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Introduction

Customarily, the characterization of proteins proceeds according to the following tri-
partite scheme (canonical paradigm of genomics):

sequence
(A)→ structure

(B)→ function

The first two steps of this logical cascade have been extensively investigated us-
ing alignments methods that allow to identify similarities respectively in the sequence
(Altschul et al., 1997; Chenna et al., 2003; Higgins & Sharp, 1988; Thompson et al.,
1994) and in the three dimensional structure (Holm & Park, 2000; Holm & Sander,
1996, 1999; Konagurthu et al., 2006; Micheletti & Orland, 2009; Notredame et al.,
2000; Shatsky et al., 2004b), among different proteins. Specifically, sequence and struc-
tural alignments are also extremely useful in the investigation of the sequence and
structure relationship, link (A). A classic result regarding the relationship between se-
quence and structure is the fact that proteins whose sequence identity is above 30%
(termed homologous) adopt the same global fold (Chothia & Lesk, 1986; Chothia et al.,
2003; Orengo & Thornton, 2005). In two homologous proteins, the regions with the
highest degree of sequence similarity are usually well super-imposable by a suitable
roto-translation of one of the molecules. The issue is therefore if the structural simi-
larity in proteins necessarily require an underlying sequence similarity. This question
was tackled detecting, through efficient structural alignment algorithms, the structural
similarities in huge databases of proteins. The analysis of the results highlighted that,
despite a clear correlation between the similarity in sequence and structure, the same
fold is sometimes adopted also by proteins with negligible sequences similarity (Holm
& Sander, 1994; Murzin et al., 1995; Orengo et al., 1997). This behavior is typically
interpreted in terms of convergent evolution of proteins structure (Andreeva & Murzin,
2006; Banavar et al., 2002; Chen et al., 1997; Denton & Marshall, 2001a; Krishna &
Grishin, 2004; Seno & Trovato, 2007).

A broader question regards the extent to which the function of a protein is deter-
mined by structure. This question represents a matter of general interest for genomics.
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Introduction

It is known that the structural organization of a protein is extremely important to
understand the molecular basis of the observed biological activities performed by pro-
teins, as it represents an important source on additional information with respect to
the sequence of amino acids. However the knowledge of a single crystal structure is not
sufficient to understand completely the molecular mechanisms of the biological func-
tion, as recognized in the early crystallography experiments (Perutz & Mathews, 1966).
The understanding of the structure function link can be profitably advanced taking into
account the structural flexibility of proteins. It is known, indeed, that proteins posses
a tendency to change conformation into forms that facilitate their biological function.
The overwhelming majority of biological processes relies on the capability of proteins
to sustain conformational changes so to selectively recognise, bind and process other
molecules, being them proteins, nucleic acids or other chemical compounds.

The elastic properties of proteins clearly reflect the characteristics of their underly-
ing free-energy landscape in the configurational phase space that is accessible in physi-
ological conditions (temperature, pH, etc.). The different conformations that a protein
can attain correspond to local minima for the free energy. According to the suggestion
of Frauenfelder et al. (1991), these minima are hierarchically organized and separated
by free energy barriers of various height, which are expected to control the transi-
tions among the different biologically relevant states. Biologically relevant processes,
that typically occur on time scales of the order of µs to ms, involve interconversion
among conformational changes that often require collective movements of large groups
of atoms. This property can be observed comparing the structures of the same protein
crystallised in different conditions, e.g. in the unliganded and liganded state (Gerstein
& Krebs, 1998).

The advancements observed in the last few years in computational techniques and
resources, and the increased time resolution of advanced single-molecule techniques,
have allowed a multi-timescale characterization of proteins’ motions (Henzler-Wildman
& Kern, 2007; Henzler-Wildman et al., 2007a,b). These investigations have highlighted
the connection between the motion at different timescales and to the functionally ori-
ented conformational changes. These observations, arguably related to self-similarity
of the free-energy landscape (Pontiggia et al., 2007, 2008), suggest that the internal
dynamics of proteins is “innately” predisposed to assist the conformational changes
necessary to perform their biological function (Henzler-Wildman et al., 2007b; Pontig-
gia et al., 2008).

This functionally preferred directionality of the collective large-scale movements is
encoded in the fold of the protein (Henzler-Wildman et al., 2007a,b; Pontiggia et al.,
2007, 2008), as these motions are aptly captured by topology-based elastic network
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Introduction

models (Atilgan et al., 2001; Bahar et al., 1997; Delarue & Sanejouand, 2002; Hinsen,

1998; Micheletti et al., 2001, 2002, 2004; Tirion, 1996). These models typically rely

on a coarse-grained representation of the protein’s native structure, and are oblivious

to the detailed chemical composition of the protein. Despite this simplification, the

validation of these models versus molecular dynamics simulations and experimental

data demonstrates that they are suitable to provide the salient features of protein’s

internal dynamics, remarkably with a minimum computational effort.

These considerations indicate that, at least for a large class of proteins and enzymes,

the relationship between structure and function presumably lies in the dynamics. This

suggests that it is possible to take the internal dynamics of a protein as a proxy for

the function. Following this approach, we want to investigate the connection between

structure and dynamics. It is known that proteins with similar structure sustain similar

large-scale movements, yet it has recently emerged (Capozzi et al., 2007; Carnevale

et al., 2006; Zen et al., 2008) that similar functional movements are shared by proteins

with different architecture or topology. Note that this parallels the relationship between

sequence and structure. As mentioned previously, the sophisticated interplay between

sequence and structure has been extensively characterized thanks to the availability of

sequence and structural alignment methods. By analogy, the availability of quantitative

methods for comparing the functional-oriented dynamics in proteins would allow to take

to a new level the investigation of the structure/function relationship.

My research activity has been principally oriented to the development of a pair-

wise alignment scheme that identifies groups of amino acids that undergo similar con-

certed movements in proteins (Zen et al., 2008). The alignment method is based on

a coarse-grained elastic network model and requires as input the sole proteins’ native

structures. A priori detection of structure and sequence correspondence is not used.

This dynamics-based alignment, as far as we know, represents the first attempt in

the direction of aligning proteins according to their large-scale functional movements.

As for the other sequential and structural alignments, the dynamics-based alignment

may be used in specific applications, for the identification or prediction of functionally

important residues (Zen et al., 2009).

The organization of the thesis is hereafter outlined.

The first chapter of the thesis presents an overview of theoretical and computa-

tional methods and models that are commonly and successfully used to characterize

proteins flexibility. In particular normal mode analysis, principal component analysis
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and coarse-grained elastic network models are introduced and the advantages, disadvan-
tages, scope of applicability in consideration of protein dynamics and thermodynamics
are discussed.

The second chapter of the thesis focuses on adenylate kinases, an important enzyme
whose internal dynamics is known to play a major role for its biological functionality,
that is the control of the energy charge of the cell. Two extensive molecular dy-
namics simulations of this enzyme, starting from different initial conformational states
(open and closed), are analyzed and compared. The analysis is used to investigate the
salient features of the free-energy landscape and the connection between the thermally-
activated structural fluctuations in the open and/or closed state and the functionally
oriented motions. Finally, the essential spaces obtained from the two trajectories are
compared with the low-energy modes provided by a topology-based elastic network
model, in order to illustrate the viability of these simplified approaches as effective
tools to characterize proteins’ internal dynamics.

The third chapter of the thesis reports on a study of the structural/dynamical
properties of dimeric protein complexes, aimed at gaining a further insight into some
of the general mechanisms that regulate protein-protein interaction. Protein interfaces
have been widely studied in literature, and they have been extensively characterized in
terms of their structural and chemical properties. The aim of our study is to investigate
if, and to what extent, the protein internal dynamics at dimeric interfaces can be used
to classify and group dimeric complexes. Our analysis has highlighted an intriguing
relationship between the structural/functional aspects of the investigated interfaces and
their elasticity. An attempt to rationalize this relationship in terms of entropic effects
is finally reported.

