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Abstract 

 

 Excitotoxicity is considered to be a major contributor to pathophysiological mechanisms 

responsible for spinal cord damage after acute injury. Hyperactivation of poly(ADP-ribose) 

polymerase (PARP) is the chief effector of neuronal death which leads to cell energy 

depletion and DNA damage with the manifestation of non-apoptotic cell death termed 

parthanatos. Glutamate mediated excitotoxicity is also one important component of post-

traumatic degeneration following spinal cord injury (SCI). 

 Kainate (1 h), a potent non-degradable analog of glutamate, was used to induce excitotoxic 

injury in our in vitro model. The neonatal rat isolated spinal cord preparation allowed 

investigating changes in locomotor network activity after application of this excitotoxic agent 

with or without potential neuroprotective drugs. Synaptic transmission, cumulative 

depolarization, fictive locomotion and disinhibited bursting were studied in order to observe 

the functional properties of locomotor network and related to network hictology.  

 Our results showed that the locomotor network was very sensitive to excitotoxic damage 

and excitotoxicity grew gradually leaving a time window in which neuroprotection might be 

attempted to preserve the circuits which are still capable of expressing basic rhythmogenesis.  

Our result confirmed that PARP-1 overactivity is closely related to neuronal loss after 

kainate induced excitotoxicity. Application of PJ-34 (60 µM; PARP-1 selective inhibitor) 
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blocked PARP-1 activation and preserved dorsal, central and ventral grey matter with 

maintained reflex activity. Fictive locomotion was restored in more than half of the 

preparations when the excitotoxic stimulus was moderate. Histological damage by 50 µM 

kainate (moderate injury) was widely prevented by PJ-34. At the same time, this drug 

strongly increased spontaneous network discharges which occured synchronously on ventral 

roots and persisted for 24 h even after PJ-34 washout. Neurochemical experiments showed 

that PJ-34 induced up to 33% inhibition of synaptosomal glutamate uptake with no effect on 

GABA uptake. However, chemically or electrically induced fictive locomotion was present 

24 h after PJ-34 application and neurons and glia remain unchanged. The other PARP-1 

inhibitor, PHE, failed to recover locomotor network function, while basic network 

rhythmicity persisted and appeared to be a moderate histological neuroprotector. Riluzole, by 

inhibiting glutamate release and neuronal excitability, could prevent neuronal loss 24 h later, 

but this drug per se (applied for 24 h) exerted strong and persistant neurodepressant effects 

on network synaptic transmission from which recovery was very slow and partial. Although, 

the number of pyknotic cells in the grey matter was decreased by riluzole application after 

kainate washout, no fictive locomotion was observed. Three hours application of riluzole was 

not sufficient enough to contrast the deleterious effect of kainate on locomotor activity.  

 In conclusion, the divergence between histological and functional outcome in case of 

PARP-1 inhibition, proposes a narrow borderline between loss of fictive locomotion and 

neuronal preservation and suggests that protecting the motoneurons is not enough to ensure 

the persistence of fictive locomotion. It is also discovered that PJ-34 plays the role of a 

partial blocker of glutamate uptake. Despite the increased network discharges induced by PJ-

34, there was no neurotoxic consequence due to this drug. In general, in order to protect the 

damaged spinal locomotor network, the neuroprotective strategy should be directed toward 

identified biomedical targets which play the most important role in cell death mechanism. On 

the other hand, neuroprotection should be applied at the early stages after the insult. Survival 

of premotoneurons in the grey matter is as important as motoneuron protection in order to 

achieve the goal of locomotor function preservation. 
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Introduction 

 

1.  Spinal Cord Injury 

 

 

1.1. Definition and statistics 

  

 Spinal cord injury (SCI) is an insult to the spinal cord resulting in functional and structural 

changes, which can be temporary or permanent. SCI affects the normal sensory, motor or 

autonomic function of the spinal cord. Patients with spinal cord injury usually have 

permanent and often devastating neurologic deficits and disability. According to the National 

Institutes of Health (NIH), among neurological disorders, the cost to society for SCI is 

exceeded by the cost for mental retardation (Westgren and Levi, 1998). Acute spinal cord 

injury begins with a sudden, traumatic blow to the spine that fractures or dislocates vertebrae. 

The damage begins at the moment of injury when displaced bone fragments, disc material, or 

ligaments bruise or tear into spinal cord tissue. 

Published reports show that the incidence of SCI in the United States varies from 25 to 59 

new cases per million population per year with an average of 40 per million (Acton et al., 

1993, Price et al., 1994, Thurman et al., 1994, Johnson et al., 1997, Surkin et al., 1998). 
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According to National Spinal Cord Injury Statistical Center (NSCISC) report, published in 

2011, the most common age of injury is 19 and a quarter of all injuries occurs between 17 

and 22 (24.9 %). Mean age of SCI patients is 34.2 (±16.6) years and children with 14 years 

old or younger consist 1.95% of SCI patients. Most of the population affected by SCI are 

male (80.6%) and the automobile accident is at the top of the list of SCI causes (33.5%) 

while falls (21.2 %) and gunshot wounds (15.7%) are at the next levels in the United States. 

A trend toward increased incidence in the elderly was also observed, likely due to falls and 

non-traumatic injury (van den Berg et al., 2010).  

 Spinal cord injuries may produce one or more of the following signs and symptoms: loss of 

movement (paralysis), loss of sensation, including the ability to feel heat, cold and touch, loss 

of bowel or bladder control, hyper reflexia or spasms, changes in sexual function, pain or an 

intense stinging sensation caused by damage to the nerve fibers and breathing difficulties. 

Paralysis may be referred to as: 1) Tetraplegia or quadriplegia; this means that arms, hands, 

trunk, legs and pelvic organs are all affected by spinal cord injury. 2) Paraplegia; it affects all 

or part of the trunk, legs and pelvic organs. 

 

 

1.2. History of SCI 

 

 Spinal cord injury and its treatment date back to ancient times. The first evidence of this 

problem dates to 3000 to 2500 years B.C. when Imhotep, Egyptian physician, in Edwin 

Smith papyrus described the injuries of the cervical spinal cord and stated that the best 

treatment for the injured vertebrae is rest and support. Egyptians did not make surgical 

interventions for spinal cord injury but they performed surgical decompression following 

skull fractures. Centuries later in ancient Greece, Hippocrates (460-370 B.C.) created a 

method called succession on a ladder, as well as other methods of traction, for the treatment 

of SCI. He described paraplegia with bowel and bladder dysfunction, pressure ulcers, 

gibbosity at different levels and paralysis accompanied by cold abscess. He wrote the book 

“anatomy of the spine” and described the details of the spinal cord, ligaments and muscles. 

He mentioned that displacement of vertebrae forward is mostly fatal. Later on, in the first 

century A.D., in Rome Aulus Cornelius Celsus in his treatise “De Medicina” briefly 
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described the SCI, especially fractures of the spinous processes. He recommended 

Hippocrates’ method of traction and emphasized that, in cases of complete spinal cord lesion, 

death usually ensued. Galen, another Roman physician (131-201 A.D.) who is considered as 

a founder of experimental physiology, described injuries to the first and second cervical 

vertebrae, stating that they are fatal and that respiration stops with injuries occur at the third 

or fourth vertebrae. 400 years later Greco-Roman Paul of Aegina advised post-reduction 

spinal splinting for the treatment of dislocations. He is considered the originator of 

laminectomy for spinal cord decompression and the removal of the offending bony 

fragments. Persian, Hindu, Arab, and Chinese physicians also developed basic forms of 

traction to correct spinal deformities. In the seventh century after Arabic and Islamic 

civilization, many works were translated from Greek, Persian, Latin and Hindu to Arabic. 

The Persian physician Avicenna (980-1037 A.D.) translated books and made contribution of 

his own. He wrote about one hundred books during his life. The most comprehensive of them 

is “Canon of Medicine” in five volumes. For six centuries the Latin translation of this book 

was the main reference used in European schools. He followed the methods of Paul of 

Aegina. In nineteenth century antisepsis was adopted, surgical morbidity and mortality 

decreased. In 1902 Lorenzo Bonomo, Italian surgeon developed the technique of 

hemilaminectomy. German, American and British experience was increased in the field of 

SCI after world war. After World War II the work of clinicians and scientists has improved 

the outlook for SCI victims. Donald Munro, an American surgeon, developed an interest in 

the care of SCI. Many call him as the true founder of modern SCI care and the “father of 

paraplegia”.  

 Despite the fact that throughout man’s history, SCI has been a catastrophic condition and 

the prognosis is still very gloomy, all over the world many researchers are working to erase 

the rule of Imhotep that SCI is “an ailment not to be cured” (Eltorai, 2003). 

 

 

1.3 .   Classification 

 

 Clinicians have used a clinical scale to grade the severity of neurological loss. First, before 

World War II, Stokes Manville score was used and popularized by Frankel in the 1970's. The 
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original scoring approach divided patients into five categories, i.e. no function (A), sensory 

only (B), some sensory and motor preservation (C), useful motor function (D), and normal 

(E).  

 

American Spinal Injury Association (ASIA) impairment scale 

A= Complete: No motor or sensory function is preserved in the sacral segments S4-S5. 

B= Incomplete: Sensory but not motor function is preserved below the neurological level and 

includes the sacral segments S4-S5. 

C= Incomplete: Motor function is preserved below the neurological level, and more than half 

of the key muscles below the neurological level have a muscle grade less than 3. 

D= Incomplete: Motor function is preserved below the neurological level, and at least half of 

key muscles below the neurological level have a muscle grade of 3 or more. 

E= Normal: Motor and sensory function are normal. 

 

 

 

Table 1: ASIA Impairment at Admit, Rehab Admit, and System Discharge 

ASIA impairment scale n (%) Admit 
Rhab 
Admit 

System 
Discharge 

Complete (A) 
5,662 
(46.3) 

1,331 
(10.9) 

5,218 
(42.7) 

Sensory Incomplete (B) 
1,518 
(12.4) 

410 
(3.4) 

1,200 
(9.8) 

Non-functional Motor Incomplete (C) 
1,773 
(14.5) 

596 
(4.9) 

1,415 
(11.6) 

Functional Motor Incomplete (D) 
2,189 
(17.9) 

827 
(6.8) 

3,771 
(30.8) 

Recovered (E) 
0  

(0.0) 
1  

(<0.1) 
119  
(1.0) 

Unknown 
1,086 
(8.9) 

9,063 
(74.1) 

505  
(4.1) 

Total 12,228 12,228 12,228 
(https://www.nscisc.uab.edu/PublicDocuments/reports/pdf/2011%20NSCISC%20Annual%20

Statistical%20Report%20-%20Complete%20Public%20Version.pdf) 
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 National Spinal Cord Injury Statistical Center (NSCISC) last report showed that there was 

an increase in Functional Motor Incomplete (D), from 17.9% at acute admittance to 30.8% at 

discharge (Table 1). 

 

 

1.4.  Terminology in  spinal cord injury 

 

1.4.1. Spinal Shock 

 The damage to spinal cord originates from a localized lesion (primary injury) which can be 

accompanied by spinal shock (Ditunno et al., 2004), and then followed by lesion extension to 

spared spinal tissues (secondary injury) with significant symptom deterioration (Klussmann 

and Martin-Villalba, 2005).  

 From a clinical point of view, Whytt (1750) first explained the term of “spinal shock” as a 

loss of sensation accompanied by motor paralysis with gradual recovery of reflexes 

(Sherrington, 1897, Ditunno et al., 2004). Later in 1841, it was called as no reflex in the 

extremities followed by recovery. Recently, spinal shock is described as compromising four 

phases starting from the earliest moments after the insult to the spinal cord and continuing for 

months after that. Phase-1 (areflexia/hyporeflexia) occurs from 0 to 24 h post-injury. Deep 

tendon reflexes (DTRs) such as AJ (ankle jerk) and the KJ (knee jerk) are initially absent and 

muscles are flaccid and paralyzed. During this period cutaneous (polysynaptic) reflexes begin 

to recover. Therefore, the absence of all reflexes is uncommon within hours after injury (Ko 

et al., 1999). Phase-2 (initial reflex return) lasts for 1-3 days post-injury. Cutaneous reflexes 

become stronger. DTRs are still absent. Increased neuronal firing in response to 

neurotransmitters is known to occur after denervation (denervation supersensitivity) and is 

suggested to be the main cause of initial reflex re-emergence in spinal cord (Burke, 1988, 

Bach-y-Rita and Illis, 1993, Burke et al., 2001).  

 Phase-3 extends from approximately 4 days to 1 month. Most DTRs reappear during this 

period. It is the beginning of hyper-reflexia caused by axon-supported synaptic growth and it 

will be followed by the last phase (phase-4) which represents the final hyper-reflexia with 

aberrant plasticity (Ko et al., 1999, Schindler-Ivens and Shields, 2000). 
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1.4.2.   Primary and secondary injury 

 In SCI primary injury is a compressive-contusive injury initiating a number of 

pathophysiological processes leading to the prolonged secondary injury phase. Secondary 

injury is consisted of different phases as the following: 

 Immediate phase (0-2 hours) begins at the time of the injury and represents the primary 

phase of injury. The immediate mechanical damage affects neural and other soft tissues, 

including endothelial cells of the vasculature. Tissue damage in a contusion injury appears to 

be more predominant in the grey matter of the spinal cord than in the white matter (Fig. 1). 

Generalized swelling and hemorrhaging appears in the grey matter which make the spinal 

cord ischemie. Microglial cells are activated almost instantaneously by the upregulation of 

proinflammatory cytokines (Pineau and Lacroix, 2007, Donnelly and Popovich, 2008). 

Extracellular glutamate can reach excitotoxic levels within minutes from the injury (Wrathall 

et al., 1996). Within the first 15 minutes after injury, extracellular concentrations of 

glutamate and other excitatory amino acids reach cytotoxic concentrations that are six to 

eightfold higher than normal as a result of cell lysis from mechanical injury and both 

synaptic and nonsynaptic transport. 

 Acute phase (2 hours to 2 weeks) is the most likely phase for implementing neuroprotective 

interventions. The ischemic cellular death, increasing edema and inflammation continue from 

the immediate phase. The onset of free radical production, ionic dysregulation, glutamate-

mediated excitotoxicity and immune-associated neurotoxicity are fully developed.   

 Intermediate phase (2 weeks to 6 months) is characterized by maturation of the astrocytic 

scar and by regenerative axonal sprouting (Hill et al., 2001). 
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 Figure 1: The rodent contusion model of SCI which produces a necrotic core, principally 

in the central grey matter, that is surrounded by histologically normal-appearing myelinated 

fibers and portions of grey matter from both dorsal and ventral horns (left). Similar to human 

SCI pathophysiology, the cell loss continues radially in all directions, so that the lesion 

expands over time. By 60 days post-SCI, there remains only a thin rim of white matter 

(right). (Hulsebosch, 2002) 

 

 Chronic phase (>6 months) continues throughout the lifetime of the patient. It is 

characterized by maturation/stabilization of the lesion including continued scar formation and 

the development of cysts and/or syrinxes. The lesion can produce a cyst cavity and 

myelomalacia 1-2 years after the injury. The neurological deficits are mostly stabilized, but, 

in 30% of the patients, SCI can still cause delayed neurological dysfunction (ascending 

paralysis, brainstem symptoms). Apoptosis continues in both orthograde and retrograde 

directions including brain regions; a variety of receptors and ion channels are altered in  

expression levels and activation states, scarring and tethering of the cord occurs in the 

penetrating injuries (about 25% of all SCI); demyelination results in conduction deficits; cut 

and nearby uncut axons exhibit regenerative and sprouting responses, but go no farther than 1 

mm; neural circuits are altered due to changes in inhibitory and excitatory input; and in many 

cell types, permanent hyperexcitability develops, which results in chronic pain syndromes 



 

and spasticity in a majority of SCI patients (Fig. 2) 

Tator, 1996, Christensen and Hulsebosch, 1997

   

                                                            

 Figure 2: Schematic presentation of acute and chronic phases after traumatic spinal cord 

injury.  (Ronsyn et al., 2008

      

 Most motor deficits that are following the primary mechanical injury are 

secondary mechanisms. The damage start to be expanded vertically into the gray matter at 

first and then it spreads horizontally within the white matter. Since physical primary injury 

which affects neuronal and endothelial tissue is immediate

intervention. In contrast the secondary phase which is delayed can be the best target for 

therapeutic intervention. 

 

 

1.5. Pathophysiolgy of SCI

 The secondary degenerative process is initiated by the primary mechanical inj

proportional to the magnitude of the initial insult 

reviews discussing the principal mechasims of post

Braughler, 1989, Tator and Feh

pasticity in a majority of SCI patients (Fig. 2) (Tator, 1995, Christensen et al., 1996

Christensen and Hulsebosch, 1997, Tator, 1998).     

                                     Acute phase                          Chronic phase

Figure 2: Schematic presentation of acute and chronic phases after traumatic spinal cord 

Ronsyn et al., 2008)   

Most motor deficits that are following the primary mechanical injury are 

secondary mechanisms. The damage start to be expanded vertically into the gray matter at 

first and then it spreads horizontally within the white matter. Since physical primary injury 

which affects neuronal and endothelial tissue is immediate, it is not suitable for therapeutic 

intervention. In contrast the secondary phase which is delayed can be the best target for 

f SCI 

 

The secondary degenerative process is initiated by the primary mechanical inj

proportional to the magnitude of the initial insult (Hall and Springer, 2004

reviews discussing the principal mechasims of post-SCI secondary injury 

Braughler, 1989, Tator and Fehlings, 1991, Faden and Salzman, 1992, Anderson and Hall, 
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Christensen et al., 1996, 

Acute phase                          Chronic phase 

                                                                                                        

Figure 2: Schematic presentation of acute and chronic phases after traumatic spinal cord 

Most motor deficits that are following the primary mechanical injury are exacerbated by 

secondary mechanisms. The damage start to be expanded vertically into the gray matter at 

first and then it spreads horizontally within the white matter. Since physical primary injury 

, it is not suitable for therapeutic 

intervention. In contrast the secondary phase which is delayed can be the best target for 

The secondary degenerative process is initiated by the primary mechanical injury that is 

Hall and Springer, 2004). There are several 

SCI secondary injury (Hall and 

lings, 1991, Faden and Salzman, 1992, Anderson and Hall, 
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1993, Hall, 1996, Faden, 1997, Hall and Springer, 2004). The most immediate event is 

mechanically induced depolarization and the consequent opening of voltage-dependent ion 

channels (i.e., Na+, K+, Ca2+). This leads to massive release of a variety of neurotransmitters, 

including glutamate (Hall and Springer, 2004, Park et al., 2004, Rossignol et al., 2007), 

which can open glutamate receptor-operated ion channels (e.g., NMDA, AMPA). Probably 

the most important consequence of these rapidly evolving ionic disturbances is the 

accumulation of intracellular Ca2+ (i.e., Ca2+ overload) which initiates several damaging 

effects. Mitochondrial dysfunction, mitochondrial and cytoplasmic nitric oxide synthase 

(NOS) activation, phospholipase A2 activation [leading to increase of arachidonic acid 

liberation and its consequent prostaglandin F2α (potent vasoconstrictor) as well as 

thromboxane A2 (vasoconstrictor/platelet aggregation promoter) and leukotrienes (LTs)] and 

finally activation of the calcium-activated cysteine protease calpin which attacks several 

substrates including cytoskeletal proteins. Formation of reactive oxygen species (ROS; 

including ONOO-), lipid peroxidation, cell energy depletion with the help of all above 

mechanisms lead to microvascular, axonal and myelin damage which are accompanied by 

ischemia, polymorphonuclear (PMN ) and macrophage influx, inflammatory cell 

inflammation and final neurological deficit. (Fig. 3)  

 

 

 Figure 3: Pathophysiology of secondary injury in SCI.  (Hall and Springer, 2004) 
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 There is emerging evidence that glutamate extotoxicity plays a key role not only in 

neuronal cell death but also in delayed post-traumatic spinal white matter degeneration (Park 

et al., 2004). Glutamate levels increases transiently to excitotoxic levels within 3 first hours 

after SCI (Liu et al., 1991, Farooque et al., 1996a, Xu et al., 1998, Liu et al., 1999, McAdoo 

et al., 1999) (Fig. 4). 

 

 Figure 4: Extracellular glutamate sources. 1) Damaged neurons release glutamate to 

surrounding tissues. 2) Presynaptic glutamate release in grey matter mediated by group I 

mGluRs. 3) Upregulation of excitatory amino acid transporter (EAAT 3) may be important in 

maintaining glutamate homeostasis, but could also increase glutamate levels via reverse 

operation. 4) Release from axons glutamate reservoirs. 5) Reactive oxygen species may 

contribute to glial glutamate transport failure. (Modified from Park et al., 2004)  

 

 The extensive activation of glutamate receptors (by administration of six fold more than 

normal concentration of glutamate comparable to its level after trauma; 3.7 mM) was enough 

to induce neuronal death in an uninjured spinal cord (Liu et al., 1999). 

 



13 
 

 

 Figure 5: Time course of secondary injury in SCI. Very early after the injury excitotoxic 

mechanisms can damage neurons and glia. Excitotoxicity triggers the events that can 

contribute to the secondary injury and finally cell death. (modified from Dirnagl et al., 1999)  

 

 

 

1.6. Therapeutic approaches  

 

 The present understanding of the many factors involved in the secondary injury process had 

led to the notion that pharmacological treatments, if applied early, might help the 

preservation of the necessary anatomic substrate for functional recovery of the spinal cord 

and interrupt the secondary cascade. At the same time we need to consider other possible 

options such as non-pharmacological approaches (i.e., surgery) in order to apply cord 

decompression or using neuronal stem and progenitor cells in order to stimulate or control 

endogenous neurogenesis and improving remyelination. Physical rehabilitation also plays a 

very important role in helping recovery of injured locomotor system (Baptiste and Fehlings, 

2007). 
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1.6.1. Lipid peroxidation  

 Methylprednisolone (MP) therapy was extensively used in the clinical treatment of spinal 

cord trauma in the mid-1960s to 1970s. Limited experimental evidence showed the 

possibility of neuroprotective role of glucocorticoids in SCI.  Later, in early 1980s, high-dose 

of MP was used to inhibit post-traumatic lipid peroxidation (LP) (Hall and Braughler, 1981). 

The first National Acute Spinal Cord Injury Study (NASCIS I) study published in 1984 

compared high-dose with a low-dose group. Further studies showed MP not only prevented 

LP, but in parallel inhibited post-traumatic spinal cord ischemia and hypoperfusion, 

improved aerobic energy metabolism, reduced intracellular calcium overload, decreased 

inflammatory markers and improved neurological recovery (Hall and Braughler, 1981, 

Anderson et al., 1982, Braughler and Hall, 1982, 1983a, b, 1984, Holtz et al., 1990, Hall, 

1992, Behrmann et al., 1994, Farooque et al., 1996b, Taoka et al., 2001). However, failure of 

high-dose MP to improve neurological recovery in rat SCI models have also been reported 

(Koyanagi and Tator, 1997, Rabchevsky et al., 2002). Beside that, there was a fear of 

possible side effects of using high-dose of glucocotricoids in human (infection, septic shock, 

diabetic complications and delayed wound healing). 

 

 

1.6.2. Ischemia  

 Dynorphin A, an endogenous opioid, is released following SCI which reduces spinal cord 

blood flow. Concurrent with the studies on MP, based on the positive effect of endorphin 

systems antagonism in experimental shock, naloxone was used in acute SCI models (Holaday 

and Faden, 1981a, b). NASCIS II was designed to examine a higher dose of MP and 

naloxone given within 24 h of injury. Bracken (1993) showed the improved neurological 

function below the lesion in patients with incomplete injuries and treated with naloxone 

within 8 h of injury (Bracken and Holford, 1993). 
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1.6.3. Reactive oxygen species (ROS), nitric oxide and peroxynitrite 

 In NASCIS III tirilizad  mesylate , a 21-aminosteroid, believed to be an antioxidant without 

glucocorticoid effect was added to treatment and was compared to the MP treated group. The 

result demonstrated that tirilizad was not superior to MP (Hall, 1993). The need to replace 

high-dose of MP resulted in studies on ROS, mostly peroxynitrite which is formed from 

combination of superoxide and nitric oxide radicals. Prototypical scavengers of peroxynitrite 

include penicillamine and Tempol, both are neuroprotective in cell culture and in vivo 

models of acute CNS injury (Hall et al., 1999, Carroll et al., 2000). Using dual inhibitor of 

LP and neuronal nitric oxide synthase, BN-80933, has been reported to attenuate post-

traumatic and post-ischemic degeneration in vivo models (Chabrier et al., 1999). Clinical 

data are still unavailable. 

 

1.6.4. Inflammation 

 Regarding the negative effect of inflammation on the injured cord, due to COX2 activation 

(Fig. 3), COX2 inhibitors were used. They showed neuroprotection and enhanced 

neurological recovery in animal models of SCI (Resnick et al., 1998, Hoffmann, 2000, 

Schwab et al., 2000, Hains et al., 2001, Tonai et al., 2002). 

 

1.6.5. Intracellular calcium 

 High intracellular calcium can activate calpain and other destructive enzymes within the 

cell that lead to cell death. Excitotoxic glutamate release is also calcium-dependent. 

Nimodipine is an L-type calcium channel blocker. Its potential benefit in subarachnoid 

hemorrhage is believed to result from neuroprotective effects rather than a smooth muscle 

relaxing effect on blood vessels. Since it induces hypotension, when hypotension is avoided, 

animal studies demonstrated improvement in spinal cord function (Fehlings et al., 1989). 

 

1.6.6. Excitotoxicity 

 Although glutamate is the main excitatory neurotransmitter in the CNS, its excess 

following injury leads to excitotoxicity (Liu et al., 1991, Liu et al., 1999, Xu et al., 2004).  

 Using gacyclidine (GK-11; a new phencyclidine derivative which binds to NMDA 

receptors with binding parameters similar to non-competitive NMDA receptor antagonists) 
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has shown some evidence of improvement in histology, function and electrophysiology in 

rats and it also prevents glutamate-induced neuronal death in primary cortical cultures. 

French clinical trial observed some improved motor function for just 1 year treatment 

(Hirbec et al., 2001). 

 In vitro experiments on neonatal rat spinal cord demonstrate that excitotoxicity is an early 

and important component to spinal lesion (Margaryan et al., 2010). Other studies have shown 

that glutamate antagonists have limited usefulness against long term recovery from spinal 

injury in vivo perhaps for reasons like the clinical predictiveness/relevance of the animal 

models, the adequacy of pharmacological methodology, and the outcome measures used 

(Faden and Stoica, 2007). CNQX and APV (1– 4 mg/kg i.p.) showed neuroprotective effect 

on neonatal rat motoneurons after sciatic nerve transaction (Iwasaki et al., 1995). CNQX and 

APV co-applied with kainate (glutamate analog) produced partial protection of locomotor 

networks, as NMDA and 5-HT could still activate fictive locomotion in one-third of 

preparations (Margaryan et al., 2010). Electrically-induced fictive locomotion was poorly 

protected and only few oscillatory cycles were sporadically present even if some recovery of 

cumulative depolarization was detected (Margaryan et al., 2010). It is suggested that the slow 

pharmacokinetic properties of CNQX and APV require a long time to block glutamate 

receptors of the rat spinal cord in vitro (Evans et al., 1982, Long et al., 1990). 

 Riluzole, an agent licensed for ALS treatment, was used to block voltage-sensitive 

persistent sodium channels (Schwartz and Fehlings, 2001). At the same time, riluzole is a 

glutamate release inhibitor and it has shown some positive behavioral outcome after 

experimental brain and spinal cord injury (Wahl et al., 1997, Schwartz and Fehlings, 2001, 

Lau and Tymianski, 2010). 

 

  

2. Cell death pathways following SCI 

 

 Different cell death pathways which have been classified by the nomenclature of the cell 

death committee on cell death (NCDD) (Kroemer et al., 2009). Necrosis, apoptosis and 

parthanatos (which is a newly discovered cell death pathway) are the most important one.  
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 Necrosis is a premature type of cell death which is unprogrammed. In primary injury and 

immediate phase of secondary injury, necrosis appears at the site of the injury. It can be 

observed mostly in the epicenter of the injury site (Katoh et al., 1996, Crowe et al., 1997, Liu 

et al., 1997). Cell swelling, mitochondrial dysfunction, energy loss and disruption in cell 

homeostasis are leading factors and internucleosomal DNA fragmentation is observed in 

necrosis.  

 Apoptosis is a programmed cell death pathway. During development, apoptosis helps the 

living tissues to control the DNA destruction (Nagata, 1997). Chromatin condensation, 

nuclear fragmentation, round up cells, blebbing and zeosis can be observed in apoptosis. This 

phenomenon happens after cysteine protease activation (caspase) (Yuan et al., 2003). The 

caspase dependent apoptotic pathway consists of two main molecular mechanisms: intrinsic 

(mitochondrial) and extrinsic (death receptor) pathways. Apototic cell death pathway can be 

involved in the secondary injury, starting at immediate phase (along with necrosis) and 

continuing to other phases with making damage to white matter, oligodendrocytes and 

microglia. 

 Parthanatos is another type of programmed cell death which is mediated by poly (ADP-

ribose) (PAR) and was first described by David et al. (2009). Parthanatos shares similarities 

in morphological and cytological aspects with either apoptosis or necrosis, but it is the result 

of a special molecular mechanism (David et al., 2009). In fact, after an excitotoxic insult, 

spinal cord neurons suffer largely through a mechanism involving anucleolytic (without 

internucleosomal DNA fragmentation) pyknosis mediated by strong activation of poly (ADP-

ribose)polymerase-1 (PARP-1) which produces PAR and leads to nuclear translocation of the 

apoptotic inducing factor (AIF) with DNA damage. This process is the hallmark of 

parthanatos-type neuronal death (Kuzhandaivel et al., 2010).  
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3. Poly(ADP-ribose)Polymerase  

 

3.1. Double-edged sword role in cell death 

 

 Basal activity of PARP-1 in cells is low but it can be stimulated by damaged DNA, some 

undamaged DNA structures and nucleosomes (D'Amours et al., 1999, Oei and Shi, 2001, 

Kun et al., 2002, Kim et al., 2004). On the other hand, PARP-1 is also called the “genomic 

guardian” because of its role in genomic repair under physiological condition. Several studies 

using various pharmacological PARP inhibitors have concluded that PARP-1 plays a role in 

DNA repair (Burkle, 2001, Ziegler and Oei, 2001). It has been shown, for example, that the 

PARP inhibitor 3-aminobenzamide retarded the rejoining of DNA strand breaks. Therefore, 

if the damage is mild, this enzyme helps the cell survival process (Masson et al., 1998, 

Ruscetti et al., 1998), but when there is an extensive DNA damage, PARP-1 plays its role in 

promoting cell death. It can happen in stroke, trauma and ischemia (Szabo and Dawson, 

1998, Mandir et al., 2000, Lorenzo and Susin, 2007). It is also interesting to know that this 

enzyme plays a role in the pathogenesis of various cardiovascular and inflammatory diseases 

(Graziani and Szabo, 2005). 

 The extensive activation of PARP-1 can rapidly lead to cell death through depletion of 

energy stores because four molecules of ATP are consumed in NAD (the source of ADP-

ribose) regeneration (Berger, 1985). At the same time, PAR polymere binds to mitochondrial 

membranes and changes their membrane potential. Apoptotic inducing factor (AIF) is 

released due to mitochondrial dysfunction and accelerates the DNA damage and chromatin 

condensation in nuclei. (Fig. 6)  
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 Figure 6: Schematic pathway of Parthanatos induced by excitotoxicity. 

 

 

3.2. PARP-1 inhibitors and neuroprotection 

 

 Involvement of PARP in neuronal damage was initially studied by Zhang group (1994) 

demostrating the role of PARP in neurotoxicity after nitric oxide (NO) system activation and 

then it was observed that the inhibition of the enzyme rescued cortical neurons in culture 

from NO and NMDA-mediated toxicity (Cosi et al., 1994). 

 Szabo and Dawson (1998) showed that, in the brain after oxidative stress and DNA strand 

breakage, PARP-1 is activated and then Scott et al. (1999) reported the same effect in spinal 

cord injury induced by thoracic contusion in rats. 

 Eliasson et al. (1997) demonstrated protection by PARP-/- phenotype in brain slices 

exposed to various oxidants. After that Dawson group in Baltimore reported (1999) the role 

of PARP-1 in excitotoxicity in mice showing that mice lacking PARP-1 are highly resistant 

to NMDA excitotoxicity. 



20 
 

 It was shown by Lo et al. (1998) that inhibition of PARP by 3-aminobenzamide reduces 

injury after transient focal ischemia in rats and attenuates NMDA-induced glutamate efflux.  

 Using the in vitro model of neonatal rat isolated spinal cord demonstrated a significantly 

smaller number of pyknotic cells by pharmacological inhibition of PARP-1 with (6-5(H)-

phenanthridinone; PHE) after excitotoxic insult with high dose of kainate (Kuzhandaivel et 

al., 2010). PHE could also prevent the translocation of AIF which is the main downstream 

effector of PARP-1 in inducing cell death. 

Genovese et al. (2005) indicated that using various inhibitors of PARP-1 in an experimental 

model of spinal cord trauma (in vivo) reduced inflammation and tissue injury, PAR 

formation, neutrophil infiltration, apoptosis, DNA binding of NF-kappaB and the motor 

disturbance after SCI.  

 Abdelkarim et al. (2001) examined the neuroprotective effect of N-(6-oxo-5,6-

dihydrophenanthridin-2-yl)-N,N-dimethylacetamide (PJ34), a novel potent inhibitor of PARP 

in vitro and in vivo. In the rat model of middle cerebral artery occlusion PJ-34 administration 

significantly reduced infarct size and the effect of the drug was maintained even if it was 

given as late as 10 min prior to reperfusion time. PJ-34 significantly protected in a 4 h, but 

not in a 24 h permanent occlusion model. They suggested that PJ-34 exerts massive 

neuroprotective agents, with a significant therapeutic window of opportunity (Abdelkarim et 

al., 2001). 

 Later, PJ-34 was also tried in another model of stroke (bilateral carotid occlusion-

reperfusion) in rats. The positive effects included: suppressing the ischemia-induced 

microglial activation and astrogliosis, lessened deficits in spatial memory and learning, 

increased neuronal density in CA1 layer and formation of new neurons in hippocampal CA1 

area. In general, it is proposed that treatment with PJ-34 for several days after ischemia 

enhances long-term neuronal survival and neurogenesis by reducing inflammation 

(Kauppinen et al., 2009). 
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4. Central pattern generator (CPG) and locomotor activity in the spinal cord 

 

 The ability of movement in animals and humans depends on the locomotor behavior of that 

specie such as flying, swimming or walking and many of the movements are more or less 

rhythmic (Buschges et al., 2011). Those fundamental motor acts involve the activation of 

many muscles and the nervous system is responsible for controlling the movement of those 

muscles. The nervous system is modular, with discrete network sub-serving various functions 

such as generating different pattern of motor behavior, being feature detectors in sensory 

system, critical modules in memory formation or being involved in the expression of the 

emotions. Because of complexity of the CNS system in mammals, many studies were 

performed on vertebrate model systems with relatively few neurons such as lamprey and 

zebrafish (Grillner et al., 1998, Kyriakatos et al., 2011). All classes of vertebrates share many 

similarities in locomotor behavior and locomotion controlling system (Grillner et al., 1977, 

Grillner, 1985). Therefore, the same meso-pontine and diencephalic centers initiate 

locomotor activity in lampreys as in primates, through activation of lower brainstem 

reticulospinal neurons. They activate localized spinal neuronal networks which generate the 

timing and pattern of the complex, rhythmic, coordinated muscle activities. This system is 

called central pattern generator (CPG).  

