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Preface

Despite the notorious achievements of General Relativity, Einstein’s theory is under

scrutiny due to the lack of a suitable scheme to quantize gravity as well as for the

puzzling features it shows both at strong (early universe, black holes) and weak

(Dark Energy problem) regime.

The proposal to extend the classical theory of gravity harbours the intriguing

goals to cure some of these inconsistencies.

A large class of modifications of General Relativity (GR) has been widely ex-

plored in the past; in principle, the main motivation for such early efforts was to solve

the problem of non-renormalizability by providing a new framework in which (thanks

to higher order corrections in the gravitational action) gravity could be quantized.

The analysis of the cosmological implications of such models also showed a number

of peculiar features that justified further developments. The ultraviolet modifica-

tions that naturally arise at high energy in the context of quantum gravity have

been taken into account for their impact on the phenomenology of the very early

universe. Furthermore, it was recently argued that alternative infrared extensions

of the Einstein-Hilbert (EH) action could be invoked to presumably alleviate the

Dark Sector problem.

Bootstrapped by these considerations on the nature of a quantum gravity ap-

proach, the research for phenomenological imprints unveiling deviations from GR

(plus a cosmological constant term), has recently been the object of much interest

but has also triggered an intense debate. Signatures of these departures from GR

have been searched both in the late and early universe phenomenology, as well as in

the observations of compact objects in astrophysics (black holes and neutron stars).

The huge amount of data already collected from ongoing experiments have stim-

ulated a wealth of new interesting speculations. Promising suggestions to modify

v



vi PREFACE

the gravitational action span from the generalization of EH action (by including fur-

ther non-trivial terms obtained from purely geometrical quantities) to the addition

of some extra-fields (coupled more or less exotically to the geometry).

If we really are going through the dawn of precision gravity, in few years (world

financial crisis permitting) we should be effectively able to restrict the selection of

such viable alternative candidates to GR.

To reach this goal, once the theoretical aspects of such models have been devel-

oped, we have the pressing need to test them against the experimental results.

The efforts made in the field of experimental gravity cover a wide gamut of pos-

sibilities, exploiting a huge amount of different observations at different scale, from

the cosmological realm (CMB, BAO, SNe, GRB, galaxy clusters) to smaller galac-

tic scales (rotation curves of galaxies), from solar system experiments to laboratory

based research about the unusual matter content of the universe.

To definitely link the theoretical descriptions with the data, a general frame-

work, as much universal (namely model-independent) as possible, is needed; such

parametrization should be able to give an unbiased interpretation to the collected

data in terms of a set of parameters, whose analytic form depends, for each case, on

the specific structure of the model in analysis. The parametrized post-Newtonian

formalism and cosmography, for example, provide two different ways (respectively

at small and cosmological scale) to implement this approach.

This thesis is devoted to investigate particular classes of alternative theories of

gravitation, enlightening their viability from a theoretical perspective and addressing

the specific observational imprints which might be able to support or falsify such

models.
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Chapter 1

Introduction

The sphinx of contemporary cosmology undoubtedly sets up the most hard riddle

for General Relativity. The latest cosmological data sets, and the increasing number

of planned satellite missions dedicated to cosmology, provide the starting point for

a New Deal where GR cannot settle in without being in an uncomfortable and

inadequate position. In fact, the observational evidences of the last two decades

(the cosmic acceleration detected by supernova surveys, the study of the dynamics of

large scale structure formation, the refined measurements of CMB radiation), raised

a radically new theoretical scenario: our universe is undergoing a phase of accelerated

expansion after a relatively recent and fast transition from an era of deceleration.

This seems to suggest the existence of some unknown exotic energy/matter content

in the universe of which, in order to explain the observed accelerated expansion of the

universe, at least a dominant part must be violating the Strong Energy Condition.

This means that if we think about this presently dominant component in terms of

perfect fluid with canonical Equation of State p = wρ, the accelerated phase could

be reached only if this behaves as a so called “dark energy” fluid with w < −1/3.

Here it is, actually, the fertile soil for the development of several possible theo-

retical candidates aimed at explaining this wealth of observational data. The easiest

and most conservative way to produce a dark energy component is to introduce a

cosmological constant Λ acting in the gravitational equations as a perfect fluid with

EoS pΛ = −ρΛ. The root of the success of the concordance model (also known as

Λ-Cold Dark Matter model) is then its surprisingly simplicity with respect to the

rich bunch of phenomenologies it is able to account for. Nonetheless, despite such

1



2 CHAPTER 1. INTRODUCTION

simplicity, this proposal still harbours some very critical problems concerning the

value of Λ and its dynamical features.

Observational signatures of the cosmological constant are reproduced if one fixes

the typical value of Λ to be of the order of H2
0 , where H0 denotes the Hubble

parameter today. Namely, the corresponding energy density is set to be ρΛ ∼
10−47GeV4. On the other hand, relating the cosmological constant to the vacuum

energy of matter fields, it is easy to bump into a conceptual hump that apparently

cannot be ridden over. In fact, computing the order of magnitude of the vacuum

energy density in a quantum field theory approach where the Planck scale identifies

the ultraviolet cutoff, ρvacuum turns out to be of the order ∼ 1074GeV4, that is almost

120 orders of magnitude over the expected ρΛ value.

Secondly, ΛCDM, though providing a model for the late time speed-up, must be

supported in any case with an inflaton field minimally coupled to gravity. Inflation

is a finite period of accelerated expansion at the very early stage of the universe that

is believed to occur before the radiation domination epoch. The inflationary era is

needed to solve the flatness and horizon problems plaguing big-bang cosmological

scenarios, and moreover must be responsible for the observed almost flat spectrum

of anisotropies of CMB. Since this accelerated expansion must end somewhen recon-

necting itself to the radiation era, a pure cosmological constant cannot account, with

no other ingredient, for inflation. A novel component is needed in order to stop the

inflationary epoch and to generate the mechanism that sows the seeds of structure

formation, namely the primordial inhomogeneities. In this sense, at least a scalar

field φ with a slowly varying potential appears to be a necessary extra ingredient

for the ΛCDM model.

The last doubt about the reliability of the ΛCDM model comes from the so

called coincidence problem: in the cosmic history there is just a short window of

time during which the energy density of the cosmological constant has the same

magnitude of energy density of matter. Assuming the existence of a cosmological

constant does not naturally explain by itself the curious circumstance that such era

is taking place exactly in this moment, even though equiprobability arguments are

still perfectly appliable1.

1For the anthropic principle it is almost a necessity that we are handling this problem in the

same moment in which the order of magnitude of the baryon energy density is comparable with
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So, why so clumsily small, and why exactly now? Are we just sweeping the dirt

under the carpet or are we really piercing the veil of Maya?

Over the last decade, there have been many attempts to build models of effective

fluids playing the role of dark energy: the taxonomy of possible explanations, going

further with respect to the resurrection of Einstein’s cosmological constant ([52] and

reference therein), introduces scalar fields as cosmological matter fields. As we have

already mentioned, a scalar field, the inflaton, driving the universe in and out from

the inflationary era (and possibly responsible for the reheating mechanism after that)

is already required to accompany the concordance model. A single field able to act

at both early and late time to drive inflation and contemporary acceleration would

be a more elegant way to solve two problems in one fell swoop. It is then the next

natural step to promote the scalar field, now generally referred to as a quintessence

field, so for it to act as a late time dark energy source. The main argument to

reject this solution is that, one more time, the orders of magnitude of the physical

quantities involved in the model (and in particular the effective mass of the scalar

field mφ) are too much small to be naturally justified within the Standard Model of

particle physics.

Quintessence and/or inflaton models correspond essentially to modifications of

General Relativity at the level of the stress-energy tensor in the Einstein field equa-

tions. However, at a more fundamental level, it is possible to think to modify

directly ab initio the gravitational theory. Analytical mechanics condensates the

full information on the dynamics of a gravitational system in the elegant form of

the Einstein-Hilbert action

S =
1

16πG

∫
d4x

√
−gR + SM , (1.1)

where SM denotes the action for matter fields; applying a variational principle (de-

pending on the identification of the dynamical variables, as we will see), Einstein

equations arise naturally from (1.1). The invariance of the previous action under

diffeomorphisms implies the conservation of the stress-energy tensor and the related

field equations.

the energy density of a cosmological constant. Before, it was too early for the Earth to exist, later

on stars like ours will be dying.
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In order to generalise such results it is natural to include some extra-fields (non)-

minimally coupled to the geometry (such as Brans-Dicke-like scalars, k-scalars or

more complicated vector fields); or to add more complex terms in the action (such

as functions of Ricci scalar, Ricci-Ricci or Riemann-Riemann as well as suitable

contractions of Cartan torsion tensor).

The choice of generalising the EH action leads to a number of new mathematical

and physical issues to be dealt with. Of course, the field equations are no more

guaranteed to be second order differential equations like in the General Relativity

case; the caravanserai of possible solutions can in principle bring as a gift some new

interesting phenomenology concerning both the gravitational domains at low and

high energy. However, it is also true that we should operatively work with equations

more and more complex, affected by the breakdown of a well-posed formulation of

the initial value problem. Many modified gravities share the common feature to

contain ghosts (i.e., physical excitations with negative energy eigenvalues); other

models can generically exhibit a violation of the Equivalence Principle (leading to

a non-conservation of the energy and hence to the introduction of an extra “fifth-

force” that is responsible for a modification of the Newtonian dynamics); moreover,

all the selected proposals must be checked to have the correct weak field limit and

to be stable at the classical and semiclassical level (one must take care to avoid

matter instabilities, gravitational instabilities for de Sitter space, and semiclassical

instabilities with respect to black hole nucleation). It is usually possible, anyway,

to refine the choice of functions and parameters in order to select those models that

are viable according to theoretical criteria and experimental constraints.

It is worth noting that the interest with respect this class of modification goes

well beyond the already crucial aspect of providing an alternative explanation for

the cosmological and astrophysical enigmas. It was already pointed out in the

early Sixties that one of the most huge fault of General Relativity, the lack of a

straightforward renormalization scheme, could be partially circumvented if higher

order curvature corrections were added to the Ricci scalar in the Einstein-Hilbert

action, making the theory renormalizable at least at one loop. Moreover, some

recent results show that both scalar fields and higher order terms in the curvature

invariants emerge in the context of the low energy limit of string models or in

dimensionally reduced effective theories obtained from higher dimensional theories,
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such as Kaluza-Klein.

Up to now we have just focused our attention to modification of the gravita-

tional action to source the observed cosmological phenomena. A comment at this

point is due. Even if the assumptions of spatial homogeneity and isotropy of the

matter distribution inspired by the Cosmological Principle appear to give an ad-

equate, although approximate, description of the universe on large scales, a very

concrete problem with these classical depictions is that the real universe is far from

homogeneity and isotropy on small scales and at late epochs. Indeed, the lumpiness

of structures and the existence of huge voids are well-known observable properties

under some scales. For this reason, although homogeneous and isotropic models

with ordinary matter and gravity show good agreement with observations of early

times, a hard clash arises in the late universe when deviations from homogeneity

and isotropy become significant.

Notwithstanding this, it is still possible to define a scale large enough to recover,

at least statistically, the properties of homogeneity and isotropy. The difference

between exact and only statistical homogeneity and isotropy is rather subtle: the

FLRW models are exactly homogeneous and isotropic, that is the space they de-

scribe has a local symmetry, all points and all directions are equivalent. Statistical

homogeneity and isotropy, instead, implies that in any taken ensemble of lumpy

structures anywhere in the universe, the mean quantities do not depend on its loca-

tion, orientation or size, provided that it is larger than the homogeneity scale. Now,

while the early universe is nearly exactly homogeneous and isotropic (in the meaning

of smallness of the amplitude of the perturbations and statistical homogeneity and

isotropy of the distribution of the perturbations), at late times (and with non-linear

density perturbations) the universe is no longer locally like that. However, the dis-

tribution of the nonlinear regions remains statistically homogeneous and isotropic

on large scales.

Due to the statistical symmetry, the average expansion rate evaluated inside each

patch of universe is always the same (up to statistical fluctuations), but this does

not mean that it would be equal to the expansion of a completely smooth spacetime.

This is a consequence of the fact that time evolution and averaging do not commute:

if we smooth a clumpy distribution and calculate the time evolution of the smooth
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quantities with the Einstein equation, the result is not the same as if we evolved the

full clumpy distribution and took the average at the end.

The fitting problem, i.e., the problem of matching a coarse-grained matter distri-

bution with a spacetime metric obtained with an independent smoothing operator

(hence, taking into account the underlined effect of clumpiness) has been firstly

discussed in a systematic way in Refs. [63, 64].

Suppose to focus the attention to a certain portion of the universe. The descrip-

tion of such domain will be related to the total amount of details that has been

retained. For example, studying the same patch of spacetime on different scales

will reveal a picture similar to Fig. 1.1. Here, three different scales have been set

(of course, this process is just an approximation, since it is possible to add further

intermediate levels of description): Scale 1 shows the details of the lowest level, says

density peaks corresponding to the localization of stars; Scale 3 is a middle step

that can be referred to as the galaxy scale, where the previous point-like density

distribution starts to be smoothed in a continuous profile; Scale 5 is the typical large

scale picture of the universe, where most of the usual cosmological models live.

Every level is fully described by the manifold Mi equipped with the metric g
(i)
ab

and by the stress-energy tensor T
(i)
ab ; these quantities contain the properties of the

specific portion of universe as seen at the i−th scale. Since the physical system in

analysis is the same, it is possible to define a smoothing operator S ′
ji that maps the

properties of the matter distribution encoded in T
(i)
ab into T

(j)
ab .

General Relativity has been precisely tested on Scale 1, where Einstein equations

hold. The goal of physical cosmology should be, at this stage, the research of a

geometric prescription describing how to “jump” from the field equations defined

on a certain scale to the correspondent equations on another level. Fig. 1.2 gives a

schematic view of the underlying coarse-graining between the equations of Scale 1

and those of Scale 3. The maps S, S ′, S ′′, S∗ determine, respectively, the smoothing

procedure linking the two metrics g
(1)
ab and g

(3)
ab , the new smoothed stress-energy

tensor on the Scale 3, the new Einstein tensor, and the correspondence between

points of the two different manifolds.

A comment is necessary here. Einstein equations are highly non-linear; this will

provide, in general, a lack of commutativity of the smoothing operations. In other

words, the products of derivatives involved in the field equations will be responsible
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Figure 1.1: Comparison of different density profile scales corresponding to different

knowledge of details. The spacetime patch is always the same. Fig. from [63].
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Figure 1.2: Scheme of the different coarse-graining processes applied between geo-

metrical quantities and stress-energy tensors defined on two different levels of de-

scription of the same physical system. Due to the high non-linearity of Einstein

equations, the smoothing procedures will be affected by a lack of commutativity

among them. Fig. from [63].

of having S ′ 6= S ′′. The shape of the equations at the cosmological level is quite

simple to understand: as stated before, General Relativity holds on small scales,

but its non-linearity implies

〈Gµν(gµν)〉 6= Gµν(〈gµν〉) (1.2)

Usual cosmologies are based on

Gµν(〈gµν〉) = 8πG〈Tµν〉+ Λ〈gµν〉 (1.3)

while the correct equations should be

〈Gµν(gµν)〉 = 8πG〈Tµν〉+ Λ〈gµν〉 (1.4)

for some averaging procedure 〈·〉 defined on a spatial domain D. The picture can be

made precise introducing physically infinitesimal volumes or coarse-graining cells,

regions large enough to contain a very large sample of structures but much smaller

than the scale of the cosmological fluid as a whole. Say L the typical length of the

spatial region D, it must lie somewhere in a range Lhom ≤ L � Lsyst with Lhom, the
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homogeneity scale, set to be not less than 100h−1 Mpc (but the precise estimate is

disputed) and Lsyst being approximately the Hubble scale (∼ 4Gpc). Encompassing

the difference between the two different field averaging of the Einstein tensor in a

new tensor, says T g
µν ≡ Gµν(〈gµν〉) − 〈Gµν(gµν)〉, the outcome will be a new set of

modified Einstein equations:

Gµν(〈gµν〉) = 8πG〈Tµν〉+ 8πGT g
µν + Λ〈gµν〉 (1.5)

The implicit assumption in the usual Standard Model approach is the vanishing

of T g
µν term at the cosmological scales while it is not necessarily true. The debate

on the order of magnitude of these contributions is still quite heated. It could be

even possible that a correction coming from a backreaction term should be taken

into account in the usual General Relativity scheme and, a fortiori, in its possible

modifications, to achieve the goal of a refined fitting of the observational data.

It goes without saying that, at the same time of the development of such mod-

els (as well as other schemes not pursued here), we should be able to relate them

within an observational framework as much independent as possible from theoretical

assumptions. Each theory of gravity previously described, in fact, should have the

goal to be a theory with an enriched peculiar phenomenology, in which Einstein

gravity is obviously embedded, aimed at explaining more naturally than GR current

cosmological observations. Here, another comment should be made. The develop-

ment of observational cosmology/astrophysics and the identification of some new

(even if still controversial) standard candles (or sirens or rulers...) are needed to

meaningfully isolate the signature of possible departure from GR on certain scales.

In order to establish a universal frame useful in any context, it is possible to im-

plement a model independent approach in the environment of high redshift data,

taking care to expand properly the observable distances of objects far and far away

than usual SNeIa. The last twenty years have seen the identification of some high

redshift objects that can be used for this purpose.

• Supernovae Type Ia (SNeIa)

A Supernova Type Ia is the result of the violent explosion of a white dwarf

star. A white dwarf is a star that has ceased nuclear fusion. In the most
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common variety of white dwarves, the carbon-oxygen ones, the stars are still

able to release huge amount of energy with further fusion reactions. In some

peculiar cases, white dwarves are embedded in binary systems allowing them

to gradually accrete mass by stealing matter from the binary partners. The

mass of a white dwarf is anyway limited to be below the Chandrasekhar limit

of about 1.38 solar masses (the maximum mass that can be supported by

electron degeneracy pressure). Beyond this limit the white dwarf begins to

be unstable: its core reaches the ignition temperature for the conversion of

carbon and oxygen in 56Ni as it approaches the limit. Such process sparks off

a thermonuclear explosion with a given absolute luminosity: since the mass

of the collapsing star is always close to the Chandrasekhar limit, the absolute

luminosity of the Supernova is a known parameter. The stability of this value

allows these explosions to be used as standard candles to measure the distance

to their host galaxies because the visual magnitude of the supernovae depends

primarily on the distance.

• Gamma Ray Bursts (GRBs)

Gamma Ray Bursts are very transient, sudden flashes released as narrow

beams of intense radiation at gamma-ray frequencies and lasting typically few

seconds, though the afterglows of these explosions can sometimes be detected

at longer wavelengths on longer scaletimes (from minutes in X-rays to weeks at

radio-wavelengths). These events occur with a rate of about 0.8 burst per day,

at unpredictable times and from randomly, isotropically distributed directions

in the sky. Most of the observed GRBs are believed to result from a super-

nova event, as a rapidly rotating, high-mass star collapses to form a neutron

star or most probably a black hole. The short bursts (less than 2 seconds)

constitute a subclass of GRBs which seems to be originated from a different

process, as the merging of the two neutron stars (or a neutron star with a

black hole) of a binary system. The discovery of the afterglow emission and of

the first optical counterparts, in combination with the localization of the host

galaxies, led ultimately to the determination (through optical spectroscopy)

of the GRBs cosmological distance scale. Since then, the redshift was esti-

mated for many GRBs up to z ∼ 8 . This high redshift values, combined
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with the very high fluxes (up to more than 105 erg cm−2 s−1), make GRBs

the most luminous sources in the universe, with isotropic–equivalent radiated

energies typically ranging from ∼ 1050 to more than ∼ 1054 erg. Even though

the GRBs energetics implied by the fluences and redshifts span at least four

orders of magnitudes, there are some correlations among observed quantities

allowing to know the total energy or the peak luminosity emitted by a specific

burst with a great accuracy. Through these relations, GRBs can be promoted

to the role of “standard candles”.

• Baryon Acoustic Oscillations (BAOs)

Before recombination and decoupling the Universe is a highly ionized and

overdense hot plasma of photons and baryons tightly coupled via Thomson

scattering. The opposing action of the radiation pressure and the gravitational

collapse results to set up acoustic oscillations in the photon fluid. Taken a

single spherical density perturbation in the coupled baryon-photon plasma, it

propagates outwards as an acoustic wave. Baryons decouple from radiation at

recombination, giving a snapshot of the fluid at the last scattering, the baryon

wave stalls and photons are left free to stream away. The destiny of photons

is to become the almost completely uniform background radiation we observe

nowadays, while baryons remain overdense in a shell of a typical scale s. As

time goes by, the gravitational potential well at the origin starts to draw back

material. The typical size of the shell formed when the baryon wave stalled is

imprinted on the late time matter power spectrum as a density excess. Since

baryons interact gravitationally with DM, DM also lumps mainly on the same

scale. The result of that wave is reflected in the higher probability that a galaxy

has to form in the high density region of the stalled baryon wave. The bump

in the 2-point correlation function set at the distance s, namely the radius of

the spherical wave, is the consequence of the high probability of finding two

galaxies at a distance s one from the other. The acoustic scale s is set by the

sound horizon at last scattering, that is the comoving distance a sound wave

propagating in a photon-baryon sea covered by the decoupling epoch to the

recombination. The sound horizon (and hence the related matter and baryon

densities at decoupling) is extremely well constrained by the structure of the
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acoustic peaks in the CMB. For this reason, this scale provides a potentially

excellent standard rules, assuming that the baryon energy density could be

known with sufficient precision.

• Hubble (HST)

The usual common weakness of the measurements described before, is that

they are largely based on integrated cosmological parameters to determine the

cosmic expansion history itself. It is possible to bypass such limitation mea-

suring directly the rate dz/dt via the differential-age technique. This method

allows to date galaxies with respect to a fiducial model rather than comput-

ing absolute ages. Measuring the age difference δt between two galaxies that

formed at the same time but separated by a small redshift interval δz, one can

recover the derivative dz/dt from the ratio δz/δt. All selected galaxies need

to have similar metallicities and low star formation rates, so that the aver-

age age of their stars would far exceed the age difference δt between the two

galaxies. The whole technique relies on the possibility to find a proper sample

of these galaxies with the properties previously sketched. There is a strong

empirical evidence for a population of galaxies harboured in clusters, whose

star-formation activity ceased at high redshift, z ∼ 2− 3. Since that time, the

stellar population has been passively evolving without further episodes of star

formation; less than 1% of the present population has been formed at z < 1.

Such circumstances make these galaxies good candidates to provide a sort of

“standard clock” to accurately determine the rate of change of the universe as

a function of redshift.

• Cosmic Microwave Background (CMB)

Until recombination, the rapid collisions of photons with free electrons kept the

radiation in thermal equilibrium with the hot matter: the radiation field then

had a Planck spectrum. Matter became cooler and less dense as time passed,

up to when recombination and last scattering epoch are reached. Eventually

radiation began a free expansion; the photons emerging the last scattering

surface undergo negligible additional scattering and absorption until they ar-

rive to us. Notwithstanding this, the spectrum of radiation keeps the same

black-body form even after the photons went out of equilibrium with matter.
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The temperature of this background radiation is extremely uniform across the

universe; the only deviations from uniformity are regions of different angular

sizes, with temperature varying from the mean with typical fluctuations of

the order δT/TCMB ∼ 10−5. Temperature primary anisotropies in the CMB

originate as a consequence of small-amplitude inhomogeneities in the almost

uniform cosmic mass distribution at the end of the inflationary era, at the very

early universe. The gravitational mass potential of these mass density inho-

mogeneities attracts the photon-baryon plasma while the pressure of the fluid

is working in the opposite direction. Under these competing forces, different

regions of the universe starts to periodically fluctuate around the mean density

state, alternating expansions to contractions; in the fluid, consequently, sound

waves are formed at different wavelengths. When the universe emerge from

the inflationary era, the acoustic oscillations are stationary and hence every-

where in phase. When decoupling of matter and photons has been achieved,

the imprint of the under/overdense regions is encapsulated in the radiation

field as spots on the CMB sky, with slightly different temperatures and with

particular sizes; in other words, the power spectrum of CMB fluctuations must

have a discrete shape with peaks and throats corresponding to those preferred

scales. It turns out that measurements of the angular scales at the positions

of the acoustic peaks (and their relative heights) can determine most of the

parameters describing cosmological models.