The fourth chapter of the thesis describes the dynamics-based alignment, a novel
pairwise alignment tool that we have developed to identify groups of amino acids
that undergo similar concerted movements in proteins. Dynamics-based alignment
requires as input the sole proteins’ native structures, as it relies on the collective low-
energy modes provided by elastic network models. This tool is next used to perform a
dynamics-based alignment and grouping of a data set of more than 70 representative en-
zymes covering the main functional and structural classes. One third of the statistically
significant dynamics-based alignments involve enzymes that lack substantial global or
local structural similarities. The analysis of specific residue-residue correspondences of
these structurally dissimilar enzymes in some cases suggests a functional relationship
of the detected common dynamic features.

Finally the fifth chapter of the thesis illustrates how the dynamics-based alignment
can be applied to identify functionally important residues in proteins. Specifically, it
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is used for predicting protein regions involved in the binding of nucleic acids on the
basis of comparative large-scale dynamics. The approach is first validated considering
the canonical OB-fold domains, a motif known to promote protein-nucleic acid interac-
tions. Protein regions consensually involved in statistically-significant dynamics-based
alignments are found to correlate with nucleic acids binding regions. The validated
scheme is next used as a tool to predict which regions of the AXH-domain representa-
tives, a non-canonical sub-family of the OB-fold for which no DNA/RNA complex is
yet available, are putatively involved in binding nucleic acids.

The material presented in this thesis has been the object of the following publica-
tions, on which chapters two, three, four and five are largely based.

• A. Zen, V. Carnevale, A. M. Lesk, and C. Micheletti.
Correspondences between low-energy modes in enzymes: Dynamics-based align-
ment of enzymatic functional families.
Protein Sci. 17: 918-929 (2008)

• F. Pontiggia, A. Zen, and C. Micheletti.
Small and large scale conformational changes of adenylate kinase: a molecular
dynamics study of the subdomain motion and mechanics.
Biophys J. 95: 5901-12 (2008)

• A. Zen, C. de Chiara, A. Pastore, C. Micheletti.
Using dynamics-based comparisons to predict nucleic acid binding sites in pro-
teins: an application to OB-fold domains.
Bioinformatics 25: 1876-83 (2009)

• A. Zen, O. Keskin, R. Nussinov, C. Micheletti.
Dynamical properties of protein-protein interfaces.
in preparation
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Chapter 1

Protein Internal Dynamics: a

Theoretical/Computational

Perspective

1.1 Introduction

Proteins are inherently flexible biopolymers. In thermal equilibrium they typically sus-
tain concerted internal motions and experience conformational changes, sometimes of
large-scale, involving a significant displacement of many amino acids. These conforma-
tional changes are often necessary for biological function, as the large-scale collective
movements of amino acids usually accompany enzymatic activity, allosteric transitions,
signal transduction and various other biological processes. A well-known example of
the link between functionality and structural flexibility is given by hemoglobin, whose
structure was one of the first to be obtained through X-ray crystallography (Bolton &
Perutz, 1970; Fermi et al., 1984; Frauenfelder et al., 1988; Perutz & Mathews, 1966).
The analysis of the crystallographic results showed that (i) hemoglobin can assume a
number of different conformations (e.g. unliganded or bound to dioxygen ) and that
(ii) the apo1 conformers were too compact to possibly allow the diffusion of dioxygen
towards the heme pocket, thus implying that the molecule had to open substantially
to allow dioxygen to reach the binding site.

Proteins manifest their intrinsic ability to undergo functionally relevant confor-
mational changes on a wide range of time and space scales (Henzler-Wildman & Kern,

1 The apo structure of a macromolecule refers to enzymes without a ligand or co-factor bound. It

is opposed to the holo structure, which refers to an enzyme with its ligand or a co-factor bound.
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2007). For instance, recent studies on adenylate kinase (Henzler-Wildman et al., 2007a)
show that a connections between the dynamics at the different timescales is present,
from the relatively small-amplitude atomic fluctuations on the picosecond timescale
to the large domain motions on the micro- and millisecond timescale. Moreover, the
large-scale motions in the substrate-free adenylate kinase have a preferential direction-
ality, following the pathways leading to configurations capable to perform the catalysis
(Henzler-Wildman et al., 2007b).

In the last decades the study and the characterization of proteins’ internal fluc-
tuations and the conformational changes in thermal equilibrium have been a matter
of general interest. The starting point for almost any investigation on this kind is
the molecular structure of the protein, and the main experimental techniques adopted
to obtain this information are X-ray crystallography and nuclear magnetic resonance
(NMR). Besides providing a snapshot of the position of the atoms in one or more pro-
tein conformers, both these techniques allows to quantify the internal dynamics of the
proteins and are therefore a useful reference to test the results obtained adopting theo-
retical/computational approaches. In particular, in a X-ray crystal structure, each atom
has an associated B-factor, or temperature factor, that represents the atom’s individ-
ual fluctuation in position, mainly due to its thermal motion. With NMR spectroscopy
an ensemble of conformations of the protein is provided, which can be compared in
order to gain a representation of the protein dynamics. Of course this representation
is affected by the limitation of the experimental method: the number of conformations
obtained is quite low (usually a few dozens), and the rate measurements allow to inves-
tigate usually only slow internal motions, from µs to ms. Besides X-ray and NMR in
recent years other experimental techniques, as the fluorescent resonance energy transfer
(FRET) (Selvin, 2000; Somogyi et al., 2000), have been used to elucidate interesting
aspects of protein motion at the nanoscale. In this way the gap between the timescales
investigated by molecular dynamics (MD) simulation, usually up to a few tens ns, and
experiments, can be bridged.

In this chapter we will present an overview of some methods and models which
are used to characterize the dynamics of proteins within a theoretical/computational
approach. At first we will consider the normal mode analysis (NMA) and the principal
component analysis (PCA) of a MD trajectory; two approaches that rely on atom-
istic treatment of the potential energy of proteins. Next we will review the salient
properties of the potential energy landscapes of proteins, highlighting the advantages,
disadvantages and scopes of applicability of the NMA and PCA. Finally coarse-grained
approaches to model proteins’ flexibility will be illustrated. In particular we will focus

8



1.2 Normal Mode Analysis

on the β gaussian network model (βGM), the elastic network model used principally
in this thesis.

1.2 Normal Mode Analysis

Normal mode analysis (NMA) is one of the standard computational methods adopted to
identify and characterize the internal motion of biological macromolecules, and proteins
in particular. It was first adopted for the study of molecules of biological interests, at
an atomic level of detail, in (Brooks & Karplus, 1983; Go et al., 1983; Levitt et al.,
1985). Its important attributes, which made it an interesting and useful complement
to MD simulations, were immediately recognized.

NMA provides a simple formulation of the dynamics of an underdamped system
with harmonic potential energy. As it will be discussed later in this chapter, the energy
landscapes in proteins are much more complex than a simple harmonic function, in that
it comprises several minima. Therefore, the quadratic approximation to the potential
energy required by NMA is arguably valid only within each one the local energy minima.
The restricted range of validity of this quadratic approximation imposes an obvious
limitation to the amplitude of the investigated motions, because displacements from
the structure associated to of the energy minimum have to be small enough that the
approximation holds. Later in this chapter we will also discuss about the applicability
for protein of the assumption that the motion is underdamped. Despite its limitations,
NMA is a widely used method to investigate proteins’ properties because the insight it
offers is remarkable and comes at a very affordable computational cost. Moreover, some
concepts of NMA are used by some more advanced approaches that will be considered
later in this chapter.

