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Chapter 1

Introduction

Disorder plays an important role in condensed matter systems. Since in practice im-
purities or defects are unavoidable, there are no perfect crystals in Nature. When the
concentration of impurities is high, we have to face completely new situations, in the
sense that the usual descriptions based on translational invariance break down.

A typical example of a disordered system is given by free electrons in a disordered
potential. In a perfect crystal, free electrons are described by Bloch waves which
extend through the whole crystal. When the disorder is weak, random scatterings on
the impurities lead to di�usive behavior of electrons. Once the the mean free path l
(the distance between two successive collisions with impurities) becomes shorter than
the wavelength λ of the electron, transport breaks down and the electron wavefunctions
get localized in real space. The existence of such a localized state in the disordered free
fermions system was �rst predicted by Anderson [1]. The properties of such systems
were extensively studied and are a well understood subject [2, 3, 4].

In high enough dimensions the single particle eigenfunctions undergo the Ander-
son localization transition from a metallic to an insulating phase upon increasing the
disorder [1]. Recently, the question of what happens in such systems upon addition
of weak repulsive short range interactions has attracted a lot of renewed interest. It
is believed that 'many body'-localized phases with no intrinsic di�usion and transport
may exist in su�ciently strong disorder, despite the presence of interactions [5, 6],
which are commonly thought to induce thermalization in many body systems.

Among the simplest disordered and interacting systems are disordered boson sys-
tems. Studies of localization properties in disordered bosonic systems have less of a
long history, despite the fact that Anderson's original work was actually motivated
by the apparent absence of di�usion in (bosonic) spin systems. First interest in the
question arose when Giamarchi and Schultz [7] showed that bosons in 1d can undergo
a delocalization transition (unlike fermions). The notion of a transition between "Bose
glasses" (insulating, disordered states of bosons) and super�uids of bosons, driven by
disorder was then generalized to higher dimensions by M. P. A. Fisher [8], motivated
by experiments by Hebbard and Paalanen [9] on Indium oxide �lms, which suggested
that the SI transition in those systems might be of bosonic nature, i.e., due to the loss
of phase coherence of paired electrons, instead of the destruction of pairing amplitude
as in the standard BCS mechanism.
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More recent realizations of disordered bosons in optical lattices [10, 11, 12] and
spin ladders [13] have spurred renewed interest in questions regarding localization of
disordered bosonic systems [7, 14, 15, 16, 17, 18], some of which have arisen previously
in the context of the above mentioned dirty superconductors [19, 20, 21], or in studies
of 4He in porous media [22, 23, 24].

In all these examples, interactions between the bosons are, however, essential to
prevent a collapse into the lowest-lying single particle eigenstate. Consequently, the
problem of bosonic localization is inherently an interacting problem, which requires
a many body approach. However, in contrast to repulsive fermions, bosons can con-
dense into a super�uid state with long range order and perfect transport. Nevertheless,
when subjected to too strong disorder, global phase coherence is suppressed and the
bosons localize into an insulating Bose glass state [7, 8, 25]. It is intuitive to con-
sider the related disorder-driven quantum phase transition as a kind of "collective
boson delocalization" transition, but the precise di�erences and similarities between
this phenomenon and single particle Anderson transition is not well understood [26].
While certain qualitative features may carry over from the single particle case, one
should also expect signi�cant di�erences due to the quantum statistics of repulsive
bosons (as opposed to that of non-interacting fermions) and the incipient long range
order.

1.1 Main questions addressed in this thesis

1.1.1 Non-frustrated Bose glasses

Bosonic excitations within long-range ordered, but strongly inhomogeneous phases have
been studied in quite some detail by Chalker and Gurarie [27]. A good part of my
thesis focuses instead on understanding the insulating, localized phase of disordered
bosonic systems. In particular I study localization properties of strongly interacting
bosons and spin systems in a disorder potential at zero temperature. I focus on simple,
prototypical spin models (Ising model and XY model) in random �elds on a Cayley
tree with large connectivity. Regarding the nature of the quantum phase transition in
strong disorder I �nd the following results: i) With a uniformly distributed disorder
non-extensive excitations in the disordered phase are all localized. ii)Moreover, I �nd
that the order arises due to a collective condensation, which is qualitatively distinct
from a Bose Einstein condensation of single particle excitations into a delocalized state.
In particular, in non-frustrated Bose glasses, I do not �nd evidence for a boson mobility
edge in the Bose glass. These results are qualitatively di�erent from claims in the recent
literatures [28, 29].

Considering that (many body) localization of bosons is a kind of quantum glass
transition, it is an interesting question to ask what phenomena occur, if the ingredi-
ents for more conventional (classical) glassy physics are added to a disordered bosons
system, namely: random, frustrated interactions between the bosons. One can still
think about such a system as bosons in a disordered potential, where the disordered
potential is, at least partly, self-generated by random frustrated interactions between
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the bosons. This question takes us to the study of another type of disordered systems:
�glassy systems. Those are typically characterized by low temperature phases with
an inhomogeneous density or magnetization pattern, which is extremely long-lived due
to the occurrence of non-trivial ergodicity breaking.

1.1.2 Superglasses

Because of the interplay of super�uidity and glassy ordering, such a system of bosons
with random and frustrated interactions might in fact exhibit a rather intricate co-
existence phase �a superglass phase, which is characterized both by nonvanishing
super�uid order and glassy order (an amorphous frozen density pattern).

The question as to the existence of such a phase of coexistence is not just a purely
academic question. In recent years, supersolidity in crystalline 4He [23, 30] has been
reported. It soon became clear that defects of the crystalline order and amorphous
solids sustain more robust supersolidity, spurring the idea that disorder, or even glassy
order, may be a crucial element in understanding the super�uid part of those sys-
tems [31, 32, 33, 34, 35]. A recent experiment [36] reported indeed that the supersolidity
in 4He is accompanied by the onset of very slow glassy relaxation. This suggested that
an amorphous glass with a super�uid component is forming, the novel state of matter
�sometimes referred to as "superglass". These experimental results have motivated
several theoretical investigations into the possibility and nature of such amorphously
ordered and yet supersolid systems [37, 38, 39, 40, 41, 42]. These studies also stim-
ulate anew the question of how the delocalization transition in interacting fermionic
systems occurs: Is the interacting and disordered metal-insulator transition a single
phase transition, or does it split into a glass transition within the metallic phase and
a subsequent localization transition [43, 44]? While answers for fermionic systems are
very hard to obtain due to the notorious sign problem for Monte Carlo simulations,
and due to technical di�culties in analytical appraoches that go beyond mean �eld
theory, that latter question remains open as of now. In contrast the bosonic analogue
of the question is amenable to theoretical progress, to which this thesis contributes,
especially in Chapter V.

Similar questions as to the coexistence and interplay of glassy density ordering
and super�uidity arise in disordered superconducting �lms, which feature disorder- or
�eld-driven superconductor-to-insulator quantum phase transitions [21]. In several ex-
perimental materials, this transition appears to be driven by phase �uctuations of the
order parameter rather than by the depairing of electrons, suggesting that the transi-
tion can be described in terms of bosonic degrees of freedom only [9]. This had lead to
the dirty boson model [8] and the notion of the Bose glass [7], in which disorder and
interactions lead to the localization of the bosons, while the system remains compress-
ible [20, 45]. In this context, the term "glass" refers mostly to the amorphous nature
of the state rather than to the presence of slow relaxation and out-of equilibrium phe-
nomena. However, if superconductivity develops in a highly disordered environment,
such frustration may add in the form of Coulomb interactions between the charged
carriers, which may become important, as screening is not very e�ective. It is well
known that in more insulating regimes, strong disorder and Coulomb interactions may
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induce a glassy state of electrons (the Coulomb glass) [46, 47, 48]. It is therefore an
interesting question whether such glassy e�ects can persist within the superconducting
state of disordered �lms.

The recent developments in ultra cold atoms [49] open new ways to studying bosonic
atoms in the presence of both interactions and disorder. Those can exhibit super�uid or
localized, and potentially also glassy phases, especially if the interactions are su�ciently
long ranged and frustrated, as is possibly the case for dipolar interactions.

The above motivated my study, reported in Chapter V of such a a random frustrated
interacting boson system. I study a solvable model of hard core bosons (pseudospins)
subject to disorder and frustrating interactions, as proposed previously in Ref. [39].
This solvable model provides insight into the possibility of coexistence of super�uid-
ity and glassy density order, as well as into the nature of the coexistence phase (the
superglass). In particular, for the considered mean �eld model I prove the existence
of a superglass phase. This complements the numerical evidence for such phases pro-
vided by quantum Monte Carlo investigations in �nite dimensions [39] and on random
graphs [40]. Those were, however, limited to �nite temperature, and could thus not
fully elucidate the structure of the phases at T = 0. In contrast, my analytical approach
allows one to understand the quantum phase transition between glassy super�uid and
insulator, and the non-trivial role played by glassy correlations.

I should point out that the glassy, amorphous supersolid, which the superglass
phase constitutes, is quite di�erent from the type of supersolids proposed theoretically
in the early seventies [50]. In that scenario the bosons organize spontaneously on a
lattice, which breaks translational symmetry, but is incommensurate with the boson
density, allowing for vacancies to move through the solid. The model I study considers
instead bosons on a prede�ned lattice, on which an inhomogeneous density pattern
establishes within the glass phase.

1.1.3 Frustrated Bose glasses and the mobility edge

When the frustrated interactions are strong enough, the super�uid order may be de-
stroyed. As I will show in a speci�c mean�eld model, this happens within the glass
phase of the system, where a disorder induced super�uid-insulator phase transition
takes place to give way to a frustrated Bose glass. The glassy background on top of
which this happens leads to many interesting phenomena which seem not to have been
noticed before. To understand the nature of the glassy super�uid-insulator quantum
phase transition at zero temperature and the transport properties on the insulating,
Bose glass side of the transition is the goal of the third part of my thesis.

To address the above questions, I studied an exactly solvable model of a glassy
super�uid-insulator quantum phase transition on a Bethe lattice geometry with high
connectivity. My main results can be summarized as follows: i) I found that the
super�uid-insulator transition is signi�cantly shifted to stronger hopping. This is a
result of the pseudo gap in the density of states of the glass state, which tends to
strongly disfavor the onset of super�uidity. ii) In the glassy insulator, the discrete local
energy levels become broadened due to the quantum �uctuations.The level-broadening
process appears as a phase transition which has strong similarities with an Anderson
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localization transition, and has implications on many body localization. By using the
locator expansion for bosons [51] I found that, the glassy insulator has a �nite mobility
edge for the bosonic excitations, which, however, does not close upon approaching the
SI quantum phase transition point. This �nding helps to understand the nature of the
super�uid-to-frustrated Bose glass transition: the super�uid emerges as a collective
phase ordering phenomenon at zero temperature, and not as a condensation in to
a single particle delocalized state, in contrast to opposite predictions in the recent
literature [28, 29, 52].

The existence of a mobility edge in the insulator suggests the possibility of phonon-
less, activated transport in the bosonic insulator [53], which might be a candidate
explanation for the experimentally seen activated transport, which has remained a
mystery for a long time.

1.2 The structure of this thesis

The remaining chapters of this thesis are organized as follows: In Chapter II I will
review basics of Anderson localization, discussing and reviewing in detail Anderson's
original work on localization, as well as single particle localization on the Cayley tree
(or Bethe lattice). This will provide important material, especially for Chapters IV and
VI. An introduction to spin glasses is the main content of Chapter III, which provides
background material to understand the technical and conceptual parts of Chapter V
where frustrated bosons will be discussed. Chapters IV, V, and VI contain my three
original works: on localization in non-frustrated Bose glasses, a mean �eld model of
superglasses, and the super�uid-insulator transition in this same model of frustrated
bosons. I conclude with a summary and discussion in Chapter VII.
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Chapter 2

Anderson localization

After a short introduction on Anderson localization, I will review Anderson's original
work on localization [1]. This work not only contains many key points and insights
about localization, but is also a guide for my research work that I will describe in
Chapters IV and VI. At the end of this chapter, I will show an exactly solvable case
�Anderson localization on a Bethe lattice. This is also a guide for the studies in
Chapters IV and VI, where I will focus on the localization/delocalization properties of
bosonic excitations of disorderd interacting bosons on a Bethe lattice.

2.1 Disordered, non-interacting fermions and Ander-

son localization

In a perfect crystal, free electrons' wave functions extend over the whole crystal due
to the discrete translation symmetry. They are described by the Bloch waves. In a
disordered material (e.g., due to impurities or defects), we would expect that random
scatterings on the impurities lead to di�usive behavior in the electrons' motion, similar
to the Brownian motion of classical particles. Upon coarsegraining, the probability
density of such an electron at position r and at time t > 0 is

|ψ(r, t)|2 =
exp(−r2/2Dt)

(2πDt)d/2
(2.1)

with the di�usion coe�cient D = ~kF l/2m. Here kF is the Fermi momentum, m is the
electron e�ective mass, and l is the mean free path which is determined by the disorder
strength. It is clear that this wave function still extends over the whole crystal. It
leads to Drude conductivity according to the Einstein relation:

σ0 = e2N(EF )D =
ne2τ

m
=

e2

2π~
kF l (2.2)

where N(EF ) = dn/dE is the density of states at the Fermi energy, n is the electron
density, e is the electron charge, and τ = l/vF = ml/~kF is the mean free time between
two successive elastic collisions with impurities.
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However, this is valid only when the electron wavelength λF = 2π/kF is much
smaller than the mean free path l = vF τ , namely

kF l� 1; or EF τ � 1. (2.3)

Once the above condition is violated by strong disorder, namely when kF l 6 1, things
will change dramatically, and the above picture breaks down. The di�usion coe�-
cient turns to zero, and transport disappears. The wave function is localized with an
exponentially decreasing envelope

ψloc(r) ∼ A exp(−|r − ra|/ξ), (2.4)

where ξ is called localization length. In three dimensions it occurs at su�ciently
strong disorder or near the band edges. In one dimension, all states are localized by
an arbitrarily weak disorder.

Now let us understand why transport disappears when wave functions are localized.
Suppose at t = 0 the electron is at the position r = 0, namely ψ(r, t = 0) = δr,0 =∑

α cαψ
α(r), where ψα(r) is the eigenstate of the system. At time t > 0,

ψ(r, t) =
∑
α

cαe
−iEαtψα(r). (2.5)

With the Eq. (2.4), it is easy to obtain

|ψ(r, t)|2 ≤ e−2r/ξ for r � ξ (2.6)

for any t. This impliesD = 0, and so the conductivity vanishes, too, due to the Einstein
relation σ = e2N(EF )D. We can see from Eq. (2.5) that the probability of staying
at the initial site (the long time average of |ψ(0, t)|2) is given by

∑
α |〈ψα|ψ(0)〉|4.

This is often referred to as the "inverse participation ratio" (IPR). With the normal-
ization condition

∑
α |〈ψα|ψ(0)〉|2 =

∑
α |cα|2 = 1, it is easy to show that IPR =∑

α |〈ψα|ψ(0)〉|4 ∼
∑

α 1/ξ2d ∼ 1/ξd. Therefore the IPR is a good indicator for local-
ization: IPR(ψ) > 0 if ψ(r) is localized and IPR(ψ) = 0 1 if ψ(r) is delocalized.

Whether a state with de�nite energy is localized or delcoalized is determined by the
competition between energy mismatching (due to disorder) and delocalization channels
(number of neighbors × density of states)2 . In high dimensions (d>2), the localization
starts from the band edges by turning on the disorder. There exists a critical energy
Ec, the mobility edge, which separates the localized states (regime of low density of
states) from the extended states (regime of high density of states) (see Fig. 2.1) . The
delocalization/localization (Anderson) transition happens in metals when EF = Ec.

We should emphasize that Anderson localization is an e�ect of quantum interfer-
ence. The propagation is stopped even in the classically allowed region (see Fig.2.2).
For an electron with energy E > E0, the repeated scattering at the disordered potential
may eventually lead to a superposition of interfering waves and become localized even
if classically it should be extended [3].

1For the �nite system, this should be proportional to the inverse of the system volume.
2This is true only for high dimensions d > 2, in low dimensions disorder always wins due to

proliferation of weak localization e�ects.
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Figure 2.1: The mobility edge separates the localized states from the extended states.
If the Fermi energy lies in the region of the localized states, the system is insulating
at T = 0. If it is in the extended states region, the system is metallic.

Figure 2.2: Classical particle in a 1D random potential. The motion of the particle is
con�ned to �nite intervals for E1 < E0. For E2 > E0 the motion is unrestricted.

2.2 Thermally activated conduction in the localized

regime

When EF < Ec, the states at the Fermi energy are localized. The conductivity at
T = 0 is zero. However, at low but �nite temperatures the electron can gain thermal
energy to perform various transport processes, which we are particularly interested in.

Before discussing these transport behaviors, let us �rst have a look at several rel-
evant energy scales in the problem. Denoting ν the density of states (DOS) at the
Fermi level, the typical energy separation between the localized states inside the lo-
calization volume is ∆ξ ∼ (νξd)−1 (mean level spacing), where d is the dimension of
the system. The corresponding characteristic temperature is T0 ∼ ∆ξ/kB. τφ ∝ T−p

is the characteristic time between two successive inelastic scatterings (scattering with
phnons). By lowering the temperature, we have [54]

(1) Activation to the mobility edge.

σ ∝ e−(Ec−EF )/kBT . (2.7)

If there is no phonon bath, the conductivity shows simple activated behavior.
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2) Activation to a neighboring localized states (phonon assisted processes).

σ ∝ T p, (2.8)

if τφ > ξ2/D or T < Tξ, where Tξ is the crossover temperature such that τφ ∼ ξ2/D,
the electron processes a random walk with a step ξ and time τφ, thus D ∼ ξ2/τφ and so
σ ∝ τ−1

φ ∝ T p. The inelastic scattering provides the electron enough energy to move
from one block of size ξ to the next, this requires T > T0.

3) Variable range hopping (VRH)(phonon assisted processes).
If T � T0, from the energy conservation point of view the electrons are not able

to hop inside the localization volume but can hop further (see Fig. 2.3). On the other
hand, the overlap matrix element between the states which are far away from each
other is exponentially small, e−L/ξ, where L� ξ is the spatial distance between these
states.

Figure 2.3: Hopping between states localized at di�erent sites R. States that are inside
the localization volume (1 and 4) are separated by ∆ξ. On the other hand, states at
almost the same energies are far from each other in real space.

The energy needed now, ∆L, is obtained as

∆L ∼ (νLd)−1 ∼ ∆ξ(ξ/L)d (L� ξ). (2.9)

Therefore the hopping over a length L is controlled by e−2L/ξe−∆L/kBT , where the
Boltzmann factor e−∆L/kBT comes from the exponentially small occupation number of
bosonic bath modes (phonons). The optimal L for such jumps is given by minimizing
the exponent

Lopt ∼
(

ξ

νkBT

)1/(d+1)

. (2.10)

This mechanism is relevant as long as Lopt > ξ. That is when the temperature is low
enough so that T � T0. At such low temperatures, the VRH conductivity is given by3

σ ∝ e−C(T0/T )1/(d+1)

. (2.11)

3If Coulomb interactions are taken into account, due to the Coulomb gap in the DOS, the exponent
changes from 1/(d+ 1) to 1/2 [55].
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2.3 Anderson's reasoning for localization

Consider spinless non-interacting fermions in a disorder potential

H =
∑
i

εini −
∑
〈ij〉

Vij

(
c†icj + c†jci

)
, (2.12)

where εi is a random onsite potential, Vij is the hopping strength and 〈...〉 means
nearest neighbor pairs. For simplicity we assume the site energies {εi} are uniformly
distributed in the range from −W/2 toW/2. The operators ci (c

†
i ) create or annihilate

a fermion at the lattice site i.
Anderson studied this problem by considering a large value ofW/Vij, and analyzing

how much the ratio could be reduced before the localized states became unstable. The
instability of the localized states was argued for via the failure of a perturbation series
in powers of Vij/W to converge.

Consider the zero temperature retarded Green's function

Gik(t) = −iΘ(t)〈GS|{ci(t), c†k}|GS〉, (2.13)

where |GS〉 is the ground state of the Hamiltonian (2.12) and ci(t) = eiHtcie
−iHt. Note

that Gik(t = 0+) = −iδik, which means that at t = 0 the electron (wave function) is
localized at site i. We now ask how the wave function varies with time. In particular,
we are interested in the behavior as t → ∞. This requires us to study the time
evolution of the Green's function Gik(t):

i
dGik(t)

dt
= δ(t)〈GS|{ci(t), c†k}|GS〉 − iΘ(t)〈GS|{iċi(t), c†k}|GS〉 (2.14)

with

iċi(t) = [ci(t), H] = εici −
∑
j 6=i

Vijcj. (2.15)

We study the Fourier transformation of the Eq. (2.14). Let

Gik(E) =

∫ ∞
−∞

dtGik(t) exp [i(E + iε)t] with ε→ 0+. (2.16)

Plugging it into Eq.(2.14) we have

Gik(E) =
δik

E − εi + iε
−
∑
j

Vij
E − εi + iε

Gjk. (2.17)

This equation can be solved formally by iteration, namely

12



Gik(E) =
δik

E − εi + iε
−

∑
j

Vij
E − εi + iε

Gjk

=
δik

E − εi + iε
−

∑
j

Vijδjk
(E − εi + iε)(E − εj + iε)

+
∑
j,l

VijVjl
(E − εi + iε)(E − εj + iε)

Glk etc. (2.18)

where δik
E−εi+iε is the bare propagator.

The the local Green's function

Gii(E) = [E − εi − Si(E)]−1 , (2.19)

where we have de�ned the local self-energy

Si(E) =
∑
j 6=i

Vij
1

E − εj + iε
Vji +

∑
j,l 6=i

Vij
1

E − εj + iε
Vjl

1

E − εl + iε
Vli + ... (2.20)

Since Vij/W � 1, we study the leading order term

S
(1)
i (E) =

∑
j 6=i

V 2
ij

E − εj + iε

=
∑

j 6=i,εj 6=E

V 2
ij

E − εj
− iπ

∑
j 6=i,εj=E

δ(E − εj)V 2
ij − iε

∑
j 6=i,εj 6=E

V 2
ij

(E − εj)2

= ∆E(2) − i

τ
− iεk(1)

i , (2.21)

where ∆E(2) =
∑

j 6=i,εj 6=E
V 2
ij

E−εj is the second order perturbation correction of the energy,
1/τ = π

∑
εj=E

δ(E − εj)V
2
ij is the decay rate which controls the state of perturbed

energy E + ∆E(2) decaying at a rate e−t/τ , and k(1)
i =

∑
j 6=i,εj 6=E

V 2
ij

(E−εj)2 .

If τ were �nite, the state of energy E + ∆E(2) ∼ E at site i would simply decay
exponentially in time. However, a simple consideration shows 4 that 1/τ = 0 for the
short range hopping (Vij ∼ 1/rαij with α > d). In this case, k(1)

i becomes important in

Eq. (2.21). It can be shown that for the short range hopping k(1)
i =

∑
j 6=i,εj 6=E

V 2
ij

(E−εj)2

converges in the sense that the probability distribution of k(1)
i has a distribution with

a �nite most probable value [1]. So ImS(1)
i (E) = −εk(1)

i → 0 as ε → 0. Thus, if
delocalization is to appear it must arise from higher order terms. It turns out that

4Denoting the average level distance in the volume Rdhop by ∆ε and the density of states by ν, we

have ∆ε = 1
νRdhop

and so Rhop ∼ 1
(∆ε)1/d

. Then the e�ective hopping Vhop ∼ 1
Rαhop

∼ (∆ε)α/d � ∆ε if

α > d.
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Anderson has explained somewhere else that for any �nite order perturbation ki always
converges. Therefore we have to study the whole series:

Si(E) = ∆Ei − iεki

=

 ∑
j 6=i,εj 6=E

V 2
ij

E − εj
+ ...

− iε
 ∑
j 6=i,εj 6=E

V 2
ij

(E − εj)2
+ ...

 . (2.22)

Note that the terms containing δ functions which require exact energy conservation
occur with vanishing probability in a discrete energy system. If the perturbation
expansion Si(E) converges, ki must converge as well. Then ImSi(E) = −εki → 0 as
ε → 0. Thus delocalization, i.e. the emergence of a �nite decay rate can come about
only through a divergence of the whole series for Si(E). The non-convergence of Si(E)
then leaves open the possibility that ki diverges5 . In this case, it may happen that

lim
ε→0

ImSi(E) = lim
ε→0
−εki = a �nite value. (2.23)

The complete series for Si(E) is given by the sum of the contributions from all
paths which start from the site i and return to it without passing through i at any
intermediate stage. This perturbation series breaks down if there are paths which
repeatedly visit a site with energy arbitrarily close to E, so that the denominators are

very small. For instance, if εj is very close to E, such a term
(

Vjl
E−εj

Vlj
E−εl

)n
> 1 would

be very large for n� 1 (see Fig. 2.4). However, this problem does not really indicate a
breakdown of the localized state yet. Rather it re�ects that this kind of series diverges
whenever the energy level under consideration attempts to cross another level as V is
varied. This must happen frequently if there are many close levels in a system [2] .

Figure 2.4: Sketch of repeated paths between site j and l.

5The divergence of the series is promoted especially by energy resonances. Resonances are on site
energies εj close to the energy E. As one can see, ki is more singular than ∆Ei when a resonance
occurs.
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The way out from this problematics consists in taking into account the repeated
paths self-consistently. This leads to a renormalized perturbation theory [56, 57]. In
this theory the sum over paths is restricted to those nonrepeating paths which do not
pass through the same site more than once. Thus, we have (see Fig. 2.5)

Si(E) =
∑
j 6=i

Vij{E − εj − S(i)
j (E)}−1Vji −

∑
j 6=i

∑
k 6=i,j

Vik{E − εk − S(ij)
k (E)}−1

×Vkj{E − εj − S(i)
j (E)}−1Vji +

∑
j 6=i

∑
k 6=i

∑
l 6=i,j,k

Vil{E − εl − S(l)
ijk(E)}−1Vlk...

(2.24)

where the energy denominator is changed from E − εi to E − εi − S(...)
i and the self

energy S(...)
i is de�ned in terms of noninteracting paths that do not pass through any

of the sites (...) already visited. For example

S
(i)
j =

∑
k 6=i,j

Vjk{E − εk − S(ij)
k (E)}−1Vkj −

∑
k 6=i,j

∑
l 6=i,j,k

Vil... (2.25)

Anderson's analysis was based on a study of the probability distribution of the
individual terms of the series (2.24). The number of nonrepeating paths which return
to their starting point after L steps is of order KL. K is the connective constant and
Z−2 < K < Z−1, where Z is the number of nearest neighbors. The main assumption
underlying his argument is: Each of the KL paths of length L from a point makes a
contribution which is statistically independent of the other contributions 6 .

Figure 2.5: Sketch of the series expansion of the self-energy on site i. Each term can
be interpreted as a loop with �xed starting point and ending point. Si is then just a
sum of all these paths/loops.

7 For simplicity we choose W = 2 and Vij = V . We consider the Lth term in the
perturbation series for Si(E = 0)8. This is a sum of approximately KL terms, each of
which is of the form

6This assumption was criticized by Thouless [58] and many other people, see the review paper by
Thouless [2] and also the references therein. Because di�erent paths may have sites in common, it is
certainly not so that all paths are statistically independent. Here we just treat this assumption as an
approximation.

7In the following I will closely follow the arguments of the review by Thouless [58].
8The reason for choosing the band center is to �nd the convergence limit of the series for Si(E).

Since the density of states has the highest value in the band center, the states there are most prone
to become unstable as the hopping V is increased.
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V L+1

L∏
i=1

(
1

ei

)
, (2.26)

where ei ≡ E− εi−S(...)
i , then e1, for instance, is given by e1 = E− ε1−S(0)

1 . Suppose
that the self energy S

(...)
i is small, then the locators 1/ei in the product are nearly

independent of one another9, and the distribution of ei can be approximated as the
same as εi's.

The probability for l = log(1/|ei|) is exp(−l) 10 . So the probability density for
y =

∑L
i=1 log(1/|ei|) is easy to obtain by considering the Laplace transform

f(s) =

∫ ∞
0

P (y) exp(−ys)dy =
L∏
i=1

[∫ ∞
0

P (l) exp(−ls)dl
]

=
1

(s+ 1)L
. (2.27)

Then we have

P (y) =
1

2πi

∫ i∞

−i∞
f(s) exp(ys)ds =

1

(L− 1)!
yL−1 exp(−y). (2.28)

Therefore the probability density for

|x| =

∣∣∣∣∣
L∏
i=1

(
1

ei

)∣∣∣∣∣ (2.29)

is

P (x) =
1

(L− 1)!