The outline of this thesis is as follows. Chapter 2 gives a brief review on the

possible modifications of General Relativity. The field equations for scalar-tensor

theories and modified gravities are derived. In particular the metric and Palatini

approaches are introduced. We also consider generalized Palatini theories of gravity,

i.e., theories with a connection which is independent of the metric and an action

allowed to contain higher order curvature invariants than the Ricci scalar of this

connection. We show that, unlike Palatini f(R) theories, where the connection can be

algebraically eliminated in favour of the metric and the matter fields, the connection

of generalized Palatini theories in principle does carry dynamics and cannot be

eliminated.

Chapter 3 is devoted to the study of metric-affine theories of gravity. In such an
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approach, the metric and the affine (not necessarily symmetric) connection are in-

dependent quantities. Furthermore, the action should include covariant derivatives

of the matter fields, with the covariant derivative naturally defined using the inde-

pendent connection. As a result, in metric-affine theories a direct coupling involving

matter and connection is also present. The role and the dynamics of the connection

in such theories is explored.

In chapter 4 the backreaction of inhomogeneities on the cosmic dynamics is

studied in the context of scalar-tensor gravity. Due to terms of indefinite sign in

the non-canonical effective energy tensor of the Brans-Dicke-like scalar field, extra

contributions to the cosmic acceleration can arise. Brans-Dicke and metric f(R)

gravity are presented as specific examples. Certain representation problems of the

formalism peculiar to these theories are pointed out.

In chapter 5 we perform a cosmographic analysis using several cosmological ob-

servables such as the Hubble parameter, the luminosity distance moduli and the vol-

ume distance. These quantities are determined using the data sets already sketched:

the Hubble parameter as measured from surveys of galaxies, the luminosity distance

from Supernovae and Gamma Ray Bursts data, the Baryonic Acoustic Oscillations

as seen in the power spectra of the distribution of galaxies, the ratio between the

angular diameter distance to the last scattering surface and the sound horizon at

last scattering as measured from the cosmic microwave background power spectrum.

This data set allows to put constraints on the cosmographic expansion up to fifth

order.

Conclusions and future perspectives are discussed in the last chapter 6.



Chapter 2

Ouverture: alternative actions,

variational principles and field

equations

2.1 Scalar-tensor theories of gravity

The very first proposals of alternative to Einstein gravity were strongly motivated

by the attempt to incorporate Mach’s principle, which is not explicitly embodied

in General Relativity. Mach’s principle states that the local inertial frame is de-

termined by the action of distant objects in the universe. As a consequence, the

gravitational coupling at a spacetime point is not absolute but is determined by

surrounding matter and, therefore, becomes a function of the spacetime location.

Brans-Dicke theory was the first alternative to Einstein GR, and the prototype of

alternative theories of gravity. The variable gravitational “constant” corresponding

to a scalar field coupled non-minimally to the geometry constitutes a more satis-

factory implementation of Mach’s principle than GR and allows the cosmological

distribution of matter to affect local gravitational experiments.

To take into account the scalar field in the mediation of the gravitational inter-

action, the Brans–Dicke theory must rely on the action

SBD =
1

16π G

∫
d4x

√
−g
[
φR− ω0

φ
(∇µφ∇µφ)− V (φ)

]
+ SM(gµν , ψ), (2.1)

where φ is the scalar field, ω0 is the dimensionless Brans–Dicke parameter and

15
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SM =
∫
d4x

√
−gLM is the action describing any form of ordinary matter but the

scalar field. The fact that the matter action does not depend on the Brans–Dicke

field φ means that the scalar field is not coupled to the matter, while the term φR

assures the non-minimally coupling to gravity. For such reason, Brans–Dicke theory

can be classified as a metric theory of gravity: matter responds only to the metric

whilst the scalar field shares with the metric the only role to generate the spacetime

curvature [69].

The potential V (φ) appearing in (2.1) provides a generalization of the cosmo-

logical constant thanks to which the scalar field can eventually play the role of

quintessence.

It is now clear how Mach’s principle is encountered in this theory: the effective

gravitational constant is now related to the ratio G/φ that depends on the gravita-

tional dynamics itself. The field φ is usually chosen to be positive in order to get a

positive-defined gravitational constant.

Brans–Dicke theory has only the ω0 parameter as new free parameter with respect

to GR. The available tests of gravitational theories in the weak field limit seem to

suggest a big value for the Brans–Dicke parameter, |ω0| > 40 000, even though the

theoretical perspective of the low-energy limit of string theories suggests ω0 ∼ O(1)

as the most natural choice. However, the very large value of ω0 on the one hand

tends to make the theory indistinguishable from General Relativity 1, whilst on the

other hand implies a rather unattractive fine tuning. Consequently, Brans–Dicke

theory has been quickly discarded as a viable alternative to General Relativity;

nonetheless, it lays the foundations for a whole class of models involving a scalar

field generalization to GR, the scalar-tensor theories of gravity. A general form for

the action of such theories is

SST =
1

16π G

∫
d4x

√
−g
[
φR− ω(φ)

φ
(∇µφ∇µφ)− V (φ)

]
+ SM(gµν , ψ), (2.2)

1The statement that ω0 → ∞ makes the corresponding limiting Brans–Dicke theory indistin-

guishable from GR is true only when applied at the fundamental level of the action. Some exact

solutions associated with systems with traceless stress-energy tensor, in fact, do not yield to the

correct General Relativity correspondent solutions for ω0 → ∞. This issue is related to the con-

formal invariance of the full Brans–Dicke action when it includes conformal matter. For further

details [2]
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where now ω(φ) is some function of the scalar-field 2 φ. In order to derive the field

equations, we must perform an independent variation with respect to the metric and

the scalar field of (2.2); after few manipulations, the resulting equations will be

Gµν =
8π G

φ
Tµν +

ω(φ)

φ2

(
∇µφ∇νφ− 1

2
gµν∇λφ∇λφ

)
+

+
1

φ
(∇µ∇νφ− gµν2φ)−

V

2φ
gµν , (2.3)

2φ =
1

2ω(φ) + 3

(
8πGT − dω(φ)

dφ
∇λφ∇λφ+ φ

dV

dφ
− 2V

)
, (2.4)

where Gµν = Rµν − 1
2
Rgµν is the Einstein tensor, Tµν ≡ −2√

−g
δSM

δgµν
is the stress-

energy tensor, ∇ denotes covariant differentiation and 2 ≡ ∇µ∇µ. Ordinary matter,

moving by definitions on the geodesics of the gravitational metric, is covariantly

conserved.

By setting ω(φ) = ω0 we can get the simpler field equations for Brans–Dicke

theory with a potential V (φ). From the cosmological point of view the dependence

of the parameter ω on the scalar field φ, and hence on its possible variation in

time and space, allows for some interesting phenomenology. Having an ω parameter

depending on time, for example, gives the possibility to have a small ω in the

early stage of the universe, while its value can become large at late times. In this

way significant deviations from General Relativity are still permitted in the early

universe, whilst the present constraints on ω can be fulfilled.

In scalar-tensor theories, performing a conformal transformation gµν → Ω g̃µν

with the choice of the conformal factor Ω =
√
Gφ, brings the gravitational action

(2.2) into what is called the Einstein frame form (to be counterposed to the Jordan

frame expressed by (2.2)). Let us write the matter field action as

SM =

∫
d4x

√
−gαMLM , (2.5)

where αM is the coupling constant of ordinary matter and LM is the Lagrangian den-

sity of the matter fields. Defining the Einstein frame scalar field by the differential

relation

dφ̃ =

√
2ω(φ) + 3

16πG

dφ

φ
, (2.6)

2More complex theories involving multiple scalar fields have been investigated.
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and the scalar field potential as

U(φ̃) =
V (φ(φ̃))

(Gφ)2
, (2.7)

the scalar-field action can be rewritten as

SEST =

∫
d4x
√
−g̃

[
R̃

16πG
− 1

2
g̃µν∇̃µφ̃∇̃νφ̃− U(φ̃) + α̃M(φ̃)LM

]
(2.8)

where ∇̃µ is the covariant derivative with respect to the transformed metric tensor

g̃µν ; note also that now the coupling is described by α̃M(φ̃) = αM/(Gφ)
2. This

form of the action can be seen as the action of General Relativity with a canonical

scalar field having positive-definite kinetic energy density. The most important

difference is in the fact that the matter coupling “constant” can vary in space and

time. Because of this coupling, the modified matter stress-energy tensor obeys to a

modified conservation equation implying changes to the geodesics equation deviation

and the violation of the Equivalence Principle in the Einstein frame.

2.2 The dynamics of modified actions

Actions obtained by including functions of other possible linear and quadratic con-

tractions of the Riemann tensor (R,RµνR
µν , RµνρσR

µνρσ) constitute a second class

of Extended Theories of Gravitation; in particular one of the simplest modifications

one can propose is the f(R) gravity in which the Lagrangian density is chosen to be

an arbitrary function of the Ricci scalar R

S =
1

2κ

∫
d4x

√
−g f(R) + SM . (2.9)

Einstein field equations and the corresponding dynamics of the system described by

the action (2.9) can be derived following mainly three different approaches. The

first one is the standard metric formalism in which the field equations are derived

by the variation of the action with respect to the metric tensor gµν .

The second is the Palatini formalism in which the metric tensor and the affine

connection Γλ
µν are two independent variables when we vary the action. Note that,
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while these two approaches give rise to different field equations for a generic non-

linear f(R) Lagrangian density, both variational principles lead to the same set of

equations for the Einstein–Hilbert Lagrangian.

In both the metric and Palatini approach, the matter piece of the action (2.9)

does not couple to the connection, namely SM = SM(gµν , ψ), with ψ encapsulating

all the ordinary matter fields. In the last possible approach, the metric-affine one,

we will leave aside this assumption, and the generic matter action will be rewritten

in the most generic way, SM = SM(gµν ,Γ
λ
µν , ψ).

2.2.1 Metric approach

Variation with respect to the metric of the action (2.9) yields to the following field

equations

f ′(R)Rµν −
1

2
f(R)gµν − [∇µ∇ν − gµν2] f

′(R) = κTµν , (2.10)

where ∇µ is the covariant derivative associated with the Levi-Civita connection of

the metric.

Here, some surface terms have been discarded. It is interesting to note that in

the EH case the procedure one should follow in order to cancel the surface term

is rather straightforward, since such terms are already related to the variation of

a total divergence. For what concerns modified actions, instead, this circumstance

is not satisfied. It is anyway possible to circumvent the problem by noting that,

due to the presence of higher order derivatives of the metric, there will be further

degrees of the freedom to fix on the boundary. However, the field equations (2.10)

would be unaffected by the fixing chosen: from a purely classical perspective the

field equations are well posed.

The field equations (2.10) are fourth order partial differential equations in the

metric. Considering the Einstein-Hilbert Lagrangian density, one has f(R) = R

and f ′(R) = 1; hence the Einstein equations reduce to the General Relativity ones.

Taking into account the trace of the field equations yields

32f ′ + f ′(R)R− 2f(R) = κT. (2.11)

It is easy to realize that in the General Relativity limit R = −κT , that is the Ricci

scalar is completely determined by the matter content. In modified gravity, instead,
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the not-vanishing of the Dalembertian term gives rise to a new propagating degree

of freedom, the scalaron Φ = f ′(R), whose dynamics is described by equation (2.11).

A simple calculation shows that the left hand side of (2.10) is solenoidal, namely

its covariant divergence vanishes; this result reveals the generalization of the Bianchi

identity and implies that the stress-energy tensor Tµν is covariantly conserved. This

can also be recognized a priori as a consequence of the minimal coupling between

matter and metric and of the usual arguments based on the invariance of the action

under diffeomorphism.

A last remark is the following. All the curvature terms modulo the Einstein

tensor may be moved on the right hand side of field equations to appear as a further

effective stress-energy tensor of a “curvature fluid”. Einstein equations (2.10) assume

then the form

Gµν =
1

f ′(R)

[
κTµν + gµν

[f(R)−Rf ′(R)]

2
+∇µ∇νf

′(R)− gµν2f
′(R)

]
=

=
κ

f ′(R)

(
Tµν + T (curv)

µν

)
. (2.12)

Note that the effective energy density of this effective energy-momentum tensor is

not defined to be positive, and that energy conditions are not satisfied a priori.

2.3 The dynamics of generalized Palatini Theo-

ries of Gravity

Einstein’s equations can be derived by varying the Einstein–Hilbert action with

respect to the metric. They can also be derived by what is formally the same

action, by assuming that the connection is independent of the metric and performing

independent variations with respect to the metric and the connection. This is called

a Palatini variation and it can be found in some textbooks, see for example Ref. [1].

Note that in the Palatini variation the independent connection is assumed to not

enter the matter action.

Even though both standard metric and Palatini variations of (what is formally)

the Einstein–Hilbert action lead to equivalent systems of field equations, this is not

the case for more general actions. A typical example of actions that have been widely

studied with both variational principles are f(R) actions, see Refs. [3, 4, 5, 6, 7]
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for reviews. Indeed there is by now a long literature on f(R) theories with an

independent, symmetric connection which does not couple to the matter, dubbed

Palatini f(R) theories of gravity [33, 8, 9].

Even though these theories are not equivalent to the theory corresponding to the

same action obtained with simple metric variation, they are nevertheless still metric

theories according to the Thorne–Will definition 3 [10]. In fact, the independent

connection in Palatini f(R) gravity does not actually carry any dynamics. It is

really an auxiliary field that can be eliminated in favour of the metric and the

matter fields [11, 12, 13]. This result has recently been generalized to f(R) theories

with non-symmetric connections, i.e. theories that allow for torsion [14].

The fact that in Palatini f(R) gravity the independent connection results to be

non-dynamical can be viewed as a blessing at first: no extra degrees of freedom are

introduced with respect to General Relativity, so one needs not worry about patholo-

gies usually associated with such degrees of freedom (ghost modes, instabilities etc.)

or conflicts with current experimental bounds on their existence. However, one soon

realizes that having a theory with second order dynamics and still different from

General Relativity actually requires a drastic departure from the latter. Indeed, a

number of viability issues plague generic models of Palatini f(R) gravity, and all

of these shortcomings have their origin at the peculiar differential structure of the

theory [18].

Palatini f(R) gravity models with infrared corrections with respect to General

Relativity have been shown to be in conflict with the standard model of particle

physics [15, 19] and to violate solar system tests as their post-Newtonian metric has

an algebraic dependence on the matter fields [16, 20]. Singularities have been shown

to arise on the surface of well known spherically symmetric matter configuration [18],

showing the theory at best incomplete and providing a very strong viability criterion.

This criterion is almost independent of the functional form of the Lagrangian, the

only exception being Lagrangians with corrections which become important only in

3Quoting Thorne and Will [10], a metric theory is a theory that satisfies the metric postulates,

i.e. a theory for which “(i) gravity is associated, at least in part, to a symmetric tensor, the metric

and (ii) the response of matter and fields to gravity is described by ∇µT
µν = 0, where ∇µ is

the divergence with respect to the metric and Tµν is the stress-energy tensor for all matter and

nongravitational fields.”
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the far ultraviolet (as in this case the singularities manifest at scales where non-

classical effects take over) [21] .

On the other hand, f(R) actions are a special class and there is no reason for

one to restrict to those. In fact from an effective field theory point of view such a

restriction can be considered a severe fine tuning. It is, therefore, interesting to con-

sider more general actions. Then a question naturally arises: will these more general

actions share the property of Palatini f(R) of actually having a non-dynamical con-

nection? Or will at least some of the degrees of freedom hiding in the connection

be excited? This is what we would like to address here. The answer is ultimately

related to whether such more general theories would suffer by the same shortcomings

as Palatini f(R) gravity, which, as mentioned, can be traced back to the presence

of the non-dynamical connection.

Generalized Palatini theories of gravity have been considered to some extent in

the literature. In Ref. [22] the cosmology of Lagrangians of the form f(R(µν)R(µν))

was studied (here and thereafter round parentheses stand for symmetrization while

curved brackets indicate antisymmetrization). In Ref. [23] the focus was on theories

of the form R+ f(R(µν)R(µν)). Finally, in Refs. [24, 25, 26] Lagrangians of the more

general form f(R,RµνRµν) were studied. In fact, in Ref. [24] the very question that

we are posing here was considered and it was claimed that the connection can indeed

be eliminated. We argue that this claim in not correct, at least unless one imposes

extra a priori restrictions on the connection or the action.

In next section we illustrate briefly how the connection can be algebraically

eliminated in the case of f(R) theories. This will serve as a brief review of the

results in the literature. In section 2.4 we move on to consider more general actions

and we argue that the connection cannot be eliminated for generic actions. We

discuss some special cases that constitute exceptions and we show that they do not

include the action considered in Refs. [24, 25, 26], contrary to what was claimed

there. We also give an easy but characteristic example of a generalized Palatini

theory with extra degrees of freedom with respect to General Relativity.

Before going further it is worth emphasizing that throughout this section we are

considering theories in which the independent connection does not enter the matter

action, i.e. it does not couple to the matter fields. One can clearly question if this

is the most sensible choice, and in fact it would be very reasonable to allow for the
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independent connection to define the covariant derivative and, therefore, couple to

(at least) some matter fields. f(R) theories of this type, dubbed metric-affine f(R)

theories of gravity, have been introduced in [27]. We will consider them and their

generalizations as the subject of the next chapter.

2.3.1 Palatini f(R) actions as an example

We start by briefly reviewing how the independent connection can be eliminated in

Palatini f(R) gravity. For simplicity we restrict ourselves to a symmetric connection,

even though the results can be generalized to a non symmetric one. We refer the

reader to Ref. [14] for details.

Consider the action

S =
1

16πl2p

∫
dx4

√
−gf(R) + SM(ψ, gµν), (2.13)

where g is the determinant of the metric gµν , Rµν is the Ricci tensor of the inde-

pendent connection, R = gµνRµν , SM is the matter action, ψ collectively denotes

the matter fields (note that the connection does not enter the matter action) and

lp has dimensions of a length. Varying the action independently with respect to

the metric and the connection gives the following set of field equations, after some

manipulations:

f ′(R)R(µν) −
1

2
f(R)gµν = κTµν , (2.14)

∇λ

(√
−gf ′(R)gµν

)
= 0, (2.15)

where ∇µ is the covariant derivative defined with the independent connection, a

prime denotes differentiation with respect to the argument,

Tµν = − 2√
−g

δSM

δgµν
, (2.16)

and κ = 8π l2p. The right-hand side of eq. (2.15) vanishes thanks to our assumption

that the matter action is independent of the connection. Details of the variation

can be found in section 4.1 of Ref. [27].

Eq. (2.15) can be solved for the connection to give

Γλ
µν =

{
λ
µν

}
+

1

2f ′

[
2∂(µf

′δλν) − gλσgµν∂σf
′
]
. (2.17)
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The trace of eq. (2.14) is

f ′(R)R− 2f(R) = κT, (2.18)

where T = gµνTµν . This is actually an algebraic equation in R which can generically

be solved to give R as a function of T . f ∝ R2 is an exception, which leads to a

conformally invariant theory [9, 17]. This exception, as well as choices of f for

which eq. (2.18) has no root will not be considered further (in this case there are

also no solutions of the full field equations [9]). Expressing R as a function of T

via eq. (2.18) and using the result to eliminate the R dependence in the right-hand

side of eq. (2.17) expresses the independent connection algebraically in terms of the

metric and the matter fields. One can then proceed and eliminate the connection

from the field equations. See, for example, Ref. [14] for more details and the final

form of the field equations.

This establishes that the connection does not carry any dynamics for f(R) action.

2.3.2 Equivalence between f(R) and Brans–Dicke theory

Metric and Palatini formulations of f(R) gravity are dynamically equivalent to spe-

cific scalar-tensor theories, where the derivative of the f(R) function assumes the

role of an effective scalar field degree of freedom. From the point of view of classical

mechanics, two theories can be considered dynamically equivalent if it is possible to

recover the field equations of one of the two from the other by a suitable redefinition

of gravitational and matter fields; the same statement can be made at the level of

the actions (for an extended discussion see [3]). Here we want to explicitly show

that metric and Palatini f(R) are different representations of Brans–Dicke theory

with respectively ω0 = 0 and −3/2 and specific potentials.

Let us start with the f(R) action (2.9) analysed in the metric version. Introduc-

ing the scalar field φ ≡ R, then it is pretty trivial to realize that the action (2.9)

can be easily rewritten in the following form

S =
1

2κ

∫
d4x

√
−g
[
χ(φ)R− V (φ)

]
+ SM(gµν , ψ) , (2.19)

where χ = f ′(φ) and V (φ) = φf ′(φ)−f(φ); we implicitly suppose to have f ′′(R) 6= 0.

On the other side, varying the action (2.19) with respect to the scalar field φ yields

R
dχ

dφ
− dV

dφ
= (R− φ)f ′′(R) = 0 , (2.20)
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implying φ = R when f ′′(R) 6= 0. The action introduced (2.19) has the form of a

Brans–Dicke theory

S =
1

2κ

∫
d4x

√
−g
[
χR− ω0

χ
∇µχ∇µχ− U(χ)

]
+ SM(gµν , ψ) , (2.21)

with Brans–Dicke field χ, Brans–Dicke parameter ω0 = 0 and potential U(χ) =

V (φ(χ)). A Brans–Dicke theory having ω0 = 0 was initially proposed by O’Hanlon

to generate a Yukawa correction to the Newtonian potential in the weak field limit.

The field equations obtained by varying the action (2.19) with respect to the

metric and to the scalar field are

Gµν =
κ

χ
Tµν −

1

2χ
gµνU(χ) +

1

χ
(∇µ∇νχ− gµν2χ) , (2.22)

R =
dU(χ)

dχ
. (2.23)

Such equations can in principle be derived even directly from the Einstein equations

of metric approach, using the same field redefinition. The Ricci scalar in (2.23) can

be replaced by taking the trace of (2.22), getting the equation of motion of the scalar

field φ for a given matter distribution

32χ+ 2U(χ)− χ
dU

dχ
= κT . (2.24)

Palatini f(R) gravity can also be recast into a special Brans–Dicke theory with

a scalar field potential. The Palatini action is equivalent to

S =
1

2κ

∫
d4x

√
−g
[
f(χ) + f ′(χ)(R− χ)

]
+ SM(gµν , ψ) . (2.25)

Varying this action with respect to χ, it is straightforward to verify that χ = R. If

now we use a scalar field φ ≡ f ′(χ) and the fact that the Ricci scalar of the Palatini

connection can be seen as the scalar curvature of a new metric hµν conformally

related to gµν by hµν = f(R)gµν , then the action (2.24), discarding a boundary

term, can be rewritten as a Brans–Dicke theory with ω0 = −3/2 and a potential

given by V (φ) = φχ(φ)− f(χ(φ))

S =
1

2κ

∫
d4x

√
−g
[
φR +

3

2φ
∇µφ∇µφ− V (φ)

]
+ SM(gµν , ψ) . (2.26)



26 CHAPTER 2. MODIFIED ACTIONS AND FIELD EQUATIONS

where R and ∇µ are now respectively the Ricci scalar of the metric gµν and the

covariant derivative related to its Christoffel symbols.

The fact that Palatini f(R) gravity has been shown to be dynamically equivalent

to Brans–Dicke theory with Brans–Dicke parameter ω0 = −3/2 [15, 16, 17] irrespec-

tively of how general the connection is allowed to be [14], gives also an explanation

about why in a generic Palatini f(R) the independent connection plays just the

role of an auxiliary field. The Brans–Dicke theory with ω0 = −3/2, in fact, is a

particular theory within the Brans–Dicke class in which the scalar does not carry

any dynamics and can be algebraically eliminated in favour of the matter fields.

2.4 More general actions within Palatini approach

We would now like to explore the dynamics of more general Palatini theories of

gravity. Our aim is to illustrate that for actions which contain generic higher order

curvature invariants the independent connection cannot be algebraically eliminated

(differently from the restricted f(R) case). However, let us first point out that, as

mentioned in section 2.3, in Ref. [24] the following class of actions was considered

S =
1

16πl2p

∫
dx4

√
−gf(R,RµνRµν) + SM(ψ, gµν), (2.27)

and there it was claimed that the connection can indeed be eliminated in such

theories. This claim would obviously contradict our previous statement: even though

action (2.27) is restricted, it is still much more general than those in the f(R)

class. In what follows we shall show that this contradiction is due to an implicit

and unjustified assumption made in Ref. [24] regarding the symmetries of the Ricci

tensor in Palatini theories.