To illustrate the salient properties of NMA we shall consider, as customary, a clas-
sical interatomic potential energy function. This energy function can be expressed
as a function of the Cartesian coordinates of the atoms, or a function of other inter-
nal coordinates (bond lengths, bond angles and torsion angles). For simplicity, I will
consider here a potential energy V (r) that is a function of the Cartesian coordinates
r = {~r1, ..., ~rN} of the N atoms of the protein, where ~ri is the Cartesian coordinate of
the atom i. Note that the µ-th Cartesian component of the i-th atom correspond to
the (3i− 3 + µ)-th component of the 3N -dimensional vector r.

The potential energy V (r) can be expanded as a Taylor series around a reference
structure r0 = {~r0

1, ..., ~r
0
N}:

V (r) = V (r0) +
X
i,µ

„
∂V

∂ri,µ

«
r=r0

(ri,µ − r0i,µ) +
1

2

X
i,j,µ,ν

„
∂2V

∂ri,µ∂rj,ν

«
r=r0

(ri,µ − r0i,µ)(rj,ν − r0j,ν) + ...

(1.1)
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where ri,µ is the µ-th Cartesian component of the i-th atom in the current conformation
of the protein, and r0

i,µ in the reference conformation. Summations are taken over all
the atoms and the Cartesian components.
If the reference structure r0 is a local energy minimum, the gradient of V (r) calculated
in r0 is zero. Furthermore, the energy can be defined relative to the reference structure,
such that V (r0) = 0. It is clear from 1.1 that, for small displacements from the
minimum-energy reference structure, the leading contribution of the potential energy
is given by the second order term, and the higher order terms can be neglected.
The quadratic approximation of the energy landscape is therefore computed by first
identifying the energy-minimum reference structure r0 (e.g. using a conjugate gradient
minimization starting from an experimental crystallographic structure). The second
derivatives of the energy function, calculated in r0, give the force constants Fij,µν of
the interaction between the µ-th coordinate of i-th atom and the ν-th coordinate of
j-th atom:

Fij,µν =
(

∂2V

∂ri,µ∂rj,ν

)
r=r0

(1.2)

and the harmonic potential function is, therefore:

EP =
1
2

N∑
i,j=1

3∑
µ,ν=1

Fij,µν(ri,µ − r0
i,µ)(rj,ν − r0

j,ν) =
1
2

(r− r0)TF(r− r0) (1.3)

where the rightmost expression of 1.3 is in matrix form, being F the 3N × 3N Hessian
matrix of V (r) and T the transpose operator.

The Newtonian equations of motion for N classical particles that interact with
potential 1.3 are:

mir̈i,µ = −
∑
j,ν

Fij,µ,ν(rj,ν − r0
j,ν) i = 1, ..., N µ = 1, 2, 3 (1.4)

where mi is the mass i-th atom. The equations can we written more synthetically in
matrix notation:

Mr̈ = −F(r− r0) (1.5)

where M is the 3N × 3N diagonal matrix diag{m1I3, ...,mNI3}, being I3 the identity
matrix of order 3.
The solution of this equation1 is:

r = r0 + M−1/2
3N∑
i=1

aiξi cos(ωit+ φi) (1.6)

1 Note that, using the mass-weighted coordinates r̃ = M1/2r, the equation 1.5 rewrites as: ¨̃r =

−F̃(r̃− r̃0), where F̃ = M−1/2FM−1/2 is the mass-weighted force constant matrix.
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1.2 Normal Mode Analysis

where the 3N -dimensional normal vectors {ai} are the solutions of the eigenvalue equa-
tion:

F̃ai = λiai i = 1, ..., 3N (1.7)

being F̃ = M−1/2FM−1/2. The angular frequencies ωi in 1.6 are related with the
eigenvalues λi through the relation ωi =

√
λi. The amplitudes ξi and the phases φi

depend on the position and velocity at time t = 0. It is worth mentioning that there are
six zero eigenvalues for F̃, which correspond to the rotational ad translational degrees
of freedom of the overall system.

The combination of a 3N -dimensional eigenvector ai and its eigenvalue λi is called
vibrational normal mode. The physical interpretation arise from 1.6: the eigenvalue
λi determines the vibrational frequency ωi along the direction determined by the
eigenvector ai. Moreover, the set of 3N orthonormal eigenvectors {ai} form a new
basis set for the coordinates of the system. The change from the Cartesian coordi-
nates r to the normal mode coordinates {x1, ..., x3N} is obtained through the relation:
M1/2(r− r0) =

∑3N
i=1 aixi. Notice that the potential and kinetic energies have a much

simpler form if written in terms of the normal mode coordinates:

EP =
1
2

3N∑
i=1

ωi
2xi

2 EK =
1
2

3N∑
i=1

ẋ2
i (1.8)

since they are sums of squares of xi and ẋi, and in EK there are no mass coefficients.
The expression of EP also shows that a displacement from the reference structure along
a normal mode i has an energetic cost that is proportional to its frequency squared ωi2.
Moreover, being the motion along each normal mode i oscillatory and periodic, with
period 2π

ωi
according to 1.6, the potential and kinetic energies associated to each normal

mode are also oscillatory and periodic. From 1.8 and 1.6 we obtain that potential (and
also kinetic) energy associated to normal mode i, averaged for a time interval τ � 2π

ωi
,

is εi
τ→∞→ ω2

i ξ
2
i

4 .
Through the simple diagonalization of a matrix, all the vibrational frequencies of

a protein around an energy minimum and the direction of the oscillatory motion as-
sociated to each frequency are obtained. The vibrational frequency spectrum, i.e. the
number of modes per frequency interval, is therefore immediately available. The set
of vibrational normal modes provide a readily accessible simple description of the con-
formational motion of the protein (within the limit of the approximations). From a
biophysical viewpoint, the most interesting modes are the ones associated to the lowest
frequencies. In fact, it can be observed that the motion along them have a collective
character (i.e. most of the amino acids of the protein undergo large concerted motions)
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and can be used to give a description of functionally important motions experienced
by the proteins, as it was recognized in Brooks & Karplus (1985) for the well known
classical example of the hinge closing motion in lysozyme.

NMA has also been used, starting from the studies of Brooks & Karplus (1983);
Levitt et al. (1985), to give an estimate of the thermal atomic fluctuations calculated
from MD simulations and which contribute to the temperature factors observed in
X-ray crystallography. However it has to be observed that the oscillatory motion of
the model system described by 1.6 is deterministic, depending entirely on the initial
conditions of the system (which determine the values of the amplitudes ξi and of the
phases φi). It is possible to calculate, using 1.6, that the squared displacement from
the reference position of atom i, coordinate µ, averaged over a time interval τ → ∞
(i.e. τ � 2π

ωi
for each non-zero frequency mode i), is:

〈(
ri,µ(t)− r0

i,µ

)2〉
t
∼ 1

2
mi

3N∑
k=1

(
a(i,µ)
k ξk

)2
(1.9)

where a(i,µ)
k indicates the component (3i + µ − 3) of the k-th eigenvector ak, i.e. the

µ-th Cartesian component of the i-th atom. We stress however that the average atomic
squared displacement in 1.9 does not describe equilibrium properties of the motion,
because within this model system there is no notion of equilibrium and temperature,
indeed the amount of the average displacement depends not only on the “potential”
but also on the initial conditions of the system (through ξk). In order to estimate the
atomic fluctuation it is therefore necessary to make further assumptions. In Brooks &
Karplus (1983); Levitt et al. (1985) it is assumed that each internal normal mode has
a time-average potential (and kinetic) energy of KBT/2, where KB is the Boltzmann’s
constant and T is the temperature of the system for which the estimation of the atomic
thermal fluctuation is made. This assumption implies a condition on the amplitudes ξi,
which have to satisfy the relation ξ2

i = 2KBT
ω2
i

. Substituting this last expression in 1.9
yields to an expression for the average square displacement that is no more dependent
on the initial configuration. The idea that underlies the assumption just introduced is
that a thermalized system, in equilibrium at a given temperature T , with an energy
of the form 1.8, would have an average energy of KBT/2 for each degree of freedom,
according to the equipartition theorem. As already highlighted, in the model of the
system treated here there is no mechanism that establishes thermodynamic equilibrium,
though it can be done by generalizing the equations of motion in a Langevin scheme.
However, a posteriori the estimated quantities approximate, in their relative values,
the experimental X-ray temperature factor and/or the thermal atomic fluctuations
calculated from MD simulations.

