 + σ ⊗A for some

A′, σ ∈ Tκ, and that ∆(σ) = σ ⊗ σ. Then we have σ = Em, for some m ∈ Z, and for some

coe�cients cj ∈ C we have that A can be written as

• c11 + c2Em if m < 0,

• c11 + c2P0 if m = 0,
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• c11 + c2E + c3P1 if m = 1,

• c11 + c2Em if m > 1.

Proof. First of all it is clear that if σ ∈ Tκ is such that ∆(σ) = σ ⊗ σ, then we must have

σ = Em for some m ∈ Z. Any element A ∈ Tκ is a �nite sum of elements of the form P i0P
j
1Ek,

with i, j ∈ N and k ∈ Z, and we can write it as

A =
∑
ijk

cijkP
i
0P

j
1E

k =
∑
ijk

Aijk .

The request ∆(A) = A′ ⊗ 1 + σ ⊗ A puts a constraint on the possible terms that appear

in the sum. A term Aijk is allowed if and only if its coproduct is of the form ∆(Aijk) =

Bijk ⊗ 1 + σ ⊗ Cijk, for some Bijk, Cijk ∈ Tκ. Now we discuss which terms are of this form.

Consider �rst the generator P0. Then P
i
0 is allowed for i = 0, 1, since we have ∆(1) = 1⊗1

and ∆(P0) = P0 ⊗ 1 + 1⊗ P0. For higher powers we get cross terms which cannot be of the

allowed form, for example if we compute the coproduct for i = 2 we �nd

∆(P 2
0 ) = P 2

0 ⊗ 1 + 2P0 ⊗ P0 + 1⊗ P 2
0 .

The same argument applies to P1, for which we have ∆(P1) = P1⊗1+E ⊗P1. Higher powers

are not allowed as in the case of P0. For E on the other hand any power is acceptable, since

∆(Ek) = Ek ⊗ Ek is an automorphism. Now we consider the mixed terms. Any term of the

form P i0P
j
1 for i, j ≥ 1 is not allowed because of the cross terms. For example for P0P1 we

have

∆(P0P1) = P0P1 ⊗ 1 + EP0 ⊗ P1 + P1 ⊗ P0 + E ⊗ P0P1 .

Similarly mixed terms like P i0Ek or P
j
1Ek are not allowed for i, j, k ≥ 1. For example we have

∆(P0Ek) = EkP0 ⊗ Ek + Ek ⊗ EkP0 ,

∆(P1Ek) = EkP1 ⊗ Ek + Ek ⊗ EkP1 .

Now we discuss which terms are compatible when we �x σ = Em, for some m ∈ Z. The

coproduct of Aijk must have the form ∆(Aijk) = Bijk ⊗ 1 + Em ⊗ Cijk. The unit and Em

satisfy this requirement for any m ∈ Z. They are the only possible terms for m < 0 and

m > 1. On the other hand for m = 0 we can also have P0, while for m = 1 we can also have

P1.

Now it is time to discuss the requirement of the classical limit for D. First of all we need

to recall that the parameter λ is a physical constant of the model, which has the physical

dimension of a length. Since also the coordinates xµ have the dimensions of a length, it follows

that the Dirac operator must have dimension [D] = −1, where by [A] we denote the physical

dimension of A in units of length. From this observation it follows that the generators of Tκ
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have physical dimensions [Pµ] = −1, [E ] = 0 and the unit has [1] = 0. Now we can give the

technical statement of the assumption of the classical limit.

De�nition 5.7. We say that the Dirac operator D = ΓµD̂µ obeys the classical limit if for

all ψ ∈ A we have lim D̂µψ = P̂µψ for λ→ 0, and moreover [D̂µ] = −1.

Now that we have stated all the assumptions we can prove the following theorem.

Theorem 5.17. Suppose that Dµ, σ ∈ Tκ and that the Dirac operator D = Γµρ(Dµ) obeys

the classical limit. Then the twisted commutator

[D,π(f)]σ = Γµ (ρ(Dµ)π(f)− π(σ . f)ρ(Dµ))

is bounded if and only if we have D0 = 1
λ(1− E), D1 = P1 and σ = E.

Proof. Using Lemma 5.15 we have that [D,π(f)]σ is bounded if and only if ∆(Dµ) = D′µ ⊗
1 + σ ⊗ Dµ, for some D′µ ∈ Tκ. Such elements are classi�ed by Lemma 5.16, depending on

m ∈ Z. The condition that the operators D̂µ obey the classical limit imposes m = 1. Indeed

only for this choice we have the element P1, which corresponds to the operator ρ(P1) = −i∂1.

Now we need to consider the restriction on the coe�cients, imposed again by the classical

limit, for m = 1. Let us start with D0, for which we have

(ρ(D0)ψ)(x) = λ−1 (c1ψ(x) + c2ψ(x0 − iλ, x1))− ic3(∂1ψ)(x) .

We have rescaled the coe�cients in such a way that ck ∈ C are dimensionless. The operator

ρ(D0) should reduce to −i∂0 in the limit λ → 0. We see immediately that we must have

c3 = 0, since this term is not a�ected by the limit. To see what are the requirements on the

remaining two coe�cients, we expand ψ in Taylor series in λ, which is allowed since ψ ∈ A
is analytic in the �rst variable. We have

(ρ(D0)ψ)(x) = λ−1(c1 + c2)ψ(x) + ic2(∂0ψ)(x) + λ−1c2

∞∑
n=2

(∂n0ψ)(x)
(iλ)n

n!
.

The �rst term diverges in the limit λ → 0 unless c1 = −c2, which we must require. The

second term on the other hand is not a�ected by this limit, and forces us to choose c2 = −1.

For the third term, after exchanging the limit with the series, we �nd that it vanishes for

λ→ 0. Therefore the classical limit �xes D0 = λ−1(1− E).

We can repeat the same argument for D1, for which we write

(ρ(D1)ψ)(x) = λ−1
(
c′1ψ(x) + c′2ψ(x0 − iλ, x1)

)
− ic′3(∂1ψ)(x) .

This operator must reduce to −i∂1 in the limit λ → 0. From the previous discussion it is

obvious that we must have c′1 = c′2 = 0. Finally the third coe�cient is the same as in the

commutative case, that is c′3 = 1, therefore D1 = P1.
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The uniqueness of D and σ, under the symmetry and classical limit assumptions, is the

main result of this section. We have a nice compatibility between the twisting of the commu-

tator and the modular properties of the algebra. Indeed the modular operator ∆ω, associated

to the weight ω, implements the twist in the Hilbert space H, that is π(σ(f)) = ∆ωπ(f)∆−1
ω .

Moreover σ is the analytic extension at t = −i of σωt , the modular group of ω, compare with

the discussion on the index map given in [CoMo08].

Another interesting feature is the simple relation between D2, the square of the Dirac

operator, and C, the �rst Casimir of the κ-Poincaré algebra (more precisely of the quantum

Euclidean group, since we are in Euclidean signature). The latter is given by

C =
4

λ2
sinh2

(
λP̂0

2

)
+ eλP̂0P̂ 2

1 . (5.10)

Then an elementary computation shows that we have the relation D2 = ∆ωC, where ∆ω is

the modular operator of the weight ω. Apart from the presence of the modular operator, this

is the same property that one has in the commutative case. This connection is made more

suggestive if, following [D'An07], we rewrite the twisted commutator in the form

K−1
(
D′π(a)− (K−1π(a)K)D′

)
.

The usual de�nition of the twisted commutator is obtained by setting D = K−1D′ and

π(σ(a)) = K−2π(a)K2. From the previous remark it follows that K = ∆
−1/2
ω , so we have

(D′)2 = C and D′ is exactly the square root of the Casimir operator.

We remark that the operator D, which we introduced in this section, serves the purpose

of describing the geometry of κ-Minkowski space from the spectral point of view. This is

in principle distinct from the operator one introduces to describe the physical properties of

fermions, which is the one that deserves to be called the Dirac operator. This has been studied

in the literature, see for example [NST93, AAA04] and also [D'An06]. Mathematically such

an operator is required to be equivariant (or covariant, in more physical terms) under the

κ-Poincaré algebra (the quantum Euclidean group, in Euclidean signature). It is given by

Deq = Γ0

(
1

λ
sinh(λP̂0)− λ

2
eλP̂0P̂ 2

1

)
+ Γ1eλP̂0P̂1 .

In our notations it can be written as Deq = Γµρ(Deq
µ ), where

Deq
0 =

1

2λ
(E−1 − E)− λ

2
E−1P 2

1 , Deq
1 = E−1P1 .

By our previous results it follows that such an operator does not have a twisted bounded

commutator. A relevant algebraic property that Deq satis�es is (Deq)2 = C+ λ2

4 C
2, where C

is again the Casimir of the κ-Poincaré algebra. Di�erently from the commutative case, we do
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not have that the operator Deq is the square root of the Casimir operator C. On the other

hand, as we remarked above, this role is essentially played by the operator D.

The most obvious di�erence between D and Deq is that the former is equivariant only

under the extended momentum algebra Tκ, while the latter is equivariant under the full κ-

Poincaré algebra Pκ. However we point out that only the subalgebra Tκ is relevant for the

introduction of κ-Minkowski space, so at least the minimal requirement of equivariance under

Tκ is satis�ed. Moreover, for any h ∈ Pκ, we have the interesting property that the twisted

commutator of D2 with ρ(h) is zero. This follows from a one-line computation

[D2, ρ(h)]σ = D2ρ(h)−∆ωρ(h)∆−1
ω D2 = ∆ω(Cρ(h)− ρ(h)C) = 0 .

5.5 The spectral dimension

In this section we study the property of summability of our spectral triple. We will show that

it is not �nitely summable in usual sense of spectral triples, but it is �nitely summable if we

adapt some de�nitions from the framework of modular spectral triples. This is an extension

of the concept of spectral triple, introduced among other reasons to handle algebras having

a KMS state. Since, as we have seen in the previous sections, there is a natural KMS weight

on the algebra A, it seems appropriate to use these tools in this case.

The main result of this section is that the spectral dimension, computed using the weight

Φ, exists and is equal to the classical dimension two. Moreover the residue at s = 2 of the

function Φ
(
π(f)(D2 + µ2)−s/2

)
, for f ∈ A and µ 6= 0, exists and gives ω(f) up to a constant,

which shows that we recover the notion of integration given by ω using the operator D.

5.5.1 A problem with �nite summability

The concept of �nite summability for a non-unital spectral triple is far more subtle than in the

unital case, see [CGRS12] for a detailed discussion of some of the issues arising. We just point

out that, while in the unital case the de�nition of the operator D is enough to characterize

the spectral dimension, in the non-unital case one needs a delicate interplay between D and

the algebra A. We consider the notions of summability given in [CGRS12].

De�nition 5.8. Let (A,H, D) be a non-compact spectral triple. We say that it is �nitely

summable and call p the spectral dimension if the following quantity exists

p := inf{s > 0 : ∀a ∈ A, a ≥ 0, Tr
(
π(a)(D2 + 1)−s/2

)
<∞} .

In addition we say that (A,H, D) is Zp-summable if for all a ∈ A we have

lim sup
s↓p

∣∣∣(s− p)Tr(π(a)(D2 + 1)−s/2
)∣∣∣ <∞ .
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Now we show that our spectral triple is not �nitely summable in this sense.

Proposition 5.18. Let h ∈ A such that h = f ? f with f > 0. Then the operator π(h)(D2 +

1)−s/2 is not trace class for any s > 0. In other words, the spectral triple is not �nitely

summable.

Proof. We have that if π(h)(D2 +1)−s/2 is trace class then also π(f)(D2 +1)−s/2π(f) is trace

class, while the converse statement is not true in general, see the discussion in [CGRS12].

Proving that π(f)(D2 +1)−s/2π(f) is trace class is the same as proving that π(f)(D2 +1)−s/4

is Hilbert-Schmidt, which is easy to check using the integral formula for the kernel. Now we

show that π(f)(D2 + 1)−s/4 is not Hilbert-Schmidt for any s > 0, from which the proposition

follows.

We have that the Hilbert-Schmidt norm of π(f)(D2 + 1)−s/4, as an operator on H =

Hr⊗C2, is equal to the Hilbert-Schmidt norm of A := Uπ(f)(D2 +1)−s/4U−1 as an operator

on L2(R2)⊗ C2. Using Proposition 5.14 we �nd that the Schwartz kernel of A is given by

KA(x, y) =

ˆ
eip(x−y)(Uf)(x0, e

λp0x1)Gs(p0, e
−λp0p1)

d2p

(2π)2
,

where the function Gs is de�ned by

Gs(p) :=
(
λ−2(1− e−λp0)2 + p2

1 + 1
)−s/4

.

For �xed x de�ne the function hx(p) := (Uf)(x0, e
λp0x1)Gs(p0, e

−λp0p1). With this de�nition

we can write the kernel KA as an inverse Fourier transform

KA(x, y) =

ˆ
eip(x−y)hx(p)

d2p

(2π)2
= (F−1hx)(x− y) .

Now it is easy to compute the Hilbert-Schmidt norm of A. We have

‖A‖22 = 2

ˆ ˆ
|KA(x, y)|2d2xd2y = 2

ˆ ˆ
|(F−1hx)(x− y)|2d2xd2y

= 2

ˆ ˆ
|(F−1hx)(y)|2d2xd2y .

The factor 2 comes from the dimension of the spinor bundle, since H = Hr⊗C2. Now, using

the fact that the Fourier transform is a unitary operator in L2(R2) (up to the factor (2π)2,

in our conventions), we can rewrite the previous expression as

‖A‖22 = 2

ˆ ˆ
|hx(p)|2d2x

d2p

(2π)2
= 2

ˆ ˆ
|(Uf)(x0, e

λp0x1)Gs(p0, e
−λp0p1)|2d2x

d2p

(2π)2
.
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After the change of variables x1 → e−λp0x1, p1 → eλp0p1 we �nd

‖A‖22 = 2

ˆ
|(Uf)(x)|2d2x

ˆ
|gs(p)|2

d2p

(2π)2
=

2

(2π)2
‖Uf‖22‖Gs‖22 . (5.11)

Now consider the norm ‖Gs‖2, which is given by the expression

‖Gs‖22 =

ˆ (
λ−2(1− e−λp0)2 + p2

1 + 1
)−s/2

d2p .

This function is not integrable for any s > 0 (the integrand does not go to zero for p0 →∞).

Therefore the operator π(f)(1 +D2)−s/4 is not Hilbert-Schmidt for any s > 0.

Now we argue that using the framework of twisted spectral triples is not enough to describe

the non-commutative geometry of κ-Minkowski space, and that some more re�ned notion is

needed to capture the modular properties associated to this geometry. First we recall a result

obtained in [CoMo08]: consider a twisted spectral triple (A,H, D) with twist σ and such that

D−1 ∈ Ln+. De�ne the linear functional ϕ(a) = Trω(π(a)D−n), where Trω is the Dixmier

trace. Then for any a, b ∈ A we have ϕ(ab) = ϕ(σn(b)a). Putting aside the issues of the non-

compact case, which are not needed for this heuristic argument, having a spectral dimension

n = 2 in our case would imply ϕ(f ? g) = ϕ(σ2(g) ? f). The KMS condition for ω, on the

other hand, can be rewritten in terms of the twist σ and reads ω(f ? g) = ω(σ(g) ? f). Since

we expect the Dixmier trace to be linked to the weight ω, we see that there is a discrepancy

between the two notions of integration, which are due to their di�erent modular properties.

5.5.2 Modular spectral triples

As we have seen, the spectral triple we constructed is not �nitely summable in the usual

sense. We now want to reconsider it in the framework of modular spectral triples. The main

point of the modular version of a spectral triple is to enable the use of a weight, instead of

the operator trace, to measure the growth of the resolvent of the operator D. In particular

the spectral triple could be �nitely summable in this sense. We also recall that a modi�cation

of this idea involving twisted commutators has been considered in [KaSe12, Kaa11].

As we argued at the end of the previous subsection, there is a mismatch between the

modular properties of the non-commutative integral and the weight ω. Therefore we cannot

recover the weight ω, which gives a basic notion of integration on the algebra. We can try

to correct this mismatch by choosing an appropriate weight in the sense of modular spectral

triples. Since the twist σ is implemented by ∆ω, the modular operator of ω, this fact hints

to the possibility of correcting it by considering the weight Φ(·) := Tr(∆ω·).
We now discuss an issue that arises by considering non-unital algebras. In Chapter 4 we

have given the de�nition of modular spectral triples which is relevant for the unital case. This

de�nition can be, in principle, modi�ed as in the case of spectral triples, which is discussed
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in Appendix A. However, if we want to mantain the resolvent condition in terms of the

semi�nite trace, we need to consider multiplication only by elements which are invariant

under the action of the modular group, that is which belong to the �xed point algebra.

In the case we are considering, the action of the modular group of the weight ω is given by

(σωt f)(x) = f(x0 − λt, x1), that is translation in the �rst variable. Therefore the �xed points

of this action are functions which are constant in the �rst variable. Then, since the functions

in A vanish at in�nity, the only such �xed point is given by the zero function.

We recall that the notion of modular spectral triple has been formalized on the basis of

examples where the action of the modular group is periodic. In this situation, since we can

de�ne a conditional expectation, it makes sense to consider the resolvent condition relative

to the �xed point algebra under this action. This fact implies that, strictly speaking, our

construction does not �t into this framework.

Here we do not dwell on what should be the correct condition in this case. Instead, we

simply adapt the corresponding notion of spectral dimension to our needs.

De�nition 5.9. Let (A,H, D) be a non-compact modular spectral triple with weight Φ. We

say that it is �nitely summable and call p the spectral dimension if the following quantity

exists

p := inf{s > 0 : ∀a ∈ A, a ≥ 0, Φ
(
π(a)(D2 + 1)−s/2

)
<∞} .

Notice that we do not require the elements a ∈ A to be in the �xed point algebra.

The main result of this section is that the spectral dimension, computed according to this

de�nition, exists and is equal to the classical dimension two. Moreover the residue at s = 2

of the function Φ
(
π(f)(D2 + µ2)−s/2

)
, for f ∈ A and µ 6= 0, exists and gives ω(f) up to a

constant, which shows that we recover the notion of integration given by ω using the operator

D. This gives an analogue of the Z2-summability condition, and is in line with similar results

obtained for the modular spectral triples studied so far.

Before starting the computation we note the following easy but useful lemma.

Lemma 5.19. For all f ∈ A we have Φ
(
π(f)(D2 + 1)−s/2

)
= Tr

(
π(σω−if)∆ω(D2 + 1)−s/2

)
.

Proof. It is easily proven by the following computation

Φ
(
π(f)(D2 + 1)−s/2

)
= Tr

(
∆ωπ(f)∆−1

ω ∆ω(D2 + 1)−s/2
)

= Tr
(
π(σω−if)∆ω(D2 + 1)−s/2

)
.

In the last line we have used the fact that σω is implemented by the modular operator ∆ω,

that is π(σωt f) = ∆it
ωπ(f)∆−itω for any f ∈ A.

The next subsection is devoted to proving the results announced above.
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5.5.3 The spectral dimension with the weight Φ

We can restrict our attention to the operator π(f)∆ω(D2 + 1)−s/2 on H and, via the unitary

operator U , to the operator Uπ(f)∆ω(D2 + 1)−s/2U−1 on L2(R2) ⊗ C2. Now we want to

see if this operator is trace class for some s > 0 and compute its trace. To prove that

an operator A on L2(Rn) is trace class, a possible strategy is to show that it is a pseudo-

di�erential operator of su�ciently negative order (see for example [Shu01, Chapter IV]). We

say that A is a pseudo-di�erential operator of order m if its symbol a satis�es the condition

|∂αx ∂
β
ξ a(x, ξ)| ≤ cαβ(1+|ξ|)m−|α|, where cαβ are constants and we use the multi-index notation.

However this class of symbols is not well adapted to the present situation, as we now argue.

Using Proposition 5.14 we know that the symbol of Uπ(f)∆ω(D2 + 1)−s/2U−1 is of the

form (Uf)(x0, e
λξ0x1)g(ξ), for some function g. Now consider the derivative with respect to

x1, which is given by eλξ0(∂1Uf)(x0, e
λξ0x1)g(ξ). By examining the behaviour at ξ0 → ∞

we see that we can not bound this function uniformly in x1. Consider �rst the case x1 6= 0:

by de�ning y1 = eλξ0x1, we have x−1
1 y1(∂1Uf)(x0, y1) and this goes to zero for y1 → ±∞,

since Uf is a Schwartz function. For x1 = 0, however, we get eλξ0(∂1Uf)(x0, 0), which grows

exponentially in ξ0. This implies that at x1 = 0 we can not satisfy the condition for a

pseudo-di�erential operator of negative order, and so we can not use the related results.

Since we have this problem only at x1 = 0, which is a set of measure zero in R2, we

can expect to be able to overcome this problem by using a criterion which involves an L1

condition on the symbol. To this end we are going to use the following theorem given in

[Ars08]. Let A be an operator in L2(Rn) with symbol a(x, ξ). If the symbol satis�es the

condition ∂αx ∂
β
ξ a ∈ L

p(Rn ×Rn) for |α|, |β| ≤ [n/2] + 1, where 1 ≤ p <∞, then A belongs to

the p-th Schatten ideal in L2(Rn). Here we are using the multi-index notation for α, β and

[n] denotes the integer part of n. Using this result we can prove the following.

Theorem 5.20. Let f ∈ A and µ 6= 0. Then the operator π(f)∆ω(D2 + µ2)−s/2 is trace

class for s > 2. In particular we have spectral dimension p = 2 according to De�nition 5.9.

Proof. Using Proposition 5.14 we have that the symbol of the operator Uπ(f)∆ω(D2 +

µ2)−s/2U−1 is given by a(x, ξ) := (Uf)(x0, e
λξ0x1)G∆

s (ξ0, e
−λξ0ξ1), where

G∆
s (ξ) := e−λξ0

(
λ−2(1− e−λξ0)2 + ξ2

1 + µ2
)−s/2

.

As we remarked above, to prove that this operator is trace class we are going to show that

the symbol satis�es the condition ∂αx ∂
β
ξ a ∈ L1(R2 × R2), for |α|, |β| ≤ 2. Let us start by

showing that a is integrable. Using a change of variables we get

ˆ ˆ
|a(x, ξ)|d2xd2ξ =

ˆ ˆ
|(Uf)(x0, e

λξ0x1)|G∆
s (ξ0, e

−λξ0ξ1)d2xd2ξ

=

ˆ
|(Uf)(x)|d2x

ˆ
G∆
s (ξ)d2ξ = ‖Uf‖1‖G∆

s ‖1 .
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We have that ‖Uf‖1 is �nite since Uf is a Schwartz function. To prove that ‖G∆
s ‖1 is �nite

we need to consider the asymptotic behaviour of the function G∆
s (ξ). This is given by

G∆
s (ξ) ∼ e−λξ0 |ξ1|−s , ξ0 →∞ , |ξ1| → ∞ ,

G∆
s (ξ) ∼ e−λξ0

(
e−2λξ0 + ξ2

1

)−s/2
, ξ0 → −∞ , |ξ1| → ∞ .

