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Chapter 1

Introduction

Despite the tremendous growth of high-pressure research in the last two or
three decades, this is not a new topic in experimental physics, also it is not
true that it started being relevant only after the Nobel prize awarded to Percy
W. Bridgman in 1946, or after the dawn of the atomic era with the megabar
pressures created by atomic explosions. The history of high-pressure exper-
iments is strongly linked, instead, to the history of man-made diamonds, in
fact, a book exists that contains a romantic and detailed description of the
many enterprises that took place in history and the procedures used by the
so-called ”diamond makers” [1]. When heated up to very high temperatures
diamonds burn and disappear, and it was observed, to the great surprise of
scientists in the 18th century, that the only byproduct that remained after
such combustion process was simply CO,. Soon after that, people realized
that diamonds were made out of pure carbon in a particular and very sta-
ble atomic configuration, and so, the hunt to the artificially-made diamond
began. After decades of research trying to mimic the natural pressure and
temperature conditions at which natural diamonds are created, by continu-
ously improving on the experimental techniques, and also after tens of false
or non-reproducible claims of man-made diamonds, finally in December of
1954, a small research group formed by not more than five members at Gen-
eral Electric’s Labs., succeeded in synthesizing reproducibly the first artificial
diamonds in history. First synthetic diamonds were obtained in very small
quantities in the form of very tiny grains, but nowadays artificial diamonds
are a huge industry generating giant revenues to the companies that produce
them, and with an always increasing base of clients, which look for them
mainly due to their unique mechanical and optical properties, that imply
also a wide range of applications in industrial processes.

The discovery, in more recent years, of a huge amount of novel materials com-



ing from high pressures which are interesting both, from the point of view
of their possible technological applications and for their contribution to the
basic understanding of the electronic processes leading to rupture and forma-
tion of atomic bonds, has been made possible by the huge progress in the last
decades in three fronts of high pressure technology, namely the extension of
maximum attainable pressure, the development of multiple analytical tech-
niques for in-situ characterization, and the order-of-magnitude improvements
in accuracy and sensitivity of measurements at megabar pressures.

Electronic-structure models predict that, in the very high pressure regime, all
materials tend to transform into a metallic phase due to the small distances
separating the atoms, which favor the overlapping of atomic orbitals between
neighbors and electron delocalization. However, before this event takes place
there is a huge amount of states that materials under high-pressure can ac-
cess. Such variety of states has lead to the discovery and synthesis in recent
years of new: superconductors, superhard, superionic, and non-linear optic
materials [2, 3, 4, 5, 6], among many others. There exist also some reports of
abrupt volume decrease in some materials upon application of pressure [7, 8]
even without a change in structure, which has been attributed to some sort of
electronic collapse after the reorganization/mixing of the most external elec-
tronic levels. In general, the study of all such varieties of new phenomena is
the most powerful motivation for scientists devoted to this area of research
and, in particular, it served also as motivation for this thesis work in which,
as we will see, it reflects in its broad scope and in the variety of generated
perspectives.

High-pressure phenomena is one of the fields that have benefited more from
computer simulations. In fact, contrary to experiments, where every mi-
nor increase in the maximum achievable pressure is considered as a major
technical achievement, atomistic simulations at high pressure just require
to confine the same number of particles in a smaller simulation box, with
periodic boundary conditions, to achieve arbitrarily high pressures!. Follow-
ing the previous order of ideas, it is not so surprising to find that one of
the first systems (if not the first) that computer scientists tried to simulate
intensively, in order to test the constant-pressure first-principles molecular
dynamics was, indeed, compressed carbon and its transformation path from
graphite to diamond. In simulations, the carbon to diamond transition was

ITechnical problems can also be present here, so, the pressures that can be simulated
cannot be arbitrarily high. However, most problems in a given range of pressures can be
circumvented using different levels of first-principles techniques, if we are aware of them
in advance.
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correctly reproduced, revealing also details on the sequence of steps for this
transformation that were previously unknown [9].

Now, I will proceed with a very brief description of the two main parts that
form this thesis work, which are inspired by some new possibilities that high
pressure has opened for the synthesis of new phases and compounds. The
relevance of these new materials from a practical point of view, lies in the
possibility of having them recovered to ambient conditions and then used
in a wide variety of technical applications. The two examples covered here,
include a new class of transition-metal nitrides, and the synthesis of extended

forms of CO,.

In Chapter 3, it is shown that the new family of late transition-metal nitrides:
PtN,, OsNy and IrNs, all synthesized at similar conditions ( ~ 50 GigaPascal
and 2000 K) [10, 11], shares common structural properties among its mem-
bers and opens the door to the synthesis of novel materials of this kind; with
possible technological applications since they can be recovered to ambient
conditions. The synthesis of these new nitrides is a clear example of how
pressure can be used to form compounds between species that do not mix at
ambient conditions.

Chapter 4 reports our studies on a different class of high pressure synthe-
sis, namely the chemical transformation of a molecular species (CO;) into an
extended compound with entirely different mechanical and electronic proper-
ties. In particular it reports on the transition that molecular CO5 undergoes
at pressures above 40GPa and mild temperatures, into an extended glassy
phase. COy’s pressure-induced phase-transition from a molecular to an ex-
tended phase was first observed in 1999 when V. Iota and collaborators at
Livermore, obtained a fully tetrahedral silica-like phase of CO5 whose pre-
cise structure remains unresolved up to these days [12]. Recently, two new
extended phases that show strong similarities among themselves in many
aspects, have been reported [13, 14]. The first [13], is a non-molecular amor-
phous phase named “a-CO,” or “carbonia”, while the second [14], is a crys-
talline phase indexed by its discoverers as stishovite-like, i.e. with six-fold
coordinated carbon atoms, that instead we believe is the crystalline counter-
part of carbonia. However, in contrast with what is observed in the case of
the transition-metal nitrides, for CO5 no recovery of any of the new extended
phases to ambient conditions has yet been possible. In fact, it is observed
that a-CO, and phase VI go back to molecular phases at pressures around
20 GPa which coincides with the pressure at which the crossing between the
enthalpies corresponding to the molecular and tetrahedral phases takes place.



Finally, also in Chapter 4, I consider some first-principles high-pressure chem-
istry applied to the problem of the catalysis and recovery of new COs ex-
tended phases. Here, I will show that by means of introducing a transition
metal (TM) as an impurity (Ti in our case) in a CO5 molecular sample (2%
concentration) an activation of the amorphization reaction is observed and
this leads to a transition that occurs much faster than in the case in which
no TM is used. It is also expected that attempts succeeding to lower the
transition pressure, will also lead to a lowering of the pressures at which the
CO4’s non-molecular phases can be recovered, with the final goal of bringing
them to ambient conditions.

In summary, in this thesis it is shown how first-principles calculation tech-
niques can be effectively used in high-pressure physics and chemistry research
for clarifying very important issues regarding structural and electronic prop-
erties that wouldn’t be easily accessible by other means.



Chapter 2

Methodology

In the forthcoming chapters of this work many different methodologies based
on ab-initio techniques will be frequently employed, so, even if the core of the
present work consists exclusively of applications of such techniques to high
pressure physics and not of their development, still, a chapter explaining
these methods seems necessary and is included here for the sake of complete-
ness. The different aspects treated in this chapter have already been covered
thoroughly in different books and reviews [15, 16, 17, 18] from which I have
borrowed different pieces, gluing them together in a way that seemed to me
as a convenient one for the understanding of the subsequent chapters of this
work.

2.1 Ab-initio calculations

In ab-initio calculations, the goal is to perform the complete quantum-mechanical
treatment of the many-body problem. In the following sections I will describe
how, even if achieving this goal is not always possible, in practice the prob-
lem still can be addressed by applying some physical considerations so that
we can then impose reasonable approximations to the full problem.

2.1.1 The crystal Hamiltonian

First of all, I am going to describe the crystal Hamiltonian; which is the one
that in principle contains all the physics of the many-body system. From its
solution, we could then derive all the observable quantities. Its form is:
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The first term is the electronic kinetic energy, where m is the electronic
mass and V? the Laplacian acting over the electronic coordinates {r;}. The
second term is the energy corresponding to the motion of the nuclei, where
M, is the nuclear mass and V2 is the Laplacian acting over the nuclear
coordinates {R,}. The third and fourth terms are the pairwise electrostatic
electron-electron and nucleus-nucleus interactions respectively, where: 7;; =
|7, — ;| and R, = |Ro — Rp| are the electron-electron and nucleus-nucleus
separations of the pairs which are being considered, and Z, represents the
charge of the ath nucleus. Finally, the fifth term corresponds to the electron-
nuclei attraction.

From the Hamiltonian given above, is clear that the number of independent
variables in the corresponding Schrodinger’s equation is determined by the
number of particles involved (which for a macroscopic crystal is of the order
of 103c¢m™3). Therefore, an exact solution to such kind of equation is not
possible for realistic systems. Hence, when dealing with this kind of prob-
lems, people very often try to work them out by applying different successive
approximations in order to model the physics of the system, which, in some
cases, can compromise the accuracy of the final result or provide results that
are not so general. In general, this can lead to non first-principles models
(i.e. models containing external parameters) which will work well for only a
few kinds of systems and external conditions.

Very frequently, the first approximation that people do is the adiabatic (or
Born-Oppenheimer [19]) approximation. This one is not very critical in terms
of loss of accuracy, and instead simplifies considerably our problem so, next,
I am going to present a short description of what it is about.

2.1.2 The Born-Oppenheimer approach

If we divide the system into light particles (electrons) and heavy ones (atomic
nuclei), in thermodynamic equilibrium the mean value for the kinetic energy
of both kind of particles is of the same order but, due to the big mass differ-
ence between protons+neutrons and electrons, the electronic velocities are
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much faster than the nuclear ones (approximately two orders of magnitude).
Then, for every modification in the position of the atomic nuclei an almost in-
stantaneous rearrangement of the electrons occurs, following the new nuclear
positions. This allows us to consider, at least to a first approximation, the
movement of the electrons as if they were in an irrotational field due to fized
nuclei. While studying the movement of the nuclei, on the contrary, only
the potential originated by the mean electronic spatial distribution (and not
the instantaneous one) must be taken into account. This kind of approach,
is the one which is commonly known as the adiabatic or Born-Oppenheimer
approrimation.

Within this framework Schrodinger’s equation can be rewritten as:

<_ Z 27\4a at EO(R)> (I)(R) = 5(I)(R) (2.2)

where R = {R,} is the set of all the nuclear coordinates and Ey(R) the
clamped-ion energy of the system, which is often referred to as the Born-
Oppenheimer energy surface, and ®(R) are the atomic eigenvalues. In prac-
tice, Eo(R) is the ground-state energy of a system of interacting electrons
moving in the field of fixed nuclei, which obeys the Schrédinger’s equation
Hpo(R)pn = En(R)p, where the Hamiltonian —which acts onto the elec-
tronic variables and depends only parametrically upon R— reads

9 ZaZs Z,e*
Haoll) =~ S0+ S L S RS B oy
Tij 046 o |ri - Ra|
This could be simply taken as a rearrangement of equation 2.1, but it is
important to notice that now the electronic part is decoupled from the rest
and can be solved independently, using the set of nuclear positions R, only
as parameters.

2.1.3 Density as basic variable

In the Born-Oppenheimer approximation, nuclear coordinates act as param-
eters in the electronic Hamiltonian, Hpo(R), whose ground-state energy is
found by minimizing iteratively its expectation value with respect to the elec-
tronic density. To see this, let’s consider the energy surface Fy(R) appearing
in Schrodinger’s equation for the nuclei (Eq. 2.2); we will then have:



12

Eo(R) = (po(r, R) |Hpo(R)| ¢o(r, R)) (2.4)

where @g(r, R) is the electronic ground-state wave function of the Born-
Oppenheimer Hamiltonian, r = {r;} the set of all the electronic coordinates
and R = {R,}. This Hamiltonian depends on R via the electron-nucleus
interaction that couples to the electronic degrees of freedom only through
the electron charge density. Therefore, this expression can be written as:

VIEET) E]%R)
Z.€* e ZoZ3
EOR:/nRT /2 _ldr— | = - + E..(ng(r
()= [ nalr) {2 125 D~ (7))
N i ~ P N — ., e~ —e~ interaction
e~ —nucleus interaction completely nuclear part

(2.5)
where ng(r) is the ground-state electron charge density corresponding to the
nuclear configuration R and the completely nuclear part is just a number
which can be calculated exactly for each of those configurations. In the F..
term I have included the electron-electron interaction, which means: Hartree
plus exchange and correlation terms. It has been also assumed here, that this
last term can be written as a well defined function of the electronic density

ng(r).

According to the preceding discussion: the calculation of the Born-Oppenheimer
ground-state energy and, as we will see later, also the calculation of the
derivatives of the energy surface with respect to the nuclear coordinates, re-
quire only a knowledge of the electronic charge-density distribution. This fact

is nothing else than a special case of a much more general property of the
systems of interacting electrons, known as the Hohenberg and Kohn (1964)
theorem, which I will pass to describe.

2.1.4 Density Functional Theory

The fundamental tenet of density functional theory is that any property of
a system of many interacting particles can be viewed as a functional of the
ground-state density ng(r); that is, one scalar function of position ng(r), in
principle, determines all the information in the many-body wave functions
for the ground-state and all excited states. The existence proofs for such
functionals, were given in the original works of Hohenberg and Kohn [20]
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and of Mermin [21]. However, as easy to understand as they are, they pro-
vide no guidance whatsoever for constructing the functionals, and no exact
functionals are known so far for any system of more than one electron.

Density Functional Theory (DFT) would remain a minor curiosity today if it
were not for the ansatz made by Kohn and Sham [22], which has provided a
way to make useful, approximate ground-state functionals for real systems of
many electrons. The Kohn-Sham ansatz replaces the interacting many-body
problem with an auxiliary independent particle problem with all many-body
effects included in an exchange-correlation functional. This is an ansatz that,
in principle, leads to exact calculations of properties of many-body systems
using independent-particle methods —even though nobody until now knows
the exact formulation for the functional which has to be minimized— and has
made possible approximate formulations that have proved to be remarkably
successful. For the present work I used extensively, the generalized gradient
approximations (GGA’s) to DFT. GGA is one of those successful, practical
but approximate, formulations for the exchange-correlation functional (being
this the crucial part in the Kohn-Sham approach as we will see) and allow
us to obtain good ground-state elastic properties such as phonon modes and
bulk modulus. During the following sections of this chapter we will try to go
deeper into the details and motivations of this technique.

2.1.5 The Hohenberg-Kohn theorem

According to the Hohenberg-Kohn theorem [20], no two different potentials
(different up to a constant) acting on the electrons of a given system, can
give rise to a same ground-state electronic charge density. The prove is quite
simple and follows after a reductio-ad-absurdum:

Let us assume that there are two external potentials V;(r) and Va(r) which
differ by more than a constant and which lead the same ground-state elec-
tronic density. Then if we consider H; as being the Hamiltonian correspond-
ing to Vi(r) with ¥; being the ground-state wave function associated with
this Hamiltonian, and assuming equivalent definitions for V5(r), then follows
that:

E1 = <\Ifl‘H1‘\Dl> < <\112‘H1|\Ij2>, (26)

we are here assuming that these are non-degenerate ground-states so that, the
inequality holds as stated in the previous formula. Now, using this expression
and rearranging some terms:
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(Wa| Hi|Wq) = (Wo| Hy|Ws) + (Wo| Hy — Ho|Vy)
= FEy + /[Vl(?") — Va(r)n%(r)dr, (2.7)

so that

E, < Ey + /[Vl(r) — Va(r)|n%(r)dr. (2.8)

On the other hand if we consider F5 in exactly the same way, we find the
same kind of equation, with subscripts 1 and 2 interchanged,

E, < E; + /[Vg('r’) — Vi(r)n%(r)dr. (2.9)

And finally, if we add together (2.8) and (2.9), we arrive at the contradic-
tory inequality Fy, + F» < E; + F5, which establishes the desired result:
there cannot be two different external potentials differing by more than a
constant which give rise to the same non-degenerate ground-state charge
density. Then, the density uniquely determines the external potential within
a constant.

This theorem provides the foundation of what is currently known as density-
functional theory (DFT; Parr and Yang [23], 1989; Dreizler and Gross [24],
1990). It allows an enormous conceptual simplification of the ground-state
properties of a system of interacting electrons, for it replaces the traditional
description based on wave functions (which depend on 3N independent vari-
ables, N being the number of electrons) with a much more tractable descrip-
tion in terms of the charge density, which depends on only three variables.

To see this, let us take the ion-ion interaction energy (Eq. 2.5) as a reference
point. Then we are left with the following expression which is the one that
has to be minimized in order to obtain the ground-state energy and electronic
density distribution:

E[ng| = Flng] + /nR(r)V(r)dr. (2.10)

Here we see that (as in equation 2.5) V/(r) is the external potential acting
over the electronic charge density due to the ions, and it is the remaining
part (the one represented by F[ng]) the one which offers major difficulties.
In fact there are two main problems: the first is that Hohenberg and Kohn
didn’t provide an exact form for the F[ng] functional, and the second is that
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the conditions to be fulfilled for a function ngr to be considered an acceptable
ground-state charge distribution (and hence domain of the functional F')
are poorly characterized. About the last problem, one usually has to be
content to impose the proper normalization of the charge density by the use
of a Lagrange multiplier; and about the first problem, that is exactly what
Kohn and Sham tried to address, so, in the next section we will give a short
description of what they did.

2.1.6 The Kohn-Sham ansatz

As mentioned in the previous section, the Hohenberg and Kohn theorem,
states that all the physical properties of a system of interacting electrons are
uniquely determined by its ground-state charge density distribution. This
property holds independently of the precise form of the electron-electron
interaction. In particular when the strength of this interaction vanishes, the
energy functional defines the ground-state kinetic energy of a system of non-
interacting electrons, which can be used as a limiting case, or starting point,
for the construction of a general functional. This fact was used by Kohn
and Sham [22], to map the problem of a system of interacting electrons onto
an equivalent non-interacting problem. To this end, the unknown energy
functional can be cast in the form

Fng] = Tolng] + % / Wdrdr/ + Eaclnl (211)

where Ty[ng] is the kinetic energy functional for the previously mentioned
system of non-interacting electrons having a density ng(r), the second term
is the classical electrostatic self-interaction of the electron charge-density dis-
tribution (also called: the Hartree term) and finally a new quantity, F,.[ng],
is defined and represents the so-called exchange-correlation energy. The only
really unknown quantity is this exchange-correlation energy functional! and,
in principle, the quality of the solution of the full many-body problem will
be only limited by the quality of the approximation used for it.

In the weakly inhomogeneous case, where the deviation of the density is small
from its homogeneous value, Kohn and Sham proposed that the exchange-
correlation energy can be written as

E.ng| = /nR(r)em[nR(r)]dr (2.12)

!Because the energy coming from Ty[ng] can be obtained in an indirect way, see for
example [17].
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where €,.[ng(r)] is the exchange-correlation energy per particle of a homo-
geneous system of density n. This approximation implies that an inhomo-
geneous system is replaced by a piece-wise homogeneous system; precisely
due to this, is that this ansatz is called: the local density approximation
(LDA), which has been proved to demonstrate the outstanding capacities of
the DFT, even when applied to not very homogeneous systems. In LDA,
the only information that we still need to know exactly is the exchange-
correlation energy of the homogeneous gas as a function of density; in this
respect, the exchange energy of the homogeneous gas is given by a simple
analytic form (Chapter 5 in Ref. [15]), while the correlation energy has been
calculated to great accuracy with Monte Carlo methods [25, 26].

