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Abstract

In this work we present an integrated approach to the study of protein

translation, based on Statistical Physics. We adopted three different but

complementary perspectives: building hypothesis up from the data, mod-

eling down from reasonable assumptions, and using computer simulations

when everything else fails.

In particular, we first analyze the mRNA sequences by means of infor-

mation theory. We focus on the way the redundancy of the genetic code

(the 61 sense triplets of nucleotides -the codons- encode for 20 amino acids)

is utilized in the actual sequences, a phenomenon known as the codon bias.

We observe that it is not completely random, and encodes information in

the frequencies and in the order of the codons.

With the scope of explaining these anomalies, we develop and analyze

a family of stochastic models. Translation emerges as a systemic process,

where the limited amount of resources in the cell couples the expression of

the genes at a global level. We also suggest a game-theoretical interpretation

of the codon bias.

We finally attack the problem of cotranslational folding (i.e., the folding

of the protein while it is still being translated). Specifically, we ask how this

process depends on the order of the codons. This question is computationally

very cumbersome. We thus propose a framework based on Markov chains,

which allows the efficient simulation of arbitrarily complicate cotranslational

folding mechanisms.
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Introduction

The biological sciences are undergoing a profound revolution since the last

decade, driven by major breakthrough in both the quantity and the quality

of the experimental data.

The diffusion of entire genome sequencing techniques [104, 86, 73, 11]

and high-throughput facilities (robotically assisted wet lab) [38, 99, 80],

united with the easy accessibility of their results via web-based repositories

[4, 7, 20, 64, 10, 21], is offering unprecedented amounts of data about the

components of living systems. Most notably, the analysis of the thousands

of genomes that have been sequenced [87] is revealing the mechanisms and

principles through which the genetic information is maintained and utilized

in living organisms [111, 81, 46, 16].

On the other hand, the introduction and the refinement of single molecule

techniques such as the atomic force microscopy (AFM)[12, 52, 56], fluores-

cence resonance energy transfer (FRET) [55, 43], and optical tweezers [5, 61]

have pushed the sensibility up to single molecule [98, 106, 77], allowing to

probe the intrinsic stochastic nature of life at the microscopic level.

The analysis of large quantities of data on one side, and the comprehen-

sion of the molecular building blocks on the other, is revealing universal,

emergent and quantitative regularities [72, 120, 94, 51, 58, 117]. This poses

a grand theoretical challenge: how much of these empirical “laws” can be

reproduced by simple modeling?

Statistical Physics can very relevantly contribute to this program, as it is

the natural language for the stochastic modeling of the microscopic reactions

and, potentially, for extrapolating the collective and macroscopic behaviors

emerging out of them. Furthermore, the large size of the datasets and their

intrinsic noisiness inevitably requires a statistical interpretation.

In this Thesis we use the means of Statistical Physics to approach pro-

tein translation. During this reaction the information stored in the cell

(the DNA) is processed and utilized in order to correctly and reproducibly

assemble the proteins. In particular, the 64 possible triplets of the 4 nu-

iii



iv INTRODUCTION

Figure 1: Cartoon of the translation process. The ribosome scans through

the mRNA. The codons (triplets of nucleotides) are recognized by the tR-

NAs, which carry the amino acids. The newly assembled proteins exits the

ribosome as the translation proceeds. (Adapted from Wikipedia)

cleotides (the codons) composing the messenger RNAs (mRNA) are sequen-

tially scanned by the ribosomes (the molecular machines where the synthesis

occurs) and translated into amino acids by the transfer RNAs (tRNA), see

Fig. 1. The tRNA molecules are present in the cell in several variants (42 in

Yeast), and each of them decodes one or more among the 61 sense codons

(3 codons are used as the stop signals terminating the translation) into one

of the 20 amino acids. Since the number of codons and tRNAs is greater

than the number of amino acids, the genetic code is degenerate.

The first question we ask is whether this degeneracy is used to encode

a further layer of information beyond the amino acid sequence. In Chap. 1

we analyze the mRNA sequences for detecting biases in the way the codons

are used. We base our approach on Information Theory with the scope of

analyzing the codon usage in the most abstract and model-free way. We are

able to detect an anisotropy in the way the different codons are used across

the genome, and we show that, mostly, this is a bias in the usage frequencies.

The spacial organization of the codons (beyond that given by the amino acid

sequence), although informative, seems to act as a second-order correction.

The following chapter (Chap.2) is devoted to models, whose scope is to

explain the previously observed frequency anomaly. We analyze the effects of

the finite amount of ribosomes and tRNAs by means of stochastic models.

The picture which emerges from these models is that the optimization of

the translation process is an intrinsically systemic problem, due to the finite

amount of resources available in the cell. We also study how the interplay

between the timescales of tRNA recharging, diffusion and translation can
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shape the distribution of time interval between translation events, and lead

to a non-exponential distribution.

A plausible hypothesis which can help in explaining the information in

the codon spatial arrangement involves the folding of the protein while it is

still tethered to the ribosome. The process of cotranslational folding, in fact,

depends on the arrangement of the codons along the mRNA sequences: it

was hypothesized that clusters of slow-translating codons can significantly

help the folding of a protein domain by selectively slowing down the trans-

lation [71, 70, 123, 124]. The analysis of the information from the spacial

organization of the codons, however, requires a level of detail and depen-

dence on the actual sequence which cannot be easily obtained by analytical

modeling. Besides, the computational burden inherent to this problem is

overwhelming: the most interesting point resides in studying how the folding

is affected by varying the translation rates, and it would require an immense

power (a set of molecular dynamics simulations is required for each value

of the parameters). In Chap. 3 we propose a method which overcomes this

limitation by using a Markov chain formalism. This new methods makes

the problem of cotranslational folding practically tractable.

Before plunging deep in the core of this work, let us briefly discuss Evo-

lution and its implications because, as it has been observed [34], “Nothing

makes sense in Biology except in the light of Evolution”.

Selection and non-typicality

The central dogma of molecular biology [29] states that the information in

the living system is stored in the genetic material (tipically, apart from RNA

viruses, the DNA), that this information can be utilized to transcribe RNAs

(like, e.g., mRNAs, tRNAs, miRNAs or structural components of cellular

organelles), and subsequently, in the case of mRNAs, to encode proteins. It

also states that the information flows unidirectionally from DNA to RNA,

and from RNA to proteins.

However, this dogma does not capture the long term feedback from ex-

pression to genetic information which is at the core of evolution. In fact,

on timescales longer than the lifetime of the single organism, the plasticity

of the genomes1 induces modifications on the DNA which are selectively

1The genetic material can change due to many different factors, whose relative impor-

tance depends on the organism. In the Prokaryotes, for instance, the main mechanisms

are mutation and horizontal gene transfer (i.e., exchange of genes between different organ-

isms). The latter is of extreme importance for antibiotic resistance, as different bacterial

strains can exchange pieces of DNA, possibly containing the genes which confer the resis-
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retained (”fixed”) or discarded according to their benefit.

As the generations follow one another, the organisms having the highest

capability to cope with the environment and reproduce rapidly -i.e., higher

fitness- are favored. Effectively, the information flows from gene expres-

sion to DNA, and the living systems are optimized by selection in order to

increase their fitness.2

The signs of the optimization process are evident, and we expect that

the organisms which underwent selection for a specific feature will stand out

when compared to the others. As a pictorial example, consider a specific

trait, the neck length-to-height ratio, for many different animals. Most

of the measures would disperse around a typical value, but at least the

giraffe will stand out. In fact, unless the trait is under selective pressure,

natural variation and mutations act randomly. The non-typical samples

are produced when a specific trait undergoes selection for an underlying

function: the giraffe has a long neck to reach out for the highest branches.

This idea has been applied successfully, for instance, to protein sequence

analysis [119]. The sequences of the same protein from several different

organisms were aligned and compared, keeping track of the mutations of

the single amino acids. Among the many possible mutations, some of them

repeatedly occur simultaneously and, since that pattern is very unlikely to

be caused by chance, it is most probable that an underlying function drives

the selection. In particular, it was shown that those informative couples

are physically interacting during the fold of the protein, and the interaction

induces the correlation of the mutations. The information extracted with

this method is successfully used in assisting protein folding software.

In the following chapter we will apply this approach to one of the largest

set of data, the sequenced genomes. In particular, we will study how the

different codons (i.e., the different triplets of nucleotides encoding for an

amino acid) are used. The synonymous mutations3 do not alter the amino

acid sequence and are often regarded as neutral and therefore random, as

tance.
2This qualitative representation is currently the subject of numerous quantitative stud-

ies, whose scope is in understanding how the modifications of the genotype (i.e., the DNA)

affect the fitness of the organism. Intriguingly, experimental sampling of small fitness land-

scapes (of the order of up to 9 mutations, producing 29 different genotypes) is beginning to

unveil the complexity of the interaction between different mutations, a mechanism known

as epistasis (an in-depth review of these experiments and their theoretical interpretation

can be found in Ref. [108]).
3The genetic code is degenerate, as 61 sense codons are translated into 20 amino acids.

Most of the amino acids are encoded by more than one synonymous codons. A synonymous

mutation which substitutes a codon with one of its synonyms produces the same amino

acid sequence.
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no selective pressure acts on them. This assumption is not completely true,

as we show in the forthcoming sections, and there is information beyond

the amino acid sequence. By understanding the causes and the implications

driving the codon usage evolution, we believe that the comprehension of the

whole translation machinery will be benefited.



viii INTRODUCTION



Chapter 1

Learning from the data: the

codon usage

1.1 The codon usage: information beyond the amino

acid sequence

During translation, each amino acid is specified by a triplet of nucleotides

(a codon). A given amino acid, however, may correspond to more than

one codon, so that 61 codons correspond to 20 amino acids. For instance,

lysine is encoded by two codons, valine by four and arginine by six. The

way in which these synonymous codons are used shows a marked bias, a

phenomenon know as codon bias [63, 91, 103, 47]. For instance, in humans

the amino acid alanine the codon GCC (guanine-cytosine-cytosine) is used

four times more frequently than the codon GCG. A question of central im-

portance concerns the causes and consequences of the redundancy of the

genetic code.

The codon bias is characteristic of a given organism and has been asso-

ciated with three major aspects of mRNA translation, which are efficiency,

accuracy and regulation [91, 47]. The first aspect is efficiency. The codon

bias and the tRNA abundance in a given organism appear to have co-evolved

for optimum efficiency [62, 17, 35]. Since synonymous codons (i.e., encoding

for the same amino acid) can be recognized by different tRNAs and trans-

lated with different efficiencies, the codon bias is related to the translation

rates [118, 109, 19, 114]. Moreover, codon usage has been shown to corre-

late with expression levels [49, 9, 48, 75, 123, 70, 31, 113], so that the use

of particular codons can increase the expression of a gene by up to two or

three orders of magnitude [53, 75].

The second aspect is accuracy. The codon bias affects the accuracy in

1
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the translation, an effect that appears to have been optimized to reduce

misfolding and aggregation [36].

The third aspect is regulation. Different codon choices can produce

mRNA transcripts with different secondary structure and stability thus af-

fecting mRNA regulation and translation initiation [75, 112]. The codon

usage has also been associated with the folding behavior of the nascent pro-

teins, by timing the co-translational folding process [26, 88, 70].

Since all these aspects of the translation process rely in some form on the

information provided by the codon bias, it is most natural to use informa-

tion theoretical techniques. In particular, in the following sections we first

analyze the information content of the codon bias by analyzing the entropy

and mutual information of the mRNA sequences of S.Cerevisiae, and then

we introduce a measure for the information stored in the codon usage, the

CII.

1.1.1 Codon usage entropy

The mRNAs are sequences of 61 different symbols, the codons, and the most

natural way to analyze the properties of strings of symbols is by means of

information theory.

Information theory, brought to worldwide attention by Claude Shannon

in 1948 [102], deals with the question of how to quantify the information

content of a message. The key quantity is the entropy, which captures the

amount of uncertainty of a random variable.

In the case of mRNA sequences, we are interested in how the synonymous

codons are utilized to encode each amino acid. We therefore consider each

amino acid separately. Equivalently, we are supposing that each mRNA is

composed by 20 independent sub-messages, whose entropy can be summed

up. We can compute the entropy for the mRNA g as

S(g) =
∑
a

S(g)(a) = −
∑
a

∑
c∈a

f (g)
c (a) log2 f

(g)
c (a), (1.1)

where the first sum over a is intended over the 20 amino acids, the second

sum over c ∈ a runs over the codons c encoding for amino acid a, and

f
(g)
c = n

(g)
c /

∑
c∈a n

(g)
c are the frequencies of the codons encoding for the

amino acid a.

The entropy Eq. (1.1) measures how much the codon usage is random for

each of the amino acids. For instance, for a 2-codon amino acid like Lysine,

S(g)(Lys) reaches a maximum when f
(g)
1 (Lys) ' f (g)

2 (Lys) ' 0.5 and is zero

when f
(g)
1 (Lys) is close to 0 or 1.
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Figure 1.1: Left: entropy S(g) versus the length of the mRNA L(g). As the

length of the transcript becomes shorter than ∼ 200 codons, finite sampling

imposes a clear cutoff for the entropy. Right: average value of the entropy

of a Bernoulli distribution whose parameter p∗ is estimated from L trials,

Eq. (1.2) (blue dots). In this case the samples were generated with p = 1/2.

The entropy approaches the asymptotic value 1 (red line) in the large L(a)

limit. On the other hand, as L(a) becomes smaller, insufficient sampling

effects reduce the average value of the entropy.

Let us compute the entropy S(g) for the entire set of mRNA of Saccha-

romicies Cerevisiae (from SGD database [21]), and as a first check let us plot

it against the length of the mRNA (in codons), as in left panel of Fig. 1.1.

This plot reveals that the entropy of the sequence is affected by a bias which

grows as the length of the transcript becomes shorter than ≈ 200 codons.

The origin of this bias is inherent to the error in the estimation of the

set of probabilities {f (g)
c } based on too few observations, which occurs when

the length is reduced. In order to explain the mechanism, let us work out

an example: suppose that L Bernoulli trials (biased coin tosses, head with

probability p and tail with probability 1 − p) are produced, observing nh
heads and nt = L−nh tails. The estimator p∗ for the probability p, assuming

binomially distributed nh, is p∗ = nh/L.1 The average value of the entropy

of the empirical distribution as a function of the length is given by

〈Sb(L)〉 =

L∑
nh=0

PB(nh|p, L)
∑
i=h,t

(
−ni
L

log2

ni
L

) , (1.2)

where PB(nh|p, L) is the binomial distribution. In the right panel of Fig. 1.1

we plot 〈Sb(L)〉 as a function of the length L. The estimated entropy exhibit

a strong bias as the size of the sample is reduced.

1The estimator p∗ = nh/L is the Maximum Likelihood estimator.
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Figure 1.2: Plot of the ratio ∆(g), Eq. (1.3), versus mRNA abundance.

Interestingly, the entropy of the resampled sequence typically increases with

respect to the true sequence as the abundance of the transcript increases.

The red line is a moving average.

The bare entropy cannot be used as a measure of how much the codon

usage is biased due to the previous length dependence. However, we are

interested in analyzing how untypical the codon usage of a mRNA is. To

do so we therefore compute the average codon usage {f̄c} across the whole

transcriptome and, for every gene g, we produce M randomized samples

such that I) we keep the number of each amino acid N (g)(a) fixed, and

II) the number of codons {n(g)
c }c∈a of each amino acid a is generated from

the multinomial distribution PM({n(g)
c }|{f̄c}, N (g)(a)). Using this method

we can estimate how far the entropy of the true sequence is from a typical

sample having an average codon usage. By using the average S̄
(g)
R and the

standard deviation σ
(g)
R of the entropy of the resampled sequences, we can

compute the ratio

∆(g) =
S(g) − S̄(g)

R

σ
(g)
R

. (1.3)

We plot this ratio versus the experimentally measured mRNA abundance

in Yeast (the data are from [37, 60]) in Fig. 1.2. Interestingly, the entropy

S(g) of the true sequences decreases with respect to the average S̄
(g)
R as the

abundance increases, clearly showing that the codon usage is not constant

across the genome. Furthermore, the codon usage of abundant mRNAs

tends to be significantly less random (i.e., less even) than that of the less

abundant mRNAs.2

2The early observations that the bias increases with the abundance of the mRNA date
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Note that entropy does not discriminate 1) the codon species (in a

2 codon case, low entropy is obtained with both n1 = 0, n2 = 10 and

n1 = 10, n2 = 0), implying that mRNAs with equally low entropies might

have radically different codon usages, and 2) the codon order, as it is com-

puted from the frequencies only. In particular, codon order could carry some

information, and in the next section we will analyze it.

1.1.2 Codon order and mutual information

The quantity ∆(g) introduced in the previous section is a good measure of

how much the codon usage is biased. However, its computation completely

neglects codon order, as it relies on the frequencies only.

Let us consider the codon ci at position i along a mRNA sequence. What

can we say about the codon ci+d at position i + d? Does the information

about ci tell us something about the following codons? Equivalently, we can

ask how much the entropy of the distribution of ci+d is reduced by knowing

ci. This quantity can be written as S(ci+d) − S(ci+d)|ci , where S(ci+d)|ci
is computed using the probability distribution for ci+d conditioned to ci.

Summing over the distribution of ci, we obtain the mutual information,

which in the case of two random variables X and Y can be written as

M(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (1.4)

where p(x, y) is the joint distribution and p(x) and p(y) are the marginals.

The mutual information measures how far the joint probability p(x, y) is

from being factorizable as p(x)p(y), i.e., how much X and Y deviate from

being independent.

In order to compute the mutual information between codons separated

by a distance d, we need the knowledge of the joint probability for codons

C1 and C2, which can be easily extracted from S sequences as

pd(C1, C2) =
1

N

S∑
s=1

Ls−d∑
i=1

δC1,ci(s)δC2,ci+d(s), (1.5)

where Ls is the length of sequence s, N the normalization, and C1, C2 =

1, . . . , 61.

The idea of using mutual information is not new, as already in the ’90s

it was observed [40] that it’s not vanishing. However, the ”bare” mutual

information is not a well-behaved measure of the information carried by the

back to the ’80 [49, 63, 17, 103, 2].
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Figure 1.3: Mutual information between sites at distance d on two sequences

of the same length composed by two possible symbols, computed using

Eq. (1.6). M(C1, C2) is plotted as a function of the frequency f1(A) of the

symbol A on the first sequence, for several values of the frequency f2(A).

When f1(A) 6= f2(A) the mutual information is positive.

codon order for two main reasons. First, we are probing the properties of a

”meta-sequence” of symbols, as the sequence of the codons is superimposed

over that of the amino acids. A non zero mutual information could be

trivially due to an informative sequence of amino acids with completely

random codons.

Another very subtle bias is due to the inhomogeneity of the codon usage

across the sequences: let us consider a simplified case, with two sequences

of length L1 and L2, composed by only two possible symbols, A and B. Let

us also suppose that the symbol A has a frequency f1(A) and f2(A), re-

spectively on the two sequences. Assuming that the symbols are completely

random and that the sequences are long enough, the joint probability for

two symbols (at any distance) reads

p(C1, C2) =

∑
s=1,2 Lsfs(C1)fs(C2)∑

s=1,2 Ls
. (1.6)

Even though the two sequences are not spatially organized, the mutual in-

formation computed from this joint probability is non-vanishing (apart from

the points L1 = 0, L2 = 0, and f1(A) = f2(A)), as show in Fig. 1.3.