For ξ0 →∞ this function is integrable if s > 1. To study the other case we use the integral

ˆ
(c2 + x2)−s/2dx =

√
π

Γ
(
s−1

2

)
Γ
(
s
2

) (c2)−
s−1
2 .

Then the function G∆
s is integrable for ξ0 → −∞ is s > 2, as we have

ˆ
G∆
s (ξ)dξ1 ∼ e−λξ0

ˆ (
e−2λξ0 + ξ2

1

)−s/2
dξ1 ∼ e−λξ0e(s−1)λξ0 .

Now we consider the derivatives in x and show that the integral of ∂αx a vanishes, since Uf

is a Schwartz function. In the following we use the notation ∂0 and ∂1 to denote derivatives

with respect to the �rst and second variable. For the derivatives in x0 we have

ˆ
∂nx0(Uf)(x0, e

λξ0x1)dx0 = (∂n−1
0 Uf)(∞, eλξ0x1)− (∂n−1

0 Uf)(−∞, eλξ0x1) = 0 .

Similarly for the derivatives in x1 we obtain

ˆ
∂nx1(Uf)(x0, e

λξ0x1)dx1 = enλξ0
ˆ

(∂n1Uf)(x0, e
λξ0x1)dx1 = e(n−1)λξ0

ˆ
(∂n1Uf)(x)dx1

= e(n−1)λξ0
(
(∂n−1

1 Uf)(x0,∞)− (∂n−1
1 Uf)(x0,−∞)

)
= 0 .

Now we consider the derivatives with respect to ξ0. There are two contributions, one

coming from (Uf)(x0, e
λξ0x1) and the other from G∆

s (ξ0, e
−λξ0ξ1). First we will consider

derivatives acting on the term (Uf)(x0, e
λξ0x1). Taking one derivative we obtain

∂ξ0(Uf)(x0, e
λξ0x1) = eλξ0λx1(∂1Uf)(x0, e

λξ0x1)

= λx1∂x1(Uf)(x0, e
λξ0x1)

= λ∂x1

(
x1(Uf)(x0, e

λξ0x1)
)
− λ(Uf)(x0, e

λξ0x1) .

(5.12)

The second term corresponds to the case with zero derivatives, so we have already proven

that it gives a �nite contribution. The �rst term on the other hand vanishes upon integration

in x1, since Uf is a Schwartz function. For the second derivative using (5.12) we obtain

∂2
ξ0(Uf)(x0, e

λξ0x1) = λx1∂x1∂ξ0(Uf)(x0, e
λξ0x1)

= λ∂x1

(
x1∂ξ0(Uf)(x0, e

λξ0x1)
)
− λ∂ξ0(Uf)(x0, e

λξ0x1)

The second term corresponds to the case of one derivative, which we have proven to be
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�nite. For the �rst term we just need to notice that, for �xed ξ0, equation (5.12) implies

that ∂ξ0(Uf)(x0, e
λξ0x1) is a Schwartz function. Then the �rst term vanishes by the previous

argument.

Since we have established that the operator π(f)∆ω(D2 + µ2)−s/2 is trace class we can

now compute its trace. We are going to show that the residue at s = 2 recovers, up to a

constant, the weight ω on the algebra A.

Proposition 5.21. Let f ∈ A and µ 6= 0. Then we have

lim
s→2

(s− 2)Φ
(
π(f)(D2 + µ2)−s/2

)
=

1

2π
ω(f) .

Proof. Using Lemma 5.19 it su�ces to prove the analogue result with π(f)∆ω(D2 +µ2)−s/2.

In the previous theorem we have shown that the operator A := Uπ(f)∆ω(D2 + µ2)−s/2U−1,

with µ 6= 0, is trace class for s > 2. We can compute its trace by integrating the kernel, that

is

Tr
(
π(f)∆ω(D2 + µ2)−s/2

)
= 2

ˆ ˆ
(Uf)(x0, e

λξ0x1)G∆
s (ξ0, e

−λξ0ξ1)d2x
d2ξ

(2π)2
.

Here the factor 2 comes from the dimension of the spinor bundle, since H = Hr ⊗ C2. As

shown in the previous theorem this is actually equal to

Tr
(
π(f)∆ω(D2 + µ2)−s/2

)
= 2

ˆ
(Uf)(x)d2x

ˆ
G∆
s (ξ)

d2ξ

(2π)2
.

It is then easy to see that, for any f ∈ A, we have
´

(Uf)(x)d2x =
´
f(x)d2x.

Now we need to compute the integral in ξ, which is given by

c(s) :=

ˆ
G∆
s (ξ)

d2ξ

(2π)2
=

ˆ
e−λξ0

(
λ−2

(
1− e−λξ0

)2
+ ξ2

1 + µ2

)−s/2 d2ξ

(2π)2
.

The integral over ξ1 can be easily computed using the standard formula

ˆ
(x2 + a2)−s/2dx =

√
π

Γ
(
s−1

2

)
Γ
(
s
2

) (a2)−
s−1
2 , s > 1 .

Using this result we have

c(s) =

√
π

(2π)2

Γ
(
s−1

2

)
Γ
(
s
2

) ˆ e−λξ0
(
λ−2

(
1− e−λξ0

)2
+ µ2

)− s−1
2

dξ0 .

Now, using the change of variable r = e−λξ0 , we rewrite the integral in ξ0 as

ˆ
e−λξ0

(
λ−2

(
1− e−λξ0

)2
+ µ2

)− s−1
2

dξ0 = λs−2

ˆ (
(1− r)2 + λ2µ2

)− s−1
2 dr .
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This integral can be solved analytically for s > 2

ˆ ∞
0

(
(1− r)2 + a2

)− s−1
2 dr = a1−s

(
a

√
π

2

Γ
(
s
2 − 1

)
Γ
(
s−1

2

) + 2F1

(
1

2
,
s− 1

2
,
3

2
,− 1

a2

))
,

where 2F1(a, b, c, z) is the ordinary hypergeometric function. The result is then

c(s) =

√
π

(2π)2

Γ
(
s−1

2

)
Γ
(
s
2

) λs−2(λµ)1−s

(
λµ

√
π

2

Γ
(
s
2 − 1

)
Γ
(
s−1

2

) + 2F1

(
1

2
,
s− 1

2
,
3

2
,− 1

λ2µ2

))
.

Now we can easily show the analogue of Z2-summability, that is

lim sup
s↓2

∣∣∣(s− 2)Tr
(
π(f)∆ω(D2 + µ2)−s/2

)∣∣∣ <∞ .

We need to study the behaviour of the function c(s) around s = 2. Notice that the second

term, the one involving the hypergeometric function, is regular at s = 2, while the �rst term

has a simple pole at s = 2, which comes from the function Γ
(
s
2 − 1

)
. Indeed the Laurent

expansion of this function at s = 2 is given by

Γ
(s

2
− 1
)

=
2

s− 2
− γ +O(s− 2) ,

where γ is the Euler-Mascheroni constant. Using this fact we have

lim sup
s↓2

(s− 2)c(s) = lim sup
s↓2

(s− 2)

√
π

(2π)2

1

Γ
(
s
2

)λs−2(λµ)1−sλµ

√
π

2
Γ
(s

2
− 1
)

=

√
π

(2π)2
(λµ)−1λµ

√
π

2
2 =

1

4π
.

Notice that the result of this limit does not depend on µ, as expected. Finally

lim
s→2

(s− 2)Φ
(
π(f)(D2 + µ2)−s/2

)
=

1

2π

ˆ
σω−i(f)(x)d2x .

Using the properties of the functions in A and the Cauchy theorem we have that

ˆ
f(x0 + z, x1)d2x =

ˆ
f(x)d2x ,

for any z ∈ C. Then the result follows, since σω−i(f)(x) = f(x0 + iλ, x1).

5.6 The real structure

In this section we discuss the possibility of introducing a real structure on the spectral triple.

We brie�y review the commutative case, to set the notation and also since some computations
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will be identical in the non-commutative case. Consider a spectral triple (A,H, D) of spectral

dimension n. It is even if there exists a Z2-grading χ on H.

De�nition 5.10. A real structure for the spectral triple (A,H, D) is an antilinear isometry

J : H → H with the following properties:

1. J 2 = ε(n),

2. JD = ε′(n)DJ ,

3. [π(f),J π(g∗)J −1] = 0,

4. Jχ = inχJ if it is even,

5. [[D,π(f)],J π(g)J −1] = 0.

The �fth condition is usually called the �rst order condition. Here ε(n) and ε′(n) are mod

8 periodic functions which are given by

ε(n) = (1, 1,−1,−1,−1,−1, 1, 1) ,

ε′(n) = (1,−1, 1, 1, 1,−1, 1, 1) .

We shortly review the case n = 2. Consider J = CJc, where Jc is complex conjugation

and C is a 2× 2 matrix, which in our conventions is given by C = iΓ0. The grading is given

by the matrix χ = −iΓ0Γ1, which satis�es χ2 = 1. The Hilbert space is H = L2(R2) ⊗ C2

and acting with the operator J on a spinor ψ we get

J

(
ψ1(x)

ψ2(x)

)
=

(
−iψ2(x)

−iψ1(x)

)
.

The fact that J is an antilinear isometry follows from a simple computation

(J φ,Jψ)H =

2∑
k=1

((J φ)k, (Jψ)k)L2(R2) =

2∑
k=1

(−iφk,−iψk)L2(R2)

=

2∑
k=1

(ψk, φk)L2(R2) = (ψ, φ)H .

The �rst condition is easily veri�ed using the properties of the Γ matrices. To verify the

second condition write the Dirac operator as D = ΓµP̂µ. We have

JDJ = iΓ0JcΓ
µP̂µiΓ

0Jc = ΓµJcP̂µJc .

Using the de�nition of P̂µ we get ΓµJcP̂µJc = −ΓµP̂µ = −D. Applying J and using J 2 = 1

we obtain JD = −DJ . For the third condition we note that J π(g∗)J −1 = iΓ0JcgiΓ
0Jc = g.
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The fourth condition follows from the computation

Jχ = iΓ0Jc(−i)Γ0Γ1 = iΓ0(−i)Γ0Γ1Jc = −(−iΓ0Γ1)(iΓ0Jc) = −χJ .

Finally the �fth condition follows since [D,π(f)] = Γµπ(Dµf) and therefore

[[D,π(f)],J π(g)J −1] = Γµ[π(Dµf),J π(g)J −1] = 0 .

Now we consider the non-commutative case. For f ∈ A de�ne the operator J̃f := σωi/2(f∗),

see [Kus97]. Since ω satis�es the KMS condition with respect to σω, the term σωi/2 compen-

sates for the lack of the trace property, as shown in the next lemma.

Lemma 5.22. The operator J̃ is an antilinear isometry on Hr.

Proof. Recall that σωt (f)(x) = f(x0−λt, x1) and that for f, g ∈ A we have the KMS property

ω(f ? g) = ω(σω−i(g) ? f). Then we have the following

(J̃f, J̃g) = ω((σωi/2(f∗))∗ ? σωi/2(g∗)) = ω(σω−i/2(f) ? σωi/2(g∗))

= ω(σω−iσ
ω
i/2(g∗) ? σω−i/2(f)) = ω(σω−i/2(g∗) ? σω−i/2(f))

= ω(σω−i/2(g∗ ? f)) = ω(g∗ ? f) = (g, f) .

The property ω(σω−i/2(f)) = ω(f) holds for any f ∈ A, as discussed in the previous sections.

In particular we have that ‖σωi/2f
∗‖ = ‖f‖, so it is an antilinear isometry on A. Since A is

dense in Hr this operator can be extended by continuity to the whole Hilbert space.

To extend J̃ from Hr to H = Hr⊗C2 we introduce the operator J = CJ̃ , where C = iΓ0

is the same matrix as in the commutative case. Now we only have to check the various

properties satis�ed by this operator, which are given in the following.

Proposition 5.23. The operator J is an antilinear isometry on H. Moreover it satis�es the

following properties:

1. J 2 = 1,

2. JD = −∆−1
ω DJ ,

3. [π(f),J π(g∗)J −1] = 0,

4. Jχ = −χJ ,

5. [[D,π(f)]σ,J π(g)J −1] = 0.

Proof. First we show that J is an antilinear isometry. When acting on a spinor ψ we get

J

(
ψ1(x)

ψ2(x)

)
=

(
−iσωi/2(ψ∗2)(x)

−iσωi/2(ψ∗1)(x)

)
.
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Then the result follows from the previous lemma and the following computation

(J φ,Jψ)H =

2∑
k=1

(
−iσωi/2(φ∗k),−iσωi/2(ψ∗k)

)
Hr

=

2∑
k=1

(ψk, φk)Hr = (ψ, φ)H .

For any f ∈ A and z ∈ C we have σωz (f)∗ = σωz̄ (f∗). Writing J̃ψ = σω−i/2(ψ)∗ we have

J̃2ψ = (σω−i/2(σω−i/2ψ)∗)∗ = σωi/2(σω−i/2ψ) = ψ .

Using this relation the �rst property is proven as in the commutative case

J 2 = iΓ0J̃ iΓ0J̃ = (Γ0)2J̃2 = 1 .

For the second property recall that the Dirac operator is given by D = ΓµD̂µ, where D̂0 =
1
λ(1−e−λP̂0) and D̂1 = P̂1. Using the properties of the Γ matrices we obtain JDJ = ΓµJ̃D̂µJ̃ ,

as in the commutative case. To compute J̃D̂µJ̃ notice that, for any h ∈ Tκ, we have

J̃ρ(h)J̃ψ = J̃ρ(h)σωi/2(ψ∗) = (σω−i/2ρ(h)σωi/2(ψ∗))∗ .

But σωi/2 commutes with ρ(h) for any h ∈ Tκ. Then, using the property of compatibility of

the representation with the star structure h . a∗ = (S(h)∗ . a)∗, we obtain

J̃ρ(h)J̃ψ = (ρ(h)ψ∗)∗ = (h . ψ∗)∗ = S(h)∗ . ψ = ρ(S(h)∗)ψ .

If we apply this result to D̂µ = ρ(Dµ) we obtain

J̃D̂0J̃ =
1

λ
ρ(1− E−1) = − 1

λ
ρ(E−1)ρ(1− E) = −∆−1

ω D̂0 ,

J̃D̂1J̃ = ρ(−E−1P1) = −ρ(E−1)ρ(P1) = −∆−1
ω D̂1 .

Then we obtain JDJ = −∆−1
ω D, from which the second property follows. For the third one

we notice that J π(f∗)J = J̃π(f∗)J̃ . We can easily show that J̃π(f∗)J̃ corresponds to right

multiplication by σωi/2(f). Indeed we have

J̃π(f∗)J̃ψ = σωi/2(f∗ ? σωi/2(ψ∗))∗ = σωi/2((σωi/2(ψ∗))∗ ? f)

= σωi/2(σω−i/2(ψ) ? f) = ψ ? σωi/2(f) .

Then the property follows from the general fact that right multiplication commutes with left

multiplication. The proof of the fourth property is identical to the classical case. For the

�fth property recall that [D,π(f)]σ = Γµπ(Dµ . f). Then from the previous property

[[D,π(f)]σ,J π(g)J −1] = Γµ[π(Dµ . f),J π(g)J −1] = 0 .
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The proof is complete.

Several conditions are identical to the commutative case, due to the Cli�ord structure being

the same. The �rst order condition requires the use of the twisted commutator [D,π(f)]σ,

which is argued to be the natural choice for quantum groups in [D'An07].

Also the property involving the commutator of J and D is modi�ed by the presence of

the modular operator ∆ω, in particular we have JD = −∆−1
ω DJ . We have seen that, in

checking this property, the role of the antipode was crucial. Since the antipode of P1 is not

trivial, this implies that we cannot have JD = −DJ .



Chapter 6

On the spectral and homological

dimension of κ-Minkowski space

In this chapter we extend our construction of a modular spectral triple for κ-Minkowski space,

previously given in two dimensions, to the general n-dimensional case. We consider in some

detail the properties of the zeta function associated to the Dirac operator, and initiate a study

of the homological properties of this geometry. This is based on the paper [Mat2].

6.1 Introduction

The κ-Poincaré and κ-Minkowski Hopf algebras can be de�ned in any dimension, so it is

interesting to try extending the construction given in the previous chapter to the general

n-dimensional case. It turns out that there are no major di�culties in doing so, therefore we

will not provide the full details regarding the computations, as they are almost identical to

the two-dimensional case. This simplicity is connected to one of the physical requirements of

the κ-Poincaré algebra, that is leaving undeformed the Lorentz subalgebra, which essentially

makes all the "space" directions behave in the same way.

On the other hand, we want to provide further evidence that, although this construction is

still not well understood as part of a general framework, it should be relevant for the descrip-

tion of the non-commutative geometry of κ-Minkowski space. Using the same ingredients

of the two-dimensional case, we �nd that the spectral dimension according to our de�nition

is in general equal to the classical one. Moreover, by computing the residue at the spectral

dimension of the associated zeta function, we recover the weight ω as in the two-dimensional

case. These results con�rm the intuition that moving from the two-dimensional case to the

general one does not change much.

Next we analyze some properties of the introduced zeta function. We show that, by con-

sidering the limit of vanishing deformation parameter, it reduces as it should to the classical

setting. Also, as in the commutative setting, this zeta function can be analytically continued

77
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to a meromorphic function on the complex plane, with only simple poles. We �nd all the

poles of the commutative case, but also additional ones due to the presence of the deformation

parameter. The signi�cance of these additional poles remains to be investigated.

Another important issue we analyze is the homological dimension of this geometry. In

the framework of non-commutative geometry this notion is given by the dimension of the

Hochschild homology, which in the commutative case coincides with the spectral dimension.

However in many examples, coming in particular from quantum groups, one �nds that the

homological dimension is lower that the spectral dimension, a phenomenon known as di-

mension drop. In many cases it is possible to avoid this drop by introducing a twist in the

homology theory, as seen for example in [HaKr05, Had07]. Here we compute the twisted

Hochschild homology [BrZh08] of the universal enveloping algebra associated to κ-Minkowski

space. Similarly to the examples we mentioned above, we show that the dimension drop

occurs at the level of Hochschild homology, but can be avoided by introducing a twist. More

interestingly, the simplest twist which avoids the drop is the inverse of the modular group of

the weight ω, while the other possible twists are given by its positive powers. This should be

compared to the case of [HaKr05, Had07] and other examples, where the twist is the inverse

of the modular group of the Haar state, and therefore seems to be a general feature of these

non-commutative geometries.

6.2 The spectral triple

6.2.1 The κ-Poincaré and κ-Minkowski algebras

In this subsection we summarize some algebraic properties of the κ-Poincaré Hopf algebra,

which we denote by Pκ, and the associated κ-Minkowski space. For our purposes we do not

need to present the full algebra, but only a certain Hopf subalgebra which is used to de�ne κ-

Minkowski space. For details we refer to the original paper [MaRu94] and for the construction

in any number of dimension see [LuRu94]. We denote by Tκ the algebra generated by Pµ,

with µ ranging from 0 to n− 1, which satisfy [Pµ, Pν ] = 0. We turn it into a Hopf algebra by

de�ning the coproduct ∆ : Tκ → Tκ⊗Tκ, the counit ε : Tκ → C and antipode S : Tκ → Tκ as

∆(P0) = P0 ⊗ 1 + 1⊗ P0 , ∆(Pj) = Pj ⊗ 1 + e−P0/κ ⊗ Pj ,

ε(Pµ) = 0 , S(P0) = −P0 , S(Pj) = −eP0/κPj .

We adopt the usual general relativistic convention of greek indices going from 0 to n−1, while

latin indices go from 1 to n− 1. Notice the asymmetry in the coproduct, which distinguishes

the "time direction" from the "space directions".

κ-Minkowski space is de�ned via a non-degenerate dual pairing with Tκ, see [MaRu94].

From the pairing we deduce that as an algebra it is non-commutative, since Tκ is not cocom-

mutative, that is the coproduct in Tκ is not trivial. In particular the algebraic relations for
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the generators Xµ of the κ-Minkowski Hopf algebra take the form

[X0, Xj ] = −κ−1Xj , ∆Xµ = Xµ ⊗ 1 + 1⊗Xµ .

As in the previous chapter, we avoid the use of the formal element e−P0/κ by introducing

the invertible element E , and rewrite the de�ning relations as

[Pµ, Pν ] = 0 , [Pµ, E ] = 0 ,

∆(P0) = P0 ⊗ 1 + 1⊗ P0 , ∆(Pj) = Pj ⊗ 1 + E ⊗ Pj , ∆(E) = E ⊗ E ,

ε(Pµ) = 0 , ε(E) = 1 ,

S(P0) = −P0 , S(Pj) = −E−1Pj , S(E) = E−1 .

The remarks made in the previous chapter for the two-dimensional case, regarding the ex-

tended momentum algebra and the Euclidean signature, also apply to this case.

6.2.2 The algebraic construction

We begin by generalizing to n dimensions the construction of the ∗-algebra given in [DuSi13].

We will skip most of the computations, since they are completely analogous to the two-

dimensional case, but we will provide some details regarding the modular aspects of the

construction.

The underlying algebra of the n-dimensional κ-Minkowski space is the enveloping alge-

bra of the Lie algebra with generators ix0 and ixk (with k = 1, . . . , n − 1), full�lling the

commutation relations [x0, xk] = iλxk. It has a faithful n× n matrix representation ϕ given

by

ϕ(ix0) =


−λ · · · 0
...

. . . 0

0 · · · 0

 , ϕ(ixk) =


0 · · · 1 · · · 0
...

. . .
. . .

. . . 0

0 · · · 0 · · · 0

 .

The matrix ϕ(ixk) has non-zero values only in the (k + 1)-th column. An element of the

associated group G can be presented in the form

S(a) =


e−λa0 a1 · · · an−1

0 1 0 0
...

. . .
. . .

...

0 0 · · · 1

 . (6.1)

Here we use the notation a = (a0,~a), where ~a = (a1, · · · , an−1). The group operations written

in the (a0, · · · , an−1) coordinates are given by

S(a)S(b) = S(a0 + b0,~a+ e−λa0~b) , S(a)−1 = S(−a0,−eλa0~a) . (6.2)
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Proposition 6.1. The left and right invariant measures on G are given respectively by

dµL(a) = eλ(n−1)a0dna and dµR(a) = dna, where dna is the Lebesgue measure on Rn.

Proof. We do the computation for the left invariant case. Using the (a0, · · · , an−1) coordinates

and the group operations given in (6.2) we easily �nd

ˆ
f(a · b)dµL(b) =

ˆ
f(a0 + b0,~a+ e−λa0~b)eλ(n−1)b0dnb

=

ˆ
f(a0 + b0,~a+~b)eλ(n−1)(a0+b0)dnb

=

ˆ
f(b0,~b)e

λ(n−1)b0dnb =

ˆ
f(b)dµL(b) .