 Walking ability requires a rhythm with ipsilateral coordination of flexors and extensor 

muscles across the same or different joints in a limb as well as left/right coordination. These 

functions are all integrated in the fully functioning CPG. 

 Grillner et al. (1998) described the controlling system of locomotion starting with a tonic 

inhibitory system induced by the basal ganglia which is to be removed once a motor behavior 

starts. Brainstem locomotor system will be activated and then locomotor activity will be 

initiated. Increased activity in reticulospinal neurons activates CPG, which makes the 

locomotor pattern in close interaction with sensory feedback coming from peripheral 

ascending nerve fibers. If CPG activation increases, the speed of locomotion will also 

increase. Locomotion can be induced pharmacologically by administration of excitatory 

amino acid agonists and by sensory input in experimental conditions (Fig. 7). 
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 Figure 7: Schematic view of general controlling system of locomotion in vertebtares. 

(Grillner et al., 1998) 

 

 

4.1. Localization of CPG 

 

 The rostrocaudal extent of rhythmogenic capacity of the hindlimb locomotor CPG was 

proposed firstly by Grillner and Zangger (1979). Using cat spinal cord transverse sectioning 

they demonstrated that alternating rhythmic activity could be evoked in ankle flexors and 

extensors when the caudal lumbar cord (the L6–S1 segments) was isolated from the rest of 

the cord, suggesting the rhythmogenic capacity in the CPG controlling hindlimb locomotion 

is distributed throughout the lumbar enlargement (L3–S1 in cats). Similar result was obtained 

in different laboratories working on isolated spinal cord preparations from newborn rats or 

mice. They studied spontaneous or drug induced rhythmic activity before and after transverse 

trans-sectioning at different spinal levels (Kudo and Yamada, 1987, Bracci et al., 1996, 

Kjaerulff and Kiehn, 1996, Cowley and Schmidt, 1997, Kremer and Lev-Tov, 1997, Bonnot 

and Morin, 1998, Bonnot et al., 2002a, b, Gabbay et al., 2002, Christie and Whelan, 2005).  

 L1–L3 in rodents and L3–L5 in cats (rostral lumbar segments) have a greater capacity to 

generate rhythmic motor output in isolation than caudal segments (L4–L6 and L6–S1, 

respectively).These studies therefore suggest that the rhythmogenic CPG is distributed along 
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the lumbar cord but the excitability has a rostrocaudal gradient. The reason can be the larger 

proportion of intraspinal inputs going to rostral segments (Berkowitz, 2004) and/or the 

differential distribution of receptors or receptive neurons for neuromodulatory substances in 

the rostral or caudal cord (Christie and Whelan, 2005).  

 Thus, it has been suggested that spinal interneurons directly involved in producing 

rhythmic activity are limited to the T13 and L2 (Kiehn, 2006). 

 Transverse distribution of CPG in spinal cord was studied by activity-labeling studies 

(Kjaerulff et al., 1994, Cina and Hochman, 2000, Dai et al., 2005) and electrophysiological 

evidence (Tresch and Kiehn, 1999). It was discovered that rhythmogenic CPG neurons are 

located in a ventral location (laminae VII, VIII, and X. It has been also confirmed with dorsal 

horn ablation studies, demonstrating the presence of fictive locomotion (chemically induced 

by NMDA and 5-HT) by recording from VRs (Taccola and Nistri, 2006). 

 

 

4.2. Elements of locomotor CPG 

 

4.2.1 Rhythm and pattern generation 

 The alternation between flexor and extensor motor neuron pools on the same side of the 

body needs both excitatory and inhibitory networks (Kiehn, 2006). There is a model 

suggested for the mammalian locomotor CPG which has two layers: 1) a rhythm-generating 

layer 2) a pattern-generating layer (coordinating flexor-extensor and left-right side activity) 

(Kriellaars et al., 1994, Burke et al., 2001, Lafreniere-Roula and McCrea, 2005). In this 

model, the pattern-generating neurons are connected monosynaptically to motor neurons, 

whereas the neurons in the rhythm generating layer have two or more synapses upstream 

from motor neurons and project directly to pattern-generating neurons. Pharmacological 

experiments propose that the rhythmogenic core of the network is composed of excitatory, 

ipsilaterally projecting interneurons. Ipsilateral excitatory glutamatergic interneurons are also 

most likely the origin of rhythm generation in the tadpole and lamprey swimming CPGs 

(Grillner, 2003). These interconnected, excitatory neurons seem to work as burst-generating 

units that provide rhythmic, excitatory, glutamatergic synaptic drive to motor neurons and 

other ipsilateral inhibitory and left-right coordinating CPG neurons in each segment. Because 
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of the presence of the rhythm activity after the block of inhibitory system, it is suggested that 

excitatory CPG neurons may have some intrinsic pacemaker-like properties (Smith et al., 

2000, Pena et al., 2004) or some other set of voltage dependent membrane conductances that 

support rhythmic firing. 

 

4.2.2 Flexor-extensor coordination 

 In addition to the rhythm-generating excitatory core, two other elements in the network can 

be isolated: flexor and extensor coordinating circuits and left-right coordinating circuits. 

Ipsilaterally inhibitory networks seem to be involved in flexor-extensor coordination since in 

the presence of inhibition block, flexors and extensors are activated synchronously (Cowley 

and Schmidt, 1997, Beato and Nistri, 1999). On the other hand, although, ipsilaterally 

projecting inhibitory interneurons, such as Renshaw cells (RCs) and Ia-INs 

(glycinergic/GABAergic), may contribute to rhythmic motor neuron inhibition, genetic 

knockout and silencing experiments indicate that, although these inhibitory cell populations 

are dispensable for flexor-extensor coordination, they are involved in speed regulation 

(Kiehn, 2006). 

 

4.2.3 Left-right coordination 

 The left-right coordinating circuitries have been studied mostly in the mammalian 

locomotor CPG. Anatomical and electrophysiological research in cats and rodents have 

shown that these complex circuitries consist of intrasegmental and intersegmental 

(commissural interneurons) CINs that are both excitatory and inhibitory. A functional 

analysis of these circuitries suggests that intrasegmental CINs are involved in binding motor 

synergies along the cord, while intersegmental CINs seem to be directly involved in the 

coordination of homonymous muscle activity at a segmental level. Therefore, CPG network 

is proposed to operate with contribution of excitatory neurons responsible for rhythm 

generation and glycinergic CINs that are directly involved in left-right alternation (Kiehn, 

2006). 
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5. Neonatal rat isolated spinal cord 

 

 As early as 1911, it was recognized, by the experiments of T. Graham Brown, that the basic 

pattern of stepping can be produced by the spinal cord without the need of descending 

commands from the cortex (Graham-Brown, 1911, Whelan, 2003). In vivo studies by using 

treadmill and electromyography (EMG) provide several information about locomotor activity 

of moving animals or humans. However, generally speaking, in vitro spinal tissue offers 

several advantages over in vivo experiments. One can benefit from easy manipulation of the 

external bath medium, application of drugs that do not cross the blood–brain barrier, the use 

of calcium and voltage-sensitive optical recording techniques and the ability to reversibly 

manipulate the excitability of networks within discrete segments of the spinal cord (Kudo 

and Yamada, 1987, Roberts et al., 1998, Bonnot et al., 2002b, Grillner, 2003). Since 

descending inputs are cut in isolated spinal cord, the spinal CPG is usually activated using 

bath-applied drugs such as dopamine, NMDA and serotonin (5-HT). Monoamines, such as 5-

HT, dopamine and noradrenaline provide a high level of neuronal excitability which is 

necessary to recruit a sufficient number of neurons to activate the CPG (Kiehn et al., 1999a, 

Madriaga et al., 2004, Christie and Whelan, 2005, Liu and Jordan, 2005). Another great 

advantage of the in vitro preparation is its viability. They can stay alive for several hours and 

even after 24 h, being kept in physiological medium at room temperature, they still can elicit 

the fictive locomotion pattern with very good survival of neurons and motoneurons (Taccola 

et al., 2008). Beside the controlled concentration of O2 and CO2, there is no movement and 

mechanical noise due to heart beat or respiration. 

Figure 8: Diagram of 

intrasegmental commissural interneurons 

(CINs). Open circles: excitatory synapses; 

filled circles: inhibitory sypanses; RC: 

Renshaw cells, Ia: Ia interneurons. (Kiehn, 

2006) 
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 The pattern of CPG activity can be compared with data from in vivo studies (Fig 9A). If 

one keeps the preparation consisting of the thoracosacral spinal cord with attached hindlimbs 

(Whelan et al., 2000), the hindlimbs flexion and extension along with alternating activity of 

motor nerves can be seen. The locomotor patterns can be recorded reliably by implanting 

wires into the muscle or by using suction electrodes to record neurograms (ENG) from 

selected muscle nerves (Whelan et al., 2000) (Fig 9B). Comparing the pattern produced in 

the ankle extensor and flexors with ventral root recordings, it was found that a signature of 

locomotor-like activity can be obtained by typically recording from the left and right lumbar 

2 (L2) and 5 or 6 (L5/6) ventral roots (Whelan et al., 2000). The preparation can be reduced 

further (Fig. 9C) by dissecting away all tissue except for the spinal cord and the dorsal and 

ventral roots (Jiang et al., 1999). Recordings from the L1–3 segments show that bursts occur 

during the flexor phase, while bursts from L5–6 occur during the extensor phase. Notably, 

the excellent viability of the isolated in vitro spinal cord preparation has made it a convenient 

choice for many labs. 

 

Neonatal isolated spinal cord preparations with post-natal age 0-2 demonstrate a good 

electrical activity for at least 24 h (Taccola et al., 2008) and, moreover, they are less sensitive 

to anoxia, presumably because of their small size. In general, neonatal isolated spinal cord 

preparations provide the chance of studying spinal network activity as well as the detailed 

structure of the network. 
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 Figure 9: A) Pattern of flexor and extensor muscle activity recorded from a conscious adult 

mouse walking on treadmill. Adapted from Pearson et al. (Pearson et al., 2005), B) A 

hindlimbs-attached preparation can be used with electromyographs (EMGs) or 

electroneurograms (ENGs) to record output from spinal networks (Whelan et al., 2000, 

Pearson et al., 2003). C) Isolated spinal cord preparation commonly used to record 

locomotorlike patterns in vitro. Alternation between ipsilateral L2 and L5 ventral root 

recordings corresponds to flexor–extensor activity, while segmental alternation between the 

left (l) and right (r) L2 roots reflects left–right alternation (Whelan et al., 2000). CP, 

Common peroneal nerve; LGS, Lateral gastrocnemius nerve; TA, Tibialis anterior muscle; 

GS, gastrocnemius muscle. (Gordon and Whelan, 2006)  
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 6. Locomotor network activity in isolated spinal cord 

 

6.1. Reflex response 

 

 In the model of isolated neonatal spinal cord by application of electrical stimuli to the 

dorsal root (afferent fibers), one can observe the electrically evoked reflex response through 

recording of electrical discharges conveyed by homolateral ventral roots (VR). The minimum 

stimulus intensity to evoke a VR response homolaterally is considered as equivalent to 1 

threshold (Th) value to induce a monosynaptic reflex response (Marchetti et al., 2001). 

Values of ≥ 2xTh stimuli induce polysynaptic responses as reported in our laboratory 

(Baranauskas and Nistri, 1995, Bracci et al., 1997) (Fig. 10A). 

 

 

6.2. Fictive locomotion 

 

 Grillner et al. (2001) introduced fictive swimming in lamprey spinal cord. The 

corresponding mechanism in the mammalian spinal cord is called fictive locomotion. Fictive 

locomotion is the function of locomotor CPG to produce rhythmic oscillations alternating 

between left (l) and right (r) as well as flexor and extensor motor pools in an isolated spinal 

cord. Obviously in this case there is no supraspinal control on locomotor activity. Fictive 

locomotion can be induced chemically or electrically. Chemically induced fictive locomotion 

(Fig. 10C) appears when the CPG has been excited by application of drugs such as 

dopamine, NMDA and serotonin (5-HT). As it was mentioned before; serotonin, dopamine 

and noradrenaline evoke neuronal excitability which is necessary to activate a sufficient 

number of CPG neurons (Cazalets et al., 1992, Kiehn and Kjaerulff, 1996, Kiehn et al., 

1999b, Grillner et al., 2001, Butt et al., 2002, Madriaga et al., 2004, Christie and Whelan, 

2005, Liu and Jordan, 2005).  

 Electrically induced fictive locomotion (Fig. 10B) is also observed by monitoring obtained 

from electrical recordings of the activity from left (l) and right (r) L2 VRs (mostly flexor 

motor-pool command to the hindlimbs) and l and r L5 VRs (mostly extensor motor-pool 

commands to the hindlimbs) by application of DR train of stimuli (Marchetti et al., 2001, 
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Taccola et al., 2004). It contains the same phase alternation at segmental and intersegmental 

levels which is the hallmark of chemically induced fictive locomotion (Kiehn et al., 1997). In 

vivo and human experiments are also in accordance with the usage of electrical stimulation in 

order to evoke fictive locomotion. Epidural and subdural stimulation of spinal cord (dorsal 

surface) evoked locomotion in the decerebrate cats and stimulation of the lumbosacral 

enlargement induced hindlimb stepping (Iwahara et al., 1992). In human with complete SCI 

epidural stimulation in the level of T11 to L1, elicited locomotor-like EMG activity recorded 

from five muscle groups of the lower limbs (Dimitrijevic et al., 1998). 

 

 

6.3. Disinhibited bursting 

 

 In vivo experiments on cats demonstrated that in the absence of inhibitory neurons 

(blocking glycinergic inhibition), which produce alternation between flexors and extensors 

(Kiehn et al., 1997), the spinal cord evokes paroxysmal activity (Fuortes and Nelson, 1963, 

Schwindt and Crill, 1981). In cultured spinal neurons, bicuculline, (Heyer et al., 1981) or the 

mixture of bicuculline and strychnine (Streit, 1993), induces irregular, self-sustained 

bursting. In the neonatal rat isolated spinal cord when synaptic inhibition is blocked (by 

strychnine and bicuculline), flexor and extensor motor pools are activated in synchrony 

(Beato and Nistri, 1999). Therefore, when blocking synaptic inhibition and removing the 

influence of descending inputs, the basic network function is still preserved, though this is 

not physiological (Fig. 10D,E). 

It is shown that this type of network activity, as well as fictive locomotion, can be elicited 

and recorded from VRs in the condition of dorsal horn region ablation. However, in general, 

disinhibited bursting needs a simpler network property since it can be also evoked in a single 

isolated quadrant of ventral horn of spinal cord (Bracci et al., 1996). 
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 Figure 10: Electrophysiological properties of isolated neonatal rat spinal cord. A) DR 

reflex response evoked by low and high intensity stimulation in the first day (laft) and after 

24 h in vitro (right). B) Fictive locomotion evoked by DR train of stimuli 24 h in vitro. 

Alternating oscillatory activity amongst four different VRs are observed by 2xTh stimuli 

intensity. C) Chemically evoked fictive locomotion (NMDA+serotonin) applied shortly after 

dissection (left) and after 24 in vitro (right) to the same preparation. D) Disinhibited 

bursting evoked by application of strychnine+ bicuculline on the first day (top) and after 24 

h in vitro (bottom). E) Superimposed bursts in the first day (black) and 24 h later (grey). 

Longer burst duration and smaller amplitude was observed after 24 h. (Modified from 

Taccola et al., 2008) 
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Aims of the study 

 

 Excitotoxicity is considered to play an important role in the pathophysiological 

mechanisms of acute spinal cord injury. Pharmacological approaches are suggested to be 

useful not only to discover some new neuroprotective strategies against excitotoxicity, but 

also to provide a better understanding of the complex precesses which can contribute to 

neuronal injury. Electrophysiological recordings performed on the neonatal rat isolated spinal 

cord provided a good opportunity to test different pharmacological tools. Hyperactivation of 

Poly(ADP-ribose) polymerase is believed to be the chief effector of excitotoxic cell death. 

Therefore, in our study, we used different agents in order to protect the spinal cord against 

excitotoxic damage evoked by the glutamate analog kainate with the aim of understanding: 

 

 The potential neuroprotective effect of PARP-1 inhibitors on electrophysiological 

properties of CPG against kainate evoked excitotoxicity:  

 

1) 6(5H)-phenanthridinone (PHE) 

2) N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl 

(PJ-34) 

 

 The effect of the potent inhibitor of PARP-1 activity, PJ-34, on network excitability. 

 

 The potential neuroprotective effect of riluzole on electrophysiological properties of 

CPG against kainate evoked excitotoxicity. 

 

 In collaboration with molecular biology laboratory, we investigated whether fictive 

locomotion could be retained 24 h after excitotoxic insult and if there was any improvement 

in the synaptic transmission (reflex responses and cumulative depolarization) and the 

viability of cells (in grey and white matter) and motoneurons.  
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Kainate-induced delayed onset of excitotoxicity with functional loss unrelated to the extent of 

neuronal damage in the in vitro spinal cord. Neuroscience 168:451-462. 
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Abstract—While excitotoxicity is a major contributor to the
pathophysiology of acute spinal injury, its time course and
the extent of cell damage in relation to locomotor network
activity remain unclear. We used two in vitro models, that is,
the rat isolated spinal cord and spinal organotypic cultures,
to explore the basic characteristics of excitotoxicity caused
by transient application of the glutamate analogue kainate
followed by washout and analysis 24 h later. Electrophysio-
logical records showed that fictive locomotion was slowed
down by 10 �M kainate (with no histological loss) and fully
abolished by 50 �M, while disinhibited bursting with un-
changed periodicity persisted. Kainate concentrations (>50
�M) larger than those necessary to irreversible suppress
fictive locomotion could still elicit dose-dependent motoneu-
ron pool depolarization, and dose-dependent neuronal loss
in the grey matter, especially evident in central and dorsal
areas. Motoneuron numbers were largely decreased. A simi-
lar regional pattern was detected in organotypic slices, as
extensive cell loss was dose related and affected motoneu-
rons and premotoneurons: the number of dead neurons (al-
ready apparent 1 h after kainate) grew faster with the higher
kainate concentration. The histological damage was accom-
panied by decreased MTT formazan production commensu-
rate with the number of surviving cells. Our data suggest
locomotor network function was very sensitive to excitotox-
icity, even without observing extensive cell death. Excitotox-
icity developed gradually leaving a time window in which
neuroprotection might be attempted to preserve circuits still

capable of expressing basic rhythmogenesis and reconfigure
their function in terms of locomotor output. © 2010 IBRO.
Published by Elsevier Ltd. All rights reserved.

Key words: spinal cord injury, kainic acid, kainate, fictive
locomotion, motoneuron, organotypic culture.

Acute spinal cord injury (SCI) is a life-threatening condition
with loss of motor, sensory, and vegetative functions below
the site of injury (McDonald and Sadowsky, 2002; Schwab
et al., 2006). SCI consists of a complex process starting
with a primary lesion followed by secondary damage am-
plified and widened by massive release of glutamate, free
radical production, and metabolic dysfunction (McDonald
and Sadowsky, 2002; Schwab et al., 2006). The extensive
release of glutamate causes excitotoxicity (Choi, 1992;
Doble, 1999), that is believed to be an important contrib-
utor to the overall clinical picture (Hall and Springer, 2004;
Park et al., 2004; Rossignol et al., 2007). How to protect
neurons from excitotoxicity is still an open question. The
results obtained using glutamate antagonists or free radi-
cal scavengers remain disappointing, perhaps because of
poor understanding of the damage pathophysiology (Hall
and Springer, 2004; Adams et al., 2007; Rossignol et al.,
2007).

Our previous studies employed the rat isolated spinal
cord preparation (Taccola et al., 2008) as an in vitro model
to investigate the damage of spinal neuronal networks
underlying locomotion after excitotoxicity. Using the stable
glutamate receptor agonist kainate (a canonical method to
induce excitotoxicity; Agrawal and Evans, 1986; Ben Ari
and Cossart, 2000; Wang et al., 2005) at a fixed, high
concentration, we were able to reliably evoke a reproduc-
ible pattern of lesion to spinal networks, and to asses the
functional outcome in terms of locomotor network activity
(fictive locomotion and disinhibited bursting) in relation with
cell damage. Our study end point was the spinal network
electrophysiological activity 24 h after a transient (1 h)
application of kainate to mimic the reported clinical time
course (�3 h) of most spinal cord injuries prior to intensive
care treatment, when the impact of the primary insult is
expected to be stabilized (Bracken et al., 1990; Pointillart
et al., 2000; Hall and Springer, 2004).

Our observations, however, prompted a number of
questions which are the subject of the present report. In
particular, we wished to explore whether the kainate-
evoked damage was dose-dependent and related to the
survival of a critical number of cells in strategically impor-
tant spinal areas. Furthermore, we were interested to find

1 Joint first authors.
2 Present address: Department of Neuroscience, Karolinska Institute,
Stockholm, Sweden.
*Correspondence to: A. Nistri, Neurobiology Sector, SISSA, Via Bo-
nomea 265, 34136 Trieste, Italy. Tel: �39-040-37-56-518; fax:
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CV, coefficient of variation; DAPI, 4=,6-diamidino-2-phenylindole; DIV,
days in vitro; DME/HIGH, Dulbecco’s modified Eagle’s medium high
glucose; FBS, fetal bovine serum; FCS, fetal calf serum; HCl, hydro-
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nal specific nuclear protein; NIH, National Institutes of Health; NMDA,
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spinal cord injury; SD, standard deviation; SMI 32, neurofilament H
non-phosphorylated; T, thoracic; VR, ventral root; 5-HT, 5-hydroxy-
tryptamine.
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out the time course of excitotoxicity to understand the time
frame potentially available to pharmacological neuropro-
tection. Finally, we were concerned to find out the in vitro
excitotoxicity threshold since this information might be use-
ful to relate it to the excitotoxic process reported for brain
regions.

To this end, we used two parallel preparations, namely
the in vitro spinal cord of the rat and the organotypic spinal
slice culture. The first allowed us to collect functional data
related to locomotor network activity 24 h after the excito-
toxic stimulus, the latter enabled us to perform more de-
tailed time-related observations in terms of cell survival
and metabolic activity.

EXPERIMENTAL PROCEDURES

Rat isolated spinal cord preparation

For our experiments, thoracolumbar spinal cord preparations were
isolated from neonatal Wistar rats (0–2 days old) in accordance
with the National Institutes of Health (NIH) guidelines and the
Italian act D.Lgs. 27/1/92 n. 116 (implementing the European
Community directives n. 86/609 and 93/88) under urethane anes-
thesia (0.2 ml i.p. of a 10% w/v solution). All efforts were aimed at
reducing the number of animals used for the present project and
at minimizing their suffering.

Spinal cords were continuously superfused in a recording
chamber with Krebs’ solution of the following composition (in mM):
NaCl, 113; KCl, 4.5; MgCl27H2O, 1; CaCl2, 2; NaH2PO4, 1;
NaHCO3, 25; glucose, 11; gassed with 95% O2 5% CO2; pH 7.4 at
room temperature. All details about laboratory procedures have
been previously published (Bracci et al., 1996a,b, 1997; Beato
and Nistri, 1999) and the experimental setup has been fully re-
ported (Taccola and Nistri, 2006; Taccola et al., 2008; Margaryan
et al., 2009). Drugs were dissolved in Krebs solution and bath-
applied at the concentrations indicated in the text.

Electrophysiological recordings

DC-coupled records were obtained from lumbar (L) ventral roots
(VRs) with tight-fitting miniature Ag/AgCl suction electrodes (Tac-
cola and Nistri, 2006). Signals were processed with pClamp soft-
ware (version 9.2; Molecular Devices, Sunnyvale, CA, USA) for
subsequent off-line analysis (Taccola and Nistri, 2006). Fictive
locomotion was typically induced by continuously bath-applied
N-methyl-D-aspartate (NMDA) (4 or 5 �M) plus 5-hydroxytrypta-
mine (5-HT; 10 �M; Kiehn and Kjaerulff, 1998; Butt et al., 2002).
Signals were recorded from left (l) and right (r) L2 VRs that
express mainly flexor motor-pool commands to the hind limbs, and
l and r L5 VRs conveying mainly extensor motor-pool commands
to the same limbs (Kiehn and Kjaerulff, 1998). The period value for
rhythmic discharges was measured as the time between the onset
of two cycles of oscillatory activity (calculated after averaging at
least 20 cycles), and its regularity indicated by the coefficient of
period variation (CV; given by standard deviation [SD] mean�1).
Disinhibited bursting (Bracci et al., 1996a,b, 1997) was induced by
continuously bath-applied strychnine (1 �M) and bicuculline (10
�M). Full details concerning the definition of bursts and their
measurements were in accordance with Bracci et al. (1996a,b).

Kainate-evoked lesion protocol and data analysis

With the aim to find out the excitotoxicity threshold in terms of
electrophysiological and histological damage and to assess its
dose dependence, we applied kainate for 1 h at different concen-
trations ranging from 10 �M to 1 mM. Kainate was washed out
after 1 h with standard Krebs solution superfused for up to 24 h. In

each preparation, only one concentration of kainate was used
once. The 1 mM concentration has been empirically found to
induce irreversible loss of fictive locomotion (Taccola et al., 2008).
The 10 �M concentration was our lowest experimental dose since
previous studies have indicated that, on the same preparation, �5
�M kainate produced fictive locomotion without toxic effects
(Cazalets et al., 1992). Electrophysiological responses, such as
fictive locomotion, disinhibited bursting and reflex activity were
monitored for up to 24 h. At this end point, spinal cords were fixed
and used for histological analysis as detailed below.

Immunohistochemistry

Immunohistochemical labeling was performed using a free-float-
ing method as described previously (Taccola et al., 2008). Briefly,
paraformaldehyde-fixed spinal cords were cryoprotected with 30%
sucrose and sectioned (30 �m). After incubation in blocking so-
lution (5% normal goat serum, 5% bovine serum albumin, 0.3%
Triton-x 100) for 1 h at room temperature, the primary antibody
was incubated at 4 °C overnight and visualized using secondary
anti-mouse Alexa fluor 488 or 594 antibodies (1:500). Sections
were finally stained with 4=,6-diamidino-2-phenylindole (DAPI) for
20 min and analyzed using a Zeiss Axioskop2 microscope and
Metavue software (Margaryan et al., 2010). In accordance with
our previous reports (Taccola et al., 2008; Margaryan et al., 2009,
2010), the following antibodies were used: mouse anti-NeuN
monoclonal antibody (1:50, clone A60; Millipore, Milan, Italy),
mouse anti-SMI 32 monoclonal antibody (1:200, clone SMI-32;
Covance, Emeryville, CA, USA). Suppl. Fig. 1 shows that, as
negative control, omission of the primary antibodies gave minimal
signal comparable to the background autofluorescence.

Quantification of dead cells

The identification and quantification of dead or dying cells in the
spinal cord after experimental insults were performed as previ-
ously reported (Taccola et al., 2008). For each experimental
group, three spinal cords were analyzed and for each spinal cord,
four to six sections from thoracic T12 to L3 segments were exam-
ined because these regions are known to contain the locomotor
central pattern generator (Kiehn, 2006). In each section, three
areas of the spinal cord were investigated by immunofluores-
cence: dorsal grey matter (Rexed layers I–IV), central grey matter
(Rexed layers V–VIII and X), and ventral grey matter (Rexed layer
IX). For each area of the spinal cord, three to seven fields of
280�280 �m size in the grey matter were analyzed by counting
NeuN immunopositive elements and quantifying data using
eCELLence software (Glance Vision Tech, Trieste, Italy). Mo-
toneurons were counted as large ventral horn cells immunoposi-
tive for SMI 32 in laminae VIII and IX.

Preparation of organotypic cultures and protocol to
study excitotoxicity

Pregnant Wistar rats, at day 13 of gestation, were used to prepare
embryonic organotypic slice cultures of spinal cord in accordance
with previously published procedures (Gahwiler et al., 1997; Bal-
lerini and Galante, 1998; Ballerini et al., 1999; Avossa et al.,
2003). The fetuses were delivered by Caesarean section from
anaesthetized rats (10.5% chloral hydrate, 0.4 ml/100 g i.m.)
subsequently killed by an intracardiac injection (2 ml) of chloral
hydrate. This procedure is in accordance with the regulations of
the Italian Animal Welfare Act and is in accordance with the NIH
guidelines. The fetuses were decapitated and their backs, isolated
from their limbs and viscera, were cut into 275 �m thick transverse
slices from which the spinal cord was punched out and fixed on a
glass coverslip with reconstituted chicken plasma coagulated by
one drop of thrombin (200 U/ml). Coverslips were inserted into
plastic tubes with 1 ml of medium contained 82% Dulbecco’s
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Modified Eagle’s medium, 8% sterile water for tissue culture, 10%
fetal bovine serum (FBS; Invitrogen, Italy), osmolarity 300 mOsm,
pH 7.35. From each dissection, 30–40 slices were prepared from
the thoracic as well as the lumbar segments, and kept in culture
for 22 days in vitro (DIV) before use. The tubes were kept in a
roller drum rotating (120�g/h) at 36.5 °C. Dulbecco’s Modified
Eagle’s medium with high glucose (DME/HIGH), penicillin, and
streptomycin (purchased from Euroclone, Devon, UK). Fetal calf
serum was obtained from Invitrogen, (Carlsbad, CA, USA). Nerve
growth factor (NGF) was from Alomone Laboratories (Jerusalem,
Israel), chicken plasma from Rockland (Gilbertsville, PA, USA),
and thrombin from Merck, (Darmstadt, Germany).

At 22 DIV, organotypic spinal slices were incubated in com-
plete medium using one of the following protocols: (i) control group
in standard condition; (ii) kainate group treated with 100 or 1000
�M for 1 h. After treatment, slices were washed thrice and left in
complete medium to recover.

Immunofluorescence of organotypic cultures

Slices were fixed in 4% paraformaldehyde for 1 h at room tem-
perature and stored in phosphate buffer saline (PBS) until use.
Cultures were processed for immunofluorescence analysis by
immersion for 10 min in trypsin solution (0.05% in sterile water) at
37 °C. Slices were then blocked with 3% fetal calf serum (FCS),
3% bovine serum albumin (BSA), 0.3% Triton in PBS (blocking
solution) for 1 h at room temperature, followed by overnight incu-
bation at 4 °C in a blocking solution containing the NeuN antibody
(at 1:250 dilution). The primary antibody was visualized using
corresponding secondary fluorescent antibody (Alexa Fluor 488,
at 1:500 dilution, Invitrogen, Carlsbad, CA, USA). To visualize cell
nuclei, slices were incubated in 1 �g/ml solution of DAPI for 1 h
and mounted using Vectastain mounting medium (Vector Labora-
tories, Burlingame, CA, USA). DAPI staining results were ana-
lyzed using a Zeiss Axioskop2 microscope. NeuN positive cells
were analyzed using a Confocal (Leica DMIR2) microscope,
equipped with Ar/ArKr (at 488 nm) laser. Motoneurons were visu-
alized with the same SMI 32 antibody (1:1000) employed for
tissue histochemistry as previously described (Taccola et al.,
2008; Margaryan et al., 2010).

Quantification of dead cells

The identification and quantification of dead or dying cells in the
organotypic cultures was performed as previously shown (Taccola
et al., 2008), using DAPI nuclear staining and “eCELLence” soft-
ware. Three different regions of interest (r.o.i.), namely dorsal,
central, and ventral, were analyzed in each slice (see scheme in
Fig. 3A). The average percent values of nuclei showing condensed
chromatin (normalized to the total number of nuclei) were compared
between different r.o.i. for control or kainate (KA) treated slices and
expressed as mean�SD (using at least three different cell culture
series for each experimental group). NeuN positive cells were
analyzed using confocal microscopy, whereby a stack of 25–30
images (20� magnification) were counted with “eCELLence” soft-
ware using the same intensity threshold (ranging from 0 to 1
where 1 refers to the maximum intensity of the image) and cell
diameter parameters (in pixels related to the spatial resolution of
the identification; http://www.gvt.it/en/ecellence/documentation/in-
dex.php) for all experiments. The total number of NeuN positive
cells was obtained for each experimental condition as the total
number of positive cells in all stacks. Multiple entries of the same
object were considered as single entities by the “eCELLence”
software algorithm.

MTT mitochondrial toxicity test on organotypic
cultures

In accordance with the standard procedure (Mosmann, 1983), a
stock solution of 3(4,5-dimethyltiazolyl-2)-2,5 diphenyl tetrazolium

(MTT) was dissolved (5 mg/ml) in PBS (pH 7.4) and diluted to final
0.5 mg/ml in DME/HIGH. Cells were incubated with DME/HIGH
containing MTT for 2 h at 37 °C; at the end of this incubation
period, the medium was discarded and replaced with 1 ml of HCl
(with 0.04 M isopropanol) to dissolve cells containing the MTT
formazan crystals. These samples were then kept in a roller drum
at 36.5 °C overnight. After centrifugation at 10,000�g for 5 min,
absorbance values (wavelength�570 nm) were obtained with a
Bio-Rad microplate reader (model 550, Bio-Rad Laboratories,
Inc., Dorset, UK). Results were expressed as percentage of the
values obtained from control cultures in complete medium that
were considered to be 100% viable. Further checks were run to
establish the relation of the signal to the cell metabolic activity: in
particular, we checked that by incubating two slices in control
condition the MTT signal was doubled. In addition, we wished to
find out if there was a clear relation between cell numbers and
MTT assay values. To this end, we used the neuroblastoma-spinal
cord subclones 34 (NSC-34) cell line, a hybrid cell line produced
by fusion of motor neurone-enriched embryonic mouse spinal cord
cells with mouse neuroblastoma cells (Cashman et al., 1992;
kindly donated by Dr. Silvia Di Angelantonio, University of Rome),
that showed a linear relation (r�0.996) between the number of
cells (counted with Counting Chamber Thoma, Vetrotecnica,
Padova, Italy) and the MTT formazan production (Suppl. Fig. 2).
This result shows that, under the present experimental conditions,
the MTT test was a useful index of cell metabolic activity.

Data analysis

Data were expressed as means�SD; n indicates the number of
spinal cord preparations for electrophysiology and histochemistry.
In organotypic culture experiments (from 22 separate batches),
n�number of slices unless otherwise stated. Statistical analysis
was carried out with SigmaStat (SigmaStat 3.1, Systat Software,
Chicago, IL, USA): after using the normality test to distinguish
between parametric and non-parametric data, parametric values
were analyzed with the Student t-test (paired or unpaired) for two
groups and one-way analysis of variance (ANOVA) for multiple
comparisons (with Tukey–Kramer post hoc test). For non-para-
metric values, the Mann–Whitney test was used for two groups.
The accepted level of significance was always P�0.05.

Drugs

Kainate was purchased from Ascent Scientific (Weston-super-
mare, UK), NMDA was purchased from Tocris (Bristol, UK), while
5-HT and strychnine hydrochloride were purchased from Sigma
(Milan, Italy). Bicuculline methiodide was obtained from Fluka
(Milan, Italy). Other reagents and chemicals were purchased from
Sigma.