1

x2
(log |x|)L−1 for |x| > 1. (2.30)

Note that this probability distribution has a long tail, so that the �rst moment 〈x〉
and the second moment 〈(x− 〈x〉)2〉 do not exist. Assuming that all the KL terms are
independent, the sum of a number of terms of this sort, where the individual terms
have a long-tailed distributed function, is dominated by the largest term in this sum
11. If the KL terms are independent, the probability that |x| is less than X for all the
terms is

9This is not precise, we will come back to this point later.
10Suppose x is uniformly distributed in the range [0, 1] and y = log

(
1
x

)
. The probability that y is

less than Y is P (y < Y ) =
∫ Y
−∞ P (y)dy = P (x > e−Y ) =

∫ 1

e−Y
P (x)dx = 1− e−Y . So the probability

density is P (y) = e−y.
11Consider the sum of independent and identically distributed variables SN =

∑N
i Xi. Suppose

〈x〉 = ∞ and 〈(x− 〈x〉)2〉 = ∞, which occurs, e.g., if P (x) ∼ 1/xα+1 for x � 1, with α ≤ 1. The
sum is dominated by the largest term in the sum. In this case the sum of N elements grows faster
than N . This can only occur if the sum is dominated by the largest element which is itself of order
xmax ∼ N1/α [59].
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(
1−

∫ ∞
X

P (x)dx

)KL

(2.31)

and so the probability density is

KLP (X)

(
1−

∫ ∞
X

P (x)dx

)KL−1

' KLP (X), (2.32)

where the last step is obtained by considering KL
∫∞
X
P (x)dx is small, since we focus

on the tail of this distribution.
Finally, it has to be shown that the series whose terms are given by the equa-

tion (2.26) has high probability of being bounded by a certain geometric series. The
probability that the Lth order term will exceed V L+1xL−112 is approximately

P
(
the Lth order term > V L+1xL−1

)
= KL

∫ ∞
xL−1

P (x′)dx′

=
1

(L− 1)!

KL

xL−1
[(L− 1) log x]L−1

'
(
eK log x

x

)L−1
K√
L− 1

. (2.33)

The probability that none of the terms beyond the Nth one exceed V L+1xL−1 is

∞∏
L=N+1

{
1−

(
eK log x

x

)L−1
K√
L− 1

}
. (2.34)

This tends to unity as N →∞ provided that

eK log x

x
< 1. (2.35)

Therefore the series has a high probability to converge if

eKV log

(
1

V

)
< 1. (2.36)

By putting back the disorder strength W , we �nd the condition

W > 2eKV log(W/2V ) (2.37)

and the critical condition is given by

2eKVc
W

log

(
W

2Vc

)
= 1. (2.38)

12
∑
L V

L+1xL−1 converges if x < 1
V .
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Note that this estimation is based on neglecting the correlations among 1/ei, and
therefore is an upper limit on (W/V )c.

Above we assumed that the locators 1/ei in the product (2.26) are independent
of one another by neglecting the self energy S

(...)
i . However, this is of course not

precise. The locators 1/ei in the product have very important correlations. Namely,
for instance, suppose the locater 1/e

(ij)
k in the product

Vik
1

e
(ij)
k

Vkj
1

e
(i)
j

Vji (2.39)

is very large. Then 1/e
(i)
j =

(
E − εj − S(i)

j

)−1

will be very small, because

S
(i)
j =

∑
k 6=i,j

Vjk
1

e
(ij)
k

Vkj −
∑
k 6=i

∑
l 6=i,j,k

Vil... (2.40)

contains the term |Vij|2/e(ij)
k . So the term 1/e

(i)
j will compensate the previous large

factor. The product (2.26) with correlated terms is very di�clut to deal with. However,
Anderson had noticed that the main e�ect of the self-energy is to reduce the e�ect
of small energy denominators. This can be e�ectively accounted for by ignoring all
denominators ei less than a certain cut-o� value. Apart from that all the terms 1/ei are
considered to be independent. Anderson suggested that the cut-o� value ∆ = 4V 2/W
for E = 0 13 . Under this approximation, we modify the uniform distribution to

P (ej) =
1

W −∆
,

∆

2
< |ej| <

W

2
;

P (ej) = 0, |ej| <
∆

2
or |ej| >

W

2
. (2.41)

In this case, one can obtain the critical condition [1]

4KVc
W

log(W/2Vc) = 1. (2.42)

Note that in this case (W/V )c is smaller than the previous one given by (2.38).
At the end of this section I would like to emphasize an important point. It has

been shown that the Lth term in the perturbation series for Si(E = 0) which is the
sum of approximately KL terms is dominated by the largest term in the sum. This
means that in this approximation, the main contribution to the self energy, or the
decay rate, comes from a single path. Here we want to argue this from the opposite

13The idea is the following: in the original term, if 1/e
(ij)
k is very large, 1/e

(i)
j will be very small

and so 1/e
(ij)
k � 1/e

(i)
j . In order to capture this e�ect in the approximated product, we must neglect

all the terms which satisfy 2|ei| < ∆. So the condition 1/e
(ij)
k ∼ 1/e

(i)
j ∼ e

(ij)
k /V 2 should give a

good estimation of ∆. Since |e(ij)
k | can not be larger than W/2, namely, 2/W < 1/|e(ij)

k |, we obtain

2/W < |e(ij)
k |/V 2 < ∆/(2V 2).

18



side [2]. Suppose every path in the sum has more or less the same weight, then the
Lth order term in the perturbation series should therefore have magnitude

KL

(
V

E − ε̃

)L
, (2.43)

where E − ε̃ is some typical value of the denominator. If E is zero and ε is uniformly
distributed between −W

2
and W

2
, a typical value of the denominator is its average

|ε| = W
4
, and so the condition for the convergence of the series would be

W > 4KV. (2.44)

From this we can see that the localized states are much less stable according to An-
derson's argument (for K ≥ 2). This suggests that the electrons escape from localized
states by particularly favorable paths, rather than by typical paths. One may think
that it is a precursor of fractality at the Anderson transition! The similar situation will
occur again on the Bathe lattice. It has been pointed out that the fractality appears
also in the disorder induced SI transition, which I will discuss in Chapter IV. Further
more in Chapter VII, I will discuss the e�ect of the "Coulomb gap" on the fractality
at the SI transition.

2.4 Anderson localization on a Bethe lattice

1D Anderson model (2.12) and the Anderson model on a Bethe lattice can be exactly
solved. In this section I will mainly focus on the later case. The Bethe lattice (see
Fig.2.6) is characterized by the root i and the connectivity K = Z − 1, where Z is
the number of nearest neighbors of a given site. There are approximately KL nonin-
tersecting paths connecting a given site to the sites L steps further down in the tree.
On a Bethe lattice, since there are no loops, the only non-repeating path that returns
to an initial site is a path of two steps from a site to its neighbor and back, so the
second order term in the perturbation series (2.24) is the only term remaining. In
this case, the stability of localized states can be examined by looking for a solution
of the selfconsistency equation in which ImSi(E) is proportional to ε. Where such a
solution exists the states are localized, and where no such solution exists the states are
delocalized [60].

The second order term in the series (2.24) is

Si(E) =
∑
j 6=i

Vij(E − εj − S(i)
j (E))−1Vji

(2.45)

with

S
(i)
j (E) =

∑
k 6=i,j

Vjk(E − εk − S(ij)
k (E))−1Vkj, etc. (2.46)
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Notice that S(ij)
k = S

(j)
k due to the absence of loops, we consider the equation

Si(E) =
∑
j

Vij(E − εj − Sj(E))−1Vji. (2.47)

The distribution of the self-energy will be treated self-consistently. The probability
distribution for Si generated by the probability distribution for εj and Sj should re-
produce the same distribution as the one for sites on the previous generation on the
tree, Sj.

By writing

E = R + iε Si(R + iε) = Ei − i∆ (2.48)

with ε > 0, we separate Eq.(2.47) into its real part and imaginary part

Ei =
∑
j

|Vij|2(R− εj − Ej)
(R− εj − Ej)2 + (ε+ ∆j)2

∆i =
∑
j

|Vij|2(ε+ ∆j)

(R− εj − Ej)2 + (ε+ ∆j)2
. (2.49)

i

Figure 2.6: A part of a Bethe lattice with connectivity K = 2.

We assume the states are localized, so ∆j should be proportional to ε. In the limit
of small ε, the linearized form of Eqs. (2.49) is

Ei =
∑
j

V 2
ij

R− εi − Ej
,

∆i =
∑
j

V 2
ij(ε+ ∆j)

(R− εi − Ej)2
. (2.50)

Note that the equation for Ei does not involve ∆i, and the equation for ∆i is a linear
inhomogeneous equation.
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An approximation (upper limit) for the stability condition (2.50) can be made by
neglecting the real part of the self-energy Ei 14 . And so the equation for the imaginary
part of the self energy in this approximation is

∆i =
∑
j

V 2
ij(ε+ ∆j)

(R− εi)2
. (2.51)

The Laplace transform of its probability density satis�es the equation

f(s) =

{∫
dxP (R− x)f

(
sV 2

x2

)
exp

(
−sV

2ε

x2

)}K
. (2.52)

The stability of localized states requires the existence of a solution of this integral
equation. If there is a solution, there must be a solution for small s. From Eq.(2.52),
it is clear that f(s = 0) = 1 and f(s > 0) < 1, so a natural guess of the form of f(s)
for small s is

f(s) ≈ 1− Asβ. (2.53)

Substitution of this ansatz on the right hand side of the Eq.(2.52) gives

f(s) = {1− A
∫
dxP (R− x)

sV 2β

x2β
sβ +O(s1/2)}K (2.54)

= 1− AsβKV 2β

∫
dx
P (R− x)

x2β
+O(s1/2, s2β) (2.55)

with β between 0 and 1/2 15 . Then we obtain

KV 2β

∫
P (R− x)

x2β
dx = 1. (2.56)

This equation has a solution only for V less than some critical value Vc. Vc can be
found by di�erentiating Eq.(2.56) with respect to β:

log V = KV 2β

∫
dxP (R− x)|x|−2β log |x|. (2.57)

We consider the center of the band, R = 0. The Eqs. (2.56) and (2.57) yield

K

1− 2β

(
2V

W

)2β

= 1

log V = log

(
W

2

)
− (1− 2β)−1 (2.58)

14The main e�ect of the real part of the self energy is to reduce the e�ect of small denominators as
we have argued in the previous section. Here this can be traced precisely in principle.

15This means the probability distribution for very large ∆i is P (∆i) ∼ |∆i|−α with 1 < α < 3/2,
which implies that the average of ∆i do not exist. This is an indicator of that the delocalization is
dominated by rare events. We will come to this point in Chapter IV.
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By eliminating β from the equations, we obtain

2eKVc
W

log

(
W

2Vc

)
= 1 (2.59)

with βc < 1/2, which is the same as (2.38). The approach here is rather di�erent from
the Anderson's reasoning, where the convergence of the whole series of the self-energy
was considered, but gives results very like those of Anderson and the upper limit is
just the same. This is not so surprising. Consider the propagation of an electron on
the Cayley tree from the root i to the boundary which is L steps further. There are
KL paths connecting the root i to the boundary which can be treated independently.
By neglecting the self energy in the locators, the propagator along one of the KL paths
is nothing but V L+1

∏L
i=1

(
1

E−εi

)
which is one element of the Lth term in the series

expansion of the self energy (2.24) . The point is, the assumption that the KL terms
are statistically independent in the Anderson's reasoning is true on the Cayley tree.
In Chapter IV I will discuss in detail the propagation of disordered hard-core bosons
on a Cayley tree and compare with the results for noninteracting fermions.

In order to restore the e�ect of the real part of the self energy, we introduce the
cut-o� ∆ = 4V 2

W
into the onsite energy distribution:

P (εj) =
1

W −∆
,

∆

2
< |εj| <

W

2
;

P (εj) = 0, |εj| <
∆

2
or |εj| >

W

2
. (2.60)

With this modi�ed distribution, for E in the center of the band, the Eqs. (2.56) and
(2.57) give

2KVc
W

log
W 2

4V 2
= 1 (2.61)

with βc = 1/2 [2].
The probability distributions of the real part and imaginary part of the self energy

can be obtained exactly by solving the integral equations about the Fourier transfor-
mation of these probability distributions [60]. It turns out that in the exact solution
the critical exponent βc is 1/2 and the critical hopping Vc agrees with the upper limit
quite well when the connectivity is large K >> 1. The later can be seen from the fact
that the cut-o� ∆ = 4V 2

W
∼ 1/(K logK)2 becomes very small for large K, which means

the e�ect of the real part of the self energy is very weak and so the upper limit is a
quite good approximation for large connectivity.
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Chapter 3

Spin glasses

In this Chapter, I will give an introduction on spin glasses. As another important
type of disordered systems, spin glasses exhibit nontrivial ergodicity breaking and the
low temperature phase is rather complex. There are still many open problems in this
�eld. The main topic of this thesis is about disorderd bosons. The simplest model
for interacting bosonic systems is the hard-core boson model which is equivalent to
the pseudo spin model. A random frustrated hard-core boson system which will be
discussed in Chapters V and VI, is nothing but a quantum spin glass. So �rst of all it
is important to understand the basic concepts in classical spin glasses.

3.1 Basic properties of spin glasses

A spin glass is a collection of spins, i.e. magnetic moments, whose low temperature
phase is a frozen, but disordered state, rather than the uniform or periodic pattern we
usually �nd in conventional magnets. Two ingredients are necessary to produce such a
state. One is frustration, namely no single con�guration of spins is uniquely favored by
all the interactions due to the competition among them. The other one is that these
interactions should be random. Fig. 3.1 shows a cartoon of such a system.

Figure 3.1: Sketch of a random, frustrated spin system with mixed ferromagnetic and
antiferromagnetic couplings.

There are many materials that satisfy these requirements. For instance, some
metallic materials hosting magnetic impurities located at random positions. Because
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each magnetic impurity polarizes the surrounding conduction electrons, the impurities
moments interact with each other e�ectively. It turns out that these induced interac-
tions are oscillating in sign at large distance 1 . Also in some magnetic insulators and
amorphous alloys, there exist random, competing interactions [61, 62].

An important question is how to observe such a frozen, but disordered glass state.
There are at least two experimental characteristics of spin glasses2 : 1) A frequency
dependent cusp in ac-susceptibility (see Fig. 3.2); 2) A di�erence between �eld cooled
(FC) and zero �eld cooled (ZFC) susceptibility (see Fig. 3.4).

The di�erence between the measured susceptibility and the extrapolation of the
high-temperature form indicates that some degrees of freedom are frozen. This e�ect
is known from antiferromagnets (see Fig. 3.3), where a reduction in the susceptibility
from its extrapolated high temperature form signals the onset of antiferromagnetic
order. In spin glasses, the local spontaneous magnetization mi = 〈si〉 is nonzero
while the average magnetization N−1

∑
imi, as well as any `staggered 'magnetization

N−1
∑

i e
−i
−→
K ·−→r imi vanishes because of the presence of quenched disorder.

The connection between the reduction of the susceptibility and the existence of
frozen magnetic moments is the following. Consider the single-site susceptibility

χii =
∂mi

∂hi
= β

〈
(si − 〈si〉)2

〉
= β(1−m2

i ). (3.1)

Averaging over all the sites in the system gives χloc = N−1
∑

i χii = β(1− qEA), where

qEA ≡ N−1
∑
i

m2
i (3.2)

is the Edwards-Anderson order parameter. It is clear that the onset of the local
magnetic order reduces the susceptibility. If mi = 0, Eq. (3.1) recovers the Curie
law. So the experiment of Fig. 3.2 really does indicate the existence of a nonzero
frozen spontaneous magnetization3 . Another important feature in this experiment
is the frequency dependent freezing temperature Tf , which suggests that the energy
landscape of glasses is complex, namely there are many metastable spin con�gurations
with a distribution of energy barriers separating them.

The FC susceptibility is obtained by applying the �eld above Tc and then sub-
sequently cooling the sample in this �eld below Tf . The ZFC susceptibility χzfc is
obtained by cooling the sample below Tf in zero �eld and then applying the �eld. If
there is only a single phase at low temperature, the two procedures would not yield
di�erent results. The di�erence between FC and zero �eld cooled ZFC susceptibility
in the experiment Fig. 3.4 suggests that there are many states/metalstable states at
low temperature. In the �eld-cooling procedure, since the �eld is applied at the high

1This interaction was �rst studied by Ruderman and Kittel and latter by Kasuya and Yosida. It
is therefore known as the RKKY interaction.

2Aging dynamics is of course another very important characteristic of spin glasses. Here we are
only focusing on the static, quasi-equilibrium properties of spin glasses.

3The experiments do not measure χloc but the uniform susceptibility χ = N−1
∑
ij χij . If the

disorder is not biased, χi 6=j=0. So the uniform χ will have a cusp if χloc does.
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Figure 3.2: Real part of the complex susceptibility χ(ω) as a function of temperature.
The inset shows the frequency dependence [61, 62].

Figure 3.3: Temperature dependence of the magnetic susceptibility of paramagnetic,
ferromagnetic, and antiferromagnetic systems. Tc is the Curie temperature, below
which the ferromagnetic order emerges. TN is the Néel temperature, below which the
antiferromagnetic order emerges.

temperature, all the states will respond to the �eld even below the freezing temper-
ature. In the zero-�eld-cooling procedure, below the freezing temperature Tf , only
some of the states can contribute to the �eld response. So one expects in general that
χzfc < χfc, which is indeed seen in the experiments, cf. Fig. 3.4.

We have already seen some characteristics of spin glasses which set them apart from
conventional magnets. On the other hand, in some aspects, the glass transition behaves
like a standard second order phase transition, as it can be characterized by critical
exponents and the divergence of certain response functions at the transition point due
to onset of in�nitely long ranged correlations. However, unlike in ferromagnets, in spin
glasses, the linear response does not diverge at the transition point because on average
the correlation could not extend so long distance due to the randomness.

Instead the correlation square 1
N

∑
i 6=j 〈sisj〉2 could be a relevant quantity which

signals that �uctuations of magnetization (instead of expectation values) start prolifer-
ating spontaneously. Also this correlation square is related to the higher order response
function:
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Figure 3.4: After zero-�eld cooling (H < 0.05 Oe), initial susceptibilities (b) and (d)
were taken for increasing temperature in a �eld of H = 5.90 Oe. The susceptibility (a)
and (c) were obtained in the �eld H = 5.90 Oe, which was applied above Tf before
cooling the samples [61].

m(h) = χh− h3χnl + o(h5), (3.3)

where χnl is the non-linear susceptibility. From the �uctuation-dissipation relation we
have

χnl = − β3

3!N

〈(∑
i

si

)4〉
c

= −β
3

3!

1

N

∑
ijkl

(〈sisjsksl〉 − 3〈sisj〉〈sksl〉)

= − β3

6N

(
4N − 6

∑
ij

〈sisj〉2
)

= β(χSG −
2

3
β2), (3.4)

where χSG ≡ 1
N

∑
i 6=j 〈sisj〉2. χnl can be measured in experiments [61], and it turns

out that χnl indeed diverges at T = Tf .
Below Tf , it is generally accepted that a spin glass has many metastable states

and the low temperature free energy landscape is rather complex (see Fig. 3.5). Next
we will review some models which exhibit the freezing transition and complex low
temperature phases.

3.2 Fully connected spin glasses models

Some spin glass models with in�nitely long range interactions (fully connected) can be
solved exactly. For such systems, a thermodynamically stable state is fully character-
ized by the local magnetizations {mi}, where the �uctuation correlations 〈δsiδsj〉 =
〈(si −mi)(sj −mj)〉 can be neglected in the thermodynamic limit N →∞.
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Figure 3.5: Sketch of the multi-valley landscape of free energy as a function of tem-
perature for a spin glass.

A well studied fully connected model is the Sherrington-Kirkpatrick model (SK
model) [63]:

H = −1

2

∑
i 6=j

Jijsisj, (3.5)

where the random coupling Jij is Gaussian distributed: P (Jij) =
√

N
2πJ2 exp

(
− N

2J2J
2
ij

)
with Jij = 0 and J2

ij = J2

N
. The scaling of Jij is chosen such that the Hamiltonian

is an extensive quantity in the thermodynamic limit N → ∞. This model exhibits a
freezing transition, accompanied by non-trivial ergodicity breaking at low temperature.
"Non trivial" here means that there are many phases at low temperature and the
ergodicity breaking does not associate with the symmetry spontaneously breaking 4 .
This transition can also be seen as a continuous phase transition, in the sense that the
order parameter qEA becomes �nite in a continuous way upon crossing the transition

4For the Ising model (has Z2 symmetry), there are two ergodicity broken phases at low temperature
which are connected by the symmetry group Z2. The SK model also has the Z2 symmetry, while the
low temperature phases are not connected by Z2.
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point. Moreover, the spin glass susceptibility χSG diverges at the transition point. In
the Sec. 3.3 and 3.4 we will mainly discuss this model.

Another exactly solvable spin glass model is the p-spin model

H = −
∑

1≤i1≤i2..≤ip≤N

Ji1...ipsi1 ...sip , (3.6)

where Ji1...ip is Gaussian random variable with J = 0, and J2
i1...ip

= J2p!
2Np−1 . For p = 2,

this is just the SK model. For p > 2, this model is more interesting in the context of
dynamics [64] which we will not study here. The random energy model is obtained by
taking the limit p→∞ [65].

The random energy model [65] is the simplest spin glass model displaying non-
trivial broken ergodicity. We consider the probability distribution of the energy of a
spin con�guration:

P (E) = δ (E −H[{si}]). (3.7)

One can easily get the probability distribution of the total energy as a Gaussian:

P (E) =
1√
πJ2N

exp

(
− E2

NJ2

)
. (3.8)

Then the number of the states with energy E is

〈n(E)〉 = 2NP (E) =
1√
πJ2N

exp

[
N

(
log 2−

(
E

NJ

)2
)]

. (3.9)

For |E| < E0 = NJ
√

log 2, there is an exponentially large number of levels, and
therefore a �nite entropy,

Figure 3.6: Entropy for the random energy model [65].

S(E) = log n(E) = N

[
log 2−

(
E

NJ

)2
]

Θ(E0 − |E|). (3.10)
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On the other hand, for |E| > E0, there are no levels left in the thermodynamic
limit, and therefore no entropy. This situation is illustrated in Fig. 3.6.

Using T−1 = ∂S
∂E

, one �nds the freezing temperature is Tf = J
2
√

log 2
. Below Tf , the

entropy vanishes. Physically, it means that the system freezes into the last available
state at |E| = E0.

3.3 Thouless-Anderson-Palmer (TAP) equations

For a generic fully connected Ising model

H = −1

2

∑
i 6=j

Jijsisj +
∑
i

hisi, (3.11)

where hi is the external magnetic �eld on site i, the local magnetization mi can be
easily obtained:

mi =

∑
{si} si exp [βsi(yi + hi)]∑
{si} exp [βsi(yi + hi)]

= tanh [β(yi + hi)] (3.12)

with

yi =
∑
j

Jijm
(i)
j , (3.13)

where m(i)
j is the local magnetization on site j in the absence of spin si. The shift of

the magnetization mj by adding back the spin si is

∆mj = mj −m(i)
j = χjjJijmi, (3.14)

where the local susceptibility

χjj =
∂mj

∂hj

∣∣∣∣
hj=0

= β(1−m2
j). (3.15)

At the end, we obtain

yi =
∑
j

Jijmj − β
∑
j

J2
ij(1−m2

j)mi, (3.16)

where β
∑

j J
2
ij(1−m2

j)mi is called Onsager term.
The Eqs. (3.12) are called Thouless-Anderson-Palmer (TAP) equations [66]. Note

that for the fully connected ferromagnetic model where Jij = J/N , the Onsager term
vanishes for the thermodynamic limit N →∞. For the SK model where Jij ∼ J/

√
N ,

the Onsager term survives as N →∞.
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3.3.1 High temperature expansion

In this section we derive the TAP equations (3.12) by the high temperature expansion
(Georges-Yedidia expansion) [67].

Consider a spins system with an external magnetic �eld hi acting on the spin si,
the free energy is

− βF [{hi}] = log
∑
{si}

exp

(
−βH[{si}] + β

∑
i

hisi

)
. (3.17)

The local magnetization is

mi[h] = 〈si〉h = −∂F [{hi}]
∂hi

(3.18)

and the susceptibility is

χij =
∂mi

∂hj
= −∂

2F [{hi}]
∂hi∂hj

= β〈(si −mi)(sj −mj)〉, (3.19)

which is positive de�nite.
We introduce the free energy Γ[{mi}] according to the Legendre transformation 5 :

− βΓ[{mi}] = −β

(∑
i

himi + F [{hi}]

)

= log
∑
{si}

exp

[
−βH[{si}] + β

∑
i

hi(si −mi)

]
(3.20)

where hi[{mi}] = ∂Γ[{mi}]
∂mi

.

To simplify the notation we introduce Aβ[{mi}] = −βΓ[{mi}] and λβi = βhi, and
then

Aβ[{mi}] = log
∑
{si}

exp

[
−βH[{si}] +

∑
i

λβi (si −mi)

]
. (3.21)

We would like to expand Aβ[{mi}] at β = 0. The derivatives of Aβ[{mi}] with respect
to β are

5If we de�ned −βΓ[{mi}] = −βmax{hi} (
∑
i himi + F [{hi}]), Γ[{mi}] would be a convex function

which cannot have many local minima.
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∂Aβ

∂β

∣∣∣∣
β=0

= −〈H〉0 +
∑
i

∂λβi
∂β

∣∣∣∣∣
β=0

〈si −mi〉0 = −〈H〉0 (3.22)

∂2Aβ

∂β2

∣∣∣∣
β=0

=

〈H − 〈H〉 −∑
i

∂λβi
∂β

∣∣∣∣∣
β=0

(si −mi)

2〉
0

(3.23)

...

with

∂λβi
∂β

∣∣∣∣∣
β=0

=
∂

∂β

(
−∂A

β

∂mi

)∣∣∣∣
β=0

= − ∂

∂mi

(
∂Aβ

∂β

)∣∣∣∣
β=0

=
∂〈H〉0
∂mi

, (3.24)

where 〈...〉0 means the thermodynamic average at β = 0.
We now consider a generic Ising model with out external magnetic �elds

H = −1

2

∑
i 6=j

Jijsisj. (3.25)

The zeroth order term can be easily obtained:

A0[{mi}] = log
∑
si

exp

(∑
i

λ0
i (si −mi)

)
= −

∑
i

λ0
imi + log 2 coshλ0

i ,(3.26)

with

∂A0

∂λ0
i

= 〈si −mi〉0 = tanh(λ0
i )−mi = 0. (3.27)

Expressing λ0
i as a function of mi we get

A0[{mi}] =
∑
i

S0(mi) = −
∑
i

(
1 +mi

2
log

1 +mi

2
+

1−mi

2
log

1−mi

2

)
, (3.28)

which is the entropy of model (3.25) at in�nite temperature.
The �rst and second derivatives of Aβ are:

∂Aβ

∂β

∣∣∣∣
β=0

= −〈H〉0 =
1

2

∑
i 6=j

Jijmimj +
∑
i

himi, (3.29)

∂λβi
∂β

∣∣∣∣∣
β=0

=
∂〈H〉0
∂mi

= −
∑
j 6=i

Jijmj − hi,

∂2Aβ

∂β2

∣∣∣∣
β=0

=
1

2

∑
i 6=j

J2
ij(1−m2

i )(1−m2
j). (3.30)
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Finally we obtain

− βΓ[{mi}] =
β

2

∑
i 6=j

Jijmimj + β
∑
i

himi +
β2

4

∑
i 6=j

J2
ij(1−m2

i )(1−m2
j)

−
∑
i

(
1 +mi

2
log

1 +mi

2
+

1−mi

2
log

1−mi

2

)
+ o(β2). (3.31)

Notice that for the fully connected ferromagnetic model where Jij = J/N and hi = h,
the terms of order β2 and all the other higher order terms in the expansion vanish as
N → ∞. In this case, the TAP equations simplify to the mean �eld self-consistent
equation

mi = tanh[β(Jmi + hi)]. (3.32)

For the SK model, the terms O(β2) are relevant, however. If the condition

J2

N

∑
i

β2(1−m2
i )

2 = J2χ2
ii 6 1 (3.33)

is satis�ed, the higher order terms vanish for N → ∞. Supposing this is the case, we
obtain the TAP equations (3.12) by minimizing the free energy (3.31) in the absence
of external �elds hi = 0

0 =
∂Γ[{mi}]
∂mi

∣∣∣∣
mi=tanh(β

∑
j Jijmj−β2

∑
j J

2
ij(1−m2

j )mi)
. (3.34)

At high temperature the TAP equations (3.34) have only the paramagnetic solu-
tion mi = 0. We study the stability of this solution by considering the response of
the magnetization around mi = 0 to the in�nitesimal external magnetic �eld. The
linearized TAP equation is

δmi = β

(
δhi +

∑
j 6=i

Jijδmj − δmiβJ
2

)
. (3.35)

We de�ne

δmλ ≡
∑
i

φ
(λ)
i δmi, δh ≡

∑
i

φ
(λ)
i δhi, (3.36)

where {φ(λ)
i } is the eigenvector of the random matrix Jij

∑
j

Jijφ
(λ)
j = λφ

(λ)
i . (3.37)
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The distribution of the spectrum of the random matrix Jij is the Wigner semicircle:
ρ(λ) = (2πJ2)−1

√
4J2 − λ2. From this, we can read o� the largest eigenvalue of the

random matrix Jij to be max |λ| = 2J .
The response to an in�nitesimal external magnetic �eld

δmλ

δh
=

β

1 + (βJ)2 − βλ
(3.38)

is �nite if 1 + (βJ)2 − βλ > 0. The transition occurs when 1 + (βcJ)2 − βcλmax =
1 + (βcJ)2 − 2βcJ = 0. This gives Tc = J6.