12
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Finally, we mention that, dealing with normal modes, it arises naturally the ques-
tion if classical mechanics is a suitable framework for this investigations. Quantum
effects could be important for modes with high-frequency. The criterium of applica-
bility of classical mechanics (Kubo, 1967) is ~ω � KBT , that at 300K correspond to
consider frequencies ν � 6ps−1 ∼ 200cm−1, and modes with higher frequencies should
be treated within a quantum mechanics framework. The transformation to normal
mode coordinates is valid also in a quantum context; only the interpretation must be
revised. However, from a pragmatic point of view, it has to be noted that usually
the most interesting modes are associated to low-frequencies, for which the classical
mechanics framework is expected to hold.

1.3 Principal Component Analysis of MD simulations

Atomistic MD simulations provide fundamental informations for the study and char-
acterization of proteins’ flexibility. Similarly to the way experiments are performed, in
MD simulation it is possible to follow the time-evolution of a protein at a temperature
T , in vacuo or in explicit solvent, reasonably close to equilibrium. Assuming that the
MD simulation time is long enough to sample a suitable fraction of the relevant phase
space, the thermodynamic properties of the system are calculated from averages over
the conformations sampled in the trajectory. Nowadays typical MD simulations cover
timescales of the order of several tens of ns, for proteins or protein complexes with
hundreds of amino acids.

A common way to examine and characterize the protein dynamics is the employment
of collective coordinates (Kitao & Go, 1999), that yield an optimal choice for the most
relevant degrees of freedom describing proteins’ fluctuations. The number of internal
degrees of freedom of a protein withN atoms in a Cartesian coordinate space is (3N−6),
i.e. three degrees of freedom for each atom minus the six roto-traslational degrees of
freedom of the overall protein. The appropriate choice of a smaller number of collective
coordinates is sufficient to describe the important features of the dynamics of a protein,
defining a low dimensional subspace in which the majority of the fluctuation of the
protein take place.

A transparent way to identify this collective coordinate set is the principal com-
ponent analysis (PCA) (Amadei et al., 1993; Garcia, 1992; Garcia & Harman, 1996;
Karplus & Kushick, 1981; Kitao et al., 1991; Levy et al., 1984) , that consists of the
diagonalization of the fluctuation covariance matrix obtained from MD simulations.
The first step is the elimination from the MD trajectory of the overall rotational and
translational motion, that is irrelevant for the internal motion of the protein. It is
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worth mentioning that this operation is conceptually not trivial, because a protein is
not a rigid body, therefore there is a degree of ambiguity in this elimination. Different
methods, that are not completely equivalent, can be used, but fortunately they usually
do not give significantly different results. A widely used method is the following: take
a conformation of the protein (for instance the first of the trajectory) as a reference
structure, and structurally align all the other conformations of the trajectory respect
to this reference structure. In this way the roto-translated conformations define a new
trajectory. The average structure (or better, the conformation closest to it) of the new
trajectory is defined as the new reference structure. The alignment of the conforma-
tions of the trajectory respect to the reference structure and the redefinition a new
reference structure is then repeated iteratively until convergence is reached (usually
very few iterations are sufficient). For definiteness, we shall assume hereafter that with
the term trajectory we make reference to the trajectory where the roto-translational
degrees of freedom have been eliminated.

Let us indicate the conformation of the system at time t of the MD trajectory with
the generalized Cartesian variable r(t) = {~r1(t), ..., ~rN (t)}, being ~ri(t) = {ri,1(t), ri,2(t), ri,3(t)}
the Cartesian coordinate of atom i at time t. Representing r(t) as a 3N -dimensional
column vector, the fluctuation covariance matrix (or second-moment matrix) is defined
as:

C =
〈

(r(t)− 〈r(t)〉t) (r(t)− 〈r(t)〉t)
T
〉
t

(1.10)

being its elements:

Cij,µν =
〈
(ri,µ(t)− 〈ri,µ(t)〉t)(rj,ν(t)− 〈rj,ν(t)〉t)

〉
t

(1.11)

where 〈·〉t represents the time average over the configurations visited during the simu-
lation. The symmetric matrix C can always be diagonalized by an orthogonal matrix
V:

VTCV = Λ VTV = VVT = I3N (1.12)

where Λ is the 3N×3N diagonal matrix diag{λ1, ..., λ3N}, and I3N is the 3N -dimensional
identity matrix. The i-th column of V, vi, is the eigenvector of C with eigenvalue λi.
The complete set of these eigenvectors represent the (orthonormal) basis set for the col-
lective coordinates {q1, ..., q3N}, defined as qi = vi · (r− 〈r〉t). Observe that the mean
square fluctuation (MSF) of the trajectory projected along direction vi is

〈
q2
i

〉
t

= λi.
The overall MSF experienced by the protein in the trajectory is the trace of the covari-
ance matrix Tr(C) =

∑
i λi. It is worth mentioning that C has six zero eigenvalues

associated to the roto-translational degrees of freedom which have been eliminated from
the trajectory.
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As we have anticipated, this definition of the collective coordinates reflects a crite-
rion of optimality for the representation of the global internal collective atomic fluctua-
tions of the protein in terms of a set of directions. Following Garcia (1992), an optimal
direction m (being this a 3N -dimensional normal vertor) that represents the motion
can be defined by using the following ansatz: minimize the mean square distances of
the configurations r(t) normal to m, such that most of the fluctuations will be then
along m. This amounts to minimize the following functional:

f(m,y0, α) =
〈

(r(t)− y0)2
〉
t
−
〈

[(r(t)− y0) ·m]2
〉
t
+ α (m ·m− 1) (1.13)

with respect to (m,y0, α), where y0 is the 3N -dimensional vector that optimally rep-
resent the structure of the protein in the trajectory, and α is a Lagrange multiplier that
impose the normalization of m. Minimizing with respect of α and y0 yields respectively
to m ·m = 1 and y0 = 〈r(t)〉t. Minimizing with respect to m and using this expres-
sion for y0 yields to the eigenvalue problem: Cm = αm, where C is the fluctuation
covariance matrix defined in 1.10. Note that this problem is equivalent to 1.12, and the
eigenvectors {vi} of C represent the optimal directions to represent the motion. The
mean square fluctuation normal to the direction provided by the eigenvector vi, which
has an associated eigenvalue λi, is given by f(vi, 〈r(t)〉t , λi) = Tr(C) − λi, therefore
the most representative directions are the eigenvectors with largest eigenvalue.

Without loss of generality, we can consider the eigenvalues λi sorted in decreasing
order, so that the first eigenvector represents the direction where the largest fluctuation
is observed, and so on. In Amadei et al. (1993); Garcia (1992) it was observed that
a very limited number of eigenvectors is sufficient to define a space, called “essential
space”, where most of the overall fluctuation take place. The motion along this direc-
tions, usually called “essential dynamics” (Amadei et al., 1993), is slow and collective,
involving the concerted motion of many atoms simultaneously. The distributions of
the projections of the motion along these directions loose progressively the Gaussian
character as the simulation time increase. Differently, the projections of the motion
along the remaining (non essential) vectors have a systematical Gaussian distribution
that is much narrower than the speed of the essential modes, therefore this space can
be considered “physically constrained”.