RESULTS

Electrophysiological effects of different
concentrations of kainate on the isolated spinal cord

The concentration range of kainate used for such experi-
ments varied 100 fold from 10 to 1000 �M to examine the
issue of dose-related excitotoxicity since previous studies
have shown that concentrations of kainate below 10 �M
were well tolerated in terms of locomotor cycle activity by
the neonatal rat spinal cord (Cazalets et al., 1992). In all
our experiments, fictive locomotion was first tested with
standard applications of NMDA (4 �M) and 5HT (10 �M) in
control conditions, thereafter the kainate solution was ap-
plied for 60 min, and washed out for further 24 h when
electrophysiological tests were repeated prior to histolog-
ical analysis.
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Fig. 1A, B show that the alternating oscillations (re-
corded from lL 2 and lL5VRs) typical of fictive locomotion
recorded in control solution had slower periodicity (4.97�
0.45 vs. 2.56�0.25 s control; P�0.001) and smaller am-
plitude (0.02�0.004 vs. 0.04�0.01 mV control; P�0.001)
24 h after 1 h application of kainate (10 �M) as exemplified
in Fig. 1C. The data plotted in Fig. 1A, B indicate that,
following 10 �M kainate application, cycle period, and
amplitude were significantly (P�0.027; n�5) different from
those of control sham preparations.

Concentrations of kainate equal to (or above) 50 �M
produced consistent disappearance of fictive locomotion
(Fig. 1A, B) with no recovery. Despite the irreversible, full
suppression of this pattern, we could still observe a dose-
dependent VR depolarization by kainate as shown by the
histograms of Fig. 1D. Thus, loss of fictive locomotion was
observed even in the presence of kainate-mediated VR
depolarizations that were only half of the depolarization
produced by 1 mM kainate (known to induce extensive

neurotoxic damage to the spinal cord; Taccola et al.,
2008).

The functional activity of the spinal networks follow-
ing application of 10 �M kainate was evaluated in four
preparations by monitoring disinhibited bursting that had
slower, irregular periodicity (89�33 s with CV�0.57�
0.23), longer burst duration (12.8�3.3 s), and lower burst
amplitude (0.81�0.32 mV) than the one normally observed
in control (Taccola et al., 2008; Margaryan et al., 2010).
Nevertheless, comparing such data after 10 �M kainate
with those recorded 24 h after the application of a very
large (1 mM) dose of kainate showed that the only signif-
icant (P�0.001) difference was in the burst amplitude
(0.22�0.10 mV; n�13) since period (67�26 s with CV�
0.36�0.16) and burst duration (10.5�4.2 s) were un-
changed.

We also examined the characteristics of disinhibited
bursting 24 h after 100 �M kainate, that showed 95.9�
14.5 s periodicity (CV�0.45�0.27), 0.39�0.16 mV ampli-

Fig. 1. Dose-dependent functional effects of kainate on the isolated spinal cord. (A, B) Plot of fictive locomotion periodicity or cycle amplitude versus
kainate concentrations in sham preparations (filled triangles) or kainate-treated preparations (filled squares). Note that fictive locomotion was
detectable only after 10 �M kainate (KA). P�0.001; n�5. (C) example of fictive locomotor patterns recorded from lL2 and lL5 VRs in the presence
of NMDA and 5-HT. On the same preparation, these patterns were recorded 24 h following 1 h application of 10 �M kainate. Note reduction in cycle
periodicity and amplitude. (D) histograms plotting the amplitude of VR depolarization evoked by different kainate concentrations. n�4–6. ** P�0.01.
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tude, and 13.5�1.9 s duration. Again, only the burst am-
plitude was significantly larger (P�0.05) than the value
found after 1 mM kainate. These data demonstrate that the
pattern of disinhibited bursting was relatively constant de-
spite pretreatment with distinct doses of kainate, whose
delayed consequences were observed as smaller ampli-
tude of bursts and loss of rhythm regularity as indicated by
the large CV value.

The electrophysiological records, thus, suggested that
there was a critical threshold for kainate-mediated excito-
toxicity in terms of suppression of fictive locomotion de-
spite preservation of intrinsic rhythmicity and motoneuron
pool depolarization. Using the same preparations em-
ployed for electrophysiology, we therefore analyzed their
histological picture.

Histological characterization of kainate-evoked
spinal damage

Since our previous experiments have demonstrated that
kainate (1 mM) primarily damages the gray matter with
minimal destruction of the white matter (Taccola et al.,
2008), we focused on the ventral and dorsal horns which
were analyzed as formerly reported. First, we examined
large (�25 �m somatic diameter) ventral horn cells which
were immunopositive for SMI 32 and, thus, identified as
motoneurons (Taccola et al., 2008). Fig. 2A shows an
example of the ventral horn laminae VIII-IX with motoneu-
rons from sham or kainate-treated preparations. The exci-
totoxic action of kainate was manifested by a much lower
number of motoneurons as quantified in Fig. 2B in which
motoneuron numbers drastically fell 24 h after 50 or 100
�M kainate in analogy with the effects previously observed
after 1 mM kainate (Taccola et al., 2008). Conversely,
global neuron numbers (examined with NeuN immunore-
activity; see Fig. 2C) were less severely decreased by
kainate in the ventral horn as indicated by the histograms
summarizing data for the three r.o.i. under investigation
(Fig. 2D). The largest fall in neuronal number affected the
gray matter of the dorsal horn region, where the majority of
kainate receptors are expressed in the neonatal spinal
cord (Tölle et al., 1993). From these results, it is apparent
that 10 �M kainate preserved nearly typical numbers of
motoneurons and propriospinal neurons together with im-
paired locomotor network activity, implying dysfunction
rather than cell loss.

Excitotoxicity of kainate on spinal organotypic
cultures

We first mimicked the experimental protocol employed for
the isolated spinal cord preparations in order to investigate
how this model was sensitive to kainate excitotoxicity.
Thus, organotypic spinal slices were treated with kainate
for 1 h, rinsed and examined at three time points to check
for early and delayed toxicity. In accordance with previous
quantitative studies of organotypic spinal cultures at the
same stage of development (Sibilla et al., 2009), we ex-
amined the topographic distribution of cells with con-
densed chromatin in three r.o.i. (indicated by the dotted

lines), namely dorsal, central, and ventral as exemplified in
Fig. 3A.

The lower panels of Fig. 3A (larger magnification) show
cells with condensed chromatin nucleus in the central area
incubated in control medium (top) or 24 h after 1000 �M
kainate (bottom), indicating substantial cell damage. Fig.
3B, C quantifies this phenomenon observed following 100
or 1000 �M kainate application. Inspection of these histo-
grams indicates that, in all three r.o.i. examined, there was
a time-related rise in the percentage of nuclei with con-
densed chromatin which reached the largest value at 24 h.
Fig. 4A shows, for the central region, that the cell damage
(in terms of condensed chromatin appearance plotted ver-
sus time elapsed after the end of kainate application) grew
by 75 cells/4 h following 100 �M kainate, while it increased
by 132 cells/4 h after 1000 �M kainate. On the other hand,
application of NMDA (4 �M) and 5-HT (10 �M) for 1 h
followed by 24 wash did not induce any increment in the
number of condensed chromatin cells (Fig. 4A). These
results, thus, indicate a delayed onset of excitotoxicity with
spinal cell loss dependent on kainate concentration.

We next wished to assess whether the surviving cells
displayed metabolic activity significantly impaired 24 h af-
ter kainate application. Fig. 4B shows that the MTT
formazan formation (filled bars; taken as a non-invasive
index of metabolic activity of the network) was 79�15%
(n�8) and 67�12% (n�18) after 100 and 1000 �M kai-
nate, respectively. This observation suggested metabolic
dysfunction that closely corresponded to the parallel emer-
gence of dead cells (Fig. 4C; expressed as % of the global
DAPI positive cell number) rising from 3�1% (control) to
27�8% and 38�4% after 100 and 1000 �M kainate, re-
spectively.

These observations led us to examine the cell popula-
tions involved in such a damage. Fig. 5A exemplifies neu-
ronal damage (taken as fewer immunoreactive NeuN pos-
itive cells in the central region of the organotypic slice)
induced by kainate 24 h after its application and washout.
The extent and time course of neuronal loss are plotted in
Fig. 5B, C for 100 or 1000 �M kainate. Pooling data from
the three r.o.i. showed that the average control value of
235�92 neurons (n�8) fell to 97�42 (n�5) or 102�61
(n�7) following 100 or 1000 �M kainate, respectively. We
could then compare the NeuN positive cell disappearance
during the first 4 h after washing out kainate. The 100 �M
concentration led to a loss of 17 neurons/4 h, a value which
was approximately half of the one (27/4 h) found after 1000
�M kainate. The neuronal loss was, therefore, comparable
to the appearance of condensed chromatin nuclei (Fig.
4A), confirming that the damage was primarily affecting
neurons rather than glia.

Fig. 6A shows that a similar cell loss was observed
when we examined the number of motoneurons 24 h after
100 or 1000 �M kainate. In fact, in the ventral r.o.i., the
number of motoneurons fell from 11�3 (n�12) to 7�3
(n�13) and 7�2 (n�6), a result in accordance with the
observation on the isolated spinal cord treated with kainate
(Fig. 2B).
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Fig. 2. Quantification of concentration-dependent effect of kainate on motoneurons and neurons of the isolated spinal cord. (A) Representative
images showing SMI 32 positive neurons in the laminae VIII and IX of sham (left) or 100 �M kainate-treated (right) spinal cords. (B) Histograms
showing number of SMI 32 positive neurons counted in 30 �m sections of sham or kainate (10–100 �M) treated spinal cords. (C) NeuN
immunoreactivity in the ventral region of sham or 100 �M kainate-treated spinal cords. (D) Histograms showing number of NeuN positive neurons,
counted in a 230�230 �m area of the dorsal (open bar) or central gray matter (gray bar), and in an 500�500 �m (filled bar) area of the ventral gray
matter. Data in (B) and (D) were collected from the same spinal cord preparations (n�3–5). Inset shows schematic diagram indicating r.o.i. used for
NeuN counting. Bar�50 �m. For (B, D), *** P�0.001, ** P�0.01.
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DISCUSSION

The principal finding of this study is that even a relatively
short excitotoxic stimulus (below the maximal tissue effect)
induced a clear impairment in spinal locomotor network
function without histological damage. A small increment in
the concentration of the excitotoxic agent irreversibly abol-
ished locomotor patterns despite preservation of substan-
tial numbers of network neurons. This observation implies
a strongly non-linear relation between the network ability to
express the locomotor program and the number of viable
neurons.

Excitotoxicity mediated by kainate

Our previous studies have shown how a large concentra-
tion of kainate irreversibly suppresses locomotor output in
the rat spinal cord in vitro (Taccola et al., 2008). The goal
of that investigation was to induce maximum histological
damage and to find out the functional consequences in
electrophysiological terms. Despite the 1 mM kainate con-
centration used, it was surprising to see that at least half of
the network neurons survived and that disinhibited bursting

was still present (Taccola et al., 2008). We then argued
that, if a very strong excitotoxic stimulus had left residual
cells and function in spinal networks (that we could not,
however, neuroprotect satisfactorily; Margaryan et al.,
2010), perhaps weaker excitotoxic insults could spare a
larger fraction of the networks and be more susceptible to
neuroprotection. These considerations, thus, led us to
carry out the present study in which, by using two different
preparations, we wished to find out the extent, the time
course and the functional consequences of excitotoxicity of
graded intensity. Our focus was on neurons since glia was
rather resistant to kainate damage even when applied at 1
mM concentration (Taccola et al., 2008).

Although the in vitro spinal cord model suffers of limi-
tations because of tissue immaturity and absence of vas-
cular supply, it has been proven useful to investigate the
basic mechanisms of rhythmogenesis, including the loco-
motor program, and the minimal network membership re-
quired to generate it (Nistri et al., 2010). These data are
possibly relevant to future studies of tissue repair and
regrowth, and may also be interesting to understand the
pathophysiology of paediatric spinal cord injury, a rather

Fig. 3. Quantification of cell loss in rat organotypic slices cultures after application of kainate. (A) Top panel shows a low power view of one organotypic slice
in which the three r.o.i. used for cell counting are outlined with a dotted line. Middle and lower panels show higher magnification view of the central area in
control or 24 h after kainate (1000 �M; 1 h) application which produced increased occurrence of cells with condensed chromatin nucleus (stained with DAPI).
(B, C) Histograms showing, for the three r.o.i., the number of cells with condensed chromatin (expressed as percent of total cells in the same region) counted
at 4 or 24 h after 1 h application of kainate (100 in B or 1000 �M in C). The average data are from three experiments: in each one of them six slices were
used (running in duplicate for control or the two kainate concentrations used). * P�0.05, ** P�0.01, *** P�0.001 vs. controls (untreated cultures).
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common type of trauma (Vitale et al., 2006; Achildi et al.,
2007). Previous studies have shown that motoneurons in
mixed embryonic mouse spinal cultures (Carriedo et al.,
1996) or adult rat acute slices (Pizzi et al., 2000) are
readily damaged by kainate concentrations in the 10–300
�M range. Both reports indicate motoneuronal loss higher
than the ones reported in the present study. These inves-
tigations, however, lack functional measurements of net-
work (or motoneuron) activity and of the time course of
kainate damage. Furthermore, adult slice preparations
have limited viability in vitro as suggested by the wide-
spread apoptosis detected even in the absence of kainate
application (Pizzi et al., 2000). To circumvent these prob-
lems, the current study thought it useful to employ isolated
or organotypic spinal cord preparations that retained their
function, connectivity, and long-term viability.

We started with a kainate concentration above 5 �M
(that was previously shown to generate fictive locomotor
patterns without toxic consequence; Cazalets et al., 1992),
and, at 10 �M kainate, we already observed significant
retardation in fictive locomotion periodicity: irreversible
loss ensued with 50 �M (or higher doses). Previous stud-
ies have demonstrated that the neonatal rat brain is more
vulnerable than the adult one to kainate-evoked lesions
and seizures (Cherubini et al., 1983; Kesslak et al., 1995).
Thus, the excitotoxic consequences of kainate administra-
tion to the neonatal spinal cord might have been enhanced
by tissue immaturity. Nevertheless, former experiments
with rat hippocampal slices (Robinson and Deadwyler,
1981) have shown that the kainate concentrations that
induce reversible neuronal depolarization (1 �M) and irre-
versible damage (10 �M) are comparable to the ones used
on the neonatal spinal cord (Cazalets et al., 1992; and our
present data).

Functional consequences of kainate evoked damage

In the rat spinal cord, the distribution of kainate receptor
subunits is primarily found in the most superficial lami-
nae of the dorsal horn and at the level of motoneurons
(Tölle et al., 1993). Since AMPA and NMDA receptor sub-
units are also abundantly expressed in the dorsal and
ventral horns (Tölle et al., 1993), it is likely that even the
lowest concentration (10 �M) of kainate evoked effects
largely contributed by release of endogenous glutamate
acting on multiple receptor subclasses and on downstream
non-glutamatergic neurons (Ben Ari and Cossart, 2000). It
is noteworthy that the amplitude of VR depolarization (re-
flecting the response of motoneuron pools) was related to
the kainate concentration, indicating that the effects mea-
sured in terms of neuronal depolarization were far from
being maximal, yet fully efficient in evoking loss of loco-
motor function.

In contrast with the loss of fictive locomotion, disinhib-
ited bursting was maintained with little difference in its
periodicity between 10 and 1000 �M kainate. While this
pattern is likely to reflect basic rhythmogenesis (Ballerini et
al., 1999; Darbon et al., 2002), it was interesting to observe
that its periodicity was relatively insensitive to neuronal
loss. This result implies that the basic network character-

Fig. 4. Cell loss and metabolic dysfunction of organotypic slices after
kainate. (A) Plot of cells, in the central region, showing condensed
chromatin nucleus at various times after washout (0 h) of 100 �M (grey
diamonds) or 1000 �M (filled squares) kainate. Data points prior to 0
time refer to values collected from untreated sister cultures and indi-
cate the baseline control occurrence of condensed chromatin nuclei
(21�23; six slices run in duplicate). Note the steeper emergence of
damaged cells following the larger concentration of kainate. At 4 h, the
values for 100 or 1000 �M kainate plots were significantly different
(P�0.0005; data are from pooling values for the three r.o.i. analyzed in
Fig. 3B, C). Application of NMDA and 5-HT for 1 h followed by 24 wash
does not increase the number of cells with condensed chromatin (n�2
slices at 0 time and n�4 slices at 24 h). Controls were untreated
cultures. (B) Histograms showing the MTT formazan production (index
of metabolic activity) 24 h after 100 or 1000 �M kainate application (1
h). Results are expressed as mean percent values of five independent
experiments (n�19 slices for control; n�7 slices for 100 �M kainate;
n�18 slices for 1000 �M kainate) where controls were taken as 100%.
* P�0.05, ** P�0.01 vs. control. (C) Histograms showing the dose-
related increment in cells with condensed chromatin 24 h after 100 or
1000 �M kainate (* P�0.05; data are from pooling values for the three
r.o.i. analyzed in Fig. 3B, C). As the percent of damaged cells grows,
there is a similar fall in % production of MTT formazan.
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istics necessary to drive the rhythm were spared and ex-
pressed by a comparatively small number of surviving
neurons, even though the global number of neurons was
progressively reduced as indicated by the gradual diminu-
tion of cycle amplitude. These observations accord with
experimental and theoretical studies of cortical networks in
which neuronal loss may produce synaptic scaling and
reconfiguration to preserve activity levels when the size of
the network shrinks (Wilson et al., 2007).

Histological pattern of spinal cell damage

With 10 �M kainate there was no detectable neuronal loss
despite the functional impairment of fictive locomotion. We
surmise that some cells were damaged only functionally,
and/or a very small number of neurons (below our method
resolution) critical for rhythm generation had been de-
stroyed. With 50 or 100 �M kainate, the global neuronal
damage became apparent and grew in a dose-dependent
fashion. It is, however, noteworthy that the loss of mo-
toneurons was already observed after 50 �M kainate con-
centration and did not intensify with larger doses. Several
data concur to suggest a special sensitivity of motoneu-
rons to excitotoxicity. In fact, motoneurons were also highly
sensitive to this insult in organotypic slice cultures, and
primary cultures of motoneurons are readily destroyed by
kainate (Comoletti et al., 2001). Future studies will be
necessary to understand the mechanism of motoneuron
death evoked by kainate and whether there are motoneu-
ron subtypes more resistant than others, because we
never detected complete disappearance of such cells. In
the few cases of effective neuroprotection by 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX) and aminophosphono-
valerate (APV) against kainate, the histological outcome
was better preservation of motoneurons (Margaryan et al.,
2010). Our present finding, thus, accords with previous
reports demonstrating differential vulnerability to the exci-
totoxic stimulus of distinct cell types in the rat hippocampus
(Akaike et al., 2001; Holopainen et al., 2004; Reid et al.,
2008). It is noteworthy that the excitotoxic damage to
motoneurons provides a model of loss of locomotor pat-
terns clearly different from the one observed after applica-
tion of toxic radicals in hypoxic/aglycemic conditions that
largely spare motoneurons and primarily target interneu-
rons and white matter (Margaryan et al., 2009).

Timecourse of kainate excitotoxicity

The realization of the severe excitotoxic damage to mo-
toneurons led us to examine the issue of the extent and
time course of excitotoxicity affecting other neurons as
well. This is not a trivial point because the interneuronal
network could retain rhythmogenesis after excitotoxic stim-
ulus and might therefore be a step to try to rebuild or repair
the network especially if their elements can reconfigure
their function (Barriere et al., 2008). To this end, we used
organotypic cultures of the rat spinal which are very useful
models to investigate physiological and pathological prop-
erties of spinal networks (Sibilla and Ballerini, 2009). In
accordance with the isolated spinal cord data, we ob-
served kainate-mediated widespread neuronal damage
with a maximum loss concerning the dorsal horn. In the
three r.o.i., the extent of such a damage was related to the
kainate concentration. Even if it is necessary to take into

Fig. 5. Extent and time course of neuronal loss evoked by kainate in organotypic cultures. (A) Examples of neuronal staining with NeuN antibody in
the central region 24 h after the application of kainate (100 or 1000 �M) for 1 h. (B) Histograms showing the percent of NeuN positive cells counted
at 4 and 24 h after the application of kainate (100 or 1000 �M) for 1 h (indicated by arrows). The column bars represent the pooled data from all r.o.i.
in four experiments in which the number of slices was four to eight. * P�0.05, ** P�0.01, *** P�0.001 vs. controls that were untreated cultures
analyzed 24 h later in vitro (23 DIV).
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account the fact that organotypic cultures are made up, on
average, by three layers of cells only (Ballerini et al., 1999),
lacking the complexity of the intact tissue, we could esti-
mate the consequences of kainate application over a span
of 4 h: the global cell loss ranged between 75 and 132
elements, while neuronal deficit was between 17 and 27.
Future studies are needed to examine the phenotype of
surviving neurons and their functional role (excitatory or
inhibitory), plus the precise identification of non-neuronal
cells.

Notwithstanding these issues, the present values indi-
cate that excitotoxicity affecting spinal neurons other than
motoneurons showed a delayed development related to
the strength of the excitotoxic stimulus: this time course
should perhaps leave open a time window during which
neuroprotection might be attempted.

Kainate effects on cell viability markers

One issue was whether the organotypic culture cells sur-
viving after kainate were metabolically impaired. To assess
this condition, we applied to these cultures a viability test
that relies on cell metabolic activity and membrane integ-
rity (Nocker and Camper, 2009). In particular, we em-
ployed the MTT assay which is based on the mitochondrial
transformation of this substance (Wang et al., 2005) and
provides an inexpensive and expeditious means to assess

viability of organotypic cultures (Connelly et al., 2000).
After checking that MTT assay values were linearly related
to the number of cells under test (Suppl. Fig. 2), we could
observe a tight inverse relation between MTT mitochon-
drial metabolism and the number of chromatin con-
densed cells. Our data are, thus, best explained by
assuming that, while excitotoxicity killed cells, the sur-
vivors remained metabolically competent, adding there-
fore impetus to any attempt to obtain neuroprotection
even at a late phase.

CONCLUSION

On the understanding that excitotoxicity is a major early
component of acute spinal cord injury (Hall and Springer,
2004; Park et al., 2004; Rossignol et al., 2007), the present
results provide novel information concerning the sensitivity
of in vitro spinal networks to an excitotoxic stimulus, the
time course of this damage and the main cell types af-
fected. While motoneurons were readily destroyed by ex-
citotoxicity, the fact that some of them did survive together
with the extent of premotoneuron survival in relation to the
intensity of excitotoxicity can provide a first estimate of the
lesion scale that neuroprotection or neurorepair (Schwab
et al., 2006) should face to arrest or limit the functional
consequences of an acute spinal injury.

Fig. 6. Kainate induced damage of motoneurons in organotypic slice cultures. (A) Examples of motoneuron staining with SMI 32 antibody 24 h after
the application of kainate (100 or 1000 �M) for 1 h. The inset shows higher magnification view of the ventral region with large SMI 32 cells identified
as motoneurons. All calibration bars�100 �m. (B) Histograms showing the number of SMI 32 positive cells 24 h after application of kainate (100 or
1000 �M for 1 h). The data represent the numbers from three experiments with 6–12 slices each, * P�0.05 vs. control (untreated cultures).
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Abstract Excitotoxicity is considered to be a major

pathophysiological mechanism responsible for extensive

neuronal death after acute spinal injury. The chief effector

of such a neuronal death is thought to be the hyperactiva-

tion of intracellular PARP-1 that leads to cell energy

depletion and DNA damage with the manifestation of non-

apoptotic cell death termed parthanatos. An in vitro lesion

model using the neonatal rat spinal cord has recently shown

PARP-1 overactivity to be closely related to neuronal

losses after an excitotoxic challenge by kainate: in this

system the PARP-1 inhibitor 6(5H)-phenanthridinone

(PHE) appeared to be a moderate histological neuropro-

tector. This article investigated whether PHE could actu-

ally preserve the function of locomotor networks in vitro

from excitotoxicity. Bath-applied PHE (after a 60 min

kainate application) failed to recover locomotor network

function 24 h later. When the PHE administration was

advanced by 30 min (during the administration of kainate),

locomotor function could still not be recovered, while basic

network rhythmicity persisted. Histochemical analysis

showed that, even if the number of surviving neurons was

improved with this protocol, it had failed to reach the

threshold of minimal network membership necessary for

expressing locomotor patterns. These results suggest that

PARP-1 hyperactivity was a rapid onset mechanism of

neuronal loss after an excitotoxic challenge and that more

selective and faster-acting PARP-1 inhibitors are warranted

to explore their potential neuroprotective role.

Keywords Spinal cord injury � Kainic acid � Kainate �
Fictive locomotion � Motoneuron � Excitotoxicity �
Parthanatos

Introduction

During the process of neuronal excitotoxicity, hyperacti-

vation of the intracellular enzyme poly(ADP-ribose)poly-

merase-1 (PARP-1) is thought to be a major step to trigger

a non-apoptotic form of cell death termed parthanatos

(Narasimhan et al. 2003; Wang et al. 2009; Kuzhandaivel

et al. 2010).

Parthanatos is believed to be an essential mechanism to

produce neuronal loss following brain ischemia/anoxia

during which extensive release of glutamate is regarded as

a primary cause for irreversible damage (Eliasson et al.

1997; Koh et al. 2004). A similar process has also been

suggested to occur in the spinal cord after an acute lesion

(Scott et al. 1999; Genovese et al. 2005; Kuzhandaivel

et al. 2010). Our in vitro model using the rat-isolated spinal

cord subjected to a transient excitotoxic stimulus by the

glutamate receptor agonist kainate has demonstrated sub-

stantial neuronal losses attributable to parthanatos (with

preservation of glia) that was attenuated by the PARP-1

inhibitor 6(5H)-phenanthridinone (PHE; Kuzhandaivel

et al. 2010). Nonetheless, this observation needs validation

with electrophysiological recording to prove whether

locomotor network activity in vitro is preserved as well.
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This article aims at investigating if fictive locomotion (Butt

et al. 2002; Taccola and Nistri 2006), an alternating pattern

of lumbar ventral root (VR) discharges rhythmically pro-

duced by either electrical stimulation or neurochemicals

like NMDA and 5-hydroxytryptamine (5-HT), can be

detected 24 h after kainate-evoked excitotoxicity and

application of PHE, and how it might be related to neuronal

survival.

Materials and Methods

Full details of the experimental methods have recently been

published (Taccola et al. 2008; Margaryan et al. 2010). In

brief, we used neonatal (age: 0–2 days) rat spinal cords

with the following protocols: sham preparations were

maintained in vitro for up to 24 h in standard Krebs solu-

tion (Taccola et al. 2008); injured preparations were treated

with a maximally effective dose (1 mM) of the glutamate

agonist kainate (60 min) followed by wash and mainte-

nance in Krebs solution for 24 h. PHE (60 lM; Sigma,

Milan, Italy)-treated preparations received this drug either

at the time of kainate washout or after the first 30 min of

kainate application. In all cases, PHE application continued

for 24 h and was washed out immediately before electro-

physiological recording. L2 and L5 pairs of lumbar ventral

roots were continuously recorded to monitor reflex activity

induced by stimulating either the left or the right lumbar

five dorsal root (DR). We first assessed the minimal stim-

ulus intensity to evoke a VR threshold response homolat-

erally (on average this was 2.0 ± 0.95 V). In accordance

with previous studies (Marchetti et al. 2001), we consid-

ered this as equivalent to 1 threshold (Th) value to induce a

monosynaptic reflex. Thereafter, values of Th \ 2 stimuli

were used to evoke monosynaptic responses, while larger

Th values were used for polysynaptic responses as previ-

ously reported in detail (Baranauskas and Nistri 1995;

Bracci et al. 1997). In control conditions, the peak ampli-

tude of monosynaptic responses was 0.24 ± 0.06 mV

(n = 7) which corresponded to 33% of the peak amplitude

of the polysynaptic responses (0.73 ± 0.3 mV; n = 7).

With pCLAMP 9 software (Molecular Devices, Sunnyvale,

CA, USA), the reflex area was measured by simple sum-

mation of data points within the search region comprising

the foot of the response to its decay corresponding to 20%

of the peak (Baranauskas and Nistri 1995; Bracci et al.

1997; Marchetti et al. 2001). In the present experiments,

the duration of polysynaptic responses was usually 20 s.

Single pulses were used to elicit synaptic responses, while

pulse trains were employed for inducing repeated cycles of

electrical oscillation alternating homolaterally between L2

and L5 segments or from left to right in the same segment.

These patterns, therefore, had all the typical properties of

fictive locomotion (Butt et al. 2002). Fictive locomotion

was also evoked by bath-applied NMDA (4–5 lM, Tocris,

Bristol, UK), and 5-HT (10 lM; Sigma, Milan, Italy) (Butt

et al. 2002). Disinhibited bursting was induced by appli-

cation of bicuculline (20 lM, Fluka, Milan, Italy) plus

strychnine (1 lM, Sigma, Milan, Italy) (Bracci et al. 1996).

The amplitude of such bursts was measured at their plateau

phase, after high-frequency discharges subsided (Bracci

et al. 2006). At the end of each experiment, spinal cords

were histologically fixed and sectioned to investigate the

immunostaining of neurons with the selective marker

NeuN (Millipore, Milan, Italy) in the three regions of

interest. Motoneurons immunolabeled with the marker SMI

32 (Covance, Emeryville, CA) were counted in the ventral

horn gray matter. Data were expressed as mean ± standard

deviation. The statistics of data were performed by analysis

of variance (ANOVA), and Tukey test with SigmaStat 3.1

(Systat Software, Chicago, USA). The accepted level for

statistical significance was P \ 0.05 where n = number of

spinal cords.

Results

In view of the partial protection exerted by PHE against

neuronal losses evoked by kainate (Kuzhandaivel et al.

2010), we first investigated whether this treatment could

produce significant improvements in electrophysiological

responses. After 60-min kainate application followed by

washout, and subsequent administration of PHE (24 h), the

average peak amplitude of polysynaptic reflexes (induced

by DR stimuli [2 Th value for eliciting monosynaptic

responses) was 0.11 ± 0.04 mV (n = 4), a result not dif-

ferent from 0.16 ± 0.1 mV (n = 6) observed after kainate

alone. Increasing the stimulus intensity fails to reinstate the

initial amplitude of these reflexes (Taccola et al. 2008).

Sham reflex amplitude was 0.73 ± 0.30 (n = 7). Previous

studies have shown that kainate (1 mM) induced irrevers-

ible loss of fictive locomotion tested with trains of elec-

trical pulses applied to a lumbar DR (Taccola et al. 2008):

this result was confirmed in this study with kainate alone or

kainate followed by PHE. It was, however, possible to

detect disinhibited bursting, that after kainate alone, had

58 ± 25 s period (CV = 0.21 ± 0.17), a value not sig-

nificantly different from the one when PHE was later

applied (34 ± 16 s; CV = 0.28 ± 0.18; n = 4). The same

findings applied also to the average burst amplitude

(measured at plateau; not shown). These observations

suggested that with this administration protocol, PHE was

ineffective to protect spinal networks from kainate

excitotoxicity manifested as loss of fictive locomotion and

reflex impairment.
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Our previous study has shown that 60-min application of

kainate was sufficient to produce significant PARP-1

hyperactivity (Kuzhandaivel et al. 2010). Thus, we rea-

soned that any protective action of PHE should perhaps be

tested by applying this drug before a significant onset of

PARP-1 activation, but with a certain delay from the

start of kainate application to enable the development of

excitotoxicity. To this end, the experimental protocol was

based on application of PHE 30 min after the start of

kainate (always 60 min application) and kept throughout

for the next 24 h. Figures 1, 2 summarize these data.

Figure 1a shows examples of lack of effectiveness even of

this protocol on monosynaptic reflex amplitude (see inset to

Fig. 1a) or area; similar data were obtained for polysynaptic

responses in the same preparation (Fig. 1a). Average results

are quantified in the histograms of Fig. 1b, c.

Recovery of fictive locomotion was never found,

regardless of whether trains of electrical pulses (Fig. 1d;

n = 4) or bath-application of NMDA plus 5-HT were

tested (Fig. 2c; n = 4). As shown in Fig. 2a, b, the period

and amplitude of disinhibited bursts after kainate and PHE

were similar to those obtained with kainate alone.

The different application protocol of PHE (namely,

during kainate administration) with respect to our previous

article (Kuzhandaivel et al. 2010) required the analysis of

the histological damage in relation to the electrophysio-

logical effects. Fig. 3a shows examples of neuronal losses

evoked by kainate in the dorsal horn of the isolated spinal

cord (this example refers to L5). After applying PHE

(60 lM) following kainate (bottom panel of Fig. 3a),

neuronal losses in the kainate’s most-sensitive region

(namely, the dorsal horn; cf. Mazzone et al. 2010) appeared

to be decreased as quantified in the histograms of Fig. 3b

depicting the number of neurons (as NeuN-positive ele-

ments) detected in the three main spinal regions of pooled

L3–L5 segments. For each region investigated, the effect of

PHE against kainate toxicity was significant with percent

values of surviving neurons of approximately 75% with

Fig. 1 Effect of PHE (60 lM) application (30 min after start of

injury) on electrophysiological responses recorded after 24 h from in

vitro spinal cord preparations exposed to excitotoxic injury by kainate

(1 mM). a Examples of mono (19 Th; see inset) and polysynaptic

VRlL5 responses evoked by single electrical stimuli (29 Th intensity

for polysynaptic response) applied to the homolateral DRlL5 in sham

(left), kainate (middle) or PHE treated condition (30 min after kainate

application; right). The open arrows indicate the artifact while the

filled arrow indicates the peak amplitude of the polysynaptic reflex

measured from baseline. b Histograms show reflex amplitude and

area of monosynaptic responses in sham, kainate, and kainate ? PHE

(n = 7, 6, and 4 respectively). No improvement was found after 24 h

PHE application. Statistical analysis using ANOVA shows the

significant difference between sham and two other groups (peak

amplitude: P = 0.003 for kainate and P = 0.002 for kainate ? PHE;

area: P = 0.01 for kainate and P = 0.02 for kainate ? PHE). c Lack

of recovery of peak response amplitude and area of polysynaptic

responses after application of PHE in comparison with kainate alone

(n = 7, 6, and 4 for sham, kainate, and kainate ? PHE, respectively).

Significant decreases in peak amplitude and area of polysynaptic

response in comparison with sham remained unchanged (peak

amplitude: P = 0.005 for kainate and P = 0.01 for kainate ? PHE;

area: P = 0.009 for kainate and P = 0.03 for kainate ? PHE).

d Example of VR alternating cycles of a sham preparation in response

to a train of DR stimuli (30 stimuli, 29 threshold intensity, 2 Hz

frequency); this pattern disappears in both groups treated with

kainate, and kainate ? PHE (30 min after application of kainate). All

data refer to the electrophysiological activity after 24 h. KA, kainate
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respect to corresponding sham values. Fig. 3c, d shows that

kainate evoked, on average, strong loss of motoneurons

(SMI 32 positive large cells in the ventral horn; Taccola

et al. 2008) 24 h later, and that this effect could not be

significantly counteracted by PHE.

Discussion

The principal finding of this article is that the PARP-1

inhibitor, PHE, could not contrast the excitotoxic damage

evoked by kainate in functional terms, despite significant

protection against neuronal losses, and the previous dem-

onstration of the tight correlation between excitotoxicity

and PARP-1 activity.