We can understand this result qualitatively in the following way. The energy cost
due to one spin �ip ∼ yi =

∑
j 6=i Jijmj −miβ

∑
j J

2
ij(1−m2

j). The transition happens
when T ∼ ytypi . Near the transition point

∑
j 6=i Jijmj is Gaussian distributed, ytypi ∼

miβ
∑

j J
2
ij(1−m2

j) can be approximated by miJ
2β. So we obtain Tc ∼ J .

The paramagnetic solution mi = 0 is stable for high temperature T > Tc. For
T < Tc, 1 + (βJ)2 − βλ > 0 holds again. It thus looks as if the paramagnetic solution
mi = 0 is also stable for low temperature. Actually this is not true, the paramagnetic
phase is unstable for T ≤ Tc. We consider the free energy fpara = Γ[mi = 0]/N =
−βJ2/4− T log 2. The entropy spara = −dfpara/dT = log 2− β2J2/4 becomes negtive
for T < J/(2

√
2) ∼ 0.91J . This means mi = 0 cannot be the physical thermodynamic

state at low temperature. It is missed by the TAP equations. The reason is the
condition (3.33) is not satis�ed for mi = 0 at T < Tc = J . The resummation of the
higher order terms in the high temperature expansion is divergent when J2

N

∑
i β

2(1−
m2
i )

2 > 1.
For the fully connected ferromagnetic model, the TAP equation (3.32) has only

two stable nonzero solutions at low temperature in the absent of external �eld h. At
low temperature the TAP equations (3.34) of the SK model have many solutions with
mi 6= 0. We interpret these solutions as stable or metastable thermodynamic states.
Local minima of Γ[{mi}] correspond to locally stable magnetization con�gurations. If,
in the large N limit, some of the barriers between these minima become in�nite, we
can partition the entire state space into mutually inaccessible 'valleys'. Each of these
valley corresponds to a thermodynamic phase. Within such a state or valley, there
can be several sub-valley which are local minima of Γ[{mi}], but with �nite barriers
separating them. All but the lowest of these correspond to metastable states. We label
these separated by in�nite barriers states by an index α running from 1 to the number
Ns of states and denote their local magnetizations by mα

i . The number of such states
is given by

Ns =
∑
{si}

∏
i

Θ

(
si
∑
j

Jijsj

)
=
∑
{si}

∏
i

∫ ∞
0

dεiδ

(
εi − si

∑
j

Jijsj

)
. (3.39)

6A dual way is to look at the Hessian matrix χ−1
ij = ∂2Γ[{mi}]

∂mi∂mj

∣∣∣
mi=0

= (1 + (βJ)2)δij − βJij . The
solutions of the TAP equations are stable only if the Hessian matrix is positive. For T > J , we have
1 + (βJ)2 > βλmax = 2βJ , and the paramagnetic phase is stable. At T = J , the spectrum of the

Hessian matrix ∂2Γ[{mi}]
∂mi∂mj

touches zero, hence below T = J the paramagnetic phase becomes unstable.
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Figure 3.7: Logarithm of the total number of TAP solutions, divided by N, as a function
of temperature.[68]

It turns out that Ns increases exponentially with the number N of spins at low tem-
perature [61]. Namely N−1log(Ns) ≡ Σ(T ) > 0 for T < Tc. This is case of nontrivial
broken ergodicity. Due to this reason, Tc is called freezing temperature. In clean sys-
tems, the broken ergodicity is usually accompanied by the symmetry spontaneously
broken. For instance, the two low temperature phases of the ferromagnetic Ising model
associate with the Z2 symmetry. In this case, we can select a phase by adding an in-
�nitesimal external �eld which breaks the symmetry in a certain way. But in a spin
glass, we can not apply the external �elds hαi proportional to the mα

i to select this
phase becuase we do not know these conjugate �elds mα

i a priori.
The total number of solutions as a function of temperature is shown in Fig. 3.7.

3.3.2 The local �eld distribution at zero temperature

The TAP equations without external magnetic �elds are

mi = tanh(βyi). (3.40)

The local �eld yi =
∑

j Jijmj − β
∑

j J
2
ij(1−m2

j)mi is the e�ective �eld created by the
other spins acting on the site i in the absence of spin si. Its distribution is de�ned as

P (y) =
1

N

∑
i

δ(y − yi). (3.41)

At T = 0, the solutions of TAP equations (3.40) are

mi = sign(yi), yi =
∑
j 6=i

Jijmj. (3.42)
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The stability of such solutions requires that P (y) must be zero at y = 0. Consider the
subset of spins {si, i ∈ Γ} with |yi| < δy � J . Suppose there are n of these spins and
the total number of spins is N, the ratio is given by n

N
=
∫ δy
−δy P (y)dy.

In order to check the stability of this state, we should �ip at least two spins simul-
taneously. By rearranging these spins {si, i ∈ Γ} → {−si, i ∈ Γ}, the energy change
is

∆E = ∆E(∆sy) + ∆E(s∆y), (3.43)

where

∆E(∆sy) =
∑

i∈Γ(δy)

∆siyi =
∑

i∈Γ(δy)

2siyi, (3.44)

∆E(s∆y) =
∑

i∈Γ(δy)

si∆yi = −
∑

i∈Γ(δy)

si
∑

j 6=i,j∈Γ(δy)

2Jijsj

= −
∑

i 6=j∈Γ(δy)

2Jijsisj. (3.45)

∆E(∆sy) is the energy cost due to the rearrangement of these spins but without
changing the local �elds {yi}. ∆E(s∆y) is the energy cost due to the shift of their local

�elds. ∆E(∆sy) is positive, and its variance is (∆E(s∆y))2 ∝ J2

N
n = J2

∫ δy
−δy P (y)dy.

The stability condition of Eqs. (3.42) requires 0 ≤ ∆E = ∆E(∆sy) + ∆E(s∆y) ∼

δy −
[
(∆E(s∆y))2

]1/2

∼ δy − J
[∫ δy
−δy P (y)dy

]1/2

. This gives that P (y) ∼ |y|α with

α ≥ 1.7 Numerical simulations [66, 69] and the more sophisticated analysis [70] shows
that α = 1. This means the TAP solutions (3.42) are on the stability boundary, in
other words, the zero temperature states for the SK model are critical. We will see
in the next section that the TAP solutions below the freezing temperature Tc are all
critical!

The ZFC suseptbility can be obtained

χ ≡ 1

N

∑
i

χii =
1

N

∑
i

∂mi

∂hi
= β

1

N

∑
i

(1−m2
i ) = β(1− qEA). (3.46)

The existence of the linear pseudo gap in the local �eld distribution leads to the linear
temperature dependence of χ at low temperature:

χ = β

∫
dyP (y)

[
1− tanh2(βy)

]
βy=ỹ
=

∫
dỹ

P (ỹ/β)

cosh2(ỹ)
=

∫ βJ

−βJ
dỹ

P (ỹ/β)

cosh2(ỹ)
+O(e−βJ), T → 0. (3.47)

7There is another similar argument: Assume P (y) ∼ |y|α for y � J . ymin = mini |yi|, and the

probability P (y > ymin) can be estimated as P (y > ymin) '
(

1−
∫ ymin
−ymin P (y)dy

)N
which would be

O(1). This gives ymin ∼ N
−1
1+α . The energy cost due to two spins �ip is ∆E = |y1|+ |y2| −N−1/2 ∼

N
−1
1+α −N− 1

2 > 0. This requires α ≥ 1.
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The distribution P (y) is linear in y for y � J . So P (ỹ/β) ∼ T |ỹ| as T → 0 and we
obtain χ ∼ T as T → 0. This also means that the Onsager term vanishes linearly in
T as T → 0.

The linear temperature dependence of the susceptibility χ(T ) as T → 0 can also
be obtained from the entropy

S(T ) = −∂Γ[{mi}]
∂T

= −β
2

4

∑
i 6=j

J2
ij(1−m2

i )(1−m2
j)

−
∑
i

(
1 +mi

2
log

1 +mi

2
+

1−mi

2
log

1−mi

2

)
.(3.48)

In the limit T → 0 one has mi → ±1 and the second term in (3.48) vanishes. This
leads to

S(T = 0) = −1

2
NJ2 lim

T→0
β2(1− qEA). (3.49)

The condition of a vanishing entropy at T = 0 is therefore that 1− qEA vanishes faster
than T as T → 0. It turns out that the �edge behavior� shows again [70]:

1− qEA(T ) ∼
(
T

Tc

)2

, (3.50)

consistent with χ ∼ T as T → 0.

3.3.3 Marginal stability of TAP equations

In this section, we study the stability of TAP solutions below the freezing temperature
Tc. The TAP equations (3.12) with hi = 0 can be derived by a variational principle
from the TAP free energy (3.31)

βΓ[{mi}] = −β
2

∑
i 6=j

Jijmimj − β
∑
i

himi +
β2

4

∑
i 6=j

J2
ij(1−m2

i )(1−m2
j)

+
∑
i

(
1 +mi

2
log

1 +mi

2
+

1−mi

2
log

1−mi

2

)
. (3.51)

The stability of these solutions is governed by the Hessian matrix

Aij =
∂2(βΓ)

∂mi∂mj

. (3.52)

A locally stable solution must be a local minimum of the free energy and this requires
that all eigenvalues of matrix A are positive. Note that Aij is related to the spin
correlations in the system. We introduce the susceptibility matrix χij = ∂mi/∂hj.
One can easily get

βδi,k =
∑
j

Aijχij, A−1
ij = β−1χij = 〈sisj〉c, (3.53)
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where 〈sisj〉c = 〈sisj〉−〈si〉〈sj〉. We introduce the eigenvalue density ρ(λ) = N−1
∑

i δ(λ−
λi), where λi are the eigenvalues of the matrix Aij. It can easily be shown that ρ(0)
must itself vanish. To do this we calculate the trace of the inverse of the matrix Aij:

N−1TrA−1 = N−1
∑
i

1

λi

N→∞
=

∫ ∞
0

dλ
ρ(λ)

λ

= N−1
∑
i

〈sisi〉c = N−1
∑
i

(1−m2
i ) = 1− qEA. (3.54)

1 − qEA is �nite. This implies ρ(0) = 0, since otherwise the integral
∫∞

0
dλρ(λ)

λ
would

be logarithmically divergent at λ = 0. Further more, it can be shown that ρ(λ) ∝ λ1/2

for small λ[70]. The eigenvalue spectrum of Aij can be arbitrarily small for all T ≤ Tc
but with vanishing density. This means the solutions below T = Tc are marginally
stable or the low temperature phases are critical.

As a consequence of the marginal stability of the low temperature phase

χSG ≡ N−1
∑
i,j

χ2
ij = (β2/N)Tr(A−2) = (β2/N)

∫ ∞
0

ρ(λ)

λ2
→∞. (3.55)

χSG always diverges when T < Tc. Also we recover the linear behavior of the zero �eld
cooled suseptbility in T at low temperature

χzfc = N−1
∑
i

χii = β

∫ ∞
0

dλ
ρ(λ)

λ
= β(1− qEA) ∼ T. (3.56)

3.4 The order parameter of spin glasses

As we have learned from the SK model, certain spin glasses have many states. The
existence of many phases implies that a spin glass cannot be fully described by a single
order parameter. It is useful to introduce the correlation between these states, i.e the
overlap:

qαβ =
1

N

∑
i

mα
im

β
i . (3.57)

Since α and β range over a large number of phases, qαβ could have many values between
−1 and 1. It is therefore better to consider its distribution

P (q) = PJ(q) =
∑
αβ

PαPβδ(q − qαβ), (3.58)

where (...) denotes the average over random couplings Jij and Pα = e−βΓα∑
α e

−βΓα is the
weight of the state α.

P (q) is the fundamental quantity to capture non-trivially broken ergodicity. For a
system with just two phases, P (q) is just the sum of a pair of delta functions. If there
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is strong broken ergodicity, P (q) may have a continuous part, indicating the possibility
of a continuum of possible overlaps between various phases. We can distinguish the
systems with conventional broken symmetry from those with nontrivial broken ergod-
icity by the form of P (q). Any moment of P (q) can be obtained by using the clustering
property of pure states:

q(1) =

∫
dqP (q)q =

∫
dq
∑
αβ

PαPβδ(q − qαβ)q

=
1

N

∑
i

∑
αβ

PαPβ〈si〉α〈si〉β =
1

N

∑
i

〈si〉2. (3.59)

q(k) =

∫
dqP (q)qk =

∫
dq
∑
αβ

PαPβδ(q − qαβ)qk

=
1

Nk

∑
i1...ik

∑
αβ

PαPβ〈si1...sik 〉α〈si1 ...sik〉β

=
1

Nk

∑
i1...ik

∑
αβ

PαPβ〈si1〉α...〈sik〉α〈si1〉β...〈sik〉β

=
1

Nk

∑
i1...ik

〈si1...sik 〉
2. (3.60)

The self overlap qαα = 1
N

∑
i〈si〉2α measures the mean square single-valley local

magnetization. Since we are not able to identify any single-valley, it is convenient to
average over all possible states. This gives the Edwards-Anderson order parameter

qEA =
1

N

∑
α

Pα
∑
i

〈si〉2α. (3.61)

Note that qEA ≥ q(1). The equality is attained when there is just a single phase.

3.4.1 Replica method

In mean �eld models, the physically relevant quantities which we introduced in the last
section can be computed using so called replica method. The replica are introduced
when we average the logarithm of the partition function:

F ≡ FJ = − 1

β
log(ZJ). (3.62)

The partition function

ZJ =
∑
{si}

exp(−βHJ [{si}]). (3.63)
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To perform this averaging procedure, we consider the integer power n of the parti-
tion function (3.64). This quantity is the partition function of the n non-interacting
identical replica of the original system:

Zn
J =

n∏
a=1

∑
{sai }

exp(−β
n∑
a=1

HJ [{sai }]). (3.64)

The index a labels the replica. Formally taking the limit n→ 0, we obtain

logZJ = lim
n→0

Zn
J − 1

n
. (3.65)

Now we consider the SK model. We �rst calculate the average of the n-th power of
the partition function:

Zn
J =

∑
{sai }

exp

(
β
∑
a

∑
i<j

Jijsai s
a
j + βh

∑
α

∑
i

sαi

)

=
∑
{sai }

exp

[
J2

2N

∑
i<j

β2(
n∑

a,b=1

sai s
b
is
a
js
b
j) + βh

∑
a,i

sai

]

=
∑
{sai }

exp

β2J2

2N

nN(N − 1)

2
+
∑
a<b

(∑
i

sai s
b
i

)2

+ βh
∑
i,a

sai


= exp

[
nN

(
βJ

2

)2
]∫ ∏

a<b

dQab
βJN1/2

√
2π

exp

[
−1

2
N(βJ)2

∑
a<b

Q2
ab

]
∑
{sai }

exp

[
(βJ)2

∑
i

∑
a,b

Qabs
a
i s
b
i + βh

∑
i,a

sαi

]

=

∫ ∏
a<b

dQab
βJN1/2

√
2π

exp(−Nnβfn[Q]), (3.66)

with

fn[Q] = −J
2β

4
+
βJ2

2n

∑
a<b

Q2
ab −

1

βn
log
∑
{sa}

exp

[
(βJ)2

∑
a<b

Qabs
asb + βh

∑
a

sa

]

= −J
2β

4
+
βJ2

2n

∑
a<b

Q2
ab −

1

βn
log
∑
{sa}

exp [He�]

= −J
2β

4
+
βJ2

2n

∑
a<b

Q2
ab −

1

βn
logZ[Q], (3.67)
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where He� = (βJ)2
∑

a<bQabs
asb + βh

∑
a s

a and Z[Q] =
∑
{sa} exp(He�). Note that

the disorder averaging introduces attractive interactions between replica, which were
previously uncorrelated. In the thermodynamic limit N → ∞, Zn

J is governed by the
saddle point of fn[Q]:

δfn[Q?]

δQab

= 0⇒ Q?
ab = 〈sasb〉 ≡

∑
sa=±1 s

asbeHe�∑
sa=±1 e

He�
. (3.68)

Now by taking the limit n→ 0, we obtain the free energy per spin

F/N = f = lim
n→0

fn[Q?]. (3.69)

The crucial point is that we can compute the physically relevant quantities using this
replica trick. In particular,

q(1) =
1

N

∑
i

〈si〉2 =
1

Z2

∑
s1,s2

e−β(H[s1]+H[s2])
1

N

∑
i

s1
i s

2
i

= lim
n→0

1

N

∑
i

∑
sa

s1
i s

2
i e
−β
∑
aH(sa), (3.70)

where the last equation is obtained writing Z−2 = limn→0 Z
n−2. By introducing the Q

matrix after disorder averaging, we get

∑
sai

s1
i s

2
i e
−β
∑
aH[{sai }] =

∫ ∏
a<b

dQab
βJN1/2

√
2π

exp(−NβCn[Q]), (3.71)

where

Cn[Q] = −nJ
2β

4
+
βJ2

2

∑
a<b

Q2
ab

− 1

β
log

1

N

∑
{sa}

s1
i s

2
i exp

[
(βJ)2

∑
a<b

Qabs
asb + nβh

∑
a

sa

]
. (3.72)

In the large N limit, the integral (3.71) is governed by the saddle point of Cn:

Cn[Q?] = −nJ
2β

4
+
βJ2

2

∑
a<b

(Q?
ab)

2 − 1

β
log

[
1

N
〈s1
i s

2
i 〉Z[Q?]

]
= − 1

β
log

[
1

N
〈s1
i s

2
i 〉
]

+ nfn[Q?]. (3.73)

At the end, we obtain

q(1) = lim
n→0

1

N

∑
i

〈s1
i s

2
i 〉enfn[Q?] =

1

N

∑
i

〈s1
i s

2
i 〉 = 〈s1s2〉 = Q12. (3.74)
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Of course, q(1) should not depend on the replica indices. Namely q(1) should not
change under permutation group Sn acting on {sa}. We must therefore average over
all di�erent saddle points Q∗, which is equivalent to symmetrizing the equation (3.74):∫

P (q)qdq = q(1) = lim
n→0

1

n(n− 1)

∑
a6=b

Qab. (3.75)

This result is already telling us that there is a connection between q(1) and the matrix
of the overlap among replica Qab. To go further, we can generalize (3.75) to get∫

P (q)qkdq = q(k) = lim
n→0

1

n(n− 1)

∑
a6=b

Qk
ab. (3.76)

Comparing with equation (3.76) gives that for a generic function f(q)∫
dqf(q)P (q) = lim

n→0

1

n(n− 1)

∑
a6=b

f(Qab), (3.77)

which, in particular, for f(q) = δ(q−q′) �nally provides the crucial equation connecting
physics to replica,

P (q) = lim
n→0

1

n(n− 1)

∑
a6=b

δ(q −Qab). (3.78)

This equation shows that the average probability that two pure states of the system
have overlap q is equal to the fraction of elements of the overlap matrix Qab equal to q.
In other words, the elements of the overlap matrix (in the saddle point) are the physical
values of the overlap among pure states, and the number of elements of Qab equal to q
is related to the probability of q.

The �eld cooled susceptibility can also be derived easily:

χ =
∂2f

∂h2

∣∣∣∣
h=0

=
1

β

[
β2 lim

n→0

1

n

n∑
a,b=1

〈sasb〉 − 〈sa〉〈sb〉

]

= β

(
1 + lim

n→0

1

n

∑
a6=b

Qab

)
= β(1− q(1)), (3.79)

where we use −∂f
∂h

∣∣
h=o

= β〈sa〉h=0 = 0 in the third step.
Finally, it is useful to de�ne the function

x(q) =

∫ q

0

P (q′)dq′ ∈ [0, 1] ,
dx

dq
= P (q) . (3.80)

As P (q) is positive, x(q) is a monotonically increasing function and so we can de�ne
its inverse q(x). In particular we can write

q(1) =

∫ 1

0

qP (q)dq =

∫ 1

0

q
dx

dq
dq =

∫ 1

0

q(x)dx . (3.81)
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Now the problem is that for an arbitrary Q matrix the replica free energy (5.8) can
not be calculated. So we have to propose an ansatz for the Q matrix. The simplest one
is the replica symmetry (RS) ansatz: Qab = q0 for a 6= b. Here the replica symmetry
means that the replica Hamiltonian He� does not change under permutation group Sn
acting on {sa}. In this case, we have

P (q) = δ(q − qαβ) = δ(q − q0). (3.82)

As we pointed out, if there is a strong broken ergodicity, which indeed is the case of
the SK model, P (q) should have a continuous part. So the delta function form of P (q)
indicates that this RS solution cannot describe this SK glass. The replica symmetry
free energy can be easily obtained:

βfRS = −
(
βJ

2

)2

(1− q0)2 −
∫
dz
e−z

2/2

√
2π

log [2 cosh(β(J
√
q0z + h))] , (3.83)

with the saddle point equation

q0 =

∫
dz
e−z

2/2

√
2π

tanh2 [β(J
√
q0z + h)] . (3.84)

However, this RS solution leads to a negative entropy at zero temperature, S(T = 0) =
−1/2π ' −0.17, which is physically unacceptable.

The way out is to break the replica symmetry. The di�culty is that there are
in�nite ways to do this! The Parisi's ansatz [71] has been physically argued and
now mathematically proven to be the correct ansatz describing the replica symmetry
breaking (RSB). The idea is the following: Let us introduce a series of integers: {mi}
(i = 0, 1, ..., K) such that m0 = n, mK+1 = 1 and all mi/mi+1 are integers. Next, we
divide n replica into n/m1 groups such that each group would consist of m1 replica;
each group of m1 replica divided into m1/m2 subgroups, so that each subgroup would
consist of m2 replica; and so on. Finally let us de�ne the Q matrix as

Qab = qi, for I(a/mi) 6= I(b/mi) and

I(a/mi+1) = I(b/mi+1); i = 0, 1, ..., K, (3.85)

where I(x) is the integer valued function, which is equal to the smallest integer larger
than or equal to x.

We now take an example of 1-step RSB ansatz K = 1. The structure of the Q
matrix for K = 1 is shown in the following:

Q =


1 q1 q1

q1 1 q1

q1 q1 1

q0 q0 q0

q0 q0 q0

q0 q0 q0

q0 q0 q0

q0 q0 q0

q0 q0 q0

1 q1 q1

q1 1 q1

q1 q1 1

 . (3.86)
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The distribution of the overlap between di�erent phases in the 1-step RSB case is

P (q) = lim
n→0

1

n(n− 1)

∑
a6=b

δ(q −Qab)

= lim
n→0

1

n− 1
[(m1 − 1)δ(q − q1) + (n−m1)δ(q − q0)]

= (1−m1)δ(q − q1) +m1δ(q − q0). (3.87)

Note that after taking the limit n → 0, 0 ≤ m1 ≤ 1 is not anymore an integer. P (q)
now is the sum of two delta functions, which indeed improved comparing to the replica
symmetry case. But the continuum part is still missing. With this 1-step RSB ansatz,
the replica patition function Z[Q] can be written as

Z[Q] =
∑
{sa}

exp(He�) =
∑
{sa}

exp

[
(βJ)2

2

∑
a6=b

Qab + βh
∑
a

sa

]

=
∑
{sa}

exp

(βJ)2

2

q0

(∑
a

sa

)2

+ (q − q0)
∑
block

( ∑
a∈block

)2

− nq0

 .(3.88)

By introducing a Hubbard-Stratonovich transformation, we get

Z[Q] = exp

(
−(βJ)2

2
nq0

)∫
dPq0(z)

n/m1∏
k∈block,k=1

dPq1−q0(yk)×

∑
{sa}

exp

β(h+ z)
∑
a

sa −
n/m1∑
k=1

yk

( ∑
a∈block

sa

)
= exp

(
−(βJ)2

2
nq0

)
×∫

dPq0(z)

{∫
dPq1−q0(y) [2 cosh(β(z + h+ y))]m1

}n/m1

, (3.89)

where

dPq(z) =
1√

2πqJ2
exp

(
− z2

2qJ2

)
dz. (3.90)

Taking the limit n→ 0, we obtain

βf1−step = −(βJ)2

4
− lim

n→0

(βJ)2

4n

∑
a6=b

Q2
ab + lim

n→0

1

n
logZ[Q]

= −(βJ)2

4

[
1 +m1q

2
0 + (1−m1)q2

1

]
− (βJ)2q0

2

+
1

m1

∫
dPq0(z) log

{∫
dPq1−q0(y) [2 cosh(β(h+ z + y))]m1

}
.(3.91)
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In this case, one gets the entropy at zero temperature S(T = 0) ' −0.01. It is still
negative but improved a lot comparing to the RS case. As one may expect, the entropy
becomes less and less negative as we go to further steps of RSB, and the exact solution
is approached when K →∞.

3.4.2 Sommers-Dupont recursions for discrete RSB and the
continuum limit

In this section we will present an elegant way to go to arbitrary steps of RSB. Let us
consider the replica Hamiltonian

− βH[{sa}] =
β2J2

2

∑
a6=b

saQabsb. (3.92)

We write a generic Parisi matrix Qab with K steps in the form

Qab = (q̃ − qK)δab +
K∑
k=1

∆qkR(k)
ab + q0R(0)

ab (3.93)

where q̃ is the diagonal entry and ∆qk ≡ qk − qk−1 with qk being the entries for replica
at distance xk < x < xk+1. R(k) are n × n matrices having (n/xk) xk × xk-matrices
with all entries equal to 1 along the diagnoal, and with vanishing entries elsewhere.

Let us also introduce the notation Q(l) = (q̃ − qK)R(m) +
∑K

k=l ∆qkR(k).8 In the
following we will restrict certain sums over spins to the subclusters Ck of xk spins that
correspond to a single block in R(k) in the above decomposition. In this context, a
matrix Q(k) is always understood to be restricted to one single cluster Ck. Let us de�ne
the scale and �eld dependent free energy for per spin, φ(y;xk), as

exp[xkφ(y, xk)] =
∑

sa=±1,a∈Ck

exp

[
β2J2

2

∑
a,b∈Ck

saQ
k
absb − βy

∑
a

sa

]
. (3.97)

We can easily obtain a recursion relation between φ(y, xk) and φ(y′, xk+1) by writing
Qk = (Qk+1)

⊗
(xk/xk+1) + R(k)∆qk, breaking up the coupling introduced by ∆qk by a

Hubbard-Stratonovich transformation. One �nds

exp[xkφ(y, xk)] =

∫
dz

exp[− z2

2∆qkJ2 ]√
2π∆qkJ2

exp[xkφ(y + z, xk+1)], (3.98)

which allows for a recursive calculation of φ(y;xk), using the initial condition

8Here is an example of the decomposition (3.93) and Q(l) with K = 2:
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φ(y, xK+1 ≡ 1) = log[cosh(βy)] +
β2J2

2
(q̃ − qK). (3.99)

Taking the continuous limit in (3.97) one �nds the Sommers-Dupont equation

Q =



1 q2 q1 q1

q2 1 q1 q1

q1 q1 1 q2

q1 q1 q2 1

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

1 q2 q1 q1

q2 1 q1 q1

q1 q1 1 q2

q1 q1 q2 1


=



q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0



+



q1 − q0 q1 − q0 q1 − q0 q1 − q0

q1 − q0 q1 − q0 q1 − q0 q1 − q0

q1 − q0 q1 − q0 q1 − q0 q1 − q0

q1 − q0 q1 − q0 q1 − q0 q1 − q0

0

0

q1 − q0 q1 − q0 q1 − q0 q1 − q0

q1 − q0 q1 − q0 q1 − q0 q1 − q0

q1 − q0 q1 − q0 q1 − q0 q1 − q0

q1 − q0 q1 − q0 q1 − q0 q1 − q0



+



q2 − q1 q2 − q1 0 0
q2 − q1 q2 − q1 0 0

0 0 q2 − q1 q2 − q1

0 0 q2 − q1 q2 − q1

0

0

q2 − q1 q2 − q1 0 0
q2 − q1 q2 − q1 0 0

0 0 q2 − q1 q2 − q1

0 0 q2 − q1 q2 − q1



+



1− q2 0 0 0
0 1− q2 0 0
0 0 1− q2 0
0 0 0 1− q2

0

0

1− q2 0 0 0
0 1− q2 0 0
0 0 1− q2 0
0 0 0 1− q2


. (3.94)

Q(1) =



1− q0 q2 − q0 q1 − q0 q1 − q0

q2 − q0 1− q0 q1 − q0 q1 − q0

q1 − q0 q1 − q0 1− q0 q2 − q0

q1 − q0 q1 − q0 q2 − q0 1− q0

0

0

1− q0 q2 − q0 q1 − q0 q1 − q0

q2 − q0 1− q0 q1 − q0 q1 − q0

q1 − q0 q1 − q0 1− q0 q2 − q0

q1 − q0 q1 − q0 q2 − q0 1− q0


.