These two biases can be accounted for by subtracting the trivial part of

the information, computed on the sequences randomized such as to disrupt

the spacial organization of the codons while leaving unaltered 1) the amino

acid sequences, and 2) the codon frequencies inside each sequence. We there-
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Figure 1.4: Mutual information between codons at distance d along the

sequences. On the left, the mutual information for the true sequences is

compared with that for the reshuffled sequences, showing that the largest

deviation is for d = 1. The differences MT(d) − MCR(d) and MCR(d) −
MAR(d) are plotted in the right panel. Interestingly, MT(d)−MCR(d) seems

to relax to a constant. On the other hand, MCR(d)−MAR(d)

fore define the ”codon reshuffle” protocol (CR), such that the codons of each

amino acid are randomly permuted inside each transcript. In order to also

measure the information stored in the amino acid ordering, we also intro-

duce the ”amino acid reshuffle” protocol (AR): the codons of each mRNA

are randomly permuted, therefore altering the amino acid sequence. Let us

name MT(d), MCR(d) and MAR(d) the ”true” and the reshuffled mutual

informations. The difference MT(d)−MCR(d) measures how much informa-

tion is encoded in the order of the codons, while MCR(d)−MAR(d) measures

the contribution due to the sequence of amino acids.

These quantities are plotted in Fig. 1.4 for S.Cerevisiae.3 Interestingly,

MT(d) is much larger than MCR(d) for d = 1, and it relaxes rapidly. The

difference is therefore due to the spacial ordering of the codons. The residual

dependence of MCR(d) on the distance is due to the organization of the

amino acids, proved by the fact that reshuffling the amino acids produces a

constant MAR(d).

This finding implies that the spacial organization of the codons is not

3The mutual informations for the reshuffled sequences should be regarded as random

variables as their value could fluctuate from sample to sample. However, the data set is

so large that their behavior can be regarded as self-averaging, as the variance is at least 2

orders of magnitude smaller than the mean.
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completely random. So we can ask what this information is used for and

how codon order affects translation. Plausibly, the most important effects

are I) recycling of the tRNAs which have been used recently [19], II) folding

of the mRNA [75], III) translation pauses induced by slow codon clusters in

order to let the protein fold cotransaltionally [70, 88], and IV) flow of the

ribosomes along the mRNA [82, 97, 23].

Since all these aspects of the translation process rely in some form on

the information provided by the codon bias, it is very important to first

address the question of establishing a measure of the amount of information

encoded in the codon bias itself. For this purpose in the next section we

introduce the Codon Information Index (CII).

1.2 The Codon Information Index (CII )

In the previous sections we showed that the way the codons are used is

not homogeneous across the genome. Furthermore, there is some degree of

spacial organization, in the sense that the order of the codons along the

sequence is less random than expected, mostly for codons at distance one.

However, we only detected the presence of information. In order to answer

the fundamental question of what the information is used for, we need to

carefully measure the amount of information stored in the codon usage at

each site along the sequences. This level of detail permits the analysis of

the anisotropies of the information inside each mRNA.

In the following sections we introduce the Codon information Index

(CII), by using a combination of statistical mechanics and information the-

oretical techniques. We first analyse the general properties of the CII and

then we apply it to a pool of 3371 genes of yeast. We find that the CII

correlates with protein and mRNA abundances, as well as with the tRNA

Adaptation Index (tAI) [96]. The latter result shows that two independent

forms of information, which are stored in different parts of the genome, the

tRNA copy number and the codon bias in the coding region, are remarkably

dependent on one another.

1.2.1 Measures of the codon bias

Several measures of the codon usage exist. Let us briefly review them:

• The “effective number of codons” (N̂) [121]) is based on population

genetics results. Each amino acid a is considered as a different locus

with a number Ka of alleles equal to the number of codons. The

frequencies pi of use of each of those alleles are used to compute the
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“homozygosity” Fa = (na
∑K

i=1 p
2
i−1)/(na−1), where na is the number

of the amino acids a. The effective number of codons Na for the amino

acid a is simply Na = F−1
a , and the overall N̂ is computed by summing

the contributions of all the amino acids. This index does not depend

on any data beyond the mRNA sequence.

• The “frequency of optimal codons” (Fopt) [62] of a sequence is defined

as Fopt = Nopt/Ntot, where Nopt is the number of codons identified as

optimal and Ntot is the total number of codons. The identification of

the “optimal” codons is based on their interaction with the tRNA and

tRNA abundances.

• The definition of the “Codon Bias Index” (CBI) [9] is similar to that

of Fopt and, fundamentally, differs by a constant.

• The “Codon Adaptation Index” (CAI) [103]) for a sequence S is de-

fined as the geometric mean of the weights wc associated to each codon.

The weights are computed from the frequencies as wc = fc/maxc′∈af̂c′ ,

where the codons c and c′ are synonymously translating the amino acid

a. Note, however, that f̂c is computed for a set of highly expressed

genes.

• The tRNA adaptation index (tAI) [96] is the most recent one. It is

defined for a mRNA sequence g as

tAI =

 Lg∏
i=1

wci

1/Lg

, (1.7)

where wci is the weight associated to the ci-th codon in the gene g.

These wc are defined as

wi =

{
Wi

Wmax
if Wi 6= 0

wavg otherwise
, Wi =

ti∑
j=1

(1− sij)tGCNij ,

where ti is the number of tRNA isoacceptors recognizing codon i. The

parameter tGCNij , referring to the jth tRNA recognizing codon i,

and is the number of the copies of the tRNA gene ij present in the

genome of the organism under consideration. The set of parameters sij
gauges the efficiency of codon-anticodon coupling and are optimized

to maximize the correlation of the tAI with protein abundance. The

computation of this index requires information about two of the most
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influential factors affecting translation efficiency, namely tRNA abun-

dance (tRNA copy number is highly correlated to tRNA abundance

[89]) and codon coupling efficiency.

Among these measures, the CII is specifically designed to describe the

amount of information encoded in mRNA sequences through the codon bias,

and it is the only one with the following properties: i) it requires only infor-

mation about the mRNA sequences and does not depend on any additional

data: the CII is self-contained, and ii) it produces a codon-wise profile for

each sequence. As examples, we mention in particular that, for a given or-

ganism, the tAI requires the knowledge of the tRNA pool, and that the CAI

requires the knowledge of the most expressed genes.

1.2.2 Construction of the CII

A natural representation of the information contained in the codon bias can

be given in terms of strings of bits (i.e. (0, 1) variables) or of distributions

over bit strings. In other words, we associate a bit to each codon. This

procedure corresponds to bin the codons into two classes, each with its own

codon usage distribution, given by the frequencies of the codons in that class.

The first ingredient to build the CII is an assignment of bits to codons that is

maximally informative, in a way to be specified later. This also implies that

the information encoded in this way is optimally retrievable. Pictorially,

we are supposing that each codon encodes a hidden binary property (e.g.,

fast or slow). The maximally informative assignment is such that, given the

string of bits, the information about the string of codons is maximized: we

want to compress the codon code into a 2 symbols code.

The second ingredient is a local codon organization along the sequence

(see Fig. 1.5). We analyze these two contributions separately below.

Maximum information

Let us first consider the special case of a protein of length L composed by

only one amino acid type, which can be translated by K different codons

[6]; the generalization to the full set of amino acids is described below. The

sequence {c1 . . . , cL}, ci = 1, . . . ,K is given, where ci is the ith codon. We

associate a binary variable si = ±1 (i.e. a spin variable, rather than a bit

({0, 1}) variable) to each site of the sequence; this spin variable identifies

the class each codon is assigned to.

Let pc|s be the probability for the codon c to be used on a site with spin

s. A priori, the only information available is that an amino acid can be
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Figure 1.5: In the calculation of the CII each codon has an associated binary

variable. Synonymous codons interact via the information theoretic part of

the Hamiltonian (solid lines), nearest neighbor sites interact via the Ising

interaction (dashed line)

encoded by any of its possible codons. This state of ignorance is described

by the choice of a uniform prior distribution for the probabilities of the

parameters pc|s, with the normalization ensured by a δ function

P0(p̂) =
∏
s=±1

Γ(K) δ

(
K∑
c=1

pc|s − 1

)
. (1.8)

For any assignment ~s = (s1, . . . , sL) of the spins, the statistical infor-

mation contained in the sequences is encoded in the codon counts ns(c) =∑L
i=1 δK(si− s)δK(ci− c), i.e. the number of times codon c is used on a site

with spin s. The probability of observing ~ns = (ns(1) . . . ns(K)) is modeled

using a product of two multinomial distributions:

P (~ns|p̂) =
∏
s=±1

Γ (Ns + 1)∏
c Γ(ns(c) + 1)

∏
c

p
ns(c)
c|s , (1.9)

where Ns =
∑K

1 ns(c) and obviously N+ +N− = L.

Using Bayes formula P (θ|x) = P (x|θ)P0(θ)/P0(x), we obtain the poste-

rior distribution

P (p̂|~ns) =
∏
s=±1

Γ (Ns +K)∏
c Γ(ns(c) + 1)

K∏
c=1

ps(c)
ns(c)δ

(∑
c

ps(c)− 1

)
. (1.10)

An important quantity that can be derived from the prior and the poste-

rior is how much information is gained by observing the codon frequencies.

This requires to compute how many extra bits must be used to code the

samples from the posterior compared to the prior. This quantity is the

Kullback-Leibler divergence, which is defined, for two distributions P (x)

and Q(x), as

DKL(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
.
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To our purposes it is useful to use the symmetrized version of the KL diver-

gence:

I(~ns) = DKL(P ||P0) +DKL(P0||P )

=

〈
log

P (p̂|~ns)
P0(p̂)

〉
P (p̂|~ns)

+

〈
log

P0(p̂)

P (p̂|~ns)

〉
P0(p̂)

,

where the averages are performed with respect to the posterior, Eq. (1.10),

and the prior, Eq. (1.8), respectively. The integration can be performed

analytically and leads to

I(~ns) = −
∑
s=±1

K∑
c=1

ns(c)
[
ψ (Ns +K)− ψ (ns(c) + 1)

]
+ Const, (1.11)

where ψ(x) is the digamma function.

The generalization to the whole set of amino acids is simply the sum of

I(~s, ~ns) for each amino acid:

I({~ns,a}) = −
20∑
a=1

∑
s=±1

Ka∑
ca=1

ns,a(ca)
[
ψ(Ns,a+Ka)−ψ(ns,a(ca)+1)

]
+Const,

(1.12)

where Ka is the number of codons encoding for the amino acid a, ns,a(ca)

is the number of times a spin s is associated to the codon ca of the amino

acid a and Ns,a =
∑Ka

ca=1 ns,a(ca).

To extract as much information as possible from the codon counts we

have to maximize Eq. (1.12). However, the contributions of different amino

acids are independent and each amino acid sector is invariant under a spin

flip. Therefore the minima of Eq. (1.12) are highly degenerate. Moreover,

the amino acids with only one codon, methionine and tryptophan, do not

contribute to Eq. (1.12).

These issues can be cured observing that the previous derivation does not

use any information about how the codons are arranged along the sequence.

Therefore, information carried by the codon order can be used to weight the

minima of Eq. (1.12).

Codon spatial organization

In order to remove the degeneracy, we add to Eq. (1.12) an interaction

between nearest-neighbour spins that favors their alignment. This coupling

is also consistent with the observation of the existence of a “codon pair bias”

[54, 27]. We thus define the cost function

H{~s} = −J
L−1∑
i=1

sisi+1 − I({~ns,a}), (1.13)
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Figure 1.6: Local CII, as in equation (1.14), for the first 100 codons of the

TFC3/YAL001C gene.

where J is a parameter to be tuned which accounts for the degree of spatial

homogeneity of the sequence. In statistical physics terms, Eq. (1.13) can

be regarded as the Hamiltonian of a spin system, that besides the 1D Ising

interaction J , also has a long range interaction I as shown in Fig. 1.5 4. This

analogy makes it possible to apply techniques used to study spin systems in

statistical physics to the present model.

We are interested in the spin arrangements minimizing the Hamiltonian

(1.13), given the codon sequence. Numerically, energy minimization was

performed by Simulated Annealing Monte Carlo [67]. When the states of

minimal H were found to be degenerate, an average over all of them was

considered.

The optimization of the cost function H is carried out simultaneously

on a pool of genes of the same organism, but clearly the nearest neighbor

interaction is defined only for neighboring codons within the same gene.

We define the Local Codon Information Index as the magnetization at

site i on the transcript g, i.e. the thermodynamic average of the spin at site

i

c
(g)
II (i) = 〈s(g)

i 〉 (1.14)

and the Codon Information Index of the gene g as the average of the local

CII on the gene codons

C
(g)
II =

1

Lg

Lg∑
i=1

c
(g)
II (i). (1.15)

4The Hamiltonian (1.13) is invariant under a global spin flip, thus the average magneti-

zation would be zero. To break this symmetry it is sufficient to add a term Hh = h
∑
i si,

which favours the configuration aligned with the external field h. The field h will be taken

vanishingly small ideally, very small in practice.



14 CHAPTER 1. LEARNING FROM THE DATA

1.2.3 Phase diagram of the Hamiltonian (1.13)

In this section we characterize the properties of H in Eq. (1.12) and its

minima. We also prove the existence of a phase transition in temperature

at J = 0. Finally, we describe the effect of the nearest neighbor interaction.

Maximum of Eq. (1.12)

As a first step in the characterization of (1.12), we want to show that each

term of the form (1.11) has a minimum and is convex. Let’s rewrite (1.11)

setting n±(c) = n(c)/2± δc, δc ∈ [−n(c)/2;n(c)/2] and ∆ =
∑

c δc

I(~δ) = −
∑
s=±1

[(
N

2
+ s∆

)
ψ

(
N

2
+ s∆ +K

)

−
K∑
c=1

(nc
2

+ sδc

)
ψ
(nc

2
+ sδc + 1

)]

=
∑
s=±1

[
− gK

(
N

2
+ s∆

)
+

K∑
c=1

g1

(nc
2

+ sδc

)]

= −GK
(
N

2
,∆

)
+

K∑
c=1

G1

(nc
2
, δc

)
(1.16)

where gi(x) = x ψ(x+ i) and Gi(n, x) = gi(n+ x) + gi(n− x).

We observe that I is symmetric with respect to a transformation ~δ → −~δ.
Since gi(x) is continuous and differentiable in the domain, the derivative

must be zero in ~δ = ~0. This point corresponds to a uniformly distributed

posterior and, since I is computed as the KL divergence of the posterior

from a uniform prior (which is a non-negative quantity and is zero iff the

two distributions are equal), it is an absolute minimum. This is a unique

critical point because the system of equations

∂I

∂δi
= −G′K

(
N

2
,∆

)
+G′1

(ni
2
, δi

)
= 0, i = 1 . . .K (1.17)

has δi = 0 as the only solution. In fact, we observe that ∂δiG
′
1 (ni/2,∆) >

∂δiG
′
K (N/2,∆).

Therefore, the maxima must reside on the boundary. Repeating the

argument on the boundary faces, we end up concluding that the maxima

must lie on the boundary vertexes, i.e. the points such that δ∗i = ±ni/2.
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On these points I becomes

I(~δ∗) =
K∑
c=1

ncψ (nc + 1)

−
(
N

2
+ ∆

)
ψ

(
N

2
+ ∆ +K

)
−
(
N

2
−∆

)
ψ

(
N

2
−∆ +K

)
.

The function is now only dependent on ∆ and observing again that it is

symmetric and concave we see that there is a maximum in ∆ = 0.

The maximum is thus obtained on the vertexes which minimize the differ-

ence |N+−N−| (e.g., for four codons with {n(c)} = (5, 3, 4, 2) the maximum

is obtained for (+,−,−,+) or (−,+,+,−), since I is symmetric under a

global spin flip). This is an instance of the number partition problem which

belongs to the NP-complete class. However, we are dealing with sets which

contain at most 6 elements.

Considering the full set of amino acids, we can finally ask how many

states have the same I({~δa}). Using the fact that the contribution for each

amino acid is invariant under a spin flip and that the amino acids with one

codon only are not considered, there are at least 218 states in addition to the

trivial degeneracy coming from the amino acids methionine and tryptophan

which do not contribute to (1.12).

Phase transition in temperature at J = 0

It is possible to analytically work out the thermodynamics of Eq. (1.13) at

J = 0. At high temperatures we expect a disordered paramagnetic phase,

while at low temperatures the system falls into one of its many minima,

which correspond to the maxima of Eq. (1.12) described in the previous

section. Here we prove that a phase transition exists by showing that the

concavity of the free energy changes sign at a critical temperature Tc in the

large nc limit.

At J = 0 we can easily compute the entropy of a state specified by ~n+.

The number of different configurations is simply the number of permutations

of nc elements, given that the n+(c) and n−(c) are equivalent. The entropy

is thus the logarithm of the product of binomials

S(~n+|~n) = log
∏
c

(
nc

n+(c)

)
(1.18)

and we can easily write the free energy F = H − TS,

F =

[
GK(N/2,∆)−

K∑
c=1

G1(nc/2, δc)

]
− T

K∑
c=1

log

(
nc

nc
2 + δc

)
. (1.19)
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At high temperature the thermodynamic of the system is governed by

the entropic term which has a minimum at ~δc = 0 (paramagnetic phase).

To prove that this minimum becomes repulsive at a critical temperature

we study the concavity of the free energy. Taking the second derivatives

gives

∂2F

∂δ2
i

= G′′K(N/2,∆)−G′′1(ni/2, δi)

+ T
(
ψ1(ni/2 + δi + 1) + ψ1(ni/2 + δi + 1)

)
∂2F

∂δi∂δj
= G′′K(N/2,∆).

At high temperature we expect that |δi| � ni. Expanding in large ~nc, we

find

∂2F

∂δi∂δj
∼ 4

N
+ δKRij

[
− 4

ni
+ T

(
4

ni
+

4

n2
i

)]
+O(n−3)

which can be written as ∂2F = b + aiδ
KR
ij + O(n−3), where both ai =

−4(1+T +T/ni)/ni and b = 4/N are independent of δi up to terms of order

n−3
c .

The free energy F is convex (concave) if the Hessian matrix is positive

(negative) definite, i.e. if each eigenvalue is positive (negative). Its charac-

teristic polynomial can be easily computed using the Sylvester’s determinant

theorem and reads out

PK(λ) =

K∏
i=1

(ai − λ) + b

K∑
i=1

K∏
j 6=i

(aj − λ)

Using some combinatorics, we obtain

PK(λ) = (−λ)K +
K∑
i=1

(−λ)K−i

[ ∑
j1<...<ji

aj1 . . . aji

+ b(K − i+ 1)
∑

j1<...<ji−1

aj1 . . . aji−1

]
(1.20)

with the convention α0 = 1. If T > T+
c = maxc(1−n−1

c ) we immediately see

that each coefficient is positive and thus the Hessian is positive definite, while

if T < T
(−)
c = minc(1−n−1

c ) the Hessian is negatively defined because of the

Descartes’ rule of signs.5 At T < T
(−)
c the free energy becomes convex and

5The Descartes’ rule of signs states that the number of positive roots of a polynomial

(known to have all real roots, like in this case, since we are computing the eigenvalues of a

symmetric matrix) is equal to the number of sign differences between consecutive non-zero

coefficients.
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Figure 1.7: (Color online) Codon coherence φJ(T ) as a function of the

temperature for increasing J and codon coherence at T = 0 (inset). As

the nearest neighbor interaction is turned on, the phase transition becomes

smoother. At T = 0, the codon coherence is preserved up to a critical value

of J ∼ 0.3.

the ground states moves discontinuously far from the paramagnetic (~δ = ~0)

state.

