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Chapter 1

Introduction

The Standard Model (SM) of particle physics is so far our best understanding of nature at
the fundamental level. This theory which describes the constituents of matter and their
interactions has stood firmly after many years of experimental scrutiny. However, despite
all its success and agreement with experimental data, the SM is still filled with problems
and puzzles. To name few: i) among the particles of the SM there is no candidate for
the observed dark matter of the universe, ii) the amount of CP violation in the SM is not
enough to explain the asymmetry between matter and antimatter, iii) neutrino masses
call for physics beyond the SM, although possibly at a very high energy scale, iv) the
SM does not incorporate gravity, v) an unreasonable amount of fine tuning is required
to account for the Higgs mass, known as the gauge hierarchy problem. These are all
motivations to develop ideas and look for physics beyond the SM. In particular the gauge
hierarchy problem will be the main motivation behind the work presented here and will
be explained in more detail in the following.

The experimental status has finally come to a point to probe the weak scale. Re-
cently both ATLAS and CMS collaborations at the Large Hadron Collider (LHC) have
announced the discovery of a 125 GeV mass particle [1, 2] compatible with the long sought
Higgs boson [3, 4, 5] , the last missing piece of the SM. Whether this is exactly the SM
Higgs boson or not needs further investigation.

It has long been known that the mass of the Higgs boson in the SM suffers from
quadratic divergences. specifically the main contribution to the Higgs mass comes from
the top quark loop
2 3P

82

where Ayp is the cut-off of the theory, or where new physics shows up, and /2y is the
bare mass of the Higgs. On the other hand, apart from the recent discovery of a 125
GeV Higgs, there has been indirect constraints from precision electroweak measurements

my, = 2y Akp
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which put an upper bound on the mass of the Higgs roughly below 200 GeV. Although
the bare parameter p is absolutely free and one can adjust it to get the desired value for
the Higgs mass, if new physics does not show up until very high energies, say the Planck
energy, one must tune the bare mass to great accuracy which is highly unnatural. In
other words the bare mass is extremely sensitive to the scale of new physics Ayp. This
is the statement of the hierarchy problem. The general expectation is that there must be
some new dynamics, not much above the weak scale, which is responsible for stabilizing
the Higgs mass. This has also been the main motivation for the construction of the LHC.

There are two main classes of theories, namely weakly coupled and strongly coupled
models, which aim to address this problem. Theories based on Supersymmetry, a symme-
try which relates fermions and bosons, is an example of weakly coupled theories. In such
theories the quadratic divergences cancel among fermion and boson loop contributions,
solving in this way the hierarchy problem. A typical example of strongly coupled theories
beyond the SM is Technicolor [6]. In Technicolor theories, inspired by chiral symmetry
breaking in QCD, ElectroWeak Symmetry Breaking (EWSB) is triggered by strong dy-
namics. Also the smallness of the scale of strong dynamics which is essentially the weak
scale is naturally explained, much like Agcp, by renormalization group running. However
these theories are highly constrained by precision electroweak data. Furthermore, incor-
porating flavour into these theories is quite challenging. A variant of these theories [7]
which generally perform better under ElectroWeak Precision Tests (EWPT) is based on
the idea that electroweak symmetry is not broken at the strong scale where bound states
are formed, but rather strong dynamics will give rise, possibly among other bound states,
to a composite Pseudo Goldstone Boson (PGB) with the quantum numbers of the Higgs
which in turn breaks electroweak symmetry by acquiring a Vacuum Expectation Value
(VEV). The PGB nature of this Higgs particle will guarantee its lightness, as its mass will
be generated only radiatively. A common obstacle before model building in such theories
is that due to strong coupling explicit computation of precision electroweak observables
as well as the Higgs potential is not possible and one has to rely on arguments such as
naive dimensional analysis to estimate these quantities.

As we extend the space dimensions, other interesting possibilities arise. One interesting
idea is to identify the internal component of the gauge field in a higher dimensional theory
with compact extra dimensions as the Higgs field, the so called Gauge-Higgs Unification
(GHU) scenarios [8]. In such models the gauge symmetry forbids a tree level potential for
the Higgs, while the loop contribution, being a non-local effect, is finite. Another proposal
introduced in [9] as a solution to the gauge hierarchy problem was to take a slice of AdSs
and localize the matter fields on the IR brane, in this way the physical masses will be
exponentially suppressed by the warp factor with respect to the mass parameters on the
IR brane, while the Planck mass is insensitive to the compactification scale for small warp
factors. It was noticed, though, that to provide a solution to the hierarchy problem it
is only necessary for the Higgs to be localized close to the IR brane and embedding the
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matter fields in the bulk will give rise to a richer flavour structure.

Inspired by the AdS/CFT correspondence one can think of these extra dimensional
theories in terms of their 4D dual descriptions which are strongly coupled conformal field
theories [10]. In particular, GHU models in warped space can be interpreted as weakly
coupled duals of 4D strongly coupled field theories [11] in which the Higgs arises as a PGB
of the strong sector [12, 13]. In fact such a correspondence does not necessarily exist in
the exact AdS/CFT sense, in which case the bulk of the 5D theory along with the IR
boundary can be considered as the definition of the 4D strongly interacting sector.

In this work we will be interested in GHU models as they provide, due to their weak
coupling nature, calculable examples of composite Higgs scenarios in which the Higgs
potential and electroweak precision observables can be computed explicitly. Unfortunately
model building in warped space is still a challenge and although a few 5D GHU models
have been constructed so far [13, 14, 15], only in one model [16] (a modified version of
a model introduced in [14] to accommodate a Dark Matter candidate) 1-loop corrections
to S, T and dgp (and the Higgs potential explicitly determined) have been analyzed and
the EWPT successfully passed. However, as far as we are concerned with low energy
phenomenology, we do not really need to consider the technically challenging warped
models. Instead, we can rely on the much simpler flat space implementations of the
GHU idea. The resulting models may still be reinterpreted as calculable 5D descriptions
of 4D strongly coupled composite Higgs models. This is guaranteed by the holographic
interpretation, which shows that the low-energy symmetries of the theory are independent
of the specific form of the 5D metric.

The most constraining electroweak bounds on GHU models are given by the S and
T parameters [17, 18] and by the deviation dg, of the coupling between the left-handed
(LH) bottom quark and the Z vector boson from its SM value. Couplings gy, z between
the right-handed (RH) top and bottom quarks with the W* vector bosons should also be
taken into account, given the rather stringent experimental bounds on them of O(1073)
[19].

Unfortunately, the simplest constructions of GHU models in flat space (see [20] for an
overview and for earlier references) turned out to be not fully satisfactory (see e.g. [21]).
One of the reasons for this failure was the lack of some custodial protection mechanism
for the electroweak precision parameters. If custodial symmetries are introduced, the
situation improves but this is still not enough to build realistic theories, since one gets
too low top and Higgs masses. Another key ingredient are the so called Boundary Kinetic
Terms (BKT) [22]. When these are introduced and taken to be large, potentially realistic
models can be constructed. In fact the BK'T will be quantum mechanically generated any
way [23] but small and large BKT are stable against radiative corrections.

This thesis is organized as follows. Chapter 2 gives an introduction to the subject
starting with a discussion of composite Higgs models where the Higgs arises as a PGB. This
is followed by introducing the Minimal Composite Higgs Model (MCHM) as a promising
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example. A simple fact regarding deconstructed models is then addressed as a link to
theories with an extra dimension. Chapter 3 is devoted to certain 5D theories and their
holographic interpretation. In the first part of this chapter the holographic method for
gauge fields is discussed. This method is then applied to the gauge sector of the minimal
composite Higgs model in 5D flat space with boundary kinetic terms. A comparison
with the more standard KK approach is made afterwards. Introduction to the notion of
holography for fermions will be the final part if this chapter. In chapter 4 we introduce
three composite-Higgs/GHU models in flat space and study in detail their compatibility
with EWPT. The gauge sector of these models is that of the MCHM described previously,
and they differ in the way the SM fermions are embedded in complete multiplets of the
bulk gauge group. In the first model, known as MCHMj5, fermions are embedded in
four fundamental representations. In the second model fermions are embedded in two
fundamentals, while in the third model they are embedded in one adjoint representation.
Fermionic kinetic terms are also introduced on the UV boundary in the last two models.
Details of the computation of the 1-loop corrections to the Zbrby, vertex are collected in
Appendix A. In Appendix B after a short introduction to EWPT, 1-loop computation of
electroweak precision observables as well as the 2 fit performed for our three models are
explained in detail.



Chapter 2

Composite Higgs Models

2.1 Introduction

In a general model of composite Higgs, apart from the elementary sector, one postulates
the existence of a strongly interacting sector which incorporates the Higgs as a bound
state and mixes with the elementary sector. A more promising scenario which naturally
gives rise to a light Higgs is when the strong sector has a global symmetry G, which is
broken by strong dynamics at some scale f, the analogue of the pion decay constant, to
a subgroup H; € G and results in a number of Goldstone Bosons, including one with
the quantum numbers of the Higgs. This global symmetry is not exact, hence leading
to a PGB which has a mass generated only at 1-loop order. In fact this symmetry is
explicitly broken by the mixing terms with the elementary sector. Another source of
explicit breaking of G is that a subgroup Hy of G, which includes the electroweak gauge
group Ggpr = SU(2)1, X U(1)em, is gauged. So Gy is in fact included in the intersection
of Hy and H;. This situation is described schematically in fig.(2.1). The number of
Goldstone bosons resulting from the spontaneous symmetry breaking G — H is dim(G)
- dim(H;), among which dim(Hy) - dim(Hp N H;) are eaten to give mass to the gauge
bosons, so we are left with a number of dim(G) - dim(HoU H;) PGBs in the theory. As we
mentioned above, Ggys must be included in Hy N H7, so the minimal choice would be to
take Hy = H; = G- To have a Higgs doublet among the PGBs we need to have dim(G)
- dim(H;) > 4, the simplest possibility is then to take G = SU(3) !. However this model
will give large corrections to the Peskin-Takeuchi T" parameter due to the absence of a
custodial symmetry?. To have a custodial symmetry, the subgroup H; has to be extended

!This choice will lead to an incorrect prediction for the mixing angle sin®fw = 3/4, which can be
avoided by introducing BKT [12, 24] , which also helps overcome the problem of too low top and Higgs
masses [24].

2See section B.1.1
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Figure 2.1: The left diagram shows the pattern of symmetry breaking at the strong scale
G/H; and the gauged subgroup Hy. The gray blob represents Ggps. After EWSB, the
vacuum misaligns with the Ggys preserving direction, this is depicted by the diagram on
the right.

H, =SU(2)L,xSU(2)g ~ SO(4). In this case the minimal choice for the global symmetry
is G = SO(5) which gives rise to the Higgs as the only PGB. In the following we will
restrict ourselves to this more promising scenario based on the SO(5)/SO(4) symmetry
breaking pattern. Before moving to the discussion of this model in more detail, we will
briefly discuss, as a preliminary step, the tool for parametrizing the Goldstone bosons
arising from a general symmetry breaking pattern G/H.

2.2 The CCWZ prescription

In this section we review briefly the prescription introduced in [25, 26] for writing down low
energy effective Lagrangians for theories with spontaneous symmetry breaking. Consider
a global symmetry group G acting on a field configuration, and suppose that the fields
pick up a VEV and break G down to a subgroup H. The authors of [25] have classified
all possible nonlinear transformation laws of fields in a neighbourhood of the VEV which
can be summarized in the following way. As we know every element of G can be written
in a unique way as a product of the form

e T h (2.1)
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where T% are the broken generators of G, and b/ is an element of the unbroken subgroup
H. As a result, for any element g € G one can write

g e T = T, (2.2)

in which 7% and h € H, obviously, depend on 7% and g. It was shown that with a suitable
redefinition of the fields, one can always find a “standard” parametrization, which we call
(7%, 4p") 3 here, with the following transformation laws under g

7t — 7', W' — D(h)5y? (2.3)

where 7@ and h are given by eq.(2.2), and D is a linear representation of H. Note that
one can equivalently work with U = exp(7®T®) rather than 7% in which case, according
to (2.2), the transformation under g € G is

U — gUR™ (U, g). (2.4)

Notice also that 7/% will transform linearly under the subgroup H. Clearly any trans-
formation of the form (2.3) will also give a nonlinear realization of G. So all the pairs
(7%, 4p") with the transformation law (2.3) span all possible nonlinear realizations of the
group G.

In a subsequent work [26], Callan, Coleman, Wess and Zumino (CCWZ) classified
all the G invariant Lagrangians constructed out of 7% (or equivalently U), 1" and their
derivatives. the fields 7% , ¢* are already in the standard form described above, but their
derivatives are not. It turns out the standard form of their derivatives can be given in
term of the two fields dz and Ej} defined by

U'o,U = diT® + ELT® (2.5)

where 7% are the unbroken generators of G. In fact dz is the derivative of 7% in the
standard form, and the standard form of the derivative of 9* is given by

V' = 0 + ES p(T*)5? (2.6)

where p is the representation of the algebra of G associated with the Lie group repre-
sentation D. from eq.(2.5) one can easily read off the transformations of d, = dj;7* and
E, = E/T" under g € G

dy — hd,ht, E, — hE,h™ + ho,h™* (2.7)

3we have used here the same symbol 7% as the fields parametrizing the the group elements generated
by T°
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from which the transformation of V1) also follows
Vuh' = D(h).V i (2.8)

A G invariant Lagrangian constructed out of 7%, 1/ and their derivatives 8H7T& and 8u1/1i,
is equivalent to one which is constructed out of U, v, d,, and Vu@bi. But in writing the
Lagrangian in terms of these new fields, the field U cannot appear explicitly, because it
can be eliminated by a U~! transformation, while under such a transformation, v?, dy,
and V9" will not change because of the fact that h(U, U 1) = 1.

At higher derivatives the quantity E,, = 0,E, —0,E, — [E,, E,] also appears (second
derivative) which transforms covariantly E,, — ha,hfl, as well as derivatives of ¥, d,,
and E,, of arbitrary order, using V,, = 9, + Ej; T, in which T must be understood in
the appropriate representation. This gives the general form of a G invariant Lagrangian.
From the way that these fields transform it is clear that constructing G invariants is
equivalent to constructing invariants under local H transformations.

One can generalize to the case of continuous G transformations by introducing gauge
fields A, = AZT& + Aj,T* with the usual transformation law A, — gAug_1 — g@ug_1
under the group G, and modify eq.(2.5) to

U™ 0y — AU = diT" + EAT". (2.9)

It is easy to see that for d, and E, defined in the above way, the transformations (2.7)
are still valid. Note that E,, is now of first order in the derivatives. In this gauged case
two other ingredients are added to the Lagrangian, namely F/j, and Fy,, which are the
projections of U1 F, U along the unbroken and broken generators respectively, with F),,
being the field strength of A,. These fields clearly transform as F/ff, — hFlﬁh_1 under
g €G.

2.3 The Minimal Composite Higgs Model

We will introduce in this section the model based on the SO(5)/SO(4) symmetry breaking
pattern which was originally introduced in the context of 5D theories [13]. According to
the discussion of section 2.1 this symmetry breaking pattern will give rise to 4 PGBs which
form a fundamental representation of SO(4) or equivalently a bidoublet of SU(2); x
SU(2)r. However, in order to reproduce the correct hypercharges for the fermions we
need to introduce a U(1)x factor under which the fermions are charged with appropriate
X charges. So we will consider a strong sector with global symmetry SO(5) x U(1)x
which is broken by strong interactions to SO(4) x U(1)x. The subgroup Ggjs is gauged
with the hypercharge generator defined by Y =T }32 + X.

Using the CCWZ formalism introduced in the previous section, one can immediately
write down the effective Lagrangian for the SM gauge fields and the Goldstone bosons.



CHAPTER 2. COMPOSITE HIGGS MODELS 10

Since we are finally interested in the Higgs potential we will ignore the derivatives of the
Higgs field and treat it as a constant field. To find the effective Lagrangian we promote
the SM gauge fields to complete representations of SO(5) by adding spurious fields which
will be finally set to zero, and write the most general Lagrangian in terms of these fields
which are invariant under local G transformations.

Before proceeding we define the basis for the algebra of SO(5) that we will use through-
out this thesis. These are chosen such that T} and TF, respectively the generators of
SU(2)r, and SU(2)g are given by

(Tf)ij = (™ (8}05 — 6165) + (8}8¢ — 85a1)
(TR)i; = %(6““(5?55 — 0785) — (8707 — 036)) (2.10)

with a = 1,2, 3, while the broken generators are
i
V2

with £ = 1,2,3,4. We also use throughout the text the notation T (whose first three
components correspond to 7% and the second three to T%) and 7% (instead of T%). Now
lets introduce the following notation and parametrization of the Goldstone bosons

(TH)ij = —=(6787 — 6%67) (2.11)

d = U, U = e/, T = —V2nr%T%, ' =(0,0,0,0,1). (2.12)

The effective Lagrangian at quadratic order and in momentum space then reads

Lo = 3 P [T (P) X9 XY 4 To(p) Tr[AM %] + T (787 A% AY0) . (213)
The form factors parametrize the strong sector which is integrated out. By considering
this Lagrangian in the SO(4) preserving vacuum one can conclude that the form factors
I and Iy vanish at zero momentum, while IT; does not. This follows from local SO(4)
invariance and also by Large N arguments [27] and the fact that there is a massless
excitation with the quantum numbers of the broken generators (see also [28]). Expanding
U in its exponent, one can easily write

o = (ch + z%ﬂ) Oy,  sp=sin(h/f), cn=cos(h/f), h=Vhihi.  (2.14)

Using this, the Lagrangian (2.13) is written as

1
Lot = 5P [T (P)X"XY + () (AL AT + A AF)

82 82
+ L) (AP AL+ ARAY) + TL ()AL AR H 0 H| - (2.15)
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where . )
_( —ih' —=h
H:< W i > (2.16)
After setting to zero the spurious fields and keeping only the physical fields, Az, = W), and

A%u = X,, = By, and adding possible bare kinetic terms for them, the above Lagrangian
will lead to

1 p? 52
Leg = §PZ/ [(‘QTz +115 (%) + Mo (p®) + Zhﬂl(p2)> B"B”
0

2 82 52 o?
(=2 )+ ) ) wewe S R, . (2a)
0

Expanding this Lagrangian in momentum and keeping terms of at most second order
gives, after EWSB

1 2
Lo = §PI§”,, [%Hl(o) (WW® + B*BY — 2W**B”)

1 2
+p? (—972 + 1155 (0) + I (0) + %HQ(O)) B*BY
0
2 1 / 812’1, / a, av 28}21 / 3
' (= + 105(0) + =PI (0) | WHW™ — p? L1 (0) W B, (2.18)
0

from which one can identify the gauge couplings of W7 and B,

Lol o) thmo) Lol ) —mo) - Shm0). (2.19)
92 _9(2) 0 4 1 ) g,g _962 0 0 4 1 . .

This low energy (second order) effective Lagrangian could also be found, in coordinate
space and including the derivatives of U, using the ingredients introduced in the previous
section. The result is

1 1 1 1 1
L = ———W2 - —B2 - —Tr[FLF™] - —Tr[F, F "] - —X?
49(2) v 4962 224 4@3 I‘[ 224 ] 4@% 1"[ 224 ] 4§/2 124
2
+ T [dd”], A, =WiTE + B, T, X, =B, (2.20)

where id,, iE, are the projections of U f (Op —1A,) U along the broken and unbroken
generators, and F, ;i are projections of UTF, wU along the broken and unbroken generators
respectively. In fact we did not need to use F,,, (which includes, apart from terms of first
derivative order, also terms with two derivatives) as our building block of constructing the
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gOv gHa gO)

Figure 2.2: (a) 2-site moose diagram. Both sites have global symmetry G with the gray
blobs representing the gauged subgroups Hj on the left site and H on the right site. (b)
1-site diagram. The line with a small black circle on the end means that the NLSM field
U parametrizes G/H

Lagrangian, because the special quotient space we are considering here, SO(5)/S0(4), is
a symmetric space, so F,, is related to F, lj, and d,, through the equation (see e.g. [29])

B, = Fl, +ildy, dy). (2.21)
Now, one can write (after EWSB) the two kinetic terms involving F jfj as
Tr [FLF™] = (W3, +B.,) (1—si/2) + WuwB" s},

Tr [F,F™] = (W3, +B.,)sp/2— WuB"sj, (2.22)

These relations show that the kinetic terms of the two Lagrangians (2.15) and (2.20) have
exactly the same structure, as they should, and one can make the following identifications

1 1 2 2
I15* (0) = —= I1H(0) = 5 1T} (0) = i (2.23)

The term on the second line of (2.20) can be written in a more transparent way by
adopting the “physical” basis for the Goldstone bosons, defined in the following way

T 0+ 7 )Zcbo
b = X0 1 1) )b = [ 9.24
where we have defined

r() = e*"‘/ieT&, S = X, =Ty — Tk, '=1(0,0,0,1) (2.25)

t* are the generators of SO(4) that are broken after EWSB, the three fields x* are the
Goldstone bosons that are eaten to give mass to the gauge fields, and h is the physical
Higgs field with VEV 6 f. Using this parametrization one can show that (see [29])

2 2 2
f—Tr d,d"] = ?Du@TDWI) = %auhc‘)“h - ZTr[(DME)T(D“E)] sin’ (9 - %) , (2.26)
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u” U’ U u” U'v
H
q, b

(a) 9, P (0)

Figure 2.3: Diagram (b) results from performing a gauge transformation by U~! and
integrating out the gauge components along the broken generators in the rightmost site
of diagram (a). The field U parametrizes G/H.

where ¥ = ¢X9/V and D,¥ = 9,5 — Wf/“ - 3/2 £ +iB,Y 03/2. This expression also
reproduces the mass term of eq.(2.15) with the identification

IT; (0) = f2. (2.27)

By expanding the factor sin?(# + h/f), one can find the definition of the weak scale in
terms of the parameters of the theory v = fsin#, as well as the Higgs couplings with
gauge bosons which are modified with respect to the SM couplings

. 9 h . 9 h h?

sin“( 4+ — | =sin“f |1+ 2cosf — +cos20 — +---|. (2.28)
f v v?

The two parameters a, b appearing in the low energy parametrization of Higgs interactions

with gauge fields introduced in [30] are then given by

v? v?
a=cosf = 1—P, b:cos%):l—QF. (2.29)

For 0 = 0 or equivalently f — oo the SM couplings are recovered, while § = 7/2 (f = v)
gives the Technicolor limit.