(3.95)
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φ̇(y, x) = − q̇(x)

2
(φ′′(y, x) + xφ′(y, x)2), (3.100)

with

q(x) ≡
K∑
i=0

qiΘ(xi < x < xi+1), (3.101)

where the dot and prime are derivatives with respect to x and y variables, correspond-
ingly. The local magnetization in the presence of the frozen �eld is m(y, x) = 1

β
∂φ(y,x)
∂y

.
We also introduce a scale-dependent distribution of �elds, P (y, xk), de�ned implic-

itly via all its moments: For every product of spins belonging to a cluster Ck, we require
the identity

〈sa1 ...sar〉 =

∫
dyP (y;xk)

[ ∑
sa=±1,a∈Ck

(sa1 ...sar)×

exp
(
β2J2

2

∑
a,b∈Ck saQ

k
absb − βy

∑
a∈Ck sa

)
exp(xkφ(y;xk))

 . (3.102)

Note that the Boltzmann weight within the bracket is normalized for any value of y.
The physically interesting object is the distribution of �elds on shortest time scales,
P (y, xK).

For the �eld distribution P (y, xk) we can derive a recursion relation as well. Let
us consider expectation values of spins belonging to a cluster Ck+1 ⊂ Ck. In (3.102)
we break up the coupling due to ∆qk via a Hubbard Stratonovich transformation and
perform the sum over all spins in Ck\Ck+1. Casting this back into the form (3.102) but
for xk+1 we �nd the recursion

P (y, xk+1) =

∫
dz

exp
(
− z2

2∆qkJ2

)
√

2π∆qkJ2
exp [xk(φ(y, xk+1)− φ(y − z, xk))] , (3.103)

Q(2) =



1− q1 q2 − q1 0 0
q2 − q1 1− q1 0 0

0 0 1− q1 q2 − q1

0 0 q2 − q1 1− q1

0

0

1− q1 q2 − q1 0 0
q2 − q1 1− q1 0 0

0 0 1− q1 q2 − q1

0 0 q2 − q1 1− q1


.

(3.96)
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with the initial condition

P (y, x0 ≡ 0) = δ(y). (3.104)

Taking the continuum limit, and using (3.97), one derives the second Sommers-Dupont
equation

Ṗ (y, x) = q̇(x)

[
P ′′(y, x)

2
− x(φ′(y, x)P (y, x))′

]
. (3.105)

At very low temperature T � J , a full replica symmetry breaking solution of the
SK model in the low energy sector has been found [71, 72]. In the following I will
illustrate the basic idea of Ref. [72]. We again write the Parisi in�nite RSB scheme
equations �Sommers-Dupont equations:

ṁ(y, x) = − q̇(x)

2
[m′′(y, x) + 2βxm(y, x)m′(y, x)] , (3.106)

Ṗ (y, x) =
q̇(x)

2

{
P ′′(y, x)− 2βx [m(y, x)P (y, x)]′

}
, (3.107)

with the initial conditions: m(y, 1) = tanh (βy) and P (y, 0) = δ(y). In principle, these
equations can be solved iteratively. One can compute m(y, x) and P (y, x) for a given
order parameter q(x), which is computed from m(y, x) and P (y, x):

q(x) =

∫
dyP (y, x)m2(y, x). (3.108)

By introducing new notations: m(y, x) = m̃(z, x), P (y, x) = (βx)−1p̃(z, x), q̇(x) =
2β(βx)−3c(x), where z = βxy, Eqs. (3.106,3.107) become:

x ˙̃m = −c (m̃′′ + 2m̃m̃′)− zm̃′, (3.109)

x ˙̃p = c [p̃′′ − 2(p̃m̃)′]− zp̃′ + p̃, (3.110)

where the dot and prime are now derivatives with respect to x and z variables, cor-
respondingly. Pankov's scaling ansatz assumes that m̃ and p̃ become functions of the
scaling variable z only, and c is a constant. Under this assumption, we obtain the
scaling equations

0 = −c (m̃′′ + 2m̃m̃′)− zm̃′, (3.111)

0 = c [p̃′′ − 2(p̃m̃)′]− zp̃′ + p̃. (3.112)

It is can be demonstrated that the ansatz becomes asymptotically exact in the scaling
regime described above. In the large z limit, from the scaling equations (3.111,3.112),
one �nds that the �eld distribution is asymptotically linear:

|z| � 1, m̃ = sign(z), p̃ = γ(|z|+ 2c). (3.113)
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The local �eld distribution P (y, x) develops a linear gap at zero temperature, which
is consistent with the previous analysis in the section 1.3.2. The scaling ansatz also
allows us to compute the slope of P (y, 1) in the low temperature limit. Because the
scaling equations can be easily integrated numerically, one can obtain the value of
the slope with arbitrary precision. With a �xed constant c the function p̃ enters the
equations linearly, therefore one can set γ = 1 when solving for c, and then compute
the slope as γ = c[

∫
dzp̃γ=1(z)(1 − m̃2(z))]−1. Up to ten digits of precision one found

c = 0.4108020997, γ = 0.3010464715.
At the end of this Chapter I would like to comment on broken ergodicity and broken

replica symmetry in spin glasses: as far as we know, the broken replica symmetry in
real three-dimensional spin glasses is doubtful. Nevertheless, the nontrivial broken
ergodicity does persist in real systems, especially in their dynamics. That is, even
though there are not in�nitely many thermodynamically stable phases, there do appear
to be many metastable states. Thus broken ergodicity on a given timescale remains an
important concept in real spin glasses, even if strict thermodynamic broken ergodicity
is not.

3.5 Conclusion

In this chapter I reviewed some basic aspects of the mean �eld theory of spin glasses.
I mainly focused on the SK model which exhibits nontrivial broken ergodicity and
broken replica symmetry. The technique I presented here can be also extended to
quantum systems which I will study in Chapter V.
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Chapter 4

Non-frustrated Bose glasses-Energy

localization

In this Chapter I study localization properties of strongly interacting bosons and spin
systems in a disordered potential at zero temperature. Disordered hard-core bosons
and a closely related XY ferromagnet in a transverse �eld are analyzed on a Cayley tree
with large connectivity K which allows us to approach the quantum phase transition to
an ordered (super�uid or ferromagnetic) phase. I �nd that with a uniformly distributed
disorder non-extensive excitations in the disordered phase are all localized. Moreover, I
�nd that the order arises due to a collective condensation, which is qualitatively distinct
from a Bose Einstein condensation of single particle excitations into a delocalized state.
In particular, in non-frustrated Bose glasses, I do not �nd evidence for a boson mobility
edge in the Bose glass.

4.1 Models

The phenomenon of Anderson localization is well epitomized by the model of a spinless
quantum particle hopping on a lattice [1], as it arises e.g. in the impurity band of a
semiconductor if interactions are neglected:

H = −
∑
i

εini −
∑
〈i,j〉

tij

(
c†icj + c†jci

)
. (4.1)

Here εi is a random onsite potential and tij is the hopping strength. For simplicity
we will take εi to be uniformly distributed in [−W,W ], and choose energy units such
that W = 1. The operators ci(c

†
i ) create or annihilate a fermion at the lattice site i.

This model has been extensively studied numerically. In 3d, at weak disorder, most
eigenstates are delocalized, apart from the band edges which are separated from the
continuum of extended states by the mobility edge. Upon increase of the disorder the
mobility edges progress toward the bulk of the spectrum. The states in the middle
of the band (E = 0) are the last to become localized. On a 3d cubic lattice, this
happens when the hopping becomes weaker than tc ≈ 0.12. [73] The single particle
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wavefunctions at the mobility edge are neither fully delocalized (space-�lling) nor fully
localized, but exhibit interesting multifractal properties [5].

Given the canonical model (4.1) of localization of free fermions, it is interesting to
ask how a canonic model of bosons will behave, i.e., when replacing fermionic with
bosonic operators ci(c

†
i )→ bi(b

†
i ). However, as mentioned above, non-interacting disor-

dered bosons exhibit pathological behavior, since they simply condense into the lowest
lying single particle wavefunction, which is generically a strongly localized state at
the extreme of the Lifshitz tail of the density of states. To remedy this pathology,
interactions must be included in the bosonic case. A particularly interesting case is
that of hard-core bosons which locally repel each other in�nitely strongly. This is
very similar to the local constraints of free spinless fermions, which obey the Pauli
exclusion principle. In both cases at most one particle can occupy a given lattice site.
The models di�er, however, due to the exchange statistics. In the case of hard core
bosons, the local repulsion renders the system genuinely interacting, while 'hard core'
fermions can of course be understood entirely by solving the single particle problem
at all energies. The di�erence of quantum statistics is ultimately responsible for the
fact that super�uids of bosons survive weak disorder in 2 spatial dimensions, whereas
repulsive fermions are generically prone to localize and form insulators at low tem-
perature. How precisely a disordered Bose glass turns into a delocalized super�uid,
especially in low dimensions, is not understood in detail. Several questions as to the
localization of excitations in the Bose glass, the existence of bosonic mobility edges,
or a �nite temperature "many-body delocalization" are also under debate and serve
as a motivation for the present analysis, which provides a small step towards a better
understanding of some of those issues.

Physical realizations of hard core bosons arise naturally in several contexts: Apart
from the obvious example of strongly repulsive cold bosonic atoms, hard core bosons
emerge in correlated materials with a strong local negative U attraction where all
electron sites are either empty or host two electrons of opposite spin. Naturally, such
singlets form hard core bosons. A minimal description in the presence of disorder is
given by the Hamiltonian

Hhcb = −
∑
i

εini −
∑
〈i,j〉

tij

(
b†ibj + b†jbi

)
, (4.2)

where interactions are retained only in the form of a local hard core constraint. Such
a Hamiltonian was also obtained in an approximate description of strongly disordered
superconductors by Ma and Lee [20], who generalized the BCS wavefunction to be
constructed out of doubly occupied or empty single particle wavefunctions. Each such
orbital forms an Anderson pseudospin, i.e., a hard core boson, which will be localized
if the disorder is strong. The Ma-Lee model allows one to describe approximately
the super�uid-to-insulator transition in strongly disordered systems with predominant
attractive interactions. Recently this approach has been extended to take into account
fractality of the paired single particle states [74, 75], which translates into unusual
statistics of the pair hopping elements t occurring in (4.2).

The thermodynamics of the Hamiltonian (4.2) was studied extensively with quan-
tum Monte Carlo techniques in the past [45] as a model for the disorder driven
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super�uid-insulator transition. Recently the model was revisited from the perspec-
tive of localization of excitations in the insulating regime [29, 52]. Interestingly, clear
signs of the quantum statistics, i.e. di�erences between fermions and hard core bosons,
appear already deep in the insulating regime [51]: In d > 1 one �nds that low energy
excitations of hard core bosons delocalize more readily than fermions when subjected
to the same disorder potential [51]. A more important di�erence is the fact that the
wavefunctions of localized excitations react in an opposite sense to a magnetic �eld:
While fermionic excitations tend to become more delocalized due to the suppression
of negative interference of alternative tunneling paths, bosonic wavefunctions tend to
contract under a magnetic �eld. This leads to strong, opposite magnetoresistance in
the low temperature transport of such insulators.

4.1.1 Disordered spin models

The Hamitonian Eq. (4.2) of disordered hardcore bosons is equivalent to a XY ferro-
magnet s = 1/2 spins in a random transverse �eld, using the isomporhism b†i = σ−i =
1
2
(σxi − iσ

y
i ), bi = σ+

i = 1
2
(σxi + iσyi ), ni = (σzi + 1)/2:

HXY = −
∑
i

εiσ
z
i − J

∑
〈i,j〉

(
σxi σ

x
j + σyi σ

y
j

)
,

= 2Hhcb + const. , (4.3)

where we took the hopping/exchange tij = J to be uniform. In (4.3) the operators
σx,y,zi are Pauli matrices.

At zero temperature, this model exhibits a localized Bose glass phase (paramagnet)
for t, J � W . In d > 1 dimensions, a super�uid (ferromagnetic) phase is expected for
t, J � W , while in strictly one-dimensional chains, the system is known to be fully
localized irrespective of the weakness of disorder.

We will contrast the model (4.3) with the closely related Ising model

HIsing = −
∑
i

εiσ
z
i − J

∑
〈i,j〉

σxi σ
x
j . (4.4)

While the hardcore boson model conserves particle number and possesses the related
continuous U(1) symmetry, the model (4.4) has only a discrete Ising symmetry σx →
−σx. For brevity we shall refer to the above models as the XY and Ising models,
respectively. Below we will see how the two symmetries lead to di�erences in the
localization properties of excitations in the localized phases.

4.1.2 Review of previous results

Many theoretical studies have focused on interacting bosons in one dimension, both at
T = 0 and �nite temperature. For the example of the interacting Bose gas, in the weak
disorder strong interacting regime, a super�uid-Bose glass quantum phase transition
occurs at a universal value of the Luttinger liquid parameter [7]. In the weak interacting
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limit, where the Luttinger liquid description is not valid. By di�erent approaches [76,
77, 78]. People show that there is also a Bose-glass to super�uid quantum phase
transition, while the transition value is no longer universal [79]. At �nite temperature,
weakly interacting bosons gas exhibits a �nite-temperature phase transition between
�uid and insulator in the presence of disorder [80]. The transition temperature can be
seen as the many-body analogue of the mobility edge which separates localized and
delocalized states in the single particle Anderson transition.

In higher dimensions the disordered XY model can develop true long-range order.
Quite a lot of numerical work has been done in this direction [45, 81, 82]. Phenomeno-
logical considerations of (4.3) have been presented in Ref. [52]. And later a mean-�eld
analysis is available [28, 29] where the model (4.3) has been studied on a Cayley tree
with large connectivity.

In this Chapter we revisit the models Eqs. (4.3) and (4.4) on general lattices deep
in their insulating (disordered) phase, working to leading order in small hopping. We
study the localization properties of excitations, by analyzing the life time of excitations
due to an in�nitesimal coupling to a bath at the boundaries of the sample, which
allows us to characterize the exponential localization of bulk excitations. Comparing
this perturbative approach to exact results for one-dimensional spin chains, we �nd
exact agreement to leading order in hopping, and qualitative agreement in terms of
the phenomenology. Especially, we �nd that both approaches predict that excitations
are the more delocalized the lower the energy, at least in the lower part of the energy
spectrum. In order to be able to approach the vicinity of the transition to a super�uid,
we apply the formalism to a Cayley tree of large connectivity, where a perturbative
approach is valid up to a parametrically small vicinity of the super�uid transition.
However, in contrast to the analysis of Refs. [28, 29] where this problem was �rst
studied, we �nd that in the spin models with either symmetry non-extensive excitations
are localized in the insulating phase. In other words, in the considered models with
uniform disorder potential, we do not �nd evidence for a mobility edge of bosonic
excitations at �nite energies. In particular, within the approximation to leading order
in the hopping, the super�uidity of bosons appears as a delocalization phenomenon at
zero energy, without preceding delocalization of excitations at low but �nite energy.

4.2 Decay rate of local excitations

In this Section we study the decay of local excitations (spin �ips) su�ciently deep
within the disordered phases (i.e., the insulating Bose glass or the paramagnet) of the
models (4.3) and (4.4), respectively. The transverse quantum �uctuations due to the
exchange J (or hopping t) allow spin �ips to propagate over some distance. However,
within a localized regime, they die o� exponentially at large distance. Following in
spirit Anderson's approach to single particle localization, we characterize localization
by the decay rate Γ of a local excitation, as induced by the coupling to a bath at the
distant boundaries of the sample. In the localized phase Γ is exponentially small in
the linear size of the system. A good measure for the localization radius ξ of such
excitations is thus given by the decrease of log(Γ) with the distance R to the bound-
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ary, which generally behaves as log Γ ≈ −2R/ξ. For delocalization, and thus energy
di�usion, to occur in a many body context, typical decay rates must remain �nite in
the thermodynamic limit, as the system size tends to in�nity, while the coupling to
the bath is kept in�nitesimal.

We study the models (4.3) and (4.4) on a general lattice Λ. We assume the system
to be coupled in�nitesimally to a zero temperature bath via the spins on a "boundary
set" ∂Λ of the lattice, which becomes in�nite in the thermodynamic limit, too. Later
on, to simplify the discussion, we will chose this subset to be the spatial boundary of the
�nite lattice Λ. 1 All boundary sites l ∈ Λ are assumed to be coupled to independent,
identical baths, described by a continuum of non-interacting harmonic oscillator modes
bα,l of energy εα and coupling strength λα:

Hb =
∑
l∈∂Λ

∑
α

εαb
†
α,lbα,l. (4.5)

Such a bath is characterized by its spectral function

Jb(ε) =
∑
α

λ2
αδ(ε− εα). (4.6)

For both the XY and Ising models we consider the following system-bath couplings:

H = H0 +Hs,b +Hb,

Hs,b =
∑
l∈∂Λ

σxl
∑
α

λα

(
b†α,l + bα,l

)
, (4.7)

where H0 = HXY,Ising is the uncoupled spin Hamiltonian. Obviously, the details of
the coupling to the bath are irrelevant for the determination of localization radii ξ of
localized excitations, or to determine presence of delocalization.

In the limit t� 1, the ground state is well approximated by the product state

|GS〉 ≈ ⊗i∈Λ |σzi = sign(εi)〉 . (4.8)

Let us now characterize the temporal decay of a local excitation close to the site 0 ∈ Λ
in the bulk of the lattice. As a canonic example we will study the spin �ip excitation
σx0 |GS〉. For J = 0 this creates the excited state

|E0〉 = ⊗i∈Λ |σzi = (1− 2δ0i)sign(εi)〉 . (4.9)

At �nite J we denote by the same ket |E0〉 the eigenstate, which evolves adiabatically
from the excited state (at J = 0) and thus has largest overlap with the local spin �ip
excitation at small J . Our aim is to determine the life time of that eigenstate. It

1If one has only the purpose of distinguishing a localized from a delocalized phase, one might also
choose to couple to a bath at every site, taking ∂Λ = Λ. In that case one usually just asks whether the
thermodynamic limit and the limit of vanishing bath coupling commute (insulator) or not (delocalized
phase). Here we mostly want to characterize the decay of localized excitations, for which a coupling
at the boundary is more convenient.
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is �nite since the coupling to the bath induces decays to lower energy states, and in
particular back to the ground state. As an explicit calculation below will con�rm the
life time can be evaluated simply by applying Fermi's Golden rule.

One should naturally ask whether the life time of spin �ip excitations (which carry
Ising or U(1) charge) should be characteristic for the lifetime of other excited states
that are created by local operators. Among the excitations that transform the same
way under Ising or XY symmetry operations, one expects the localization length deep
in the disordered phase, de�ned via the exponentially small inverse life time, to be the
same function of energy as that of single spin �ips. This is because the propagation
to long distances proceeds furthest by making the minimal use of exchange couplings.
At energies below the bandwidth this is always achieved by the shortest chains of
exchange bonds between the location of excitation and the point of observation, which
will be analyzed in detail below. For excitations with di�erent symmetry, e.g. neutral
ones like a pair of opposite spin �ips, the localization is stronger in the regime of small
J , since the matrix element to transfer such an excitation a distance R away decays
as ∼ J2R, as compared to the amplitude ∼ JR for single spin �ips. However, we do
not know whether this property remains true all the way to the ordering transition,
where the expansion in J starts to diverge, and an estimate of the relative importance
of various propagation channels is very di�cult, and presumably dependent on the
details of the considered model. Throughout this paper we thus stay within regimes
where the perturbative expansion in the small exchange J is controlled.

In order to make the above notions formally precise, we de�ne the retarded spin
correlator

Gl,0(t) ≡ −iΘ(t) b〈GS|[σxl (t), σx0 ]|GS〉b, (4.10)

where |GS〉b = |GS〉 ⊗ |bath〉 denotes the ground state of the uncoupled system and
bath, |GS〉 being the ground state of HI , HI |GS〉 = EGS|GS〉, and A(t) = e−iHtAeiHt

are Heisenberg operators. In the following, we will analyze in particular local correla-
tors, such as G0,0(t). It will be convenient to study these correlators in the frequency
domain

Gl,0(ω) =

∫ ∞
−∞

dtei(ω+iη)tGl,0(t), (4.11)

with η → 0+. Introducing U(t) = eiH0te−iHt, we can write

G0,0(t) = (4.12)

−iΘ(t) b〈GS|[U †(t)eiH0tσx0e
−iH0tU(t), σx0 ]|GS〉b.

We evaluate (4.12) perturbatively in the coupling to the bath, expanding U(t) in λα.
To second order one has

U(t) ' 1− i
∫ t

0

dt1Hs,b(t1) (4.13)

−
∫ t

0

dt1

∫ t1

0

dt2Hs,b(t1)Hs,b(t2) +O(λ3
α),
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where Hs,b(t) = eiH0tHs,be−iH0t. Inserting into G0,0(ω) we obtain the expansion

G0,0(ω) = G
(0)
0,0(ω) +G

(2)
0,0(ω) + o(λ2

α), (4.14)

whereby the linear term in λα vanishes due to conservation of the parity of the total
spin projection,

∑
i σ

z
i . The leading term is

G
(0)
0,0(ω) =

∑
n

(
|〈GS|σx0 |En〉|2

ω + EGS − En + iη
−

|〈En|σx0 |GS〉|2

ω + En − EGS + iη

)
, (4.15)

where n runs over all eigenstates of HI labeled by their energy En.
The second order term G

(2)
0,0(ω) has a relatively complicated structure for arbitrary

ω. However, we are particularly interested in understanding the life time of excitations,
i.e., the imaginary part of the poles that appear in the leading term G2

0,0(ω). Therefore
we focus on ω ≈ En − EGS, and extract only the most singular term in the imaginary
part of G(2)

0,0(ω → En − EGS), which evaluates to:

ImG
(2)
0,0(ω → En − EGS) = −π |〈GS|σ

x
0 |En〉|2

(ω + EGS − En)2

×
∑
l∈∂Λ

∑
Em<En

Jb(En − Em)|〈Em|σxl |En〉|2

× [1 +O(ω + EGS − En)] . (4.16)

As the bath couplings and the spectral functions Jb(ω) are assumed to be very small,
we can account for this imaginary part as a shift of the poles into the complex plane:

G0,0(ω) ≈
∑
n

|〈GS|σx0 |En〉|2

ω − (En − EGS − iΓn/2)
, (4.17)

where, to quadratic oder in the bath coupling,

Γn = 2π
∑
l∈∂Λ

Jb(En − EGS)|〈GS|σxl |En〉|2

+2π
∑
l∈∂Λ

∑
EGS<Em<En

Jb(En − Em)|〈Em|σxl |En〉|2

is the decay rate of the excited state n under emission of a bath mode. This is easily
recognized as the inverse life time expected from Fermi's Golden rule. We have dropped
the real parts of the self-energies which shift the poles by small amounts proportional
to the coupling to the bath.

Note that the rate Γn includes the decay to the ground state as well as to other
excited states of lower energy. However, we will merely focus on the contribution from
the decay to the ground state,

Γ(GS)
n = 2πJb(En − EGS)

∑
l∈∂Λ

|〈GS|σxl |En〉|2. (4.18)
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This indeed su�ces for our purposes, for two reasons: On one hand, if we are interested
in the rate at which energy escapes the system, we should not consider decays to other
excited states, since those retain part of the excitation energy within the system. On
the other hand, the relevant contributions to the full inverse life time due to decays
into excited states are comparable in magnitude to the contribution form the decay to
the ground state. Therefore the latter furnishes enough information to determine the
localization radius of the excitations in a deeply insulating regime.

As we explained before, we are interested in the dominant excited state |En〉 = |E0〉,
for which, according to (4.18), we need to evaluate the matrix element

〈GS|σxl |E0〉 ≈ 〈GS|σxl |E0〉〈E0|σx0 |GS〉 ≡ Al0, (4.19)

since 〈E0|σx0 |GS〉 = 1−O(J2). Note the asymmetry of l and 0 in the de�nition of this
amplitude: Al0 6= A0l. The �rst index denotes the site where the excitation probed,
which is centered at site 0, while l is the site at which the excitation is probed.

From a Lehmann representation of the retarded Green's function (4.10) it becomes
clear that Al0 is simply one of its residues:

Gl,0(ω) =

∫ ∞
−∞
−iΘ(t)〈GS| [σxl (t), σx0 ] |GS〉ei(ω+iη)dt

=
∑
n

〈En|σx0 |GS〉〈GS|σxl |En〉 ×

×
[

1

ω − (En − EGS − iη)
− 1

ω + (En − EGS + iη)

]
.

Indeed, the pole at ω = E0 − EGS has the desired matrix element as residue,

Al0 = lim
ω→E0−EGS

[ω − (E0 − EGS)]Gl,0(ω). (4.20)

This observation can be used to determine Al0 in perturbation theory in J in an
e�cient manner, by solving recursively the equation of motion for Gl,0 in a locator
expansion. As we will discuss further below, the matrix elements Al0 are needed not
only to calculate the decay rate to the ground state, but also to determine the onset
of long range order.

The above derivation is easily adapted for the XY model, cf. Sec. 4.2.2.

4.2.1 Equations of motion - Ising model

Let us now evaluate the Green's function Gl,0(t) to the leading order in the exchange
J . We �rst split Gl,0(t) into two parts

Gl,0(t) = G+
l,0(t) +G−l,0(t), (4.21)

G±l,0(t) = −iΘ(t)〈GS|
[
σ±l (t), σx0

]
|GS〉,

which satisfy simpler equations of motion,

i
dG±l,0(t)

dt
= δ(t)〈

[
σ±l (t), σx0

]
〉 − iΘ(t)〈

[
iσ̇±l (t), σx0

]
〉. (4.22)
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The spin �ip operators σ±l (t) satisfy Heisenberg equations. For the Ising model, they
read

iσ̇±l (t) =
[
σ±l , H0

]
= ±2εlσ

±
l (t)∓ Jσzl (t)

∑
j∈∂l

σxj (t). (4.23)

The sum is over the set ∂l of nearest-neighbors of site l. To leading order in J , we
can restrict ourselves to the neighbors j which are closer to the site 0 than l, since
other terms lead to contributions of higher order in J . Furthermore, when evaluating
the expectation value in the last term of Eq. (4.22), we can decouple the average over
σzl (t) from the other operators,

〈σzl (t)σxj ...〉 = 〈σzl (t)〉〈σxj ...〉 (4.24)

and use 〈σzl (t)〉 = sign(εl) + O(J2). Corrections to this approximation lead again to
higher powers of J . However, they can be determined systematically by an extension of
the present approach [83]. To the leading order, the recursion relations for the Green's
functions, after Fourier transform, become

(2εl ∓ ω)G±l,0 = J sign(εl)
∑
j∈∂l

Gj,0(ω). (4.25)

Solving for Gl,0(ω) from Eq. (4.21) we obtain the recursion relation

Gl,0(ω) =
∑
j∈∂l

J sign(εl)
4εl

(2εl)2 − ω2
Gj,0(ω), (4.26)

which is exact to leading order in J . Upon iterating the recursion until we reach the site
0, we obtain the leading order of the Green's function as a sum over all shortest paths
from l to 0 (of length L = dist(l, 0), the Hamming distance on the lattice between l
and 0)

Gl,0(ω) ≈
∑

P={j0=0,..,jL=l}

L=dist(l,0)∏
p=1

4J |εjp |
(2εjp)

2 − ω2
G0,0(ω).