This observation raises several interesting issues rela-

ted to the basic pathophysiology of spinal cord excito-

toxicity. First, the damage to synaptic transmission

induced by kainate was multifactorial because of the

widespread chemical injury involving dorsal, central and

ventral neurons, including motoneurons. This functional

lesion was not significantly prevented by PHE since

mono- and polysynaptic reflexes were strongly depressed

after kainate administration, regardless of the PHE

application protocol. This observation probably explains

why even DR pulse trains were unable to activate fictive

locomotion because afferent stimuli could not be effi-

ciently integrated into spinal networks. Second, the per-

sistence of disinhibited rhythmicity despite kainate being

followed (or not) by PHE indicated that, in accordance

with histochemical data, there was a residual circuitry

still able to express a basic form of spontaneous network

pattern. Improving the number of these survivors with

PHE treatment had no significant consequence on disin-

hibited bursting presumably because this type of rhyth-

micity was a scale-free phenomenon generated by a

relatively small subset of interneurons (Bracci et al.

1996; Taccola and Nistri 2006). The larger number of

surviving neurons was, however, unable to generate

locomotor patterns (which, in control conditions, are

directly triggered by NMDA and 5-HT acting on intrinsic

locomotor networks; Butt et al. 2002) presumably

because it overall remained below the threshold (*155

neurons/central and ventral region) that constitutes the

minimal membership required to produce fictive loco-

motion (Nistri et al. 2010).

The poor functional outcome of the PHE effect was

likely to be due to the early hyperactivation of PARP-1

which presumably started even before 30 min time-point

coincident with the PHE application. Furthermore, PHE is

a relatively non-selective blocker of this enzymatic activity

(Banasik et al. 1992; Li et al. 2001), and impairs the

activity of lymphocytes (Chiarugi 2002). It is unclear

whether these effects may also occur in the in vitro spinal

cord, and what contribution, if any, they might have

brought to the overall functional outcome. Hence, future

studies with more selective inhibitors of PARP-1 are

warranted to explore the early neuroprotective value of

blocking this enzymatic activity.

Fig. 2 Effect of PHE (60 lM) on chemically induced locomotor

patterns 24 h after excitotoxic injury evoked by kainate (1 mM).

a Examples of disinhibited bursting induced by strychnine and

bicuculline in sham, kainate or kainate ? PHE treated condition

(started 30 min after kainate application). b Histograms show similar

burst period for all the three conditions, while amplitude values for

kainate, and kainate ? PHE are significantly different from sham

(P = 0.005, and 0.002, respectively; n = 7, 6, and 4 for sham,

kainate, and kainate ? PHE, respectively). Amplitude values are

similar for kainate, and kainate ? PHE groups. All data were

analyzed with ANOVA. c Example of fictive locomotion induced

by NMDA plus 5-HT in sham preparation: this pattern is not

preserved following kainate or kainate ? PHE. VRs are identified by

their segmental numbering (lumbar L2 and L5 on the left, l, side of

the spinal cord). Alternation between L2 flexor motor pools and L5

extensor motor pools is an index of fictive locomotion. All data refer

to the electrophysiological activity after 24 h. KA, kainate
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Abstract

Delayed neuronal destruction after acute spinal injury is attributed to excitotoxicity mediated by hyperactivation of poly(ADP-ribose)
polymerase-1 (PARP-1) that induces ‘parthanatos’, namely a non-apoptotic cell death mechanism. With an in vitro model of
excitotoxicity, we have previously observed parthanatos of rat spinal cord locomotor networks to be decreased by a broad spectrum
PARP-1 inhibitor. The present study investigated whether the selective PARP-1 inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-
(N,N-dimethylamino)acetamide.HCl (PJ-34) not only protected networks from kainate-evoked excitotoxicity, but also prevented loss
of locomotor patterns recorded as fictive locomotion from lumbar (L) ventral roots (VRs) 24 h later. PJ-34 (60 lm) blocked PARP-1
activation and preserved dorsal, central and ventral gray matter with maintained reflex activity even after a large dose of kainate.
Fictive locomotion could not, however, be restored by either electrical stimulation or bath-applied neurochemicals (N-methyl-D-
aspartate plus 5-hydroxytryptamine). A low kainate concentration induced less histological damage that was widely prevented by PJ-
34. Nonetheless, fictive locomotion was observed in just over 50% of preparations whose histological profile did not differ (except for
the dorsal horn) from those lacking such a rhythm. Our data show that inhibition of PARP-1 could amply preserve spinal network
histology after excitotoxicity, with return of locomotor patterns only when the excitotoxic stimulus was moderate. These results
demonstrated divergence between histological and functional outcome, implying a narrow borderline between loss of fictive
locomotion and neuronal preservation. Our data suggest that either damage of a few unidentified neurons or functional network
inhibition was critical for ensuring locomotor cycles.

Introduction

Acute spinal cord injury remains one important cause of long-term
morbidity and mortality (McDonald & Sadowsky, 2002; Fehlings &
Perrin, 2006) with an incidence rate of 22 people ⁄ million ⁄ year, in
particular young adults (Hall & Springer, 2004; Rossignol et al., 2007).
This problem also largely affects children as it includes 1–2% of
pediatric fractures and is the reason for the highest mortality of all
orthopedic injuries in infants (Leonard et al., 2007). Despite intense
clinical efforts, the outcome remains poor as only about 5% of patients
with severe spinal cord injurywill walk again (Dobkin&Havton, 2004).
Following the primary injury, the secondary biochemical cascades

(developing over minutes, hours and days) responsible for motor
deficits are thought to be triggered by excitotoxicity due to massive
release of glutamate (Hall & Springer, 2004; Park et al., 2004;
Rossignol et al., 2007). Although excitotoxicity has been traditionally
associated with apoptosis and necrosis (Choi, 1992; Liu et al., 1997;
Yuan et al., 2003; Baptiste & Fehlings, 2006), a recently discovered

cell death pathway named parthanatos, which involves the hyperac-
tivity of poly(ADP-ribose) polymerase-1 (PARP-1), is believed to be
as important to spinal cord injury (Scott et al., 1999; Genovese et al.,
2005; Wu et al., 2009; Kuzhandaivel et al., 2010) as to brain ischemia
(Eliasson et al., 1997; Koh et al., 2004). A glutamate-mediated
increase in PARP-1 activity generates poly(ADP-ribose) (PAR) that
disrupts mitochondrial membrane potential, and stimulates transloca-
tion of apoptosis-inducing factor (AIF) to the cell nucleus leading to
extensive DNA damage that together with energy depletion will
produce parthanatos (Narasimhan et al., 2003; Wang et al., 2009a).
Our in vitro model of spinal cord injury caused by excitotoxicity has

recently shown neurons rather than glial cells to be highly affected by
parthanatos (Kuzhandaivel et al., 2010). In that study, application of a
relatively non-selective PARP-1 inhibitor immediately after washout
of kainate decreased PARP-1-mediated cell death and reduced AIF
translocation to the nucleus (Kuzhandaivel et al., 2010). However, a
poor outcome in terms of locomotor network activity has been
subsequently reported (Nasrabady et al., 2011).
In the present study we investigated the potential neuroprotective

role of a highly selective inhibitor of PARP-1, namely N-(6-oxo-
5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl
(PJ-34) (Abdelkarim et al., 2001; Kauppinen et al., 2009), on
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locomotor network activity of neonatal rat isolated spinal cord
together with histochemical characterization of the spinal damage after
excitotoxic injury.

Methods and materials

Spinal cord preparation

The experiments were performed on neonatal Wistar rats with a
postnatal age of 0–2 days in accordance with the guidelines of the
National Institutes of Health and the Italian act D.Lgs. 27 ⁄ 1 ⁄ 92 no.
116 (implementing the European Community directives no. 86 ⁄ 609
and 93 ⁄ 88). Spinal cords were carefully dissected out under urethane
anesthesia (0.2 mL i.p. of a 10% w ⁄ v solution). Neonatal rat spinal
cords were superfused (7.5 mL ⁄ min) with Krebs solution containing
(in mm): 113 NaCl, 4.5 KCl, 1 MgCl27H2O, 2 CaCl2, 1 NaH2PO4, 25
NaHCO3 and 11 glucose, gassed with 95% O2 ⁄ 5% CO2, pH 7.4 at
room temperature (22�C) (fully described previously by Beato &
Nistri, 1999; Taccola & Nistri, 2006a; Margaryan et al., 2009).

Electrophysiological recording

The experiments were based on DC-coupled recordings from L VRs
using tight-fitting suction electrodes (Taccola & Nistri, 2006a). Signals
were recorded from left (l) and right (r) L2 VRs producing mainly
flexor motor signals to the hindlimb muscles, and from L5 VRs, which
convey mainly extensor motor commands to the same limb (Kiehn &
Kjaerulff, 1998; Kiehn, 2006; Taccola & Nistri, 2006b). Using
pClamp software (version 9.2; Molecular Devices, Sunnyvale, CA,
USA), signals were captured, digitized and analyzed.

In order to stimulate the spinal cord through afferent fibers, single
electrical stimuli were applied to the ipsilateral homosegmental dorsal
root (DR) every 60 s. Normally, one train of DR stimuli (0.1 ms
duration, 30 pulse trains at 2 Hz) was used to induce cumulative
depolarization with superimposed alternating oscillatory activity
typical of fictive locomotion. The stimulation strength was 2·
threshold, where threshold was taken as the minimum intensity to
elicit a detectable response in the homolateral VR (Taccola et al.,
2004). The peak amplitude and area of the responses were calculated
by averaging at least five events. Fictive locomotion was also
chemically induced by application of N-methyl-D-aspartate (NMDA)
(4 lm) (Tocris Bioscience, Bristol, UK) plus 5-hydroxytryptamine (5-
HT) (10 lm, Sigma, Milan, Italy) (Cazalets et al., 1992; Kiehn &
Kjaerulff, 1996; Butt et al., 2002). The period (time interval between
the onsets of two cycles) and its coefficient of variation were measured
from at least 20 continuous cycles. The criterion to diagnose the
presence of fictive locomotion was continuous generation of at least
20 cycles alternating between homosegmental and left–right four
L VRs. Disinhibited bursting (Bracci et al., 1996, 1997) was elicited
by application of strychnine (1 lm) (Sigma) and bicuculline (20 lm)
(Fluka, Milan, Italy) and the burst parameters (recorded from the same
VRs) were calculated in accordance with Bracci et al. (1996).

Protocols of lesion and neuroprotection

The protocol for excitotoxic spinal lesion in vitro relies on the
application of the strong excitotoxic agent kainate (Ascent Scientific,
Weston-super-mare, UK) for 1 h in standard Krebs solution (Taccola
et al., 2008). Kainate was applied at 1 mm, 0.1 mm or 50 lm

concentration to induce either an extensive or a threshold (50 lm)
lesion that always abolished locomotor network function for at least
24 h as detailed by Mazzone et al. (2010).

With each toxic dose, we tried neuroprotection by applying the
selective inhibitor of PARP-1, PJ-34 (Sigma). Two protocols were
employed. In a first series of experiments, we applied 10–60 lm PJ-34
immediately at the washout of kainate and explored its effects on
PARP-1 activity measured with enzyme-linked immunosorbent assay
(ELISA), or on the number of pyknotic cells, or on the translocation of
AIF (see below). In a second series of experiments that comprised
electrophysiological and immunohistochemical tests, PJ-34 (60 lm)
was applied halfway (30 min) through kainate application. This time
schedule was chosen because of the previous report that hyperacti-
vation of PARP-1 was already detected at the time of washout of
kainate (Kuzhandaivel et al., 2010). In all cases, PJ-34 application was
extended for the subsequent 24 h after which PJ-34 was washed out
and electrophysiological responses retested in standard Krebs solution.
Previous experiments indicated that micromolar concentrations of PJ-
34 were necessary to neuroprotect organotypic spinal cultures from
kainate toxicity (Mazzone & Nistri, 2011).
For functional studies, systematic testing of the electrophysiological

responses in terms of reflex or fictive locomotor activity was
performed on the first day of each experiment to obtain control data
prior to any treatment. Untreated sham spinal cords kept for 24 h in
Krebs solution (Taccola et al., 2008) or treated with PJ-34 alone (for
24 h) were used for comparison with kainate with or without PJ-34
preparations tested 24 h later. All preparations were fixed after the end
of the experiment as previously described (Taccola et al., 2008).

Immunohistochemistry

Our previous experiments have validated the use of the antibodies
employed for the present investigation. In particular, the mouse
monoclonal anti-neuronal specific nuclear protein (NeuN; Millipore,
Milan, Italy) (Taccola et al., 2008; Margaryan et al., 2010) and the
mouse monoclonal anti-neurofilament H non-phosphorylated (SMI
32) (Covance, Emeryville, CA, USA) (Taccola et al., 2008; Margar-
yan et al., 2010) antibodies were used for immunohistochemical
labeling with the free-floating method as described previously
(Taccola et al., 2008). Briefly, paraformaldehye-fixed spinal cords
were cryoprotected with 30% sucrose and sectioned (30 lm). After
incubation in blocking solution (5% normal goat serum, 5% bovine
serum albumin, 0.3% Triton-X 100) for 1 h at room temperature, the
primary antibody (NeuN, 1 : 50 or SMI 32, 1 : 200 dilution) was
incubated at 4 �C overnight. The primary antibodies were visualized
using secondary anti-mouse Alexa fluor 488 or 594 antibodies
(1 : 500). Sections were finally stained with 4¢,6-diamidino-2-pheny-
lindole (DAPI) for 20 min and analyzed using a Zeiss Axioskop2
microscope and Metavue software.

Quantification of dead cells

Pyknotic nuclei DAPI staining or NeuN-positive cells were counted in
four regions (ventral, central, dorsal gray matter and ventrolateral
white matter) of the spinal cord using ‘eCELLence’ (Glance Vision
Tech., Trieste, Italy) software (Taccola et al., 2008; Margaryan et al.,
2009). Pyknosis was readily observed as a change in nuclear
morphology resulting from chromatin condensation (either nucleolytic
or anucleolytic) (Burgoyne, 1999). For each histological cross-section
of the spinal cord, four different regions were investigated: dorsal gray
matter (Rexed laminae I–IV), central gray matter (Rexed laminae
V–VII and X), ventral gray matter (Rexed laminae VIII–IX) and
ventrolateral white matter. For each region, three to seven fields of
280 · 280 lm (gray matter) or 100 · 280 lm (white matter) area
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were analyzed. For each experimental group, 4–11 spinal cords were
analyzed and, for each spinal cord, 4–6 different sections from T12 to
L3 segments were examined.

Quantification of poly(ADP-ribose) (PAR)

Previous studies have indicated that excitotoxicity largely activates
PARP-1 in the rat brain tissue (Endres et al., 1997; Chiarugi, 2005;
Moroni, 2008) as well as in the rat spinal cord (Genovese et al., 2005;
Kuzhandaivel et al., 2010). Nonetheless, in the present report we
investigated whether, under the current experimental conditions,
namely kainate (50 lm or 1 mm)-mediated excitotoxicity, there was
direct evidence for PARP-1 activation by measuring its product PAR,
and whether PJ-34 (60 lm) was an effective inhibitor of this process
when added immediately after the washout of kainate (applied for
1 h). For this purpose, PARP-1 activity was determined by measuring
the PAR levels in the tissue lysates of spinal cords treated with
different concentrations of kainate and ⁄ or PJ-34, or in sham
conditions. PAR levels were always quantified 4 h after the application
of kainate and ⁄ or PJ-34 because our former study has shown that, at
this time, the maximum activity of PARP-1 evoked by kainate is
detected with western immunoblotting (Kuzhandaivel et al., 2010).
After preparing tissue lysates from the spinal cords, their PAR levels
were measured using the PARP in vivo Pharmacodynamic Assay II
(http: ⁄ ⁄ www.trevigen.com ⁄ protocols ⁄ pdf ⁄ 4520-096-K.pdf) follow-
ing the manufacturer’s protocol (Trevigen, Bologna, Italy). This assay
is based on the ELISA immunoreactivity resulting in chemilumines-
cence signals recorded with the Glo�max multi-detection system
(Promega, Milan, Italy). Whenever tests were performed for the action
of PJ-34, this substance was also added to cell lysis buffer to avoid
inhibitor dilution as per the manufacturer’s instructions. All samples
were run in triplicate. After background subtraction (blank samples),
the net PAR levels were quantified using a standard linear plot
(r = 0.98) based on the immunoreactivity induced by known concen-
trations (20–1000 pg ⁄ mL) of PAR. Data were expressed as pg ⁄ mL per
100 lg of protein (estimated as indicated below).

Nuclear and mitochondrial protein extraction

The nuclear extraction was prepared in accordance with published
reports (Cox & Emili, 2006; Kuzhandaivel et al., 2010). Thus,
isolated spinal cords were washed with ice-cold 250-STMDPS buffer
(50 mm Tris-HCl, pH 7.4, 250 mm sucrose, 5 mm MgCl2, 1 mm

dithiothreitol (DTT), 1 mm phenylmethylsulfonyl fluoride (PMSF),
25 lg ⁄ mL spermine and 25 lg ⁄ mL spermidine) and then submerged
in the same. After 15 strokes in a Dounce homogenizer, the extract
was centrifuged at 800 g for 15 min. The pellet (Pellet I) was used to
prepare the nuclear fraction. The supernatant was again centrifuged at
6000 g for 15 min to remove mitochondria (Pellet II). To prepare the
nuclear fraction, Pellet I was homogenized with a single stroke in a
Dounce homogenizer in 2 m-STMDPS buffer (50 mm Tris-HCl, pH
7.4, 2 m sucrose, 5 mm MgCl2, 1 mm DTT, 1 mm PMSF, 25 lg ⁄ mL
spermine and 25 lg ⁄ mL spermidine) and fractionated at 80 000 g for
35 min. The resulting pellet was resuspended in nuclear extract buffer
(20 mm HEPES, pH 7.9, 1.5 mm MgCl2, 0.5 m NaCl, 0.2 mm EDTA
and 20% glycerol) and used as the nuclear fraction (Pellet I). Pellet II
was resuspended in hypotonic lysis buffer (10 mm HEPES, pH 7.9,
1 mm DTT, plus the protease inhibitor cocktail; Sigma) and incubated
on ice for 30 min. The suspension was sonicated at a high setting (50–
10 s burst with 30 s pause) to lyse mitochondria. Protein concentra-
tions were determined for the nuclear fraction and the mitochondrial

lysate using the standard bicinchoninic acid assay following the
manufacturer’s protocol (Sigma). For each individual experiment,
three spinal cords were used. The purity of the extracted nuclear
fraction was validated by looking for (with western immunoblotting)
any mitochondrial contamination indicated by the cytochrome C
oxidase IV protein (Abcam, Cambridge, UK) in accordance with the
method of Beirowski et al. (2009).

Western blotting

The antibodies used for western blot studies and validated in a
previous report (Kuzhandaivel et al., 2010) were: rabbit polyclonal
anti-AIF (1 : 500) and mouse monoclonal anti-TATA (5¢-TATAAA-3¢)
binding protein (1 : 1000) (Abcam). Equal amounts of protein were
separated on a 10–12% sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE) for 1.5 h at 150 V. The proteins were
transferred onto a nitrocellulose membrane (Amersham Biosciences,
Milan, Italy) for 2 h at 200 mA. The membrane was blocked in 5%
non-fat milk in Tris-buffered saline–Tween (25 mm Tris-Cl, pH 7.5,
150 mm NaCl, 0.1% Tween-20) for 1 h at 25 �C followed by the
incubation with the respective primary antibody overnight at 4 �C.
The membranes were washed three times for 10 min in Tris-buffered
saline–Tween (TBST) and probed with the appropriate horseradish
peroxidase-conjugated secondary antibody for 2 h at 25 �C. Immu-
noreactive bands were calibrated with Colorburst electrophoresis
marker (Sigma) to estimate molecular weight. Protein bands were then
visualized with enhanced chemiluminescence (Amersham Bioscienc-
es). The relative density of the bands was determined using Scion
image (Maryland, MD, USA). Results were normalized to TATA
binding protein (utilized as loading control).

Data analysis

Statistical analysis was carried out with SigmaStat 3.1 (Systat
Software, Chicago, IL, USA). The data are shown as mean ± SD.
Parametric and non-parametric data were first distinguished with a
normality test and analyzed with the Student’s t-test or Mann–Whitney
test, respectively, in accordance with the software choice. For
electrophysiological experiments, the comparison was made between
the data obtained on the second day of each experiment and the sham
or the group treated with kainate without neuroprotective drug. Full
details of the statistical analysis for each test are provided in the figure
legends in which T and t values refer to Mann–Whitney and Student’s
t-test values, respectively. The significance level was always P < 0.05
and n indicates the number of preparations.

Results

PJ-34 as a pharmacological inhibitor of poly(ADP-ribose)
polymerase-1 activity

Initial experiments were performed to find out whether kainate evoked
hyperactivation of PARP-1 in the rat spinal cord in vitro, whether this
effect was related to the concentration of kainate, and whether PJ-34
could inhibit it. Figure 1A summarizes the results of these experiments
in which we estimated the activity of PARP-1 by measuring its product
PAR 4 h after the washout of either a high (1 mm) or low (50 lm)
concentration of kainate (1 h application). Sham preparations showed
a PAR level larger than that observed in the presence of PJ-34,
indicating constitutive PARP-1 activity under the present experimental
conditions (4 h in vitro). Nonetheless, kainate (1 mm) elicited a large
increment in PAR levels that were approximately three times higher
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than in sham preparations. This effect was fully suppressed by delayed
application of PJ-34 (60 lm; applied at kainate washout) (Mazzone &
Nistri, 2011). A lower concentration of kainate (50 lm) evoked a
smaller level of PAR that was again inhibited by PJ-34 (Fig. 1A).
These data confirm that kainate-evoked excitotoxicity was associated
with robust hyperactivation of PARP-1 and that this effect was
blocked by PJ-34.

In order to compare the neuroprotective action of PJ-34 with that
produced by the non-selective PARP-1 inhibitor 6-5(H)-phenathridi-
none (Kuzhandaivel et al., 2010; Nasrabady et al., 2011), we applied
various concentrations of PJ-34 on the washout of kainate and
assessed the number of pyknotic nuclei in the four areas of the spinal
cord as detailed earlier. Figure 1B shows that the best histological
protection (low percentage of pyknosis) was observed with 60 lm

PJ-34 in all three gray matter regions examined (the white matter was
comparatively spared by excitotoxicity) (Taccola et al., 2008). For this
reason the present study used PJ-34 at a concentration of 60 lm for
subsequent experiments. We sought additional evidence that this PJ-34
concentration could block the consequences of PARP-1 hyperactivity
evoked by 1 mm or 50 lm kainate by measuring the translocation of
the PARP-1 effector, namely the AIF, which is translocated from

stressed mitochondria to the cell nucleus (Li et al., 2010). TATA
binding protein (TBP) was used as a marker for nuclear loading
control, whereas cytochrome C oxidase IV (COX IV) was used to
check the purity of the nuclear fraction and as a mitochondrial loading
control. Figure 1C and D demonstrates that kainate (1 mm) strongly
enhanced the translocation of AIF (normalized for loading with the
nuclear marker TBP), a process significantly reduced by 60 lm PJ-34.
A smaller dose of kainate (50 lm) produced less AIF translocation
that was almost suppressed by 60 lm PJ-34. The absence of COX IV
in the nuclear fraction confirmed lack of cross-contamination by
mitochondrial fractions (Fig. 1C). The molecular weight of AIF
(62 kDa; Fig. 1C) indicated that it was translocated to the nucleus in
its full-length form in accordance with a previous report (Wang et al.,
2009b).
These data suggested that 60 lm was, in principle, a suitable test

dose of PJ-34 to explore its potential functional and histological
neuroprotection against excitotoxicity. To maximize the chances of
neuroprotection, we decided to apply PJ-34 after 30 min application of
kainate (always applied for 60 min) and to continue the PJ-34
application throughout the following 24 h in oxygenated Krebs
solution. In fact, previous observations have shown that significantly

Fig. 1. Effect of PJ-34 on PARP-1 activity, AIF translocation and cell pyknosis induced by kainate (KA). (A) Net PAR levels produced by PARP-1 activity of tissue
lysates from sham or KA (50 lm or 1 mm) treated spinal cords, with or without subsequent application of 60 lm PJ-34 (for each group n = 4). Data are significantly
different between PJ-34 treated and untreated preparations (*t4 = 5.385 and P = 0.006; **t4 = 12.061 and P £ 0.001; ***t4 = 9.420 and P £ 0.001). (B) Percent of
pyknosis occurrence (as percentage of total count of cell nuclei) detected in different spinal cord regions at 24 h after KA treatment alone (1 mm) or followed by
treatment with the PARP-1 inhibitor PJ-34 (three different concentrations; 10–60 lm). PJ-34 significantly reduces (*P < 0.05, **P < 0.01, ***P < 0.001) the
number of pyknotic cells in a dose-dependent manner in all four spinal cord regions. Comparison of data for 1 mm KA vs. 10 lm PJ-34 gave t8 = )2.344 and
P = 0.047 for the dorsal region, T = 101 and P = 0.185 for the central region, t8 = )0.247 and P = 0.811 for the ventral region, and t8 = )1.734 and P = 0.121 for
white matter. Comparison of data for 1 mm KA vs. 30 lm PJ-34 gave t8 = 4.413 and P = 0.005 for the dorsal region, T = 26 and P = 0.029 for the central region,
t8 = 1.853 and P = 0.101 for the ventral region, and t8 = 0.261 and P = 0.261 for the white matter region. Comparison of data for 1 mm KA vs. 60 lm PJ-34 gave
t4 = )6.957 and P = 0.002 for the dorsal region, t4 = )8.041 and P = 0.001 for the central region, t8 = )2.916 and P = 0.043 for the ventral region, and t8 = 0.108
and P = 0.917 for the white matter region. (C) Example of AIF immunoblotting of spinal cord samples (nuclear fraction) obtained from sham, KA-treated
preparations (50 lm or 1 mm) and preparations that, after KA application, were treated with PJ-34 (60 lm). The AIF specific reactivity (62 kDa band) in the nuclear
fraction of KA-treated spinal cords is reduced after PJ-34 application. Nuclear loading was assessed with TATA binding protein (TBP). The purity of the nuclear
fraction was assessed with cytochrome C oxidase IV (COX IV), which was absent from the nuclear fraction lanes and present in the mitochondrial lysate (last lane).
(D) Expression (by western immunoblotting) of AIF in the nuclear fraction of KA-treated spinal cords, with or without subsequent application of 60 lm PJ-34 (for
each sample n = 4 experiments, in each of which three spinal cords were pooled). Data (expressed in arbitrary units) are significantly different between PJ-34-treated
and untreated preparations (*t4 = 4.35 and P = 0.012; *** t4 = 30.94 and P = 0.001) during the first 24 h after KA.
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high PARP-1 expression already emerges at the time of kainate
washout (Kuzhandaivel et al., 2010), raising the possibility that any
attempts to pharmacologically block it should not be attempted
too late.

PJ-34 can protect locomotor network patterns against
a moderate but not a high dose of kainate

With the protocol of PJ-34 application staggered by 30 min after the
start of kainate application, we checked whether significant protection
of synaptic transmission, cumulative depolarization, fictive locomo-
tion and disinhibited bursting was present. Figure 2A and B shows
that the very dramatic reduction in polysynaptic responses recorded
from L VRs at 24 h after 1 mm kainate was partly counteracted by
PJ-34 in terms of amplitude and area. Much less successful was the
protection by PJ-34 of cumulative depolarization induced by trains of
electrical pulses applied to an adjacent DR and recorded from a single
VR of two different preparations as shown in Fig. 2C and D. Full
suppression of this phenomenon by 1 mm kainate was recorded 24 h
later (Fig. 2C and D). When kainate application was followed by
PJ-34, only a very modest depolarization was observed 24 h later
(Fig. 2C and D). In all of these preparations, there was complete
absence of alternating oscillations amongst left and right L2 and L5
VRs, typical of fictive locomotion.
Despite the lost ability of spinal networks to integrate afferent

inputs to produce cumulative depolarization and express fictive
locomotion, we could observe significant (P = 0.035, t8 = 2.54)
recovery in the amplitude of disinhibited bursts (elicited by
co-applied strychnine and bicuculline) that expresses the elementary
rhythmicity of these circuits. No significant change in the periodicity
of rhythmic bursting was observed after kainate alone or kainate plus

PJ-34 (Fig. 3A and B). In order to see whether the surviving network
could still be activated by afferent inputs, the same preparations were
entrained by 0.05 Hz DR stimulation (Bracci et al., 1997; Taccola
et al., 2008). Figure 3C shows an example of how each DR stimulus
in a pulse train reliably evoked a burst at 24 h after kainate (middle
row) or kainate plus PJ-34 (bottom row). Average data indicate that
the burst amplitude increased in the group treated with PJ-34 (n = 4)
in comparison with the group treated with kainate alone (n = 4)
(P = 0.029, t6 = 10), whereas the burst duration was similar in these
two groups (Fig. 3D).
We next investigated whether a weaker excitotoxic stimulus (50 lm

kainate; 60 min) could produce less spinal network damage and be
more efficaciously counteracted by PJ-34. Previous studies have
indicated that 50 lm kainate is the threshold concentration for
inducing full suppression of locomotor network activity (Mazzone
et al., 2010). In accordance with our previous study (Mazzone et al.,
2010), we measured the VR depolarization (indicative of motoneuron
pool average responses) induced by two concentrations of kainate. We
found 1.42 ± 0.63 mV depolarization by 50 lm kainate and
2.81 ± 0.6 mV by 1 mm kainate (n = 8 in both groups), confirming
the dose-dependent change in VR polarization elicited by this agent.
Our previous study on single motoneurons showed strong membrane
potential depolarization from )76 to )30 mV by 1 mm kainate
(Taccola et al., 2008). In keeping with such large changes in
motoneuron properties, we have also observed a large suppression
of polysynaptic transmission (Taccola et al., 2008).
Figure 4A and B shows that applying PJ-34 at 30 min after starting

50 lm kainate could result (24 h later) in substantial protection of VR
reflex activity from kainate damage. The response amplitude and area
were both significantly enhanced by PJ-34 when compared with those
from kainate-treated preparations. Comparison of Fig. 4A and B with

Fig. 2. Effect of PJ-34 (60 lm) application on electrophysiological responses recorded after 24 h from in vitro spinal cord preparations exposed to strong
excitotoxic injury caused by kainate (KA) (1 mm). (A) Examples of polysynaptic VR responses evoked by electrical stimuli (2· threshold) applied to homolateral
DR root and recorded after 24 h in sham (left), KA-treated (middle) or PJ-34-treated (30 min after KA application; right) condition. (B) Despite the dramatic
reduction in polysynaptic responses after KA, the reflex peak amplitude and area were significantly increased in the group treated with PJ-34 (P = 0.047, t8 = 2.34
and P = 0.032, t8 = 2.58, respectively; see asterisks for statistical comparison) (n = 7, 6 and 4 for sham, KA and KA + PJ-34 respectively). (C) Examples of VR
alternating cycles elicited by a train of DR stimuli (30 stimuli, 2· threshold intensity, 2 Hz) in control (before KA application) and their full suppression after 24 h
after KA alone or KA + PJ-34. (D) A modest increment of cumulative depolarization and area was observed after 24 h of PJ-34 application, whereas they were
completely abolished in the KA group.
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Fig. 2A and B indicates, however, that the electrophysiological deficit
evoked by 50 lm kainate was smaller than that produced by 1 mm

kainate.
In fact, unlike the effect of 1 mm kainate, 50 lm kainate did not

eliminate cumulative depolarization, which remained at about 20% of
sham, even though no oscillations could be detected at 24 h (Fig. 4C
and D). The size of the cumulative depolarization was not, however,
improved by PJ-34 (applied 30 min after kainate) 24 h later (Fig. 4C
and D). In the PJ-34-treated preparations, sparse superimposed
alternating oscillations emerged (3 ± 1; n = 3; see for instance
Fig. 4C, bottom right), but they were comparatively fewer
(P < 0.001) than those observed in sham or control preparations
(5 ± 1; n = 6; see example in Fig. 4C, left). Thus, the locomotor-like
patterns produced by sensory afferent stimulation were very sensitive
to excitotoxic damage even by a small dose of kainate, and could not
be fully restored by PJ-34.

We therefore studied whether the locomotor central pattern
generator (CPG) could be activated in a different fashion and its
operation protected by PJ-34. To examine this issue, we first used the
standard combined application of NMDA and 5-HT to generate fictive
locomotion in control solution, and then we washed out these agents
and applied kainate (or kainate + PJ-34). Figure 5A and B (left
panels) shows, on the first day of the experiment, control alternating
oscillations recorded from pairs of L2 and L5 VRs prior to
applying kainate. Figure 5A (right panels) shows that, at 24 h after
50 lm kainate (60 min), fictive locomotion could not be elicited by
NMDA plus 5-HT as only irregular firing emerged from the four L
roots (inset shows spike activity with time expansion). This observa-
tion was repeated on a total of 11 preparations (four of which
displayed < 10 cycles of oscillations from one or two VRs only, thus

unable to meet the criterion for fictive locomotion) and accords with
our previous report (Mazzone et al., 2010). Figure 5B (right panels)
shows that, when 50 lm kainate was followed 30 min later by PJ-34
application, fictive locomotion could be observed with alternating
patterns on all four VRs 24 h later. The inset to Fig. 5B (right) depicts
an example of the oscillatory pattern recorded from VRlL2. This
neuroprotective action towards chemically-evoked fictive locomotion
was observed 24 h later in 6 ⁄ 11 spinal cords. In such preparations the
fictive locomotion average period was 6.6 ± 1.6 s (CV = 0.15 ± 0.03),
a value significantly (P = 0.018, t13 = 2.712) slower than the
4.6 ± 1.2 s (CV= 0.10 ± 0.04; n = 9) value obtained from sham
preparations kept in Krebs solution for 24 h. In the remaining five
spinal cords, no fictive locomotion was observed even after
increasing the concentration of NMDA to 6 lm. A separate batch of
tests investigated the effect of an intermediate concentration of
kainate (100 lm) followed 30 min later by PJ-34. As reported
previously (Mazzone et al., 2010), 100 lm kainate per se fully
abolished fictive locomotion elicited by DR train pulses or NMDA
plus 5-HT (n = 6). When 100 lm kainate was associated (30 min
later) with PJ-34, again there was no recovery of fictive locomotion
tested 24 h later (n = 4).