2.1.7 Generalized Gradient Approximation (GGA)

The first step beyond the local approximation, is a functional of the magni-
tude of the gradient of the density |[Vn?| as well as the value n at each point.
However, it has been observed that such a “gradient expansion approxima-
tion” does not lead to consistent improvement over the LDA. The basic prob-
lem is that gradients in real materials are so large that the expansion breaks
down. Indeed, the need for adding some preconditioning to the magnitude of
such gradients, led to the development of the so-called generalized-gradient
expansion from which the abbreviation “GGA” derives. Numerous recipes
to construct such F,. have been developed, some of them are parameter free
while others require the fitting of some parameters, in order to fit to molec-
ular data or to be able to extrapolate the parameter-free-accuracy obtained
by for example using Monte-Carlo techniques, for atoms with few electrons
(like He) to atoms that contain more electrons.

After evidence showing LDA for the exchange and correlation terms to per-
form much better than originally expected, it was, in general, believed that it
could work well enough to describe the properties observed in many kinds of
bulk solids (i.e. those that are not affected by strong electronic correlations)
while it was known to be not so good for dealing with isolated molecules or
with molecular crystals. For this reason, since its introduction by Langreth
and Mehl in 1983 [27], twelve years had to pass before it was clearly estab-
lished that GGA could indeed offer meaningful improvements over LDA, on
the description of crystalline phases and their relative stabilities, particularly,
when studying phase transitions that occur at high pressures [28]. This, then
justified paying the considerable increase in computational resources typically
required to carry out GGA calculations with respect to those needed for LDA.
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Nowadays, the use of such approximations to the exchange and correlation
energy has became a common practice among the ab-initio high-pressure
community due mainly to further confirmations regarding the advantages of
its use when comparisons between the LDA and GGA have been carried out.
It is not to expect, however, that this claim will always be true since, very
often, error cancellations make LDA appear in better agreement with obser-
vations (for example when trying to reproduce the inter-atomic distances in
some particular crystals) but still, the GGA approach is, among the two, the
one that from a fundamental point of view is supposed to be able to describe
in a more accurate way the electron-electron exchange and correlation inter-
actions. This is particularly true when dealing with open (or low-density)
structures, where GGA is capable of a more accurate treatment of the ex-
change and correlation energy density, due to the fact that it performs better
than LDA in regions with exponential charge-decay.

2.2 Molecular Dynamics (MD)

2.2.1 Classical MD

Molecular dynamics simulation is a technique used for computing the equilib-
rium and transport properties of a classical many-body system. In this con-
text, the word “classical” means that the nuclear motion of the constituent
parts obeys the laws of classical mechanics. This is an excellent approxima-
tion for a wide range of materials. Only when we consider the translational
or rotational motion of light atoms or molecules (He, Hy, Dy) or vibrational
motions with frequency v such that hv < kg'T should we worry about quan-
tum effects. The expression: “classical MD”, is used when the calculation of
the forces on the atoms is done by using model potentials that try to mimic
the inter-ionic potential without directly having first-principles into account,
this also means that on constructing those potentials some parameter fitting
is also required if we want them to be reliable.

The idea behind molecular dynamics simulations is to enable us to mimic real
experimental conditions, in this sense we proceed in the same way in both
cases; first we prepare a sample of the material that we want to study, we
set a mechanism for measuring observable quantities (e.g., a thermometer,
manometer, viscometer, etc) and we establish a sampling rate for measuring
those quantities. The system evolves following Newton’s equations and since
some time for equilibration is required, the more we let the system run the
best are the statistics that we will get from our simulations, and this will
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allow better estimations of the measured quantities, comparable to real-life
experiments.

To measure an observable quantity in a Molecular Dynamics simulation we
must, first of all, be able to express this observable as a function of the posi-
tions and momenta of the particles in the system. For instance, a convenient
definition of temperature in a classical many-body system makes use of the
equipartition theorem. Thus, we have:

<m”g‘> _ el (2.13)

2 2

In a simulation, we use this equation as an operational definition of the
temperature. In practice, we would measure the total kinetic energy of the
system and divide this by the number of degrees of freedom Ny. As the total
kinetic energy of a system fluctuates, so does the instantaneous temperature:

2

T(t) =) (n;;\g?) (2.14)

7

1
The relative fluctuations in the temperature will be of the order (\/—ﬁ>
f
As Ny is typically on the order of 10? — 103, the statistical fluctuations in
the temperature are on the order of 5-10% . This, to say that in order to
get an accurate estimate of the temperature, one should average over many
fluctuations.

A typical MD program is constructed as follows:

1. We read in the parameters that specify the starting conditions of
the system.

2. We compute the forces on all particles.

3. Finally, we integrate Newton’s equations of motion. This step and
the previous one constitute the core of the simulation and are repeated
until we are satisfied with the equilibration+measuring time needed for
our statistic averages.

4. After completion of the central loop (steps 2 and 3) we conclude
computing and printing the average of measured quantities, and stop.
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Very often, however, we need to modify the conditions of our simulation in
order to see how our system reacts under the influence of changing external
conditions like, for example, pressure and temperature. In order to do this,
people have defined ways to achieve this goal without biasing the statistics
collected from the system in too strong a way. These, and many other tech-
nicalities of MD simulations applied to high pressures, have been covered in
a very satisfactory manner by many reviews (see [18, 29, 30], and references
therein).

2.2.2 Ab-initio MD

The calculation of the force acting on every particle is the most time-consuming
part of almost all Molecular Dynamics simulations. For the most simple
case of pair-wise inter-atomic forces, the time needed for the evaluation of
these forces if we use a simple functional form of the inter-atomic potential,
scales as N2. In “real” applications of the MD technique, more sophisticated
and time-expensive algorithms for the analytical calculation of the forces
are used, they include many-body terms, polarizabilities, and some param-
eters that have to be fitted to experiments. Those algorithms tend to be
very precise, but are tuned for determined coordination numbers, pressures,
temperatures and other environmental conditions that the researcher could
prefer to change during the simulation. Then, a parameter-free algorithm for
the force calculations become desirable. We can achieve this by employing
an ab-initio Molecular Dynamics technique which uses atomic forces calcu-
lated from first principles, with no parametric dependence on the external
conditions nor on the material itself. In its most crude version, this approach
is known as the Born-Oppenheimer MD and it requires a full self-consistent
density-functional minimization at every step in order to access the value of
the energy and its derivatives at each point. This is possible only after a full
quantum mechanical treatment of the problem, and is in this aspect where
the Density Functional Theory, together with some concepts that I am going
to develop in the next section regarding the way in which ab-initio forces are
calculated, play a crucial role.

2.2.3 Car-Parrinello MD

For many reasons that have to do with the efficiency of the MD codes, it
would be very appealing to have a clever first-principles approach that doesn’t
require the exact calculation of the electronic ground-state energy at every
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step. This has been made possible by the use of the technique known as
Car-Parrinello MD. This method, is a rather original and very efficient way
to evolve the wave functions, and was proposed in 1985 by Roberto Car and
Michele Parrinello [31]. Instead of solving very accurately the crystal Hamil-
tonian at each time step, they relaxed the constraint that the wave function
be exactly in the ground-state. Then, the exact solution was replaced by a
fictitious dynamics of the wave function about the exact ground-state. In the
Car-Parrinello method, the solution of the Hamiltonian (Eq. 2.1) is replaced
by the dynamical evolution of the following “extended” Lagrangian

_%Z”W% ZMIRI E[{e:} {R}] +2Am (ilps) — i) -

(2.15)
where F is the DFT functional, expressed here in terms of the wave functions
and also, parametrically, in terms of the positions of the nuclei, y is a fictitious
mass that can be used to control the time scale of the electronic dynamics,
and A;; are Lagrange multipliers that ensure the orthogonality of the wave
functions. The equations of motion that can be obtained from the above
Lagrangian are:

iy = 5% b Z Aijo; (2.16)
) 1 0F
Rp=——rr" 2.17
" M, 0R; (2.17)

Equation 2.16 defines the dynamics of the wave functions, which will oscil-
late (by virtue of the second order time derivative) around the equilibrium
condition

5% Z Aijo; (2.18)

Notice that equation 2.18 is the mathematical rephrasing of the DFT pre-
scription of minimizing the DFT functional £ with respect to variations of
the (orthogonal) set of orbitals. Equation 2.17 instead coincides with New-
ton’s equation under the influence of the first-principles interaction potential

V(Ry,...,Rn) = (wo|Hpo (R1, ..., Rx)|¥o) (2.19)

with the only difference that the wave functions in 2.17 are not at the exact
ground-state. The period of oscillation of the wave functions around the
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ground-state, scales with u%, which means that for a sufficiently small value
of p the oscillation can be made much faster that the typical time scales of
the dynamics of the nuclei. In this limit, the effect of the fast oscillations
averages out on the time scale of the dynamics of the nuclei, and the resulting
net force on the nuclei is very similar to the force that would be calculated
with the electrons in their ground-state. Further details on the Car-Parrinello
method can be found in review papers [32, 33].

2.2.4 Variable cell

Thermodynamics imposes that in simulations, pressure - and not volume -
should be the external “knob” that one should control in order to proceed
with simulations in the same way as in experiments. Suppose for example
that we are interested in the phase transformation of a material from phase A
to phase B, with a large volume collapse (like in the case of the transition from
graphite to diamond). Now, if we were to confine our collection of carbon
atoms in a simulation box of fixed shape and volume, that fits initially the
shape of the graphite crystal, then the direct transformation of the atomic
positions from the graphite to the diamond-lattice would be strongly hindered
by the energy cost required to fit the diamond lattice in the graphite box.
This is so, because the atoms would need either to stretch or to compress
some bonds, so that the new structure is able to fit in the old box, and
in this way the system acquires elastic energy, and even surface energy if
the transition to the new phase implies the creation of voids. Therefore,
by proceeding in this way, density changes - a crucial driving force in most
pressure-induced transitions - would not be allowed.

In order to overcome the limitations illustrated above, Parrinello and Rah-
man [34, 35] have extended the earlier idea, due to Andersen [36], of allowing
the volume of the box to adjust according to the required pressure, and
transformed the simulation box into a fully dynamical variable, driven by an
appropriate equation of motion.

Considering a general simulation cell described by the matrix h;;, we can see
that the position of an atom inside the cell can be written as:

R; = hS; (2.20)

where Sy is a vector representing the scaled position of atom I, whose com-
ponents vary between 0 and 1. In standard MD the cell h is kept fixed
while the ionic degrees of freedom {Rj} (or equivalently {Si}) are allowed
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to evolve. In the Parrinello-Rahman method instead, h and Sy are both
independent degrees of freedom and their dynamics are obtained from the
modified Lagrangian

N
1 . 1 ., .
EP = 5 § MI’hSIP -V (hsla LRI hSN) + EWTr(hth) - PQ’ (221)
I=1

where P is the pressure we want to impose, €2 is the cell volume (2 = Det(h)),
and W is the inertial mass of the cell, a fictitious parameter that controls
the time scale of the cell dynamics.

The equations of motion that can be derived from the previous Lagrangian
are:

o 1 oV, RPN
. 1 _
s = 77 (Mo, — Pdo,)Qh 5, (2.23)

where Greek letters are cartesian indices, summations over repeated indices
are assumed, and where

Gag = hoyhoygs. (2.24)
The stress tensor 11 is defined as

1 v
oy =5 (Z MVivy — %hg'y) , (2.25)
I (6%

with
Vi = hesS]. (2.26)

The equations of motion for the atomic positions (Eq. 2.22) are modified
with respect to the standard Newton’s equations by the addition of a term
that accounts for the variation of the metric tensor G, while a new equation
of motion (Eq. 2.23) is introduced for the cell parameters. The dynamics
of the cell in equation 2.23 is controlled by the imbalance between the im-
posed pressure and the instantaneously calculated value of the stress tensor
(Eq. 2.25).
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Although applied in a completely different context, it is easy to see the anal-
ogy between what has been discussed here for the variable cell and the ideas
that underlie the Car-Parrinello MD approach discussed in the previous sec-
tion, more details of this analogy are given in Ref. [29]. However, merging
the constant-pressure (or equivalently: the variable-cell) method described
here with the first principles Car-Parrinello method described in the previ-
ous section is not completely straightforward, and requires some care in the
definition of how the wave functions change upon cell rescaling. By prop-
erly expressing the electronic wave-functions in scaled coordinates, it can be
shown that it is possible to arrive at expressions for the equations of motion
of atoms, electrons, and cell, which are completely analogous to the ones
already derived in the last sections, the exact procedure required to do this
has been described elsewhere [29, 37, 38, 39, 40].

2.3 The link between dynamic and electronic
properties

2.3.1 Linear response

From the ground-state solution for the electronic Hamiltonian (equation 2.3)
for every R, we are able to obtain the mentioned energy surface Fy(R) which
enters into the nuclear Schrodinger’s equation (equation 2.2), thus determin-
ing the nuclear behavior.

Since the works of De Cicco and Johnson [41] and of Pick, Cohen and Martin
[42], it is well known that the harmonic force-constants of crystals are deter-
mined by their static linear response, this establishes a connection between
the dynamical matrices and the electronic properties of the material. Making
use of the formalism just developed in previous sections, we can note that
the equilibrium geometry of the system is given by the condition that the
forces acting on individual nuclei vanish:

_ OEy(R)
OR,

Whereas the vibrational frequencies w are determined by the eigenvalues of
the Hessian of the Born-Oppenheimer energy, scaled by the nuclear masses

F, =

= 0. (2.27)

1 0?Ey(R) 9
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det

= 0. (2.28)
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Then we have that: the calculation of the equilibrium geometry and of the
vibrational properties of a system thus amounts to computing the first and
second derivatives of its Born-Oppenheimer energy surface.

2.3.2 Force theorem

An extra advantage of the adiabatic approximation is that due to the as-
sumption that the electrons equilibrate very fast after a nuclear movement,
we can think of them as being always in a steady state, which is the fun-
damental condition for the Hellmann-Feynman force-theorem [43, 44] to be
valid.

The force theorem states that the first derivative of the eigenvalues of a
Hamiltonian, H), that depends on a parameter X is given by the expectation
value of the derivative of the Hamiltonian, so it can be used in the following
way

OH)

OE,
- <\I’A X

e \IIA> (2.29)

where W, is the eigenfunction of H), corresponding to the FE) eigenvalue:
H\V, = F\V,. Remembering now that, in the Born-Oppenheimer approxi-
mation, nuclear coordinates act as parameters in the electronic Hamiltonian,
Hpo(R), whose ground-state determines the energy surface Ey(R) appearing
in Schrodinger’s equation for the nuclei; the force acting on the Ith nucleus
will then be

_8%5} _ <¢O(T, R) 'M;igjm‘ wo(r, R)> (2.30)

where (1, R) is the electronic ground-state wave function of the Born-
Oppenheimer Hamiltonian? and r = {r;} the set of all the electronic coordi-
nates. This Hamiltonian depends on R via the electron-nucleus interaction
that couples to the electronic degrees of freedom only through the electronic
charge density. The Hellman-Feynman theorem states in this case that

F, =

2We will always assume, during the ab-initio calculations of this work, that our electrons
are at T = 0 K, i.e. in their ground-state.
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where ng(r) is the ground-state electron charge density corresponding to the
nuclear configuration R and the completely-nuclear part is just a number
which can be calculated exactly for each of those configurations. The Hessian
of the Born-Oppenheimer energy surface appearing in equation 2.28 is thus
obtained by differentiating the Hellmann-Feynman forces with respect to
nuclear coordinates,

2
r dr + O Ey(R) :
OR,0Rg3 OR,0Rg3

(2.32)
The last equation states that the calculation of the Hessian of the Born-
Oppenheimer energy surfaces requires the calculation of the ground-state
electron charge density ng(r) as well as its linear response to a distortion
of the nuclear geometry, Ong(r)/0OR,. The Hessian matrix is usually called
the matrix of the inter-atomic force constants or simply the dynamical ma-
triz. An important fact related with these matrices that will be used by our
computer program is that, within the adiabatic approximation, the lattice
distortion associated with a phonon can be seen simply as a static pertur-
bation acting on the electrons, showing again the connection between the
dynamical and electronic properties of the material, and making also easier
the phonon calculations. These fundamental results, as already mentioned,
were first stated in the late 1960s by De Cicco and Johnson in (1969) and
by Pick, Cohen and Martin in (1970) and, within the DFT framework, have
been exploited by the so-called Density Functional Perturbation Theory [17].

O*Ey(R) OF, [ ong(r) aVR(T)dr+/nR( )82VR(T)
OR,ORgs ORg ORs OR,

2.3.3 Density Functional Perturbation Theory
(DFPT)

As T just mentioned, the DFPT framework can be used to find the phonon
frequencies of the system. It is worth mentioning that there are basically
two different approaches to this problem, that don’t involve having to re-
produce the actual dynamics of the system (which would have to cover some
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picoseconds in order to give reliable results) one is the so-called frozen-phonon
method [45], in which the main advantage is that it only requires calculation
of forces as function of nuclear positions, the disadvantage being that we
need to be very careful in the evaluation of numerical derivatives and repeat
our DFT calculation for 3N atomic displacements (maybe less if we take also
into account the different symmetries in the crystal). The second approach is
the so-called response function method, in this method, the force constants
are separated in two parts, namely: the electronic and ionic contributions

ésa,s/a/ (k) - é«ele

sa,slal

(k) 4 Con, (K), (2.33)

sa,slal

the electronic term is expressed in terms of the linear response of the charge
density n and the bare ionic potential Vj,, with respect to atomic distortions:

Gttt =57 [ {70 ™

sl,a/
(2.34)
The ionic term is given by the second derivative of the Ewald’s summation
[15]. The advantage of this method is that we have to perform only one DFT
calculation, but the calculation of the electronic response is time consuming
[17].

2.4 Plane waves and pseudo-potentials

Even with such a big help coming from the simplification due to the Born-
Oppenheimer approach (section 2.1.2) and from the power of the Hohenberg-
Kohn theorem plus the Kohn Sham ansatz (Sections 2.1.5 and 2.1.6) the
many-body problem is still very difficult to solve because, if we want to be
precise, we should take into account the field of the bare nuclei and consider
the motion of all the electrons inside this field. This would involve too many
particles and would give place to extremely long computational times, basi-
cally because it is very difficult to find a nice type of function which fulfills
the conditions of: 1%‘- making the Kohn-Sham electronic density accurate ev-
erywhere and 2"%- making the energy-minimization process easy for standard
computer algorithms.

In order to get a further reduction in the computational effort required for
the calculation, but still taking into account the physics of the problem, peo-
ple have introduced periodic boundary conditions therefore imagining the
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system as an infinite crystal. This opens the possibility of thinking the elec-
tronic density as a superposition of plane waves, where the size of the plane
wave basis set to be used for each particular problem can be easily tuned by

defining an energy cutoff such that G2, ~ FE.,;, which then limits automat-

max

ically the number of plane wave components that we are able to use. Then,
the goal of this approach is to perform “fast” calculations by using the min-
imum possible amount of plane waves for constructing the electronic density
together with very efficient algorithms that are available for solving such kind
of problems, without compromising the accuracy. This method should work
fine, at least for reproducing the density coming from outer (mainly delocal-
ized) electrons, while for inner electrons, the electronic densities would be
more accurately modeled if they were worked out through the superposition
of atomic wave functions. This, is due to the fact that those electrons are
much more localized and, in a plane-wave scheme, they would need a much
larger basis set of wave functions to be represented accurately.