Notice that G0,0(ω → E0 − EGS) ≈ 1
ω+EGS−E0

. Therefore, the sought residue of the
corresponding pole in Gl,0(ω) around ω = E0 − EGS = 2|ε0|+O(J2) is

Al0 =
Gl,0(ω)

G0,0(ω)

∣∣∣∣
ω=2|ε0|

(4.27)

=
∑

P={j0=0,..,jL=l}

L∏
p=1

J |εjp |
ε2jp − ε

2
0

,

to the leading order in J .
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4.2.2 Equations of motion - XY model

It is straightforward to repeat the same steps for the XY model. Without loss of gen-
erality, we suppose that the �ipped spin sits on a site 0 with ε0 ≥ 0 and thus essentially
points up in the ground state. We aim at the matrix element of the operator σxl be-
tween the ground state and the excited eigenstate |E0〉 = σ−0 |GS〉 (up to corrections
of order O(J2)),

〈GS|σxl |E0〉 ≈ 〈GS|σ+
l |E0〉〈E0|σ−0 |GS〉 ≡ Al0. (4.28)

We thus de�ne the relevant Green's function as

GXY
l,0 (t) ≡ −iΘ(t)〈GS|[σ+

l (t), σ−0 ]|GS〉. (4.29)

Employing the Lehmann representation and solving recursively the equations of motion
in powers of J , allows us to extract the matrix element of interest

Al0 =
GXY
l,0 (ω)

GXY
0,0 (ω)

∣∣∣∣∣
ω=2|ε0|

=
∑

P={j0=0,..,jL=l}

L∏
p=1

Jsign(εjp)

εjp − |ε0|
, (4.30)

to the leading order in powers of J .
Notice the di�erence between Eqs. (4.30) and (4.27), which arises due to the di�er-

ent symmetries of the two models. Indeed, in the Ising model, by a gauge transforma-
tion, one can always choose εi > 0, and therefore the physical correlators can only be
functions of |εj|. However, the same is not true for the XY model. Furthermore, the
XY model the total spin

∑
i σ

z
i (or the number of hard-core bosons) is conserved. In

contrast, the Ising model only preserves its parity, which allows for more quantum �uc-
tuations. The di�erence shows at �nite excitation energies ω = 2|ε0|, but disappears
at low energies, ε0 → 0 within the leading order approximation.

4.2.3 Comparison with non-interacting particles (fermions)

The result (4.30) was derived in Ref. [51] for hard core bosons. Using the correspon-
dence J → t, one obtains, up to subleading corrections,

〈GS|b†l |E0〉 = Al0,

where in this case we denote by

|E0〉 = b0|GS〉+O(t)

the excited state with a boson removed from site 0.
Note that it has nearly the same form as the analogous sum for non-interacting

fermions [1], which can be obtained from a recursive solution of the Schrödinger equa-
tion, but is also easily rederived in the same fashion as for bosons. The fermion result
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di�ers only by the absence of the sign factors in the numerator sign(ε). This is easy
to understand physically: Consider a loop formed by two shortest paths between two
di�erent sites. Taking the �rst path in forward direction and the second path back, a
ring exchange of particles is performed, since in the process each particle is moving to
the next negative energy site ahead of it on the loop. The corresponding amplitude for
bosons and fermions should di�er by an extra sign factor, if there is an odd number of
particles on the loop (in the ground state). This results precisely in the extra factor∏

j∈loop sign(εj) which makes bosons distinct from fermions.
One should note that for non-interacting fermions the recursion relation for the

Green's function is exact and does not require the decoupling of the correlation function
obtained from taking a time derivative to obtain a closed recursion relation. Therefore
the full Green's function can be expressed formally exactly as a sum over all paths,
with amplitudes being products of the locators t/(εi − ω), analogous to Eq. (4.30)
without signs. In contrast, for hard core bosons this simple form is exact only for
contributions from non-intersecting paths, with each link contributing a single factor
of J . Loop corrections take a more involved form and require an extension of the
equation of motion techniques used above [83].

4.3 One-dimensional case: chains

In order to better appreciate certain features of higher dimensional cases, it turns out
to be useful to review some properties of one-dimensional chains, which are known
due to their exact solvability due to exact mappings to free fermions [84], bosonization
techniques [7] and approaches via strong randomness renormalization group [85, 86].
The latter was indeed developped for random transverse �eld Ising chains, while it is
not well controlled for the XY case, since the RG does not �ow to in�nite randomness.

It is well-established that the random transverse �eld XY model, or hard core
bosons in strictly 1 dimension does not exhibit a quantum phase transition, but only
possesses the paramagnetic (insulating) phase. This can easily be seen from after
a Jordan-Wigner transformation, which maps the hard core bosons to free fermions,
which are always localized, even if the disorder potential is very weak. In bosonization
language hard core bosons in weak disorder are described by a Luttinger liquid with
Luttinger parameter K = 1. The interaction shave to be rendered su�ciently soft
core to increase K above Kc = 3/2 to allow for a super�uid phase in su�ciently weak
disorder [7, 87].

In contrast, the random transverse �eld Ising chain does undergo a para-to-ferromagnetic
quantum phase transition, which is captured by strong disorder �xed point [85]. Some
of its properties will be recalled below, to the extent that they are relevant to our
discussion for higher dimenions.

We consider the strictly one-dimensional random transverse �eld Ising model

H = −
∑
j

εjσ
z
j − J

∑
j

σxj σ
x
j+1. (4.31)

As mentioned above, by a gauge transformation, we can choose εi > 0. Following the
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transformations and notations of Ref. cite3ddisoerderedhardcorebosons, we introduce
free fermions by the Jordan-Wigner transformation

cj = σ−j e
iπ
∑
k<j σ

+
k σ

−
k , c†j = σ+

j e
−iπ

∑
k<j σ

+
k σ

−
k . (4.32)

They satisfy the canonical anti-commutation relations

{c†j, ck} = δjk, {c†j, c
†
k} = {cj, ck} = 0. (4.33)

In terms of fermionic degrees of freedom, the model (4.31) can be written as

H =
∑
jk

(
c†j cj

)
Hjk

(
ck
c†k

)
, (4.34)

where

Hjk =
1

2

(
Djk +D†jk Djk −D†jk
D†jk −Djk −Djk −D

†
jk

)
, (4.35)

and D is the matrix de�ned as

Djk = −εjδjk − Jδj,k−1. (4.36)

It is useful to perform a unitary transformation

(iγ1
j , γ

2
j ) = (c†j, cj)U, (4.37)

with

U =
1√
2

(
1 1
−1 1

)
. (4.38)

The operators γ1(2)
j are Majorana fermions corresponding to the real (imaginary) parts

of c†j. In terms of those the Hamiltonian takes the form

H =
∑
jk

(
iγ1
j γ2

j

)
H̃jk

(
−iγ1

k

γ2
k

)
, (4.39)

where

H̃ = U−1HU =

(
0 D
D† 0

)
, (4.40)

which makes explicit the chiral symmetry of the problem. Indeed, the classi�cation
of Altland and Zirnbauer [88], the single particle Hamiltonian H̃ belongs to the chiral
class BDI [86, 82]: H̃ is real, and there exists a matrix Σ3,

Σ3 =

(
1 0
0 −1

)
, (4.41)

such that

Σ3H̃Σ3 = −H̃. (4.42)
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4.3.1 Transfer matrix approach

For a chain of the length L, a 2L× 2L unitary matrix V diagonalizes H̃,

V H̃V −1 = diag(ω1, ..., ω2L), (4.43)

which implies that its n'th column vector (ψ1
n,i, ψ

2
n,i) satis�es the Schrödinger equation(

0 D
D† 0

)(
ψ1
n

ψ2
n

)
= ωn

(
ψ1
n

ψ2
n

)
. (4.44)

The corresponding operators

dn =
L∑
i=1

[
ψ1
n,i(−iγ1

i ) + ψ2
n,iγ

2
i

]
(4.45)

and their conjugates satisfy canonical anticommutation relations. They annihilate
fermionic degrees of freedom of energy ωn, [H, dn] = −ωndn.

In the lattice basis, Eq. (4.44) takes the explicit form∑
j

Dijψ2
j = ωψ1

i , (4.46)∑
j

D†ijψ1
j = ωψ2

i , (4.47)

where from here on we drop the mode index n. Noting that in these sums j is restricted
to the values i− 1, i or i+ 1, we �nd

Dii+1ψ
2
i+1 = ωψ1

i −Diiψ2
i −Dii−1ψ

2
i−1, (4.48)

D†ii+1ψ
1
i+1 = ωψ2

i −D
†
iiψ

1
i −D

†
ii−1ψ

1
i−1. (4.49)

Using Eq. (4.36) and the fact that Di,i−1 = D†ii+1 = 0, this can be rewritten in the
form of a recursive relation [84, 85](

ψ1
i+1

ψ2
i+1

)
= Ti(ω)

(
ψ1
i

ψ2
i

)
, (4.50)

where the transfer-matrix Ti(ω) is given by

Ti(ω) =

(
− J
εi+1

(
1− ω2

J2

)
− ωεi
Jεi+1

−ω
J

− εi
J

)
. (4.51)

4.3.2 Localization length

Except at the critical point all the mode functions ψi are exponentially localized.
The typical localization length of these fermions, ξtyp,f can be extracted from the full
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transfer matrix M(ω) = TL(ω)...T2(ω)T1(ω), as its inverse of the largest Lyapunov
exponent. This yields

1

ξtyp,f (ω)
= lim

L→∞

1

2L
log[max(λ1, λ2)], (4.52)

where λ1, λ2 are the two eigenvalues ofMT (ω)M(ω).
In the limit of zero energy, ω → 0, the two blocks of the transfer matrix decouple,

and one can immediately read o� the typical localization length as 2

1

ξtyp,f (0)
=

∣∣∣∣log
(εi
J

)∣∣∣∣ ≡ ∣∣∣∣log

(
Jc

Jc −∆

)∣∣∣∣ . (4.53)

Here the overbar denotes the disorder average over the random onsite energies εi. Jc
denotes the value of the critical exchange coupling, where ξtyp,f diverges at ω = 0. Jc
is given by the condition [85] 0 = log(εi/Jc). ∆ ≡ Jc − J is a measure of the detuning
from criticality.

From Eq. (4.53) one can see that near the critical point, the typical low energy
degrees of freedom delocalize as ξtyp,f (0) ∼ ∆−ν with ν = 1. However, spatially aver-
aged correlation functions decay more slowly with a faster diverging average correlation
length [85], ξav,f (0) ∼ ∆−2. This arises because such averages are dominated by rare
regions with favorable disorder con�guration.

Note that the typical localization length de�ned in (4.52) is a smooth function of
energy ω. We studied the energy dependence using the transfer-matrix (4.51) and
evaluating 1/ξtyp,f (ω) numerically for a box-distributed disorder. At the critical point,
we �nd a logarithmically diverging localization length, ξtyp,f (ω) ∼ | log(ω)|, cf. Fig. 4.1,
which is consistent with the activated scaling predicted by the strong randomness
renormalization [85].

Away from criticality, the localization length is �nite at ω = 0, but it behaves
non-analytically at small ω

ξ−1
typ,f (ω)− ξ−1

typ,f (0) ∼ ωα, (4.54)

with α > 0, cf. Fig. 4.2. We will discuss the origin of this power law and the exponent
α in Sec. 4.3.4 below and compare it with exact results obtained in a continuum model.
In the model with box-distributed disorder, upon increasing the energy to the fermionic
band edge, we always found the localization length to decrease with increasing energy,
independently of the distance to criticality.

4.3.3 Continuum limit

If the disorder is weak, the low energy physics can be captured by coarsegraining the
lattice model and taking a continuum limit of H̃. After rewriting the matrix D from
(4.36) as

Djk = −J(δj,k−1 − δjk) + (εj − J)δjk, (4.55)

2Strictly speaking, there are no normalizable eigenmodes with exactly ωn = 0. However, there are
modes with energies that are exponentially small in the system size, and for those the value given in
(4.53) still applies.
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Figure 4.1: The numerically evaluated Lyapunov exponents of the Jordan-Wigner
fermions, Eq. (4.53) at the critical point of the Ising spin chain, J = Jc. The localization
length shows activated scaling ξ−1(ω) ∝ 1/| log(ω)|.
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Figure 4.2: The numerically evaluated Lyapunov exponent of Jordan-Wigner fermions
of the spin chain as a function of energy. The disorder is strong, and box-distributed.
Data is shown for the paramagnetic regime (J < Jc) o� criticality. The inverse lo-
calization length at zero energy, 1/ξ(0), serves as a measure for the distance from the
critical point. At small ω, in the localization length ξtyp,f always decreases as a power
law with increasing ω.
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the continuum limit of H̃ can be taken as (with lattice spacing set to unity)

Dc = J

[
− d

dx
+ φ(x)

]
. (4.56)

The random potential is given by

φ(x) =
εj − J
J

, (4.57)

where the continuous variable x corresponds to the (coarse-grained) position j.
In the case where φ(x) is a Gaussian white noise potential of unit variance, the

problem was solved exactly using supersymmetric quantum mechanics. [89, 90, 91]
The continuum version of Eq. (4.44) is equivalent to the Schrödinger equation for ψ2

with the supersymmetric Hamiltonian

Hcψ2 ≡ D†cDcψ2 (4.58)

=

[
− d2

dx2
+ φ2(x) + φ′(x)

]
ψ2 = ω2ψ2,

whose spectrum is positive by construction (here and in the remainder of this section
we set J = 1). In Ref. [90] the Lyapunov exponents (inverse localization length) of the
eigenfunctions of the continuum Hamiltonian (4.58), was obtained in closed form as

ξ−1
typ,f (ω) = −ωdMµ(ω)/dω

Mµ(ω)
, (4.59)

where Mµ =
√
J2
µ +N2

µ, Jµ and Nµ being Bessel functions of order µ of the �rst and
second kind, respectively. The index µ of the Bessel functions is the expectation value

µ = φ(x), (4.60)

which matches with the de�nition of ∆, Eq. (4.53), in the vicinity of criticality.
Evaluating the expression (4.59) at the critical point, µ → 0, one obtains a loga-

rithmic (activated) scaling at small ω,

ξ−1
typ,f (ω) =

1

|log(ω)|
+O(1/ |log(ω)|2) (µ = 0), (4.61)

similarly as we �nd above for the discrete, strong disorder case. Close to the critical
point, the formula (4.59) predicts the non-analytic behavior

ξ−1
typ,f (0) = µ,

ξ−1
typ,f (ω)− ξ−1

typ,f (0) = Aµω
2µ[1 + o(ω)], (4.62)

Aµ = 2µ
2−2µ

Γ(µ+ 1)2

πµ

tan(πµ)
.

This, too, is in qualitative agreement with the power law behavior we found numerically
for strongly disordered chains.
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4.3.4 Non-analyticity of ξ(ω) from rare events

The origin the power laws Eqs. (4.54,4.62) can be understood from an analysis of the
transfer matrix, which will also make clear what kind of rare events lead to the non-
analytic structure of ξ(ω). Let us consider the paramagnetic phase where εi > J . From
Eq. (4.51), it is clear that the Lyapunov exponent (the growth rate of the norm of the
matrix) at ω = 0 is given by the product of the elements T22. For 0 < ω � J , the
norm of the transfer matrix is still mostly dominated by a product of factors T22, but
occasionally rare stretches along the chain may occur in which εi < J . If such a rare
�uctuation is strong enough it can compensate for the small factor ∼ ω2 associated
with switching from the 2 − 2 channel to the 1 − 1 channel, and thus increases the
Lyapunov exponent beyond its ω = 0 value. The increase of ξ−1 is proportional to the
spatial density of such rare �uctuations.

The probability for the product of a long stretch of length `,

X =
i+`−1∏
j=i

|εj|
J
, (4.63)

to be smaller than ω � 1 can be estimated as

P (X < ω) ≈ exp

[
−(| logω|+ `v)2

4`D

]
, (4.64)

neglecting pre-exponential factors. Here

v = log(εi/J), (4.65)

D =
1

2

(
[log(εi/J)]2 − v2

)
, (4.66)

This follows from the consideration that logX is essentially a random walk with di�u-
sion constant D and drift v, and applying the central limit theorem. For | log(ω)| � 1
this probability is maximized for stretches of length ` = | log(ω)|/v, which occur with
probability

P (X < ω) ∼ ∆ξ−1(ω) ∝ exp
[
−| log(ω)| v

D

]
= ωv/D. (4.67)

which predicts the exponent α = v/D, in accordance with the exact result in the
continuum, Eq. (4.62), where v → µ, D → 1/2 and thus α→ 2µ.

The above shows that the leading, nonanalytic correction to the localization length
is due to rare regions which favor the opposite phase (ordered or disordered) of the
chain. It appears that low energy excitations are less backscattered from such regions
than excitations at higher energy.

While the above argument makes a robust prediction of the exponent in (4.54,4.62),
the prefactor Aµ in Eq. (4.62) is certainly much more sensitive to details of the dis-
order distribution. From the numerical evaluation of the Lyapunov exponents in the
strongly disordered spin chains we found Aµ to be always positive, independently of
the distance to criticality. In other words, the localization length at ω = 0 is found
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to be always greater than ξtyp,f (ω > 0) at higher energies. However, in the exactly
solvable continuum model such a behavior is found only for µ < 1/2, cf. (4.62), while
further away from criticality the prefactor changes sign. In that regime the cases of
strong discrete disorder and weakly disordered continuum model have no a priori rea-
son to yield qualitatively similar results. Nonetheless, the qualitative agreement of the
trend of ξtyp,f (ω) at low ω, close enough to criticality, suggests that ξtyp,f (0) is a local
maximum, independently of the speci�c disorder, as long as one is close enough to the
critical point.

4.3.5 Implications for spin systems

The relevance of the above results for correlation functions of spins in the Ising chain is
limited to some extent. Indeed, spin correlation functions, which contain the informa-
tion of localization properties of local spin excitations, are di�cult to extract from the
fermion representation, because of the nonlocal relation between spin and fermion op-
erators. Nevertheless, one may expect that the localization length of fermion Green's
functions will also control the spatial decay of spin correlations, at least at low enough
energies.

In particular it is interesting to compare the exact result for the free fermions to our
leading order results for the spin problem in general. Applying the locator expansion
to the spin chain, and de�ning the localization length via the spin correlation function
as [51]

ξ−1
s (ω) = − lim

l→∞

log(|Gl,0(ω)/G0,0(ω)|)
|l|

, (4.68)

we �nd from Eq. (4.27) the expression

ξ−1
s (ω) = − lim

l→∞

1

l

l∑
j=1

log

[
4J |εj|

(2εj)2 − ω2

]
, (4.69)

to the leading order in J . Remarkably, at zero frequency ω = 0, Eqs. (4.53) and (4.69)
yield the same result, implying that the leading order locator expansion is actually
exact in this case. The reason for this phenomenon is that in Eq. (4.44), awhen ω = 0,
the fermion modes ψ1 and ψ2 decouple and satisfy independent equations, which are
easily solved by forward integration, where no loop corrections arise. 3

At �nite ω, the locator expansion captures correctly the qualitative feature that
ξ−1
s (ω) decreases with increasing energy, however it misses the non-analytic corrections
from rare events, discussed above. However, these rare events play a rather special role
in one dimension, since rare regions of oppositely biased disorder cannot be avoided
by an excitation. The associated backscattering tends to localize higher energy exci-
tations. We should also point out that the non-analyticity of the localization at the

3However, in �nite samples there are no fermionic modes at strictly ω = 0, however there are
eigenmodes at ω which are exponentially small in the system size, whose localization properties can
be obtained by setting ω → 0.
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critical point, as well as its divergence at the critical point, come along with an accom-
panying Dyson singularity in the density of fermionic states [90], very similarly as in
tight-binding chains with o�-diagonal disorder [86, 89, 92]. Both occur thanks to the
BDI symmetry of the fermionic problem.

At this point it is not clear whether any of these features carry over to spin systems
in higher dimensions. Indeed, for d > 1, the type of rare events identi�ed above should
play a much less important role, since such regions may be circumvented. At the same
time, a new important factor comes into play, which is absent in one dimension: the
interference between alternative favorable forward directed paths. As was shown in
Ref. [?] their interplay also tends to localize higher energy excitations more. This is
a simple consequence of the fact that the interference of paths in Eqs. (4.27,4.30) is
maximally constructive at vanishing excitation energy ε0 = 0, while negative scattering
amplitudes start to spoil this perfect interference at �nite ε0. Qualitatively similar
e�ects are achieved by a magnetic �eld acting on charged bosons, which endows the
various paths with di�erent Aharonov-Bohm phases, which also degrade the perfect
interference. The resulting magnetoresistance was discussed in detail in Ref. [93].
The above arguments rely a priori on the lowest order expansion in the exchange J ,
which we believe to capture the essential features of localization in d > 1 within the
strongly localized regime. Subleading e�ects due to loop corrections have been studied
in Ref. [83].

4.4 Approaching delocalization: Boson and spin mod-

els on highly connected Cayley tree

In an attempt approach the delocalization or ordering transition, we choose to apply
our formalism to a situation where the expansion in hopping is expected to remain
applicable even close to the phase transition. A priori one expects this to be the case in
high dimensions, where loop corrections can be expected to be relatively unimportant.
An extreme case where loops are absent altogether is the Cayley tree. Motivated by
the related studies in Refs. [28, 29] we consider Cayley trees of large branching number
K which locally resemble cubic lattices in d = (K + 1)/2 dimensions. The related
Anderson model of non interacting fermions on such trees can be exactly solved due
to the absence of loops [60]. Since it is known that in this case the delocalization
transition happens when the hopping is still parametrically small, t ∼ 1/K log(K) as
K →∞, one may hope that a leading order expansion in the hopping may well capture
the approach to the transition. Such an approach was proposed in Refs. [28, 29], where
the localization properties of intensive low energy excitations in the disordered phase
were studied. The authors claimed that in the disordered regime, close enough to
criticality an intensive mobility edge ωc exists, and that upon approaching criticality
ωc decreases to zero and vanishes simultaneously with the onset of long range order.
Similar scenario had been proposed in Refs. [94, 52]. Here we revisit this question,
using the leading order locator expansion formula (4.27,4.30), which di�er from the
expressions postulated in Refs. [28, 29].
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0

Figure 4.3: Cayley tree with branching number K = 3. 0 labels the root site. The
depth of the tree, i.e., the distance from the root to a boundary site is L (L = 2 in this
�gure). The wavy lines represent the coupling of the boundary spins to independent
baths.

Let us now analyze the spin models (4.3, 4.4) on a Cayley tree with a root site 0,
branching number K and depth L, cf. Fig. 4.3. We will be interested in two distinct
aspects: (i) the propagation of long range order ("surface magnetization"), (ii) the
localization properties of local excitations at the root, as a function of the associated
energy ≈ ε0.

Anticipating that the delocalization transition appears when the exchange is of
order J ∼ 1/K log(K), as for single particle hopping, we introduce the notation J ≡ g

K
,

and we rely on the smallness of the parameter J close to criticality to restrict ourselves
to leading order perturbation theory in J . This will give indeed a reliable estimation
of localization properties up to a narrow critical window close to the phase transition,
where subleading terms should be included, as we will discuss further below.

4.4.1 SI transition from insulating phase

The disorder-induced quantum phase transition in the models (4.3, 4.4) can be ap-
proached from the ordered or the disordered side. The route from the symmetry broken
side was pioneered by Io�e, Mézard and Feigelman [28, 29], where self-consistent equa-
tions for cavity mean �elds (local order parameters) were analyzed and solved. This
inhomogeneous mean �eld approach was further exploited by Monthus and Garel [95],
both in �nite dimensions and on the Cayley trees, �nding that strong randomness
physics governs the excitations in these disordered systems.

These works pointed out the close relationship between magnetic correlation func-
tions at large distances and the physics of directed polymers in random media, which
was recently beautifully demonstrated to be re�ected in experimentally measured dis-
tributions of the local tunneling gap, which assumes a Tracy-Widom form in two spatial
dimensions [96]. The mapping between between bosonic correlation functions and di-
rected polymers is rendered exact on the insulating side J � 1 where the correlation
functions can be argued to be well represented by the lowest order expansion in the
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exchange [51, 93]. By restricting to the leading order the expansion of order parameter
correlations in the ordered phase, or of two point functions like Gl0 in the localized
phase, one obtains the same estimate for the critical point Jc = gc/K where long
range correlations set in. However, it is di�cult to assess the quality of the mean �eld
approximation, and to improve systematically beyond it, which would be desirable
especially in low dimensions. In contrast, the expansion in the localized phase higher
order corrections is amenable to a systematic expansion in powers of J , and thus may
be a simpler route of attack towards the criticality.

In this section we approach the ordering transition from the insulating phase. We
de�ne the surface susceptibility

χs ≡
∑
l∈∂Λ

Gl,0(0)

G0,0(0)
, (4.70)

where the sum is over all paths from the root site 0 to any of the boundary spins l, and
we included the normalization by G0,0(0) for convenience. In the insulating phase, all
Gl,0 decay rapidly, such that large number of boundary sites cannot o�set the smallness
of this susceptibility. Upon increasing the exchange coupling, g, the ordering transition
(in typical realizations of disorder) occurs when the typical value of χs is of order O(1).
In �nite dimensions this criterion is equivalent to asking that − log[Gl,0] does not grow
linearly with the distance from the bulk site 0 to a boundary site l. However, on the
Cayley tree, where there are exponentially many (KL) boundary sites, the criterion
must be applied to the whole sum, and cannot always be reduced to a criterion on
typical or dominant paths on the tree.

The above criterion is valid on general lattices. However, in �nite dimensions,
the Green's functions Gl,0 are very hard to study analytically, especially close to the
phase transition. On a Cayley tree with large branching number K a simpli�cation
occurs. First of all, there is only one shortest path connecting any two points, and
thus there is only a single term contributing to the leading order locator expansion
of Gl,0. Subleading terms are not very important when K is large, since paths with
extra excursions on side paths are formally penalized by an extra factor of . g2

c/K
(which is dominated by exchange processes with the most favorable neighboring sites).
This argument is however known to be a bit too naive. Indeed, from the analogous
single particle problem [1, 60], it is known that these self-energy corrections regularize
resonances from very small denominators and modify the numerical prefactor A in the
largeK scaling gc = A/(K logK), as compared to the so-called "Anderson upper limit"
estimate, in which self-energies are neglected. Similar e�ects are of course present in
the many body case as well.

Keeping this caveat in mind, we nevertheless restrict ourselves to the leading order
perturbation theory and use the leading terms Eqs. (4.27,4.30) to evaluate Gl,0,

χs =
∑
l∈∂Λ

∏
i∈Pl

g/K

|εi|
, (4.71)

where Pl is the unique path from the root to the boundary site l. This certainly
captures well the behavior deep in the insulator, but as argued above, also rather close
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to the ordering transition if the limit of large K � 1 is taken. We recall that to this
leading order the two point functions at ω = 0 are the same in the XY and the Ising
model. Thus, we are lead to the same estimate of the critical coupling gc, while it is
expected that the inclusion of subleading terms will split these two values.

As we mentioned previously, one arrives at essentially the same conclusion from
cavity mean �eld equations applied to the ordered side, by linearizing them in the
exchange coupling and assuming transverse expectation values to be negligible close to
the second order phase transition. Within that approach one notices that (assuming a
preferred direction of symmetry breaking in the XY-plane) the local order parameter
susceptibility is 1/εi in both models. This immediately leads to the conclusion that the
order parameter susceptibility (ω = 0) at large distances is a product of such terms, as
the expression Eq. (4.71) for the deeply insulating side - independent of the symmetry
of the order parameter.

The near coincidence of the critical values gc in the two models appears less obvious
when reasoning from the disordered side. Naively, one might think that the additional
exchange term Jσyi σ

y
j in the XY model leads to enhanced �uctuations as compared to

the Ising model. However, this e�ect is almost exactly compensated by the fact that the
XY symmetry (conservation of hard core bosons) restricts the quantum �uctuations
more strongly than the Ising symmetry.

The evaluation of the typical susceptibility follows from the exact mapping of the
leading order expression for the surface susceptibility to the problem of a directed poly-
mer on the Cayley tree. The latter was solved exactly by Derrida and Spohn [97], and
their result was applied to the present context in Refs. [29, 28]. The susceptibility itself
is a strongly �uctuating random variable, which depends on the disorder realization.
However, its logarithm is a self-averaging quantity. Upon re-exponentiation one obtains
the typical value, which is characterized by the logarithmic disorder average [97, 29, 28]

lim
L→∞

1

L
logχs ≡ log

( g
K

)
+ min

x∈[0,1]
f(x), (4.72)

where the function f(x) is de�ned by

f(x) =
1

x
log

[
K

∫ 1

−1

1

| ε |x
dε

2

]
. (4.73)

Let us denote by xc the argument at which f(x) takes its minimum on the interval
x ∈ [0, 1]. If xc < 1, the associated directed polymer problem is in its low temperature
frozen phase whose thermodynamics is essentially dominated by a single path on the
tree. More precisely, the partition sum over paths that go to the boundary is dominated
by a set of con�gurations, which all stay together and split only at a short distance
before reaching the boundary. Thereby, that last distance does not scale with L in the
limit L→∞. In spin glass terminology, the dominating paths have "mutual overlap"
tending to 1 in the thermodynamic limit.This situation corresponds to a phase of
broken replica symmetry (RSB) for the directed polymer. In the language of onsetting
long range order in the spin model this translates into the statement that (in leading
order approximation in the exchange) the surface susceptibility is dominated essentially
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by a single path. If instead one �nds xc = 1, the dominant contribution to χs, or to
the partition function of the equivalent polymer problem, comes from exponentially
many con�gurations.