Neurotoxicity produced by kainate and its block by PJ-34

A hallmark of excitotoxic damage to the in vitro spinal cord is the
appearance of condensed chromatin (pyknosis) as previously reported
(Taccola et al., 2008; Margaryan et al., 2009; Kuzhandaivel et al.,
2010). In the present study we measured the occurrence of pyknosis in
four spinal regions after applying various concentrations of kainate

Fig. 3. Effect of PJ-34 after strong excitotoxic injury by kainate (KA) (1 mm) on intrinsic rhythmicity of the spinal cord. (A) Examples of disinhibited bursts
(elicited by strychnine plus bicuculline) in sham, after KA alone (1 mm) or KA + PJ-34 (30 min after KA application). (B) Higher burst amplitude (left; P = 0.035,
t8 = 2.54) with similar periodicity (right) in the group treated with PJ-34 in comparison with the KA group [n = 7, 6 and 4 for sham, KA (1 mm) and KA + PJ-34,
respectively]. Asterisks indicate the statistically significant difference. (C) Network bursting is always entrained (1 : 1) by a DR train of 20 stimuli (0.05 Hz, 0.1 ms,
1–4 V) in sham, KA or KA + PJ-34 condition. (D) Burst amplitude induced by DR stimuli in the group treated with PJ-34 is higher than in the group treated with
KA (1 mm) alone (P = 0.029, t6 = 10; n = 4 for both groups), whereas burst duration does not change with PJ-34 application.
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with or without subsequent application of PJ-34 (Fig. 6). As indicated
in Fig. 6A and B, pyknosis was strongly present in the dorsal horn
area (which contains the largest density of kainate receptors) (Tolle
et al., 1993) and was related to the kainate concentration. In keeping
with our previous reports (Taccola et al., 2008; Margaryan et al.,
2009; Kuzhandaivel et al., 2010), pyknosis was less frequent in the
central and ventral gray matter regions as well as in the ventrolateral
white matter. Figure 6C and D shows that, by comparison with
preparations treated with kainate alone (Fig. 6B), PJ-34 applied after
1 mm or 100 lm kainate produced a clear reduction in the number of
pyknotic nuclei for the gray matter regions examined, in particular the
dorsal and central regions (statistical details are given in the legend to
Fig. 6). It is, however, important to note that, as reported above, no
such preparation generated fictive locomotion.
For our analysis, we split the preparations treated with 50 lm

kainate followed by PJ-34 into two groups, namely those without
fictive locomotion (n = 5) and those that retained this pattern after
NMDA and 5-HT (n = 6). Figure 6D shows that in the first group
there was significantly more pyknosis in the dorsal and central regions.
Note that PJ-34 alone did not induce pyknosis (Fig. 6D).
Because of the complex cytoarchitecture of the spinal cord, we

further investigated the distribution of neurons affected by kainate and
potentially protected by PJ-34. Neurons were stained with NeuN
antibody (a neuronal nucleus marker) and were counted in the three
gray matter regions indicated in Fig. 7B and exemplified for the dorsal
horn in Fig. 7A. In accordance with the pyknosis data (expressed as
percentage change of DAPI-positive elements in Fig. 6B and D), the
lowest absolute number of neurons was observed in the dorsal region
after 1 mm kainate (Fig. 7B). These values grew as the concentration
of kainate was smaller so that, for example, the neuronal counts in the

ventral horn after 50 lm kainate were close to those of sham
preparations as previously reported (Mazzone et al., 2010). Figure 7C
shows that, for a preparation retaining fictive locomotion after
applying 50 lm kainate followed by PJ-34, the neuronal population
of the dorsal horn was better preserved. Indeed, PJ-34 exerted a degree
of neuronal protection against various kainate concentrations
(Fig. 7D) when compared with the values reported in Fig. 7B; in
the case of preparations generating fictive locomotion after 50 lm

kainate and PJ-34, the main difference was the larger number of dorsal
horn neurons. Figure 7D shows that PJ-34 alone had no effect on
neuronal counts. The legend to Fig. 7 contains statistical details of this
analysis.
Motoneurons are a relatively small number of neurons in the

ventral horn, yet they possess high vulnerability to excitotoxicity
in vitro (Mazzone et al., 2010; Taccola et al., 2010). Thus, we
counted motoneurons after kainate alone or followed by PJ-34.
Motoneurons were identified as large (> 20 lm soma) cells in the
ventral horn immunopositive to SMI 32, which labels a non-
phosphorylated form of motoneuronal cytoplasmic neurofilament
(Mazzone et al., 2010; Taccola et al., 2010). We checked whether
loss of motoneurons induced by kainate and estimated on the basis
of absence of SMI 32 positivity was indeed a sign of cell death and
not merely the biochemical disappearance of this protein label.
Figure 8A shows examples of double staining of ventral horn cells
with the nuclear dye DAPI to evaluate pyknosis (see arrows, left
panel) and SMI 32 (middle panel); the overlay panel (right panel)
indicates that pyknotic cells were those that lost SMI 32, whereas
surviving cells retained this immunoreactivity. A similar observation
was obtained when the application of kainate (50 lm) was followed
30 min later by PJ-34 (bottom row of Fig. 8A). These data therefore

Fig. 4. Effect of PJ-34 (60 lm) application on electrophysiological responses recorded after 24 h from in vitro spinal cord preparations exposed to moderate
excitotoxic injury by kainate (KA) (50 lm). (A) Examples of polysynaptic VR responses evoked by electrical stimuli (2· threshold) applied to the homolateral DR
root and recorded after 24 h in sham (left), KA- (middle) or PJ-34-treated (30 min after KA application; right) condition. (B) Significant increase of peak amplitude
(P = 0.031, t9 = 2.55) and area (P = 0.044, t9 = 2.33) of responses to electrical stimuli (n = 7, 5 and 6 for sham, KA and KA + PJ-34, respectively). Asterisks
indicate statistically significant difference. (C) Examples of VR alternating cycles to a train of DR stimuli (30 stimuli, 2· threshold intensity, 2 Hz) in control (before
KA application) and after 24 h. Fictive locomotion superimposed on cumulative depolarization completely disappeared in the KA group after 24 h, whereas it was
partially preserved in half of the preparations treated with PJ-34. The average number of oscillations detected after KA + PJ-34 was 3 ± 1 (n = 3 spinal cords) vs.
5 ± 1 in control (n = 6; P < 0.001, T = 126.5). (D) Cumulative depolarization and area induced by train of stimuli were similar in KA and KA + PJ-34 and they
were smaller than sham (n = 7, 5 and 6 for sham, KA and KA + PJ-34, respectively).
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demonstrated that lack of SMI 32 staining was a reliable index of
loss of motoneurons.

Figure 8B shows the extent of motoneuron loss after 50 lm-1 mm

kainate with respect to sham or PJ-34 alone data. Nonetheless, PJ-34
systematically protected motoneuron numbers from kainate neuro-
toxicity (Fig. 8B). Interestingly, the application of PJ-34 after 100 or
50 lm kainate always yielded similar motoneuron numbers, even
when we considered the two groups of preparations treated with
50 lm kainate, namely without or with fictive locomotion 24 h later
(Fig. 8B). These observations implied that protecting motoneurons
was important, but, when histological evidence for excitotoxic damage
was quite small (Figs 6 and 7), the functional outcome in terms of
fictive locomotion must have depended on the preservation of cell
types other than motoneurons.

Discussion

The principal finding of the present in vitro study is that pharmaco-
logical inhibition of PARP-1 activation could produce significant
histological protection of spinal networks, although the functional
outcome was limited in terms of locomotor pattern expression. Our
data suggest that arresting important effectors of excitotoxicity is
feasible, but it needs very early pharmacological intervention on a
background of moderate damage. After strong damage evoked by
large kainate doses, recovery is never found.

Poly(ADP-ribose) polymerase-1 hyperactivity following
excitotoxicity

Application of kainate to the neonatal spinal cord in vitro is known to
induce extensive damage with loss of locomotor network function
(Taccola et al., 2008) analogous to that observed after local injection
of the same agent into adult animals or after mechanical injury
(Magnuson et al., 1999). The use of neonatal tissue can additionally
offer some insights into the basic pathophysiology of acute pediatric
spinal injury. Previous observations (Taccola et al., 2008) indicate that
most spinal damage produce by kainate is not merely caused by rapid
necrosis (or even delayed apoptosis), making it possible to explore
neuroprotective strategies applied after the excitotoxic stimulus.
PARP-1 is regarded as a major cause of neuronal cell death after
spinal injury (Genovese et al., 2005; Wu et al., 2009). It would
therefore be desirable to explore the effect of a selective pharmaco-
logical PARP-1 inhibitor like PJ-34 (Abdelkarim et al., 2001) and, in
particular, to assess the electrophysiological outcome of this treatment.
Thus, in the present study, we first demonstrated that kainate induced a
large activation of PARP-1 as indicated by the strong tissue production
of PAR, and that this phenomenon was blocked by PJ-34. The time
point chosen for these measurements (4 h) corresponds to the peak
expression of PARP-1 in western immunoblotting (Kuzhandaivel
et al., 2010). Furthermore, PARP-1 hyperactivation is known to
trigger translocation of AIF to the nucleus (Yu et al., 2006), a process
also detected in the present study, and fully suppressed by PJ-34. It is
therefore likely that PJ-34 suppressed the principal effect responsible
for DNA damage following hyperactivation of PARP-1 (Yu et al.,
2002; Culmsee et al., 2005; Wang et al., 2009b). It is noteworthy
that, after kainate application, we detected the mature form of AIF
translocated to the nucleus in accordance with previous reports of
full-length AIF in the nucleus of cortical neurons following PARP-1
activation (Wang et al., 2009b). While PJ-34 is believed to be a
selective inhibitor of PARP-1 (Abdelkarim et al., 2001), similar
neuroprotective results have recently been observed with another
PARP-1 inhibitor, namely 6(5H)-phenanthridinone (Kuzhandaivel
et al., 2010; Nasrabady et al., 2011). Hence, our results suggest
that, in our model, PARP-1 was strongly activated by kainate and
inhibited by PJ-34, prompting us to investigate the functional effects
of PJ-34 after kainate toxicity and relate them to the histological
scenario.

Excitotoxicity of spinal networks in vitro

At 24 h after kainate (50 lm–1 mm) application, locomotor patterns
in vitro were always lost with the number of surviving neurons
consistently below the threshold necessary to express fictive locomo-
tion (Nistri et al., 2010). This observation accords with our previous
data showing that varying the concentration of kainate evokes broadly
similar final histological damage, although the rate of damage
development is dose-dependent (Mazzone et al., 2010). In view of
the early onset of PARP-1 hyperactivation (Kuzhandaivel et al., 2010),
PJ-34 applied after 30 min of kainate elicited good functional
protection of reflex activity, although the outcome was much less
favorable for cumulative depolarization that requires non-linear
summation of synaptic inputs within the spinal network (Baranauskas
& Nistri, 1998). We posit that the damage to dorsal horn interneurons
might have severely impaired the integration of DR inputs into spinal
networks and impaired electrically-induced fictive locomotion (see also
Margaryan et al., 2010). In accordance with this view was the
demonstration that DR stimuli could efficiently evoke disinhibited
bursts even after kainate or kainate plus PJ-34, indicating that there was
no apparent damage to afferent impulse propagation to the spinal cord.

Fig. 5. Effect of PJ-34 (60 lm) application on fictive locomotion induced by
co-applied NMDA and 5-HT after 24 h in spinal cord preparations exposed to
moderate excitotoxic injury by kainate (KA) (50 lm). (A) Chemically induced
alternating oscillations recorded before kainate (KA) application (left panel) are
typical of fictive locomotion (alternating cycles of discharges between flexor
and extensor motor pools and between right and left sides), and are replaced by
irregular firing at 24 h after KA. KA (50 lm, 1 h) was applied after washout of
NMDA plus 5-HT with Krebs solution (see gap in the records). At 1 day after
KA wash with Krebs solution, NMDA and 5-HT were applied again. Note the
lack of fictive locomotion after KA treatment. (B) Example of preparation with
fictive locomotion activity at 24 h after KA (50 lm) + PJ-34 (60 lm)
application. PJ-34 was applied at 30 min after the application of KA (which
was given after washout of NMDA plus 5-HT with Krebs solution) and its
application was extended for the subsequent 24 h. The insets indicate the faster
time base records taken as shown by boxes.
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Functional neuroprotection by PJ-34

PJ-34 treatment could not provide any protection of locomotor pattern
expression against a high (100 lm–1 mm) concentration of kainate.
When the kainate concentration was 50 lm, a majority of preparations
were, however, able to reproduce chemically-induced fictive locomo-
tion 1 day later. These findings raised a number of issues. First, they
demonstrated that reflex activity is a poor predictor of locomotor
network function (Taccola et al., 2008) and that the same conclusion
applies to disinhibited bursting as it probably relies on a smaller
network size (Bracci et al., 1996). Nonetheless, the observation of
spontaneous disinhibited bursting after kainate indicated that basal
network excitability spreading through the circuitry and recruiting
neurons into synchronous firing (Czarnecki et al., 2008) must have
been preserved in an adequate number of interconnected neurons
(Magloire & Streit, 2009). Second, chemically-evoked rather than
electrically-induced fictive locomotion was more readily expressed, a
result compatible, at least in part, with the high density of kainate
receptors in the dorsal horn area where large damage could be seen (or
prevented by PJ-34) and where polysynaptic inputs are processed for
integration into the locomotor networks. Assuming a modular
arrangement of the vertebrate locomotor CPG (Stein, 2010), it is
proposed that even a limited extent of histological damage could
disrupt locomotor patterns but leave disinhibited bursting present.
Third, only a subset of preparations could still manifest NMDA-

and 5-HT-elicited fictive locomotion; it is, however, noteworthy that
such locomotor patterns were clearly slower than controls, suggesting

that a partial functional deficit had persisted despite a timely PJ-34
application. The other preparations without fictive locomotion retained
the preservation of synaptic activity and good excitability as shown by
the enhanced firing recorded from VRs after applying NMDA and
5-HT. The differential outcome in terms of locomotor network
responses might also have been due to varying degrees of homeostatic
upregulation of synaptic inhibition to depress neuronal excitability. A
very recent study (Peng et al., 2010) with primary cultures of brain
neurons has shown that kainate evokes delayed and persistent
facilitation of GABA release. Although we could not observe any
obvious difference in terms of disinhibited bursting resulting from
GABA receptor block between spinal cords with and without fictive
locomotion, the possibility of functional suppression of complex
network activity as a contributing factor to suppression of fictive
locomotion deserves future study. Nevertheless, it seemed useful first
to explore the simplest explanation, namely any relation between
neuronal losses and recovery of function, an issue that we investigated
by comparing the spinal histological profile with the functional
outcome of spinal networks.

Identification of neuronal contributors to fictive locomotion

The global number of ventral horn neurons was significantly
diminished by 1 mm kainate and partially protected by PJ-34. When
lower kainate concentrations were tested, the number of ventral
neurons remained close to sham, despite the application of PJ-34 and

Fig. 6. Concentration-dependent kainate (KA)-evoked cell damage in the spinal cord in vitro. (A) Representative images showing DAPI-stained dorsal horn of
50 lm KA-treated spinal cord 24 h later. (B) Percent occurrence of pyknosis detected after washout of KA (1 h application) at different concentrations. Pyknosis is
normalized with respect to the total number of DAPI-sensitive cells. For each concentration of KA, n = 4 spinal cords. (C) Representative images showing DAPI-
stained dorsal horn of 50 lm KA + 60 lm PJ-34-treated spinal cord. (D) Percent occurrence of pyknosis detected after washout of KA (1 h application) at different
concentrations followed by 60 lm PJ-34 treatment (n = 4–11 spinal cords, *P < 0.05, **P < 0.01, ***P < 0.001). Comparison of data for 100 lm KA vs. 100 lm

KA + 60 lm PJ-34 gave t6 = 6.353 and P < 0.001 for the dorsal region, T = 26 and P = 0.029 for the central region, t6 = 0.686 and P = 0.518 for the ventral
region, and t6 = 0.200, P = 0.848 for the white matter region. Comparison of data for 50 lm KA vs. 50 lm KA + 60 lm PJ-34 No FL gave t7 = 2.249 and
P = 0.059 for the dorsal region, T = 25 and P = 0.286 for the central region, t7 = 0.989 and P = 0.356 for the ventral region, and t7 = )1.569 and P = 0.161 for the
white matter region. Comparison of data for 50 lm KAvs. 50 lm KA + 60 lm PJ-34 FL gave t8 = 6.031 and P < 0.001 for the dorsal region, T = 34 and P = 0.010
for the central region, t8 = 0.433 and P = 0.676 for the ventral region, and t8 = )0.749 and P = 0.478 for the white matter region. FL indicates fictive locomotion.
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the functional outcome. Thus, either our methods could not detect very
small changes in the survival of a few neurons strategic for network
operation, or the functional outcome was decided by cells outside this

region. In the ventral horn, although the number of motoneurons was
strongly decreased by kainate (regardless of its concentration), it
remained at control level after PJ-34 plus 50–100 lm kainate. Thus,
protecting motoneurons was obviously an achievable target, yet
reaching this goal was simply not enough to ensure persistence of
fictive locomotion.
The fall in the number of central gray neurons (where most

locomotor CPG neurons are proposed to be located) (Kiehn, 2006)
was presumably an important factor for the locomotor function
outcome (Taccola et al., 2008). Following 50 lm kainate plus PJ-34,
whenever locomotor patterns could be detected, their periodicity was
significantly slow, suggesting a far from perfect operation of these

Fig. 7. PJ-34 application increased neuronal survival after kainate (KA)-mediated excitotoxicity. (A) Representative image showing NeuN-stained dorsal horn of
50 lm KA-treated spinal cord. (B) Number of NeuN-positive cells detected after washout of KA (1 h application) at different concentrations. For each concentration
of KA, n = 4 spinal cords. (C) Representative image showing NeuN-stained dorsal horn of 50 lm KA + 60 lm PJ-34-treated spinal cord. (D) Number of NeuN-
positive cells after washout of KA (1 h application) at different concentrations followed by 60 lm PJ-34 treatment (n = 4–11 spinal cords, *P < 0.05, **P < 0.01,
***P < 0.001). Comparison of data for 1 mm KAvs. 1 mm KA + 60 lm PJ-34 gave t6 = )7.367 and P < 0.001 for the dorsal region, T = 10 and P = 0.029 for the
central region, and t6 = )2.793 and P = 0.031 for the ventral region. Comparison of data for 100 lm KA vs. 100 lm KA + 60 lm PJ-34 gave t6 = )2.916 and
P < 0.027 for the dorsal region, t6 = 0.155 and P = 0.882 for the central region, and t6 = )1.236 and P = 0.263 for the ventral region. Comparison of data for 50 lm

KA vs. 50 lm KA + 60 lm PJ-34 No FL gave t7 = 0.378 and P = 0.717 for the dorsal region, t6 = 0.589 and P = 0.574 for the central region, and T = 19.5 and
P = 0.905 for the ventral region. Comparison of data for 50 lm KA vs. 50 lm KA + 60 lm PJ-34 FL gave t9 = )3.856 and P = 0.004 for the dorsal region,
t9 = 0.251 and P = 0.807 for the central region, and t9 = 1.455 and P = 0.180 for the ventral region. FL indicates fictive locomotion.

Fig. 8. PJ-34 application protected motoneurons after excitotoxic insult.
(A) Left panels show examples of cell nuclei stained with DAPI in the ventral
region of the 50 lm kainate- (KA) (top) or 50 lm KA + 60 lm PJ-34-
(bottom) treated spinal cords. The arrows mark pyknotic nuclei. Middle panels
show examples of motoneurons stained with SMI 32 in the ventral region of the
50 lm KA- (top) or 50 lm KA + 60 lm PJ-34- (bottom) treated spinal cords.
Right panels show overlay of DAPI and SMI 32 staining in the same ventral
region. Note the loss of SMI 32 staining coincident with pyknosis. (B) Number
of SMI 32-positive cells in the ventral horn region after washout of KA (1 h
application) at different concentrations followed by 60 lm PJ-34 treatment
(n = 4–11 spinal cords, ***P < 0.001). Comparison of SMI 32 motoneuron
data for 1 mm KA vs. 1 mm KA + 60 lm PJ-34 gave t9 = )4.982 and
P < 0.001, for 100 lm KA vs. 100 lm KA + 60 lm PJ-34 t6 = )15
and P < 0.001, for 50 lm KA vs. 50 lm KA + 60 lm PJ-34 No FL
t7 = )13.2 and P = 0.001, and 50 lm KA vs. 50 lm KA + 60 lm PJ-34 FL
t7 = )13.12 and P < 0.001. FL indicates fictive locomotion.
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networks despite the number of central gray neurons approaching
sham values.
Under these conditions, the main histological difference between

functionally protected and non-protected preparations by PJ-34 was
the number of surviving dorsal horn neurons. Dorsal horn circuits are
important to set and refine the excitability of the locomotor CPG
(Taccola & Nistri, 2005, 2006a) as in vitro surgical ablation of the
dorsal horns enables persistence of fictive locomotion, albeit at a
slower pace (Taccola & Nistri, 2006b). Thus, we posit that, given the
less than optimal number of central gray matter neurons (possibly
taking the CPG to the brink of operation), any decrease in dorsal horn
neuron numbers might have eventually tilted the balance between loss
of function and persistence of function (with slower output). Of
course, there is also the alternative explanation that the functional
outcome was dependent on the survival of a few unidentified neurons
originating and driving these network patterns; future studies, perhaps
based on the genetic expression of transcription factors differentially
expressed by subsets of spinal interneurons (Goulding, 2009; Kiehn,
2011) will be necessary to test this possibility. Likewise, it would be
interesting to explore the consequences of excitotoxicity to the spinal
cord from genetically-deficient PARP-1 mice (Hagberg et al., 2004),
even though the issue of excitotoxic mechanisms in a different rodent
species needs to be fully explored first.
In conclusion, our data validate the former notion that, in the rat

spinal cord in vitro, parthanatos is the principal cell death mechanism
caused by excitotoxicity because impressive histological protection
and persistence of reflex activity could be observed after applying a
selective pharmacological inhibitor of PARP-1, yet more complex
electrophysiological functions like fictive locomotion were less likely
to be protected. The identification of the causes of this discrepancy is
an important objective for future studies.

Functional implications of in-vitro neuroprotection of locomotor
networks

Our data suggest that, to preserve a degree of locomotor network
function in vitro, a neuroprotective strategy should: (i) be directed
toward identified biochemical targets implicated in cell death mech-
anisms; (ii) be applied at an early stage after the primary insult and (iii)
achieve combined survival of motoneurons as well as central and
dorsal gray neurons. None of these factors per se is sufficient to
maintain network output despite a number of apparently positive
indices like synaptic transmission efficiency or global neuronal counts.
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a b s t r a c t

Overactivity of poly(ADP-ribose) polymerase enzyme 1 (PARP-1) is suggested to be a major contributor to
neuronal damage following brain or spinal cord injury, and has led to study the PARP-1 inhibitor
2-(dimethylamino)-N-(5,6-dihydro-6-oxophenanthridin-2yl)acetamide (PJ-34) as a neuroprotective
agent. Unexpectedly, electrophysiological recording from the neonatal rat spinal cord in vitro showed
that, under control conditions, 1e60 mM PJ-34 per se strongly increased spontaneous network discharges
occurring synchronously on ventral roots, persisting for 24 h even after PJ-34 washout. The PARP-1
inhibitor PHE had no similar effect. The action by PJ-34 was reversibly suppressed by glutamate iono-
tropic receptor blockers and remained after applying strychnine and bicuculline. Fictive locomotion
evoked by neurochemicals or by dorsal root stimulation was present 24 h after PJ-34 application. In
accordance with this observation, lumbar neurons and glia were undamaged. Neurochemical experi-
ments showed that PJ-34 produced up to 33% inhibition of synaptosomal glutamate uptake with no effect
on GABA uptake. In keeping with this result, the glutamate uptake blocker TBOA (5 mM) induced long-
lasting synchronous discharges without suppressing the ability to produce fictive locomotion after
24 h. The novel inhibition of glutamate uptake by PJ-34 suggested that this effect may compound tests for
its neuroprotective activity which cannot be merely attributed to PARP-1 block. Furthermore, the current
data indicate that the neonatal rat spinal cord could withstand a strong, long-lasting rise in network
excitability without compromising locomotor pattern generation or circuit structure in contrast with the
damage to brain circuits known to be readily produced by persistent seizures.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Hyperactivation of poly(ADP-ribose) polymerase enzyme 1
(PARP-1) is an important process contributing to brain damage
arising from stroke (Andrabi et al., 2008) and acute spinal injury
in vivo (Scott et al., 1999; Genovese et al., 2005; Wu et al., 2009).
In vitro models of acute spinal cord injury have confirmed the role
of this enzyme in the excitotoxic neuronal death (Kuzhandaivel
et al., 2010a; Mazzone and Nistri, 2011), and have led to attempts
of pharmacological neuroprotection with PARP-1 inhibitors.

Experimental studies have shown that the PARP-1 inhibitor
2-(dimethylamino)-N-(5,6-dihydro-6-oxophenanthridin-2yl)acet-
amide (PJ-34; Abdelkarim et al., 2001; Kauppinen et al., 2009) could
provide a degree of neuroprotection against brain and spinal cord
ischemia in which excitotoxicity is thought to play a major role
(Virág and Szabó, 2002; Casey et al., 2005; Besson, 2009; Kauppinen
et al., 2009;Moroni, 2008;Moroni andChiarugi, 2009). Nonetheless,

Abbreviations: 5-HT, 5-hydroxytryptamine; ANOVA, analysis of variance; CCF,
cross correlation factor; CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione; CV, coeffi-
cient of period variation; DAPI, 40 ,6-diamidino-2-phenylindole; D-APV, D-(�)-2-
Amino-5-phosphonopentanoic acid; DR, dorsal root; EAAT2, excitatory amino acid
transporter 2; FFT, fast Fourier transform; GABA, gamma-amino butyric acid; l, left;
L, lumbar; mGluR, metabotropic glutamate receptor; n, number of preparations;
NeuN, neuronal nuclei; NMDA, N-methyl–aspartate; PARP-1, poly(ADP-ribose)
polymerase enzyme 1; PHE, 6-5(H)-phenathridinone; PJ-34, 2-(dimethylamino)-N-
(5,6-dihydro-6-oxophenanthridin-2yl)acetamide; r, right; ROI, region of interest;
s.e.m., the standard error of the mean; SD, standard deviation; SMI 32, monoclonal
antibody to non-phosphorylated neurofilaments; S100, astrocyte marker mono-
clonal antibody; TBOA, DL-threo-b-benzyloxyaspartate; VR, ventral root.
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delayed application of PJ-34 had limited ability to protect rat spinal
neurons in vitro as it could efficiently counteract relatively small
excitotoxic damage only (Mazzone andNistri, 2011; Nasrabadyet al.,
2011a). In the course of those experiments, it became, however,
apparent that PJ-34 per se could persistently facilitate spontaneous
synaptic transmission in the spinal cord (Nasrabady et al., 2011a).
This serendipitous observation led us to investigate themechanisms
underlying such an unexpected phenomenon. Thus, the present
report provides new evidence that PJ-34 enhanced glutamatergic
transmission and triggered long-lasting network bursting. Our
results indicated that the rat spinal cord in vitro couldwithstand, for
at least 24 h, 1/3rd reduction in glutamate transport processes
without apparent structural or functional damage.

2. Methods and materials

2.1. Spinal cord preparations

To perform electrophysiological experiments thoracolumbar spinal cords were
carefully dissected from neonatal Wistar rats (0e2 days old) in accordance with the
guidelines of the National Institutes of Health and the Italian act D.Lgs. 27/1/92
no. 116 (implementing the European Union directives no. 86/609 and 93/88). Under
urethane anesthesia (0.2 ml i.p. of a 10% w/v solution) spinal cords were dissected
out and superfused (7.5 ml min�1) in a recording chamber with Krebs solution (in
mM): NaCl, 113; KCl, 4.5; MgCl27H2O, 1; CaCl2, 2; NaH2PO4, 1; NaHCO3, 25; glucose,
11; gassed with 95% O2 5% CO2; pH 7.4 at room temperature (for full details see Beato
and Nistri, 1999; Taccola and Nistri, 2006a; Margaryan et al., 2009). All efforts were
aimed at reducing the number of animals and minimizing their suffering.

2.2. Electrophysiological recordings

DC-coupled recordings were performed through lumbar (L) ventral roots (VRs)
with tight-fitting miniature Ag/AgCl suction electrodes (Taccola and Nistri, 2006a).
Signals were recorded from left (l) and right (r) L2 VRs (producing mainly flexor
motor signals to the hind-limb muscles), and from L5 VRs (which convey mainly
extensor motor commands to the same limb) (Kiehn and Kjaerulff, 1998; Kiehn,
2006; Taccola and Nistri, 2006b). Signals acquired at 20 kHz were processed with
pClamp (version 9.2; Molecular Devices, Sunnyvale, CA, USA) and MATLAB software
(version R2010b). Preparations were electrically stimulated with single or train (30
stimuli at 2 Hz) pulses (0.1 ms duration) applied to the ipsilateral homosegmental
dorsal root (DR). To evoke cumulative depolarizationwith superimposed alternating
oscillatory activity typical of fictive locomotion, the stimulation strength was �2�
threshold, whereby threshold was taken as the minimum intensity to elicit
a detectable response in the homolateral VR (Taccola et al., 2004; Nasrabady et al.,
2011b). On average, threshold was obtained with 1.61 � 0.58 V stimulus intensity
(n¼ 6). VR responses induced by weak stimuli close to threshold were considered to
be indicative of monosynaptic reflexes (Fulton and Walton, 1986). The peak ampli-
tude of the responses were calculated by averaging at least 5 events.

Fictive locomotion, defined as rhythmic discharges alternating between homo-
segmental and left-right lumbar VRs, was induced by co-application of N-methyl-D-
aspartate (NMDA; 4 or 5 mM) and 5-hydroxytryptamine (5-HT; 10 mM) (Cazalets et al.,
1992; Kiehn and Kjaerulff, 1998; Butt et al., 2002). The period value for rhythmic
discharges was measured as the time between the onset of two cycles of oscillatory
activity (calculated after averaging at least 20 cycles), and its regularity indicated by
the coefficient of period variation (CV). Disinhibited bursting (Bracci et al., 1996a,b,
1997) was induced by continuously bath-applied strychnine (1 mM) and bicuculline
(20mM). Full details concerning the definition of bursts and theirmeasurementswere
as reported before (Bracci et al., 1996a,b). In order to see the changes in network
excitability caused by glutamate uptake block, the non-transportable inhibitor DL-
threo-b-benzyloxyaspartate (TBOA; 5 mM; Shigeri et al., 2004) was applied for 1 h
in a separate batch of experiments. TBOA has an IC50 value of circa 7 mMto selectively
block the EAAT2 and 3 glial transporters, while at concentration of 100 mMproduces
a broad-spectrum inhibition of all glutamate uptake systems (Shigeri et al., 2004).

2.3. Study protocol

First, all preparations were tested for their ability to generate locomotor
network activity and reflexes. While untreated sham spinal cords were kept for 24 h
in Krebs solution (Taccola et al., 2008), parallel preparations were continuously
treated with PJ-34 (1 mM or 60 mM) for up to 24 h when, following washout with
Krebs solution, all electrophysiological tests were repeated. The higher concentra-
tion of PJ-34 was selected as the one producing full block of PARP-1 activity in the rat
spinal cord (Nasrabady et al., 2011a). A batch of experiments was also performed by
applying a different PARP-1 inhibitor, namely (6-5(H)-phenathridinone; PHE),
which we have previously investigated for its potential neuroprotection in the rat
spinal cord (Kuzhandaivel et al., 2010a).

2.4. Immunohistochemistry

Each preparation was histologically fixed at the end of the electrophysiological
experiment as previously described in detail (Taccola et al., 2008). Thus,
paraformaldehye-fixed spinal cords were cryoprotected with 30% sucrose and
sectioned (30 mm). The sections were washed in phosphate buffer solution (PBS) and
incubated in blocking solution (5% normal goat serum, 5% bovine serum albumin,
0.3% Triton-x 100) for 1 h at room temperature followed by primary antibody (NeuN,
1:50, Millipore, Milan, Italy; SMI 32, 1:200, Convance, Rome, Italy; or S100, 1:100
dilution, Dako, Milan, Italy) incubation at 4 �C overnight. After rinsing with PBS, the
sections were incubated with goat antimouse or antirabbit IgG Alexa Fluor 488 or
594 secondary antibodies (1:500; Invitrogen, Milan, Italy) for 1 h at room temper-
ature followed by 20 min of DAPI incubation to label the nuclei. The sections were
mounted with Vectashield (Vector Laboratories, Milan, Italy) and analyzed using
a Zeiss Axioskop2 microscope and Metavue software.

2.5. Quantification of dead cells

Quantification of dead cells was done as described previously (Margaryan et al.,
2009; Kuzhandaivel et al., 2010b). Briefly, pyknotic nuclei (identified with DAPI
staining) were counted in the regions of interest (ROIs) comprising ventral, central,
dorsal grey matter or ventrolateral white matter. For neuronal or protoplasmic
astrocyte counting we used NeuN or S100 immunopositivity, respectively, in ventral,
central, or dorsal grey ROIs (Taccola et al., 2008; Margaryan et al., 2009) using
“eCELLence” (Glance Vision Tech, Trieste, Italy) software. For each ROI, 3e7 fields of
280� 280 mm (greymatter) or 100� 280 mm (white matter) areawere analyzed. For
each experimental group, 4e11 spinal cords were analyzed and, for each spinal cord,
4e6 different sections from T12 to L3 segments were examined. For estimating
motoneuron numbers, SMI32 labelling was performed (Taccola et al., 2008) and
Rexed laminae VIII and IX were analyzed.

2.6. PAR ELISA assay

Endogenous PARP-1 activity was determined by measuring PAR levels with an
ELISAmethod as described previously (Nasrabady et al., 2011a). Briefly, tissue lysates
were prepared from the spinal cords treated with different concentrations of PJ-34,
or from sham preparations. PAR levels were measured using the HT PARP in vivo
Pharmacodynamic Assay II kit (http://www.trevigen.com/protocols/pdf/4520-096-
K.pdf) following the manufacturer’s protocol (Trevigen, Bologna, Italy). PAR levels
were always quantified 4 h after application of PJ-34. The present assay is based on
the ELISA immunoreactivity resulting in chemiluminescence signals recorded with
Glo(R)max multi detection system (Promega, Milan, Italy). All samples were run in
triplicate. The net PAR levels were quantified from the known standard concentra-
tions (20e1000 pg/ml) of PAR. Data were expressed as pg/ml per 100 mg of protein.

2.7. Neurochemical measurements of amino acid uptake

Neonatal Wistar rats (0e2 days old) were sacrificed and the spinal cord rapidly
removed after exposure of the spinal column. Purified synaptosomes were prepared
essentially as previously described (Stigliani et al., 2006). Briefly, the tissue was
homogenized in 10 volumes of Tris-buffered sucrose (0.32 M; pH 7.4) using
a glasseteflon tissue grinder. The homogenate was centrifuged (5 min, 1000 g) to
remove nuclei and debris and the supernatant was gently stratified on a discontin-
uous Percoll� (GE Healthcare) gradient (2, 6, 10 and 20% v/v in Tris-buffered sucrose)
and centrifuged at 33,500 g for 5 min. The layer between 10 and 20% Percoll�

(synaptosomal fraction) was collected and washed by centrifugation. All the
procedures were performed at 0e4 �C.

Synaptosomes were resuspended in assay buffer (mM: NaCl, 140; KCl, 3; MgSO4

1.2; NaH2PO4,1.2; NaHCO3 5; CaCl21.2; HEPES10; glucose,10; pH7.4). Protein content
wasmeasured according to the Bradfordmethod (Bradford,1976)with bovine serum
albumin as standard. Aliquots (0.5 ml) of the synaptosomal suspension were incu-
bated for 5min at 37 �C; uptakewas then started by the addition of [3H]D-aspartate or
[3H]GABA to a final concentration of 3 mM and stopped 2 min later by the addition of
5 ml of assay buffer. Samples were immediately filtered under vacuum through
cellulosefilters andwashed twicewith 5ml of assay buffer. PJ-34 (0.1e100 mM), TBOA
(0.1e100 mM) or N-(4,4-phenyl-3-butenyl)-nipecotic acid (SKF 89976A; 10 mM;
Yunger et al., 1984) was introduced at the beginning of incubation period. Non-
specific uptake was determined in presence of 300 mM unlabelled L-glutamate or
GABA. Filter radioactivity was evaluated by liquid scintillation counting.