2.4 Composite Higgs and deconstructed models

As we mentioned in the introduction, certain extra dimensional theories are holographi-
cally dual to models of composite Higgs. It might be instructive to see this, first in the
context of deconstructed models [31] before moving to theories with extra dimensions in
the next chapter. In fact these theories can be considered as the simplest calculable ver-
sions of composite Higgs models. We do not aim to give an introduction to deconstructed
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models or composite Higgs models in this context # but rather address the above men-
tioned specific aspect of such theories as a warm up and introduction to the subject of
the next chapter which will also be addressed there in a different way.

Consider a theory described by a moose diagram of N + 2 sites, with the middle
sites representing N copies of a gauge theory with gauge group G while the leftmost and
rightmost sites are gauge theories based on the two subgroups Hy and H; respectively,
and with all the sites linked together through NLSM fields U;, i = 1,--- ,N 4+ 1. The
gauge fields in middle sites are denoted by p, and on the leftmost and rightmost sites by
A, and H,, respectively. This setup is shown schematically by the diagram of fig.(2.4a),
which is a discretized version of a theory with an extra dimension. Our aim is to start
from the diagram of fig.(2.4a) and integrate out the fields on all the sites but the leftmost
one. As the first step, consider the diagram of fig.(2.2a) which consists of only two sites.
The Lagrangian of this 2-site model to second derivative order is given by

f2
2

1 2 1 2 . .
L= —4—9(2)Tr A% — @Tr H,+ =Tr(D,U'D'U), DU =0,U—iAU+iUH,
(2.30)
which includes the kinetic terms of the two gauge fields on the left and right site and the
nonlinear sigma model (NLSM) field U, making a link between them. It is useful to write

the kinetic term for U in a different way by the following simple manipulation

T (D UDMY) = —Te(UtDMU)? = —Te[UY(8, — iA,)U + iH,]?
= Tr(dy+ E,+ H,)" =Trd? + Tr(E, + H,)’ (2.31)

where we have used the definitions of d,, and E,, given by UT(9, —iA,)U = id, + iE,.
Doing this, one can now easily integrate out the gauge field H, on the right site to get
1 2 1 2 f? 2

L= —@TI' ij - @TY El“’ + TTI' d# (232)
which represents the low energy Lagrangian of a theory with global symmetry G, whose
subgroup Hj is gauged, and is broken to its subgroup H. This is schematically shown in
fig.(2.2) by the diagram on the right. The above argument shows that starting with the
theory of fig.(2.4a), integrating out the field H,, on its rightmost site leads to the diagram
of fig.(2.3a), of which the Lagrangian of the rightmost site along with the NLSM field U
is given by

1 1 2
L= w— —5 T EL, + T T d (2.33)

Tag? P T g2

where now d,, and E,, are defined by UT(0,, —ip,)U = id,, +iE,. As the second step, we

4For recent work on composite Higgs models in the context of deconstructed theories see [32]
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Ay (b)

907 91 Piu 9gN, PNpu gH7

Figure 2.4: (a)An N + 2 site moose diagram, with gauge symmetry G on the middle
sites and a global G with gauged subgroups Hy and H1, respectively on the left and right
site. (b) 1l-site diagram resulting after integrating out all the sites on the right. Here
UEUl"'UN_H.

perform a gauge transformation by the element g = U~! of the gauge group on the last
site on the right and arrive at

Lo

2
L=——=Tp, - )+ 5 ! (5)*, pu = Ul(py +i09,)U (2.34)

49% 2
In the process, the field U’ is also multiplied by U on the right. The above Lagrangian
shows that the field components along the broken generators p;} are massive, with a mass
squared equal to f?¢?. Integrating out these fields, which is done trivially, will lead us to
the Lagrangian
I a2 1 1

L= =32 2Tz
which corresponds to the rightmost site of the diagram in fig.(2.3b). This brings us back
to a diagram of the same type as the one we started with, but with one site less and with
modified fields and couplings

, (2.35)

1 1 1 -
— = 5+ 5, U~ —=>U~Unt1,  pN = PN, (2.36)

N N 9
where py = U]J{H_l(pﬂ +i0,)Un+1. Repeating this procedure, one can integrate out all
the N sites, which leaves us with a theory described schematically by fig.(2.4b) with

Lagrangian

1 1N+11 f
L0 LS L P
0 k=1 7k
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where now d,, and E,, are defined in the usual way UT(9, —iA4,)U = id, +iFE, but with
U=U;---Unyi1. The Lagrangian (2.37) gives the low energy description of a theory with
the approximate global symmetry G, which is broken explicitly by gauging a subgroup
Hy, and is broken at low energies to its subgroup H.



Chapter 3

5D Theories and Holography

3.1 Gauge fields in 5D

This section is devoted to the study of Gauge fields in 5 dimensions, with an emphasis on
the holographic approach [33, 34]. We will try to be general at the beginning and restrict
to special cases of our interest as we go on. Consider a 5D space which consists of the
usual 4D space-time along with a spatial interval extra dimension R* x [zg, z;]. The 4D
spaces located at z = 2y and z = 27 will be called UV and IR boundaries respectively.
The 5D coordinates are labelled by capital Latin indices M = (u, z) where p = 0,---,3
represent the usual 4D Lorentz indices and z is the fifth component. The metric on this
space is taken to be

ds* = a(2)? (nudatdz” — dz*) = a(z)?nynde™ de™N (3.1)

with the Minkowski metric 7,,, having signature n = (4+, —, —, —) and a(z) assumed to be
positive. Consider a gauge field F'{;,; in the bulk, associated with a simple group G. The
Yang-Mills Lagrangian is

a\z
L puik = ——4(92) FipyFMN (3.2)
5

where the capital Latin indices are raised and lowered with the metric nyny. We also
introduce the gauge fixing term

a(z) _ 2
Ll =~ ey (0,4 — €a(2)™'0.(a(2)A2) (33)
5
which is chosen such that the mixing term between A, and A, cancels that of the bulk.
By varying the bulk Lagrangian

930L puie = O (a(2)FMN) §AY — a(z) P FMN AL 0 A% — 0. (a(2) FYHSAS) + 0,(- ),
(3.4)

17
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and the gauge fixing term

56 = o (0,47  ca(z) 0. (a(2)A%)) 5A°

£93

_al?) W _ a(2)"t0,(a(2) A g
£ 9. (8,A" — €a(2)"10.(a(2)AL)) 6 AL

+ 6%8 [( Oy A" — Lalz ) 0,(a (Z)Ag)) a(z)5Ag], (3.5)
95

one can find the bulk e.o.m for A, and A,

&,al’Aa 1 WO, AY —a 19, (a(2)0,A4%) =0
{ +(Et-1)0 (2)70: (a(2)0:45) 56

0y0" AL — €0, (a(2)10. (a(2)A2)) = 0.

The first equation above can be further decomposed into two equations for the trans-
verse and longitudinal components defined by A7, = (N — 0,0,/9%) A" and A7, =
0,0,/ 0% Aw

0,0" A%, — 0,0,A% — a(z)~10, (a(z)@zAaTu> —0 .
3.7
£19,0,AY —a(z)710, (a(z)azA‘iu) = 0.

Also the boundary e.o.m can be read off from the last terms in the variations (3.4) and
(3.5)

Foan§ A = 0
(3.8)

(A% — Ea(2)710, (a(2)AS)) A2 = 0.

There are two possibilities to satisfy the first equation, to keep A7, fixed on the boundary
or to let it satisfy F), = 0. The first condition breaks the gauge symmetry along the
corresponding generator on the boundary, while the second condition will preserve it. A
set of consistent b.c that we will be using throughout this work is

0=A47 (—) 0=0.47 (+) (3.9)
0=20.(a(z)A2) (+) 0=47 (=) '
Note that the condition 9, Aj; = 0 is equivalent to Fjj, = 0 when accompanied by A, =
0. So we will choose the b.c on the left for the field components corresponding to the
generators that are broken on the boundary, and the conditions on the right for the
components along the unbroken generators.
In the Feynman gauge & — 1, If we denote the mass spectrum of the transverse and
longitudinal modes by m,, and the mass spectrum of the fifth component by m,,, which of
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course depend on the boundary conditions, then in a general gauge the spectrum for the
transverse mode, the longitudinal mode, and the fifth component will be m,,, m,,+/¢ and
mn /€ respectively. This shows that the spectrum of the longitudinal modes and the fifth
component of the gauge field will become infinitely heavy in the unitary gauge £ — oo
and fade away from the theory, unless there is a zero mode. To seek the condition under
which a zero mode exists for the the fifth component of the gauge field, we concentrate
on the massless solution of the second equation in (3.6)

0, (a(2)A%) = ca(z) (3.10)

where ¢ is a constant. According to the b.c (3.9), if A, has (+) b.c on one end of the
extra dimension, it must have (4) b.c on the other end as well because of the positivity
of a(z). But also the solution to (3.10) cannot vanish on both ends because a(z)A,(a)
is a monotonically increasing or decreasing function of z, depending on the sign of c. So
out of the four b.c (£,£) and (&£, F), it is only (+,+) that gives rise to a non vanishing

solution, which is
N 1 d
F9() = N/ 4z (3.11)
2 (%)
where N is the normalization factor. A similar argument is valid for Aj; whose zero mode
has a flat profile. Note that in this case also the ghost fields will have a zero mode.

3.1.1 Holography for gauge fields

A standard way to treat extra dimensional theories is to expand the fields in a complete
set of mass eigenstates, the so called Kaluza-Klein approach. One can then integrate
out heavy fields to get a low energy effective theory. However, if we are concerned with
S-matrix elements with external states which are non vanishing on a boundary, one can
take an alternative approach and take boundary values of the fields as external states,
this does not affect S-matrix elements. In this case all we need is an effective action in
terms of the boundary fields, so one can integrate out the bulk and arrive at a 4D effective
action which we will call the holographic action. We will discuss this approach for gauge
fields in this section. Next section will be devoted to fermions.

Consider a gauge symmetry G in the bulk which is broken to H on the IR and to
Hy on the UV boundary. According to the above definition, the holographic action as a
functional of the UV boundary value C, is computed by the integrating over the bulk field
while keeping its UV value fixed at C,, and with the additional IR constraints compatible
with the symmetry breaking pattern

iS501[C] — iS[A _ a|
eSHollCul = DAy et [ M], F;}Z . 0, AZ e 0. (3.12)
Aw = C,
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This holographic action is invariant under all gauge group elements g such that gjp € H
and gy = 1. According to the argument of [35] one can add extra d.o.f on the IR brane
and at the same time enlarge the symmetry by removing the constraint g;r € H. This
is done by introducing the Goldstone field ¥ on the IR brane, which parametrizes G/H,
and with the usual transformation law (2.4) under G. In this way we get an equivalent
action

SualCl = [ DAy, S1AM) FEYe | =0, (A% =0 (313
€ M € 3 ( ),u,z IR ) ( )“ IR ( )
A =,
The IR constraints are now G invariant. In fact under the group element g
F — F9, 5 39, FE o ()9O = peD) e = PR (3.14)

with a similar transformation for Aﬁ. Now, by applying

g= Pexp <—’L/ dz Az> (3.15)

which is equal to the identity on the UV brane, the z-component of the gauge field is set
to zero everywhere A, = 0. By renaming the dummy variable 4, — AE we arrive at the

action 3.12 but with the UV b.c A,lpy = CE_l and a vanishing A.,.

iShol [Cu,2| iS[AL,Az=0 _ a _
¢Sh 1CL, 2] DAf‘Eejl [Ap }’ Fﬁz . 0, AZ e 0 (3.16)
AR =0y

3.1.2 Flat Space Example

We will illustrate the method described in the previous section with the simple example
of a gauge field on a flat extra dimension, that we choose to be [0, L] throughout this
work, by computing the holographic Lagrangian at tree level and at quadratic order in
the fields [20]. We start with the Yang-Mills action in the axial gauge A, =0

1 - 1
S = C4q2 /dz Tr [FMNFMN] AZ—P 402 dzTr [FWFW - 28ZAN8ZA“] : (3.17)
g5 95

In this case the bulk e.o.m in momentum space read

(p® +02)Al =0, O2A = 0. (3.18)
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For a fixed value A,(p,0) of the gauge field at z = 0, depending on the (+) or (—) b.c at
z = L the solutions are

Alr(p,z) = Gr(p, 2 2)Afr(p, 0) GH(p,z) = cospz+tanpLsinpz

AZT (p,2) = Grl(p, Z)AZT(p, 0) Gr(p,z) = cospz— cotpLsinpz (3.19)
AZL(p> Z) = GZ(pa Z)AZL(pv 0) Gz(p, Z) =1 '
Al (p,z) = Gp(p,2)AL (p,0) Gr(pz) = 1—%

plugging these solutions in (3.17) we find the holographic action

1
S = dzTr [Aur (p* + 02) AL + Au02 AY — 0,(A,0.AM)]
95
n shell
iy —@Tr [A,0, AM] | =0 = —2—g§”[&~ [Aur0. AL + Aur0. A% ] .=, (3.20)

where we have used the fact that A,0.A" = 0 on the IR brane because either A, = 0 or
0.A, = 0. Using the definitions (3.19) this can be written as

1 . .
Siot = 55T (GF0.GH AL A + G70.G Al A
5

+GLO.GL AL AL + GLO.GL AL AL |

(3.21)

Assuming (7%) = 0 we have A, = CE_I = %(C, —i0,)8" = C, — %Qﬂr which in
momentum space becomes C), — i%p“w, where C), = CJT + CﬁT& and 7 = 7%T%. So to

linear order in 7

AZT(pa 0) = CﬁT(p) AZL(Z% 0) = ﬁL(p) (3.22)
Alr(p,0) = Cip(p) AL (p,0) = Cl(p)—i¥2pum '
we further fix the gauge to Cr, = 0 and plug these solutions in eq.(3.21) to get
SHol =~ 7 &—PLW<H+( ) CirCh® + 10, (p) Clir O (3.23)
Hol g?,fﬁLpﬂﬂ 29§ g \P) Ly g \P) Ly
where we have defined
= G10.G}|,_, = ptanpL, I, = G;.0.Gy|,_, = —pcotpL  (3.24)
and we have also used G;0.G ‘Z:O = —1/L. choosing 7 to be canonically normalized,

fixes fr to be fr = g%\/%
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3.2 Gauge sector of the SO(5)/S0O(4) model in 5D flat space

3.2.1 The Lagrangian

We describe here, the gauge sector Lagrangian of a 5D model in flat space with SO(5) x
U(1)x symmetry in the bulk, which is broken to an SO(4) x U(1)x subgroup on the
IR boundary, and to the SM gauge group SU(2); x U(1)y on the UV boundary. The
hypercharge generator is defined to be Y = T3 + X. The bulk Lagrangian is

1 1
L5g=— / dz( —Tr [Fu F* — 2F,. F" | + ——Tr [Fx,wF§" — 2Fx - F4,] | . (3.25)
4gs 495 x ’ ’

We also adopt BKT for gauge fields associated with the unbroken generators on the UV
brane

0L o'L
Laguov = =g Wi W = g Bu B (3.26)

where B, is the field associated with the hypercharge generator Y. To define it we proceed
as follows. Restricting to the Wg’R, A, x subset of bulk fields, temporarily we absorb the
gauge couplings, appearing in the bulk gauge kinetic terms, into the gauge fields so that
the bulk gauge kinetic terms are canonical

1 1 _ .
_ijwang_ZAu,,XA;V+... . Du=0,—igsWigTh—igsx Aux X — -, (3.27)

where here the Abelian part of the gauge field strengths are understood. We want to
rotate the fields W3R7 Aux

w3 B
pR o) — p
( Ay > R< 7 ) , Re0O(2) (3.28)
and bring the gauge connection in the form

g5 WigTh + gsx Aux X = G5By, (T + X) + -+, (3.29)

with g5 to be specified later. In order to find the appropriate rotation, we write the gauge
connection as

\pT [ 95 0 -1 T}% . 1 1
(Bu, Z,)R < 0 gsx > 00 ( ¥ | 0= e b (3.30)
so the requirement is that

0
RT( 9 >01 3.31
< 0 g5x (3.31)
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be diagonal, and the diagonal elements define the gauge couplings. The necessary condi-
tion for this is that the two columns of the matrix

<95 0 >O1:<95 0 )L( b —1>: 1 ( g5 b —95>

0 g5x 0 g5x Jb—a\ —a 1 b—a\ —gsxa gsx
(3.32)

be orthogonal, which means ¢g2b + g2y a = 0, so b = —a(g2yx/g2). This leaves the

parameter a free. With the choice a = g5/¢g5x, the matrix O and the rotation R whose
left action on 3.32 puts it in a diagonal form are

11 .
Oz(i gg_X> R=7<~C’5X e > (3.33)
Zx 9 Vo giy N P ThX
so the redefined fields will be
By \ _ g Wir  gsxWip + g5 Aux g 9xWip — gsx Aux
zZ ] Aux )’ re 2, 9 ’ mo 2, 2 ’
a a \/ 95 t 95x \/ 95 T 95x

(3.34)

which after restoring the absorbed gauge couplings WﬁR — WS’R /95, Aux — Aux/gsx

become ) 5 24 5 2
1 We, + We, —
B — I5xWur T 954uX g1 uR X (3.35)

w= ) p=
J595X \/ 93 + 93x \/ 92+ 93x

The couplings are the diagonal elements of

R” < g5 0 ) Ol = BEX 4 -5y (3.36)

0 95.x \/ 93 + 93x

Note that the fields B, and Z L are in the canonical form, the fields in the non canonical
form are given by 3.35 multiplied by their couplings 3.36. Here, for simplicity of notation,
we only chose B, to be in non-canonical form, and Z;/L will remain in its canonical form

B — 9oxWip + 93 Aux g Wip — Aux 337
o 2 4 g2 ’ [ ’ ( : )
% T I5x V95 + 93x
or equivalently
Ry — “Fp + o w— Dy — —F/——4,. (338)

\ 95+ gy

In this basis the covariant derivative reads

o
V95 + gix

2 2
Dy = 0, —iWu T, —iW g Th—iW g Th—iB,Y —igs Z, Tz, Tz = %—5T§+%—§X. (3.39)
95x 95
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3.2.2 Holographic Analysis

We apply the tools of holography for gauge fields described in section (3.1.1) to the 5D
flat model introduced in the previous section. Adopting the axial gauge A, = 0, the
Lagrangian (3.25) will be

1 1 ,
L5y =— / dz(FT&" [Fy B = 20: A0 A1) & =T [Py FY' — 2aZAX,#aZA;]> :

g5 I5x
(3.40)
Ignoring the fluctuations of the Goldstone fields around their VEV in the 4D sigma model
field and using the unbroken SO(4) symmetry to align the VEV along the fourth broken
generator

% = exp (—i\/ﬁaT‘l) , a = (x)/fr, (3.41)

the tree level holographic Lagrangian in momentum space and at quadratic order in the
fields can be written as

PH ToLp? 0' Lp?
Lrot === [—fWEuWEV + z—pBuBV] (3.42)
95 95x
Pj;fz/ 1 N s 1va s—1\a 1 i n-1 n-1 1 _ -1\a »-1\a
| (O T g (CR ) (CR ) 1, (€N,

with the holographic field being
C, =W, -Tr+ B3,  Cx,=B,, (3.43)

in which the fields with (—) b.c on the UV are set to zero. The components of the rotated
holographic field

o = (7)ot = (WE)TE+ (W5 ) TR+ (A5 ), Th (3.44)
are given by
WE)™ = witests WF) = WielgiBsty
WS = wi?sin2e (WE™)? = W3 sin2¢ + B cos®
for the components along the unbroken generators, and
AETYE2 e SinOé’ A (R _ B sin A Y 3.46
(A5 ) L "/ (45 ) (Wi ) V2 (45 ) (3.46)

for the components along the broken generators. Plugging these into (3.42) we arrive at
the Lagrangian

PR
[’Hol = _% [HanguW£u + HYYB;LBV + 2H3nguBl/] s (34'7)
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in which the introduced form factors are given by
5ab

My = 2 21T} + sin’a (IT; — II}) + 2p°6L]
Mgy = %sinQQ (ITy —II,) (3.48)
295
My = — (I +p20'L) + 5oy [211] +sin’a (1T, ~117)],
5X 295

where I are defined in eq.(3.24). The roots of II1; will give a tower of KK masses which
includes the W# mass, while the Z boson mass is included in the roots of

20202 (MgsTlyy —TT3y) = 2(1+1) (H; 4 p29~L> (H; i p29L> (3.49)

+ sin?a (I, — IT}) [(1+2n)ng+p2(é+n(9+a))L :

where we have defined )

— 2 2 i_ o 95
n=gix/95, 0=0——>+—. (3.50)
AL 95 + 95x
By expanding these form factors in momentum
5ab .2 25abL 1. 2 4
Iy =— 1+60—- @)
ab 2021 sin“a + p e ( + 7 sin a) + O(p")
I3y = L gin?a + p2i +O(p*) (3.51)
2g2L 392
1 1+6 3 —sin’a 4
IIyy = — sina + p*L + O(pY)
2951 Tax 393

one can easily read off the SU(2);, and U(1)y gauge couplings and the Higgs VEV

1 , L(3 + 30 — sin®a)
— = 1II4;(0) = 202
g 95
1 L(3+3¢") L(3—sin%a)
— = Iy (0) = p) P (352)
g 95x 395

2 sin?
v? = —4I11(0) = 51211 e f2sina.

g5 L

As expected, at tree level, the custodial symmetry leads to Il,; o ., which results in a
vanishing 7' parameter. Also the S parameter, written in terms the couplings (3.52) is
found to be
Lsin® a sin? o
S = 167115y (0) = 16m——— = 167 .
av (0) 392 g%(3 4 30 — sin® a)

(3.53)
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By looking at the holographic Lagrangian expanded up to second order in momentum

wsinfa 3
Lo = P iver; (Wg,We, + B,B, — 2W},B,)
P‘“’ 1 sin? o
— Wi, Wi, + —B.B, + W3 B 3.54
2 [ LpV v g2 " T g2(3 4+ 30 — sin? ) Lu V} (3:54)

one can see that the fields WL and B are related to the canonically normalized Z and ~
fields in the following way

w3 1 9> gd Z
= — P , : (3.55)
B Ve +g?\ —9° 99 Y

In finding the transformation to the Z,~v basis we have ignored the WgB mixing, because
we treat this term as a contribution to the S parameter. So it is the above definition of
Z,~ that we use for computing the corrections to the Zbb vertex, since we are interested
only in the non-universal corrections.