Within the approximation of leading order in the hopping one �nds that the order-
ing transition occurs when [29],

0 = log
( gc
K

)
+ f(xc), (4.74)

which corresponds to the vanishing of the free energy density of the directed polymer.
This has the solution [29]

gc exp

(
1

egc

)
= K, xc = 1− egc. (4.75)

or, in the limit of large K,

gc ≈
1

e log(K)
. (4.76)

It is worth noting that the Eqs. (4.72,6.10), which determine the critical point, and
the critical value gc are identical to those obtained by Abou-Chacra et al [60]. for
the delocalization of non-interacting particles, within the so-called Anderson upper
limit approximation. The latter consists in dropping self-energy corrections, which is
equivalent to the leading order approximation in hopping [1]. The coincidence of these
results is not very surprising, since the localization properties of fermions and hard core
bosons are very similar on the Cayley tree. In fact, to leading order in hopping, one
considers only forward scattering processes, and since the Cayley tree does not contain
loops, the quantum statistics of the particles is irrelevant to that order. Similarly, to
leading order in the hopping, the dependence of localization properties on frequency
will not di�er between fermions and hard core bosons, as we will see in the following
subsection.

Since xc ≈ 1− 1/ log(K) < 1, the above result might suggest that transverse order
sets in along essentially the best path to the boundary, which dominates the response
to a symmetry breaking �eld applied there. Accordingly, one may expect a highly
inhomogeneous condensate, which lives on an extremely sparse fraction of the tree,
which does not even grow exponentially with L. However, since xc is parametrically
close to 1, and since it is known that subleading corrections in the fermion delocalization
problem increase the value of xc by a similar correction, the leading order estimate for
xc does not allow us to conclude about the precise structure of the onsetting long
range order on the Cayley tree. However, it is nevertheless expected that the onsetting
condensate is highly inhomogeneous on the Cayley tree.

4.4.2 Decay rates in the insulating phase for the XY model

Let us now turn to the localization properties in the insulating phase (g < gc), where
the locator expansion is best controlled. We are interested in particular in determining
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whether there exists an intensive mobility edge, i.e., an energy of order O(1) which
separates localized from delocalized excitations in the many body system.

In order study the decay process of a local excitation on the root 0, we couple
our system to zero temperature baths via the spins at the boundary of the Cayley
tree, cf. Fig. 4.3. In terms of the general formalism of Sec. s:decay, we take take
the Cayley tree as the lattice Λ, and its leaves as the boundary set ∂Λ. On a Cayley
tree, there is only one shortest path between the root site 0 and any boundary site l.
This simpli�es the analysis of decay rates very signi�cantly, since to leading order no
interferences need to be taken into account. Notice that by taking K to be large, this
leading order approximation is parametrically controlled in the insulating phase apart
from a parametrically narrow region close to criticality where subleading corrections
pa role, as discussed in the previous subsection. This is so, because large K disfavors
subleading corrections in g/K, which arise from paths with transverse excursions. We
therefore restrict again to the leading order approximation and evaluate the decay rate
of a local excitation with energy ω ' 2ε0 as

Γ0(ω) =
∑
l∈∂Λ

∏
i∈Pl

[
2g/K

2εi − ω

]2

Jb(ω). (4.77)

As before, the sum is over all shortest paths (of length L) from the root 0 to boundary
sites l, and

∏
i∈Pl is the product along a path Pl. As in the case of the zero-frequency

susceptibility, the decay rate Γ0 can be seen as the partition function for a directed
polymer in a disorder potential on the tree, the locators taking the role of local Boltz-
mann weights.

The typical value Γ0 at �xed frequency ω is best characterized by its mean spatial
rate of decrease,

γXY (ω) ≡ − lim
L→∞

1

L
log

[
Γ0(ω)

Jb(ω)

]
= −

(
log
( g
K

)
+ min

x∈[0,1]
fω(x)

)
, (4.78)

where the function fω(x) is de�ned by

fω(x) =
1

2x
log

(
K

∫ 1

−1

1

| ε− ω/2 |2x
dε

2

)
. (4.79)

Notice that due to the assumed symmetry of the onsite disorder distribution, we have
f−ω(x) = fω(x), so it su�ces to study ω > 0. Suppose again that fω(x) takes its
minimum on the interval [0, 1] at x = xc. Due to the small denominators arising from
sites with εi → 0, (4.79) is well-de�ned only for x < 1/2 and thus xc must be less than
1/2. We note, however, that this restriction does not apply when the resonant levels
are regularized, to account for e�ects of (subleading) self-energy corrections. This as
is well-known from the case of free fermions.

γXY (ω) controls the decay or growth of Γ0(ω) with distance to the boundary.
Clearly, as long as γXY (ω) > 0, the typical value of Γ0(ω) is exponentially small as
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L → ∞, which implies that an excitation of energy ω is localized and does not decay
into the bath in the thermodynamic limit L → ∞. Instead, the delocalization of an
excitation with energy ω occurs at the point where

0 = γXY (ω) = log
( g
K

)
+ min

x∈[0,1]
fω(x). (4.80)

By minimizing the function fω(x) with respect to x, one obtains the two simultaneous
conditions

1 =
K

2

( g
K

)2xω
∫ 1

−1

1

|ε− ω/2|2xω
dε, (4.81)

log
( g
K

)
=
K

2

( g
K

)2xω
∫ 1

−1

log(|ε− ω/2|)
|ε− ω/2|2xω

dε. (4.82)

However, one �nds that on the disordered side of the transition, g < gc, there is no
ω > 0 such that the equations (4.81) and (4.82) are satis�ed simultaneously. In other
words, there is no critical energy (mobility edge) which separates localized states from
delocalized states. Instead, all excitations with intensive energy are in fact localized
in the quantum paramagnet (Bose insulator). Moreover, we �nd that in the whole
localized phase g < gc, γXY (ω) > γXY (0) for any ω ∈ [−1, 1]. In Fig. 4.4 we illustrate
this behavior at the critical point for both Ising and XY models. Ising excitations of
energy ω are seen to localize slightly faster than similar excitations in the XY model.
This might be seen as a weak analogue of what is expected from �nite dimensions, where
the Ising model in strong disorder is known to be governed by strong randomness �xed
points at least in low enough dimensions (d = 2, 3) [98, 99, 100], with activated scaling,
i.e. an inverse localization length ξ−1

typ = γ ∼ | log(ω)|ψ. This behavior arises due to the
discreteness of the spin symmetry. In contrast, XY models with continuous symmetry
are expected to exhibit a power law scaling ξ−1

typ = γ ∼ ω−1/z [101], which increases
more slowly with frequency.

This result contradicts the one reported in Refs. [28, 29]. On a technical level, the
di�erence arises because those authors restricted the on-site energies {εi} to be positive,
postulating a matrix element of the form

∏[ 2g/K
2|εi|−ω

]2

. However, this is only possible
to impose for the Ising model. As we will discuss below, however, the Ising model
requires a di�erent matrix element in the formula (6.8). Conceptually, a similar error
was present in the reasoning of Ref. [52], where it was argued that excitations close
to the chemical potential should be more localized than at higher intensive energies,
since the excitations behave like at a band edge of a single particle problem, since
any local excitation cost a positive energy. However, this picture is incorrect since it
neglects exchange e�ects of indistinguishable particles. Indeed, by the same reasoning
one would conclude that the excitations of a fermionic Anderson insulator are the most
localized at the Fermi level, which is obviously not true. Our �ndings on the Bethe
lattice for the XY model are indeed identical, within the leading order approximation,
to the localization properties of free fermions, as solved in Ref. [60]. If we consider
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Figure 4.4: Spatial decay rate γ as a function of frequency ω for the XY model and
the Ising model at the transition point. γ is positive for ω > 0 and tends to zero as
ω → 0. Note that γXY < γIsing, which suggests that at and close to the critical point
local excitations with �nite energy ω decay slightly faster in space in the Ising model
as compared to the XY model.

a half �lled lattice of hard core bosons, and uniform disorder, we indeed �nd the
localization length to have a �at maximum at the band center, ω = 0, as expected
from the fermionic case. This is illustrated for the case of criticality in Fig. 4.4.

4.4.3 Decay rates in the disordered phase for the Ising model

Let us now analyze the Ising model in turn and contrast it with the XY model. The
relevant matrix element 〈GS|σxl |E0〉 for the Ising model is given by Eq. (4.27). Hence,
the decay rate of a local excitation with energy ω at site 0 can be written as

Γ0(ω) =
∑
l∈∂Λ

∏
i∈Pl

[
εi g/K

ε2i − (ω/2)2

]2

Jb(ω). (4.83)

As in the XY model, we obtain

γIsing(ω) ≡ − lim
L→∞

1

L
log

[
Γ0(ω)

Jb(ω)

]
= −

(
log
( g
K

)
+ min

x∈[0,1]
hω(x)

)
, (4.84)

where the function hω(x) is now given by

hω(x) =
1

2x
log

(
K

∫ 1

−1

∣∣∣∣ ε

ε2 − (ω/2)2

∣∣∣∣2x dε2
)
. (4.85)
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Delocalization at energy ω occurs again when 0 = γIsing(ω). Exactly as in the XY
model, one veri�es that on the disordered side of the quantum phase transition, g < gc,
one has always γIsing(ω) > γIsing(0) > 0 for ω ∈ [−1, 1], as shown in Fig. 4.4 at
criticality. Note that this behavior, which we �nd here to leading order in the exchange
coupling, is qualitatively similar to the exact results discussed for the Ising chain
in Sec. 4.3, in that localization becomes stronger at higher intensive energies. The
dependence on ω is however much less dramatic. This should be expected, since the
events are much less important in the high dimensional situations.

4.4.4 On fractality

We should point out that both for the XY model and the Ising model, we �nd the
minimum of the functions fω and hω are assumed at values of x < 1/2, and de�nitely
x < 1. The same is known to happen more rigorously in the single particle case, where
one can argue that upon taking self-energy corrections into account the e�ectively
relevant value of xc is xc = 1/2 [60]. The fact that xc < 1 indicates that the propagation
of a local excitation of �xed energy follows essentially one selected path out of the
exponentially many available ones.

Already in his seminal paper of 1958 Anderson had realized that the sum over
fermionic paths, when approximated as a sum over uncorrelated terms, is dominated
by the largest term in the sum (see Chapter II). In the exact solution of the localization
problem of single particles on the Cayley tree, the above solution was found by a
di�erent route by Abou-Chacra et al. [60].

4.5 Discussion

We have shown that in both cases (XY and Ising models), there is no mobility edge
in the insulating phase. This relies of course on our choice of a �at bare density of
states. If the latter is not uniform, but increases with energy there is (quite trivially)
a mobility edge. The same physics occurs in a less trivial manner in a glassy bosonic
insulator where the onsite random potential εi is self-generated by random frustrated
density-density interactions which form a Coulomb gap, thus generating a density of
states which increases from the chemical potential [102].

4.6 Supplementary materials

As a non-trivial check of the result of the locator expansion Eq. (4.27), we calculate
the matrix element 〈GS|σxl |E0〉 for a three spin chain by standard pertubation theory.
Suppose εi > 0. Then |GS(0)〉 = | ↑↑↑〉 and |E(0)

0 〉 = σ−0 |GS(0)〉 = | ↓↑↑〉.
We now evaluate 〈E0|σx2 |GS〉 by standard perturbation theory. The Hamiltonian is

H = −
∑
i=0,1

εiσ
z
i − t

1∑
i=0

σxi σ
x
i+1. (4.86)
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The perturbation term HI ≡ −t
∑1

i=0 σ
x
i σ

x
i+1 and Hkl

I ≡ 〈E
(0)
k |HI |E(0)

l 〉. The eigen-
states adiabatically connected to |E(0)

GS〉 and the excited state |E(0)
0 〉 are

|GS〉 = |E(0)
GS〉 − t

∑
k 6=GS

HGSk
I

E
(0)
GS − E

(0)
k

|E(0)
k 〉

+t2
∑
k 6=GS

∑
l 6=GS

Hkl
I H

GSl
I

(E
(0)
GS − E

(0)
k )(E

(0)
GS − E

(0)
l )
|E(0)

k 〉

−t
2

2

∑
k 6=GS

|HkGS
I |2

(E
(0)
GS − E

(0)
k )2
|E(0)

GS〉+O(t3)

= | ↑↑↑〉 − t
(

1

−2ε0 − 2ε1
| ↓↓↑〉+

1

−2ε2 − 2ε1
| ↑↓↓〉

)
+t2

[(
1

(−2ε0 − 2ε2)(−2ε0 − 2ε1)

+
1

(−2ε0 − 2ε2)(−2ε1 − 2ε2)

)
| ↓↑↓〉

−1

2

(
1

(2ε0 + 2ε1)2
+

1

(2ε2 + 2ε1)2

)
| ↑↑↑〉

]
+O(t3)

≡ E| ↑↑↑〉+ F | ↓↓↑〉+G| ↑↓↓〉+H| ↓↑↓〉
+O(t3), (4.87)

|E0〉 = |E(0)
0 〉 − t

∑
k 6=0

H0k
I

E
(0)
0 − E

(0)
k

|E(0)
k 〉

+t2
∑
k 6=0

∑
l 6=0

Hkl
I H

0l
I

(E
(0)
0 − E

(0)
k )(E

(0)
0 − E

(0)
l )
|E(0)

k 〉

−t
2

2

∑
k 6=0

|Hk0
I |2

(E
(0)
0 − E

(0)
k )2
|E(0)

0 〉+O(t3)

= | ↓↑↑〉 − t
(

1

2ε0 − 2ε1
| ↑↓↑〉+

1

−2ε2 − 2ε1
| ↓↓↓〉

)
+t2

[(
1

(2ε0 − 2ε2)(2ε0 − 2ε1)

+
1

(2ε0 − 2ε2)(−2ε1 − 2ε2)

)
| ↑↑↓〉

−1

2

(
1

(2ε0 − 2ε1)2
+

1

(2ε1 + 2ε2)2

)
| ↓↑↑〉

]
+O(t3)

≡ A| ↓↑↑〉+B| ↑↓↑〉+ C| ↓↓↓〉+D| ↑↑↓〉
+O(t3). (4.88)
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For the matrix element of the bath operator σx2 between thw excited and ground
states we thus obtain

〈E0|σx2 |GS〉 = AH +BG+ CF +DE +O(t3)

= H +BG+ CF +D +O(t3). (4.89)

Combining the second term of H with BG and the second term of D with CF , the
resulting 4 terms can be factorized into the form

〈E0|σx2 |GS〉 =

(
t

2ε1 − ω
+

t

2ε1 + ω

)
×(

t

2ε2 − ω
+

t

2ε2 + ω

)
+O(t3). (4.90)

with ω = 2ε0 being the excitation energy. This indeed coincides precisely with the
result of the locator expansion, Eq. (4.27).
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Chapter 5

Superglasses: coexistence of super�uid

order and glassy order

In this Chapter I study the interplay of super�uidity and glassy ordering of hard core
bosons with random, frustrating interactions. This is motivated by bosonic systems
such as amorphous supersolid, disordered superconductors with preformed pairs and
helium in porous media. I analyze the fully connected mean �eld version of this prob-
lem, which exhibits three low temperature phases, separated by two continuous phase
transitions: an insulating, glassy phase with an amorphous frozen density pattern, a
non-glassy super�uid phase and an intermediate phase, in which both types of order
coexist. I elucidate the nature of the phase transitions, highlighting in particular the
role of glassy correlations across the super�uid-insulator transition. The latter sup-
press super�uidity down to T = 0, due to the depletion of the low energy density of
states, unlike in the standard BCS scenario. Further, I investigate the properties of the
coexistence (superglass) phase. I �nd anticorrelations between the local order param-
eters and a non-monotonous super�uid order parameter as a function of T . The latter
arises due to the weakening of the glassy correlation gap with increasing temperature.
Implications of the mean �eld phenomenology for �nite dimensional bosonic glasses
with frustrating Coulomb interactions are discussed.

5.1 Model

We consider the fully connected model of hard-core bosons with random pairwise in-
teractions between all bosons,

H = −
∑
i<j

Vijninj +
∑
i

εini −
tb
N

∑
i<j

(
b†ibj + b†jbi

)
. (5.1)

Here, ni = b†ibi is the number operator on site i, and the hard core constraint limits
ni to assume values 0 or 1. bi(b

†
i ) denote the annihilation (creation) operators for a

hard-core boson at site i. Vij is a quenched disorder with Gaussian distribution of zero
mean and variance V 2/N , εi describes a quenched disorder potential for the bosons,
and tb/N is the unfrustrated hopping strength between any pair of sites. The scaling
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of the couplings with N is chosen so as to yield a non-trivial thermodynamic limit for
N →∞.

In the absence of hopping, the model becomes classical and is equivalent to the
Sherrington-Kirkpatrick spin glass (SK) model [63] in a random �eld. It is well-known
that except for lowering the transition temperature, the random �elds do not alter the
low temperature properties of the glass phase. We thus restrict our attention mostly
to a slightly simpler model proposed in Ref. [39], which corresponds to a special choice
of the εi:

H = −
∑
i<j

Vij(ni − 1/2)(nj − 1/2)

− tb
N

∑
i<j

(
b†ibj + b†jbi

)
. (5.2)

Similar fermionic mean �eld models have been studied in Refs. [103, 104]. The identi-
�cation 2ni− 1 = szi ∈ {±1}, b†i = s+

i , bi = s−i , allows us to map this model into a fully
connected spin glass model with quantum �uctuations arising from non-random spin
�ip terms,

H = −
∑
i<j

Jijs
z
i s
z
j −

t

N

∑
i<j

(
sxi s

x
j + syi s

y
j

)
, (5.3)

with the simple dictionary

Jij =
Vij
4
, t =

tb
2
. (5.4)

For t = 0, this Hamiltonian reduces to the SK model, which possesses a spin glass
phase at low temperature, T < Tg = J . Without the Ising interactions, Jij = 0, the
Hamiltonian turns into the mean �eld XY model, which has a super�uid (or XY fer-
romagnetic) phase at low temperatures (T < Ts = t). In this paper we establish the
phase diagram and study the properties of the bulk phases resulting from the com-
petition of random density-density interactions and boson hopping (bosonic language)
or equivalently random Ising interactions and ferromagnetic transverse coupling (spin
language).

5.2 Free energy and self-consistent equations

5.2.1 General formalism

The disorder average of the free energy of the model (6.1) can be obtained using the
replica method [71]

〈logZ〉J = lim
n→0

〈Zn〉J − 1

n
, (5.5)

where Z is the partition function and 〈...〉J indicates an average over the couplings Jij.
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Following a method introduced by Bray and Moore [105] it is useful to represent
the partition function as an imaginary time path integral:

Zn = TrT exp

{
β

∫ 1

0

dτ
n∑
a=1

∑
i<j

[
Jijs

z
ia(τ)szja(τ)

+
t

N

(
sxia(τ)sxja(τ) + syia(τ)syja(τ)

)]}
, (5.6)

where T orders the operators in decreasing order of their argument τ ∈ [0, 1]. This
"time" argument of s(τ) merely serves us to de�ne the time-ordering, while s(τ) denotes
always the same Pauli matrix, independently of time.

Averaging over disorder and decoupling the spins on di�erent sites using a Hubbard-
Stratonovich transformation with the order parameter �elds Qab,M

x
a ,M

y
a , we obtain:

〈Zn〉J ∝
∫ ∏

a

dQaa(τ, τ
′) dMx

a (τ) dMy
a (τ)

×
∏
a<b

dQab(τ, τ
′) exp (−NF) (5.7)

with

F =
J2β2

4

∫ 1

0

∫ 1

0

dτdτ ′

×

[∑
a6=b

Q2
ab(τ, τ

′) +
∑
a

Q2
aa(τ, τ

′)

]

+
tβ

2

∫ 1

0

dτ
∑
a

[
Mx

a (τ)2 +My
a (τ)2

]
− logZ, (5.8)

Z = TrT exp (−Se�) , (5.9)

Se� = −J
2β2

2

∫ 1

0

∫ 1

0

dτdτ ′ (5.10)

×

[∑
a6=b

Qab(τ, τ
′)sza(τ)szb(τ

′)

+
∑
a

Qaa(τ, τ
′)sza(τ)sza(τ

′)

]

−tβ
∑
a

∫ 1

0

dτ

(
Mx

a (τ)sxa(τ) +My
a (τ)sya(τ)

)
.
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In the limit N →∞, the functional integral (5.7) is dominated by the saddle point
of the replicated free energy F , which satis�es

0 =
δF

δQab(τ, τ ′)
⇒ Qab(τ, τ

′) = 〈T sza(τ)szb(τ
′)〉e�

= 〈szaszb〉e� ≡ Qab, (5.11)

0 =
δF

δQaa(τ, τ ′)
⇒ Qaa(τ, τ

′) = 〈T sza(τ)sza(τ
′)〉e�

≡ R(τ, τ ′), (5.12)

0 =
δF

δMx
a (τ)

⇒Mx
a (τ) = 〈sxa(τ)〉e� ≡Mx, (5.13)

0 =
δF

δMy
a (τ)

⇒My
a (τ) = 〈sya(τ)〉e� ≡My, (5.14)

where 〈...〉e� denotes the average with respect to the e�ective action Se� of a single site.
We have used that, as usual, the saddle point values of Qa6=b andMx,y

a are independent
of imaginary time, while Qaa(τ, τ

′) depends only on the imaginary time di�erence [119].
Furthermore, Qaa and Mx,y

a do not depend on the replica index a. For Qab we make
the standard ultrametric ansatz, parametrized by a monotonous function q(x) on the
interval x ∈ [0, 1], which is well-known to describe successfully the SK model and other
mean �eld glasses [?]. We are free to choose coordinates in the x, y plane such that
the spontaneous magnetization ~M points in the x-direction, and thus we set My = 0.

Note thatMx 6= 0 signals the presence of transverse (XY) order of the spins, that is,
super�uidity of the hard core bosons, which breaks the U(1) symmetry spontaneously.
On the other hand, a non-constant value of Qa6=b implies the spontaneous breaking of
the replica symmetry, and thus the presence of a glass phase with many metastable
states and non-trivially broken ergodicity. As long as we do not consider random �eld
disorder, the breaking of replica symmetry coincides with the breaking of the Ising
symmetry and is signalled by a nonzero value of Qa6=b. We will see below that the U(1)
and the replica symmetries can be broken simultaneously in a what has been called a
"superglass phase" in Refs. [39, 40].

To �nd the location of a (continuous) glass transition, we expand the free energy
to second order in Qab. We �nd an instability towards replica symmetry breaking, and
thus the emergence of a glassy density ordering of bosons, when

βJ

∫ 1

0

∫ 1

0

dτdτ ′ 〈T sza(τ)sza(τ
′)〉e� = βJ

∫ 1

0

dτR(τ)

= 1, (5.15)

or

Jχ‖ = 1, (5.16)

where χ‖ ≡ χzz(ω = 0) is the zero-frequency limit of the longitudinal susceptibility.
This condition is of course to be evaluated at Qa6=b = 0.
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On the other hand, a second order phase transition from the high temperature
phase towards a super�uid state is indicated by the instability condition, which follows
from ∂2F/∂M2 = 0:

βt

∫ 1

0

∫ 1

0

dτdτ ′ 〈T sxa(τ)sxa(τ
′)〉e� = 1, (5.17)

or

tχ⊥ = 1, (5.18)

where χ⊥ ≡ χxx(ω = 0) is the static transverse susceptibility. These expressions
must be calculated in the non-super�uid phase where M = 0. In this regime the
e�ective action Se� is classical, which entails the further simpli�cation R(τ) = 1. This
feature is due to the suppression of quantum �uctuations in the non-super�uid phase
by factors of 1/N , due to the scaling of the transverse coupling. It allows us to �nd the
super�uid-insulator transition analytically, even at zero temperature, without solving a
full quantum impurity problem. In particular, we immediately �nd that the transition
from the disordered high temperature phase to a glassy phase is given by

Tg = J, (5.19)

exactly as in the classical SK model. However, the glass transition line will be modi�ed
if it is preceded by a super�uid transition at higher temperature.

5.2.2 Solution of the saddle point equations

A full solution of the saddle point equations involves the solution of the problem of
interacting replica as well as the evaluation of dynamical correlation functions with the
e�ective action Se�, if M 6= 0 and the replica symmetry is broken as well.

Here we describe what steps an exact solution involves, and then discuss the ap-
proximations we will use to study parts of the phase diagram, especially the bulk of
the superglass phase.

To describe a non-glassy super�uid phase, the replica structure is trivial, and one
needs to solve the self-consistency equations

M = 〈sx〉e� , R(τ) = 〈T sz(τ)sz(0)〉e� , (5.20)

with e�ective action

Se� = −β
2J2

2

∫ 1

0

∫ 1

0

dτdτ ′sz(τ)R(τ − τ ′)sz(τ ′)

−βtM
∫ 1

0

dτsx(τ). (5.21)

These can be solved using techniques as used in dynamical mean �eld theory [106].
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In a glassy phase the replica structure has to be taken into account. Assuming
the standard ultrametric structure of the saddle-point matrix Qab, the above single-
replica scheme has to be generalized to include a self-consistent distribution of frozen
longitudinal �elds P (y) acting on a given replica. This captures the distribution of
random frozen �elds yi created by the exchange of sites i with the frozen magnetization
pattern with a spin glass state [107]. In practice this requires the simultaneous solution
of

m(y) = 〈sz〉Se�(y) ,

mx(y) = 〈sx〉Se�(y) ,

M =

∫
dyP (y)mx(y),

R(τ) =

∫
dyP (y) 〈T sz(τ)sz(0)〉Se�(y) , (5.22)

where the e�ective single replica action in a frozen �eld y reads

Se�(y) = −β
2J2

2

∫ 1

0

∫ 1

0

dτdτ ′

×sz(τ) [R(τ − τ ′)− qEA] sz(τ ′)

−βtM
∫ 1

0

dτsx(τ)− βy
∫ 1

0

dτsz(τ). (5.23)

The Edwards-Anderson order parameter qEA characterizes the glassy freezing in a pure
state of the glass and is given by

qEA = q(x = 1) =

∫
dyP (y)m2(y). (5.24)

As �rst derived by Sommers and Dupont [107], the frozen �eld distribution P (y) ≡
P (y, x = 1) is obtained from a self-consistent solution of the di�erential equations on
the interval x ∈ [0, 1]

ṁ(y, x) = − q̇(x)

2

[
m′′(y, x) + 2xm(y, x)m′(y, x)

]
, (5.25)

Ṗ (y, x) =
q̇(x)

2

[
P ′′(y, x)− 2x(m(y, x)P (y, x))′

]
, (5.26)

with

m(y, x = 1) = m(y), P (y, x = 0) = δ(y), (5.27)

where dots and primes denote derivatives with respect to x and y, respectively. The
solutions of these di�erential equations solve the saddle point equations of the replica
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free energy(5.8) [107]. The overlap function q(x), which parametrizes the ultrametric
matrix Qab by the distance x between replica, must obey the self-consistency relation

q(x) =

∫
P (y, x)m(y, x)2. (5.28)

Notice that Eqs. (5.25) and (5.26) are the same as in a classical spin glass. The in�uence
of quantum �uctuations enters through the boundary condition m(y, x = 1) ≡ m(y),
where m(y) was de�ned in Eq. (5.22) These di�erential equations provide an elegant
way of integrating out all spins except for one [108].

Once the above scheme has been solved self-consistently, site-averaged observables
such as the longitudinal magnetization are given by

M z ≡

〈
1

N

∑
i

szi

〉
=

∫
dyP (y) 〈sz〉Se�(y)

=

∫
dyP (y)m(y). (5.29)

The properties of the solution of these di�erential equations are well understood
in several classical models exhibiting full replica symmetry breaking with continuous
functions q(x) [109, 110, 72, 111]. The full solution of mean �eld quantum glasses in the
ergodicity broken has not been analyzed in the literature so far. However, an analysis
of the transverse �eld SK model shows that most features of the low temperature
solution of q(x) carry over rather naturally to the quantum case [112]. A salient new
feature in the quantum case is the fact that full replica symmetry breaking implies
marginal stability of the whole glass phase, which in turn ensures the presence of
gapless collective excitations. The latter is very similar to what was found, e.g., in the
threshold states of quantum p-spin models [113], or in the quantum dynamics of elastic
manifolds, approximated with a replica symmetry breaking variational approach [114].