2.8. Data analysis

Statistical analysis was carried out with SigmaStat (SigmaStat 3.1, Systat Soft-
ware, Chicago, IL, USA) and the data are shown as mean � SD unless otherwise
indicated. Parametric and non-parametric data were first distinguished with
a normality test and analyzed with the Student’s t-test or ManneWhitney test,
respectively, in accordance with the software choice. Uptake data were analyzed by
one-way ANOVA followed by Dunnet’s or NewmaneKeuls test, as appropriate. For
the electrophysiological experiments, comparison was made between the data
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obtained on the first day (before and after application of the drug) and on second
day of each experiment (comparing sham and the group treated with PJ-34). The
significant level was always P < 0.05 and n indicates the number of preparations.

For analysis of complex spontaneous events elicited by PJ-34, we applied
a bootstrap method (Thomson and Chave, 1991; Kass et al., 2003) whereby temporal
windows (1 min size) were randomly chosen from the original records (20 kHz
sampling; 5 min long) of pairs of VRs. In each pair, cross correlation values were
calculated for two windows of simultaneously recorded traces using MATLAB soft-
ware. We then repeated this procedure 500 times in order to build a distribution of
mean cross correlation values for each condition. Thereafter, data from different
conditions were compared using t-test (or its non-parametric equivalent). To
analyze the frequency of events from different experimental setting, we used 1 min
windows, applied the same boot-strapping method indicated above, and calculated
the fast Fourier transform (FFT) values.

2.9. Drugs

[3H]D-aspartate (specific activity ¼ 89.5 Ci/mmol) and [3H]GABA (specific
activity ¼ 11.3 Ci/mmol) were obtained from Perkin Elmer (Milan, Italy). NMDA and
TBOAwere purchased from Tocris (Bristol, UK), while PJ-34, PHE, 5-HT, SKF 89976A,
and strychnine hydrochloride were from Sigma (Milan, Italy). Bicuculline methio-
dide was obtained from Fluka (Milan, Italy).

3. Results

3.1. Onset of spontaneous network activity following PJ-34
application

Fig.1 shows examples of early changes in electrically-evoked and
spontaneous network activity recorded from lumbar VRs after PJ-34
application (60 mM). The amplitude of short-latency synaptic

responses induced by low threshold stimuli and usually regarded as
indicative of monosynaptic transmission (Fulton and Walton, 1986;
Evans, 1989; Kerkut and Bagust, 1995) was increased already after
40 min application (Fig. 1A): on average, this increment was nearly
two fold (see Table 1). Furthermore, the average decay time also
became significantly longer (from183�45ms,n¼5, to 298�83ms,
n ¼ 4; P ¼ 0.03). Fig. 1B shows that the peak of polysynaptic
responses generated by stronger DR stimuli (>2� threshold) was,
however, unchanged after PJ-34 application (see Table 1).
Conversely, cumulative depolarization with superimposed oscilla-
tions induced by DR stimulus trains (Marchetti et al., 2001) was
significantly lower 40min from the start of PJ-34 application (Fig.1C
and Table 1), even if it was accompanied by a similar number of
oscillations (Table 1). In addition to these changes in electrically-
evoked synaptic responses, it was noteworthy that, in the presence
of PJ-34, the baseline trace had become noisier with spontaneous
events appearing at irregular interval (see Fig.1BeD). These complex
events appeared with a latency of approximately 15 min from the
start of PJ-34 application.

Fig. 2A shows, on the same preparation, examples of the gradual
intensification of spontaneous events after application of PJ-34.
Although the mammalian spinal cord in vitro normally expresses
random spontaneous discharges (Fulton and Walton, 1986; Kerkut
and Bagust, 1995), the events observed after PJ-34 were clearly
more numerous and larger as shown in the distribution histograms
of Fig. 2B. Thus, 15 min later, large discharges emerged (Fig. 2A,
middle) and became very intense 24 h later (Fig. 2A, right). Fig. 2C

Fig. 1. Electrically-evoked responses recorded from in vitro spinal cord preparations early after PJ-34 (60 mM) application on the first experimental day. (A) Example of average
monosynaptic response recorded from L5 homolateral VR in control (left) and after 40 min application of PJ-34. (B) Example of polysynaptic VR responses recorded from the same
preparation as in (A). (C) Examples of cumulative depolarization with superimposed oscillatory cycles elicited by train of DR stimuli in control solution and 40 min after the
application of PJ-34. (D) Example of spontaneous complex discharges appearing after application of PJ-34 (note faster timebase).
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Fig. 2. Persistent effect of PJ-34 on spinal networks. (A) Example of sporadic spontaneous discharges recorded in control solution (before application of PJ-34 60 mM, left) and their
gradual intensification after 15 min (middle) and 24 h (right) application of PJ-34. (B) Amplitude probability distribution of depolarizing events in a window of 5 min. Filled bars
represent the distribution of the significantly higher average amplitude discharges after PJ-34 application for 15 min (P < 0.0001; ManneWhitney) in comparison with control
(open bars); n ¼ 4. (C) Histograms demonstrate the significant difference of CCF values between groups treated with PJ-34 for 15 min or 24 h to show discharge synchronicity across
segments and across preparations (*P < 0.001; n ¼ 4) (D) Plot indicates the mean FFT values of discharges from preparations treated for 15 min or 24 h with PJ-34; n ¼ 4. (E)
Histograms show increased average FFT values (mean � s.e.m.) one day after treatment with PJ-34: the frequency power at 15 min PJ-34 application was significantly (*P < 0.0001)
smaller than at 24 h (n ¼ 4). (F) Example of spontaneous VR discharges recorded on the second day in vitro from a sham (top) or PJ-34 treated (bottom) spinal cord. (G) Plots of
mean FFT values show significant (P < 0.002) increase after 24 h application of PJ-34.

Table 1
Early effects of PJ-34 on VR responses to single (or trains of) DR stimuli.

Monosynaptic reflex
peak amplitude (mV)

Polysynaptic reflex
peak amplitude (mV)

Cumulative depolarization
amplitude (mV)

Number of oscillations
induced by train of stimuli

Controla 0.129 � 0.04 (n ¼ 5) 2.59 � 1.06 (n ¼ 6) 0.873 � 0.228 (n ¼ 6) 5.5 � 1 (n ¼ 6)
40 min after application

of PJ-34 60 mM
0.277 � 0.09 (n ¼ 5) 2.51 � 0.87 (n ¼ 6) 0.412 � 0.168 (n ¼ 6) 4.5 � 0.5 (n ¼ 6)

P-value 0.013 0.889 0.003 0.098

a Control responses refer to those recorded from the same preparations prior to PJ-34 application. Significant P-values are shown in bold.
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shows that, on average, events recorded early (filled column) from
various VR pairs of different preparations, had a high cross corre-
lation value, indicating their synchronicity across segments and
across preparations. Even if 24 h later the cross correlation value
was reduced (Fig. 2C, open column), it was still larger than 0.5,
suggesting retention of good coupling of electrical discharges
between VRs at homo and heterosegmental level.

Fig. 2D plots FFT data from 4 preparations to estimate the pre-
vailing event frequency over a range of 0.1e100 Hz. Thus, for the
same spinal cords, the whole frequency power spectrum at 15 min
PJ-34 application was significantly (P < 0.0001) smaller than 24 h
later, indicating the delayed, gradual emergence of slow events
(mainly below 10 Hz). This result was accompanied by a significant
increase in the average FFT value at 24 h (Fig. 2E) to support a global
increment in spontaneous event occurrence.

We also compared, after 24 h in vitro, spontaneous events from
sham preparations with those from PJ-34 treated preparations (see
example in Fig. 2F). The FFT plot of Fig. 2G demonstrates a signifi-
cantly (P < 0.002) stronger frequency power after PJ-34. In
summary, these data suggest that PJ-34 evoked complex and long-
lasting synchronous discharges from lumbar VRs, compatible with
a substantial rise in network excitability. These delayed effects
were, however, absent when spinal cords were treated (for 24 h)
with another PARP-1 inhibitor (PHE; 60 mM) that did not induce any
detectable change in spontaneous network discharges after 24 h
(n ¼ 5).

3.2. Relation between PARP-1 inhibition by PJ-34 and network
activity

Fig. 3A shows the concentration (1e60 mM)-dependent changes
in PARP-1 activity estimated on the amount of measured PAR. In

accordance with our previous report (Nasrabady et al., 2011b), after
24 h in vitro, spinal cord samples had a basal PARP-1 activity cor-
responding to 55.9� 7 pg PAR/100 mg protein that fell to 47�6.2 pg
PAR/100 mg protein in the presence of 1 mM PJ-34. With 30 mM PJ-
34, the PARP-1 activity decreased to 25� 8.4 pg PAR/100 mg protein,
while with 60 mM PJ-34 it was 26 � 5.3 pg PAR/100 mg protein,
indicating that it had reached a plateau level of inhibition. These
values were significantly smaller than those for sham preparations
in all three groups (P ¼ 0.05 for 1 mM PJ-34, P ¼ 0.001 for 30 and
60 mM PJ-34). Fig. 3B shows that even the lowest tested concen-
tration of PJ-34 (1 mM) significantly (P < 0.001) increased the FFT
values of the spontaneous network discharges after 24 h in
comparison with sham preparations, although this effect was less
intense than the phenomenon detected after 60 mM PJ-34 (see
Fig. 2). As exemplified in Fig. 3C, the onset of the electrophysio-
logical discharges evoked by 1 mM PJ-34 was delayed and fully
expressed 24 h later (Fig. 3C) in comparison with the large spon-
taneous events already detected after 15 min PJ-34 application (see
Fig. 2A, middle).

3.3. Effect of PJ-34 on fictive locomotion and disinhibited bursting

We next enquired whether these changes in network excitability
evoked by PJ-34 could impact on the ability to generate fictive
locomotion. Fig. 4A compares locomotor-like cycles (evoked by co-
applied NMDA and 5-HT) recorded, after 24 h, from a sham prepa-
ration with those from a PJ-34 treated spinal cord. In fact, fictive
locomotion was apparently unperturbed by long-lasting PJ-34
application as indicated by similar cycle period or amplitude values
(Fig. 4A, left, right). There was, however, a small, significant incre-
ment in the period CV value (Fig. 4A, middle), suggesting a slightly
irregular pattern.

Fig. 3. Concentration-dependent effects of PJ-34 on PAR and network activity. (A) Plot quantifies PAR levels produced by PARP-1 activity of tissue lysates from sham or PJ-34
(1e60 mM) treated spinal cords. The values are significantly smaller than sham in all three groups (*P ¼ 0.05 for 1 mM PJ-34, **P ¼ 0.001 for 30 and 60 mM PJ-34) (n ¼ 3 for
each group). (B) FFT plot indicates the higher values of discharges 24 h after application of PJ-34 1 mM (P < 0.001, n ¼ 4). (C) Example of sporadic spontaneous VR discharges
recorded in control (before 1 mM PJ-34 application, left), early after PJ-34 (middle) and 24 h later (right); traces are all from the same preparation.
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Fig. 4B shows, for the second day in vitro, examples of cumulative
depolarization generated by shamor PJ-34 treated preparationswith
similar number of superimposed oscillations. Table 2 quantifies such
data and also indicates that there was no change in mono and
polysynaptic reflexes recorded after 24 h application of 1 or 60 mM
PJ-34. Likewise, disinhibited bursting elicited by blocking synaptic
inhibition with strychnine and bicuculline was unchanged by 24 h
application of PJ-34 since the period was 42� 24 s (vs 45� 14 sham
data; n¼ 10), and burst durationwas 15� 9 s (vs. 15� 7 sham data).
Hence, locomotor network activity tested with either neurochemi-
cals or DR stimuli as well as basic circuit rhythmicity were not dis-
rupted by long-lasting PJ-34 application.

3.4. Pharmacological block of PJ-34 evoked discharges

Since glutamate is the main excitatory transmitter of locomotor
networks (Cazalets et al., 1992) acting on NMDA and non-NMDA
receptors (Beato et al., 1997), we investigated whether block of ion-
otropic glutamate receptors by CNQX (10 mM) and D-APV (50 mM)
could eliminate spontaneous as well as PJ-34 induced events. Fig. 5A
(left) shows VR records from a preparation exhibiting strong ongoing
discharges in Krebs solution (24 h after application of PJ-34 and
washout). When CNQX and APV were applied for 15 min,

spontaneous events disappeared (Fig. 4, middle), and returned after
10 min of washout of these antagonists, a result consistent with the
dependence of spontaneous events on glutamatergic drive.

We also explored the potential contribution of GABA and glycine
receptors to the PJ-34 elicited spontaneous events. This was diffi-
cult because the disinhibited bursting arising fromblock of synaptic
inhibition is associated with strong depression of spontaneous
excitatory events during the interburst interval (Bracci et al.,
1996a), making it unfeasible to test glutamatergic events in isola-
tion. Thus, we took advantage of a previous protocol whereby
disinhibited bursts can be entrained on a 1:1 basis by low frequency
DR stimulation (0.05 Hz; Bracci et al., 1997) as exemplified in
Fig. 5B. Hence, after 24 h application of PJ-34 and washout, spon-
taneous disinhibited bursting was produced by strychnine and
bicuculline, followed by a long (6.5 min) DR stimulus train that
regularly entrained bursts. During the electrical stimulation, and
unlike the interburst depression typical of control experiments
(Bracci et al., 1997), spontaneous synchronous bursts emerged as
exemplified, on a faster timebase, in Fig. 5 C. We next calculated
whether appearance of such spontaneous events could influence
the subsequent electrically-driven one: plotting the evoked burst
amplitude (Fig. 5D, top) vs. the time interval from the preceding
spontaneous burst showed a linear relation (r ¼ 0.716), showing

Fig. 4. Chemically or electrically induced fictive locomotion in sham preparations or after 24 h application of PJ-34 60 mM. (A) Examples of fictive locomotion (top traces) induced by
NMDA (4 mM) plus 5-HT (10 mM) on sham (left) or PJ-34 treated spinal cord (right). The bottom histograms show similar characteristics of fictive locomotion (except for period CV
value, P ¼ 0.01, middle) of sham or PJ-34 treated spinal cords (n ¼ 9). (B) Examples of alternating oscillatory cycles induced by trains of DR stimuli on sham or PJ-34 treated spinal
cords. Number of oscillations and cumulative depolarization amplitude were similar in the two groups.

Table 2
Characteristics of VR responses of sham or PJ-34 treated spinal cord to single (or trains of) DR stimuli on the second day in vitro.

Monosynaptic reflex
peak amplitude (mV)

Polysynaptic reflex
peak amplitude (mV)

Cumulative depolarization
amplitude (mV)

Number of oscillations induced
by train of stimuli

Sham 0.25 � 0.07 (n ¼ 7) 0.73 � 0.39 (n ¼ 7) 0.54 � 0.27 (n ¼ 6) 5.17 � 0.88 (n ¼ 6)
After application of PJ-34 (60 mM) 0.31 � 0.08 (n ¼ 6) 0.82 � 0.36 (n ¼ 7) 0.35 � 0.1 (n ¼ 6) 5.97 � 1.67 (n ¼ 7)
P-value* 0.196 0.664 0.158 0.317
After application of PJ-34 (1 mM) 0.31 � 0.15 (n ¼ 4) 0.80 � 0.27 (n ¼ 4) 0.38 � 0.05 (n ¼ 4) 5.88 � 1.95 (n ¼ 4)
P-valuey 0.367 0.770 0.352 0.762

* and y indicate the P-value of the comparison between Sham and 60 mM PJ-34 or 1 mM PJ-34 application respectively.
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that large bursts were preceded by a long quiescent period.
Conversely, there was no apparent relation between evoked burst
duration and time interval from previous spontaneous burst
(Fig. 5D, bottom). Globally, these data were compatible with sus-
tained increase in glutamatergic network activity as the main
process responsible for continuous synchronous discharges, and
that, when network discharges were fully engaged as bursts, there
was a subsequent, transient downregulation of circuit excitability.

3.5. Histochemistry of PJ-34 treated spinal cords

In analogy with our previous studies (Taccola et al., 2008;
Nasrabady et al., 2011a), we analyzed four ROIs of spinal cord
sections from the same preparations used for our electrophysio-
logical tests. First, we assessed whether pyknosis (condensed
chromatin appearance) was more common 24 h after PJ-24 appli-
cation: Fig. 6A, B indicates that pyknosis was a comparatively rare
occurrence (<10%) in all ROIs from sham or treated preparations.
Using immunostaining for S100, the main biomarker for grey
matter astrocyte precursors in the neonatal rat spinal cord
(Kuzhandaivel et al., 2010b; Cifra et al., in press), we also found no
difference between sham and treated preparations (Fig. 6E, F).
Fig. 6C, D shows no loss of NeuN-stained neurons across spinal cord
sections after 24 h application of PJ-34, with good preservation of
motoneuron numbers (Fig. 6G, H) evaluated with SMI 32 immu-
noreactivity (Taccola et al., 2008; Mazzone et al., 2010).

3.6. Effect of the glutamate uptake inhibitor TBOA

The strong increase in network excitability with spontaneous
discharges evoked by PJ-34 without concomitant loss of neurons
raised the possibility that this drug was partially inhibiting the

uptake of glutamate without reaching toxic consequences for
network structure and function. To examine this issue, we applied
a low concentration of the selective uptake blocker TBOA at a dose
close to its IC50 value (circa 7 mM) for inhibiting the glutamate glial
transporters EAAT2 and 3 (Shigeri et al., 2004). Fig. 7A shows an
example of the gradual increase in spontaneous event occurrence
developing after the application of TBOA with strong electrical
discharges emerging synchronously on L2 and L5 VRs (average CCF
value after 40min¼ 0.72� 0.17, and after 24 h¼ 0.71�0.25; n¼ 5).
By performing a FFT analysis of such events from 5 spinal cords and
comparing them with the average data from PJ-34 treated prepa-
rations (24 h later), the power spectrum appeared overall similar
(Fig. 7B) though a small significant (P < 0.001) difference was
detected as the plot related to the TBOA treated preparations was
shifted downwards.

We next investigated the long-term consequences of 24 h
TBOA application (5 mM) on fictive locomotion. This pattern was
present in 4 out of 5 preparations (see example in Fig. 7C) with
characteristics similar to the activity observed in parallel sham
preparations (period ¼ 4.16 � 0.59 s, CV ¼ 0.09 � 0.03,
amplitude ¼ 0.06 � 0.02 mV after TBOA vs 4.59 � 1.23 s,
0.10� 0.04, 0.11�0.05mV in sham conditions). The basic network
rhythmicity expressed as disinhibited bursting was also present
after 24 h application of TBOA. Although the bursts appeared at
faster rate (bursts period ¼ 28.6 � 17.9 s vs 45.8 � 14.0 s in sham,
P ¼ 0.03), the other characteristics of network bursting such as CV
(0.61 �0.22 vs 0.44 � 0.15 in sham), amplitude (0.75 � 0.32 mV vs
0.79 � 0.24 mV in sham), and burst duration (8.51 � 5.08 s vs
15.78 � 7.66 s in sham) remained similar. No deleterious action by
TBOA (24 h application) on neurons, glia and motoneurons was
found on histologically-processed spinal cords (Fig. 6B, D, F, H,
open bars).

Fig. 5. Ionotropic receptor blockers influence discharges evoked by PJ-34. (A) Examples of spontaneous VR events recorded 24 h after application of PJ-34 and washout which are
completely suppressed by co-application of CNQX (10 mM) and APV (50 mM) (middle). The spontaneous events return after 10 min washout with Krebs solution (right). (B) Dis-
inhibited bursting is elicited by application of strychnine and bicuculline one day after PJ-34 application and wash. Although bursts are entrained (1:1) by a DR train of twenty
stimuli (2� threshold, 0.05 Hz; see artefacts shown as downward deflections), spontaneous bursts emerge in the intervals between stimuli. (C) Faster timebase example of dis-
inhibited bursting with electrically-driven and spontaneous events taken from (B). (D) A spontaneous burst affects the subsequent electrically-driven one. Top plot indicates that
evoked burst amplitude is linearly related to the time interval between a spontaneous burst and the following electrically-evoked one (P < 0.001; n ¼ 5). Nonetheless, no linear
relation (bottom plot) between evoked burst duration and time interval from the previous spontaneous burst is apparent (P ¼ 0.39).
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3.7. Neurochemical measurement of glutamate uptake

The uptake of [3H]D-aspartate or [3H]GABA and its inhibition by
PJ-34 were evaluated in synaptosomes purified from the spinal cord
of 0e2 day old rats. The control uptake of [3H]D-aspartate and of [3H]
GABA in synaptosomes exposed to 3 mM of the radioactive tracers
amounted to 1355 � 136 pmol/mg protein/2 min (n ¼ 12) and
3225�191 pmol/mg protein/2min (n¼ 5), respectively. Fig. 8 shows
the concentration-dependent decrease by PJ-34 (0.1e100 mM) of the
uptake of [3H]D-aspartate: the maximal effect amounted to 30%
inhibition with IC50 value, estimated from the fitted curve, equal to
0.33 mM. [3H]D-aspartate uptake was inhibited also by TBOA
(0.1e100 mM) in a concentration-dependent manner (maximal
inhibition about 90%: IC50¼ 2.18 mM. Fig. 8). Synaptosomal [3H]GABA
uptake was unaffected by 100 mM PJ-34 (3225 � 191 nmol/mg
protein/2min in control vs 3089�175 nmol/mg protein/2min in the
presence of PJ-34; n ¼ 5). Conversely, [3H]GABA uptake was
decreased from 3225 � 191 pmol/mg protein/2 min to
225 � 37 pmol/mg protein/2 min by 10 mM SKF 89976A, a canonical
GABA uptake inhibitor (Milanese et al., 2010; n ¼ 5; P < 0.001).

4. Discussion

The principal findings of the present report are that: 1. the PARP-
1 inhibitor PJ-34 was a partial blocker of glutamate uptake, 2. this
action was associated with a strong increase in network discharges
persisting even after washout, and 3. it had no neurotoxic conse-
quence, for at least 24 h, on neurons and glia in the neonatal rat
spinal cord. These data demonstrate that prolonged electrical
discharges per se did not damage complex network activities like
the locomotor program.

4.1. PJ-34 as an inhibitor of glutamate uptake:
functional consequences

Neurochemical data showed this agent to be a significant blocker
of glutamate uptake with no action on GABA transport. It was
interesting to detect this effect at micromolar concentrations of
PJ-34, implying that this phenomenon might occur with pharma-
cological rather than toxic doses of this drug. The action of PJ-34was
translated into an early enhancement of glutamate-mediated
monosynaptic reflexes, indicating that glutamate uptake was an
important process to regulate excitatory transmission. This
response was observed together with the smaller amplitude of
cumulative depolarization probably due to steadily-depolarized
neurons, still capable of generating a standard series of alternating
oscillations. Polysynaptic reflexeswere unchanged perhaps because
of their heterogeneous presynaptic origin.

While the effect of PJ-34 on glutamate uptake and synaptic
reflexes was relatively rapid, there was a gradual intensification of
spontaneous network discharges: one day later, despite sustained
washout of PJ-34, these strong discharges continued, suggesting
that spinal circuits had become hyper-excitable.

4.2. Characteristics of spontaneous discharges induced by PJ-34

VR recordings were ill-suited to identify the electrophysiological
nature of the PJ-34 evoked events which likely included the activity
of several classes of premotoneuron impinging upon motoneurons.
Experiments with pharmacological antagonists showed, however,
that these discharges were fully dependent on ionotropic glutamate
receptor activation, and that,whenGABAandglycine receptorswere
blocked, spontaneous bursts could emerge in the interval between

Fig. 6. PJ-34 or TBOA does not induce spinal cord histological damage one day later. (A) Representative images showing DAPI stained dorsal horn of sham or PJ-34 treated spinal
cord 24 h later. (B) Histograms plot the low occurrence (<10%) of pyknosis detected in different ROIs of sham, PJ-34 or TBOA treated spinal cords. Pyknosis is normalized with
respect to the total number of DAPI sensitive cells. (C) Representative images showing NeuN-stained ventral horn of sham or PJ-34 treated spinal cord. (D) Histogram plots the
number of NeuN positive neurons in ROIs from sham, PJ-34 and TBOA treated spinal cords. (E) Representative images showing S100 stained dorsal horn of sham or PJ-34 treated
spinal cord. (F) Histogram plots the number of S100 positive protoplasmic astrocytes in ROIs of sham, PJ-34 or TBOA treated spinal cords. (G) Representative images showing SMI 32
stained motoneurons in the ventral horn of sham or PJ-34 treated spinal cord. (H) Histogram plots the number of SMI 32 positive motoneurons in the ventral horn region of sham,
PJ-34 or TBOA treated spinal cords. For all the experiments the number of spinal cords was 4, 9, 5 for sham, PJ-34 and TBOA, respectively.
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electrically-stimulated bursts. The presence of synchronous events
across segments is compatible with the possibility of recurrent
excitation recruiting awidespread neuronal assembly into collective
discharge mode (Streit et al., 2001). In fact, our analysis indicated
that these dischargeswere in general rather slow in accordancewith
the view that theyoriginated fromanample neuronal population. As
previously shown for the rat spinal dorsal horn (Nie and Weng,
2009), impaired glutamate uptake probably induced spill-over of
extracellular glutamate outside the active synapses to extensively
raise neuronal excitability. The present data cannot distinguish the
relative contribution by uptake block and/or facilitated release of
this excitatory transmitter to the strong enhancement in sponta-
neous discharges. Inviewof thedifficulty to probe, in the spinal cord,
endogenous glutamate release originating from multiple spinal
sites, future experiments based on analysis of synaptic events with
patch clamp recording might help to clarify this issue.

The PJ-34 evoked state of spinal cord hyperexcitability did not
exert a deleterious action on locomotor-like patterns, nor was it
translated into spontaneous bouts of fictive locomotion. Likewise,
former studies with the glutamate uptake blocker dihydrokainate
have shown that it could only facilitate fictive locomotion induced by
bath-applied glutamate to the lamprey spinal cord in vitro (Brodin
and Grillner, 1985) or by mesencephalic stimulation of the cat
in vivo (Douglas et al., 1993), but rarely could it produce this pattern
directly.

Fig. 7. Effect of TBOA (5 mM) on VR discharges of the spinal network. (A) Traces are examples of early (15 min and 40 min, left and middle, respectively) application of TBOA
compared to long-lasting (24 h) application of this drug (right). (B) Comparison of FFT values between 24 h application of TBOA or PJ-34 shows that the TBOA plot is shifted
downwards (P < 0.001; ManneWhitney) with a power spectrum slightly different from PJ-34 (n ¼ 5). (C) Examples of fictive locomotion induced by NMDA plus 5-HT on a sham and
one preparation treated with TBOA for 24 h (and washout). The values of locomotor-like activity in the group treated with TBOA were similar to the sham.

Fig. 8. Effect of PJ-34 (filled circles) or TBOA (open circles) on the uptake of [3H]
D-aspartate by synaptosomes from the spinal cord of 0e2 old rats. Data are expressed
as percent inhibition of [3H]D-aspartate uptake and represent the mean � s.e.m of 6
independent experiments run in triplicate. *P < 0.05, **P < 0.001, ***P < 0.0001 vs. the
respective controls (ANOVA plus NewmaneKeuls test).
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4.3. Relative contribution by glutamate uptake inhibition or PARP-1
depression to spontaneous network discharges

A relatively low concentration of PJ-34 (1 mM) produced a partial
inhibition of PARP-1 activity amounting to circa 13% reduction in
the production of PAR, the compound that (in high concentrations)
underlies excitotoxic death (Kuzhandaivel et al., 2011). This rather
modest decrease in PARP-1 functionwas probably unable to explain
the strong rise in network excitability: indeed, application of PHE,
a different PARP-1 inhibitor (Nasrabady et al., 2011b), did not
generate an analogous rise in network discharges. The lowest PJ-34
concentration (1 mM) could, however, induce a significant depres-
sion of glutamate uptake (about 25%) which was not very different
from the depression (30%) detected with the highest PJ-34
concentrations, and could also evoke delayed onset of strong
network discharges. These data, therefore, suggest that partial
inhibition of PARP-1 activity was not per se a crucial factor to
increase network excitability, an effect more likely attributable to
the partial depression of glutamate uptake. Hence, it seems prob-
able that the induction of persistent network discharges was an
unexpected property of PJ-34 because of its additional action on the
glutamate transport system.

It is difficult to relate the present in vitro findings to the in vivo
administration of PJ-34 since, to the best of our knowledge, the
actual plasma concentration of this drug and its final redistribu-
tion to the brain tissue remain unclear. Since the dose of PJ-34
injected into experimental animal is 3-30 mg/kg (Abdelkarim
et al., 2001; Virág and Szabó, 2002; Kauppinen et al., 2009;
Crawford et al., 2010), assuming uniform drug distribution
throughout body compartments of an adult rat (and ignoring any
bound fraction that might lower the free drug concentration), one
might estimate a plasma concentration of approximately 37 mM
after 10 mg/kg, that is in the range of the concentrations tested
in vitro in the present report. Even if the actual concentration of
free PJ-34 at neuronal membrane level is likely to be lower, it
seems feasible that it would still be compatible with those tested
in the present study.

4.4. Downregulation of glutamate transport translated into
network plasticity

Following perturbation of neurotransmitter systems, activity-
dependent synaptic plasticity regulates brain network excit-
ability (Marder, 1998; Abbott and Nelson, 2000; Neves et al.,
2008). This process is known to develop in the spinal cord as
well (Parker and Grillner, 2000). We propose that application of
PJ-34 biased spinal network activity towards excitation over
inhibition as shown by increased random discharges dependent
on glutamatergic transmission. It is likely, however, that a degree
of homeostatic plasticity had occurred whereby the enhanced
level of extracellular glutamate must have led to a compensatory
downregulation of glutamatergic transmission as demonstrated
by the unchanged size of monosynaptic reflexes (and cumulative
depolarization) one day later. Hence, in spinal networks,
homeostatic plasticity (Galante et al., 2001; Rosato-Siri et al.,
2002) and efficient synaptic inhibition (which enabled loco-
motor network function; Kiehn, 2006) possibly contributed to
prevent any runaway excitation caused by the partial block of
glutamate transport. When GABA and glycine receptors were
blocked by bicuculline and strychnine, disinhibited bursting
following PJ-34 exposure was similar to control. Nonetheless,
spontaneous bursts emerged in the interval between electrically-
driven bursts and exerted a rapid downregulation of subsequent
bursts indicating state-dependent, short term plasticity (Bracci
et al., 1997).

4.5. Persistent electrical discharges had no structural consequences
on spinal networks

Although excitotoxic damage elicited by impaired glutamate
uptake is thought to be a major process to lesion neurons (Kim
et al., 2011), and, in particular, motoneurons (Foran and Trotti,
2009), the present study shows that persistently raised network
discharges had not caused early loss of neurons or glia in the spinal
cord. To account for the structural and functional resilience of
spinal networks, it is proposed that build-up of extracellular
glutamate might have also activated compensatory processes that
have prevented neurotoxicity. In particular, it is likely that wider-
scale activation of metabotropic glutamate receptors might have
counteracted network hyperexcitability as proposed for brain
circuits (Huang et al., 2004; Hartmann et al., 2008; Potier et al.,
2010). All main subtypes of metabotropic glutamate receptor are
largely expressed by the rat spinal cord (reviewed by Nistri et al.,
2006) to regulate synaptic transmission and reflexes (Marchetti
et al., 2003). Indeed, a recent study of the rat dorsal horn has
shown that inhibition of glutamate transporters enhances group I
mGluR-dependent oscillatory activity (Galik et al., 2008). Further-
more, in the rat hippocampus, raised glutamatergic signalling is
reported to induce release of endocannabinoids from postsynaptic
cells to depress, in a retrograde fashion, further neurotransmitter
release (Hofmann et al., 2008; Nahir et al., 2010). Future studies are
necessary to explore if a similar process occurs also in the spinal
cord as it would represent a powerful system to dampen network
excitability. Thus, the most parsimonious explanation is that, as far
as locomotor networks were concerned, moderate block of gluta-
mate transport did not trigger neurodegeneration because
compensatory mechanisms were likely to contrast the potential
risk of excitotoxicity. In support of our suggestion is the report that
prolonged elevation of extracellular glutamate due to its transport
blockade in vivo is innocuous for spinal motoneurons, while direct
activation of glutamate receptors is highly neurotoxic (Tovar-Y-
Romo et al., 2009).

4.6. Implications for neurodegeneration in the spinal cord

Previous models of spinal excitotoxicity and allied neuro-
degeneration had relied on the application of various concentra-
tions of kainate (Mazzone et al., 2010), a glutamate analoguewidely
employed also for evoking experimental brain lesions with
behavioural effects like generalized convulsions (Vincent and
Mulle, 2009). Indeed, it is thought that repeated seizures are the
cause for chronic epilepsy (Ben-Ari, 2001) since about 1 h of
electrically-induced seizures is sufficient to obtain substantial
neurodegeneration in the rat hippocampus (Norwood et al., 2011).
The present results suggest that, in the rat spinal cord in vitro,
intense synchronous discharges were not per se able to produce
cell or functional damage. This observation differs from the
neurotoxicity data following application of kainate that depolarizes
neurons directly by binding to its receptors and it also triggers
release of endogenous glutamate from depolarized neurons
(Mazzone and Nistri, 2011) to perpetrate a vicious circuit of exci-
tation-neurotoxicity.

In conclusion, strongly and persistently enhanced glutamatergic
activity at spinal network level did not trigger neurodegeneration
and allowed preservation of locomotor-like function. Thus, these
results are consistent with the notion that delayed administration
of PJ-34 could protect spinal neurons from excitotoxicity as long as
the insult was relatively small (Mazzone and Nistri, 2011;
Nasrabady et al., 2011a). It seems probable that, for spinal networks,
summating the excitation evoked by PJ-34 to a strong excitotoxic
stimulus becomes a tall order to cope with.

S.E. Nasrabady et al. / Neuropharmacology 63 (2012) 415e426424



Acknowledgements

This study was supported by grants from the government of the
Friuli Venezia Giulia Region. The authors state that they have no
conflict of interest to declare. AN designed research, SEN, AK, AA, EB
and MM made substantial contributions to data acquisition, anal-
ysis, and interpretation. SEN, GB and AN drafted the article and
revised it critically for intellectual content.

References

Abbott, L.F., Nelson, S.B., 2000. Synaptic plasticity: taming the beast. Nat. Neurosci.
3, 1178e1183.

Abdelkarim, G.E., Gertz, K., Harms, C., Katchanov, J., Dirnagl, U., Szabo, C., Endres, M.,
2001. Protective effects of PJ-34, a novel, potent inhibitor of poly(ADP-ribose)
polymerase (PARP) in in vitro and in vivo models of stroke. Int. J. Mol. Med.
7, 255e260.

Andrabi, S.A., Dawson, T.M., Dawson, V.L., 2008. Mitochondrial and nuclear cross
talk in cell death: parthanatos. Ann. N. Y. Acad. Sci. 1147, 233e241.

Beato, M., Nistri, A., 1999. Interaction between disinhibited bursting and fictive
locomotor patterns in the rat isolated spinal cord. J. Neurophysiol. 82, 2029e2038.

Beato, M., Bracci, E., Nistri, A., 1997. Contribution of NMDA and non-NMDA gluta-
mate receptors to locomotor pattern generation in the neonatal rat spinal cord.
Proc. Roy. Soc. B 264, 877e884.