It is because of the complexity offered by this all-electron approach that, an-
other well known and very commonly used approximation called the valence
approximation, is implemented. It relies on considering that all the inter-
esting physical properties of the atoms in a crystal, are mostly due to the
valence electrons. Under this approximation we will take the core electrons
on each atom as entities which are merged with the nucleus in an ion-like
structure. Those ions can then be placed as the genuine building blocks of
our system, representing the different kinds of atoms in our system. This in
practice means that, after being conveniently modeled with a suitable basis
set, these ions (or more precisely: their effective influence on the valence
electrons) can be represented through an effective potential, and hence the
so-called pseudo-potentials [46, 47, 48, 49] appear in this context. Among
many other technicalities that will not be described here, there is the fact
that, when constructing pseudo-potentials, we are free to decide how many
electrons will be considered to be part of the core and how many of them
will be on the valence region. Although this differentiation is quite standard
nowadays, nonetheless the construction of pseudo-potentials still remains an
art on its own due to many other factors.

For this work, I performed tests on pseudo-potentials that were either, avail-
able already on the Internet (at www.pwscf.org) or prepared by collaborators
of our group. They corresponded to the two main kinds: Norm-Conserving
(NC) and Ultra-Soft (US), and were prepared by using the PBE [50] formu-
lation for the exchange-correlation part. A test of the pseudo-potentials can
be done in many ways; here for example, all pseudo-potentials were studied
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against the bulk properties of the materials that each one of them repre-
sented, one of such tests is described in detail in Appendix B. After checking
the correctness of bulk ground-state structural properties, for example the
lattice spacing, we proceeded to calculate also their band structures, in order
to check if some unphysical features of the electronic energy levels (ghost
states) were present [51].

2.5 The Quantum-Espresso package

To summarize this chapter, we have seen here that ab-initio methods based on
Density-Functional Theory (DFT) are by now common and well established
tools for studying structural and vibrational properties of materials on very
realistic grounds. The plane-wave pseudo-potential method and the Local-
Density Approximation (LDA) to DFT have provided a simple framework
whose accuracy and predictive power have been convincingly demonstrated
in a large variety of systems [52]. The calculation of reliable phonon spectra
and other dynamical properties in real materials is well within the reach of
DFT.

I proceed now with the description of the computer package used during
this work. Quantum Espresso [53], is a modular tool which by the use of
each module or subprogram, and also by means of different input modalities,
takes the responsibility for individual parts of the full characterization of the
system. It is in this way that, for example, the module pw.x is the subpro-
gram responsible for getting the electronic ground-state energy for a given
set of atoms, by finding iteratively the best possible ground-state electronic
density ng(r) through the superposition of a limited basis set composed of
a finite amount of plane waves. Then many other things can be done, even
in a non-self-consistent way, for example: using the ground-state set of wave
functions found after the minimization with pw.x, it is also possible (with the
same subprogram) to calculate non self-consistently, the electronic energies
for an arbitrary set of k-points inside the Brillouin zone of the system and
then construct its band diagram. One can also use other subprograms, such
as ph.x, which takes advantage of the previously optimized set of plane waves
and uses it to calculate the phonon frequencies at any given set of k-points
by using DFPT, and non self-consistent calculations allow for the construc-
tion of the phonon dispersion curves of the system along any direction in the
reciprocal space.

Another very interesting thing that we can do is to optimize the system’s
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geometry. This is attained by using the so-called relaxation mode (available
with the module pw.x) in which one gives arbitrary initial positions for the
atoms as an input, and then the program tries to evolve the ionic positions,
following the direction that minimizes the inter-atomic forces up to the point
in which all the forces acting over each atom are very close to zero. This, as
we will see, was particularly useful in Chapter 3 of this work, where there was
an uncertainty about the position occupied by nitrogen inside the sub-lattices
formed by platinum atoms in one case and osmium atoms in the other. It is
worth noticing that the zero-force ionic configuration obtained in this way, is
surely a local minima of the total energy of the system but, so far, no method
exist that can guarantee the obtaining of the global minima for an arbitrary
set of atoms [54], so, additional physical quantities apart from the ground-
state energy, are needed to cross-check with experiments. Some recent work
supervised by myself, that is not reported in this thesis, has been carried out
by our group in an attempt to devise a reliable structure-predictor method
for small systems, so far it has been only used for the case of mono-atomic
oxygen [55], and many improvements are planed for the short term.

The pw.x program, in general, will not perform the self-consistent energy
minimization over the entire set of k-points present in the Brillouin zone,
instead, we are supposed to provide a mesh of k-points that we assume as
“converged” this means, that if we were to increase the number of k-points
to be considered along any reciprocal-space direction, the lowering of the
ground-state energy due to this, wouldn’t be noticeable. In the following
chapters, such grid of k-points is reported for each one of our computer ex-
periments. After setting these numbers, any standard code nowadays should
be able to use the symmetries available on the system to sample an smaller
zone (possibly by following the H. J. Monkhorst and J. D. Pack method [56])
so that the computational effort can be reduced as much as possible, without
affecting the sampling of the reciprocal space. Among the most important
parameters in the input files of Quantum Espresso, we have:

ibrav is the kind of Bravais lattice we are simulating, ibrav=1 is for
sc, ibrav=2 is for fcc, etc.

celldm(i) i=1,2,3, are the lattice parameters of the crystal and are
usually given in units of Bohr-radius, while i=4,5,6, are the cosines of
the angles between each pair of lattice vectors.

ecutwfc is the energy cutoff, which limits the amount of plane waves
that the program will use during the minimization procedure.
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nat means number of atoms i.e. how many atoms we will have per
unit cell. As an example, in the PtN case we used nat = 2, while for
for PtNy pyrite we used nat = 12.

ntyp means number of atomic species i.e. how many different kinds
of atoms are involved, for example ntyp = 2.

ATOMIC_SPECIES is the section where we have to put the symbol
of the atoms, their corresponding masses (as written on the periodic
table) and the name of the files containing the pseudo-potentials.

ATOMIC_POSITIONS is the section in which we are supposed to
give the spatial distribution of the atoms. In this field, during a re-
laxation process, it can also be specified which atoms we want to keep
fixed and which are free to move.

k_points is the number of points in the reciprocal space that the pro-
gram is supposed to sample, i.e. the points in which the actual self
consistent minimization of the energy will be performed.

Finally, for the molecular dynamics simulations, the program fpmd.x in its
version 2.1.4 (named cp.x in later versions) has been used. The above input
descriptions are also valid for the fpmd.x/cp.x modules, apart from the fact
that here, only the Gamma point k=(0,0,0) is used for the electronic energy
minimization.
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PART 11
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Chapter 3

Nitrides

Before the year 2004, no late transition-metal nitrides with high nitrogen
content were known. There has been considerable interest in the synthesis
of new nitrides because of their technological and fundamental importance
[57, 58]. Owing to it having one of the strongest covalent bonds, nitrogen
is very stable and inert under normal conditions. Yet nitrogen reacts with
selected elements, forming compounds with a variety of intriguing properties.
Some of the nitrides (mostly of group III and IV elements) produced by
various methods are widely used as optoelectronic materials; for example,
light-emitting diodes and semiconducting lasers.

Theoretical studies of nitrides are also numerous, covering the topics of opto-
electronics [59, 60], physical and structural properties [59, 61, 62] and super-
conductivity [63], the latter adds to the fact that another important group
of these materials are the transition-metal nitrides mostly known for their
superconducting properties [64, 65, 66, 67, 68], most of the early transition
metals form nitrides at high temperatures and at either ambient or high
pressures (for example, ZrN, VN, MoN).

Although numerous metals react with nitrogen, there were no binary nitrides
known of the noble metals. Platinum on the other hand, forms simple binary
compounds with halogens (for example, PtF,, Ptl,); oxides and chalcogenides
(for example, PtO, PtS) but it was not known to form crystalline nitrides
[69], in fact, previous to the work by Gregoryanz et al. [10], only reactions
forming small molecules containing Pt and N in the gas phase were reported
(diatomic PtN by sputtering [70] and PtN, PtNy and (PtN), by laser ablation
[71]).

Once the synthesis of bulk PtNy was reported [10], the possibility of find-
ing more of these materials generated significant interest since it was sug-
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gested that they could indeed constitute a new family of superhard materials
[4]. Superhard materials are of huge technological relevance in applications
ranging from cutting tools down to abrasives for all kinds of industrial ap-
plications. The presence of these materials in industry was, until not too
long ago, limited only to the use of diamond powders of different qualities
depending on the particular application. While diamond exhibits extreme
hardness, its performance as a super-abrasive is limited by the fact that it
is neither stable in the presence of oxygen at temperatures of relevance for
industrial applications, nor a suitable abrasive for machining ferrous alloys.
Natural and artificial diamond are too expensive or difficult to synthesize in
the quantities required by a growing industry, hence many research efforts
have been directed towards obtaining alternative superhard materials with
characteristics better than those of diamond or ¢-BN (a very good super-
abrasive with half the hardness of diamond) and that can be synthesized at
milder P-T conditions with reproducible sizes, in order to make them suit-
able for high-speed cutting and polishing of ferrous alloys. In this context
synthesis of PtNy marked a promising first step towards a new family of such
materials since its bulk modulus, a quantity that in general seems to corre-
late well with strength and hardness, was reported to be higher than that of
its parent metal (fcc-Pt).

OsNs, on the other hand, doesn’t have a bulk modulus larger than that of
its parent metal Os [11]. However, it is also interesting for other reasons;
for example, this nitride is the only one in the new family that exhibits a
metallic character, making it difficult to characterize by vibrational spec-
troscopy. Here, I show that even which such difficulties it is possible to find
its crystalline structure and conclude that this material, in the same way as
PtN,, is formed by Ny units embedded in the parent metal sub-lattice. Such
a metallic structure opens the possibility of the presence of high-frequency
vibrational modes coming from the Ny units, that can couple to the electrons
at the Fermi level and hence, to obtaining a phonon mediated (BCS) super-
conductor with a high T.. This T,, as we will see, is not that large in the
case of OsNy, but still, the superconductivity is present and can lead to new
discoveries in future members of this family.
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3.1 PtNy

3.1.1 Introduction

After the synthesis of this material, the x-ray diffraction data unambiguously
showed that Pt atoms form a fcc sub-lattice so, in Ref. [10], the authors
suggested zinc-blende (space group F43m) structure for the new compound,
with Pt:N as 1:1. However, the conclusions of Ref. [10] were ambiguous
because x-ray diffraction is unable to determine the positions of the nitrogen
atoms due to the large Pt/N atomic mass ratio and also because the electron
micro-probe technique used for measuring Pt:N enclosed many sources of
error.

Subsequent theoretical studies offered a panoply of diverging opinions on
the mechanical stability and bulk properties of various phases of platinum
nitride, including strong confirmation of the suggested zinc-blende structure
[72, 73], as well as the finding that this structure was not mechanically stable
[74]. These studies proposed additional candidate structures for a platinum
nitride compound, with Ref. [75] suggesting rocksalt PtN (rock salt was also
suggested as an alternative in the original experimental paper), while Yu et
al. [74, 76] showed PtNy, with fluorite structure, to be mechanically stable
and have a bulk modulus comparable or slightly higher than that of the pure
platinum [74], which would then agree with experimental observations in this
regard. In addition, later experimental results using x-ray photo-emission
spectroscopy provided evidence for an even larger nitrogen content, perhaps
as high as 1:2(Pt:N) [77]. Unfortunately, none of the proposed structures so
far mentioned, was able to explain the multiple Raman active modes observed
experimentally in Ref. [10].

In this section, I show that the compound synthesized in Ref. [10] is PtNy
with the pyrite structure, since, according to our first-principles calculations,
PtN, having this structure is fully consistent with x-ray, Raman and com-
pressibility measurements reported on Ref. [10].

3.1.2 Methodology

Calculations [53] were performed within the density functional theory using
a Perdew-Burke-Ernzerhoff exchange-correlation functional [50] and a plane
wave basis set for the electronic wave functions with a kinetic energy cut-
off of 60 Ry (80 Ry for converging the phonon calculations). An ultra-soft
pseudo-potential description of the ion-electron interaction [78] was used,
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with platinum’s 4s and 4p semi-core states explicitly included in the valence.
Brillouin zone integration was found to be converged with a uniform grid of
7Xx7x7 points. Structural relaxations were limited to the nitrogen positions,
with platinum atoms fixed on the fcc lattice at the experimental zero-pressure
lattice spacing (4.8041 A ). A check of the pseudo-potentials used in this part,
is shown and described in detail in Appendix B.

3.1.3 Results and discussion

Following the suggestion that was given by Gregoryanz et al. after analyzing
the experimental evidences coming from the electron micro-probe measure-
ments, regarding the 1:1(Pt:N) stoichiometry, we decided to simulate first
the platinum mono-nitride compound.

Zinc-blende

The first thing we did, following the hints provided by Ref. [10], was to
simulate a zinc-blende configuration (see Fig. 3.1) since this one not only
agreed well with the stoichiometry predicted by the electron micro probe,
but also with the space group obtained after the Rietveld refinement and the
presence of some Raman spectra, which was not the case for the rocksalt
structure.

From Table 3.1 we can see the values obtained through Quantum Espresso
for some key quantities which can be compared with the experimental ones
mentioned in section 4.1. The numerical disagreement specially for quantities
such as the bulk modulus and the phonon frequencies at I', is manifest. Even
worse, no more than one phonon frequency appeared in the simulation, while
from the experimental data we knew that there were at least three Raman-
active peaks. Also the comparison between the ground-state energy here
and the one obtained at the end of Appendix B for Pt + %N give us as result
that this structure is 1.4 eV (0.103 Ry) higher in energy than platinum
and nitrogen separately. Then it is clear that, at least from the point of
view of our DFT simulation, the zinc-blende structure doesn’t fulfill many
of the requirements needed to be in agreement with the experimental results
obtained.
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‘ Quantity ‘ Calculated ‘ Difference ‘
Lattice pa- | 4.69 A -0.11 A
rameter
Bulk mod- | 251.4 GPa | -120.6 GPa
ulus K,

Ko/ 2.12 -1.88
H Fphonon 528 -217
at r

(em™)

Energy -72.421 Ry | 0.103 Ry

Table 3.1: Ab-initio results
for zinc-blende PtN. HF
stands for high frequency.

Figure 3.1: Zinc-blende
structure for PtN.

Rocksalt

Due to the drawbacks presented by the zinc-blende structure it was decided
to give a chance to the rocksalt configuration (showed in Fig. 3.2) expecting
that maybe it could explain some of the observed experimental features better
than the previous calculations with zinc-blende. The fact was that, as can
be seen from the Table 3.2, only the bulk modulus improved with respect
to the one calculated for the zinc-blende configuration. But from the bigger
disagreement in the other aspects we can say that we didn’t have yet the
correct atomic configuration.

‘ Quantity ‘ Calculated ‘ Difference ‘
Lattice pa- | 4.41 A -0.39 A
rameter
Bulk mod- | 347 GPa -25 GPa
ulus K
Ko/ 1.00 -3.00
Phonons at 259 -486
[ (em™)

Energy -72.382 Ry | 0.142Ry

Table 3.2: Ab-initio results for rocksalt

Figure 3.2: Rocksalt struc-
ture for PtN.

PtN.

In order to find some other equilibrium atomic position but still conserving
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the stoichiometry suggested by the experimental data, we proceeded by re-
laxing the structure departing from many different initial positions for the
nitrogen in the unit cell, while letting fixed platinum in its fcc structure. The
results were again consistent with the zinc-blende and rocksalt structures, i.e.
by relaxation we couldn’t obtain a different structure as result and hence, the
results shown up to this point couldn’t be improved due to the lack of new
symmetric and stable configurations different to the two already studied. A
comparison of the volume vs. pressure behavior for Pt, experimental PtN,
and PtN in zinc-blende and rocksalt configurations, from their equations of
state, is shown in the Fig. 3.3.

20

e—e EOS for zinc-blende PtN.

18 oo EQS for rocksalt PtN.
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Figure 3.3: Volume Vs. Pressure for PtN.

PtN, stoichiometry

Then, our conclusion was that something could be wrong with the platinum
mono-nitride assumption and other possibilities should be checked. Could
the platinum di-nitride be the solution? Well, some important questions
were: Would this PtNy be a suitable option energetically speaking? Was the
lattice parameter going to be increased considerably making it incompatible
with the results from X-ray diffraction? Would the bulk modulus and the
phonon frequencies going to be improved by this change with respect to the
mono-nitrides?.
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In order to clarify this, the first thing we needed to do was to relax the
system again from different random starting points but this time with two
nitrogen atoms per unit cell, still keeping the platinum atoms fixed in their fec
positions. After these experiments, many configurations came out (shown in
Figs. 3.4-3.77) and then we proceeded to compare their energies (see Fig. 3.8)
in order to select the best candidate and calculate for this, the interesting
quantities we needed to compare.

Figure 3.4: N in the zinc- Figure 3.5: “Ny”, in the rock-
blende and the “anti-zinc- salt position.

blende” positions. This also

coincides with the structure of

Fluorite.

As can be seen from the energy comparison in Fig. 3.8 the best configura-
tion turned out to be the one corresponding to the Fig. 3.5 (solid line with
rhombus) or equivalently the Fig. 3.9 (dashed line with circles). This one
corresponds to a primitive fec platinum sub-lattice with a nitrogen molecule
in its center, i.e. with its center of mass occupying the rocksalt position. For
this configuration we did the same calculations as before, finding this time a
much better agreement with the experiments, even if still the numbers still
don’t coincide in a 100% with measurements. One remarkable fact is that
the stiffness of the nitrogen molecule (now embedded in the platinum crystal)
helped to increase the phonon frequencies if we compare them with the val-
ues reached previously with only one nitrogen per unit cell. Moreover, in the
phonon spectra, at least three —some of them degenerate— phonon peaks

"Some others were symmetrically equivalent to the ones which are shown in these
graphics.
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Figure 3.6: One N in the rock- Figure 3.7: Not a very sym-
salt and other in the zinc- metric position, but also of-
blende position. fered local equilibrium.
T * T * T * T * T
-1242~ -
i = - = 7B-ZB 1
+—+ RS-RS
-1244~ RS.7B —
L As in fig. 4.8 |
e e Asin fig. 4.10
-1246|- .
-1248}- .

Energy (eV)

-1250

-1252

-1254

-1256

1
30 35 40
Volume (A3)

Figure 3.8: Energy comparison for the different configurations showed.



Nitrides 41

appeared in the region were the experimental spectra was taken®, which is
also in agreement with the observations.

‘ Quantity ‘ Calculated ‘ Difference ‘

Lattice pa- |  4.88A 0.08A
rameter

Bulk mod- | 324.6 GPa | -47.4 GPa
ulus Ky

Ko/ 1.00 -3.00
Phonons at 620 -125

I' (cm™1)

Energy -92.286 Ry | 0.082 Ry

Figure 3.9: Same as in  Taple 3.3: Ab-initio results for “rock-
Fig. 3.5, with a different ori-  ¢41¢7 PtN,.

entation.

In synthesis, this preliminary search [79] on the minimal unit cell containing
one PtNy formula unit (i.e. with the rhombohedral primitive unit cell of
the fcc lattice) showed that, a structure with an interstitial Ny centered in
the octahedral cavity of the Pt fcc lattice, gives an energy which is lower
than that of the structures proposed by Ref. [10] all of which were based
on atomic nitrogen with Pt:N as 1:1, and nitrogen centered either on the
octahedral cavities (rock salt) or on the tetrahedral cavities (zinc blende).
A single interstitial Ny, in the way it has been proposed so far, however,
violates the cubic symmetry of the platinum sub-lattice and would lead to
a sizable rhombohedral distortion, which is not observed experimentally. In
this work, a deeper energy minimum is obtained by expanding our analysis
to the cubic conventional cell of the fcc metal lattice. Arranging the nitrogen
atoms on the eight fold sites of space group Pa3 (see Fig. 3.10(a)) minimizes
the quadrupole interaction between the dinitrogen molecules, thus further
reducing the energy, while preserving the observed cubic symmetry of the
metal sub-lattice.