The anharmonic character of the motion along some collective coordinates was ob-
served already in Levy et al. (1984), using an analysis that is termed “quasi-harmonic”
analysis (QHA). In QHA the fluctuation covariance matrix C obtained from MD simu-
lation is used to construct an harmonic potential model. The idea behind the approach
is the following: for a quadratic potential of the form 1.3, the equilibrium probabil-
ity density for the atomic positions r is P (r) ∝ exp

(
− (r−r0)TF(r−r0)

2KBT

)
, being KB the
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Boltzmann’s constant and T the absolute temperature1. This yields a correlation ma-

trix of the position fluctuation
〈
(r− 〈r〉)(r− 〈r〉)T

〉
= KBTF′−1, where the average

here is the canonical one and F′−1 is the pseudo-inverse2 of the matrix F (which has

six zero eigenvalues corresponding to the six roto-translational degrees of freedom). An

expression for F can be obtained calculating the pseudo-inverse C′−1 of the covariance

matrix C obtained form MD simulation, assuming that the simulation time is long

enough that the time average over the trajectory is equivalent to the canonical aver-

age. The projections along the eigenvectors of the lowest non-zero eigenvalues of F,

that clearly correspond to the eigenvectors of the largest eigenvalues of the covariance

matrix, highlight the anharmonic character of the motion.

Despite the difference in the spirit of PCA and of QHA, the first aimed at the

research of the optimal degrees of freedom for the system, the second oriented to an

estimation of a quadratic potential that takes into account of the complexity of the

protein landscape, we note that both the methods ultimately rely with the projection

of the motion along the eigenvectors of the covariance matrix C, and in this respect

they can be considered equivalent Kitao & Go (1999). In literature PCA is also termed

“molecule optimal dynamics coordinates” (Garcia, 1992; Garcia & Harman, 1996) or

“covariance analysis” (Hess, 2000). The method to obtain the collective coordinates

is basically always the same, a part minor differences as considering the atoms mass

weighted or not. The use of mass-weighted coordinates is maybe preferable in case of

comparison with NMA3.

1 Note that, in writing the probability density, the temperature has been introduced and con-

sequently it is implicit that the system has to be thermalized in some way. A possible underlying

physical model which provide this equilibrium behavior is the Langevin dynamics (introduced later in

the chapter).
2 If a matrix A has one or more zero eigenvalues, then its inverse do not exist. However it is possible

to define a matrix, pseudo-invese matrix, which has some properties of the inverse matrix. We are

interested in cases where the matrix A is symmetric, therefore we can assume this property. According

to the spectral theorem, it is possible to write A in terms of its eigenvalues αk and eigenvectors |k〉,
that we assume to be orthonormal, in the following way: A =

P
k αk |k〉 〈k| (we are adopting the

Dirac notation). The pseudo-inverse of A is defined as: A′
−1

=
P′
k α
−1
k |k〉 〈k|, where the prime in

the summation indicates the sum over the k so that αk 6= 0. Obviously this matrix is the real inverse

when A is invertible (i.e. all the eigenvalues are 6= 0). Note that: (i) AA′
−1

=
P′
k |k〉 〈k|, which is the

projection onto the vectorial space defined by the eigenvectors of A relative to non zero eigenvalues,

and (ii) the pseudo-inverse of the pseudo-inverse of A is A, because
P′
k α
−1
k |k〉 〈k| =

P
k α
−1
k |k〉 〈k|.

3 The covariance matrix in mass-weighted coordinates r̃ = M1/2r is C̃ =
˙
x̃ x̃T

¸
t
, where x̃ = r̃−〈r̃〉t.

Note that C̃ is related with the covariance matrix C in 1.10 through C̃ = M1/2CM1/2, therefore the

estimated force constant matrix in mass-weighted cooridinates KBT C̃′
−1

is F̃ = M−1/2FM−1/2, whose

eigenvalues and eigenvectors are directly comparable with the outcomes of NMA (see 1.7).
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1.4 NMA, PCA and Free Energy Landscapes of Proteins

In the previous sections we outlined two approaches that are commonly used to investi-
gate the flexibility of proteins. The first approach, NMA, relies on the a priori assump-
tion that the system dynamics can be described in terms of the harmonic underdamped
oscillations. The second approach, of PCA and QHA, relies on the a posteriori analysis
of the positions covariance matrix obtained from an all-atom dynamical trajectory of
the protein at a constant temperature. The two approaches are clearly complementary;
NMA has the considerable notable property to be very cheap computationally, but
PCA has two great advantages: (1) to provide results that account for the deviations
from the harmonic potential (for long enough MD trajectories) and (2) to allow for the
transparent account for explicit solvent effects.

An informative study where the reliability of the outputs of NMA have been com-
pared with MD is given in Janezic et al. (1995). Janezic et al. observed, comparing
the lowest five vibrational frequencies from NMA for the minimized trajectory frames
of a protein for 10ps by 0.1ps and for 1ns by 10ps, that the molecule oscillates in one
well, correspondent to what is called a conformational substate (Elber & Karplus, 1987;
Frauenfelder et al., 1988), for a very limited time span of the order of a few tenth of pi-
cosecond, and then jumps into another. It is often observed that the system returns to
the same well after multiple transitions on the sub-picosecond scale, but never returns
to the same well on longer time scale. The frequency values and the directions associ-
ated to the lowest five vibrational modes provided by NMA for different conformational
substates tend to be quite in agreement1. Remarkably, this agreement is observed also
between conformational substates corresponding to frames of MD trajectory separated
by hundreds of picoseconds.
In the same study Janezic et al. have also carried out QHA of atomic MD trajectories of
different time-length, from 2ps to 1ns, and compared the outcomes, also with those from
NMA. Interestingly, the lowest energy modes obtained from NMA and from QHA of the
1ns-long trajectory are well consistent, with a degree comparable to the consistency
of modes from outcomes of QHA for 1ns-long trajectory and 200ps-long trajectory.

1 The degree of similarity between the directions of two sets of five modes (in this case the lowest five

vibrational modes coming from NMA of two distinct conformational substates), was quantified through

the following measure (Brooks et al., 1995): Overlap = 1
6

P5
i=1

P3
j=1 (vi ·wj + vj ·wi), where vi and

wi represent the i-th eigenvector for respectively the first and the second set. The overlap is 1 if the

two sets are identical, and is 0 if they are orthogonal. This scheme was developed mainly to compare

the lowest three modes, which indeed dominate in the overlap, however it is observed that the ordering

of the modes can change in different calculations, and this measure is less susceptible to re-ranks of the

modes.
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Furthermore, there is not a good agreement between QHA for the 1ns-long trajectory
and those of 40ps or shorter duration, indicating that these suffer from an insufficient
sampling of the free energy landscape.

These resultes, besides clarifying the limits of NMA, highlight many interesting
properties of the free energy landscape of a protein. It emerges in particular that this
landscape is constituted by a great number of local minima, where proteins fluctuate
for a time-interval of the order of picoseconds, before jumping to another minima. The
shape of the local minima appears similar, given the agreement of the outcomes of
NMA in different minima.