The right invariant case is treated similarly.

Thus G is not a unimodular group, with the modular function e−λ(n−1)a0 playing a cen-

tral role in the following. We consider the convolution algebra of G with respect to the right

invariant measure, and we identify functions on G with functions on Rn by the parametriza-

tion (6.1). The convolution algebra is an involutive Banach algebra consisting of integrable

functions on Rn with product ?̂ and involution ∗̂ given by

(f?̂g)(a) =

ˆ
f(a0 − a′0,~a− e−λ(a0−a′0)~a′)g(a′0,~a

′)dna′ ,

f ∗̂(a) = eλ(n−1)a0f(−a0,−eλa0~a) .

We pass from momentum space to con�guration space via the Fourier transform. The star-

product and involution are de�ned, in terms of the convolution algebra operations, as

f ? g := F−1 (F(f)?̂F(g)) , f∗ := F−1
(
F(f)∗̂

)
.

These formulae are written for clarity using the unitary convention for the Fourier transform,

but in the following we will use the physicists convention with the (2π)n in momentum space.

We restrict our attention to the following space of functions.

De�nition 6.1. Denote by Sc the space of Schwartz functions on Rn with compact support

in the �rst variable, that is for f ∈ Sc we have supp(f) ⊆ K×Rn−1 for some compact K ⊂ R.
We de�ne A = F(Sc), where F is the Fourier transform on Rn.

On this space we can safely perform all the operations we need. The next proposition shows

that A is a ∗-algebra and gives explicit formulae for the star product and the involution. We

use the notation x = (x0, ~x) and ~x = (x1, . . . , xn−1) for the coordinates on A.
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Proposition 6.2. For f, g ∈ A we have

(f ? g)(x) =

ˆ
eip0x0(F0f)(p0, ~x)g(x0, e

−λp0~x)
dp0

2π
,

f∗(x) =

ˆ
eip0x0(F0f)(p0, e

−λp0~x)
dp0

2π
.

We have that f ? g ∈ A and f∗ ∈ A, so that A is a ∗-algebra.

Proof. Let us show how this works for the involution. From the de�nitions we get

f∗(x) = F−1(F(f)∗̂)(x) =

ˆ
eipx(F(f)∗̂)(p)

dnp

(2π)n

=

ˆ
eipxe(n−1)λp0(Ff)(−p0,−eλp0~p)

dnp

(2π)n
.

Now using the change of variables ~p→ e−λp0~p we �nd

f∗(x) =

ˆ
eip0x0eie

−λp0~p·~x(Ff)(−p) dnp

(2π)n
=

ˆ
eip0x0eie

−λp0~p·~x(F f̄)(p)
dnp

(2π)n
.

Finally performing the Fourier transform in the ~p variables we �nd

f∗(x) =

ˆ
eip0x0(F0f̄)(p0, e

−λp0~x)
dp0

2π

The product can be computed in a similar way. For more details see [DuSi13].

A nice property of this algebra is that it comes naturally with an action of the κ-Poincaré

algebra Pκ on it. In [DuSi13] it was proven that A is a left Pκ-module ∗-algebra, which means

that the action of the κ-Poincaré symmetries on A preserves the Hopf algebraic structure. In

particular the action of the translations sector is elementary, with (Pµ . f)(x) = −i(∂µf)(x)

and (E . f)(x) = f(x0 + iλ, ~x). This remains true for the n-dimensional case.

Now we can introduce a Hilbert space by using the GNS-construction for A, after the

choice of some weight ω. There is a natural choice which respects the symmetries of the

κ-Poincaré Hopf algebra, see [DuSi13, Mer11]. It is simply given by the integral of a function

f ∈ A with respect to the Lebesgue measure over Rn, and we denote it by ω. However,

di�erently from the commutative case, it does not satisfy the trace property.

Proposition 6.3. For f, g ∈ A we have the twisted trace property

ˆ
(f ? g)(x)dnx =

ˆ
(σn−1(g) ? f)(x)dnx ,

where we de�ne σ(g)(x) := g(x0 + iλ, ~x).
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Proof. First we use the change of variables ~x→ eλp0~x and obtain

ˆ
(f ? g)(x)dnx =

ˆ ˆ
eip0x0(F0f)(p0, ~x)g(x0, e

−λp0~x)
dp0

2π
dnx

=

ˆ ˆ
eip0x0e(n−1)λp0(F0f)(p0, e

λp0~x)g(x0, ~x)dnx
dp0

2π
.

Now, using the analiticity of the functions of A in the �rst variable, we can shift x0 →
x0 + i(n− 1)λ to obtain the action of σn−1 on g, that is

ˆ
(f ? g)(x)dnx =

ˆ ˆ
eip0x0(F0f)(p0, e

λp0~x)g(x0 + i(n− 1)λ, ~x)dnx
dp0

2π

=

ˆ ˆ
eip0x0(F0f)(p0, e

λp0~x)σn−1(g)(x0, ~x)dnx
dp0

2π
.

It only remains to rewrite this expression in terms of the ?-product. Writing explicitely the

Fourier transform F0f we have

ˆ
(f ? g)(x)dnx =

ˆ ˆ
eip0x0

ˆ
e−ip0y0f(y0, e

λp0~x)σn−1(g)(x0, ~x)dy0d
nx
dp0

2π
.

We need to do some rearranging: change p0 → −p0, relabel y0 ↔ x0 and exchange the order

of the x0 and y0 integral. The result of these operations is

ˆ
(f ? g)(x)dnx =

ˆ ˆ
eip0x0f(x0, e

−λp0~x)

ˆ
e−ip0y0σn−1(g)(y0, ~x)dy0d

nx
dp0

2π
.

But now the last integral is just the Fourier transform of σn−1(g) in the y0 variable, so

ˆ
(f ? g)(x)dnx =

ˆ ˆ
eip0x0(F0σ

n−1(g))(p0, ~x)f(x0, e
−λp0~x)

dp0

2π
dnx .

Finally we observe that the right hand side is just the integral of the function (σn−1(g)?f)(x),

which proves the result.

As in the previous chapter, this property can be rephrased as a KMS condition for ω.

Proposition 6.4. The weight ω satis�es the KMS condition with respect to the modular

group σω, de�ned by (σωt f)(x0, ~x) := f(x0 − t(n − 1)λ, ~x). The associated modular operator

is ∆ω = e−(n−1)λP0, where P0 = −i∂0.

On the Hilbert space H, obtained by the GNS-construction for ω, the algebra A acts via

left multiplication, that is π(f)ψ := f ?ψ. In the following we omit the representation symbol

π and just write f for the operator of left multiplication by this function.

It is important to point out that the Hilbert space H is not L2(Rn). On the other hand,

using the fact that A is dense in both Hilbert spaces, one can easily �nd a unitary operator

between the two, as for the two-dimensional case. One can also �nd, using this unitary



Chapter 6. On the spectral and homological dimension of κ-Minkowski space 83

operator, the Schwartz kernel of a certain class of operators which will be of interest to us in

the following. These results are the content of the next proposition.

Proposition 6.5. The Hilbert space H obtained by the GNS-construction for ω is unitarily

equivalent to L2(Rn), via the unitary operator given by

(Uf)(x) =

ˆ
eip0x0(F0f)(p0, e

−λp0~x)
dp0

2π
.

Consider now the operator Uπ(f)g(P )U−1 acting on L2(Rn), where f ∈ A and Pµ = −i∂µ.
Then its Schwartz kernel is given by

K(x, y) =

ˆ
eip(x−y)(Uf)(x0, e

λp0~x)g(p0, e
−λp0~p)

dnp

(2π)n
.

6.2.3 Dirac operator and di�erential calculus

The next step is the introduction of a self-adjoint operator D satisfying certain conditions,

the so-called Dirac operator. From the analysis given in the two-dimensional case, we know

that to obtain a boundedness condition for D we need to use a twisted commutator. This

amounts to introducing an automorphism σ of the algebra A, the twist. Then for each f ∈ A
the operator [D, f ]σ = Df−σ(f)D should be bounded. We need to �nd what are the possible

choices for D and the automorphism σ such that this condition is ful�lled. We consider some

additional assumptions which are related to the symmetries and the classical limit, which we

state precisely below. The analysis for the general n-dimensional case is essentially identical

to the two-dimensional case, so we skip the details of the computations.

As in the classical case we enlarge the Hilbert space to accomodate for spinors. Therefore

we consider H = Hr⊗C[n/2], where Hr is the Hilbert space previously introduced. Here [n/2]

is the dimension of the spinor bundle on Rn, and we use the notation Γµ for the matrices

representing the Cli�ord algebra, which satisfy {Γµ,Γν} = 2δµν . Then we can write D in the

form D = ΓµD̂µ, where D̂µ are self-adjoint operators on Hr.
Now we state our assumptions for the Dirac operator D and the automorphism σ. We

denote by ρ the map from the extended momentum algebra Tκ to (possibly unbounded)

operators on H, which is constructed similarly to the two-dimensional case. Since D should

be determined by the symmetries, we assume that D̂µ = ρ(Dµ) for some Dµ ∈ Tκ, which is

basically the requirement of equivariance. Similarly we assume that σ is given by σ(f) = σ.f

for some σ ∈ Tκ, which to be an automorphism must have a coproduct of the form ∆(σ) =

σ ⊗ σ. Since the parameter λ is a physical constant of the model, which has the dimension

of a length, the Dirac operator must have the dimension of an inverse length. Moreover we

require that D reduces to the classical Dirac operator in the limit λ→ 0, by which we mean

that for all ψ ∈ A we should have lim D̂µψ = P̂µψ.
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Proposition 6.6. Under the assumptions given above, we have that there is a unique operator

D and a unique automorphism σ such that [D, f ]σ is bounded for every f ∈ A. They are

given by D = ΓµDµ, with D0 = λ−1(1− e−λP0) and Dj = Pj, while σ = e−λP0 .

Notice that formally for λ → 0 we obtain the usual Dirac operator on Rn. We have the

interesting relation D2 = ∆
(n−1)−1

ω C, where ∆ω is the modular operator of the weight ω and

C is the �rst Casimir of the κ-Poincaré algebra, which is given by

C =
4

λ2
sinh2

(
λP0

2

)
+
n−1∑
j=1

eλP0P 2
j .

Now we discuss some aspects of the di�erential calculus associated with the operator D.

For a spectral triple (A,H, D) one de�nes the A-bimodule Ω1
D of one-forms as the linear span

of operators of the form a[D, b], with a, b ∈ A. Then d(a) = [D, a] is a derivation of A with

values in Ω1
D, that is d(ab) = d(a)b+ ad(b), which immediately follows from the properties of

the commutator. In the twisted case this de�nition must be modi�ed, since we have

[D, ab]σ = [D, a]σb+ σ(a)[D, b]σ .

The necessary modi�cation is very simple [CoMo08]. One simply de�nes Ω1
D to be the linear

span of operators of the form a[D, b]σ, with the bimodule structure given by a · [D, b]σ · c =

σ(a)[D, b]σc. Then it is obvious that dσ(a) = [D, a]σ is a derivation of A with values in Ω1
D.

In the non-compact case, already at the untwisted level, it is not completely clear how

one should generalize this notion. One can replace the algebra A with some unitization, as

done in [GGISV04]. However in this case there is no analogue of the one-form dxµ, since the

function xµ does not belong to A or some unitization of it. Nevertheless, it is clear that in the

commutative case [D,xµ] extends to a bounded operator, in particular it is equal to −iΓµ.
This is also the case in this non-commutative setting: indeed notice that for any f ∈ A we

have the equality

[D, f ]σ = Γµ(Dµ . f) ,

where D0 = λ−1(1− e−λP0) and Dj = Pj . Now it is easy to see that the twisted commutator

[D,xµ]σ extends to a bounded operator and in particular [D,xµ]σ = −iΓµ, as in the com-

mutative case. Adopting the natural notation df = [D, f ]σ, we can write df = dxµ(iDµ . f).

Then from the bimodule structure on Ω1
D it then follows that

df = dxµ · (iDµ . f) = σ−1(iDµ . f) · dxµ .

The introduction of bicovariant di�erential calculi on κ-Minkowski space was investigated in

[Sit95]. It follows from our construction that the di�erential calculus de�ned by the operator
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D is an example of such a bicovariant di�erential calculus. We have the relation

xµ · dxν − dxν · xµ = σ(xµ)dxν − dxνxµ = iλδµ0 dx
ν .

Therefore in the notation of [Sit95] we obtain [xµ, dxν ] = iAµνρ dxρ with Aµνρ = λδµ0 δ
ν
ρ .

6.3 Spectral dimension

6.3.1 The spectral dimension

In the previous chapter we have shown that the analogue of this construction, for the two-

dimensional case, does not give a �nitely summable (twisted) spectral triple. This is true also

for the general n-dimensional case, and we can try to interpret this result with the following

heuristic argument. Suppose we did �nd a spectral dimension n, coinciding with the classical

dimension. Then, from the general properties of twisted spectral triples, it would follow

that ϕ(ab) = ϕ (σn(b)a), where σ(a) = e−λP0aeλP0 and ϕ is the non-commutative integral

(de�ned, for example, in terms of the Dixmier trace). The weight ω, on the other hand,

satis�es ω(f ? g) = ω(σωi (g) ? f), where σωi (a) = e−(n−1)λP0ae(n−1)λP0 . Therefore we have a

mismatch between the modular properties of the weight ω and the integral ϕ, which shows

that we can not recover the weight ω from the non-commutative integral.

In the previous chapter we have argued that we need to use a weight to obtain �nite

summability, as in the framework of modular spectral triples. We recall that the relevant

de�nition for us is the following.

De�nition 6.2. Let (A,H, D) be a non-compact modular spectral triple with weight Φ. We

say that it is �nitely summable and call p the spectral dimension if the following quantity

exists

p := inf{s > 0 : ∀a ∈ A, a ≥ 0, Φ
(
a(D2 + 1)−s/2

)
<∞} .

We can choose our weight to be of the form Φ(·) = Tr(∆Φ·), where ∆Φ is a positive and

invertible operator. We call it the modular operator associated to the weight Φ, and denote

the corresponding modular group by σΦ. As we discussed above, the mismatch of one power

of e−λP0 suggests setting ∆Φ = e−λP0 as the modular element. It is instructive to consider a

slightly more general situation, which we discuss in the following proposition.

Proposition 6.7. Let Φt(·) = Tr(∆t
Φ·) be the weight with modular operator ∆t

Φ = e−tλP0,

with t ∈ R. Then, for any f ∈ A, we have Φt

(
f(D2 + µ2)−s/2

)
<∞ if and only if t > 0 and

s > n− 1 + t. In this case the spectral dimension is given by p = n− 1 + t.

Proof. First of all notice that we have ∆t
Φf = σt(f)∆t

Φ, so that we can consider without loss

of generality the operator A := f∆t
Φ(D2 + µ2)−s/2. Using the unitary operator U we can

consider A as an operator on L2(Rn ⊗ C2[n/2]) whose symbol, thanks to Proposition 6.5, is
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given by a(x, ξ) := (Uf)(x0, e
λξ0~x)G∆

s,t(ξ0, e
−λξ0~ξ), where we have de�ned

G∆
s,t(ξ) = e−tλξ0

(
λ−2

(
1− e−λξ0

)2
+ ~ξ2 + µ2

)−s/2
.

To prove that the operator A is trace-class it su�ces to show that its symbol and certain

number of its derivatives are integrable [Ars08]. We now show that the symbol a(x, ξ) is

integrable. With a simple change of variables we can factorize the integral as

ˆ
|a(x, ξ)|dnxdnξ =

ˆ
G∆
s,t(ξ)d

nξ

ˆ
|(Uf)(x)|dnx .

The integral of (Uf)(x) is clearly �nite. We can now perform the integral in the variables

(ξ1, · · · , ξn−1) using the well known formula

ˆ
(ξ2 + a2)−z/2dNξ = πN/2

Γ
(
z−N

2

)
Γ
(
z
2

) a−(z−N) ,

which is valid for Re(z) > N . Then we have

ˆ
G∆
s,t(ξ)d

nξ = π(n−1)/2
Γ
(
s−(n−1)

2

)
Γ
(
s
2

) ˆ
e−tλξ0

(
λ−2

(
1− e−λξ0

)2
+ µ2

)− s−(n−1)
2

dξ0 ,

provided that s > n− 1. To proceed further we consider the asymptotics of the integrand

Ĩt(s) := e−tλξ0
(
λ−2

(
1− e−λξ0

)2
+ µ2

)− s−(n−1)
2

.

For ξ0 → +∞ we have Ĩt ∼ e−tλ|ξ0|, so it integrable provided that t > 0, independently of s.

In the other regime ξ0 → −∞ we have instead

Ĩt ∼ etλ|ξ0|e−(s−(n−1))λ|ξ0| = e−(s−(n−1)−t)λ|ξ0| ,

which is integrable when s > n − 1 + t. It is easy to see that the various derivatives of the

symbol a(x, ξ) are integrable under these conditions. Finally taking the in�mum over s we

obtain that the spectral dimension is p = n− 1 + t.

We see that by introducing the weight Φt we are able to obtain a �nite spectral dimension.

But what about the free parameter t? Of course the most natural choice is to �x t = 1,

in such a way that the spectral dimension coincides with the classical dimension n. We

now want to argue that this ambiguity arises because di�erent values of t give rise to the

same modular group for the non-commutative integral. The argument that we give here is

somewhat heuristic because of the di�culties involved with treating a non-compact geometry,

but can be easily justi�ed in the compact setting under some mild assumptions [Mat3].
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Let us say that we de�ne our non-commutative integral in terms of Φt, as we will do later

as a residue of a certain zeta function. Then on general grounds we expect to have

ϕ(ab) = ϕ
(
σΦt
i (σp(b)) a

)
.

Here σ is the twist coming from the twisted commutator and σΦ is the modular group

of Φ. With respect to the case of twisted spectral triples there is an additional twisting,

coming from the modular operator of Φt. Now we have that the twist of the commutator is

σ(a) = e−λP0aeλP0 while the modular group of the weight is σΦt
i (a) = etλP0ae−tλP0 . Finally

for t > 0 the spectral dimension is p = n− 1 + t. Using these formulae we can compute

σΦt
i (σp(b)) a = etλP0e−(n−1+t)λP0be(n−1+t)λP0e−tλP0a

= e−(n−1)λP0be(n−1)λP0a = σωi (b)a .

We learn, from this short computation, that this speci�c combination allows us to recover the

KMS condition for the weight ω. This provides strength to the argument that recovering the

weight ω from the non-commutative integral provides the right guidance in this setting. At

the same time it shows that this is not enough to �x the free parameter t, since it disappears

in the combination σΦt ◦ σp. We do not know at the moment what kind of condition could

select the value t = 1 uniquely (apart from recovering the classical dimension, of course).

6.3.2 Poles of the zeta function

In the following we �x t = 1. Then the function Φ
(
f(D2 + µ2)−s/2

)
has a singularity at

s = n, whose nature we now want to investigate, along with its analytic continuation to the

complex plane. The singularities of this kind of �zeta function� play an important role in the

local index formula of Connes and Moscovici [CoMo95]. Before starting the analysis, let us

brie�y review the commutative case of Rn. The Dirac operator is given by D = −iΓµ∂µ,
where Γµ are the gamma matrices satisfying the relations {Γµ,Γν} = 2δµν and the dimension

of the spinor bundle is 2[n/2]. We consider the zeta function de�ned by

ζf (z) = Tr
(
f(D2 + µ2)−z/2

)
.

Here µ is, as usual, a non-zero real number needed to compensate for the lack of invertibility

of D. An immediate computation shows that

ζf (z) =
2[n/2]

(2π)n

ˆ (
ξ2 + µ2

)−z/2
dnξ

ˆ
f(x)dnx ,
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where the coe�cient 2[n/2] comes from the trace over the spinor bundle. The integral over ξ

is �nite for Re(z) > n and we get

Ic(z) :=

ˆ (
ξ2 + µ2

)−z/2
dnξ = πn/2µn−z

Γ
(
z−n

2

)
Γ
(
z
2

) . (6.3)

We obtain an analytic continuation using well-known properties of the gamma function, and

we �nd that the only singularities of ξf (z) are simple poles. Indeed Γ(z) has poles on the

negative real axis at z = 0,−1,−2, · · · , so that the function Γ
(
z−n

2

)
has poles at z = n−2m,

where m ∈ N0. When n is even the poles at z = 0,−2,−4, · · · are canceled by the zeroes of

Γ
(
z
2

)
. Then the result is that ζf (z) has simple poles at z = n, n − 2, · · · , 2 when n is even,

and has simple poles at z = n, n− 2, · · · , 1,−1,−3, · · · when n is odd.

For compact Riemannian manifolds this kind of zeta function has been studied by Mi-

nakshisundaram and Pleijel [MiPl49], and here we have the analogous result for Rn. We can

easily compute the residue at z = n of ζf (z), which is given by

Resz=nζf (z) =
2[n/2]

(2π)n
2πn/2

Γ
(
n
2

) ˆ f(x)dnx .

Now we are ready to study the singularities and the analytic continuation in the case of

κ-Minkowski space, where the relevant zeta function is de�ned by

ζf (z) := Φ
(
f(D2 + µ2)−z/2

)
,

where we recall that Φ(·) = Tr(∆Φ·) and we omit the representation symbol π.

Proposition 6.8. Let f ∈ A and Re(z) > n. Then we have

ζf (z) =
2[n/2]

(2π)n
I(z)

ˆ
f(x)dnx ,

where I(z) = 1
2(Ic(z) + Iλ(z)), with the function Ic(z) being the classical result given in (6.3),

which is independent of λ, and the function Iλ(z) being given by

Iλ(z) = π(n−1)/2µ(n−1)−z
Γ
(
z−(n−1)

2

)
Γ
(
z
2

) λ−1
2F1

(
1

2
,
z − (n− 1)

2
;
3

2
;− 1

(λµ)2

)
.

The function I(z) reduces to the classical one Ic(z) in the limit λ→ 0.

Proof. From the proof of Proposition 6.7 we have

Tr
(
f∆Φ(D2 + µ2)−z/2

)
=

2[n/2]

(2π)n

ˆ
G∆
s (ξ)dnξ

ˆ
(Uf)(x)dnx ,
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where we recall that we have set t = 1. Similarly to the classical case we set I(z) :=´
G∆
s (ξ)dnξ. We already partially computed this integral, and the result was

I(z) = π(n−1)/2
Γ
(
z−(n−1)

2

)
Γ
(
z
2

) ˆ
e−tλξ0

(
λ−2

(
1− e−λξ0

)2
+ µ2

)− z−(n−1)
2

dξ0 .

We need to compute the last integral. First we do the change of variable r = e−λξ0 and obtain

I(z) = π(n−1)/2
Γ
(
z−(n−1)

2

)
Γ
(
z
2

) λz−n
ˆ ∞

0

(
(1− r)2 + (λµ)2

)− z−(n−1)
2 dr .

