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Chapter 1

Introduction

In the lest 40 years Density Functional Theory has proven to be a powerful theo-

retical approach to describe very heterogeneous classes of materials. Proposed back

in the mid 60’s by P. Hohenberg and W. Kohn[1], even in its simplest form, the

Local Density Approximation[2] and the Local Spin Density Approximation[3], this

theory has been remarkably successful in describing a wide range of hard materials,

from closed packed metals to ionic crystals and semiconductors[4], and with more

sophisticated approaches, such as the Generalized Gradient Approximation[5], this

theory has given results in very good agreement with experiments in molecular sys-

tems, supported materials[6], surfaces[7] and complex polar systems such as ice and

solutions[8].

Thanks to several efficient techniques to solve the quantum mechanical problem

defined by DFT, such as plane-wave, pseudo-potentials approaches and Car-Parrinello

dynamics, and thanks to the ever growing computing power now available, modern

software implementations of DFT are able to address problems once considered out

of reach for this technique, such as long molecular dynamics and extended systems

comprising several hundreds atoms and thousands of interacting electrons[9].

In spite of its remarkable successes, among the shortcoming of this theory the

treatment of non-local correlations, and dispersion interaction in general, seems to

be one of the most important open issues to be addressed. Commonly named ”van

der Waals” forces[10], dispersion interaction is an ever present binding mechanism in
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weakly bonded materials, from biological systems to rare-gas molecules. Arising from

the interactions of charge fluctuations among separated chunks of matter, van der

Waals forces are on the edge between classical physics and quantum effects. Dipoles

generated by instantaneous charge fluctuations, due to quantum mechanical zero-

point energy vibrations or thermal fluctuations, interact as classical electromagnetic

dipoles with a typical 1/R−6 long range decay.

This is an inherently non-local effect that cannot be accounted for by local (LDA)

or semi-local (GGA) approximations. The theoretical approach, in principle exact,

to handle this kind of interaction has been developed starting from the Adiabatic-

Connection Fluctuation-Dissipation Theorem[11], but even in its simplest practical

application, where called Random Phase Approximation[12] (RPA) is used to simplify

the treatment, the calculations are so computationally demanding that only very small

test cases can be addressed in a non self-consistent way.

To overcome these limitations in recent years several solutions have been pro-

posed, from parametrized density functionals[13, 14] to semi-empirical atomic pair-

wise potentials[15], obtaining some good results[16] in specific kind of materials, but

introducing a level of empiricism that deviates from the ab-initio and universal ap-

proach of the DFT.

Very recently a theoretical breakthrough has been achieved in the field of non-

local interaction in DFT, with the definition of a new class of seamless non-local func-

tionals specifically designed to handle long-range correlation. Derived from previous

works of Andersson, Langreth and Lundqvist (ALL) [17] and Richardson and Ashcroft

(RA)[18], the non-local functional form proposed by Langreth and coworkers[19],

usually called vdW-DF, and its evolutions, such as vdW-DF2 [20], offers a robust,

computationally inexpensive and very accurate method to handle dispersion interac-

tion in an ab-initio approach. This non-local functionals has already been used with

remarkable results in several systems, from biological interacting molecules[21], to

water systems[22] and carbonaceous materials[23] reaching in several cases the accu-

racy level of highly accurate, and computations very expensive, theoretical quantum

chemistry methods.

6



In this thesis we’re presenting some extension and improvements of the non-local

density functional approach, with the objective of building a complete set of theo-

retical ”tools”, and computational implementations, to exploit at best this powerful

new scheme for soft matter applications.

1.1 Outline of the thesis

After a very short theoretical summary in Chap. 2 and Chap. 3, necessary to correctly

frame the non-local density functional approach and to understand both its power

and limitations, the first work we present in Chap. 4 address the implementation of

stress in non-local density functionals. As an essential tool in structure prediction

and characterization, thanks to the stress implementation it’s possible to study, in

an efficient way, the behavior of structures described by non-local functionals under

pressure. As an example we report an interesting study on aminoacid crystals, a

perfect benchmark considering that the molecular packing force holding together the

entire crystal is mainly due to dispersion interaction between molecules.

In Chap. 5 we present a second contribution, a revision of Vydrov and Van Voorhis

”VV10” density functional[24]. In 2010 these authors proposed a new flavor of non-

local functional, commonly called VV10, with remarkable accuracy with respect to

quantum chemistry results, and that performs better than any other non-local func-

tional available since then. Unfortunately, due to some technical details we’ll explain

in the following chapters, this new functional is computationally very demanding, a

property that limits its usability in practical cases. To overcome this limitation we

present a modified functional form, very similar to the original VV10 definition, but

such that it can be integrated in an efficient way. This new functional, called rVV10,

is shown to perform as accurate as the original VV10 implementation in all the test

cases, giving consistently better results than any other non-local functional in plane

waves.

The final development we present, in Chap. 6, is the incorporation of non-local

xc density functionals in Density Functional Perturbation Theory [25]. The ability to
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correctly predict vibrational properties in soft matter is an essential feature for the

understanding of many biological mechanisms, from DNA conformational changes

and melting [26, 27] to odor sensing in humans[28]. DFPT is an efficient theoretical

framework that allows to calculate phonon frequencies, in the linear response regime,

without the need of supercells as instead required by the ”frozen phonon” approach.

We present an extension to DFPT for non-local functional, implemented in Quantum

ESPRESSO [29] both for vdW-DF type functionals and the newly proposed rVV10,

and we test this new tool in the first fully ab-initio prediction of soft-phonons in

graphite.

To conclude, in App. A we present a computational tool developed in SISSA

in the last years, Moka (MOdeling pacKage for Atomistic simulations). This Java

based, open source, modeler has been build primarily to target very specific needs in

atomistic simulations: high-throughput and massively parallel task handling. With

a Graphical User Interface (GUI) and a Python scripting engine, this software is

an ideal tool and execution daemon to interact both with a single laptop and a

High Performance Computing (HPC) cluster in an effortless way. Released as a

lab project of the Quantum ESPRESSO Foundation it’s now available to anyone

interested through the QE-Forge home page http://qe-forge.org.
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Chapter 2

Theoretical framework

In this chapter we introduce shortly all the main theoretical concepts and approxi-

mations necessary to put in context our original contributions that we’ll show in the

following chapters. Our goal is twofold: we want both to give the necessary elements

for a clear comprehension, and to explain some critical aspects that motivated our

work.

2.1 Density functional theory

Before introducing density functional theory, it’s useful to start with a very common

approximation that help us to greatly reduce the complexity of a real atomistic prob-

lem, called the Born-Oppenheimer approximation[30]. Considering the large mass

difference between protons and electrons, a useful simplification consists in treating

the two problems, nuclear and electronic, as decoupled systems. In physical terms,

this means considering the time scale for electron excitations (the inverse of their

bandwidth) much smaller than the typical one for the ions (the inverse of the phonon

frequency). With this in mind, one can describe the electronic problem considering

the ions at rest, and the total wavefunction of the system became a product of two:

one describing the ions and one the electrons1.

Now, only the (complex) electronic problem remains. This is a quantum many

1The electronic wavefunction depends on the atomic positions only as parameters of the equation.

9



body problem, where the electron-electron interactions cannot be decoupled in single

particle contributions and the exact solution is far too complicated to be solved exactly

even for the most simple cases. The conceptual breakthrough of density functional

theory lays exactly in the original definition of the electronic problem[1]: instead

of working with complicated correlated wavefunctions, Hohenberg and Kohn showed

that the ground state properties of the system can be defined in terms of the electronic

groundstate charge density minimizing the functional

E [n (r)] = F [n (r)] +

∫
Vext (r)n (r) dr (2.1)

where Vext stands for the external potential, and the electronic density is defined

such that its integral in all space equals the number of electron in the system

∫
n (r) dr = N (2.2)

Up to now the formulation is exact, but the functional F [n(r)] is not known and

the problem still cannot be solved. To overcome this limitation Kohn and Sham[2]

proposed that the charge density n of the system can be obtained solving an auxiliary

problem of non-interacting electrons, described by a set of single particle orthonormal

wavefunctions ψi (r) with energy εi. In this framework the charge density is equal to

n (r) = 2

N/2∑
n=1

|ψi (r)|2 (2.3)

In the Kohn and Sham formulation the unknown functional F [n(r)] is decomposed

in three parts, as shown here

F [n (r)] = T0 [n (r)] +
1

2

∫
n (r)n (r′)

|r− r′|
drdr′ + Exc [n (r)] (2.4)

T0 [n (r)] = −2
h̄2

2m

N/2∑
n=1

∫
ψ∗i (r)

∂2ψi
∂r2

dr (2.5)

where Exc is the exchange and correlation (xc) term, T0 is the non-interacting
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electron kinetic energy and the integral represents the Hartree term, describing the

classical electrostatic Coulomb interaction. All the many-body complexity of electron-

electron interaction is now contained in the single term Exc [n (r)] representing a

small fraction of the entire energy contribution, a condition that suggests how its

approximations will hopefully be less significant for the full problem.

The search for the ground state of a system is now stated as a minimization

problem for the functional over the charge distribution, defined by the non-interacting

electron wave functions. Similarly to the Hartree-Fock approach it’s simple to build a

set of non-linear equations, 2.6, 2.7 and 2.8, where the single particle wave functions

ψi take the name of Kohn-Sham (KS) wave functions.

HKSψi (r) =

[
− h̄2

2m

∂2

∂r2
+ VKS (r)

]
ψi (r) = εiψi (r) (2.6)

with

VKS (r) = Vext (r) + e2

∫
n (r′)

|r− r′|
dr′ + vxc (r) (2.7)

vxc (r) =
δExc [n]

dn (r)
(2.8)

The solution of this problem has to be defined self-consistently since the potential

VKS depends on the charge density itself. The ground state energy is the objective

of the minimization and is defined in Eq. 2.9, where EN represents the electrostatic

energy due to the lattice.

E({R}) = T0[n(r)] +
e2

2

∫
n (r)n (r′)

|r− r′|
drdr′ + Exc [n (r)]

−
∫
Vext (r)n (r) dr + EN({R})

(2.9)

Once the ground state energy is obtained, and hence the ground state charge

distribution defined, several important properties can be derived in a simple way.

For example, being the DFT defined as a variational problems, we can apply the

Hellmann-Feynman theorem to obtain the forces acting on each atom m with a simple
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functional derivative

Fxm = − ∂E

∂xm
= −〈ψ| ∂Ĥ

∂xm
|ψ〉 (2.10)

2.2 Exchange and correlation approximations

As we said before, all the complexity of the many-body electron-electron interaction

is now contained in the exchange and correlations Exc functional. It’s clear that the

goodness of a density functional theory calculation is directly connected to which kind

of Exc form we adopt, and in the last decades several candidates have been proposed.

The very first class of exchange and correlations functionals dates back in 1965,

and it’s based on a very strong approximations, the so called Local Density Approximation[31,

32]. In this formulation the xc energy of a real system it’s considered to behave locally

as in an uniform (homogeneous) electron gas (HEG) having the same density. The

functional form is expressed in a simple way by

ELDA
xc [n (r)] =

∫
εhomxc (n (r))n (r) dr (2.11)

where εLDAxc is the exchange and correlation energy density per particle in an

homogeneous electron gas of density n(r). Several flavors of LDA have been proposed

in history, with the main differences based on how the εLDAxc is parametrized but he

most accurate ones are parametrization based on very accurate Quantum Monte Carlo

simulations and can be considered basically exact. From the energy functional it’s

possible to derive the potential to be used in the self-consistent KS problem, reported

here

vLDAxc (r) =
δELDA

xc [n]

δ (r)
=
∂Fxc[n]

δn

∣∣∣∣
n=n(r)

(2.12)

The LDA approximation, despite the strong simplification for the complex elec-

tronic interactions problem, was a remarkable success for many practical applications.

Clearly, LDA works best when the charge distribution can be roughly approximated
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as homogeneous in the system, and for many materials this proves to be a reasonable

condition. From metallic bulks[33] to semiconductors[4], LDA even today is used with

very good agreement to experimental values, an impressive result for such a simple

approximation.

Nevertheless, when the charge distribution is more localized, for example in strong

covalent bindings, or where the local approximation is not enough, as with dispersion

interactions, the LDA in not enough to describe the system and more sophisticated

approximations are needed. To overcome this shortcomings, a new class of functionals

have been proposed during the years, designed to account as well for local variations

of the charge, a semi-local approach called Generalized Gradient Approximation. In

this case the exchange and correlations functional depends not only on the charge,

but on the gradient of the charge as well, and the functionals are generally defined in

this form

EGGA
xc [n (r) ,∇n (r)] =

∫
εGGAxc (n (r) , |∇n (r)|)n (r) dr (2.13)

where the corresponding potential can be expressed as

vGGAxc (r) =
δEGGA

xc [n]

δn (r)
=

(
∂Fxc[n]

∂n
−

3∑
α=1

∂α

(
∂Fxc[n]

∂ (∂αn)

))∣∣∣∣∣
n=n(r)

(2.14)

Here Fxc (n, |∇n|) = εGGAxc (n (r) , |∇n (r)|) and ∂α stands for the αth component of

the gradient. This new approximation solves part of the critical issues found with LDA

and has been successfully applied on surfaces, molecules and covalent bonded solids.

Many different forms for εGGAxc (n (r) , |∇n (r)|) have been proposes, the most common

being the PBE[5] one, but even the GGA suffers a very fundamental problems: it’s

still a semi-local approximation that by construction does not account for long-range

interactions.
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2.2.1 Adiabatic connection formula

There is anyway another approach, exact in principle, to define the complicated ex-

change and correlation functional, derived independently by Langreth and Perdew[34],

and by Gunnarsson and Lundqvist[35] usually called Adiabatic Connection Formula.

The idea consists in defining Exc functional starting from a non interacting system

and then slowing re-introducing the interaction in an adiabatic way.

Let’s consider a fictitious systems of N electrons where Coulomb interaction be-

tween the particles vint is modulated by a parameter λ with (0 ≤ λ ≤ 1), immersed

in an external local potential vλext(r) such that nλ = n. The full hamiltonian of the

systems is then

Hλ = vλext(r) + λvint (2.15)

In the limit of λ = 0 the system is exactly a Kohn-Sham system of non-interacting

electrons, and the external potential became vλ=0
ext = vKS = vext + vH + vxc. We can

now study the variation of the energy with respect to λ, and thanks to the Hellmann-

Feynman theory we can define this variation as

∂E(λ)

∂λ
=

∂

∂λ
〈Ψλ|Hλ|Ψλ〉 = 〈Ψλ|vint|Ψλ〉+ 〈Ψλ|∂v

λ
ext

∂λ
|Ψλ〉 (2.16)

where Ψλ is the ground state of Hλ. Integrating this equation over λ we obtain

Eλ=1 = Eλ=0 +

∫ 1

0

dλ〈Ψλ|vint|Ψλ〉+

∫ 1

0

dλn(r)
∂

∂λ
[vext(r)− vKS(r)] (2.17)

where vKS(r) = vext+vH+vxc. With this results we can finally define the exchange

and correlation functional Exc as

Exc =

∫ 1

0

dλ
(
〈Ψλ|vint|Ψλ〉 − EH

)
(2.18)

which is customary written as[35]
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Exc =
1

2

∫
d3r

n(r)nxc(r, r
′)

|r− r′|
(2.19)

where nxc(r, r
′) in known as the exchange-correlation hole[35]. This xc-hole rep-

resents the conditional probability of the charge, or, better stated, the probability of

finding an electron at r′ given that there is one at r. In the physical sense represents

the ”hole” that an electrons ”digs” for itself in the surrounding density. Another

expression, using the pair density function n2(r, r′) for the exchange-correlation hole

is usually given as nxc(r, r
′) = n2(r, r′)/n(r)− n(r′).

This formulation, exact in principle, is the starting point for a powerful and ac-

curate approach called Random Phase Approximation, an method known to account

for long-range correlation effects, but so computationally expensive that its practical

use even today is limited to very small systems. This will be discussed in detail in

Chap. 3.

2.3 Phonons with Density Functional Perturba-

tion Theory

In Chap.6 we’ll show our work on phonons calculations with non-local functionals,

and in this section we want to review very shortly the theoretical concepts needed to

understand the derivation we’ll present.

There are several approaches on how to calculate vibrations frequencies, ”frozen

phonon” techniques, molecular dynamics time averages over trajectories or Density

Functional Perturbation Theory (DFPT)[25]. While the first two do not need any

theoretical extension on basic DFT, they’re both very expensive and require either

big supercells or long molecular dynamics simulations.

DFPT[25] is an elegant theoretical development that allows us to calculate linear

response properties of system to an external perturbation, starting from the ground

state solution of the Kohn-Sham problem. In DFPT the responses to perturbations

of different wavelengths are decoupled, allowing us to calculate phonon frequencies
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at any wave vectors q without the use of supercells and with a computational cost

independent of the phonon wavelength.