From the Lagrangian (3.47), and by using the definitions (3.48), one can easily compute
the gauge contribution to the Coleman-Weinberg potential [36]

Vo == [—— [2log [1+s2—L —9
973 / @m)t |78 ( ") + p20L)

+log 1_|_52HJ€;H;F + s _gLHJF
2(IIy + p%0L) 95 2(T1§ + p26L)

Fig.(3.1) shows the 1-loop diagrams that contribute to the potential. After a Wick
rotation, the combination IT; — II; falls off exponentially with momentum, while IT;
grows linearly. So the ratios appearing in front of s2 in Vj fall off exponentially and at
leading order in these ratios, this potential is proportional to s2 which means that it tends
to align the vacuum in a direction that preserves Ggys, in accordance with [37].

(3.56)

3.2.3 Comparison with the analysis in the KK basis

Our aim in this section is to make a comparison between the analysis of section (3.2.2)
based on the holographic approach and the more standard KK approach. We will see
that with more effort we will be able to reproduce the mass spectra and the precision
electroweak observables S and T'. According to the analysis of section (3.2.1) the kinetic
terms of the 5D Lagrangian (3.25) can be written in the following form

1 2 1 2 1 2
L = | 303 V8)" + 33 (V) + 12 (W)

L ( 2 i 2 1 ’
+4g§ (AB;W) + 4§§ (B;w) 4 (Z ) (357)
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Figure 3.1: 1-loop gauge contribution to the Higgs potential. Each external line stands
for a s, factor. These contributions consist of diagrams in which either Wﬁ or Wi run in
the loops or Wg’ and B, appear in all possible combinations.

while we rewrite the UV action in terms of the parameters 6 and gs by using the identity
0'/g2y = 6/g2 which is clear from their definitions

0L oL
Liguv = "1 Wi, Wk — ppe B, B" . (3.58)

The Lagrangian (3.25) also includes interaction terms between the fields in (3.57) as well
as the two terms (2¢2) 'Tr [F,.F!'] and (2¢%) ' Tr [Fx .. F%,]. As discussed above, in
the unitary gauge which we adopt here, among all the KK modes of Ax . and different
components of A,, the zero modes of Ap,, the components along the broken generators,
will remain in the spectrum. So from now on we will set Ax, = 0 and A, = Ap.,
where, by Apg, the zero mode is meant. Doing this we can write (29%)_1Tr [FX#ZF)’éZ] =
(2g3)'Tr [0, Ax 0. A% ]. To express the second term (2¢g2) ' Tr [F),. F}'] mentioned above
in a more transparent way, we write the field strength as

F..=D,A, —ilApu, A.) — 0,A,, DuA, =0,A, —ilApu, As) —i[Agu, A2 (3.59)
and use it to write
Tr[F,.FY] = Tr[0.A,0.A" + D,A.D" A, — [Ap,, A:][AL, A.]
—20,A,D'A, + 200, A, [Aly, AL] — 2iD, AL [A AL]] . (3.60)

The last term in eq.(3.60) vanishes because D, A, lies in the broken subspace of the gener-
ators while the commutator of two broken generators [A%, A,] is an unbroken generator.
In order to proceed we find it more convenient to express the fields in a two by two matrix
notation and define Ay g, = W}j’Ruaa/Q, A, = AZ}BN —1iAp, -0 (where the same symbols
have been used) and also

bo=h, Q=h*—ih-3=(H" H) (3.61)
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Using these definitions one can write

1 1
27Tt [F.Fr) = pra [0, A1, 0. A" + 0, AR, 0. A% + 0. Ap,d, AL
1 1
+ —Tr[(D,Q) D] — — Tr[a. A%, D*Q
1
- @“[(ABNT — Al )+ (4,0 - QT4p,)’]
7
+ o™ (041, (4501 - QA + 0. Ap, (40 - ot

(3.62)

In the mas basis the term (2g2) ' Tr [0, Ax 0. A% ] together with the first line of (3.62)
have the same structure as (3.57) with the field strengths replaced by the squared values of
the z-derivatives of the fields. These terms along with (3.57) and (3.58) give the quadratic
term of the Lagrangian which we use to find the linear e.o.m.

KK wave-functions and mass spectra before EWSB

In order to solve the wave equations we need to specify the boundary conditions of the
fields. These b.c are chosen according to the symmetry breaking pattern on the two
boundaries. For the fields associated with the broken generators we choose Dirichlet (—)

b.c, and for the fields associated with the unbroken generators we choose Neumann (+)
b.c

1,2 ;
Wi By (++) Wi Z (=) Ap, (=) (3.63)
where a = 1,2,3 and 7 = 1,2,3,4 and the first(second) entry in the parentheses denotes
the b.c on the UV(IR) brane. The z components have the opposite b.c.

The bulk e.o.m for a gauge field, which we generally call A, is

(026, — 0,0") Ay + 024, =0 (3.64)

we plug the ansantz F'(z)f(z) in this equation and divide the equation by the ansatz to

get
1 1
F (82 — aual/) F,,(a:) + ?

the two terms are functions of different variables so their are both constant. choosing
(82 — 0,0 ) F, = —m?F,, the bulk profile will satisfy

D2f(2) =0 (3.65)

m?f+ f"(2) =0 (3.66)
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where a prime denotes a derivative with respect to z. This equation admits the solution
f(z) = Acosmz + Bsinmz (3.67)

We still need to impose the b.c, so we now concentrate on different fields separately.

The SU(2);, triplet W},

The UV and IR b.c for W}, taking into account, of course, the variation of the boundary
action 3.26, are
OLm2f(0) + f'(0)=0,  f'(L)=0. (3.68)

After inserting the solution 3.67, the IR b.c will give B = AtanmlL, so that the bulk
profile is now f(z) = A(cosmz + tan mLsinmz), and the overall factor A is fixed by the
normalization condition

L
OLF2(0) + / dz £2(2) = g2 (3.69)
0
The UV b.c imposes a second constraint which gives the mass equation

m(tanmL 4+ OmL) =0 (3.70)

the mass equation 3.70 has a zero mode, the non zero modes are functions of 6 given by

o —17 41 1
Lk SR [ Y —)). >1 71
" 2 L< +7T2(2n—1)29+0<02>> " (3:71)

So the 5D wave-function in the mixed (p, z) basis is

1/2
a(n) N G S - Ta(n)
Wi, (p,2) = gs 7 (0 o an> (cosmyz + tanmy, L sinmyz) W, ;7 (p) (3.72)
which reduces to ) 7 —(0)
w; 2) = ——eoe W 3.73
W =B W) (.7

for the zero mode.

The W fields

For the fields W}%j the UV and IR the b.c and the normalization conditions are

L
fO)=0,  f(Iz)=0. / dz f2(2) = gs (3.74)

0



CHAPTER 3. 5D THEORIES AND HOLOGRAPHY 30

so the mass spectra are given by cos mL = 0, which means

2n—1m
2 L’

and the 5D wave-function in the mixed (p, z) basis is

n>1 (3.75)

my =

7 o
W™ (p, z) = 95\/; sinmgz Wi (p) (3.76)

The B, and ZL fields

For the extra dimensional profile of Z’ the b.c and normalization condition are the same
as that of the fields Wéi with a missing overall g5 factor

L
fo =0 fw=o. [dre - (3.77)
0
so the mass spectrum is
2n—1m=
= — >1 .
M, 5T n > (3.78)

and the wave-function in the mixed (p, z) basis is

2 -
Z1(p,z) =\ T sinmaz Z,,(p) (3.79)

From the way the Lagrangians (3.57) and (3.58) are written, it is obvious that the situation
for B, is exactly the same as Wi, but with the replacements

0 — 9, gs — §5 (3'80)

The fields AiB# associated with the broken generators SO(5)/SO(4)

Finally, the b.c and normalization condition for the fields A% . are

L
f0)=0,  f(L)=0, / 2z f2(2) = g2 (3.81)

0

mp=n—, n>1 (3.82)

and a bulk wave-function

2 . ~
AB,u(p7 Z) = 95\/; S Mmpz ABu(p) (383)
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As discussed in section 3.1 in the unitary gauge 0, A, = 0, this is the only field whose z
component has a non zero wave-function

Ap:(p,2) = 95\/% Ap.(p) (3.84)

KK wave-functions and mass spectra after EWSB

we choose the direction of the VEV to lie along Té. For simplicity one can perform the
gauge transformation

Ay = Ul(Ay —ion)U, U = e ?V20T"2/L (3.85)

to eliminate the Higgs VEV in the bulk. The parameter o must satisfy (h) = v2a/L.
Note that U is the identity matrix on the UV brane, but on the IR brane

0 00 0 0
0 00 0 0
Urmr=|0 00 0 0 =3 (3.86)
0 0 0 cosa sina
0 0 0 —sina cosa

so the IR b.c which used to be fj*(L) =0, f#(L) =0, and f5(L) = 0 are now modified.
To find the new b.c one must perform the transformation

Fi-Tot o Tot - To = S (- T+ fa-To+ - Tp) S (387)
in the old b.c. So on the IR brane the (—) b.c become
(fi—fé)SiDOz—i-\/ifécosa =0
(f} — f3)sina + V2§ cosa =0

(f3 — f3)sina +V2f} cosa =0 (3.88)
f5=0
while the (+) b.c are now
T+ =0
(fp = fi)cosa+V2fpsina=0
A (3.89)
(fR = fP)cosa+ V2fEsina=0
PHIE=0
(f5 = fP)cosa+V2fpsina =0



CHAPTER 3. 5D THEORIES AND HOLOGRAPHY 32

the functions f}, f§ and f} are mixed together through the b.c on the UV and IR branes.
We now concentrate on these set of functions with b.c

OLm?*f} + f1 =0 (ff = fL)ysina+v2fkcosa = 0
uv: fr=0 IR: (fR = f)cosa+V2fasina=0
fp=0 N4 =0,
(3.90)

The same b.c are valid for f?, f3 and f3 of course, because of the U(1)ey, symmetry.
Inserting the bulk solutions

fi(z) = Alcosmz+ Bisinmz
fh(z) = Ajcosmz+ Blsinmz (3.91)
fi(z) = Apcosmz+ Bpsinmz
the UV b.c give
fi(z) = Al(cosmz—6Lmsinmz)
1(2) = Bpsinmz (3.92)
L(2) = Bpsinmz

plugging these into the IR constraints gives a set of three coupled linear homogeneous
equations in Al A}q and AL. The requirement that these linear equations have a non
trivial solution means that the matrix of coefficients must have zero determinant, which
in this case is

cos(mL) [2 sin?(mL) + #mLsin(2mL) — sin’ al =0. (3.93)

This is the mass equation. A subset of the mass spectra is given by the condition that
the overall factor cos(mL) vanishes
2n—1m
my, = —
n 2 L7
in this case the solution to the linear equations is A} = 0 and By = Bk tana/ V2, so the
wave-functions are

n>1 (3.94)

fi(z) = 0
fh(z) = Nsinmz (3.95)
fa(z) = Ntan 2 sinmz

with a normalization factor

1
27 1,1
N = g; 17 [1 + itan a} (3.96)
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chosen such that the normalization condition

L
2 2 2 2
0L (F0) + [ (1) + (h) + ()] = o8 (3.97)
is satisfied. For the other tower of masses
[2sin*(mL) + #mLsin(2mL) — sin®a] =0 (3.98)
which are modified after EWSB, the solution to the linear equations will be
-2
By = (mLO+tanmL)Al = == 4l .
R (m + tanm ) I JE— I (3 99)
sin 2«
B = —V2cota(mLf +tanmL)A} = —————— A} 3.100
b ( )AL = -2 (3.100)
So in this case the wave-functions are
fi(z) = N(cosmz— OLmsinmz)
-2
1 B sin“a
fr(z) = Nsin —7 Sinmz (3.101)
1 sin 2« .
z) = —N————sinmz
J5(2) V2sinmL
with the normalization factor
1
/2 1 —cos(2mL)cos?a] 2
N = —0+2 . 3.102
BNIL [ + sin?(2mL) } ( )
The mass of the W boson is the lightest excitation of the tower of masses (3.98)
sin « 1+20 ., 4 >
my = sin“ a + O(sin” « 3.103
v =i (U ma i) 109
for which the normalization facto is
g5 0 . 2 . 4 )
N = 1+ sin“ a + O(sin . 3.104
VIVI+0 < 6(1+6)2 (sin”a) (3.104)

Finally, for completeness, we briefly mention the case for the coupled set of wave functions
fg, f}?’%, f% and fx, and write down the b.c

OLm?f} + [ =0 (ff — f3)sina+v2f3 cosa =0
- O(1+n)Lm?f3 +nfs+ fi =0 R (fp = ) cosa+V2fEsina=0

=0 P+IE=0

fx = fi fi=0

(3.105)
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where we have defined n = g%X /g%. Proceeding as before, the tower of masses is given by
the roots of the mass equation

(14 n)sin(2mL) (Lm@ cosmL + sin mL) (Lmé cos mL + sin mL)
—sin®a cosmL (Lm(H~ + (0 + 0)) cosmL + (1 + 2n) sin mL) =0. (3.106)

This equation, whose roots include the mass of the Z boson as the lightest excitation, is
in complete agreement with the result (3.49) obtained using holographic methods.

Computation of the S parameter at tree level

We continue our study in KK basis by computing the electroweak S parameter. At lead-
ing order in the Higgs VEV, the contributions to the .S parameter come from coupling
deviations of light fermions to gauge bosons. The light fermion wave-functions are highly
localized towards the UV brane, so one can approximate the bulk gauge-fermion inter-
actions, by setting the gauge wave-functions to their UV values, which gives, due to the
normalization of the fermion wave-functions

Jaz0a)53) — fa@y) (3.107)

This makes the gauge-fermion couplings independent of the light fermion species, and
hence universal. In this case the relation between gauge-fermion coupling deviations and
electroweak precision observables [38] is discussed in section (3.2.4). Using (3.101) the
UV value of the W boson bulk profile, which is the W coupling, is given by (3.104). So
the relative coupling deviation will be

%g = 6(%9)2 sin? o (3.108)
Alternatively, one can find this result by using the gauge wave-functions before EWSB
and inserting Higgs VEVs on the gauge propagator. Fig.(3.2) shows the mixing between
a gauge zero mode, which is the wave-function of the SM Wé boson, and a massive KK
mode X", through a Higgs insertion. To find the value of this mixing, we give a look at
the relevant gauge-Higgs interaction terms discussed in section (3.2.3)

1 <h>2 Qa, Q, a Q
4—g§Tr[DQTDQ] — SZ (Wi W + Wi Wit — 2W i Wik (3.109)

where W  are the 5D wave-functions. Using this, the diagram (3.2) can be computed

w2 R 10y, )
hyy =gz ) o ()" (),  n>0 (3.110)
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Figure 3.3: Tree level corrections to the gauge-fermion vertex through the exchange of
massive KK modes.

where

LT PN VN 2V/2 g2 B 6 1
[t 0@ - P 5_1+9<1 7(2n_1)2ﬂ29+o(92)> (3.111)

The diagram (3.3) shows how the exchange of massive KK modes will give, at tree level,
the leading correction to the gauge coupling. These diagrams can be easily computed
using [ in)l evaluated above, and the fact that the UV value of the nth KK mode is

wi
)y _ |2 295
fr70) =4/ Lon-1)on (3.112)

By summing over diagrams (3.3) in which all possible KK modes are exchanged we find
the gauge coupling deviation to be

: o () el(n) =1\ .. (n) . (h)? \/? 4293 AL2
= = —_— I = —_ ..
i0g nzlﬂ/iwi ’LfL (0) <—m%> 7 1w} nzl’é 49% Y e (2n — 1)4 +

(3.113)

0 2 > 2
S YA E o P s S
= VLroVT+0 o (2n— 1)1 6VLOV1+0
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where we have used

0 4
1 T
— = — 3.114)
> G (
ot (2n —2) 96
Dividing this deviation by the coupling before EWSB
gs
= 3.115
9= /I +0) (3.115)
the relative coupling deviation is found to be
dg o
= 4. 3.116
g 60 + ( )

in agreement with the result (3.108). Using this result, the arguments of section (3.2.4)
show that the S parameter is

a 32 167 o
859 = — — 3914 = g = 11
S 5 32ma e z 7 30" (3.117)

where in the last equation we have used the fact that
F=-2=__ (3.118)
in agreement with the result (3.53), obtained using the holographic approach.

Computation of the 7' parameter at tree level

We next move to the tree level computation of the T" parameter. There are two possible
sources of custodial breaking. The first is the exchange of heavy KK modes between two
Wé(o) or W}?(O) zero modes. And the the second, similar to the case of the S parameter,
is the deviation of gauge coupling to fermions. In order to find the first contribution to
the T' parameter we need to compute diagrams such as fig.(3.4). The relevant diagrams

of this sort are the ones with Wé( ) and W 30) 45 external lines. For external WS(O) lines,
massive towers of B, Z/(™) and WL( ") can be exchanged.The exchange of Wg(n) will

cancel the Wé(n) exchange between two Wé(o) due to SU(2), symmetry. The associated
diagrams of Il33zs and Ils3p involve the mixings

2
i = — <4h>2 /d AODM @), n>o0 (3.119)

7™ <

h
v \/9 +9 /

dz f3(0 )(z), n>0 (3.120)
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W;(LO) Lox) Wi(LO)

Figure 3.4: Tree level corrections to the mixing between Wi and VVJJL through the exchange
of massive KK modes.

where

(n) 2\/5 95 1

30) SR N z Lzsinm z =
/de ()Zl(Z)—\/m \/;/Od iy e (3.121)

L 50 (n) V295350 1 2
/dZ fr7(2) Bn (2) = - < =~ )
0 V1I+60 \1+60+62L2m2

225550 1 ( 6 ( 1 >>
= - l-—— 10 =] (3122
TV1+60 2n—1 (2n — 1)%2726 62 ( )

The mixing between W}j’(o), B™ and Z'™ is found using eq.(3.109) and the first equation
n (3.38). Using these results, the computation of II33p and Il33, goes as follows

. n o~ 1 2
illzsp = ZZH:(SBB = _ZZ m2 (Ié’;))
8 1, /1
- 4L4 42 2(2n —1)2 <1_ 7r2(2n—1)250 <§>>
“2gsg) 1 (12 1 (1
m/l +6 ) (2n—1) ™(2n —1)26 " \ 92

_ ; Z 32L%g2G2 L2
4L4 (1 +6)(2n —1)4 w260(2n — 1)2

ot 32L29595 7 20 76 atL? 95 g5 1 2
= —1 — — —=—_—= —— . < — =
4L4g4 7 (140) \96 720960 12L2(1 +0) 0
A2
= 1—= 3.123
TR+ g2 1202(1 1 0) F (3.123)
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- o~ ) N L (1) 2
g3, = ZZH33Z = —ZZ — 132
n=1 n:l
2
B ot i AL ( 2v2g; 1 >
- 4 2 _ _
4L g5 95 +95X = 2n—12 \ /146 2n—1
8 2 1 & 2 4
_ . o 95 _42 —ig B O _(3.124)

n=1

The final vacuum polarization amplitude will be the sum of three terms
9°I33(0) = sz + Mazz + Mg (3.125)
with the sum of the first two being

a4 N ggX Oé4L2
12L2(1+6) ' g2 + g2 120%(1 + 6)

2
I35 + I35 = — 5 (3.126)

On the other hand, the massive KK modes that contribute to IIy; are W}lz(") and Wé(n).
The mixing between WL(O) and Wll%(n) is given by

L
i, =~ <4h>22 /d 210, n>0 (3.127)

where

100), _y £1(n) g5 2 [t _2V2¢8 1
/de ( )fR ( ) mg5\/;AdZ Slnmnz—wm om—1° (3128)

So the contribution of Wll%(n) to the vacuum polarization amplitude is

o
My, = Yo, - zzmQ (1)’

n=1
2
B Z L? 2v2g2 1
N 4L44 22n — 12 \7y/1+02n—1
8a4 > 1 o
= —i = —i 12
"T20i(1 1 0) nz::l 2n—14 1202791+ 0) (3129)

Finally, the total vacuum polarization amplitude is the sum of two terms

9°T11(0) = My + gy (3.130)
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So the custodial breaking combination of II33(0) and II;;(0) is

g* (11 (0) = z3(0)) = Mypyy + My — Isszp — ssz — gy
Y
2+ 2y 1202(1 1 0)

2
= 3.131
- (3131

(n)

1w} and

As mentioned before, because of the SU(2); symmetry, the two quantities II

H(?j/vg, are equal and cancel out in the above combination. This gives the first contribution

to the T parameter

47‘( 47T 471' 92 2

Ty = ——— (TI11(0) — I33(0)) = ——— g2 (I111(0) — 33(0)) = — — 22X~

1 sgcgmg( 11(0) — I33(0)) egma/g (I11(0) — I33(0)) 2 T+ g2, 30
(3.132)

where in the last equation we have used the value of the W mass which can be derived
using (3.109) in the following way

_ ot o, N\ () g o a?
m%V_Qs—gg/odZ ( io(z)> 42 L(li@)L n+0) " 22atey 313

where (h) = v/2a/L has been used. The second contribution is obtained, again, using the
results of section (3.2.4) and the gauge coupling deviation found in the previous section

T — 8ra  8ni (¢ 2 8 a? G20 8ma? gy 0 4Am gy o
e 2 \y 6 )

It is clearly seen that these two contributions sum up to zero, as expected, because of the
custodial symmetry.
T=T14+T1T,=0 (3.135)

3.2.4 Vertex corrections interpreted as oblique corrections

In this section, following [38], we argue that if the dimension 6 operators contributing
to the gauge fermion coupling appear with certain coefficients, they can be translated
into oblique corrections. In this case we also find the explicit form of the electroweak
observables S and T. For this purpose consider the dimension 6 operators including
fermions

(6) — J T o + |4
‘Cfermzons 167T Ugl/)’y Q/)D H 2 H 6 2 21/)7 ¢D H'H + 16720 21/)¢¢1/)(;_1};60)
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concentrating on the first two terms, after EWSB this Lagrangian gives rise to

(6) T oua o
Efermwns - _mwﬁyua ¢<H>T <9WM ’

N | Q

+ Q/BMYH) o"(H)

.