We start by recalling that the Ricci tensor is given in term of the connection as

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + Γλ

σλΓ
σ
µν − Γλ

σνΓ
σ
µλ. (2.28)

We can define the non-metricity of the connection as

Qλαβ = −∇λgαβ. (2.29)

For what comes next we will restrict ourselves to a symmetric connection for

simplicity. One could easily generalize our approach to include non-symmetric con-

nections. However, it is obvious that if our claim is true for a symmetric connection



2.4. MORE GENERAL ACTIONS WITHIN PALATINI APPROACH 27

it will continue to be true for a non-symmetric one, since the eventual antisymmetric

part could just introduce a further dynamical degree of freedom.

A symmetric connection can be written as

Γρ
αβ =

{ρ
αβ

}
+

1

2
gρλ [Qαβλ +Qβαλ −Qλαβ] , (2.30)

where
{ρ

αβ

}
denotes the Levi-Civita connection of gµν . The non-metricity vector is

defined as

Qµ =
1

4
Q ν

µν . (2.31)

Then, for a symmetric connection, the antisymmetric part of the Ricci tensor is

given by

R[αβ] = −∂[βΓλ
α]λ = −2∇[βQα] (2.32)

It should then be clear that Rµν is not necessarily symmetric even for a symmetric

connection. Further restrictions on the non-metricity would have to be imposed to

achieve that, which would restrict the connection.

Consider now the action

S =
1

16πl2p

∫
dx4

√
−g
[
R+ l2pRµν(aRµν + bRνµ)

]
(2.33)

Clearly this is not the most general action one could think of, but it is general enough

for our purposes and simple enough to make the calculations tractable. Note that

as long as R[µν] 6= 0 the last two terms are not equal. In fact (2.33) can be written

as

S =
1

16πl2p

∫
dx4

√
−g
[
R+ c1 l

2
p R(µν)R(µν) + c2 l

2
p R[µν]R[µν]

]
, (2.34)

where c1 = a + b and c2 = a− b. Note also that for b = 0, or c1 = c2, action (2.33)

reduces to the simplest model within the class given in action (2.27), i.e., to the

case where f is linear in both invariants.

We now vary the action independently with respect to the metric and the con-

nection. The variation with respect to the metric yields

R(µν) −
1

2
Rgµν + 2c1 l

2
p R(αµ)R(βν)g

αβ

+2c2 l
2
p R[αµ]R[βν]g

αβ − 1

2
c1 l

2
p R(αβ)R(αβ)gµν

−1

2
c2 l

2
p R[αβ]R[αβ]gµν = κTµν . (2.35)
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Interestingly, the trace of the previous equation leads to R = −κT . The variation

with respect to the connection yields

−∇λ

[√
−g
(
gµν + 2 c1 l

2
pR(µν)

)]
+∇σ

(√
−ggσ(µ

)
δ
ν)
λ

+c1 l
2
p ∇σ

[√
−gR(µσ)δνλ +

√
−gR(νσ)δµλ

]
(2.36)

+c2 l
2
p ∇σ

[√
−gR[µσ]δνλ +

√
−gR[νσ]δµλ

]
= 0.

Eq. (2.36) can be simplified by taking its trace and using it to replace the terms

containing divergences. This leads to

∇λ

[√
−g
(
gµν + 2 c1 l

2
pR(µν)

)]
+

2

3
c2 l

2
p ∇σ

[√
−gR[µσ]δνλ +

√
−gR[νσ]δµλ

]
= 0.

(2.37)

Eqs. (2.35) and (2.37) should reduce to eqs. (3) and (4) of Ref. [24] for a linear

function f when we set b = 0 or c1 = c2 = a. This is not the case however. The

two sets of equations actually differ by terms including R[µν]. The fact that R[µν]

does not generically vanish for an independent connection, even a symmetric one

as shown above, seems to have been overlooked in Ref. [24] and subsequently in

Refs. [25, 26]. Hence, these terms were ignored there.4

If one would indeed make the assumption that R[µν] = 0 then, for any values of

a and b the system of equations would reduce to

R(µν) −
1

2

(
R+ c1 l

2
p R(αβ)R(αβ)

)
gµν + 2c1 l

2
p R(αµ)R(βν)g

αβ = κTµν , (2.38)

∇λ

[√
−g
(
gµν + 2 c1 l

2
p R(µν)

)]
= 0. (2.39)

The assumption that R[µν] = 0 is equivalent to the requirement

∇[νQµ] = 0, (2.40)

which essentially would mean that Qµ is the gradient of a scalar. Interestingly, one

gets the exact same equations by assuming that a = b or c2 = 0 (which is different

than the case considered in Ref. [24, 25, 26]), without imposing any constraints on

R[µν] and consequently on the non-metricity. This choice of parameters correspond

to an action which depends only on R(µν).

Let us concentrate on these two cases for the moment, for which one can indeed

apply the arguments of Ref. [24]. Notice that eq. (2.38) is actually an algebraic

4In Refs. [22, 23], on the other hand, Rµν was explicitly assumed to be symmetric a priori.
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equation in R(µν). That is to say, one could solve algebraically for the components

of R(µν), in terms of the components of Tµν and gµν (even though it might not be

possible to express the result in tensorial form). This could also be seen by thinking

of eq. (2.38) as a matrix equation. Hence, R(µν) in eq. (2.39) can be thought of as

depending only on the matter fields and the metric, not on the connection.

Now, eq. (2.39) can be written as

∇λ

[√
−hhµν

]
= 0, (2.41)

where hµν is a symmetric metric implicitly defined via the relationship

√
−hhµν =

√
−g
(
gµν + 2 c1 l

2
p R(µν)

)
. (2.42)

Eq. (2.41) implies that the independent connection is the Levi-Civita connection of

hµν . Since hµν can be expressed in terms of the gµν and Tµν one can then use the

steps listed here in order to completely eliminate the independent connection Γλ
µν .

As mentioned above, what was just described works for the specific choice of

parameters a = b or c2 = 0 or if ones imposes a priori that R[µν] = 0, which corre-

sponds to eq. (2.40). In the latter case, one would think that eq. (2.40) might impose

an extra condition. However, it is trivially satisfied when eq. (2.39), or better yet

eq. (2.41) is satisfied. That is because a sufficient condition for a symmetric connec-

tion to lead to a symmetric Ricci tensor is for it to be the Levi-Civita connection of

some metric. This can be easily shown by replacing the Levi-Civita expression for

a connection in eq. (2.32).

Even though we derived the results presented above using an action linear in Ricci

squared invariants, there is no reason to believe that they are not more general than

that. In fact, one should be able to eliminate a symmetric connection, in favour

of the matter field and the metric, whenever only invariants constructed with the

symmetric part of the Ricci tensor are considered in the action, e.g. for Lagrangians

of the form f(R,R(µν)R(µν)). However, this is not the case for actions of the form

f(R,RµνRµν) as claimed in Ref. [24].

Let us see that in more detail. We return to more generic choices of parameters.

Since the antisymmetric part of the Ricci enters the field equations now, the situation

changes radically. Eq. (2.35) cannot be used to algebraically determine the full Ricci

tensor, even at the component level, in term of the matter fields and the metric.
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Recall that if the Ricci is not assumed to be symmetric it has 16 independent

components and eq. (2.35) corresponds to just 10 component equations. This is

enough to argue that the presence of derivatives of Rµν in eq. (2.36) will make this

equation a dynamical one in the independent connection. Therefore, one will not

be able to eliminate the connection algebraically anymore.

As a simple but characteristic example let us consider the specific choice a = −b,
or c1 = 0, in which case the equations reduce to

R(µν) −
1

2

(
R + c2 l

2
p R[αβ]R[αβ]

)
gµν

+ 2c2 l
2
p R[αµ]R[βν]g

αβ = κTµν , (2.43)

∇λ

[√
−ggµν

]
+

2

3
c2 l

2
p ∇σ

[√
−gR[µσ]

]
δνλ

+
2

3
c2 l

2
p ∇σ

[√
−gR[νσ]

]
δµλ = 0. (2.44)

Contracting eq. (2.44) with the metric yields

gµν∇λ

[√
−ggµν

]
= −4

3
c2 l

2
p gλν∇µ

[√
−gR[νµ]

]
. (2.45)

On the other hand, one can straightforwardly show that

∇µ

[√
−gR[νµ]

]
=

√
−g∇̄µ

[
R[νµ]

]
, (2.46)

where ∇̄µ denote the covariant derivative defined with the Levi-Civita connection

of gµν . Using eq. (2.46) and eqs. (2.29) and (2.31), one can rewrite eq. (2.45) as

c2 l
2
p ∇̄µ

[
R[νµ]

]
− 3Qν = 0, (2.47)

while eq. (2.44) takes the simple form

Qλµν = 2gµνQλ − 2gλµQν − 2gλνQµ. (2.48)

Thus, the non-metricity can now be fully determined in terms of Qν . The indepen-

dent connection is then given by

Γλ
µν =

{λ
µν

}
− 3gµνQ

λ + δλµQν + δλνQµ, (2.49)

and R(µν) can be expressed in terms of the Ricci tensor of gµν , Rµν and Qν as

R(µν) = Rµν − 3gµν∇̄σQ
σ − 6QµQν . (2.50)
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Taking a divergence of eq. (2.47) on can show that

∇̄νQ
ν = 0 (2.51)

Thus, eqs. (2.43) and (2.44) are equivalent to the more familiar system

Rµν −
1

2
Rgµν = −s κFαµFβνg

αβ + s
1

4
κFαβF

αβgµν

+κm2AµAν −
1

2
κm2AσAσgµν + κTµν , (2.52)

∇̄µF
µν + sm2Aν = 0. (2.53)

where Fµν = 2∂[µAν], Aµ =
√
|c2|/(4π)Qµ and m2 = 3/(|c2|l2p) and s = sign(c2).

One can use these redefinitions and eqs. (2.50) and (2.32) to rewrite action (2.34)

when c1 = 0 as

S =
1

16πl2p

∫
dx4

√
−gR + SF + SM(ψ, gµν), (2.54)

where

SF =
1

2

∫
dx4

√
−g
[
s
1

2
FµνF

µν −m2AµAµ

]
. (2.55)

One can easily verify that eqs. (2.52) and (2.53) can be straightforwardly derived

by varying action (2.54) with respect to gµν and Aµ respectively. Action (2.54),

and consequently also action (2.34) with c1 = 0, correspond to General Relativity

with matter and a massive vector field, also know as the Einstein–Proca field. This

specific example was actually considered by Buchdahl in Ref. [29], where action

(2.33) with a = −b was proposed as a “geometrization” of the Einstein–Proca field.

One should have s = −1, i.e. c2 negative, for the vector field to not be a ghost

and the theory to be quantum mechanically stable. This choice leads also to classical

stability [our signature here is (− + ++)]. In any case, irrespective of its physical

relevance, this theory serves as a simple example of how higher order curvature

invariants introduce extra degrees of freedom. It also demonstrates through the

restriction in the sign of c2 how the dynamics of these extra degrees of freedom can

potentially lead to pathologies.

As an aside, note that the connection given in eq. (2.49) is a typical example of

a symmetric connection for which R[µν] 6= 0: Aν satisfies eq. (2.53) which is well

known to admit non-constant solutions. Because of the relation between Aν and Qν

and the relation between R[µν] and Qν given in eq. (2.32), one can easily infer that

the theory admits solutions with R[µν] 6= 0.



32 CHAPTER 2. MODIFIED ACTIONS AND FIELD EQUATIONS

2.4.1 Summary

We have considered generalized Palatini theories of gravity, i.e., theories with a con-

nection which is independent of the metric and an action allowed to contain higher

order curvature invariants than the Ricci scalar of this connection. We have shown

that, unlike Palatini f(R) theories, this connection does carry dynamics and can-

not be algebraically eliminated. We gave as a simple, known, example the specific

choice of action that is dynamically equivalent to the Einstein–Proca system (Ein-

stein gravity plus a massive vector field). We also identified some specific actions

which constitute exceptions, and for which the independent connection can indeed

be algebraically eliminated.

Our results disagree with those of Refs. [24, 25, 26]. The reason appears to be

that in Refs. [24, 25, 26] the fact that the Ricci tensor of a symmetric connection is

not necessarily symmetric unless extra constraint are imposed has been overlooked

or it has been implicitly assumed that the Ricci tensor is indeed symmetric due to

some restriction on the connection.

We have not considered here theories where the independent connection is cou-

pled to the matter as this will be the subject of next chapter.



Chapter 3

The dynamics of metric-affine

theories of gravity

3.1 The dynamics of metric-affine gravity

As we have seen in the previous chapter, in General Relativity the spacetime geom-

etry is fully described by the metric. That is to say, the metric does not only define

distances, which is its primary role, but also defines parallel transport, as it is used

to construct the Levi-Civita connection. However, in principle this does not have to

be the case. The metric and the connection can be independent quantities. In this

case one would need field equations that would determine the dynamics of both the

metric and the connection.

How can one construct such a theory? As stated before, the Palatini variation,

an independent variation with respect to the metric and the connection of what is

formally the Einstein–Hilbert action, is considered as an alternative way to arrive to

Einstein’s equations. Indeed the variation with respect to the connection leads to a

non-dynamical equation fixing the latter to be equal to the Levi-Civita connection

of the metric, and under this condition the field equations for the metric become

Einstein’s equations. However, there is a very crucial implicit assumption: that the

matter action does not depend on the connection. This is equivalent to assume that

any covariant derivative eventually contained in the Lagrangian density of matter

fields, is defined with the Levi-Civita connection of the metric instead of the inde-

33
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pendent connection. Then, the independent connection does not really carry the

geometrical meaning described previously, see Refs. [12, 31] for a discussion.

If instead one allows the connection to enter the matter action, the resulting

theory will not generically be General Relativity [32]. Additionally, one can easily

argue that within a metric-affine setting the Einstein–Hilbert form of the action is

not necessarily well motivated anyway: under the assumption that the connection

is the Christoffel symbol of the metric, the Einstein–Hilbert action is indeed the

unique diffeomorphism invariant action which leads to second order field equations

(modulo topological terms and total divergences). However, this is not the case if

the connection is allowed to be independent and it is not assumed to be symmetric:

in this case there are other invariants one should in principle include in the action,

even with the same dimensions as the Ricci scalar.

The situation gets more complicated once one decides to consider the role of

higher order terms. Again, such actions have been studied mostly under the sim-

plifying (but geometrically unappealing) assumption that the connection does not

enter the matter action.

What we would like to understand here is what happens when one jumps from

the Palatini approach, to the more general and better motivated metric-affine ap-

proach, where the independent connection is allowed to enter the matter action,

define the covariant derivative, and, therefore, retain its geometrical significance.

In particular, we would like to understand under which circumstances this connec-

tion becomes an auxiliary field, which can be algebraically eliminated, and when

it actually does carry dynamics. Note that there are well known examples, such

as Einstein–Cartan theory [36] (which is a metric-affine theory with the additional

constraint that the connection is metric, but not symmetric), where the independent

connection can be eliminated algebraically, leading to General Relativity with extra

matter interactions. In this specific case, this is a four-fermion interaction. See also

Ref. [37] for an example of a more general action with the same property. What

happens for more general theories, however, and especially how the dynamics of the

connection will be affected by considering higher order terms in the action, has not

been systematically understood.

In order to address this issue we follow an approach motivated by effective field

theory. We will consider the metric-affine action as an effective action, possibly
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arising from some more fundamental theory at some appropriate limit. We will

then employ power counting in order to construct the most general action order

by order. This will allow us to arrive at model independent statements and avoid

considering fine-tuned actions, which can lead to misleading results.

3.2 General setup for metric-affine theories

We start by clarifying our notation and conventions. The covariant derivative of the

connection Γρ
µν acting on a tensor is defined as

∇µA
ν
σ = ∂µA

ν
σ + Γν

αµA
α
σ − Γα

σµA
ν
α . (3.1)

It is important to stress that the position of indices must be taken very carefully into

account, since the connection are not assumed to be symmetric. The antisymmetric

part of the connection is commonly referred to as the Cartan torsion tensor

S λ
µν ≡ Γλ

[µν] . (3.2)

The failure of the connection to covariantly conserve the metric is measured by the

non-metricity tensor

Qλµν ≡ −∇λgµν . (3.3)

Torsion and non-metricity have a pretty clear geometrical meaning. Consider two

geodesics `1 and `2 (see Fig. 3.1) with unit tangent vector tµ1 = dxµ

ds1
and tµ2 = dxµ

ds2

respectively. Both the geodesics start at the point A. Let’s parallel transport tµ1
along `2 using the connection Γλ

µν ; it will end in a final vector t̃µ1 at point C, at the

distance ds2 = d`2 from A; the new vector t̃µ1 defines the direction of the geodesics
˜̀
1 finally arriving at the point D2 at a distance ds̃1 = d`1 from C. Using the same

procedure on the other side, we find that in a curved spacetime this four-sided figure

is not necessarly a closed loop; the tensor encapsulating the information of the non-

closure of the figure is the torsion tensor. The difference between the positions of

two points D1 and D2 is in fact up to second order corrections

xλ(D2)− xλ(D1) =
[
Γλ

µν − Γλ
νµ

]
dxµdxν = S λ

µν t
µ
1 t

ν
2d`1d`2 . (3.4)
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Figure 3.1: Geometrical meaning of torsion tensor. From [41]

A not vanishing non-metricity tensor, instead, is symptomatic of a lack of preser-

vation of inner products (and in particular lengths and standard angles between two

vectors) during parallel transport; in fact, if we suppose to have two vectors uµ and

vν , a generic vector field wµ and Qλµν 6= 0, then performing the parallel transport

along the curve with tangent vector wµ we obtain

Dw (gµνu
µvν) = (Dwgµν)u

µvν = uµvν∇ξgµνdw
ξ = −uµvνQξµνdw

ξ . (3.5)

Using the connection one can construct the Riemann tensor

Rµ
νσλ = −∂λΓµ

νσ + ∂σΓ
µ
νλ + Γµ

ασΓ
α
νλ − Γµ

αλΓ
α
νσ . (3.6)

which has no dependence on the metric. Notice that the Riemann tensor here has

only one obvious symmetry: it is antisymmetric in the last two indices. All other

symmetries one might be accustomed to from General Relativity are not present for

an arbitrary connection [42]. Without any use of the metric we can also define as

Rµν the Ricci tensor built with the connection Γρ
µν

Rµν ≡ Rλ
µλν = ∂λΓ

λ
µν − ∂νΓ

λ
µλ + Γλ

σλΓ
σ
µν − Γλ

σνΓ
σ
µλ . (3.7)
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R = gµνRµν is the corresponding Ricci scalar.

Note that there is an intrinsic ambiguity in the definition of the Ricci tensor in

metric-affine theories as the limited symmetries of the Riemann tensor allow now

for an alternative definition as

R̂µν ≡ Rσ
σµν = −∂νΓσ

σµ + ∂µΓ
σ
σν . (3.8)

This tensor is called the homothetic curvature. For a symmetric connection it is

equal to the antisymmetric part of Rµν and, therefore, it need not be separately

considered. This is not the case for a non-symmetric connection. Note however, that

the homothetic curvature is fully antisymmetric and as such it leads to a vanishing

scalar when contracted with the metric1.

As already mentioned at the beginning of this chapter, the key characteristic

of metric-affine gravity is that the affine connection Γρ
µν is not assumed to have

any a priori relation with the metric. On the other hand, it is assumed to define

parallel transport and the covariant derivative of matter fields, so it inevitably enters

the matter action, see Ref. [12] for a discussion. That is, in metric-affine gravity

couplings between the connection and the matter fields are allowed. This is the

main difference from (generalized) Palatini theories of gravity, as mentioned earlier.

The action will, therefore be of the following general form

S = SG + SM =

∫
d4x

√
−g
[
LG(gµν ,Γ

ρ
µν) + LM

(
gµν ,Γ

ρ
µν , ψ

)]
, (3.9)

where g is the determinant of the metric gµν , ψ collectively denotes the matter fields,

and SM is the matter action. We have written the dependence of LM on the various

fields explicitly to avoid confusion here, but we will suppress it from now on and

just use SM instead, in order to lighten the notation. Clearly, specific choices of

matter fields will not couple to the connection, such as scalar fields or gauge fields.

Scalar fields have no spin and, for any affine space, their covariant derivatives are

always reduced to partial derivatives. Therefore, neither of these fields will introduce

1See Ref. [31] for a more detailed discussion about the ambiguities in the definition of the Ricci

tensor. Note also that, unlike the usual Ricci tensor, the homothetic curvature tensor has a direct

physical interpretation: it measures the change of the length of a vector when it is transported

along a closed loop. When the homothetic curvature vanishes, the connection is volume preserving,

i.e. volumes do not change during parallel transport.
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torsion or extra non-metricity. Things are a little bit more subtle for gauge fields;

we can observe for example that the electromagnetic field tensor can be expressed

in terms of the standard exterior derivative that is already a covariant object on any

differential manifold and respects gauge invariance. Preserving the gauge invariance

property does not allow us to apply the minimal coupling procedure in this case.

Since the Maxwell field is not minimally coupled to geometry, photons do not feel

the presence of torsion in a metric-affine theory. Gauge fields arising from local

invariance with respect to a non-Abelian symmetry group, also share with Maxwell

fields the characteristic immunity from the minimal coupling prescription, since

they can be minimally coupled to torsion only breaking the gauge symmetry. See

Ref. [31, 36] for a detailed discussion on such matters.

One now needs to specify the exact form of the Lagrangian LG. In Ref. [32] an

action linear in R was consider and in Ref. [31] the most general f(R) family was

studied extensively. Instead of an ad hoc choice inspired by some similarity with

the Einstein–Hilbert action and its generalizations, we would like to follow here an

effective field theory approach so to consider the most general action possible at

each order. To construct this action, we should carry on a power counting analysis

which will reveal the whole set of appropriate terms order by order. We set c = 1

and we can choose the engineering dimensions

[dx] = [dt] = [l] (3.10)

where l is a place holder symbols with dimension of a length. Then we have

[gµν ] = [1] , [
√
−gdx4] = [l4] , [Γλ

µν ] = [l−1] , [Rµν ] = [l−2] . (3.11)

Now consider as a simple example the action

SG =
1

l2p

∫
dx3dt

√
−gR . (3.12)

Requiring that this action is dimensionless implies that the coupling constant lp

must have dimensions of a length which can then be naturally associated to the

Planck length. What we mean by order of the gravitational theory is also clear now:

we mean the highest order in l−1
p powers appearing in the Lagrangian (which, since

one cannot choose the metric and the connection to be dimensionless at the same

time, does not correspond to the order in its derivatives).
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3.3 Second order action

Clearly the action written above is not the most general one we could write in metric-

affine gravity. It is just an example inspired by the analogy with standard GR and

the Einstein–Hilbert action. To begin with, we could include a cosmological constant

term, which is of lower order. But such a term would not play any important role in

our arguments so we will omit it for simplicity. What other terms can we write at the

second order? Under the assumption that the connection is torsionless and metric

compatible (Levi-Civita), there exist no other term which respects diffeomorphism

invariance, as it is well known. But, in the more general metric-affine setting we are

considering here, there is at least two more tensors one could imagine using in order

to construct invariants:

• The aforementioned “second Ricci” tensor R̂µν . However, this tensor has

dimensions [l−2] and is antisymmetric, so there is no invariant quantity one

can construct out of it at second order;

• the Cartan torsion tensor of eq. (3.2), which has the same dimensions as Γλ
µν .

Therefore, terms with one derivative of S λ
µν or terms quadratic in S λ

µν will be

of the same order as R.

Due to the symmetries of S λ
µν there is only a single term with a derivative we

can write

gµν∇µS
σ

νσ . (3.13)

For the same reason, there are just three terms quadratic in S λ
µν one can write

gµνS λ
µλ S

σ
νσ , gµνS σ

µλ S
λ

νσ , gµαgνβgλγS
λ

µν S
γ

αβ . (3.14)

Note that the term in eq. (3.13) has been considered by Papapetrou and Stachel in

[39].