Before introducing DFPT, we review some very basic equations that define the

phonon problem. For a system near its equilibrium geometry, the harmonic approxi-

mation applies and the nuclear Hamiltonian reduces to the Hamiltonian of a system

of independent harmonic oscillators, called normal modes. Normal mode frequencies,

ω, and displacement patterns, Uα for the αth Cartesian component of the Ith atom,

are determined by the secular equation

∑
J,β

(
Cαβ
IJ −MIω

2δIJδαβ

)
Uβ = 0 (2.20)

where Cαβ
IJ is the interatomic force constant (IFC) matrix element defined by

Cαβ
IJ =

∂2E(R)

∂Rα
I ∂R

β
J

= −∂F
α
I

∂Rβ
J

(2.21)

Remembering that in DFT we can apply Hellmann-Feynman theorem, forces can

be calculated with a simple derivation of the functional energy Eq.2.9 with respect

to the atomic positions

−FI = +
∂E

∂RI

=

∫
n(r)

∂Vext(r)

∂RI

dr +

∫
δE({R})
δn(r)

∂n(r)

∂RI

dr +
∂EN({R})

∂RI

(2.22)

where the second term vanishes being in a minimum of the energy with respect

to the charge distribution. We can now derive an explicit expression for IFC, differ-

entiating the forces with respect to the nuclear coordinate

∂2E({R})
∂Rα

I ∂Rβ
J

=

∫
∂n(r)

∂Rβ
J

∂Vext(r)

∂Rα
I

dr + δIJ

∫
n(r)

∂2Vext(r)

∂Rα
I ∂Rβ

J

+
∂2EN({R})
∂Rα

I ∂Rβ
J

(2.23)

To obtain the IFC not only the ground state charge is needed, but also it’s linear

variation with respect to the nuclei displacement. This can be obtained with a linear
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variation of the KS equation for the density in (Eq.2.3)

∂n(r)

∂RI

= 4Re

N/2∑
n=1

ψ∗n(r)
∂ψn(r)

∂RI

(2.24)

and the derivatives of the KS wave functions are similarly obtained with a linear

variation of Eq.2.6, resulting in

(HKS − εn)
∂ψn(r)

∂RI

= −
(
∂VKS(r)

∂RI

− ∂εn
∂RI

)
ψn(r) (2.25)

with

∂VKS(r)

∂RI

=
∂Vext(r)

∂RI

+ e2

∫
1

|r− r′|
∂n(r′)

∂RI

dr +

∫
δvxc(r)

δn(r′)

∂n(r′)

∂RI

dr (2.26)

The set of equations Eq.2.24, Eq.2.25 and Eq.2.26 defines another self consistent

problem, very similar to the KS one, that is the essence of the DFPT technique.

From the ground state energy a linear variation of the charge is calculated for a

specific mode (defined by a set of nuclear translations), the linear variations of the

wavefunctions can be calculated and the potential updated. This process can iterate

until preferred precision is achieved, and the IFC matrix finally calculated.
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Chapter 3

Non-local correlation

In this chapter we present some detailed theoretical advancement to handle dispersion

interaction in density functional theory. We’ll introduce rapidly the random phase

approximation and we’ll review other common methods to account for dispersion in-

teractions in DFT. In the last section we’ll introduce a fundamental breakthrough

achieved in very recent years with the formulation of non-local functionals. We’ll

discuss some important details of these new functionals, presenting an efficient inter-

polation scheme recently proposed. This chapter will be of fundamental importance

to understand all the original contribution we’ll discuss later, all of them based on

non-local functional theory.

3.1 The failure of local functionals

To better understand why local and semilocal functionals fail to predict the correct

long-range behavior, it’s worthwhile to introduce a very simple picture of vdW inter-

actions between two separated neutral spherical atoms A and B.

In this scheme the atoms separation R >> d is much larger than the atomic size

d, a limit that ensure that the corresponding wavefunctions are not overlapping1, and

atoms are described by dipolar polarizabilities equals to αA and αB respectively.

1As we’ll see later, this limit will be an important reference for the non-local functionals previously
mentioned
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The zero-point motion of the electrons in these atoms can generate an instan-

taneous dipole in one of them, the first one A, with intensity dA. This dipole will

induce a charge reconfiguration in the second atom, generating a new dipole of the

order dB = αBdAR
−3. The non-retarded Coulomb interaction energy between this

two dipoles has a nonzero average value that can be estimated[36] as

E = −CAB
6 R−6, CAB

6 = Kh̄ω0αAαB (3.1)

where C6, called the ”Hamaker constant”, is a commonly studies quantity to asses

the importance of dispersion interactions (the dimensionless constant K is not speci-

fiable from this qualitative argument). Even with this very simple electromagnetic

model we recollect an important feature of the vdW interaction: the long range de-

pendence goes as R−6. Qualitatively this can be understood as arising from two

actions of the dipolar field, proportional to R−3, suggesting that this approach needs

a second-order perturbations theory, as we’ll see later.

Now let’s focus on how previously explained DFT functionals can cope with this

kind of interactions. The electrostatic field of the two separated neutral atoms decays

exponentially with distance, and this is the reason why this term in DFT cannot

account for the long-range vdW interactions.

For the exchange and correlation term, things can be better analyzed using the

correlation hole density previously introduces (the correlation part of Eq.2.19). The

induced dipole on the second atom in the picture above is represented by a very distant

part of the correlations hole density nc(r
′|r), it’s in fact a conditional probability:

only if an electron is found at a specific r, thus generating the dipole dA, the charge

distortion on the second atom B at r′ it’s possible.

Since both the LDA and GGA are mean-field approaches, where the charge is

considered always in a local (or semi-local) approximations, the only long-range ”tail”

they can predict it’s when a distortion of the density of each atom is present, a

distortion described in both theories to decay exponentially with separation, falling

in the same problem of the electrostatic term discussed before. In conclusion LDA
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and GGA are focused on the environment of a single point in space, an approximation

that holds for short range correlations but fails for the long-range ones, as in the case

of the vdW interactions.

3.2 The limitations of RPA

As briefly discusses before, there is an ab-initio way to handle the complex Exc term,

that we’ll briefly introduce here. Thanks to the adiabatic connection formula of

Eq.2.18, all the many-body electron problem can be represented by a single term, the

xc hole nxc(r, r
′). To obtain a usable definition for the energy, we need an approxi-

mation for the hole, or similarly for the pair-density function.

A robust relation that (partially) solves this issue is found in the fluctuation-

dissipation theorem[37], that applied in conjunction to the adiabatic connection for-

mula is most commonly addressed as Adiabatic-Connection Fluctuation-Dissipation

Theory [38] (ACFDT). In this section we’ll introduce very rapidly this approach,

which is much more complicated and needs several mathematical steps to be fully

justified, we point the reader to the recent literature for more insights[39, 12].

To obtain the RPA energy functions expression, we first introduce the time-

dependent density response δn(r, t) to an applied potential δv(r, t), formally given

by the first-order Taylor expansion

δn(r, t) =

∫
d3r χ(r, r′; t− t′)δv(r, t) (3.2)

In the last equation χ(r, r′; t − t′) = δn(r, t)/δv(r, t) is the many-body linear

response kernel of the system, a conceptually simple quantity that can be directly

compared with experiments since the response δn(r, t) is in fact a measurable prop-

erty. Now, the relation between the Fourier component of the linear response kernel

χ(r, r′;ω) and the pair-density n2(r, r′) is given by the fluctuation-dissipation theo-

rem, here reported
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∮
C

dω

2πi
χ(r, r′;ω) = n2(r, r′)− n(r)n(r′) + δ3(r− r′)n(r) (3.3)

With the aid of the ACFDT, the equation defining the exchange and correlation

functional Exc obtained with Eq.2.18 can be expressed as 2

Exc = −
∫ 1

0

dλ

∫ ∞
0

du

2π
Tr [χλ(iu)V ]− Eself (3.4)

where V (r, r′) = 1/|r − r′|, Eself is the Coulomb self-energy of all the electrons

and where χλ is the response function with coupling strength λ. The Random Phase

Approximation assumes that the λ dependence of χλ only comes from the electrostatic

response of the system without any xc contribution to the response. This lets us

express the RPA exchange and correlation functional as

Exc =

∫ ∞
0

du

2π
Tr [ln(1− χ̃(iu)V )]− Eself (3.5)

RPA has demonstrated to account correctly for long range interactions, and cou-

pled to a short range local approximation such as LDA, as proposed by Kurth and

Perdew[40], is one of the most sophisticated ab-initio method today available in DFT

to handle this kind of interactions. Unfortunately, although correct in principle, the

computational effort is so demanding that its practical use is severely limited.

The only applications even nowadays consist in non-self consistent addition to the

ground state energy, obtained either by LDA or Exact Exchange (in this case the

approach usually takes the name of EXX/RPA) applied only to very small systems.

3.3 Other approaches

Due to the complexity of the fully ab-initio treatment, in the last years several ap-

proximations and techniques have been proposed to handle non-local correlation and

long-range interactions, mostly requiring some empiricism to be added to the calcu-

2As said, several technical details are omitted in the derivation, but the conceptual argumentation
it’s sufficient to grasp the fundamental logic of the theory.
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Corrections R−6 Empiricism Cost

Parametrized DF V = VKS No Medium Low
1ePOT V = VKS + V1e No High Low
DFT-D E = EKS + Epair Yes Medium Low
vdW-DF V = VKS + Vnl Yes Low Medium

Table 3.1: Few characteristics (see text) of the different DFT methods to handle
non-local correlation and dispersion interactions discusses in the chapter.

lations.

The most common techniques used today can be categorized in four classes, de-

pending on how they are integrated in DFT framework, as reported in Tab.3.3. In

this section we’ll review very briefly the first three of them, and in the next one we’ll

focus on vdW-DF, a recent development that will be the starting point for the works

presented in this thesis.

Parametrized density functionals

Modern highly parametrized density functionals, such as hybrid functionals[14] or

meta-GGA[41] functionals, are a class of xc-functionals where several contributions

such as LDA, GGA or Hartree-Fock (HF) are summed together with specific relative

weights. The idea is that by tuning the different repulsive and attractive contributions

in these functionals parts we can ”emulate” the medium-range non-local dispersion

interactions without any new term other than the usual ones already present in density

functional calculations.

There exists a very dense ”forest” of these parametrized density functionals in

literature, and we’ll show just some selected examples to let the reader have the

feeling for this methodology. Defining the HF exchange energy functional as

EHF
x =

1

2

∑
i,j

∫ ∫
ψ∗i (r1)ψ∗j (r1)

1

r12

ψi(r2)ψj(r2)dr1dr2 (3.6)

hybrid functionals are defined as a mixture of LDA and GGA with some Hartree-
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Fock contribution. A very famous example is the Becke, 3-parameter, Lee-Yang-Parr

[42] (B3LYP) functionals, defined as

EB3LYP
xc = ELDA

xc + a0(EHF
x − ELDA

x ) + ax(E
GGA
x − ELDA

x ) + ac(E
GGA
c − ELDA

c ) (3.7)

where a0, ax and ac have been defined by fitting the results on a set of at-

omization energies, ionization potentials, proton affinities, and total atomic ener-

gies. Other important examples are the X3LYP[43], HSE[44] and the original Becke

implementation[14]. Another subclass of hybrid functionals, the meta-hybrid GGA,

where the εxc depends also on the non-interacting kinetic energy density τS(r) =

1/2
∑

ik |∇φik(r)|2 includes the Tao-Perdew-Staroverov-Scuseria[45] (TPSSh), the mPW1PW

parameterizations proposed by Adamo and Barone [46] and all the M06[47] suite of

functionals.

These functionals can give good results in several systems, such as DNA bases[48],

rare-gas complexes [49], water complexes [49] and many others [50]. Nevertheless

these approaches fails in a non-systematic way in many other examples where dis-

persion interaction is important, giving inaccurate asymptotic behavior for large in-

ternuclear separations. The highly specific correct results are thus arising from the

fortuitous correct balance of HF and GGA/LDA contributions for the specific case,

and not from the ability to correctly describe the non-local interactions.

DFT-D: DFT plus dispersion

The idea behind DFT-D is to treat the complex many-body dispersion interactions

problem out of the DFT framework using a semi-classical approximation. This

method is not defined as a density functional acting on the electronic charge of the

system, but a correction to the total energy calculated using the nuclei’s relative

distances and some semi-empirical parameters.

For DFT-D as well several different approximations have been proposed, but the

general formalism can be summarized in the following equation
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EDFT−D
disp = −

∑
AB

∑
n=6,8,10...

sn
CAB
n

Rn
AB

fdamp(RAB) (3.8)

where the sum is over all atom pairs in the system, CAB denotes the averaged

dispersion coefficient of order n (n = 6, 8, 10, . . .) for atom pair AB and RAB

is their internuclear distance and finally sn is the global GGA scaling factor. For

n >= 6 the asymptotic behavior is correctly described by this approximation, and

in order to avoid double counting and singularities for small R a damping function

fdamp is used, where the shape and cut-off radius is a matter of active research[51, 52].

In these methods both the Cn and the damping function parameters are calculated

with quantum chemistry methods on selected atomic configurations and used in DFT

calculations depending on the chemical environment of the selected atoms.

Some of the most widely used implementations are the DFT-D3 method proposed

by Gimme[16] (where the DFT-D3 is the most recent refinement of DFT-D2), the TS-

vdW from Tkatchenko and Scheffler[53] and the dipole-exchange hole model (XDM)

of Becke and Johnson[54]. These modern implementations have been successfully

tested in very different environments, from biological molecules to π-stacked systems,

showing very consistent results and good transferability.

A very recent improvement based on this approach, that partially solves the em-

piricity added to the calculation, has been proposed by Silvestrelli [55] where all the

parameters necessary to define Eq. 3.8 are calculated starting from the Maximally

Localized Wannier function (MLWF) formalism. In his approach WF are calculated

starting from the ground state energy of a semi-local DFT calculation and then used

to derive necessary cutoffs and C6 parameters in an ab-initio approach.

In all this methods non-local correlation is correctly embedded in the calculations,

by construction of the Cn parameters, but added to the DFT scheme in a non-self

consistent way that does not suite well the theory in general. In fact, the ground state

charge distribution obtained with this methods does not contain any information on

the non-local correlation present in the system 3, a problems that strongly limits its

3As some authors noted the non-local correlation is supposed to affect very little the ground state
charge distribution, but any DFT extension based on energy derivatives in DFT-D calculation could
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use to extract more sophisticated electronic properties of the system studied.

One-Electron Corrections

Inspired by the very good performances of the DFT-D methods another approach

proposed in literature is the 1ePOT, consisting in the definition of single-atom po-

tentials to be added to the full VKS. In this way the dispersion interaction behavior

will be included in the total charge in a self consistent way, in principle a much more

flexible and extensible approach than DFT-D.

Dispersion-corrected atom-centered potentials (DCACP) proposed first by von

Lilienfeld [56], and implemented as atomic pseudo potential for core electrons, has

been demonstrated to perform rather well for noble gas dimers, argon-benzene com-

plexes and several other systems. Some new implementations[57, 58] based on DCACP

showed good results on the entire set S22 but no reported case for bigger intermolec-

ular system, or more complex bindings, are reported.

Even if this method achieved some success, and it’s more coherent with the DFT

framework, it’s still a semi empirical approximation that asymptotically do not show

the correct R−6 behavior (graphite sheets are underbonded by 20% in DCACP).

Moreover the definition of parameters necessary to define a single atomic potential

require such long and tedious human effort that only potentials of very few elements

are now available.

3.4 Non-local functionals

The last approach we present in this (short) theoretical review of dispersion interac-

tion it’s a breakthrough, presented in its final derivation by Dion and colleagues in

2004 [19], that will be the focus of the works we’ll present in the following chapters.

To better understand the physical meaning of this approximation, we have to go back

to the simple example presented in Cap.3.1, where we introduced in a qualitative way

not be defined as a simple functional derivative.
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the long-range interaction energy among separated neutral atoms4.

It’s in fact possible to derive a precise quantitative formula for the interaction

energy previously discussed, the second order dispersion interactions energy E(2)

E(2) = −3h̄

π

∫ ∞
0

du

∫
A

d3r

∫
B

d3r′
α(r, iu)α(r′, iu)

|r− r′|6
(3.9)

where A and B are the integration domains centered on the separated (non-

overlapping) interacting neutral atoms, or fragments in a more general picture. To

obtain this simple form we had to approximate the polarizability response tensor

αij(r, r
′, iu) (approximated to α in the simple qualitative example shown before) to

a local and isotropic form by assuming αij(r, r
′, iu) = δijα(r, iu)δ(r− r′). This local

polarizability density is connected to an experimentally measurable quantity, the

average dynamic polarizability, as

ᾱ(iu) =

∫
d3r α(r, iu) (3.10)

and, since the f -sum rule requires that limu→∞ ᾱ(iu) = Ne2/mu2 with N the total

number of electrons in the system, α(r, iu) is usually expressed as

α(r, iu) =
e2

m

n(r)

ω2
0(r) + u2

(3.11)

Substituting this last expression in Eq.3.9 we obtain a very useful equation for

the dispersion interaction energy

E(2) = −3h̄e4

2m2

∫
A

d3r

∫
B

d3r′
n(r)n(r′)

ω0(r)ω0(r′)[ω0(r) + ω0(r′)] |r− r′|6
(3.12)

In this equation ω0 plays a fundamental role since the peculiar physics of polar-

izability for a specific implementation is all contained in this term. In fact different

local polarizability models, and different ω0, are the sole difference between the long-

range behavior for all the non-local functionals we’ll present soon. Also, when the

interacting fragments are far apart, the term |r− r′|6 can be carried out of the inte-

4For the following derivations we refer the reader to the elegant treatment proposed by Vydrov
and Van Voorhis in Ref [59].
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gral, giving the correct long range shape R−6, and defining the remaining part of the

equation as the expression for the CAB
6 coefficient in Eq.3.1.