Pyt ()T <9Wu '

| QL

'B,Y; H h.
167rv2 g#H)<>—|—c

_ 1 _
<m*‘o“ng£§<o“a” +ol0%) — Wo?’wzg’BuYH)

Py (—gW3 +2¢' B, Yrr)

= 12872

Y
+ 3972
.
— gz (P G0 = o e B ) +

Py (—gW, +29'B,Yrr)
(3.137)

Yy
3272

which leads to a modification of gauge fermion interactions

1/JZM¢ + ‘C;irmwns - %EZ al/} + JJ’Y“ ( o )u v, (3'138)

where the terms in the parenthesis are given by

- (Wl + 22> <1+64$?>+;[9W3( 649272)_9/3(2}/1{)641:?
y

+¢'B (Y + 2(2YH)64 ) — 2gW3 (3.139)

6472

For simplicity of notation one can set 2Yy = 1 and make the transformation ¢ — ¢’ (2Yy)
and Y — Y/(2Yy) to restore it whenever needed. We also deﬁne a,b by x = a92 and
Y= bg’ and the tilded quantities Z, ¢, @ and b through 7 =

J 647r2 Y= 647r2 ’
b=35 4 —2-. The redefinition of the gauge fields needed to bring the gauge-fermion couplings

in the canonical form are given by

a= 642 and

1
wh? —» — w2 (3.140)
1+ag
and . . .
W 1 1+ by bgg’ W
- . (3.141)
B 1+ ag? + bg"? agq' 1+ dg2 B
Lets consider these field redefinitions in the Z,,, A, basis. As a simple computation shows
1 ~ -
Wi—gBu = —— (g0 + P)W? + ¢aB, — ggsW} — ¢ (1 + g%0) By,
gW, —9'By T g2 1 g 9(1+47b) g9°g'aBy, —gg bW, —g'(1+g°a) By,
1 1
= ———  (gW3—¢B = Z,—>———7,(3.142
1+ag2+bg/2(g x = 9Bu) 1+ ag? + by p (3:142)
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so the field Z, is only rescaled, as it should, because no mass terms for A, must be

generated due to U(1),,, gauge invariance. But lets now figure out the transformation of

Ay

gWSi+gB, — T v g (g’(l + gP0)W? + gg%aB,, + > g bW + g(1 + g2&)BM>

- (g’(1 + (2 + g*)D)W?3 + g(1 + (¢* + ga)B ) . (3.143)
1+ ag? + by !

If we require only oblique corrections , then the analysis by [39] shows that no mixing

between Z, and A, must be generated, this implies that A, must also be only rescaled,

which is equivalent to having a = b. In fact in this case the scaling factor is 1, A, — A,,.

For this special case, after these field transformations, the modified vacuum polarization

amplitudes and their derivatives at ¢> = 0 are (sw = sin Oy, ey = cosBy)

1 - ~
wap(0) = swew 0+l g2 1| = —2swewalg® + ¢)* + 0@%), (3.144)

which lead to the contribution

167 ~ a
to the S parameter, and
02 g2 02 g2
1I 0)=——"——= 11 0) =— 3.146
Wlwl( ) 1 (1 T 692)27 W3W3( ) 4 (1 + 6(92 +912))2’ ( )

which give rise to the T" parameter

47

T = —5—— Ty (0) — yysys(0))
Swewmz9
47 v2g? 1 1
- swepmzg? 4 [(1+ag?)? B (1+a(g®+g?))?
2 2 ” ”
- s (2a0) + 0 = i+ 0) = £ + OG)
(3.147)

3.3 Fermions in 5D

Along the lines of section 3.1 on gauge fields, we will briefly discuss some basic facts
regarding fermion fields in 5D. Taking the space-time metric to be of the general form
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(3.1), the fermion Lagrangian will be
L= /dz a [ FMDsz - — §DM¢ er —— M|, (3.148)

where the 5D gamma matrices satisfying the Clifford algebra [I'M, TV] = 2nM~1 and the
covariant derivative are defined by

1d

TH=at T =—iy° D5 =05, Du=0u+ 7T e, (3.149)
The bulk e.o.m are easily found to be
(00 + Ma+ 25w =i
(a —Ma+2% )¢R_—za¢L, (3.150)
while the UV and IR boundary e.o.m are
(@L&/)R + 8YRYL — YROYL — 51/7L1/)R> ‘UV’IR =0. (3.151)

We will call ¢y, g = 0 Dirichlet or (—) b.c while the constraint on the other chirality
imposed by the bulk egs.(3.150) will be called Neuman or (+)

(8 + Ma—+2— )wL

UV,IR

: (3.152)

(8 s Matzy )wR UV,IR

In the next section we will move to the discussion of the holographic method for fermions.

3.3.1 Holography for fermions

Just like the case of gauge fields, one can find a holographic action for fermions by inte-
grating out the bulk, keeping the UV boundary value of the fermion fields fixed [40]. As
in the case of gauge fields, after moving to the axial gauge the fixed UV boundary values
of the fermions will be transformed by the group element X!

¢St — [ Dy iSol, (3.153)
\I}‘uv = 1/1271

where the IR constraints are implicit. Of course one can only take one of the chiralities to
be fixed on the boundary, since the b.c for the other chirality will automatically follow by
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the bulk e.o.m, being a first order differential equation. We demonstrate here the main
features of how in practice this is achieved in the case of a single fermion in a flat extra
dimension. The bulk fermion action is

1

L .
L puik = /0 dz |:§1Z’)/M8MQ/) - %8M1/_)7M1/) — map (3.154)

as mentioned above, we wish to take one of the chiralities as the holographic field to be
fixed on the UV boundary. To see if these choices are compatible with the boundary
constraints we consider the UV piece of the variation of this Lagrangian

6L puk|luv = —% [OL6VR + 6RYL — YROYL — 0LYR],_, (3.155)

Depending on whether we choose the LH field or the RH field as the holographic field,
the second or the first two terms in the above Lagrangian will vanish, leaving us with
some extra constraints which are undesirable. So we are forced to add a UV boundary
term to the Lagrangian whose variation cancels this unwanted piece. For 1, taken as the
holographic field the appropriate Lagrangian is

1 - _
L= SWLvk + VRVL) + Lo, (3.156)

while taking ¥r to be holographic will lead us to

1 - _
L= =51k + VRVL) + Lo, (3.157)

Now the variation of these Lagrangians vanishes. For either of these cases one can add a
function of the holographic field on the UV boundary, since their variation vanishes. So
the most general Lagrangians are

Lov () + 5 (0% + F0) + Lo (3.158)

Lov () — @005 + I%wh) + Lo (3159)

After extremizing the holographic Lagrangian, these two options lead to (4) b.c for ¢y,
and ¥R respectively. In other words, allowing the holographic fields on the UV boundary
to vary and requiring that the variations of the two Lagrangians above vanish, gives rise
to the constraints

5513_28”%) F =0 (3.160)
L
SLyv (V) — g0 =0 (3.161)

s¢%
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respectively for the Lagrangians (3.158) and (3.159). Consider the first equation, it is
clear that in the case of no UV Lagrangian Ly, this will give 1/1% = 0. So we also refer
to the more general condition (3.158) as a (—) b.c for ¥g, and by definition, what follows
from the e.o.m is called a (4) b.c for 1. In the same way, eq.(3.159) leads to a (—) b.c
for ¢, and a (4) b.c for ¢g. One might wonder if boundary constraints can give rise to
a (=) b.c for the holographic field. The answer is that this is simply done by adding a
Lagrange multiplyer term to the Lagrangian. The Lagrangian (3.158) gives rise to a (+)
b.c for the holographic ¥, but modifying it as

B B 1 B
EUV(wEQ) + (Q/)E%wL + wLw}z) + §(¢%¢% + ¢%Q/J%) + LBulk (3.162)

will lead to a (—) b.c for the holographic 1. This is easily seen by integrating out the
Lagrange multiplyer 1, by varying v, which brings us to (3.159), the Lagrangian that
gives (+) b.c for Y. But a (4) b.c for 1) means a (—) b.c for ¢;. For the other case,
namely having a holographic ¥r(—), the Lagrangian (3.159) can be modified to

Cov () + B+ Onih) — S (090 + B0) + Lo (3163)

The Lagrangians in the Holographic and KK approaches are the same. In the holo-
graphic approach we first choose 17, or ¥r as the holographic field and extremize the
action with the constraint that the holographic field is fixed at the UV boundary (inte-
grating out the bulk), doing this we arrive at a 4D action in terms of the holographic
field. Then one can extremize this 4D action and get an extremum which is of course the
extremum of the original 5D action. In the KK approach one extremizes the 5D action
directly without first taking the UV value of one of the chiralities fixed. No matter which
route we take, we arrive at the same extremum as far as the original 5D Lagrangians are
the same. The only difference is that in the KK approach we don’t need the Lagrange
multiplyer terms. This was forced to us in the holographic approach by the requirement
that the (—) b.c for the holographic field be generated dynamically, otherwise we have to
set it to zero by hand in which case there will be no action functional of it and we might
loose possible zero modes coming from the other chirality. It is worth mentioning that in
the KK approach when Ly = 0 we really don’t need the term %(Q/_)%Q/)% + &%Q/J%) also,
because even without it the b.c s can be satisfied, in fact the boundary e.o.m in this case
is eq.(3.155) equal to zero, which is satisfied when 1 and ¥p are proportional to each
other on the UV.

3.3.2 Flat Space Example

To demonstrate the holographic approach for fermions, we consider a single fermion on a
flat extra dimension [20] with the bulk action (3.154). Taking the LH chirality 11, to be
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the holographic field with UV value y, the solutions to the e.o.m, respectively for ¥, (+)
and 1r,(—) b.c on the IR brane are

Yr.r =T} pxL Yr(L) =0 (3.164)
¢L7R = HE,R XL @DL(L) =0 (3165)
where we have defined the bulk to boundary propagators
F.(z,m _ F_(z,m
HE(z,m):% HL(z,m):#
t+(m) ~(m)
E_(zm)p Eomy 1
) =5y p S NN
using the definitions
Fy(z,m) =cosw(L —z) + % sinw(L — 2) Fy(m) = F(0,m) (3.167)
F_(z;m) = Lsinw(L - 2) F_(m) = F_(0,m) '
w

with w = /p? — m2.
When the RH chirality is taken as the holographic field with boundary value x g, the

solutions for ¥ g(+) and 1)r(—) b.c on the IR brane become

YR = L RXR Yr(L) =0 (3.168)
Yr,r=U} p xR Yr(L) =0, (3.169)
with the bulk to boundary propagators defined by
fif o) =~ ) = T2
~ . F,(z,—m) ~_ F_(z,m) (3.170)
Iy (z,m) = m Oy (z,m) = m

As we discussed previously, the Lagrangians we must deal with in the two cases above
with 1, or ¥ taken as holographic fields are given respectively by (3.158) and (3.159)
Plugging the solutions (3.164) and (3.168) into the corresponding Lagrangians we find
that the non vanishing contributions come from the boundary terms since the bulk action
vanishes on-shell. The resulting holographic Lagrangians are

L3 = x . IH(m) 1 I1E(m) = I (0,m)

i g Seo g (3.171)
r = Xr U7 (m)xr p(m) =117 (0,m)



CHAPTER 3. 5D THEORIES AND HOLOGRAPHY 46

where the index L, R on L refers to the holographic chirality, and £ refers to the IR
b.c of the holographic field. Finally in the case where the fields xr r carry a nontrivial
representation of the bulk gauge group, they must be replaced with X7 1x  p and the
components with (—) UV b.c must be put to zero or one should add Lagrange multiplyers
for them.



Chapter 4

Simple Composite Higgs models
in Flat Extra Dimensions

In this chapter we will introduce three composite-Higgs/GHU models [41] based on the
minimal symmetry breaking pattern SO(5)/S0O(4). This pattern of symmetry breaking
was originally introduced in [13] in the context of warped extra dimensions, here we will
adopt a flat extra dimensional set up but with boundary gauge kinetic terms. The three
models we are about to discuss share the same gauge sector which was introduced in
section 3.2 and differ in the way fermions are embedded in complete representations of
SO(5). In [13] the SM fermions were embedded in spinorial representations of SO(5).
This choice lead to large corrections to the Zbpby, vertex. In [42] it was shown that the
same symmetry that protects the 1" parameter from large corrections, when accompanied
by a Zs symmetry that interchanges left and right, can in fact also protect the couplings
of fermions to the Z boson. For this to occur, the quantum numbers of the fermion must
satisfy either T, = Tp and T = T g orT g = TI% = 0. It turns out that the minimal choices
to embed by, are the fundamental and the adjoint representations of SO(5). This paved
the way to constructing more realistic models [14]. We will now move to the discussion
of our models.

4.1 Model I: Modified MCHM;

As the first model we embed the third generation SM fermions in four fundamental rep-
resentations of SO(5). An extra gauged U(1l)x is added in order to fix the fermion
hypercharges to their correct values. We choose two multiplets & and &, to have X
charge 2/3 and the other two & and &; to have X charge —1/3. A fundamental of SO(5)
is decomposed under its SO(4) = SU(2)r, x SU(2) g subgroup as 5 = (2,2)+(1,1). Using

47
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this decomposition the embeddings of the SM fermions are shown in the following way

(2,2)L = |:qu(_+):| 2,2)k = [qiR(—F—)]

& = qr(++) q1r(——) (4.1)
(L1)L(=-) (LD R(++) 23
_ | @n(++) g2r(——)
2 = (2.2); = [ éL(_+):| 22k [ éR(+_):| (4.2)
(L, 1E(=-) (L, D)% (++) 13

B ((2,2)%—) (272)3%(—+)) B ((2,2)%—) (2,2)%<—+)>
gu - ” u ) gd - d d
L R 2/3 L(_+) (1?1)R(+_) —-1/3

(4.3)
where L, R denote the chiralities and the first(second) entries in the parentheses are the
b.c on the UV(IR) boundaries. These b.c are chosen in such a way to give rise to zero
modes only for the SM fields, while respecting the symmetries on the boundaries. To
embed the RH top and bottom singlets we need both &; and &5, but as shown above, the
LH doublet is embedded in both of them. To get rid of the extra doublet zero mode one
can add a RH SU(2);, doublet that mixes with the combination ¢qi;, — gor, on the UV
boundary so that it leads to q11, = g2r,. The bulk Lagrangian is

L ; ;
Lsy :/0 dz Z [%gj’)/Maij - %8M§j7M§j —mjgjgj ) (4.4)

j=1,2u.d

while the most general Lagrangian on the IR boundary, compatible with the symmetry
0OM4)xU(1)x, is

Laprr=my &0 & p+ma &5 €+ My Eip o + My &sp €51 + hec (4.5)

where by b(s) a bidoublet(singlet) subrepresentation is meant. Notice that because the
fermion fields in 5D have mass dimension 2, the mass mixing parameters introduced
above are dimensionless. Taking &1, &1, Eur and &gr to be holographic, According to
the discussion of section 3.3.1 a UV Lagrangian has to be added

1 - _ 1 _ _
Lifuv = 3 Z (&Grér+EREL) — 3 Z (&Grér+&RrEL) - (4.6)
j=1,2 j=u,d
We have not added Lagrange multiplyers here for the holographic components which
vanish at the UV boundary because the possible zero modes are already captured by the
presence of the IR mixing terms.
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Keeping the holographic fields fixed on the UV boundary and subject to the IR b.c,
we solve the e.o.m and plug in (4.6) to find the holographic Lagrangian !

Lo = Y H?(Z*lxi)”—”(zflxi)b+H’{u[(Z*1m)”(z*leR)”Jrh.c}

i=1L,uR p

Y meE) ) ¢ i ) (57 an)” ]
i=2L.dR p

Y m e e L[ (5 ) A
i=1LuR p

+ Y I (lei)sg(z1xi)s+ngd[(z1>22L)3(21Xd3)5+h.c] (4.7)
i=2L,dR

Where (---)? and (---)* are meant to denote projections on the bidoublet and singlet
subrepresentations respectively. Using the following identities in which the p/p factors
have been omitted (throughout this chapter we use ¥ instead of U, so that & = X®)

(= XlL)b( xin)' = xi(1-®87) xip = (1 - 2}?2HCHCT)
(=~ )b (=~ 1XuR) = Xur (1—®®") xur =1tg (1 — ¢})tr = splrtr
( )b (Z IXuR) = XI1L (1 - (I)(I)T) XuR = \/_h HCtR
(57"%ar)” (57 xer)” = Xer®®”xor = qr(1 - 2h2HHT)
(X'%ar)" (5 'xar)” = Xar®®"xar = ¢ibrbr
(E7'%2r)” (B7'xar)” = Xer®®'xur = \/—hQLHbRy (4.8)
the Lagrangian (4.7) can be rewritten as
2
Lio = QL% [H‘? + 28 (W EeHe 1 HHT>] awtd CLR (11§ + s311%) ag
a=t,b
ShCh
MWy @i HCtr + Wy ap Hbp + huc) 4.9
+ \/ih( qrii-tp + Uy qpaidor + h.c (4.9)
in which the form factors are related to those of (4.7) through
m = 1(1s, —11°
9 =11, + 115, 2 (i, — 1Ty (4.10)
I = (3, - 105,)

'For a generalization of egs.(3.171) to the case of 2 fermions with a mixing term on the IR, brane, and
also for the definitions of the above form factors refer to appendices B and C of [20].
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Iy = IR Iy = HIbLR - HZR Hﬁw = 1IIj, - H% (4.11)
I = gr I = HZR —1Igg I, = 154 — Hgd
The top and bottom quark masses are approximately given by
ME Bl = M Pettmmy) o My 6lig = My Pt
M3, NpLNur © Mg, NpNar ’ '

where Ny L, NyrL and NyrL are, respectively, the coefficients of the kinetic terms of gy,
tr and bg, given by the following expressions

L b
Ny = lm—L=— )" dy fir(y) ,

pi)o pL L i:u7d7q17QQ
U L
Nyp = lim—2 = l/ dy (fQR(y) +f7 R(y)) , (4.13)
p—0 pL L 0 v a

1 L
— Qim0 — = 2 2
Ng = lim = L/o dy(fda(y)Jrfqu(?/))v

with firir(y) the “holographic” wave functions of the LH/RH top and bottom quarks
before EWSB which read

fir = e ™Y for, = e ™M

flR — MLuemuLfnu (L—y) > fZR — MLdemdL—mg (L—y) >

fur, = —myemmlAmu(ly) fa = —mgem2EAmall=y) (4.14)
fur = €™ 7 far = €™ '

The relations (4.13) will be proved at the end of this section. The spectrum of fermion
resonances beyond the SM, before EWSB, is given by KK towers of states in the 27,
2_5/6, 21/6, 1oj3 and 1_y3 of SU(2), x U(1)y.

4.1.1 The effective potential

Using the holographic Lagrangian (4.9) one can easily compute the effective potential.
There are two contributions, one from the 2/3 charge sector V; and one from the —1/3
charge sector V},

d4p 2 1T’ 2 Hi 2 (HZM)Z .
‘/i :—QNC/WIOg |:<1+Sam 1+5aH_6 _SQQM ’ Z:t7b (4-15)
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where s2 = sina and o = (h)/f. The factor of 2 is there to count the spin index. So the
total effective potential will be
V=W+V+V, (4.16)

where Vj, is given in (3.56). The form factors II°, IT} and II%, fall off exponentially with
momentum. Expanding the Logarithms in the potential to leading order in the small
ratios appearing in front of s2, one finds that it has the general structure

Vi=as2 —bsk, a,b = const. (4.17)

which can cause EWSB. In fact it is the top quark loop that triggers EWSB by contributing
most significantly to the constant b.

4.1.2 Computation of the Zb.b; vertex at tree level in Model I

Suppose by, is the only —1/3 charge field embedded in the LH multiplet £, in the fun-
damental of SO(5) which is nonvanishing on the UV boundary, an assumption which is
valid for model I. Taking the LH field x to be the UV value of &, this field can be written,
after moving to the axial gauge and at zero momentum, in the following way

§=fo(2) (B7%), + fs(2) (E7'X), (4.18)
where, again the indices b and s denote projections on the bidoublet and singlet compo-
nents. Notice that at non zero momentum there are other terms appearing on the RHS
of (4.18) which are proportional to RH fields on UV. Concentrating on the —1/3 charge
sector, by, is the only field that appears in ¥, so it always appears as an overall factor and
we omit it for simplicity, treating x as a vector. We also assume that it is normalized to
unity xfy = 1.