5.2.3 Alternative derivation by a cavity approach

The replica-diagonal part of the above scheme will become easier to understand, if
we derive it in a cavity framework [115] similarly to the derivation of the quantum
analog of Thouless-Anderson-Palmer equations by Biroli and Cugliandolo [113]. From
a cumulant expansion in the couplings involving site o it is easy to obtain the following
e�ective action for the site o:

Se�
o = −β

2

2

∫ 1

0

∫ 1

0

dτdτ ′

×szo(τ)

[∑
i

J2
oi 〈szi (τ)szi (τ

′)〉oc

]
szo(τ

′)

−β
∫ 1

0

dτ

(
hzo(τ)szo(τ) + hx(τ)sxo(τ)

)
. (5.30)
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Here

hzo(τ) =
∑
i

Joi 〈szi (τ)〉o =
∑
i

Joi 〈szi 〉
o (5.31)

is the site-dependent longitudinal �eld, which does not depend on time, however. The
index o denotes a "cavity average", i.e. an average over the action of the system, in
which the site o has been removed. The subscript c indicates a connected correlator.
The e�ective transverse �eld,

hx(τ) =
t

N

∑
i

〈sxi (τ)〉o =
t

N

∑
i

〈sxi 〉
o

=
t

N

∑
i

〈sxi 〉 = tM, (5.32)

does not �uctuate from site to site, and is independent of τ if we neglect subleading
terms, which scale as inverse powers of N . Note that for large N∑

i

J2
oi 〈szi (τ)szi (τ

′)〉oc → J2 [R(τ − τ ′)− qEA] , (5.33)

independently of the site o. The distribution of hzi over the sites i is the frozen �eld
distribution,

P (y) = N−1

N∑
i=1

δ(y − hzi ) (5.34)

computed in the replica formalism. Thus we precisely recover the self-consistency
problem for the replica diagonal, while the solution of the replica o�-diagonal part
furnishes the distribution P (y).

For the study of the phase transition from the insulating glass phase into the su-
per�uid, it will prove crucial to use the full low temperature solution of the SK model.
However, in order to analyze properties of the mixed "superglass" phase we will restrict
ourselves to a one-step approximation, which we discuss in the next section.

5.2.4 Static and one-step approximation

In order to avoid solving numerically a full self-consistent quantum problem as outlined
in Eqs. (5.22) above, we will resort to the widely used static approximation. The latter
consists in seeking a minimum of the free energy not with respect to the full function
space R(τ) but, instead with respect to a constant value R(τ)→ R.

A further approximation which we will use in the study of the quantum glassy
phases is the one-step approximation for the structure of replica symmetry breaking.
It is equivalent to assuming a step form of q(x)

q(x) = Θ(x− x1)Q1 + Θ(x1 − x)Q0 (5.35)
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and optimizing the free energy over x1, Q1, Q0. This is expected to give qualitatively
good results, especially at intermediate temperatures and close to the glass transition.
Combined with the static approximation for the replica diagonal, short time part one
obtains the free energy functional per spin:

βf =
β2J2

4

[
(x1 − 1)Q2

1 − x1Q
2
0 +R2

]
(5.36)

+
βt

2
M2 − 1

x1

∫
Dy0

× log

∫
Dy1

[∫
DyR2 cosh(β

√
h2
y + t2M2)

]x1

,

where hy = y0 + y1 + yR. Dy0, Dy1 and DyR are Gaussian measures: Dy0 =

exp

(
− y2

0
2Q0J

2

)
√

2πQ0J2
dy0, Dy1 =

exp

(
− y2

1
2(Q1−Q0)J2

)
√

2π(Q1−Q0)J2
dy1 and DyR =

exp

(
− y2

R
2(R−Q1)J2

)
√

2π(R−Q1)J2
dyR.

Note that Q1 = qEA is the Edwards Anderson order parameter in the one step
approximation, while Q0 is the overlap between di�erent spin glass states. We point
out that the above free energy di�ers from the expression given in Ref. [39], where
the static approximation was not carried out correctly. This error was at the origin of
several strange features of the phase diagram reported there, such as a T -independent
transition between super�uid and superglass and a J-independent super�uid transition.

5.2.5 1RSB free energy and self consistent equations

Here we rewrite the one-step self-consistency equations with the help of the local �eld
distribution.

The e�ective partition function of a single spin is

Ze�(y) = TrT exp (−Se�(y)) (5.37)

= TrT exp

(
β2J2

2

∫ 1

0

∫ 1

0

dτdτ ′

sz(τ) [R(τ − τ ′)− qEA] sz(τ ′)

+βtM

∫ 1

0

dτsx(τ) + βy

∫ 1

0

dτsz(τ)

)
.

In the case of one-step replica symmetry breaking, the frozen �eld distribution
within one pure state can be obtained by stepwise integration of the �ow equations
(5.25,5.26), yielding (cf. [71])

P (y) =

∫
Dy0

∫
Dy1δ(y − (y0 + y1))Zx1

e� (y0 + y1)∫
Dỹ1Z

x1
e� (y0 + ỹ1)

, (5.38)

where Dỹ1 is a Gaussian measure like Dy1 with variance (Q1 −Q0)J2.
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Under the static approximation, Eq. (5.37) becomes

Ze�(y) =

∫
DyRZstat(y + yR), (5.39)

where

Zstat(y) = 2 cosh(β
√
y2 +M2t2). (5.40)

One can interpret yR as a random �eld, which is generated by the thermal �uctu-
ations of the non-frozen part of the magnetization.

The longitudinal and transverse magnetizations of a spin in a frozen �eld y intro-
duced in Eqs. (5.22) are easily seen to be given by

m(y) = 〈sz〉Se�(y) =
1

β

∂

∂y
log(Ze�(y)), (5.41)

mx(y) = 〈sx〉Se�(y) =
1

β

∂

∂(tM)
log(Ze�(y)). (5.42)

The saddle point equations for the Edwards-Anderson parameter Q1 and the su-
per�uid order parameter M can now be expressed as:

Q1 =
1

N

∑
i

〈szi 〉
2 =

∫
dyP (y)m2(y), (5.43)

M =
1

N

∑
i

〈sxi 〉 =

∫
dyP (y)mx(y). (5.44)

The saddle point equation for the parameter R reads

β(R−Q1) =

∫
P (y)χ

‖
loc(y)dy, (5.45)

which relates the static approximation of the connected sz-correlator, R − Q1, to the
average local susceptibility

χ
‖
loc(y) =

∂m(y)

∂y
. (5.46)

The saddle point equation for the Q0 can be written in a similar way:

Q0 =

∫
dy0P (y0;x1)m2(y0;x1), (5.47)

where

P (y0;x1) =
1√

2πQ0J2
exp(− y2

0

2Q0J2
),

m(y0;x1) =

∫
Dy1Z

x1
e� (y0 + y1)m(y0 + y1)∫
Dỹ1Z

x1
e� (y0 + ỹ1)

, (5.48)
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are discrete versions of the continuous functions P (y, x),m(y, x) introduced above.
Optimizing the one-step free energy with respect to Q1, M , R and Q0 yields the

saddle point equations Eqs. (5.43-5.47). To capture equilibrium states, we should
further extremize with respect to the Parisi parameter x1, i.e.

∂f
∂x1

= 0, which yields the
further condition

−β
2J2

4
(Q2

1 −Q2
0)m2 =

∫
Dy0 log

∫
Dy1Z

x1
e� (y0 + y1)

−x1

∫
Dy0

∫
Dy1Z

x1
e� (y0 + y1) logZe�(y0 + y1)∫
Dy1Z

x1
e� (y0 + y1)

. (5.49)

It is a useful check that upon imposing Q1 = Q0, the saddle point equations for
Q0 and Q1 reduce to the same replica symmetric constraint. When M = 0, the local
�eld distribution, the free energy and the saddle point equations reduce to those of the
classical SK model, as it should be.

5.3 Phase diagram

Let us now study the phase diagram of our model (6.1). The gross features of the phase
diagram we �nd are similar to the ones found in Refs. [39, 40]: The low temperature
phase exhibits three phases: a non-glassy super�uid at small J/t, an insulating (non-
super-�uid) glass phase at large J/t, and most interestingly, a phase in between with
both glassy order and super�uidity. However, as mentioned before, we �nd a distinctly
di�erent behavior of the phase boundaries than Ref. citeGingras.

Moreover, we are able to analyze the limit T → 0, whose properties were inaccessible
in previous works [39, 40]. The latter is of particular interest in the context of the
super�uid-insulator transition.

The �ndings of the mean �eld analysis are in qualitative agreement with Monte
Carlo studies in �nite dimensions at low but �nite temperatures. The analytical ap-
proach allows for a detailed analysis of the properties of the mixed phase, and of the
glass-to-superglass transition.

5.3.1 High temperature phase

The high temperature phase is simple to describe. Since M = 0, the system behaves
identically to the paramagnetic phase of the classical SK model, and R = 1 holds
exactly. In this regime the static approximation is of course exact.

At large enough J/t, the leading instability upon lowering the temperature is the
classical glass transition at Tg = J , as mentioned earlier. However, at small values of
J/t, the tendency to form a super�uid wins. The instability condition towards XY
symmetry breaking,

tχ⊥ = t
∂mx(y = 0)

∂hx

∣∣∣
hx=0

= 1 (5.50)
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Figure 5.1: Phase diagram of glassy hard core bosons. At high temperature, the
straight blue line T = J indicates the classical SK glass transition line. The red solid
line shows the super�uid phase boundary which is given by the instability condition
(5.51). The two lines cross at the tricritical point (T/t)T = (J/t)T = 0.7248. At low
temperature, the blue line shows the phase boundary of the glass within the super�uid
phase, as evaluated within the static approximation, cf. (5.16). The glass transition
at T = 0 occurs at (J/t)g,stat = 1/2. The red solid line indicates the location of the
onset of super�uidity within the glass phase, as evaluated within the full breaking of
the replica symmetry to the instability condition (5.63). The super�uid transition at
T = 0 takes place at (J/t)s = 1.00.

can be evaluated exactly. In this expression hx is a uniform transverse �eld. The trans-
verse susceptibility is easily calculated for the replicated Hamiltonian with a Hubbard-
Stratonovich transformation of the quadratic term R

∫
dτdτ ′sz(τ)sz(τ ′). This results

in the instability criterion

1

t
= χ⊥ = β

∫
dhe−h

2/2J2
sinh(βh)/βh∫

dhe−h2/2J2 cosh βh
. (5.51)

The glass transition and the super�uid transition line cross at the tricritical point

TT = JT = tT

∫
dze−z

2/2 sinh(z)/z∫
dze−z2/2 cosh z

= 0.7248 tT . (5.52)

The result (5.51) does not have the familiar looking form of an average local trans-
verse susceptibility. However, it can indeed be recast in such a way. This furnishes us
a better understanding of the interaction e�ects in the high temperature phase, and
at the same time illuminates the nature of the static approximation in the super�uid
phases.
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Let us rederive the above result directly from the non-replicated Hamiltonian:

H = −1

2

∑
ij

Jijs
z
i s
z
j −

t

2N

∑
ij

(
sxi s

x
j + syi s

y
j

)
−
∑
i

hxs
x
i , (5.53)

where hx is an in�nitesimal �eld. In a given classical Ising con�guration, the spin i
sees an "instantaneous" local �eld hzi =

∑
j 6=i Jijs

z
j , while the transverse coupling is

negligible in the paramagnetic phase where N−1
∑

j

〈
sxj
〉

= M = 0 = N−1
∑

j

〈
syj
〉
.

Thus the transverse susceptibility can be calculated as a site and con�guration aver-
age of the susceptibility of a single spin sitting in an instantaneous �eld h, χ⊥(h) =∫ β

0
dτ 〈sx(τ)sx(0)〉 = tanh(βh)/h.
The thermal distribution of instantaneous local �elds of the SK model has been

well studied [116], and takes the rather simple form

Pinst(h) = cosh(βh)
exp(− h2

2J2 − β2J2

2
)

√
2πJ2

(5.54)

in the paramagnetic phase. Note that the instantaneous �eld distribution is not a
simple Gaussian, but small �elds are under-represented. This phenomenon is closely
related to the suppression of small �elds encountered in the cavity approach to Ising
systems [115], and is a precursor e�ect of the opening of the pseudogap in glassy phases
at low temperatures [72, 47, 111].

The total transverse susceptibility is obtained as an average of the local suscepti-
bility χ(h) over P inst(h):

χ⊥ =

∫
dhPinst(h)χ⊥(h)

= e−
β2J2

2

∫
dh

e−
h2

2J2

√
2πJ2

sinh βh

h
, (5.55)

which indeed coincides with the replica result (5.51).
The static approximation for super�uid phases has a completely analogous e�ect.

The approximation replaces the dynamically �uctuating exchange �elds on the various
sites by a random distribution of quasi static �elds. The latter di�ers from the distri-
bution of frozen �elds (which is Gaussian at high T ) by a random Gaussian smearing
with variance J2(R − qEA), and a reweighing factor proportional to cosh(βh) which
accounts for the fact that a small instantaneous �elds is less likely to observe on a
given site, as it implies a positive free energy �uctuation in the environment.

5.3.2 Onset of glassy order within the super�uid

The instability towards forming a glass occurs when Jχ‖ = βJ
∫
dτdτ ′R(τ − τ ′) = 1.

Within the super�uid phase it is di�cult to calculate this susceptibility exactly, and
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we thus �rst resort to the static approximation, R(τ − τ ′) → R. The instability of
the statically approximated free energy occurs when JβR = 1, βR being the static
approximation for the longitudinal susceptibility χ‖. Within the non-glassy super�uid
phase there are no frozen �elds, P (y) = δ(y). Thus, from Eqs. (5.44-5.45), the two
relevant saddle point equations read

M = mx(y = 0), (5.56)

βR = χ
‖
loc(y = 0), (5.57)

where mx(y = 0) and χ‖loc(y = 0) are to be evaluated from Eqs. (5.39-5.42) and (5.46).
They have a relatively simple low temperature limit. One veri�es that it is self-

consistent to assume that

βR = χ‖ → r

t
, M → 1−mT

t
, (5.58)

with �nite numbers r,m, as T → 0.
Injecting this into the above self-consistency equations, and evaluating the Gaussian

integral over yR in Eq. (5.39) around the stationary point, the equations simplify to:

r = 1 +
J2r

t2 − J2r
+O(T/t), (5.59)

m =
J2r

2(t2 − rJ2)
+O(T/t). (5.60)

This yields the solution for the susceptibility Jχ‖ = Jr/t = t
2J

(
1 +

√
1− 4

(
J
t

)2
)
.

The static approximation predicts the quantum glass transition to occur at the
critical point (

J

t

)
g,stat

=
1

2
, (T = 0) (5.61)

where Jχ‖ = 1.
It is di�cult to predict whether we over- or underestimate the phase boundary with

the static approximation in the super�uid phase. This is because the approximation
has two competing e�ects with respect to the onset of glassy order. On one hand, we
approximate the dynamic longitudinal susceptibility by the static one. Since the latter
is bigger, we tend to overestimate the stability of the glassy ordering of sz. This e�ect
is well-known from the SK model in a (constant) transverse �eld Γ [117, 118, 119].
On the other hand, the static approximation underestimates quantum �uctuations of
sx, at least at low T . Indeed we see above that at T = 0, the static approximation
predicts maximal transverse order, M = 1, independently of the value of J/t, while it
is easy to show that quantum �uctuations around the transverse ferromagnetic state
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decrease the magnetization as M = 1 − O((J/t)2). The overestimate of M leads to
an underestimate of the longitudinal susceptibility, and thus of the tendency to glassy
order. In view of these competing tendencies, it is hard to predict on which side with
respect to Eq. (5.61) the exact glass instability will be located.

However, there is a simple way to obtain an upper bound for the quantum critical
point. In the super�uid phase our model (6.1) is very similar to the SK model in
a constant transverse �eld Γ [118]. with the di�erence that the e�ective transverse
�eld Mt is self-generated and has to be determined self-consistently. However, it is
clear that the e�ective transverse �eld is always smaller than t. From quantum Monte
Carlo results for the transverse �eld SK model, one knows that a quantum glass phase
obtains for J/Γ ≥ 0.76 [119]. This implies that the model studied in the present work
must certainly be in a glassy phase if J/t ≥ 0.76. The latter value is thus an upper
bound for (J/t)g. Approaching from large values of J/T we will �nd below in Eq. (6.2)
that the non-super�uid glass phase becomes unstable towards super�uidity already at
(J/t)s = 1.00. Hence, we conclude that a phase with both super�uid and glassy order
parameters exists for a substantial range of parameters covering at least the interval
0.76 ≤ J/t ≤ 1.00.

5.3.3 Super�uid instability within the insulating glass phase

Our discussion of the phase boundaries will be complete, once we have addressed the
super�uid instability with in the glass phase at large J/t. The instability condition
reads

t

∫
dyP (y)

∂mx(y)

∂hx

∣∣∣
hx=0

= 1, (5.62)

where P (y) is the non-trivial distribution of frozen local �elds in the classical glass
phase of the SK model. The properties of P (y) are well studied, and turn out to be
crucial to understand the low temperature behavior of the phase boundary and the
physics of the glassy super�uid-to-insulator quantum phase transition.

We recall that in the non-super�uid glass phase the static approximation is exact
with R = 1, so that the instability criterion can be expressed in the form,

t

∫
dyP (y)

∫
DyR sinh(β(y + yR)) 1

y+yR∫
DyR cosh(β(y + yR))

= 1, (5.63)

where DyR = 1√
2π(1−qEA)J2

exp(− y2
R

2(1−qEA)J2 ). This condition can be expressed in terms

of the instantaneous �eld distribution as

t

∫
dhPinst(h)

tanh(βh)

h
= 1, (5.64)

where

Pinst(h) =

∫
P (y)dy

cosh βh

cosh βy

exp
(
−β(h−y)2

2hO
− βhO

2

)
√

2πhO/β
. (5.65)
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is the instantaneous �eld distribution, which was �rst derived in Ref. [116]. The term
hO = βJ2(1− qEA) is known as Onsager's back reaction. Eq. (5.64) can be recognized
as a BCS-equation, where the instantaneous �eld distribution Pinst(h) takes the role of
the density of states.

The temperature dependent local �eld distribution can be obtained from a numeri-
cal solution of the self-consistent set of full RSB equations (5.25-5.28), from which the
phase boundary of the insulator-to-super�uid transition is deduced . This yields the
solid [red] line in Fig. 5.1). For comparison we also evaluate the phase boundary within
a one-step approximation, which works well at moderate temperatures. However, it
fails badly at low T where a non-physical reentrance of the super�uid instability would
be predicted, and the quantum phase transition at T → 0 is completely missed.

We note in passing that the thermodynamics of the insulating phase is essentially
classical because of the scaling of the transverse coupling as t/N . If instead t were
random and scaled as 1/

√
N , the glass phase would also exhibit quantum �uctuations

and would not reduce to the purely classical SK model. In that case, the analysis
of the transition would become much more complicated. However, even though the
thermodynamics can be obtained by a purely classical saddle point computation, one
should not conclude that excitations do not have any quantum dynamics.

At low temperatures, the most prominent feature of the local �eld distribution
P (y) is a linear pseudogap which opens at small �elds. The latter is required to
assure the stability of the glass phase [120, 121], in a very similar manner as the
Efros-Shklovskii Coulomb gap arises in electron glasses with unscreened, long range
1/r interactions [48, 111]. More precisely, it is known that P (y) = α|y| + O(T ) with
α = 0.301 for �elds in the range T � |y| � J , while the distribution decays like a
Gaussian for |y| � J . At zero temperature the pseudogap extends down to y = 0 (i.e.,
the chemical potential in the terminology of hardcore bosons), while at �nite but low
temperatures T � J , P (y) assumes a scaling form P (y) = Tp(y/T ) with P (0) = const.
and p(x� 1) = α|x|+ const. [111, 72].

This scaling form asserts that only a fraction of (T/J)2 is thermally active. There-
fore the Edwards-Anderson parameter tends to 1 as 1− qEA ∼ (T/J)2. Accordingly, as
T → 0 there is no di�erence between the distribution of frozen and instantaneous �elds,
Pinst(h), since no thermal �uctuations are left. In this limit the instability condition
(5.63) for onset of super�uidity then takes the form:

ts

∫
dy
P (y;T = 0)

|y|
= 1. (5.66)

Using the above mentioned features of P (y) at low T one can easily obtain a rough
estimate for the super�uid-insulator transition point as (J/t)s ' 1.05± 0.1. However,
since the precise value is also sensitive to the part of P (y) at high �elds, y ≥ J , a full
numerical evaluation of the condition (6.2) is necessary to obtain the exact location
of the quantum critical point. Using high precision data for P (y;T ) at low T from
Ref. [122], we �nd (J/t)s ' 1.00± 0.01.

We emphasize an important di�erence between the quantum phase transition we
have found here and a standard BCS transition. The latter, in the presence of a con-
stant low energy density of states always yields a �nite Tc, even though it becomes
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exponentially small in 1/t for small t. In our glassy system the situation is fundamen-
tally di�erent in that the frustrated interactions suppress the density of states around
the chemical potential with P (y → 0) → 0. This quenches the tendency for super�u-
idity and allows for a super�uid-to-insulator transition at a �nite value of t, even in
the mean �eld limit of N →∞ which we consider here.

This has important consequences for the nature of excitations and transport proper-
ties across the super�uid-insulator transition. In particular, the transition to the Bose
insulator is accompanied by the Anderson localization of lowest energy excitations,
whereas higher energy excitations remain delocalized relatively far into the insula-
tor [123]. We believe that the physics revealed by this mean �eld model is relevant for
Coulomb frustrated bosonic systems which undergo a transition from a super�uid to a
Bose glass state in �nite dimensions. This will be discussed in detail elsewhere [124].

It is interesting to compare our mean �eld predictions for the phase diagram with
the 3D quantum Monte Carlo (QMC) simulation results reported in Ref. [39]. The
mean �eld predictions for the quantum critical points actually match the numerical
results surprisingly well. The latter were done for the Hamiltonian

H = −
∑
〈i,j〉

V ′ij(ni − 1/2)(nj − 1/2)

−t′
∑
〈i,j〉

(
b†ibj + h.c.

)
, (5.67)

with binary disorder, V ′ij = ±V ′ with equal probability. Contact with the mean �eld
model (5.2) is made by replacing the coordination number with N → z = 6 for the 3D
cubic lattice, and taking a Gaussian disorder with the same variance, V 2/z = V ′2, as
well as a hopping tb/z = t′.

Recalling the dictionary (5.4), the mean �eld estimate of the superglass to glassy
insulator quantum phase transition is(

V ′

t′

)MF

s

=

(
V/
√
z

tb/z

)
s

=

(
4J/
√
z

2t/z

)
s

(5.68)

= 2
√
z

(
J

t

)
s

' 4.9 ≈
(
V ′

t′

)QMC

s

w 5,

which comes close to the extrapolation of QMC results to T = 0. The transition point
between superglass and non-glassy super�uid is estimated from the static approxima-
tion as (

V ′

t′

)MF

g

= 2
√
z

(
J

t

)
g,stat

' 2.45

≈
(
V ′

t′

)QMC

g

w 3.2. (5.69)

This indicates that the static approximation overestimates the stability of the super-
glass phase, similarly as what is known from the mean �eld version of the transverse
�eld Ising spin glass.
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The mean �eld prediction (with static approximation) for the interaction-to-hopping
ratio (V ′/t′)T at the tricritical point is rather good, too,(

V ′

t′

)MF

T

= 2
√
z

(
J

t

)
T,stat

' 3.55

≈
(
V ′

t′

)QMC

T

w 3.8. (5.70)

While the tricritical ordering temperature is overestimated by a factor of 2 (similarly
as in the classical Ising spin glass) [125](

T

t′

)MF

T

=
z

2

(
T

t

)
T

' 2.2, (5.71)(
T

t′

)QMC

T

w 1.1. (5.72)

5.3.4 Robustness of the phase diagram to random �eld disorder

In the previous sections we have seen that the model (6.1) possesses an intermediate
phase which is simultaneously super�uid and glassy. We have determined the phase
boundaries as instability lines, assuming second order phase transitions. Indeed it
seems unlikely that any of the instabilities could be preempted by a �rst order transi-
tion. Since the super�uid to insulator transition at (J/t)s is of particular interest, we
provide further arguments in this section that the parts of the phase diagram related
to the phase boundary of the non-super�uid glass remain robust when disorder poten-
tials, i.e. random �elds εi of variance W 2, are restituted to the model. In particular
we will show that glass and super�uid transition lines meet at a tricritical point at
�nite temperature TT/J and (J/t)T . Further we determine the super�uid instability
of the glass phase at T = 0 and show that it always occurs at a larger ratio (J/t) than
the tricritical point, (J/t)s > (J/t)T . This suggests that for any W the transition line
between non-super�uid and super�uid glass is not reentrant as a function of temper-
ature. The absence of reentrance in turn suggests that the quantum phase transition
out of the insulating glass remains second order, independent of the strength of the
disorder potential.

The Hamiltonian with a disorder potentials reads

H = −
∑
i<j

Jijs
z
i s
z
j −

t

N

∑
i<j

(
sxi s

x
j + syi s

y
j

)
+
∑
i

εis
z
i . (5.73)

The disorder potential breaks the Z2 symmetry, therefore Qa6=b 6= 0 already in the high
temperature phase, where it assumes a constant replica symmetric value Q0. The glass
phase occurs at the Almeida-Thouless instability, which is given by [111]:

β2J2

∫
dy

PW (y)

cosh4(βy)
= 1, (5.74)
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where

PW (y) =
exp

(
− y2

2(W 2+J2Q0)

)
√

2π(W 2 + J2Q0)
, (5.75)

and Q0 satis�es the self-consistent equation

Q0 =

∫
PW (y) tanh2(βy)dy. (5.76)

The instability towards the super�uid phase is instead determined by

1/t =

∫
dhPinst(h)

tanh(βh)

h
, (5.77)

where

Pinst(h) =

∫
dyPW (y)

cosh βh

cosh βy

×
exp

(
−β(h−y)2

2hO
− βhO

2

)
√

2πhO/β
, (5.78)

with the Onsager �eld hO = βJ2(1−Q0) [116, 111].
The glass and super�uid transition lines meet at a tricritical point at (T/J)T and

(J/t)T which are to be evaluated from Eqs. (5.74-5.78).
In the limit W/J � 1, one �nds the tricritical temperature (T/J)T = 4

3
√

2π
J
W

+

O( J
2

W 2 ) and βThO → 3/2, as W/J →∞.
The super�uid transition at T = 0 is given by the condition

(1/t)s =

∫
dh
Pinst(h;T = 0)

|h|
. (5.79)

In the limit W/J � 1, Pinst(h;T = 0) is known to have a simple structure :

Pinst(h;T = 0) =


α|h|/J2, |h| � h?,

exp

(
−(h−γJ2/W )2

2W2

)
√

2πW 2
, |h| � h?,

(5.80)

with a smooth crossover between the two limiting forms around h?

J
= 1

α
√

2π
J
W

+O( J
2

W 2 ).
The value of the constant γ = O(1) can be estimated by the normalization condition∫
dhPinst(h;T = 0) = 1, but will be irrelevant below.
ForW/J � 1, (J/t)s and (J/t)T both behave as 4√

2π

log(W/J)
W/J

to leading order. Their
di�erence scales like cJ/W . The coe�cient c can be evaluated easily by rescaling the
variables βTh = ĥ and βTy = ŷ,

c = lim
W/J→∞

W

J
[(J/t)s − (J/t)T ]

=

√
2

3

∫
dĥ

ĥ

[
p̂(ĥ;T = 0)− f(ĥ)

]
, (5.81)
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where

p̂(ĥ;T = 0) = lim
W/J→∞

√
3

2
WPinst(ĥ/βT ;T = 0) (5.82)

and

f(ĥ) =

∫
dŷ√
2π

sinh(ĥ)

cosh(ŷ)

exp
(
−(ĥ−ŷ)2

3
− 3

4

)
√

2π
, (5.83)

and we have used βThO → 3/2. We approximate Eq. (5.80) by extending the formula
all the way to h? and neglecting the shift of �eld h and we get :

p̂(ĥ;T = 0) ≈


2αĥ√

3π
, |ĥ| ≤ 3

4α
,√

3
4π
, |ĥ| ≥ 3

4α
,

(5.84)

Evaluating Eq. (5.81) numerically, using the estimate Eq. (5.84) , one obtains c =
0.231 > 0, establishing that (J/t)s > (J/t)T even in the presence of strong disorder.
We point out that Eq. (5.84) overestimates Eq. (5.82), but this overestimation should
be much smaller than c = 0.231.
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Figure 5.2: Cross-correlation between the local oder parameters for super�uidity and
glassy order, respectively. The correlations are evaluated from Eq. (5.85) in the tem-
perature range 0.05 < T/t < 0.75 at �xed disorder J/t = 0.724, close to the ratio
corresponding to the tricritical point. The local order parameters are anticorrelated,
the maximal anticorrelation occurs at intermediate temperatures.
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5.4 Properties of the super-glass phase

Having established the phase diagram of the model, we now focus on the properties of
the bulk of the "superglass" phase. There the interplay between temperature, glassy
order and super�uid order induce several interesting phenomena which potentially
survive also in �nite dimensional models of frustrated bosons. In the following, we
investigate how the glassy and super�uid orders evolve with temperature, and how
they are locally correlated.