In this context Dion and colleagues proposed a new kind of non-local functionals

Enl
c , defined as an additional correction to the local or semilocal approximation for

correlation in Exc. The complete definition for Ec = E
LDA/GGA
c + Enl

c is then

Enl
c =

h̄

2

∫
d3r

∫
d3r′n(r)Φ(r, r′)n(r′) (3.13)

The E
LDA/GGA
c part, chosen to give exact results in the uniform electron gas,

handles the short range correlations while Enl
c is the fully non-local functional that

describes the long-range dispersion, designed to vanish in the uniform electron density

(such that double counting is avoided with the short range term). In Eq.3.13 the

kernel Φ(r, r′), symmetric for r and r′, is defined such that

lim
R→∞

: Φ = − 3 e4

2m2ω0(r)ω0(r′)[ω0(r) + ω0(r′)] |r− r′|6
(3.14)

where R = |r− r′|. This reduce the entire non-local functional Enl
c to Eq.3.12,

which is the correct way to describe long-range correlation interactions. Enl
c is a

universal functional that does not depend on any empirical value, contrary to the

other approaches previously introduced in Sec.3.3.

The magnitude of this non-local correlation term is typically small; in most cases

it’s only on the order of 1–2% of the overall exchange-correlation energy. Nevertheless,

its contribution is often vital and can have significant effects. For example, many

simple molecular dimers do not bind without it [60]. And even in crystals, as we’ll

see later in Chap.4 this small effect can result in completely different groundstate

crystal structures [61].

Finally the contribution of the non-local correlation term to the Kohn-Sham effec-

tive potential [62] is obtained by taking the functional derivative of the corresponding

energy with respect to the density for a general point

vnlc (r) =

∫
n(r′)

∂ (nΦ)

∂n
dr′ −

∑
α

∇α

{
∇αn

|∇n|

∫
n(r′)

∂ (nΦ)

∂|∇n|
dr′
}
. (3.15)
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Notice that this expression reduces to the well known one appropriate for a local or

semilocal functional [63] if the explicit r − r′ dependence in the non-local kernel is

reduced to a delta function, thus transforming the non-local functional into a local

one

√
nn′

2
Φ(n, n′, |∇n|, |∇n′|, |r− r′|) −→ F LDA/GGA

c (
√
nn′,

√
|∇n||∇n′|) δ(r− r′) .

(3.16)

Polarizatin models

Since from the original implementation of Dion and colleagues in 2004 several new

non-local functionals with the form shown in Eq.3.13 have been proposed, the most

commons of them being vdW-DF2, a revision of the original vdW-DF by the same

authors, vdW-DF-09 a revision from Vydrov and Van Vhooris of the original vdW-DF

and VV09, with its final evolution VV10, both proposed by Vydrov and Van Vhooris.

In this implementations we find very different kernels Φ, and we refer the reader

to the original papers for all the details, but in the long range R → ∞ they all

can be expressed by the equations Eq.3.14. Using this similarity we can compare the

different functionals by the definition of ω0 they use, in fact the only possible difference

in the long-range approximation; in Tab.3.4 we report the specific expression of ω0

for implementations cited before 5.

In the table are reported, aside to the ω0 implementations, the Mean Absolute

Relative Errors on two different benchmarks sets. The C6 is a set of 34 C6 coefficient

of closed-shell species, where the value calculated with Eq.3.14 is compared to quan-

tum chemistry values[64] while the S22[65] is a very famous database of molecular

configurations where the inter-molecular binding energy calculated self-consistently

with each functional is compared to CCSD results[65].

While the differences resulting for the set S22 are more complicated to under-

stand (the interplay of the short-range DFT and the non-local functional it’s hard

5The original implementation of vdW-DF is different from the one exposes here, but as discussed
in Ref. [59], it can easily be reformulated in this form.
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Definition of ω0 MARE C6 MARE S22

vdW-DF
9h̄

8πm

[
kF
(
1 + µs2

) 4π

3e2
εLDAc

]
; µ = 0.09434 18.5% 25.96%

vdW-DF2
9h̄

8πm

[
kF
(
1 + µs2

) 4π

3e2
εLDAc

]
; µ = 0.20963 60.9% 14.72%

VV10

√
ω2
p

3
+ C

h̄2

m2

∣∣∣∣∇nn
∣∣∣∣4 ; C = 0.0089 10.7% 4.42%

Table 3.2: Definition of ω0 for several non-local density functional definitions discusses
in the chapter.

to disentangle), the differences present in the C6 calculations are only due to the ω0

chosen in each implementation and this gives some qualitative insight on the physics

the different functionals can describe (at least in the long-range regime).

It’s clear that the VV10 implementation give much better results, and not sur-

prisingly the ω0 used in this expression correctly describe also very simple cases,

such as ”jellyum” spheres, correctly predicting the uniform electron gas results to

be ω0 = ωp/
√

3, where ωp is the plasma frequency (proposed by Nesbet[66]). VV10

functional is today the best performing non-local functional implementation and our

work to extend this approach will be shown in the following chapters.

3.4.1 Interpolation scheme

The general equation defining non-local functionals proposed by Dion et. al. un-

fortunately requires a very demanding calculation, a six dimensional integral in real

space, something that can severely compromise its practical use, especially for DFT

plane-wave approaches.

To overcome this difficulty Román-Pérez and Soler (RPS) [67] introduced for the

original vdW-DF functional a very efficient integration scheme based on the fact that

vdW-DF kernel Φ depends on density and density gradient in the two spatial points

only through an auxiliary function q(r) = q(n(r), |∇n(r)|) whose specific form in

vdW-DF is not relevant here.
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Exploiting this feature in their approach the kernel is computed on a two dimen-

sional grid of fixed q values and any needed value in the integral is then obtained by

interpolation:

Φ(q, q′, |r− r′|) ≈
∑
ij

Pi(q) Φ(qi, qj, |r− r′|) Pj(q′) , (3.17)

where the interpolating functions Pi(q) are defined such that Pi(qj) = δij on a suf-

ficiently dense grid of q’s. The double spatial integrals appearing in the vdW-DF

functional can then be computed as a series of convolutions that are most efficiently

evaluated in reciprocal space, as for instance in

Enl
c =

1

2

∫∫
nn′ Φ(q, q′, |r− r′|) drdr′

=
Ω

2

∑
ij

∑
G

θ∗i (G) Φ(qi, qj, |G|) θj(G)

=
Ω

2

∑
j

∑
G

u∗j(G) θj(G) ,

(3.18)

where Ω is the crystal cell volume, Φ(qi, qj, |G|) and θi(G) are the Fourier transform

of the real space valued functions Φ(qi, qj, |r|) and θi(r) = n(r)Pi(q(n(r), |∇n(r)|)),

respectively, and the auxiliary function uj(G) =
∑

i θi(G)Φ(qi, qj, |G|) is further in-

troduced. With this expression it’s simple to derive the the non-local potential,

defined as vnl = ∂(Enl
c /∂n)/∆Ω and reported in the following equation

vnl =
∑
α

[
uα
∂Θα

∂n

]∑
e

∂e

[∑
α

uα

(
∂Θα

∂|∇n|
1

|∇n|

)
∂en

]
(3.19)

The non-local correlation energy can be calculated as a sum of convolutions most

efficiently evaluated in reciprocal space. A grid of radial Φ (qi, qj, R) including a few

tens of q’s in each direction is typically needed for an accurate evaluation, making

the time spent in this operation larger than the one needed for standard LDA/GGA

potential evaluation but marginal in comparison with the time spent in the rest of

the calculation even for small systems.

This approach, first developed for the vdW-DF functional, can be in principle ap-
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plied to any non-local functional whose kernel depends on density and density gradient

in the two spatial points only through an auxiliary function q(r) = q(n(r), |∇n(r)|).

For each implementations the q functions and the kernel table will have different for-

mulations, but the RPS interpolation scheme will hold. As we’ll see VV10 cannot

be formulated in this way, and in Chap.5 we present a revision of the functional to

overcome this limitation, the rVV10.

3.4.2 Limitations

Even though the non-local functional approach demonstrated to be a powerful and

accurate approximation of the complex dispersion interactions problem, it has some

important limitations and shortcoming that still need to be addressed in future re-

search.

First of all the Enl is build to account for two-body contributions, a leap forward

to the usual local and semilocal approaches, but it still neglects the non additive

many-body contributions that in some cases can be quite significant[68].

Then, in the large distance limit the non-local energy is expressed by the second

order energy Eq.3.12. This approximation is known to have some important limita-

tions for extended systems[69], such as metallic fragments or interacting surfaces and

more investigations are needed in this cases. Later in this thesis we report calcula-

tions in graphite, showing good results for the inter-layer binding energies, but more

complicated case can probably be underestimated by this approach.

To conclude, each non-local functional implementations needs a short-range de-

scription for the correlations, given by LDA or GGA. As explained before there are

tens of different ”flavors” of these functionals and the interplay between the short-

range part and the non-local one is still a matter of active research. While the long-

range limit of these functionals is known, in the overlapping regime double counting

could produce sensible errors in the energy and reduce the predictive power of the

total functional.
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Chapter 4

Stress in non-local functionals

In this chapter we extend the non-local functionals theory and derive the correspond-

ing stress tensor in a fashion similar to LDA and GGA, which allows for a straightfor-

ward implementation in any electronic structure code. We then apply our methodol-

ogy on vdW-DF implementations to investigate the structural evolution of amino acid

crystals of glycine and L-alanine under pressure up to 10 GPa—with and without van

der Waals interactions—and find that for an accurate description of intermolecular

interactions and phase transitions in these systems, the inclusion of van der Waals

interactions is crucial.

4.1 Stress implementations

Stress is an essential tool in structure prediction and characterization, giving the

ability to study, in an efficient way, the behavior of materials under pressure, predict

structural phases and possible phase transitions.

The general formulation of the stress tensor σαβ is defined as the derivative of the

energy over the strain tensor εαβ

σαβ = − 1

Ω

∂E

∂εαβ
(4.1)

As explained in the previous chapters, in DFT the energy is defined as a functional
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of the electronic charge, and to calculate the stress we need to take derivatives of the

energy functional for each component of Eq.2.1. In recent years stress implementa-

tions for all the DFT energy functionals have been developed, and in Appendix B

we report derivation for LDA and GGA. The new non-local functional is defined as

an additional contribution to the Exc energy functional and thus an extension of the

stress derivation is necessary.

To calculate the stress contribution we apply a simple procedure proposed by

Nielsen and Martin[70], consisting in a set of expansions for the charge, wavefunctions

and their derivatives, and a rigid rescaling. Calculations are straightforward but a

little involved, and we give all the details in Appendix B. The stress derivation for the

general non-local functional form is reported in Eq.B.15, but a more useful equation

is the derivation for the efficient Román-Pérez and Soler (RPS) energy formulations

of Eq.3.18, where the stress results to be

σnlc αβ =
1

Ω

[
Enl
c −

∫
Ω

n vnlc dr

]
δαβ

−
∑
j

∫
uj(r) n

∂Pj
∂q

∂q

∂|∇n|
∇αn∇βn

|∇n|
dr

− 1

2

∑
ij

∑
G

GαGβ

|G|
∂Φ (qi, qj, |G|)

∂|G|
θ∗i (G) θj(G) .

(4.2)

The above formula has been implemented in the PWscf code of the Quantum

ESPRESSO distribution [71] that efficiently solves Kohn-Sham self-consistent equa-

tions in a plane-wave pseudo-potential formalism. Numerical tests in simple benzene

and methane crystals confirmed that the stress tensor computed in this way agrees

perfectly (well within 0.01 GPa) with the numerical derivative, the residual discrep-

ancy to be attributed to discretization error in the latter.
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4.2 Background on glycine and L-alanine

Structural evolution of amino acid crystals under pressure constitutes a suitable case

to test the adequacy of vdW-DF variants using our implementation of stress calcula-

tion. In particular, Glycine, the smallest amino acid, crystallizes in various molecular

orientations, and is studied extensively in the literature, yet questions about its high

pressure phases are still open. Alanine, the smallest naturally occurring chiral amino

acid, constitutes a good test case where there is recent ongoing debate about a phase

transition driven by pressure.

Glycine and alanine are among the simplest amino acids, yet their structural

evolution under pressure displays a rich phenomenology that has been studied ex-

tensively in the literature and constitute an ideal test set for vdW-aware functionals

[72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87].

Glycine, H3N+CH2COO− in its zwitterionic form, has three polymorphs under

ambient conditions: α (Z ′=4), β (Z ′=2), and γ (Z ′=3) [72, 73, 74], the most stable

one being the γ phase. [75] The evaporation of aqueous solutions yields the α phase.

Crystallization of glycine from water/ethanol solutions, instead, results in the β phase.

At ambient conditions, the order of stability is γ > α > β [75, 76]. The γ phase

transforms to the α phase upon heating, at around 170 ◦C, depending on the thermal

history of the sample [75, 77]. High humidity drives a phase transition from α to

γ phase [75, 78]. The β phase, metastable in dry air, rapidly transforms to α or γ

phases in the presence of moisture at room temperature [75, 79].

Under pressure, the α phase is found to be stable up to 23 GPa, the β phase is

shown to undergo a phase transition to the δ phase at 0.76 GPa. Two independent

experimental studies showed that the γ phase transforms to a new glycine phase

called ε, starting from 1.9 or 2.74 GPa. The experimental studies by Boldyreva and

co-workers [80] resulted in a proposed structure for the ε phase based on the data

obtained at 7.85 GPa. An alternative model for this phase is given by the work of

Dawson and co-workers [81] at 4.3 GPa. In our study, we model the ε phase based

on the latter structure. All known phases of glycine crystals are monoclinic, with the
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exception of the trigonal γ form.

L-alanine is the smallest naturally occurring chiral amino acid and has been stud-

ied extensively. It is found to crystallize in zwitterion form CH3CH(NH3+)COO−, in

an orthorhombic structure with space group P212121 with more than one molecule in

its asymmetric unit cell (Z ′=4) [82, 83, 84]. Previous high-pressure, Raman-scattering

experiments on L-alanine have indicated a structural phase transformation at about

2.3 GPa [85] and further synchrotron XRD experiments confirmed this transition

and identified the new phase as tetragonal in symmetry [86]. Moreover, the same

XRD experiments also suggested another transition, to a monoclinic phase at about

9 GPa. Both of these findings were questioned by Tumanov and co-workers as their

Raman, X-ray, and optical microscopy did not confirm the previously suggested phase

transitions. Instead, with increase in pressure, cell parameters a and c are found to

accidentally equate at around 1.5–2 GPa, without changing the cell symmetry. A

new phase, proposed to belong to a solvate of L-alanine, was observed at around 3.5

GPa[87].

4.3 Computational Details

Ab initio calculations are performed in the framework of density functional theory

as implemented in the Quantum ESPRESSO distribution [71]. The exchange-

correlation functionals used in our study include two popular GGA functionals and

the fully non-local vdW-DF correlation functional combined with two flavors of GGA

exchange proposed in the literature. The two GGA functionals considered are the

standard Perdew-Burke-Ernzerhof (PBE) [88] functional and the Zhang-Yang revised-

PBE (revPBE) [89] functional. In the work introducing vdW-DF [90] the exchange

part of the revPBE functional was selected to be combined with the fully non-local

correlation term, based on the observation that more standard GGAs predict sub-

stantial binding in rare gas dimers from exchange alone, a feature absent for exact

Hartree-Fock exchange and described correctly by revPBE exchange. A further re-

finement of revPBE exchange, named c09x, was subsequently developed by Cooper
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[23] to be used in conjunction with the non-local vdW-DF correlation. The result-

ing vdW-DF-c09x [23] functional was found to be superior to the original vdW-DF

(revPBE) functional on the benchmark S22 [65] database of weakly bound molecules.

Both the original vdW-DF (revPBE) [90] functional and its refinement vdW-DF-c09x

[23] are considered here.

The accuracy of the q-points grid involved in the Román-Pérez and Soler interpo-

lation [67] of the vdW-DF kernel has been carefully checked and the standard 20-point

grid was confirmed to be adequate. Results obtained with a denser 30-point grid did

not change significantly: less than 0.1 mRy the energy per molecule, less than 10−3

eV/Åforces on atoms and less than 10−3 GPa the stress tensor.

Ultrasoft pseudopotentials from the PSLibrary project [91] are used without fur-

ther modification. A kinetic energy cutoff of 80 Ry and a charge density cutoff of 560

Ry are used to achieve pressure convergence within less than 0.1 GPa. Monkhorst-

Pack [92] k-point grids of 4×2×4 / 3×3×3 / 3×3×3 / 2×3×3 / 3×3×3 are used

for α, β, γ, δ, and ε phases of glycine, respectively. For alanine, an 8× 8× 4, grid is

found sufficient. With this setting, a tight convergence of less than 0.1 mRy in total

energy is achieved. The cell parameters and atomic positions are fully optimized.

Vibrational zero-point motion and finite temperature effects are non included.

4.4 Results at Ambient Pressure

Glycine

Our optimized lattice parameters a, b, c, and β calculated at ambient pressure for

the three monoclinic stable phases α, β, and γ are given in Table 4.1. Also listed are

experimental values determined for these structures.