To find the coefficient of the vertex Zbrby, we need to concentrate on the gauge inter-
action term of the holographic Lagrangian. The relevant part of this term, which involves
W3, B, and X, is given by

St W3TE + B (T3 + X)] == (Wg cos? % + Bsin? %) T3 (4.19)

(%

2

sin av
V2

in which the zero momentum bulk to boundary propagators, G7.(0,z) = 1 and G1(0,z) =
1—z/L, must be understood in front of the unbroken and broken generators respectively,
that is

+ (Wi sin? - + B cos” ) Th+ BX — (B - W}) T3

0" R prYe’ « z sin «
(Wg cos” 5+ Bsin’ 5)T,§’+ (Wg sin? S+ B cos2§)T,%+BX— (1 . E) (B—Wf) 7 T3
V4 Sin «

T3 + BX — (1 L) (B —W}) 7 T3,
(4.20)

sin «v

V2

= >t (Wit} + BT} — (B - W3})
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Since we are interested in the Z couplings, we can omit the photon field and set, using

(3.55)
92 12

9
W ——=Z+, Bo——emee—Z+-,
/92 + 9/2 /92 + g/2
where the dots represent the terms proportional to the photon field in which we are not
interested here. Doing this, we find the relevant gauge connection term to be

(4.21)

Z sin a z sin av
S [273 — /273] 5 2, 2 T3 _ J2X (1__) 2 2 T3
\/W[ [9°TL — 9" T] +(9+g)\/§Bg + L(g+g)\/§B
9z . sin «v . z\ sina
- L= [ZT [cos? Oy T3 — sin2 Oy T3] ¥ + WTj;; ~sin? 0w X + (1 - Z) WTE}].
(4.22)

We denote the four terms appearing in the brackets by I't, I'rr, 'ty and 'y, and their sum
by I'. Tt is clear from eq (4.19) that the sum of the first two terms is a linear combination
of Tz’ r and so it only has a bidoublet-bidoublet component. So its contribution to the

Zbrby, vertex can be found in the following way

EM+TE = f3(2) (37 T+ Tn) (57x), = f2(2) (37T (0 + ) (571)

= f2(2)y! <0052 Oy T3 — sin? Oy T3 — Sl;; ETT,%Z> X
in?2 .92
= f2(2)x! <0052 Oy T3 — sin? Oy T3 — S;ri/; 3 Sm2 < (3 - T%)) X

.9
= ff(z)xT ((3052 HWTg — sin? HWT}% — sm2 a (Tz’ — Tg)) X

(2
= f2(2) ((3052 Ow T3 — sin® Oy T — sm2 a (Tz’ - T%)) , (4.23)

where in the third equation we have used the relation

SIT3% = cosa T3 + % (T3 - T3) (4.24)

and in the second last equation we have used x! Tg} x = 0. Also in the last line T’ g R are
meant to be the eigenvalues of T g r associated with x. Similarly the fourth term will give

ETve = fol2)fs(2) (275()T I'v (27')

z\ sina t sin «v

= B (1= 2) B2 (cosath+ D2 (17 - 1) ) 1

2\ sina

= A (1= 7) 25 (T - TH). (4.25)
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In order to find the contribution of the third term we first compute

£6 = f22) (7)) (37, + £2(2) (57! (571,
= REO-(E0,(57),) + £ (571 (),
= RBE+ (6 - ) 0L ETN),
= ) -5 (26) - ) (13 - 13) sin’a (4.26)
in which we have used
=i E, = —% (T} — T3) sin’a. (4.27)

Using this the contribution of the third term reads
_ _ 1
§Tm € = —siy X €6 = —siy X[ (2) + 55w X (£1(2) = () (TE = Tr) so  (4.28)

where 512/1/ = sinfy and s2 = sin®a. Putting the three pieces together we find

(T} —T3) [Ny — siy X (Ng — Npy) — Ny
(4.29)

L .
[ =€) = b (18 - ) - T

where we have made use of the following definitions
L L L -
No= [dzfie) M= [@Be) Nu= [ hene (1-7). @30
0 0 0

Also using (4.26) we can write

sin? o

L
/ dz €1(2)€(2) = Ny —

0

(T = Th) (Ns — Ny) (4.31)
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Finally, the expression for the Zbyby, coupling is given by

L
[aderee
gL = 0 T
[zl
0 .
sin” «
= (T} — s} Q)+ 2N, (T7 — T)(Ns—No) (T3 — s3yQ) — Np+ 3y X (Ns— Np) + Nis|
sin” a 3 2 3 _ 2 73
= (T} — siwQ) + N, (T2 — Ti)[(Ns—No) (6l TL — sty Tir) — No + Nog]
sin?
= (T} — sy Q)+ N (T — T3)—(Ns—Np) /2 — Ny + Ny
sm2 o
= (T} — sy Q) +—~— (T — T})[Ns + Ny — 2Ny,]
2 L
= (1= Q)+ T (TR =TD) [ d= @1 +27 5
(4.32)
where 0f(z) = fs(2)— fo(z). To go from the third equation to the fourth, in the expression
e T3 — s3T5 we have set Ty = —T7 = 1/2, because otherwise it gives no contribution,

being multiplied by T3 T3 The generalization to the case where by, is embedded in
several multiplets is vaious, one adds an index i to fy(2), fs(z) and Tp and sums over
it. In this case the Zby by, coupling deviation is

sin? «

L z
0g = AN ;(T%—Tf)/odz |:(5fi(z))2+szi(z)fsi(2) + O(sin @), (4.33)

where now I
N = / dz Y fir(2). (4.34)
0 i

For model I the index i runs over 1, 2, u and d, and the wave functions fy;(z) are equal
to fir(z) defined in (4.14), while fsi(z) are equal to fir(z) in which the replacement
My, d — 1/M,, 4 has been made.
L
In the following we argue that / dz £7(2)&(2) is in fact equal to the coefficient of

0
the kinetic term of xr at zero momentum. For this purpose, consider the bulk e.o.m for
fermions

zﬁl/JR = (85+m)1/1L (4.35)
—pyYr = (05 —m)Ygr (4.36)
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Figure 4.1: Scatter plot of points obtained from a scan over the parameter space of model
L Small red dots represent points which don’t pass EWPT at 99%C.L., square blue dots
represent points which pass EWPT at 99%C.L. but not at 90% C.L., and star shape green
dots represent points which pass EWPT at 90%C.L.. The region below the LEP bound
(mp < 114 GeV) is shaded. The mass of the recently discovered Higgs-like particle at
125 GeV is shown by the black line.

and multiply the first(second) equation on the left by &R( 1), this leads to

VrpPpUYR = YrOsYL + mYryYL (4.37)
—rpr = YLdsr — MYRYR. (4.38)

Adding the first equation to the conjugate of the second equation gives
_ _ _ 1 _ _
Yrpdr — Yrpbr = —05(YRYL) = —535(¢R¢L + YrYR) (4.39)

which, upon integration over the extra dimension, leads to

L
/0 dz (Yrpbr, — Yrpr) = %@Rd& + Yrr)|luv — %@R%bL + YrLR)| IR (4.40)

For a single fermion the term on the IR brane vanishes, since one of the chiralities is
chosen to have (—) b.c. For two fermions with mixed b.c the IR term vanishes when
summed over the two fermion fields

> (@irthir + Yirir)lir =0 (4.41)

i=1,2
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Figure 4.2: Higgs mass mp versus the mass of the first KK resonances (before EWSB) for
the points of model I with my > 114 GeV and « € [0.26,0.34]. The mass of the recently
discovered Higgs-like particle at 125 GeV is shown by the black line.

this is due to the b.c on the IR brane (see appendix B of [20])

YR = miagr thor = miig
—or, = ML o =t = maar. (4.42)
As a result
L ) 1 ) )
> /0 dz (Yirpin — Virp¥ir) = 5 > (Wirtir + Girthir)|uv- (4.43)
i—1,2 i—1,2

If for both fermions the LH chiralities are chosen as holographic fields, the RHS of the
above equation is exactly the holographic Lagrangian, if instead the RH chiralities are
chosen to be holographic, then the RHS will be minus the holographic Lagrangian. For
the mixed case where the LH chirality for one fermion and the RH chirality for the
other are holographic, there is no such identification, but as far as we are concerned with
the terms of the holographic Lagrangian up to first order in momentum, there is still
something to say in this special example. In the following argument we will make use of
some properties of the wave-functions given explicitly in appendix B of [20]. At leading
order in momentum, the first term on the LHS gives a term of the form xrpxr with xr
being the LH holographic field while the second term gives a term of the form X gpxr,
with xr being the RH holographic field. This can be seen from the fact that at zero
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momentum the bulk fermion fields are proportional to the holographic fields of the their
same chirality, while in general they are linear combinations of holographic fields with
both chiralities. On the other hand, the term involving v, g on the RHS expanded up
to O(p) includes the kinetic term for xr,, while the term involving 12 1 r when expanded
up to O(p) includes minus the kinetic term for yz. There are actually also mass terms in
both of them, but of course they must sum up to zero, as can also be checked in the RHS
explicitly using the expressions for 11, r(2),7 = 1,2 in appendix B of [20]. Consequently,
equating the coefficients of xrpxr and Xrpxr in eq.(4.43) gives the identities

II

E / dz f = lim L 2.z (p) = coefficient of the kinetic term of xr, r  (4.44)
p— p

1=1,2

where the general form of the kinetic terms in the holographic Lagrangian are defined to
be X,z Lr(P)P”'PXL.R-

4.1.3 Results

The results of our numerical scan are summarized in figs. 4.1, 4.2 and 4.3. The details of
the x? fit, which has been done with 4 d.o.f, are explained in section B.3. The fermion
sector of this model has 8 parameters, 4 bulk masses and 4 IR masses. The randomly
chosen input parameters are my, mgq, mi, ma, My, Mq, 6 and ¢’. The remaining two
parameters M, and My are fixed by the top and bottom mass formulas. Demanding a
small dg;, at tree-level requires moL 2 1, as can be verified by using eq. (4.33). We have
scanned the parameter space over the region m,L € [-3,3]|, myL € [-5,2.5], mL €
[—2,2], maoL € [2.2,4.5], m, € [—2.3,4.1], mq € [-3.5,4], 0 € [17,27], §' € [14,26]. As can
be seen in fig.4.1, at 90% C.L. EWPT constraints allow roughly a value up to o ~ 1/3
for the EWSB parameter, while at 99% C.L. this is reduced to a ~ 1/4. This is still valid
when we restrict the Higgs mass to be around 125 GeV which is the mass of the recently
discovered Higgs-like particle. There is no definite pattern for the lightest exotic particles
for general Higgs mass. As expected, br is always mostly elementary, while qr and tp
typically show a sizable degree of compositeness. Depending on the region in parameter
space, qr, can be semi-composite and ¢t mostly composite or vice versa, with ¢y mostly
composite and tr semi-composite.

4.2 Model II: Fermions in two fundamentals of SO(5)

In this section we introduce an alternative model by taking the same setup as model
I, with the same gauge sector, but embedding the SM fermions in two fundamentals of
SO(5), rather than four, with 2/3 and —1/3 charges under U(1)x. In order to study this
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Figure 4.3: Scatter plot of points in model I with mp > 114 GeV and projected on the
Tnp-Snp, Tnp-dgy,np and Syp-9gy np planes. We have set My orp = 120 GeV. Small
red dots represent points which don’t pass EWPT at 99% C.L., square blue dots represent
points which pass EWPT at 99%C.L. but not at 90% C.L., and star shape green dots
represent points which pass EWPT at 90% C.L.. The big and small ellipses correspond
to 99% and 90% C.L. respectively.



CHAPTER 4. SIMPLE COMPOSITE HIGGS MODELS IN FLAT EXTRA DIMENSIONS59

model using the holographic approach, we take the LH chiralities of the two multiplets as
the holographic fields. The SM fermions are embedded in the following way

. q’ (—+) _ QZL(++)
&1 = (2(’ 2L = [q1§(++)} N (2.2); = LIéL(—JrJ
L,

., (4.45)
S, a0 =i )

—_
~—
~

The boundary conditions are chosen such as to give rise to zero modes only for the SM
fields, namely g7, ur and dgr, and to respect the O(4) symmetry on the IR boundary.
Note that &z, and & both include a LH SU(2) doublet with 1/6 hypercharge, ¢11, and
q2r,- In order to avoid extra zero modes we impose a (—) UV b.c on a linear combination of
them. The O(4) symmetry imposed on the IR boundary forbids any term made out of the
above fields, (2,2)2/3, (2,2)-1/3, (1,1)2/3 and (1,1)_; /3. From the point of view of the KK
approach, the most general Lagrangian compatible with the symmetries includes kinetic
term for all the fields with (+) b.c on the UV brane. This translates in the holographic
approach, to Lagrange multiplyers with UV boundary kinetic terms for the holographic
fields with (=) b.c. So in the holographic approach the most general Lagrangian can be
written in the following way

Lo = Zg(cosBqir + sin Bgar)IP(cos Bqir, + sin Bgar)
+ ZitrDtr+ ZybrDbr + ZZiRQZ{RquZ{R—FZgWRMVR
+ (tpur + urtr) + (brdr +§L152R) + Z (Tirdir + Tirdir)
i=1,2
+ Ar(—sinfqir + cosbqar) + (—sin0qGi1, + cos 0Gar) VR
+ % Z (&ir&ir + &iRrGiL) (4.46)
i=t,b

where the term on the last line is the 4D Lagrangian resulted from integrating out the
bulk fields. The variable 8 parametrizes the linear combination of ¢1;, and ¢o7, on which
we impose a (—) b.c, with yg being the associated Lagrange multiplyer. tg, br and ¢/
are the Lagrange mutiplyers for uz, dr, and ¢, respectively. To simplify the model we set
Zy = 0and 3 = 7/4. We also integrate out the Lagrange multiplyer vz which imposes the
constraint q17, = go1, = g1, on the UV boundary, while making the replacement Z, — Z, /2
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for convenience. Doing this we arrive at the following Lagrangian
Lro, = ZyGrPqr+ ZitrPtr+ Zybr P + Z Zir Gir P dir
i=1,2
+ (trur +urtr) + (brde + drbr) + Y (@rdir + Grdir)

i=1,2

+ % Z (Gir&ir + &réiL) luv. (4.47)

i=t,b

Using the bulk to boundary propagators for fermions, the terms on the last line can be
written in the following way

1 _ b b _

§Tr (fthtR + ftthL) H;r (ZTXtL) %(ETXtL) + 11, (ZTXtL)Sg (ETXtL)S
o M —107) v los” 4.48
= 1L XtLpXtL+( ¢ ¢ ) XtLp XtL (4.48)

with a similar expression for & ;. For simplicity of notation we have defined

I = 115 (0,my), I = T15(0,my) (4.49)

one can further write the term (4.48) and its analogue for &, in terms of the SU(2).
multiplets by using

XtLXtL = qLqL + @ipdip + arur
XoLXbL = 4rqr + dordhr + drdr (4.50)
and the relation
T 5% / / 2
X @ X = S (apH + qH)(H qp + Hiqi) + ciugur
Shch

_ _ ShCh _

- H 4 ¢, H)up, — 2L (H g + H'g] 4.51
ﬁh(QL G H)ur NG L(HqL ¢iz)  (451)
to find the analogue formula for &7, one just has to make the replacements qr, — ¢5;,
¢y, — qr and uy, — dy, in the above expression. Plugging the result into (4.47) gives the
holographic Lagrangian in terms of SU(2);, x U(1)y multiplets, which we have chosen to
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write in momentum space and ignore the gauge interactions

Lro. = ZgQrpar+ Zitrptr + Zybrpbr + Z ZirR GrP UGir
i—1,2
+ (trur +artr) + (brdr +dibr) + Y (Girdis + @irdir)
—1,2
+ I (qrar + @ipqi) + 10 dpur + HZZ—(QL(]L + Ghrdby) + 10, drdy,
+ (H; - H:r) [ 8% (qLH® + qllLH)(HCTQL + HTQ&L) — S;QZ@LUL

2h2
SpC SpC
— G H + @ H ) ug — —=rag (H g + Higlp)
V2h V2h
2
_ S _ B _
+ (I = 107) [ (@ HE + auH) (H dhy, + Hlqp) — sididy
SyC SKHCH —
=gy B O auH)dy = Zody (H gy + Hlqu). (4.52)

By integrating out the heavy fields we arrive at the following low energy effective La-
grangian which we have written up to O(s2) terms

Lo = ngnqu +3 QR?;H“(LR n %‘3‘ (HquLHCtR 4118, g1 Hbp + h.c.) . (453)
a=t,b
where
1
M = pZg+ (I (my) + 117 (my)), (4.54)
1

mt = pZy— ——- 4.55
P4y H_(mt,b)’ ( )

I (myp) — I ()
e = : 2 4.56
A 2T (1) (4.56)

From eq.(4.53) the masses of the top and bottom quarks at zero momentum can easily be
read off. Using the expression for the mass of the W boson (3.103), the top and bottom
mass to W mass ratios are

M7 6+1 My o f+1 (4.57)
MI%V T 2NNy’ MI%V T 2NLNyp’ '
where
Hq 7 1— —2Lmgy 1— —2Lmy,
N, = lim—2%=7-4 ¢ + ¢
p—0 pL L 4Lmt 4Lmb
Ht’b Z 2Lmt_’b _ 1
Nippp = lim—L =2tb &~ 72 (4.58)

p—0 pL L 2Lmy y,
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4.2.1 Computation of the Zb;b; vertex at tree level in Model II

We present here in some detail the computation of the Zbyb;, coupling deviation at tree
level in the model with two multiplets in the fundamental of SO(5). The bulk fermion
wave functions for the two multiplets & and &g are

b B s
G = T7(z,me)(STxer) + 107 (z,me) (STxi) (4.59)
b - s '
&r o= Tj(z,me)(STxer)” + g (z,me) (STxir)
with a similar expression for &, and &g
b _
G = IF(z,mp)(Stxen)” + 107 (z,m) (STxer)” (4.60)

&n = Th(zme) () + gz, me) (Sr)

As we are interested in the Zbpby, coupling, we can restrict to the —1 /3 charge sector,
and write the two LH holographic fields as

iby, 0
1 b 1 0
XtL = —F= 0 , xor = —= | g5y, —br) |- (4.61)
V2 0 V2 q%lL + by,
0 \/idL

Finally we need to integrate out the fields dr,, ¢47 and ¢4}. Varying the Lagrangian (4.52)
with respect to these fields, we find the following e.o.m

oy : 0=bg+Tl, dp+ (I, —II)[ — sin’ady, — Sino‘%(q% +b1)]
8¢5 : 0= Zoppdasp + @51, (4.62)
sath - 0=atfo+ (0 1[5 gt 0n) - U it
which can be solved to give, at leading order in momentum
Br = —t?;; R — ! _fn_;mbL tanQaybL +0(p?)
G, = t??; Zsrpbr + O(p?) (4.63)
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From the Lagrangian (4.47) it is clear that the boundary contribution to the Zbpby,
vertex, at zero momentum, is Z, (Tz’ — sinQHWQ), while the zero momentum boundary
contribution to the by, kinetic term is Z,. Of course there are also contributions to the
brbr, term coming from the terms Z;g q45 I 445 and qenqys + 57455, but they vanish at
zero momentum, as can be seen from eqs(4.63).

To find the effect of the bulk on the coupling, we need to compute the bulk contribution

L
/0 dz (&T &+ 6T &) (4.64)

to the vertex, where I' is defined in section 4.1.2, and the bulk contribution to the by,
kinetic term, which according to the arguments of section 4.1.2 can be written as

L
/0 dz (&1 & + Sor Sor) (4.65)

The first term in the integrand of (4.64) has four pieces étL,ertL,R and EtL,RfftRﬂL,
among which only & T'& gives a non vanishing contribution as we will argue. The
computation of &, rT &1 g follows exactly the same lines as that of model I, but the
embedding of by, in &, is such that T} = T3, so using eq.(4.29), the final result will be
very simple

&rrT &ir =1} 7% (T] — sin®fwQ) (4.66)

from this result it is clear that the contribution of &g vanishes at zero momentum due to
the small momentum behaviour H; ~ p. To show that the cross terms g}L, rI'& R, also
give no contribution at zero momentum, following the same lines which resulted in (4.23)
one can write the contributions of I'; and I'j as

202
& (C14 ) &r = T ITS; <(3052 OwTi — sin? Oy Th — SmTa (T} - Tg)) brbr  (4.67)

which vanishes at zero momentum for the same reason, namely that HE ~ p for small
momenta. On the other hand the contribution of the term I'7y is

&rlvér + ErT v = (I (2, me) MR (2, my) + 107 (2, me) I (2,me)) (3xez) Trv (zéXtL))

4.68

but the expression (Z)ZtL) I'rv (me) vanishes according to (4.25). Finally {tL,ngR =

HZ?R and étL, REIRL = HZHE from which the kinetic term and the contribution of I'j;;
follow. Also for this term only &, is non vanishing at zero momentum.

The second term in the integrand of (4.64) is slightly more involved since it depends

on the fields q%’L r and dy, which must be replaced with their solutions (4.63). Sim-

ilar to the case of &g, this term is also the sum of the four terms gbL,RF&,LR and
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be, rT beJ L, which, except EbLF &vr, all vanish at zero momentum. Lets first consider
the term &1, r (I't + I'tr) &b, . The computation of this quantity follows the computation
leading to (4.23) with the difference that ;T %xbL is not zero here but rather given by

tan o

1 B B
XbL Tg’ XbL = 5(@%}/ — bL)dL +h.c — — < \/5 + 0(p2)> brbr +--- (469)

the expression in front of the arrow represents the result after the substitution of (4.63).
Using this we find

&rr(T1+Tn) &R
_ . sin 2« sinZa
= I} % (2, me) X <0052 OwTi — sin® Oy T + 5 /3 T3 — > (7 - Tz%)) XbL

_ . sin“o
— HZ—?R(Z’ mp) q% <0032 HWTE — sin? HWT}% -5 (Tg — T%)) qg’L

.2
+ HI’ZR(Z, my) by, (cos2 Ow T3 — sin® Oy T — e (Tz’ - T%)) br,
SaC -
A0 (2 me) 5o (@5 = bu)di + he

sin?a

(Té—T%+1)+0(p2))bL+---

= HE,QR(Z’ my) by, (cos2 HWTg — sin? HWTI% + (’)(pQ)) by + - --

— 112 (2,mp) by, (cos2 OwT? — sin® Oy T3 —

(4.70)
where we have used the fact that for the embedding of by, in xr, T g — TI% +1=0. Again,
from the expression of HE(z,mb) it is seen that &g (I'1+T'n) &r = 0. For the same
reason, the following expression also vanishes at zero momentum

& (U1 + Tn) &or = 10} (2, mp) I} (2, mp) br, (cos® Ow T} — sin® Ow T + O(p®)) by, + - - -
(4.71)
Now lets consider the contribution of the I'yyy term. A similar analysis to that of (4.25)
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shows

sin «v
X cosaTy — —— (T3 — T3 )
XbL( B /32 ( L R) XbL

a1, (TF - T) a1,

o -

b (T7 —T3) by,
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— I_?L) dr, + h.c

N
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S

2

z\ sin“ o
=+ (1= 2) B0 (TE - T+ 14+ 062) b

2

_ _z sin” o o T
- +(1 L) 5~ O brbr (4.72)

where again the expression in front of the arrow represents the result after the substitution
of (4.63). Using this we can immediately write

&rrTv&rr = T gz, mp)p p(2,mp) (Zxer) Tiv (Xxer)

)

- HZ,R(Z> mp)ITy 5(2, ms) O(p*) brbr (4.73)

which is vanishing due to the low momentum behaviour of H}; r(z,mp)IL p(z,mp). The
vanishing of &7, T'1v &r + &g v &1 also follows as a result of (4.72)

&r v &r + &rTv &L

= (I} (2, mp) g (2, mp) + I (2, mp) I (2,m8)) (SX6z) Trv (Sxer)
_ _ = 0
= (I (2, mp) g5 (2, mp) + T (2,mp) 105 (2,m)) O brbr, 50 (4.74)
Finally we compute gbL, r &vr,r Which is proportional to the contribution of I'7;;

& RELR
= 0} % (2, mp) XerXoL — (HJLF?R(z,mb) — Hﬁz(%mb)) @0y,
= HE,QR(Z, mb) (qg/ng/L + BLbL + JLdL) _ (HZ?R('Z’ mb) - HE?R(% mb)) XbL‘I"I’TXbL
tan®o
2

tanZa

= HE,QR(Z?mb) <1+ 5 +O(p2)> brbr (4.75)

= 0} %(zm) (1 + + O(p2)> brbr — (HZ?R(Z, my) — ;% (2, mb)) O(pHbrbr
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in which we have used

2
8 — —_
wL®® o = Ea(bL +@57) (b + g7) + cAdrdy

2%+ G Vdr + he — O@Y) brbr + -+ (4.76)

V2

The vanishing of &, &g follows from a similar computation

tana

&t o = U (2 mp) L (2, my) (1 | e 0<p2>> by "0, (477)

In summary, the term &7, I' &, is given exactly by the same expression as &z, I' &7, com-
puted in section 4.1.2 for model I but with 77 — T3 = 0. On the other hand, to find
&1 T &1 one can simply take the expression for &7 I' &, of model I and make the replace-
ment T g — TI% — Tg =T }% + 1 =0, with the only difference that &1 &z has an extra term
proportional to tan?a as shown in (4.75). So to find the total bulk contributions and the
contributions to by, kinetic term, we can use the result of section 4.1.2 with 7' g — TI% =0,
and add the extra piece coming from Eb 1. &r- This means that the total bulk contribution
to the Zbrby vertex is

_ _ . 1 . tan’o
&rT & + & T & = (T2 +1057) (T} — sin®0w Q) + 3 sin®Oyy 11} 5 (4.78)

while the contribution to the kinetic term is given by

tan2q
2

Gr &+ & = (7 +1057) + 1077 (4.79)
where sz . = limy, 5o HZ(z,mbﬂg). Adding the boundary contributions for the vertex
and kinetic terms, which are Z, (Tg — sinQHWQ) and Z, respectively as mentioned at the
beginning of this section, and dividing the two, we find the total Zbyb;, coupling deviation
at tree level and at zero momentum to be

L 1 — ¢ 2mpL
/ 4z 12 ) e >
S — 0 tan“o B 2my, tan“o 480
9 = L 5 4 1 _e¢2mL |_.2mL 4 (4.80)
Z, dz (IIF2 + 11T Z
q +/O Z( Lt + Lb) q + th + me

4.2.2 The effective potential

We now turn to the computation of the effective potential. Given a tree level Lagrangian,
it is strait forward to compute the effective potential, however the low energy Lagrangian
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Figure 4.4: Scatter plot of points obtained from a scan over the parameter space of model
II. Small red dots represent points which don’t pass EWPT at 99%C.L., square blue dots
represent points which pass EWPT at 99% C.L. but not at 90%C.L., and star shape green
dots represent points which pass EWPT at 90%C.L.. The region below the LEP bound
(mp < 114 GeV) is shaded. The mass of the recently discovered Higgs-like particle at
125 GeV is shown by the black line.