This integral can be computed analytically. We use the formula

ˆ ∞
0

(
(1− r)2 + a2

)−z
dr = a−2z

[
a
√
π

2

Γ
(
z − 1

2

)
Γ(z)

+ 2F1

(
1

2
, z;

3

2
;− 1

a2

)]
,

which is valid for Re(z) > 1/2. Here 2F1(a, b; c; z) is the ordinary hypergeometric function.

Therefore the integral in I(z) is �nite for Re(z) > n and we have

I(z) =
1

2
πn/2µn−z

Γ
(
z−n

2

)
Γ
(
z
2

) +
1

2
Iλ(z) ,

where we have de�ned the function

Iλ(z) := 2π(n−1)/2µ(n−1)−z
Γ
(
z−(n−1)

2

)
Γ
(
z
2

) λ−1
2F1

(
1

2
,
z − (n− 1)

2
;
3

2
;− 1

(λµ)2

)
.

Notice that we have I(z) = 1
2(Ic(z) + Iλ(z)). Finally we have

´
Uf =

´
f , which is valid for

f ∈ A, from which the �rst part of the proposition follows.

Now we want to consider the classical limit of I(z), in the case Re(z) > n. Using the linear

transformation formulae for the hypergeometric function 2F1(a, b; c; z) it is easy to obtain an

asymptotic expansion for large negative z, see [AbSt70]. This expansion takes the form

2F1(a, b; c;−z) ∼ Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
z−a +

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

z−b .

With this result it is easy to compute the limit

lim
λ→0

λ−1
2F1

(
1

2
,
z − (n− 1)

2
;
3

2
;− 1

(λµ)2

)
=

√
π

2

Γ
(
z−n

2

)
Γ
(
z−(n−1)

2

)µ .
Then we see that I(z) reduces to Ic(z) in the classical limit λ→ 0.
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Corollary 6.9. For f ∈ A we have

Resz=nζf (z) = cnω(f) ,

where the constant is de�ned as cn = 2[n/2]

(2π)n
πn/2

Γ(n2 )
.

Proof. The function Iλ(z) is regular at z = n, so we get one-half of the classical residue, that

is we have Resz=nI(z) = πn/2/Γ
(
n
2

)
. The result follows immediately.

Proposition 6.10. Let f ∈ A. Then the zeta function

ζf (z) =
2[n/2]

(2π)n
I(z)

ˆ
f(x)dnx

has a meromorphic extension to the complex plane with only simple poles.

Proof. Since I(z) = 1
2(Ic(z) + Iλ(z)), where Ic(z) is the integral (6.3) arising in the commu-

tative case, the zeta function ζf (z) has the poles of the commutative case plus additional

poles coming from the function Iλ(z). To study them consider the hypergeometric function

2F1(a, b; c; z), with the assumption that c does not belong to {0,−1,−2, · · · }. The series

de�ning 2F1(a, b; c; z) is convergent in the open disk |z| < 1, but can be analytically con-

tinued to the entire complex plane with a branch cut from z = 1 to z = ∞. Therefore the

function

2F1

(
1

2
,
z − (n− 1)

2
;
3

2
;− 1

(λµ)2

)
does not have any poles in z. Now recall that the function Iλ(z) is de�ned by

Iλ(z) = 2π(n−1)/2λ−1µ(n−1)−z
Γ
(
z−(n−1)

2

)
Γ
(
z
2

) 2F1

(
1

2
,
z − (n− 1)

2
;
3

2
;− 1

(λµ)2

)
.

Therefore the only poles of this function come from the ratio of the two gamma functions.

These are simple poles, from which the claim follows.

It is interesting to note that the poles of the function Ic(z) come from the ratio Γ
(
z−n

2

)
/Γ
(
z
2

)
,

while the poles of the function Iλ(z) come from the ratio Γ
(
z−(n−1)

2

)
/Γ
(
z
2

)
: the latter are

therefore the poles of the (n − 1)-dimensional case. If we think of the Lorentzian version of

κ-Minkowski space, we can relate this result to the di�erent properties of the time direction

from the space directions, evident already from the commutation relations.

6.4 Twisted homology

6.4.1 Motivation and preliminaries

In this section we want to study the homological properties of κ-Minkowski space. In the non-

compact setting it is not completely clear, at least as far as we understand, which algebra
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should be considered in this respect. A possibility is to consider a certain unitization of

the algebra A in consideration, as done in [GGISV04]. On the other hand, already at the

commutative level, if we consider Rn we would like to have an analog of the volume form

dx1 ∧ · · · ∧ dxn, but is clear that the functions xµ do not belong to a unital algebra.

Our aim is to investigate the homological properties of the enveloping algebra U(gκ), where

gκ is the Lie algebra underlying κ-Minkowski space. General results for the twisted homology

of an enveloping algebra are given in [BrZh08], where the twist is called the Nakayama

automorphism. Here we choose a more elementary approach, which involves the explicit

computation using the Chevalley-Eilenberg complex for the Lie algebra gκ. This choice also

allows us to do a more detailed comparison with other examples coming from quantum groups.

Let us start by recalling some notions from homological algebra, following the exposition

given in [Kha]. Let g be a Lie algebra and M be a left g-module. The Lie algebra homology

of g with coe�cients in M is, by de�nition, the homology of the Chevalley-Eilenberg complex

M
δ←−M ⊗ Λ1g

δ←−M ⊗ Λ2g
δ←− · · · ,

where Λkg denotes the k-th exterior power of g and the di�erential δ is de�ned by

δ(m⊗X1 ∧ · · · ∧Xn) =
n∑
i<j

(−1)i+jm⊗ [Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn

+

n∑
i=1

(−1)iXi(m)⊗X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn ,

(6.4)

where the hat denotes omission. Denote by U(g) the universal enveloping algebra of g. Given

a U(g)-bimodule M , we de�ne the left g-module Mad, where Mad = M as vector spaces and

the left module structure is de�ned for all X ∈ g and m ∈M by

X(m) = Xm−mX .

We can de�ne a map

ε : Mad ⊗ Λng→M ⊗ U(g)⊗n

from the Lie algebra complex to the Hochschild complex by

ε(m⊗X1 ∧ · · · ∧Xn) =
∑
s∈Sn

sgn(s)m⊗Xs(1) ⊗ · · · ⊗Xs(n) .

One can prove that ε : C(g,Mad) → C(U(g),M) is a quasi-isomorphism, so it induces an

isomorphism between the corresponding homology groups

H∗(g,M
ad) ∼= H∗(U(g),M) .
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In particular if we chooseM = σU(g), that is U(g) with the bimodule structure a·b·c = σ(a)bc,

then on the right we have the twisted Hochschild homology H∗(U(g), σU(g)). The twisted

Hochschild dimension is de�ned, according to [BrZh08], as the maximum of the homological

dimension of H∗(U(g), σU(g)) over all the automorphisms σ of U(g). The case σ = id gives

the usual Hochschild homology. Interest in this twisted homology theory comes from the fact

that, in several examples coming from quantum groups, it allows to avoid the phenomenon

of dimension drop. We will see that this is the case also here.

6.4.2 The two dimensional case

To make the general result more transparent, it is useful to show �rst the relevant computa-

tions for the two dimensional case. We also �nd convenient, for notational clarity, to write

x1, x2 instead of x0, x1 as in the previous sections. Since the Lie algebra is two dimensional

the complex is given by

M
δ←−M ⊗ Λ1g

δ←−M ⊗ Λ2g
δ←− 0 .

The di�erential δ acting on M ⊗ Λ2g takes the form

δ(m⊗X1 ∧X2) = −m⊗ [X1, X2]−X1(m)⊗X2 +X2(m)⊗X1 .

We write X1 and X2 in the x1, x2 basis as X1 = c1
1x1 + c2

1x2 and X2 = c1
2x1 + c2

2x2, for some

coe�cients. Their commutator is given by

[X1, X2] = (c1
1c

2
2 − c1

2c
2
1)iλx2 .

Notice that for m⊗X1 ∧X2 to be non-trivial we need c1
1c

2
2 − c1

2c
2
1 6= 0. Indeed we have

m⊗X1 ∧X2 = (c1
1c

2
2 − c1

2c
2
1)m⊗ x1 ∧ x2 .

Proposition 6.11. The twisted homological dimension of U(gκ) is equal to two.

Proof. Since Λ3g is trivial we only have to show that there exists a non-trivial element m⊗
X1 ∧X2 such that δ(m⊗X1 ∧X2) = 0. Computing the di�erential we get

δ(m⊗X1 ∧X2) = −(c1
1c

2
2 − c1

2c
2
1) ((iλm+ x1(m))⊗ x2 − x2(m)⊗ x1) .

Since c1
1c

2
2 − c1

2c
2
1 6= 0, the condition δ(m⊗X1 ∧X2) = 0 implies

(iλm+ x1(m))⊗ x2 − x2(m)⊗ x1 = 0 .

This in turn implies the conditions x2(m) = 0 and iλm+ x1(m) = 0.
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We have X(m) = σ(X)m−mX, where σ is an automorphism of the form

σ(x1) = x1 + iλµ , σ(x2) = x2 ,

with µ ∈ C. By the Poincaré�Birkho��Witt theorem we can write m ∈ U(gκ) as

m =
∑
a,b

fa,bx
a
1x

b
2 ,

where the sum is �nite, fa,b are numerical coe�cients and the exponents are non-negative

integers. Since the automorphism σ acts trivially on x2, the condition x2(m) = 0 implies

that m commutes with x2, that is m should not depend on x1.

The second condition, on the other hand, can be rewritten as

iλm+ x1(m) = iλ(1 + µ)m+ [x1,m] = 0 .

An easy computation then shows that

[x1,m] =
∑
b

f0,b[x1, x
b
2] = iλ

∑
b

f0,bbx
b
2 .

Plugging this result into iλm+ x1(m) = 0 we obtain

iλm+ x1(m) = iλ(1 + µ)
∑
b

f0,bx
b
2 + iλ

∑
b

f0,bbx
b
2

=
∑
b

f0,biλ(1 + b+ µ)xb2 = 0 .

For each b ∈ N0, the corresponding term in the sum vanishes if f0,b = 0 or µ = −(1+b). Since

at least one of the coe�cients must be non-zero, we must have f0,b 6= 0 and µ = −(1 + b) for

some b ∈ N0, which in turn implies that all the other coe�cients must be zero. For any such

choice we obtain an element m such that δ(m⊗X1∧X2) = 0, which concludes the proof.

In particular, for the case b = 0 the automorphism σ(x1) = x1−iλ, σ(x2) = x2 corresponds

to the inverse of the modular group considered in the previous chapter.

6.4.3 The n-dimensional case

Let us write δ = δ1 + δ2, where δ1 and δ2 are given respectively by the �rst and second line of

equation (6.4). To study the case of a general dimension we start by proving two lemmata,

which allows to rewrite the di�erential in a easier form. The �rst one is valid for any Lie

algebra g, and simply requires some gymnastics with di�erential forms, while the second one

is related to the simple structure of the commutation relations of the Lie algebra gκ.
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Lemma 6.12. Let Xi ∈ g be given by Xi = cjixj, where c
j
i are numerical coe�cients and

{xj} is a basis of the Lie algebra g. Then we have

δ2(m⊗X1 ∧ · · · ∧Xn) = detC
n∑
j=1

xj(m)⊗ x1 ∧ · · · ∧ x̂j ∧ · · · ∧ xn ,

where C is the matrix formed by the coe�cients cji .

Proof. Denoting by Ci,j the (i, j)-minor of the matrix C we can write

X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn =
n∑
j=1

Ci,jx1 ∧ · · · ∧ x̂j ∧ · · · ∧ xn .

If we expand Xi in the basis of the generators we can write

Xi(m) =
n∑
k=1

cki xk(m) .

Then the second line of the di�erential δ given by (6.4) becomes

δ2 =
n∑
j=1

n∑
k=1

xk(m)⊗
n∑
i=1

(−1)ickiCi,jx1 ∧ · · · ∧ x̂j ∧ · · · ∧ xn .

The sum over i of (−1)ickiCi,j looks like a Laplace expansion of the determinant of some

matrix. Indeed, it is the determinant of the matrix obtained from C by replacing the j-

th column, given by cja with a = 1, · · · , n, with the column cka. If k 6= j then, after this

replacement, we obviously have two linearly dependent columns, so the determinant vanishes.

On the other hand if k = j we obtain detC, independent of j. So we can write

n∑
i=1

(−1)ickiCi,j = detCδkj .

Plugging this result into the previous formula we �nd the result.

Lemma 6.13. With the same notation as above, consider the Lie algebra gκ with commutation

relations [x1, xj ] = iλxj, where j > 1. Then we have

δ1(m⊗X1 ∧ · · · ∧Xn) = detCiλ(n− 1)m⊗ x̂1 ∧ x2 ∧ · · · ∧ xn .

Proof. We start by computing the commutator of two elements Xi

[Xi, Xj ] = iλ

n∑
k=1

(c1
i c
k
j − cki c1

j )xk = iλ(c1
iXj − c1

jXi) .
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Then the �rst line of the di�erential δ given by (6.4) becomes

δ1 =
∑
i<j

iλc1
i (−1)i+jm⊗Xj ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn

−
∑
i<j

iλc1
j (−1)i+jm⊗Xi ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn .

Now we can bring Xi and Xj to their missing spots, picking up some signs. When we move

Xi we have to go across i− 1 terms, so we pick a (−1)i−1, while when we move Xj we have

to go across j − 2 terms, since also Xi is missing, so we pick a (−1)j−2. Then we have

δ1 =
∑
i<j

iλc1
i (−1)im⊗X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn

+
∑
i<j

iλc1
j (−1)jm⊗ ∧X1 ∧ · · · ∧ X̂j ∧ · · · ∧Xn .

Notice that now j and i do not appear anymore respectively in the �rst and the second sum.

It is not di�cult to see that we can rewrite them as

δ1 =

n∑
i=1

iλ(n− i)c1
i (−1)im⊗X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn

+

n∑
j=1

iλ(j − 1)c1
j (−1)jm⊗ ∧X1 ∧ · · · ∧ X̂j ∧ · · · ∧Xn .

Summing the two contributions we get

δ1 = iλ(n− 1)
n∑
i=1

(−1)ic1
im⊗ ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn .

Writing the wedge products in terms of the minors of C we obtain

δ1 = iλ(n− 1)

n∑
j=1

n∑
i=1

(−1)ic1
iCi,jm⊗ ∧x1 ∧ · · · ∧ x̂j ∧ · · · ∧ xn .

Finally, using the same arguments of the previous lemma, we obtain

δ1 = detCiλ(n− 1)m⊗ x̂1 ∧ x2 ∧ · · · ∧ xn .

This concludes the proof of the lemma.

Theorem 6.14. Let gκ be the Lie algebra associated with κ-Minkowski space in n-dimensions,

which is characterized by the commutation relations [x1, xj ] = iλxj, where j > 1. Then the

twisted homological dimension of U(gκ) is equal to n.



Chapter 6. On the spectral and homological dimension of κ-Minkowski space 96

Proof. As in the two dimensional case, we only need to show that there is an element m ⊗
X1∧· · ·∧Xn such that δ(m⊗X1∧· · ·∧Xn) = 0. Putting together the two previous lemmata

we have the following expression for the di�erential

δ(m⊗X1 ∧ · · · ∧Xn) = detCiλ(n− 1)m⊗ x̂1 ∧ x2 ∧ · · · ∧ xn

+ detC

n∑
j=1

xj(m)⊗ x1 ∧ · · · ∧ x̂j ∧ · · · ∧ xn .

Since detC is di�erent from zero, we need to impose the conditions xj(m) = 0 for j = 2, · · · , n.
Again we have to consider automorphisms which are of the form

σ(x1) = x1 + iλµ , σ(xj) = xj ,

with µ ∈ C. Then xj(m) = [xj ,m] = 0 implies that m does not depend on x1. The other

condition we need to impose is iλ(n− 1)m+ x1(m) = 0, which can be rewritten in the form

iλ(n− 1 + µ)m+ [x1,m] = 0 .

By the Poincaré�Birkho��Witt theorem we can write m ∈ U(gκ) as

m =
∑

a2,··· ,an
f0,a2,··· ,anx

a2
2 · · ·x

an
n ,

where the sum is �nite, f0,a2,··· ,an are numerical coe�cients and the exponents are non-

negative integers. We have already imposed the condition that m does not depend on x1.

Now we compute the commutator of m with x1

[x1,m] =
∑

a2,··· ,an
f0,a2,··· ,an [x1, x

a2
2 · · ·x

an
n ]

=
∑

a2,··· ,an
f0,a2,··· ,an

(
[x1, x

a2
2 ]xa33 · · ·x

an
n + · · ·+ xa22 · · ·x

an−1

n−1 [x1, x
an
n ]
)

= iλ
∑

a2,··· ,an
f0,a2,··· ,an(a2 + · · ·+ an)xa22 · · ·x

an
n .

Using this result we �nally obtain

iλm+ x1(m) =
∑

a2,··· ,an
f0,a2,··· ,aniλ

(
n− 1 +

n∑
k=2

ak + µ
)
xa22 · · ·x

an
n = 0 .

For each (a2, · · · , an) ∈ Nn−1
0 , the corresponding term in the sum vanishes if f0,a2,··· ,an = 0

or µ = −(n− 1 +
∑n

k=2 ak). Since at least one of the coe�cients must be non-zero, we must

have f0,a2,··· ,an 6= 0 and µ = −(n− 1 +
∑n

k=2 ak) for some (a2, · · · , an) ∈ Nn−1
0 , which in turn

implies that all the other coe�cients must be zero. For any such choice we obtain an element
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m such that δ(m⊗X1 ∧ · · · ∧Xn) = 0, which concludes the proof.

In particular, by choosing ak = 0 for all k = 2, · · · , n, we obtain the automorphism given

by σ(x1) = x1 − i(n − 1)λ and σ(xj) = xj . This is exactly the inverse of the modular

group σω−i of the weight ω we introduced in the �rst part, which was the starting point for

the construction. Other choices give negative powers of σω−i. This is very similar to what

happens for the twisted homology of SLq(2) [HaKr05] and for the Podle± spheres [Had07].

There is another feature of this result which is worth mentioning. We �x now the simplest

non-trivial cycle. Passing from from the Lie algebra complex to the Hochschild complex via

ε(m⊗X1 ∧ · · · ∧Xn) =
∑
s∈Sn

sgn(s)m⊗Xs(1) ⊗ · · · ⊗Xs(n) ,

we see that this cycle corresponds to

c = detC
∑
s∈Sn

sgn(s)1⊗ xs(1) ⊗ · · · ⊗ xs(n) .

We notice that it has the same form as in commutative case. Indeed the analogy goes further

since, as we discussed in the section on the Dirac operator and the di�erential calculus, we

have that [D,xµ]σ = −iΓµ. Therefore, if we represent this cycle on the Hilbert space by

a0[D, a1]σ · · · [D, an]σ, we get exactly the orientation cycle of the commutative case, which

corresponds to the volume form dx1 ∧ · · · ∧ dxn.



Chapter 7

Non-commutative integration, zeta

functions and the Haar state for

SUq(2)

In this chapter we study a notion of non-commutative integration, in the spirit of modular

spectral triples, for the quantum group SUq(2). We de�ne the non-commutative integral as

the residue at the spectral dimension of a zeta function, which is constructed using a Dirac

operator and a weight. We consider the Dirac operator introduced in [KaSe12] and a family

of weights depending on two parameters, which are related to the diagonal automorphisms

of SUq(2). Requiring the non-commutative integral to coincide with the Haar state �xes one

of the parameters. Moreover, by imposing an additional condition on the zeta function, also

the second parameter can be �xed. For this unique choice the spectral dimension coincides

with the classical one. This is based on the paper [Mat3].

7.1 Introduction

Many works have been devoted to studying how quantum groups and their homogeneous

spaces �t into the framework of spectral triples. In the last years, in particular, there have

been several proposals of extensions of this notion, which could be used to accomodate these

classes of non-commutative geometries. This is not unexpected, since the axioms of a spectral

triple are tailored on the case of manifolds, and one expects that new features, which appear

only in the non-commutative world, should play a role in the description of non-commutative

geometries. In Chapter 4 we have presented the approaches of twisted and modular spectral

triples, with the �rst one modifying the commutator condition and the second one, roughly

speaking, modifying the resolvent condition. Also, more recently, there has been an attempt

to merge these two approaches [Kaa11], motivated by a construction for the quantum group

SUq(2) which appeared in [KaSe12]. However there is a natural question that arises by

98
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considering the framework of modular spectral triples: if we are allowed to replace the operator

trace by a weight, are there any preferred choices?

Let us consider this question for the case of compact quantum groups, where we can be

guided by symmetry. In this setting it is well known that there is a unique state, the Haar

state, which is the non-commutative analogue of the Haar integral for compact Lie groups.

But the choice of a state gives a notion of non-commutative integration, as it is known from

the theory of von Neumann algebras [Tak]. Therefore it would seem natural, from the point

of view of spectral triples, to require that the non-commutative integral coincides with the

Haar state. However it is clear that this is not possible in the usual setting: indeed, from the

general properties of spectral triples, it follows that the non-commutative integral is a trace,

while the Haar state does not satisfy the trace property. On the other hand, in the extended

frameworks we mentioned above the non-commutative integral need not be a trace, so that

such a requirement can be in principle satis�ed. This could be used as a reasonable criterion

to choose a weight in the context of modular spectral triples.

Here we will consider this question in detail for the case of the quantum group SUq(2).

More speci�cally we consider the Dirac operator Dq introduced in [KaSe12], which gives a

(twisted) modular spectral triple. We observe that this Dirac operator has an interesting

property, namely it implements a left covariant di�erential calculus on SUq(2).

The non-commutative integral will be de�ned as the residue at the spectral dimension of a

certain zeta function. More precisely, we de�ne a family of zeta functions using the operator

Dq and a family of weights depending on two parameters a, b ∈ R. These two parameters

essentially parametrize the most general diagonal automorphism of SUq(2), and we remark

that the modular group of the Haar state is of this form.

First of all we determine for which values of the parameters the zeta function is well de�ned,

and determine its spectral dimension. Then we impose the requirement of recovering the Haar

state from the non-commutative integral. A necessary condition is that their modular groups

coincide. We will show that this condition �xes b = 1, but leaves a undetermined. Moreover

the non-commutative integral, once properly normalized, turns out to coincide with the Haar

state, independently of the value of a.

This result shows that we can partially �x the arbitrariness in the choice of the weight. We

still have freedom in the choice of the parameter a, which disappears in the non-commutative

integral. On the other hand the spectral dimension depends on a. In particular, after �xing

b = 1, we have that n = a+1. Therefore a preferred choice is a = 2, which makes the spectral

dimension equal the classical one n = 3.