Calculated volumes are found to be sensitive to the exchange-correlation function-

als used. On average, PBE is found to overestimate the volumes by +10.7%, revPBE

by +30.4%, vdW-DF (with revPBE exchange) by +9.1%, and vdW-DF-c09x is found

to underestimate the volume by 4.3%. The difference between the strongly overes-

timated volume obtained with revPBE and the improved volume estimate obtained
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XC a (Å) b (Å) c (Å) β (◦) mol/cell vol/mol (Å3)

α-glycine
PBE 5.203 12.717 5.476 109.6 4 85.32
revPBE 5.359 14.000 5.525 109.4 4 97.76
vdW-DF (revPBE) 5.244 12.289 5.570 111.1 4 83.74
vdW-DF-c09x 5.034 11.567 5.449 112.9 4 73.06
Exp. Ref.[93] 5.083 11.820 5.460 111.9 4 76.0
β-glycine
PBE 5.167 6.768 5.411 112.0 2 87.75
revPBE 5.414 8.231 5.546 120.0 2 106.98
vdW-DF (revPBE) 5.216 6.410 5.503 112.5 2 85.03
vdW-DF-c09x 5.017 5.990 5.399 113.9 2 74.20
Exp. Ref.[75] 5.094 6.286 5.383 113.2 2 79.2
γ-glycine
PBE 7.252 7.251 5.520 90 3 83.81
revPBE 7.868 7.854 5.496 90∗ 3 97.94
vdW-DF (revPBE) 7.236 7.235 5.590 90 3 84.46
vdW-DF-c09x 6.892 6.892 5.459 90 3 74.84
Exp. Ref.[94] 6.975 6.975 5.437 90 3 76.9

Table 4.1: Optimized cell parameters at zero pressure for glycine phases that are
stable under ambient conditions.

with vdW-DF reveals the beneficial effect of including long-range correlations. We can

see that the vdW-aware c09x functional consistently underestimates the experimental

volume outside the typical GGA behavior and gives the closest results to experiment.

Concerning the individual lattice parameters and monoclinic angle, we can see that

revPBE in particular provides a poor description of the crystal shape, but inclusion

of non-local correlations in vdW-DF significantly improve the situation. From our

results, it is evident that crystal densities and shapes are strongly dependent on the

choice of XC functional.

Next, we explore the performance of these functionals in reproducing the struc-

ture of the single molecules in the crystal. In Table 4.2, we compare the bond lengths

and torsion angle for α glycine at ambient pressure. In terms of bond lengths, all

functionals describe the molecule reasonably well, within a 2% range from experimen-

tal values for bonds not involving hydrogen atoms, and 6% for bonds with hydrogen

atoms. We can notice that in general atom-atom distances are overestimated within
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bonds PBE revPBE vdW-DF vdW-DF- Exp. Ref. [93]
(revPBE) c09x

C1–O1 1.26 1.27 1.27 1.27 1.25
C1–O2 1.27 1.27 1.27 1.27 1.25
C2–N 1.49 1.50 1.51 1.48 1.48
C1–C2 1.53 1.55 1.55 1.53 1.52
C2–H1 1.10 1.10 1.09 1.10 1.05
C2–H2 1.09 1.09 1.09 1.10 1.04
N–H3 1.05 1.04 1.04 1.06 1.03
N–H4 1.07 1.07 1.06 1.07 1.09
N–H5 1.04 1.04 1.03 1.05 1.09
torsion
N-C2-C1-O1 30.2 37.6 21.5 20.1 18.6

Table 4.2: Optimized bond lengths (Å) and torsion angle (◦) for α glycine at zero
pressure. The numbering of the atoms is given in the graphical representation at the
bottom.
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PBE and that this tendency is enhanced by revPBE, consistent with the observed

volume behavior. Including long-range correlations in vdW-DF does not improve the

description of bond lengths, at variance with the observed effect on volume. The

effect of the XC functional becomes more apparent in the torsion angle where only

vdW-including functionals show a very good agreement with the experiment. We

observe the same general trend also for the other glycine phases, which are stable at

ambient pressure.

Alanine

At ambient pressure, alanine molecules, bearing a net electric dipole, are aligned in

chains along the c axis, packed in the ab plane so as to minimize electrostatic energy.

In addition, a network of H-bonds exists, which are rigid along chains and rather

flexible in the orthogonal plane. On this basis we can expect vdW interactions to be

particularly important for the description of the lateral chain packing in the ab plane.

We report the optimized a, b, and c lattice parameters at ambient pressure for

L-alanine in Table 4.3, together with the experimentally determined values[86, 87].

Similar to the case of glycine, we see that the calculated volume is sensitive to the

choice of XC functional. While GGA functionals overestimate the volume, PBE

by 8.1% and revPBE by 19%, the vdW-aware ones are able to describe the system

with higher precision, vdW-DF overestimating the cell volume by 6% while vdW-

DF-c09x underestimating it by 5%. The apparently better results for the crystal

volume obtained with GGA functionals with respect to the glycine case is somewhat

misleading, as cell shape is very badly described by these functionals. In fact, both

GGA functionals strongly overestimate the a lattice parameter while underestimating

b (and for revPBE also c), confirming the importance of the inclusion of dispersion

forces for the aforementioned lateral chain packing. Indeed, the two vdW-aware

functionals provide a more balanced, though not perfect, description of the crystal

shape.

As in the case of glycine, all functionals are able to describe with reasonable

accuracy the structure of the single molecule, as we can see in Table 4.4, where we
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XC a (Å) b (Å) c (Å) volume (Å3)
PBE 6.831 11.615 5.871 465.91
revPBE 7.241 11.939 5.525 512.64
vdW-DF (revPBE) 6.119 12.637 5.910 456.99
vdW-DF-c09x 5.886 12.055 5.781 410.17
Exp. Ref.[86] 6.102 12.339 5.780 425.13
Exp. Ref.[87] 6.049 12.345 5.780 431.6

Table 4.3: Optimized cell parameters at zero pressure for the L-alanine phase stable
under ambient conditions.

bonds PBE revPBE vdW-DF c09x Exp. Ref. [84]
C1–O1 1.26 1.26 1.26 1.26 1.24
C1–O2 1.28 1.28 1.28 1.28 1.26
C1–C2 1.54 1.55 1.56 1.53 1.53
C2–N 1.49 1.51 1.52 1.48 1.49
C2–C3 1.53 1.53 1.54 1.52 1.52
N–H1 1.04 1.04 1.04 1.05 1.03
N–H2 1.05 1.04 1.04 1.05 1.03
N–H3 1.06 1.05 1.05 1.07 1.05
C2–H4 1.10 1.10 1.10 1.10 1.09
C3–H5 1.09 1.10 1.10 1.10 1.08
C3–H6 1.09 1.09 1.10 1.10 1.08
C3–H7 1.10 1.10 1.10 1.10 1.08
torsion
N–C2–C1–O1 17.0 19.5 20.0 17.2 18.7

Table 4.4: Optimized bond lengths (Å) and torsion angle (◦) for L-alanine at zero
pressure. The numbering of the atoms is given in the graphical representation at the
bottom.

C1
C2

C3

O1

O2

H1

H2

H3

H4

H5

H6

H7

N

41



report the characteristic bond lengths for a single alanine molecule. All bonds are

correctly described within a 2% range from experimental values, including C–H and

N–H ones, and also the torsion angle does not vary significantly between the different

XC functionals used and agrees well with experiment.

4.5 Results at High Pressure

Glycine

Addressing the relative stability of glycine polymorphs is difficult due to the very small

energy differences between the phases (less than 1 kcal/mol). Calculated differences

are also sensitive to the exchange-correlation functionals used. In Fig. 4-1 we report

the enthalpy per molecule as a function of pressure, referenced with respect to the α

phase, for all XC functionals employed.

At zero pressure, vdW-DF is the only functional that predicts the γ > α > β

stability order correctly, while vdW-DF-c09x also shows very similar enthalpy for the

γ and α phases. Since the energy differences are extremely small, we can regard these

two functionals as performing equally well at zero pressure. For both functionals, the

β phase is well separated from the α and γ phases as expected for a metastable state,

however this is not observed for the PBE functional. We see that revPBE displays a

highly erratic stability order both at zero pressure and at higher pressures.

The sharp increase in enthalpy for the β phase at 2.0 GPa with the revPBE

functional is due to the reorganization of the hydrogen-bond network taking place

from the 1.0 GPa configuration to the 3.0 GPa one. At 1.0 GPa, the two molecular

layers in the unit cell are stacked on top of each other, so that linear hydrogen-bonds

between molecules of the two layers are formed, normal to the layer plane. At 3.0

GPa, the layer stacking changes such that a molecule of the top layer sits in the void

between two molecules of the lower layer, forming a trigonal hydrogen-bond network.

The 2.0 GPa configuration is the transition point between these two, resulting in

higher enthalpy. The on-top stacking at 1.0 GPa is only observed with the revPBE

functional. Due to this and other anomalies in its enthalpy plot, we deduce that the
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Figure 4-1: (color online) Enthalpy per molecule referenced with respect to the α
phase as a function of pressure for all known phases of glycine up to 10 GPa, for
all XC functionals considered. Calculations are performed with target pressure –0.5
GPa, 0 GPa, and up to 10 GPa in increments of 1 GPa. Additional calculations were
performed for high-pressure phases at around ambient pressure for better convergence.

43



revPBE functional is not reliable and will not be discussed further.

In agreement with the experimental observations, the α phase is stable up to

10 GPa for PBE, vdW-DF, vdW-DF-c09x, and after 1.1 GPa also for revPBE. The

phase transition from β to δ occurs experimentally at 0.76 GPa. The δ phase is cal-

culated to be thermodynamically more stable than the β phase after around 4.0 GPa,

1.5 GPa, and 0.7 GPa for PBE, vdW-DF, and vdW-DF-c09x, respectively. Consider-

ing the precision of our calculations, the estimates from vdW-DF and vdW-DF-c09x

are equally satisfactory, while PBE overestimates the transition point.

The phase transition of the γ polymorph is experimentally more complicated,

as single crystals undergo a phase transition to a polycrystalline phase already at

1.9 GPa, but the identification of the ε phase could only be obtained at 4.3 GPa. Our

calculations predict that the ε phase becomes thermodynamically more stable than

the γ one at around 4.0 GPa, 1.8 GPa, and 1.2 GPa for PBE, vdW-DF, and vdW-DF-

c09x, respectively. As in the case of the β → δ transition, we can say that vdW-DF

and vdW-DF-c09x perform equally well in predicting the single crystal transition of

the γ form, while PBE overestimates the transition pressure. The stability order

remains the same for all XC functionals at high pressures: α > ε > δ > β > γ.

Our calculations show that energetics and structural properties are sensitive to

the choice of XC functionals in the case of glycine crystals at ambient and higher

pressures. Although for a more definite discussion of the relative stability of the

different polymorphs inclusion of vibrational zero-point motion and finite temperature

effects would be desirable, exchange-correlation functionals including van der Waals

interactions result in better estimates for the stability order and crystal density than

the functionals missing this contribution. For the stability order at ambient pressure

and transition pressures, both vdW-aware functionals perform equally well and better

than PBE and revPBE, suggesting that using vdW-aware XC functionals can greatly

improve the energetics and structural properties of molecular crystals obtained by ab

initio methods.
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Figure 4-2: (color online) Cell volume as a function of pressure for L-alanine for all
the XC functional considered. Experimental data from Refs.[86, 87] are also shown.

Alanine

As a final case, we address the ability of the new vdW-aware functionals to correctly

describe the equation of state of L-alanine and to shed light on the ongoing controversy

about a debated pressure-driven phase transition [85, 86, 87]. In Fig. 4-2, we report

the cell volume as a function of pressure for the four functionals considered between

0 to 10 GPa, a range where three structural phase transitions have been reported.

The two available experimental volume sets [86, 87] agree at low pressure but

significantly differ at higher pressure. At low pressure revPBE fails to describe cor-

rectly the crystal, grossly overestimating the volume, while at higher pressure, where

long-range correlations likely play a less important role, the functional approaches

experiments. As for the non-local functionals, vdW-DF-c09x underestimates the ex-

perimental volume at all pressures, while vdW-DF overestimates it at low pressure

and falls midway within experiment uncertainty at higher pressures. PBE appears to

give reasonably good results for the volume, close to vdW-DF ones at all pressures.
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XC B0 B′0
L-alanine
PBE 11.2 7.32
revPBE 7.4 7.04
vdW-DF (revPBE) 17.8 4.32
vdW-DF-c09x 16.4 5.25
Exp. Ref.[86] 31.5±1.4 4.4±0.4
Exp. Ref.[87] 15.1±1.2 5.1±0.9

Table 4.5: L-alanine bulk modulus B0 (GPa) and its pressure derivative B′0. Experi-
mental values from Ref. [87] were extracted by fitting experimental data.
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Figure 4-3: (color online) Crystal cell parameters a (red lines and circles), b (blue
lines and triangles), and c (green lines and squares) of L-alanine as a function of
pressure. Lines connect the calculated points. Experimental data from Ref.[86] and
Ref.[87] are reported with full and open symbols, respectively.
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A least-square fit of the data with the Birch-Murnaghan equation of state gives

the equilibrium bulk modulus and its pressure derivative for each functional, reported

in Table 4.5. As already evident from Fig. 4-2, compressibility from vdW-aware

functionals agrees very well with the value that can be deduced from the experimental

data in Ref. [87], while agreement is less good with Ref. [86]. In any case, both GGA

functionals severely overestimate the compressibility of the system.

As already noted when discussing ambient pressure results, the small difference

between PBE and vdW-DF volumes in L-alanine is misleading. In Fig. 4-3 we report

the evolution of the a, b, and c cell parameters as a function of pressure, compared

with experimental values. As could be expected, the c axis corresponds to the stiffer

direction in the crystal and all functionals give a very reasonable description of its

pressure dependence. It can be seen instead that PBE and revPBE values for the

a and b lattice parameters are completely wrong at low pressure and approach the

experimental values only at higher pressure, where weak van der Walls interactions

become less important. The only functionals able to correctly describe the evolution

of the cell geometry in the whole pressure range are the vdW-aware ones.

Experimental data from Ref. [86], reported with full symbols, show the signa-

ture of the experimentally observed transition, from orthorhombic to tetragonal, at

2.3 GPa where a and c become equal. Experimental data from Ref. [87], reported with

open symbols, indicate instead an accidental crossing between these two quantities

that interchange at higher pressure.

Our calculations with vdW-aware functionals support this interpretation, with the

original vdW-DF giving the best results.

4.6 Remarks

Our calculations show that consideration of vdW-aware XC functionals can greatly

improve the description of the energetics and structural properties of molecular crys-

tals from first principles. In the case of glycine, functionals including van der Waals

interactions result in better estimates for the stability order of the different poly-
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morphs and crystal density than the functionals missing this contribution. Both

flavors of vdW-aware functionals perform equally well and significantly better than

PBE and revPBE.

In the case of L-alanine only vdW-aware functionals deliver individual cell param-

eters that evolve correctly with pressure, while GGA results are qualitatively wrong.

The equation of state agrees reasonably well with some recent experiment, less so

with another one. The bulk modulus is much improved compared with GGA results.

In conclusion, while our results confirm that vdW-DF functionals allow a signifi-

cant step forward in the first-principle description of soft matter, they also show that

significant room for improvement still remains.
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Chapter 5

Revised VV10

In this chapter we introduce a simple revision of the VV10 non-local density functional

by Vydrov and Van Voorhis [24]. Unlike the original functional our modification

allows non-local correlation energy and its derivatives to be efficiently evaluated in

a plane wave framework along the lines pioneered by Román-Pérez and Soler (RPS)

[95]. Our revised functional maintains the outstanding precision of the original VV10

in non covalently bonded complexes and performs well in representative covalent,

ionic and metallic solids.

5.1 VV10 limitations

As we previously discusses, the VV10 implementation by Vydrov and Van Voorhis

showed to be a remarkably accurate in calculations of C6 coefficients and on the set S22

intermolecular binding energies, composed of small biological interacting molecules.

Based on previous works by the same authors [96, 97], VV10 functional is defined

by the very simple analytic form for the non-local kernel in Eq. 3.13

ΦV V 10(r, r′) = − 3e4

2m2

1

gg′(g + g′)
(5.1)

where g = ω0(r)R2 + k(r), and similarly g′ = ω0(r′)R2 + k(r′), with R = |r − r′|.

In these expressions ω0 =

√
ω2
g +

ω2
p

3
, where ω2

p = 4πne2/m is the plasma frequency
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and ω2
g = C(h̄2/m2)

∣∣∇n
n

∣∣4 is the so-called local band gap with C=0.0093 as discussed

in Ref. [24]. The term k = 3b(ωp/k
2
s) = 3πb

(
n
9π

) 1
6 , where ks is the Thomas-Fermi

screening wavevector, controls the short range damping of the R−6 divergence in the

kernel and depends on an empirically determined parameter b. We refer the reader

to the original work [24] for further details.

Unfortunately the VV10 kernel, Eq. 5.1, depends separately on densities and den-

sity gradients in r and r′ and a direct extension of RPS procedure to perform 4-

dimensional interpolation would still be very computationally demanding.

5.2 rVV10: a simple revision

To address this problem we analyze in some details the analytic behavior of the VV10

kernel. It is useful to introduce the auxiliary function z(r) = ω0(r)
k(r)

R2 + 1 such that

g(r) = k(r)z(r) and the original VV10 kernel can be rewitten as:

ΦV V 10(r, r′) = − 3e4

2m2

1

k
3
2k′

3
2

1

zz′
(√

k
k′
z +

√
k′

k
z′
) (5.2)

where we can identify three ingredients: k
3
2 (r) and k′

3
2 (r′), that enter as simple

multiplicative factors to the densities in Eq. 3.13, z(r) and z(r′), that depend on the

ratio of ω0 and k but not separatly on the two, and the ratio
√
k/k′ that depends

on the density on both grid points, r and r′. This last term is the one that prevents

VV10 kernel to be put in a form suitable to be treated by the RPS procedure.

We implemented the VV10 functional in the PWSCF code of the Quantum ESPRESSO

distribution [71], performing explicitly the calculation in real space and we focused

our attention on the behavior of the ratio
√
k/k′. We run our tests on several molec-

ular configurations taken from the S22 set of non-covalently bonded complexes [65].