5.4.1 Competition between glassy and super�uid order

While the e�ective transverse �eld hxi = Mt is uniform for every site, the frozen
longitudinal �eld, hzi depends on the site (and on the pure state in which the system
is frozen). Therefore, the magnetization of the local spin si due to the local �eld
−→
hi = (hxi , h

z
i ) �uctuates from site to site. It is interesting to study the correlation of

the local magnetization, whose components are the local order parameters of the glassy
and the super�uid order, respectively. More precisely, we investigate the following
correlation function:

CM,qEA ≡
1
N

∑
i 〈sxi 〉 〈szi 〉

2 − ( 1
N

∑
i 〈sxi 〉)(

1
N

∑
i 〈szi 〉

2)

( 1
N

∑
i 〈sxi 〉)(

1
N

∑
i 〈szi 〉

2)

=

∫
dyP (y)mx(y)m2(y)−MqEA

MqEA
. (5.85)

We have evaluated the correlation function (5.85) within the static 1-step RSB approxi-
mation in the center of the superglass phase (J/t = 0.724) as a function of temperature
(0.05 < T/t < 0.75), see Fig. 5.2. Not surprisingly, the correlation is negative, since
glassy and super�uid orders compete with each other. Indeed, one easily checks that
for every pair of sites (i, j) it holds that if 〈szi 〉

2 <
〈
szj
〉2

then 〈sxi 〉 >
〈
sxj
〉
. The maximal

amplitude of the normalized correlation CM,qEA is only of order ≈ 0.1, suggesting that
in the super�uid phase the non-uniformity of the two local order parameter �elds is ac-
tually not very strong. It may be that the 1-step approximation underestimates these
correlations a bit. The relative weakness of the anticorrelations might be the reason
why they have not been noticed in the quantum Monte Carlo studies of Refs. [39, 40].

5.4.2 Non-monotonicity of the super�uid order

In the superglass phase, the glass order parameter qEA = Q1 monotonously decreases
with increasing temperature, as one should expect. However, surprisingly, the su-
per�uid order parameter M exhibits non-monotonic behavior with a maximum at an
intermediate crossover temperature Tm, as shown in Fig. 5.3. Below Tm, the super�uid
order parameter M decreases, anomalously, when lowering the temperature. Above
Tm, M decreases with increasing temperature as usual in a standard super�uid.

This phenomenon is related to the anti-correlation between glassy and super�uid
order discussed in the previous section. While on one hand, thermal �uctuations tend
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to diminish both glassy and super�uid order, there appears to be a low temperature
regime T < Tm, where quantum �uctuations of the super�uid order are dominant. Due
to the competition between the glassy and the super�uid order, the thermally induced
decrease of the glassy order enhances the super�uid order. This e�ect dominates over
the direct thermal e�ects on the super�uidity.

It seems natural that it is the super�uid order which undergoes such non-monotonic
behavior, rather than the glassy order. Indeed, we expect the latter to react less
sensitively to the diminution of quantum �uctuations due to decreasing transverse
�elds

We note that also the local order parameter correlations CM,qEA exhibit a non-
monotonous behavior within our static 1-step approximation, as shown in Fig. 5.2.
The absolute value of CM,qEA increases with temperature at very low temperatures,
and decreases at higher temperatures. This can be seen again as a consequence of
the non-monotonicity of the super�uid order. At �xed T , the larger hx the stronger
the normalized anticorrelation CM,qEA . Since h

x = tM initially increases with T , it is
natural to expect an increasing CM,qEA until eventually thermal �uctuations become
dominant and diminish CM,qEA .

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 80 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

 R  
 M
 Q 1   

T / t
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Figure 5.3: (color online) The order parameters in the superglass phase as a function of
temperature 0.05 < T/t < 0.79 at the �xed disorder J/t = 0.724. The blue dashed line
indicates the Edwards-Anderson order parameter Q1 (in 1-step approximation), which
monotonously decreases with increasing temperature. The super�uid order parameter
M (red solid line) exhibits non-monotonic behavior. The long time (static) on-site
charge correlation R, (green dotted line) becomes 1 in the disordered high T phase.
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5.5 Discussion

In this chapter we have analyzed a fully connected mean �eld model. The full con-
nectivity is not a real limitation, however. Indeed, one can generalize the model to
a highly connected Cayley tree. While this does not a�ect the thermodynamics of
the model, this generalization allows for the study of localization and delocalization of
excitations, since this model is endowed with a notion of distance. The analysis of local-
ization properties is of particular interest in the vicinity of the superglass-to-insulating
glass quantum phase transition, where the boson system collectively delocalizes into
a super�uid at low energies. The nature of higher energy excitations in the insulator
are crucially a�ected by the suppression of low energy states in the glass, leading to a
non-trivial excitation spectrum at the glassy SI transition. The details of this analysis
will be reported in the next Chapter.

What features of the mean �eld model should be expected to carry over to �nite
dimensions? In the present model we �nd a genuine insulating phase at T = 0, which
suppresses the super�uidity, due to the strong self-generated on-site disorder within
the glassy phase. A crucial ingredient for the suppression of super�uidity is the linear
pseudogap within the glass phase. A very similar pseudogap is known to occur in
disordered Coulomb interacting systems, where it is due to unscreened 1/r interactions
between charged particles. This Coulomb gap may well be of importance in strongly
disordered superconductors and play a signi�cant role in the competition between
glassy insulating behavior and superconductivity. In particular, in materials with
strong negative U centers, one may think of preformed electron pairs constituting hard
core bosons which interact with Coulomb repulsions [126]. The power law suppression
of the low energy density of states makes it likely that the super�uid condensate is
entirely destroyed once the hopping becomes too small. For short range interactions
the density of states is merely reduced at low energy, but does not tend to zero. On a
Cayley tree of very large connectivity this will always lead to delocalization, unless the
hopping t is scaled down logarithmically with the connectivity. In �nite dimensions,
however, su�ciently strong disorder is known to suppress super�uidity [20], and thus
one may expect that at su�ciently large ratios J/t, the disordered boson model will
localize due to spontaneously created, frozen-in local �elds. Such a conclusion may
be suggestive from a straight extrapolation of the quantum Monte Carlo results of
Ref. [39] to T = 0, but it seems di�cult to exclude a scenario in which Tc becomes
merely exponentially small with J/t. A more careful analysis will be necessary to settle
this question in �nite dimensional, short range interacting glasses.

As for the coexistence phase, the "superglass", the numerical data [39, 40] provides
evidence that it exists also in �nite dimensions. It would be interesting to con�rm and
quantify the local anticorrelation of order parameters in such simulations. From our
mean �eld analysis one expects that the anticorrelation is in fact relatively weak. A fur-
ther non-trivial prediction with measurable consequences is the non-monotonicity of the
super�uid order parameter, which should translate into an equivalent non-monotonicity
of the super�uid sti�ness as a function of temperature. This non-monotonicity has its
origin in the softening of the glassy order at low T , a feature which may potentially
survive in �nite dimensions, especially when the lattice connectivity is large, or the
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interactions are not too short ranged. We should caution though that we obtained this
e�ect by employing a static approximation and a replica symmetry breaking at the
one-step level only. However, we believe that it is a real feature of the model.

As discussed earlier, a number of experiments have already shown promising in-
dications of possible coexistence of glassy order with super�uidity. We hope that
our analysis will help to unambiguously identify such phases in experiments. Note
that �nding an experimental system exhibiting a glassy super�uid-insulator transition
might also be of great interest to study the intricate interplay of interactions and dis-
order with respect to glassy ergodicity breaking, and quantum ergodicity breaking, i.e.
Anderson localization.
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Chapter 6

Frustrated Bose glasses and the

mobility edge

In this Chapter I focus on the glassy super�uid-insulator (GSI) quantum phase tran-
sition of bosons in the presence of frustrating interactions. The transition occurs from
an insulating Bose glass to a "superglass" with locally coexisting super�uid and den-
sity order. To obtain an exactly solvable limit, I study hard core bosons on a Bethe
lattice of high connectivity, with random nearest neighbor interactions, which serves
as a guide to interpret �nite-dimensional problems with large coordination number.
This is an extension of the fully connected model I studied in Chapter V. The reason
for extending the fully connected model to a Bethe lattice is to study the transport
properties of localized frustrated hard-core bosons. The frustrating interactions in the
glass phase have important qualitative e�ects: The suppression in the density of states
impedes the onset of super�uidity up to relatively strong values of the hopping. In the
insulating phase, the localized excitations are separated from the delocalized excita-
tions a mobility edge, which does not close upon approaching the GSI quantum critical
point. This suggests that the super�uid establishing is not signed by the mobility edge
for the single excitation tending down to zero as approaching the critical point but is
a collective phase ordering phenomenon at zero temperature. The other interesting
�nding is that the emerging ordered state is fractal, but rather weak comparing to the
non-glassy SI transition.

The phenomena observed in the superglass-to-insulator transition in this mean �eld
limit may serve as good guide for more realistic, Coulomb-frustrated bosonic systems
undergoing a transition from a super�uid to a Bose glass state in �nite dimensions.

6.1 Model

We consider the situation where the disordered potential is self-generated by random,
frustrated density-density interactions between hard-core bosons on nearest neighbors
on a half-�lled lattice,

H = −
∑
〈i,j〉

4Jij(ni − 1/2)(nj − 1/2)− t

K

∑
〈i,j〉

(
b†ibj + b†jbi

)
. (6.1)
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At low T , strong enough interactions induce a glassy, inhomogeneous density pattern
〈ni〉 6= 1/2, which breaks the particle hole symmetry and entails an e�ective disorder
potential for a propagating test boson. Here, bi(b

†
i ) are the annihilation (creation)

operators for hard-core bosons at site i, and b†ibi = ni ∈ {0, 1} is their occupation
number. Jij is a quenched, random interaction taken to be Gaussian distributed with
Jij = 0 and J2

ij = J2/K, while t/K is the homogeneous hopping amplitude on the
links. We have scaled the couplings with the number K in such a way as to obtain a
non-trivial limit when K →∞. The model (6.1) can be mapped to a s = 1/2 pseudo
spin model via the standard relations 2ni − 1 = szi ∈ {±1}, b†i = s+

i and bi = s−i .
The model (6.1) was studied by Quantum Monte Carlo simulations [39] in 3d,

and was found to have three phases at low temperature: an insulating glass phase
for large J/t, a non-glassy super�uid phase for small J/t, and an intermediate phase,
coined "superglass", which is characterized by the coexistence of both orders: su-
per�uidity (M ≡ 1

N

∑
i 〈sxi 〉 > 0) and glassy density freezing, as captured by the

Edwards-Anderson parameter qEA ≡ 1
N

∑
i 〈szi 〉

2. Note that they spontaneously break
two di�erent symmetries: M breaks the XY symmetry, while qEA breaks the particle-
hole symmetry (or spin rotations by π around any axis in the XY plane).

Many aspects of the phase diagram can be better understood analytically in the
mean �eld limit of large connectivity K → ∞. This applies quantitatively in high
dimensions, but it also furnishes valuable insight for low dimensions, at the level of a
non-trivial, glassy mean �eld theory [127]. The critical point and the glassy super�uid-
to-insulator (SI) transition is analytically tractable because, in the large K limit, the
insulating glass turns locally into a classical Sherrington-Kirkpatrick Ising spin glass,
with thermodynamically irrelevant quantum �uctuations. Using this fact, one �nds
that super�uidity at T = 0 emerges from the insulating glass at the critical hop-
ping [127]:

t∞s

∫
dε
ρ(ε)

|ε|
= 1. (6.2)

Here, ρ(ε) ≡ 1
N

∑
i δ(ε−εi), denotes the density of frozen Hartree �elds εi ≡

∑
j∈∂i Jij

〈
szj
〉
,

arising from the non-zero density in the glass phase, ∂i being the set of neighbors of
i. The most prominent feature of ρ(ε) is a linear pseudogap [66, 107] at low energies,
which extends down to ε = 0 at T = 0:

ρ(|ε| � J) ≈ cK + α
|ε|
J2
, (6.3)

where the constant cK vanishes as 1/
√
K, and α ≈ 0.31. The exact quantum critical

point (the glassy SI transition) is predicted by mean �eld theory [127] at t∞s ≈ 1.00J ,
in remarkably good agreement with the T → 0 extrapolations of the numerical data
in 3d [39].

We emphasize an important di�erence between the above transition, and the case
of hard core bosons hopping in a disorder potential with uniform distribution ρ̃(εi).
While the latter is always super�uid at T = 0 in the limit K → ∞ (albeit with
exponentially small Tc for small t), the self-generated disorder in the glass is able to
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quench super�uidity completely for t < ts, which traces back to the linear vanishing of
ρ(ε→ 0) 1 .

In order to analyze the dynamics and/or localization of low energy excitations
within the insulating glass phase, it is useful to introduce an e�ective low energy
Hamiltonian which may capture few spin excitations on top of the ground state of
model (6.1),

Heff = −
∑
i

εis
z
i −

t

K

∑
〈i,j〉

(
s+
i s
−
j + s+

j s
−
i

)
. (6.4)

Here, the interaction term has been approximated via a mean �eld decoupling, which
is justi�ed in the large K limit, apart from the neglect of parametrically suppressed
dephasing e�ects due to �uctuations in εi. For the same reason we may also neglect cor-
relations among the frozen �elds εi on di�erent sites, approximating them as identically
distributed variables with distribution (6.3).

Note that Heff takes the same form as the model introduced by Ma and Lee [20].
This model was recently revisited [52, 29, 28, 128] from the point of view of the
dynamics of low energy excitations, and the onset of super�uidity. The analysis of
Ref. [51, 128] strongly suggests that for a uniformly distributed disorder, ρ̃(ε), and half
�lling, all low energy excitations in the insulating state at T = 0 are localized. In
particular this implied that super�uidity arises through a delocalization process which
is initiated at the lowest energies, instead of being brought about by a �nite mobility
edge in the insulator descending to the chemical potential at the critical point.

The glassy SI transition, is amenable to a similar kind of analysis, with remarkably
di�erent phenomenology, however. Even though at �rst sight the physics seems more
intricate and complex in this case, the solution and the emerging phenomena are in
fact cleaner, and render the distinction between mobility edges and bosonic conden-
sation clearer. In the following we will analyze in turn the response to a symmetry
breaking �eld at the boundary, i.e., the surface magnetization, and the propagation
([de-]localization) of �nite energy excitations. As we will see the two phenomena are
physically quite distinct and a�ected rather di�erently by the glassy pseudogap. For
both calculations we will consider large but �nite K. Furthermore, we will neglect
the presence of loops in our lattice, which amounts to approximating the lattice as a
Cayley tree of connectivity K ≡ K ′ + 1 and depth L→∞. While this approximation
comes with certain unphysical features, such as the exponentially growing number of
sites at a given distance, it reveals several interesting features, whose analogs in �nite
dimension will be pointed out.

6.2 GSI transition

Consider a spin on site 0 (the root of the Cayley tree Λ) and its linear response to
an in�nitesimal transverse �eld hx applied on the boundary spins l ∈ ∂Λ. When K

1At �nite K, the hard core bosons without nearest neighbor interactions undergo a SI transition
as well, but at logarithmically smaller hopping, t̃s ∼ 1/ log(K), which renders the limit K →∞ more
cumbersome.
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is large one may linearize the response in the leading order in the XY couplings t/K,
and obtains the total surface susceptibility as [29]

χ =
∑
l∈∂Λ

∏
i∈Pl

[
t

K
χi

]
, (6.5)

where χi ≡ ∂ 〈sxi 〉 /∂hi,x is the local transverse susceptibility [127]. The sum runs over
all surface spins l, Pi being the unique direct path from site 0 to the site l at distance
L, and the products are over all sites on Pl. At T = 0, χi = χεi = 1/|εi|. The sum
(6.5) can be interpreted as the partition function of a directed polymer rooted at site 0
and running radially to the surface [28, 29], the exact solution to which has been given
by Derrida and Spohn [97]. In the quantum disordered phase, χ decays exponentially
as L → ∞. Super�uid order sets in when the typical surface susceptibility starts to
diverge, i.e., when [97]

0 = lim
L→∞

1

L
logχ = min

x∈[0,1]

1

x
log

{
K

[
t

K
χε

]x}
≡ log (t/K) + min

x∈[0,1]
f(x). (6.6)

The bar denotes average over ρ(ε), and f(x) is de�ned as

f(x) =
1

x
log

[
K

∫
dε ρ(ε)χxε

]
=

1

x
log

[
K

∫
dε
ρ(ε)

|ε|x

]
.

For K → ∞, the minimum is assumed at xc → 1, and one readily retrieves the
condition (6.2). At �nite K, using the form (6.3) for the local �eld distribution, one
�nds that the minimum is assumed at

xc = 1−O(K−1/4 log−1/2K), (6.7)

concomitant with a tiny decrease in ts. The value of xc has the following important
physical signi�cance: 1− xc is the weight of the most favorable path 2 contributing to
χ. 1/(1 − xc) can be taken as an estimate of the number of macroscopically di�erent
paths that actually contribute to the susceptibility. xc < 1 implies that the response is
dominated by a few paths only, despite the exponential number of boundary sites. This
phenomenon is referred to as freezing (or replica symmetry breaking) in the context
of directed polymers. In the present context it signals that the emerging condensate
is concentrated on an extremely small subset of the available lattice [29, 28]. In �nite
dimensions, the analog of this phenomenon is to be sought in the fractality of the
emerging condensate. The latter is indeed to be expected as the phase transition is
known to be a kind of percolation phenomenon [98].

It is very interesting to compare these results with the case of uniform disorder as
considered in Refs. [28, 29, 128]. In that case, one �nds 1/(1 − xc) ∼ logK at the

2See Ref. [97]. More precisely it is the contribution of a bunch of paths with mutual "overlap"
that tends to 1 in the thermodynamic limit.
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critical point, which is parametrically smaller than the 1/(1 − xc) ∼ K1/4 log1/2K in
the case of a pseudogapped ρ(ε). This has a natural interpretation. The concentration
of disordered wavefunctions on a small number of paths, which was already noticed
in Anderson's seminal paper on localization [1], is a result of resonances, i.e., small
denominators in products like in (6.5). A pseudogap in the distribution of local energies
reduces the probability for such resonances for the establishment of phase coherence at
zero frequency. On the Cayley tree this is re�ected by the enhanced value of 1/(1−xc).
In �nite dimensions, we expect instead a decreased tendency to concentrate on highly
optimized paths, and thus we conjecture that the emerging condensate to have an
increased fractal dimension as compared to a non-glassy SI transition. It is worthwhile
to point out that if ρ(ε → 0) vanished exactly, as it happens in systems with long
range Coulomb interactions, the same approximations as above would yield xc = 1,
suppressing the concentration on paths even more strongly than the rounded pseudogap
(6.3). However, we should also caution that the above analysis relies on the leading
approximation in the hopping, while close to the transition subleading corrections
become important, and could modify (in fact, increase) the e�ective number of paths
that contribute to the χ. However, we believe that the qualitative conclusion, that a
pseudogap tends to decrease the fractality, will remain unchanged.

6.3 Localization of excitations in the glassy insulator

Let us now turn our attention to transport properties in the insulating phase, t < ts,
and examine the relation between condensate formation and delocalization of excita-
tions. Consider a spin �ip (boson insertion) on site 0 and let us determine whether such
a local excitation of �nite energy can propagate to the boundary or remains localized.
The answer depends in fact on the injected energy. Indeed at higher energies there
exist many sites with similar frozen �elds, which can hybridize with each other via the
hopping term. In contrast, at low energies such hybridizations are suppressed by the
pseudogap, which we will show to localize low energy excitations. Accordingly, there
must be a mobility edge, which separates the low energy localized spectrum from the
continuum at higher energies.

Excitations are delocalized if they can decay due to an in�nitesimal coupling to a
bath coupled to the boundary of the system. On a Cayley tree, to leading order in
the parametrically small hopping t/K, the possible decay channels are given by the
shortest paths connecting the site 0 to boundary sites. Since in these leading order
processes no bosons are exchanged, their quantum statistics does not matter [?] and
the problem becomes identical to a (fermionic) single particle delocalization on the
Cayley tree, which was solved in Ref. [60] The decay rate of a local excitation on site
0 back to the ground state is given by Fermi's golden rule [128]

Γ(ω) =
∑
l∈∂Λ

∏
i∈Pl

[
t/K

εi − ω/2

]2

J(ω), (6.8)

where ω = 2ε0 is the energy of the excitation, and J(ω) is the spectral function of the
baths coupling to the individual boundary spins. In complete analogy to (6.5), one
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�nds the typical decay rate

γ(ω) ≡ lim
L→∞

1

L
log Γ(ω) = log (t/K) + min

x∈[0,1]
fω(x), (6.9)

where the function fω(x) is given by

fω(x) =
1

2x
log

[
K

∫
ρ∆(ε)

| ε− ω/2 |2x
dε

]
. (6.10)

The notation ρ∆ indicates that, following Anderson's prescription [1], resonant energies
with |εi − ω/2| < ∆ ∼ K−2 should be excluded from the integral 3 . Indeed, these
small denominators are compensated by anomalously large self-energy correction on
the next site on the path.

Delocalization of excitations at energy ω occurs when γ(ωc) = 0, which de�nes the
mobility edge ωc(t). It is determined by the two conditions

1 = K

(
t

K

)2x ∫
ρ∆(ε)

|ε− ω/2|2x
dε, (6.11)

log

(
t

K

)
=

∫ ρ∆(ε)
|ε−ω/2|2x log(|ε− ω/2|)dε∫ ρ∆(ε)

|ε−ω/2|2xdε
. (6.12)

In the large K limit one �nds that the mobility edge scales like ωc = 2ω̂/ logK and
fω assumes its minimum at xc = 1/2 + z/ logK (z = (2x− 1) logK).

For the density of states ρ(ε) which satis�es that ρ(ε � J) ∼ α|ε|/J2 and ρ(ε �
J)→ 0, with these rescalings the K →∞ limit of Eq. (6.11) turns into

1 = te−z
[∫

dε
ρ(ε)

|ε|
+

2α

J2

ω̂

z
(e2z − 1)

]
(6.13)

or, upon using (6.2),

t∞s
t

= e−z +
4αt∞s ω̂

J2

sinh(z)

z
. (6.14)

The minimum condition (6.12) translates into

t∞s
t

=
4αt∞s ω̂

J2

(
ez

z
− sinh(z)

z

)
. (6.15)

Eqs. (6.14,6.15) determine ω̂ and z. At the SI transition where t/t∞s → 1, we �nd the
explicit solution z = 1.2785 as the root of z = 1 + e−z, while

ωc =
2ω̂

logK
=

(z − 1)J2

αt∞s logK
≈ z − 1

α logK
J. (6.16)

3The proportionality factor c in ∆ = c/K2 plays no role in the our asymptotic analysis K →∞.
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Notice that the above equations do not depend on the details of ρ(ε) at small or
large energies, but only on its linear slope α.

We thus come to the conclusion that a �nite, if parametrically small, mobility edge
ωc ∼ 1/ log(K) exists on the insulating side. Even though the hopping is irrelevant
for thermodynamic properties, it does allow for the propagation of excitations above
ωc. The most striking aspect of our analysis, however, is that the mobility edge does
not vanish upon approaching the SI transition t → t∞s , instead it tends to the �nite
value (6.16), implying a �nite interval of discrete spectrum anywhere in the insulator.
However, those excitations all acquire a �nite life time simultaneously, once the system
becomes super�uid and the delocalized Goldstone modes at lowest energies provide a
bath for decay processes of higher energy excitations.

The presence of a �nite, and rather low mobility edge of the frustrated bosonic
system di�ers from the problem without glassy interactions, where controllable cal-
culations so far could not indicate the delocalization of �nite energy excitations at
T = 0 [128]. In practice, frustrating interactions are of course to be expected. In par-
ticular, Coulomb interactions among charged bosons will lead to an Efros-Shklovskii
Coulomb gap in the distribution of local potentials, which is expected to have similar
qualitative e�ects as the pseudogap analyze in the large connectivity limit of short
range interacting glasses here, namely: the increase of the fractal dimension of the
inhomogeneous condensate in emerging charged super�uids, and the presence of a (low
lying) mobility edge close to the chemical potential. The presence of such an intensive
mobility edge implies that the glassy insulator adjacent to the superglass exhibits �nite
transport at all positive temperatures, even in the absence of a phonon bath. Indeed,
the delocalized modes above ωc have a �nite probability of being occupied and may
conduct charge either by themselves, or in case they are neutral, may serve as a weak,
but �nite bath which provides the necessary level broadening to allow for transitions
between otherwise localized excitations, or by conducting. Both transport channels
would be simply activated with an exponential factor containing the activation energy
to the mobility edge (in the limit T → 0). This may be a possible scenario for the
activated transport which is often observed close to bosonic SI-transitions [53, 129, 52].

In conclusion, we have presented the solution of a hard-core boson model with
strongly disordered frustrated density-density interactions on the Bethe lattice. We
found that the glassy order shifts the SI transition at zero temperature, and reduces
the sparseness of the emerging condensate. In the insulating phase, we found a �nite
mobility edge for excitations, which tends to a �nite value at the SI transition. This
shows that in general the super�uid transition should not be thought of as a conden-
sation into modes at a pre-existing mobility edge, which dives down to zero at the
transition, in contrast to similar scenario discussed in the literature [29, 52]. Instead
the super�uid emerges as a collective phase ordering phenomenon at the chemical
potential, which turns out to be rather distinct from a single particle delocalization
phenomenon.
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Figure 6.1: The green line shows the SI transition line. The red line is the mobility
edge which separates the localized states (below) and the delocalized states (above).
The mobility edge is located at parametrically small energies, R = ωc ∼ 1/ logK.
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Chapter 7

Conclusion

In this thesis I focus on the disorder-induced super�uid-insulator quantum phase tran-
sition, glassy insulators, and transport properties of localized interacting systems. My
PhD work deals with superglasses, the super�uid-insulator transition and how it is
a�ected by glassiness, as well as with transport properties of glassy insulators.

Here I summarize the main results I have obtained:

1) For a model of non-frustrated disordered hard-core bosons on a Cayley tree with
large connectivity, I found that with a uniformly distributed disorder the excitations
in the disordered phase (insulating phase) are all localized and there is no a boson
mobility edge in the Bose glass.

2) For a fully connected model of random frustrated hard core bosons, I proved the
existence of a superglass phase. I pointed out anticorrelations between the local order
parameters, and a non-monotonicity of the super�uid order parameter as a function of
temperature.

3) By extending this fully connected model to a Bethe lattice with �nite but large
connectivity, I was able to study the transport properties of a glassy bosonic insulator.
I found that the glassy super�uid-insulator transition is signi�cantly shifted to larger
hopping due to the pseudo gap in the density of states of the glass state. Further I
established that the glassy insulator has a �nite mobility edge for bosonic excitations,
which however not close upon approaching the SI transition point. Instead I found
that the bosonic condensate emerges due to a collective delocalization at zero energy,
which is unrelated to the delocalized modes that exist above the mobility edge in the
insulator.

These results were obtained relying on large connectivity as a control parameter,
where mean �eld theory (for the glass state) and a leading order approximation in the
hopping (for transport) make an analytical study possible.

It is of course very important to understand how this connects to the physics in
realistic, �nite dimensional systems.

One aspect of realistic �nite-dimensional systems is the presence of Coulomb in-
teractions, which cannot be fully screened in insulators, and thus play a crucial role.
The Coulomb interactions between localized carriers (electrons or pairs) are known to
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create a Coulomb gap in the density of states, analogous to the pseudogap we dis-
cussed for frustrated bosons with short range interactions at large connectivity. It
is natural to expect that the Coulomb gap may have similar physical e�ects on the
physics of the insulator. For example, due to its suppression of the low-energy density
of states, I expect that high energy excitations should be more delocalized than lower
energy excitations. In dimensions d ≥ 3 I therefore expect a mobility in the excitation
spectrum of interacting systems, which tracks the chemical potential rather closely - a
phenomenon which may have been observed in recent tunneling experiments on doped
semiconductor systems close to the metal-insulator transition [130].

Another very interesting and challenging problem is to investigate the transport
behavior near the SI quantum critical point, where the description in terms of ele-
mentary excitations breaks down and one has to take into account strong many body
e�ects. many issues are still open: How does the bosonic statistics manifest itself at the
SI transition (as opposed to a fermionic metal-insulator (MI) transition)? How does
the Coulomb gap a�ect the nature of such delocalization transitions? Under which
circumstances are there mobility edges in bosonic systems? Does it never happen that
a bosonic delocalization transition is induced by a mobility edge touching the chem-
ical potential upon approaching the critical point? A �rst step in this direction may
consist in extending the bosonic locator expansion [51] and developing a systematic
way to compute self-energy and other subleading corrections. This should shed more
light on some of the questions I could not fully resolve within the approximations that
restricted my analysis of localization properties to the leading order in hopping.
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