(4.53) is not the correct Lagrangian to use. This is first of all because this Lagrangian is
not exact in « but more importantly, even if it were exact in «, to arrive at the Lagrangian
(4.53) which is written in terms of the light fields, we had to integrate out the LH fields
ur, dr, and qi 2, but doing this we miss some o dependent mixing terms between them,
appearing in the Lagrangian (4.52), and hence all the loop contributions in which only
the fields ur, dy, and g1 27, Tun in the loops. Instead there are no a dependent mixing
terms between the RH fields tr, br and ¢ 2r, so one can integrate them out

1 1 1
th=——— br = ———=pd iR=————=Pq; 4.81
R 7 pur, R Zip? pdr, %R Zor? PaiL, (4.81)
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leaving an effective Lagrangian in terms of LH fields only
Lo = ZQLﬁQL_iaLZjUL_LJLﬁdL_ > LQ"LZM"L
ol q Zt Zb = ZzR 7 3

+ I (qrar + qipdip) + i drur + HZ(Q_LQL + Qo dor,) + 10, drdr,
2

_ 52 B _
+ (I —11) [ﬁ(%ﬂc + @ H)(H g + Higyy) — sharur
SKhCh , _ _ ShCh _
- E(QLHC + @i H)ur — ﬁuL(HCTqL +Hiq)]
2
_ 2 B B
+ (Hb - H;r) [ﬁ(QQLHC + QLH)(HCTCI%L + HTQL) - S%deL
ShCh _ ShChH =
- E(QQLHC +qrH)dr — EdL(HCTQQL + H'qp)] (4.82)

Since there are no loop diagrams with only RH fields, in this case the effect of loop
contributions with RH fields running in the loops is captured by the effective vertices in
terms of LH fields. Using the Lagrangian (4.82) we can readily compute the effective
potential. As before, we subtract a constant term from the potential such that V;(0) = 0.
The top sector contribution is

dp Iy (my) — I (my) Zip — Z;
Vi = —2N. [ —Z In |1 +sin?a—t
t C/ (2r) n[ TS 7T (m) — 1) \P TPz, () — 1

pZilly (my) — 1
g o)) (483)

while the bottom sector contribution V} is obtained from V; by the replacements ¢ <> b
and Z1g — Zogr. There are two other contributions from the exotic 5/3 and —4/3 charge
towers which are independent of a and so eliminated when subtracting the constant piece.
The total Higgs potential is finally

V;fot = Vg + V;f + W)a (4'84)

with V, given in eq.(3.56). Also in this model the complicated expression in front of sin?a
in the Logarithm falls off exponentially with momentum, but in this case the leading
order term in an expansion of the Logarithm is proportional to sin?« just like the gauge
potential, so one has to resort to higher order terms in this expansion in order to achieve
EWSB.

4.2.3 Results

The results of our numerical scan are summarized in figs. 4.4, 4.5 and 4.6. The details of
the x? fit, which has been done with 4 d.o.f, are explained in section B.3. The fermion
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Figure 4.5: Higgs mass my versus the mass of the first KK resonances (before EWSB)
for the points of model II with mp > 114 GeV and o € [0.16,0.22]. The mass of the
recently discovered Higgs-like particle at 125 GeV is shown by the black line.

sector of this model has 7 parameters, 2 bulk masses and 5 coefficients for the BKT. The
randomly chosen input parameters are my, my, Z1r, Z2r, Zq, 0 and #’. The remaining
two parameters Z, and Z; are fixed by the top and bottom mass formulas. For stability
reasons, we take positive coefficients for all the BKT and myL 2 1 in order to suppress
dgp, as given by eq.(4.80). More precisely, we have taken m,L € [0.1,1.3], myL € [2,2.5],
Zig/L € [0.1,1.6], Zor/L € [0,1], Z,/L € [0.5,2], § € [15,25], ' € [15,25]. As can be
seen in fig.4.4, at 90% C.L. the EWPT constrain « ~ 1/5, with a very light Higgs mass.
The latter increases only for more tuned configurations with o < 0.15. For mpy = 125
GeV the value a = 0.16 is also achieved at 99% C.L.. Interestingly enough, the lightest
exotic particle is always a fermion singlet with @ = —1/3, see fig.4.5. Its mass is of order
1 TeV, significantly lighter than the gauge KK modes (~ 5 TeV) and the other fermion
resonances, with masses starting from around 4 TeV. The doublet gy, is generically semi-
composite, the singlet ti is mostly composite and bg is mostly elementary.

4.3 Model III: Fermions in an adjoint of SO(5)

In the previous section we introduced a model in which the SM fermions were embedded
in two fundamentals of SO(5), to embed them in one multiplet the minimal choice is an
adjoint representation. This is the model we are about to discuss in this section. This is
also the simplest possible construction so far. The adjoint of SO(5) is decomposed under
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Figure 4.6: Scatter plot of points in model II with my > 114 GeV and projected on the
Tnp-Snp, Tnp-dgy,np and Syp-9gp np planes. We have set My orp = 120 GeV. Small
red dots represent points which don’t pass EWPT at 99% C.L., square blue dots represent
points which pass EWPT at 99%C.L. but not at 90% C.L., and star shape green dots
represent points which pass EWPT at 90% C.L.. The big and small ellipses correspond
to 99% and 90% C.L. respectively.
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SO(4) =5(2)L x SU(2)g as 10 = (2,2) + (3,1) + (1,3). The third generation SM fields
are embedded in a multiplet carrying the representation 105,53 of SO(5) x U(1)x whose
LH chirality is taken as the holographic field. The embeddings and the b.c are depicted
in the following way

xr, (+-)
B ur (==)  To(+-)
L = dy (——) : (4.85)
lar (++), d (=H)] /2

As before the boundary conditions are chosen in a way to respect the symmetries on the
two branes and to give rise to zero modes only for the SM fields. This leads to the above
unique assignment of b.c. so the field content of this model will include three vector-like
singlets x = 15,3, u = 13/3 and d = 1_y 3, two vector-like doublets ¢ = 2; 5 and q = 27/6,
and one vector-like triplet 7' = 35,3 . In addition, because of the adopted b.c, the fields gy,
upr and dg have massless modes, which are identified with the SM chiral fields. However,
As discussed in section 3.3.1 in the holographic approach, in order to capture the possible
massless modes coming from the opposite chirality of the holographic fields with (—) UV
b.c, we need to introduce the Lagrange multiplyers tr, bp and pgr respectively for the
fields ur,, dr, and ¢}, among which the zero modes of ¢tz and bp are identified with the SM
RH top and bottom quarks respectively, hence the symbol. The most general holographic
Lagrangian can be parametrized as

Zeqrqr+ Zyzp P + 227 Tr (TLMTL)
ZytpDtr+ Zybp Db + Zy pr1) pr
(trur + urtr) + (brdr + drbgr) + (PrAL, + 4LPR)

%rﬁ“ (§cér + €réL) luv- (4.86)

['H ol

+ o+ o+

In terms of the holographic field, which we call x;, here, the boundary values of the bulk
wave-functions £, p appearing in the final line of (4.86) are written as

(rlov = 2Txry, Erluy = H*%(ZTXLEY’ + H%(E%Z)t (4.87)

in which by (---)? and (---)! we mean projections on the bidoublet and triplet subrepre-
sentations respectively, and IT* are defined in terms of the functions (3.166)

IT* = 115 (0,m). (4.88)
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Using (4.87) the last term in (4.86), which results from integrating out the bulk La-
grangian, can be evaluated

3T (et Enge) = WD) L (Ee)]+ T[S0 E ()

= II- T&"()ZL%XL) +2(IIt —117) ‘I)TXL§XL‘I) (4.89)
in which we have used
b b _
Tr[(ZTx2)" (Bx2)’] = 207 xix. @ (4.90)
T[(x:2) (e 2)] = Tr(eexe) — 207 xx @ (4.91)
where
Tr (Xexr) =2Te (T TL) + Zrxp + Upur + dr dr + qrqr + 41 47, (4.92)
and also
T yLxr®
8,2Z 5 3;21 7
= v (.’EL xr +arnur +dg, dL) + —Tl“ (TL TL)
2 2 2
ct _ °h ct c T T c
2fh2$LH T H 4h uL(H T H - H'TLH) — \/,thLH T, HC 4+ h.c
.Shchf CT/ _ C-I. -I-/ Shh ‘l‘
—1 T H ) — (Hqr, — H'q}) — i dr,H'qr, + h.c
2v/2h 2v/2h
ShCh rrctr ShCh prtm
+Z%H TL(]L—’-'LWH TLqL+h.C
2 ~ crret ~ T 1 = crrt o/ =/ ct C%— C%L =/
+ W <QLH Hp + g HH ¢y + qLH°H g7, + g HH QL> +5raran + 5 ardr-

(4.93)
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Note that in the two equations above, we haven’t written the p for more clarity. Using
these results the holographic Lagrangian in momentum space and at quadratic order reads

Lol = Zqqrpar + Zo Trpar + 220 Tr (T pTy)
+ Zitrptr + Zybrpbr + Zy PrYP PR
+ (trur +urtr) + (brdr + drbr) + (PrAL + TLPR)
+ 1017 [2Tx (T Tr) + Zp o + apug +drdg] + H*‘Z (gL ar + 41 47
2 S

2
+ 2 (H+ — H_) % (.’ELJJL +ap up, + dy, dL) + ?hTr (TLTL)

2 2 2
Sh - ct Sh - ct c t Sh 3 T c
— rrH'"TT H— —“ur,(H"T HS — H'T, H) — drH'"T1 H° 4+ h.c
pvape WL H =y (H T RN T
. ShCh _ .ShCh _ . ShCh 7
—1 T HYY —i ar(Hq, — Hi ¢, ) — i drHqr, + h.c
N TS L(H"qy, qr) o e ar
+ i%HCTTLqL + z’sgzh H'Trg) + hee
82 82 82
+ 4;};2 (q_LHCHCTQL +q HH q; + quHHq), + q_;LHHCTQL> - 5hq_LQL - 5hq_;2q;2 :

(4.94)

In order to find the low energy effective Lagrangian we must integrate out the heavy
fields ur, dr, ¢7, pr, T1, and z. varying the Lagrangian (4.94) with respect to these
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fields we get the equations of motion

2
Sur,:  O0=tgp+ITuy+2 (0" -1 )[zszzh(HT 7 HCT(]L)-F%UL

2
—h(HATLHE — HTLH))

T an?
ddp:  0=bp+Tdy+2 (I —TI7) [ — it g, + Shy — Sk HIT, H)
2v/2h 1 2v/2h?
0fy: 0= pr+TTtg +2 (I — 1) [i2 Feg, — i oy, — i 22hy |
ar, pr+ gy +2( )[2\fh vy — i Huy — = Ty
—HHT h HHq, — 2k 4.95
+pHH a + o5 qL =5 QL] (4.95)
opr: 0= Zyppr +ar,
= - 2
5Ty, - = (Zpp+ )Ty + 2 (I — 117 [R5 et g 4 i 2R gt 2 g 4 Shop
Lo 0= (Zrp+10)TL +2( ) limgy H 5ar ZQh gl t oL
2 = g —
Sh TU ¢ Sh CTU ¢ TU CTU
__Sh _gtZger, — ShogetZge — gt gy, — " Hd
2/2h2 2 TL= 72 ( B Jur, 2\/_h2 5 L]

2
5t : 0= (Zup+ T )ap+2(I1F —107) [—i 'Qsﬁzfﬂ%* Z T Qj_hQHCTT H].

In (4.94) and the above equations, a factor p/p in front of II* must be understood, which
we have avoided writing, to make the equations more transparent. Inserting the solutions
to the above e.o.m (4.95) into the Lagrangian (4.94) and also making the redefinition
tr — —itrp and bgp — —ibg to get rid of the i factors which are otherwise present in the
mass terms, we arrive at the effective Lagrangian (4.53) in terms of the light fields ¢z, tr
and bg, written up to O(s2), with the form factors defined by

1 Im —1It
e =pz,+ 07", bt = pZ, ) — —, I, = VoI, = ————.  (4.96
pZy P2ty — = M o (4.96)
Also in this case we find simple formulas for the ratio of the top and bottom mass to the
W mass ) )
M 0+1 M 0+1
; ~ , 3 ~ 7t , (4.97)
MW 2N, Nir MW N Nyr
where
I Z 1
Ny = lim—2=-£
L= ML T T T mb(cohmL £ 1)
'z 1
Nigpr = lim —0 = 240 (4.98)

p—0 pL L  mL(cothmL —1)"
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4.3.1 Computation of the Zb.b;, Zbrbr and Wttzby vertices at tree level
in Model III

The embedding of the LH bottom quark by, is such that 7, = Tp = 1/2 and T g =
T}% = —1/2, so the mixing of the elementary by with the bulk respects the symmetry
U(1)v x Prr which, according to the argument of [42] , protects its coupling to the Z
boson from tree level corrections from the bulk. However the term 7737 on the UV
boundary is part of the beyond SM sector which does not respect this symmetry, so if it
were not for this term, the Zbrby, coupling deviation would have vanished. To find the
coupling deviation we restrict to the —1/3 charge sector b, bg, dr, and T, and finally
integrate out dy, and T, by solving the e.o.m, which are the second and fifth equations
of (4.95) after EWSB,

2 2
0Ty : 0= (Zep+T)T; +2 (1T —117) [i%bL + 2Ty - %dL] (4.99)
- _ n _ .SaCa s2 s2
6dp:  O0=brp+1"dp+2(II" —1I7) —zmbL—deL—ZTL (4.100)
The solutions to these equations are
_ Stan o tan?a 1 — 2L
T, = i 7 br+—, S Pbrt O(p?) (4.101)
- tana tan?a’\ 1 — e?mL
d, = —i NG br + (1 + 5 ) o ﬁbR + O(p2). (4.102)

The relevant piece of the fermion-gauge interaction vertex of the bulk is

L
/ dz Tr (5 [2 WiTE + B (T3 + X)] =7, g]) (4.103)
0

plugging the solutions (4.101) into this term and using (4.21) to pick up the term propor-
tional to the Z field we find the following Zbpbr, and Zbrbr terms from the bulk

9 9 1— —2mL _
[ + cos 26w c (1 + tanQQ)] brAbr, +

6 2m
(4.104)
cos20y —1 L —1 24 cos 20y e2™L — 1 tan?a] -
brAbg.
6 2m 6 2m 2

Note that we have dropped the factor g/cosfy, so that the SM Zbpb; coupling is
—(2 + cos20y)/6. By plugging the solutions (4.101) into the boundary fermion-gauge
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interactions given in the first two lines of (4.86) we can easily find the boundary contri-
butions to the Zbrb;, and Zbrbpr vertices

2 20 20y tan?a] - 1 _
[—qu A C%S — a] b 7br, + [gz,, siHQHW] brdbn  (4.105)

also, integrating out dz, and 7, from the Lagrangian (4.94) will give us the total kinetic
terms for by, and bg

1— emeL
2m

e2ml _q tan?a\ ] -
Iy+— |1 .
[ bt 2m ( + 2 >] bprR

1 _
[Zb + (1 + tanQa) + §ZT taHQOz] brpbr +

(4.106)

Note that these results are exact in «. Dividing the first(second) equation of (4.104)
by the first(second) equation in (4.106) we find the Zbrby, and Zbrbgr couplings whose
deviations from their SM values are

el 7 tanZa
Sar 1 = 4107
PL =T L1+ 2mZ,) 2 (4.107)
2mL 1 t 2
T e — ra (4.108)

e2ml — 1+ 2mz, 4

As expected the coupling deviation dgy, 1, is proportional to Z7.

We next move to the computation of the WTtrbg vertex which is non vanishing in
this model. There is no boundary contribution to this vertex and the relevant term of the
bulk is

/0 T (5 [ZW;TJZT, g]) , (4.109)

which after integrating out the heavy fields gives rise to the following contribution, which
is again exact in «

1—emb 1 -
[W tan Oé:| ﬁtRW;bRa (4110)

while for the tg kinetic term, integrating out the heavy fields from (4.94), we will get

2mL _q 14 tanZa
2m 2

1 _
{Zt 4 ) + Zqu tana + (’)(tan%z)} tRPLR. (4.111)

After normalization of the ¢tz and bg kinetic terms, the W¥tzbg coupling will be

e2ml _ 1 tan?a

gtb,R — .
’ 2mL 2mL
1 —1 42
m\/Zt + 67\/21, + S—

2m 2m

(4.112)
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Figure 4.7: Scatter plot of points obtained from a scan over the parameter space of model
II1. Small red dots represent points which don’t pass EWPT at 99% C.L., square blue dots
represent points which pass EWPT at 99%C.L. but not at 90% C.L., and star shape green
dots represent points which pass EWPT at 90%C.L.. The region below the LEP bound
(mpg < 114 GeV) is shaded. The mass of the recently discovered Higgs-like particle at
125 GeV is shown by the black line.

In the limit of no boundary kinetic terms Z; = Z, = 0 for ¢t and bp, this coupling will

reduce to

tana
= - 4.113
gib,R 2\/5 ( )

4.3.2 The effective potential

For the same reasons explained in section 4.2.1 for model II, to find the effective potential
we cannot use the low energy Lagrangian in terms of the light fields, but instead we need
to integrate out the RH fields from the Lagrangian to get an effective Lagrangian in terms
of LH fields only. Doing this we arrive at a Lagrangian which is obtained from (4.94) by
replacing its second and third lines with

1 1 1
S — ——gd; — ——q. 4.114
7. pur Zup> pdr Zq/p2 Par ( )

The effective potential has contributions from the top sector V;, the bottom sector Vj, and
the exotic 5/3 charge sector V,,. The exact expressions are too lengthy to write here and
we report in the following the explicit form of the Higgs potential only in the relevant
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Figure 4.8: Higgs mass my versus the mass of the first KK resonances (before EWSB)
for the points of model III with my > 114 GeV and o € [0.16,0.23]. The mass of the
recently discovered Higgs-like particle at 125 GeV is shown by the black line.

region in parameter space where Zr, Z,, Z, < 1 and Z;, > 1. Neglecting Zr, Z,; and Z,,
we get
(I~ — 11%) <2pH+H*(Zt — Zy)+ 10 — H+)

v
! AT+ (pZ T+ — 1) (pZ, 11— — 1) ’

12

d4
_2Nc/ Wp In[1+s2

d*
Vi :—2N0/(

Vea

e I+ — 11
T Sag 02 11—
- — 1t
2
4115
( A (pZg 1T+ — 1)) ’ ( )

where we have omitted the mass dependence of the form factors IT*. The total Higgs
potential is finally

p
m)*
d'p
(2m)*

| 2
E
\

Viot = Vg + Vi + Vo 4 Ver, (4.116)

with V, given in eq.(3.56). Expanding the Logarithms in the small quantities appearing
in front of sin?a which fall off exponentially with momentum, this potential has the same
structure as that of model II.
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4.3.3 Results

The results of our numerical scan are summarized in figs. 4.7, 4.8 and 4.9. The details of
the x? fit, which has been done with 5 d.o.f, are explained in section B.3. The fermion
sector of this model has 7 parameters, 1 bulk masses and 6 coefficients for the BKT.
The randomly chosen input parameters are m, Z,, Zy, Zy, Zr, 6 and ¢'. The remaining
two parameters Z; and Z; are fixed by the top and bottom mass formulas. For stability
reasons, we take positive coefficients for all the BKT. We have scanned the parameter
space over the region mL € [-1.5,0.5], Z,/L € [0,1.5], Zy/L € [0,2], Z,/L € [0,6],
Zp/L € [0,1.5], 6 € [20,30] and 0" € [15,25].

As can be seen in fig.4.7, at 90% C.L. EWPT constrain o < 1/5 to allow for a 125
GeV Higgs mass. This reduces to a < 0.15 at 90% C.L.. The lightest exotic particles are
fermion SU(2), singlets with Y = 5/3 and SU(2)r, doublets with Y = 7/6, see fig.4.8.
After EWSB, these multiplets give rise to 5/3 and 2/3 charged fermions. Their mass is of
order 1 + 2 TeV, significantly lighter than the gauge KK modes (~ 5 TeV). The doublet
qr, and the singlet ¢t have typically a sizable and comparable degree of compositeness,
while bg is mostly elementary. When mL < —1, ¢z, turns out to be even more composite
than tp.

4.4 Conclusions

We have constructed three different composite Higgs/GHU models in flat space with large
BKT, based on the minimal custodially-symmetric SO(5) x U(1)x gauge group, and we
have shown that EWSB and EWPT are compatible in these models. We stress that model
building in this context is significantly simpler than in warped space.