We now argue that there is another requirement, more spectral in nature, that also turns

out to �x this value uniquely. Up to this point we have only used the information contained

in the residue at z = n of the zeta function, that is the residue at the spectral dimension. But

the analytic continuation of the zeta function contains much more information than that.

Indeed, from the point of view of the heat kernel expansion on a compact manifold, the
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residue at z = n corresponds only to the �rst coe�cient of the expansion. Therefore we can

look at the next non-trivial coe�cient which, in terms of the zeta function, corresponds to

computing the residue at a di�erent value. It is easy to see that, for the classical limit of

the operator Dq, this coe�cent vanishes non-trivially. Therefore we can require an analogue

condition for the non-commutative case. It turns out that this condition is satis�ed only in

the case a = 2, which was the value we considered above.

From these results we see that the parameters a and b control the behaviour of the heat

kernel coe�cients. This is by no means obvious from their de�nition. The parameter b

controls the �rst coe�cient and can be �xed by the request of recovering the Haar state.

Instead the parameter a controls the second heat kernel coe�cient, and can be �xed by a

non-trivial vanishing condition. In particular, for this unique choice the spectral dimension

turns out to coincide with the classical one.

7.2 Non-commutative integration

In the description of non-commutative geometry via spectral triples a fundamental role is

played by the Dirac operator D, which is used to formulate many geometrical notions at the

level of operator algebra. For example the notion of integration, which is our main focus, can

be expressed as the Dixmier trace of a certain power of this operator. Indeed, in the case of a

compact manifold of dimension n, for any continuous function f the Dixmier trace of f |D|−n

coincides with the usual integral, up to a normalization constant. However computing the

Dixmier trace is not an easy task in general, and for this reason it is useful to reformulate

this notion of integration in a way which is easier to handle.

One such reformulation is achieved by de�ning the non-commutative integral as a residue

of a zeta function involving D, as is done for example in the case of the local index formula

[CoMo95]. Going back to the manifold case, we can de�ne this zeta function as ζf (z) =

Tr(f |D|−z), for z ∈ C. Then ζf (z) is holomorphic for all Re(z) > n and the residue at z = n

coincides with the integral of f , again up to a normalization constant. For general results that

relate the Dixmier trace, the asymptotics of the zeta function and the heat kernel expansion

see [CRSS07] (see also [CGRS12] for the non-unital case). The results of these papers are

moreover valid in the semi�nite setting, which is of interest to us.

The aim of this section is to de�ne the non-commutative integral as the residue at the

spectral dimension [CPRS06] of a certain zeta function. However, di�erently from the usual

case, our zeta function is not de�ned solely in terms of the spectrum of D, but involves also

the choice of a weight φ. The usual setting is recovered by taking φ equal to the operator

trace. The motivation comes from the approach of modular spectral triples, which, as we

mentioned in the introduction, allows the choice of such a weight. Although we have in mind

the speci�c example of SUq(2) the content of this section is more general in nature.
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7.2.1 The weight

The two de�nitions of non-commutative integration that we mentioned, that is the Dixmier

trace and the residue of the zeta function, rely crucially on the behaviour of the spectrum of

D. But in the non-commutative world, especially in the case of quantum groups, the spectra

of naturally de�ned operators can be very di�erent from their commutative counterparts.

This usually spoils summability conditions, or even the compactness condition. One way out

of these problems is to consider a Dirac operator which has the same spectrum as the classical

one, which is the idea of isospectral deformations [CoLa01]. However it is clear that in this

case, by remaining in the realm of usual spectral triples, one obtains a non-commutative

integral which has the trace property. Therefore, if we consider the case of quantum groups,

we do not recover the Haar state, since it is a non-tracial state.

Another possibility is to modify the de�nition of spectral triple to account for such features.

As we have discussed in previous chapters, one framework which goes in this direction is

that of modular spectral triples, where the idea is to de�ne the notions of compactness and

summability with respect to a weight φ.

For our purposes, that is for the de�nition of a notion of non-commutative integration, it is

su�cient to consider a stripped-down version of this framework. We consider a ∗-algebra A,
which is represented as bounded operators on a Hilbert space H, and a self-adjoint operator

D acting this space. We take a weight of the form φ(·) = Tr(∆φ·), where ∆φ is a positive

and invertible operator. This is essentially the statement of the Radon�Nikodym theorem for

semi�nite weights on von Neumann algebras.

We now de�ne a zeta function in terms of D and φ, and the corresponding notion of

spectral dimension. In the following we will provide de�nitions which are appropriate to the

case of compact spaces. We also assume, for simplicity, that D is invertible.

De�nition 7.1. The zeta function associated to D and φ is de�ned by

ζ(z) := φ(|D|−z) = Tr(∆φ|D|−z).

If it exists, we de�ne the spectral dimension to be the number

n := inf{s > 0 : ζ(s) <∞}.

In the following we will assume that ζ(z) has a simple pole at z = n. This condition is

related to the ideals Zp introduced in [CRSS07].

To de�ne the non-commutative integral, we �rst de�ne a zeta function depending on a

�xed element x ∈ A. As a compatibility requirement between A and φ we ask that σφ(x) ∈ A,
where σφ(x) = ∆−1

φ x∆φ is the modular group of φ. Notice that this condition is part of the

requirements for a modular spectral triple.
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De�nition 7.2. For any x ∈ A we de�ne

ζx(z) := φ(x|D|−z) = Tr(∆φx|D|−z).

Then the non-commutative integral is the linear functional ϕ : A → C de�ned by

ϕ(x) := Res
z=n

ζx(z) = Res
z=n

Tr(∆φx|D|−z),

where n is the spectral dimension.

We remark that, thanks to the condition σφ(x) ∈ A, the zeta function ζx(z) exists for

Re(z) > n and has at most a simple pole. Indeed ∆φx|D|−z = σφ(x)∆φ|D|−z and the

statement easily follows by applying Hölder's inequality for the trace.

7.2.2 The modular group

We now want to determine the modular group of the non-commutative integral ϕ. By this we

mean the automorphism θ such that ϕ(xy) = ϕ(θ(y)x) for x, y ∈ A. In the commutative case

θ is the identity, simply because the pointwise product of functions is commutative. This is

also true, although not trivially, if D satis�es the conditions for a spectral triple.

On the other hand, by considering the setting of twisted spectral triples, where we require

the twisted commutator to be bounded for some automorphism σ, we �nd under suitable

conditions that ϕ(xy) = ϕ(σn(y)x). An additional twisting appears, in the setting of modular

spectral triples, via the modular operator ∆φ associated to a weight φ.

Here we want to take both these twistings into account and prove a theorem that, un-

der some simplifying assumptions, determines the modular group of the non-commutative

integral. We assume that [D,x]σ = Dx − σ(x)D is bounded for every x ∈ A, for a �xed

automorphism σ, and that it satis�es a regularity property speci�ed below. We also consider

an algebra A which is de�ned in terms of generators and relations, as for compact quantum

groups, and require that σ acts diagonally on its generators. These conditions can be clearly

weakened, but they su�ce for the examples that we have in mind.

Theorem 7.1. With the assumptions above, let ϕ be the non-commutative integral with spec-

tral dimension n. Assume furthermore that D satis�es the following regularity property:

• there exists some 0 < r ≤ 1 such that |D|r[|D|s, x]σs |D|−s is a bounded operator, for

every element x ∈ A and for all s ≥ n.

Then the modular group of ϕ is given by θ = σφ ◦ σn.
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Proof. To prove the result we show that the following chain of equalities holds

ϕ(xy) = Res
s=n

Tr(∆φxy|D|−s)

= Res
s=n

Tr(∆φx|D|−sσs(y))

= Res
s=n

Tr(∆φx|D|−sσn(y))

= Res
s=n

Tr(∆φσ
φ(σn(y))x|D|−s) = ϕ(θ(y)x).

Let us start with the �rst one. Consider the expression

Tr(∆φxy|D|−s)− Tr(∆φx|D|−sσs(y)) = Tr(∆φx|D|−s[|D|s, y]σs |D|−s),

where we have used the identity

y|D|−s − |D|−sσs(y) = |D|−s[|D|s, y]σs |D|−s.

Now consider 0 < r ≤ 1 as in the statement. Using Hölder's inequality we have

∣∣Tr
(
∆φx|D|−s[|D|s, y]σs |D|−s

)∣∣ =
∣∣∣Tr
(

∆φx|D|−(s+r)|D|r[|D|s, y]σs |D|−s
)∣∣∣

≤ Tr
(
|∆φx|D|−(s+r)|

)∥∥|D|r[|D|s, y]σs |D|−s
∥∥ .

By assumption ‖|D|r[|D|s, y]σs |D|−s‖ is �nite for all s > n. Therefore, since

Res
s=n

Tr(∆φx|D|−(s+r)) = 0,

we �nd that the residue at s = n of this term vanishes, hence we have

ϕ(xy) = Res
s=n

Tr(∆φxy|D|−s) = Res
s=n

Tr(∆φx|D|−sσs(y)).

The second step consists in proving that

Res
s=n

Tr(∆φx|D|−sσs(y)) = Res
s=n

Tr(∆φx|D|−sσn(y)).

Subtracting these quantities and using Hölder's inequality we �nd

∣∣Tr
(
∆φx|D|−s(σs(y)− σn(y))

)∣∣ ≤ Tr
(
|∆φx|D|−s|

)
‖σs(y)− σn(y)‖.

Since σ acts diagonally on the generators of A, the element y ∈ A can be written as a �nite

sum of homogeneous elements with respect to σ. Therefore we can consider, without loss of

generality, that σ(y) = λy for some λ. Therefore we have ‖σs(y) − σn(y)‖ = |λs − λn|‖y‖.
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The residue at s = n of this quantity vanishes, so we get

Res
s=n

∣∣Tr
(
∆φx|D|−s(σs(y)− σn(y)

)∣∣ ≤ Res
s=n

Tr
(
|∆φx|D|−s|

)
|λs − λn|‖y‖ = 0.

For the last step have to show that

Res
s=n

Tr(∆φx|D|−sσn(y)) = Res
s=n

Tr(∆φσ
φ(σn(y))x|D|−s).

But this immediately follows from the trace property and the property of the modular operator

σn(y)∆φ = ∆φσ
φ(σn(y)). Finally, putting all the steps together and denoting θ = σφ ◦ σn,

we have that ϕ(xy) = ϕ(θ(y)x). The proof is complete.

Let us now consider the case in which A is the coordinate algebra of a compact quantum

group, with its Haar state h having the modular group ϑ. We can use this theorem as a

criterion to check if the non-commutative integral ϕ coincides with the Haar state h. Indeed

a necessary condition for this to happen is that the modular group θ of ϕ coincides with ϑ.

The strategy is the following: given an operator D and a weight φ we consider the asso-

ciated zeta function and compute its spectral dimension which, if it exists, we denote by n.

Then if D satis�es the assumptions of Theorem 7.1, we check if the modular group θ = σφ◦σn

coincides with the modular group ϑ of the Haar state. In the rest of this chapter we will

perform this analysis for the case of the quantum group SUq(2), using the Dirac operator Dq

introduced in [KaSe12]. We will also brie�y mention the case of the Podle± sphere.

7.3 Background on SUq(2)

In this section we provide some background on the quantum group SUq(2), which we will be

our focus in the rest of the chapter. We use the notations and conventions of the book by

Klimyk and Schmüdgen [KlSc]. For 0 < q < 1 we denote by A := O(SUq(2)) the unital Hopf

∗-algebra with generators a, b, c, d satisfying the relations

ab = qba , ac = qca , bd = qdb , cd = qdc , bc = cb ,

ad = 1 + qcb , da = 1 + q−1bc ,

with the usual Hopf algebra structure and the involution given by

a∗ = d , b∗ = −qc , c∗ = −q−1b , d∗ = a .

For each l ∈ 1
2N0 there is a unique (up to unitary equivalence) irreducible corepresentation Vl

of the coalgebra A of dimension 2l + 1. If we �x a vector space basis in each Vl, and denote

by tli,j ∈ A the corresponding matrix coe�cients, then we have the following analogue of the

Peter-Weyl theorem: the set {tli,j ∈ A : l ∈ 1
2N0, −l ≤ i, j ≤ l} is a vector space basis of A.
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With a suitable choice of basis in V1/2 one has

a = t
1/2
−1/2,−1/2 , b = t

1/2
−1/2,1/2 , c = t

1/2
1/2,−1/2 , d = t

1/2
1/2,1/2 .

We also need to consider the quantized enveloping algebra Uq(sl(2)). This is a Hopf algebra

generated by k, k−1, e, f with relations

kk−1 = k−1k = 1 , ke = qek , kf = q−1ek , [e, f ] =
k2 − k−2

q − q−1
.

It carries the Hopf algebra structure

∆(k) = k ⊗ k , ∆(e) = e⊗ k + k−1 ⊗ e , ∆(f) = f ⊗ k + k−1 ⊗ f ,

S(k) = k−1 , S(e) = −qe , S(f) = −q−1f ,

ε(k) = 1 , ε(e) = ε(f) = 0 .

It becomes a Hopf ∗-algebra, which we denote by Uq(su(2)), by adding the involution

k∗ = k , e∗ = f , f∗ = e .

There is a dual pairing between the Hopf algebras Uq(sl(2)) and A, which we denote by 〈·, ·〉.
This pairing is used to de�ne the left and right actions of Uq(sl(2)) on A by the formulae

g . x := x(1)〈g, x(2)〉 , g / x := 〈g, x(1)〉x(2) , x ∈ A , g ∈ Uq(sl(2)) ,

where we used Sweedler's notation for the coproduct. These actions make A into a Uq(sl(2))-

bimodule. For the actions of the generators on the basis tli,j we have

k . tli,j = qjtli,j , tli,j / k = qitli,j ,

e . tli,j =
√

[l + 1/2]2 − [j + 1/2]2tli,j+1 , f . tli,j =
√

[l + 1/2]2 − [j − 1/2]2tli,j−1 .

In the previous formulae we have used the q-numbers [x]q, which are de�ned as [x]q :=

(q−x − qx)/(q−1 − q). In the following we will also use the notation

∂k := k. , ∂e := e. , ∂f := f. ,

for the operators acting on a suitable completion of A. Observe that, since ∆(kn) = kn ⊗ kn

for every n ∈ Z, we have that kn. and /kn are algebra automorphisms on A.
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7.3.1 The Haar state

We denote by A := C∗(SUq(2)) the universal C∗-completion of the ∗-algebra A. Let h be

the Haar state of A whose values on the basis elements are

h(aibjck) = h(dibjck) = δi0δjk(−1)k[k + 1]−1 , h(tli,j) = δl0 .

LetHh denote the GNS space L2(A, h), where the inner product is de�ned by (x, y) := h(x∗y).

The representation of A on Hh is induced by left multiplication in A. The set {tli,j ∈ A : l ∈
1
2N0, −l ≤ i, j ≤ l} of matrix coe�cients is an orthogonal basis for Hh, with

(tli,j , t
l′
i′,j′) = δl,l′δi,i′δj,j′q

−2i[2l + 1]−1 .

We also introduce the orthonormal basis ξli,j := tli,j/
√
q−2i[2l + 1]−1.

The Haar state does not satisfy the trace property, but instead we have h(xy) = h(ϑ(y)x)

where ϑ(x) = k−2 . x / k−2. In particular on the generators we have

ϑ(a) = q2a , ϑ(b) = b , ϑ(c) = c , ϑ(d) = q−2d .

It follows from the theory of compact quantum groups that the Haar state extends to a KMS

state on the C∗-algebra A for the strongly continuous one-parameter group ϑt, given by

ϑt(a) = q−2ita , ϑt(b) = b , ϑt(c) = c , ϑt(d) = q2itd .

This action can be analytically extended, and we recover the modular group ϑ of the Haar

state as ϑ = ϑi. In particular, the associated modular operator ∆F can be written as

∆F = ∆L∆R, where ∆L and ∆R are the left and right modular operators de�ned by

∆L(tli,j) = q2jtli,j , ∆R(tli,j) = q2itli,j .

These modular operators also implement one parameters groups of automorphisms, which

are given by σL,t(x) = ∆it
Lx∆−itL and σR,t(x) = ∆it

Rx∆−itR . They can be extended to complex

actions, and we denote their extensions at t = i by σL and σR. Restricted to A, they coincide

with the left and right action of k−2, that is we have

σL(x) = k−2 . x , σR(x) = x / k−2 .

Finally we note that the modular group ϑ of the Haar state can be rewritten in terms of these

automorphisms as ϑ = σL ◦ σR.
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7.3.2 A decomposition

We now consider a decomposition of the algebra A and the Hilbert space Hh which has a

particular geometrical signi�cance [NeTu05]. For n ∈ Z de�ne

An = {x ∈ A : σL,t(x) = qintx} .

Then we have the decomposition A =
⊕

n∈ZAn. The norm closure of An, which we denote

by An, is the analogue of the space of continuous sections of the line bundle over the sphere

with winding number n. In particular the �xed point algebra under the left action on A, that
is the space A0, is isomorphic to the standard Podle± sphere. This algebra decomposition

can be extended to a Hilbert space decomposition. If we denote by Hn = L2(An, h) the GNS

space corresponding to An, then we have

Hh =
⊕
n∈Z
Hn .

7.4 The Dirac operator Dq

We now turn our attention to the implementation of the quantum group SUq(2) in the

framework of spectral triples. In particular we will consider the spectral triple introduced

in [KaSe12], which is an example which �ts into the framework of modular spectral triples

[Kaa11]. We will focus our attention mainly on the Dirac operator Dq, which is de�ned as

Dq =

(
(q−1 − q)−1(q∂k−2 − 1) q−1/2∂e∂k−1

q1/2∂f∂k−1 (q−1 − q)−1(1− q−1∂k−2)

)
.

It acts on the Hilbert space H = Hh ⊕ Hh, where Hh is the GNS space constructed using

the Haar state in the previous section. The Dirac operator Dq satis�es some interesting

properties, which we summarize in the following proposition [KaSe12].

Proposition 7.2. Let Dq be the Dirac operator given above. Then:

1. the twisted commutator [Dq, x]σL = Dqx− σL(x)Dq is bounded,

2. the twisted commutator is Lipschitz regular, that is [|Dq|, x]σL is bounded,

3. we have D2
q = χ−1∆−1

L Cq, where Cq is the Casimir of SUq(2) and χ =

(
q−1 0

0 q

)
.

It is interesting to point out the relation with the Dirac operator for the Podle± sphere,

which has been introduced in [D¡Si03], see also [NeTu05]. In our notation, the Hilbert space

for the spectral triple associated to the Podle± sphere is given by H1 ⊕ H−1. This Hilbert

space sits inside Hh ⊕ Hh, since we have the decomposition Hh =
⊕

n∈ZHn. If we restrict
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the Dirac operator Dq to this subspace we obtain

Dq|H1⊕H−1 =

(
(q−1 − q)−1(qq−1 − 1) q−1/2q1/2∂e

q1/2q−1/2∂f (q−1 − q)−1(1− q−1q)

)
=

(
0 ∂e

∂f 0

)
.

Therefore it reproduces the usual Dirac operator for the Podle± sphere, which makes it a

natural object to consider. We also point out that, since the Podle± sphere corresponds to

the �xed point algebra of A under the left action, it follows that the twisted commutator

condition [Dq, x]σL reduces to the usual one.

7.4.1 The left-covariant di�erential calculus

Here we point out an interesting feature of the operator Dq, namely that it implements a

left-covariant di�erential calculus on SUq(2). In particular it is isomorphic to the number 10

of the list given in [Hec01], where a complete classi�cation of left-covariant di�erential calculi

on SUq(2) is obtained. In the context of twisted spectral triples, this particular calculus has

been considered previously in the paper [KrWa11], where it is given as an example of a more

general framework. The operator Dq that we consider here, however, is slightly di�erent from

the one that appears in that paper.

Proposition 7.3. The operator Dq implements a left covariant di�erential calculus on SUq(2).

Proof. To prove this statement recall that two �rst-order di�erential calculi (Ω1
1, d1) and

(Ω1
2, d2) are isomorphic if whenever

∑
j ajd1bj = 0 we have

∑
j ajd2bj = 0 and vice versa.

For a twisted spectral triple we can realize a di�erential calculus in the following way: we

de�ne Ω1
D to be the span of operators of the form a · [D, b]σ with bimodule structure given by

a · [D, b]σ · c = σ(a)[D, b]σc, where a, b, c ∈ A. Then it is easy to check that dσ(a) = [D, a]σ

de�nes a derivation with values in Ω1
D, see also [KrWa11].

To proceed we compute the twisted commutator of Dq with x ∈ A, using the coproduct

structure of Uq(sl(2)). We �nd the result

[Dq, x]σL = (q−1 − q)−1

(
1 0

0 −1

)
(∂k−2(x)− x)

+ q−1/2

(
0 1

0 0

)
∂e(∂k−1(x)) + q1/2

(
0 0

1 0

)
∂f (∂k−1(x)).

We note in passing that this expression shows that it is a bounded operator. Using this

formula it is easy to see that the calculus de�ned by Dq is isomorphic to the one given in

[KrWa11]. This one in turn is, by construction, isomorphic to the di�erential calculus number

10 in the list appearing in [Hec01], from which the claim follows.
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7.4.2 A regularity property

The Dirac operatorDq satis�es the Lipschitz regularity property, that is [|Dq|, x]σL is bounded

for every x ∈ A, see [KaSe12, Lemma 3.5]. Here we prove a similar regularity property, namely

the one that appears as a requirement in Theorem 7.1 for r = 1. This property is similar to

the one of strong Lipschitz-regularity which appears in [Mos10, Proposition 3.3].

Lemma 7.4. The operator |Dq|[|Dq|s, x]σsL |Dq|−s is bounded for every x ∈ A and for all

s ∈ R.

Proof. We start by noting that, since the Dirac operator satis�es D2
q = χ−1∆−1

L Cq, the action

of |Dq| on the two components of the Hilbert space Hh ⊕ Hh is the same up to a constant.

Therefore we can restrict our attention to one of them, let us say the �rst one, on which we

have |Dq|ξli,j = q1/2q−j [l + 1/2]ξli,j . Moreover, since the twisted commutator is well-behaved

with respect to products and adjoints, we can restrict to the case x = a or x = c. We can

decompose the action of these operators on an element ξli,j of the Hilbert space as

aξli,j = αl+i,jξ
l+1/2
i−1/2,j−1/2 + αl−i,jξ

l−1/2
i−1/2,j−1/2 ,

cξli,j = γl−i,j ξ
l+1/2
i+1/2,j−1/2 + γl−i,j ξ

l−1/2
i+1/2,j−1/2 .