A subtle point is the following. The term in eq. (3.13) is not a total divergence

as ∇µ is not defined with the Levi-Civita connection of the metric. On the other

hand, one can think to decompose the connection as

Γλ
µν =

{
λ
µν

}
+ Cλ

µν , (3.15)
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i.e. in its Levi-Civita part and the rest. Now, using this decomposition we can split

the covariant derivative in (3.13) in a metric compatible part, which will lead to a

total divergence, and the rest, which will lead to terms consisting of contractions

between Cλ
µν and the Cartan torsion tensor. Since the non-metricity is not zero,

these terms are different than the ones already considered above in eq. (3.14). Thus

the term in eq. (3.13) is non-trivial.

This brings us to another puzzle though: Cλ
µν is a tensor, so why not consider

terms constructed with it as well? Actually, Cλ
µν can always be decomposed in terms

of torsion S λ
µν and non-metricity Qλµν , so the question then reduces to whether we

should also consider terms constructed with Qλµν or not. From a power count-

ing/field theory perspective nothing prevents us from doing so, and these would

indeed be terms of the same order. However, from this perspective we should also

consider, for instance, the Ricci tensor of the metric Rµν . In fact, Qλµν and Rµν

share a common characteristic which is crucial for our discussion: They cannot be

expressed without using derivatives of the metric (even if instead of (3.3) one tries

to define Qλµν using the connection, then still the Levi-Civita connection would

be needed as well). Therefore, the puzzle reduces to whether or not we should be

considering invariants constructed with derivatives of the metric.

Clearly, field theoretic considerations cannot give an answer to this question.

Such terms should be considered unless we are willing to invoke some principle

excluding them, along the line of minimal coupling in General Relativity. Such a

principle has been discussed in Ref. [31]. In simple terms it would be the requirement

that the metric be used only for raising and lowering indices. We choose to follow this

prescription here, as it seems sensible from a geometrical perspective (the purpose

of the metric being to measure distances) and it significantly reduces the number of

terms one can consider.

Another way to reduce the number of terms without invoking a minimal coupling

principle would be to require the connection to be metric compatible. This would

force Qλµν to vanish, without necessarily implying torsion has to vanish as well. We

would then remain with exactly the same terms written above. However, in this

case the term in eq. (3.13) would indeed differ from the first term in eq. (3.14) only

by a total surface term and one would be able to omit it.
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Let us then consider the most general second-order action as we have just con-

structed it in our setting

S =
1

16π l2p

∫
dx4

√
−g
(
gµνRµν + a1g

µν∇µS
σ

νσ + a2g
µνS λ

µλ S
σ

νσ (3.16)

+a3g
µνS σ

µλ S λ
νσ + a4g

µαgνβgλγS
λ

µν S
γ

αβ

)
+ SM ,

where the ai’s represent the various coupling constant. Varying independently with

respect to metric and connection yields

R(µν) −
1

2
gµνR+ a1

{
∇(µSν) −

1

2
gµνg

αβ∇αSβ

}
+a2

{
−1

2
gµνSαS

α + SµSν

}
+ a3

{
−1

2
gµνg

αβS σ
αλ S

λ
βσ + S σ

µλ S λ
νσ

}
+a4

{
−1

2
gµνSρσλS

ρσλ + 2S λ
αµ S

α
νλ − SρσµS

ρσ
ν

}
= κTµν , (3.17)

1√
−g

[
−∇λ

(√
−ggµν

)
+∇σ

(√
−ggσµ

)
δν λ − a1∇α

(√
−ggα[µ

)
δ
ν]
λ

]
+(2− a1) g

µνSλ − 2S(µδ
ν)
λ + 2(a1 + a2 − 1)S[µδ

ν]
λ + 2a3g

α[µS
ν]

αλ

+2a4g
α[µgν]βgλγS

γ
αβ = κ∆ µν

λ . (3.18)

where Sα ≡ S β
αβ , κ = 8 π l2p and

Tµν ≡ − 2√
−g

δSM

δgµν
, ∆ µν

λ ≡ − 2√
−g

δSM

δΓλ
µν

. (3.19)

∆ µν
λ is known as the hypermomentum and, as already identified in [40], it encap-

sulates all the information related to the spin angular momentum of matter, the

intrinsic part of dilation current and the shear current. Tµν on the other hand is

sometimes referred to as the stress-energy tensor, in analogy with General Relativ-

ity. However, it should be stressed that this terminology might be misleading within

the metric-affine framework as this tensor does not have the properties usually as-

sociated with the stress-energy tensor is General Relativity. For instance, it is not

necessarily divergence free, it does not reduce to the special relativistic stress energy

tensor at a suitable limit and of course it does describe only some properties of mat-

ter, given the existence of ∆ µν
λ as well. In fact, it is best if it is just considered as

nothing more than a short hand notation for the functional derivative of the matter

action with respect to the metric.
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Our present aim is to check whether it is possible to fully eliminate the connec-

tion from the field equations. Let us consider the contraction of λ index in (3.18)

respectively with µ and ν

3

2

a1√
−g

∇µ

(√
−ggµν

)
= κ∆ µν

µ + (4a1 + 3a2 + a3 + 2a4)S
ν , (3.20)

6− 3a1
2
√
−g

∇ν

(√
−ggµν

)
= κ∆ µν

ν − (2a1 + 3a2 + a3 + 2a4 − 6)Sµ . (3.21)

Combining these two equations gives Sν and the trace ∇µ (
√
−ggµν) as functions of

the hypermomentum

Sν =
κ

(1− a1)a1 + 3a2 + a3 + 2a4

[
(a1 − 1)∆ν − ∆̃ν

]
, (3.22)

1√
−g

∇µ

(√
−ggµν

)
=

2

3

κ∆ν +
κ(a1 + 3)

[
(a1 − 1)∆ν − ∆̃ν

]
(1− a1)a1 + 3a2 + a3 + 2a4

 , (3.23)

where we defined the two quantities ∆µ ≡ ∆
(αµ)

α and ∆̃µ ≡ ∆
[αµ]

α . Eq. (3.23) can

be inserted in (3.18) to eliminate the second and the third term in order to get

1√
−g
[
−∇λ

(√
−ggµν

)]
+ 2a3g

α[µS
ν]

αλ + 2a4g
α[µgν]βgλγS

γ
αβ =

= κ∆ µν
λ − 2

3
[κ∆µ + (a1 + 3)Sµ] δν λ+

2

3
a1
{
κ∆[µ + (a1 + 3)S[µ

}
δ
ν]
λ −

− (2− a1) g
µνSλ + 2S(µδ

ν)
λ − 2(a1 + a2 − 1)S[µδ

ν]
λ , (3.24)

while we will refrain from replacing Sν for compactness.

Using the identities

∇µ

√
−g = ∂µ

√
−g − Γα

αµ

√
−g (3.25)

and

gµν∂λ(
√
−ggµν) = 2

√
−g ∂λ ln

√
−g (3.26)

we can write the trace of eq. (3.24) with the metric in the µ and ν indices as

∂λ
√
−g√
−g

= −1

2
κgµν∆

µν
λ +

1

3
κgµλ∆

µ +

(
4− 5

3
a1

)
Sλ + Γα

αλ . (3.27)
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Eliminating the density related terms and suitably lowering the indices, eq. (3.24)

can eventually take the form

∂λgσρ − Γµ
ρλgµσ − Γν

σλgνρ + 2a3S[σ|λ|ρ] + 2a4Sσρλ =

= gσρ

(
4− 5

3
a1

)
Sλ +

1

3
κgσρ∆λ −

1

2
κgσρ∆

µ
λ µ +

+κ∆λσρ − (2− a1) gσρSλ + 2S(σgρ)λ − 2(a1 + a2 − 1)S[σgρ]λ +

+
2

3
(a1 + 3)

(
a1S[σgρ]λ − Sσgρλ

)
+

2

3
κ
(
a1∆[σgρ]λ −∆σgρλ

)
. (3.28)

We can now split this last expression in its antisymmetric and symmetric part with

respect to the two indices σ and ρ

2a3S[σ|λ|ρ] + 2a4Sσρλ = Θλσρ ,

∂λgσρ − Γµ
ρλgµσ − Γν

σλgνρ = κ∆λ(σρ) −
2

3

[
κ∆(σ + a1S(σ

]
gρ)λ

−gσρ
[(2

3
a1 − 2

)
Sλ +

1

2
κ∆ µ

λ µ −
1

3
κ∆λ

]
, (3.29)

where we have introduced the short hand notation

Θλσρ ≡ κ∆λ[σρ] +
2

3
(a1 − 1)

[
κ∆[σ +

(
a1 −

3a2
a1 − 1

)
S[σ

]
gρ]λ ; (3.30)

it is worth noting than, by virtue of (3.22), Θλσρ is just a function of the matter

fields encoded in the hypermomenta. Adding suitable permutations of (3.29) and

(3.29) we obtain

Sρνµ =
a3

2a3(a3 + a4)− 4a 2
4

[
Θνρµ −Θρνµ −

(
2
a4
a3

− 1

)
Θµρν

]
, (3.31)

Γξ
(σρ) =

{
ξ
σρ

}
+ 2S ξ

(ρ σ) −
1

2
κgξλ(−∆λ(σρ) +∆ρ(σλ) +∆σ(ρλ))

−κ
3
gξλ
(
2∆(σgρ)λ − 3∆λgσρ

)
+ gξλ

[
Sλgσρ +

(
2

3
a1 − 2

)
S(σgρ)λ

]
−κ
4
gξλ
[
gσρ∆

µ
λµ − 2gλ(ρ∆

µ
σ)µ

]
. (3.32)

Eqs. (3.31) and (3.32) give the antisymmetric and symmetric parts of the con-

nection algebraically in terms of the hypermomentum and the metric. Under the

condition that the matter action depends at most linearly on the connection, the

above statement is equivalent to saying that we have algebraically expressed the
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connection in terms of the matter fields and the metric. This assumption is indeed

satisfied for all common matter actions, such as scalar and gauge field, in which the

matter action does not depend on the connection, and fermions, where the matter

action is linear in the connection. This condition can be violated for some fields, for

example massive vector fields, especially if not trivial couplings between the connec-

tion and the matter are introduced. However, as long as the matter action contains

only first order derivatives of the matter fields (in order for the matter fields to sat-

isfy second order equations of motion), ∆ µν
λ will only depend algebraically on the

connection. This implies that, even though some more complicated manipulations

will be required, the connection can always be expressed algebraically in terms of

the matter field and the metric (at least at the component level).

This establishes that the independent connection in (up to) second order metric-

affine actions does not carry any dynamics and it can be algebraically eliminated.

Consider now using eqs. (3.32) and (3.31) to completely eliminate the connection in

eq. (3.17). One would then get an equations of the form

Rµν −
1

2
Rgµν = κTµν , (3.33)

where Rµν and R are the Ricci tensor and the Ricci scalar of the metric gµν re-

spectively, and Tµν will be some a second rank tensor which depends on the metric,

∆ µν
λ and Tµν . The expression for Tµν in terms of these three quantities is rather

lengthy and we will refrain from writing it here. However, it should already be clear

that the theory described by eq. (3.33) is General Relativity with modified matter

interactions. For fields for which the hypermomentum vanishes, Tµν = Tµν .

3.4 Higher orders

We can now move on to higher orders. Since the connection has three indices and the

derivative one index, there is no [l−3] scalar quantity one can construct out of them.

Similarly, one cannot construct an [l−3] scalar quantity using curvature invariants.

The next order is [l−4]. The terms that could straightforwardly lead to invariants
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after (several) contractions with the metric are

Rα
βγδR

µ
νλσ, ∇µ∇νRα

βγδ, Rα
βγδS

λ
µν S

ρ
τω , Rα

βγδ∇ρS
λ

µν

S λ
µν ∇ρRα

βγδ, S λ
µν S

σ
αβ S

κ
γδ S

ρ
τω , S λ

µν S
σ

αβ ∇ρS
κ

γδ

S λ
µν ∇ρ∇κS

σ
αβ , ∇ρS

λ
µν ∇κS

σ
αβ , ∇µ∇ν∇ρS

σ
αβ , (3.34)

Clearly each of these terms can lead to various invariants. It goes beyond the purpose

of this thesis to list all possible terms.2 However, before going further, the following

subtle points are worth mentioning:

1. Due to the symmetries (or lack thereof) of the Riemann tensor when con-

structed with an independent connection, there are more invariants than in the

purely metric case. For exampleRµν is not symmetric and henceRµνRκλg
µλgνκ

and RµνRκλg
µκgνλ are not equal.

2. ∇µ is constructed with the independent connection and, hence, total diver-

gences such as ∇µu
µ do not lead to pure surface terms and cannot be dis-

carded.

3. Since the metric is not covariantly conserved by the independent connection

taking the covariant derivatives first and contracting, or contracting first and

then taking a derivative does not lead to the same result. For example the

terms gµνgαβ∇µ∇νRαβ and gµν∇µ∇νR differ.

Regarding point (ii) one could propose to split the covariant derivative into a metric

covariant derivative, which is a surface term, and the rest, such as in (3.15). However,

writing the rest explicitly would require the use of metric derivatives through the

use of the Levi-Civita connection, as discussed above. Something similar can be said

about point (iii). The two terms given as an example differ by a term including a

covariant derivative of the metric. This raises the question of whether both of them

should be considered. As mentioned earlier, whether terms including derivatives of

the metric should be included is really a matter of choice that can be answered only

2An exhaustive list of all possible second and fourth order invariants one can construct in the

more limiting case where the non-metricity vanishes can be found in [38]. Given that our minimal

coupling assumption prevents us from the using of the non-metricity to construct invariants (see

also below), this list should cover our case as well.
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by invoking some minimal coupling principle. If one wants to use the metric purely

for contracting indices as suggested previously, then the terms including derivatives

of the metric should be suppressed.

Let us now move on and consider the effect of the higher order terms on the

dynamics of the connection. Considering the most general fourth order action is

formidable due to the vast number of invariant one would have to include. However,

carefully considering isolated terms of different type can still reveal the complete

picture.

Clearly there are term in eq. (3.34) that would not introduce new degrees of

freedom if they were added to action (3.16) as they do not contain extra derivatives,

such as the S4 term (indices suppressed). Such terms exist at all even orders, e.g.

S2n (again indices suppressed). On the other hand [l−4] terms which contain two

derivatives of the Cartan torsion tensor, such as (∇S)2 (indices suppressed) would

inevitable make the torsion dynamical.

What about fourth order curvature invariants? Let us for the moment set aside

the term R2, since it belongs to the general f(R) class, which we will discuss ex-

tensively later, and as we will see it constitutes a rather special case. A much

more characteristic example to consider, which is simple enough to keep calcula-

tions tractable and yet general enough to give us the bigger picture is the following

S =
1

16π l2p

∫
dx4

√
−g
[
R+ l2pRµνRκλ(ag

µκgνλ + bgµλgνκ)
]
+ SM (3.35)

As mentioned earlier, when Rµν is not symmetric, as in our case, the 2 terms in the

parenthesis will not lead to the same invariant. In fact, the action can be re-written

as

S =
1

16π l2p

∫
dx4

√
−g
[
R+ l2pc1R(µν)R(µν) + l2pc2R[µν]R[µν]

]
+ SM (3.36)
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where c1 = a+ b and c2 = a− b. This latter form of the action makes the variation

easier. The field equations for the metric and the connection are respectively

R(µν) −
1

2

(
R+ l2pc1R(αβ)R(αβ) + l2pc2R[αβ]R[αβ]

)
gµν

+2l2p c1R(αµ)R(βν)g
αβ + 2l2p c2R[αµ]R[βν]g

αβ = κTµν , (3.37)

1√
−g

{
−∇λ

[√
−ggµν + 2

√
−g
(
l2pc1R(µν) + l2pc2R[µν]

)]
+

+∇σ

[√
−ggµσ + 2

√
−g
(
l2pc1R(µσ) + l2pc2R[µσ]

)]
δνλ

}
+

+2S σ
λσ

[
gµν + 2

(
l2pc1R(µν) + l2pc2R[µν]

)]
−2S σ

ασ δ
ν
λ

[
gµα + 2

(
l2pc1R(µα) + l2pc2R[µα]

)]
+

+4
(
l2pc1R(µα) + l2pc2R[µα]

)
S ν
αλ = κ∆ µν

λ . (3.38)

In the previous section we were able to use the field equation for the connection in

order to algebraically express the latter in terms of the metric and the matter fields.

Inspecting eq. (3.38), however, one easily realized that, unlike eq. (3.18), it appears

to include derivatives of the connection due to the presence of Rµν . One could think

to use eq. (3.37) in order to algebraically express Rµν (at least at component level)

in terms of the metric and the matter fields (this idea is actually inspired by the

specific case of f(R) actions in the more restricted setting of the Palatini formalism

where the connection does not couple to the matter — this will be discussed below).

If this were the case, one could eliminate Rµν from eq. (3.38) and turn it again into

an algebraic equation for the connection.

However, this is not possible for generic values of c1 and c2, or a and b for the

following simple reasons:

• Rµν is not necessarily symmetric and, therefore, has 16 independent com-

ponents, whereas eq. (3.37) leads to only 10 components equation as it is

symmetric in µ and ν. Therefore, it cannot be used to determine Rµν fully, in

terms of the metric and the components of Tµν .

• Tµν is not necessarily independent of the connection, as it may include covari-

ant derivatives of certain matter fields. Therefore, even if one would impose

such conditions so that eq. (3.37) could be solved algebraically to give Rµν

in terms of the metric and Tµν , e.g. impose the constraint R[µν] = 0 a priori,
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that would not actually help in algebraically expressing the connection as a

function of the matter fields and the metric (at least for generic matter fields).

It should then be clear that the independent connection cannot be eliminated in

metric-affine gravity once generic higher order curvature invariants have been added.

The same issue has been considered in Ref. [34] for the simpler case of generalized

Palatini gravity, i.e. under the assumption that connection does not enter the matter

action. This would corresponds to a vanishing ∆ µν
λ . The first of the difficulties

just discussed is still present in this case when trying to eliminate the connection

algebraically by the procedure described above. However, since Tµν is independent

of the connection in generalized Palatini gravity, the second difficulty raised here is

not really an issue. Hence, it is easier in this framework to write down exceptional

Lagrangians for which the connection can be eliminated (it is just an auxiliary field).

We refer the reader to Ref. [34] for more details. We refrain here from discussing

similar exceptions or special cases for metric-affine gravity, as this would require

severe fine tuning and/or a priori constraints.

Also, we shall not consider explicitly the effect of the mixed terms which include

both the Cartan torsion tensor and the Riemann or the Ricci tensor, as this would

not add anything new to the qualitative understanding we presented so far. What

should be clear by now is that the presence of terms including derivatives of the

Cartan torsion tensor or higher order curvature invariants generically leads to a

dynamical connection. Therefore, higher than second order actions generically lead

to new dynamical degrees of freedom.

3.5 Metric-affine f (R) gravity as a special case

Metric-affine f(R) theories of gravity have been extensively studied lately [31]. They

constitute a distinct class within higher order actions, in the sense that they allows

one to treat terms of different and arbitrarily high order on the same footing. There-

fore, even though within the metric-affine setup there is no reason to single out f(R)

actions as better motivated ones — on the contrary, restricting an action to be of

this type requires fine tuning — their simplicity is indeed a good argument for

adopting them as toy-models from which to extract general lessons. On the other

hand, exactly because they are so special, it is dubious whether f(R) actions can
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be considered as representative higher order metric-affine theories from the point of

view of their dynamics. This is something that is worth exploring further, and is

part of our motivation for considering them separately here.

The other part comes from the observation that in the simpler setting of gen-

eralized Palatini gravity, where the connection does not enter the matter action,

the whole f(R) class constitutes an exception for which the independent connection

does not carry dynamics and can be algebraically eliminated [12, 14]. This is true

even if the connection is not assumed to be symmetric [14]. It is, hence, worth

exploring in detail what happens in the more general metric-affine framework, in

order to avoid confusion and misconceptions.

The action for f(R) theories reads

S =
1

16π l 2p

∫
d4x

√
−gf(R) + SM (3.39)

This action as it stands cannot lead to consistent field equations in the presence of

matter, as the gravity part of the action has a symmetry that is not shared by the

matter action. Indeed, the Ricci scalar of the connection R remain invariant under

the projective transformation

Γρ
µν → Γρ

µν + δρµξν (3.40)

(ξµ being an arbitrary covariant vector field). Consequently any function f(R) and

any action of the f(R) type will also be projective invariant. However, matter

actions that depend on the connection will not be projective invariant. This has

been discussed several times in the literature [32, 42, 43, 31, 4].

To resolve the inconsistency one needs to somehow break the projective invari-

ance in the gravity sector. The only way to do that, given that we do not want to

alter the form of the action, is to constraint the connection to some extent. The

meaning of projective invariance is very similar to usual gauge invariance, in the

sense that it implies that the connection can be determined only up to a projective

transformation. So, to break gauge invariance we need a constraint that that would

act as “gauge fixing”. Clearly, given the nature of the projective transformation we

essentially need to fix a vector. It has been argued in Refs. [31, 4] that the best

choice for f(R) gravity is to set

Sµ ≡ S α
αµ = 0 (3.41)
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This constraint can be imposed implicitly, but also explicitly by adding to the action

the Lagrange multiplier

SLM =

∫
d4x

√
−gBµSµ . (3.42)

Varying the total action with respect to metric gµν , connection Γρ
µν and Lagrange

Multiplier Bµ lead, after some simple manipulations [3, 31], to the following set of

field equations

f ′(R)R(µν) −
1

2
f(R)gµν = κTµν , (3.43)

−∇λ(
√
−gf ′(R)gµν) +∇σ

(√
−gf ′(R)gσµ

)
δνλ + 2

√
−gf ′(R)(gµνS σ

λσ

−gµρδνλS σ
ρσ + gµσS ν

σλ ) = κ
√
−g
(
∆ µν

λ − 2

3
∆ σ[ν

σ δ
µ]
λ

)
, (3.44)

S α
αµ = 0 . (3.45)

where a prime denotes differentiation with respect to the argument.

We now check whether it is possible to eliminate algebraically the connection

from the field equations. This can be done following a similar procedure as the one

used in section 3.3. A contraction of eq. (3.44) yields

∇σ

(√
−gf ′(R)gσµ

)
= κ

2

3

√
−g∆ (µλ)

λ . (3.46)

We can use this equation in order to eliminate the second term in (3.44) to get

−∇λ(
√
−gf ′(R)gµν) + 2

√
−gf ′(R)gµσS ν

σλ =

= κ
√
−g
(
∆ µν

λ − 2

3
∆ σ[ν

σ δ
µ]
λ −

2

3
∆ (µσ)

σ δνλ

)
. (3.47)

Using the identity

gµν∂λ(
√
−gf ′(R)gµν) = 4

√
−g∂λf ′(R) + 2f ′(R)

√
−g∂λ ln

√
−g , (3.48)

and after contracting eq. (3.47) with the metric in the µ and ν indices one gets

∂λ ln
√
−g = 1

2

[
− κ

f ′

(
gµν∆

µν
λ − 2

3
gµλ∆

(µσ)
σ

)
− 4

∂λf
′

f ′ + 2Γσ
σλ

]
. (3.49)
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Eliminating the density related terms and lowering the indices as we did in the

previous section eq. (3.47) yields

−∂λgαβ − gαβ
∂λf

′

f ′ + Γµ
βλgµα + Γµ

λαgµβ =
κ

f ′

[
1

2
gαβgµν∆

µν
λ (3.50)

−1

3
gαβgµλ∆

(µσ)
σ − gµαgνβ∆

µν
λ +

1

3
(gαλgνβ∆

σν
σ + gλβgµα∆

µσ
σ )

]
.

Adding suitable permutations of eq. (3.50) one gets

Γρ
αβ =

{
ρ
αβ

}
+

1

2f ′

[
∂αf

′δρβ + ∂βf
′δρα − gρλgαβ∂λf

′]+ κ

f ′W
ρ

αβ , (3.51)

where
{
ρ
αβ

}
is the usual Levi-Civita connection associated with the metric gµν and

W ρ
αβ is a tensor encompassing all the hypermomenta terms

W ρ
αβ = −1

2

{
1

2
gαβgµν∆

ρµν − gµνδ
ρ
(α∆

µν
β) +∆ ρ

β α +∆ ρ
αβ (3.52)

−∆ρ
αβ − gαβ∆

(ρσ)
σ +

1

3
δραgµβ

(
2∆ [σµ]

σ +∆ (σµ)
σ

)
+
1

3
δρβgµα

(
2∆ [σµ]

σ +∆ (σµ)
σ

)}
.