The order parameter which captures this phase transition is the codon

coherence

φJ=0(T ) ≡
∑

c6=M,W

〈(
2δc
nc

)2
〉
T

(1.21)

where the sum is intended on every codon except Methionine and Tryp-

tophan and the thermodynamic average is performed at temperature T .

This parameter is small for paramagnetic configurations (which have 2δc =

n+(c) − n−(c) = o(nc)), while is one in the partitioning phase. Its plot is

in figure 1.7: the transition is evident, although the presence of finite size

effects smooths the step out a bit.

Effects of the nearest neighbour interaction: J > 0

The introduction of the nearest neighbor interaction makes the analytical

treatment much more difficult. Nevertheless, we expect that the phase tran-

sition becomes smoother and smoother as J is raised, since the Ising model

in 1D does not exhibit any phase transition. This observation is numerically

tested in figure 1.7, where the profiles of φJ(T ) are plotted for increasing J .

The T > 1 behavior is easily interpreted by observing that in the para-

magnetic phase (δc � nc) the information theoretical part of the Hamil-

tonian is flat around ~δ = 0 in the large nc limit. We expect the high

temperature (T > 1) behavior to be dominated by the magnetic field and

the nearest neighbor interaction terms: excluding the information theo-

retical part, the Hamiltonian reduces to the Ising model’s one: HIsing =
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−J
∑L−1

i=1 σiσi+1 − h
∑L

i=1 σi. Thus, the thermodynamics at T > 1 should

be described by the phenomenology of the Ising model.

To check this hypothesis, we numerically computed the magnetization

for the Hamiltonian (1.13)

m =
1∑
c nc

〈∑
c

n+(c)− n−(c)

〉
(1.22)

as well as, analytically, the magnetization for the Ising model:

mIsing =
1

L

〈
L∑
i=1

σi

〉
=

sinh(h/T )√
e−4J/T + (sinhh/T )2

(1.23)

These quantities are plotted in figure 1.8, where is clearly shown that the

Ising model correctly describes the T > 1 behaviour of (1.13).

We introduced the nearest neighbour interaction to weight the many

minima of the information theoretical part of the Hamiltonian and to extract

information from the spatial arrangement of the codons. Observing the inset

of figure 1.7, we see that at J > 0.3 the codon coherence at T = 0 is lost. This

means that the same codon is assigned a different CII on different positions.

Since there is no a priori biological reason for this differentiation, we restrict

the admissible J to those such that φJ(0) = 1. Moreover, since we want

to maximize the information extracted from the spacial arrangement of the

codons, we fix J as the maximum value such that φJ(0) = 1. Interestingly,

we find that for this value of J the correlation of C
(g)
II with the tAI exhibits

a maximum.

1.2.4 Analysis of the CII

CII correlates with protein and mRNA abundance, as well as with

the tAI

We computed the CII for a set of 3371 transcript of S. cerevisiae and we

compared it with the logarithms of the measured protein [83] and mRNA [60]

abundances6, observing a significant correlation (C ' 0.60 and C ' 0.69 for

proteins and mRNAs, respectively, Fig. 1.9). Furthermore, computing the

same quantities for the half set comprising the most abundant proteins and

mRNAs we observe a sharp increase in the correlation coefficients C ' 0.70

and C ' 0.79 for proteins and mRNAs, respectively.

6The protein and mRNA abundances are correlated. However, the non-homogeneity of

the two samples (the data come from different laboratories and use different techniques)

hinders the possibility of asking how much of the protein abundance is explained by the

CII beyond the mRNA abundance.
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Figure 1.8: (Color online) Solid lines: numerically computed magnetization

as a function of temperature (equation (1.22)). Dashed lines: analytically

computed magnetization of the Ising model in 1D (equation (1.23)). The

inset shows the ratio m/mIsing. The magnetization for T > 1 is correctly

described by the Ising model, and as J is is raised the behaviour at T < 1

becomes more and more similar to Ising model’s.
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Figure 1.9: The CII correlates with the logarithm of protein abundance

(left) and mRNA abundance (right). The correlation is most evident for the

most abundant half of the set (insets).
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Figure 1.10: The tAI is highly correlated with protein (left) and mRNA

(right) abundance.
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Figure 1.11: The CII is highly correlated with the tAI

Note that mRNA abundance can radically vary during the life cycle of

the cell. In Ref. [13] it was shown that, during mitosis (the M-phase)7,

the expression of many genes can be up- or down-regulated by one order of

magnitude or more with respect to the vegetative phase. However, the M-

phase usually accounts for a small part of the whole cell cycle (usually, less

than 1/10th). The abundances obtained in an experiment which samples a

cell colony are therefore largely dominated by the vegetating -i.e., growing-

cells.

This fits very well with another observation on the high-CII genes. We

analyzed the Gene Ontology8 of the set of the 200 highest CII genes. We

found that the most over-represented terms in this set where translation-

and metabolism-related (with an extremely high significance, as 124 out of

200 carried the tag Transcription, with a p-value smaller than 10−20). These

genes are typically expressed at a high level during cell growth.

7During mitosis the eucaryotic cell divides, as opposed to the interphase, when the cell

grows.
8The genes are annotated according to their molecular function, the biological process

they are involved in, and the cellular component where they are typically located. Given

a set of genes of interest, one can ask whether a set of those tags are over-represented with

respect to the whole set of genes. We used the Gene Ontology web-interface available at

the Saccharomyces Genome Database [21].
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CII tAI Protein levels (log) Half life (log) mRNA levels (log)

CII 1 0.93 0.60 (0.70) 0.18 0.69 (0.79)

tAI 1 0.61 (0.68) 0.20 0.70 (0.77)

Abundance (log) 1 0.30 0.60

Half life (log) 1 0.22

Table 1.1: Pearson correlation coefficients between numerical and experi-

mental quantities. The values between parentheses, when present, refer to

correlations computed for the most abundant half of the set

We also computed the tAI for the same 3371 transcripts and compared it

with the CII. We observe an extremely high correlation (ρ ∼ 0.93), as shown

in Fig. 1.11. We thus are able to reproduce all the results obtained from the

tAI without needing any additional information beyond the codon sequences

and without any parameter optimization: the CII depends only upon the

parameter J which can be fixed from thermodynamics considerations, as

explained in section 1.2.3.

The tAI is known to correlate well with protein abundance (ρ ' 0.61) and

mRNA abundance (ρ ' 0.70), see Fig. 1.10. Moreover, as in the previous

case the correlation improves for the most abundant proteins (ρ ' 0.70) and

mRNAs (ρ ' 0.77), but to a significantly smaller extent.

Another quantity usually taken in consideration in this kind of studies is

proteins half life. We computed correlations among all these quantities, the

results are summarized in Table 1.1. Between parenthesis are the correla-

tions computed for the 1600 most abundant proteins and mRNAs. All these

values are significative (P -value ∼ 10−9 at most). Those involving CII, tAI,

protein and mRNA abundance are highly significant (P -value < 10−20).

It has been suggested that the correlation between the CII and the

mRNA levels can be caused by evolutionary forces acting more effectively on

highly expressed genes [75, 69], as beneficial codon substitutions are more

likely to be fixed on these genes because the gain in fitness is likely to be

higher, although a fully causal relationship can be more complicated and

involve other determinants [47, 91],

Average CII profile along the proteins

In the previous sections we analyzed the properties of the global CII value

for whole genes, but the cII(i) gives another local layer of information. We

thus ask whether the local cII(i) can be interpreted as a local measure of

translational optimality. Unfortunately too little data exist to confirm or

falsify this hypothesis, but we can explore if a common behavior at the
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Figure 1.12: Local CII averaged along the proteins, as in equation (1.24).

The straight line is a guide for the eye.

beginning of the transcript exist. Similarly to what have been done in the

case of the tAI [112], it is possible to compute the average of the c
(g)
II (i)

across the transcripts

〈cII(i)〉G =
1

NG

NG∑
g=1

c
(g)
II (i). (1.24)

Its plot in figure 1.12 reveals the presence of a ”ramp” roughly 120 codons

long followed by a plateau.

This result is consistent with the findings in [112] for the tAI, where this

procedure reveals a signal at the beginning of the transcript: the average

local tAI has a minimum at the beginning of the sequence and rises up to the

average value in ∼ 100 codons. Since the authors claim that the tAI carries

information about codon translational efficiency, they hypothesize that this

feature helps translation stabilization by avoiding ribosome jamming.

Final considerations about the CII

Let us conclude this long section by reviewing some of the most important

points. We introduced the Codon Information Index (CII) as a measure of

the amount of information stored in mRNA sequences through the codon

bias. We showed that CII can capture at least as much complexity as previ-

ously introduced codon bias indexes, but its computation does not require

additional data beyond transcript sequences. In order to calculate the CII

we do not make any assumption on the origins and roles of the codon bias,

but quantify the amount of information associated with it in an unbiased

manner.

We calculated the CII for a set of over 3000 yeast transcripts and found

values highly correlated with the tAI scores, as well as with experimentally-

derived proteins and mRNAs abundance. A Gene Ontology analysis on the
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set of the high-CII genes revealed a over-representation of metabolic and

translational genes. This genes are typically highly expressed when the cell

is rapidly growing.

Furthermore, we were able to reproduce the result that the first 70÷100

codons have a lower average when compared to the remaining part of the

ORF. This part is thought to be translated with low efficiency, a feature

which should help translational stabilization [112].

1.3 CII and reshuffles. A case study: Yeast

The choice of the different synonymous codons along the mRNA sequences

is thought to play an important role in gene expression, by modulating it

(via controlling the flow of the ribosomes, see, e.g., [97, 82, 23]), and by

mediating pauses which help the proteins to fold (this will be the subject of

Chap. 3). These two regulatory layer are being very actively investigated,

as a conclusive and definitive understanding is still lacking.

What hindsight can we extract from the CII about these questions? How

does the CII depends on the codon order? In the following sections we show

that, unexpectedly, the computation of the CII is not influenced by codon

order. This observation implies that most of the information encoded in the

codon bias is on the codon frequencies, and that their spacial organization

is a second order correction. Furthermore, we utilize this finding to obtain

a much faster and easily implementable algorithm, as shown in Sec. 1.3.2.

1.3.1 Reshuffling the codons do not alter the CII output

The spacial organization of the codons enters in the computation of the

CII by the Ising-like term, which enforces a homogenizing interaction. In

order to test how much this information is used, we have to compare the

“true” results with those obtained on randomized sequences. A significant

difference would imply that the spatial organization is a major feature of

codon usage.

We therefore ran the algorithm on several realizations of 100 Codon

Reshuffled sequences (as defined in section 1.1.2). Contrary to our expec-

tations, as the plot in the left panel of Fig. 1.13 shows, there is no evident

anomaly between the true results and those obtained from the reshuffled

sequences. As a further check, we also computed the CII for the Amino acid

Reshuffled sequences, obtaining a similar outcome (Fig. 1.13, right panel).

These facts implies that the spacial organization of the codons does not

affect the output of the CII algorithm, and is therefore not used in the
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Figure 1.13: Codon information index computed for Codon Reshuffled (CR)

sequences (left), and for Amino acids Reshuffled (AR) sequences (right),

plotted versus the true sequences for 10 reshuffled replicas (plotted as dif-

ferent colors) of 100 different mRNAs. The reshuffled results are highly

consistent with those of the true sequences, suggesting that the organiza-

tion of the codons along the sequence, as well as that of the amino acids, do

not play a relevant role in the CII computation. The black line is a guide

for the eye and represent perfect proportionality.

computation of the CII. We finally computed the CII for a set of sequences

whose codons were randomly reshuffled across the sequences. This Gener-

alized Codon Reshuffle (GCR) does not preserve the codon frequencies of

each mRNA. The results are plotted in Fig. 1.14, where no correlation is

reported.

Furthermore, as Fig. 1.15 shows, the ramp at the beginning of the mR-

NAs is due to a bias in the codon composition and not to finite size or border

effect: lower CII codons are chosen with a higher probability near the start

of the mRNA. This is the only sequence-specific effect we were able to find.

Its relatively small size, however does not affect the output of the algorithm.

In this section we showed that most of the information encoded in the

codon usage is order-agnostic, as the codon frequencies are the only factor

affecting the CII computation. This observation might seem in contrast with

numerous evidences which support the existence of codon spatial organiza-

tion [40, 123, 19, 75, 82, 23]. Codon usage is a complex phenomenon, as

several factors (whose relative importance can be organism-dependent) can

contribute to its determination. It is most probable, then, that the informa-
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Figure 1.14: Codon information index computed for Generalized Codon

Reshuffled (GCR) sequences plotted versus the true sequences for 10 reshuf-

fled replicas (plotted as different colors) of 100 different mRNAs. There is no

correlation between the two sets, showing that the codon frequencies inside

each sequence are the determinant information in the CII calculation. The

black line is a guide for the eye and represent perfect proportionality.
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Figure 1.15: Average of the CII profiles across the true (black), Codon

Reshuffled (CR, blue), and Amino acid Reseshuffled (AR, red) sequences.

A ramp is present only for the true sequences, showing that the there is a

codon compositional bias at the beginning of the ORFs. The profiles were

smoothed with a moving average filter of size 7 for better readability.
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tion contained in the codon bias is layered, with the frequencies representing

the “first-order” approximation. This also implies that any exploration of

the successive orders should first remove the biases coming from the fre-

quencies effects, and the CII can be extremely helpful in this respect.

1.3.2 Mean-field theory for codon bias

In the previous section we showed that the CII is invariant under the re-

arranging of the codons along the sequences. Let us go back to reanalyze

the symmetries of the two parts of the Hamiltonian (1.13): the information

theoretical part 1.12 is invariant under CR and AR (and also GCR), while

the 1D Ising term is not. Since the results of the CII computation are CR-

and AR-invariant, it is reasonable to construct an Hamiltonian which ex-

plicitly implements these symmetries. As we show in the following sections,

this new method greatly reduces the computational complexity of the CII.

This simplification arises due to the fact that I) the system can be treated

in mean field, and II) the entropy can be written exactly. We are therefore

able to compute the free energy of the system, whose large-N expansion has

a particularly simple analytical expression. Furthermore, we observe that

the new interaction term has the structure of a covariance matrix of codon

usage across the genes.

Fully-connected model

The interaction should be invariant under CR and AR, i.e., under the ex-

change of two randomly chosen codons in a sequence. This invariance is

verified if each codon inside the sequence g interacts with every other codon

in that sequence. In the spin system lexicon, this is a fully connected Ising

term, which produces the Hamiltonian

H = −I −
∑
g

J

Lg

∑
i,j∈g, j>i

σiσj − h
∑
g

∑
i∈g

σi, (1.25)

where I is the information theoretical part of the Hamiltonian, Eq. 1.12, the

sums are intended on the spins belonging to the mRNA g whose length is Lg,

and the J/Lg interaction parameter was introduced in order to have a well-

behaved thermodynamic limit (as the number of terms in that sum scales

as L2
g). Let us recall that there are n

(g)
c codons of type c in the sequence g

(of length Lg), and that n
(g)
s (c) among them are associated to a spin of sign

s. Moreover, nc =
∑

g n
(g)
c , Ns(a) =

∑
c∈a
∑

g n
(g)
s (c) and Na =

∑
c∈a nc.
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With some manipulation on H we have

H = −I −
∑
g

J

2Lg

∑
i,j∈g

σiσj − Lg

− h∑
g

∑
i∈g

σi

= −I −
∑
g

Lgm
(g)

(
J

2
m(g) + h

)
+ const.

(1.26)

where m(g) =
∑

i∈g σi/Lg is the magnetization of the sequence g.

Let us introduce codon magnetizations

mc =
n+(c)− n−(c)

nc
=

2n+(c)− nc
nc

, (1.27)

where we remind that ns(c) =
∑

g n
(g)
s (c) and use them in rewriting I:

I = −
∑
a

∑
s=±1

[
Ns(a)ψ

(
Ns(a) +K

)
−

Ka∑
c=1

ns(c)ψ (ns(c) + 1)

]
= −

∑
a

∑
s=±1

[
Na

1 + sMa

2
ψ

(
Na

1 + sMa

2
+K

)

−
Ka∑
c=1

nc
1 + smc

2
ψ

(
nc

1 + smc

2
+ 1

)]

= −
∑
a

[
GK

(
Na

2
,
MaNa

2

)
−

K∑
c=1

G1

(nc
2
,
ncmc

2

)]
,

(1.28)

where Ma = (
∑

c∈a ncmc)/Na and Gi(n, x) = gi(n + x) + gi(n − x), with

gi(x) = xψ(x+ i).

Typically, the numbers nc of codons c which appear in I are large (as each

sequence is ≈ 450 codons long, nc & 104 for 1000 sequences). We therefore

expect that the large-N expansion of I is a very good approximation. In

the large N expansion, GK reads

GK

(
N

2
,
mN

2

)
∼ N

2
[(1−m) log2(1−m) + (1 +m) log2(1 +m)]

+N log2

N

2
+ 2K − 1 +O(n−1),

and by using this expression in I we have, for the amino acid a:

I(a) ∼ −Na

2

[
Q(Ma)−

∑
c∈a

φcQ(mc)

]
+ const +O(N−1

a ), (1.29)
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where we introduced the function Q(x) = (1−x) log2(1−x)+(1+x) log2(1+

x), and the frequencies φc = nc/Na. Note that these frequencies are nor-

malized such that
∑

c∈a φc = 1. It is also extremely interesting to observe

that the function Q(x) can be written as

Q(x)

2
=

1− x
2

log2

1− x
2

+
1 + x

2
log2

1 + x

2
+ 1 = −Hb(p) + 1,

where Hb(p) is the entropy of a binary distribution with probability p =

(1 + x)/2. The interpretation of I(a) is therefore as follows: maximizing

I(a) requires to maximize the entropy for the whole amino acid, i.e., to

reach pa = 1+Ma
2 ≈ 1/2, while minimizing the entropy for each codon, i.e.,

pc = 1+mc
2 ≈ {1, 0}.

Fully connected term, homogeneous spin clusters approximation

Let us now consider the fully connected term

HFC = −J
2

∑
g

Lg

(
m(g)

)2
. (1.30)

The magnetization m(g) of gene g can be written as m(g) =
∑

cm
(g)
c n

(g)
c /Lg.

However, we expect that the magnetization m
(g)
c would not fluctuate too

much from gene to gene due to the homogenizing interaction I. Furthermore,

from a physical point of view, the spin encodes for a hidden property of the

sequence, and allowing it to fluctuate from gene to gene implies that the

property is context-dependent.

We therefore impose that the same codon is equally magnetized inde-

pendently from the gene where it appears, i.e., m
(g)
c = m

(g′)
c ≡ mc, ∀g, g′,

and the magnetizations m(g) can be written as

m(g) =
∑
c

mcf
(g)
c , (1.31)

where f
(g)
c = n

(g)
c /Lg is the empirical frequency of the codon c in the se-

quence g.

Using this approximation, we have

HFC = −J
2

∑
g

Lg
∑
c1,c2

mc1mc2f
(g)
c1 f

(g)
c2

= −J
2

∑
c1c2

mc1mc2

∑
g

Lgf
(g)
c1 f

(g)
c2

= −Ltot
J

2

[∑
c1c2

mc1mc2Σc1c2 +
∑
c1c2

mc1mc2fc1fc2

]
,

(1.32)
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where Ltot =
∑

g Lg is the total length of all the sequences, fc = 〈f (g)
c 〉Lg =

nc/Ltot is the overall frequency of codon c across the sequences, Σc1c2 =

〈f (g)
c1 f

(g)
c2 〉Lg − fc1fc2 is the covariance matrix of the codon frequencies, and

all the averages are intended with respect to the weight Lg/Ltot, namely

〈x(g)〉Lg =
∑

g x
(g)Lg/Ltot.