The resulting pyrite isostructure agrees with all experimental data; first
of all, a Rietveld refinement of the observed diffraction pattern using Pa3
(Fig. 3.10(b)) is indistinguishable with experimental data as compared to

8There is an impossibility in these high pressure techniques to take phonon-spectra
above 1300 cm ™! because of an interference coming from the diamond’s phonon line
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the originally proposed zinc-blende structure. In this structure at ambient
pressure, platinum atoms are accommodated on the Wyckoff site 4a and
nitrogen atoms are on the site 8c with x=0.415.

Counts (x107%)
5

P | LRI

05} o Co o e o

6.0 8.0 10.0 12.0 140 160 18.0 20.0 22.0

2-0 (degrees)

Figure 3.10: Left: Pyrite Structure of PtNo, space group Pa3. Platinum atoms
(white) form a face-centered cubic lattice, dinitrogen (Ng) units (blue) occupy
the octahedral cavities of the Pt lattice. The calculated N-N distance at ambient
pressure is 1.42 A. Right: Rietveld fit using the Pa3 space-group. Red crosses:
data at ambient pressure (A=0.3738 A); green line: Rietveld fit; black ticks: PtNy
peaks; red ticks: Pt peaks. The most intense Pt peaks are cut-off.

PtNy pyrite is also found to have a considerably lower ground-state energy
than that of any other proposed structures, rendering the existence of any of
these phases of PtN or PtNy, highly unlikely. Moreover, in contrast to the
structures proposed previously, the pyrite phase shows not only mechanical
stability, but good agreement with both bulk properties and experimentally
observed Raman spectra. Our calculations (Table 3.4) show the pyrite struc-
ture to be 2 eV per stoichiometric unit lower in energy than the fluorite struc-
ture at ambient pressure. The comparison with 1:1 structures (zinc-blende
and rocksalt) is based on their respective formation energies, and shows that
pyrite has energy 0.3 eV (per Pt atom) lower than that of zinc-blende and 0.8
eV lower than that of rocksalt. The positive sign of the formation energies in
our calculations reveal, however, that PtNy is unstable towards dissociation
into its constituent elements, at least at zero pressure. This is corroborated
by experimental evidence that, below 10 GPa, PtNy dissociates upon mild
heating.

Moreover, as we will see in the next chapter, for this nitride the observed
conditions of synthesis are well inside the region of thermodynamic stability
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of the compound 3.19, which could be explained by a large kinetic barrier.
In fact, the exact transition pressure is calculated to be around 17 GPa and
then, it is not strange that PtNy can be quenched even to ambient conditions.

The PtNy pyrite structure is characterized by Pt in six-fold coordination with
N, with a calculated Pt-N distance of 2.096 A at zero pressure. Each nitrogen
is four-fold coordinated to three Pt atoms and one N atom. The interstitial
dinitrogen unit has a zero-pressure N-N bond length of 1.42 A | much longer
than the molecular triple bond, and consistent instead with a N-N single
bond. The calculated energy versus unit-cell volume was fitted with the
Birch-Murnaghan equation of state, giving an equilibrium lattice parameter
that agrees with experiment to within 1% (Table 3.4). The bulk modulus
(B) is shown to be considerably higher than that of both bulk platinum
and fluorite PtNy, again in good agreement with experimental results. The
slight and systematic overestimation of the lattice parameters as well as the
systematic underestimation of the calculated bulk moduli with respect to the
experimental results, both for PtN, and for Pt, are a likely consequence of
the choice of the PBE density functional.

a B, B B,B.  AE (eV)
Exp. [10] 4.804 373, 4.00 354, 5.23 -
Pyr.(cal.)  4.848 305,4.00 285,550  1.12
Fl.(cal)  4.939 269,4.00 260,4.73  3.15
7B(cal)  4.760 213,4.00 217,3.62  1.40
RS(cal)  4.471 251,4.00 242,478  1.93
Pt exp. [80] 3.924 275, 4.78 277, 5.23 -
Pt cal.  3.966 242,583 249, 5.23 -

Table 3.4: Bulk modulus (in GPa), its pressure derivative (B’), and equi-
librium lattice parameters (in A), obtained from fitting calculated energies
over a range of volumes with a second order Birch-Murnaghan equation of
state. Bold values were fixed during the fitting to compare with experiments.
Formation energies AFE are relative to Pt+Ny for PtN, compounds,Pth%NQ
for PtN compounds.

In order to check the local mechanical stability of the pyrite structure we
computed its elastic constants. For crystals with cubic symmetry, applica-
tion of a single strain to the lattice vectors is sufficient to determine all three
independent elastic constants [81]. These calculations —in addition to con-
firming the values of B calculated from the equations of state— also show
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pyrite structure PtN, to be mechanically stable and to have a relatively high
shear-modulus (Table 3.5), an important indicator for hardness in dielectrics
[82]. The high G/B ratio (G being the shear modulus) or, equivalently,
the low Poisson’s ratio (v) points to a high degree of covalency [4], suggest-
ing that intercalation of the dinitrogen units into the Pt lattice induces a
substantial change of the electronic structure from metallic, in bulk Pt, to
covalent in PtNy. Our elasticity calculations for zinc-blende PtN (Table 3.5)
suggest that it is mechanically unstable, as claimed in [74], but our differ-
ence between cq; and c;5 for that particular configuration is too small to allow
us to make conclusive statements about stability within the approximations
used. However, our calculations show conclusively that zinc-blende as well
as rocksalt and fluorite structures are in poor agreement with the full set of
bulk properties reported in Ref. [10] (Table 3.4).

C11 C12 Ca4 B G E 14

Pyrite 696 &3 136 283 221 528 .19
Fluorite 473 160 115 264 136 348 .28
Zinc-Blende | 197 200 22 199 10 30 .48
Rock-Salt 266 221 36 236 30 86 .44

Table 3.5: Elastic constants and elastic moduli in GPa for a variety of pro-
posed PtN and PtNy phases, calculated in the limit of infinitesimal strain
(Eis the Young’s modulus, other quantities are defined in the text). Me-
chanical stability for cubic crystals is expressed in the following conditions
on the elastic constants [83]: ¢4y > 0,¢17 > 12|, and B = % >0.

The calculated zone-center vibrational modes of PtNy pyrite, as determined
using density-functional perturbation theory [17], show good agreement with
experimentally observed Raman spectra. Calculated and experimental Ra-
man frequencies over a range of pressures are compared in Figure 3.11(a).
Calculations show the existence of two almost degenerate modes giving rise
to a Raman peak around 700 cm™! (Fig. 3.11(a)) which was reported but not
shown in [10] and originally attributed to a non-stoichiometry of the sam-
ples. The calculated Raman intensities [84] (Fig. 3.11(b)) show the presence
of two intense peaks, in good agreement with the experimental results, and
of three weak modes, two of which are seen in the experimental spectra. It
is interesting to note that all Raman active phonon modes of PtNy pyrite,
although calculated using the full cell, arise only from the displacements of
the nitrogen atoms, and do not have Pt components. In fact their frequen-
cies are in fair agreement with those predicted [85] and later observed [86]
for single-bonded nitrogen in its polymeric phase.



Nitrides 45

Experimental [1]:

x 20

O YT Y
-\h‘.‘:‘é.'v:l‘.:'...}:'....n *an

Raman shift (cm)
Intensity (a.u.)

This work:

e Experimental [1] 2000 n 2000
X
== This work 1 A: \

600 1 I 1 I 1 I 1 I 1 I 1 1 I 1 I 1 I 1
0 10 20 30 40 50 600 700 800 900 1000

Pressure (GPa) Raman shift (cm)

Figure 3.11: (a) Calculated and experimental (from Ref. 1) Raman frequencies
as a function of pressure. An agreement within 5% in the frequency determination
is typical for this kind of calculations. (b) Calculated and experimental Raman
intensities. An additional calculated peak with intensity similar to the green peak
at 710cm~! is not shown as its frequency overlaps with the intense mode at 695
cm L.

Finally, the calculated electronic band structure of pyrite PtNy at zero pres-
sure, reported in Figure 3.12, shows a clear insulating character. Band gaps
are typically underestimated within density functional theory, so the calcu-
lated indirect band gap of about 1.5 eV could correspond to a true gap of
2-3 eV, which would make PtN, an interesting candidate for optical applica-
tions [57].The insulating character is consistent with the covalent nature of
bonding revealed by the low Poisson’s ratio discussed before in this section.

All the evidences presented so far strongly indicate that the compound under
study has a Pa3 structure with interstitial single-bonded N, units, hence
making it desirable to find an explanation for how such structure can in effect
be responsible for the hardness and insulating properties of this compound.
Insertion of atomic nitrogen into transition metals is known to lead to an
increase in directional bonding and therefore to an increase of mechanical
strength.

Grossman et al. [87] have shown that such changes are more dramatic for
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Figure 3.12: Electronic bands of Pyrite PtNo at ambient pressure along high
symmetry directions. Filled states have negative energies.

early transition metals, due to the fact that the very-flat density distribution
of the elemental phase is heavily altered by the insertion of interstitial nitro-
gen atoms. Late (heavier) transition metals have a more corrugated density
distributions in their elemental metallic phases and, therefore, should not in-
crease their hardness noticeably in these (1:1) nitride phases, this was shown
in [87] for the rock salt phases. A histogram of the density distribution for
pyrite PtNy (Fig. 3.13(left)) shows however, that insertion of dinitrogen in
Pt causes a four-fold reduction of the histogram peak, which is qualitatively
comparable to the reduction observed in Ref. [87] for light transition metals
with single nitrogen and hence, compatible with an effective increase of its
hardness. The use of the histogram is compulsory in this case since we cannot
detect directly the appearance of a clear directionality coming from the Pt-N
covalent-bonds. This is so, due to the fact that the electronic density belong-
ing to the d-orbitals of Pt still remains quite delocalized in PtNy, making
it very difficult to define where these bonds lye by simple inspection of the
charge-density (Electron-Localization-Function calculations were beyond the
scope of this work) hence, it would be more precise to describe the appearance
of covalency in this material as: “a clear reduction of the homogeneity on
the interstitial charge-density distribution in the Pt sub-lattice with respect
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Figure 3.13: Left: Histogram of charge densities for bulk Pt (left), for PtNy
(right, black), and for Pt+Ny (right, red). Right: Cut of the charge density
difference (compound — individual atoms) showing charge displacement.

to the one present in the pure metal”. This observation indicates that, when
it comes to late TMs, directional bonding due to dinitrogen interstitials is
clearly stronger than the one that would be obtained by just inserting atomic
nitrogen, which again is in agreement with the lack of similarities between
the 1:1 (Pt:N) phases proposed for this compound and experiments.

Moreover, a comparison of the density histogram of PtNy with the one ob-
tained by summing the individual densities of Pt and Ny; shows that, in the
compound, the electronic charge-density access a minimum value that is lower
than the one obtained from the sum. To do this, we simulated first a system
of Pt without Ny units and then one of Ny without Pt atoms, maintaining
the atoms always fixed in the positions that they occupy in PtN, at ambient
pressure. The above observation is also clear from Figure 3.13(right), where
a two-dimensional cut of such charge difference is shown. As a conclusion,
we can say that, besides a noticeable re-hybridization of the Pt semi-core
orbitals, charge-density difference and the histogram shown on Figure 3.13
demonstrate that, in the PtNy compound, charge flows from interstitial low-
density regions to bonding regions of higher density, and this is again con-
sistent with covalency. In this way, the presence of interstitial dinitrogen
units is also crucial to explain the insulating character of pyrite PtNy since,
all platinum-nitride structures proposed before this work, contain interstitial
nitrogen in the atomic form and have been reported to be metallic.
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3.1.4 Beyond PtNy-pyrite

After having solved the structure of PtNy, recently we started wondering
which structures could be other high-pressure phases for this compound.
PtNy-Pyrite is made out of octahedral units (centered on the six-fold coordi-
nated Pt atoms) and this type of local coordination is common to many other
compounds at high pressure, the most well-known case being silica (SiO,).
Moreover, many of those compounds, having the same 1:2 stoichiometry,
share with PtNy the property of counting pyrite as one of their high-pressure
phases. It seems also that pyrite, in certain cases (e.g. silica, GeOs, NiAss,
FeSey, CoTey, NiPy, etc.) offers among all structures made out of octahedral
units, the best possible packing for the atoms [89, 90]. Hence, pyrite is com-
monly found in phase diagrams as one of the last stable octahedral phases
for increasing pressure, remaining so up to very high pressures (predicted
and recently observed above 205 GPa for silica and observed at 80 GPa for
Germania).

- 1 7 1 2 T I T I T I
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Figure 3.14: Equations of state for the different PtNy struc-
ture studied in this section.

In this work, that has been carried out in collaboration with Bachir Bouhafs
thanks to a cooperation with the ICTP, we tested most of the commonly
encountered octahedral configurations, and discovered from their EOS (some
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EOS are shown in Fig. 3.14), that pyrite remains by far the most stable
structure also for PtNy, and compares closely to marcasite (Fig. 3.17) and
to a high-symmetry version of columbite (Fig. 3.15) in regards to its total
energy. Marcasite under no conditions becomes more favorable than pyrite
and there is no thermodynamic transition point between these two structures
neither above nor below the pressure conditions reported in experiments. A
Cmca structure relaxed from columbite, instead, appears more stable at
pressures lower than the pressure of formation for PtNs-pyrite. At those
low pressures, the system has been reported to dissociate easily towards its
constituents. Even if this work is still in a very preliminary stage, we argue
however that, when departing from pyrite, dissociation shouldn’t be easier to
reach than the C'mca phase for, in order to arrive at C'mca, only a small tilt
of the dinitrogen units is needed, which points to a lower kinetic barrier for
the transformation when compared against a complete dissociation. Finally,
coming back to our comparison with silica and GeQOs,, it is interesting to
observe that, also for those materials, the transition from columbite (or a-
PbOs) to pyrite, has been observed. The latest results, show that some other
new structures may, as in the case of C'mca, have energies lower than that
of pyrite at larger volumes, which opens new possibilities for low pressure
structures of PtNy that can be recovered by quenching pyrite.

Figure 3.15: Layered view of Figure 3.16: View of the a-b
the relaxed C'mca-PtNy struc- C'mca planes.
ture.

3.1.5 Conclusions

I proceed now to summarize this section; in Ref. [10] platinum nitride was
observed as a result of the reaction of a molecular nitrogen fluid with Pt
metal at high pressure and temperature (P ~ 45 GPa and T ~ 2000 K).
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Figure 3.17: PtNy in the marcasite structure.

Here, the structure of this compound (PtNy pyrite) was resolved by using
first-principles calculations, excellent agreement with all experimental data
available was obtained and it was shown that PtN,, having a pyrite structure,
consists of interstitial single-bonded Ny units incorporated in the octahedral
cavities of an fcc Pt sub-lattice, which profoundly determine the observed
insulating-covalent behavior of this material. This incorporation also implies
a change of bonding for Ny from triple to single, a transition that molecular
nitrogen is known to undergo during amorphization at similar pressures [88].
We therefore argue that pressure-induced changes in the bonding character
of pure nitrogen are key to understanding the synthesis of PtNy. I have also
shown that at pressures below the ones required for the synthesis of this new
compound, other types of structure could become more stable than pyrite.

3.2 OSN2

3.2.1 Introduction

After PtNy, the family of late transition-metal nitrides was enlarged by the
synthesis of the two new nitrides of Ir and Os [10, 11, 91]. As for Pt, these
new compounds were obtained by subjecting the parent metal to extreme
conditions of pressure and temperature in a nitrogen embedding medium, in
a diamond-anvil cell. Interest in these compounds, as mentioned in the intro-
duction, resided mainly in their large bulk modulus, which might suggest su-
perhard mechanical properties. High-pressure x-ray diffraction experiments
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on the three compounds give bulk moduli of 372 GPa (platinum nitride) [10],
432 GPa (iridium nitride), and 358 GPa (osmium nitride), respectively [11].

Despite intense experimental and theoretical efforts carried out by different
groups after the discovery of the new family, the crystal structure of these
compounds was only known in the case of platinum nitride by means of the
studies described in the previous section [92, 93]. X-ray diffraction measure-
ments were able to clarify the nature of the sub-lattice of the transition metal
atoms for the two new nitrides, but due to the large atomic-number ratio be-
tween the parent metal and nitrogen, x-ray diffraction was, here again, unable
to provide insight into the internal position of the nitrogen atoms, nor into
the stoichiometry of the compound. The metal sub-lattice has been reported
to be face-centered cubic in the case of Pt nitride [92], orthorhombic in Os
nitride and rhombohedral in Ir nitride [11]. As already discussed, for the case
of Pt, nitrogen atoms in pyrite PtNy pair up to form single-bonded dinitro-
gen units (N3) which fill the octahedral holes of the fcc Pt sub-lattice. The
situation of nitrogen inside Ir and Os nitrides instead, was not yet known.
The similarity between the Raman spectra of PtN, and Ir nitride, particu-
larly in the frequency region of the single-bonded Ny stretching observed in
PtNy, suggests that Ir nitride could also be composed of dinitrogen units lo-
cated in the interstitial holes of the rhombohedral Ir sub-lattice. The picture
was however much less clear in the case of osmium nitride, where no Raman
peaks were observed [11], presumably due to the metallic character of the
compound.

In this section, the structural and mechanical data obtained from ab-initio
calculations on OsNj structures are compared with the experimental data of
Ref. [11], and conclude that the crystal structure of Os nitride is isostructural
to that of marcasite, a known polymorph of FeS, structurally similar to
pyrite. Therefore, it is observed that dinitrogen units similar to those found
in PtNy are also present in OsNj .

3.2.2 Methodology

Calculations [53] were performed within density functional theory using a
Perdew-Burke-Ernzerhoff exchange correlation functional [50] and a plane
wave basis set for the electronic wave functions with a kinetic energy cut-
off of 70 Ry. A pseudo-potential description of the ion-electron interaction
[78] was used, with osmium’s 5s and 5p semi-core electrons included in the
valence. Brillouin zone integration was found to be converged with a uniform
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grid of 9 x 9 x 9 points (corresponding to 205 points in the irreducible zone
of the marcasite structure).

3.2.3 Results and discussion

The marcasite structure has the space group Pnnm, with osmium atoms on
the Wyckoft sites 2a [(0,0,0) and (1/2,1/2,1/2)] and nitrogen atoms on the site
4g [(x,y)], with two internal parameters  and y. Structural relaxations were
thus performed by relaxing the nitrogen positions, while osmium atoms are
fixed by symmetry. The calculated properties (equilibrium volume, lattice
parameters, and bulk modulus) of OsN, marcasite are reported in Table 3.6
and agree very well with experiment. The calculated nitrogen internal pa-
rameters at 0 GPa are x = 0.12751, and y = 0.40386. A Rietveld refinement
(Fig. 3.18) of the observed diffraction pattern using thePnnm space group
shows that the marcasite structure is fully consistent with the x-ray data.

Intensity (arb. units)

L L L
80 10.0 12.0 140 160 18.0 20.0
2-0 (degrees)

Figure 3.18: Marcasite structure of OsNy, space group Pnnm. Osmium atoms
(gray) form an orthorhombic lattice, dinitrogen (N2) units (light-blue) occupy the
cavities of the Os lattice. The calculated N-N distance at ambient pressure is
1.417 A. The Rietveld fit using the Pnnm space-group is in excellent agreement
with experiments, red crosses: data at ambient pressure (A=0.4237 A); green line:
Rietveld fit; black ticks: OsNs peaks; red ticks: Os peaks. The most intense Os
peaks are cut-off.