Eq. (3.51) provides an expression for the connection in terms of the metric, the

hypermomentum but also R, via the presence of f . So, we essentially run into

the same difficulties we faced in the previous section when trying to eliminate the

connection. However, hereR is just a scalar quantity. Consider the trace of eq. (3.43)

Rf ′(R)− 2f(R) = κT . (3.53)

For a given function f this is an algebraic equation in R. Setting aside pathological

cases in which this equation has no root, and the exceptional case where f(R) ∝ R2,

which corresponds to a conformally invariant gravitational action (see Refs. [9, 17,

31] for more details), eq. (3.53) can be used to express R as an algebraic function

of T . This expression can in turn be used to eliminate R in favour of T in the f

terms in eq. (3.51). Therefore, from now on we can be thinking of eq. (3.51) as

expressing the affine connection as a function of just derivatives of metric, Tµν and

the hypermomentum. This mean we are clear of the first difficulty encountered for

generic fourth order actions.
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This is not the case for the second point we made previously though, i.e. that

Tµν , and hence T , can generically depend on the connection. Even though the

requirement that the matter satisfies second order differential equations of motion

essentially implies that the dependence of Tµν on the connection will be algebraic

(there can be only first covariant derivatives of the matter fields is SM), the fact that

there are first order derivatives of f ′ in eq. (3.51) is enough to give derivatives of the

connection. Therefore, in metric-affine f(R) the connection satisfies a dynamical

equation in general.

A remarkable observation is the following. Taking the antisymmetric part of

(3.51) in its lower indices we get

Γρ
[αβ] ≡ S ρ

αβ = ∆ ρ
[β α] +∆ ρ

[αβ] −∆ρ
[αβ] (3.54)

= gρλ
(
∆β[λα] +∆α[βλ] −∆λ[αβ]

)
.

This implies that the torsion is still non-dynamical and vanishes for matter fields

with vanishing ∆
[αβ]

γ . It is only the symmetric part of the connection that carries

dynamics. As already stressed in [31] torsion is non-propagating in metric-affine

f(R) and it is introduced by matter fields having ∆
[αβ]

γ 6= 0.

The fact that the connection appears to satisfy a first order differential equation

(namely eq. (3.51), given the presence of derivatives of f(R)), at least if one assumes

that T does not include any derivatives of the connection, seems worrying. However,

it is very difficult to tell if this is indeed a problem. Neither do we have the exact form

of the equation, nor do we know which degrees of freedom hiding in the connection

will actually be excited.

Of course, for matter fields which do not couple to the connection (scalar field,

gauge fields) or if one imposes that the independent connection does not enter the

matter action SM , Tµν is independent of the connection as well and ∆ µν
λ = 0. In

this case the connection can indeed be eliminated and one recovers the results of

Palatini f(R) gravity [14]. Another special case is the one where f(R) = R, as is

this case f ′ = 1 and R is no longer present in the eq. (3.51), which now takes the

form

Γρ
αβ =

{
ρ
αβ

}
+ κW ρ

αβ . (3.55)
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One can then write

R(αβ) ≡ ∂ρΓ
ρ
(αβ) − ∂(βΓ

ρ
α)ρ + Γρ

σρΓ
σ
(αβ) − Γρ

σ(βΓ
σ
α)ρ = (3.56)

= Rαβ + κ
[
∇̄ρW

ρ
(αβ) − ∇̄(βW

ρ
α)ρ +W ρ

σρ W σ
(αβ) −W ρ

σ(β W σ
α)ρ

]
,

where Rµν is the Ricci tensor of the metric gµν and ∇̄µ is the covariant derivative

defined with the Levi-Civita connection of the same metric. Contracting with the

metric one gets

R = R + κ
[
2∇̄[ρW

µ ρ
µ] +W ρ

σρ W
µσ

µ −W µρ
σ W σ

µρ

]
. (3.57)

We can now use eqs. (3.55), (3.56) and (3.57) in order to completely eliminate the

connection and end up with the single field equation for the metric

Gαβ = κTαβ +
κ

2
gαβ

{
2∇̄[ρW

µ ρ
µ] +W ρ

σρ W µσ
µ −W µρ

σ W σ
µρ

}
−κ
{
∇̄ρW

ρ
(αβ) − ∇̄(βW

ρ
α)ρ +W ρ

σρ W σ
(αβ) −W ρ

σ(β W σ
α)ρ

}
, (3.58)

where, as usual,

Gαβ ≡ Rαβ −
1

2
Rgαβ , (3.59)

is the Einstein tensor of the metric gµν . Therefore, f(R) = R metric-affine gravity

reduces to General Relativity with extra matter interactions. This is anyway clearly

just a subcase of the most general second order action we examined in section 3.3

with vanishing ai’s.

However, we have shown for any other function f(R) the connection cannot be

algebraically eliminated in the presence of matter fields that couple to it.

3.6 Summary

Metric-affine theories of gravity provide an interesting alternative to General Rela-

tivity: in such an approach, the (gravitational) dynamical fields are pairs consisting

of a pseudo–Riemannian metric and an independent connection, not necessarily sym-

metric, on the space-time manifold. Furthermore, the action could include covariant

derivatives of the matter fields, with the covariant derivative naturally defined using

the independent connection. As a result, in these theories a direct coupling involving
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matter and connection is also present. In this chapter we have explored the role and

the dynamics of the connection in such theories.

We have employed power counting in order to construct the action and search for

the minimal requirements it should satisfy for the connection to be dynamical. We

found that, for the most general action containing lower order invariants of the cur-

vature and the torsion, the independent connection does not carry any dynamics.

It actually reduces to the role of an auxiliary field and can be completely elimi-

nated algebraically in favour of the metric and the matter field, introducing extra

interactions with respect to general relativity. However, we have also showed that

including higher order terms in the action radically changes this picture and excites

new degrees of freedom in the connection, making it (or parts of it) dynamical.

Constructing actions that constitute exceptions to this rule requires significant fine

tuning and/or extra a priori constraints on the connection. We have also considered

f(R) actions as a particular example in order to show that they constitute a distinct

class of metric-affine theories with special properties, and as such they cannot be

used as representative toy theories to study the properties of metric-affine gravity.



Chapter 4

Cosmology beyond the Standard

Model

4.1 Backreaction problem: suggested solutions

In order to explain the puzzling cosmological observations without using dark energy,

many efforts have been done in the context of inhomogeneous models, where the full

effects of General Relativity come into play. Two main, different approaches have

been outlined to solve such problem.

In one approach exact inhomogeneous cosmological models can be utilised. It

has been shown that the Lemaitre-Tolman-Bondi (LTB) solution can be used to fit

the observed data without the need of dark energy, although this comes to the price

of placing the observer in a preferred location.

A second approach, and the one of interest in this thesis, is backreactions through

averaging. The averaging problem in cosmology is of considerable importance for

the correct interpretation of cosmological data. The correct equations on cosmolog-

ical scales are obtained by averaging the Einstein field equations of GR (eventually

supplemented by a theory of photon propagation; i.e., information on what trajec-

tories actual particles follow). By assuming spatial homogeneity and isotropy on the

largest scales, the inhomogeneities affect the dynamics through correction (backre-

action) terms, which can lead to behaviour qualitatively and quantitatively different

from the FLRW models; in particular, the expansion rate may be significantly af-

55
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fected. In the next three subsections we will see three examples of some different

approaches to solve the problem.

4.1.1 Exact inhomogeneous solutions to Einstein equations:

LTB and Swiss-cheese models

The Lemaitre-Tolman-Bondi solution [47, 48, 49] describes a spherically symmetric

spacetime filled with an irrotational pressureless ideal fluid (matter, dust). The

matter particles are in a free fall under their own gravity tracing geodesics and

the vanishing rotation of the geodesic congruence assures that the geodesics are

orthogonal to spatial hypersurfaces. The corresponding family of such hypersurfaces

define a convenient foliation and coordinate system on the spacetime. With the

resulting synchronous and matter-comoving coordinates, the stress-energy tensor is

diagonal Tµν = diag(ρ(r, t), 0, 0, 0) while the metric can be recasted as

ds2 = −dt2 + R′2(t, r)

1 + 2E(r)
dr2 +R2(t, r)(dθ2 + sin2 θdφ2) , (4.1)

where a prime denotes a partial derivative with respect to the radial coordinate r.

The arbitrary integration function E(r) results from integrating the Bondi condition

Gtr = 0 and determines the local 3-curvature of the spatial slices. The areal radius

R(r, t) determines the area of a sphere of radius r and the time coordinate tmeasures

the proper time of the comoving matter.

We demand that R′(t, r) > 0 for any r and t in order to avoid shell crossing,

namely that an outer shell, with a larger value of r, does not have a larger area

radius R than an inner shell. In this way, the condition of neglecting dust pressure

is also fullfilled.

Integrating the Grr = 0 Einstein equation leads to the evolution equation

Ṙ2(r, t) = 2E(r) +
2GM(r)

R(r, t)
, (4.2)

with the dot here referring to partial derivatives with respect to t. M(r) is an inte-

gration function that defines a Euclidean mass, connected to the comoving matter

density ρ by the other Einstein equations

ρ(r, t) =
M ′(r)

4πR2(t, r)R′(t, r)
=⇒M(r) =

∫ r

0

4πR2(t, r̃)R′(t, r̃)ρ(r̃, t)dr̃ ; (4.3)
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interestingly,M(r) is different from the comoving rest mass by a factor (1+2E(r))−
1
2

in the integral.

To fully specify the LTB model, one has to choose three functions, E(r), M(r)

and an integration function coming from (4.2), the big bang time tB(r). One of

these three functions can be fixed via a rescaling of the coordinate r, leaving the

problem with two physically different free functions.

It goes without saying that the LTB proposal has the flaw to describe unreliable

spherical symmetric configurations. As a first step to go beyond this main limitation

of LTB solutions and in order to attempt at understanding the role of large-scale

non-linear cosmic inhomogeneities in the interpretation of observable data, many

possible manipulations of LTB models were explored in the past. Among these,

Swiss-cheese models had a leading role in the literature.

A Swiss-cheese model (see [55] and references therein)is a cosmological model

where “cheese” regions, described by a FLRW metric, are surrounded by several

spherically symmetric holes, which on the reverse are modelled by LTB solutions.

So, a Swiss-cheese is a foam of spherical symmetric holes, but it is not a spherical

symmetric model as a whole. The parameters of the LTB model for the round hole,

namely the matter density ρ and the function E(r), must be chosen in order to

match the FLRW metric on the boundary of the sphere, i.e. at this border the

density has to match the FLRW density and 2E(r) has to go to −kr2 with constant

k. Under such condition, a realistic physical picture of a Swiss-cheese model becomes

a configuration where, given a sphere, all the matter in the inner region is pushed

to the border of the sphere while the quantity of matter inside the sphere does not

change. With the density chosen with this shape, an observer outside the hole will

not feel the presence of the hole as far as local physics is concerned (this does not

apply to global quantities), the cheese is evolving as a FLRW universe while the

holes evolve in a different way. The cheese can be filled with as many holes as

possible, even with different sizes and density profiles, and still be described by an

exact solution of the Einstein equations (as long as there is no superposition among

the holes and the correct matching is achieved).
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4.1.2 Averaging à la Buchert

Let us now briefly review the Buchert formalism in GR for a universe filled with an

irrotational dust. As in the case of a LTB model, it is possible to choose a foliation

of spacetime with spacelike hypersurfaces orthogonal to the flow at any event. We

will then apply the averaging procedure with respect to a family of observers comov-

ing with the dust and characterized by a four-velocity field uµ, thus avoiding gauge

complications related to the choice of an arbitrary set of observers tilted with re-

spect to the cosmological matter fluid [76]. Actually, in an inhomogeneous universe

the four-velocity of these observers is not simply uµ = δ0µ but there are also local

fluctuations δuµ, so that uµ = δ0µ + δuµ corresponding to the possible choices of

time on the inhomogeneous hypersurfaces. Therefore, the procedure adopted here

of projecting the Einstein equations onto uµ and then averaging is not free of ambi-

guities and gauge-dependence issues. This projection and the spatial average do not

commute. With this caveat in mind, we proceed as is usually done in the literature

by choosing Gaussian normal coordinates (see below).

It is also convenient to define a template metric mimicking the main properties

of a FLRW universe on large scales [77, 78] but encoding the small scale lumpy

structures. In this way the averaged quantities will assume the usual meaning as

in the traditional cosmological framework. The scale of the domain used in the

averaging procedure is chosen as the cosmological volume over which it would be

reasonable to recover homogeneity, i.e., somehow larger than 100 h−1 Mpc.

Let us briefly recall the essential points of Buchert’s averaging approach, referring

the reader to [79] for details. For the sake of simplicity we turn our attention to

Buchert’s original model (see [56] for a comprehensive review). This consists of a

universe filled with an irrotational dust as the material source, with energy density

ρ and four-velocity uµ satisfying uµu
µ = −1. In the real universe, the matter cannot

locally be treated as dust everywhere, but the deviations are unlikely to be relevant

for quantities integrated over large scales, which is what enters into the observations.

For treatment of non-dust matter, see [61, 60]. The corresponding Einstein equations
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and stress-energy covariant conservation equation read

Rµν −
1

2
gµνR = 8πGρuµuν − Λgµν , (4.4)

∇µ (ρ u
µuν) = 0 , (4.5)

where ρ ≡ Tµνu
µuν . By adopting Gaussian normal coordinates it is possible to

apply the standard ADM procedure for the 3+1 splitting of spacetime [75]. In

these coordinates the spacetime manifold can be foliated with spacelike Cauchy

hypersurfaces parametrized by the proper time t. In this framework the surfaces are

comoving with the fluid in such a way that, casting the metric in the form

ds2 = −dt2 + gij
(
t,Xk

)
dX i ⊗ dXj (i, j, k = 1, 2, 3), (4.6)

we have uµ = (1, 0, 0, 0) and uν∇νu
µ = 0. The second fundamental form (extrinsic

curvature) Kµν of the geodesic normal slicing of spacetime is introduced as follows:

Let hµν = gµν + uµuν be the induced metric on the 3-surfaces. Then Kµν is defined

as the Lie derivative of this Riemannian metric in the time direction,

Kµν = −1

2
£uhµν = −∇µuν = −1

2
∂thµν . (4.7)

Given the form of the metric (4.6), K00 and K0i vanish while Kij can be expressed

in terms of the expansion tensor θij, the expansion scalar θ ≡ θii, and the traceless

shear tensor σij as

Kij = −θij = −
(
σij +

θ

3
gij

)
, K ≡ K i

i = − θ (i, j = 1, 2, 3). (4.8)

For an infinitesimal fluid element, θ indicates how its volume changes in time, keep-

ing the shape and the orientation fixed, while shear changes the shape. In the FLRW

case, the volume expansion rate is just 3H, where H is the Hubble parameter.

Denoting with Dµ the derivative operator associated with the metric hµν , it

is possible to derive the Gauss–Codazzi relations between the curvature of the 3-

surface, the extrinsic curvature and the spacetime curvature [75]:

(3)Rµνρσ = (4)Rαβγδh
α
µh

β
νh

γ
ρh

δ
σ −KµρKνσ +KµσKνρ , (4.9)
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DρK
ρ
ν −DνK = hµνRµρu

ρ . (4.10)

Saturating indices with the induced metric hµν , it is possible to rearrange eq. (4.9)

as

Gµνu
µuν =

1

2

(
(3)R+K2 −KijK

ij
)
, (4.11)

where (3)R is the scalar 3-curvature, i.e., the projection of the Ricci scalar onto the

spatial hypersurface. On the other hand, using the definition of the Riemann tensor

it follows that

Rµνu
µuν = K2 −KµνK

µν −∇µ (u
µ∇νu

ν) +∇ν (u
µ∇µu

ν) , (4.12)

with the last term vanishing because of the geodesic equation obeyed by the four-

velocity of the dust. By combining (4.12) with (4.11) and taking into account the

definition (4.7) of extrinsic curvature, we are able to express the scalar curvature of

spacetime as
(4)R = (3)R+K2 +KijK

ij − 2£uK . (4.13)

The Hamiltonian or energy constraint and the evolution equation for the expansion

scalar (Raychaudhuri equation) can be derived from appropriate contractions of the

Einstein equations: the Hamiltonian constraint is obtained by doubly contracting

eq. (4.4) with uµ and using eq. (4.11),

1

2

(
(3)R+K2 −KijK

ij
)
= 8πGρ+ Λ , (4.14)

while the equation for the scalar expansion is found by tracing the Einstein equation.

Taking into account eq. (4.13) and the fact that £uK = ∂tK, it follows that

(3)R+K2 +KijK
ij − 2∂tK = 8πGρ+ 4Λ . (4.15)

The scheme proposed by Buchert involves scalar quantities averaged over a compact

domain D with volume VD ≡
∫
D
d3X

√
(3)g,

〈ψ(t,Xi)〉D ≡ 1

VD

∫
D

d3X
√

(3)g ψ (t,Xi) . (4.16)

Hence, in order to apply the averaging procedure, it is useful to re-arrange eqs. (4.14)

and (4.15) taking into account the relations (4.8). In this way, we find the scalar
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equations 2

1

2

(
(3)R+

2

3
θ2 − 2σ2

)
= 8πGρ+ Λ , (4.17)

(3)R+
4

3
θ2 + 2σ2 + 2θ̇ = 8πGρ+ 4Λ , (4.18)

where we have defined the shear scalar as σ2 ≡ 1
2
σijσ

ij.

It is also useful to recall the energy conservation equation (4.5), which takes the

form

ρ̇ = Kρ = −θρ . (4.19)

In a spatially homogeneous and isotropic universe with curvature index κ de-

scribed by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric 1

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
(4.20)

and dominated by dust, one has(
ȧ

a

)2

=
8πGρ

3
+

Λ

3
− κ

a2
, (4.21)

ä

a
= − 4π

3
Gρ+

Λ

3
, (4.22)

ρ̇+ 3
ȧ

a
ρ = 0 . (4.23)

Using the averaging procedure, eqs. (4.17)-(4.19) can always be written in the form

of a Friedmann-like system of averaged equations, following the operational defini-

tion (4.16) and exploiting the non-trivial commutation relation that holds for any

scalar quantity ψ(t,Xi) [79]

〈ψ(t,Xi)〉·D − 〈ψ̇(t,Xi)〉D = 〈ψ(t,Xi)θ〉D − 〈ψ(t,Xi)〉D〈θ〉D . (4.24)

Let us introduce also a dimensionless scale factor normalized by the volume VDi
of

the region D at some initial time ti as aD(t) ≡ (VD/VDi
)1/3, with the property that

2Hereafter an overdot denotes differentiation with respect to the comoving time t and the Latin

indices i and j assume the values 1, 2, and 3.
1The Buchert scheme applies to vorticity-free spacetimes. For a more general case see [76].
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the averaged expansion rate is written as

〈θ〉D =
V̇D
VD

= 3
ȧD
aD

≡ 3HD . (4.25)

We define a “kinematical backreaction” term, vanishing on a FLRW background, as

QD ≡ 2

3

(
〈θ2〉D − 〈θ〉2D

)
− 2〈σ2〉D =

2

3
〈θ2〉D − 2〈σ2〉D − 6H2

D . (4.26)

The Einstein scalar equations and the covariant conservation equation now yield

3

(
ȧD
aD

)2

− 8πG 〈ρ〉D − Λ = −
〈
(3)R

〉
D
+QD

2
, (4.27)

3
äD
aD

+ 4πG 〈ρ〉D − Λ = QD , (4.28)

〈ρ̇〉D + 〈θρ〉D = 〈ρ〉·D + 3
ȧD
aD

〈ρ〉D = 0 , (4.29)

respectively. The energy constraint (4.27) and the Friedmann acceleration law (4.28)

lead to a differential integrability condition involving QD and
〈
(3)R

〉
D
that accounts

for the coupling between 3-curvature and fluctuations:

1

a6D
∂t
(
QD a

6
D

)
+

1

a2D
∂t
(〈

(3)R
〉
D
a2D
)
= 0 . (4.30)

The system of averaged equations is not closed because there are only three indepen-

dent equations for the four unknown functions aD, 〈ρ〉D ,QD,
〈
(3)R

〉
D
. This means

that, in principle, different spacetimes could evolve in different ways even when they

have the same average initial conditions. Extra assumptions are needed to close

the system, for example assuming a certain effective cosmic equation of state, or

demanding a particular functional relationship between QD and
〈
(3)R

〉
D

(as it is

done in [79, 80] in order to obtain scaling solutions).

4.1.3 Macroscopic Gravity

The Macroscopic Gravity 2 (MG) is the only approach to the averaging problem in

GR which gives a prescription for the correlation functions emerging in an averaging

2see [50] for a review
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of the non-linear field equation (without which the averaging of the Einstein equa-

tions simply amount to definitions of the new averaged terms). The MG approach

is a non trivial generalization of the metric affine connection geometry providing a

fully covariant, gauge independent and non-perturbative scheme. The theory rests

on the definition of a covariant 4-volume averaging procedure for tensor fields on a

Riemannian spacetime. The formalism uses a bilocal operator Wa′
j (x

′, x) to define

the averaging operation in the manifold M. The bivector Wa′
j (x

′, x) transforms as

a vector at event x′ and as a co-vector at event x. The average of a general tensorial

field P a
b (x) over a finite spacetime domain Σ can be defined as

P̄ a
b (x) = 〈 P̃ a

b 〉(x) = 1

VΣ

∫
Σ

d4x′
√
−g′P̃ a

b (x
′, x) , (4.31)

where VΣ =
∫
Σ
d4x′

√
−g′ and P̃ a

b(x
′, x) is the bilocal extension (in x and x′) of the

tensor P a
b (x) obtained by using the operator Wa′

j (x
′, x)

P̃ a
b (x

′, x) = Wa
i′(x, x

′)P i′

j′(x
′)Wj′

b (x
′, x) . (4.32)

Applying opportunely the averaging procedure to the connection Γa
bc on M yields

to an averaged connection Γ̄a
bc which is taken to be the connection on the averaged

manifold M̄
〈 Γ̃a

bc 〉 = Γ̄a
bc . (4.33)

The metric Gab ≡ ḡab associated with the averaged connection (that is, the metric

whose Christoffel symbols are the Γ̄a
bc) can be assumed to be the average of the

inhomogeneous metric gab on M. Averaging the Einstein equations on M leads to

the equations satisfied by the averaged metric, which can be written as

Ea
b = 8πGN T a

b +
(grav)T a

b , (4.34)

where now Ea
b is the Einstein tensor constructed from the metric Gab, T

a
b is the av-

eraged energy-momentum tensor and (grav)T a
b is a tensorial correlation object which

acts like an effective gravitational energy-momentum tensor.

For the cosmological problem additional assumptions are required: with reason-

able cosmological assumptions, the correlation tensor in Zalaletdinov’s scheme takes

the form of a spatial curvature and Buchert’s scheme can be realized as a consistent

limit [62].
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4.2 Hybrid models

While the averaging formalism is interesting in itself, and the idea of explaining the

cosmological data through backreaction in the context of pure Einstein gravity with

no dark energy is very appealing, it has not been demonstrated yet that this idea

works in practice. It is undeniable that matter inhomogeneities have a backreaction

effect but it is not clear that over/under-densities such as those observed around us

are sufficiently large to significantly affect the cosmic dynamics, and are not limited

to small perturbative effects. While the jury is still out on whether backreaction

explains the observed cosmic acceleration or not, one realizes that virtually all high

energy theories attempting to quantize gravity or unifying it with the other inter-

actions predict deviations from GR. As already mentioned in chapter 2, in string

theories and supergravity the gravitational field includes a dilaton 3 whose presence

is unavoidable and which couples non-minimally to the curvature of spacetime [65].

Such a behaviour is mimicked by scalar-tensor gravity [66, 67] (for example, an early

representative of string theories, the bosonic string theory reduces to an ω = −1

Brans–Dicke theory in the low-energy limit [68]).