The interpretation of HFC is simple: the two terms favor, respectively,

the alignment of those codons whose usage is correlated, and those whose

abundance is higher.

Entropy and free energy

In the previous sections we obtained mean-field expressions for the energy of

the spin system. In order to fully characterize the thermodynamic behavior

we also need to include the entropic contribution to the free energy, as a

function of the magnetization.

Given a state of the system, its energy is a function of the counts

{n(g)
s (c), s = ±, c = 1, . . . , 61, g = 1, . . . , G} only. The number of in-

equivalent permutations of the spins leaving these numbers unaltered is

Ω =
∏
g

∏
c

( n
(g)
c

n
(g)
+ (c)

)
. The entropy S = log2 Ω is therefore given by

S = log2

∏
g

∏
c

(
n

(g)
c

n
(g)
+ (c)

)
= log2

∏
g

∏
c

(
n

(g)
c

(n
(g)
c

1+m
(g)
c

2 )

)
. (1.33)

Let us now approximate the entropy S in the large n
(g)
c limit:

S ∼ −
∑
c

nc

(
1 +mc

2
log2

1 +mc

2
+

1−mc

2
log2

1−mc

2

)
=
∑
c

nc
2
Q(mc),

(1.34)

where the homogeneous spin cluster approximation was used. Note that

this approximation is valid in the case of infinitely long sequences. Since the

mRNAs have a finite length, some error is introduced. However, as we show

in the following section, the results of the free energy minimization using

Eq. (1.34) are compatible with those of the previously defined CII. Besides,

this simplification is particularly convenient from the computational point of

view (as it allows a dramatic reduction of the complexity of the computation

of the free energy differences, from O(G) to O(1)).
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Figure 1.16: Correlation between the results from the CII as computed in

Sec. 1.2 and the fully connected version. In the left panel we set J = 0.3

and performed a sweep in temperature, showing that the “sweet spot” lies

close to T = 1. As the right panel shows, at T = 1 the results do not depend

strongly on the choice of J .

The free energy F = H − TS can therefore be written as

F =
∑
a

Na

2

[
Q

(∑
c∈a

mcφc

)
− (1− T )

∑
c∈a

φcQ(mc)

]

− Ltot
J

2

[∑
c1c2

mc1mc2Σc1c2 +
∑
c1c2

mc1mc2fc1fc2

]
− Ltoth

∑
c

mcfc. (1.35)

Let us observe that both I and HFC have a critical point, respectively

at T = 1 and T = J . We are not interested in fully characterizing the phase

diagram of this model here, we only remind that the fully connected model

can be analytically solved, as shown in App. A.2).

Comparison with the CII

In order to compare the results of this new method with the previously

introduced CII, we need to fix the choice of the parameters J and T . As

the thermodynamics of this new system is different from the previous one,

a priori the optimal choice of the parameter might be different. For this

reason we can also use the temperature as a further tuning parameter.

We therefore set up a Monte Carlo algorithm in order to compute the

average magnetization of each codon 〈mc〉 by minimizing the free energy

(1.35). The fully connected codon information index CII
(g)
FC is computed as

CII
(g)
FC =

∑
c〈mc〉n(g)

c

L(g)
. (1.36)
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Figure 1.17: Comparison between the CII as computed in Sec. 1.2, and the

fully connected version as in the present section. In the left panel we plot

the codon-wise values of the magnetization, on the right panel we plot the

average CII(g) value of the mRNAs belonging to the transcriptome of Yeast.

The two versions produce highly correlated results.

For consistency reasons, we set the J parameter at the same value as in

the previous case (J = 0.3). Let us note that, however, the choice of the

parameter J is not critical, as shown in the right panel of Fig. 1.16. We

ran an initial set of simulations in order to tune the temperature T and we

found that optimal correlation is obtained for T = 1.

The comparison with the previous definition of the CII is plotted in

Fig. 1.17, where it is shown that the two methods produce highly compatible

results.

On the strictly computational side, we emphasize that the fully con-

nected version runs in few minutes, with a speedup of at least 3 orders of

magnitude compared to the previous version.

As a final point let us give a qualitative argument for why the two meth-

ods give the same results. The CII method in Sec. 1.15 utilizes a nearest

neighbor interaction term, which captures on average the correlations be-

tween the codon usage frequencies. In fact, supposing that codons c1 ∈ a1

and c2 ∈ a2 are over-represented in a set of genes, the number of interactions

σc1σc2 will be, on average, higher than all the other possible interactions.

Due to this fact the spins of the two codons tend to be aligned, enforcing

the correlations between those codons which are used in a similar way.
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Figure 1.18: Fully connected CII, as computed in Sec. 1.3.2, versus mRNA

abundance, logarithmic (left) and linear scale (right). The red line is a

moving average. The CII has a plateau for very small and very large mRNA

abundances.

1.4 Conclusions

In the previous sections we analyzed the sequences of mRNA of Yeast in

order to characterize in the most abstract way how the different codons are

used. Specifically, we showed that the codon bias is not homogeneous across

the transcriptome (in Sec. 1.1.1), and that some information is stored in

the codon order (in Sec. 1.1.2). We also introduced the CII as a mean to

measure the local information content of a sequence. Strikingly, the CII

turned out to be invariant under the reshuffling of the codons, which implies

that the relevant information used in its computation is given by the codon

usage frequencies. We finally used this fact to define an approximated, fully

connected algorithm which explicitly depends on the correlations between

the codon usages across the genes. This new method produces compatible

results at a 3 orders of magnitude lower computational cost.

From these observations we can conclude that, at the leading order, the

codon bias is mostly a codon frequency bias, and that the spacial organiza-

tion enters at sub-leading orders.

This approach, however, does not answer why the codon bias exists, nor

it explains the behavior of the plot of the fully connected CII versus mRNA

abundance in Fig. 1.18: at small mRNA abundances the CII has a plateau,

while it grows at larger abundances and seems to top out. Qualitatively,
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this behavior is expected if an optimal codon bias exists and the related

evolutionary pressure is small and proportional to the abundance. In fact,

let us suppose that an optimal codon bias C∗ exists. If the abundance is too

small, selection is negligible and random synonymous mutations determine

the codon usage (evidenced by the plateau in the left panel of Fig. 1.18). On

the other hand, if the abundance is very large the codon usage is very close

to C∗, as shown in the right panel of Fig. 1.18. The evolutionary origin of

the anisotropy of the codon bias seems very likely and received wide support

in the literature [18, 59, 69]. However, the underlying mechanism driving

the evolution has not been clearly and univocally identified yet.

Two grand question emerge clearly from this analysis: I) which evolu-

tionary forces shape and produce the bias in the usage frequencies of the

codons? And II) does the spatial organization of the codons play a role

in optimizing and/or regulating translation? Answering these questions re-

quires a deeper analysis of the whole translation machinery. In the following

chapter we will therefore analyze how the interplay between the resources

used in translation (namely, mRNAs, ribosomes, and tRNAs) can affect the

process.
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Chapter 2

Explaining the data: models

for the systemic translation

of the proteins

The two most important players in the synthesis of the proteins, beyond

the mRNAs, are the tRNAs and the ribosomes. Their “economics” (i.e.,

the relative abundance in the cell) affects the speed, the accuracy, and the

regulation of the reaction, as we will show later.

The ribosomes are the molecular factory where the synthesis of the pro-

tein occurs: they bind to the mRNA and sequentially scan through its

codons. At each codon, the translation event occurs when the correct tRNA

diffuses in the active site of the ribosome and the new amino acid is attached

to the nascent polypeptidic chain.

The tRNA molecules are at least equally fundamental. They carry the

amino acids to the ribosome and effectively decode the genetic code, by rec-

ognizing the codons. Moreover, the rate at which the new amino acids are

incorporated in the nascent protein depends on the abundances of the tR-

NAs, as tRNA waiting time is typically the rate-limiting step in translation

[79].

After translation has occurred, the tRNA leaves the ribosome and must

be recharged with the corresponding amino acid by the enzyme aminoacyl-

syntethase1 before it can be used again. This finite recharge rate and its in-

terplay with the consumption by the ribosomes affects the quantity of tRNA

available for translation. Due to this phenomenon, the fraction of charged

tRNA can range, depending on the growth condition of the organism, from

1The recharge process is more complicated, as it also involves a species-dependent

elongation factor, and ATP [1].

35
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≈ 1 to ≈ 10−3, as measured experimentally in Ref. [33]. Furthermore, sev-

eral among the 20 amino acids are translated by more than one codon and

one tRNA, and the codon bias determines the rate at which the tRNAs

encoding for the same amino acids are used.

In order to understand the implications of these facts, we develop here

a series of simple, mean field models. First, we analyze the effect of a fi-

nite number of ribosomes. Then, using an extension of the same model, we

observe that the optimal codon bias is a function of the environment (here

modelled as the tRNA recharge rate): if the environment is rich enough,

the optimum is obtained by using the most abundant tRNA only, while in

starvation conditions the different species of tRNA should be used accord-

ingly to their abundances. We finally abandon the mean field approximation

in order to analyze the effects of the small concentration of tRNA on the

distribution of the time intervals between subsequent translation events.

2.1 Ribosome load and translation optimality

Ribosomes are a limited resource in translation, as their number strongly

affects the growth rate of the unicellular organisms [101]. It is therefore of

great interest to study how this limitation overall affects the translation.

In the model introduced in the following sections we assume that the

ribosomes do not interact. We neglect the possible occlusions of the binding

site, or traffic jams along the sequences.2 This effects become less impor-

tant the lower the ribosome density along the sequences is, i.e., when the

translation initiation rate is smaller than the elongation timescale.

2.1.1 Dynamics of the ribosome occupation

Let us consider a cell having RT ribosomes. At a certain time, R(g) among

them are translating the mRNA g. The rate at which a ribosome initiates

translation for that mRNA is η(g) = n(g)χ(g), where n(g) is the number of

mRNA copies,3 and χ(g) is the rate of translation initiation per mRNA for

gene g. Most of the variation in η(g) is due to n(g), whose dynamic range

spans 3 orders of magnitude. The translation initiation rates χ(g) were

2The ribosomes have a finite size and the “excluded volume” effects can be relevant.

For instance, a new ribosome can bind to a mRNA only when the previous one has moved

on along the sequence.
3Gene expression is itself a stochastic process, with bursts of transcription followed by

a slow decay of the mRNAs [39]. In principle, n(g) fluctuates around an average value,

which is the one we use here.
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estimated in Ref. [23], showing a less than 2 orders of magnitude dynamic

range.

Let us also suppose that with rate 1/T (g) a ribosome terminates the

translation. T (g) is the average time from translation initiation to ribosome

release for gene g.

At each time, the pool of free ribosomes is RT −
∑

g R
(g), and each of

them can initiate the translation on gene g. The mean field equations for

this system are therefore

Ṙ(g) = η(g)

RT −∑
g′

R(g′)

− R(g)

T (g)
, (2.1)

whose stationary state is given by

R(g) =
η(g)T (g)

1 +
∑

g′ η
(g′)T (g′)

RT . (2.2)

As expected, the number of ribosomes translating gene g is proportional to

the initiation rate η(g) (which includes a dependence on the number n(g) of

mRNAs g) and to the total translation time T (g).

The consequences of this formula, however, are far from being trivial.

Let us first consider the rate K(g) of protein production for gene g, i.e., the

number of proteins produced in the unit of time:

K(g) =
R(g)

T (g)
=

η(g)

1 +
∑

g′ η
(g′)T (g′)

RT . (2.3)

Interestingly, the protein production rate is proportional to η(g) and weakly

depends on T (g), since it is mediated at the denominator. This model pre-

dicts that I) the production rate of a protein is very little influenced by its

translation rate, II) the ratios between production rates of different proteins

is exclusively determined by the ratios in translation initiation rates η(g),

whose most important determinant is the mRNA level.

Eq. (2.3) has another important consequence on the systemic translation

process. Let us consider the growth rate of the organism. Its inverse, the

doubling time, is at least as great as the time it takes to double all the pro-

teins in the cell. Supposing that the physiological (target) protein number

is N (g) and that in fast growth conditions the degradation of the protein is

negligible, the doubling time D(g) of gene g is given by D(g) = N (g)/K(g).

Since all the proteins are translated simultaneously, the overall doubling
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time D is limited by the slowest gene:

D ≥ max
g
D(g) = max

g

N (g)

K(g)
=

1

RT

(
max
g

N (g)

η(g)

)1 +
∑
g′

η(g′)T (g′)

 .

(2.4)

We observe that, since D is limited by the maximum of N (g)/η(g), the op-

timal equilibrium is η(g) = cN (g), ∀g. The optimum is reached by finely

tuning the initiation rate η(g) by varying the mRNA abundances n(g) and

the initiation rate per mRNA χ(g) (the latter is influenced by a large extent

by the folding of the mRNA, as shown in Ref. [75]).

Furthermore, since the doubling time is a common measure of the fitness

of the organism (the lower D is, the higher the fitness), we expect that

evolution pushes D towards a minimum. This condition is achieved by

systemically increasing the number RT of ribosomes, the number n(g) of

mRNAs, and the per-mRNA initiation rates χ(g) (the increase of RT and

n(g), however, is limited by the finite amount of resources in the cell). The

term
∑

g′ η
(g′)T (g′), moreover, suggests the global (or systemic) nature of

the translation optimization problem: by increasing the speed of translation,

more free ribosomes are available and the growth rate is overall increased.

The last observation has a further implication: the relative effect of a

change in the translation time T (g) of mRNA g is proportional to η(g), and in

turns to the abundance of mRNA. Importantly, therefore, the evolutionary

pressure acting on a gene is proportional to the abundance of its mRNA,

qualitatively explaining the set of plots Figs. 1.18, 1.9. Indeed, a popula-

tion genetics calculation [69] showed that these kind of behaviors are well

explained in a selection-mutation-drift framework.

Following the independent ribosomes approximation, it is reasonable to

expect that the translation time of the codons in a sequence does not depend

on their order and is determined by the type of the codon only. Furthermore,

if the mRNA is long enough, most of the time will be spent in elongation.

Let us therefore express the time of translation as T (g) =
∑

c n
(g)
c tc where

n
(g)
c is the number of times the codon c is present in mRNA g and tc is the

average translation time for that codon. We can thus rewrite the second

term of doubling time as

1 +
∑
g

η(g)T (g) = 1 +
∑
c

tc
∑
g

η(g)n(g)
c . (2.5)

The optimization of the codon translation times is realized when the codons

which are effectively most utilized (i.e., after weighting the codon usage of
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gene g with the effective number of ribosomes translating it) are translated

faster.

The picture which emerges from these considerations is that translation

is a systemic process: optimizing the translation of a few, very expressed

genes might affect the overall growth rate of the organism, and the reverse

is also true. If some poorly optimized genes are present in the cell (as for

instance an exogenous plasmid) the translation machinery can be globally

hampered.

2.2 Quantitative model for tRNA dynamics at fi-

nite recharging

An accurate description of the translation process cannot neglect the tRNA

dynamics, and in particular the fact that the tRNA molecules must be loaded

with the corresponding amino acid in order to be used in translation.

The codon usage has a direct effect on the rates at which the different

tRNAs are used, as synonymous codons are often translated by different

tRNAs. As an example, let us consider two synonymous codons translated

by two different species of tRNA. The consumption rate of the tRNAs is de-

termined by the frequencies of the corresponding codons along the sequence

(i.e., by the codon bias). If one of the two tRNA is recharged more slowly

than the characteristic time of its usage, we expect that its charged fraction

will be depleted and the translation globally hampered.

The recharge rate of the tRNAs is not a constant, as shown in Ref. [33]:

the environmental conditions where the organism is growing has a large

influence on the charged fraction of tRNAs, which can range from less than

1% to almost 100% depending on the richness of the media. The codon

usage can help in coping with these variability.

In the following we first ask what is the optimal codon bias as a function

of the recharging rate. However, as this rate depends on the random envi-

ronmental conditions, we observe that the codon bias can be interpreted as

an optimal strategy.

2.2.1 The model

Let us consider a cell containing R ribosomes translating simultaneously the

same mRNA. The mRNA is composed using K different codons, which are

used with frequencies f1, . . . , fK in the sequence. Let us also suppose that
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each of those codons is decoded by one and only one kind of tRNA4. The

tRNAs are expressed at N1, . . . , NK copies in the cell, and n1, . . . , nK among

them are charged with the corresponding amino acid.

Furthermore, each uncharged tRNA molecule of kind i is recharged at

rate λR(i) (and ni → ni + 1), while it is used in translation at rate λT (i)

(and ni → ni− 1).5 In order to simplify the calculation, in the following we

will suppose that these rates are uniform across all the tRNAs and equal to

λR and λT , respectively. Moreover, without loss of generality, we set λT = 1

as the time scale of the process and define λ = λR/λT .

At each time, Ri ribosomes are waiting for a charged tRNA of type i. The

dynamics of the Ris is determined by the frequencies fi of the codons along

the mRNA, supposing that the codons do not have any spacial organization.

For all the possible i and j, the rates can be written as

w[(Ri, Rj ;ni)→ (Ri − 1, Rj + 1;ni − 1)] = fj
ni
R
Ri, for i 6= j,

w[(Ri;ni)→ (Ri;ni − 1)] = fi
ni
R
Ri,

w[ni → ni + 1] = λ(Ni − ni),

(2.6)

where we measure the volume in units of R.

In a typical Yeast cell there are at least ≈ 103 tRNA molecules of each

kind and ≈ 104 ribosomes. Since these numbers are large, we approximate

the master equation associated to this process with the mean-field equations

for the rescaled quantities ri ≡ Ri/R (fraction of ribosomes translating

codon i) and Xi ≡ ni/Ni (fraction of charged tRNAs of kind i). Neglecting

the spacial inhomogeneity of the tRNAs, we have

ṙi = fi
∑
j,j 6=i

rjνjXj − (1− fi)riνiXi

Ẋi = λ(1−Xi)−Xiri,

(2.7)

where νi = Ni/R. The stationary solution of this equations can be easily

4This approximation is generally very accurate and has been shown to lead to good

results [89].
5Supposing that each tRNA molecule can be used in translation with a certain rate

implies that the translation rate for codon i is proportional to the abundance of the tRNA.

Even thou translation is composed by many different events, it was shown [79] that the

tRNA selection time (i.e., the time spent by ribosome waiting for the right to tRNA diffuse

in its active site) is the rate limiting step of the process.
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obtained by setting Q =
∑

j rjνjXj :

ri =
fiQλ

λνi − fiQ

Xi =
νiλ− fiQ

νiλ
,

(2.8)

where Q is fixed by solving the equation
∑ fi

λνi−fiQ = 1
λQ obtained by im-

posing
∑
ri = 1.

Optimal codon usage, 2 codons and 2 tRNAs case

The optimal codon bias for each amino acid as a function of λ can be ob-

tained from the translation time of each codon, which is ti ∝ (νiXi)
−1.

Let us consider the simplified case of a mRNA encoding for a protein

composed by several repeats of the same amino acid, which is translated by

two codons each associated to one tRNA. The average translation time for

that amino acid is therefore

Ta = f1t1 + f2t2 ∝
f1

ν1X1
+

f2

ν2X2
, (2.9)

with f1 + f2 = 1.

The parameters Xi can be obtained by solving the set of equations (2.8)

for Xi. We therefore have

X1 =
ν1λ− f1Q

ν1λ
,

X2 =
ν2λ− (1− f1)Q

ν2λ
,

(2.10)

with Q given by

f1

λν1 − f1Q
+

1− f1

λν2 − (1− f1)Q
=

1

λQ
, (2.11)

which has the solution

Q = ν2λ
(1 + λ)

(
µ+ f

1−f

)
−
√

(1 + λ)2
(
µ+ f

1−f

)2
− 4 f

1−f (1 + 2λ)µ

2f(1 + 2λ)
,

(2.12)

where µ = ν1/ν2 and we dropped the index from the frequency.