The theoretical formation energy of marcasite OsNsy, calculated as a differ-
ence between the ab-initio total energies of OsN, and those of Os metal and
molecular Ny in the € structure at zero pressure, is found to be positive (1.15
eV), indicating that the compound is in principle thermodynamically unsta-
ble towards decomposition into its constituent elements, at zero pressure. It
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a b c B,B" AFE (eV)
Exp. [11] 2.714 4.910 4.102 358,4.67 -
Mar. (cal.) 4.13 4.93 270 359, 4.28 1.15

Pyr. (cal.)  4.85 339, 3.85 2.15
Os exp.[96]  3.03 411, 4.0 -
Os cal. 3.05 411, 4.3 -

Table 3.6: Equilibrium lattice parameters (in A), zero-pressure bulk modulus
(in GPa) and its pressure derivative (B’) obtained from fitting calculated en-
ergies over a range of volumes with a second order Birch-Murnaghan equation
of state. Formation energies AE are relative to Os+Nj.

is interesting to remark that the formation energy of PtN, was also found to
be positive, but larger than the one found here for OsNj [92]. This indicates a
lower propensity to dissociate back into the constituent elements in the case
of OsNy, with respect to PtNy, which is consistent with the experimental
observation that much larger quantities of OsNy than PtNy have been found
in the samples recovered at ambient conditions. From the calculated energies
as a function of volume, at T = 0 K, we extracted the pressure dependence
of the enthalpies shown in Figure 3.19.
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Figure 3.19: (a) Enthalpy versus pressure for OsNs pyrite, OsNy marcasite, and
their constituents, at 7' =0 K. (b) Same as in (a), for PtNy pyrite.
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Upon application of pressure, the formation energy of OsNy marcasite de-
creases and eventually vanishes at 23 GPa (Fig. 3.19(a)) above which the
compound becomes more stable than its constituents, at least at low tem-
perature. This is consistent with the experimental finding that the compound
can be synthesized only when pressure approaches 50 GPa. We also notice
that the enthalpy of a hypothetical OsNy compound with the pyrite structure
is significantly higher than that of OsN, marcasite, at all calculated pressures
(up to 200 GPa). A more appropriate comparison of the theoretical predic-
tions with the reported conditions for the synthesis of the compound (50
GPa, 2000 K) would require a calculation of its finite-temperature Gibbs
free energy of formation, which is beyond the scope of this work. We remark
however that at the conditions of synthesis, nitrogen is likely to be in the
liquid state.

An extrapolation of the melting curve of nitrogen measured up to 18 GPa
[94], in fact, gives 1500-1750 K for the melting temperature at 50 GPa [11],
which is below the reaction temperature used in the experiment. Assuming
that differences between the vibrational contributions to the free energy are
negligible for the solid phases and using for the excess free energy of the
liquid the empirical expression derived by Kroll based on thermochemical
data [95], we obtain that, at 50 GPa the reaction temperature should be of
2100 K, in good agreement with the experimental value. We thus conclude
that the synthesis of the compound is likely to occur at, or close to the
thermodynamic boundary.

In an attempt to rationalize the experimental observation that the synthesis
conditions of the three nitrides are nearly identical [11], in Figure 3.19(b)
the enthalpy of formation for pyrite PtNy is reported. Interestingly, even
though the calculated zero-temperature transition pressure is slightly lower
than the one found for OsNy, the zero-temperature formation energy of PtNy
at 50 GPa is very similar to that of OsNy (~ —1.3eV). Under the assump-
tion discussed above that finite-temperature corrections to the free energy
can be approximated by simply considering the excess free energy of lig-
uid nitrogen, then it appears that the thermodynamical boundaries for the
high-temperature synthesis of OsNy and PtN, are likely to be very close, in
agreement with the experimental findings.

I finally comment on the electronic structure of OsN, marcasite. Our band
structure calculations (Fig. 3.20) show that, contrary to PtNy, which is known
to be an insulator [92], OsNy marcasite has a metallic character, which is in
agreement with the experimentally observed absence of first-order Raman
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peaks for this compound. Os belongs, like Pt, to the last row of the transi-
tion metal series, and has two electrons less than Pt so, an insulating char-
acter would be compatible with electron counting arguments. In order to
understand why OsNj is a metal it is interesting to consider a hypothetical
OsNy compound with the pyrite structure. In a simplified picture in which
the density of electronic states (DOS) only depends on the crystal structure,
and not on the electron filling, the electronic structure of this hypothetical
pyrite-OsNy can be approximatively obtained from that of real pyrite-PtN,
by removing 8 electrons from its band structure (the unit cell of PtN, pyrite
contains 4 formula units), which corresponds to a Fermi level whose position
would be the one indicated by the red line in Figure 3.21(c). This would
imply a metallic character also for this hypothetical compound. The actual
ab-initio calculation of the DOS of OsNy pyrite (Fig. 3.21(b)) confirms that
the reasoning is correct, the gap at a filling of 80 electrons/cell (8 electrons
above the OsNy Fermi level) is still present, and the Fermi level lies in a
region of finite density of states.
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Figure 3.20: Electronic bands of marcasite OsNy at ambient pressure along high
symmetry lines together with the corresponding density of states and its projection
onto the constituent atoms. The Fermi energy is set to zero.
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Figure 3.21: Density of electronic states and its integral for (a) OsNg marcasite;
(b) OsNy pyrite; (c) PtNg pyrite. The Fermi energy is set to zero.

However the OsNy pyrite DOS has a very high density of states at the Fermi
level, which is typically associated with an instability of the electronic struc-
ture, leading either to magnetism, or to structural distortions. The marcasite
structure, with its simple structural connection to pyrite, can be seen as a
way for the system to avoid the predicted electronic instability found in the
pyrite structure. OsNy marcasite (Fig. 3.21(a)) shows in fact a much lower
density of states at the Fermi level, which explains its lower energy with
respect to OsNy pyrite.

3.2.4 Superconductivity in OsNjy
Introduction

Metallic compounds containing light elements such as H, Li, and B have
attracted considerable attention recently due to their potential supercon-
ducting properties [97, 98, 99]. Within the weak-coupling BCS theory, high
frequency phonons due to the presence of atoms with light masses ensure
a large pre-factor in the BCS formula for the superconducting critical tem-
perature T.. Thus, even a moderate electron-phonon coupling can yield a
sizable T, [100, 101]. The discovery of superconductivity in MgB, [102],



Nitrides 57

B-doped diamond [103], B-doped silicon [104], and calcium and ytterbium
graphite intercalated compounds [105] confirms this picture and also extends
it by showing that strong covalent bonds between light atoms can provide
a sizable contribution to the electronic density of states at the Fermi level,
under appropriate “doping” conditions. In MgBs the Fermi level crosses the
covalent o bonds formed by boron atoms. Such states are partially empty as
a consequence of the lowering of the m bands, caused by the Mg?" attractive
potential felt by the B-7 electrons [102, 101]. In B-doped diamond [103], sub-
stitutional boron atoms provide hole-doping to the C-C sp® covalent bonds.
The strong C-C bonding allows the structure to remain stable even at high
doping. In electron-doped graphite intercalated compounds, the Fermi level
crosses the graphitic C-m band and the intercalated band.

nitrogen follows boron and carbon in the first row of the periodic table and is
characterized, in its elemental form, by a strong triple bond in the low pres-
sure molecular phases, and by covalent single bonds in the non-molecular
phase stable at pressures exceeding a megabar [106]. As a consequence,
molecular phases are insulating, and the non-molecular phase is semicon-
ducting [107]. In analogy with the boron and carbon-based superconducting
compounds described above, search for superconductivity in nitrogen-based
systems requires the identification of compounds where covalent bonds be-
tween nitrogen atoms persist in a stable form in the presence of doping species
and of a resulting metallic state.

So far, only OsN, fulfills the above criteria. Covalently-bonded di-nitrogen
(N2) units are preserved in the marcasite-like crystal structure of OsNy [108]
(see Fig. 3.22(a)), which makes this compound an obvious candidate to in-
vestigate superconductivity in nitrogen-rich systems.

In this section, I'll describe our studies on the superconducting properties of
OsNy in the framework of a phonon mediated pairing mechanism. We per-
formed ab-initio calculations of the Fermi surface, electronic bands, phonon
dispersions, and electron-phonon couplings in OsN,, and demonstrate that
the high-frequency modes originating from the covalently-bonded N, units
are strongly coupled to the electronic states at the Fermi level and give rise
to a T, of about 1 K. We also show that within this framework, the super-
conducting temperature can be greatly increased by hole-doping.

Methodology

Here, once again, calculations were performed with the Quantum Espresso
package [53] employing density functional theory and the Perdew-Burke-
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Figure 3.22: (a) Crystal structure of OsNy (isostructural to marcasite). The
space group is Pnnm, with osmium atoms (gray) in the Wyckoff sites 2a and
nitrogen atoms (blue) in the 4g sites [108]. (b) Brillouin zone showing the
high-symmetry directions used in Figs. 3.23 and 3.24.

Ernzerhoff exchange-correlation functional [50]. An ultra-soft pseudo-potential
description of the ion-electron interaction [78], with Os 5s and 5p semi-core
electrons included in the valence, was used together with a plane-wave basis
set for the electronic wave functions and the charge density, with energy cut-
offs of 40 and 480 Ry respectively. The dynamical matrices and the electron-
phonon coupling constants A were calculated using density functional pertur-
bation theory (DFPT) in the linear response regime [53, 17]. The electronic
Brillouin zone (BZ) integration in the phonon calculation was sampled with a
20 x 16 x 30 uniform k-point mesh. The electron-phonon coupling was found
to be converged with a finer grid of 26 x 22 x 40 k-points and a Gaussian
smearing of 0.006 Ry. The dynamical matrix was computed on a 23 mesh
of phonon wave vectors q. The phonons dispersion was then obtained on a
finer 8% g-mesh by Fourier interpolation of the real space inter-atomic force
constants. In this way, A is calculated over a 8 g-point mesh.

Results and discussion

In the energy range shown in Figure 3.23, the total electronic density of states
(DOS) is essentially determined by Os 5d and N 2p orbitals (Fig. 3.23(b)). At
the Fermi level the N 2p orbitals contribute with about 20% of the total DOS.
The projection on the atomic orbitals also shows that 92% of the nitrogen
contribution at Ep is due to N p,, states and the remaining 8% to N p,
states. The N p, , orbitals lie in the plane containing the N-N units, and are
thus directly involved in the formation of the N-N covalent bond in OsN,.
Integrating the DOS in a window of energy close to Er (between Ep and 1
eV below Er) we found an antibonding character for the electronic states on
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the N-N units. This is consistent with the considerable weakening of the N-N
bond in OsN, with respect to the molecular triple bond, and is confirmed by
the large reduction of the N-N stretching frequency from 2300 cm™! in the
molecular state to 500-800 cm ™! in the compound. A non-negligible coupling
of the electronic states close to Ex with the N-N stretching vibrational modes
can thus be anticipated based on simple band-structure considerations. It is
interesting to remark that the presence of the Os sublattice is crucial to the
presence of a finite nitrogen component in the DOS at Er. Indeed, a band
structure calculation for a pure nitrogen system obtained by removing the Os
atoms from the crystal structure of OsN, letting everything else unchanged,
gives an insulating solid; indicating that the nitrogen component at Ep arises
from the coupling of the N-N units with the transition metal sublattice,
through re-hybridization and/or charge transfer.
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Figure 3.23: Left panel: A more detailed view around the Fermi energy of
the electronic bands of marcasite OsN, at ambient pressure along the high
symmetry lines shown in Figure 3.22(b). Right panel: electronic density of
states and its projection onto the Os 5d (blue) and N 2p (red) orbitals. The
Fermi energy is set to zero.

Due to the presence of stiff N-N bonds, the calculated phonons of OsNs,
shown in Figure 3.24, can be divided into three main groups: a low-frequency
group (up to 200 cm™!) involving mostly the Os sub-lattice, an intermediate
group corresponding to the librational modes of the N-N units (between 250
and 600 cm™!), and a high-frequency manifold corresponding to rotation and
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stretching of the N-N units (above 600 cm™!). The eighteen phonons modes
of the marcasite structure belong to eight irreducible representations. Four
of these representations (By,, By, Bs,, and A) are associated with nitrogen
displacements only, with osmium atoms at rest, and are highlighted with
symbols in Figure 3.24. Representations By, and Bs, have one mode each
and involve di-nitrogen vibrations along the 2 axis, while representations, A,
and By, have two modes and involve vibrations along the Z and ¢ directions.
In By, and A, both dinitrogen units oscillate in-phase while in Bgg and By,
the N-N units vibrate in counter-phase. As we can see from Figure 3.24,
the nitrogen light mass and the covalent N-N bond ensures a high frequency
for these modes, with A, and Bj, modes ranging between 640 and 825 cm ™,
Raman peaks in this frequency range have been observed experimentally also
in PtNy and IrN, and have already been associated with the stretching of
the N-N units [10, 11, 92, 91]. As a confirmation of the planar (xy) nature
of bonding in N-N, we note that the zy-polarized phonons in the A, and By,
representations are higher in frequency with respect to z-polarized modes.
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Figure 3.24: Phonon dispersions along high-symmetry directions of the Bril-
louin zone and corresponding phonon density of states (right panel).

Within DEPT [17] the electron-phonon interaction for a phonon mode v with
momentum q can be calculated as
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where the sum is over the Brillouin Zone. The matrix element is gy, 14 g =
(kn|oV/duqy |k + qm)//2wq,, Where ugq, is the amplitude of the displace-
ment of the phonon and V is the Kohn-Sham potential. The electron-
phonon coupling is calculated as a BZ average over the phonon wave vectors
A =34 Aav/Ng. The Eliashberg spectral function a?F(w) is defined as

0PF(0) = 51 3 A e — ) (3.1)
-y

and allows to compute A(w) =2 [" dw'a?F(w') /w'.

Figure 3.25(a) shows the Eliashberg spectral function o* F(w) calculated from
Eq. 3.1. Three separate contributions to the electron-phonon interaction can
be clearly distinguished and attributed to the low frequency, the interme-
diate frequency, and the high frequency phonons, respectively. Two high-
frequency peaks are particularly strong and well resolved, and are associated
with the contribution of the two A, phonons, while the contribution of the
By, and Bs, phonons accounts for most of the electron-phonon interaction in
the intermediate frequency range from 500 to 600 cm~!. The integral A\(w),
represented by a dashed line in Figure 3.25 (a), shows that the low frequency
phonons, that involve mostly displacements of the osmium atoms, account
for a contribution of A = 0.17. The high frequency phonons associated with
the stretching of the covalently bonded N-N units contribute with an equiv-
alent amount, which brings the total A for OsN; to 0.37. More insight about
the nature of the electron-phonon interaction that leads to such a large con-
tribution to A from N-N bonds can be obtained by analyzing the changes
of the Fermi surface (FS) that arise upon distorting the lattice along the
relevant phonon modes. In particular, we concentrate on the A; modes that
show the highest o®F(w) values and dominate the high frequency contribu-
tions. In Figure 3.25(b,c) we compare the FS of the undistorted OsNy with
that of a distorted OsNy crystal obtained by changing by 4% the distance
between nitrogen atoms in the N-N units along the zy-polarized A, mode.
The most relevant change in the FS is the migration of electrons from the
bands that contain the hole pockets at Z to the bands that contain the elec-
tron pockets near I'. Interband electron transfer is generally associated with
a large electron-phonon coupling, which is consistent with our finding of a
large contribution of the A; modes to A.

The superconducting critical temperature can be estimated using the McMil-
lan formula [109]:
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Figure 3.25: (a) Eliashberg function o?F'(w) (continuous line) and integrated
coupling A\(w) (dashed line) of OsNy. The shaded regions are the Bsy,, Bs,,
and A, contributions to o*F. (b) Calculated Fermi surface of OsNy. The
Fermi surface consists of three electron pockets located close to the zone
center, only one of which is visible (green pocket), and of four hole pockets,
two of them centered at Z and two at the S point. (c¢) Fermi surface upon
distortion of the lattice along a A, phonon.
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where the parameter p* is the screened Coulomb pseudo-potential and (wy,)
= 280 K is the logarithmically averaged phonon frequency. For OsNy we
obtain T, ~ 1 K, assuming p*=0.1. We thus conclude that the insertion of
nitrogen enhances the superconducting properties of osmium by raising T\
from 0.65 K in the elemental metal up to 1 K in OsN,.

A careful examination of the electronic DOS of OsNy (Fig. 3.23) suggests
that hole-doping could further enhance T.. Hole-doping in OsNy would, in
fact, lower the Fermi level towards a region of higher electronic DOS and
would, at the same time, stiffen the N-N bonds by partially emptying the
anti-bonding states below Er. The reported synthesis of several nitrides from
different transition metals (Pt, Ir, Os, Pd) suggests that the synthesis of
transition metal nitride alloys, i.e. of compounds with N-N units inserted in
a matrix of mixed metal composition is not impossible. Alloys with different
composition may allow a tuning of the electronic DOS, as already observed
for pure transition-metal alloys [110].
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Figure 3.26: Eliashberg function a?F(w) of hole-doped OsNj (continuous
line) and un-doped OsN; (dashed line).

In order to explore the consequences of hole doping, we carried out ab-initio
calculations of OsNj with a hole doping of 0.5 holes/unit cell, corresponding,
e.g., to a hypothetical alloy with Osg75Req.25N2 composition. As expected
the DOS at Er increases about 2.4 times with respect to the undoped case.
The electron-phonon coupling matrix elements remains approximately the
same in the doped and undoped cases, but the phonon frequencies associated
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to the N-N modes increase by about 200 cm™! (Fig. 3.26), which confirms
the strong coupling of these modes with the electronic states close to the
Fermi level. The frequency increase causes an increase of (wy,) to 310 K. The
total electron-phonon coupling parameter, A, increases to 0.49, leading to a
superconducting critical temperature of ~ 4 K for doped OsNs.

3.2.5 Conclusions

As a conclusion for the last two sections; here I have shown that the OsN,
compound, recovered from DAC experiments to ambient conditions, has the
marcasite structure and is a superconductor. I have also shown that its
superconducting properties are connected with a strong coupling between
the stretching modes of the covalently bonded Ny units with the electronic
states at the Fermi level, similarly to what has been observed in a number
of boron and carbon-based compounds, including MgB,;. We predict an
enhancement of the superconducting temperature by doping OsN, with holes,
which we believe can be achieved experimentally by synthesizing the nitride
starting from a hole-doped Os alloy. Hopefully this work will stimulate the
experimental search for new members of the dinitride family with metallic
character and potential superconducting properties.
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Chapter 4

CO,

Carbon, silicon, and germanium, although isoelectronic and close in their
solid-state behavior in several ways, differ markedly when fully oxidized.
While silicon and germanium are bulk, extended compounds, carbon diox-
ide forms a very stable molecule at ambient conditions. Carbon dioxide is
one of the most abundant volatile materials in Earth’s atmosphere as well
as on other planets in the solar system, and its presence has tremendous
implications on the viability of life as we know it. Its study bears great im-
portance for planetary sciences, because of the enormous amounts of CO,
that are found as clathrates on Mars and other planets, and because of its
presence under a wide range of pressures in the atmospheres of giant planets.
Also, from a non-geological point of view and letting aside environmental
aspects, COy crystals (i.e. COq in the “dry ice” molecular phase Pa3, that
sublimes directly into the vapor phase under ambient conditions) are rele-
vant technologically since they are widely used for cooling, mainly due to the
fact that this phase constitutes an inexpensive, nontoxic, and nonflammable
compound. However, the properties of CO, at high pressures are not clearly
understood in what concerns the transition boundaries between its stable
and metastable, molecular and non-molecular, phases on its phase diagram,

and the structures linked to them (Fig. 4.1) [111, 112].