In Fig.5-1 we analyze
√
k/k′ obtained for the water dimer configuration, very similar

results were obtained in the analysis of the other test cases.

In the upper panel of Fig. 5-1 we show the values of
√
k/k′ as a function of the

distance between the two points R = |r − r′|. Only points whose charge density
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√
√

Figure 5-1:
√
k/k′ ratio analysis in the water dimer configuration included in the S22

set, similar results are obtained in other cases we analyzed. (top)
√
k/k′ values as

a function of the R distance, showing a very narrow dispersion around 1. (bottom)√
k/k′ values as a function of the percentage of interacting charge (w.r.t. the max

charge in the system). The red curve show the maximum value if the ration, while
the blue curve the minimum.

exceeds 10 % of the maximum value in the system are included in the plot. From

this analysis we can see that
√
k/k′ takes values in a very narrow range centered

around 1. The maximum deviation from unit decreases with decreasing distance and

collapses of course to one for r = r′. For clarity only a small part of the entire R

dependence is shown but the range of values is basically stable beyond R = 1 Å.

The range of possible values mildly depends on the charge cutoff used in the

calculation. In the lower panel of Fig. 5-1 we report the maximum and minimum

value of the
√
k/k′ ratio as a function of the minimum charge density included in the

calculation, expressed in percentage of the maximum charge density in the system.

We see immediately that only for points involving very small charges the ratio can

deviate significatly from one. Combining the information from the two panels we

can conclude that
√
k/k′ can differ from unit only when involving interacting charge

densities are far apart from each other and such that at least one is very small. But

even in this situation the deviation of the ratio from unit contributes very little to

the integral since the kernel is multiplied by the product of the two charge densities.
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Moreover for large R all the z factors in the denominator in Eq. 5.2 tend to be large.

With this in mind, it is natural to introduce an approximation where the ratio√
k/k′ is dropped in Eq. 5.2 and we propose a revised VV10 kernel (rVV10) that

reads

ΦrV V 10 = − 3e4

2m2

1

(qR2 + 1) (q′R2 + 1) (qR2 + q′R2 + 2)
(5.3)

where we have defined q and q′ as q(r) = ω0(n(r), |∇n (r) |)/k (n (r)), and similarly

for r′, and we have removed from the kernel definition the factors 1/k
3
2 and 1/k′

3
2

that will be directly multiplied to the corresponding densities.

This new form allows us to apply the RPS interpolation scheme in reciprocal space

in the evaluation of the integral that reads

Enl
c =

h̄

2
Ω
∑
ij

∑
G

θ̃∗i (G) Φ̃rV V 10 (qi, qj, |G|) θ̃j (G) (5.4)

where Φ̃rV V 10 (qi, qj, |G|) are the Fourier transforms of the rVV10 kernel evaluated

on a bidimensional grid of q values and θ̃i (G) are the Fourier transforms of θi (r) =

n(r)Pi(q(r))/k
3
2 (r), where Pi(q) are the same interpolating polinomials introduced in

Ref. [67].

We implemented the new functional in the Quantum ESPRESSO distribution [71]

including the self-consistent evaluation of the corresponding correlation potential [98]

as well as the evaluation of forces and stress tensor [99].

We have found that a logarithmic mesh of 20 q points is enough to correctly inter-

polate the kernel ΦrV V 10, and we used the saturation scheme proposed in RPS [67].

With this setup the evaluation of the exchange and correlation energy and potential

becomes 400 times more expensive than for a standard semilocal functional. Account-

ing for up to 30-50% of the total calculation time in a few electron system it is totally

negligible for larger system with many electrons per cell and/or many k-points.

Following the original VV10 functional definition, the full XC energy is defined as

ErV V 10
xc = ErPW86

x +ELDA
c +ErV V 10

c−nl where ErPW86
x stands for the refitted Perdew-Wang

exchange functional [?] and ELDA
c is the Local density approximation for correlation
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according to the Perdew and Wang [7] parametrization.

5.3 Benchmarks on set S22 and selected materials

As a first benchmark we compare 1 our revised functional and the original VV10 on

the S22 molecular set obtaining very similar binding energies, with differences not

exceeding 0.85 kcal/mole in the worst case.

As mentioned earlier the VV10 functional contains an empirical parameter b that

has been determined by minimizing the mean square deviation of the calculated

molecular binding energies of the full S22 set from their quantum chemistry [100]

reference value. By following the same strategy we reoptimized the b parameter

for the present functional obtainig a value b = 6.3 not far from the original value

of b = 5.9, giving confidence that the proposed modification does not significantly

impact the physical behavior of the functional.

In Tab.5.1 we report the binding energies (in kcal/mol) for each element of the set

S22 comparing the results obtained for rVV10 functional both with the optimized b

value and the original one taken from the original VV10 implementation, the original

VV10 results [24], the vdW-DF2 and results obtained with the PBE-D3 [16] approach.

Molecular structures are from Ref. [65] and quantum chemistry reference binding

energies are from Ref. [100] for all systems except adeninethymine complexes, for

which the values from Ref. [101] are used. In Fig.5-2 we report a commonly used

visualization to compare S22 results build with the data in Tab.5.1.

From inspection of these results one can see that the main effect of the functional

modification in rVV10 is to slightly but systematically increase the molecular binding

energy in S22 complexes and that the optimization of b effectively compensate for this

effect and indeed, for all configurations, rVV10 gives almost identical results to the

original VV10 ones, with a maximal difference of 0.16 kcal/mol. Notice that this

1We used ultrasoft pseudopotentials input data from the PSLibrary project [91], generated with
the density functionals suggested in [24]. A kinetic energy cutoff of 80 Ry and a charge density
cutoff of 560 Ry are used to achieve good energy convergence and we used a periodic cubic cell of
20Å to ensure the molecules were far apart from their periodic replicas.
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Complex rVV10 rVV10 VV10 Ref vdW-DF2 PBE-D3
(b = 6.3) (b = 5.9)

Hydrogen-bonded
NH3 dimer 3.44 3.51 3.43 3.15 2.97 3.59
H2O dimer 5.56 5.63 5.50 5.00 4.78 5.82
Formic acid dimer 20.07 20.29 19.96 18.75 16.77 19.83
Formamide dimer 16.71 16.91 16.71 16.06 14.43 16.56
Uracil dimer pl. 20.99 21.23 21.10 20.64 18.69 20.83
2-pyridone-
2-aminopyridine 18.14 18.40 18.05 16.94 15.37 18.12
Adeninethymine WC 17.35 17.63 17.42 16.74 14.74 17.35

Dispersion-bound
CH4 dimer 0.50 0.55 0.50 0.53 0.68 0.82
C2H4 dimer 1.43 1.54 1.42 1.48 1.32 1.62
BenzeneCH4 1.46 1.59 1.45 1.45 1.29 1.60
Benzene dimer p. 2.74 3.12 2.71 2.66 2.15 2.49
Pyrazine dimer 4.09 4.49 4.02 4.26 3.30 3.61
Uracil dimer s. 9.70 10.28 9.70 9.78 8.76 9.15
Indolebenzene 4.55 5.11 4.54 4.52 3.44 3.77
Adeninethymine 11.44 12.27 11.42 11.66 9.58 10.00

Mixed complexes
C2H4C2H2 1.69 1.75 1.68 1.50 1.53 1.90
BenzeneH2O 3.35 3.48 3.31 3.28 2.80 3.94
BenzeneNH3 2.31 2.44 2.28 2.32 1.99 2.67
BenzeneHCN 4.33 4.49 4.30 4.54 3.55 4.52
Benzene dimer (t-s.) 2.59 2.79 2.54 2.72 2.06 2.69
Indolebenzene 5.34 5.63 5.27 5.63 4.20 5.56
Phenol dimer 7.15 7.41 6.99 7.10 5.97 6.94

MARE (Hydrogen-b.) 6.30 % 7.78 % 6.03 % - 8.78 % 7.25%
MARE (Dispersion-b.) 2.57 % 7.83 % 2.57 % - 18.00 % 16.68%
MARE (Mixed comp.) 4.40 % 5.09 % 4.93 % - 16.89 % 9.56%
MARE 4.34 % 6.94 % 4.42 % - 14.72 % 11.41%

Table 5.1: Binding energies (in kcal/mol) for each element of the set S22 used in
the preparation of Fig. 2 of our manuscript. Molecular structures are from Ref. [65]
and quantum chemistry reference binding energies are from Ref. [100] for all systems
except adeninethymine complexes, for which the values from Ref. [101] are used.
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Figure 5-2: Binding energies differences (in kcal/mol) for the S22 test set. Molecular
structures are from [65] and reference binding energies are from [100] for all systems
except adeninethymine complexes, for which the values from [101] are used. VV10
and vdW-DF2 results are reproduced from [24], PBE-D3 results from [16]. rVV10
results are obtained using the rVV10 implementation in Quantum ESPRESSO. Pos-
itive (negative) values mean overbinding (underbinding) w.r.t. the reference values.
Numerical values for all these data are reported in Tab. 5.1.

value is an order of magnitude smaller than the maximum difference between rVV10

and the quantum chemistry benchmark (1.79 kcal/mol for 2-pyridone2-aminopyridine

complex) as well as between VV10 and the benchmark (1.89 kcal/mol, for the same

complex). This confirms the soundness of our approximation and gives confidence

on its robustness. Both rVV10 and the original VV10 perform much better than

vdW-DF2, the best performing functional of his family on the S22 set [102].

To further compare the ability of VV10 and rVV10 to describe non-local interac-

tion we report in Fig.5.3, a comparison of their MARE in each sub-group of the S22

set with the recently published results obtained for several other techniques such as

EXX-cRPA, MP2, PBE-D3 and TS-vdW (all these values are reproduced from Ref.

[103]). From this comparison the high accuracy of the VV10 and rVV10 results, as

well as their overall similarity is evident.

Another natural system where to test non-local correlation functionals are rare

gas dimer binding energies. In Fig. 5-4 we report Argon dimer binding energy as

a function of interatomic separation for the rVV10 functional, the original VV10
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Figure 5-3: A comparison of the original VV10 and rVV10 MARE in each sub-group
of the S22 set with the recently published results obtained for several other techniques
such as EXX-cRPA, MP2, PBE-D3 and TS-vdW (all these values are reproduced from
Ref. [103]).
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Figure 5-4: Binding energy curves for Ar dimer obtained with different DFT func-
tionals and compared with the experimental curve from [105]. For completeness the
EXX/RPA calculation from [104] is also reported.

and compare them with reference calculations with other functionals and techniques

[104]. Again the agreement between the two functionals and the experiment [105] is

impressive and reassuring.

A further important requirement for a new functional is its ability to maintain

the high quality of results that can be obtained with GGA in solids and hard matter.

To this purpose we selected some simple materials representative of different binding

behaviors, namely bulk Cu, Al, Si, C (in the diamond structure) and NaCl, and

tested the performance of rVV10 functional for them. In table Tab.5.2 we report the

calculated equilibrium lattice parameter and the bulk modulus for these materials
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Complex vdW-DF2 rVV10 PBE Ref

Lattice constants (Å)
Cu 3.76 3.68 3.65 3.60
Al 4.08 4.02 4.04 4.02
Si 5.52 5.48 5.46 5.42
C (diamond) 3.61 3.58 3.57 3.54
NaCl 5.69 5.59 5.70 5.57

Bulk moduli (GPa)
Cu 97.0 124.6 139 142.0
Al 60.1 79.0 78.6 79.4
Si 79.6 86.5 88.3 99.2
C (diamond) 395.0 424.4 429 443.0
NaCl 26.0 27.9 22.8 26.6

Table 5.2: Lattice constants in Å and bulk moduli in GPa of different solids calculated
with rVV10 and vdW-DF2 compared with experimental values.

and compare them with experiment. For completeness also results obtained with

vdW-DF2 (from [106]) and PBE are included.

In all systems the quality of rVV10 results is very good, comparable if not bet-

ter than PBE, and our revised functional outperforms vdW-DF2 that has a general

tendency to overestimate lattice parameters and to underestimate bulk moduli.

As a final test case we considered Graphite, whose interlayer separation and bind-

ing energy are notoriously difficult to describe within standard density functional

theory, even using the non-local correlation functional now available (vdW-DF, vdW-

DF2 and similar). Our results from a complete optimization of the cell with rVV10

functional not only gives both the in-plane lattice parameter and the interlayer sep-

aration in perfect agreement with the experiment (a = 2.46 Å, c = 3.36 Å for both)

but also gives an inter-layer binding energy of 39 meV/atom in good agreement with

a recent experimental determination of 31±2 meV/atom [107].
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5.4 Remarks

The simple and sound modification of the VV10 non-local correlation functional we

proposed allows an efficient implementation in a plane wave framework. We demon-

strate that our revised VV10 functional maintains the excellent performance of the

original functional in predicting interaction energies and inter monomer separation in

non covalently bonded complexes, without deteriorating the accurate description of

the structural properties of representative covalent, ionic and metallic solids.
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Chapter 6

Phonons with non-local functionals

In this section we extend the formulation of density functional perturbation theory[25]

(DFPT) to the vdW non-local functionals, allowing us to calculate phonon frequencies

at arbitrary wave vectors q avoiding the use of supercells and with a workload that

is essentially independent of the phonon wavelength. Numerical results for vdW-

DF [19], vdW-DF2 [20] and rVV10 will be shown for graphite, compared with other

theoretical approaches and experimental data where available.

6.1 DFPT extensions to non-local functionals

The ability to calculate vibrational frequencies in soft materials, where van der Waals

(vdW) interaction is of critical importance, has been demonstrated to be a key issue in

the understanding of several features both in solid states and biological matter. From

DNA conformation changes and melting [26, 27], to the recently proposed phonon

assisted tunneling mechanics at the base of human odor recognition[28], vibrational

properties due to the non-local correlation are also a fundamental characteristic in

solid state materials, such as rare-gas crystals[108, 109] and graphite[110], supported

molecules [111] and many others.

There are in principle several techniques to calculate phonons in DFT, some of

them requiring nothing more than the application of several DFT ground state calcu-

lations in different configurations. Within the frozen-phonons technique, for example,
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the frequencies of selected phonon modes can be calculated from energy differences

produced by infinitesimal, periodic, displacements of selected atoms from their orig-

inal equilibrium position in the lattice. Using this technique, to obtain phonons

frequencies at a generic q vector a supercell is required, having q as a reciprocal-

lattice vector and whose linear dimensions to be at least of the order of 2π/q, a

demanding computational requirement that limits the applicability of this method in

many practical cases.

The use of DFPT to calculate vibrational properties is instead a very efficient ap-

proach, where the responses to perturbations of different wavelengths are decoupled,

as shown in Eq.2.24, Eq.2.25 and Eq.2.26, allowing us to calculate phonon frequencies

at arbitrary wave vectors q avoiding the use of supercells and with a workload that

is essentially independent of the phonon wavelength,

Used in phonon calculations, the DFPT perturbation is defined by the displace-

ment of an ion L in direction α from its equilibrium position, thus inducing a pertur-

bation ∆λVSCF in the electronic KS potential VSCF , leading to a variation ∆λn(r) of

the charge density (λ ≡ Lα). As we’ve seen the non-local potential vnl of Eq.3.15 is

a corrective addition to the exchange and correlation potential vxc, and its variation

∆λvnl must be added to ∆λvxc when solving the DFPT equations [25].

In this section we’ll start from the energy and potential formulation proposed by

Román-Pérez and Soler in Eq.3.18 and Eq.3.19, an interpolation we’ve seen can be

used for vdW-DF and all it’s derivatives (vdW-DF2, vdW-DF-c09x, vdW-DF2-c09x

and others) and now also to rVV10.

Depending on the specific implementation of the non-local functions, in the RPS

scheme both the kernel Φ(qi, qj, |r− r′|) and the Θ(r) functions will have a different

form but to keep the following derivation more general, from now on we’ll consider

Θ(r) to have the generic expression Θ(r) = c n(r)kP , with P (q) the interpolating

functions. It’s easy to check that in any of the aforementioned non-local functionals

Θ(r) can be expressed by a suitable choice of k and c in the general form we intro-

duced, and as we’ll see in the next section there is no need to define any specific

kernel Φ(qi, qj, |r− r′|).
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The linear response of the non-local potentials ∆λvnl implies several tedious but

straightforward algebraic manipulations, but it can be expressed in a concise form

as the sum of the linear response of each term present in Eq.3.19, namely ∆λvnl =

∆λb+ ∆λh. The results for these variations is reported in the following equations

∆λb =
∑
α

[
∆λuα

∂Θα

∂n

]
+
∑
α

[
uα
∂2Θα

∂n2
∆λn

]
+

∑
α

[
uα

(
∂

∂|∇n|

(
∂Θα
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)
1

|∇n|

)
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] (6.1)
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where

∆λuα =
∑
β

[
∂Θβ

∂n
∆n+

(
∂Θα

∂|∇n|
1

|∇n|

)
∇n · ∇∆λn

]
Φαβ (6.3)

Several derivatives of the Θ(r) functions are needed in Eq.6.1 and 6.2, and consid-

ering their q dependence, the complete equations are both involved and very different

for each functional definition. We report in Appendix C all the detailed calculation

both for vdW-DF type and rVV10 functionals, while in Eq.6.4 we report only the

general derivation, common to all the implementations
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Being the non-local potential defined as an addition to the exchange and correla-

tion potential vxc the extension of DFPT to non-local functional amounts simply to

the definition and implementation of the variation ∆λvnl, to be added to ∆λvxc.