In order to calculate the optimal codon bias, we need to take the deriva-

tive of the time Ta, Eq. (2.9), with respect to the frequency f . Let us observe

that, using Eq. (2.11), the expression for Ta becomes

Ta =
1

Q
, (2.13)
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which implies that we need to find the maxima of Q. Setting the derivative

to zero, we obtain the optimal frequency:

f∗ =


0 if µ < 1 ∧ λ >

√
µ

1−√µ
1 if µ > 1 ∧ λ > 1√

µ−1
(1+λ)2µ2+(1+(2−λ)λ)µ+λ(1+λ)(µ−1)

√
µ

(1+λ)2(µ2+1)+2(1+(2−λ)λ)µ
otherwise.

(2.14)

Let us consider the two important limits λ → 0 and λ → ∞, respectively

modeling starvation and rich growth conditions. In the λ→ 0 case

f∗s =
µ

1 + µ
=

ν1

ν1 + ν2
, (2.15)

expressing a proportionality rule between codon usage and relative tRNA

abundance.

On the other hand, in the λ→∞ case,

f∗r ∼

{
0 if µ < 1

1 if µ > 1.
(2.16)

In this conditions only the codon coupling to the most abundant tRNA is

used. We will refer to this behavior as the single-tRNA rule.

In the case of more than two codons we expect that these general rules

will be still verified. However, for finite λ the expression for the optimal

codon bias might be complicate.

If the codon usage of the living organisms is optimized for translation

speed at the tRNA usage level, we should expect to find the true frequency

f between f∗s < fw < f∗r . A priori, however, λ is a random variable which

depends on the environment (λ is large if the environment is rich and vice

versa), while the codon usage is fixed in the genome. Therefore, the codon

usage can be thought of as an optimal strategy responding to the random

environment, here modeled with the variation of λ.

Codon bias as an optimal strategy

Let us proceed using the previous 2 codons, 2 tRNA case. Suppose now

that the variable λ switches randomly between two values {λs, λr}, such

that λs � 1 and λr � 1 respectively represent starvation and rich growth

conditions, and that λ, on average, spends a fraction τ of the time in star-

vation conditions.

The translation speed averaged on the variation of λ is therefore

v =
τ

Ta(s)
+

1− τ
Ta(r)

. (2.17)
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Figure 2.1: Speed of translation Eq. (2.17) as a function of the frequency

of the codon coupling to the most abundant tRNA, for several values of τ .

In this example λ1 = 0.5, λ2 = 2, ν1 = 1, ν2 = 0.5. The maximum of the

curves -i.e., the optimal codon bias- interpolates between the values at τ = 0

and τ = 1.

Using the approximations for small and large λ, Eqs. (2.15) and (2.16), and

supposing that ν1 > ν2, we have

v ∼ ν1λ

f
τ +

ν1ν2

ν1(1− f) + fν2
(1− τ). (2.18)

In this simple case, the codon bias which maximizes v is f∗ = µ/(1 + µ) if
µ−1

µ−1+2λ < τ and f∗ = 1 otherwise. In less extreme conditions (i.e., for finite

λs and λr) f
∗ interpolates between the optimal codon biases at the limiting

conditions, as shown in Fig. 2.1.

Interestingly, the codon usage can carry the hallmarks of the environment

where the organism spent its evolutionary history. If the harmonization with

the tRNA pool plays a predominant role in shaping the codon usage, we

expect to find some characteristic behavior in the codon usage.

We therefore analyzed the mRNA sequences in order to extract the codon

frequencies of the amino acid with more than one tRNA in the set of the 130

most expressed genes in Yeast6. First, we grouped the codons according to

which tRNA is used to translate them by using the “parsimony rule” as in

[89], i.e., in the minimal way such that each codon is translated by one and

only one tRNA. For each amino acid a we computed the frequencies of tRNA

usage as ft(a) =
∑
c∈t nc(a)∑
c∈a nc(a) , where the sum at the numerator is intended

6Since the selective pressure is proportional to the expression of the gene, we expect

that if some effect is present it will be stronger on the highly expressed genes.
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Figure 2.2: Plot of ft(a) versus µt(a) (left panel) and ft(a) versus κt(a)

(right panel) for the 130 most expressed genes in Yeast. Different symbols

and colors correspond to different amino acids. The red line indicate direct

proportionality. As the right panel shows, the most abundant tRNA is used

at least 80% of the times, indicating that the actual codon usage is close to

the one-tRNA only case for this set of genes.

on the codons translated by the tRNA t. Furthermore, we obtained the

numbers νt of the genes of each tRNA as a proxy for the tRNA abundances.7

From these numbers we computed, for each amino acid, the ratios µt(a) =
νt∑
t∈a νt

, and κt(a) = νt
maxt∈a νt

. These two quantities are best suited to

identify the proportionality and the one-tRNA rules, respectively.

In Fig. 2.2 we plot ft(a) versus µt(a) (left panel) and ft(a) versus κt(a)

(right panel) for all the amino acids translated by more than one tRNA.

The most abundant tRNA is used at least 80% of the times, as the right

panel shows. This observation seems to indicate that the evolutionary pres-

sure pushes towards the “one-tRNA” case, i.e., towards the use of the most

abundant tRNA.

In the light of the previous game-theoretical example, it seems that this

strain of Yeast optimized its translation machinery in order to cope with

rich environments. This codon choice could be supported also by another

evolutionary game theoretical argument: when different strains (i.e., agents)

are competing for the same limited resource, the evolution is played as an

7This is a well established procedure based on the experimental observation that the

correlation between tRNA genes copy number and tRNA abundance in the cell is very

high [89]. The data on tRNA genes copy numbers are easily available on the database

[20].
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adversarial game, and the ability to grow quickly in rich conditions is an

effective strategy to overgrow the competitors by more effectively consuming

the resources.

Let us conclude by observing that, most generally, the study of the

living systems cannot ignore the environmental variability experienced by

an organism during its evolutionary history. This approach can provide a

very profound hindsight on the present state of the organisms.

2.3 Statistics of the codon translation time

Protein synthesis is one of the most common biochemical reactions happen-

ing in the cell and, despite this process is biologically and chemically well

understood, the implications of its intrinsic stochastic nature (caused by the

small number of particles involved) have not been fully elucidated yet.

An intriguing question concerns the distribution of the time intervals

between two translation events (the codon translation time distribution,

CTTD). This distribution, in fact, heavily influences the dynamics of the

ribosomes along the sequence [82, 97, 50, 23] and can affect the efficiency,

accuracy and regulation of the translation process [91, 47], as well as the

process of cotranslational folding of the nascent protein [85]. This distri-

bution was measured in vitro [115], however with a sub-optimal resolution.

In addition, numerical simulations [122] have shown that the CTTD can

significantly deviate from an exponential. The minimal mechanism which

produces these deviations, however, is unclear and an analytical understand-

ing of this phenomenon is lacking.

A key ingredient in translation is the tRNA and, as we showed in Sec. 2.2,

these molecules have a non trivial recharge dynamics. Importantly, since

they are present at low concentrations in the cell [35], local fluctuations in

their number can have an important effect on the translation dynamics.

A further interesting observation was made in Ref. [19]: the spatial or-

ganization of the codons is toward the reuse of the same tRNA. Specifically,

when the same amino acid appears on the mRNA sequence at a short dis-

tance, it tends to be encoded by codons translated by the same kind of

tRNA. Describing the tRNA dynamics in the neighbor of the ribosome can

therefore help in understanding this feature of the sequences.

In order to understand quantitatively and analytically how the previous

facts affect the translation and the CTTD, in the next sections we introduce

a stochastic model which explicitly incorporates (i) tRNA charging and

discharging dynamics, and (ii) spatial inhomogeneity and stochastic fluctu-

ations in the number of charged tRNAs around the ribosome. This minimal
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model captures these two fundamental aspects of the translation process 8,

and is analytically tractable. Its solution, validated using Monte Carlo nu-

merical simulations, shows that the interplay between diffusion, recharging

and translation dynamics induces a coupling between the fluctuations in the

number of charged and uncharged tRNAs. Due to this phenomenon the

CTTD, which we obtain analytically from the model, deviates from a pure

exponential. Besides, this model reaches asymptotically a non equilibrium

steady state (NESS). NESSs have attracted a lot of attention since a vari-

ety of systems in physics, chemistry, biology and engineering exhibit them,

and their characterization is typically far more difficult than the equilibrium

states [126, 127, 90, 22].

2.3.1 The model

We model here a ribosome translating a mRNA into a protein. Each trans-

lation event occurs when a tRNA, charged with the proper amino acid,

interacts with the ribosome. We suppose that the ribosome recruits the

tRNAs within an effective radius r (see Sec. 2.3.4), and that the tRNAs

farther than r are considered as a part of an infinite reservoir. Moreover,

the reservoir and the system can exchange tRNAs, due to diffusion.

We treat the special case of a single tRNA species translating a single

type of codons. This assumption allows a very detailed analysis of the

system. We anticipate that the understanding obtained in this simplified

case can be helpful in describing qualitatively the general case of many types

of codons and tRNAs, due to the fact that the underlying mechanisms are

the same.

Let us therefore consider a system which comprises a ribosome (translat-

ing an mRNA composed by several repeats of the same codon), n charged

and m uncharged tRNAs (see Fig. 2.3). Each uncharged tRNA can be

recharged with rate λR, while each charged tRNA can be chosen for trans-

lation with rate λT , becoming uncharged 9. We also suppose that there is a

stochastic flux between the system and an infinite reservoir, i.e., that each

tRNA (either charged of uncharged) can exit the system with rate ρ, while

with rate µ (µ̃) a charged (uncharged) tRNA diffuses from the reservoir into

the system.

8We did not consider for instance the enzymatic nature of the recharging of the tRNAs,

the continuous spatial dependency of the tRNA density, nor tRNA proofreading.
9The translation time is mostly determined by the codon selection time (i.e., the time

a ribosome has to wait until the right aminoacylated tRNA diffuses in its active site [79]),

which is proportional to the fraction of charged tRNA.
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Figure 2.3: Cartoon of the model illustrating the possible reaction path-

ways. Uncharged tRNAs (blue, on the left) can either be exchanged with

the reservoir or be recharged (with rate λR), illustrated by the addition of

an amino acid (red dots). Similarly, the charged tRNAs can enter in or leave

the system, or be used in translation (with rate λT ) by the ribosome (gray),

which is translating a mRNA (dashed line). In the state represented here,

n = 3 and m = 4.
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Considering an infinitesimal time step δt, the possible single-step tran-

sitions (with the corresponding probabilities) are:

• (n,m)
mλR δt−→ (n + 1,m − 1): recharge, one uncharged tRNA gets

charged.

• (n,m)
nλT δt−→ (n − 1,m + 1): translation, one charged tRNA gets dis-

charged and one codon is translated.

• (n,m)
µ δt−→ (n+ 1,m) and (n,m)

µ̃ δt−→ (n,m+ 1): a tRNA (respectively

charged, uncharged) enters the system from the reservoir.

• (n,m)
nρ δt−→ (n−1,m) and (n,m)

mρδt−→ (n,m−1): a tRNA (respectively

charged, uncharged) leaves the system.

These rates define, in general, a non-equilibrium system: the stationary

state is a function of all the rates, as we show in the next section.

2.3.2 Stationary distribution of the number of charged tR-

NAs

The set of rates given in the previous section produces the following master

equation for the probability pn,m(t) of being in the state (n,m):

ṗn,m = λR
[
−mpn,m+(m+1)pn−1,m+1

]
+λT

[
−n pn,m+(n+1)pn+1,m−1

]
+ ρ
[
(n+ 1)pn+1,m + (m+ 1)pn,m+1 − (n+m)pn,m

]
− (µ+ µ̃)pn,m + µ pn−1,m + µ̃ pn,m−1. (2.19)

We focus on the stationary state of the system by setting ṗn,m = 0. Since

the system is ergodic, the stationary state is unique and it is reached after

a relaxation time that will be discussed forward in this section.

In order to determine the stationary solution of Eq. (2.19), we introduce

the generating function G(z, w) =
∑∞

n,m=0 pn,mz
nwm and we obtain

λR(z − w)∂wG+ λT (w − z)∂zG+ ρ[(1− z)∂zG
+ (1− w)∂wG] + µ(z − 1)G+ µ̃(w − 1)G = 0, (2.20)

whose solution can be calculated by using the method of characteristics.

After imposing the condition G(1, 1) = 1 (normalization), we have

G(z, w) = e
(z−1)[λR(µ+µ̃)+µρ]+(w−1)[λT (µ+µ̃)+µ̃ρ]

ρ(λR+λT+ρ) , (2.21)
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and by recursive differentiation, we obtain the stationary probability

pn,m =

[
(∂z)

n(∂w)m

n!m!
G(z, w)

]
z=0,
w=0

=
e−N̄ n̄n m̄m

n!m!
, (2.22)

where n̄, m̄ and N̄ are the average values of the quantities n, m and N =

n+m, respectively:

n̄ = 〈n〉 =
λR N̄ + µ

λT + λR + ρ
,

m̄ = 〈m〉 =
λT N̄ + µ̃

λT + λR + ρ
,

N̄ = 〈n+m〉 =
µ+ µ̄

ρ
.

(2.23)

The stationary distribution Eq. (2.22) is a factorized Poissonian in n and m
10: the two variables are uncorrelated at the same time. However, as we show

in App. B.1, n and m are non-trivially correlated at different times, and we

anticipate that the structure of these correlations leads to the deviations of

the CTTD from the exponential form.

The parameters µ and µ̃ can be conveniently expressed in terms of the

diffusion parameter ρ, the average tRNA number N̄ and the fraction X of

charged tRNA in the reservoir, assumed to be constant:

µ = XN̄ρ,

µ̃ = (1−X)N̄ρ.

These parameters have a simple physical interpretation or can be measured

in living systems, as we show in Sec. 2.3.4. For instance, the parameter ρ

is related to the diffusivity of the tRNA, while the fraction X of charged

tRNA in the cell can be measured experimentally [33].

Moreover, in order to simplify the notation, let us rescale the time such

that λT = 1, and set λR = λ. Let us also introduce the average fraction x

of charged tRNAs into the system:

x ≡ λ +Xρ

1 + λ+ ρ
. (2.24)

The average values for n and m can be expressed as n̄ = N̄x and m̄ =

N̄(1− x).

These quantities and the stationary distribution Eq. (2.22) behave as

expected in the limit ρ→∞: the system is at equilibrium with the cell and

10Note that, since detailed balance does not hold in general, the system is out of equi-

librium and it is not a priory obvious to find a stationary distribution [127, 90]
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the average fraction x of charged tRNA therein coincides with the fraction X

in the cell: x = X. On the other hand, if ρ→ 0, the diffusion is much slower

than translation, and the average number of charged tRNAs is completely

determined by the internal dynamics: x = λ(1+λ)−1. In this case the effect

of diffusion amounts to a slow but not negligible fluctuation of the tRNA

number N = n+m.

The relaxation times can be deduced from the time-dependent solution

of Eq. (2.19), obtained in App. B.1. The relaxation to the stationary distri-

bution of this solution is ruled by the two time scales as in Eq. (B.7) and,

as a result, we expect that the stationary state is reached when the obser-

vation time is larger than the largest time scale: in this case, Tobs � ρ−1.

This means that the convergence to the stationary distribution is guaran-

teed once the fluctuations in the number N of tRNAs in the system have

been sampled.

Finally, as we show in App. B.2, we observe that the detailed balance

condition is satisfied only for ρ = 0, i.e., in the absence of diffusion, or for

λ = X/(1 − X). In the latter case the stationary average values for the

charged fraction of tRNA of both the internal and the diffusive dynamics

coincide, and x = X. In all other cases the stationary state is a non-

equilibrium state.

2.3.3 Statistics of translation times

The average translation time per codon predicted by this model is trivially

1/n̄. In general, however, when the distribution is not exponential, the

average does not fully characterize the behavior of the random variable. We

stress that the shape of this probability influences the dynamics of the whole

translation machinery by affecting the translocation of the ribosomes along

the mRNA. In this section we therefore compute analytically the probability

density function for the intervals between two subsequent translation events.

The derivation is carried out by writing a master equation which accounts

for an auxiliary variable r counting the number of time steps elapsed since

the last translation event (see below). This procedure allows the calculation

of the cumulative distribution of the translation intervals and finally of the

CTTD.

Let us therefore consider a discrete-time dynamics where δt is the unit

time step. The state of the system is now described by (n,m; r), where the

counter r, at each time step, is either set to zero if a translation event occurs,

or increased by one otherwise. Without loss of generality, we set λT = 1

from the beginning. The possible transitions are:
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• (n,m; r)
mλδt−→ (n+1,m−1; r+1): one uncharged tRNA gets recharged

• (n,m; r)
n δt−→ (n−1,m+1; 0): one codon is translated and one charged

tRNA gets discharged

• (n,m; r)
µ δt−→ (n + 1,m; r + 1) and (n,m; r)

µ̃ δt−→ (n,m + 1; r + 1): a

tRNA (respectively charged, uncharged) enters the system from the

reservoir

• (n,m; r)
nρ δt−→ (n − 1,m; r + 1) and (n,m; r)

mρδt−→ (n,m − 1; r + 1):

a tRNA (respectively charged, uncharged) leaves the system to the

reservoir

• (n,m; r)
1−δt[n+λm+µ+µ̃+ρn+ρm]−→ (n,m; r+1): nothing happens and the

counter is increased.

This set of rates leads to the discrete time master equation for the probability

qn,m;r(t) of being in the state (n,m; r) at time t

qn,m;r(t+ δt)− qn,m;r−1(t)

δt
= λ(m+ 1) qn−1,m+1;r−1(t) + µ qn−1,m;r−1(t)

+ µ̃ qn,m−1;r−1 + ρ(n+ 1)qn+1,m;r−1(t) + ρ(m+ 1)qn,m+1;r−1

−
[
n+ λm+ µ+ µ̃+ ρn+ ρm

]
qn,m;r−1(t) + δr,0

∞∑
r′=0

(n+ 1)qn+1,m−1;r′(t).

(2.25)

The limit δt → 0 is well defined by setting τ = rδt and it results in the

following partial differential equation:

∂tqn,m(τ, t) = −∂τqn,m(τ, t) + λ(m+ 1)qn−1,m+1(τ, t)− (n+ λm)qn,m(τ, t)

+ ρ
[
(n+ 1)qn+1,m(τ, t) + (m+ 1)qn,m+1(τ, t)− (n+m)qn,m(τ, t)

]
+µ qn−1,m(τ, t)+µ̃ qn,m−1(τ, t)−(µ+µ̃)qn,m(τ, t)+(n+1)δ(τ)pn+1,m−1(t),

(2.26)

where pn,m(t) =
∫∞

0 dτ qn,m(τ, t) is the solution of Eq. (2.19).

The differential equation for the stationary probability is obtained by

setting ∂tqn,m(τ, t) = 0, and reads

∂τqn,m(τ) = λ(m+ 1)qn−1,m+1(τ)− (n+ λm) qn,m(τ)

+ρ
[
(n+1)qn+1,m(τ)+(m+1)qn,m+1(τ)+XN̄ qn−1,m(τ)+(1−X)N̄ qn,m−1(τ)

− (n+m+ N̄)qn,m(τ)
]

+ δ(τ)αn+1,m−1, (2.27)
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where αn,m = n pn,m and pn,m is provided by Eq. (2.22).