The search for new allotropic or polymorphic phases of known compounds is
a fascinating area which can lead to materials that exhibit unusual properties
and that are also often attractive from the fundamental point of view. On the
other hand, extreme conditions of pressure and temperature, make possible
the synthesis of many of those new materials, and also open the door to un-
derstanding the nature of chemical bonding, intermolecular interactions, and
collective behavior of these new condensed phases. The outstanding capac-
ity that extreme conditions exhibit to favor the synthesis of new phases and
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compounds is explained by the fact that at high pressures, multiple bonds
such as the double bonds that characterize molecular COs, become unsta-
ble because of the rapid increase of electron kinetic energies induced by the
volume reduction which, finally, overtakes the locally attractive electrostatic
potential energies for valence electrons. These transitions, often occur sys-
tematically among similar elements, and in principle can be also enhanced
with catalytic elements, providing an unparalleled and so far little explored
opportunity for devising and synthesizing novel materials.
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Figure 4.1: Thermodynamic and kinetic phase diagram of solid phases of
CO., taken from Ref. [112], here: continuous lines represent phase boundaries
delimiting CO»-I, II, III, IV, and VII; dotted line, kinetic transformation
boundary between phases IT and III, and also between phases IV and VII; red
lines, kinetic transformation boundary from molecular to non-molecular COs;
orange and blue lines, approximate kinetic transformation boundaries from
molecular COs to the extended covalent phases V and VI, and to dissociation.

The condensed region in the thermodynamic and kinetic phase diagram of
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COg seems to consist so far of five molecular crystalline phases: phase I (or
“dry ice”) which is a true molecular phase, phase II (stable above 12 GPa),
phase III (only metastable, seen above 12 GPa), phase IV (stable above 8
GPa but only at high temperatures), and phase VII (stable around 1000 K at
pressures located between the melting line and 10 GPa) [113], one polymeric
phase found experimentally above 50 GPa and 600 K (phase V, whose crystal
structure remains unknown), one amorphous phase metastable above 50GPa
but at lower temperatures than those of phase V (has been given the name
of “carbonia” by its discoverers [13], and is studied in this work) and, finally,
there is a recent report of a new crystalline phase (phase VI) obtained at
around 60 GPa and 600 K which has been described as consisting of COgq
octahedra [14]. To some of these phases, some outstanding properties have
been associated, as for example: the increase of the strength of COy with
pressure in phase III, and the non-linear optic and superhard properties of
the polymeric phase V [12, 114]. CO5 at ambient pressure is interesting by
itself, given its large quadrupole moment (—4.3 x 10726 esu em?) [115], and
has been used often as a model for understanding the role of quadrupolar
interactions in condensed matter.

Pressure-induced changes often occur in systematic ways, providing new
routes for designing and synthesizing novel materials with advanced opti-
cal and mechanical properties. The structures of the Ny polymer, diamond,
and (-C3Ny at high pressures, for example, can be viewed as being similar
to the assemblages of heavier elements in each periodic group (P, Si, and
B—SizNy, respectively) at low pressures. High-pressure structures for COq
haven’t escaped similar comparisons with their possible counterparts, already
present in SiOy and GeOq phases.

To summarize, in contrast with silica, the stability of the CO5 molecule is so
overwhelming that non-molecular solid state forms appear only at high pres-
sures and are still poorly characterized. This is in agreement with the fact
that, historically, many simple molecular solids made of the first and second
row elements such as CO,, Ny, HyO, CHy, etc. have been often considered
as inert at relatively low pressures, and, in fact, high stabilities of these
molecules have also been very often assumed even at very high pressure and
temperature, as they are found to be major detonation products of energetic
molecules. However, since new chemistry can exist under extreme conditions,
the idea that the two double carbon-oxygen bonds could be alternatively dis-
tributed by forming just single bonds, hence doubling the number of bonds,
or even up to six bonds having then similarities with the polymorphs of SiOs,
has been put forward many times. Because of all the considerations exposed
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above, the study of the high pressure behavior of CO; is crucial for under-
standing planetary evolution, fundamental physics of molecular crystals, and
also for finding possible future technological applications.

In the first part of this chapter I address the important issue of COy amor-
phization induced by pressure. Pressure-induced amorphization has been
previously observed for several compounds, water [116] and silica [117] being
the most studied examples. Such a phase, was experimentally attained for
CO4 by M. Santoro et al. in 2006 [13] and at that time, its structure was
reported to be compatible with a mixture of the two types of coordination
(tetrahedral and octahedral) found also in silica. I report here that, instead,
carbonia [13], and possibly also the novel phase VI [14], contain a sizable
amount of semi-reacted carbon in three-fold coordination.

The second part of the chapter addresses the problem of the recoverability
of extended CO, phases. Carbonia, and also phase VI, have been observed
to be recoverable down to 20 GPa. This is the point in which molecular
COq starts being again more favorable than tetrahedrally coordinated phases.
The extended phase then breaks and gives place usually to dry ice. I show,
that doping with a transition-metal could be the solution for bringing the
amorphous, and probably also other extended CO4 phases, down to ambient
conditions.

Even if we will not provide the final answer to all the questions raised by the
recent experimental findings, computer simulations with their almost unlim-
ited access to hypothetical structures, offer invaluable help in establishing
the nature of properties measured under compression. For example, in sec-
tion 4.1, we will discuss the properties of the amorphous phase also based on
analogies with a series of hypothetical crystals with a range of different local
geometrical arrangements. In the second part of this chapter (section 4.2),
pressure-induced changes on a molecular CO5 system doped with a titanium
impurity are studied starting from two different molecular configurations,
namely, the COs’s IT and III molecular phases. This was done in order to
assess the role of the starting configuration as well as other conditions associ-
ated to the experimental set-up and the sample’s history. This gains special
relevance for CO,, because boundaries between high-pressure phases of CO,
are blurred, up to the point in which even different metastable molecular
phases are easily accessible as starting points before compression.
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4.1 Amorphous phase

4.1.1 Introduction

The carbon-oxygen double bond in CO; is one of the strongest molecular
bonds in nature at ambient conditions, but it undergoes important reorgani-
zation and weakening under pressure. In the half-megabar (50 GPa) pressure
range, solid molecular CO, transforms into extended, single-bonded phases
presumably similar to the ambient-pressure phases of silica (SiOs) and ger-
mania (GeOs) [118, 112]. Vibrational spectra and diffraction patterns of
CO3-V, the first reported non-molecular crystalline phase of CO, suggest
structural similarities between CO,-V and two tetrahedral phases of silica:
cristobalite and trydimite [112, 12, 114, 119, 120, 121, 122, 123, 124, 111].
Ab-initio calculations find a [-cristobalite-like crystal with I42d space group
as the most stable phase of COy at 50 GPa, among a number of silica-like
isomorphs [122, 123]. The analogy with silica has been recently extended to
include a second crystalline form (phase VI) [14], and an amorphous, non-
molecular form of COy (a-CO; or carbonia) [13], which will be the topic of
this section. Similarities between the infrared (IR), Raman and x-ray diffrac-
tion data of a-COy with those of other group IV dioxide glasses were taken
as evidence that carbonia is structurally similar to SiO, and GeOs glasses at
high pressure, and thus characterized by a mixed tetrahedral and octahedral
coordination for carbon. In particular, IR spectra for carbonia at 50 GPa
match those of octahedral silica glass at similar pressures [13], once frequen-
cies are rescaled to account for the atomic mass difference between Si and
C. Moreover, the x-ray structure factor of carbonia was found to be similar
to that calculated for a hypothetical high-pressure silica-like CO4 glass ob-
tained by replacing Si with C in a theoretical sample of compressed SiO glass
scaled to match the CO5 volume [13]. Octahedral coordination has also been
proposed to characterize phase VI, which, according to diffraction data, may
be isostructural to stishovite [14]. However this picture is not supported by
first-principle total-energy calculations [119, 120, 122, 123], which predicted
a transition pressure from four- to six-fold coordination at around 400 GPa
[120]. First-principle molecular dynamics simulations up to 120 GPa and
at two different temperatures (1000 K and 2000 K) also do not yield any
evidence of octahedral coordination [119].

In this section, I show that we can resolve this controversy by combining:
first-principles constant pressure molecular dynamics, density-functional per-
turbation theory and novel experimental IR spectra, of a-COs. The final
conclusion being that the new a-CO; is not SiO,-like, and instead contains
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a sizable amount of carbon in three-fold coordination, with the remaining
carbons in four-fold (tetrahedral) coordination.

4.1.2 Methodology

Calculations were performed with the Quantum Espresso package [53] em-
ploying density functional theory and the Perdew-Burke-Ernzerhoff exchange-
correlation functional [50]. A norm-conserving pseudo-potential description
of the ion-electron interaction was used together with a plane-wave basis
set for the electronic wave functions and a kinetic energy cut-off of 80 Ry.
Brillouin-zone integration was found to be converged with a uniform grid
of 2 x 2 x 2 points for the 24-atom super-cell and 7 x 7 x 7 points for
smaller samples. Structural optimizations were performed on lattice parame-
ters and atomic coordinates, at a pressure of 60 GPa, unless otherwise stated.
Phonon frequencies and IR /Raman intensities were calculated using density-
functional perturbation theory [17].

The simulated sample used for comparison with the experimental data on
carbonia was generated starting from an amorphous structure obtained in a
previous ab-initio molecular dynamics simulation [119]. The static structure
factor calculated for this sample shows reasonable agreement with the exper-
imental data on a-CO, [13], the sample didn’t contain any homo-polar bond
but contained a small number of unsaturated bonds, indicating incomplete
polymerization. In order to improve the quality of the simulated sample, it
was quenched to zero pressure and 0 K, annealed for 5 ps at 200 K [31], and
finally brought to 60 GPa at 0 K. All bonds were saturated by the annealing
process and the structure factor was essentially unaffected, demonstrating
that the sample is locally-stable even at zero pressure. A phonon calculation
on the resulting amorphous structure yielded only non-imaginary frequen-
cies and hence, it further confirms that the sample stays mechanically stable
also at 60 GPa. The simulated sample contains 60% of the carbon atoms in
four-fold coordination, whereas the remaining 40% are three-fold coordinated
(Fig. 4.2(a)), a coordination state not yet observed in significant quantities
in other group IV dioxide solids.

For the experimental studies carried out by our collaborators at the European
Laboratory for Non-linear Spectroscopy (LENS) in Florence, pressurized COq
(6 bar, purity > 99.99%) was cryo-loaded, in the liquid phase, in a diamond
anvil cell equipped with type IIa diamonds. The sample diameter and thick-
ness were typically equal to 100-150 pm and 25-40 pm, respectively. The
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Figure 4.2: Simulated structure and IR spectrum of carbonia. a) Annealed non
molecular a-COs simulated sample at 60 GPa, showing four-fold coordinated car-
bon atoms (blue), three-fold coordinated (green) and oxygen (red). b) Theoretical
IR absorbance (black) and its local projection on atoms linked exclusively by single
bonds (dashed blue) and on atoms with a double bond (carbonyl sites, in green).

local pressure was measured by the R1 ruby fluorescence band shift [125].
Several pressure-temperature scans of the phase diagram were performed up
to 53 GPa and 710 K, by means of uniform resistive heating of the cell. In
particular, two isothermal pressure scans were performed at temperatures
equal to 473 and 633 K, respectively, in the pressure range of 20-52 GPa, in
order to monitor the formation of a-COy from the molecular solid phase II,
which occurred for pressures above 40 GPa. Temperatures were measured
by a J-type thermocouple, placed 1 mm away from the diamonds. Details of
our IR spectroscopy apparatus are reported elsewhere [126, 127]. The range
of high temperatures investigated was the most challenging point of the ex-
periment, since the hot sample region produces a huge thermal-radiation
background which affects the signal-to-noise ration of the in situ IR spectra.

4.1.3 Results and discussion

At the onset of the transformation the amount of a-CO, increased upon in-
creasing pressure, as shown by the strong, non-molecular IR absorption band
between 800 and 1500 cm ™! (Fig. 4.3(a)). The pressure rise was stopped when
about 10% of the sample had transformed (at about 52 GPa), in order to
avoid saturation of the IR absorption. Comparison with the data reported in
Ref. [13] and with data along the two isotherms shows that the shape of the
infrared bands depends on the sample history (see Fig. 4.3(b)), as expected
in the formation of amorphous, metastable materials. A previously unno-
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Figure 4.3: IR spectra. a) Experimental IR spectra along the 473 K isotherm
showing the onset of carbonylic signatures around 2000 cm™!. Grey areas mark
regions dominated by diamond absorption. b) Calculated (up) and experimental
(lower three) spectra. All calculations were done at 60 GPa. Experimental samples
were obtained through different P-T paths, the lowest in temperature (red curve)

has already been reported in [13].

ticed peak can be clearly distinguished in the experimental spectra on the
two sides of the diamond absorption band, slightly below 2000 cm~!, whose
frequency differs clearly from the frequency of the molecular stretching mode
(above 2400 cm™!). The intensity of the new peak changes concomitantly
with changes in the other a-CO, signatures at 800-1500 cm™! (Fig. 4.3(a)),
demonstrating that this feature belongs to the vibrational spectrum of the
new phase. The IR spectrum calculated at 60 GPa (Figs. 4.2(b), 4.3(b))
shows remarkable agreement with the experimental data. Projecting the
displacement components of the calculated modes on the different atoms
(Fig. 4.2(b)) shows that the broad peak around 2000 cm™! is completely lo-
calized on the carbonyl (C=0) units of the three-fold coordinated carbon
atoms. The main peak between 800 and 1500 cm™! is primarily localized
on tetrahedral units, and can therefore be interpreted as the analogue of the
peak centered at 1050 cm™! in the IR spectrum of SiO, glass at ambient
conditions [128]. To summarize, diffraction patterns and IR spectra on car-
bonia point clearly to a local structure consisting of a mixture of four-fold
and three-fold coordinated carbon atoms, in similar proportions.

Even though mixed three- and four-fold coordination explains the experi-
mental data, we performed an extensive theoretical search for octahedral
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structures that might also be compatible with the experimental results. We
started by considering the octahedral structure proposed in Ref. [14]. In
order to achieve this, we used a super-cell with 4 COs units and fixed its
volume and lattice parameters to the experimental values, then, we mim-
icked disorder by placing the four carbon atoms in positions chosen randomly
among the equivalent possibilities given by Figure 5(b) in Ref. [14]. Struc-
tural relaxation led the structure to decompose back into molecular phase II.
Similar results were obtained starting from stishovite, a-PbO, and CaCl,-
like structures. Starting atomic internal parameters for these phases were
taken from their silica counterparts [129] and lattice parameters were scaled
to match COy volumes. By symmetry constraints, we managed to stabilize
a metastable stishovite-like octahedral structure at 60 GPa and were able
to calculate its IR spectrum (Fig. 4.3(b)), which we take as representative
of COy octahedral structures. The position, shape and distribution of the
peaks is completely different from the observed spectra in carbonia. Calcu-
lated frequencies do not exceed 1500 cm~! and thus fail to reproduce the high
frequency modes at ~ 2000 cm~!. It is interesting to remark that a strong
peak around 2000 cm ™!, i.e. at a position coinciding with the carbonia C=0
modes, is also reported in the Raman spectra of phase VI [14] (Fig. 4.4(a)).

Hence, theoretical evidence suggests that at least up to 60 GPa, octahedral
coordination for carbon is not likely to be stable nor to be able to explain the
observed vibrational spectra of carbonia and phase VI in what regards the
IR/Raman active modes close to 2000 cm™!. In fact, the Raman spectrum
of phase VI [14] can be interpreted as composed of narrow crystalline peaks
emerging from broad amorphous components similar to those reported for
carbonia. This suggests the possibility that crystalline counterparts of car-
bonia, i.e. phases with mixed three-/four-fold coordination could exist, even
if in a metastable form, and that phase VI might be one of them. In order to
clarify this issue, and provide a theoretical framework for the interpretation
of the observed vibrational spectra of carbonia, IR and Raman spectra were
calculated for I42d S-cristobalite and for three hypothetical model crystals
containing pure three-fold coordinated (poly-carbonyl) and mixed, three- and
four-fold coordination of the carbon atoms (Fig. 4.5). The two mixed struc-
tures (mix-a and mix-b) were chosen as representative of different relative
amounts of three-fold and four-fold coordination, and different arrangements
of the different carbon species. In mix-a, tetrahedral and carbonyl units
are arranged in a periodic alternate fashion, in mix-b instead, each carbonyl
group is separated by a pair of tetrahedral units. Table 4.1 reports the rela-
tive percentages of single- and double-bonded oxygen atoms present in these
samples.
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Figure 4.4: Raman spectra. a) Spectra from experiments on a-COy at 76 GPa
[13], phase VI at 62.5 GPa [14] and calculated for the simulated amorphous sample.
Arrows indicate interpolated positions of the peaks of carbonia at 60 GPa, based on
measurements at 43 GPa and 76 GPa. Grey area marks the region dominated by
diamond absorption. b) Spectra calculated for the three- and four-fold coordinated
crystals described in the text. Arrows mark the position of peaks in phase V.
c¢) Spectra calculated for the mixed coordination crystalline structures shown in
Figure 4.5. All calculated spectra were obtained at 60 GPa.



CO, 75
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Figure 4.5: Hypothetical structures. a) COy [-cristobalite (100% four-fold co-
ordinated structure), b) planar chains with three-fold coordinated carbon atoms
(100% three-fold coordinated structure), c) layered structure (mix-a) containing
single tetrahedral units placed between three-fold coordinated carbon atoms along
the layers, d) layered structure (mix-b) with two interconected tetrahedral units
placed between carbonyl units.

In Figure 4.4, we compare the Raman spectra reported for carbonia and phase
VI, with those calculated for the four theoretical structures, as well as for
the simulated carbonia sample. We remark that our calculated 3-cristobalite
Raman spectrum matches perfectly (arrows in Fig. 4.4(b)) the observed spec-
trum for phase V at 60 GPa [12, 114, 111]. As expected, the peak around 2000
cm ™! only appears in structures containing carbonyl (C=0) units. Therefore,
carbonia and phase VI must contain sizable amounts of carbon in three-fold
coordination. On the other hand, the series of lower frequency peaks be-
tween 600 to 1200 cm ™!, which, similarly to the IR spectral decomposition
(Fig. 4.2(b)), are related to tetrahedral carbon-coordination, display a large
variation among the four candidates. The main peaks in carbonia and phase
VI (Fig. 4.4(a)) lie at a frequency 13% and 24% higher than the main peak of
B-cristobalite, respectively (Table 4.1), whereas the hypothetical structures
containing three-fold coordinated carbon appear to give a much better agree-
ment (Figs. 4.4(b), 4.4(c)). Table 4.1 shows that, in general, the position of
the main Raman peak correlates well with the relative amount of oxygen
double-bonded to carbon, indicating that while the origin of this peak can
be traced to the tetrahedral units, its precise frequency, instead, depends
strongly on the coordination of their local environment. This also serves
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mix-a | poly- mix-b amor- | (3 - crist-
carbonyl phous | obalite
Freq.! (em™) | 1150 1090 1010-1060 | 900 820
C3=0 (%) 50 50 25 22.9 0
C3-0-C4 (%) 25 0 50 29.2 0
C4-0-C4 (%) 25 0 25 39.6 100
C3-0-C3 (%) 0 50 0 8.3 0

Table 4.1: Dependence of the main (non-carbonylic) Raman peak on the oxygen
coordination inside the hypothetical samples. C3 and C4 stand for 3- and 4-fold
coordinated carbon sites respectively. Pressure of the samples is 60 GPa.

to justify the small frequency difference observed between the most intense
band of carbonia (interpolated arrows in Figure 4.4(a)) and the amorphous
shoulder seen in the spectra of phase VI. Similar dependence extends to the
frequency position of the theoretical IR peaks (not reported), which accounts
for the shape variation of the measured IR spectra of carbonia (Fig. 4.3(b))
upon their history and P-T conditions.