6.2 Phonons dispersion in graphite

The DFPT extension was implemented in the PHONON code of the QUANTUM

ESPRESSO[71] package, with particular attention to the efficiency of the algorithm.
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In fact it’s important to remark that, following the RPS implementation, the kernel

interpolation table Φ(qi, qj, |G|) is defined and stored in reciprocal space, while Θα(r)

functions, and all their derivatives, are defined in real space. This imply quite a

convoluted procedure where first Θα(r) and it’s derivatives are computed in real

space and stored in memory, then uα and ∆λuα are calculated in reciprocal space

and finally both ∆λb and ∆λh can be computed, where directions derivatives ∂e

have to be performed in reciprocal space, to be consistent with the potential. This

computational effort is roughly of the same order of the potential, already tested to

be a quite efficient implementation even for large systems.

We now discuss the phonon dispersion of graphite, obtained with this approach.

Graphite is known to a be very interesting benchmark for DFT techniques, hav-

ing in a simple and compact atomic configuration both strong covalent carbon-

carbon bindings between in-plane atoms and weak Van der Waals interaction be-

tween different planes. There is an extensive literature regarding phonon dispersion

in graphite, obtained both with finite differences methods[112, 113, 114, 115] and with

DFPT[116, 117]. In these works LDA approximation showed to give better results

compared with experimental data, outperforming the more sophisticated GGA. This

difference originates from the ability of LDA to correctly predict the interlayer bind-

ing energy, while GGA underestimates it by over 30% [118]. This has been subject of

discussion in previous works, and if a comparison between LDA and newly vdW-like

functionals exists for the structural results, a comparison of vibrational frequencies

between LDA and non-local functionals is still laking.

We present here phonon dispersions of graphite obtained both with LDA, and

some of the most common non-local functionals previously mentioned. For all the

calculation we used ultrasoft pseudopotentials from the PSLibrary project [91] with-

out further modification. To achieve good energy convergence we used a kinetic

energy cutoff of 80 Ry and a charge density cutoff of 560 Ry. We employ a 0.002-

Ry Marzari-Vanderbilt smearing of the occupation around the Fermi level and to

correctly integrate the crystal cell we used a Monkhorst-Pack[92] k-point grids of

24×24×12. With this setting, a tight convergence of less than 0.01 mRy in total en-
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ergy is achieved. The dynamical-matrix is calculated on a three-dimensional 6×6×4

Monkhorst-Pack grid in the reciprocal space of the phonon wave-vector q: from this,

the dynamical matrix at any q is obtained by interpolation, imposing frequencies to

obey the acoustic sum rule.

In Tab.6.1 we report the structural optimization, with parameters a and c, for all

the functionals tested. As we can see vdW-DF type functionals underestimates by

4 ∼ 6% the interlayer binding energy, while LDA overestimates it of about 2%; rVV10

functional, inspired by the original VV10 approach, give the best results compared

to experimental values. As shown further, this differences will be a key issue in the

performance of a specific functional to correctly describe phonon dispersion.

It is worthwhile to discuss briefly why we did not included GGA calculations in

this sections. As several works showed in the past years[119], GGA functionals are

able to describe accurately only the in-plane covalent carbon-carbon bonds, while

they overestimate separation among planes of more than 30%. In Fig. 6-1 we report

calculations of ground state energy for a 1×1×1 graphite cell as a function of both a

(in-plane) and c (plane separation) parameters, done in Quantum ESPRESSO with

both GGA (PBE) and vdW-DF functionals, and compared with experimental values

(dashed black lines in the figure). From this analysis it’s evident that, while in vdW-

DF the minimum is well defined both for a and c, in GGA the minimization gives

good results only for the in-plane parameter a, while the c minimum is both very far

from the experimental results and hard to define due to the weak dependence of the

energy with respect to the plane separation.

The GGA inability to recover the correct structural properties is a critical issue in

phonons calculations, especially for the soft-phonons arising along the Γ−A reciprocal

directions. A common trick used to solve this GGA shortcoming is to force the

experimental result for the planes separation, using the DFT optimal value only for

the in-plane distance. This hybrid approach is not needed anymore with non-local

functionals, where the correct planes separation emerges in a natural way, and in

LDA, where due to some compensation of errors the inter-plane distance is correctly

described as well. For this reason we decided to compare only these last two cases,
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GGA (PBE) vdW-DF

Figure 6-1: Graphite ground state energy as a function of a and c for GGA (PBE)
functional and vdW-DF non-local functions. In both pictures the colors represent
different energy values, from red (more negative) to blue (less negative), and the
experimental value of both parameters is reported with a black dashed line. Absolute
binding energies are not important for this analysis and are not reported. and

leaving the analysis of GGA results in previous works to the reader.

In Fig.6-2 we report the results obtained using the DFPT extension introduced

for rVV10, vdW-DF and vdW-DF2. In this first figure we plotted the Γ−K−M −Γ

path, a very common choice for graphite represented in Fig. 6-2. The vibrational

modes in this specific path are all due to displacements of atoms in the plane, where

the strong covalent bonds are present. In general all the functionals describe with

good accuracy the phonon dispersion along these directions, recovering almost all

the features found in the experimental data. Among the non-local functionals the

rVV10 is the best candidate for this system, while both vdW-DF and vdW-DF2 tend

to underestimate the phonon frequencies in all the spectra. This is probably due

to the small differences found in the structural characterization, resulting in a small

systematic error. This difference is more pronounced in the higher frequencies, where

the rVV10 significantly perform better than all the other approaches.

A more quantitative comparison can be drawn from the analysis of frequencies

at high symmetry points of the cell, as reported in Tab.6.1. We analyzed specific

frequencies at Γ, K and M for all the functionals, and compared them with exper-
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Figure 6-2: Phonon dispersion curves along the Γ − K − M − Γ reciprocal space
path for rVV10 (solid curve), vdW-DF (dotted curve) and vdW-DF2 (dashed curve)
obtained with the DFPT extensions introduced in this work. Red circles [120] and
blue triangles [121] show experimental results.
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LDA vdW-DF vdW-DF2 rVV10 Exp.

Structural optimization

Opt. a (Å) 2.44 2.48 2.47 2.46 2.46
Opt. c (Å) 3.32 3.59 3.52 3.36 3.35

Phonon frequencies (cm−1)
Γ ZO 893 849 864 872 868

LO/TO 1597 1527 1517 1551 1587
M LA 1346 1311 1300 1328 1290

LO 1368 1317 1324 1332 1323
TO 1428 1348 1328 1368 1390

K LO/LA 1238 1191 1186 1207 1194
TO 1326 1244 1222 1271 1265

MAE 39.86 24.57 28.29 18.29 -
MAPE (%) 3.21 1.85 2.04 1.36 -

Table 6.1: Comparison of DFT-calculations of phonon frequencies (in cm−1) at high-
symmetry points in graphite for LDA, vdW-DF, vdW-DF2 and rVV10 obtained with
DFPT. Structural properties (a and c) of graphite are also reported for reference and
comparison. Mean Absolute Error and Mean Absolute Percentage Error with respect
to experimental data is calculated on phonon frequencies, and reported at the bottom.
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imental results. Quantitative results are in agreement with the previous comments:

all the vdW -type functional underestimate vibrational frequencies in a systematic

way, while rVV10 overestimates only some of them giving consistently better results;

LDA frequencies instead are overestimated in all the points here compared. This

results are not surprising if we compare them with the structural optimization for

each functional: when the in-plane parameter a is overestimated all the vibrational

frequencies are underestimated (vdW-DF and vdW-DF2), when instead a is under-

estimated all the frequencies are overestimated (LDA). rVV10 gives a very accurate

structure definition, and the most accurate vibrational frequencies. In Tab.6.1 we

report also the Mean Absolute Error (MAE) and Mean Absolute Percentage Error

(MAPE), a very concise and clear measure on the goodness of the functionals here

analyzed: LDA performs worst than all the non-local functionals in a significant way,

while rVV10 results to be the most accurate. As we said LDA correctly describe the

graphite for a fortuitous case, while the new non-local functionals, able to account

for dispersion interaction by constructions, can reach mush better agreement with

experimental results.

A final results we present here is the analysis of soft phonons in graphite. Soft

phonons in this system are usually defined as the vibrational modes generating fre-

quencies under the 400cm−1, and of particular interest are those present along the

Γ − A reciprocal space path, generated from the out-of-plane atoms displacements.

In Fig.6-3 we reported calculations of soft phonons obtained using DFPT both with

previously mentioned non-local functionals and the LDA approach, and in Tab. 6.2

we show the analysis for the high-symmetry point A.

All the non-local functionals describe in a good way the phonon dispersion of

graphite even in this frequencies range, and while vdW-DF and vdW-DF2 underes-

timate a little the absolute value, rVV10 preforms best among the three recovering

almost all the experimental values. An interesting case is represented by LDA cal-

culations, giving unexpectedly remarkably good results with an absolute error of the

order of the rVV10 functional. This fortuitous coincidence has been speculated by

some authors [116] as an indicator of the fact that the interlayer binding mechanism
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Figure 6-3: (color online) Phonon dispersion curves along the Γ−A reciprocal space
path for rVV10 (top-left, solid green), LDA (top-right, solid blue), vdW-DF (bottom-
left, solid black) and vdW-DF2 (bottom-right, solid red) obtained with the DFPT
extensions introduced in this work. Blue triangles [121] and blue circles [122] show
experimental results.
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LDA vdW-DF vdW-DF2 rVV10 Exp.

Phonon frequencies (cm−1)

A TA/TO 30 20 22 29 35
LA/LO 83 77 82 98 89

MAE 5.50 13.50 10.00 7.50 -
MAPE (%) 10.51 28.17 22.50 13.63 -

Table 6.2: Comparison of DFT-calculations of soft phonon frequencies (in cm−1) at
high-symmetry point A in graphite for LDA, vdW-DF, vdW-DF2 and rVV10 obtained
with DFPT with Mean Absolute Error and Mean Absolute Percentage Error with
respect to experimental data reported at the bottom.

could be due not only to dispersion interaction, but also to a small π-π overlapping

between molecular orbitals. This aspects certainly needs more profound analysis,

but the most probable explanation [123] is that this good results arises just from a

peculiar cancellation of errors, not happening in other similar stacked systems.

6.3 Remarks

The DFPT theory extension we proposed allows an efficient calculations of phonon

frequencies with non-local functionals, with a small computational cost and without

the need of complex supercell calculations or long molecular dynamic runs. This

development offers an important tool in the non-local Density Functional Theory,

and a new class of studies of soft materials and biological systems are now available.

We demonstrate that our extensions is able to work on most implementations of

non-local functionals, deriving specific equations for vdW-DF and rVV10 types and

finally we tested our implementation on a simple but sophisticated material, graphite,

obtaining very good results compared to experimental values. In this work we also

noticed the curious case of the ability of LDA to describe soft phonons in graphite, a

subject that need further studies to be better understood.

70



Chapter 7

Conclusions

In this thesis we presented several extensions and developments in the field of non-

local density functional theory. Starting from the general formalism proposed by Dion

and co-workers, and thanks to the advancement in the field proposed by Román-Pérez

and Soler, non-local functionals became a powerful and widely adopted approach

to handle dispersions interaction. Proposed only very recently, this new formalism

require a number of extensions or developments in order to make its use possible not

only in ground state calculations but also in more complex applications.

The first extension we proposed in this thesis is the stress formulation for both

the general functional form of Dion and the efficient implementation of RPS. Being

defined as the derivative of the energy over the strain tensor, this extension consisted

in the functional derivative of the new non-local energy functional to be added to the

other terms composing the total energy functional. This implementation has been

encoded in the Quantum-ESPRESSO code only for the RPS formulation being the

most efficient and used implementation in plane-waves and thanks to the stress it’s

now possible to approach efficiently structural optimization and characterization of

materials under pressure.

We reported an interesting study where the stress implementation was of fun-

damental importance, where two aminoacid crystals have been investigated under

pressure. From these results it’s clear that van Der Waals force play a critical role in

the correct description of these systems, and thanks to the stress it has been possible
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to calculate the compressibility of these two materials, results in good agreement with

experimental results.

The the second extension we proposed in the thesis is the formulation of a new

non-local functional derived from the work of Vydrov and Van Voorhis. In 2010 these

authors proposed a remarkably accurate form of non-local density functional, called

VV10, with impressive results on several benchmark sets commonly used in this field,

such as the S22. This new functional unfortunately cannot be expressed in a way

suitable for the RPS interpolation scheme, and the computational cost involved in

any plane-wave DFT code makes this approximation manageable only for very small

systems.

We presented a revision of the VV10 functional, introducing a simple approxima-

tion that keeps the same functional behavior and precision, with an analytics form

that is separable as dependent on two identical functions of r and r′. The new func-

tional, rVV10, can be interpolated with the efficient RPS scheme and it has been

implemented in the Quantum-ESPRESSO package. Several examples have been re-

ported showing the accuracy of this new functional, on the same set S22 and on

graphite, compared both with highly accurate quantum chemistry results and exper-

imental ones when available.

The final development presented in the thesis is focused on Density Functional

Perturbation Theory, with its particular application in phonon calculations. Vibra-

tional properties of soft material are becoming of great interest for many applications

in the recent years, and DFPT represent the most efficient and practical theoreti-

cal framework to account for vibrational properties, with respect to the usual frozen

phonon approach or similar techniques.

An extension of DFPT has been developed to account for non-local functionals,

both in a general formalism and in the specific cases of vdW-DF -type and rVV10 -type

functionals. This new development require some new derivatives to be computed, but

the computational cost is of the order of the potential calculation, and an efficient

code has been developed for the Quantum ESPRESSO suite. As an example we

report the first fully ab-initio calculations of soft phonons in graphite with non-local
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functional, showing the great accuracy of these new approach in the prediction of the

experimental results.

All these developments represent important advancements in the non-local den-

sity functional theory and offer some fundamental tools for material discovery and

characterization. With the stress formulation, a new accurate non-local functional

and the ability to compute phonons in an efficient way the theory is now complete for

complex and sophisticated analysis and researches. Nevertheless a lot of work needs

to done, and several open questions have to be addressed in future research, from a

spin resolved extension of these functionals to a rigorous integration in their contri-

bution in the construction of pseudo-potentials now still missing. There and other

topics are under active investigation and they’ll be the focus of our future research.
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Appendix A

Moka: MOdeling pacKage for

Atomistic simulations

In this chapter we introduce Moka (MOdeling pacKage for Atomistic simulations),

an open-source modeling GUI that offers editing, visualization and execution features

built specifically for ab-initio calculations. Based on Java programming language and

build with state-of-the-art open source libraries, Moka is an extensible and modular

software implemented originally for Quantum ESPRESSO and now available to the

community through the Quantum ESPRESSO Foundation.

A.1 Introduction

In the recent years ab-initio atomistic simulations are becoming a fundamental re-

source for new material characterization and discovery. Once limited only to simple

systems counting very few atoms, modern softwares implementing accurate theoreti-

cal methods at the level of quantum mechanics, such as Density Functional Theory or

other post-Hartree-Fock ab-initio quantum chemistry methods (Configuration Inter-

action, Coupled Cluster, Møller-Plesset perturbation theory and others), are nowa-

days used for simulations of extend systems; from catalytic processes[124] to long

molecular dynamics[125], complicated biological molecules and crystals comprising

several hundreds or thousands atoms.
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This achievements have been possible only thanks to both sophisticated parallel

programming techniques and the ever growing computational power available on large

scale High Performance Computing clusters. Calculations once considered unfeasi-

ble are now common objective in numerical atomistic simulations, and entirely new

approaches can be investigated. In particular high-throughput techniques[126, 127],

consisting in structural optimization through configuration-space searches and combi-

natorial substitutions, are becoming promising tools for new materials discovery, giv-

ing already interesting results that only few years ago seemed decades away[128, 129].

These new possibilities, ”thousands atoms”-size systems and execution of massive

batches of atomic configurations, pose new challenges in the numerical simulation field

that have to be addressed with novel and ad-hoc solutions. While the science behind

a small-size system and a big-size one is absolutely identical, the numerical challenges

of the latter are effectively becoming the most complex aspect of this research. For

simplicity we can split these challenges in two different domains: ones involving issues

on the scaling of the simulation codes (parallel programming techniques, hardware

infrastructure efficiency, etc.), and others including the preparation, management and

execution of these simulations.

While code scaling techniques, and technologies are a very active field of re-

search since several years, moving from peta-scale to exa-scale objectives, solutions

on how to handle these new simulations emerged as an important issue only very

recently[130, 131]. In this work we present a new program we developed to address

these issues, called Moka (MOdeling pacKage for Atomistic simulations) and built

from the beginning to lower the complexity in the preparation and execution of big-

size and massively parallel simulations.

A brief summary on GUIs for atomistic simulations

Moka is essentially a modeling graphical user interface (GUI) for atomistic simula-

tions, targeted to researchers and experts in the numerical simulations of matter.

GUIs have a very long history in this field, and with modeling we refer to a complex

set of features in the past addressed usually independently. In general ”modeling”
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Figure A-1: Moka GUI in the initial configuration. On the left the main window,
with the visualization frame in the center showing one atomic substrate, explained
later in the example, with some selected atoms in yellow. On the window’s right
there’s the modeling toolbar, divided in three tabs, and the configuration selector
at the bottom of it. On the figure’s right, at the top the Atoms Editor windows is
displayed, where all the atoms in the configuration can be edited in all the details (in
blue the selected atoms identified in the visualization). On the figure’s right at the
bottom the Development Pad with the script shown in List. A.3.

consist of four main tasks:

• Structure definition. This is the very beginning of any numerical simulations.