We have the following bounds on the coe�cients αl+i,j , γ
l+
i,j ≤ C1q

l+j and αl−i,j , γ
l−
i,j ≤ C2, see

[KaSe12, Lemma 3.5]. We start by considering the case x = a. Then we immediately obtain

[|Dq|s, a]σsLξ
l
i,j = αl+i,jq

s/2(q−s(j−1/2)[l + 1]s − q−s(j−1)[l + 1/2]s)ξ
l+1/2
i−1/2,j−1/2

+ αl−i,jq
s/2(q−s(j−1/2)[l]s − q−s(j−1)[l + 1/2]s)ξ

l−1/2
i−1/2,j−1/2 .

Now we want to show that |Dq|[|Dq|s, a]σsL |Dq|−s is a bounded operator. To do this we

apply it to ξli,j , compute the inner product with ξ
l±1/2
i−1/2,j−1/2 and then show that both terms

are bounded by a constant, which does not depend on l. For the �rst one we have(
|Dq|[|Dq|s, a]σsL |Dq|−sξli,j , ξ

l+1/2
i−1/2,j−1/2

)
= qαl+i,jq

−j(qs/2[l + 1]s − qs[l + 1/2]s)[l + 1/2]−s[l + 1] .

Using the inequality αl+i,j ≤ C1q
l+j and [l] ∼ q−l, valid for large l, we obtain(

|Dq|[|Dq|s, a]σsL |Dq|−sξli,j , ξ
l+1/2
i−1/2,j−1/2

)
≤ C ′1ql+jq−j(qs/2 − qs)q−slqslq−l ≤ C ′′1 .

Computing the other inner product we get

(|Dq|[|Dq|s, a]σsL |Dq|−sξli,j , ξ
l−1/2
i−1/2,j−1/2)

= qαl−i,jq
−j(qs/2[l]s − qs[l + 1/2]s)[l + 1/2]−s[l] .
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To bound this term we �rst observe that

qs/2[l]s − qs[l + 1/2]s =
qs/2

(q−1 − q)s
(

(q−l − ql)s − (q−l − ql+1)s
)
.

Then for large l we �nd qs/2[l]s − qs[l + 1/2]s ∼ q−slq2l. Using this result and αl+i,j ≤ C2 we

�nd

(|Dq|[|Dq|s, a]σsL |Dq|−sξli,j , ξl−i−,j−) ≤ C ′2q−jq−slq2lqslq−l ≤ C ′′2 ql−j

Since −l ≤ j ≤ l we have that this term is bounded. The proof for the case x = c is completely

analogous, since γ±li,j satis�es the same bounds as α±li,j , therefore we skip it.

7.5 The zeta function

In this section we de�ne a family of zeta functions, depending on the Dirac operator Dq and

a family of weights, with the aim of studying the corresponding notion of non-commutative

integration. We point out that in this case it is not possible to use the operator trace, since

it is known that the associated spectral dimension does not exist [KaSe12]. In view of the

requirement that σφ(x) ∈ A for every x ∈ A, we can restrict the freedom in the choice of the

weight φ by taking ∆φ such that it implements an automorphism of SUq(2). The complete

list of automorphisms for SLq(2) can be found in [HaKr05]: there are two families, one of

which acts diagonally, which depend on two parameters. For simplicity we consider only the

diagonal case, which takes the following form on the generators

σλ,µ(a) = λa , σλ,µ(b) = µb , σλ,µ(c) = µ−1c , σλ,µ(d) = λ−1d .

We point out that the modular group ϑ of the Haar state is of this form, with λ = q−2 and

µ = 1. Therefore we can parametrize our weight by two real number a, b ∈ R as

φ(a,b)(·) := Tr(∆−aL ∆b
R·) .

The minus sign is chosen for later convenience.

7.5.1 The spectral dimension

We start by computing the spectral dimension associated to the zeta function constructed

with Dq and φ(a,b). This imposes some restrictions on the values of the parameters a, b.

Moreover we discuss the meromorphic extension of this function.

Proposition 7.5. Let ζ(a,b)(z) := Tr(∆−aL ∆b
R|Dq|−z). Then

1. if a± b > 0 then ζ(a,b)(z) is holomorphic for all z ∈ C such that Re(z) > a+ |b|,

2. in this case the corresponding spectral dimension is n = a+ |b|,
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3. ζ(a,b)(z) has a meromorphic extension to the complex plane, with only simple poles if

b 6= 0 and with only double poles if b = 0.

Proof. From Proposition 7.2 we have D2
q = χ−1∆−1

L Cq, where Cq is the Casimir and

χ =

(
q−1 0

0 q

)
.

Therefore we can write |Dq|−z = χz/2∆
z/2
L C

−z/2
q . The Hilbert space is H = Hh ⊕Hh, where

Hh is the GNS space constructed using the Haar state. An orthonormal basis for this space

is given by {ξli,j ∈ A : l ∈ 1
2N0, −l ≤ i, j ≤ l}. Then we have

ζ(a,b)(z) = (q−z/2 + qz/2)
∞∑

2l=0

l∑
i,j=−l

(ξli,j ,∆
−a
L ∆b

R∆
z/2
L C−z/2q ξli,j) .

The modular operators act as ∆Lξ
l
i,j = q2jξli,j , ∆Rξ

l
i,j = q2iξli,j , while for Casimir we have

Cqξ
l
i,j = [l + 1/2]2qξ

l
i,j . Therefore we get

(ξli,j ,∆
−a
L ∆b

R∆
z/2
L C−z/2q ξli,j) = q(z−2a)jq2bi[l + 1/2]−zq .

To proceed we use the following trick [KrWa10]. For every z ∈ C we have the absolutely

convergent series expansion

[l + 1/2]−zq = (q−1 − q)zq(l+1/2)z(1− q2l+1)−z

= (q−1 − q)zq(l+1/2)z
∞∑
k=0

(
z + k − 1

k

)
q(2l+1)k .

Therefore we can rewrite our zeta function as

ζ(a,b)(z) =
q−z/2 + qz/2

(q−1 − q)−z
∞∑

2l=0

l∑
i,j=−l

∞∑
k=0

(
z + k − 1

k

)
q(z−2a)jq2biq(l+1/2)zq(2l+1)k .

Now we consider the sum

S
(a,b)
k (z) :=

∞∑
2l=0

l∑
i,j=−l

q(z−2a)jq2biq(l+1/2)zq(2l+1)k .

The sums over i and j can be easily performed and we get

S
(a,b)
k (z) =

∞∑
2l=0

q(z−2a)q(z−2a)l − q−(z−2a)l

q(z−2a) − 1

q2bq2bl − q−2bl

q2b − 1
q(l+1/2)zq(2l+1)k .
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We can break this sum into four terms

S
(a,b)
k (z) =

qk+z/2

(1− qz−2a)(1− q2b)

(
qz−2(a−b)S1 − qz−2aS2 − q2bS3 + S4

)
,

where we have de�ned

S1 :=
∞∑

2l=0

q2l(z−a+b+k) , S2 :=
∞∑

2l=0

q2l(z−a−b+k) ,

S3 :=
∞∑

2l=0

q2l(a+b+k) , S4 :=
∞∑

2l=0

q2l(a−b+k) .

Since 0 < q < 1, the series
∑∞

l=0 q
cl is absolutely convergent when Re(c) > 0. We want this

to be the case for any k ≥ 0. From S3 and S4 we see that this imposes a+b > 0 and a−b > 0.

For S1 and S2, that depend on z, instead we have to require

Re(z) > a− b , Re(z) > a+ b .

We can then easily sum the geometric series and, after some rearranging, we arrive at

S
(a,b)
k (z) =

qk+z/2
(
1− q2k+z

)(
1− qz−(a+b)+k

) (
1− qz−(a−b)+k

)
(1− qa+b+k) (1− qa−b+k)

.

Now, going back to the expression for ζ(a,b)(z), we see that we can safely exchange the sum

over k with the other sums. The result is then

ζ(a,b)(z) =
q−z/2 + qz/2

(q−1 − q)−z
∞∑
k=0

(
z + k − 1

k

)
S

(a,b)
k (z) .

The statement about the meromorphic extension is clear from the form of S
(a,b)
k (z).

In the following we will consider the case a± b > 0, so that the spectral dimension exists

according to the proposition above. Moreover we exclude b = 0, since in this case the zeta

function has a double pole at the spectral dimension.

7.5.2 The modular property

We now consider the non-commutative integral ϕ associated to the zeta function and deter-

mine its modular group θ. In particular we can investigate the connection with the Haar state

of SUq(2), which satis�es the property h(xy) = h(ϑ(y)x), where ϑ = σL ◦ σR. Therefore,

to recover the Haar state from the non-commutative integral, a necessary condition is that

θ = ϑ. We now show that this condition �xes the parameter b = 1.

Proposition 7.6. Let ζ
(a,b)
x (z) = Tr(∆−aL ∆b

Rx|Dq|−z), with n = a+ |b| the associated spectral

dimension. Let ϕ(x) = Res
z=n

ζ
(a,b)
x (z) be the non-commutative integral, as in De�nition 7.2.
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Finally let θ be the modular group of ϕ and ϑ = σL ◦σR the modular group of the Haar state.

Then we have θ = ϑ if and only if b = 1.

Proof. We can apply Theorem 7.1 to the non-commutative integral ϕ. Indeed by Lemma 7.4

we have that |D|[|D|s, y]σsL |D|
−s is bounded for every s ∈ R, while by Proposition 7.2 the

twist in the commutator σ = σL acts diagonally on A. Therefore we obtain ϕ(xy) = ϕ(θ(y)x),

with θ = σφ ◦ σnL. In the case under consideration we have σφ = σ−aL ◦ σbR, so we get

θ = σφ ◦ σnL = σn−aL ◦ σbR = σ
|b|
L ◦ σ

b
R ,

where we have used the fact that the spectral dimension is given by n = a+ |b|.
For b < 0 we have θ = σ

|b|
L ◦ σ

−|b|
R and it is clear that there is no solution. On the other

hand for b > 0 we have θ = σbL ◦ σbR, so the equality θ = ϑ holds for b = 1.

This result shows that we can partially �x the arbitrariness in the choice of the weight

φ(a,b)(·) = Tr(∆−aL ∆b
R·). On the other hand, the dependence on the parameter a cancels in

the combination θ = σφ ◦ σnL, as seen in the proof above. It is worth pointing out that a

similar phenomenon happens also in the spectral triple considered in the previous chapter,

where similar techniques were employed. This is expected to happen, quite generically, when

the twist in the commutator also appears in the modular group of the weight.

A reasonable criterion to �x this ambiguity is to recover the classical dimension n = 3,

which �xes a = 2. In the last part of this chapter we will consider another condition, more

spectral in nature, which also �xes uniquely a = 2. It is also of some interest to remark

that, if one requires n to be an integer, then the smallest n which is allowed by the previous

analysis is indeed n = 3. Finally, for examples coming from quantum groups, this ambiguity

in the choice of the weight could be related to a similar one that arises in twisted Hochschild

homology: indeed it is known that a twist is necessary to avoid the dimension drop, but it

happens that one �nds a family of such twists, see for example [HaKr05].

Let us also mention what happens for the Podle± sphere. In this case, since the Hilbert

space is given by H1⊕H−1, the modular operator ∆a
L gives a constant matrix, which can be

absorbed in the normalization. Therefore it does not a�ect the spectral dimension and the

modular group of the non-commutative integral. As we mentioned before, the twist in the

commutator disappears, since the Podle± sphere is the �xed point algebra of A under the left

action. Then it is easy to repeat the previous analysis, with the result that we must �x the

value b = 1 if we want to recover the modular group of the Haar state. Moreover it follows

from the results of [KrWa10] that the corresponding spectral dimension is n = 2. Therefore

our results for SUq(2) restrict in a natural way to the case of the Podle± sphere.
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7.6 The Haar state

So far we have only shown that the non-commutative integral ϕ has the same modular group

of the Haar state h, which leaves open the question of whether they are equal. In principle

this could happen for some values of a, or maybe for none at all. In this section we show

that the non-commutative integral coincides with the Haar state for all allowed values of a.

Of course we must normalize ϕ, since the Haar state satis�es h(1) = 1, while in general we

do not have ϕ(1) = 1. This normalization is achieved by computing ϕ(1), that is the residue

of ζ(a,1)(z) at the spectral dimension n = a+ 1. The result of this computation is

ϕ(1) = Res
z=a+1

ζ(a,1)(z) =
(q−1 − q)a(qa+1 + 1)

(qa − q) log(q)
.

We denote the normalized non-commutative integral as ϕ̃(x) := ϕ(x)/ϕ(1). Notice that

the normalization ϕ(1) depends on a. On the other hand we will now show that ϕ̃(x) is

independent of a and recovers the Haar state.

7.6.1 Approximating the GNS representation

To proceed with the computation of the non-commutative integral we use a di�erent rep-

resentation of SUq(2). This representation, which we denote by ρ, approximates the GNS

representation, as we shall see in the next lemma. It is de�ned on the generators as

ρ(a)ξli,j :=

√
1− q2(l+i)ξ

l−1/2
i−1/2,j−1/2 ,

ρ(b)ξli,j := −ql+i+1ξ
l+1/2
i−1/2,j+1/2 ,

ρ(c)ξli,j := ql+iξ
l−1/2
i+1/2,j−1/2 ,

ρ(d)ξli,j :=

√
1− q2(l+i+1)ξ

l+1/2
i+1/2,j+1/2 .

Here we use the convention that ξli,j is zero whenever the indices are out of bounds (recall

that we should have −l ≤ i, j ≤ l). That ρ is a representation of SUq(2) can be checked by

direct computation, for more details see [Kaa11, Proposition 9.4] and references therein.

Lemma 7.7. For any x ∈ A we have the equality

ϕ(x) = Res
z=n

Tr(∆−aL ∆Rρ(x)|Dq|−z) .

Proof. We need to show that ∆−aL ∆R(x− ρ(x))|Dq|−z is trace-class for z = n, that is

Tr
(
|∆−aL ∆R(x− ρ(x))|Dq|−n|

)
<∞ .

Using the fact that xy − ρ(xy) = (x− ρ(x))ρ(y) + x(y − ρ(y)), we can restrict our attention

to the generators. Moreover, since ρ is a ∗-representation of SUq(2), it su�ces to consider
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the cases x = a and x = c. Recall that for the GNS representation we have the formulae

aξli,j = αl+i,jξ
l+1/2
i−1/2,j−1/2 + αl−i,jξ

l−1/2
i−1/2,j−1/2 ,

cξli,j = γl+i,j ξ
l+1/2
i+1/2,j−1/2 + γl−i,j ξ

l−1/2
i+1/2,j−1/2 .

To prove that the trace is �nite, in the case x = a, we need to estimate the quantities |αl+i,j |
and

∣∣∣αl−i,j −√1− q2(l+i)
∣∣∣. Recall that we already used the fact that |αl+i,j | ≤ C+q

l+j . Similarly

one proves that
∣∣∣αl−i,j −√1− q2(l+i)

∣∣∣ ≤ C−q
l+j , see [Kaa11, Proposition 9.4]. Therefore we

only need to repeat the computation of the sum ξ(a,1)(z) with the factor ql+j inserted. We

can easily perform this sum as we did in the computation of the spectral dimension. The

result is �nite for z = n, so that the operator ∆−aL ∆R(x− ρ(x))|Dq|−n is trace-class.

The computation is completely identical for the case x = c, since we have the estimates

|γl+i,j | ≤ C ′+ql+j and
∣∣∣γl−i,j − ql+i∣∣∣ ≤ C ′−ql+j . Therefore the equality is proven.

7.6.2 The computation

Using the representation ρ, we can now easily compute ϕ̃(x) for any x ∈ A. We show that

this non-commutative integral coincides with h(x), where h is the Haar state, independently

of the value of the parameter a which appears in the de�nition of ϕ̃.

Theorem 7.8. For any x ∈ A we have ϕ̃(x) = h(x), where h is the Haar state.

Proof. Recall that the Haar state h takes the following values on the generators

h(aibjck) = h(dibjck) = δi,0δj,k(−1)k[k + 1]−1
q .

Using the previous lemma and the explicit formulae for the approximate representation, it is

not di�cult to see that the non-commutative integral must have the following form

ϕ̃(aibjck) = ϕ̃(dibjck) = δi,0δj,kϕ̃(bjck) .

Therefore, to prove that ϕ̃ is the Haar state, it only remains to show that ϕ̃(bncn) coincides

with h(bncn). Using the representation ρ we can immediately compute

ρ(bncn)ξli,j = (−1)nqn(l+i+1)qn(l+i)ξli,j = (−1)nq2nlq2niqnξli,j .

Now we only need to repeat the computation of Proposition 7.5 by inserting the factor

(−1)nq2nlq2niqn. We omit this computation. The result is that there is a simple pole at

z = a+ 1, that is the spectral dimension, whose residue is non-zero. Explicitely we obtain

ϕ̃(bncn) = (−1)nqn
q2 − 1

q2(n+1) − 1
= (−1)n[n+ 1]−1

q .
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This coincides with h(bncn), so the proof is complete.

7.7 An additional requirement

In the previous section we have shown that the non-commutative integral coincides with the

Haar state, regardless of the value of the parameter a. Of course, as we mentioned before,

since the spectral dimension is given by n = a + 1, we have the natural choice a = 2 which

gives the classical dimension. In this section we propose a di�erent criterion to �x this free

parameter, which is based on the value of a certain residue of the zeta function. It will turn

out that this criterion is satis�ed only for a = 2.

To formulate this criterion we note that, by requiring the non-commutative integral to be

equal to the Haar state, we have imposed a condition on the residue at z = n of the zeta

function. But the zeta function contains much more information than this residue: indeed in

the classical case we know, for example from the heat kernel expansion, that also the other

residues contain geometrical information, like the scalar curvature and various contractions

of the Riemann tensor. We can therefore look at these other residues to impose an additional

requirement. In particular we can look at the next non-trivial coe�cient of the expansion.

For this reason we brie�y recall how the heat kernel expansion works, and how we can

use it for our needs. Let M be a compact Riemannian manifold of dimension n with a �xed

metric g. Consider a second order operator of Laplace-type, which locally can be written as

P = −(gµν∇µ∇ν + E) . (7.1)

For any smooth function f on M we can consider the operator f exp(−tP ), for t > 0. Then

there is an asymptotic expansion of Tr(f exp(−tP )), for t ↓ 0, which is given by

Tr(fe−tP ) ∼
∞∑
k=0

t(k−n)/2ak(f, P ) ,

where the coe�cients ak(f, P ) can be expressed as integrals of local invariants of M . For a

manifold without boundary only the even coe�cients are non-zero. In the following we will

consider only the �rst two non-zero coe�cients, which read as follows

a0(f, P ) = (4π)−n/2
ˆ
M
f
√
gdnx , a2(f, P ) = (4π)−n/26−1

ˆ
M
f(6E +R)

√
gdnx .

Here R is the scalar curvature associated to the metric g.

The coe�cients of the heat kernel expansion are closely related to the residues of the

zeta function. Indeed, in the case of a positive P , consider the zeta function de�ned as
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ζ(z, f, P ) = Tr(fP−z). Then the heat kernel coe�cients ak(f, P ) are given by

ak(f, P ) = Res
z=(n−k)/2

Γ(z)ζ(z, f, P ).

We remark that, from this relation, we obtain yet another justi�cation for our de�nition of

the non-commutative integral. Indeed, for the zeta function of a �rst order operator, like the

Dirac operator D, the residue at the spectral dimension n is proportional to the coe�cient

a0(f, P ), which as recalled above is proportional to the integral of f .

We now want to look at the next non-trivial coe�cient of the expansion, which is given

by a2(f, P ). This corresponds, for the zeta function de�ned in terms of the Dirac operator,

to the residue at z = n − 2. We �rst compute this coe�cient for the classical limit of our

Dirac operator Dq. In the following we set f = 1 and we drop the dependence on f in the

notation.

7.7.1 The commutative limit of Dq

The manifold corresponding to the group SU(2) is the 3-sphere. On this space we consider the

Laplace-Beltrami operator ∆ = −gµν∇µ∇ν , which has eigenvalues k(k+ 2) with multiplicity

(k+ 1)2, where k ∈ N0. It is not hard to show that a2(∆) =
√
π/4. Since for the operator ∆

we have from (7.1) that E = 0, it follows that the scalar curvature is R = 6.

In the non-commutative case the operator Dq satis�es D2
q = χ−1∆−1

L Cq, where χ is a

constant matrix, ∆L acts as ∆Lξ
l
i,j = q2jξli,j and Cq is the Casimir of SUq(2). In particular

Cq has the eigenvalues [l + 1/2]2q with multiplicity (2l + 1)2, where l = 1
2N0. Now in the

commutative limit q → 1 the matrix χ reduces to the identity, ∆L reduces to the identity

operator and the eigenvalues of Cq become (l + 1/2)2. Therefore we see that, upon writing

k = l/2, we reduce to the classical situation of an operator C with eigenvalues 1
4(k+ 1)2 and

multiplicity (k + 1)2, where k ∈ N0. It is clear that C is related to the Laplace-Beltrami

operator ∆ by a rescaling and the addition of a costant, that is C = 1
4∆ + 1

4 .

Therefore we can compare Cq with its classical limit C. To this end we look at the heat

kernel coe�cients of the operator C, speci�cally at a2(C). We can easily obtain it from the

knowledge of a2(∆) in the following way: the rescaling ∆ → 1
4∆ has the e�ect a conformal

transformation g → 4g of the metric, which in turn changes the scalar curvature by R→ 1
4R.

Then the addition of the constant 1
4 simply sets E = −1

4 . Therefore we obtain

6E +R→ −6

4
+
R

4
= 0 ,

where we have used the fact that for the 3-sphere the scalar curvature is R = 6. In other

words we have that a2(C) = 0. Another way to check that this is the case is directly via the
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zeta function. Indeed, after removing the zero eigenvalue, it is simple to compute

ζ(z, C) =

∞∑
k=1

(k + 1)24−z(k + 1)−2z = 4−z(ζ(2z − 2)− 1) .

This function is regular at z = (3− 2)/2 = 1/2, so that we have a2(C) = 0.

7.7.2 The requirement on the residue

Let us now get back to our original problem. We have seen that the non-commutative

integral recovers the Haar state, independently of the value of a. But now, from the previous

discussion, we have a natural requirement that could possibly �x this ambiguity: since, as we

have seen, in the non-commutative case the role of C is played by D2
q , we can try to impose

the analogue of the condition a2(C) = 0. This means that we can require

Res
z=n−2

Γ(z)ζ(a,1)(z) = 0.

Recall that the spectral dimension n depends on a, since n = a + 1. The next proposition

shows that this �xes the natural value a = 2, corresponding to the classical dimension.

Proposition 7.9. The residue of ζ(a,1)(z) at z = n− 2 is zero if and only if a = 2.

Proof. From the proof of Proposition 7.5 we have that

ζ(a,1)(z) =
q−z/2 + qz/2

(q−1 − q)−z
∞∑
k=0

(
z + k − 1

k

)
S

(a,1)
k (z) ,

where S
(a,1)
k (z) is given by

S
(a,1)
k (z) =

qk+z/2
(
1− q2k+z

)(
1− qz−(a+1)+k

) (
1− qz−(a−1)+k

)
(1− qa+1+k) (1− qa−1+k)

.