Based on our findings, we speculate on the thermodynamics and kinetics
of formation of carbonia. Figure 4.6 reports calculated enthalpies for poly-
carbonyl and (-cristobalite COs with respect to molecular phase II. Max-
imum enthalpy differences between these phases are about 1.4 eV/CO, at
ambient pressure, but drop to 0.4 eV/CO, at 20 GPa, indicating that phases
with three different carbon coordinations (two-, three- and four-fold coor-
dination) become energetically accessible when extended phases form. Car-
bonia starts to appear in experiments at around 48 GPa, much higher than
the theoretical transition pressure of the molecular phase to [-cristobalite
COg but close to the crossing point between the molecular phase and the
three-fold coordinated phase (Fig. 4.6). The formation of the crystalline
four-fold coordinated phase V is only observed experimentally well within
its thermodynamic range of stability [111], which is consistent with a large
kinetic barrier. We infer that carbonia is a metastable form of CO,, reached
kinetically from the collapse of the molecular phase and we speculate that
states with three-fold coordination are an intermediate, long-lived step along
the transformation of CO4 into thermodynamically stable tetrahedral phases
[130]. We also argue that disorder and three-fold coordination may be in-
timately connected in CO,. Disorder in silica glass is in fact known to be
linked to the flexibility of the tetrahedral SiO5 network, which permits a large
variety of competing configurations and topologies with similar energies. As
shown in Ref. [122], CO, tetrahedral phases lack such bond flexibility, since
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Figure 4.6: Enthalpy curves. Enthalpy difference per COy unit for the -
cristobalite phase (Fig. 4.5(a)) and the three-fold coordinated poly-carbonyl
(Fig. 4.5(b)), with respect to the molecular phase II of COs.

the reorientation of the internal tetrahedral subunits implies variation of the
very stiff C-O-C angle. Three-fold coordination can thus be seen as a mech-
anism to increase the flexibility of the network and generate a large number
of quasi-degenerate configurations, ultimately leading to disorder.

4.1.4 Conclusions

In this section I have shown that the local atomic structure of a-CQO4 is
qualitatively different from that of other group IV amorphous oxides, as it
contains mixed three- and four-fold coordination of the carbon atoms in sim-
ilar proportions. Mixed coordination and disorder are made possible by the
quasi-degeneracy of three different coordination states for carbon in CO, at
high pressure. We speculate that CO9-VI may be the crystalline counterpart
of carbonia, but its crystal structure remains to be determined. Because car-
bonia is likely to be an intermediate, metastable state of the transformation
into crystalline superhard phases like phase V, our findings hopefully will
help improving strategies to facilitate the synthesis of such phases.
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4.2 Catalysis of extended CO, phases

4.2.1 Introduction

Given the fact that the amorphous phase obtained from CP-MD in the last
section results from a very quick shockwave-like simulation, it is quite prob-
able that its structure is not representing the best possible arrangement that
those atoms could have in such a phase in terms of ground-state energy or
enthalpy. This consideration remains true even after taking into account the
fact that the sample was quenched to ambient pressure and it self-healed its
own defects. Still, as we have seen in the previous section, this sample shares
many similarities with the properties observed for the real amorphous phase
in experiments. More similarities appear if we consider its equation of state
(shown in Fig. 4.7) which clearly shows a thermodynamic transition point,
when coming from phase II, at pressures above 40 GPa. Such a transition
pressure is at least 20 GPa higher than the one calculated for a prototypical
tetrahedral silica-like structure ((-cristobalite) shown in the previous section,
but coincides fairly well with the observation that the amorphous phase is
obtained experimentally at pressures around 48 GPa [13]. Experimental ev-
idence then, seems to indicate that for the molecular COy system it is much
easier to overcome the kinetic barrier to arrive into a phase containing (semi-
reacted) three-fold coordinated carbon mixed with four-fold, than to a phase
completely made out of (fully-reacted) four-fold coordinated carbon atoms,
even if the last one is much lower in enthalpy. Given the existing expec-
tations, regarding the applications that would become possible once having
such extended phases, it would then be desirable to devise a method that
lowers the transition pressures of formation of extended CO5 phases, and
that also permits us to attempt its recovery to ambient conditions, even if it
is only in a metastable state.

DFT can also be used as a tool to design stable or metastable new mate-
rials based on existing molecular species. In this chapter, the ab-initio MD
technique is used to investigate the changes induced by pressure on a CO,
molecular sample under the presence of an impurity, which will act as a cat-
alytic element to help the transition. With this approach we intend also
to tackle the problem of the recoverability of the final phase. The chosen
transition-metal impurity, titanium, was selected for the reason that it can
form stable compounds with different coordination numbers, and also, be-
cause many of these compounds are available commercially. Then, our aim is
to simulate the introduction of some molecule containing Ti inside a molecu-
lar CO4 sample in a low-coordination state, and then check if after applying
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Figure 4.7: Enthalpy difference per CO, unit, for the amorphous phase with
respect to the molecular phase II.

pressure its coordination changes to a higher value; which would then imply
the activation of new bonds on nearby CO, molecules and hence the start
of a polymerization process (see diagram in Fig. 4.8). Additional to this,
titanium could also help avoiding the possible formation of the C,O4 rings
(Fig. 4.9) predicted theoretically to occur under compression [130], and help
stabilizing the new phase, since it is known that transition metals, acting as
activation centers in polymerization processes, usually help the continuous
growth of polymeric chains.
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Figure 4.8: Diagram showing the reaction path proposed for the catalysis of
the CO4 polymer.
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Figure 4.9: Carbonyl units found in Ref. [130] at very high temperatures.
Such structures do not contain any dangling bonds and can hinder polymer-
ization.

4.2.2 Methodology

First of all, I will provide some details regarding the way I set the system for
the use of the ab-initio MD code (described in section 2.5). A prototypical
input file for this code is included in Appendix C. This input tells the code,
exactly what our system is and under which conditions we want it to be
simulated. The first thing we should notice is that our input file lacks the
information related to the set of k-points in which we want the self-consistent
minimization to be carried out (see section 2.5) this is so, because our MD
code only allows simulations to be performed at the Gamma point k=(0,0,0).
A second restriction, inherent to our code, is the fact that we are only allowed
to use norm-conserving pseudo-potentials; this restriction affects the choice
of the cut-off that we are going to use for our plane-wave basis set which, for
norm-conserving pseudo-potentials, has to be much higher than the one we
usually would require for an ultra-soft pseudo-potential (see: ecutwfc = 90
Ry, in the example shown in Appendix C).

The Gamma-only k-point sampling, carries the inconveniece of offering an
incomplete sampling of the reciprocal space, especially if the simulation cell
is too small. In order to relieve a bit the inaccuracies derived from this
problem, one usually simulates a super-cell containing many primitive cells
inside it, so that, the volume to be repeated periodically gets larger and the
reciprocal lattice is more densely sampled.

In our case a primitive cell for our CO, starting phase, phase II, is composed
of two molecules with three atoms each. Our first approach was then, to
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construct a 3x3x3 super-cell of exclusively carbon dioxide without titanium,
which then contained 162 atoms. This number of atoms is considered big for
the processing standards of the computers available nowadays, then, we were
constrained to the use of the parallel version of the Quantum Espresso code
on an IBM-sp) cluster of computers, since the performance of our codes scale
very well with the number of processors. A typical run on this computer,
delivered one simulation step every 10 seconds while using 64 processors in
parallel (these are 8 nodes on a sp5 cluster like the one available at CINECA).
In the input example, we can see that every 10 steps (iprint = 10) we asked
the code to write the positions, velocities, and cell-vectors of our system
(among some other relevant quantities) to a set of files, in this way, the
sampling rate of the observable quantities in our simulation was one every: 10
steps x 8 a.u./step x 0.024189 fs/a.u ~ 2 femtoseconds, this is a good sampling
rate for the movement of the ions in terms of the intrinsic frequencies of our
system, that we could need if we wanted to calculate dynamical averages
later on. The parameter dt = 8.0d0, given in atomic units of time, is the
time step that we used for the electronic-dynamics integration, and it was
chosen after doing some tests in which we varied its value over a certain range
(that typically goes from 1 a.u. up to a maximum of 12 a.u.). In such test,
we check if the Lagrangian energy of our system remains conserved during a
short simulation (~ 100 steps). We observed that no major change occurred
to the conserved energy even by using a time step dt = 14, but for better
accuracy, also given the fact that our simulations were going to be long, we
decided for 8 a.u. The behavior of our conserved energy along the longest
CP-MD simulation that we did, even if it is just a technical aspect, is shown
for the sake of completeness in Figure 4.10. Other input parameters in the
&CONTROL section of the input file are briefly described in Appendix C.

Finally, among all the parameters present in the input file, the electronic mass
“emass” is probably, for Car-Parrinello molecular dynamics simulations, the
most subtle one. The electronic mass controls the dynamics of the electronic
degrees of freedom in the Lagrangian dynamics, i.e. the dynamics that in CP
is associated to the Kohn-Sham electronic wave functions. Such a dynamics
should be much faster than the ionic dynamics. However, even if ‘fast’ means
‘accurate’, in practice we prefer to have a compromise that allows us to utilize
the biggest possible time-step for the integration of the electronic motion, in
order to access longer simulation times with the same computational effort.
This makes the emass choice an important one, and, as for dt, it has to be
tested against the approximate conservation of the fictitious kinetic energy
of the Kohn-Sham orbitals’ energy. If emass is too big, we will be able to
use also large values for dt and cover a lot of time with our simulation,
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Figure 4.10: Detail showing the behavior of the conserved Lagrangian en-
ergy as a function of the simulated time at the pressure for which we did
our longest run (120 GPa); the difference in conserved energy between the
beginning and the end is lower than any expected contribution to the energy
coming from thermal effects, and the run was so long with respect to the
others, that we can say that the example shown in the figure was our worst
case.

however, by doing this we are making the electronic dynamics comparable in
its frequency spectrum to the ionic one. Such similarity of frequencies would
allow the transfer of energy from the ions to the electrons and can produce
unphysical heating effects on the electrons and cooling of the ions; which
reflects on a non-conservation of the ionic-energy, and takes the electronic
Kohn-Sham wave functions too far away from their ground-state values. Once
we find the highest possible value for dt and emass that guarantee ionic
energy conservation and good integration of the electronic degrees of freedom,
we can proceed to start our simulation. But still, as reported by Tangney and
Scandolo [30], some tuning will be needed at a certain point of the simulation,
in order to account for the fact that the sole presence of an electronic mass
generates, in most systems, some dragging forces that slow down the ions,
that take their motion far from their real dynamics and affect the calculation
of observables that have a dependence on correlations with respect to time.
The recipe in this case is to rescale the ionic masses to appropriately chosen
lower values, restoring in this way the normal dynamic behavior of the ionic
motion [30].

4.2.3 Simulation protocol

Some preliminary simulations were performed starting from phase III on a
CO, sample formed by 48 atoms, with an inserted titanium atom that was
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four-fold coordinated to two oxalate units (Cy04) constructed by using four
neighboring CO, molecules, and finally compressing. The decision of using
this phase as the starting point, was taken at a time in which it wasn’t
very clear which phase was the actual starting molecular CO, phase in com-
pression experiments at very high pressures. Now we know that phase III,
although only metastable, can be easily obtained starting from dry ice above
12 GPa and in a wide range of temperatures, and it is found in the same
range of pressures in which the stable phase II is stable (Fig. 4.1). This makes
it clear that the two molecular phases IT and III can be used experimentally
as starting points to form new non-molecular compounds. It was for this
reason, that after some frustrating experiences with the more stable phase
I, we decided to continue our test simulations in phase III even to higher
pressures.

The details on how we did the set-up of the system are completely analogous
to the ones that I am describing later for the definitive simulation in the
next paragraphs. The importance of this preliminary test, resides in the
fact that it shows that the mechanism proposed in Figure 4.8 indeed holds,
and that the pressure at which it occurs is much lower than the one needed
for polymerizing the same kind of system without an impurity [119]. The
original test was done just up to a pressure of 24 GPa where second neighbors
clearly started to join the polymer. But, as I mentioned before, recently it
was decided to extend this study up to a completely polymerized stage, due
to difficulties that we encountered starting from phase II, the evolution of
such a complete polymerization process is shown for reference in Figure 4.11
and makes evident that much lower temperatures and pressures are needed
in order to achieve the full polymerized state, when starting from phase
ITI. The final conclusion being that we obtained and recovered to ambient
conditions, a polymer consisting of 50% of three-fold coordinated carbon
atoms (carbonylic or semi-reacted sites) and 50% of four-fold coordinated
tetrahedral (fully reacted carbon) sites, with an energy difference between
its molecular-starting and quenched-final conditions of the order of 0.5 eV
per CO5 molecule. Such a short, preliminary run, supported our conjecture
that the polymerization can indeed be catalyzed by the impurity, and led us
to setting up a more realistic simulation with a more careful choice of the
parameters.
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Figure 4.11: Compression and recovery P-T path for CO,, starting from the
molecular phase III.

Before starting our main simulation, we had a look in the literature available
at the time (early 2004) in order to get an idea about which one could be
the most probable starting molecular phase for a real COy polymerization.
There was a confusion around this regarding the fact that, at the pressures
of interest for such experiments, the only stable phase was the molecular
phase II while it was also very clear that a second molecular phase (phase
IIT) was also commonly used in experiments and present at those pressure
conditions, then, there was no agreement on the exact place to locate the
kinetic transition boundary between the two. We then concluded that it was
much safer to start our simulation from the phase II of CO,, since it was
the only one to be completely stable and the most likely to be attainable
at any range of initial conditions in real experiments. A sample of pure
CO4 was created in this phase, and its internal coordinates together with the
shape of the cell were relaxed in a volume equal to the one that this phase
COg should have at zero pressure. From the observed mismatch between the
internal pressure thus obtained and the one we knew from the EOS for this
phase at that volume (i.e. 0 GPa) we were able to establish the magnitude
of the so-called Pulay stress [137]. In our work, the Pulay stress was 4.75
GPa. An alternative method for calculating the Pulay stress, which we didn’t
use here, consists of repeating the calculation for the super-cell with a much
higher energy cut-off and calculating the difference between the two stresses
thus obtained, that would clarify the dependence of the pressure inside the



CO, 85

system with the cut-off.

After relaxing the ionic and cell degrees of freedom for our 162-atom super-
cell, we proceeded with the insertion of one Ti(C204)y (titanium di-oxalate)
molecule (Fig. 4.12). This, was done by extracting four neighboring COx
molecules from the phase II super-cell, letting a hole where our Ti(Cy0y),
molecule can fit, then the molecule was inserted and its atomic positions
allowed to relax, while keeping the CO, matrix frozen. After having done
this, we let both the inserted molecule and the COs phase II, to relax until
all the ions inside the super-cell reached their equilibrium positions at T =
0 K. The next step is to mimic thermal disorder by displacing randomly the
ions by very small distances from their equilibrium positions from which, by
MD and using the so-called thermostats, we will reach the desired conditions
of pressure and temperature.

Figure 4.12: Original set-up, showing a single Ti(Cy04)s molecule embedded
in a bulk sample of molecular CO5 in phase II.
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4.2.4 Results and discussion

The first P-T condition that we targeted corresponded to ambient pressure
and temperature. After having done this, we gave the system 2 picoseconds
to become stable while steadily increasing the pressure until we got a very
well thermalized system at 4 GPa. Then we proceeded to rescale the ionic
masses as described in Ref. [30] in order to account for the dragging due to
the electrons on the atoms that was mentioned before. What we did after
that, has been schematized in Figure 4.13. First of all, we tried to repeat
the P-T conditions used for the phase III test, by following those conditions
we arrived at the point (A) in Figure 4.13 where again we noticed that at
pressures below 10 GPa, the reaction predicted by the left part of Figure 4.8
also occurred for phase II (see Fig. 4.14).
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Figure 4.13: P-T path for compression and quenching of CO,+Ti start-
ing from phase II. Arrows: red are isobaric simulations, green represent
isotherms, dashed-orange are shock-wave simulations and blue represent si-
multaneous P-T changes.

By going to higher pressures while maintaining a constant temperature we
arrived at the (A) point (24 GPa, 300 K) for which, in the case of phase
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ITI, the second nearest neighbors of the Ti were already starting to join the
polymer, but for phase II nothing was happening. We therefore decided to
perform a fast shock-wave compression from the (X) point in which the first
step of the polymerization reaction was fulfilled (8 GPa at 300 K, Fig. 4.14)
bringing it to 38 GPa and 400 K in 3.5 picoseconds. What we obtained
from this trial was a sample in which the di-oxalate plus the two neighboring
molecules already linked in (A), were rearranged in a way that didn’t let any
dangling bond on the carbon atoms to continue polymerizing, while the rest of
the system continued to be molecular. This is a good place to remark that,
in absolutely none of our calculations, we observed the predicted isolated
carbonyl units predicted by Ref. [130], which confirms that the temperatures
needed to arrive to those configurations within the time scales of a typical
ab-initio MD run, are very large. The fact of not being able to see any
independent, parallel initiation of a polymerization process not linked to our
transition-metal impurity, also means that under the conditions of pressure
that we simulated a pure CO5 sample would remain most probably in its
molecular state. We finally corroborated this assumption by simulating a
system of the same size without titanium up to 55 GPa and 900 K, and
found that the system remains molecular.

Figure 4.14: First step in the polymerization process, observed at 8 GPa
and 400 K. It shows that the predicted change in the coordination of the Ti
atom indeed occurs, and this leads to the creation of dangling bonds in the
attached CO5 molecules.

Simultaneously, after reaching point (A) it was decided to go back to a lower
pressure (14 GPa) and start heating the system slowly to allow more time
for the normal reorientation of the molecules. Here, after having reached a
temperature of 1000 K the sample was again compressed up to 24 GPa but
still no polymerization took place. The conclusion then was, that phase II
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is much more difficult to reorient than phase III and this observation may
imply that phase II is, indeed, much more stable (also due to kinetic barriers)
than phase III.

Then, it was again decided to continue heating and compressing phase II
until we arrived at the (B) point (40 GPa, 400 K) where we observed the 2
neighbor inclusion into the polymer-seed, that was also observed but at half
this pressure when starting from phase III. At this point, it was not clear
which kind of role the temperature was playing, so, we branched our simula-
tion towards higher and lower temperatures, at the same pressure, without
observing any substantial change apart from the fact that, due probably to a
spurious artifact introduced by the Nosé thermostat when we increased the
temperature from 900 K to 1000 K, the polymer seed dissolved and went back
to a previous stage at those higher temperatures. Then, we continued our
simulation towards higher pressures while decreasing a little the temperature
until, starting at 55 GPa, a noticeable increase in the size of the polymer was
observed. At this pressure we also quenched the sample to 300 K and noticed
no structural changes. Here again we decided to perform a shock-wave test
to reach these conditions starting from the same sample already discussed at
8 GPa and 300 K. We found that the CO5 units originally attached at point
(X) to the Ti(Cy04)2 molecule and a few more this time, decided to form a
stable configuration with no dangling bonds available, the rest of the sample
was still molecular.

The behavior of the enthalpy for simulations going up to the (C) point (180
GPa, 700 K) is shown in Figure 4.15. We observed, that a bit below 80 GPa
the molecular character of the sample was drastically changed, as can be seen
from corresponding changes in enthalpy and the detailed study of the carbon
coordination shown in Figure 4.16.