In consist in the definition of the structure we want to study, from the atomic

positions to the chemical composition of each atom, and possible cell parame-

ters (or space groups) for crystal structures. Even if this step can be in principle

reduced to the simple enumeration of positions and chemical symbols for each

configuration, modern softwares have to be able to import structures from input

and output file of other programs, or from public and private databases. In the

years an enormous amount of work has been dedicated to engineer efficient data

structures (and formats) to define atomistic configurations, and several database

are present collecting hundred thousands different materials, such as the Inor-

ganic Crystal Structure Database[132] or Cambridge Structural Database[133]
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The ability to import structures from different sources and in many formats is

a fundamental feature for an efficient modeling GUI.

• Visualization. Once the configuration is defined the ability to interact with

the structure under analysis is highly empowered by the visualization tech-

niques available. Starting from the famous ”ball-and-stick” and ”space-filling”

representations of the Dreiding and Corey-Pauling-Koltun mechanical models

[134], visualization tools are now an impressively fast-growing field in scientific

research. To handle structures with hundreds or thousand of atoms efficiently

new tools are needed, with features helping to lower the complexity of handling

these systems, such as shortcuts to immediately find some species, or the possi-

bility to switch-off some part of the system when working on small local details,

shading techniques to let the user see through several layers and many others.

A flexible visualization sometimes plays a crucial role in a modeling software,

and due to the high computational effort involved in visualization and rendering

this aspect became of critical importance.

• Structure elaboration. At the core of any modeling software, the structure

elaboration represent the very toolbox for material discovery. Starting from

an initial configuration, a surface for example, researches sometimes need to

add new parts, molecules or atoms either build from scratch or imported from

other sources. Atoms need to be moved, rotated, deleted or substituted with

other chemical species, sometimes it’s useful to duplicate parts, or cut others

along planes and axes. These and many other functions are things that makes

a modeling software a real plus in atomistic simulations. Moreover, most of

the times modeling tools are needed in a programmatic way, using scripts to to

replicate and iterate the operations among hundreds or thousands of difference

configurations; something usually done with ad-hoc scripts and code snippets,

an impractical solution that rapidly shows its limits with the growing size of

the problem.

• Execution of the simulation. The modeling usually concludes with a nu-
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merical simulation, today possible with tens of ab-initio codes available, from

open-source distributions [29], [135] to commercial and closed source ones [136].

Most of these codes can be run in serial mode, for small and simple calculations,

or in parallel mode on modern High Performance Computing (HPC) clusters,

where more interesting applications and big-size calculations are the possibil-

ity. Modern ab-initio codes can run on this infrastructures with remarkable

efficiency, and this will be the main application target we’re going to discuss in

this work. HPC clusters are sometimes complicated architectures with queue

management systems and special configurations necessary to correctly use the

I/O resource and the computing nodes. The modeling GUI should in princi-

ple help the researcher to overcome this complexity, offering a simple way to

interact and launch one, or thousands, simulations in a seamless way.

This four groups of functions are all essential building blocks for a complete mod-

eling GUI able to support researches with highly complex simulations and structures.

Nowadays several GUIs are present on the market, most of them freely available and

open-sourced by the authors, implementing some of the main features just discussed.

We’ll shortly review some of the most important cases, focusing only on open-source

codes. This choice is motivated both because we believe open-source is by far the

best option for scientific community and because, since the internal procedures used

by closed-source codes are not known, it’s hard to comment with sufficient precision

on this alternatives.

The most basic GUIs are focused only on input parsing and conversion, with Open

Babel [137] probably the most comprehensive one available. Capable of handling more

than 100 different configuration formats, from XYZ to CIF[138], from legacy formats

to standards such as Chemical Markup Language [139], several GUIs have been built

upon this software library, offering only the automatic conversion procedures between

the various formats. Even if some very basic modeling functions have been recently

implemented, such as hydrogen bond addition and removal, these packages in general

do not interface with any configuration databases and miss all the other three features

listed above, visualization, modeling and execution.
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Some more evolved GUIs are the structure visualization packages, such as Visual

Molecular Dynamics (VMD)[140], Jmol [141] and XCrysDen [142]. With this codes

some basic input parsing techniques are implemented, sometimes using OpenBabel as

a library, and the core features are all about visualization of structures and properties.

From static snapshots to dynamic molecular dynamics visualization, this packages

evolved in the recent years as robust analytics tools. In most cases it’s possible to

visualize much more than the bare atomistic arrangement, plotting as well charge

distributions, dipoles, forces and many other features derived from external codes.

VMD in particular has been able to extend it’s initial visualization functions thanks

to an efficient plug-in infrastructure and a vibrant community of users, but even if

some modeling extensions have been developed, both VMD as well in all the other

visualization packages the modeling features are limited to the very essential ones,

where mouse dragging is most of the times the only way to interact with atoms.

A final class of softwares we like to cite in this short review is comprised of packages

that implements almost all the features described before, where VESTA [143] and

Avogadro [144] are in our opinion the most interesting cases. In these packages,

inputs, visualization and modifications of atomic structures are implemented in a

very efficient way, giving the user a very broad range of possibilities. In particular

Avogadro, with the flexible plug-in infrastructure developed by the authors and the

Python scripting interface, covers all of the first three classes of features we listed

as necessary for a modern atomistic modeler. Nevertheless, the execution of the

simulation is most of the times left to the user, and these packages offer only partial

input generation for specific codes, hard to extend and maintain.

To conclude we’d like to point the reader to a recent implementation we think

covers in a very efficient and flexible way most of the requirements for atomistic

modeling, Atomic Simulation Environment (ASE) [145]. As a set of libraries originally

build for the Python scripting environments, visualization features are limited only

to simple asynchronous image rendering, but the modeling functions and the general

management of the configurations offered are remarkably efficient and flexible. As

a library, ASE can in principle be integrated in other environments implementing a
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Figure A-2: Moka modular architecture. Through the GUI a user can interact with
all the modules, while scripting can be decoupled from visualization and GUI as well
giving the best performance and flexibility.

Python engine such as Moka1.

A.2 The Moka program

Moka is a GUI build to cover all the four features previously discussed. Started in late

2011 as an experimental tool for some specific use cases, the project gained traction

in the Quantum ESPRESSO development team and became a flagship project of the

Quantum ESPRESSO Foundation in mid 2012. With this work we present the first

version available for developers to download, that will be followed in next months by

a public release for end users.

The code has been build with a modular approach, as shown in schema of Fig.

A-2, where all the modules offer APIs to the rest of the code for integration and man-

agement, while a sophisticated event handling mechanism is implemented to keep in

sync information in all the environment. The user can interact with the core modules

only through the GUI or the scripting environment, depending on the research need,

and special features have been implemented to give both the approaches the best

performance possible 2.

1ASE integration with Moka as successfully achieved, as reported in the Moka home site
2With the GUI all the code responds to give the best fluid experience for the user, with all the

modules and windows lively updated. With the scripting environment the code renounces to the
live updates and synchronicity to overcome possible bottlenecks with batch executions of scripts and
favor speed and computational power.
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Configuration DB

The first block, the Configurations DB, is where all the input and structure repre-

sentation takes place. Using OpenBabel as the input library, Moka can read more

then 100 input formats that are represented in memory with a very efficient object

structure, the so called DB. Each entry in the DB is called configuration, and since

Moka has been developed for periodic structures, a configuration is defined by both

a cell (a set of three 3-dimensional arrays) and a list of atoms identified by a name,

a chemical type and a position in space. For each configuration the metric can be

absolute (in atomic units or Angstroms), or relative with respect to the lattice.

The DB structure is a hybrid implementation of in-memory and local-disk storage,

able to let the user store thousands of configuration in a seamless way between rapid

in-memory access and disk-access; the recently used configuration will be kept in

memory and the old ones will be dumped in the local-storage automatically. All the

primitive functions to load a configuration in memory and interact with its elements

such as addition or deletion of atoms, modification of cell properties and positions,

selection of atoms (an inner property of atoms in Moka) and many others are offered

by this module for all the applications.

Some note worthy implementations are the procedures to copy& paste of atoms

between configurations, with automatic conversion of the metric, copy& paste of

configuration, refolding of atoms in the cell with periodic boundaries conditions, the

automatic generation of structures starting from the Whyckoff definitions and the

implementation of direct queries on several crystallographic databases such as the

ICSD and the CSD 3.

All the Configuration DB functions are present in the GUI both in the toolbar

and through specific menus, as shown in Fig. A-1, while the other modules interact

with the DB through its APIs and the event lister approach previously discussed.

3For external database connections authentication is necessary to access the service, parameters
that can be modified from the GUI

82



Visualization

An evident part of the GUI in Fig. A-1 is the Visualization module. The visualization

of atomic structures is a formidable complex problem, especially if code efficiency and

rendering speed are important. Thanks to the open-source nature of the Moka code

we decided to integrate the powerful visualization library Jmol [141], integrated with

the rest of the code with the addition of a middle layer that handles event listeners

and APIs, converting them to Jmol instructions.

The event listeners handle both side of the communication, for example when

an atom is selected in the viewer (Jmol event) a Moka event for atom selection is

broadcasted, while when the same selection happens in the GUI an event is received

from the middle layer and converted to a specific Jmol instruction. This happens for

all the events, atoms and cell modifications, configuration change in the DB, an so

on. The middle layer does not add any computational cost, and the redundancy is

limited to the single configuration visualized that is stored both in Jmol and Moka,

a very low memory footprint in all the cases.

Thanks to this integration in Moka there are all the advanced visualization func-

tions offered by Jmol, seamlessly integrated with the rest of the code, accessible both

from the GUI and the scripting engine and some specific APIs added to the middle

layer to simplify the visualization of periodic crystal cells.

Modeling

The Modeling module is the core set of functions that allows the user to interact with

a specific configuration. Once a configuration is loaded the entire set of modeling

functions are available through the GUI with simple buttons and input interfaces.

To list the most important ones, a user can add and remove groups of atoms,

translate them along crystal axes by user defined vectors, rotate them around a

point or a line, mirror atoms over planes, generate supercells, change the metric

from absolute to relative, modify the crystal cell with scaling functions or directly

modifying the basic axes. More sophisticated features, such as removal of atoms along
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Miller planes, generation of subcells and configuration merging are illustrated in the

documentation and are not discusses here for brevity.

Thanks to the event dispatching architecture, all the Moka modules will react

to the modeling events, so that the visualization will be updated in sync with the

events as well the atomic positions tables and all the other GUI features. To give

an example, atom-atom distance indicators added in the viewer will be automatically

refreshed after each atom translation applied during modeling giving the user a real-

time feedback on his modifications.

Execution

The execution engine is one of the most innovative feature present in Moka, and its

detailed analysis would require a long and technical discussion we believe it’s not

of interest for the reader in this context. We discuss in this section the execution

implementation strategy, showing the main advantages present for the user and we

point the reader to the Moka home site for a more details documentation.

The execution engine in composed of two parts, an Execution module present in

Moka and a small Execution Daemon to install on the computing machines preferred

by the user. The Execution Module, represented in Fig. A-2 and available to the user

through main window’s top menu and toolbar, offers a step-by-step user interface

covering both input parameters definition and simulations execution.

When a structure is ready to be simulated, with the help of visualization and

modeling functions, only a small part of the problem is solved. Every ab-initio code

in fact needs a long and software-specific list of parameters to be able to function

properly. This would in principle require a specific GUI implementation for each

code, implying an enormous effort by the developers to keep the GUI updated with

all the ab-initio codes updates.

To solve this issue we implemented a simple solution capable of handling and

visualizing in a flexible way any kind of input parameter list, suitable to work in

principle with input form and based on two external files for each ab-intio code,

an input descriptor and a python script. All the parameters for a specific code are
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Figure A-3: Moka input GUI generated from the Quantum-ESPRESSO input descrip-
tor. In top combo menu the type of simulation can be selected (scf, nscf, relax, ecc..)
and in the central part all the inputs are shown to edit, grouped following the de-
scriptor’s rules. Red parameters are mandatory for the simulations, an in the bottom
window helper description of the selected input is shown to the user for support.

described in an external XML descriptors following a specific scheme; each parameters

type (integer, real, string, external file, matrix, etc.) can be defined with a name,

a possible default value and an helper text for the user. When the user starts a

simulations, Moka will present a list of input descriptors present in the Moka home

directory and after the user selection a GUI window will be automatically generated

following the descriptor definitions. The input window generated from the Quantum-

ESPRESSO descriptor is reported in Fig. A-3

Once the user input is completed all the parameters are collected in a map and

the python script specific for that ab-initio code will be called. In this script the

materialization of the input will happen, following the very specific conditions and

formats used by the developers, returning one or several input files needed to start the

simulation. In this way each code can be integrated in Moka only with the definition

of an input descriptor and a python script, a much better solution both for code

updates and for future expansion.

The second part of the execution engine is the Moda Daemon, a small sever
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Figure A-4: Moka execution interface. In the bottom window all the input previously
the simulation have to be executed. In the top window, appearing after a specific
machine and set of inputs are selected, the user con define all the parameters for the
configuration, a dynamical GUI built following the Moka Daemon responses on the
specific remote machine’s queue characteristics. In this figure results of the simple
user case explained in the last section is reported.

interacting with Moka and installed in the user preferred computational unit. On

modern HPC machines, usually give access to users only through interactive Secure

Shell sessions, the Moka Daemon is a small software that abstract all the technical

details of the specific HPC machine to a more general and simple level. That the user

can copy the daemon in its own home directory using Moka initiate and manage the

queue processes in a simple way.

With Moka the user can interact directly with the Moda Daemon installed on his

account, sending hundreds of simulations at once and collecting back results. Inter-

faces to test the status of each run, and the possibility to open a file interactively

on the cluster are features Moka implements, partially shown in Fig. A-4 and doc-

umented in the home site. This approach reduces the execution complexity of any

numerical simulations to the sole input definition, where the scientific knowledge is

fundamental, while leaving the technical details to be accounted by the Moka Dae-

mon.

86



Scripting and GUI

The four main blocks described before, representing the core Moka’s functionalities,

are available to the user in two ways: through a visual GUI or a scripting interface.

A snapshot of the GUI is reported in Fig. A-1, showing some of the main windows in

use. On the left the main window showing up at the start, with several menus and

toolbars on top of the Jmol visualization interface in the middle. At the right border

of the main window a vertical contains all modeling tools described above, and at the

bottom the configuration navigator lets the user scroll and move in the Configuration

DB.

On the figure’s right, the Atoms Editor (on top) shows the list of all the atoms

present, giving the user the ability to select and modify all atoms properties (position,

name and chemical element), and the Developer Pad (bottom) is the interface needed

to interact with the scripting engine, an efficient way to use all the core functionalities,

and some of the GUI ones, in a programmatic way.

The coexistence of GUI access and the scripting interface it’s a fundamental char-

acteristic of this package and gives the user a great flexibility in structure modeling.

GUI access is mainly focused for single configuration details, when the assembly of

the atoms is taking place. Adding clusters to a surface, packing molecules in a crys-

tals, selecting specific configurations from a range of outputs, tilting or rotating some

molecules in the systems; all these actions are better performed with the visual aid

of the visualizer and the modeling commands present in the GUI.

On the other side, when automatism is necessary, the scripting engine works at

best. Building extended systems with a simple repetitive pattern, such as nanotubes

of graphite, generating variation of a specific configuration, such as compression or

expansion, combinatorial substitution of elements and generation of trial structures

for optimization algorithms or automatic generation of structures with different pa-

rameters. These and many more cases are perfect examples where a programmatic

approach can be of great support. As we’ll see in the next section, identical results can

be obtained with both procedures and it’s up to the user to chose the most adequate
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one for his specific use case.

A.3 A simple use case

In this section we preset a simple example where Moka can be of great help. As

we discussed the same results can be obtained with different approaches, and we

present a mixed approach where both either the GUI or the scripting engine are used

depending on their effectiveness.

Building graphite

Supported metallic clusters on graphite are a very interesting system under active

investigation in the recent years[146, 147, 148] showing unique conductibility and

catalytic properties that attracted the attention of both scientific and industrial play-

ers. Several ab-initio numerical simulations have been conducted in the years, and

this structures are a perfect candidate to show the power of Moka modeling features.

There are several ways to build graphite in Moka. The first one we explain uses

only the GUI tools, starting with a new empty configuration (File → New). The

graphite crystal cell has to be set (Edit→ Cell) with the alat parameters (for graphite

a = 4.65a.u. and c = 12.65a.u. ) and all the tree cell axes a1 = [1/2, sqrt(3)/2, 0],

a2 = [−1/2, sqrt(3)/2, 0], a3 = [0, 0, 4 · c/a] (the 4 mutiplying the natural cell di-

mension is due to the fact we want some distance between periodic replicas in the z

direction). Notice that all the input texts in Moka are connected to a mathematical

parsers, and inputs like sqrt(3)/2 are automatically transformed in their numerical

value. After this step the four atoms in the unit cell have to be added (Edit →

Atoms → Add) and positioned using the Atoms Editor table, in this case we’ll have

four basis atoms in [0, 0, 1/4(c/a)], [1/2, sqrt(3)/6, 1/4(c/a)], [0, 0, 3/4(c/a)] and

[1/2, −sqrt(3)/6, 3/4(c/a)] .

Graphite unitary cell is now ready, and we can produce a larger supercell (Tools

→ Cell Tools → Make Supercell) of 6 × 6 × 1. Now we conclude the GUI part by

selecting, in the viewer or with the Atoms Editor, a specific carbon atom on the upper
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graphite layer to host a metallic adatom on top, in our example the atom number 87

positioned.