Since the spectral dimension is given by n = a + 1, we should take the residue at z =

n−2 = a−1. Notice that for this value of z the zeta function ζ(a,1)(z) has two poles, coming

respectively from the terms k = 0 and k = 2. Omitting a common prefactor, these are given

by

qz/2 (1− qz)
(1− qz−a−1) (1− qz−a+1) (1− qa+1) (1− qa−1)

+
1

2
z(z + 1)

q2+z/2
(
1− q4+z

)
(1− qz−a+1) (1− qz−a+3) (1− qa+3) (1− qa+1)

.
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Taking now the limit z → a− 1 in the regular terms we get

q(a−1)/2
(
1− qa−1

)
(1− q−2) (1− qz−a+1) (1− qa+1) (1− qa−1)

+
1

2
a(a− 1)

q2+(a−1)/2
(
1− qa+3

)
(1− qz−a+1) (1− q2) (1− qa+3) (1− qa+1)

.

This expression can be rearranged as

q(a−1)/2

1− qa+1

(
1

1− q−2
+

1

2
a(a− 1)

q2

1− q2

)
1

1− qz−a+1

=
q(a−1)/2

1− qa+1

q2

1− q2

(
−1 +

1

2
a(a− 1)

)
1

1− qz−a+1
.

The residue of this term is then non-zero unless we have 1
2a(a− 1) = 1, whose solutions are

a = −1 and a = 2. But we known from Proposition 7.5 that we have to impose the conditions

a± 1 > 0 for the spectral dimension to exists. This excludes the case a = −1.



Chapter 8

Quantum dimension and quantum

projective spaces

In this chapter we show that the family of spectral triples for quantum projective spaces

introduced by D'Andrea and D¡browski in [D'AD¡10], which have spectral dimension equal

to zero, can be reconsidered as modular spectral triples by taking into account the action of

the element K2ρ or its inverse. The spectral dimension computed in this sense coincides with

the dimension of the classical projective spaces. The connection with the well known notion

of quantum dimension of quantum group theory is pointed out.

8.1 Introduction

Quantum homogeneous spaces provide an excellent testing ground to study how quantum

groups �t into the framework of non-commutative geometry developed by Connes. An im-

portant result in this respect is given in [Krä04], where a Dirac operator D is de�ned on

quantized irreducible generalized �ag manifolds, which yields a Hilbert space realization of

the covariant �rst-order di�erential calculus constructed in [HeKo04]. This means, in par-

ticular, that the commutator of D with an element of the coordinate algebra is a bounded

operator, which is one of the de�ning properties of a spectral triple. The other essential

property, that of the compactness of the resolvent of D, has not been proven, even though

it is expected to hold. In particular it can be checked for the simplest case to which this

construction applies, that is the Podle± sphere. In this case the Dirac operator D coincides

with the Dirac operator introduced in [D¡Si03], which has compact resolvent.

Among the class of q-deformed irreducible �ag manifolds are the quantum projective

spaces CP `q , the simplest example of which is again the Podle± sphere, which is obtained for

` = 1. The case of CP 2
q has been studied in [DDL08] and then generalized in [D'AD¡10] to

CP `q with ` ≥ 2. The starting point is the introduction of the q-analogue of the module of

antiholomorphic di�erential k-forms Ωk. More generally the modules Ωk
N are considered, with

120
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N ∈ Z, corresponding essentially to Ωk = Ωk
0 twisted by certain line bundles. The Hilbert

space completion of these is denoted by HN . For each of these an unbounded self-adjoint

operator DN is introduced, which has bounded commutators with the coordinate algebra

A(CP `q ). The main result is that (A(CP `q ), HN , DN ) is a family of equivariant spectral triples.

It turns out that these spectral triples are 0+-summable, in the sense that the operator

(D2
N + 1)−ε/2 is trace-class for every ε > 0. The detailed computation of the spectrum

clearly reveals why this is the case: the eigenvalues of this operator grow like a q-number, so

exponentially, while their multiplicities grow like a polynomial. We recall that in the classical

case it is the balance between the growth of the eigenvalues and their multiplicities that allows

to recover the dimension of the manifold in consideration. In this case the eigenvalues grow

much faster than their multiplicities, which explains the 0+-summability.

In this chapter we consider a simple modi�cation of the above construction, which �ts into

the framework of modular spectral triples. The idea is to consider the action of the element

K2ρ, which implements the modular group of the Haar state of A(CP `q ). In particular we

compute the spectral dimension associated to D with respect to the weight Tr(K2ρ·), with
the result that it coincides with the classical dimension. This computation is linked with

an important concept in the theory of quantum groups, which is the notion of quantum

dimension. We also point out that, as a consequence of a property of the quantum dimension,

the same result for the spectral dimension is obtained by considering K−1
2ρ . This in turn is

connected with some results from twisted Hochschild (co)homology.

As in the previous chapters, the motivation comes from the notion of integration which,

from the point of view of spectral triples, is de�ned in terms of D. As we mentioned above,

in the case of quantum projective spaces this procedure gives a spectral dimension equal to

zero. But, more importantly, this procedure does not allow to recover the natural notion

of integration that is available on these spaces, which is given by the Haar state. As in the

previous chapter, requiring the non-commutative integral to have the same modular properties

of the Haar state immediately brings us into the realm of modular spectral triples.

8.2 Quantum projective spaces

In this section we provide some background on quantum projective spaces, which we denote

by CP `q for ` ≥ 2 and 0 < q < 1. These are q-deformations of complex projective spaces of real

dimension 2`. The case ` = 1 of this construction coincides with the standard Podle± sphere

and is well known in the literature. We take our de�nitions and notations from [D'AD¡10].

To de�ne quantum projective spaces we �rst de�ne the Hopf ∗-algebra Uq(su(`+ 1)) and

its dual A(SUq(`+ 1)), which can be considered as the algebra of representative functions on

the quantum SU(` + 1) group. The coordinate algebra A(CP `q ) of the quantum projective

space CP `q is then de�ned as the �xed point subalgebra of A(SUq(`+ 1)) for the action of a

suitable Hopf subalgebra of Uq(su(`+ 1)). We now review these notions.
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For 0 < q < 1 we denote by Uq(su(`+ 1)) the ∗-algebra generated by Ki = K∗i , K
−1
i , Ei

and Fi = E∗i , with i = 1, · · · , `, and with relations

[Ki,Kj ] = 0, KiEiK
−1
i = qEi,

KiEjK
−1
i = q−1/2Ej if |i− j| = 1,

KiEjK
−1
i = Ej if |i− j| > 1,

[Ei, Fj ] = δij
K2
i −K

−2
i

q − q−1
,

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0 if |i− j| = 1,

[Ei, Ej ] = 0 if |i− j| > 1.

We call Uq(su(`)) the Hopf ∗-subalgebra generated by the elements Ki = K∗i , K
−1
i , Ei and

Fi = E∗i with i = 1, · · · , `−1. Its commutant is the Hopf ∗-subalgebra Uq(u(1)) generated by

the element K1K
2
2 · · ·K`

` and its inverse. This is a positive operator in all the representations

we consider, so we can de�ne its root of order 2/(`+ 1) by

K̂ = (K1K
2
2 · · ·K`

` )
2/(`+1).

The following element will play a central role in this chapter:

K2ρ = (K`
1K

2(`−1)
2 · · ·Kj(`−j+1)

j · · ·K`
` )

2.

Here the symbol ρ denotes the Weyl vector of the Lie algebra su(`+1), see for example [KlSc]

for its role in q-deformations of semisimple Lie algebras. One important property of this

element is that it implements the square of the antipode, in the sense that S2(h) = K2ρhK
−1
2ρ

for any h ∈ Uq(su(`+ 1)). More importantly for us, it also implements the modular group of

the Haar state of A(SUq(`+ 1)), as we will see in a moment.

We are interested in representations in which the Kj 's are represented by positive opera-

tors. Such irreducible �nite-dimensional ∗-representations of Uq(su(` + 1)) are labeled by `

non-negative integers. Writing n = (n1, · · · , n`), we denote by Vn the vector space carrying

the representation ρn with weight n. These are highest weight representations, so there exists

a vector v which is annihilated by all the Ej 's and satis�es ρn(Ki)v = qni/2v.

We now introduce the coordinate algebra A(SUq(`+1)). It is the Hopf ∗-algebra generated
by the elements uij , with i, j = 1, · · · , `+ 1), and with relations

uiku
j
k = qujku

i
k, uki u

k
j = qukju

k
i , for i < j,

[uil, u
j
k] = 0, [uik, u

j
l ] = (q − q−1)uilu

j
k, for i < j, k < l.



Chapter 8. Quantum dimension and quantum projective spaces 123

and with the determinant relation

∑
p∈S`+1

(−q)‖p‖u1
p(1) · · ·u

`+1
p(`+1) = 1.

The ∗-structure is de�ned as in [D'AD¡10].

There is a non-degenerate pairing 〈·, ·〉 between Uq(su(`+ 1)) and A(SUq(`+ 1)), which is

used to de�ne the canonical left and right actions as h.a = a(1)〈h, a(2)〉 and a/h = 〈h, a(1)〉a(2),

where we use Sweedler's notation for the coproduct. This pairing can be extended to include

also the action of the element K̂ and its inverse.

There is a faithful state on A(SUq(`+ 1)), called the Haar state and denoted by ϕ, which

generalizes the properties of the Haar integral in the classical case. However, di�erently from

the classical case, the Haar state is not a trace on A(SUq(` + 1)). In particular its modular

group is implemented by the element K2ρ, in the sense that

ϕ(ab) = ϕ(bK2ρ . a / K2ρ). (8.1)

Consider now the left action of Uq(su(`+ 1)) on A(SUq(`+ 1)) de�ned by

Lha = a / S−1(h).

It can be used to de�ne the coordinate algebra A(S2`+1
q ) of the quantum sphere S2`+1

q as

A(S2`+1
q ) = {a ∈ A(SUq(`+ 1)) : Lha = ε(h)a,∀h ∈ Uq(su(`))}.

Finally, using the generator of Uq(u(1)), which we denoted by K̂, we de�ne the coordinate

algebra A(CP `q ) of the quantum projective space CP `q as

A(CP `q ) = {a ∈ A(S2`+1
q ) : LK̂a = a}.

Having de�ned the coordinate algebra A(CP `q ), the next step in order to build a spectral

triple is to introduce a Hilbert space, on which elements of this algebra act as bounded

operators. Recall that the projective spaces CP ` are only spinc manifolds when ` is even.

Then one possibility is to complete the space of antiholomorphic forms, with the idea of

de�ning a Dolbeault-Dirac operator acting on it. This is the strategy followed in [DDL08] for

the case ` = 2, where a q-analogue of the space of antiholomorphic forms is introduced.

This strategy is generalized in [D'AD¡10] for all quantum projective spaces. We denote

by Ωk their q-analogue of the space of antiholomorphic k-form. More generally, they also

consider the possibility of twisting this module of k-forms by a line bundle ΓN , with the

resulting space being denoted by Ωk
N , and with the space of forms corresponding to the case

N = 0. Since the left and right canonical actions of Uq(su(`+1)) are mutually commuting, the
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space
⊕`

k=0 Ωk
N carries a left action of Uq(su(`+ 1)) and can be decomposed into irreducible

representations. We record this result in the schematic form

Ω0
N =

⊕
m∈N

V(m+c1,0,··· ,0,m+c2),

Ωk
N =

⊕
m∈N

V(m+c3,0,··· ,0,m+c4)+ek ⊕ V(m+c5,0,··· ,0,m+c6)+ek+1
for 1 ≤ k ≤ `− 1,

Ω`
N =

⊕
m∈N

V(m+c7,0,··· ,0,m+c8).

(8.2)

Here c1, · · · , c8 are integers depending on k and N , but independent of m. The Hilbert spaces

obtained as a completions of
⊕`

k=0 Ωk
N are denoted by HN .

The q-analogue of the Dolbeault operator, which we denote by ∂̄, maps Ωk
N into Ωk+1

N and

satis�es ∂̄2 = 0. Similarly the adjoint ∂̄† maps Ωk+1
N into Ωk

N and satis�es (∂̄†)2 = 0. A family

of Dolbeault-Dirac operators, denoted by DN for N ∈ Z, is de�ned by taking suitable linear

combinations of ∂̄ and ∂̄† on each Ωk
N . The operator D0 is the q-analogue of the Dolbeault-

Dirac operator on CP `, while DN is the twist of D0 with the Grassmannian connection of a

certain line bundle. In particular, if ` is odd and N = (`+ 1)/2, then DN is the q-analogue

of the Dirac operator for the Fubini-Study metric.

Here we do not need the precise form ofDN , but only an asymptotic form of its eigenvalues.

In particular, for our purposes, this turns out to be independent on the value of N . Using

the decomposition (8.2), it is possible to compute the eigenvalues of |DN | when restricted to

the space Ωk
N . The information that we need is that these eigenvalues grow like q−m with

m ∈ N, see the discussion at the end of [D'AD¡10].

8.3 Twisted trace property

We now consider the restriction of the Haar state of A(SUq(` + 1)) to A(CP `q ). It follows,

using the de�nitions given in the previous section, that any element a ∈ A(CP `q ) is invariant

under the right action of K2ρ, that is a / K2ρ = a. Therefore the modular property of the

Haar state of A(SUq(`+ 1)), given by (8.1), for a, b ∈ A(CP `q ) becomes

ϕ(ab) = ϕ(bK2ρ . a).

As we have remarked in the introduction, the non-commutative integral, de�ned in the usual

sense of spectral triples in terms of DN , does not coincide with the Haar state, since the

former is a trace while the latter is not. This fact provides a motivation to introduce a twist

in the de�nition of the non-commutative integral, as we now explain.

We denote by K2ρ the closure of the unbounded operator on HN acting via the left action

of K2ρ on A(SUq(` + 1)). It is a positive and invertible operator. For the moment let us

suppose that the operator K2ρ(D
2
N + 1)−z/2 is trace-class for Re(z) > n, where n ≥ 0.
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Suppose furthermore that the residue at z = n of its trace exists. Then, similarly to the

usual non-commutative integral, we can de�ne a linear functional on A(CP `q ) by

ψ(a) = Res
z=n

Tr(K2ρa(D2
N + 1)−z/2).

Then it can be shown, as done in Appendix D, that we have

ψ(ab) = Res
z=n

Tr(K2ρab(D
2
N + 1)−z/2)

= Res
z=n

Tr(bK2ρa(D2
N + 1)−z/2)

= Res
z=n

Tr(K2ρK
−1
2ρ bK2ρa(D2

N + 1)−z/2).

(8.3)

The non-trivial equality is the �rst one, which can be shown using similar methods to the

usual case. Then, since K−1
2ρ bK2ρ = K−1

2ρ . b for any b ∈ A(CP `q ), we have the property

ψ(ab) = ψ(K−1
2ρ . ba),

which is equivalent to the property of equation (8.1). Therefore in this way we obtain a linear

functional on A(CP `q ) which has the modular property of the Haar state. Of course we have

yet to show that our assumptions are justi�ed, namely those on the trace-class property and

on the residue. This will be done in later sections.

This kind of construction �ts into the framework of modular spectral triples, whose relevant

de�nitions can be found in Chapter 4.

8.4 Quantum dimension

Motivated by the previous section, we now want to introduce the tools needed to compute the

spectral dimension of DN with respect to the weight de�ned by Tr(K2ρ·). This computation

is strictly related to the notion of quantum dimension, that we now review.

Given a �nite-dimensional irreducible representation T of a Drinfeld-Jimbo algebra Uq(g),

its quantum dimension is de�ned as the number Tr(T (K2ρ)), where the trace is taken over the

vector space that carries the representation T , see for example [KlSc]. In the classical case,

that is for q = 1, the quantum dimension coincides with the dimension of the vector space.

In the context of quantum groups the notion of quantum dimension appears, for example, in

the q-analogue of the Schur orthogonality relations.

In the classical case, if we consider a �nite-dimensional representation of a Lie algebra

g with highest weight Λ, the dimension of the associated vector space VΛ can be computed

from the Weyl dimension formula, which reads as

dimVΛ =
∏
α>0

(Λ + ρ, α)

(ρ, α)
,
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where the product is over the positive roots and ρ is the Weyl vector, de�ned as the half-sum

of the positive roots. There is also a q-analogue of this formula, see for example [ChPr]. It

allows to compute the quantum dimension of a representation with highest weight Λ as

dimq VΛ =
∏
α>0

[(Λ + ρ, α̃)]

[(ρ, α̃)]
,

where we use the usual notion of q-number

[x] =
q−x − qx

q−1 − q

and α̃ = 2α/(θ, θ) where θ is the highest root. Note that an explicit normalization is needed

for the positive roots, di�erently from the classical case.

Our aim is now to compute the quantum dimension for any of the irreducible represen-

tations that appear in the decomposition (8.2). More precisely we are only interested in the

asymptotics of this value when m → ∞, since this is the only contribution that matters in

the computation of the spectral dimension.

We need to review some facts about the root system of su(`+ 1), whose elements can be

considered as vectors in R`+1. The simple roots are given by αi = ei − ei+1 with 1 ≤ i ≤ `.

The positive roots are given by αij = ei − ej , with 1 ≤ i < j ≤ ` + 1, and we note that

they can be written in terms of the simple roots as αij =
∑j−1

k=i αk. Their scalar product is

(αij , αij) = 2. In particular (θ, θ) = 2, so that α̃ = α in the Weyl formula.

We also need the basis of the fundamental weights, which we denote by ωi. They are

connected to the simple roots via the Cartan matrix A as αi =
∑`

j=1Aijωj . The fundamental

weights are dual to the simple roots in the sense that

2(αi, ωj)

(αi, αi)
= δij .

Since in our case (αi, αi) = 2 this relation becomes (αi, ωj) = δij . Finally we recall that the

Weyl vector ρ, which is usually de�ned as the half-sum of the positive roots, can be written

in the basis of the fundamental weights in the simple form ρ =
∑`

j=1 ωj .

Proposition 8.1. Let Λ = n1ω1 +naωa +n`ω` be a weight, where n1 = m+ c1, n` = m+ c2

with m ∈ N, c1, c2 ∈ Z and na = 0, 1 with 2 ≤ a ≤ `− 1. Then the quantum dimension of the

representation with weight Λ is dimq(VΛ) = O(q−2`m) for m→∞.

Proof. Let us introduce the notation

Si =
`+1∏
j=i+1

[(Λ + ρ, αij)]

[(ρ, αij)]
,
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so that dimq(VΛ) is given by the product of the Si, that is

dimq(VΛ) =
∏̀
i=1

Si.

Let us consider �rst the case i = 1. Using the formulae (αi, ωj) = δij and αij =
∑j−1

k=i αk

it is immediate to show that we have

(Λ, αij) =


n1 j ≤ a,

n1 + na a < j < `+ 1,

n1 + na + n` j = `+ 1.

Then for m→∞ we obtain

S1 =
`+1∏
j=2

[(Λ + ρ, αij)]

[(ρ, αij)]
= O([m]`−1[2m]).

Similarly for 2 ≤ i ≤ a we have

(Λ, αij) =


0 j ≤ a,

na a < j < `+ 1,

na + n` j = `+ 1.

and for m→∞ we obtain

Si =

`+1∏
j=i+1

[(Λ + ρ, αij)]

[(ρ, αij)]
= O([m]).

Finally for i ≥ a+ 1 we have

(Λ, αij) =

0 j < `+ 1

n` j = `+ 1

and for m→∞ we obtain

Si =

`+1∏
j=i+1

[(Λ + ρ, αij)]

[(ρ, αij)]
= O([m]).
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Putting all together we �nd

dimq(VΛ) = S1

(
a∏
i=2

Si

)( ∏̀
i=a+1

Si

)
= O([m]`−1[2m])O([m])a−1O([m])`−a

= O([m]2`−2[2m]).

Finally, since for x→∞ we have [x] = O(q−x), we conclude that dimq(VΛ) = O(q−2`m).

8.5 Spectral dimension

Given the result of the previous section, it is now easy to prove the main result of this chapter.

Theorem 8.2. We have that Tr(K2ρ(D
2
N + 1)−z/2) < ∞ for Re(z) > 2` and the residue at

z = 2` exists. In particular the associated spectral dimension is 2`.

Proof. The Hilbert space HN is the completion of
⊕`

k=0 Ωk
N and each Ωk

N can be decomposed

into irreducible representations of Uq(su(` + 1)) as in (8.2). As shown in [D'AD¡10], the

operator D2
N restricted to the space Ωk

N can be expressed in terms of the Casimir operator of

Uq(su(`+1)). Therefore it acts as a multiple of the identity in each irreducible representation.

The only representations which appear in the decomposition (8.2) are those of weight

(m + c1,k,N , 0, · · · , 0,m + c2,k,N ) + ek, where m ∈ N, 2 ≤ k ≤ ` and c1,k,N , c2,k,N are some

integers depending on k and N . We denote the vector space that carries such a representation

by Vm,k,N and the corresponding eigenvalue of D2
N by λ2

m,k,N . Finally denoting by Trm,k,N

the trace on the vector space Vm,k,N we have that

Trm,k,N (K2ρ(D
2
N + 1)−z/2) = dimq(Vm,k,N )(λ2

m,k,N + 1)−z/2.

From Proposition 8.1 we know that, for m → ∞, we have dimq(Vm,k,N ) = O(q−2`m). Since

λm,k,N = O(q−m) we conclude that Trm,k,N (K2ρ(D
2
N + 1)−z/2) = O(q(z−2`)m).

Finally the trace can be written in the form

Tr(K2ρ(D
2
N + 1)−z/2) =

∑̀
k=0

∞∑
m=1

Trm,k,N (K2ρ(D
2
N + 1)−z/2)

=

∞∑
m=1

O(q(z−2`)m).

The series
∑∞

m=1 q
(z−2`)m is absolutely convergent for Re(z) > 2` and has a non-zero residue

at z = 2`, from which the statement of the theorem follows.

We now give a few comments on this result. As we mentioned in the introduction, in the

classical case the computation of the spectral dimension hinges on the balance between the
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growth of the eigenvalues of D and the growth of their multiplicities. On the other hand, in

the case of q-deformations the eigenvalues of D grow like q-numbers, therefore exponentially,

while their multiplicities only grow polynomially. This has the consequence of giving a spectral

dimension equal to zero for the spectral triples (A(CP `q ), HN , DN ). Intuitively, considering

the weight Tr(K2ρ·) has the e�ect of replacing the multiplicities of the eigenvalues with their

q-analogues, therefore restoring the balance in the computation. Indeed it can be argued that

in this context the notion of quantum dimension is the most natural one, as seen from its

role in the formulation of the quantum orthogonality relations.

The same result for the spectral dimension is obtained by considering K−1
2ρ , as follows

from a general property of the quantum dimension.