The Higgs is predicted to be light with a mass mpy < 200 GeV, which is consistent
with the recently found 125 GeV mass. The lightest new-physics particles are colored
fermions with a mass as low as about 500 GeV in model I and 1 TeV in models IT and III.
Their electroweak quantum numbers depend on the model and on the region in parameter
space, but they are always particles with electric charges -1/3, +2/3 or +5/3.

The next step in constructing fully realistic models would be the addition of the two
light quark generations, leptons, and flavour in general. We expect that the typical known
patterns of flavour physics in warped space, such as the so-called RS-GIM, should also
be captured by our effective flat space description. Indeed, in presence of large BKT, the
cut-off of the theory becomes effectively a function of the position in the internal space
and is maximal at the UV brane, with the SM fields becoming more elementary (peaked
at the UV brane at y = 0) and the KK states more composite (peaked at the IR brane
at y = L). In this way, otherwise too large flavour-changing violating operators might
be naturally suppressed. It will be very interesting to study this issue in detail and see
whether and to what extent this expectation is valid.
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Figure 4.9: Scatter plot of points in model III with my > 114 GeV and projected on the
Tnp-Snp, Tnp-6gp,np and Syp-0gp np planes. We have set My cpp = 120 GeV. Small
red dots represent points which don’t pass EWPT at 99% C.L., square blue dots represent
points which pass EWPT at 99%C.L. but not at 90% C.L., and star shape green dots
represent points which pass EWPT at 90% C.L.. The big and small ellipses correspond
to 99% and 90% C.L. respectively.
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The very broad collider signatures of our models completely fall into those of composite
Higgs/warped GHU models. The correct EWSB pattern in all composite Higgs/GHU
models constructed so far (warped or flat, with SO(5) or SU(3) gauge groups) seems
to indicate that the lightest (below TeV) new physics states beyond the SM should be
fermionic colored particles, with model-dependent SU(2)r, x U(1)y quantum numbers. Of
course, this generic prediction cannot be seen as a “signature” of composite Higgs/GHU
models. More specific predictions are the expected sizable deviations to the Higgs-gauge
couplings or to the top couplings, which will be tested at the future stages of the LHC
run.



Appendix A

1-Loop Computation of the Zb;b;
Vertex

A.1 Notation and Feynman rules

We present here some of the Feynman rules relevant for the 1-loop Zbrby, vertex compu-
tation [43] of the next section. Taking a basis TER = (t1L7R, t%ﬁ, -++) for the particles in
the top sector and a basis B;:fR = (b}:’R7 b2 R ) for the particles in the bottom sector,
the relevant part af the Lagraﬁgian includes the mass terms of the top and bottom sectors
and the W¥* and ¢* interactions

_ _ 5 _
L DO —-TrMT; — BRMyBj, + £TLV[/VI/V—’—BL + h.c
v

2 - 2 -
+%TRM£¢+BL - %TLqubJ“BR + h.c (A.1)

By performing the rotations Tr, g — U}, p Tr,r and Br g — UE,RBL,R in (A.1) we diago-
nalize the matrices M;; and move to the mass basis in which the Lagrangian reads

_ _ 5
~TrMPTy, — BRMP By, + £TLVW+BL + h.c
v
5 7
+£TRM?VLBL - £TLVRM{,?BR ¥ he (A.2)
v v

where the matrices appearing in the above Lagrangian are defined through the following
relations

M, = UPTMLU MPT = U Mpu (a3
v o= Ulwul VeMP = U MEUY,

82
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From the Lagrangian (A.2) one can easily read off the Feynman rules for the ¢* interac-
tions

¢)+
d ; e ~ =~
S 1 > = —m (VR)ua ma Pr — my (VL)ud PL]
W iviw
b
w oy

e ~ ~

= W [(Vg)dumuPR—md(V;)duPL )
w MW

where m,, 4 are entries on the diagonal of M;;, and also W# interactions

| _ e v
V2sw Mw v

Similarly for the conjugate vertex in which W is replaced with W~ and u, d are inter-
changed, V,4 has to be replaced with Vju.

The Feynman diagrams that contribute to the Zbrby, at 1-loop are shown in fig.(A.1).
Now we have all the ingredients to compute these diagrams. We will write the expression
for the Feynman diagram (i) as

d%k « g -
T /(%)d <CW> Y"br (A4)

:’L%

defining in this way the two quantities K; and I;. We isolate the effect of the top quark
from other radiative corrections by subtracting a constant piece from I; and defining

F(r) = I(r) — 1(0). (A.5)

where r = m? /M‘%V Using this definition, the effective Zbr by, coupling is written as

g = % (%) F. (A.6)
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Out of the two matrices 17];7 R, only Vi, will appear in the expressions for the Feynman
diagrams, and we will finally call it V for conciseness.

It is worth mentioning that, assuming no mixing in the bottom sector, whenever the
elements of the RH top sector Tk belong to the representations 153, 216, 27,6 or 35/3,
then the matrix element 17;1,, which represents the mixing between the ith element of the
RH top sector with the LH bottom quark of the SM though ¢*, is equal to the mixing
Vip between the ith element of the LH top sector with the SM LH bottom quark though
W, To see this, we concentrate on the top sector mass mixing term and ¢ interaction
of the left handed top and right handed bottom sectors

V2

L > —TF My, + TTE My ¢* B, + h.c. (A7)

For tﬁ% belonging to the representation 15,3, the part of the above Lagrangian including

tr, and by, appears as
v

qLHty D ﬁthzﬁ — b th (A.8)

which shows that the relation
(My)ip = (M§)ib (A.9)
is satisfied. on the other hand, if t; belongs to the representations 2; /65 27/6 OT 35,3, there
could be no Yukawa interaction with ¢z, which means that there will be no contribution
to My and M qf and so eq.(A.9) is still valid. A tﬁ% belonging to the representations 353
or 3_;3 for example, will spoil the relation (A.9).
Performing the rotation 17, p — UﬂR Ty g, we diagonalize M;, UthUz = MtD.
Assuming no mixing in the bottom sector, the mixing through ¢* of the left handed
bottom sector with the right handed top sector in the mass basis will be given by UrMy.

The b component of this matrix can be written in terms of the top masses and the matrix
element Vj;

[UFME) = UMy = [ULMULUE iy = [MP ULy = mysVia, (A.10)

with no summation in the last term. Using the definitions (A.3), this implies that ‘Zb =V

A.2 Details of the 1-loop computation

The diagrams that contribute to the Zby by, vertex at 1-loop are shown in fig.(A.1). In the
following we compute these diagrams ignoring the bottom mass and setting the external
momenta to zerol (see [44] for a more general computation).

!The non SM fermions are significantly lighter that the non SM vector mesons so we have neglected
diagrams in which a massive vector resonance is exchanged.
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Figure A.1: 1-loop contributions to the Zbyby, vertex.

Computing diagrams a; and a,

The computation of diagram (al) goes as follows

1P + my
Kq = brint < g ) (9% P + 9% Pr) Lz
cw p my
e ~ ~ Z(k+ﬁ+mt)
X [(VT)b me Pr —my (V) PL} %
Vasw My L2 RO (k4 p)2 —m?
—ie {
X m [(VR)tb my Pr — my (V )tb PL} mbL
2
e 9\ 27 b pP+my f+p+m
= —|—= | |Vi|® bpy*g; P Prp——"—
(\/istw> (CW>‘ tb‘ L7 9L Lp2_m1% R (k‘—i—p)Z—m%
1
X thL mb[/

_ _( emy )2 <i) ‘Vb‘Q 1 1 1 gb
V2sw My ew ) - m? (k+p)®—mf k> —m§, "
XI)L’Y“PL (Zﬁ—i—mb) Pr (k—i—ﬁ—i—mt) x Py, by,
2
— () (L) 1l : —
V28w My cw p?—m? (k+p)?—mi k?—m?,
X bL’y“ﬁ (éé —i—ﬁ) P bp, (A.ll)

Adding Diagram (a2) which is its conjugate and using Feynman parametrization we get

Kal + KaQ
_ _( emy )2“7 \2<i> g /Cllm brvpl+p)+ (k+p) Y/W“ JPLbr
v 2sw My, t p2—m§ o [(k+ap)?2+z(l—az)p2—ami—(1— a:)m%v]Q

- (o () st [ e
v 2sw My, p?—mj (k2—2(1 — z)p? —ami—(1 — z)m3,|?
2
m = 2(1 - .T) =
i?0—<7emt >v 2<i> b/dx by 4" b
Vasw i) \ew ) O L B ez — (- g
where in the second equation we have used

VPEFPFEEP P = 2P A PR
k—k—ap 27“1)2(1_1,)4_7#?%4_%?7” (A.13)

(A.12)
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and in the third equation we have sent mp — 0 and then p — 0. So integrating over the
momenta, the expression for the sum of the two Feynman diagrams (al) and (a2) is

Ja = Jal + Ja2

emy g ddk: 2(1—3:) -
=— V - dx bryHb
<\/73WMW>| wl <CW> / / 2—ami — (1 —a)my,|? FroE
emy of 9 r logr 1 ] -
_ _ b b
<\/_5WMW>‘ Vol <0W> " (4m) [ (r—12% r-1 L
e’ g 9 T 3 210g7“ 1 o
=i~ (> = b
i <cw>| Vi|” = < %V>[ | betbr

a <i> I(r)br v by
21 \ cw

|
~.

(A.14)
where A2
2 3
-D==—v-1 W+ = A.15
cTTlee sty (A.15)
and the function I,(r), which is equal to F,(r) here, is given by
2
9 T 3 rlogr 1
— | |D — A.16
1) = Wl 35 (1- 3 ) [P+ 2% — 75 (A16)
Computing diagrams b; and b,
The expression for diagram (b1) is
Up +my
Ky = brin" < g )(QLPL "‘QRPR)LQ
cw p? my,
iey® 4 ik +;¢+mt) €Yo —2'
V, Vip b
V2sw " (k+p)? —mi \2sy * %VL

c (9 byt | - ( 2)p(k + p) + dmymy] by,
<\/§5W> (5) Vil [(k + p)2 — m2](k* — m¥,)p? — m? (A.17)

where we have used

YPLP+mp) Y (K +p+mi)vaPr = YHPL(p+ my) [ —(d—2)(k+p) + dmt] Py,
= [ (d—2)p(k +p) + dmym¢| P, (A.18)
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in the second equation . Adding the contribution of Kps and using Feynman parametriza-
tion along with eq.(A.13) one finds

Ky + Kpa
_ (Y g [ 2= =202 ) b dmymJ oyt 1
= (voar) (oo it ot e = 2= ot (= Dy 2 2 = 2
2
mp,p—0 e 9 b —2(d — 2)(1 — z)bry"by,
— <fsw>< >|th| /Ox[kQ_xmtg_(l_x)m%VP (A.19)

which after integrating over momenta becomes

S = Ty + JIp2
B ( e >2< )IV 24 / /ddk —2(d —2)(1—3:)5];7%];
V2sw * 2—am? — (1— z)mi, 2

= () (& >‘“"29L<4>(D“ e

2] 1 -
= i (—)lwbl29—é(D+1+ R L
cw r

2 252, (r—1)2
ol g 91 3 ( r?log r 1 )-
= i—— Vs 1—=—)(D+1 — bryHb A.20
Z27T<CW>| ol 6< 28%,) - +(r—1)2 r— 1)L ( )
so the function F'(r) defined in (A.5) is
1 3 r2logr T
Ey(r) = Ip(r) — I,(0) = [Vip|* = (1 — — : A21
b(r) b(r) — Ip(0) = [V 6 ( 28%{/) [(7“— 02 r— J ( )
Computing diagrams c; and ¢,
Diagram (cl) is computed as follows
- e =~ Z(éé + mt)
Kg = by ——— ) VimPr——t—
. t <\/_5WMW> b T2 —mj
ey, . 2 1
(o) Yol o) g

€EYv 1

— m2

- b —— ViV Mystn,) —————b
L(ﬁstW> Ly (fsw>(g 25 ) (i e
7) () E e

= —(— (= )ViVy ¢ by AMb
(2 ew ) (K2 —m2) (k2 — m,)? KT
e? g\ = 1 2(1 —z) -

- (=) (X ) viy 2/d brHb A.22
<2><cw> wVarmiy | e ey g e (A22)
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which leads to the following expression after integrating over the momenta

ddk 2(1 — ) .
Jer = ‘< )( )Vbtvt’”mW/ d”““/ g g s g A
2
g —i 21 —=) -
- _ d bry*b
( ><cw)vbtvf”mw”/ A w1 — ) + g P
—1 1—=x
d br b
><cw>vbtv“’r/ a1 tar
(5

e + rlogr _ 1 =
2) <cw>vbtv“’ [( —1)p r—l] bb

(47)?
_ a9\ iy T rlogr 1 byl A9
“or (cw) Vtitb4 |:(?” -1)2 r- 1] LY L (A.23)

This expression along with its conjugate sum up to the following result

_ _i2 (L) (v 72 AL L N VT
Jc—Jcl+Jc2—22ﬂ_ <CW) (‘/btvtb—i_‘/btvtb)4|:(r_1)2 ?“—1:| LY 0L ( : )

which means that the function I.(r), here equal to F(r), is

rlogr 1
(r—12 r-—1

~ ~\T
I = (VilVao + Vi Vo) 5 [ (A.25)

Notice that we have included a % factor for each external leg correction coming from the
VZ=\1+0Z=1+ %5Z factors appearing in the formula for S-matrix elements.

Computing diagram d

Next we find the expression for diagram (d)

_ ie -~ i +my) . g i+ my)
K;=0% 7‘/1-, Pp—t a2 P P i+ my)
! L\/isw My b 111t RkQ—mf Y <cw>( + 9 Pr) k2 —m?
_ie ;
X ———V; my Pr)———0b
V2sw My Vas(—1r L)k:Q—m%v -
= rrl< : )2< . >~T — b Pr(f+mi)v* (g% Pr+g% Pr)(f+my)Prb
- o 1 Vitb
V2sw bt (k2—m )(k:2 mt')(kQ W)

o Y LA 7, bLPr(men (91" Pr+gji Pr)( @ me) Prby
\/78[/{/ b Tt (k2_ )(kQ mt/)(kQ )

2 tt/ ——k2 tt’ br b
=—2v/rr/ < )( )Vbt,vﬁ, /da:/ gL e 9r ]b el
V2sw —m2(l—x— y) mzy—mi, x|
(A.26)
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where we have made use of
d—2
Pr(l+my)y (gL Pp+g% PR)(éé +my )Py = [ngth - TngR] ~* Py, (A.27)

The result (A.26) gives upon integration over the momenta

2 dy, tt/ 2]<:2 tt by~
:—QV”“( )( )Vbt/vtb/dx/ /d Lo mimi— 5 kgl Jbur"be
V2w cw —m2(l—x— y) mt,y my, ]

,a Vrr! rNVrr! (r'logr’  rlogr
() v | 725 (25 - 72

“or 4%, 9L -1 -1

1 1 2logr’  r?l _
—g§§§<m+1+ , <T oer T Ogr))}bLy“bL (A.28)

rr—r \ -1 r—1

r—r

and consequently

~ rr! [ w Vrr! <r’ log r’ rlogr)

A |
Id(’l”,’l”) = ‘/bt"/tb42 9L r—r r—1 _?”—1

Sw
o1 1 r?logr’  r?logr
—gR D+1+ = - . (A.29)

—r r—1 r—1

In the limit 7" — r and ¢’ = ¢ the above expression reduces to

~ T . ( rlogr r . 1 2r—1 r(r—2)logr
__ _ = (p by
Ta(r) ==Val 1%, [9L<(r—1)2 r—1>+9R2< Tt T e L oL
(A.30)

which is equal to Fy(r).
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Computing diagram e

Diagram (e) is computed by integrating over momenta of the following expression

- ie -~ Z(éé + mt)
K. = b VimPr—t——
e L \/§8me "R k2 _
- —1
7‘/ myPr) ————2iek, cot 20y b
o Mo Vio(—mi Pp) (2 2, y2 2 wbL
iemy 9+ L+ my) -1 .
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(\/_SWmW> | tb‘ g k% —mf L(kQ—m%V)Q g v

(fszW> Vil G ot =)

2 [y 2kaky (1 — ) .-
\/78me |‘/tb| [k’2 :vmt (1 - a:)m%v]?’ 2ecot 2 W bL o bL
(A.31)

2e cot 20y br, Ya b,

which gives

2 1 d
emy ~ d’k 2ko k(1 — ) _—_—
Jo =—| ——— | |V, d 2e cot 20y b b
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(\/_Swmw>| ol /a:/ 1‘mt (1—1’)7”12/1/] & o0 W OL Y 0L

emy i r2logr 1
= | ——— 2e cot 26 D —
(g Y W (2econ 20 4(4@2( e

o g\ 200520wr< r2logr 1 )—
= i— | — ||V, D — (@] b b
! (Cw>‘ ol 1653, * (r—12 r-1 +O(e)) by b

= 2 211 rlogr 1 ]
_ 27T< )\tb\ 8(25%4, 1>T(D+(T_1)2 —— +0(9)) by br, (A32)

and consequently I.(r) = F.(r) is given by

1 +O(€)> BL'YubL

~ 91 1 r?logr 1 -
— V22 _ _
Le(r) = [Va|” (25'@ 1) r(D e R 0(6)) br Yy b (A.33)
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Computing diagram f

Diagram f is computed in the following way

ie +my) ' i(f+my)
Kf — < ’YaPL>VT k 2 Z,YH <C'ZV> (gtt P +gtt P ) k m2
t t/
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Covtvin (= Y (L) [ [y D e — SR [b1r b
= AVt VT'h p— x Y221 2 9 .13
\/§5W cw /JJo Jo [ my ( T—y)— muy mWa:]

(A.34)
in which the identity
/ / / d
Y Pr(frmen" (97 Prtgg Pr)(+mi)va P = —(d-2) [g5 mtmt/—TkQ g |7"Pr (A35)
has been used. This gives, after integrating over the momenta
1— d d 2.2 tt
d*k — mymy —=2k2 g4 |brpyH b
Jp 2Vbtm< )( >/da:/ / 2)[gft marne ]mgL
\/_SW cw mt(l T—y)— mt/y mwx]
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D+1 — A.36
2( * +’—7“<7“’—1 7“—1))] ( )

which leads to the following expression for the function Fy(r,r") = Iz(r,r") — I¢(0,0),
now depending on r and 7’/

w ! (r'logr’  rlogr\ 1/ 1 (r?logr’  r’logr
IR\ -1 r-1) Lo\ —r\ o1 r—1 '

(A.37)

Vit Vi
25%[,

Fy(r, r') =

In the limit " — r and ¢ = ¢ this becomes

Fy(r) = —g/sﬂé': [gfa <(:1fg1;2 - 1) +% (T("”(;_Q)ll)(;gr - 1)] (A.38)
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Computing diagram g

Finally we compute diagram (g) starting from the integrand K,

o [ e i (f+my) ( ey, > ) X Y -1
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e d—1 4k gey -
- - |Vio|® by oL,
<\/§sw> d (K = miy)* (k> —mf)
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e od—1 8(1 — z)k*gew -
= (o) T i A3
and integrating over the momenta
ddk 8(1 — z)k? .
J, = (-2 |th\ /dx/ )R gew — bryby,
V2sw k2 —m3, (1 — z) — miz]?

3igew e 5 | T°logr 1 2| -
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_ i (Z g 23CW 7‘210g7‘_ 1 2] -
o 2(271') < W)‘ tb‘ |:(?”—1)2 T—1+D+3 bL’Y bL- (A40)

This gives the function I,(r)

3ck, [ r?logr 1 2
I(r) = [Vp?= 3¢ -~ D+ = A4l
) = WP T | - o ep+ ] (A1)
which leads to the following expression for the function F,(r)
3ci, [ r?logr r
_ 225w
Byr) = 1,(r) = 1,00) = VP T | 7280 - o). (A42)

Final result

We define the tilded quantities Fj,(r;) to be equal to Fj(r;) with the matrices V and V
set to identity. For the case of the SM, the full result will be the sum of all diagrams
computed in the previous section, with V = V3 = 1, which gives the finite expression

9. 2 _ 2 1
FSM:ZFi(T):T(T Tr+64(2+3r) ogr)'

N (A.43)

1=a1
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For the general case the full result, including the exchange of one 2/3 charge fermion
resonance, can be written as

SN R+ Y)Y Fulgl gorisry)

i k#d,f ij k=d.f

g ..
= D> Elra)+Y ] D Ful0g) i), (A.44)

i k=ay ij k=d,f

F

where in the second equation we have added »_;_, ; Fi(r;) (in which g5 r have been set
to their SM values gL ) to the first term and subtracted it from the second term. 5gL R

is thus equal to gL R - gt R §%. This can be further written as

Z|Vzb| Fb(rz)+Ff(Tz va szcl ) va szc2 )
+Z ‘Vzb‘ Tz +Fd(rz) Fe Tz' + Z‘/In‘/]b F(59L7R>Tiarj)> (A'45)
(2%]

where in the last equation we have defined

F(dgg,erivrj) = Z Fk(dgiL{Rarivrj)' (A46)
k=d,f

The total Zbb coupling and the new physics contribution are given by

(0% [0
9= 5- <i> F, 0gb = gb — gsm = 5= < g >FNP7 Fnyp=F —Fsy (AAT)
™ \CW 2 \ew

It might be worth mentioning that for the special case where Vi = Vip, the function (A.45)
will simplify to
F Z“/Zb| FSM TZ +Z‘/b ij(égLRurrZaT]) (A48)
ij
so that

Fyp=F —Fspy =Y [Vag|* (Fsar(ri) — Fsu(r) + A i Vib F(3g) RoTisT)  (A49)

7 2

where we have used the fact that Y, |[Vip|*> = 1. Note that according to the discussions

at the end of section A.1, in the models presented in this thesis, the only situation where

the relation Vi, = Vjp, is spoiled is in model III where there is a vector-like triplet 35 /3.
In the next section we will prove that the function F' in (A.45) is finite.
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A.3 Proof of finiteness of F

In this subsection we aim to argue that new physics contributions to the Zbb coupling
at 1-loop is finite as far as we neglect the mixing in the bottom sector, which is what
we actually did in this work. To do this, we adopt the same notation mentioned at the
beginning of this chapter and choose a basis TLT,R = (t}:’R,t%,R, -++) for the particles in
the top sector and a basis BT = (blL, b%, .-+ ) for the particles in the bottom sector. The
divergent piece D appears only in the diagrams (al), (a2), (d) and (e). This means that
we only need to concentrate on the following terms of the expression (A.45)

S Va2 (Fa(ri) + Fa(ri) + Fo(ri) + Y Vi Vi Fa(dg7 g rismy), (A.50)
7 2,7

but since we have used the SM coupling g, in Fy(r;), the divergences in the sum F,(r;) +
Fy(r;) + Fe(r;) cancel out for the same reason that they cancelled out in Fgps. So we just
need to show that the coefficients of D in

2‘7}:2‘7]13 Fd(@ﬁmn,w) (A.51)
.3

sum up to zero. For this purpose we can write the deviations, from the coupling of the
SM RH top quark, of the matrix of Z couplings of the RH top sector as

1 Tl
y IR 5 3L
g = U Ik Ul — gkl = U} iy Ul (A.52)
where ¢4, = T4, — %312/1/ and ¢l = —% s¥,. Using the definitions (A.3) with no mixing in

the bottom sector U]l; r = 1, the coefficient of D in expression A.51 is proportional to

> mamy ViVa gy = > IMSTUR UL M s dg) = (M TUR 6gh U M1
4, i,j
L i
= > [M¢T]bi T3y, [Mf ] = 0. (A.53)

)

which vanishes. This is because either T§ ;, = 0 or there could be no interaction between
by and t%, through ¢, and so [ML]; = 0.