While scalar-tensor theories are constrained on Solar System scales and by the

binary pulsar systems [69], we do not have many constraints on larger scales (except,

possibly, those due to the variation of the effective gravitational coupling during Big

Bang nucleosynthesis). It is possible, therefore, that the backreaction idea may

have to be implemented in alternative theories of gravity. In fact, it could even be

that, if backreaction doesn’t quite work in GR, it is “helped” by a non-Einsteinian

component of gravity. In [70] a formalism that implements Buchert’s scheme into

models with variable Newton “constant” was already developed, motivated by the

non-perturbative renormalization group improvement of the action functional [71].

Here, instead, we restrict our attention to scalar-tensor gravity as the prototypical

generalization of GR.

The following observation can be made a priori: the Brans–Dicke-like field that

necessarily permeates all of spacetime can be described as an effective form of matter

by writing the scalar-tensor field equations in the form of effective Einstein equations.

3The dilaton field is in addition to the massless, spin-two graviton and to the antisymmetric

Kalb–Ramond field.
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The effective energy-momentum tensor characterizing this form of φ-matter easily

violates all the energy conditions and, therefore, is more likely to produce the cosmic

acceleration.

Another aspect is worth pointing out: it is widely believed that quantum correc-

tions to the Einstein–Hilbert action introduce quadratic deviations from the usual

Lagrangian density R, which may well have propelled the inflationary epoch in the

early universe 1, e.g. as in Starobinsky’s inflation [72]. For a spatially homoge-

neous and isotropic universe, quadratic corrections die off quickly as the universe

expands and R decreases. However, in an inhomogeneous universe, they might help

the backreaction mechanism. Now, we have already showed in section 2.3.2, that a

theory described by a non-linear Lagrangian density f(R) in the metric formalism

is equivalent to an ω = 0 Brans–Dicke theory with a scalar field degree of freedom

given by φ = f ′(R) with a suitable scalar field potential. Therefore, by studying

scalar-tensor theory, we also catch the effect of the simplest quadratic corrections

to GR.

Let us remind the form of the scalar-tensor action expressed in the Jordan frame

SST =

∫
d4x

√
−g
{

1

16π

[
φR− ω(φ)

φ
∇αφ∇αφ− V (φ)

]
+ αMLM

}
, (4.35)

where φ is the Brans–Dicke-like scalar field with potential V (φ) and coupling func-

tion ω(φ), g is the determinant of the metric tensor gµν , R is the Ricci curvature,

LM is the Lagrangian density describing the ordinary matter sector with coupling

costant αM , and we adopt the notations of Ref. [75].

The conformal transformation

gµν → g̃µν = Ω2 gµν , Ω =
√
Gφ (4.36)

and the scalar field redefinition

dφ̃ =

√
2ω(φ) + 3

16πG

dφ

φ
(4.37)

1We do not refer here specifically to f(R) theories based on large-scale modifications of gravity

[53, 54]. It would be rather pointless to study the backreaction effect in those f(R) theories since

it is already known that, in their metric version, they may provide viable models to explain the

cosmic acceleration [3, 7, 74].
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turn the action (4.35) into its Einstein frame form

SST =

∫
d4x

√
−g̃

[
R̃

16πG
− 1

2
g̃µν∇̃µφ̃ ∇̃νφ̃ − U

(
φ̃
)
+ α̃M(φ̃)LM

]
, (4.38)

where a tilde denotes quantities in the rescaled world, and

U
(
φ̃
)
=

V [φ(φ̃)][
Gφ(φ̃)

]2 , α̃M(φ̃) =
αM[

Gφ(φ̃)
]2 . (4.39)

The “new” scalar field φ̃ couples minimally to the curvature but non-minimally to

the matter fields.

4.3 Averaging procedure for scalar-tensor cosmol-

ogy

Our goal is studying the backreaction mechanism of spatial inhomogeneities on the

cosmic dynamics in the context of scalar-tensor gravity.

It is convenient to write the field equations of scalar-tensor gravity in the form

of effective Einstein equations, which allows for the direct application of Buchert’s

formalism to this class of theories. It must be pointed out that choosing this form of

the equations implies that the scalar field φ plays the role of the inverse of a Newton

“constant” now varying in space and time (the effective gravitational coupling in

the action (4.35) is Geff = φ−1, although the coupling in a Cavendish experiment is

instead Geff = 1
φ

2(ω+2)
2ω+3

[81]). It is rather simple to notice that the presence of this

extra field introduces a new ambiguity with respect to GR due to the non-linearity

of the averaging procedure. In fact, the variation of the action (4.35) with respect

to gµν yields the field equations

φGµν = 8π
(
Tµν + T (φ)

µν

)
, (4.40)

where Gµν ≡ Rµν − 1
2
gµνR is the Einstein tensor and

T (φ)
µν =

ω(φ)

φ

(
∇µφ∇νφ− 1

2
gµν∇σφ∇σφ

)
+∇µ∇νφ− gµν2φ− V (φ)

2
gµν . (4.41)
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While it is common to divide by φ to put this equation in the form of the effective

Einstein equation

Rµν −
1

2
gµνR =

8π

φ
Tµν +

ω(φ)

φ2

(
∇µφ∇νφ− 1

2
gµν∇σφ∇σφ

)
+
1

φ
(∇µ∇νφ− gµν2φ)−

V (φ)

2φ
gµν , (4.42)

this operation does not commute with the spatial average if ∂φ/∂xi 6= 0. As a

result, once the scalar averaging has been performed, 〈φ (4)R〉D 6= 〈φ〉D〈(4)R〉D.
This problem does not appear in GR where the coupling is a true constant and is

peculiar to scalar-tensor gravity. The outcomes of taking the average of eq. (4.40)

or of eq. (4.42) are different. For ease of comparison with GR we choose to proceed

by averaging eq. (4.42) but with a second caveat to keep in mind. Further, if one

decides to adopt the Einstein conformal frame instead of the Jordan frame, the

relevant integro-differential equations can, in principle, have different solutions in

the two frames. But this ambiguity remains even if we stay in the Jordan frame,

depending on the choice one makes to use the scalar field directly linked to the

gravitational sector or, as in our case, to recast the field equations as effective

Einstein-like equations.

The variation of the action (4.35) with respect to the scalar field yields the

equation of motion for φ

2φ =
1

2ω(φ) + 3

[
−8πρ− dω

dφ
∇σφ ∇σφ+ φ

dV (φ)

dφ
− 2V (φ)

]
. (4.43)

The Hamiltonian constraint is obtained by double contraction of the previous equa-

tion with uµ (time-time component of the field equations)

1

2

(
(3)R+K2 −KijK

ij
)
=

8πρ

φ
+
ω(φ)

2

φ̇2

φ2
+
ω(φ)

2φ2
gij∂iφ∂jφ

+
1

φ

(
φ̈+2φ

)
+
V (φ)

2φ
, (4.44)
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while the evolution equation for the expansion scalar now reads

(4)R =(3) R+K2 +KijK
ij − 2∂tK

= −gµν
[
8π

φ
Tµν +

ω(φ)

φ2

(
∇µφ∇νφ− 1

2
gµν∇σφ∇σφ

)

+
1

φ
(∇µ∇νφ− gµν2φ)−

V (φ)

2φ
gµν

]

= 8π
ρ

φ
+
ω(φ)

φ2
∇µφ∇µφ+

32φ

φ
+

2V (φ)

φ
. (4.45)

By averaging the last two equations and using both the definition (4.26) of backre-

action and the fact that K2 −KijK
ij = 2

3
θ2 − 2σ2, one obtains

1

2

〈
(3)R

〉
D
+

1

2
QD + 3H2

D = 8π

〈
ρ

φ

〉
D

+

〈
ω(φ)

2

φ̇2 + gij∂iφ∂jφ

φ2

〉
D

+

〈
φ̈+2φ

φ
+
V (φ)

2φ

〉
D

, (4.46)

〈
(3)R

〉
D
−QD + 6H2

D + 6
äD
aD

= 8π

〈
ρ

φ

〉
D

+

〈
ω(φ)

(
−φ̇2 + gij∂iφ∂jφ

φ2

)〉
D

+

〈
32φ+ 2V (φ)

φ

〉
D

. (4.47)

By combining the last two equations and using eq. (4.43) the cosmic acceleration is

expressed as

äD
aD

= −8π

3

〈
ρ

φ

(
ω(φ) + 2

2ω(φ) + 3

)〉
D

+
QD

3
− 1

3

〈
ω(φ)

(
φ̇

φ

)2〉
D

− 1

3

〈
φ̈

φ

〉
D

(4.48)

− 1

6

〈
1

2ω(φ) + 3

dω

dφ
∇σφ ∇σφ

〉
D

+
1

6

〈
1

2ω(φ) + 3

(
dV

dφ
+ (2ω(φ) + 1)

V

φ

)〉
D

.

Since φ > 0 and ω(φ) > 0 in order to keep the gravitational coupling positive,

the positive energy density of dust in the first term on the right hand side causes

deceleration.
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The constraints on the magnitude of the factor 2(ω + 2)/(2ω + 3) depend on the

range of the φ. If the latter is comparable with the size of the solar system then

the Cassini bound ω > 40000 [82] applies. However, this bound does not apply if

the field is short-ranged or if endowed with a range depending on the environment

(chameleon mechanism).

In an optimistic view, the backreaction term QD is positive and contributes to

acceleration, as generally argued in GR. However, this is not necessarily the case: in

fact, prior to the 1998 discovery of the cosmic acceleration, the same backreaction

term, with negative sign, was proposed as a solution to the dark matter problem

(see [83] and Sec. 5.5.2 of [84]). This shows that the sign of QD is highly uncertain.

The third term on the right hand side of eq. (4.48) is definitely negative and con-

tributes to decelerate the universe, while the signs of the fourth and fifth terms are

undetermined.

There is little doubt that the terms involving the first and second derivatives

of φ are small and, at best (i.e., when 〈φ̈〉D < 0) their effects conflict. However,

the constraints on the temporal and spatial variation of φ after nucleosynthesis are

rather poor. While the time variation of the gravitational coupling is constrained

as
∣∣∣ ĠG∣∣∣ ' ∣∣∣ φ̇φ∣∣∣ < H−1

0 (where H0 is the present value of the Hubble parameter) [69],

there is basically no constraint on the second time derivative of φ.

The last term including the potential and its derivative is novel with respect to

GR and could significantly affect the acceleration. While this could be interpreted

as an obvious consequence of the fact that a potential can mimic a cosmological

constant, we show later (see the case of f(R) gravity discussed below) that it can

be important and positive even in cases for which late time acceleration cannot be

a priori expected from the form of the Lagrangian.

In summary, while no definitive conclusion can be reached on whether the in-

clusion of backreaction induces late time acceleration (as in the GR case), nonethe-

less there are encouraging new terms in scalar-tensor cosmology. Unfortunately no

definitive answer on the relative magnitude and sign of the specific terms can be

provided in such a general framework. Hence, in the following we shall consider

specific implementation of the theory in which eq. (4.48) simplifies.
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4.3.1 Brans–Dicke cosmology

As an example of the procedure developed, let us specialize the whole formalism to

a true Brans–Dicke theory (i.e., V ≡ 0 and ω(φ) ≡ ω0 = constant) and let us also

assume the scalar field to be spatially smooth on the scales of interest, φ = φ(t).

This is clearly an oversimplification but serves the purpose of illustration. This

assumption implies that all the averages involving the scalar field φ are domain-

independent. In this context, the ambiguity in the choice of the representation

described in the previous section is no longer present. Then, eqs. (4.46) and (4.47)

become

1

2

〈
(3)R

〉
D
+

1

2
QD + 3H2

D = 8π
〈ρ〉D
φ

+
ω0

2

(
φ̇

φ

)2

− 3HD
φ̇

φ
, (4.49)

6äD
aD

= −
〈
(3)R

〉
D
+QD − 6H2

D + 8π
〈ρ〉D
φ

− ω0
φ̇2

φ2
− 3

(
φ̈+ 3HDφ̇

)
φ

. (4.50)

The consistency relation between the Hamiltonian constraint and the Raychaudhuri

equation can now be derived by differentiating the latter with respect to time and

then substituting the result, the Hamiltonian constraint, and the equation of motion

for the scalar field in the former. The result is

1

a6D
∂t
(
QD a

6
D

)
+

1

a2D
∂t
(〈

(3)R
〉
D
a2D
)
= (4.51)

=
2

a
6ω0+12
2ω0+3

D

∂t

[
8π

〈ρ〉D
φ

a
6ω0+12
2ω0+3

D

]
+

1

a6D
∂t

[
ω0 φ̇

2

φ2
a6D

]
− 6

a4D
∂t

[
φ̇

φ
HD a

4
D

]
.

As a consistency check, one can notice that this equation reduces to the correspond-

ing eq. (4.30) in the limit ω0 → ∞, φ ≈ const.+O
(

1
ω0

)
in which Brans–Dicke theory

reduces to GR 3 (this can be seen by using the form of the solution of eq. (4.29),

〈ρ〉D ∝ a−3
D , in the first term on the right hand side of eq. (4.52)).

Let us consider a class of solutions in which the scalar field has the form

φ(t) = φ0 + φ1e
−βt , (4.52)

3In the case of a massive dust, the limit of Brans–Dicke theory to GR is free of the ambiguities

arising when T = 0 and the expansion φ = const.+O
(

1
ω0

)
is indeed correct (see [85] and references

therein).
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where the requirement of a positive, non-vanishing scalar field implies φ0 , β > 0

and φ1 > −φ0. Using the general solution of eq. (4.29) we can express the averaged

energy density as 〈ρ〉D(t) = 〈ρ〉0D a−3
D (t), where the scale factor has been normalized

at the starting time of the growth of structures (in our notation, aD(t = 0) = 1

where t = 0 corresponds to the last scattering surface). Inserting this relationship

into the equation of motion for φ, it is possible to solve with respect to a(t). The

effective gravitational coupling is finite for both small and large times t, and the

corresponding averaged scale factor is

aD(t) = e
βt
3 (1− γt)1/3 (4.53)

with

γ =
8π〈ρ〉0D

βφ1(2ω + 3)
. (4.54)

It is an easy task to show that late time accelerated solutions can be found for

suitable values of the parameters. However, the physically motivated requirement

that the backreaction is negligible at early stages further restricts the allowed range.4

The following expressions for the averaged scalar 3-curvature, 〈R〉D, and the

backreaction term QD defined in (4.26), are immediately obtained:

〈R〉D =
βφ1γ − 24π〈ρ〉0D − 2βeβtφ0[γ(2 + βt)− β]

2 (φ1 + eβtφ0) (γt− 1)
, (4.55)

QD =
β2φ2

1ω

φ1 + eβtφ0

+
−8π〈ρ〉0D + βφ1[γ(2βt− 1)− 2β]

2 (φ1 + eβtφ0) (γt− 1)
+

+
1

3

[
β2 +

2βγ

γt− 1
− 2γ2

(γt− 1)2

]
. (4.56)

The initial value of the backreaction term QD could be different from zero (albeit

small), as long as we assume a perturbed FLRW universe at the last scattering

epoch. Furthermore, QD approaches the asymptotic value β2/3, giving a positive

contribution to the acceleration.

4An example of such a solution can be found for the set of values (β, φ0, φ1, ω, 〈ρ〉0D) =

(0.002, 750,−1, 40000, 1).
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4.3.2 Metric f(R) gravity

We now consider the case of metric f(R) gravity, described by the action

S ′ =
1

16π

∫
d4x

√
−gf(R) + SM , (4.57)

where f(R) is a non linear function of its argument [3]. We know that this theory is

equivalent to an ω = 0 Brans–Dicke theory with Brans–Dicke scalar φ ≡ f ′(R) and

potential V (φ) = Rf ′(R)− f(R) [73]. For the sake of illustration, let us take into

account the Lagrangian density in the form f(R) = R+ αRn with n > 1 and α > 0

as required for local stability [86]. Then, the potential can be expressed as

V (φ) =
n− 1

n
n

n−1α
1

n−1

(φ− 1)
n

n−1 (4.58)

and eq. (4.48) reduces to

äD
aD

= −16

9

〈
ρ

φ

〉
D

+
QD

3
− 1

3

〈
φ̈

φ

〉
D

+
2n− 1

18n
n

n−1

1

α
1

n−1

〈
(φ− 1)

1
n−1

〉
D
. (4.59)

α arises from quantum corrections and is presumably small, so it would seem that

the last term on the right hand side of the previous equation is large. However, this

is not the case because (φ−1)
1

n−1 is also small and contains the same power of α: in

fact, by expressing (φ− 1) as a function of R, the last term of eq. (4.59) is rewritten

as 2n−1
18n

〈R〉D. Nevertheless, it is relevant that this term is not suppressed by positive

powers of α, as one might expect, and hence it may contribute significantly to the

cosmic acceleration. The third term on the right hand side, for small values of α, is

instead

−1

3

〈
φ̈

φ

〉
D

' −1

3
αn(n− 1)

〈
(n− 2)Rn−3Ṙ2 +Rn−2R̈

〉
D
. (4.60)

For the physically well-motivated case n = 2 associated to Starobinsky inflation in

the early universe [72], this term reduces to −2α
3

〈
R̈
〉
D
and hence it is subdominant

with respect to the last term of eq. (4.59). Finally for the first two terms on the

right hand side of eq. (4.59) the same considerations presented after eq. (4.48) apply.

4.4 Summary

The increasing improvement in quality and quantity of the cosmological data mo-

tivates a proper evaluation of the backreaction of matter inhomogeneities. Hence,



4.4. SUMMARY 73

any test of alternative theories of gravitation will have to take into account possible

corrections due to the backreaction mechanism, whether the latter are large or not.

For this reason, we analyzed here the possibility of improving the averaging scheme

in the prototypical alternative theories of gravity, the scalar-tensor ones.

Keeping this goal in mind and following the path outlined by Buchert and collab-

orators, we have derived two scalar equations (the Hamiltonian constraint and the

equation for the scale factor) from contractions of the field equations written in the

form of effective Einstein equations. The more general working frame exposed an

intrinsic ambiguity of the averaging proposal related to the scalar degree of freedom

in scalar-tensor theories. The ambiguity is twofold as it leads to different averaged

equations for different conformal frames and, within a chosen frame, to different

results depending on the way the field equations are cast at the beginning of the

calculation. We made here the choice of working in the Jordan conformal frame and

later on in the calculation the ansatz of a domain-independent scalar field allowed

us to circumvent the ambiguity linked to the non-commutativity of the operations

involved.

As in GR, the system of equations obtained is not closed, hence one extra as-

sumption is needed in order to solve it. The backreaction term QD, and other

terms as well, have signs that are undetermined and hence cannot be associated

to a clear effect. This is not too surprising, considering that a loss of information

is unavoidable whenever an average is performed. Averaging makes it impossible

to disentangle the individual contributions of inhomogeneities and anisotropies, but

here even the collective effects are uncertain. While no definitive conclusion can be

reached (as in the GR case), nonetheless there are encouraging new terms in scalar-

tensor cosmology. In particular, we noticed that the term including the scalar field

potential and its derivative could significantly affect the acceleration.

In order to gain a better understanding of the potentialities of the backreaction

terms in eq. (4.48) to contribute significantly to late time acceleration we finally

specialized to two specific sub-cases, namely Brans-Dicke and metric f(R) gravity.

In the first case we have provided, as a proof of principle, a toy model solution which

is accelerated at late times due to the presence of the Brans–Dicke scalar field φ.

In the second case, we have studied a polynomial Lagrangian using the connection

between metric f(R) and scalar-tensor theories. While it is natural to expect that
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higher order corrections to the Einstein–Hilbert Lagrangian would be suppressed by

their small dimensional coefficients, we found that a generic αRn term contributes

via the potential term in eq. (4.48) without showing any suppression in α. Moreover,

the fact that this term is now proportional to the averaged Ricci scalar implies that

it is not necessarily small at late times.



Chapter 5

Testing alternative theories on

large scales

5.1 Challenging GR with cosmological observa-

tions

Cosmology is going through a golden age as we can nowadays start reconstructing

the expansion history of the universe with unprecedented precision. The huge range

of data sets spans a wide realm of observations with heterogeneous nature, providing

us with a much more accurate tool for investigating the evolution of the universe

[88]. We have already seen that most of the observations agree on the evidence that

the universe is undergoing an era of positively accelerated expansion, requiring the

existence of a (more or less conservative) source able to produce it. A large set

of cosmological models, where the late time acceleration is a by-product of some

modified gravitational dynamics, has been investigated. It goes without saying that

a sensible test to discriminate among different cosmological evolutions should pass

through a proper interpretation of high redshift data. In this context, it is clear

that the development of a “gravitational dynamics independent” reconstruction of

the expansion history of our universe does play a crucial role.

Cosmography provides such unbiased test of the cosmological history by assum-

ing just homogeneity and isotropy and then use the so obtained Friedman-Lemâıtre-

75
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Robertson-Walker (FLRW) metric to express the distances1 of the observed objects

as power series in a suitable redshift parameter. The coefficients of such powers,

casted into a combination of successive weighted derivatives of the scale factor

a(t), contain the relevant information for a kinematic description of the universe

[89, 90, 91, 92, 93, 94, 95].

It is quite obvious that by adding higher order powers to the redshift expansions

of such scales it is possible to improve the data fitting, since more free parameters

are involved. However, for a given data set, there will be an upper bound on the

order which is statistically significant in the data analysis. On the other side, it

was noticed in ref. [97] that given a data set reaching sufficiently high redshifts, a

premature truncation of the cosmographic analysis can lead to wrong estimates for

the cosmographic parameters. In this sense it is crucial to always determine the order

of the expansion which maximizes the statistical significance of the fit for a given

data set or an ensemble of them. We shall hence determine such order by performing

suitable F-tests depending on the collection of data sets we shall consider. The so

obtained parameters will then finally allow to evaluate, in a dynamic independent

way, the viability of any theory aiming to explain the current expansion of the

universe.

5.2 Cosmographic expansions

As a pedagogical example, we will discuss first the procedure that has been followed

in order to obtain the cosmographic expansion for the luminosity distance. As

1Note that depending on which physical quantity one is measuring, it could be more convenient

to extract from some data set a particular distance indicator than another one. These different

quantities have different expressions of the Taylor expansion in redshift, such that it could be

more natural to estimate cosmographic parameters, whose expression instead does not depend

on the analytic expansion, in one of these particular frameworks. This ambiguity led also to a

misconception about the appropriate definition of distance one should investigate. From now on we

will refer only to: luminosity distance as the most direct choice in the case of measures of distance

for Supernovae Type Ia (SNeIa) and Gamma Ray Bursts (GRBs); volume distance for Baryon

Acoustic Oscillations (BAOs); angular diameter distance for the Cosmic Microwave Background

(CMB) (see below for their definitions). For a critical discussion about such difficulties, see ref.

[89].
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already pointed out, we will start from the only assumption that the universe is

homogeneous and isotropic, so that the metric describing its properties is the FLRW

one

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
; (5.1)

using this metric, it is possible to express the luminosity distance dL as a power

expansion in the redshift parameter z (or in term of the y-parameter, defined as

y ≡ z/(1 + z)), where the coefficients of the expansion are some functions of the

scale factor a(t) and its higher order derivatives.

Following ref. [102], the relation between the apparent luminosity l of an object

and its absolute luminosity L defines the luminosity distance dL

l =
L

4πr21a
2(t0)(1 + z)2

=
L

4πd2L
, (5.2)

where r1 is the comoving radius of the light source emitting at time t1, t0 is the

later time an observer in r = 0 is catching the photons, and redshift z is, as usual,

defined as 1+ z = a(t0)/a(t1). The radial coordinate r1 in a FLRW universe can be

written for small distances as [94]

r1 =

∫ t0

t1

c

a(t)
dt− k

3!

[∫ t0

t1

c

a(t)
dt

]3
+O

([∫ t0

t1

c

a(t)
dt

]5)
, (5.3)

with k = −1, 0, +1 respectively for hyperspherical, Euclidean or spherical universe.