Ben-Ari, Y., 2001. Cell death and synaptic reorganizations produced by seizures.
Epilepsia 42 (Suppl. 3), 5e7.

Besson, V.C., 2009. Drug targets for traumatic brain injury from poly(ADP-ribose)
polymerase pathway modulation. Br. J. Pharmacol. 157, 695e704.

Bracci, E., Ballerini, L., Nistri, A., 1996a. Spontaneous rhythmic bursts induced by
pharmacological block of inhibition in lumbar motoneurons of the neonatal rat
spinal cord. J. Neurophysiol. 75, 640e647.

Bracci, E., Ballerini, L., Nistri, A., 1996b. Localization of rhythmogenic networks
responsible for spontaneous bursts induced by strychnine and bicuculline in
the rat isolated spinal cord. J. Neurosci. 16, 7063e7076.

Bracci, E., Beato, M., Nistri, A., 1997. Afferent inputs modulate the activity of
a rhythmic burst generator in the rat disinhibited spinal cord in vitro. J. Neu-
rophysiol. 77, 3157e3167.

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of micro-
gram quantities of protein utilizing the principle of protein dye binding. Anal.
Biochem. 72, 248e254.

Brodin, L., Grillner, S., 1985. The role of putative excitatory amino acid neuro-
transmitters in the initiation of locomotion in the lamprey spinal cord. II. The
effects of amino acid uptake inhibitors. Brain Res. 360, 149e158.

Butt, S.J., Lebret, J.M., Kiehn, O., 2002. Organization of lefteright coordination in the
mammalian locomotor network. Brain Res. Rev. 40, 107e117.

Casey, P.J., Black, J.H., Szabo, C., Frosch, M., Albadawi, H., Chen, M., Cambria, R.P.,
Watkins, M.T., 2005. Poly(adenosine diphosphate ribose) polymerase inhibition
modulates spinal cord dysfunction after thoracoabdominal aortic ischemia-
reperfusion. J. Vasc. Surg. 41, 99e107.

Cazalets, J.R., Sqalli-Houssaini, Y., Clarac, F., 1992. Activation of the central pattern
generators for locomotion by serotonin and excitatory amino acids in neonatal
rat. J. Physiol. 455, 187e204.

Cifra, A., Mazzone, G.L., Nani, F., Nistri, A., Mladinic, M., Postnatal developmental
profile of neurons and glia in motor nuclei of the brainstem and spinal cord, and
its comparison with organotypic slice cultures. Devel. Neurobiol., in press.

Crawford, R.S., Albadawi, H., Atkins, M.D., Jones, J.E., Yoo, H.J., Conrad, M.F.,
Austen Jr., W.G., Watkins, M.T., 2010. Postischemic poly (ADP-ribose) poly-
merase (PARP) inhibition reduces ischemia reperfusion injury in a hind-limb
ischemia model. Surgery 148, 110e118.

Douglas, J.R., Noga, B.R., Dai, X., Jordan, L.M., 1993. The effects of intrathecal
administration of excitatory amino acid agonists and antagonists on the initi-
ation of locomotion in the adult cat. J. Neurosci. 13, 990e1000.

Evans, R.H., 1989. The pharmacology of segmental transmission in the spinal cord.
Prog. Neurobiol. 33, 255e279.

Foran, E., Trotti, D., 2009. Glutamate transporters and the excitotoxic path to motor
neuron degeneration in amyotrophic lateral sclerosis. Antioxid. Redox Signal. 11,
1587e1602.

Fulton, B.P., Walton, K., 1986. Electrophysiological properties of neonatal rat
motoneurones studied in vitro. J. Physiol. 370, 651e678.

Galante, M., Avossa, D., Rosato-Siri, M., Ballerini, L., 2001. Homeostatic plasticità
induced by chronic block of AMPA/kainate receptors modulates the generation
of rhythmic bursting in rat spinal cord organotypic cultures. Eur. J. Neurosci. 14,
903e917.

Galik, J., Youn, D.H., Kolaj, M., Randi�c, M., 2008. Involvement of group I metabo-
tropic glutamate receptors and glutamate transporters in the slow excitatory
synaptic transmission in the spinal cord dorsal horn. Neuroscience 154,
1372e1387.

Genovese, T., Mazzon, E., Muia, C., Patel, N.S., Threadgill, M.D., Bramanti, P., De
Sarro, A., Thiemermann, C., Cuzzocrea, S., 2005. Inhibitors of poly(ADP-ribose)
polymerase modulate signal transduction pathways and secondary damage in
experimental spinal cord trauma. J. Pharmacol. Exp. Ther. 312, 449e457.

Hartmann, K., Bruehl, C., Golovko, T., Draguhn, A., 2008. Fast homeostatic plasticity
of inhibition via activity-dependent vesicular filling. PLoS One 3, e2979.

Hofmann, M.E., Nahir, B., Frazier, C.J., 2008. Excitatory afferents to CA3 pyramidal
cells display differential sensitivity to CB1 dependent inhibition of synaptic
transmission. Neuropharmacology 55, 1140e1146.

Huang, Y.H., Sinha, S.R., Tanaka, K., Rothstein, J.D., Bergles, D.E., 2004. Astrocyte
glutamate transporters regulate metabotropic glutamate receptor-mediated
excitation of hippocampal interneurons. J. Neurosci. 24, 4551e4559.

Kass, R.E., Ventura, V., Cai, C., 2003. Statistical smoothing of neuronal data. Netw.
Comput. Neural Syst. 14, 5e15.

Kauppinen, T.M., Suh, S.W., Berman, A.E., Hamby, A.M., Swanson, R.A., 2009. Inhi-
bition of poly(ADP-ribose) polymerase suppresses inflammation and promotes
recovery after ischemic injury. J. Cereb. Blood Flow. Metab. 29, 820e829.

Kerkut, G.A., Bagust, J., 1995. The isolated mammalian spinal cord. Prog. Neurobiol.
46, 1e48.

Kiehn, O., Kjaerulff, O., 1998. Distribution of central pattern generators for rhythmic
motor outputs in the spinal cord of limbed vertebrates. Ann. N. Y. Acad. Sci. 860,
110e129.

Kiehn, O., 2006. Locomotor circuits in the mammalian spinal cord. Annu. Rev.
Neurosci. 29, 279e306.

Kim, K., Lee, S.G., Kegelman, T.P., Su, Z.Z., Das, S.K., Dash, R., Dasgupta, S., Barral, P.M.,
Hedvat, M., Diaz, P., Reed, J.C., Stebbins, J.L., Pellecchia, M., Sarkar, D., Fisher, P.B.,
2011. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in
neurodegeneration: opportunities for developing novel therapeutics. J. Cell.
Physiol. 226, 2484e2493.

Kuzhandaivel, A., Nistri, A., Mladinic, M., 2010a. Kainate-mediated excitotoxicity
induces neuronal death in the rat spinal cord in vitro via a PARP-1 dependent
cell death pathway (Parthanatos). Cell. Mol. Neurobiol. 30, 1001e1012.

Kuzhandaivel, A., Margaryan, G., Nistri, A., Mladinic, M., 2010b. Extensive glial
apoptosis develops early after hypoxic-dysmetabolic insult to the neonatal rat
spinal cord in vitro. Neuroscience 169, 325e338.

Kuzhandaivel, A., Nistri, A., Mazzone, G., Mladinic, M., 2011. Molecular mechanisms
underlying cell death in spinal networks in relation to locomotor activity after
acute injury in vitro. Front. Cell. Neurosci. 5, 9.

Marchetti, C., Beato, M., Nistri, A., 2001. Alternating rhythmic activity induced by
dorsal root stimulation in the neonatal rat spinal cord in vitro. J. Physiol. 530,
105e112.

Marchetti, C., Taccola, G., Nistri, A., 2003. Distinct subtypes of group I metabotropic
glutamate receptors on rat spinal neurons mediate complex facilitatory and
inhibitory effects. Eur. J. Neurosci. 18, 1873e1883.

Marder, E., 1998. From biophysics to models of network function. Annu. Rev. Neurosci.
21, 25e45.

Margaryan, G., Mladinic, M., Mattioli, C., Nistri, A., 2009. Extracellular magnesium
enhances the damage to locomotor networks produced by metabolic pertur-
bation mimicking spinal injury in the neonatal rat spinal cord in vitro.
Neuroscience 163, 669e682.

Mazzone, G.L., Nistri, A., 2011. Effect of the PARP-1 inhibitor PJ-34 on excitotoxic
damage evoked by kainate on rat spinal cord organotypic slices. Cell. Mol.
Neurobiol. 31, 469e478.

Mazzone, G.L., Margaryan, G., Kuzhandaivel, A., Nasrabady, S.E., Mladinic, M.,
Nistri, A., 2010. Kainate-induced delayed onset of excitotoxicity with functional
loss unrelated to the extent of neuronal damage in the in vitro spinal cord.
Neuroscience 168, 451e462.

Milanese, M., Zappettini, S., Jacchetti, E., Bonifacino, T., Cervetto, C., Usai, C.,
Bonanno, G., 2010. In vitro activation of GAT1 transporters expressed in spinal
cord gliosomes stimulates glutamate release that is abnormally elevated in the
SOD1/G93A(þ) mouse model of amyotrophic lateral sclerosis. J. Neurochem.
113, 489e501.

Moroni, F., Chiarugi, A., 2009. Post-ischemic brain damage: targeting PARP-1 within
the ischemic neurovascular units as a realistic avenue to stroke treatment. FEBS
J. 276, 36e45.

Moroni, F., 2008. Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain
damage. Curr. Opin. Pharmacol. 8, 96e103.

Nahir, B., Lindsly, C., Frazier, C.J., 2010. mGluR-mediated and endocannabinoid-
dependent long-term depression in the hilar region of the rat dentate gyrus.
Neuropharmacology 58, 712e721.

Nasrabady, S.E., Kuzhandaivel, A., Nistri, A., 2011a. Studies of locomotor network
neuroprotection by the selective poly(ADP-ribose) polymerase-1 inhibitor PJ-34
against excitotoxic injury to the rat spinal cord in vitro. Eur. J. Neurosci. 33,
2216e2227.

Nasrabady, S.E., Kuzhandaivel, A., Mladinic, M., Nistri, A., 2011b. Effects of 6(5H)-
phenanthridinone, an inhibitor of poly(ADP-ribose)polymerase-1 activity
(PARP-1), on locomotor networks of the rat isolated spinal cord. Cell. Mol.
Neurobiol. 31, 503e508.

Neves, G., Cooke, S.F., Bliss, T.V., 2008. Synaptic plasticity, memory and the hippo-
campus: a neural network approach to causality. Nat. Rev. Neurosci. 9, 65e75.

Nie, H., Weng, H.R., 2009. Glutamate transporters prevent excessive activation of
NMDA receptors and extrasynaptic glutamate spillover in the spinal dorsal
horn. J. Neurophysiol. 101, 2041e2051.

Nistri, A., Ostroumov, K., Sharifullina, E., Taccola, G., 2006. Tuning and playing amotor
rhythm: howmetabotropic glutamate receptors orchestrate generation of motor
patterns in the mammalian central nervous system. J. Physiol. 15, 323e334.

Norwood,B.A., Bauer, S.,Wegner, S., Hamer,H.M.,Oertel,W.H., Sloviter, R.S., Rosenow, F.,
2011. Electrical stimulation-induced seizures in rats: a “doseeresponse” study on
resultant neurodegeneration. Epilepsia 52, e109e112.

S.E. Nasrabady et al. / Neuropharmacology 63 (2012) 415e426 425

http://dx.doi.org/10.1002/dneu.20991


Parker, D., Grillner, S., 2000. Neuronal mechanisms of synaptic and network plas-
ticity in the lamprey spinal cord. Prog. Brain Res. 125, 381e398.

Potier, B., Billard, J.M., Rivière, S., Sinet, P.M., Denis, I., Champeil-Potokar, G.,
Grintal, B., Jouvenceau, A., Kollen, M., Dutar, P., 2010. Reduction in glutamate
uptake is associated with extrasynaptic NMDA and metabotropic glutamate
receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell. 9,
722e735.

Rosato-Siri, M., Grandolfo, M., Ballerini, L., 2002. Activity-dependent modulation of
GABAergic synapses in developing rat spinal networks in vitro. Eur. J. Neurosci.
16, 2123e2135.

Scott, G.S., Jakeman, L.B., Stokes, B.T., Szabó, C., 1999. Peroxynitrite production and
activation of poly (adenosine diphosphate-ribose) synthetase in spinal cord
injury. Ann. Neurol. 45, 120e124.

Shigeri, Y., Seal, R.P., Shimamoto, K., 2004. Molecular pharmacology of glutamate
transporters, EAATs and VGLUTs. Brain Res. Rev. 45, 250e265.

Stigliani, S., Zappettini, S., Raiteri, L., Passalacqua, M., Melloni, E., Venturi, C.,
Tacchetti, C., Diaspro, A., Usai, C., Bonanno, G., 2006. Glia re-sealed particles
freshly prepared from adult rat brain are competent for exocytotic release of
glutamate. J. Neurochem. 96, 656e668.

Streit, J., Tscherter, A., Heuschkel, M.O., Renaud, P., 2001. The generation of
rhythmic activity in dissociated cultures of rat spinal cord. Eur. J. Neurosci. 14,
191e202.

Taccola, G., Nistri, A., 2006a. Fictive locomotor patterns generated by tetraethy-
lammonium application to the neonatal rat spinal cord in vitro. Neuroscience
137, 659e670.

Taccola, G., Nistri, A., 2006b. Oscillatory circuits underlying locomotor networks in
the rat spinal cord. Crit. Rev. Neurobiol. 18, 25e36.

Taccola, G., Marchetti, C., Nistri, A., 2004. Modulation of rhythmic patterns and
cumulative depolarization by group I metabotropic glutamate receptors in the
neonatal rat spinal cord in vitro. Eur. J. Neurosci. 19, 533e541.

Taccola, G., Margaryan, G., Mladinic, M., Nistri, A., 2008. Kainate and metabolic pertur-
bation mimicking spinal injury differentially contribute to early damage of loco-
motornetworks in the invitroneonatal rat spinal cord.Neuroscience155, 538e555.

Thomson, D.J., Chave, A.D., 1991. Jackknife error estimates for spectra, coherences,
and transfer functions. In: Haykin, S. (Ed.), Advances in Spectral Analysis and
Array Processing. Prentice-Hall, Englewood Cliffs, NJ, pp. 58e113.

Tovar-Y-Romo, L.B., Santa-Cruz, L.D., Zepeda, A., Tapia, R., 2009. Chronic elevation of
extracellular glutamate due to transport blockade is innocuous for spinal
motoneurons in vivo. Neurochem. Int. 54, 186e191.

Vincent, P., Mulle, C., 2009. Kainate receptors in epilepsy and excitotoxicity.
Neuroscience 158, 309e323.

Virág, L., Szabó, C., 2002. The therapeutic potential of poly(ADP-ribose) polymerase
inhibitors. Pharmacol. Rev. 54, 375e429.

Wu, K.L., Hsu, C., Chan, J.Y., 2009. Nitric oxide and superoxide anion differentially
activate poly(ADP-ribose) polymerase-1 and bax to induce nuclear trans-
location of apoptosis-inducing factor and mitochondrial release of cytochrome
c after spinal cord injury. J. Neurotrauma 26, 965e977.

Yunger, L.M., Fowler, P.J., Zarevics, P., Setler, P.E., 1984. Novel inhibitors of gamma-
aminobutyric acid (GABA) uptake: anticonvulsant actions in rats and mice.
J. Pharmacol. Exp. Ther. 228, 109e115.

S.E. Nasrabady et al. / Neuropharmacology 63 (2012) 415e426426



 

78 

 

 

 

 

 

 

 

 

 

 

 

Methods, materials and results 

 

Section 5 

 

Samano C, Nasrabady SE, Nistri A (2012) A study of the potential neuroprotective effect of 

riluzole on locomotor networks of the neonatal rat spinal cord in vitro damaged by 

excitotoxicity. Neuroscience 222:356-365. 



A STUDY OF THE POTENTIAL NEUROPROTECTIVE EFFECT
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Abstract—Excitotoxicity triggered by over-stimulation of

glutamatergic receptors is considered to be a major compo-

nent of damage following acute spinal cord injury (SCI).

Using an in vitro model of neonatal rat SCI caused by tran-

sient application (1 h) of the glutamate agonist kainate

(0.05–0.1 mM) to produce limited excitotoxicity, the present

study investigated whether riluzole, a drug inhibiting gluta-

mate release and neuronal excitability, could prevent neuro-

nal loss and protect locomotor patterns 24 h later.

Immunohistochemical analysis of neuronal and motoneuro-

nal populations was associated with recording of fictive

locomotion induced by neurochemicals or dorsal root stim-

uli. Riluzole (5 lM; 24 h application) per se exerted strong

and persistent neurodepressant effects on network synaptic

transmission from which recovery was very slow. When

continuously applied after kainate, riluzole partially reduced

the number of pyknotic cells in the gray matter, although

motoneurons remained vulnerable and no fictive locomo-

tion was present. In further experiments, riluzole per se

was applied for 3 h (expected to coincide with kainate peak

excitotoxicity) and washed out for 24 h with full return of fic-

tive locomotion. When this protocol was implemented after

kainate, no efficient histological or functional recovery was

observed. No additional benefit was detected even when ril-

uzole was co-applied with kainate and continued for the fol-

lowing 3 h. These results show that modest neuronal losses

evoked by excitotoxicity have a severe impact on locomotor

network function, and that they cannot be satisfactorily

blocked by strong neurodepression with riluzole, suggest-

ing the need for more effective pharmacological

approaches. � 2012 IRBO. Published by Elsevier Ltd. All

rights reserved.

Key words: motoneuron, fictive locomotion, glutamate, neu-

roprotection, kainate.

INTRODUCTION

Spinal cord injury (SCI) is a major cause of chronic dis-

ability which affects millions worldwide (Hall and Springer,

2004; van den Berg et al., 2010; Cadotte and Fehlings,

2011). The pathophysiology of SCI is a biphasic process,

consisting of a primary injury at the time of trauma and a

secondary lesion that leads to loss of supraspinal control

of sensory, autonomic and motor functions at the

sublesional level. One important component of the post-

traumatic degeneration following SCI is caused by

glutamate-mediated excitotoxicity elicited by massive

release of this transmitter with a subsequent overexcita-

tion (Park et al., 2004; Norenberg et al., 2004; Ufuk

et al., 2005; Schwab et al., 2006; Rowland et al., 2008;

Kuzhandaivel et al., 2011). A multi-factorial process

comprising an elevated intracellular Ca2+ concentration,

superoxide dismutase 1 (SOD-1) deregulation, reactive

oxygen species, free radicals and metabolic dysfunction

likely contributes to neuron losses (Doble, 1999; Ufuk

et al., 2005; Rowland et al., 2008; Lau and Tymianski,

2010). As full functional motor recovery after SCI is still

unattainable for most individuals, it would be very

important to target neuroprotective agents to those

neurons affected by excitotoxicity and responsible for

the control locomotion (Doble, 1999; Taccola and Nistri,

2006b; Taccola et al., 2008; Mazzone et al., 2010).

Among glutamate release inhibitors, riluzole has been

reported to promote a positive behavioral outcome after

experimental brain injury and SCI (Wahl et al., 1997;

Schwartz and Fehlings, 2001, 2002; Lau and Tymianski,

2010). The mechanism of action of riluzole is complex

(Bellingham, 2011; Cifra et al., 2012b) and involves sev-

eral effects such as: (i) attenuation of presynaptic gluta-

mate release, (ii) reduction of the persistent Na+

current. Favorable experimental results have been

described for riluzole in protecting injured adult spinal

motoneurons after ventral root (VR) avulsion (Nógrádi

et al., 2007) or hypoglossal motoneurons exposed to

excitotoxic stress (Cifra et al., 2011). In clinical studies,

while riluzole is the only current treatment for motoneuron

0306-4522/12 $36.00 � 2012 IRBO. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.neuroscience.2012.06.064
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disease, its effect consists in delaying disease progres-

sion for a few months only (Wokke, 1996; Cheah et al.,

2010). The reason for the modest neuroprotection by

riluzole and other agents reported in many studies

remains elusive as explanations for the negative results

of therapeutic trials include a likely heterogeneity, both

in disease susceptibility and pathogenic mechanisms,

and faulty methodology of clinical trials (Beghi et al.,

2011). While this realization prompts further studies to

widen the range of neuroprotective agents with potential

activity to combat amyotrophic lateral sclerosis (ALS;

Traynor et al., 2006), it seems also of interest to explore

the effect of riluzole administration timing with respect to

the pathology onset.

While administration of riluzole immediately after an

excitotoxic stress has been recently reported to decrease

the number of dead neurons in organotypic spinal cord

cultures (Mazzone and Nistri, 2011), that study could

not test whether locomotor networks had been protected

efficiently because fictive locomotor patterns cannot be

produced in culture. To address this issue, we investi-

gated the effect of riluzole on kainate-evoked excitotoxic-

ity in the isolated spinal cord in vitro (Taccola et al., 2008),

taking as outcome the presence or absence of fictive

locomotion (reviewed by Grillner, 2003; Clarac et al.,

2004) one day after a transient excitotoxic stimulus, and

its relation to histological preservation. This protocol

assumes that, in clinical settings, any neuroprotective

treatment would be very unlikely to begin precisely at

the time of the lesion, and that it should show any poten-

tial benefit at least 24 h later (the maximum period of time

the spinal cord can survive in vitro with intact network

activity; Taccola et al., 2008). Since the majority of new

SCI cases have an incomplete lesion (National Spinal

Cord Injury Statistical Center, University of Alabama at

Birmingham, 2010 Annual Statistical Report; https://

www.nscisc.uab.edu/reports.aspx) as recently confirmed

(DeVivo, 2012), the present study employed relatively

low concentrations of kainate (0.05–0.1 mM) near or just

above threshold to produce moderate neuronal loss in

the spinal gray matter when applied for 1 h (Mazzone

et al., 2010). Such a neurotoxic action develops within

the first 2–4 h after kainate washout and reaches

apparent steady state 24 h later (Mazzone et al., 2010;

Kuzhandaivel et al., 2011), thus providing a model system

to test the neuroprotective effect of riluzole.

EXPERIMENTAL PROCEDURES

Rat spinal cord preparation

The experiments were carried out on neonatal Wistar rats (1–

2 days old). Under urethane anesthesia (0.2 ml i.p. of a 10% w/

v solution), the spinal cords were carefully dissected and super-

fused (7.5 ml/min) with Krebs solution which contained (in mM):

113 NaCl, 4.5 KCl, 1 MgCl27H2O, 2 CaCl2, 1 NaH2PO4, 25 NaH-

CO3 and glucose 11; gassed with O2 95%, CO2 5%, pH 7.4 at

room temperature (22 �C) (Taccola and Nistri, 2006a; Taccola

et al., 2008; Margaryan et al., 2009). In accordance with the three

Rs objective, all efforts were made to minimize the number of ani-

mals used for the experiments and their suffering. The experi-

ments were performed in accordance with the ethical guidelines

for the care and use of laboratory animals of National Institutes

of Health (NIH) guidelines and the Italian act D. L. 27/1/92 n.

116 (implementing the European Community directives n.86/

609 and 93/88).

Electrophysiological recordings

DC-coupled electrophysiological recording with tight-fitting suc-

tion electrodes was from lumbar (L) VRs. Signals were recorded

from right (r) and left (l) L2 and L5 VRs which convey electrical

motor discharges mainly to flexor and extensor hind limb mus-

cles, respectively (Kiehn and Kjaerulff, 1998; Kiehn, 2006; Tacco-

la and Nistri, 2006b). Signals were captured, digitized and

analyzed with pClamp software (version 9.2; Molecular Devices,

Sunnyvale, CA, USA). Afferent fibers of a single dorsal root (DR)

were stimulated via a bipolar suction electrode with electrical

stimuli applied every 60 s. The minimum intensity of the stimulus

to induce a reflex response in the ipsilateral homosegmental VR

was considered as the stimulation threshold (Taccola et al.,

2004). Trains of DR stimuli (0.1-ms duration, 30 pulse trains at

2 Hz) were used to elicit cumulative depolarization with superim-

posed alternating oscillatory activity typical of fictive locomotion

by P2x threshold pulses. The mean amplitude of these

responses was calculated by averaging five events. Fictive loco-

motion was induced by application of N-methyl-D-aspartate

(NMDA) (4 or 5 lM) and 5-hydroxytryptamine (5-HT; 10 lM)

and observed as alternating cycles of VR discharges (Cazalets

et al., 1992; Kjaerulff and Kiehn, 1996; Butt et al., 2002). The period

(the interval between one cycle and the following cycle) and the

coefficient of variation (CV; indicating the regularity of cycles)

were calculated by averaging at least 20 cycles. Disinhibited

bursting (Bracci et al., 1996a,b, 1997) was elicited by application

of strychnine (1 lM) and bicuculline (20 lM), and burst parame-

ters were calculated as reported by Bracci et al. (1996a,b).

Protocols for excitotoxicity and neuroprotection by
riluzole

Four experimental groups were employed in parallel: sham prep-

arations, preparations treated with riluzole alone, preparations

treated with kainate (0.05–0.1 mM) alone, and preparations trea-

ted with kainate and riluzole (usually 5 lM). Sham spinal cords

were kept for 24 h in Krebs solution (Taccola et al., 2008). The

control groups treated with riluzole alone were kept for 3 or

24 h in vitro. Treatment with kainate always lasted for 1 h and

was followed by riluzole applied for 3 or 24 h after washout of kai-

nate. In a few experiments, kainate and riluzole were co-applied.

At the end of the experiments, spinal cords were fixed with 4%

paraformaldehyde and cryoprotected in sucrose solution (30%

w/v) for subsequent immunohistochemistry (Taccola et al.,

2008). The concentration of kainate was chosen according to

Mazzone et al. (2010) who showed that 0.05 mM (threshold) kai-

nate abolished the locomotor network function for at least 24 h

with a moderate degree of cell damage, while stronger damage

was produced by 0.1 mM. The majority of experiments were done

with 5 lM concentration of riluzole because it is similar to the

plasma therapeutic concentration used in clinical trials in patients

with ALS (Bellingham, 2011), and can provide neuroprotection

together with inhibition of glutamate release from organotypic

spinal slices in culture (Cifra et al., 2011; Mazzone and Nistri,

2011). In a few experiments, we also tested 15 lM riluzole, which

is the largest dose previously used in neonatal rat spinal cord

studies (Tazerart et al., 2007; Kwon et al., 2011).

Immunohistochemistry procedure

Transverse sections (30 lm thick) of the spinal cord were cut

with a sliding microtome at �20 �C and stored in phosphate-

buffered saline (PBS) until use. Single or double immunohisto-

chemical stainings were performed on the free-floating tissue
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sections or on the sections immobilized on Superfrost plus slides

(Thermo Fisher Scientific GmbH, Germany) and processed in a

humid atmosphere. The sections were preincubated for 2 h at

room temperature in 5% normal goat serum (NGS)/5% bovine

serum albumin (BSA) and 0.3% Triton X-100, followed by

overnight incubation at 4 �C in 1% NGS/1% BSA/0.1% Triton

X-100 solution containing primary antibodies directed against

the following antigens: anti-neuronal specific nuclear protein

(NeuN) or anti-neurofilament H non-phosphorylated (SMI 32)

(Table 1). Tissue sections were rinsed thrice for 10 min each in

PBS-Triton X-100 (0.1 M PBS, 0.3% Triton X-100), and then

incubated for 2 h with the appropriate secondary antibody,

anti-mouse Alexa Fluor 488 or 594 antibodies. Finally, to identify

pyknotic nuclei, sections were stained with 1 lg/ml solution of

40,6-diamidino-2-phenylindole (DAPI) for 20 or 30 min at room

temperature and processed with a fluorescence mounting

medium (DAKO, fluorescence mounting medium; Milan, Italy,

or Vectashield, Vector, Burlingame, CA, USA) for analysis with

an epifluorescence microscope (Zeiss Axioskope 2, Carl Zeiss).

Selected spinal cord serial sections with double or triple labeling

staining were further analyzed with confocal Leica (DMRI2)

equipped with argon/krypton laser and Metavue software

(Molecular Devices).

Cell quantification and statistical analysis

Pyknotic nuclei were identified and quantified with the cell coun-

ter software ‘‘eCELLence’’ (Glance Vision Tech, Trieste, Italy).

For each experimental condition, 2–4 spinal cords were analyzed

and for each spinal cord 3–6 transversal sections from T12 to L2

segments were examined. The choice of these segments was

based on the fact that they are the most rhythmogenic areas of

the spinal cord and are believed to contain the essential elements

of the central pattern generator for locomotion (Kjaerulff and

Kiehn, 1996; Kiehn, 2006). Furthermore, our previous investiga-

tions have demonstrated that various lumbar segments show

comparable sensitivity to excitotoxic damage (Taccola et al.,

2008).

We quantified the percentage of pyknosis stained by DAPI,

the number of NeuN-expressing cells and SMI 32 motoneu-

rons-immunoreactive (IR) in each section of the spinal cord

according to four regions of interest (ROIs): (i) dorsal gray matter

(Rexed laminae I–IV), (ii) central gray matter (Rexed laminae

V–VIII and X), (iii) ventral gray matter (Rexed laminae VIII–IX)

and (iv) ventrolateral white matter. For each region, 5–7 fields

of 350 � 350 lm (dorsal and central regions in the gray matter),

520 � 520 lm (ventral horn), or 100 � 500 lm (white matter)

were analyzed. Further details have been previously reported

(Taccola et al., 2008).

Statistical analysis was performed with SigmaStat (SigmaS-

tat 3.1, Systat Software, Chicago, IL, USA) and Origin (Origin

Pro 8, Northampton, MA, USA). Data are expressed as

mean ± SD (or SEM for histology data). Parametric or non-

parametric data distribution was established with a normality test

and the significance of differences between the means was eval-

uated either with independent Student’s t-test or Mann–Whitney

test, respectively. ANOVA was used for analyzing multiple

comparisons followed by a post hoc Mann–Whitney test. The

accepted level of significance was set as P< 0.05.

Drugs

NMDAand riluzolewere purchased fromTocris (Bristol, UK). 5-HT

and strychnine hydrochloride were from Sigma (Milan, Italy).

Bicuculline methiodide was obtained from Fluka (Milan, Italy).

Kainate was purchased from Ascent (Abcam Biochemicals.

Cambridge, UK).

RESULTS

Effects of riluzole on kainate-mediated excitotoxicity

Our previous studies have shown that kainate-evoked

excitotoxicity is primarily directed against neurons rather

than glia and is morphologically expressed as pyknosis

with chromatin condensation (Taccola et al., 2008;

Margaryan et al., 2009; Kuzhandaivel et al., 2010).

Fig. 1A, B exemplifies and quantifies the excitotoxic dam-

age evoked by 0.05 or 0.1 mM kainate (1 h application) in

ROIs comprising the dorsal, central, and ventral gray and

ventrolateral white matter regions of the spinal cord

in vitro 24 h later. The region most sensitive was the

dorsal horn one, where pyknosis reached the maximum

value of 28 ± 4 % (n= 6) after 0.1 mM kainate, whereas

the white matter ROI showed the smallest damage. A low-

er concentration (0.05 mM) of kainate induced compara-

tively less neurotoxicity (Fig. 1B). Riluzole (5 lM; 24 h)

per se had no toxic effect on spinal cord cells (Fig. 1B).

Nonetheless, when riluzole (5 lM) was applied immedi-

ately after kainate (0.1 mM) washout for the subsequent

24 h, it could significantly attenuate the pyknosis in the

dorsal, central and ventral horn ROIs (Fig. 1A, C) when

compared with the effect of kainate alone (Fig. 1B).

Trebling the concentration of riluzole did not, however,

improve the outcome after 0.1 mM kainate (Fig. 1C).

Effect of riluzole on electrophysiological network
properties

Spinal cords treated with 0.1 mM kainate followed by 24 h

riluzole (5 lM) and 2 h wash with standard solution, never

showed fictive locomotion and generated only small VR

reflexes (0.31 ± 0.17-mV amplitude) after DR stimulation

(n= 3) vs. sham preparations (see Table 2). This depres-

sion of spinal network excitability led us to reconsider the

drug application protocol. In fact, since riluzole depresses

Table 1. Antibodies used for immunofluorescence labeling

Antibodies Type Coupled to Dilution Origin

Primary

NeuN (mouse) Mouse monoclonal – 1:50; 1:100 Millipore; Chemicon. Milan, Italy

NeuN-RBFOX (rabbit) Rabbit polyclonal – 1:100 Novus Biologicals. Milan, Italy

SMI 32 (mouse) Mouse monoclonal – 1:200 Covance. Emeryville, CA, USA

Secondary

a Mouse IgG Goat Alexa Fluor 488 1:250 Invitrogen. Milan, Italy

a Mouse IgG Goat Alexa Fluor 594 1:200 Invitrogen. Milan, Italy

a Rabbit IgG Goat Alexa Fluor 488 1:250; 1:500 Invitrogen. Milan, Italy
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presynaptic glutamate release (and facilitates Na+-

dependent glutamate uptake) together with block of volt-

age-dependent Na+ channels (Taylor and Meldrum,

1995; Song et al., 1997; Fumagalli et al., 2008; Tazerart

et al., 2007; Cifra et al., 2012b), we wondered if such a

long-lasting riluzole application might have persistently

depressed synaptic reflexes regardless of kainate-evoked

toxicity. Thus, to separate the direct depressant action of

riluzole on spinal networks from its potential to contrast

neurotoxicity, we examined the effect of riluzole per se

on fictive locomotion induced by neurochemicals or DR

electrical stimulation. Fictive locomotion induced by

NMDA (4–5 lM) plus 5-HT (10 lM) or by a train of DR

stimuli was abolished 1–2 h after starting riluzole (5 lM)

application (not shown), a result in accordance with the

study by Tazerart et al. (2007) who have reported the

slowly developing disruption in fictive locomotion evoked

by 10 lM riluzole. When riluzole application lasted 24 h,

2 h washout (with Krebs solution) was insufficient to

restore fictive locomotion induced by either NMDA plus

5-HT as shown in Fig. 2A that depicts VR traces obtained

from the same spinal cord prior to riluzole and then 24 h

later. Similar observations were obtained with a train of

DR stimuli (Fig. 2B). In analogy with previous studies

(Taccola et al., 2008; Margaryan et al., 2009, 2010;

Nasrabady et al., 2011a,b, 2012), fictive locomotion could

consistently be detected in sham (untreated) preparations

kept for 24 h in vitro (see example in the left panel of

Fig. 2C). We, therefore, concluded that this protocol of

prolonged riluzole application did not allow us investigat-

ing the functional neuroprotection by this drug.

Since kainate-evoked damage chiefly occurs within

the first 2–3 h after its washout (Kuzhandaivel et al.,

2010; Nasrabady et al., 2011a), we thought that neuro-

protection by riluzole might be targeted to this crucial time

period as long as the action of riluzole could be washed

out by 24 h and fictive locomotion observed again. Hence,

we first explored if 3-h riluzole application per se could

allow us to observe functional activity 24 h later. The peak

amplitude of the polysynaptic responses to DR stimulation

of sham (n= 6) or 3-h riluzole-treated (n= 3) prepara-

tions was not significantly different (P= 0.17) as shown

in Fig. 2D. Likewise, 24 h later, the reflex area was

unchanged after 3-h riluzole administration (2169.35 ±

800.94 mV.ms vs. 2072.71 ± 815.59 mV.ms, respec-

tively; P= 0.38). Period (4.45 ± 1.10 vs. 4.59 ± 1.23

s), CV (0.12 ± 0.06 vs. 0.10 ± 0.04), and amplitude of

fictive locomotor cycles (0.08 ± 0.06 vs. 0.11 ± 0.05 mV;

n= 4) were also unchanged (see example in Fig. 2C).