As in the previous case, we introduce the generating function

G(z, w; τ) =
∞∑
n=0

∞∑
m=0

qn,m(τ)znwm, (2.28)

and Eq. (2.27) becomes

∂τG = λ(z − y)∂yG− z∂zG+ ρ
[
(1− z)∂z + (1− w)∂w + N̄X(z − 1)

+ N̄(1−X)(w − 1)
]
G+ δ(τ)f(z, w), (2.29)

where

f(z, w) =
∞∑
n=0

∞∑
m=1

αn+1,m−1z
nwm

= n̄ w exp[n̄(z − 1) + m̄(w − 1)].

(2.30)

Even though Eq. (2.29) could be solved in full generality, here we are in-

terested in the particular value G(1, 1, τ) as it coincides with the marginal

distribution

Q(τ) =

∞∑
n,m=0

pn,m(τ) = G(1, 1; τ) (2.31)

for τ . The probability P (τ) for the time interval t between two subsequent

translation events to be t > τ , is proportional to Q(τ). In fact, let us sup-

pose that, at some time T during the evolution of the system, the auxiliary

variable has a value τ = τ∗. In this case, the time interval t between the

two subsequent translation events enclosing T is, by construction, t > τ∗.

It follows that P (τ) = Q(τ)/Q(0).

By solving Eq. (2.29) with w = z, we obtain the generating function

G(z, z; τ) and the probability P (τ), describing the probability for the time

t between two consecutive translation events to be larger than τ :

P (τ) =

[
R+

λ

λ− 1

(
e−τ(ρ+1)

ρ+ 1
− e−τ(ρ+λ)

ρ+ λ

)]
e−τRN̄x

× exp
[ λN̄x
λ− 1

(
e−τ(ρ+1) − 1

(ρ+ 1)2
− e−τ(ρ+λ) − 1

(ρ+ λ)2

)]
, (2.32)

where

R =
ρ(ρ+ λ+ 1)

(ρ+ 1)(ρ+ λ)
(2.33)
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Figure 2.4: Probability density function p(t) for the translation time

(CTTD) for various choices of the parameters λ (blue and continuous lines

for λ = 0.1, red and dashed lines for λ = 1), ρ (diamonds for ρ = 0.1,

squares for ρ = 1) and N̄ (N̄ = 0.5 in the left panel, N̄ = 5 in the right

one). The parameter X is kept fixed to 0.5. The black crosses are the results

of Monte Carlo simulations, and do not show any significant deviation from

the theoretical predictions. As the two log-plot insets show, deviations from

a pure exponential are most evident for small N̄ , where the fluctuations play

a relevant role.

is always < 1, and x is the fraction of charged tRNAs in the system,

Eq. (2.24).

For further reference, note that the function P (τ) can be written as

P (τ) = ∂τA(τ), with

A(τ) = − 1

N̄x
exp

[
− τRN̄x

+
λN̄x

λ− 1

(
e−τ(ρ+1) − 1

(ρ+ 1)2
− e−τ(ρ+λ) − 1

(ρ+ λ)2

)]
. (2.34)

Let us now observe that P (τ) is the complement of the cumulative dis-

tribution for the CTTD, defined as p(t). Therefore, since Q(τ) =
∫∞
τ dt p(t),

the CTTD is given by

p(t) = −∂τP (τ)|τ=t. (2.35)

Some typical realizations of p(t) are shown in Fig. 2.4, where we also compare

the theoretical prediction with the numerical Monte Carlo simulations. We

did not observe any significant deviation between the theoretical results and
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the simulations. Interestingly, for small times and small values of N̄ the

CTTD relevantly deviates from an exponential (see the log-plot insets of

Fig. 2.4). On the other hand, these deviations are milder for small values of

λ and large values of ρ. The main features the p(t) are analyzed in the next

section.

Characterization of the distribution of the translation times

In order to characterize the distribution p(t), we calculate its first two mo-

ments and we compare them to an exponential distribution having the same

mean, observing that the CTTD is overdispersed with respect to that dis-

tribution.

Let us first check the consistency of the average of the CTTD:

〈t〉 =

∫ ∞
0

dt t p(t) =

∫ ∞
0

dτ P (τ) =
1

N̄x
. (2.36)

As expected, it coincides with the inverse of the average number n̄ of charged

tRNAs in the system.

The second moment is given by

〈t2〉 =

∫ ∞
0

dt t2 p(t) = 2

∫ ∞
0

dt t P (t) = −2

∫ ∞
0

dtA(t), (2.37)

where A(t) is given by Eq. (2.34), and can be written as

〈t2〉 =
2

N̄x
exp

[
λN̄x

λ− 1

(
1

(ρ+ λ)2
− 1

(ρ+ 1)2

)]
×
∫ 1

0
dy yRN̄x−1 exp

[
λN̄x

λ− 1

(
yρ+1

(ρ+ 1)2
− yρ+λ

(ρ+ λ)2

)]
. (2.38)

Equation (2.38) can be numerically evaluated in order to determine the

variance σ2
t = 〈t2〉 − 〈t〉2.

In Fig. 2.5 we plot the ratio σ2
t /σ

2
exp for various values of the parameters,

where σexp is the variance of the exponential distribution

pexp(t) = xN̄e−xN̄t, (2.39)

fixed to having the same average of the CTTD. By inspection, we did not

find any point in the parameter space such that σt < σexp: the CTTD is

overdispersed with respect to the exponential distribution, Eq. (2.39).

This observation can be further characterized by comparing the small

and large t expansions of the two distributions: first, by analyzing the Taylor

expansion around t = 0 of the two probability distributions, we observe that
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Figure 2.5: Ratio between the variances σ2
t of the CTTD, and σ2

exp of the

exponential with the same average Eq. (2.39), as a function of λ, for various

values of N̄ and ρ (the parameter X do not change qualitatively the results

and is set to X = 1/2). For λ → 1 the CTTD converges to an exponential

distribution, as shown by Eq. (2.41), and the ratio σ2
t /σ

2
exp → 1. In gen-

eral, however, the CTTD is over dispersed with respect to the exponential

distribution.

p(t)−pexp(t) ∼ λt+O(t2). Short translation times are under represented in

the exponential distribution. Also note that for λ = 0 the two distributions

are the same and the ratio of the variances, as shown in Fig. 2.5, is = 1.

Similarly, the tails of the two distributions differ in the large t limit. In

fact, Eq. (2.35) behaves for t→∞ as:

p(t) ∝ e−RxN̄t (2.40)

with R < 1. Accordingly, long translation times are also under represented

in the exponential distribution.

Finally, we observe that the CTTD in Eq. (2.35) reduces to an exponen-

tial both in the slow recharge limit λ→ 0, where

p(t)→ xN̄e−xN̄t, (2.41)

and in the fast diffusion limit ρ→∞:

p(t)→ XN̄e−XN̄t. (2.42)

In the latter case the charged fraction x of tRNA in the system coincides

with the fraction X in the reservoir, consistently with the expectation that

in the fast diffusion limit the fluctuations of charged tRNAs are determined

by the exchange with the bath and are uncorrelated in time. As we show in

the next section, this two limits have an interesting physical interpretation.
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Time correlations in the number of charged and uncharged tRNAs

induce the deviation from the exponential

The model that we introduced in Sec. 2.3.1 is Markovian and memoryless,

as its time evolution depends only on the present state. Since this fact

typically implies exponentially distributed intervals between transitions [41],

the appearance of a non-exponential CTTD could be surprising at first sight.

Here we show that the deviation from an exponential of the CTTD arises

due to a nontrivial coupling between the fluctuations of n and m.

First, as we show in App. B.3, the CTTD can be written as a function of

the time evolution of the average value of n after a translation event, 〈n(t)〉nt,

conditioned to the fact that no other translation events were recorded up

to time t. As Eq. (B.17) shows, the deviations from an exponential of the

CTTD appear as soon as 〈n(t)〉nt departs from a constant and acquires a

time dependency.

In the stationary regime the probability for a translation event to occur

is proportional to npn, where pn =
∑

m pmn is the marginal stationary

probability for n, obtained from Eq. (2.22). Precisely, the distribution for n

at the instant before a translation event is:

ptr−
n =

n̄n−1

(n− 1)!
e−n̄, (2.43)

whose average is n̄t− = n̄ + 1: a translation event typically occurs when a

fluctuation increases the number of charged tRNAs in the system (note that

the number m of uncharged tRNAs is not influenced). During a translation

event n→ n−1 and m→ m+1, therefore, immediately after the translation,

n̄t+ = n̄ and m̄t+ = m̄ + 1: the fluctuation on n has propagated to m.

Now, if λ > 0 and ρ <∞, this fluctuation can again propagate to n with a

characteristic time scale, producing a loop which induces a time dependency

in 〈n(t)〉nt. This mechanism is suppressed if λ = 0 and it is negligible

if ρ → ∞ since, as it can easily be seen from the rates described at the

beginning of Sec. 2.3.1, the dynamics of n is not affected by the dynamics of

m. Fig 2.6 shows that for λ→ 0 the average 〈n(t)〉nt reduces to a constant.

For ρ→∞ the fluctuations on m are immediately dissipated in the thermal

bath before they can propagate back to n.

As a further check, we can quantify the influence of m at a given time

on the future n dynamics by studying the two point correlator:

Cmn(t) ≡ 〈m(0)n(t)〉 − m̄n̄. (2.44)

The analytic expression for such correlator is obtained in App. B.1 and, as

it is shown in Eq. (B.8), it vanishes identically when λ = 0 or ρ → ∞. In
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Figure 2.6: Monte Carlo evaluations of the average number of charged tR-

NAs in the system 〈n(t)〉nt conditioned to the fact that no translation event

occurred up to time t after that one at t = 0, plotted for various values of λ

(solid lines). The other parameters were set to N̄ = 1, ρ = 1 and X = 1/2.

The black crosses are the analytical predictions, based on Eq. (B.18). Inter-

estingly, as λ approaches 0, the function 〈n(t)〉nt becomes a constant.

these conditions the dynamics of n is completely decoupled from m since the

fluctuations of m cannot propagate to n (note, however, that the reverse is

not true, since when λ = 0 the two variables are not independent as shown

by the fact that the correlator Cnm(t) in Eq. (B.8) does not vanish).

On the other hand, for λ > 0 and ρ < ∞, the correlator in Eq. (2.44)

is a linear combination of two exponentials with different decay times, and

interestingly it is not monotonic as a function of time: at t = 0 it vanishes

(as expected from the factorization of the stationary probability) and it has

a maximum for t = tmax reported in Eq. (B.9).

Let us finally observe that the CTTD can be regarded as an observable

on the timeseries of n. Now, if we consider the process projected on the

n variable only, its behavior is not Markovian since the future evolution is

not completely determined by the present state: n(t) depends on its history

because the information on m is missing. The two limits λ = 0 and ρ→∞,

where the CTTD is exponential, are coherent with the absence of memory

in the timeseries of n, as the exponential is the only memoryless continuous

distribution [41]. We emphasize, however, that the complete model is always

Markovian, as its time evolution depends only on the current state (n,m)

and not on the past history.
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Cell volume1 Vc ≈ 6× 10−19 m3

Typical radius of a ribosome2 LR ≈ 1× 10−8 m

Number of tRNA in a cell3 Nt ≈ (0.1÷ 5)× 103

Number of ribosomes in a cell3 NR ≈ (7÷ 70)× 103

Concentration of the tRNA3 Ct ≈ (0.3÷ 20)× 10−6M

Diffusion constant of the tRNA4 D ≈ (0.2÷ 2)× 10−12 m2/s

Average translation rate5 Θ ≈ 10÷ 20 codons/s

Table 2.1: Data for E.Coli.

2.3.4 Discussion and interpretation of the parameters

The parameters ρ, N̄ , X, λR and λT which define the model can be inter-

preted in terms of the physical and biological quantities given in Tab. 2.1.

Let us first suppose that the model is enclosed in a sphere of radius r

centered around the ribosome. This radius is interpreted as the effective dis-

tance such that a tRNA has a non-negligible probability of diffusing towards

(and being captured by) the ribosome. As shown in Ref. [95], the probability

of being absorbed by a target of radius LR centered at the origin, starting

from radius r, is Pabs(r) = LR/r. Since we want the probability Pabs(r) to

be finite (i.e., we want to consider those tRNAs which have a non-zero prob-

ability of diffusing into the ribosome in a short time), an order-of-magnitude

estimate for the radius r is the ribosome radius itself: r & LR.

Defining Vr = 4πr3/3 as the effective volume around the ribosome,

we can estimate the average number of tRNAs by fixing the concentra-

tion in the volume Vr to be the same as in the cell (Ct). We obtain

N̄ = VrCtNa×103 ≈ 10−2÷100, where Na is the Avogadro number and the

numerical factor results from the conversion of the unities of volume. The

wide variation is due to the fact that different species of tRNA have very

different concentrations in the cell.

The parameter X measures the fraction of charged tRNAs in the cell.

Its range, measured in vivo for E. Coli in Ref. [33], spans the interval X ≈
10−3 ÷ 100, depending on the richness of the growth media.

The diffusion rate ρ can be interpreted in terms of the diffusion constant

D of the tRNA molecules and the volume Vr. Supposing that each tRNA

1From Ref. [74]
2From Ref. [125]
3From Ref. [35]
4From Ref. [116]
5From Ref. [14]
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performs a Brownian motion, its mean square displacement in the time T is

r2 = 〈
∑

i ∆x2
i 〉 = 6DT , and the typical exit time from the sphere of radius

r is

Texit =
r2

6D
. (2.45)

The average exit time in the stochastic model is given by 1/ρ, and equating

the two times we have

ρ =
6D

r2
≈ (1÷ 70)× 103 s−1. (2.46)

The average translation rate in our model, Eq. (2.36), is given by 〈t〉−1 =

N̄x. Restoring the λT dependence and equating with the average experi-

mental translation rate Θ, we have

〈t〉−1 = N̄λT
λR +Xρ

λT + λR + ρ
≈ (10÷ 20) s−1. (2.47)

Since N̄ ≈ 10−2 ÷ 100, we roughly have λT ≈ 101 ÷ 103. In the previous

sections we set λT = 1, which corresponds to using the ratio ρ/λT . This

ratio can range between ρ/λT ≈ 100 ÷ 103, depending on the tRNA species

and the growth conditions of the organism.

The process of tRNA recharge involves many components (the enzyme

aminoacyl-synthetase, ATP and elongation factor molecules) and we expect

λR to be an increasing function of the concentrations of the reagents. Nev-

ertheless, our one-parameter approximation serves the purpose of effectively

modeling the range of variation of the recharge dynamics.

Interestingly, a recent analysis of mRNA sequences [19] revealed that

the subsequent occurrences of the same amino acid tend to be encoded by

codons translated by the same tRNA. More specifically, the probability of

tRNA recycle decays as a function of the distance along the mRNA, i.e., of

the average time between the two translation events. This measure seems

to imply that (i) the timescale of translation is not larger than that of dif-

fusion: if diffusion were very fast, no correlation along the sequences would

be observed, that (ii) the number of tRNAs in the neighborhood of a ribo-

some is small since the addition of one tRNA induces a relevant fluctuation,

and that (iii) the recharge dynamics is at least as fast as translation, other-

wise that tRNA would not be charged and it would not be recycled. These

observations, along with the previous order-of-magnitude estimations for ρ

and λT , suggest that λT ≈ ρ, N̄ . 1, and λR & λT . Moreover, by equat-

ing the total recharge rate to the total translation rate in the cell, we find

λTX ≈ λR(1 − X). Since X < 1 [33], we expect λT to be roughly of

the same order of magnitude of λR. In this range of parameters (N̄ . 1,
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λR ≈ λT ≈ ρ) our model predicts significant deviations from an exponen-

tial distribution, which could be potentially measured with the techniques

employed in Ref. [115].

2.4 Conclusions

In the previous sections we developed a general model for systemic transla-

tion in the cell, progressing through three steps of increasing detail.

We began by analyzing the effects of ribosome load on translation opti-

mality, observing that the optimization of the translation is a global problem.

We then progressed to include tRNA recharging dynamics and codon

usage. Depending on the recharging rate of the tRNAs, the optimal us-

age of synonymous codons interpolates between the proportional rule (the

tRNAs are used accordingly to their abundance, slow recharging) and the

single-tRNA rule (only the most abundant tRNA is used, fast recharging).

However, since the codon usage cannot vary as fast as the environment, we

suggest that the codon usage might be interpreted as a strategy to deal with

the randomness of the environment.

Finally, we focused on the single translation events: using a stochastic,

spacial model we obtained the distribution of the time between translation

events (ribosome dwell time). This distribution can deviate from an ex-

ponential due to the coupling of the fluctuations of the number n and m

of charged and uncharged tRNAs, respectively. The qualitative mechanism

is as follows: (i) a translation event typically occurs when the number of

charged tRNAs around a ribosome is increased due to a fluctuation, on av-

erage n̄tr− = n̄ + 1, (ii) during the translation event, a charged tRNA gets

discharged and the fluctuation on n propagates to m, m̄tr+ = m̄+ 1, (iii) if

λ > 0, this fluctuation on m can propagate again on n with a characteristic

timescale, producing a ”bump” in the timeseries of n as in Fig. 2.6. The

size of this effect is larger the smaller the average number of tRNAs N̄ is

- i.e., the bigger the relative size of the fluctuations is. As we remark in

section 2.3.4, the typical values for N̄ are . 1. The other parameters can be

in a range where this mechanism might be relevant and lead to a significant

deviation from the exponential distribution.

Furthermore, this mechanism can contribute in explaining the spacial

organization of the codons which was observed in Sec. 1.1.2. As shown

in Ref. [19], this anomaly is due to the fact that close occurrences of the

same amino acid tend to be encoded utilizing codons translated by the

same tRNA. Since the tRNA concentration is small, a tRNA which reaches

the ribosome constitute a significant fluctuation. If the tRNA, after being
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used, is rapidly recharged before it diffuses away, the local concentration

of charged tRNAs is effectively increased. Re-using by choosing the same

codon among its synonyms can therefore significantly reduce the waiting

time.



62 CHAPTER 2. EXPLAINING THE DATA



Chapter 3

Simulating the data: the

effect of codon translation

rates on cotranslational

folding

The process which leads from a mRNA to a protein requires that the nascent

polypeptide assumes its functional 3-dimensional conformation, as the fail-

ure to fold into the native structure produces inactive and potentially toxic

molecules (several neurodegenerative diseases, including Parkinson’s and

Alzheimer’s, are caused by the aggregation of misfolded proteins into in-

soluble amyloids). However, the fact that a protein consistently folds from

a random coil to an ordered and functional structure in a very short time

-seconds or less- might seem paradoxical: if the dynamics were purely ex-

ploratory (i.e., random), finding the minimum free energy configuration

could take an enormous amount of time.1 Plausibly, the folding of the

protein is therefore biased toward the correct native state, and a bias of the

order of a few kBT can in fact reduce the folding time to the biological scale

[128]. Qualitatively, the folding energy landscape is funnel-shaped: the state

of the protein tumbles down a valley which leads to the globally folded state

(for a recent review, see Ref. [32]).

1In a famous paper [76], Levinthal gave a rule-of-thumb estimate for that time. Suppose

that the bond connecting amino acids can have several (e.g., three) possible states. A

protein of, say, 101 amino acids has 3100 ≈ 5×1047 configurations. If the protein sampled

new configurations at a rate of 1013 s−1, it would take 1027 years to try them all. Since,

indeed, proteins fold on time scales of less than a second, random sampling does not

explain the folding process.