Corollary 8.3. The results of Theorem 8.2 remain valid if K2ρ is replaced by K−1
2ρ .

Proof. This follows from the identity Tr(K−1
2ρ ) = Tr(K2ρ), where the trace is taken on the

vector space of an irreducible �nite-dimensional representation, which is a general property

of the quantum dimension. For a proof see for example [KlSc].

This simple corollary is interesting in view of its possible applications to twisted Hochschild

(co)homology, as we now proceed to explain. It is known that for quantum groups there is a

dimension drop in Hochschild homology: this means that, if G is a semisimple group and we

denote by A(Gq) the associated quantized algebra of functions, then we have Hn(A(Gq)) = 0,

where n denotes the classical dimension of G. On the other hand, by using twisted Hochschild

homology, that is by twisting appropriately the notion of Hochschild homology, it is possible

to avoid this dimension drop. This was observed �rst in [HaKr05] for SLq(2) by direct

computation and then generalized in [BrZh08] to the general case.

Similar results hold for quantum homogeneous spaces as the Podle± spheres, as shown by

the computations in [Had07]. For results on a more general class of quantum homogeneous

spaces see [Krä12]. In particular, let us consider the case of the standard Podle± sphere. If we

denote by ϑP the modular group of the Haar state, then the dimension drop in Hochschild

homology is avoided by considering the twist ϑ−1
P . Then the volume form, being a twisted

cycle, will pair non-trivially with a twisted cocycle with twist ϑ−1
P .

In view of the results mentioned above, we expect that they continue to hold also for the

projective spaces A(CP `q ). Therefore, if we denote by ϑ the modular group in this case, we

expect to avoid the dimension drop in homology by twisting with ϑ−1. Therefore, in view of

our results, we can de�ne a a twisted cocycle which has a chance of pairing non-trivially with

the volume form.

Corollary 8.4. The functional on A(CP `q )⊗(2`+1) de�ned by

ψ̃(a0, · · · , a2`) = Res
z=2`

Tr(K−1
2ρ a0[DN , a1] · · · [DN , a2`](D

2
N + 1)−z/2)

is a twisted cocycle with twist ϑ−1.
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Proof. It follows from Corollary 8.3 that this functional is well-de�ned. That it is a twisted

cocycle with twist ϑ−1 follows from the twisted trace property shown in equation (8.3), with

K2ρ replaced by K−1
2ρ , and from standard computations.

For the case of the Podle± sphere, it is shown in [KrWa10] that such a twisted cocycle is

indeed non-trivial, when DN is taken to be the Dirac operator introduced in [D¡Si03].



Appendix A

Non-unital spectral triples

In this appendix we brie�y discuss the problem of extending the de�nition of spectral triple

to cover the case of non-compact spaces. That the de�nition needs to be modi�ed can be

seen already by considering the elementary case of Rn: in this case, it is not di�cult to check

that the Dirac operator does not have compact resolvent, so that at least this condition must

be modi�ed. Here only this issue and the related one of summability will be discussed, for a

more general discussion we refer to [GGISV04].

A possible argument to arrive at the necessary modi�cation is the following. In the

compact case we have seen that, by taking the Dixmier trace of the operator f(D2 + 1)−n/2,

with n being the dimension of the manifold, we obtain the integral of f (up to a constant).

Clearly when f is the identity function we obtain the volume of the manifold, which is in�nite

in the non-compact case. On one hand, this shows that only functions with suitable decay

conditions must be considered in the algebra. On the other hand, it shows that the resolvent

condition can be modi�ed by taking into account multiplication by such functions.

Therefore the operator f(D2 + 1)−1/2 is required to be compact for all f ∈ A, where A
is a suitable algebra of functions. This condition has been considered for the �rst time in

[Con95]. It is clear that, in the compact setting, it is equivalent to the one that we have

previously introduced. The de�nition of spectral triple is modi�ed as follows.

De�nition A.1. Let A be a ∗-subalgebra of B(H), where H is a Hilbert space. We call the

triple (A, H,D) a (non-compact) spectral triple if

1. D is a self-adjoint operator,

2. [D, a] extends to a bounded operator for all a ∈ A,

3. a(D2 + 1)−1/2 is compact for all a ∈ A.

In the following example we examine in more detail the case of Rn.

131
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Example A.1. For the �at space Rn the Dirac operator is given by D = −iγµ∂µ and its

square is the Laplacian. Consider the following zeta function

ζf (z) = Tr
(
f(D2 + µ2)−z/2

)
.

Here µ > 0 is needed for invertibility. It is easy to see that, if f is "good enough", for example

if we take f to be a Schwartz function, then the trace can be rewritten as

ζf (z) =
2[n/2]

(2π)n

ˆ (
ξ2 + µ2

)−z/2
dnξ

ˆ
f(x)dnx ,

where the coe�cient 2[n/2] comes from the trace over the spinor bundle. The integral over ξ

is �nite for Re(z) > n and we get

ˆ (
ξ2 + µ2

)−z/2
dnξ = πn/2µn−z

Γ
(
z−n

2

)
Γ
(
z
2

) . (A.1)

We obtain an analytic continuation using well-known properties of the gamma function, and

we �nd that the only singularities of ξf (z) are simple poles. Indeed Γ(z) has poles on the

negative real axis at z = 0,−1,−2, · · · , so that the function Γ
(
z−n

2

)
has poles at z = n− 2m,

where m ∈ N0. When n is even the poles at z = 0,−2,−4, · · · are canceled by the zeroes of

Γ
(
z
2

)
. Then the result is that ζf (z) has simple poles at z = n, n − 2, · · · , 2 when n is even,

and has simple poles at z = n, n− 2, · · · , 1,−1,−3, · · · when n is odd.

We can easily compute the residue at z = n of ζf (z), which is given by

Res
z=n

ζf (z) =
2[n/2]

(2π)n
2πn/2

Γ
(
n
2

) ˆ f(x)dnx .

We then recover the integral of f up to a constant, with the parameter µ disappearing in this

expression.
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Hopf algebras

In this appendix we give some elementary notions of Hopf algebras and quantum groups. The

material is standard and can be found for example in [KlSc]. We take our ground �eld to be

C and the tensor product to be the algebraic tensor product.

Let us recall that an associative algebra with unit is a linear space A with a bilinear

mapping (a, b) 7→ ab and a non-zero element 1 ∈ A such that

(ab)c = a(bc), 1a = a = a1.

We can rewrite these two conditions in a more "categorical" fashion by considering multipli-

cation as the linear map m : A⊗A→ A de�ned by m(a⊗ b) = ab and the unit as the linear

map η : C→ A such that η(1) = 1. In terms of these maps the two conditions become

m ◦ (m⊗ id) = m ◦ (id⊗m),

m ◦ (η ⊗ id) = id = m ◦ (id⊗ η),

where in the second line we identify C ⊗ A with A. It is immediate to obtain the notion of

(associative) coalgebra by dualizing these conditions.

De�nition B.1. An associative coalgebra with counit (or shortly coalgebra) is a linear space

A with linear maps ∆ : A→ A⊗A (coproduct) and ε : A→ C (counit) such that

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

(ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆.

The compatibility of these two notions gives a bialgebra structure.

De�nition B.2. A bialgebra is a linear space A which has the structure of both an algebra

and a coalgebra, and such that ∆ : A→ A⊗A and ε : A→ C are algebra homomorphisms.

At this stage there is no requirement for the existence of the inverse of an element. A

weaker notion is provided by the antipode map, which makes a bialgebra into a Hopf algebra.
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De�nition B.3. A Hopf algebra is a bialgebra A together with a linear mapping S : A→ A

(antipode) such that

m ◦ (S ⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗ S) ◦∆.

For a linear space V let us also de�ne the �ip σ : V ⊗ V → V ⊗ V as the linear map such

that σ(v1 ⊗ v2) = v2 ⊗ v1. An algebra A is commutative if m ◦ σ = m, so that we say that a

coalgebra is cocommutative if σ ◦∆ = ∆.

We now turn to some examples, which show that an Hopf algebra structure can be used

to accomodate both (functions on) groups and universal enveloping algebras of Lie algebras.

Example B.1. Let g be a Lie algebra and Ug its universal enveloping algebra. Then Ug can

be made into a Hopf algebra as follows. We de�ne the maps ∆, ε and S on g as

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X.

These maps are declared to be unital on C. The maps ∆ and ε can be extended as algebra

homomorphisms and S as an algebra anti-homomorphism, and it is not di�cult to check that

all the Hopf algebra axioms are satis�ed.

This Hopf algebra is cocommutative and moreover the antipode satis�es S2 = id.

Example B.2. Let G be a �nite group and F(G) the C-valued functions on G. For a �nite

group we have the isomorphism F(G × G) ∼= F(G) ⊗ F(G). Using this fact we can de�ne

a coproduct by ∆(f)(g1, g2) = f(g1g2). Similarly we de�ne the counit and the antipode as

ε(f)(g) = f(1) and S(f)(g) = f(g−1). With these maps F(G) is a Hopf algebra.

Notice that F(G) is always commutative, but is cocommutative only if G is commutative.

Also in this case the square of the antipode gives the identity.

This example can be extended to compact groups, but in this case we do not have the

isomorphism F(G×G) ∼= F(G)⊗F(G). One possibility is to work with representative func-

tions, that is matrix elements of �nite-dimensional representation of G. Another possibility

is to consider a completion of the tensor product.

It is possible to introduce a star structure on a Hopf algebra. This requires some compat-

ibility with the Hopf algebra structure.

De�nition B.4. A Hopf ∗-algebra is a Hopf algebra A which, as an algebra, is a ∗-algebra
and such that ∆ and ε are ∗-homomorphisms.

Proposition B.1. In a Hopf ∗-algebra A we have S ◦ ∗ ◦ S ◦ ∗ = id.

Another important notion is that of duality. It can be motivated by considering the case

of the dual vector space, denoted by A′, of a �nite dimensional Hopf algebra A. This space

becomes an algebra with multiplication de�ned as fg(a) = (f ⊗ g)∆(a) for f, g ∈ A′ and
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a ∈ A. We can also de�ne a coproduct, counit and antipode as follows: ∆(f)(a⊗ b) = f(ab),

ε(f) = f(1) and S(f)(a) = f(S(a)). With these maps A′ becomes a Hopf algebra, which is

obtained by dualizing A. This situation is generalized as follows.

De�nition B.5. Let U and A be two bialgebras. A dual pairing of U and A is a bilinear

map 〈·, ·〉 : U ×A→ C such that

〈∆U (f), a1 ⊗ a2〉 = 〈f, a1a2〉, 〈f1 ⊗ f2,∆A(a)〉 = 〈f1f2, a〉,

〈1U , a〉 = εA(a), 〈f, 1A〉 = εU (f),

for all f, f1, f2 ∈ U and a, a1, a2 ∈ A. The pairing is called non-degenerate if 〈f, a〉 = 0 for

all f ∈ U implies a = 0 and 〈f, a〉 = 0 for all a ∈ A implies f = 0.

It turns out that, if U and A are Hopf algebras, then we have also 〈SU (f), a〉 = 〈f, SA(a)〉.
It can be shown that there is such a pairing between the algebra of representative functions

of a group and its universal enveloping algebra.

A quantum group can be considered as a non-commutative and non-cocommutative Hopf

algebra. An important class of non-trivial examples is given by q-deformations of universal

enveloping algebras, which we now de�ne.

De�nition B.1 (Drinfeld-Jimbo algebras). Let g be a �nite-dimensional complex semisimple

Lie algebra of rank l, with Cartan matrix (aij) and di = (αi, αi)/2, where αi are the simple

roots and the inner product is de�ned in terms of the Killing form. Let q be a non-zero

complex number and de�ne qi = qdi . Then Uq(g) is de�ned to be the algebra generated by

the 4l generators Ki,K
−1
i , Ei, Fi with de�ning relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,

KiEjK
−1
i = q

aij/2
i Ej , KiFjK

−1
i = q

−aij/2
i Fj ,

EiFj − FjEi = δij
K2
i −K

−2
i

qi − q−1
i

,

plus the quantum Serre relations, see [KlSc].

Theorem B.2. There is a unique Hopf algebra structure on the algebra Uq(g) with comulti-

plication ∆, counit ε and antipode S such that

∆(Ki) = Ki ⊗Ki, ∆(K−1
i ) = K−1

i ⊗K
−1
i

∆(Ei) = Ei ⊗Ki +K−1
i ⊗ Ei, ∆(Fi) = Fi ⊗Ki +K−1

i ⊗ Fi,

ε(Ki) = 1, ε(Ei) = ε(Fi) = 0,

S(Ki) = K−1
i , S(Ei) = −qiEi, S(Fi) = −q−1

i Fi.

It is clear from the relations that this Hopf algebra is non-commutative and non-cocommutative.
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As we have seen in the examples at the beginning of this section, given a Lie group it

is possible to describe both its universal enveloping algebra and its space of representative

functions in terms of Hopf algebras. In the realm of q-deformations the counterpart of the

former is given by Drinfeld-Jimbo algebras, while in the compact case the counterpart of the

latter is given by compact quantum groups. We mention the important fact that there is a

non-trivial dual pairing between these two classes of Hopf algebras.

Compact quantum groups (or more precisely their coordinate algebras) are particular Hopf

∗-algebras, which can be characterized in terms of several equivalent conditions. Usually they

are de�ned in terms of a condition on the corepresentations. A corepresentation is essentially

the dual notion of representation for Lie groups.

De�nition B.6. A Hopf ∗-algebra A is called a compact quantum group if A is the linear

span of all matrix elements of �nite-dimensional unitary corepresentations of A.

We do not need the precise de�nition of corepresentation, since we will use the following

equivalent characterization in terms of Haar states.

Theorem B.2. A Hopf ∗-algebra is a compact quantum group if and only if there exists a

linear functional h on A such that (h ⊗ id) ◦∆ = h(a)1 and h(a∗a) > 0 for all a ∈ A with

a 6= 0. Such a functional is called the Haar state and it is unique.
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(Twisted) Hochschild homology

Hochschild homology is a homology theory for associative algebras over rings. For a reference

and more connections with non-commutative geometry see [Kha]. In the following A is an

associative algebra over C and M is an A-bimodule.

De�nition C.1. Let Cn(A) = M ⊗A⊗n, where n ∈ N. De�ne b : Cn(A)→ Cn−1(A) as

b(a0 ⊗ · · · ⊗ an) =

n−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1.

(C.1)

It can be proven that b2 = 0, so that b is a boundary operator and (Cn(A), b) is a chain

complex. We de�ne the Hochschild homology of the algebra A with coe�cients inM , denoted

by H∗(A,M), as the homology of the complex (Cn(A), b). In the special case when M = A

we denote this as HH∗(A) and simply speak of the Hochschild homology of A.

To understand the signi�cance of Hochschild homology in the context of non-commutative

geometry we must brie�y mention a theorem of Connes [Con85], which generalizes a theorem

of Hochschild, Kostant and Rosenberg. In this setting we consider the algebra C∞(M) of

smooth functions on a compact manifoldM and consider its continuous Hochschild homology.

This is an extension of Hochschild homology which takes into account the topology of C∞(M).

Without getting into details, the important result is that the continuous Hochschild homology

of C∞(M) is isomorphic to the space of di�erential forms on M .

Therefore Hochschild homology provides a de�nition of the space of di�erential forms

that does not make use of the commutativity of the algebra C∞(M). As such, it is a good

candidate for de�ning the analogue of di�erential forms for non-commutative spaces.

Let us point out that, in the case of a compact manifold M , the dimension of the space

of di�erential forms is given in this context by the Hochschild dimension. This is the largest

n ∈ N such that HHn(C∞(M)) is di�erent from zero. This number of course coincides with

the dimension of the manifold M .

137
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If we consider now a non-commutative space which is a "deformation" of a compact

manifold, it is by no means obvious that the Hochschild dimension coincides with the classical

dimension. It turns out to be true for non-commutative spaces like the non-commutative tori,

but generically it is not the case for quantum groups. In this case we speak of dimension

drop, since the Hochschild dimension turns out to be smaller than the classical one.

In these cases it is possible, at least in simple examples, to provide a modi�cation of

Hochschild homology which prevents the dimension drop. This is one of the motivation

behind the introduction of twisted Hochschild homology [KMT03]. Here we refer to [BrZh08]

and in particular to their notion of twisted Hochschild dimension.

De�nition C.2. Let σ be an automorphism of A and denote by σA the algebra A with left

action twisted by σ, that is A with bimodule structure a · b · c = σ(a)bc. Then the twisted

Hochschild dimension is de�ned as the maximum of the Hochschild dimension of H∗(A, σA)

over all the automorphisms σ of A.

It turns out that this de�nition avoids the dimension drop in several examples coming

from quantum groups, see [Had07, HaKr05] and also [BrZh08].
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Proof of the twisted trace property

In this appendix we want to give a proof of the equality appearing in equation (8.3). The

proof holds quite generally, so that we need not make reference to this particular example.

We consider a triple (A, H,D) with A ⊂ B(H) and ∆φ a positive invertible operator

acting on H. The assumptions we make are essentially those of a modular spectral triple:

1. ∆φa∆−1
φ ∈ A for any a ∈ A,

2. ∆φ and (D2 + 1)−1/2 commute,

3. [D, a] extends to a bounded operator for any a ∈ A.

We also make the following summability assumptions:

1. ∆φ(D2 + 1)−z/2 is trace-class for all Re(z) > p, with �xed p ∈ R,

2. z 7→ Tr(∆φ(D2 + 1)−z/2) has a meromorphic extension with a simple pole at z = p.

We note in passing that these two summability conditions can be related to the semi�nite

theory, see [CRSS07]. In any case, we can de�ne a linear functional on A by

ψ(a) = Res
z=p

Tr(∆φa(D2 + 1)−z/2).

It is well de�ned, since using Hölder's inequality we �nd

|Tr(∆φa(D2 + 1)−z/2)| ≤ ‖∆φa∆−1
φ ‖Tr(|∆φ(D2 + 1)−z/2|)

and by assumption ∆φa∆−1
φ ∈ A for any a ∈ A.

Proposition D.1. Given the assumptions above, the linear functional ψ : A → C satis�es

the twisted trace property ψ(ab) = ψ(∆−1
φ b∆φa) for all a, b ∈ A.

Proof. The crucial step of the proof is to show that

ψ(ab) = Res
z=p

Tr(∆φab(D
2 + 1)−z/2) = Res

z=p
Tr(∆φa(D2 + 1)−z/2b),

139
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or equivalently that the following residue vanishes

Res
z=p

Tr(∆φa[(D2 + 1)−z/2, b]) = 0.

It is enough to show that the function g(z) = Tr(∆φ[(D2 + 1)−z/2, b]) is holomorphic in a

neighbourhood of p, since using Hölder's inequality we have

|Tr(∆φa[(D2 + 1)−z/2, b])| ≤ ‖∆φa∆−1
φ ‖Tr(|∆φ[(D2 + 1)−z/2, b]|).

It is also easy to see that we can restrict our attention to real values of z, so we will write

z = s with s ∈ (p− ε, p+ ε) and ε > 0 to be �xed later.

We proceed similarly to [GVF, Theorem 10.20], but taking care of the presence of the

modular operator ∆φ. First of all we write p = kr̄, with �xed k ∈ N and 0 < r̄ < 1 (notice

that if p is an integer we can set k = 2p and r̄ = 1/2). With this convention we can write

any s, in a su�ciently small neighbourhood of p, as s = kr for some 0 < r < 1.

Then, using simple commutator identities, we obtain

[(D2 + 1)−s/2, b] =
k∑
j=1

(D2 + 1)−(j−1)r/2[(D2 + 1)−r/2, b](D2 + 1)−(k−j)r/2

= −
k∑
j=1

(D2 + 1)−jr/2[(D2 + 1)r/2, b](D2 + 1)−(k−j+1)r/2.

We introduce the notation

Rj = (D2 + 1)−jr/2[(D2 + 1)r/2, b](D2 + 1)−(k−j+1)r/2.

Let pj and qj be numbers such that p−1
j + q−1

j = 1. Then we have

∆φRj = ∆
p−1
j

φ ∆
q−1
j

φ (D2 + 1)−jr/2∆
−q−1

j

φ ∆
q−1
j

φ

× [(D2 + 1)r/2, b]∆
−q−1

j

φ ∆
q−1
j

φ (D2 + 1)−(k−j+1)r/2.

Since we assumed that D and ∆φ commute, this can be rewritten as

∆φRj = ∆
p−1
j

φ (D2 + 1)−jr/2[(D2 + 1)r/2,∆
q−1
j

φ b∆
−q−1

j

φ ]∆
q−1
j

φ (D2 + 1)−(k−j+1)r/2.

Now from Hölder's inequality it follows that

Tr(|∆φRj |) ≤ CjTr(∆φ(D2 + 1)−jpjr/2)p
−1
j Tr(∆φ(D2 + 1)−(k−j+1)qjr/2)q

−1
j ,

where Cj = ‖[(D2 + 1)r/2,∆
q−1
j

φ b∆
−q−1

j

φ ]‖. It follows from general arguments, which use the

boundedness of [D, a] for every a ∈ A, that this quantity is �nite, see [GVF, Lemma 10.17].
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Now we want to choose pj and qj in such a way that the operators ∆φ(D2 + 1)−jpjr/2 and

∆φ(D2 + 1)−(k−j+1)qjr/2 are trace-class, which in turn would show that ∆φRj is trace-class.

Since by assumption we have that ∆φ(D2 +1)−z/2 is trace-class for all Re(z) > p, this implies

the inequalities jpjr > p and (k − j + 1)qjr > p. Let us set

pj =
s

r(j − 1/2)
, qj =

s

r(k − j + 1/2)
,

and notice that they satisfy the equality p−1
j + q−1

j = 1, as they should. For s ≥ p it is

immediate to see that the inequalities jpjr > p and (k − j + 1)qjr > p are satis�ed. Then

consider the case s = p−ε, with ε > 0. In this case the �rst inequality is satis�ed for ε < p/2j

and the second one for ε < p/2(k − j + 1). Then we �x ε, once and for all, by requiring it to

be the smallest value such that these inequalities are satis�ed for all j ∈ {1, · · · , k}.
Therefore we have proven that ∆φRj is trace-class and, since

∆φ[(D2 + 1)−s/2, b] = −
k∑
j=1

∆φRj ,

the same is true for this operator when s ∈ (p− ε, p+ ε). Then we conclude that

ψ(ab) = Res
z=p

Tr(∆φab(D
2 + 1)−z/2) = Res

z=p
Tr(∆φa(D2 + 1)−z/2b).

The rest of the proof is now trivial. Using the trace property we get

ψ(ab) = Res
z=p

Tr(∆φa(D2 + 1)−z/2b)

= Res
z=p

Tr(b∆φa(D2 + 1)−z/2)

= Res
z=p

Tr(∆φ∆−1
φ b∆φa(D2 + 1)−z/2).

But this shows that ψ(ab) = ψ(∆−1
φ b∆φa), which concludes the proof.
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