As shown in Fig. 2E, cumulative depolarization amplitude

and area elicited by a train of DR stimuli (P2 th, 30, 2 Hz)

were similar in sham and after 3-h riluzole

(0.54 ± 0.27 mV sham vs. 0.57 ± 0.26 mV riluzole;

14,677 ± 4,165 mV.ms sham vs. 14,262 ± 4857 mV.ms

riluzole, n= 3), although the number of oscillations

elicited by the train was smaller than for sham

preparations (3.6 ± 0.5 vs. 5.1 ± 0.8). These data,

therefore, indicated that the strong depressant effect of

3 h application of riluzole was reversible 24 h later.

Effect of riluzole on network activity after kainate
application

To explore any functional neuroprotection by riluzole, we

tested if, using the time protocol described above, this

agent could contrast the block of locomotor network func-

tion by 0.05 mM kainate, namely a concentration at

threshold for irreversible loss of this pattern (Mazzone

et al., 2010; Nasrabady et al., 2011b).

Table 2 shows that application of riluzole (5 lM;

n= 6) for 3 h after kainate washout, did not significantly

improve, 24 h later, the peak amplitude and area of the

DR reflex in comparison with the group treated with kai-

nate alone (0.05 mM). Fictive locomotion (induced chem-

ically or electrically) was never present in any preparation

treated with riluzole after kainate. Nonetheless, as indi-

cated in Table 2, spinal networks did retain their intrinsic

rhythmicity since disinhibited bursting after kainate alone

was similar to the value after kainate and riluzole

Fig. 1. Characterization of riluzole effects on kainate-evoked damage

24 h later. (A) Upper panels show representative micrographs of cell

nuclei stained with DAPI in the dorsal horn of sham (left), 0.1 mM

kainate (KA; middle) or kainate followed by riluzole (Rlz; 5 lM; right).

Scale bar = 50 lm. (B) Graph of the percent occurrence of pyknotic

nuclei detected in each ROI (dorsal, central, ventral and white matter)

of the spinal cord, for sham, Rlz alone, or KA alone (0.05 or 0.1 mM).

For each condition, pyknosis was normalized with respect to the total

number of DAPI-sensitive cells (n= 6 spinal cords, 0.05 or 0.1 mM

KA vs. sham: ⁄P< 0.01 and ⁄⁄P< 0.001). (C) Graph showing the

average percent occurrence of pyknosis 24 h after washout of

0.1 mM KA followed by Rlz (5 or 15 lM). Average data from 3 to 6

spinal cords; comparisons were vs. 0.1 mM KA (⁄P< 0.01,
⁄⁄P< 0.001, ⁄⁄⁄P< 0.05).
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although, in the latter case, the rhythm had become more

regular.

As previous studies had shown the positive effect of

pre or co-application of riluzole on chemically evoked neu-

ronal damage (Chang et al., 2010; Verhave et al., 2012),

we tested, on a further group of spinal cords (n= 3),

co-application of kainate (0.05 mM) and riluzole (5 lM)

followed by 3 h application of riluzole alone. Despite this

protocol, fictive locomotion was never observed 24 h

later. In addition, no significant improvement in reflex

responses was observed (Table 2).

Cell survival after distinct riluzole administration
protocols

Despite the disappointing electrophysiological outcome at

24 h, we checked whether the two application protocols,

namely 3 h riluzole after kainate or kainate together with

riluzole (the latter continued for 3 more h), could spare a

different number of cells, perhaps yielding a number of

surviving cells not far from the minimum membership of

the locomotor network (Kuzhandaivel et al., 2011). In

Fig. 3A, the left hand set of histograms shows that, in

each ROI, application of riluzole for 3 h did not provide

neuroprotection after kainate treatment (0.05 mM) when

data are compared with those in Fig. 1B. Even when the

two drugs were co-applied, there was no significant fall

in pyknosis (Fig. 3A). Similar results were obtained with

0.1 mM kainate and delayed or concurrent application of

riluzole (Fig. 3B). Only in the ventral horn ROI, a small

decrement in the number of pyknotic nuclei was detected

(Fig. 3B) with respect to 0.1 mM kainate alone (Fig. 1B).

To quantify neuronal numbers, we stained neurons

with an antibody against the nuclear marker NeuN as

exemplified for the dorsal horn (Fig. 3C). As previously

reported by Mazzone et al. (2010) and in accordance with

the current pyknosis data, kainate (0.05 or 0.1 mM) was

primarily toxic to dorsal horn neurons, while riluzole per

se had no neurotoxic action (Fig. 3D). Fig. 3E, F shows

that riluzole could not significantly protect neurons even

Fig. 2. Effect of riluzole per se on electrophysiological properties of spinal cords. (A) Example of fictive locomotion induced by application of NMDA

(4 lM) plus 5-HT (10 lM) in control (CTR, left) and after 24-h riluzole application (right). Twenty-four-hour riluzole application and washout with

Krebs solution for 1–2 h did not allow recovery of fictive locomotion. (B) Example of cumulative depolarization and oscillatory activity evoked by train

of DR stimuli in control (left) and after 24-h riluzole application (right). (C) Example of fictive locomotion (induced by application of NMDA plus 5-HT)

observed after 24 h in vitro in a sham preparation (left) or in preparation treated with riluzole for 3 h the day before (right). Fictive locomotion was

present with similar characteristics. (D) Example of polysynaptic responses from sham (top-left) or riluzole-treated spinal cord for 3 h (bottom-left).

Histograms show similar peak amplitudes of these two groups (n= 6 or 3, respectively). (E) Example of cumulative depolarization and oscillatory

activity evoked by train of DR stimuli in sham (left) or 3-h riluzole-treated spinal cord and recorded on the second day in vitro.

Table 2. Effect of riluzole applied together with (or following) kainate on electrophysiological network activity

Peak amplitude of the DR

reflex (mV)

Area of the DR reflex

(mV.ms)

Period of disinhibited

bursting (s)

CV of disinhibited

bursting

Sham (n= 6) 0.73 ± 0.39 2169 ± 800 45 ± 14 0.44 ± 0.15

Kainate 0.05 mM (n= 5) 0.40 ± 0.17 320 ± 255 93 ± 79 0.44 ± 1.92

Kainate 0.05 mM/Rlz 5 lM (n= 6) 0.55 ± 0.37 332 ± 267 90 ± 41 0.19 ± 0.05*

Kainate 0.05 mM+ Rlz 5 lM
co-applied (n= 3)

0.46 ± 0.36 120 ± 55 76 ± 37 0.41 ± 0.29

* Indicates the significant difference (P = 0.004) between CV of the group treated with Rlz after kainate and group treated with kainate. All comparisons are made between

kainate alone and the groups treated with riluzole (Rlz).
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when it was co-applied with 0.05 mM kainate (in compar-

ison with data shown in Fig. 3D).

Globally, these results indicated that a relatively short

application (or co-application) of riluzole could not ade-

quately protect spinal neurons, in full accordance with

the electrophysiological data. We, therefore, enquired

whether a long-lasting (24-h) continuous application of

riluzole might prove to be more histologically protective

even if it was observed to strongly inhibit network activity.

After all, functionally depressed neurons might be able to

recover later, beyond the experimental survival in vitro.
When riluzole was continuously applied for 24 h after

kainate (0.1 mM), there was a significant, albeit slightly

higher number of dorsal (168± 3) and central (149± 2)

Fig. 3. Pyknotic nuclei and neuronal survival after distinct riluzole administration protocols. (A) Histograms showing average percent of pyknotic

cells in four ROIs after 0.05 mM KA (1-h application) followed by Rlz (5 lM) for 3 h (KA/Rlz) or with Rlz applied together with KA (KA + Rlz). (B)

Similar protocols as detailed in A with larger (0.1 mM) KA application. Comparisons of data vs. 0.1 mM KA alone (Fig. 1B) yielded ⁄P< 0.05 for the

ventral ROI (n= 3 spinal cords). (C) Representative images (dorsal horn) showing NeuN-stained positive cells of sham, 0.1 mM KA alone, or with

different Rlz protocols (0.1 mM KA/Rlz for 24 h, 0.1 mM KA/Rlz for 3 h, or 0.1 mM KA+Rlz co-applied). In each case, kainate was applied for 1 h

only. Scale bar = 100 lm. (D) Plots showing average number of NeuN-positive neurons in the gray matter (three ROIs analyzed) in control

conditions (sham or Rlz alone) or after washout of KA (0.05 or 0.1 mM; 1 h application). ⁄P< 0.001 for 0.05 (n= 3) or 0.1 mM KA (n= 6) vs. sham.

(E, F) summarize quantitative data for neuronal numbers 24 h after 0.05 or 0.1 mM KA (1 application) followed by Rlz 5 lM (for 3 h; KA/Rlz) or

applied together with riluzole (KA+Rlz).
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neurons vs. those after kainate alone (133 ± 2 and

142 ± 4, respectively), although no difference was

observed for the ventral ROI data (172 ± 2 and

170 ± 5, respectively; n= 6 spinal cords).

In keeping with these data, motoneurons were highly

vulnerable to kainate as surviving SMI 32 IR cells

amounted to about 1/3rd of their population following

0.05 or 0.1 mM kainate (Fig. 4A, B) without any significant

improvement after riluzole administration regardless of

the protocol used (Fig. 4A, C).

DISCUSSION

The principal findings of the present report are that, de-

spite the small sample of spinal cord preparations tested,

riluzole could not adequately contrast the excitotoxicity

evoked by moderate concentrations of kainate and that

no functional recovery of locomotor network activity was

obtained 24 h later. The poor histological and functional

outcome was similar when riluzole was applied for 3 or

24 h after the excitotoxic stimulation. Furthermore, the

present data indicated that the long-lasting neurodepres-

sant effect of riluzole could cloud the interpretation of any

functional protection by this drug.

Riluzole effects on network histology

Riluzole is a rare example of a drug clinically licensed

to treat ALS motoneuron degeneration, even if clinical

benefits are rather small and time-limited. A large number

of studies that have been performed to clarify if riluzole

could combat various types of neurodegeneration, have

produced mixed results depending on the models used

in vivo (Verhave et al., 2012) or in vitro (Rammes et al.,

2008; Chang et al., 2010; Mazzone and Nistri, 2011).

Using a standard protocol for inducing excitotoxicity

with transient application of kainate (Taccola et al.,

2008) followed by 24 h riluzole administration, we

observed a very limited fall in pyknosis and modest

neuronal preservation. Numbers of surviving neurons

did not closely match the number of pyknotic cells in the

gray matter because there is a region-specific disparity

in the ratio of neurons to the global cell number (Cifra

et al., 2011a). Nonetheless, any beneficial action by

riluzole taken as either lessened pyknosis or larger neuro-

nal numbers was clearly modest. It is noteworthy that, in

terms of cell protection, there was little difference between

the outcome following either 24 or 3 h riluzole application

(see Figs. 1C and 3B). This observation suggests that the

administration timeframe of the present study was not

critical to determine the extent of cell survival and could

be exploited for functional studies as explained below.

With this continuous drug administration schedule it

was impossible to observe fictive locomotion, which was

persistently inhibited by riluzole per se, and whose action

could not be washed out within the time frame of the

present experiments. We cannot exclude that the small

Fig. 4. Riluzole application did not protect motoneurons after excitotoxic insult. (A) Micrographs show examples of motoneurons (stained with SMI

32 antibody) in the ventral ROI in sham (left), after KA (0.1 mM; middle) or KA followed by Rlz applied for 24 h (right). The arrows (top) show two

insets at a higher magnification of SMI 32 positive cells. Scale bar = 100 lm. (B) Histograms showing total number of SMI 32-immunoreactive cells

in ventral ROI 24 h after in sham, Rlz alone or KA (0.05 or 0.1 mM for 1 h) protocols. ⁄⁄P< 0.05 for 0.05 (n= 3) or ⁄P< 0.01 for 0.1 mM KA

(n= 6). (C) Number of SMI 32 positive cells after KA (0.05 or 0.1 mM) followed by Rlz application for 3 h (KA/Rlz) or after the co-application

treatment (KA+Rlz). Data are not different from results with kainate alone in panel B.
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neuroprotection by riluzole might bring some functional

benefit at much later times after riluzole washout: this

possibility will require the use of an experimental prepara-

tion with more prolonged survival in vitro, a goal currently

not available. Nonetheless, it seems unlikely that this

slight histological improvement produced by riluzole might

subsequently restore locomotor network output because

the number of surviving neurons (including motoneurons)

remained significantly lower than the one constituting the

minimal network membership to express locomotor cycles

(Kuzhandaivel et al., 2011).

The histological protection by riluzole was compara-

tively less than the result obtained with organotypic spinal

slices (Mazzone and Nistri, 2011); we suspect that the

drug penetration through the thicker tissue of the isolated

spinal cord might have been relatively slower and, thus,

less effective to contrast kainate toxicity. In support of this

notion, we observed a delayed depression of fictive loco-

motion by riluzole whose effect on spinal synaptic trans-

mission is typically slow (Tazerart et al., 2007). Indeed,

slightly better histological neuroprotection was detected

when riluzole was co-applied with kainate. This protocol

is, of course, a very unsuitable model of human SCI treat-

ment which, even under the most favorable conditions,

starts with some delay following injury. Nonetheless, this

observation suggests the desirability of implementing a

neuroprotective strategy to combat excitotoxicity soon

after the primary insult.

Electrophysiology of locomotor networks in the
presence of riluzole

As the peak plasma concentration of riluzole in man is in

the low micromolar range (Groeneveld et al., 2001;

Abbara et al., 2011; Bellingham, 2011), our experiments

mainly used 5 lM of this agent (trebling its concentration

actually produced no further benefit). When this concen-

tration was applied for 3 h, good recovery of fictive loco-

motion and spinal reflexes was observed 24 h later.

Since riluzole is a liposoluble compound, its pharmacoki-

netic properties probably determined its ability to perme-

ate through cell membranes and its slow elimination.

Nevertheless, as the excitotoxic action by kainate strongly

develops during the first 2–3 h after its wash, we tested

whether 3 h application of riluzole could be sufficient

(via inhibition of glutamate release and of the persistent

sodium current; see reviews by Bellingham, 2011; Cifra

et al., 2012b) to contrast the deleterious effect of kainate.

This protocol failed to restore fictive locomotion and did

not improve synaptic reflexes, or disinhibited bursting.

The only significant functional gain was the improved reg-

ularity of these bursts, a result suggesting a modest

enhancement in network spread of excitation, far away

from a functional recovery. This observation accords with

the reported improvement in disinhibited bursting by riluz-

ole application to organotypic slice cultures (Yvon et al.,

2007; Czarnecki et al., 2008), and suggests that the riluz-

ole ability to block the persistent sodium current (Theiss

et al., 2007) and, therefore, the kainate-mediated neuro-

nal excitation spreading through the spinal networks,

was presumably inadequate to prevent excitotoxic dam-

age. Indeed, we have recently observed that 24 h intense

electrical discharges have no negative impact on locomo-

tor network function (Nasrabady et al., 2012), implying

that neuronal damage was not closely related to abnormal

firing activity. It seems likely that, in the rat spinal cord

in vitro, excitotoxic death was caused by the direct action

of kainate on neurons.

CONCLUSIONS

Even a moderate excitotoxic challenge evoked by kainate

had a profound negative impact on network histology and

locomotor-like patterns of the rat spinal cord in vitro.
These phenomena could not be adequately contrasted

by riluzole, despite various drug regimen protocols. A

clear outcome of the present studies is the demonstration

that even small neuronal losses have very deleterious

consequences on locomotor network function. Our cur-

rent results differ from a previous report on brainstem

motoneurons that could be well protected by riluzole

(Cifra et al., 2011) and raise the possibility of cell-specific

vulnerability to an excitotoxic challenge. In support of this

notion are the clinical observations that, although riluzole

improves ALS survival by a short period of time only,

bulbar-onset patients appear to particularly benefit from

riluzole (Traynor et al., 2003; Zoccolella et al., 2007). This

differential therapeutic effect of riluzole on ALS could not

be attributed to disease stage and might be related to

intrinsic diversity in the glutamate handling process

between brainstem and spinal regions (Zoccolella et al.,

2007).

From recent data on potential neuroprotection of

spinal networks in vitro, it is apparent that excitotoxicity

is rather resistant to various drugs with distinct modes

of action. Even block of ionotropic glutamate receptors

may be insufficient to contrast kainate-evoked excitotoxic-

ity (Margaryan et al., 2010). Partial histological and func-

tional protection is obtainable with PJ-34, a drug which

inhibits lethal intracellular signaling associated with cell

death (Nasrabady et al., 2011b) and that also, paradoxi-

cally, inhibits glutamate uptake (Nasrabady et al., 2012).

One hypothesis is that excitotoxic damage develops so

rapidly that contrasting it is a hard task, especially when

dealing with drugs that have slow pharmacokinetic prop-

erties or are administered with a certain delay. Perhaps

a more attractive possibility would be to pharmacologi-

cally boost intrinsic autoregulatory mechanisms that

may constrain excitotoxicity via metabotropic glutamate

receptor activation (Niswender and Conn, 2010) or

release of endocannabinoids (Alger and Kim, 2011).
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treatment is able to rescue injured rat spinal motoneurons.

Neuroscience 144:431–438.

Norenberg MD, Smith J, Marcillo A (2004) The pathology of human

spinal cord injury: defining the problems. J Neurotrauma

21:429–440.

Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in

secondary mechanisms of spinal cord injury: a review with an

emphasis on the implications for white matter degeneration. J

Neurotrauma 21:754–774.
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Discussion 

 

 The principal findings of this PhD project provide new information about the downstream 

pathways activated by excitotoxic injury in the neonatal rat isolated spinal cord. The in vitro 

model of excitotoxic spinal cord injury led us to test the potential neuroprotective effect of 

PARP-1 inhibitors and different pharmacological agents which are supposed to control the 

hyper-excitation state. Although, the in vitro spinal cord model has some limitations because 

of tissue immaturity (Cifra et al., 2012) and lack of vascular circulation supply, it is a useful 

model to study the basic mechanisms controlling CPG rhythmogenesis and looking at the 

network membership involved in locomotor program generation. 

The details of our novel results are discussed in the attached papers; however, the following 

session summarizes the main findings of the present research project and tries to address the 

similarities and differences with the findings of other studies. 
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1. Functional deficits due to excitotoxicity 

 

 Kainate is a potent non-degradable analog of glutamate which has strong excitatory effect 

on spinal neurons (Constanti and Nistri, 1976, Farooqui et al., 2001, Wang et al., 2005). 

Electrophysiological recordings suggested that there was a critical threshold for 

excitotoxicity mediated by kainate which could fully suppress fictive locomotion. Using 10 

µM kainate resulted in typical fictive locomotion (induced by NMDA plus 5-HT) 24 h after 

the insult although with smaller amplitude and slower periodicity than sham preparations. 

Higher concentrations (≥50 µM) of kainate produced consistent disappearance of fictive 

locomotion. These data show the dose-related excitotoxic effect of kainate and are in 

accordance with previous studies which have shown that neonatal rat spinal cord can tolerate 

concentration of kainate below 10 µM in terms of locomotor cycle activity (Cazalets et al., 

1992). Kainate application induced a dose-dependent ventral root depolarization in all cases. 

When fictive locomotion had irreversibly disappeared (50 µM), VR depolarization was 

almost half of the maximum depolarization induced by 1 mM kainate. However, the basic 

functional activity of spinal cord was still present on the second day when induced by 

application of strychnine and bicuculline. Burst amplitude was the only factor which differed 

after different kainate concentrations (the lowest with the highest kainate concentration). 

However, disinhibited bursting had slower, irregular periodicity even by using 10 µM kainate 

in comparison with the one normally observed in control (Taccola et al., 2008, Margaryan et 

al., 2010). 

 Excitotoxicity also affected the ability of spinal cord to integrate the afferent inputs. 

Application of 1 mM kainate extensively decreased the peak amplitude of mono and 

polysynaptic reflex response to DR electrical stimulation. Increasing the intensity of the 

stimulus failed to increase the amplitude values to the values closer to sham preparations 

after 24 h. Similar to previous studies, induction of fictive locomotion with trains of electrical 

pulses also failed (Taccola et al., 2008). Even with decreasing kainate concentration to 50 

µM, the reflex response amplitude was much smaller than sham preparations. Fictive 

locomotion could not be elicited by trains of DR pulses. 
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2. Structural deficits due to excitotoxicity 

 

 As previous studies have described, in the model of in vitro spinal cord, excitotoxic insult 

appears with pyknotic nuclei which is a term used for cells undergoing nuclei chromatin 

condensation (Tacclola et al., 2008, Margaryan et al, 2009, Kuzhandaivel et al., 2010). In 

present project (in collaboration with Dr. Kuzhandaivel), we observed a dose-dependent 

increase in pyknosis appearance in the dorsal region of grey matter. It was less intense in the 

central and ventral grey matter. The same was detected for ventrolateral white matter. These 

data were similar to the data obtained with this model previously reported by our group 

(Tacclola et al., 2008, Margaryan et al, 2009, Kuzhandaivel et al., 2010). Glial cells in grey 

and white matter did not develop pyknosis in first 24 h (Kuzhandaivel et al., 2010), although 

they have been reported to be sensitive to excitotoxicity (McDonald et al., 1998, Deng et al., 

2004). 

 The total number of neurons stained by NeuN (neuronal nucleus marker) was counted in 

three regions of grey matter. Twenty four hours after kainate application (≥50 µM; 1 h) 

NeuN positive cells were significantly decreased in dorsal and central grey matter in 

comparison with sham. In accordance with the data obtained from DAPI staining (pyknosis), 

global number of neurons was less severely decreased by kainate in ventral horn. The values 

of surviving neurons grew as the kainate concentration was smaller and with 50µM kainate, 

the neuronal counts in the ventral horn were similar to sham preparations. Our data confirm 

the result of previous studies indicating the presence of the highest density of kainate 

receptors in the dorsal grey matter (Tolle et al., 1993). 

 Motoneurons which make up a relatively small number of cells and are located in the 

ventral horn of the spinal cord are highly sensitive to excitotoxic damage (Taccola et al., 

2010). They lack certain calcium binding proteins and remain vulnerable to the consequences 

of calcium overload (Dekkers et al., 2004). Their labeling with an antibody against 

nonphosphorylated form of motoneuronal cytoplasmic neurofilament (SMI 32) showed 

drastical decrease in motoneuron number after 24 h by using different concentrations of 

kainate. Our data were in analogy with those previously obtained with 1 mM kainate 

(Taccola et al., 2008).  
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 Using spinal organotypic cultures (experiments performed by my colleague Dr. Mazzone) 

not only confirmed the destructive effect of excitotoxicity on motoneurons and neuronal 

survival, but also provided the demonstration of the time-related rise in the pyknosis. The 

result indicated a delayed onset of excitotoxicity with spinal cell loss dependent on kainate 

concentration.  

 

 

3.  Hyperactivity of PARP-1 due to excitotoxicity 

 

 The newly discovered cell death pathway “Parthanatos” (Eliasson et al., 1997, Endres et 

al., 1997, Andrabi et al., 2006) is thought to be related to hyperactivation of PARP-1 

(Kuzhandaivel et al., 2010). PARP-1 is mentioned as a major cause of neuronal damage after 

spinal cord injury (Scott et al., 2004, Genovese et al., 2005, Wu et al., 2009). Measuring 

PARP-1 product (PAR) led us to estimate the enzyme activity after excitotoxic insult. Four 

hours after 1 mM kainate washout a large increment in PAR level was detected which was 

approximately three times higher than in sham preparations. The lower concentration of 

kainate (50 µM) evoked smaller level of PAR. Apoptosis inducing factor (AIF) was also 

measured as the PARP-1 translocation effector. As it is translocated from stressed 

mitochondria to the cell nucleus (Li et al., 2010), we observed that the mature form of AIF 

translocated to nucleus in accordance with previous studies following PARP-1 activation 

(Wang et al., 2009). We demonstrated that kainate could make PARP-1 hyper-activated 

which was indicated by the strong tissue PAR production and this phenomenon was 

significantly blocked by PARP-1 inhibitor PJ-34. 

 

 

4. Poor outcome after PHE application 

 

 Irreversible loss of fictive locomotion (by application of 1 mM kainate) was not contrasted 

in preparations treated with PHE which was started after kainate washout or 30 min after 

kainate application. The mono and polysynaptic response values were also the same as in the 

group injured with kainate. The period and amplitude of disinhibited bursting remained 
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unchanged in the group treated with PHE. However, the neuronal loss (stained by DAPI) in 

the most sensitive region to excitotoxicity (dorsal horn) induced by kainate seemed to be 

decreased and the total number of neurons (NeuN staining positive cells) was improved after 

PHE application. In general, we observed that, although there was a significant 

neuroprotection in terms of histology, it could not block the functional insult to CPG and 

could not contrast the excitotoxic damage. We assume that the poor functional outcome of 

PHE was due to the early hyperactivity of PARP-1 which is likely to start even before the 

earliest application of the drug. In addition, PHE is a relatively non-selective blocker of 

PARP-1 (Banasik et al., 1992, Li et al., 2001). Therefore, we moved forward to use a more 

selective inhibitor of PARP-1, namely PJ-34.  

 

 

5. Neuroprotective effects of PJ-34 

 

5.1. PJ-34 effectiveness 

 

 Our experiments (performed by Dr. Kuzhandaivel) showed that kainate evoked PARP-1 

hyperactivation was best inhibited by 60 µM PJ-34 application. Reduced PAR levels were 

the evidence for the effectiveness of PJ-34 against excitotoxic effect of kainate (50 µM or 

1mM). Enhanced AIF translocation induced by 1 mM kainate was also significantly reduced 

by PJ-34. When excitotoxicity was moderate (50 µM kainate), AIF translocation was 

completely suppressed by PJ-34. Thus, our results confirmed the previous studies data on 

cultures indicating that PAR can be fully suppressed by application of PJ-34 (Mazzone and 

Nistri, 2011b).  

 

 

5.2.  Functional effect of PJ-34 

 

 Synaptic transmission, cumulative depolarization, fictive locomotion and disinhibited 

bursting were checked in order to investigate the functional effectiveness of PJ-34. The very 

dramatic decrease of polysynaptic response 24 h after strong excitotoxic injury (1 mM 
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kainate) was partly counteracted by PJ-34 in terms of amplitude and area. Much less 

successful was the protection of cumulative depolarization induced by train of stimuli. 

Despite the fact that integration of afferent inputs was not retained, disinhibited bursting was 

expressed with larger amplitude in comparison with 1 mM kainate alone. However, the burst 

periodicity remained unchanged.  

 The weaker excitotoxic insult (50 µM kainate) produced less spinal cord damage than the 

strong one and the electrophysiological deficit was smaller than the one produced by 1 mM 

kainate. Therefore, it was more efficaciously counteracted by PJ-34. The response amplitude 

and area of polysynaptic response were both significantly enhanced by PJ-34 when compared 

with those of kainate treated preparations. Despite the sparse superimposed alternating 

oscillations emerging in preparations treated with 24 h PJ-34, the cumulative depolarization 

value was not improved. It could be due to the damage of dorsal horn cells where 

polysynaptic sensory inputs are integrated into locomotor activity (Baranauskas and Nistri, 

1998). Thus, the locomotor-like patterns produced by sensory afferent stimulation were very 

sensitive to excitotoxic damage (Taccola et al., 2008), even by a small dose of kainate, and 

could not be fully restored by PJ-34.  

 Interestingly, the combination of NMDA and 5-HT was able to generate fictive locomotion 

in more than half of the preparations 24 h after PJ-34 application. The neuroprotection 

towards chemically-induced fictive locomotion was observed in 6 out of 11 preparations. 

However, in such preparations the cycle period was significantly slower than sham values.  

 

 

5.3. Histological effect of PJ-34 

 

 In five preparations which did not show fictive locomotion, higher values of pyknosis 

(DAPI staining) were observed in dorsal and central regions in comparison with those (6 

preparations) retaining fictive locomotion. NeuN staining demonstrated that neuronal 

population of the dorsal horn was better preserved in preparations retaining fictive 

locomotion. PJ-34 systematically protected motoneuron numbers from kainate neurotoxicity. 

It was notable that the application of PJ-34 after 100 or 50 µM kainate yielded similar 

motoneuron numbers, regardless of ability to express fictive locomotion. These data implied 
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that protecting motoneurons was important, but, when histological evidence for excitotoxic 

damage was quite small, the functional outcome in terms of fictive locomotion should have 

depended on the preservation of other cell types other than motoneurons.  

 

 

5.4. Effect of PJ-34 on network excitability 

 

 In the course of our experiments, the observation of strong increase in network discharges 

during PJ-34 application led us to study the pharmacological effect of PJ-34 per se. It was 

also important to understand whether this drug could have some unexpected effects on 

neurons and glia.  

 Neurochemical data (performed by Dr. Milanese, University of Genoa) demonstrated that 

PJ-34 is a significant blocker of glutamate uptake with no action on GABA transport. Using 

different concentration of PJ-34 showed that, since this effect was also detected at 

micromolar PJ-34 concentrations, this phenomenon might occur with pharmacological doses 

rather than toxic doses of the drug.  

 The earliest effect of PJ-34 appeared with enhancement of glutamate-mediated 

monosynaptic reflexes. It demonstrated that glutamate uptake was an important process to 

regulate excitatory transmission. Weng et al. (2006) also reported that glutamate transporters 

regulate baseline excitability and responses of dorsal horn neurons to peripheral stimulation, 

and suggested that dysfunction of glutamate transporters may contribute to certain types of 

pathological pain (Weng et al., 2006). 

Polysynaptic reflexes remained unchanged perhaps because of their heterogeneous 

presynaptic origin. On the other hand, the smaller amplitude of cumulative depolarization 

was probably due to steadily-depolarized neurons which were still capable of generating a 

standard series of alternating oscillations. Glutamate uptake block by PJ-34 was relatively 

rapid; however, the intensification of spontaneous activity recorded from VRs was gradual. 

After 24 h, despite sustained washout of PJ-34, the strong discharges continued suggesting 

that spinal circuits had become hyper-excitable. 

 While spontaneous events could still emerge in the interval between electrically stimulated 

bursts in the presence of GABA and glycine, blocking the discharges by APV and CNQX 



 

96 
 

demonstrated that they were fully dependent on ionotropic glutamate receptor activation. 

This is in accordance with the neuronal excitability induced by spillover of extracellular 

glutamate due to impaired glutamate uptake in the rat spinal dorsal horn (Nie and Weng, 

2009). We propose that application of PJ-34 biased spinal network activity into excitation 

over inhibition as shown by increased random discharges dependent on glutamatergic 

transmission. However, evoked hyperexcitability of spinal cord did not exert a deleterious 

action on fictive locomotion nor any loss of neurons or glia in the spinal cord. Although 

excitotoxic damage elicited by impaired glutamate uptake is thought to be a major process to 

damage neurons (Kim et al., 2011) and in particular motoneurons (Foran and Trotti, 2009), 

the structural resistance to build-up of extracellular glutamate in our model can be explained 

by activation of compensatory process preventing from toxicity such as activation of 

metabotropic glutamate receptors (proposed for brain network; Huang et al., 2004, Hartmann 

et al., 2008, Potier et al., 2010). Metabotropic glutamate receptors are widely expressed in the 

rat spinal cord where they can regulate synaptic transmission and reflexes (Marchetti et al., 

2003, Nistri et al., 2006). In addition, it is shown that higher glutamatergic signaling in the 

rat hippocampus induces  release of endocannabinoids from postsynaptic cells to retrogradely 

depress excess neurotransmitter release (El Manira et al., 2008, Hofmann et al., 2008, Nahir 

et al., 2010) which can be another explanation for non-toxic effect of moderate block of 

glutamate transport in our experiments. Result of another study (Tovar et al., 2009) supports 

our result by reporting that prolonged elevation of extracellular glutamate due to its transport 

blockade in vivo is safe for, motoneurons, while direct activation of glutamate receptors is 

neurotoxic.  

 

 

6. Poor functional outcome of riluzole 

  

 Since our goal was to protect the locomotor network against excitotoxicity, we chose 

riluzole which can attenuate the presynaptic glutamate release and can also reduce persistent 

sodium current (Bellingham, 2011). The positive results obtain form using hypoglossal 

motoneurons (Cifra et al., 2011) and injured motoneurons after ventral root avulsion 

(Nogradi et al., 2007) led us to try this agent with our experimental model.  
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 Twenty four hours application of riluzole (5 µM) after kainate washout did not help 

locomotor activity restoration. Fictive locomotion never returned and VR reflex response 

amplitude remained very small. Since riluzole depresses presynaptic glutamate release 

(beside the block of voltage-dependent sodium channels), we assumed that the long-lasting 

riluzole application had depressed synaptic reflexes regardless of kainate evoked toxicity. 

Thus, we tested the effect of riluzole per se on network activity. Fictive locomotion was 

disrupted after riluzole application 24 h which confirmed the result of another study using 10 

µM riluzole (Tazerart et al., 2007). However, when the time course of riluzole application 

per se was decreased to 3 h, after 24 h washout, fictive locomotion was observed with the 

same characteristics as sham.  

 Inducing moderate excitotoxic insult (50 µM kainate) followed by 3 h riluzole application 

showed that, except improvement in the regularity of disinhibited busrting (in accordance 

with other studies; (Yvon et al., 2007, Czarnecki et al., 2008), other network activities 

remained unchanged in comparison with the group injured by kainate and there was just a 

small difference between the histological outcome following 24 or 3 h riluzole application 

(histological experiment performed by Dr. Samano).  

 Therefore, in the neonatal isolated spinal cord, riluzole could not protect neuronal networks 

from excitotoxicity evoked by moderate concentrations of kainate, even if there are several 

studies indicating the positive effect of riluzole in combating various types of 

neurodegeneration (Rammes et al., 2008, Chang et al., 2010, Mazzone and Nistri, 2011a, 

Verhave et al., 2012). Furthermore, the long-lasting neurodepressant effect of riluzole could 

obscure any functional neuroprotection of this drug in our model. One of the possible reasons 

for the different histological result in our model and the good result in organotypic culture of 

the spinal cord (Mazzone and Nistri, 2011a) is that the drug penetration into the entire tissues 

is slower than in culture and results in less effectiveness of riluzole. In fact in our model, the 

functional depression due to riluzole was delayed in comparison with previous studies 

(Tazerart et al., 2007). 
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Conclusions 

 

 Even a moderate excitotoxic insult can affect strongly the spinal locomotor network in 

terms of function and histology. The preservation of locomotor function after excitotoxic 

challenge should be directed toward identified biochemical targets which play the important 

role in the cell death mechanisms. On the other hand, the timing of neuroprotective agent 

application also plays a very important role in controlling the damage. Survival of central and 

dorsal grey matter is essential as much as motoneuron protection in order to achieve the goal 

of locomotor function preservation. The prolonged electrical discharges induced by changes 

in synaptic glutamate reuptake can result in a very strong network discharges which 

surprisingly did not have any neurotoxic consequence at least for 24 h on neurons and glia in 

neonatal rat isolated spinal cord.  Thus, circuit damage in the spinal cord is probably caused 

by deranged intracellular signaling rather than simple over-excitation for a long time. 
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