In such a way, it is possible to recover the expansion of dL for small z

dL(z) =
c

H0

{
z +

1

2
(1− q0)z

2 − 1

6

(
1− q0 − 3q20 + j0 +

kc2

H2
0a

2(t0)

)
z3 +O(z4)

}
,

(5.4)

where we have defined the cosmographic parameters as

H0 ≡ 1

a(t)

da(t)

dt

∣∣∣∣
t=t0

≡ ȧ(t)

a(t)

∣∣∣∣
t=t0

,

q0 ≡ − 1

H2

1

a(t)

d2a(t)

dt2

∣∣∣∣
t=t0

≡ − 1

H2

ä(t)

a(t)

∣∣∣∣
t=t0

,

j0 ≡ 1

H3

1

a(t)

d3a(t)

dt3

∣∣∣∣
t=t0

≡ 1

H3

a(3)(t)

a(t)

∣∣∣∣
t=t0

. (5.5)
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A comment is necessary here: as already stressed in ref. [92] the ill-behaviour

at high z (close and higher than z ≈ 1) of the usual redshift expansions strongly

affects the results leading in general to an underestimate of the errors. In order to

avoid these problems, as well as to control properly the approximation associated

with the truncation of the expansion, it is useful to recast all the involved quantities

as functions of the improved parameter y = z/(1 + z) [92, 96, 97]. In such a way,

being z ∈ (0,∞) mapped into y ∈ (0, 1), it becomes possible to retrieve improved

convergence properties of the Taylor series at high redshift [92, 98].

If we use the redshift variable y = z/(1 + z), the definition of the cosmographic

parameters will not be affected, while now the luminosity distance turns out to be

dL(y) =
c

H0

{
y − 1

2
(q0 − 3)y2 +

1

6

[
11− 5q0 + 3q20 − j0 + Ωk0

]
y3 +O(y4)

}
,

(5.6)

where Ωk0 = −kc2/H2
0a

2(t0) is the spatial curvature energy density. For a flat

universe, Ωk0 = 0. Since we are interested in spanning the universe at any redshift,

in the following we will use only the formulation of the expansion in the variable y.

In our analysis we will put constraints up to fourth and fifth order parameters s0

and c0:

s0 ≡ 1

H4

1

a(t)

d4a(t)

dt4

∣∣∣∣
t=t0

≡ 1

H4

a(4)(t)

a(t)

∣∣∣∣
t=t0

,

c0 ≡ 1

H5

1

a(t)

d5a(t)

dt5

∣∣∣∣
t=t0

≡ 1

H5

a(5)(t)

a(t)

∣∣∣∣
t=t0

. (5.7)

In the Appendix one can find the cosmographic series for all the physical quantities

involved in our study.

5.3 Observational data sets

Some recent papers handle the problem of interpreting the data under a cosmo-

graphic perspective using different probes [97, 99, 100, 101]. In this thesis we are

going to explore the whole ensemble of data sets and use it to constrain the pa-

rameters appearing in the expansions of the characteristic scales associated to these
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indicators: Supernovae and Gamma Ray Bursts, Baryon Acoustic Oscillations, Hub-

ble parameter (Hub) and Cosmic Microwave Background.

The SNIa distance moduli provide the luminosity distance as a function of red-

shift DL(z). In this thesis we will use the latest SNIa data sets from the Supernova

Cosmology Project, “Union2 Compilation” which consists of 557 samples and spans

the redshift range 0 . z . 1.55 [103]. In this data set, they improved the data anal-

ysis method by using and refining the approach of their previous work [104]. When

comparing with the previous “Union Compilation”, they extended the sample with

the supernovae from refs. [103, 105]. The authors also provide the covariance ma-

trix of data with and without systematic errors and, in order to be conservative, we

include systematic errors in our calculations.

In addition, we also consider another luminosity distance indicator provided by

GRBs, that can potentially be used to measure the luminosity distance out to higher

redshift than SNIa. GRBs are not standard candles since their isotropic equivalent

energetics and luminosities span 3 − 4 orders of magnitude. However, similarly to

SNIa it has been proposed to use correlations between various properties of the

prompt emission and also of the afterglow emission to standardize GRB energetics

(e.g. ref. [106]). Recently, several empirical correlations between GRB observables

were reported, and these findings have triggered intensive studies on the possibility

of using GRBs as cosmological “standard” candles. However, due to the lack of low-

redshift long GRB data to calibrate these relations, in a cosmology-independent way,

the parameters of the reported correlations are given assuming an input cosmology

and obviously depend on the same cosmological parameters that we would like to

constrain. Thus, applying such relations to constrain cosmological parameters leads

to biased results. In ref. [107] this “circular problem” is naturally eliminated by

marginalizing over the free parameters involved in the correlations; in addition, some

results show that these correlations do not change significantly for a wide range of

cosmological parameters [108, 109]. Therefore, in this thesis we use the 69 GRBs

over a redshift range z ∈ [0.17, 6.60] presented in ref. [109], but we keep into account

in our statistical analysis the issues related to the circular problem that are more

extensively discussed in ref. [107] and also the fact that all the correlations used to

standardize GRBs have scatter and are poorly understood under the physical point

of view. For a more extensive discussion and for a full presentation of a GRB Hubble
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Diagram with the same sample that we used we refer the reader to section 4 of ref.

[109].

In the calculation of the likelihood from SNIa and GRBs, we have marginalized

over the absolute magnitudeM which is a nuisance parameter, as done in refs. [110,

111]

χ̄2 = A− B2

C
+ ln

(
C

2π

)
, (5.8)

where

A =
∑
i

(µdata − µth)2

σ2
i

, B =
∑
i

µdata − µth

σ2
i

, C =
∑
i

1

σ2
i

. (5.9)

BAOs have been detected in the current galaxy redshift survey data from the

SDSS and the Two-degree Field Galaxy Redshift Survey (2dFGRS) [117, 118, 119].

The BAO can directly measure not only the angular diameter distance, DA(z), but

also the expansion rate of the universe, H(z), which is powerful for studying dark

energy [120]. Since current BAO data are not accurate enough for extracting the

information of DA(z) and H(z) separately [121], one can only determine an effective

“volume” distance [117]

DV(z) ≡
[
(1 + z)2D2

A(z)
cz

H(z)

]1/3
. (5.10)

In this thesis we use the Gaussian priors on the distance ratio of the volume

distances as recently extracted from the SDSS and 2dFGRS surveys [119] at z = 0.35

and at z = 0.2 (the two mean redshifts of the surveys)

DV(z = 0.35)

DV(z = 0.2)
= 1.736± 0.065 (1σ) . (5.11)

The χ2 of BAO data used in the Monte Carlo Markov Chain analysis will thus be

χ2
BAO =

(DV(z = 0.35)/DV(z = 0.2)− 1.736)2

0.0652
. (5.12)

It is worth stressing here that both the physics and the data of BAOs depend

on the content in matter of the universe Ωm. Hence, they are a priori dependent

on a chosen dynamical framework (see also ref. [122] for a review). This issue is

usually ignored in the data analyses performed in the literature. However, such
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an approximation turns out to be valid if one does not range far away from the

typical fiducial model firstly used in the determination of the physical data points.

Indeed, the deviation of different models from the fiducial one can be parametrized

and estimated by the ratio DV (new model)/DV (fiducial model). The impact of the

spacetime priors on the power spectrum measurement was analyzed in ref. [123]

and led to the conclusion that the ratio eq. (5.11) is only weakly dependent on

dynamical features. Hence, we can safely use BAOs as a further tool to constrain

the cosmographic parameters.

Next step in our analysis is the inclusion of the CMB measurement which is

sensitive to the distance from the last scattering surface via the locations of peaks

and troughs of the acoustic oscillations. This data constrains the curve of the cos-

mological history at very high redshift, z ' 1100, and hence could be very helpful

to discriminate among competing theoretical models for dark energy, as they neces-

sarily have to coincide at z ≤ 1 – see for example ref. [131]. The sound horizon at

the decoupling2, rs(z∗), sets a physical scale for the baryon-photon oscillations de-

pending on the baryon density, the photon energy density, and the cold dark matter

density. Now, it is known that the angular diameter distance DA(z) describes the

ratio between the proper size of an object at a certain redshift z and the correlated

observed angular size. The angle θA under which the sound horizon is observed

today is given by

θA ≡ πl−1
A ≡ rs(z∗)/DA(z∗) = 0.593◦ ± 0.001◦ (1σ) , (5.13)

where lA denotes the location of the first peak in the multipole space. As for BAOs,

the dependence on the cosmological density parameters would not allow the use

of CMB observables in a fully cosmographic approach. Following [124] is anyway

possible to give model-independent cosmological constraints if one clarifies some

extra physical assumptions to be fullfilled by cosmological models. The CMB power

spectrum today (apart from the low multipoles shape) is shared by models having

the same primordial perturbation spectra and the same value of ΩCDM and Ωbaryon.

For this reason a model-independent approach can be handle by restricting our

analysis to models having a standard physics up to the decoupling era; asking that

2In our calculation, we choose z∗ = 1091.3, the best fit value obtained by the WMAP group

[132].
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new physics after decoupling only modifies the small angle spectrum by changing

the overall amplitude and DA(z∗); requiring that any multipole-dependent effect at

late time remain small. Such assumptions, while is cutting away some models like

f(R) models with no Dark Matter [125] or models with new radiation degrees of

freedom, are still general enough to cover most of the cosmological models on the

market.

Finally we add the direct determinations of the Hubble parameter H(z) to con-

strain the cosmographic expansion. Since the Hubble parameter depends on the

differential age of the Universe as a function of redshift,

H(z) = − 1

1 + z

dz

dt
, (5.14)

measuring the dz/dt could directly estimate H(z). Ref. [112] used the Sloan Digital

Sky Survey data and obtained a measurement of H(z) at the redshift z ' 0. In

ref. [113], the public data of Gemini Deep Survey (GDDS) survey [114] and archival

data [115] were used in order to get the differential ages of galaxies. In practice,

they selected samples of passively evolving galaxies with high-quality spectroscopy,

and then used stellar population models to constrain the age of the oldest stars

in these galaxies (we refer to their paper for a more exhaustive explanation of the

method used). After that, they computed differential ages at different redshift bins

and obtained eight determinations of the Hubble parameter H(z) in the redshift

range z ∈ [0.1, 1.8]. We calculate the χ2 value of this Hubble parameter data by

using

χ2
Hub =

9∑
i=1

(Hth(zi)−Hobs(zi))
2

σ2
H(zi)

, (5.15)

where Hth(z) and Hobs(z) are the theoretical and observed values of Hubble pa-

rameter, and σH denotes the error bar of observed data. We also make use of the

newly released prior on the Hubble parameter H0, which consists of a measurement

of the Hubble parameter obtained by the Near Infrared Camera and Multi-Object

Spectrometer (NICMOS) Camera 2 of the Hubble Space Telescope (HST).

These observations fix the parameter H0 = 100h0 (km/s)/Mpc by a Gaussian

likelihood function centered around H0 = 74.2 (km/s)/Mpc and with a standard

deviation σ = 3.8 (km/s)/Mpc [116]. We stress that all the mentioned methods for

determining H(z) are “gravitation theory independent”.
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An important point must be underlined: the Taylor series of the Hubble param-

eter already includes into the coefficient of the n-th y-power the same number of

cosmographic parameters of the other series expanded up to the (n+ 1)-th y-power

(see Appendix). This is due, in comparison with the other distance definitions above,

to an extra derivative with respect to time included in the definition of the Hubble

parameter (see also [101]).

For this reason, and for the different nature of the Hubble data, we will initially

consider constraints (based on standard candles and rulers) of the expansion coeffi-

cients associated to different notions of distances; at the end, we will add the Hubble

data using one order less in the y-power expansion with respect to the distance data

in order to constrain the same set of parameters.

In order to compute the likelihood, we use a Monte Carlo Markov Chain tech-

nique as it is usually done in order to explore efficiently a multi-dimensional parame-

ter space in a Bayesian framework. For each Monte Carlo Markov Chain calculation,

we run four independent chains that consist of about 300,000 − 500,000 chain ele-

ments each. We test the convergence of the chains by using the Gelman and Rubin

criterion [126] with R − 1 of order 0.01, which is more conservative than the often

used and recommended value R− 1 < 0.1 for standard cosmological calculations.

5.4 Data analysis

In this section we present our main results on the constraints for the cosmographic

expansion from the current observational data sets.

With the accumulations of new data and the improvements of their quality, it is

of great interest to estimate the free parameters in the polynomial terms of highest

order. We have already showed in the past [97] the inconsistency of the results

in the analysis of the cosmographic expansion caused by early truncations of the

power series. For these reasons we will now present the results obtained for the

most meaningful term of the expansion. In order to find out which is the most

viable truncation of the series for a given data set, one can use a test comparing

two nested models (in this case, two different truncations of the Taylor series).

The F -test provides exactly this criterion of comparison, identifying which of two

alternatives fits better, and in the more statistically significant way, the data.
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Table 5.1: Constraints on the cosmography parameters up to fifth order term from

different data combinations.

Data SNIa

Parameter q0 j0 s0 c0 H0

Best Fit −0.41 −1.99 − − −
Mean −0.41± 0.16 −1.99± 1.36 − − −

χ2
min/d.o.f. 549.69/555

Data SNIa+GRB

Parameter q0 j0 s0 c0 H0

Best Fit −0.78 5.03 50.18 − −
Mean −0.76± 0.26 4.82± 4.07 53.57± 46.38 − −

χ2
min/d.o.f. 628.70/623

Data SNIa+GRB+BAO+CMB 4th order

Parameter q0 j0 s0 c0 H0

Best Fit −0.32 −2.57 −18.40 − −
Mean −0.28± 0.17 −2.88± 1.64 −17.61± 2.56 − −

χ2
min/d.o.f. 633.33 / 625

Data SNIa+GRB+BAO+CMB 5th order

Parameter q0 j0 s0 c0 H0

Best Fit −0.17 −6.92 −74.18 −10.58 −
Mean −0.49± 0.29 −0.50± 4.74 −9.31± 42.96 126.67± 190.15 −

χ2
min/d.o.f. 627.61/624

Data SNIa+GRB+BAO+Hub+CMB (5th order) +Hub (4th order)

Parameter q0 j0 s0 c0 H0

Best Fit −0.24 −4.82 −47.87 −49.08 71.65

Mean −0.30± 0.16 −4.62± 1.74 −41.05± 20.90 −3.50± 105.37 71.16± 3.08

χ2
min/d.o.f. 639.81/633
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In such test, one assumes the correctness of one of the models (the one with

less parameters), and then assesses the probability for the alternative model to fit

the data as well. If this probability is high, then no statistical benefit comes from

the extra degrees of freedom associated to the new model. Hence, the smaller the

probability, the more significant the data fitting of the second model against the

first one will be. Quantitatively, the F -ratio among the two polynomials is defined

as

F ≡ (χ 2
1 − χ 2

2 )

χ 2
2

N − n2

n2 − n1

, (5.16)

where N is the number of data points, and ni represent the number of parameters

of the i-model. The P -value, i.e. the area subtended by the F -distribution curve

delimited from the F -ratio point, quantifies the viability of matching models as

already mentioned. We use the threshold of 5% as the significance level on the P -

value under which the model with one more parameter fits the data better than the

other one.

We already found in ref. [97] that variations of the total energy density of the

universe Ω0 = 1 − Ωk0 , with the spatial curvature parameter ranging between -1

and 1, have a negligible effect on the cosmographic constraints. This is basically

due to the fact that the error bars for the cosmographic parameters are still quite

large in comparison with the best fit values. Nonetheless, it is worth noting that

this will not be necessarily the case when future data, especially at moderate or high

redshift, will improve the constraints. It is then possible that future cosmographic

analysis might have to include the spatial curvature effects in the reconstruction

of the overall history of the universe. This would be the cosmographic expansion

counterpart of the strong sensitivity on Ωk0 showed by the reconstruction of w(z)

[127].

We then assume Ωk0 = 0 in our analysis and only present the results for the

cosmographic parameters, instead of their combinations with Ωk0 , since the effect of

curvature can be safely neglected. Table 5.1 shows the constraints on the cosmog-

raphy parameters as obtained from different data combinations.

We start performing the data analysis with the SNIa data only. We find that

already at the fourth order term in the expansion, the minimal χ2 is 549.59. This

is not reduced significantly when compared with the constraint of the third order

case, which has χ2
min = 549.69. Hence, introducing the snap free parameter s0 does
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Figure 5.1: One-dimensional likelihood distributions for the parameters q0, j0, s0

and c0 for the data combinations SNIa+GRB+BAO+CMB+Hub.

not improve the constraints. Indeed, using the F -test, we find a F -ratio of 0.11 and

a P -value of 73.93%. Therefore, cosmography up to the fourth order term does not

fit the SNIa data significantly better: the cosmographic expansion up to the jerk

term j0 (third order) is enough.

After adding the GRB data, the fourth order case could give a better constraint

than third order only. When comparing the SNIa+GRB results, the minimal χ2 has

been reduced by about five (χ2 = 628.70 instead of χ2 = 633.32). Using one more

time the F -test to contrast third and fourth order expansions, we find F -ratio = 4.59,

P -value = 3.26%. Thus in this case the fourth order term indeed helps to fit the

observed data significantly better. The inclusion of GRBs was found to constrain

the deceleration parameter q0 as q0 = −0.76± 0.26, so confirming that our universe
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is undergoing an accelerated expansion with a confidence level which is marginally

at 3σ [97]3. The F -test does not suggest to further improve the expansion up to

fifth order.

Including the data point related to BAO does not improve significantly the con-

straints. The constraining power of BAO is rather weak since there is only one BAO

data point and its redshift is much lower than those of SN and GRB data. For this

reason we will consider directly the data set that includes both BAO and CMB.

When the CMB angle θA defined in eq. (5.13) is added into our analysis, the

cosmographic curve is constrained at very high redshift, z∗ ' 1100 (namely y ' 1).

Even though the CMB observable is providing just one data point, due to its high

redshift it is in principle very helpful for discriminating among competing theoretical

models producing late time accelerated expansion, since these necessarily converge to

the same cosmological history at small z (see for example [131]). The large difference

between the two χ2
min of the fourth and fifth order expansion in powers of y of the

distances, implies that the latter is the (statistically) more reliable parametrization

(Fratio = 5.69 and Pvalue = 0.02%), giving a result very close to the ΛCDM prediction.

Sixth order expansions does not give any substantial statistical improvement.

As already stated at the end of the previous section, Hubble data must be added

and analyzed cautiously, since they are inhomogeneous with respect to the previous

data sets both in nature and mathematical handling. In Table I we present directly

the results for the constraints up to the c0 cosmographic parameter, since this trun-

cation turns out to be strongly favored with respect to the previous nested model

(Fratio = 19.77 and Pvalue < 0.01%).

The theoretical curves of µ(z) and H(z) are in good agreement with the observed

cosmological data, as shown in figure 5.2. The constraint on H0 is close to the usu-

ally quoted value, namely at 68% confidence level is H0 = 71.16±3.08 (km/s)/Mpc.

One can see that the addition of the Hubble data leads to relevant improvements

in the determination of the other cosmographic parameters with the exception of

c0, which is still basically unconstrained. We also checked whether the next cosmo-

graphic parameter had to be included. We find that, for the richest combination

SN+GRB+BAO+CMB+Hub, the new χ2
min, is extremely close to the value in Table

3Note that our best fit here is different from the one reported in ref. [97] due to our use of the

improved SN catalogue “Union2 Compilation”.
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Figure 5.2: Theoretical predictions of distance moduli (left panel) and Hubble pa-

rameter (right panel) from the best fit model with the full data combination, to-

gether with the observed data sets. We also show the curves obtained in the ΛCDM

framework for comparison (thin black solid lines).

5.1. Therefore, we stop our analysis here.

It is here interesting to underline the power of the y-expanded series (convergent

as long as y < 1) allowing us to describe the whole cosmological history with the

use of relatively few parameters. This circumstance becomes for example evident in

the left panel of figure 5.2, where the furthest GRB data point reaches the distance

of y ' 0.87 (corresponding to z ' 6.6).

5.5 Forecasting

Since the present data do not give yet very stringent constraints on the parameters

of cosmography, especially for the parameter of fifth order term, it is worthwhile

discussing whether future data could determine these parameters more effectively.

For this purpose in what follows we shall perform new analysis of possible future

constraints by choosing, as a fiducial model, the best fit parameter set for the cos-

mographic expansion up to the fifth order term as fixed by the combination of all

the previously considered data sets.

The projected satellite SNAP (Supernova / Acceleration Probe) would be a space
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based telescope with a one square degree field of view with 109 pixels. It aims at

increasing the discovery rate for SNIa to about 2000 per year in the redshift range

0.2 < z < 1.7. In this thesis we simulate about 2000 SNIa according to the forecast

distribution of the SNAP. For the error, we follow the ref. [128] which takes the

magnitude dispersion 0.15 and the systematic error σsys = 0.02× z/1.7. The whole

error for each data is given by σmag(zi) =
√
σ2
sys(zi) + 0.152/ni, where ni is the

number of Supernovae of the i-th redshift bin. Furthermore, we add as an external

data set a mock data set of 400 GRBs, in the redshift range 0.4 < z < 6.4 with

an intrinsic dispersion in the distance modulus of σµ = 0.16 and with a redshift

distribution very similar to that of figure 1 of ref. [129].

Regarding a future BAO data set, we adopt the predicted performance of the

BOSS survey in SDSS III, which will measure the angular diameter distance dA(z)

and the Hubble expansion rate H(z) of the Universe over a broad range of redshifts.

The measurement precision for dA(z) is 1.0%, 1.1%, and 1.5% at z = 0.35, 0.6, and

2.5, respectively, and the forecast precision for the H(z) is 1.8%, 1.7%, and 1.2% at

the same redshifts [130]. We also impose a Gaussian prior for the current Hubble

parameter H0 with the error of 1% provided by a future direct measurement.

Next coming CMB measurement, mainly via the Planck satellite, could give quite

accurate constraints on the cosmological parameters. The error bar of θA could be

shrunk by a factor of 3, namely, the standard derivation σθA = 0.0003◦.

Using all these future mock data, we get the standard derivations of cosmographic

parameters: σq0 = 0.02, σj0 = 0.08, σs0 = 1.95, σc0 = 14.20 and σH0 = 0.48,

respectively. We hence see that the constraints on the parameters provided by

the future mock data can be strongly improved in comparison with the current

constraints in Table 5.1.

5.6 Cosmographic selection of viable cosmological

models

In the case of the standard flat ΛCDM model (namely a model described by Cold

Dark Matter with the adding of a cosmological parameter) the set of cosmographic
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parameters results to be (up to fifth order)

q0 =
3

2
Ωm0 − 1

j0 = 1

s0 = 1− 9

2
Ωm0

c0 = 1 + 3Ωm0 +
27

2
Ω2

m0
. (5.17)

We can use independent probes to constrain the free parameters of the cosmo-

logical model, in this case, for example, the WMAP estimates of Ωm0 for the ΛCDM

model.

The theoretical predictions of the cosmographic parameters in the standard

ΛCDM model are: q0 = −0.588, j0 = 1, s0 = −0.238 and c0 = 2.846, where we

set the current matter density to be the best fit value Ωm0 = 0.275 4 obtained by

the WMAP group [132]. Future experiments, in this perspective, will give stricter

constraints on the validity of such hypothesis.

Another example is provided by the Dvali-Gabadadze-Porrati (DGP) self-accelerating

braneworld model [133]. The presence of the infinite-volume extra dimension mod-

ifies the Friedmann equation as:

H2

H2
0

= Ωk(1 + z)2 +
(√

Ωrc +
√
Ωrc + Ωm0(1 + z)3

)2
, (5.18)

with Ωrc = 1/4r2cH
2
0 accounting for the fractional contribution of the bulk-induced

term with respect to the crossover radius rc. In a spatially flat universe, Ωk = 0 and

Ωrc = (1− Ωm0)
2/4, the previous equation reads

H2

H2
0

=

1− Ωm0

2
+

√
(1− Ωm0)

2

4
+ Ωm0(1 + z)3

2

, (5.19)

so, expanding both the sides of eq. (5.19) and equating terms of the same power,

we obtains the following expressions for the cosmographic coefficients as functions

of the free parameter Ωm0 (see also ref. [134])

4The estimate of Ωm0 is of course known within a certain error. From now on, for illustrative

purposes, we will retain the best fit values of the free parameters, independently estimated in every

single cosmological model, as the fiducial ones, without taking into account the associated errors.
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q0 =
−1 + 2Ωm0

1 + Ωm0

j0 =
1 + 3Ωm0 − 6Ω2

m0
+ 10Ω3

m0

(1 + Ωm0)
3

s0 =
1− 4Ωm0 + 19Ω2

m0
− 134Ω3

m0
+ 86Ω4

m0
− 80Ω5

m0

(1 + Ωm0)
5

c0 =
1 + 13Ωm0− 141Ω2

m0
+ 1259Ω3

m0
− 1996Ω4

m0
+ 3828Ω5

m0
− 1604Ω6

m0
+ 880Ω7

m0

(1 + Ωm0)
7

.