Using script for automation

The objective of this simple example is building a set of configurations composed of

two graphite planes with different metallic adatoms of top of a carbon atoms. To do

this we can copy and paste this initial configuration just edited (Edit → Configura-

tions → Copy / Paste ) and adding the single metallic atom at a preferred position

with the GUI, or we can use the scripting environment to automatize this process.

In List. A.3 we report a short script for the Moka Development Pad that generates

all the final configurations with selected metallic adatoms positioned of top of carbon

atom number 87. In the script, after the library imports, in the main loop (line 7),

iterating over the metals array (line 5), the active configuration in Moka is cloned

(lines 9 and 10), the 87th atom position is extracted (line 11) and modified (line 12)

to let the adatom have some distance from the substrate. A new atom is added in

the modified position (line 13) and the configuration is added to the DB with a new

name (lines 14 and 15). After the loop a new event is generated re-synchronizing all

the modules with the new DB changes (line 17).

After the script execution the new configurations are also available in the GUI,

and the execution engine can be launched to set the input parameters and send the

simulations to the cluster. For the sake of brevity we skip this last passage, described

in the documentation on the Moka home site.

Even in this simple example the power of this hybrid approach is evident: having

both the GUI and the scripting engine helps the user to have the best experience

in any use case, an interactive approach in the buildup of the main structure and a

faster one for repetitive tasks.
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1 from org . moka . events import ∗

from org . moka . s t r u c t u r e s import ∗

3 from org . moka . common import ∗

5 metals = [ ’ Fe ’ , ’Ag ’ , ’Au ’ , ’Ru ’ , ’Rh ’ ]

7 for m in metals :

9 newConf = Conf igurat ion ( )

Conf igurat ion . copy ( conf , newConf )

11 pos = l i s t ( newConf . getAtom (87) . g e t P o s i t i o n ( ) )

pos [2]+=1.0

13 newConf . addAtom(m, pos )

newConf . setName ( ’ g r a p h i t e ’+m)

15 moka . confDB . add ( newConf )

17 moka . manager . eventHappend ( MokaEvent ( ”” , MokaEvent .CONF DB CHANGED, ”” ) ) ;

A.4 Remarks

In this chapter we presented Moka, a new software which aims to be an exhaustive

package for atomistic modeling, with a particular focus for ab-initio simulations.

Covering all the necessary features we believe a modern modeler should offer to the

user, such as a flexible input engine, visualization and modeling tools and an execution

management infrastructure, this first version of the code is already a powerful solution

to handle research activities on complex materials and with large scale necessities.

Right now Moka is distributed by the Quantum ESPRESSO Foundation as an

open-source code with a BSD license, allowing developers and researchers to modify,

add and extend the original code to cover more specific needs and add new function-

alities.
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Appendix B

Stress derivation details

As we previously said the stress tensor σαβ is defined as the derivative of the energy

over the strain tensor εαβ.

σαβ = − 1

Ω

∂E

∂εαβ
(B.1)

In density functional theory the energy is defined as a functional of the charge,

and to calculate derive the stress we use a simple procedure proposed by Nielsen and

Martin[149]. In this appendix we’ll summaries the basic derivation for the stress for

LDA, GGA and non-local DFT functionals, and we refer the reader to other works

for the remaining terms of the energy functional[70].



r → r̃ =(1 + ε)r

G→ G̃ =(1− ε)r

Ω→ Ω̃ =|1 + ε|Ω

Ψ(r)→ Ψ̃(r) =
1

|1 + ε|1/2
Ψ ((1− e)r̃)

n(r)→ ñ(r) =
1

|1 + ε|
n ((1− e)r̃)

∇αn(r)→ ∇αñ(r) =
1

|1 + ε|
∇β (n ((1− ε)r)) · (1− ε)βα

(B.2)

The calculations proceed as follow: we first apply and homogeneous expansion as

defined by the relations in Eq.B.2 and then we rescale the density and the wavefunc-
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tions. The differential of the energy thus obtained defines in a simple way the stress

tensor.

Stress in LDA

In this case the exchange and correlations functional is defined as

Exc =

∫
Ω

n · Fxc (n) d3r (B.3)

We apply the stress variation

E ′xc =

∫
(1+ε)Ω

n ((1− ε) r′)
|1 + ε|

· Fxc
(
n ((1− ε) r′)
|1 + ε|

)
d3r′ (B.4)

and the rigid rescaling

E ′xc
r′→(1+ε)r−−−−−−→

∫
Ω

n(r) · Fxc
(
n(r)

|1 + ε|

)
d3r (B.5)

We know calculate the differential of the energy, that defines the stress tensor

δE ′xc =

∫
Ω

n
∂Fxc
∂n

n

(
−
∑
α

εαα

)
d3r = −

∑
α

εαα

∫
n2 ∂Fxc

∂n
d3r

= −
∑
α

εαα

∫
n

[
∂ (Fxc n)

n
− Fxc

]
d3r

=
∑
α

εαα

[
Exc −

∫
n · vxc d3r

] (B.6)

Stress in GGA

In this case the exchange and correlations functional is defined as

Exc =

∫
Ω

Fxc (n(r), |∇n|) d3r (B.7)
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As before, we apply the stress variation

E ′xc =

∫
(1+ε)Ω

n ((1− ε) r)
|1 + ε|

· Fxc
(
n ((1− ε) r)
|1 + ε|

,
1

|1 + ε|
|∇n ((1− ε)r) ((1− ε))|

)
d3r

(B.8)

and the rigid rescaling

E ′xc
r→(1+ε)r−−−−−→

∫
Ω

n (r) · Fxc
(
n (r)

|1 + ε|
,

1

|1 + ε|
|∇n ((1− ε))|

)
(B.9)

Using |∇n ((1− ε))| =
√
|∇n|2 −

∑
αβ 2∇αnεαβ∇βn+O(ε2) we can calculate the

differential (some straightforward algebraic manipulations are omitted for brevity)

δE ′xc =−
∑
α

εαα

∫
Ω

n(r)

[
∂Fxc
∂n

n+
∂Fxc
∂ |∇n|

|∇n|
]
−
∑
αβ

εαβ

[∫
Ω

n(r)
∂Fxc
∂ |∇n|

∇αn · ∇βn

|∇n|

]
(B.10)

Noting that ∂Fxc

∂n
n =

(
∂(Fxcn)
∂n
− Fxc

)
and |∇n| = ∇n2

|∇n| we can recast the GGA

stress term in a much simpler form (here as well some straightforward algebraic

manipulations are omitted for brevity)

δE ′xc =
∑
α

εαα

[
Exc −

∫
Ω

n · vxc
]

︸ ︷︷ ︸
LDA-like

−
∑
αβ

εαβ

[∫
Ω

n(r)
∂Fxc
∂ |∇n|

∇αn · ∇βn

|∇n|

]
(B.11)

Stress in non-local functionals

Non local functionals, as described in Chap.3 depend on n,n′,|∇n|,|∇n′| and |r− r′|.

Calculation are involved, but nothing more that mere algebraic manipulations are

necessary to follow the derivation. For the sake of brevity we split the derivation in

three steps, showing the different steps needed to obtain the final result.

We first we consider the restricted case of a functional defined as Fxc ≡ Fxc(|r − r′|).

Following the same derivation used for LDA and GGA we obtain, skipping the inter-

mediary steps,
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δE |r−r
′|

xc =
1

2

∑
αβ

εαβ

∫
Ω

d3r

∫
Ω

d3r′nn′
∂Fxc

∂ |r − r′|
(r − r′)α · (r − r′)β

|(r − r′)|
(B.12)

Now we analyze the results for a generic functional of the form Fxc ≡ Fxc(n, n
′),

obtaining

δE ′xc = −
∑
α

εαα

[∫
Ω

n · vxc − 2Exc

]
=
∑
α

εαα

[
2Exc −

∫
Ω

n · vxc
]

(B.13)

The unusual factor 2 multiplying the energy will vanish when we’ll keep account

for all the other terms. A similar results is obtained when we finally consider the

restricted case of Fxc ≡ Fxc(|∇n| , |∇n′|), where the results is expressed by

δE ′xc =
∑
α

εαα

[
2Exc −

∫
n · vxc

]
−
∑
αβ

εαβ

∫ ∫
nn′ · ∂Fxc

∂ |∇n|
∇αn · ∇βn

|∇n| (B.14)

We now have all the terms to express the final results, defining the stress tensor

for a generic non-local functional

δE ′xc =
∑
α

εαα

[
Exc −

∫
Ω

n · vxc
]
−
∑
αβ

εαβ

[∫ ∫
nn′ · ∂Fxc

∂ |∇n|
∇αn · ∇βn

|∇n|

]
+
∑
αβ

εαβ

[
Exc · δαβ +

1

2

∫ ∫
nn′

∂Fxc
∂ |r − r′|

(r − r′)α · (r − r′)β
|(r − r′)|

] (B.15)

Written in this form, the stress is defined as the already existing LDA and GGA

terms plus a correction that is non-zero only in the vdW case.
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Appendix C

Phonons derivation details

Tn Chap.3 we generalized as mush as possible the theoretical extension of DFPT for

non-local functional, but functional specific calculations are needed to obtain useful

formulas to compute. Our analysis is focused on non-local functionals that can be

expressed with the RPS interpolation scheme, and the differences among them can

only be limited either in the Θ functions or in the kernel Φ.

In the next sections we’ll present details calculations for the vdW-DF class of

functionals, and the rVV10 functional introduces in Chap.5. Since the DFPT ex-

tension does not include any new derivations of the kernel Ψ, we’ll present only Θ

functions of these implementations, leaving the reader to the original sources for more

informations on how to implement the full extension.

Phonons in vdW-DF

In vdW-DF we have a little involved definition of Θ functions, and specifically the q,

reported here

Θ = nP [q0(q(r))] (C.1)

and

q = kF + L1 ln

(
1 +

1

L2

)
+Gc (C.2)

with
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kF =
(
3π2n

) 1
3

Gc =
−Zab

36kFn2
|∇n|2

L1 =
8π

3
(LA (La1rs + 1))

L2 = 2LA
(
Lb1

√
rs + Lb2rs + Lb3rs

√
rs + Lb4r

2
s

)
(C.3)

where LA, Lb1, Lb2, Lb3 and Lb4 are parameters and rs is the Fermi radius. We

now introduce first the necessary derivatives for the final formulations, first for the Θ

functions,

∂Θ

∂n
= P +

∂P

∂q0

∂q0

∂q

(
∂q

∂n
n

)
(C.4)

∂Θ

∂|∇n|
1

|∇n|
=
∂P

∂q0

∂q0

∂q

(
∂q

∂|∇n|
n

|∇n|

)
(C.5)

∂2Θ

∂n2
=

[
∂P

∂q0

∂q0

∂q

(
∂q

∂n
n

)
+
∂2P

∂q2
0

(
∂q0

∂q

)2(
∂q

∂n
n

)2

+

∂P

∂q0

∂2q0

∂q2

(
∂q

∂n
n

)2

+
∂P

∂q0

∂q0

∂q

(
∂

∂n

(
∂q

∂n
n

)
n

)]
1

n

(C.6)

∂

∂n

(
∂Θ

∂|∇n|
1

|∇n|

)
=

[
∂2P

∂q2
0

(
∂q0

∂q

)2(
∂q

∂n
n

)(
∂q

∂|∇n|
n

|∇n|

)
+

∂P

∂q0

∂2q0

∂q2

(
∂q

∂n
n

)(
∂q

∂|∇n|
n

|∇n|

)
− 4

3

∂P

∂q0

∂q0

∂q

(
∂q

∂|∇n|
n

|∇n|

)]
1

n

(C.7)
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∂

∂|∇n|

(
∂Θ

∂|∇n|
1

|∇n|

)
1

|∇n|
=

[
∂2P

∂q2
0

(
∂q0

∂q

)2(
∂q

∂|∇n|
n

|∇n|

)2

+
∂P

∂q0

∂2q0

∂q2

(
∂q

∂|∇n|
n

|∇n|

)2

+

∂P

∂q0

∂q0

∂q

(
∂

∂|∇n|

(
∂q

∂|∇n|
n

|∇n|

)
n

∂|∇n|

)]
1

n

(C.8)

∂

∂|∇n|

(
∂Θ

∂n

)
1

|∇n|
=

[
−4

3

∂P

∂q0

∂q0

∂q

(
∂q

∂|∇n|
n

|∇n|

)
+
∂2P

∂q2
0

(
∂q0

∂q

)2(
∂q

∂|∇n|
n

|∇n|

)(
∂q

∂n
n

)
+

∂P

∂q0

∂2q0

∂q2

(
∂q

∂|∇n|
n

|∇n|

)(
∂q

∂n
n

)]
1

n

(C.9)

The all the previous equations some algebraic manipulations have been used to

simplify the formulas, possible only for these specific functional form. Now we report

the q derivatives, with the derivatives of all the terms necessary to completely define

this extensions to DFPT,

q = kF + L1 ln

(
1 +

1

L2

)
+Gc

∂q

∂|∇n|
n

|∇n|
=
−Zab
18kFn

∂q

∂n
n =

1

3
kF +

(
−7

3
Gc

)
+

(
n
∂L1

∂n

)
ln

(
1 +

1

L2

)
+ L1

−1

L2 (1 + L2)

(
n
∂L2

∂n

)
∂

∂n

(
∂q

∂n
n

)
n =

1

9
kF +

(
49

9
Gc

)
+

(
n
∂L1

∂n

)
ln

(
1 +

1

L2

)
+

(
n2∂

2L1

∂n2

)
ln

(
1 +

1

L2

)
+

2

(
n
∂L1

∂n

)(
−1

L2 (1 + L2)

)(
n
∂L2

∂n

)
+

L1
1 + 2L2

L2
2 (1 + L2)2

(
n
∂L2

∂n

)2

+ L1

(
−1

L2 (1 + L2)

)(
n
∂L2

∂n

)
+

L1

(
−1

L2 (1 + L2)

)(
n2∂

2L2

∂n2

)
(C.10)
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and finally

∂kF
∂n

=
1

3n
kF

∂Gc

∂|∇n|
=

2

|∇n|
Gc

∂Gc

∂n
= − 7

3n
Gc

∂L1

∂n
n = −8π

9
LALa1rs

∂2L1

∂n2
n2 =

32π

27
LALa1rs

∂L2

∂n
n = −2LA

(
Lb1

6

√
rs +

Lb2

3
rs +

Lb3

2
rs
√
rs +

2Lb4

4
r2
s

)
∂2L2

∂n2
n2 = 2LA

(
7Lb1

36

√
rs +

4Lb2

9
rs +

3Lb3

4
rs
√
rs +

10Lb4

9
r2
s

)

(C.11)

Phonons in rVV10

In this case Θ functions are a little more complicated, while q functionals are much

simpler,

Θ = Cn
3
4 P [q0(q(r))] (C.12)

q =
w0

k
(C.13)

where C (and b in the following equations) is a parameter, and q is defined by

k = 3πb
( n

9π

) 1
6

wp2 =
4πne2

m

wg2 =
Ch̄2

m2

(
|∇n|
n

)4

w0 =

√
wg2 +

wp2

3

(C.14)
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We now introduce the derivatives for the Θ functions

∂Θ

∂n
= Cn−

1
4

[
3

4
P +

∂P

∂q0

∂q0

∂q

(
∂q

∂n
n

)]
(C.15)

∂Θ

∂|∇n|
1

|∇n|
= Cn−

1
4

[
∂P

∂q0

∂q0

∂q

(
∂q

∂|∇n|
n

|∇n|

)]
(C.16)

∂2Θ

∂n2
=Cn−

1
4

[
− 3

16
P +

1

2

∂P

∂q0

∂q0

∂q

(
∂q

∂n
n

)
+
∂2P

∂q2
0

(
∂q0

∂q

)2(
∂q

∂n
n

)2

+

∂P

∂q0

∂2q0

∂q2

(
∂q

∂n
n

)2

+
∂P

∂q0

∂q0

∂q

(
∂

∂n

(
∂q

∂n
n

)
n

)]
1

n

(C.17)

∂

∂n

(
∂Θ

∂|∇n|
1

|∇n|

)
=Cn−

1
4

[
−1

4

∂P

∂q0

∂q0

∂q

(
∂q

∂|∇n|
n

|∇n|

)
+

∂2P

∂q2
0

(
∂q0

∂q

)2(
∂q

∂n
n

)(
∂q

∂|∇n|
n

|∇n|

)
+

∂P

∂q0

∂2q0

∂q2

(
∂q

∂n
n

)(
∂q

∂|∇n|
n

|∇n|

)
+

∂P

∂q0

∂q0

∂q

(
∂

∂n

(
∂q

∂|∇n|
n

|∇n|

)
n

)]
1

n

(C.18)

∂

∂|∇n|

(
∂Θ

∂|∇n|
1

|∇n|

)
1

|∇n|
=Cn−

1
4

[
∂2P

∂q2
0

(
∂q0

∂q

)2(
∂q

∂|∇n|
n

|∇n|

)2

+

∂P

∂q0

∂2q0

∂q2

(
∂q

∂|∇n|
n

|∇n|

)2

+

∂P

∂q0

∂q0

∂q

(
∂

∂|∇n|

(
∂q

∂|∇n|
n

|∇n|

)
n

|∇n|

)]
1

n

(C.19)

and finally we report the q derivatives to complete the calculations
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∂q

∂n
n = q

[
1

2w2
0

(
16πn

3
− 4wg2)− 1

6

)]
∂q

∂|∇n|
n
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