In Figure 4.16, we can see that to each strong change in coordinations (left)
corresponds a noticeable decrease in the enthalpy (right), which in the first
case can be related to a noticeable collapse in the volume. Here we distinguish
two regimes, one that starts at 55 GPa and ends around 80 GPa in which
the polymerization process helps the reduction of the total volume of the cell
by absorbing the isolated carbon molecules, leading to an evident change in
enthalpy; and other regime, going from 90 up to 120 GPa in which the system
becomes more compact, but this time by preferring four-fold coordinated
carbon atoms at the expense of the three-fold coordinated ones, which leads
towards a phase that is predominantly tetrahedral. In the range from 55 to
80 GPa the volume reduction was of the order of 20%, while in the range
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Figure 4.15: Enthalpy curves along the main simulated path. When chemical
reactions take place there is a substantial reduction in the total energy and
volume occupied by the system and the enthalpy decreases.
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from 90 to 120 GPa the reduction was only of the order of 8.5% but there
was a major gain in terms of energy. The volume changes reported above
also include the normal decrease in volume due to compression itself.

The three-fold vs. four-fold coordination ratio found in our simulations of
Ti+CO; equals that for carbonia (40% and 60% respectively) at 110 GPa
and 600 K when starting from phase II, and at 80 GPa and 400 K when
starting from phase III. However, in order to polymerize a pure CO, sample
up to such a coordination ratio, the authors in Ref. [119] reported as for-
mation conditions, pressures above 100 GPa at 2000 K starting from phase
ITI. Hence, after having demonstrated in the previous chapter that the phase
found by Ref. [119] in simulations, is indeed the one that has been observed
in experiments starting from 48 GPa, we can now speculate that the onset of
our polymeric transition, predicted to be around 60 GPa starting from phase
IT and below 40 GPa starting from phase 111, may be highly overestimated as
well. Incidentally, as it has been already suggested here, and also based on
observations from recent studies made on pure CO, by our group in collab-
oration with R. Martonak and E. Tosatti using meta-dynamics [138], on the
time scales of a typical CP-MD run it is much easier to observe transitions
towards extended phases when we depart from phase III than when we start
from phase II, meaning that the transition from phase II involves a larger
kinetic barrier.

In previous sections of this work we have shown also that the energy difference
per COy molecule between the molecular phase II and mixed or tetrahedral
extended phases is not lower than 1.2 eV per molecule (see Fig. 4.7), while the
same energy difference if we include titanium becomes 0.68 eV with respect
to the molecular phase II and 0.5 eV with respect to phase III, this points to
a relevant increase of the chances of making this new material recoverable.

Between 50 and 80 GPa, the polymer grows freely (limited only by the diffi-
culty, inherent to our short-time ab-initio dynamics, to overcome even small
kinetic barriers linked to slow translational or rotational modes) until some
branches start touching the polymer’s images belonging to nearby cells. Af-
ter this occurs, it gets harder and harder to make the molecules that are not
yet attached to follow the trend. An extreme example of this problem is what
we actually saw during our simulations when at 80 GPa, two molecules re-
mained still isolated (Fig. 4.17) inside one of the cavities that are commonly
found in many places of this structure, as well as in carbonia, and that may
arrive to have sizes of 6 A in diameter. This doesn’t affect the overall re-
sult, that the real full polymerization takes place at 60 GPa, however, in



CO, 91

T T T T T

\"NWWM 120 GPa

P

£

k)

s ~

g &

E >

S =

S £ -‘W\/'\WV\‘

] ] e 70 GP:

g 53 WWWMMWM @

]

<
3 L“v“JAJ'V"’MMﬂw.'\\,Awnrmwﬂm" 60 GPa
Lov v b v b e b b

20 40 60 80 100 120 140 160 180 0 10000 20000 30000
Pressure (GPa) Simulation steps

Figure 4.16: Left: Trend of the carbon coordination vs. pres-
sure. The total number of carbon atoms is 54. Dashed lines
indicate the behavior during quenching. Right: Detail of the
enthalpy behavior in the portions of the simulation where the
structure changes more drastically

order to obtain a fully-polymerized sample that later can be quenched and
then used to compare its energy against its molecular counterpart, we need
to overcome this problem. This can be done in principle by increasing the
pressure. However, even by increasing P up to 120 GPa we noticed that in
the vicinity of our isolated molecules there were no clearly exposed dangling
bonds coming from the polymer. The observation that this was not so easy
to achieve also renders clear the idea that in general, it is easy to form C-O
single bonds in the initial stages of the polymerization, but once the polymer
starts to grow, transformation of the residual C=0 double bonds requires
large concerted rearrangements that cannot take place in the ab initio MD
time scales. The final result at 120 GPa, was a polymer that still looked like
the original, but with the previously isolated COy molecules now arranged
either in a “Polymer—O-—C—O—Polymer” or in a “Polymer—O—C—0"
fashion, which then leaves two and one dangling bonds in the carbon atoms
respectively, and makes these units look like a linear CO5 molecule. Even by
going up to 180 GPa, it was by no means possible to eliminate completely
from our sample the units containing dangling bonds, and one of them re-
mained looking like a molecular CO, unit until the end, as can be seen from
the counting of coordinations in Figure 4.16.

We still have that even with such an undesirable final situation, mostly re-
lated to the limitations intrinsic to our technique, we got, after quenching to
zero pressure, a difference in energy of only 0.65 eV per molecule with respect
to the starting configuration, which is remarkable because it is one half the
energy difference between pure CO; in phase II and the non-molecular amor-
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Figure 4.17: The amorphous sample obtained in our simulations, offers a
substantial reduction in volume with respect to any molecular counterpart.
However, it is clear from this picture that the sample is permeated by large
holes that, in our very small simulation box, act as cavities where single
molecules remain stored without suffering to much the effects due to the
external pressure.

phous phase (it can be seen clearly in Figure 4.7). More accurate studies
using larger samples, can then only change our results towards better and
more promising energy differences.

4.2.5 Conclusions

Our simulations show that, during compression, CO, molecules that are lo-
cated in the polymeric path, initiated from the Ti atom, help the growing of
the polymeric phase by easily linking to the polymer in a process that starts
at pressures around 60 GPa in our MD simulations. In the other hand, COy
molecules which are not in the vicinity of the titanium-dioxalate molecule
or of any dangling bond generated by this molecule on neighboring CO,
molecules, do not polymerize under the application of pressure. The fact
that when titanium is present the energy of the extended recovered phase is
closer to the molecular staring phase than in the pure system, implies that
the material obtained by this process has better chances of being recovered
to ambient conditions. The study also shows that, under the reasonable
assumption that the transition pressures measured in our simulations, are
overestimated with respect to the experimental ones, it can be concluded
that the pressures required experimentally in order to obtain a COs polymer
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catalyzed by a transition-metal seed, are much lower than the pressures at
which current extended forms of CO, are obtained, and that in any case, it
is more convenient to start from phase III as the precursor molecular phase.
The increase in the amount of three-fold coordinated carbon units with de-
creasing pressure during quenching, suggests that the recovered material may
not be as hard as expected. However, such a material could still bear out-
standing characteristics useful for technological applications. For example,
in this work numerous empty spaces as large as 6 A in diameter, inside the
recovered amorphous structure with and without titanium, have been iden-
tified. This material then could be used to store small molecules, opening
possibilities to new applications such as hydrogen storage, which then adds to
the many possibilities already suggested in previous years for these materials.
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Chapter 5

Conclusions

In this work ab-initio calculations have been used in close interplay with ex-
perimental measurements, to explain and predict properties of new materials
that can be synthesized at high pressures. It has been shown, that computer
simulations with ab-initio accuracy are a perfect tool for testing new struc-
tures, and for measuring properties on them that can be directly compared
to experiments.

Following these ideas, we were able to solve the crystal structure of the novel
PtN,; and OsNy; compounds. Following our findings now it is accepted and
understood by the high-pressure community, that these compounds together
with IrN, and others that continue to appear, are part of a new family of
materials, which have the common property of containing covalently bonded
nitrogen forming single-bonded dinitrogen units in their interior. Such a
common feature, suggested the possibility of having phonon-mediated su-
perconductivity in metallic materials of this family, such as OsN,. In fact,
the superconducting T¢ of OsNy was calculated and it was observed that a
sizable contribution to the electron-phonon interaction term A comes from
high-frequency N-N modes.

We also calculated that at the conditions where the new TM-nitride phases
are synthesized, the entropic contribution coming from the liquid Ny environ-
ment cannot counterbalance the difference in energy between the new phases
and their constituents, and it is for this reason that the reaction takes place
at pressures above the calculated enthalpy crossing between the different
phases. This observation opens the possibility to find new metastable phases
that, due to kinetic barriers, cannot be reached directly from their parent
metals and liquid Ny at low pressures but that could be accessed through the
quenching of the high-pressure dinitride phases.
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In a completely different direction, but following the same spirit of the studies
on nitrogen, the high-pressure phases of the CO, molecule have also been
carried on in collaboration with experimentalists. The aim in this case was to
perform the characterization of existing and prediction of new COs extended
phases. Non-molecular COs, in contrast with what is observed for the TM-
nitrides, hasn’t yet been recovered to ambient conditions from any of the
known high-pressure extended phases.

The first thing we noticed during our studies on this subject, is that non-
molecular CO, phases don not behave the same as silica and germania. In-
deed, they are not only much more difficult to obtain, but also differ strongly
from the point of view of their local coordination with respect to the situ-
ation observed in polymorphs of SiO;. Amorphous carbonia for example,
contains three-fold coordinated carbon atoms (carbonyls) that appear earlier
during the transition to the amorphous than any four-fold coordinated (tetra-
hedral) site, and remain still present inside the sample as a metastable form
in sizable amounts even after tetrahedral sites have been formed. Enthalpy
calculations show that COs in four-fold coordination for the carbons, is more
stable than structures containing two- or three-fold coordination at pressures
above 20 GPa. Then, a huge kinetic barrier appears to be the explanation
to the frustrated mixed-state that is observed in carbonia.

By doping molecular CO, with titanium, we observed a lowering in the ki-
netic barrier of the transition towards non-molecular phases. Moreover, after
recovery the COy polymeric samples containing titanium, they exhibited a
lower energy difference with respect to the starting point, than the energy
difference obtained for the case of pure CO,.

Finally, based on our results I have provided at the end of each section
of my thesis work some hints that regard the perspectives for the future
that this work has opened which, among others, include: the possibility
of synthesizing new superhard materials containing dinitrogen, new high-T¢
BCS superconductors from metallic nitrides of TM alloys, and materials that
can be used as alternative to clathrates for hydrogen storage, all of this can
and still has, to be checked experimentally. It is due to conclusions like the
ones reported along this chapter, that I can now see clearly the importance
of continuing such a fruitful interplay between theory and experiment in
high pressure research which, I hope, will continue to be present and in an
increasingly strong way, in the years to come.
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Some useful conversion tables

PRESSURE:
N TO GPa bar atm a.u.
FROM
GPa 1 1x10* 0869.2 | 34.014x107
bar 1x10~4 1 0.9872 | 3.4014x107°
atm 1.013x107* 1.013 1 3.45x1079
a.u. 29400 2.94x10% | 2.90x108 1
LENGTH:
N TO meters A a.u.
FROM \
meters 1 1x1019 | 18.9x10°
A 1x10~10 1 1.89
a.u. 5.20x107 | 0.529 1
FREQUENCY:
NNTO| THz |cm™!
FROM \
THz 1 33.36

cm ™! 0.02998 1
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ENERGY:
NTO | Ry eV a.l.
FROM \
Ry 1 13.606 0.5
eV 0.0735 1 0.03675
a.u. 2 27.2114 1

1 THz x h = 4.13565 meV
kp x 300 K = 25.852 meV
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Appendix B

Pseudo-potential tests on
platinum and nitrogen

In this appendix, I will explain how we tested the platinum and nitrogen
pseudo-potentials by simulating the platinum crystal and the nitrogen N,
molecule separately. This should allow us to see if the pseudo-potentials
downloaded from Internet are working fine, by comparing some calculated
dynamical properties of these two systems with the ones given in the liter-
ature. This step is also important because it will give us an idea about the
ground-state energies for these elements when they are isolated. In Chapter 3,
we used these results to determine which of the various proposed structures
for the platinum Nitride is more effective in lowering the energy of the entire
system.

From some exploratory earlier runs of the Quantum Espresso program — for
platinum-nitride in the zinc-blende configuration — we decided to fix, in all
the input files used in this test, the cut-off energy to ecut = 25 Ry, and the
k-point mesh to 10 x 10 x 10. These values are the optimum ones because
from the mentioned runs we concluded that increasing them would represent
an increase in the computational effort without manifest improvements in
the accuracy (see section 2.5 for details on what they mean).

B.1 Platinum crystal

Platinum conforms an fee crystalline structure? with a lattice constant ag =
3.92A at ambient pressure, this characteristic is shown in the Fig. B.1 where

4Predicted to remain stable over a wide pressure range [131, 132].
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all the platinum atoms in the conventional unit cell can be seen. However,
this representation would be a bit dense and confusing if we were trying to
visualize the possible positions for some nitrogen atoms inside this structure
(as we will do in the next chapter); so, we will make use of the primitive unit
cell representation (Fig. B.2), in order to avoid such difficulties.

Figure B.1: Platinum’s conventional cell.

From our calculations we extracted the results shown in Table B.1 which are
compared with experimental or previously simulated data from refs. [133,
134, 135, 136]. This Table, from our point of view, shows a good agreement
because even if there are some differences, these are still within the expected
accuracy of the method.

As mentioned before, one important parameter we are interested in, is the
internal energy of the system, that for platinum turned out to be -52.695 Ry
(or -716.96 eV). Now we will proceed similarly with the nitrogen molecule.

B.2 Nitrogen molecule

Nitrogen at ambient conditions conforms a diatomic gas, N,, which is very
stable and it is very difficult to break in order to make compounds with

5For further comparisons it is relevant to put also the calculated values in cm™! units:
129.6 and 193.6 cm™! respectively.
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Figure B.2: Platinum’s primitive cell.

Quantity This work Other source
Lattice spacing (A) 3.910 3.9217

Bulk modulus 301.8 278

First bulk’s deriva- 5.14 5.61

tive with respect to

pressure.

Phonon frequency® | 3.88THz* - 5.80THz | 3.85THz* - 5.7THz
at X

Table B.1: Test for fec platinum. (*) degenerated phonon mode.
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other elements. It is for this reason that it is commonly used as neutral,
environmental medium in many experimental setups.

Figure B.3: Ny in the gas state modeled as a periodic crystal,
done in order to allow our plane-waves approach.

We would like to model the Ny molecules in their gaseous state, since this is
the way in which it is used as pressure transmission media in experiments.
However, as mentioned in chapter 2, our plane-waves approach can be ac-
curately used only when considering an infinite crystal. For that reason we
have to cheat a bit by shaping our molecular gas into a crystal (see Fig. B.3)
or if you prefer; by giving to our crystal enough size to make our low density
of particles act as if they were in a gas. So, we had to form a basis for the
crystal by putting each N-N pair with a small distance between them and
very far from the other pairs, in our case this was obtained just by defining
our crystalline lattice spacing to be equal to 20 A) and we also decided to
use here an fec lattice in order to make our system as much homogeneous
and isotropic in average, as possible. After doing this, we can say that every
N5 molecule was almost independent from its neighbors (actually: from its
images, in this case).

Then we proceeded with a relaxation process in which the system was sup-
posed to go to an equilibrium position and from which we extracted finally
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Quantity This work Other source®

Atomic separation 1.105 A 1.104 A
Vibrational frequency | Not available. | 2738.8 cm™!

Table B.2: Test with only molecular nitrogen.

the inter-atomic separation for this molecule. In Table B.2 some charac-
teristics of this molecule are shown. The small inter-atomic separation and
the very high vibrational frequency, are a proof of the stiffness of the bond
which is a well known result also from experiments. As for platinum, here
we also obtained the binding energy of the Ny molecule which is -39.657 Ry
(or -539.57 eV).

After these two tests, we concluded that the local density approach and the
pseudo-potentials used seemed to be working fine. Then we proceeded using
this technique on the platinum-nitride compound, hoping that at least we
will be able to access the main features of its possible structures. For that
purpose, we will have to keep in mind the energies just obtained and more
specifically the following two combinations:

1

and
Pt + Ny — —92.3520Ry .

6These ones are values obtained by MNDO, which can be found at
http:/ /www.cachesoftware.com/mopac/Mopac2002manual/node619.html
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Appendix C

Input-file example for fpmd.x

&CONTROL

TITLE = °CO2_TI+Ti’,
calculation = ’vc-relax’,
restart_mode = ’restart’,
ndr = 66,

ndw = 50,

nstep = 40000,

iprint = 10,

isave = 500,

tstress = .TRUE.,
tprnfor = .TRUE.,

dt = 8.0d0,

max_seconds = 85000,
forc_conv_thr 5.04-4,
etot_conv_thr = 1.0d4-7,
ekin_conv_thr = 1.0d4-6,

outdir = ’./7,
PREFIX = ’C02_Ti’
/

&SYSTEM

ibrav = 14,

celldm(1) = 8.032068251343,

celldm(2) = 1.000000000000,
celldm(3) = 1.100000000000,
celldm(4) = 0.0dO0,
celldm(5) = 0.0dO,
celldm(6) = 0.0d0,

nat = 7,

ntyp = 3,

nbnd = 22,
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nelec = 44,

ecutwfc = 90.0dO0,
xc_type ’PBE’

/

&ELECTRONS

emass = 350.0d0,
emass_cutoff = 2.5d0,

orthogonalization = ’ortho’,
electron_dynamics = ’verlet’,
electron_temperature = ’not_controlled’
/

&IONS

ion_dynamics = ’verlet’,
ion_temperature = ’nose’,
tempw = 500,

fnosep = 40

/

&CELL

cell _dynamics = ’pr’,

press = 115.25d40

/

ATOMIC_SPECIES

Ti 39.8523d0 Ti MT_PBE_SEMIfpmd.UPF
C 10.2506d0 C_MT_PBE.UPF

0 10.7300d40 O_MT_PBE.UPF
ATOMIC_POSITIONS (bohr)

Ti 0.00108088 0.000294366 -2.00214744 1 1 1
C -0.000666802 1.48782 3.07586 1 1 1
C -0.00067318 -1.48835 3.07558 1 1 1
0 0.000592676 2.41494 0.59712 1 1 1
0 0.000592142 -2.41484 0.59658 1 1 1
0 2.42268 0.000132846 -4.599 1 1 1

0 -2.4221 0.000112256 -4.5977 1 1 1

Some parameters not yet explained in the &CONTROL and &SYSTEM sections
of the input file, include

TITLE: Just the title; calculation: the kind of calculation that we are go-
ing to perform; restart_mode: you can define here if it the calculation starts
"from_scratch’ or if is a ’restart’; ndr: number that identifies the file from which
we are going to read the wave functions (only has sense if “ restart_mode = 'restart’
”); ndw: number that identifies the file to which we are going to write the in-
formation necessary for future restarts; nstep: number of simulation steps that
we want to perform (total steps, not iprint steps); isave: here we declare how
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often (measured on number of steps) we are going to save information to the file
identified by ndw; saving very often also means a considerable slow down of the
code’s performance; tstress & tprnfor: are used for defining if we want the stress
and forces to be printed to the output file; max_seconds: this tells the program
for how long (in real wall-clock time) we want our code to run before it is stopped
in a soft way (soft way means: saving everything) it is useful when our maximum
computer time is limited by a queue system, normal in parallel environments;
the entries finishing with conv_thr are thresholds that we define particularly in
the minimization process that tell the program, how accurate we want our forces
and energies coming from DFT to be; outdir: is the working directory were the
pseudo-potentials and restart files can be found; PREFIX: is used to define the
initial part of the name for all files containing statistical information regarding our
system.

The only two entries from the &SYSTEM section of the input that haven’t been
commented so far are: nbnd and nelec. The second defines the first, since nbnd
is just the number of bands necessary to place our valence electrons, and nelec
is precisely the total number of valence electrons present on our system as stated
inside the pseudo-potential files. for our particular case, the pseudo-potentials
were elaborated letting 4 valence electrons for carbon, 6 for oxygen and 12 for
titanium.
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