Appendix B

Electroweak Precision Tests

B.1 Introduction

In this section we briefly review general aspects of electroweak radiative corrections and
their effect on precision electroweak measurements. We are interested in the corrections
which are independent of the fermion species, that is, the corrections to the gauge propa-
gators, usually called oblique. These corrections are encoded in the vacuum polarization
amplitudes

Ty (62) 1 + ' Ty (¢2) = / d e (T ()72 (0) (B.1)

where X, Y refer to the electroweak gauge bosons.

Being interested in low energy processes, out of the infinite terms appearing in a
Taylor expansion of IIxy in momentum squared, only the first two terms are relevant,
the remaining terms are of order ¢*/A?, where A is the scale of new physics, and decouple
at low energies as far as we consider 1-loop contributions. Mass dependent couplings due
to Higgs exchange can occur at higher loops. We choose as a basis for IIxy, the vacuum
polarization amplitudes IL;;, (4,7) = (Q,Q), (3,Q), (3,3), (1,1), defined through

Moo = Maa, gellsg = Mysy, ¢*Ma = Mypays, a,b=1,2,3. (B.2)

Note that II1; = Ila2, and all other combinations vanish by global U(1)ey, invariance. We
write their Taylor expansions as

Moe(¢?) = Mpe(0) ¢ +---
Mo(q?) = Map(0) ¢+ (B3)
M33(¢°) = T33(0) + M55(0) ¢° + - --

q )
M1(¢?) = TMyp(0) + 10, (0) ¢* + - -

96
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where a prime denotes a derivative with respect to momentum squared and IIgg(0) =
II30(0) = 0 because of U(1)en, gauge invariance. So we are left with six parameters out
of which three combinations are used to fix the three parameters of the theory, namely
2, 5 (or equivalently g, ¢’) and v. To do this, three observables are needed. The natural
choice is a, G and myz as the most accurately measured parameters.

So the effect of oblique corrections can be parametrized by «, Gr and mz and three
other combinations of the six parameters in (B.3). For a renormalizable theory all the
divergences are absorbed in g, ¢’ and v, through the definition of o, Gr and myz. So the
other three combinations of the the six parameters in (B.3) can be chosen to be finite. In
fact, one natural choice is given by the S, T' and U parameters [17] defined by

a8 = e (lyy(0) — Mg (0))

e2

ol = W(HH(O)—H%(O)) (B.4)

aU = 4é* (11}, (0) — 44(0)) .

So all the oblique corrections are expected to be functions of the six parameters o, G,
my, S, T and U. This is indeed the case.

In the next section we introduce the notion of custodial symmetry and also express
the S and T parameters in terms of the coefficients of some higher dimensional operators
which appear in the EW effective Lagrangian.

B.1.1 Operator Analysis

Lets extend the gauge symmetry of the SM to the global symmetry SU(2), x SU(2)r by
adding two spurious fields Wll%j which along with Wf}m = B, form a triplet of SU(2)rg.
Also, by collecting the components of the Higgs field into the two by two matrix 2 =
(H¢, H) as in eq.(3.61), its transformation can be generalized to a bidoublet of SU(2)y, x
SUQ2)r

Q— LQRT, LeSU?2)L, Re SU?2)x. (B.5)

Now lets consider SU(2);, x SU(2)r invariant operators constructed out of the gauge
fields W} p, and the Higgs. Obviously any such operator is SU(2)r, x U(1)y invariant

even when we put back the two extra gauge fields W}zj to zero. But the converse is not
true, not all SU(2);, x U(1)y invariant operators are reproduced in this way. Whenever
possible, we will also call such operators SU(2)r, x SU(2) g invariant by abuse of language.

After EWSB the field 2 will be proportional to the identity matrix, @ — (h)1, and so
the symmetry group SU(2)r, x SU(2) g will break to its diagonal subgroup SU(2)., usually
called custodial symmetry [45], whose only gauged generator is Tg + TI% which generates
U(1)em. So after EWSB the gauge sector of an SU(2);, x SU(2)g invariant Lagrangian,
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including W}%’j, at quadratic level and in momentum space can be written as
Qv 1 a a 1 a a a a
L= P §HLL WLMWLV + §HRR WR,U,WRV + IR WL,uWRu . (B.6)

This form of the Lagrangian is dictated by global SU(2). invariance . When we set the
fields Wll%j to zero, the Lagrangian (B.6) will reduce to

1 1
L= P [5““ WEWE, + 51lkg Wi, Wh, + LR WEMWI%,,} : (B.7)

This Lagrangian, clearly, will give no contribution to the 1" parameter because of global
SU(2). symmetry which fixes the structure of the quadratic terms in Wi, and leads, in
particular, to Iy sys = My = .

It turns out that operators constructed out of W gy and the Higgs, of dimension
four or less, which include the gauge and Higgs kinetic terms and the Higgs potential, are
SU(2)r x SU(2)g invariant. In other words custodial symmetry is an accidental symmetry
of the SM. This is easily seen by noticing that the manifestly SU(2);, x SU(2)r invariant
Lagrangian

1 P o o -
£:§T&~D“QTD“Q—V(T1~(QTQ)), DQ=0,0—iW,-7Q+iQWg-7  (B.8)

with 78 = ¢%/2, reduces to the Higgs sector Lagrangian of the SM when W}%i = 0.

At dimension 5, there are no SU(2)r, x U(1)y invariant operators made of only gauge
fields and the Higgs. In fact, including fermions, there is only one such operator, which is
actually responsible for neutrino masses [46]. So the custodial breaking operators, which
contribute to the T parameter, arise at dimension 6 or higher. These operators which
must include W} and not their derivatives, are of the form

(HTH)" |HD, H|?. (B.9)

After EWSB, the operator HD, H will reduce to

v? 3 v? e
HD,H — Z(QWM —-gBy) = T 50 Zy, (B.10)
so (B.9) will contribute to the mass of the Z, boson.
In an SU(2)r x U(1l)y invariant theory, after EWSB, the general form of the La-

grangian at quadratic level and in momentum space is

1 1
L= P\ yw WHW™ + 5 Twawa WeW, + 5188 BuBy + Tyap WiB,|. (B.11)
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Through the text and in the following we will also occasionally make use of the definitions
g”yy =g, 99'Tzy = Myysp. (B.12)

If the operator Or = |HD, H|* appears with a coefficient ar in the effective Lagrangian
,zthen from (B.10) one can easily find its contribution to the vacuum polarization ampli-
tudes. In particular we have

a<a d>4 a<a 2 (arvig?
Ma(0) = T05(0) + 115°(0) = 115°(0) + 5 (“Tp
d<d d>4 d<d4
31(0) = Thyy (0) + 1Ly (0) =TLy; (0) (B.13)

where I°=" and 1" represent the contributions to the vacuum polarization amplitudes

from operators of dimension < 4 and > 4 respectively. According to the discussion above
d<4

da<
I35 (0) = H114(0)7 S0
e2 4 4 ( arvt arv?
T=———- (II1;(0) = II33(0)) = — (II11(0) = II33(0)) = = ( ——— | = —
T = ey (T(0) = T(0) = 5 (I 0) = T0)) = o (=5 ) = =%
(B.14)

which shows the relation between the coefficient of the operator |[HD, H|? and the T
parameter.
The lowest order operator that contributes to the S parameter is Og = Hfo*H W, B*.

After EWSB this operator reduces to %W;:’VBW which in momentum space becomes
—UQQQP}”'WS’BZ,. This means that the operator Og appearing with a coefficient ag in the
effective Lagrangian will have the contribution to the vacuum polarization amplitudes

1
by (0) = — —v2a5 , B.15
3y (0) 97 ( ) (B.15)
which in turn leads to the following contribution to the S parameter

S = —4e*l4y (0) = —— (—UQGS) =4scv’ag. (B.16)

B.2 One-loop fermion contributions to the electroweak S
and 7" parameters

In this section we give some of the details regarding the computation of the S and T
parameters in our models at 1-loop. The basic quantity entering in all expressions is the
1-loop fermion contribution to the gauge boson propagators (in which the couplings have
been omitted) where two fermions with masses m and m’ run in the loop
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2.1_[1(]((]2> m, m/) =

m/

with I,J = L, R denoting the chirality of the two currents and ¢ the momentum of the
gauge bosons. Using this quantity and the definition (B.4), for a number of fermions with
masses m;, the T parameter is expressed in the following way

47N, . o
T = SAMIF Z [( g7 )’ 9R+)2) Mpz(mi,my) +297, g5, HLR(miamj)}
47N,

T 2EMIP [( 97s)° 9}{3)2) Tz r(mi,mj) + 2975 g% HLR(mZ‘,mj)] (B.17)
9%

where N is the number of colors, and gLJr and gRJr are the W+quL and W+qRqR

couplings respectively, while gL3 and gy, are the W3¢q. qj and W3(j§%q§% couplings. We
have also defined II;;(m;, m;) = II7;(0, ml,m]). Also, by the definition (B.4), the §

parameter can be expressed as

99’ 3 [(ggi% 9ip I ggB)HILL(mh mj)+ (92]3 9ipt9is QZL]B>H’LR(mia mj)]
7;7j

S=—

o | | (B.19)
where similarly g7 and ggB are the Bq_ingL and Bq‘}éqﬁ couplings respectively, and we
have also defined II} ;(m;, m;) = %Hu(q%mi,mjﬂqg:o.

Making use of the definition

47

et (B.19)

2
K=-—v+log
€
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explicit expressions for this 1-loop self energies and their derivatives at zero momentum
are given in the following

(1+2K)(m2 +m’?)  m*log ™ — m'*log ™7

II N = B.2
re(m,m) 3272 1672 (m? — m/?) (B-20)
, , _ (1 + 3K)(m2 _ m/2)2 _ 6m2m/2
M (m,m) = = 7272 (m2 — m'?)
3m*(m? — 3m/?) log ]\”}[—22 —3m*(m™? — 3m?) log ”]\}[—lz
72 7T2(m2 _ m/2)3 (B'21)
"M+ K 2log M2 _ 12 ]og M2
Mpp(m,m’) = _mm 1+ K) 4 08 T 08 N (B.22)

872 812(m? — m'?)

m2
12

mm/ <m4 —m/* —2m?m'? log

M p(m,m’) = — 672 m? )P : (B.23)

Note that I[Iggr = Il 1, and IIz;, = II; k. In the limit m’ — m these amplitudes reduce to

2 2 2
Hpp(m) = - (K e %> rr(m) = _m2 <K e %)
8 L LR - 82 (B.24)
1—-2K + 2log % / _ 1
1_[,LL (m) = 487T2 = LR(m) - 4871'2

For several beyond SM fermions running in the loops the analytic expressions for S
and T parameters are quite involved. In the following we find analytic expressions for
one-loop fermion contribution to 7" and S, along with dg;, (which for coherence we have
included in this appendix) in particular limits where relatively simple analytic expressions
are available. This is motivated by the fact that often in our models one or two fermion
states are significantly lighter than the others and dominate the loop corrections. The SM
quantum numbers of these light fermion states vary along the parameter space and thus it
can be useful to list the single fermion contribution to T, S and dg. The contribution of
the first two light quark generations, including their KK towers, given their light masses
and small Yukawa couplings with the KK modes, is expected to be negligible. We have
actually checked that even the fermion mixing in the bottom sector is negligible, so that
only the charge +2/3 states mixing with the top quark should be considered. In what
follows we define Tvp, Syp and dgp np, the fermion one-loop contributions given by new
physics only, with the SM contribution subtracted, by

Inp=T—Tsy, Snp=8—Ssm, Ogpnp =09y —0Gb5M , (B.25)
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where
1 1 2 NCT NC Mb2
= —— 4= Tsyr ~ Sop=—|3+1 —2
9b,SM 7 + 38W, SM 167rs%,[, ) SM = 13- < + log <Mt2 )
« r(r2=Tr+6+4(2+3r)logr M?
Sgpsm = g ( ( 5 )log) , r=—L, (B.26)
167sy;, (r—1) My,

sw = sinfy, and M, is the pole top mass, M; = 173.1 GeV [47].

We do not exploit the full SO(5) symmetry underlying our model and classify the new
fermion states by their SM quantum numbers. In this way, the explicit SO(5) symmetry
breaking effects due to the UV b.c., that can be sizable, are taken into account and more
reliable expressions are obtained. For simplicity, we take in the following all Yukawa
couplings to be real, the extension to complex ones being straightforward.

B.2.1 Singlet with Y =2/3

The simplest situation arises when the top quark mixes with just one SM singlet vector-like
fermion X with hypercharge Y = 2/3. The two possible Yukawa couplings are

LD yqrHtg +yxqrH° Xg + h.c. — Mtptr + Axtr Xg + h.c., (B.27)

where here and in the following we use the notation that \; = y;v/v/2 is the mass parame-
ter corresponding to the Yukawa coupling y;. The \; are assumed to be small with respect
to the vector-like mass Mx of the new exotic fermions. By using standard techniques and
keeping the leading order terms in the \;/Mx expansion, we get

NA% (QAE log (2%) + 23 — 2At2)
Typ = : , B.28
NE 16752, M2, M2 (B.28)

M2
o NA% (2108 (55) - 5) 0
e 187 M2 ’ '

Qom\% (QAE log (45) + 2% — 2At2)

5 = : B.30
NP 16ms3, M7, M3 (5:50)

in agreement with [48, 49]. For simplicity, in eq.(B.30) we have only reported the leading
order terms in the limit A\;/My > 1. The top mass is given by

M, ~ )\t<1 — 2?\%{) . (B.31)

As can be seen from eqs.(B.28)-(B.30), for a sufficiently large Mx, Typ and dgp np are
closely related and positive (like Syp).
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B.2.2 Doublet with Y =1/6

The two possible Yukawa couplings mixing the top with a new doublet (); with hyper-
charge Y = 1/6 are

LD yqrHtg + y1Q1LHCtR + h.c. = Mtrtp + Al@luLtR + h.c.. (B.32)
We find
2 (2 M 2 2
I (6)\t log (5F) + 2% - 9)\t> s
e 2452, M2, M? ’ '
M2
) NeA3 (410g (54) = 7) b
NP — ].87TM12 ’ ( . )
M2
5 aem)\%)\? log (A—;}) Bas
go,NP 327T8%/[/M5VM12 ) ( . )
in agreement with [48]. The top mass is given by
)\2
i

As can be seen from eqgs.(B.33)-(B.35), for a sufficiently large M, Tnp, dgp vp and Syp
are all positive.

B.2.3 Doublet with Y =7/6

The two possible Yukawa couplings mixing the top with a new doublet Q)7 with hyper-
charge Y = 7/6 are

LD yqrHtg + y7Q7LHtR + h.c. = Mtrtp + /\7@7st}3 + h.c.. (B.37)
We find

. NAZ (632 log () — 22 — 037 s
Nee= o 24752, M2, M2 ’ (B-38)

NoXZ (410g (57) — 15)
Snp = — At (B.39)

187 M2 ’
2
aem NN log (5F)

0gb,N P - (B.40)

32ms2, M2, M2
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in agreement with [48]. The top mass is given by

M, ~ /\t(l - 2;572) . (B.41)

As can be seen from eqgs.(B.38)-(B.40), for a sufficiently large M7, Tnp, dgp vp and Syp
are all negative.

The contributions to 7', S and dg, of the doublets with ¥ = 1/6 and Y = 7/6 are
almost the same in magnitude, but opposite in sign. When present together, then, there
tends to be a partial cancellation among these two contributions. In the SO(4) invariant
limit in which M; = M7 and A1 = A7, their contributions to dg;, precisely cancel.

B.2.4 Triplet with Y =2/3

The two possible Yukawa couplings mixing the top with a new triplet T with hypercharge
Y =2/3 are

LDy qrHtg + \/§qu_LTRHC + h.c. = Mtrtr + At Tor + h.c., (B.42)

where Tj g is the triplet component with 737, = 0. We find

N3 (1847 log (5F) + 1953 — 3047

T = B.43
NE 487s2, M2, M2 ’ (B-43)

; NoX3.(410g (M) — 29)
= - B.44
ne 187 M2 ’ (B44)
) a3 (22108 (5F) - 03) s

NP = 16753, MZ, M2 ' '
The top mass is given by
)\2
M, ~ )\t<1 - —T) . (B.46)
2M2

As can be seen from egs.(B.43)-(B.45), Tnp > 0 and dg, yp < 0. Contrary to the previous
cases, the bottom quark mixing cannot consistently be neglected, since the same Yukawa
coupling in eq.(B.42) mixing the top with the T5;, = 0 triplet component gives also a
mixing between the bottom and the T3; = —1 triplet component. This mixing is at
the origin of the log term involving the bottom Yukawa coupling )\, in eq.(B.44), which
enhances the fermion one-loop contribution to S with respect to the previous cases and
gives Syp < 0.
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B.2.5 Doublet with Y = 7/6 mixing with singlet with Y =5/3

The two Yukawa couplings mixing a vector-like singlet X with hypercharge Y = 5/3 with
a vector-like doublet Q7 with Y = 7/6 are

LD yxrQrrH X1, +yxrQrLH Xg+h.c. = Ax1.Qrur XL+ AxrQrur Xr +h.c.. (B.47)

In the limit in which M; = Mx, we have

N (18X, + 2% L Axr + 18Xk X + 2010 + 130 )

Typ = , (B.48
NP 480ms3, M3, M% (349

. N (1205, + M9 xpAxn + 12035 -
e 907 M2 ' (B.49)

Of course, dg; vanishes, since there is no coupling between the bottom and these states.
Being given by vector-like states, eqs.(B.48) and (B.49) do not contain “large” log’s of
the form log M/)\;. Assuming equality of masses and Yukawa’s, the contribution to 7" in
eq.(B.48) is suppressed with respect to the other contributions previously determined.

B.3 2 Fit

Any theory beyond the SM would lead to some modifications of the low energy effective
theory which in turn is constrained by experimental data. In this way one can put
bounds on the parameters of the theory beyond the SM. This is done systematically by
performing a 2 fit. Consider a set of observables O; which are computed in terms of the
parameters, a;, of the theory beyond the SM, and denote by O;"? the measured values of
these observables. A measure of how well the theoretical values O; fit the experimental
data, is given by the quantity x? defined by
X* = (0; — O5) (o) ;1 (0; — O5), Oij = 0ipij0j. (B.50)

where p is the correlation matrix and o; are the errors . Using this quantity one can define
the region of parameter space a; compatible with data to the desired level of accuracy, by
allowing it to lie within some distance of its minimum value, x? < x2,. + A. Table.(B.1)
shows different values of A for different numbers of degrees of freedom and associated with
different confidence levels (C.L.), which is the probability that a normally distributed set
of variables lie within some distance R = v/A of their average.

In the present work, following [50], we have tested our models by performing a com-
bined x? fit expressed in terms of the ¢; parameters [51]

Qlem Aem
— awnT, ___Gem g _ _Qem g B.51
1= dem . BT LsinZ Oy (B51)
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99% 95% 90% 70%
6.63632 | 3.84173 | 2.70571 | 1.07423
9.21034 | 5.99146 | 4.60517 | 2.40795
11.3449 | 7.81473 | 6.25139 | 3.66487
13.2767 | 9.48773 | 7.77944 | 4.87843
15.0863 | 11.0705 | 9.23636 | 6.06443
16.8119 | 12.5916 | 10.6446 | 7.23114

Y| O x| W I N~

Table B.1: Some sample values of A in terms of C.L. (top row), and the number of d.o.f
(left column)

We use the following theoretical values for the ¢; parameters

er = (5.64—0.861h) x 107° + aenTvp,
e = (—7.10+0.161h) x 107,
= (5.25+0.541h) x103 + —2" _Snp,
@ = (55+ ) T LemZoy NP
e, = —6.47x107° —25g, np, (B.52)

where the first terms are the SM values but with the modified Higgs couplings, and T p,
Snp and dg, np, defined in eq.(B.25), encode the new physics contribution without the
SM one and lh = log My r¢/Mz, with the effective Higgs mass My .rs defined as [49]

1 ) sin? o

Mpyerr = Mpyg (—

B.
ML (B.53)

with L being the length of the extra dimension. This modification of the Higgs mass is
due to the fact that in composite Higgs models the Higgs couplings, in particular to the
gauge bosons, is different from that of the SM (see eq.(2.29)), as a result the theory is
not renormalizable and the S and T parameters need not be finite. In fact contrary to
the SM case, the cut-off does not cancel among different diagrams contributing to these
parameters through Higgs exchange and leads to the following deviations from the finite
SM values

AS = L1 a?)eg (B.54)
T Ion 52 '
3 A?
AT = —— 2 (1—a?)log — B.55
167rc%V( a”)log M (B-55)

where in our case A = L~! and a is given by eq.(2.29), so 1 — a? = sin?a.
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The experimental values of the ¢;, as obtained by LEP1 and SLD data [52], are

erp

5.03 +0.93) x 1073,

€ =

5P = (=7.7134£0.95) x 1073,
es? = (5.44+0.87) x 1073,
e (—6.36 +1.3) x 1073

Finally, the x? fit has been performed using the following correlation matrix and error
values

1 072 087 —029 0.932
o2 1 046 —0.26 | 0953 s
P=1 087 046 1 —018 |’ 7= os6s | X0 (B.57)
—029 —026 —0.18 1 1.313

The bound on g g in model III is included by adding in quadratures to the x* (B.50)
the result coming from b — sy decay [19]:

got.r = (9£8) x 107*. (B.58)
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