(5.20)

In ref. [135], the DGP model has been constrained starting from gravitational

lensing statistics; considering the fractional amount of matter obtained therein,

Ωm0 = 0.30, we obtain the following set of values for the previous parameters:

q0 = −0.308, j0 = 0.742, s0 = −0.432, c0 = 2.926.

We will now take into account the so-called Cardassian cosmology [136], a model

whose modification with respect to standard ΛCDM cosmology consists in the in-

troduction of an additional term ρn in the matter source of the Friedmann equation,

so that now it can be written in term of the fractional matter density as:

H2

H2
0

= Ωm0(1 + z)3 + (1− Ωm0) (1 + z)3n . (5.21)

Performing one more time the expansion of both sides of the equation, the first

four cosmographic parameters can now be expressed as functions of the two param-

eters Ωm0 and n

q0 =
1

2
+

3

2
(1− n) (Ωm0 − 1)

j0 =
1

2

[
2 + 9n (Ωm0 − 1) + 9n2 (1− Ωm0)

]
s0 =

1

4

[
4− 18Ωm0 − 9n

(
4− 7Ωm0 + 3Ωm0

2
)
+ 9n2

(
11− 17Ωm0 + 6Ωm0

2
)
−

−27n3
(
3− 4Ωm0 + Ωm0

2
)]
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c0 =

(
1 + 3Ωm0 +

117Ω2
m0

2
−

243Ω3
m0

2
+

1215Ω4
m0

16

)
−

−3

4

(
32− 80Ωm0 + 291Ω2

m0
− 648Ω3

m0
+ 405Ω4

m0

)
n+

+
9

8

(
136− 242Ωm0 + 349Ω2

m0
− 648Ω3

m0
+ 405Ω4

m0

)
n2 −

−27

4

(
46− 73Ωm0 + 54Ω2

m0
− 72Ω3

m0
+ 45Ω4

m0

)
n3 +

+
81

16

(
39− 56Ωm0 + 26Ω2

m0
− 24Ω3

m0
+ 15Ω4

m0

)
n4 , (5.22)

and for the referring values Ωm0 = 0.271 and n = 0.035 [137], eq. (5.22) reads

q0 = −0.555, j0 = 0.890, s0 = −0.384, c0 = 3.660.

Finally, we want to show the coefficients in the cosmographic approach of the

CPL parametrization [138] for the equation of state of Dark Energy. If we suppose

to be in a flat universe, then the Friedmann equation is:

H2

H2
0

= Ωm0(1 + z)3 + (1− Ωm0) (1 + z)3(1+w0+wa)e−
3waz
1+z , (5.23)

and the related cosmographic terms result to be (confront also with ref. [139])

q0 = 1 +
3

2
w0 (1− Ωm0)

j0 = 1 +
3

2

(
3w0 + 3w2

0 + wa

)
(1− Ωm0)

s0 = −7

2
− 33

4
(1− Ωm0)wa −

9

4
(1− Ωm0) [9 + (7− Ωm0)wa]w0 −

−9

4
(1− Ωm0) (16− 3Ωm0)w

2
0 −

27

4
(1− Ωm0) (3− Ωm0)w

3
0

c0 =
1

4
(70 + 3wa (−71 + 3wa (−7 + Ωm0)) (−1 + Ωm0)) +

+
3

4
(−1 + Ωm0) (−163 + 3wa (−82 + 21Ωm0))w0 +

+
9

4
(−1 + Ωm0) (−134− 69wa + 3 (14 + 11wa) Ωm0)w

2
0 +

+
1

4

(
1269− 1917Ωm0 + 648Ω2

m0

)
w3

0 +
1

4

(
486− 810Ωm0 + 324Ω2

m0

)
w4

0 ;

(5.24)

assuming the values suggested by the seventh-year-release of WMAP [132] for the

three free parameters, Ωm0 = 0.275, w0 = −0.93 and wa = −0.41, we get q0 =
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−0.511, j0 = 0.342, s0 = −2.260, c0 = 1.383. Table 5.2 shows the values of the

cosmographic parameters in the different models taken into account.

It is interesting to note a couple of issues in the comparison of cosmological

models with our best fits. Firstly, the best fit for the cosmographic parameters of

the SN+GRB+BAO+CMB data set is perfectly compatible with the estimates of the

cosmological parameters for a broad variety of models. However, it is easy to realize

that the currently available data sets would not allow yet to distinguish among the

different cosmological models. In fact, Table 5.2 shows that the error bars are still

too large with respect to the differences among the cosmographic parameters of the

cosmological models. Nonetheless, the previously discussed forecasted improvement

in the quality and the quantity of such data (ameliorating by at least a factor ten the

error bars on the cosmographic parameter) should be able to discriminate among

competing models.

On the contrary, the best fit of the widest combination of data (that is with the

inclusion of the Hubble parameter determinations via the differential age technique),

seems to exclude, at a 3-σ around the jerk mean value j0, almost all cosmological

models, including ΛCDM (with the only exception of the CPL modelization, that

is still marginally compatible). We have already discussed the intrinsic difference of

the Hubble data and why their use should be taken cautiously. It seems clear that

this data set while being very powerful in reducing the error bars, is simultaneously

introducing strong deviations from the mean values determined via standard candles

and rulers. This puzzling discrepancy in the results does not seem related to the

order of the truncation: we observed a similar behavior even for (statistically not

favored) early or late truncations of the series.

However, it is also true that the high redshift measurements of the Hubble param-

eter are based on fitting galaxy spectra. As such, this data set is strongly dependent

on this fitting procedure which may introduce systematic effects. For this reason, we

deem estimates based on the Hubble data currently less robust than those based on

standard candles and rulers. Nonetheless, their use here serves to show the possible

key role these data could play in the future of Cosmography as they appear to be

very effective in reducing the error bars and very sensitive tracers of the cosmological

history. We hence conclude that our analysis strongly suggests further investigation

of this apparent tension between the Hubble data and ΛCDM (and many competing
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Table 5.2: Comparison among cosmographic parameters of different cosmological

models. For every model, the evaluation of the cosmographic parameters, for a

pedagogical issue, is based on the best fit values of the free parameters introduced

in the dynamics and measured with independent probes. However, the value of the

jerk parameter for ΛCDM model is an exact value, as can be seen from equations

(5.17). The values of the cosmographic parameters are compared with our best

fits for the series truncations studied in the last two lines of Table I. “Data set A”

includes, up to 5th order, the proper distances indicators, namely SNIa, GRB, BAO,

CMB. “Data set B” is the complete data set, obtained adding Hubble data up to

the 4th order (for further details, see section 5.6).

Parameter q0 j0 s0 c0

ΛCDM −0.588 1 −0.238 2.846

DGP −0.308 0.742 −0.432 2.926

Cardassian −0.555 0.890 −0.384 3.660

CPL Paramet. −0.511 0.342 −2.260 1.383

Best fit

Data set A −0.49± 0.29 −0.50± 4.74 −9.31± 42.96 126.67± 190.15

Data set B −0.30± 0.16 −4.62± 1.74 −41.05± 20.90 −3.50± 105.37

models) via a refinement of the determination methods developed in [112, 113].

5.7 Summary

Reaching the highest possible redshift allowed by data is a fundamental tool to

discriminate among competing cosmological models. Given that most of the models

are built in order to recover Dark Energy at low redshift, their expansion histories

are degenerate at late times. To break such a degeneracy, the main requirement is

having the knowledge of the early universe expansion curve: this aim can be achieved

only by an accurate determination of the higher order parameters, and higher terms

in the cosmographic expansion can be consistently reached only using (very) high

redshift data.
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In the data set we took into account, apart for Supernovae and GRBs, we con-

sidered Baryonic Acoustic Oscillations (that are distance indicators at z ∼ 0.3),

a compilation of high redshift Hubble parameter measurements and, at least for a

wide gamut of cosmological models, CMB data about the angular size of the sound

horizon. This improved data set is helpful in that, apart from better constraining

the previously studied cosmographic parameters, it also allows to cast constraints

on the next order, so far unbound, expansion coefficient.

The analysis is performed by using Monte Carlo Markov Chains in the multidi-

mensional parameter space to derive the likelihood. As a first step, we consider the

most recent catalogs of standard candles, namely Supernovae Type Ia and (properly

standardized, see discussion in section 5.3) GRBs. A combination of such data gives

constraints up to the fourth order parameter s0 in the cosmographic series. We

have also used the BAO (albeit they mildly improve the cosmographic series fitting)

discussing the reliability of such tools in this context.

Secondly, we add data at higher redshift from different probes to further improve

the constraints. The CMB data account for a very stable and well determined scale.

It is worth noting here, anyway, that on the contrary of the other probes, CMB

data provide the problem of a lack of universality in the cosmographic approach.

Unfortunately, the set of parameters extracts from CMB observations is not truly

independent from the dynamics of the underlying gravitational theory. Its definition,

in fact, strictly depends on the assumption of a cosmological model that behaves

as General Relativity plus a content of matter of arbitrary nature. It is hence

impossible to use it straightforwardly within a purely cosmographic analysis which

wants to apply also to non-standard cosmologies (based on exotic modified gravity

theories)5. In this thesis we proposed CMB data constraints on the cosmographic

series by restricting the results to a slightly smaller variety of models. A desirable

full solution to this problem can be achieved “standardizing” somehow the CMB

parameters or alternatively identifying other CMB observables which could be used

5Of course, CMB observables can be used within a given gravitational dynamics to fix the

free variables of a cosmological model [140] and hence calculate the corresponding cosmographic

parameters to be confronted with those determined purely on the base of standard candles and

rulers, as we also showed as application to the evaluation of cosmographic parameters in several

cosmological models.
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as standard rulers (at least approximately, as for BAOs). We leave this to future

investigations.

We then added the high redshift measurements of the Hubble parameter. We

found that thanks to these data and the CMB one, it is possible to ameliorate the

knowledge of the cosmographic expansion up to the c0 parameter.

As a completion of our analysis, we have also discussed foreseeable constraints

from futuristic data sets provided by projected experiments. We showed that a

strong reduction of the typical errors on the parameters estimates is a realistic

goal: future surveys, indeed, do have a solid possibility to sufficiently reduce the

uncertainties on the lowest order parameters by a factor ten at least, gaining a

concrete chance to assess the viability of alternative cosmological models (possibly

based on different dynamics).

Finally, we calculated the cosmographic parameter sets for a sample of cosmo-

logical models with alternative dynamics (using the so far available best fits for their

free parameters). We showed that, while the data set including “standard” distance

indicators gives a best fit with which all the cosmological models are still compat-

ible, the inclusion of the Hubble data introduces a tension between the observed

cosmographic parameters and the parameters calculated for different models and in

particular with ΛCDM which appears to be ruled out at 3-σ due to the jerk best fit

value. We have discussed the reliability of such observation taking into account the

inhomogeneity of the Hubble data set with respect to the distance indicators ones.

While there might be systematic uncertainties in this data due to their complex

determination method, we stressed that our analysis strongly suggests they might

play a key role in reducing the errors on the estimates of the cosmographic parame-

ters and hence in making Cosmography effective in discriminating among competing

cosmological models and gravitational theories.

In conclusion, the search for high redshift standard rulers and most of all the

improvement of the data coming from galaxy surveys seem to be what could possibly

bring cosmographic studies into a mature stage and make them powerful, gravity

theory independent, tools for selecting among theoretical scenarios. We hence hope

that these considerations will further strengthen the case for proposed experiments

aimed at improving our knowledge of the cosmic evolution of the high redshift

universe (e.g. ref. [141]).



Chapter 6

Discussion and conclusions

In this thesis we have studied some aspects regarding the phenomenology and via-

bility of theories beyond General Relativity.

After a brief review of modified gravity models, we have studied (in section 2.3

and chapter 3) the dynamics of theories of gravity in which the metric and the

connection are independent quantities. Such theories are dubbed theories of gravity

in the Palatini formalism.

Palatini approach have gained particular attention for what concern the phe-

nomenology of f(R) models, i.e. actions where the Lagrangian is some algebraic

function of the Ricci scalar of the independent connection, R. Such actions have

recently attracted a lot of interest as possible infrared modifications of General Rela-

tivity. However, Palatini f(R) gravity models with infrared corrections with respect

to GR, have been shown to be non-viable for several reasons.

Generalized Palatini theories of gravity have also been considered. Unlike the

exceptional case of the Einstein–Hilbert action, these theories are distinct from the

theories one would get starting from the same action (formally) and applying stan-

dard metric variation. One cannot say that their dynamics has been well understood

in general. That is because the dynamics of the most well studied class, f(R), is

rather peculiar and not representative. Indeed, in Palatini f(R) gravity the inde-

pendent (eventually non-symmetric) connection does not carry any dynamics and

can be algebraically eliminated in favour of the metric and the matter fields. The

lack of extra dynamics with respect to General Relativity can also be seen by the

fact that Palatini f(R) gravity has been shown to be dynamically equivalent to a

97
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Brans–Dicke theory with Brans–Dicke parameter ω0 = −3/2. This is a particular

theory within the Brans–Dicke class in which the scalar does not carry any dynamics

and can be algebraically eliminated in favour of the matter fields.

The algebraic elimination of the connection (or the corresponding scalar field

in the Brans–Dicke representation) will introduce extra matter interactions making

Palatini f(R) theories essentially equivalent to General Relativity with modified

source terms. In fact, this property is what lies in the heart of all the viability issues

mentioned earlier. However, this is not a generic property of generalized Palatini

gravity, as it has been demonstrated in section 2.3, but just a peculiarity of f(R)

actions. Generic higher order actions lead to extra dynamical degrees of freedom.

We also gave, as a simple example, the specific choice of action which is dynamically

equivalent to an Einstein–Proca action (Einstein gravity plus a massive vector field).

Moreover, we also identified some specific actions which constitute exceptions, and

for which the independent connection can indeed be algebraically eliminated.

In order to move beyond the limits of the Palatini approach, in chapter 3 we

considered metric-affine theories of gravity, namely modified theories in which, not

only metric and connection are supposed to be independent, but the independent

connection is also allowed to enter in the matter action. Instead of restricting

ourselves to a specific action, which would inevitably affect the generality of our

conclusions, we chose to follow an approach inspired by effective field theory and

attempt to understand how are the dynamics of the theory affected when increasing

the order of the invariants included in the action.

To this end we first considered the most general action formed by second order

invariants and then moved on to examine how these would be modified by including

different types of higher order terms in the action. In both cases we imposed a

generalized minimal coupling principle in order to reduce the number of terms to

be considered, which excludes invariants constructed with the non-metricity or the

metric curvature.

We found that even for the most general action one can construct with second

order invariants, the connection does not carry any dynamics and can always be

algebraically eliminated. That is, at this order, metric-affine gravity can always be

written as General Relativity with a modified source term or extra matter interac-
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tions. No extra degrees of freedom are excited.

Including higher order terms in the action changes the situation radically. The

connection (or parts of it) becomes dynamical and so, it cannot be eliminated alge-

braically. The theory now propagates more degrees of freedom than General Rela-

tivity. Thus, seen as an effective field theory, metric-affine gravity is rather peculiar

and its dynamics can deceive: at the lowest order the extra degrees of freedom ap-

pear to lose their dynamics and become auxiliary fields, but once higher order terms

are taken into account the extra degrees of freedom do propagate. To avoid exciting

extra degrees of freedom significant fine tuning and extra a priori constraints are

required.

Let us also stress that f(R) actions, which have been previously considered in

metric-affine gravity, appear to constitute a distinct class with special properties.

Even though the connection does carry dynamics in the presence of fields coupling

to it — unlike the simplified case of Palatini f(R) gravity — torsion remains non-

propagating. The propagating degrees of freedom reside only in the symmetric part

of the connection. In this sense, f(R) actions cannot be considered representative

examples of generic higher order metric-affine theories.

From an effective field theory perspective it seems that there are dynamical

degrees of freedom in metric-affine gravity which appear to “freeze” at low energies

and can be eliminated in favour of extra matter interaction. This implies that a

possible low energy manifestation of metric-affine gravity could be revealed in matter

experiments in terms of such interactions, but the phenomenology of metric-affine

theories is not limited to that. It is much richer and it includes extra propagating

degrees of freedom, which can potentially be detected. A typical, but certainly not

the only, example would be the presence of propagating torsion, whose consequences

have been studied in a limiting setting in [44] (See also Ref. [45] and references

therein).

As already stressed in the introduction, a conceptually different explanation for

the puzzling phenomenology of the actual universe, is that in the context of Gen-

eral Relativity the cosmic acceleration is due to the backreaction of inhomogeneities

on the dynamics of an averaged background. In chapter 4 we reviewed some of

the possible approaches to reach this aim. Then we analyzed the possibility of im-
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proving the averaging scheme in the prototypical alternative theories of gravity, the

scalar-tensor ones. In scalar-tensor models, it has been adopted a field permeat-

ing the whole spacetime and that can be described as an effective form of matter

by writing the field equations in the form of effective Einstein equations. The ef-

fective energy-momentum tensor characterizing this form of matter easily violates

all the energy conditions and, therefore, is more likely to produce the cosmic ac-

celeration. The backreaction of inhomogeneities on the cosmic dynamics has been

studied in the context of the scalar-tensor gravity. Due to terms of indefinite sign in

the non-canonical effective energy tensor of the Brans–Dicke-like scalar field, extra

contributions to the cosmic acceleration can arise.

In chapter 5 we constrained the parameters describing the kinematical state of

the universe using a cosmographic approach, which is fundamental in that it requires

a very minimal set of assumptions (namely to specify a metric) and does not rely

on the dynamical equations for gravity. On the data side, we considered the most

recent compilations of Supernovae and Gamma Ray Bursts catalogues, assisted by a

set of high redshift data, namely the Hubble parameter as measured from surveys of

galaxies, the luminosity distance from Supernovae and Gamma Ray Bursts data and

the Baryonic Acoustic Oscillations as seen in the power spectra of the distribution

of galaxies. In order to reliably control the cosmographic approach at high redshifts,

we have adopted the expansion in the improved parameter y = z/(1+z). This series

has the great advantage to hold also for z > 1 and hence it is the appropriate tool

for handling data including non-nearby distance indicators.

The data set involved in the analysis presented allows to put constraints on the

cosmographic expansion up to fifth order. In any case, as we already showed also

in [97], it is worth noting that the order of the truncation of the series must be

chosen carefully. In the present case, even though the statistical F-test suggests the

fifth order as the most significant truncation, the error bar on the last parameter is

indeed so large to make the data-fitting potentially unreliable. This aspect deserves

much attention in the future cosmographic studies.

We then derived the set of the cosmographic parameters for several cosmological

models (including ΛCDM) in order to compare them with our best fit set. Current

data do not allow to discriminate among these competing models; nonetheless the
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upcoming large scale structure probes may substantially improve the precision with

which the lowest cosmographic parameters will be determined so that the degen-

eracy among alternative cosmological frameworks will be relatively smaller. This

seems to suggest, anyway, that obtaining standard candles/rulers from very high

redshift data (e.g. using different cosmological observables from the spectrum of

the cosmic microwave background) will be of crucial importance for the viability of

cosmographic tests.

There are a variety of directions in which future research on these subjects can

proceed. In particular, due to the wide fields of interests they span, metric-affine

theories and generalized modified gravities surely need a deeper understanding.

From the physical point of view, it would be interesting to study some concrete

examples of matter fields coupled to connection, namely those fields for which the

hypermomentum does not vanish. A typical example is the Dirac field or any massive

vector field or tensor field that, having an explicit dependence on the covariant

derivative, leads to ∆ µν
λ . In those cases, the fields are potentially able to induce

both non-metricity and torsion (remember that those fields that do not introduce

torsion because not coupled to the connection, also will not be affected by torsion

even if other matter fields produce it). The same property holds for semiclassical

spinning dust matter distributions, a generalization of the perfect fluid in the case

of nonvanishing spin, a fluid otherwise dubbed Weyssenhoff [46] fluid; even though

such kind of matter is an interesting toy model, it has an unsatisfactory theoretical

formulation, since there is no unambiguous Lagrangian able to describe it. Instead,

one has to postulate some convective forms for the energy-momentum and spin-

angular momentum tensors, plus some restrictions to the fluid spin in order to

insure the integrabilities conditions of the equations of motion of the particles.

The treatment of macroscopic matter configurations also leaves some important

insights to discuss. If torsion is allowed, then the spin of the particles composing a

perfect fluid must be taken into account. However, in most of the macroscopic situ-

ations particle spins are randomly oriented and not polarized, so that the first-order

contribution in spin on the modified field equations vanishes when an averaging on a

macroscopic space-time region is performed. Nonetheless, the modified total stress-

energy tensor contains quadratic spin corrections that do not average to zero, hence
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also in the macroscopic limit of the metric-affine theories some non-trivial deviations

from GR should be expected. As a last comment on this topic, it is worth mention-

ing that we should also contemplate some matter configurations involving imperfect

fluids (with non vanishing viscosity and heat flux), systems with a certain relevance

in the domain of relativistic astrophysics whose matter action is not expected to

be independent from the connection, even (differently from perfect fluids) for the

simpler case of a symmetric connection.

It would be also very interesting to understand in more detail if large deviations

from General Relativity can be achieved when the extra degrees of freedom become

active in the strong gravity regime, when higher order terms cannot be neglected.

In the meantime, it should be properly studied how exactly these degrees of free-

dom modify matter interactions at low energies. It is also crucial to examine the

predictions of such theories for energy conservation and violations of the various

formulations of the equivalence principle. Such considerations would allow us to

place constraints on metric-affine theories.

A possible point of concern can be our use of the generalized minimal coupling

principle. One could argue that this is not compatible with our effective field theory

perspective as radiative corrections would not respect such a principle. One could

also feel uneasy treating non-metricity and torsion on a different footing. Indeed,

the minimal coupling principle is used here mostly as a way to reduce the number

of terms to be taken into consideration and it should not necessarily be considered

as a fundamental principle. Abandoning it and considering the most general action

possible would be the next step.

A closing remark: clearly, one might question how fundamental is the geomet-

rical interpretation of metric-affine gravity. In fact, since for second order actions

one can always eliminate the independent connection, the latter can be regarded as

an auxiliary field. Even for actions with higher order terms though, where degrees

of freedom residing in the connection will be excited, one could have an equivalent

representation without an independent affine connection (recall that an independent

connection can always be written as the Levi-Civita connection plus a tensor). In-

deed, which representation one choose is a matter of preference, at least at a classical

level, as the dynamical content of the theory is one and the same. On the other

hand, it is worth pointing out that the choice of representations becomes a factor
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when constructing the action of the theory. It influences our choices regarding the

presence of some terms by making some exclusion principles, such as minimal cou-

pling and its generalizations, more or less appealing (see also Ref. [13] for a more

general discussion on this issue). This is a subtle point that needs to be taken

seriously into account when performing such studies.
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Appendix A

Series expansions for cosmography

We present here more extensively the expansions used in chapter 5. A flat universe,

k = 0, is assumed in all the expressions below.

Hubble parameter:

H[z(y)] = H0

[
1 + (q0 + 1)y + y2

(
j0
2
− q20

2
+ q0 + 1

)
+

+
1

6
y3
(
−4j0q0 + 3j0 + 3q30 − 3q20 + 6q0 − s0 + 6

)
+

+
1

24
y4
(
−4j20 + 25j0q

2
0 − 16j0q0 + 12j0 + c0 − 15q40+

+12q30 − 12q20 + 7q0s0 + 24q0 − 4s0 + 24
) ]

+O[y5] ;

(A.1)

Luminosity distance:

dL[z(y)] =
1

H0
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y +
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2
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(A.2)
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Angular distance:

dA[z(y)] =
1

H0
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(A.3)

Volume distance:

dV [z(y)] =
1
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