What about the characterization of the jumps between different minima? In Kitao
et al. (1998) MD trajectories of 1ns are studied using PCA and the jumping-across-
minima (JAM) model, introduced to separate the contributions to the internal motion
arising from the structural fluctuations within the conformational substates and among
them. If the overall MD trajectory sample a number M of conformational substates,
spending in each substate k a fraction of time ft = tk

t of the overall simulation time t,
then the covariance matrix C of the overall trajectory can be expressed as:

C = Cintra + Cinter (1.14)

Cintra =
M∑
k=1

fk
〈

(r− 〈r〉k) (r− 〈r〉k)
T
〉
k

(1.15)

Cinter =
M∑
k=1

fk (〈r〉k − 〈r〉t) (〈r〉k − 〈r〉t)
T (1.16)

where 〈·〉k is the average taken over the conformations of the substate k, and 〈·〉t is
the average taken over all the conformations of the entire trajectory. Cintra represents
the contribution to C arising from fluctuations within each substate, indeed it is the
weighted average of the covariance matrices of each substate. Cinter represents the con-
tribution to C arising from jumping among different conformational substates. Kitao
et al. (1998) have shown that the protein motions (in the investigated length scale of
1ns) consists of three types of collective modes: multiply hierarchical modes, singly
hierarchical modes and harmonic modes. Interestingly, the multiply hierarchical modes
are the leading contributions to the MSF, besides being only 0.5% of the modes. The
intra-substate motion is observed to be nearly harmonic and mutually similar. The
inter-substate motions are observed only in a small-dimentional subspace spanned by
the axes of multiply hierarchical and singly hierarchical modes.

These kind on investigation has been further extended to longer time-scales in the
studies of Pontiggia et al. (2007, 2008), where all-atom MD simulations in explicit
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(a) (b)

Figure 1.1: Schematic one-dimensional representation of the free energy surface, for:
(a) one stable conformational state and many conformational substates; (b) two stable
conformational states and many conformational substates. Dashed lines represent the
smoothed out potential.

solvent for protein G (first study) and for adenylate kinase (second study) were followed
for a simulation time of 400ns and 100ns respectively, and analyzed using PCA and
JAM. In protein G it was observed that, while the quasiharmonic character of the
free energy is found to degrade in a few ns, the essential modes display a very mild
dependence on the trajectory duration. This property originates from a striking self-
similarity of the free-energy landscape embodied by the consistency of the directions
of the essential modes of the local minima and of the virtual jumps connecting them.
Similar results are valid also for adenylate kinase, but this case is in some respects more
interesting because this enzyme can interconvert spontaneously (i.e. in the absence
of ligands) between the open and closed forms. The duration of the simulation was
sufficiently long to reveal a partial conversion from the open to the close from, that
proceeds through jumps between structurally different substates. It was observed that,
despite the structural heterogeneity of the visited conformers, the generalized directions
accounting for conformational fluctuations within and across the substates are mutually
consistent and can be described by a limited set of collective modes. Part of this study
is the subject of the second chapter.

The results reported clarify that the free energy landscape of proteins manifest a
variegate multiscale structure, depending on the time and space scale used to probe
it, and the conformations that are considered stable from a structural point of view
comprise a great number of conformational substructures (see Fig. 1.1). At the picosec-
ond timescale the proteins fluctuate around conformational substates and jump among
them, with movements that involve mostly rearrangements of the sidechains and only
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Figure 1.2: Schematic two-dimensional representation of a multiscale free energy sur-
face, with self-similarity, in panel a, and without, in panel b. Yellow arrows represent
the direction of the lowest energy models in each local minima, while the green arrows
in panel a represents jumps among different minima.

minimally the sidechain. Over timescales of nanoseconds also the backbone of proteins
manifests structural rearrangements, moving around stable conformations that seems
to be local minima of a smoothed-out potential, however with a dynamics which is far
from being vibrational. Over longer timescales proteins jump across these local min-
ima and the quasi-harmonic character along the essential spaces disappears. Note that
there is another extremely interesting property that emerge and link the description
at the various levels of the multistructural free energy landscapes: their striking self-
similarity (see Fig. 1.2). This self-similarity is intended in two ways: the consistency of
the principal components of fluctuations calculated in different local minima, and the
consistency of the essential direction of motion observed at different timescales (and
consequently spacial scales).

Note that NMA is in its a priori expected range of validity only when used to
describe local movements around a specific conformational substate. However numerous
normal mode studies on proteins can reproduce experimental informations related to
large-scale motions, such as domain motions. Therefore there is a posteriori evidence
that NMA provides lowest-frequency vibrational modes with directions that are in
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agreement with the directions of the movements observed over time- and length- scales
beyond its a priori expected validity . This fact is clearly ascribable to the self-similarity
of the free energy landscape. Nevertheless we want to remark that the dynamical
behavior predicted by NMA completely fails in describing the long time large-scale
motions observed in MD simulations.

There is another very interesting property of the large scale motions of proteins
that needs to be highlighted: their collective nature. Indeed large scale displacements
in proteins are the result of correlated motions of large groups of atoms, residues,
sometimes entire subdomains. Concerning this point it should mentioned an interesting
result obtained from Hinsen et al. (2000), where a MD trajectory of 1.5ns of a protein
dimer in water solution has been decomposed into three contributions that have been
shown to be almost independent: (1) the global motion of the backbone; (2) the rigid-
body motions of the sidechains relative to the backbone; (3) internal deformations of
the sidechain. Interestingly, the motion of the backbone and the connected rigid body
motion of the sidechains gives the largest contributions to the overall large scale motion
of the protein.

The collective nature of these motions lead to the following conclusion: in order to
reproduce with a simple physical model some features of the long time large-amplitude
motions of a protein we do not have necessarily to consider all the atoms in the protein,
but it can be sufficient a coarse-gained description of the motion of the backbone. The
usual approach is to take the Cα atom of each residue as representative of the overall
residue, and the mass associated to each Cα atom is the mass of the overall residue
represented. The interaction between the Cα atoms around a stable conformation is
regulated by a coarse-grained smoothed-out potential, which can be derived from MD
simulations trajectories or can be obtained more simply through coarse-grained mod-
els (that have been validated versus MD simulations). These coarse-grained models,
the elastic network models, will be introduced later in this chapter, after having first
provided a suitable physical framework able to deal with the main properties of this
complex system, the Langevin dynamics.

1.5 Langevin Dynamics

Arguably, the simplest framework to describe the motion of a protein in thermal equi-
librium is provided by the Langevin dynamics (Chandrasekhar, 1943; Doi, 1996; Wang
& Uhlenbeck, 1945). Following this approach, for each Cα atom i of the protein we can
write the following stochastic differential equation:

mi~̈ri = −~∇iU(r)− γi~̇ri + ~ξi(t) (1.17)
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where ~ri is the Cartesian coordinate of the Cα atom and mi is its effective mass. Within
this coarse grained description, the Cα atom represents the overall residue, therefore
mi is the sum of the masses of all the atoms in the residue i. The terms −~∇iU(r),
−γi~̇ri and ~ξi(t) in 1.17 represent respectively an external field of force, a friction force
and a stochastic (or random) force that act on atom i. Note that the last two terms,
the friction and the stochastic force, are intrinsically related, as they both contribute
to establish of the thermal equilibrium. Let us consider in detail the three terms.

U(r) is an effective (smoothed-out) potential that describes the effective interaction
between residues in a protein. It is expressed as function of the Cartesian coordinates
r = {~r1, ..., ~rN} of all the N Cα atoms in the protein. The gradient of U(r) respect to
~ri yields an effective force ~Fi = −~∇iU(r) for atom i.

The friction force −γi~̇ri introduce a damping in the system, being systematically
opposed to the motion and proportional to the velocity of the atom. The idea behind
the introduction of this force is to implicitly include the average effective influence of
the many particles that we are neglecting in our simplified treatment for the problem.
Indeed, we are not explicitly including most the protein atoms nor the solvent. The
physics behind the friction term is that the neglected particles interfere with the Cα
atoms and the average effect is a decrease of the velocity1. As a further argument to
justify the necessity to introduce a damping term, let us consider that, as we have pre-
viously explained, the energy landscapes of proteins comprise a huge number of local
conformational substates. The jump from a conformational substate to a close one in-
duces small displacements of the backbone atoms but implies sidechain rearrangements
and crossings of the barriers that are smoothed-out in the effective potential U(r).