63
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Besides pure free energy minimization, the folding is facilitated by I)

the presence of a set of molecules, the chaperones, (see Ref. [57] for a recent

review) and by II) fine tuning of the translation process, via co-translational

folding. In the following we will focus on the latter process, as it is strictly

related to the choice of the codons along the mRNA sequences.

The study of this problem on even a single proteins is computationally

extremely cumbersome, as the sampling at each different translation rate

requires a full set of Molecular Dynamics simulations to be run. This makes

practically unfeasible to extensively study how the variation of the single-

codon translation rates affects the process of cotranslational folding. In the

following section we will develop a Markov chain model which overcomes this

severe limitation, by allowing the efficient simulation of arbitrarily chosen

translation rates once the data form a highly informative subset of simula-

tions is known.

3.1 Cotranslational folding and codon usage

In the past 10 years several evidence accumulated showing that the folding

of the proteins begins while the polypetide chain is still tethered to the

ribosome [71, 70, 85]. It has been shown, for instance, that about one-third

of E.Coli proteome folds cotranslationally [24].

The cotranslational folding process can be strongly influenced by the

rate at which the single amino acids are covalently attached to the nascent

polypeptide chain [71]. In fact, there is a large variance in the average time

it takes to translate the 61 different codons encoding for the amino acid that

comprise an mRNA molecule. For instance, in logarithmically growing E.

coli cells the fastest codons are estimated to translate with average times

as short as 10 ms, while the slowest codons may take 100s of ms or longer

[42, 30], with an average speed of between 45 and 100 ms per codon [78].

An order-of-magnitude or more can thus separate the fastest and the slowest

translating codons.

Furthermore, the synonymous codons can be translated at very different

rates, although encoding for the same amino acid [42]. An increasing number

of experiments shows that, in general, synonymously altering the codon

sequence affects the folding of the protein [123, 107, 105].

Analyses of synonymous codon usage across entire transcriptomes reveal

systematic biases between different species. In particular, stretches enriched

in rare codons (i.e., parts of the mRNA where rare codons are more abundant

than the average) are also enriched in α-helical and β-strand structural

motifs [88, 100, 110]. It is therefore likely that evolutionary pressures select
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for patterns of translation rates along an mRNAs open reading frame. When

these patterns of translation rates are altered the process of cotranslational

folding can go awry, resulting in misfolding and malfunction of the nascent

protein in vivo [66, 124, 28].

For these reasons a grand challenge in the in vivo protein folding field is

to be able to analytically model the coupling between individual codon trans-

lation rates and the states (conformations) that a nascent protein populates

during its cotranslational folding process. Attempts at addressing this chal-

lenge via a probabilistic approach [84] were successful in deriving equations

that modeled single cotranslational folding pathways involving up to three

thermodynamic states [85]. More complex situations, however, can occur in

cells involving parallel pathways [93] and additional states populated during

cotranslational folding [25], such as interdomain misfolding [105]. To model

these biologically relevant behaviors requires a general analytic description

of the coupling between translation rates and cotranslational folding.

In the following sections we will therefore introduce a general formalism

which models the reaction scheme in cotranslational folding. By utilizing

standard Markov chain methods we are able to analytically calculate the

probability that a nascent protein is in any one of an arbitrarily large number

of thermodynamic states during translation, as a function of the nascent

chain length, the codon translation rates, and the rates of interconversion

between states.

3.2 Absorbing random walks and cotranslational

folding

Let us consider a mRNA molecule whose open reading frame (ORF) con-

sists of M codons. We number the codons starting from 1 at the start

codon (Fig. 3.1a). A ribosome molecule translating this ORF converts the

genomic information encoded in the sequence by unidirectionally translo-

cating along the ORF one codon at a time, decoding the information at the

new codon, and covalently attaching the corresponding amino acid to the

nascent polypeptide chain before the next translocation step (Fig. 3.1b).

For a nascent chain that is L residues long at a given point during its

translation, the rate of translation of the L + 1-th codon, which elongates

the nascent chain by one residue, is denoted by k
(L+1)
A .

At length L the nascent chain can interconvert between NL distinct ther-

modynamic states, e.g., folded, intermediate and misfolded states, which we

denote as Si(L), with i = 1, . . . , NL (see Fig. 3.2). These states can directly
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Figure 3.1: Cotranslational protein folding. (a) The ribosome translates the

codons contained in a mRNA into a nascent protein. (b) Starting from the 5

end the ribosome unidirectionally translocates (large gray arrow) along the

mRNA molecule and converts the genomic information in the ORF into a

nascent protein (blue), which emerges through a channel known as the ribo-

some exit tunnel. (c) At a given nascent chain L during synthesis the nascent

chain has the potential to form tertiary structure; such states may include

folded, intermediate and unfolded conformations. The arrows indicate that

these states may be able to interconvert at the given chain length.
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and reversibly interconvert with one another at this nascent chain length.

The rate of interconversion between state S
(L)
i and S

(L)
j is denoted by k

(L)
i,j

(in App. C.1 we give a simple method to estimate these rates). Note well

that all the rates have an explicit length dependence, as the chemical envi-

ronment experienced by a segment of the nascent changes as it elongates.

Moreover, we assume that when a translation event occurs the state S
(L)
i

directly transitions to state S
(L+1)
i , provided that the timescale of the chem-

ical step of peptide bond formation is much smaller than that of transition

between different states of the protein. States S
(L)
i and S

(L+1)
i are therefore

effectively equivalent, having the same conformation of the domains. Fi-

nally, observe that the process of amino acid addition is irreversible under

physiological conditions: the states at length L + 1 act as absorbing states

for those at length L.

A nascent chain described by this model will thus randomly change its

conformation due to thermal fluctuations, performing a random walk on the

states {S(L)} until a new amino acid is added, at which point state S
(L)
i

transitions to and is absorbed by state S
(L+1)
i .

The evolution of the system is captured by the stochastic vector pL(t)

as

pL(t) =
(
p

(L)
1 (t), p

(L)
2 (t), . . . , p

(L)
N (t)

)
, (3.1)

where p
(L)
i (t) is the probability of being on state i at chain length L and time

step t. To model the influence of codon translation rates on cotranslational

folding the central quantity we are interested in calculating is the probability

pL(tA) at the time when the translation occurs. Note that the final state at

length L is the initial condition for the dynamics at length L+ 1, i.e.,

pL+1(0) = pL(tA). (3.2)

From this perspective, the cotranslational folding process is a biased

random walk on a reaction network consisting of subsets of reactions that

can reversibly interconvert, connected by irreversible transitions between

those subsets (Fig. 3.2).

3.2.1 Random walks with absorbing states

The problem of calculating the probability vector pL(tA) for the protein

to be in each of the NL states when the translation occurs, admits a very

general solution by utilizing the framework of Markov chain with absorbing

states [65, 41]. Therefore, given the system in state i, the rates of the
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possible transitions

w(S
(L)
i → S

(L)
j ) = k

(L)
ij , j = 1, . . . , NL,

w(S
(L)
i → S

(L+1)
i ) = k

(L+1)
A ,

(3.3)

produce the following transition probabilities:

t
(L)
i,j = k

(L)
ij /N , j = 1, . . . , NL

a
(L)
i = k

(L+1)
A /N ,

(3.4)

where N ≡
∑

j k
(L)
ij + k

(L+1)
A . We also define the two (NL ×NL) matrices

(TL)i,j = t
(L)
i,j , (3.5)

(AL)i,j = δi,j a
(L)
i . (3.6)

This matrices can be arranged blockwise into the stochastic transition ma-

trix P(L):

PL =

(
TL AL

0 INL ,

)
where now the states 1, . . . NL are the {SLi }, the states NL + 1, . . . 2NL are

the absorbing ones {SL+1
i }, and INL is the NL ×NL identity matrix.

The initial condition can be written as the stochastic vector pL(0) =(
p

(L)
1 (0), p

(L)
2 (0), . . . , p

(L)
N (0)

)
, where each p

(L)
i (0) is the probability of being

on the state SLi . By taking the product pL(1) = pL(0)TL we compute

the probability of being on the sites SLi after one step of the random walk

without being absorbed. Iterating, after t steps we have

pL(t) = pL(0)Tt
L. (3.7)

On the other hand, the probability of being absorbed exactly at step t + 1

by any of the state SL+1
i can be computed from eq. (3.7) by applying the

matrix AL, and is equal to pL(0)Tt
LAL.

The total probability of being absorbed (and thus the initial condition for

the random walk at length L+1) can be computed by summing pL(0)Tt
LAL

over t:

p(L+1)(0) =

∞∑
t=0

p(L)(0)Tt
LAL = p(L)(0)(1−TL)−1AL. (3.8)

The matrix inversion operation can be performed extremely efficiently up to

very large sizes, making possible the treatment of proteins with complicate

folding landscapes.
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Figure 3.2: A triangular cotranslational folding reaction scheme with (a)

rates and (b) elementary transition probabilities indicated. Assuming state

S1 corresponds to the folded state, then a domain that folds via this mecha-

nism can take parallel pathways to the folded state, either directly from S2

or S2. At length L these three states can reversibly and directly interconvert

with one another with rates k
(L)
i,j and elementary transition probabilities t

(L)
i,j .

Addition of a residue to the nascent chain shifts the system irreversibly from

length L to length L + 1 with rate k
(L+1)
A and elementary reaction proba-

bility a
(L)
i that state S

(L)
i transitions to state S

(L+1)
i after one step on this

reaction network.
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Eq. (3.8) is the main theoretical result of this chapter as it provides

an exact expression for the probability of being in a given state (e.g., the

folded state) during translation for arbitrarily complex folding mechanisms.

Specifically, the i-th element of the vector p(L+1)(0) expresses the probabil-

ity of finding the nascent chain in state S
(L)
i at length L + 1 immediately

the residue has been added in terms of the codon translation rates and

interconversion rates between states.

3-state case: an example

To illustrate this method in practice consider the reaction scheme shown in

Fig. 3.2 . It represents a domain that can cotranslationally fold via two-

parallel pathways. In this situation the matrices TL ans AL explicitly read

TL =

 0 t
(L)
1,2 t

(L)
1,2

t
(L)
2,1 0 t

(L)
2,3

t
(L)
3,1 t

(L)
3,2 0

 , AL =

a
(L)
1 0 0

0 a
(L)
2 0

0 0 a
(L)
3

 , (3.9)

with t
(L)
i,j and a

(L)
i given by Eq. (3.4).

To test the accuracy of the predictions from this approach we ran Lan-

gevin Dynamics simulations of the synthesis of the MIT protein domain,

which folds into a three-helix bundle structure and can do so via a three-

state parallel pathway mechanism. The three states that can be populated

by the MIT domain are the unfolded state, an intermediate comprised of

natively-structured helices 1 and 2 (Fig. 3.3a), and the fully folded state

(Fig. 3.3b). The coarse-grained model and simulation protocol is described

in App. C.2.

Two sets of simulations were carried out: I) the first was used as part

of the process of making the predictions, and II) the second was used to

test those predictions. In the first set of simulations a series of arrested

ribosomes at nascent chain lengths ranging from 65 to 120 residues were

simulated. Arrested ribosomes do not undergo translation, i.e., k
(L)
A = 0.

The MIT domain is 77 residues in length, therefore this domain emerges

fully from the narrow ribosome exit tunnel at a nascent chain length of

around 110 residues in its fusion construct with polyglycine (Fig. 3a). At

each length L the rates k
(L)
i,j of interconversion between the 3 states were

measured, using the method reported in App. C.1.

In this example we assumed constant k
(L)
A along the whole sequence, and

we chose 3 significant values, namely 0.83k
(bulk)
F , 8.3k

(bulk)
F , and 83k

(bulk)
F ,

where k
(bulk)
F is the folding rate of the MIT domain at 310 K in bulk solution

-i.e., when no ribosome is present- and is equal to 12.4 ns−1.
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Using the set of rates k
(L)
i,j extracted from the simulations we computed

the matrices TL and AL for the three different values of k
(L)
A . We plugged

them into Eq. (3.8) and predicted how the MIT domain behaves during

continuous translation. We note that coarse-grained models and low-friction

Langevin Dynamics significantly speeds up the folding rate relative to exper-

imentally observed values [68] but preserves realistic thermodynamic proper-

ties. While these predictions are for ORFs with uniform translation rate pro-

files, we emphasize that our model can easily treat arbitrarily non-uniform

profiles as well.

We tested these predicted state curves against explicit simulations of con-

tinuous translation. In this second set of simulations residues were stochas-

tically attached to the C-terminus of the ribosome-bound nascent chain with

the rates k
(bulk)
F used to make the predictions.

We find that Eq. 3.8 yields accurate predictions of the effect of codon

translation rates on the probability of the MIT domain being in the folded,

intermediate and unfolded states (Fig. 3.3d). This indicates that the kinetic

model, Eq. 3.8, captures the essential features present in cotranslational fold-

ing mechanism and can produce accurate predictions about the influence of

codon translation rates on arbitrarily complex cotranslational folding mech-

anisms.

3.2.2 Conclusions and perspectives

We introduced a novel method for studying the cotranslational folding mech-

anism of proteins. By utilizing the rates obtained from arrested ribosome

Molecular Dynamics simulations, accurate predictions for the probability of

being in any of the folded state as a function of the chain length are obtained,

as showed by Fig. 3.3d.

The biological importance and influence of codon translation rates on

the proper folding and functioning of nascent proteins is coming to the

forefront in a number of fields including molecular and cellular biology [107],

cancer biology [44], personalized medicine [66], and biotechnology [3]. What

is currently lacking in these fields, however, is a theoretical framework to

understand, model and predict the influence of codon translation rates on

these processes. Eq. (3.8) provides an integral part of that framework as

it provides a general and computationally efficient methodology to make

predictions about the consequences of changing individual codon translation

rates for cotranslational folding and misfolding.



72 CHAPTER 3. SIMULATING THE DATA

Figure 3.3: Eq. (3.8) accurately predicts the effect of codon translation rates

on the probability of populating different states during cotranslational fold-

ing in the coarse-grained Langevin Dynamics simulations. The 77-residue

MIT domain consists of three helices and was fused to the N-terminus of

an unstructured 43-residue polyglycine linker (a). The domain forms a he-

lix bundle in the folded state (b). The synthesis of this nascent chain was

simulated using a coarse-grained model, a simulation structure of which is

shown in (c) in which the intermediate is present (the large red and yellow

structure is the ribosome). (d) The populations of unfolded, intermediate

and folded states are shown, respectively, in black, red and green at different

translation rates. The predictions from Eq. (3.8) are shown as solid lines

(their width corresponds to the 68% Confidence Interval). The predictions

were made at constant k
(L)
A rates equal to k

(L)
A = 0.83k

(bulk)
F (d, top panel),

k
(L)
A = 8.3k

(bulk)
F (d, middle panel), and k

(L)
A = 83k

(bulk)
F (d, bottom panel).

The continuous translation results from the coarse-grained model are shown

as symbols at the various k
(L)
A value; error bars correspond to the standard

error about the mean.



Conclusions

In this work we presented an integrated approach to the study of protein

translation, based on Statistical Physics. We adopted three different but

complementary perspectives: building hypothesis up from the data, mod-

eling down from reasonable assumptions, and using computer simulations

when everything else fails.

In Chap. 1 we utilized the data from the mRNA sequences and ana-

lyzed how the different codons are used. We showed that the codon bias

is not homogeneous across the transcriptome, and that some information is

stored in the codon order. We compressed some of this information in an

index, the CII, which turned out to be invariant under the reshuffling of the

codons. By utilizing this observation we built an approximated, fully con-

nected algorithm, whose results are compatible with the previous one. The

latter formulation also makes explicit the dependence on the correlations

between the codon frequencies across the genes. We emphasize that this

new method implements a speedup of at least 3 orders of magnitude when

compared to the previous formulation. At the leading order, the frequencies

are the relevant information in the codon bias: spatial organization exists

but is relevant at sub-leading orders and needs specifically tailored methods

to be detected and decoded.

We showed in Chap. 2 that the problem of translation optimization is a

global one due to the finite amount of resources available in the cell (ribo-

somes and tRNAs). Moreover, the fact that the contribution to the overall

translation optimality of the cell is proportional to the abundance of the

mRNA can qualitatively explain the origin of the correlation of CII with

the mRNA abundance in Fig. 1.18, in the case that an optimal codon bias

exists and the related evolutionary pressure is small.

We then progressed to include tRNA recharging dynamics and codon

usage. Depending on the recharging rate of the tRNAs, the optimal us-

age of synonymous codons interpolates between the proportional rule (the

tRNAs are used accordingly to their abundance, slow recharging) and the

73



74 CHAPTER 3. SIMULATING THE DATA

single-tRNA rule (only the most abundant tRNA is used, fast recharging).

However, since the codon usage cannot vary as fast as the environment, we

suggest that the codon usage might be interpreted as a strategy to deal with

the randomness of the environment.

The study of this model reveals that the translation mechanism might

be very context dependent, as the translation speed of the codons is a func-

tion of the rate at which the different tRNAs are used. A great question to

ask is therefore how does the translational machinery react when a highly

expressed heterologous mRNA is induced, e.g., a plasmid in a in vivo exper-

iment. The answer to this question is part of the solution to the long-posed

challenge of the optimization of heterologous proteins expression.

Proceeding towards deeper levels of detail, we then focused on the single

translation events. By using a stochastic and spacial model we studied how

the low concentration of tRNA can lead to non-exponential deviations in the

time between translation events (ribosome dwell time) when the timescales

of diffusion, translation and recharge are comparable (and we give an ar-

gument supporting that physiological conditions can sample those ranges

of parameters). We argue that the deviation is due to the coupling of the

fluctuations between the charged and uncharged tRNAs. This mechanism

can contribute to explain the spatial organization of the codons observed in

Sec. 1.1.2, characterized in Ref. [19] (where it was observed that close occur-

rences of the same amino acid tend to have a higher-than-random probability

to be encoded by codons translated by the same tRNA). When a charged

tRNA reaches the ribosome, it produces a significant fluctuation in the con-

centration (which is on average very low). If the tRNA is quickly recharged

after being used, re-using it can significantly reduce the waiting time.

The spacial organization of the codons can also affect the cotranslational

folding of the proteins. The analysis of the implications of variable transla-

tion rates on this process, however, constitutes a great computational chal-

lenge. As a first step towards its solution we develop in Chap. 3 a Markov

chain model which allows to simulate arbitrarily complex cotranslational

folding mechanisms.

Let us conclude with a few notes about the codon usage, which after

more than 30 years of study continues to pose a relevant puzzle. In this

Thesis we identified two different sources of bias: a bias on the frequencies,

and a bias in the spacial organization.

From the considerations in Chap. 2 the frequency bias seems most likely

to be caused by tRNA and ribosome optimal utilization. A recent pa-

per [92] suggests that the weighted codon usage (where the weights are

the mRNA abundances) evolves toward a global proportionality rule (the



3.2. RANDOM WALKS AND COTRANSLATIONAL FOLDING 75

weighted codon usage is proportional to the abundance of the corresponding

tRNA). The higher probability of fixing a beneficial mutation in highly ex-

pressed genes explains the codon usage/mRNA abundance correlation. The

same model, however, fails to explain why similar correlations are found in

the 2 codons, 1 tRNA amino acids.

This example is illustrative of the problem associated to the complexity

of codon usage: several effects, whose relative importance is often difficult

to estimate, are jointly at work, making it very difficult to disentangle the

different causes.

The same can be replicated for the spacial organization bias, where,

beyond protein cotranslational folding, a role is played by mRNA folding

[75] and ribosome traffic [82, 97, 23].