The stochastic force ~ξi(t) = {ξi,1(t), ξi,2(t), ξi,3(t)} acting on atom i is used to intro-
duce thermal fluctuations in the system. It is assumed that this stochastic force satisfy
the following conditions (Chandrasekhar, 1943; Wang & Uhlenbeck, 1945):

〈ξi,µ(t)〉 = 0 (1.18)〈
ξi,µ(t)ξj,ν(t′)

〉
= 2KBT γi δijδµν δ(t− t′) (1.19)

where 〈·〉 is an average over an ensemble of realizations, δij is the Kronecker delta and
δ(·) is the Dirac’s delta function. The first condition establishes that the random noise

1 It is worth mentioning that, for a system of coupled variables {x1, ..., xn}, the most general form

of the friction force acting on xi has the form: −
Pn
j γij ẋj . In our treatment we are neglecting the

elements γij with i 6= j because, as we have highlighted, the friction is an effective effect, therefore the

friction coefficients have to be determined in some way. We will see that they can be determined a

posteriori from an MD trajectory (Hinsen et al., 2000), provided that we do the assumption we have

introduced.
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does not have any preferential direction; the second condition specifies that ~ξ(t) is un-
correlated over time (i.e. it is a white noise signal) and its average amplitude satisfy the
fluctuation-dissipation relationship, i.e. the noise add on average just as much energy
to the system as is taken out by the friction term. The two conditions ensures, in the
long run, the onset of canonical thermal equilibrium, so that the equilibrium probabil-
ity Peq(r) to observe the structure r of the protein is proportional to the Boltzmann’s
factor:

Peq(r) ∝ exp
(
− U(r)
KBT

)
(1.20)

Note that, introducing the following notation:

mass matrix M = diag{m1I3, ...,mNI3} (1.21)

friction matrix Γ = diag{γ1I3, ..., γNI3} (1.22)

3N -dim. stochastic force Ξ(t) = {~ξ1(t), ..., ~ξN (t)} (1.23)

3N -dim. gradient ∇ = {~∇1, ..., ~∇N} (1.24)

it is possible to represent the set of coupled stochastic differential equations 1.17 for
the overall system, in the following simple in matrix form:

Mr̈ + Γṙ +∇U(r) = Ξ(t) (1.25)

Given the stochastic nature of these Langevin equations, a solution for 1.25 is given
by the probability distribution to find the system in a particular position of the phase
phase, in function of the time and the initial conditions. The moments of the coordi-
nates and of the velocities for this distribution have to satisfy 1.25.
An equivalent formulation of this problem is to consider directly the equation of mo-
tion for the probability distribution, which is called Fokker-Planck equation (Chan-
drasekhar, 1943; Risken, 1996; Wang & Uhlenbeck, 1945). In the particular case of
1.25, we have the Brownian motion of particles in an external field. The equation of
motion for their distribution function in position and velocity space is the Kramers
equation.

We assume that the potential U(r) has a quadratic form 1
2(r−r0)TF(r−r0) centered

around a reference conformation r0. This assumption is motivated by the fact that
the projections of a MD simulation trajectory along the principal components have a
nearly Gaussian character, if the considered time-length is smaller than a given value
(e.g. ∼ 1ns for the protein G (Pontiggia et al., 2007)). Note that the Gaussianity
of these distributions is exactly what the equilibrium distribution 1.20 imply for a
quadratic potential. The deviations from Gaussianity, in long MD simulations, is a
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clear indication that the quadratic assumption is only a first order approximation,
which, however, has the advantage of allowing for a transparent analytical treatment
of 1.25.

The quadratic form of the potential yields to the following Langevin equation:

Mr̈ + Γṙ + F(r− r0) = Ξ(t) (1.26)

which has been solved in Lamm & Szabo (1986) (considering the equivalent formulation
of the problem in terms of a Fokker-Planck equation).

In Langevin dynamics the motions are in general damped oscillations plus random
diffusion. MD simulations show that the dynamics of proteins is severely overdamped:
there are no periodic oscillations and the dominant aspect of the motion is constituted
by the random displacements, with preferential movements towards the minimum. This
means that the friction terms are the leading ones in equation 1.26. In this conditions
we are allowed to neglect the kinetic term Mr̈ and consider the overdamped Langevin
equation:

Γṙ + F(r− r0) = Ξ(t) (1.27)

which has for solution the high friction (diffusion) limit of the solution of 1.26 (Lamm &
Szabo, 1986). The Fokker-Planck equation corresponding to 1.27 is an equation for the
distribution function of the positions, which is called Smoluchowski equation (Risken,
1996), and it has been solved in Hinsen et al. (2000); Kneller (2000).

It results, for the overdamped langevin equation 1.27, that the dynamical properties
of the system can be described in terms of the eigenvalues and eigenvectors of the
friction-weighted force constant matrix F̂ = Γ−1/2FΓ−1/2. Let us define λ̂k and ûk as
follows:

F̂ûk = λ̂kûk (1.28)

and assume that the eigenvectors ûk are orthonormal. Note that the roto-translational
degrees of freedom imply that F̂ has six zero-eigenvalues, which are the transformed of
the roto-translations.
Let us indicate with ~xi = ~ri−~r0

i the displacement of the of the i-th atom respect to its
reference position ~r0

i .
The average correlation among the displacements xi,µ(t) and xj,ν(t′) is:

〈
xi,µ(t)xj,ν(t′)

〉
= KBT

′∑
k

û(i,µ)
k û(j,ν)

k√
γiγj

(
e−λ̂k|t−t

′|

λ̂k

)
(1.29)

where the prime indicates the omission from the sum of the indexes k associated to zero
eigenvalues, and û(i,µ)

k represents the (3i− 3 + µ)-th component of the 3N-dimensional
eigenvector ûk, i.e. the µ-th Cartesian component of the i-th atom.

24



1.5 Langevin Dynamics

The auto-correlation of the displacement of atom i along the µ-th Cartesian com-
ponent can be easily calculated from 1.29, and it yields:

〈xi,µ(t)xi,µ(0)〉 = KBT
′∑
k

∣∣∣u(i,µ)
k

∣∣∣2(e−λ̂kt
λ̂k

)
(1.30)

where uk = Γ−1/2ûk and u(i,µ)
k is its (3i − 3 + µ)-th coordinate. Note that û(i,µ)

k =
√
γiu

(i,µ)
k .

This expression elucidates the meaning the eigenvalues and eigenvectors of F̂: each
eigenvalue λ̂k is associated to a Brownian mode k of structural relaxation along the
direction uk, with a relaxation time τk = 1/λ̂k.

Using 1.29 it is easy to calculate the mean square displacement1 (MSD), averaged
over the initial conformation, in a time interval t of the i-th atom along the µ-th
coordinate:

〈
(ri,µ(t)− ri,µ(0))2

〉
= 2KBT

′∑
k

∣∣∣û(i,µ)
k

∣∣∣2
γi

(
1− e−λ̂kt

λ̂k

)
(1.31)

and if the considered time interval is much longer than the relaxation times of each
mode (i.e. t� τM , where τM is the maximum relaxation time2), then the MSD is:

〈
(ri,µ(t)− ri,µ(0))2

〉
t�τM∼ 2KBT

′∑
k

∣∣∣u(i,µ)
k

∣∣∣2( 1

λ̂k

)
(1.32)

showing that the structural relaxation of the mode k, along uk, is inversely proportional
to the eigenvalue λ̂k. This clearly highlights that the modes associated to the lowest
non-zero eigenvectors are those that mostly describe the motion.