A grand challenge in codon usage, and more generally in Biology, is to

accurately determine what is the size of the effect that we are studying. This

approach is essential for developing realistic model and for understanding

these complex systems. The (over)simplified model that we presented in this

Thesis dissect a small set of phenomena, allowing a complete enumeration

of their consequences. Due to this sharp analytical power, this approach can

be very helpful in disentangling different causes and consequences, and in

discriminating the main effects from the corrections.
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Appendix A

Learning from the data: the

codon usage example

A.1 Details about the CII

A.1.1 Data sets

The set of RNA transcript for S. Cerevisiae were downloaded from [21].

Protein half-life were extracted form [8], mRNAs abundances were found in

[60, 37]. Protein abundances were found in [45, 83].

A.1.2 Details of the algorithm

The thermodynamic averages (and thus the CII) were computed using a

Monte Carlo algorithm implemented with simulated annealing [67] and fre-

quent reannilings: the temperature is a function of the simulation time and

is slowly lowered. Provided that the cooling schedule is sufficiently slow,

this method is guaranteed to sample the whole space, a vital feature if the

free energy landscape is rough (meaning that the Hamiltonian has many

metastable states).

The algorithm run time for the set of 3371 proteins was of the order of 1

day on a dual core workstation. The algorithm is massively parallelizable. A

major speedup was obtained by observing that the energy differences of the

information theoretical part of the Hamiltonian (1.13) (which are required in

the Monte Carlo step) can be efficiently and locally computed using the prop-

erties of the Digamma function, see App. A.1.2. The results are available at

the web page http://www-vendruscolo.ch.cam.ac.uk/CII/index.php.
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Single spin flip Monte Carlo implementation

The energy difference associated to the flipping of a single spin can be ob-

tained in a very simple and efficient way. Let us focus on a particular site

where the spin is s∗, the amino acid a∗, and the codon c∗a∗ are used. The

single-spin flip move changes s∗ → −s∗, and the terms affected in the Hamil-

tonian are those involving ns(c
∗
a∗ , a

∗) and Ns,a∗ . These quantities change as

follows:

ns(c
∗
a∗ , a

∗) → ns(c
∗
a∗ , a

∗)− ss∗

Ns,a∗ → Ns,a∗ − ss∗,

and I transforms from

I|c∗
a∗ ,a

∗ =
∑
s

[
ns(c

∗
a∗ , a

∗)ψ
(
ns(c

∗
a∗ , a

∗) + α+ 1
)

−Ns,a∗ψ
(
Ns,a∗ +Ka∗α+Ka∗

)]
to

I ′|c∗
a∗ ,a

∗ =
∑
s

[(
ns(c

∗
a∗ , a

∗)− ss∗
)
ψ
(
ns(c

∗
a∗ , a

∗)− ss∗ + α+ 1
)

−
(
Ns,a∗ − ss∗

)
ψ
(
Ns,a∗ − ss∗ +Ka∗α+Ka∗

)]
.

The digamma function enjoys the recurrence property ψ(z+1) = ψ(z)+
1
z , which can be adapted to our needs as

ψ(z − s) = ψ(z)− s

z − δs,1
, (A.1)

with s = ±1. Using this property, we can write ∆I as

∆I =
∑
s

[
− ss∗ ns(c

∗
a∗ , a

∗)

ns(c∗a∗ , a
∗) + α+ 1− δss∗,1

− ss∗ψ
(
ns(c

∗
a∗ , a

∗) + α+ 1
)

+
1

ns(c∗a∗ , a
∗) + α+ 1− δss∗,1

+ ss∗
Ns,a∗

Ns,a∗ +Ka∗α+Ka∗ − δss∗,1

+ ss∗ψ
(
Ns,a∗ +Ka∗α+Ka∗ −

1

Ns,a∗
Ns,a∗ +Ka∗α+Ka∗ − δss∗,1

)]
=
∑
s

[
ss∗
(
ψ
(
Ns,a∗ +Ka∗α+Ka∗ − ψ

(
ns(c

∗
a∗ , a

∗) + α+ 1
))

+
ss∗Ns,a∗ − 1

Ns,a∗ +Ka∗α+Ka∗ − δss∗,1
− ss∗ns(c

∗
a∗ , a

∗)− 1

ns(c∗a∗ , a
∗) + α+ 1− δss∗,1

]
.

(A.2)

Finally, the values on the integers of ψ can be saved in a list, and the ∆I

can be evaluated extremely efficiently.
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A.1.3 Distance between {n+(c)} and {n−(c)} distributions

It is interesting to observe that the maxima of (1.11) also maximize the

distance between the two distributions of codon usage defined by the {n+(c)}
and {n−(c)}. To show this, let’s compute the symmetrized K-L divergence

D±(~s,~c) =

〈
log

P{p̂|~c,+}
P{p̂|~c,−}

〉
P{p̂|~c,+}

+

〈
log

P{p̂|~c,−}
P{p̂|~c,+}

〉
P{p̂|~c,−}

. (A.3)

Performing the integration we have

D±(~s,~c) =
∑
s=±1

K∑
c=1

(
ns(c)− n−s(c)

)[
ψ (ns(c) + 1)− ψ (Ns +K)

]
+ Const.

(A.4)

Since we are considering a distance, there must be a minimum where the

distributions are equal, i.e. in (n(1)/2, . . . , n(K)/2), and we expect to find

the maxima on the boundary (on those point which make the two distri-

butions most different). Like in the case of (1.11), D± computed on the

vertexes evaluates to

D±(~smin,~c) =
K∑
c=1

n(c)
[
ψ (n(c) + 1)− ψ (1)

]
− (N+ −N−)

[
ψ (N+ +K)− ψ (N− +K)

]
= const− (2N+ − L)

[
ψ (N+ +K)− ψ (L−N+ +K)

]
.

(A.5)

This function has a maximum for N+ = L/2, meaning that the maximally

distant configurations are those minimizing |N+ − N−|, as in the previous

case.

A.2 Fully connected Ising model

In this section we briefly review the solution of the fully connected Ising

model. The Hamiltonian (1.30) introduced in Sec. 1.3.2 has in fact this

structure, and its thermodynamic description is important for the charac-

terization of the CII itself.

The fully connected Ising model is an archetype among the mean field

models. In fact, in this case the mean field description is exact in the

thermodynamic limit. In this section we will sketch out the phase diagram

of the model by showing that a phase transition between a paramagnetic

and a ferromagnetic phase is present at T = J .
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Let us define the Hamiltonian of the fully connected Ising model as

H = − J
N

∑
j>i

σiσj − h
∑
i

σi (A.6)

where N is the number of spins. By using the per-spin magnetization m =
1
N

∑N
i=1 σi, we can recast the Hamiltonian H in

H = −Nm
(
J

2
m− h

)
+
J

2
, (A.7)

The number of different states at fixed number N↑ of up spins (i.e., at a

given magnetization) is Ω(N↑|N) =
(
N
N↑

)
, and in terms of the magnetization

m it is

Ω(m) =

(
N

m+1
2 N

)
. (A.8)

We can now write the partition function of the system:

Z =
∑
{σi}

e−βH({σi})

=
∑
m

Ω(m)e−βH(m) =
∑
m

eS−βH(m) =
∑
m

e−βF (m),
(A.9)

where S(m) = log Ω(m) is the entropy at magnetization m and F (m) =

H(m) − TS(m) is the free energy. The probability of a state having mag-

netization m is therefore

P (m) =
e−βF (m)

Z
. (A.10)

Let us use the Stirling approximation to write down the large-N expan-

sion of the entropy:

S(m) ∼ −N
(

1 +m

2
log

1 +m

2
+

1−m
2

log
1−m

2

)
. (A.11)

As both H ans S grow linearly with N , the saddle point approximation

can be used: the probability (A.10) is dominated by the minima of f(m) =

F (m)/N .

Let us consider h = 0: at large temperatures, the only minimum of

f(m) is at m = 0, as the entropy has a maximum there. However, two more

minima appear when the temperature is lowered, as f ′(0) becomes negative

when T < J (and f(±1) = ±∞). The system has a phase transition at

Tc = J . Furthermore, if we expand S(m) around m = 0, we obtain the

following equation for the stationary points of f(m):

m
(
−J + T (1 +m2/3)

)
= 0, (A.12)
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which has the solutions m = 0 and m = ±m∗ with m∗ =
√

3J−TT . By

studying the second derivative, we observe that for T > Tc the minimum is

m = 0, while for T < Tc there are two minima at m = ±m∗.
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Appendix B

Explaining the data: models

for the systemic translation

of the proteins

B.1 Time dependent solution of Eq. (2.19) and

two-points correlators

In this appendix we solve the time-dependent master equation, Eq. (2.19),

in order to characterize the relaxation dynamics of the model toward the

stationary state. Moreover, by using the properties of the characteristic

function, we are able to compute the different-time correlators between n

and m.

In order to simplify the notation, let us first introduce the quantities

E = e−t(λ+ρ+1),

F = e−ρt.
(B.1)

The solution of the differential equation for the generating functionG(z, w; t)

associated to Eq. (2.19) can be easily obtained with the method of charac-

teristics. Using the initial condition pn,m(0) = δn,n0δm,m0 , we have

G(z, w; t) = exp

[
N̄

(
w + λz + ρ[zX + w(1−X)]

λ+ ρ+ 1
− 1 +

(
1− w + λz

λ+ 1

)
F

+
ρ(w − z)[X(λ+ 1)− λ]

(λ+ 1)(λ+ ρ+ 1)
E

)](
1 +

z − w
λ+ 1

E +
w − 1 + λ(z − 1)

λ+ 1
F

)n0

×
(

1 +
λ(w − z)
λ+ 1

E +
w − 1 + λ(z − 1)

λ+ 1
F

)m0

. (B.2)
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By differentiation, pn,m(t) =
[

(∂z)n

n!
(∂w)m

m! G(z, w; t)
]
z=w=0

, we obtain the

joint time-dependent probability distribution for m and n:

pn,m(t) =
eN̄(F−1)

n!m!(λ+ 1)n+m

n∑
r=0

m∑
s=0

An−rBm−s
r∑
j=0

s∑
k=0

(
r

j

)(
s

k

)

× n0!m0!λj(E + λF )r−j(λE + F )k(F − E)s+j−k

(n0 − r + j − s+ k)!(m0 − j − k)!
(1− F )n0+m0−r−s

× θ(n0 − r + j − s+ k) θ(m0 − j + k), (B.3)

where θ(x) is the Heaviside step function and

A = (λ+ 1)n̄− N̄ρ[X(λ+ 1)− λ]

λ+ ρ+ 1
E − N̄λF,

B = (λ+ 1)m̄+
N̄ρ[X(λ+ 1)− λ]

λ+ ρ+ 1
E − N̄F.

(B.4)

For generic initial conditions we can write a large-t (i.e., a small E,F )

expansion, in order to see how pn,m(t) relaxes to the stationary value pst
n,m,

Eq. (2.22):

pn,m(t) = pst
n,m

[
1 + αE + βF +O(E2, F 2, EF )

]
, (B.5)

where

α =
N̄ρ[X(λ+ 1)− λ]

(λ+ 1)(λ+ ρ+ 1)

(m
m̄
− n

n̄

)
+
n0θ(n0 − 1)− λm0θ(m0 − 1)

λ+ 1

(
1

n̄
− 1

m̄

)
,

β =N̄ − (n0 +m0)− N̄

λ+ 1

(
λn

n̄
+
m

m̄

)
+
n0θ(n0 − 1) +m0θ(m0 − 1)

λ+ 1

(
λ

n̄
+

1

m̄

)
.

(B.6)

The leading term for large times is therefore associated with E and F , i.e.,

with the relaxation-times:

t1 =
1

ρ
,

t2 =
1

λ+ ρ+ 1
.

(B.7)

The first time scale t1 is associated with the diffusion process, while the sec-

ond one is the inverse of the sum of all rates (if we restore the λT dependence

we have 1/t2 = λR + ρ+ λT ).
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Given the analytic expression of the generating function G(z, w; t) in

Eq. (B.2), it is straightforward to evaluate the correlators, for instance:

〈n(0)m(t)〉 =
∑
n0,m0

∑
n,m

n0mpn0,m0 [pn,m(t)] n(0)=n0

m(0)=m0

=
∑
n0,m0

n0 pn0,m0

[
∂wG(z, w; t|n0,m0)

]
z=1
w=1

.

In particular, we find:

Cnn(t) ≡ 〈n(0)n(t)〉 − n̄2 = n̄
λe−ρt + e−t(λ+ρ+1)

λ+ 1
,

Cmm(t) ≡ 〈m(0)m(t)〉 − m̄2 = m̄
e−ρt + λe−t(λ+ρ+1)

λ+ 1
,

Cnm(t) ≡ 〈n(0)m(t)〉 − n̄m̄ = n̄
e−ρt − e−t(λ+ρ+1)

λ+ 1
,

Cmn(t) ≡ 〈m(0)n(t)〉 − n̄m̄ = m̄λ
e−ρt − e−t(λ+ρ+1)

λ+ 1
.

(B.8)

The first two correlators in (B.8) are monotonically decreasing, as they are

linear combinations (with positive coefficients) of the exponentials charac-

terized by the decay times of Eq. (B.7).

The other two correlators are again linear combinations of the same

exponentials, but the coefficients of such linear combination have different

signs, which makes them non-monotonic. The maximum is at time

tmax =
1

λ+ 1
log

[
λ+ ρ+ 1

ρ

]
. (B.9)

B.2 Violation of detailed balance

The model can be interpreted as a random walk on the two dimensional

(n,m) lattice, with site- and direction-dependent transition rates (Fig. B.1).

We use this analogy to check for eventual violation of detailed balance

(DB) in the stationary state described by Eq. (2.22). As it can be seen from

Fig. B.1, there are three directions for the single step jumps:

• Along the vertical direction (n,m)↔ (n,m+ 1) the DB condition is

(1−X)ρN̄ pn,m = (m+ 1)ρ pn,m+1, (B.10)

which is satisfied if

ρ = 0 or ρ→∞ or λ =
X

1−X
. (B.11)
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Figure B.1: The model as a random walk on the (n,m) lattice. The tran-

sition rates from one site to another depend on the direction and on the

position on the lattice.

• Along the horizontal direction (n,m) ↔ (n + 1,m) the DB condition

is

XN̄ρ pn,m = (n+ 1)ρ pn+1,m. (B.12)

Again, its solution is Eq. (B.11).

• Along the diagonal direction (n,m)↔ (n−1,m+1) the DB condition

is

n pn,m = λ(m+ 1) pn−1,m+1, (B.13)

whose solution is

ρ = 0 or λ =
X

1−X
. (B.14)

We conclude that the only values of the parameters satisfying DB are those

in Eq. (B.14), while for ρ→∞ DB is ”almost satisfied”, being the violation

vanishingly small.

The first value of Eq. (B.14) coincides with the trivial case where diffu-

sion is suppressed, while the second one is the value where the stationary

points of the internal (recharge and translation) and diffusive dynamics co-

incide.

In all other cases there are current probability loops and the stationary

state is out of equilibrium [127].
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B.3 Relation between the CTTD and the average

number of charged tRNAs

Let us consider the time dependent average of the number of charged tRNAs

〈n(t)〉nt =
∑∞

n=0 n pn(t|no translation), where at t = 0− a translation event

occurred and no translation events were recorded between 0 and t.

In discrete time with temporal step δt, we can write the probability that

a translation event happens at time t > τk = kδt as

P (τk) =
k∏
i=0

(1− 〈n(τi)〉ntδt) ∼ exp

(
−

k∑
i=0

〈n(τi)〉ntδt

)
. (B.15)

In the continuous time limit we have

P (τ) = exp

(
−
∫ τ

0
dt 〈n(t)〉nt

)
. (B.16)

Interestingly, P (τ) is exponential as long as 〈n(t)〉nt is independent from t.

Using Eq. (B.16), we can express the CTTD as:

p(t) = 〈n(t)〉nt exp

(
−
∫ t

0
dt′ 〈n(t′)〉nt

)
, (B.17)

and inverting Eq. (B.16), we can write

〈n(t)〉nt = −∂τ logP (τ)|τ=t. (B.18)

This relation is utilized in Fig. 2.6 to plot the theoretical predictions.
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Appendix C

Simulating the data: the

effect of codon translation

rates on cotranslational

folding

The predictions we make in Chap. 3 utilize the data obtained by a specifically

tailored set of simulations, whose scope is to measure the transition rates

between the possible folded states of the nascent chain at length L. This

was accomplished by simulating the thermodynamic evolution of the protein

tethered to the ribosome at a fixed length (“arrested ribosome”). In the

following section we describe a quick and dirty method to estimate the rates

given a timeseries of the protein evolution.

C.1 Extracting the interconversion rates from the

arrested ribosome simulations timeseries

The output of the coarse grained, arrested translation simulations is a time

series capturing the the state of the system at time intervals δt. Let us

suppose that I) the protein we are studying can transition between K states,

and that II) we simulated its thermodynamic evolution, observing the state

occupied by the protein every δt for T times. The data is therefore the time

series ~X = (x1, x2, . . . , xT ) with xi ∈ {1, . . . ,K}.
From this timeseries we can obtain the transition matrix N whose entries

ni→j contain the number of times a transition from state i to state j is

observed. The elements on the diagonal ni→i are the number of times no

89



90 APPENDIX C. SIMULATING THE DATA

transition was observed.

From the counts we can obtain the empirical probability of transitioning

from i to j in a time interval δt:

p̂i→j(δt) =
ni→j∑
j ni→j

.

Supposing the underlying process to be markovian, the time between

the transition events will be exponentially distributed, and the probability

pi→i(δt) that no transition occurs before δt is

pi→i(δt) = Prob
(
ti→j > dt, ∀j 6=i

)
=
∏
j(6=i)

e−kijδt, (C.1)

where kij is the transition rate from state i to j. In the derivation of this

equation we assumed that the timescale of the transitions, k−1
ij , is larger

than δt, i.e., that the probability of the 2-step walks i→ j → i is negligibly

small.

The probability pi→j(δt) of transitioning from i to j can be written as the

complement of the previous probability times the probability qi,j =
kij∑
l kil

of

transitioning towards the j-th state:

pi→j(δt) = (1− pi→i)qij =
kij∑
l kil

(1−
∏
l( 6=i)

e−kilδt). (C.2)

By using Eqs. (C.1) and (C.2), we can write the relations for the rates

S ≡
∑
j 6=i

kij = − log pi→i
δt

,

kij =
S

1− pi→i
pi→j ,

(C.3)

and replacing the probabilities with their empirical estimates, we finally

have the estimated rates

k̂ij = −
log ni→i∑

k ni→k

δt
∑

l 6=i ni→l
ni→j . (C.4)

C.2 Simulation protocols

Simulations were carried out in CHARMM [15] (version c35b5) using Lange-

vin dynamics with a 15 fs integration time step. The states were identified

by the fraction of native contacts between the helices: as the free energy

plot Fig. C.1, these are clearly identifiable.



C.2. SIMULATION PROTOCOLS 91

Figure C.1: Free energy surface as a function of the fraction of native con-

tacts between the three helices of protein MIT. The three state structure is

clearly identifiable, with the minima on the bottom left (unfolded), top left

(partially folded), and top right (folded).

The arrested ribosome simulations where performed at a fixed length of

the nascent protein. The timeseries of the states at chainlength L where

analyzed as in App. C.1 in order to obtain the rates k
(L)
ij of interconversion

between the states.

The second set of simulations was performed in continuous translation:

at exponentially distributed time intervals (determined by the rate k
(L)
A ) a

new amino acid was added to the protein and the state recorded. A full

description of the protocol can be found in Ref. [85].
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