Observe that for a short time interval t (i.e. t � τm, where τm is the minimum
relaxation time) the MSD of the i-th atom is:〈

(~ri(t)− ~ri(0))2
〉
t�τm∼ 6KBT

γi
t+ O(t2) (1.33)

Note that these quantities that can be measured from MD simulations, and used to
provide an estimation for the friction constants γi. Using this method, Hinsen et al.
(2000) proved that the friction constant can be well described by a linear function of the
average density of the protein atoms inside a sphere of radius 15Å centered around the
atom of interest. In a typical globular protein, the average density within this length

1 Observe that the displacement ri,µ(t)− ri,µ(0) = xi,µ(t)− xi,µ(0).
2 Clearly not considering the modes relative to zero eigenvalues, that are not included in the

summation and that would have an infinite relaxation time.
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scale is quite uniform, therefore the variations in the values of the friction constants

are due to surface effects. Atoms close to the surface are indeed surrounded in great

part by water, whose density is much smaller than that of the protein itself.

Finally we can use 1.29 to get an expression for the covariance matrix C introduced

in the previous section. It yields1:

Cij,µν = 〈xi,µ(t)xj,ν(t)〉 = KBT

∑′
k λ̂
−1
k û(i,µ)

k û(j,ν)
k√

γiγj
= KBTF

′−1
ij,µν (1.34)

This result is expected, because of the form of the equilibrium distribution 1.20 for a

quadratic potential.

Concluding it should be mentioned that, while the above Langevin scheme is highly

transparent and amenable to analytical treatment, it is not adequate to capture a

number of salient features of protein’s internal dynamics, for which more sophistical

theoretical schemes have been devised (Kneller & Hinsen, 2001, 2004; Kou & Xie, 2004;

Min et al., 2005).

1.6 Elastic Network Models

In the previous sections we have seen how the large scale amplitude motions in the

proteins rely on the shape “global” of the multistructural free energy landscape, which

presents a striking self-sililarity at various level of detail. The “global” shape of the

potential is often approximated through a quadratic function of the coordinates, around

a reference structure. This approximation, beside leading to a great simplification

of the problem, yields results that are in some respects in good agreement with the

phenomenology observed in real and computational experiments. We have already

mentioned that the effective matrix of interaction of the quadratic potential can be

estimated from a MD trajectory (QHA approach). In this section we will introduce a

different approach to estimate this matrix without the use of MD simulations. This

approach consists in the use of elastic network models (ENM) (Atilgan et al., 2001;

Bahar et al., 1997; Delarue & Sanejouand, 2002; Hinsen, 1998; Micheletti et al., 2001,

2002, 2004; Tirion, 1996): “native centric” models which rely on simplified force fields

and have proved useful to reproduce collective modes in proteins.

1 Recognizing that
P′
k λ̂
−1
k û

(i,µ)
k û

(j,ν)
k is the element F̂ ′−1

ij,µν of the pseudo-inverse of matrix F̂,

and observing that it is related with the pseudo-inverse of matrix F through the relation: F̂′
−1

=

Γ1/2F′
−1

Γ1/2.
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The approach of ENM was stimulated by the seminal paper of Tirion (1996), where
it was showed that the low-frequency spectrum of globular proteins is almost insensi-
tive to the local details of the atomic composition of the structure and of the specific
interaction between them. Specifically, the lowest dynamics predicted using a NMA on
a standard atomistic MD force field was shown to be reproducible in good detail by
the use of a simplified single parameter potential. Tirion’s simplified potential energy
of the overall molecule is given by:

EP =
′∑

(i,j)

E(~ri, ~rj) (1.35)

where ~ri indicates the Cartesian coordinate of the i-th atom of the protein and the
prime indicate that the sum is restricted to the atom pairs (i, j) separated by less than
a cut-off distance Rc. E(~ri, ~rj) represents the interaction between atoms i and j, and
it is modeled through a simple Hookean pairwise potential:

E(~ri, ~rj) =
C

2

(∣∣∣~dij∣∣∣− ∣∣∣~d0
ij

∣∣∣)2
(1.36)

being ~dij = ~ri − ~rj the difference vector between the positions of the atoms i and j.
The zero superscript indicates the reference structure. The strength of the coupling
constant C is a phenomenological constant assumed to be the same for all the interact-
ing pairs. As usual, the potential 1.36 has been expanded in Taylor series relatively to
the displacement ∆~dij = ~dij − ~d0

ij of the vector ~dij respect to the reference structure,
and the contributions beyond the second order have been neglected, yielding:

E(~ri, ~rj) ∼
C

2

 ~d0
ij ·∆~dij∣∣∣~d0

ij

∣∣∣
2

(1.37)

Substituting 1.37 in 1.35, the potential energy of the overall protein can be recasted
as a quadratic function of the displacements ~xi = ~ri − ~r0

i of the i-th atom from its
reference position:

EP =
C

2

∑
i,j,µ,ν

Kij,µνxiµxjν =
C

2
xTKx (1.38)

where indices i and j run over all the atoms in the protein and µ and ν over the three
Cartesian components. The rightmost expression is in matrix form. Notice that the
elements of the 3N × 3N matrix K depends exclusively from the reference structure of
the protein and the value of the cut-off distance Rc. The coupling constant C and the
cut-off distance Rc are related, as for each matrix K relative to a particular value of
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Rc, the value of C can be adjusted in order to obtain an optimal fit with the spectral

density obtained for instance from NMA of detailed force fields. The model provides,

for vales of the cut-off distance Rc ranging from 1.1 to 2Å, estimates of the lowest

energy density of states and of the root mean square deviation of the mainchain Cα

atoms from their reference position. A remarkable accord of these estimates is observed

with predictions obtained by NMA of detailed force fields.

The remarkable reliability of low-frequency (low-energy) outcomes of a model so

simplistic lies in the fact that slow vibrational modes involve collective motion of sev-

eral amino acids. The effective force opposing large scale oscillations stems from the

combined effect of numerous interacting atom pairs. The sum of these interactions ap-

proaches a universal form, that reflects the fundamental properties of proteins’ struc-

tural architecture such as the secondary and tertiary organization, regardless of the

details of individual pair potentials (which however are essential for stabilizing spe-

cific minimum energy configuration). Hence, for slow vibrations these details could be

neglected.

These considerations have stimulated the further development of simplified models

for capturing proteins’ large scale fluctuations. In fact, the detailed atomistic force

field can be replaced by simplified quadratic interactions limited to a reduced number

of interaction centers, typically the Cα ones, in place of all pairs of contacting atoms.

The viability of these models, generally referred to as ENM (Atilgan et al., 2001; Bahar

et al., 1997; Delarue & Sanejouand, 2002; Hinsen, 1998; Micheletti et al., 2004), has

been largely verified a posteriori against both general dynamical data obtained from

experiments, such as the mean-square fluctuations of each residues measured by the

crystallographic Debye-Waller factors, and also against more specific dynamical prop-

erties such as the principal direction of motions or the covariance matrix obtained from

MD simulation (Atilgan et al., 2001; Micheletti et al., 2004).

In this thesis we have extensively used a particular ENM, the beta gaussian network

model (Micheletti et al., 2004), which is illustrated in detail in the following subsection.

1.6.1 Beta Gaussian Network Model

The beta gaussian network model (βGM) is a simplified ENM in which the protein is

represented by means of two-centroid per amino acid, one for the main-chain, coinciding

with the Cα atom, and one for the side-chain. Following a geometrical rule akin to the

one introduced by Park & Levitt (1996) we construct the latter interaction center as a

fictitious Cβ centroid:
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~rCB(i) = ~rCA(i) + l
2~rCA(i)− ~rCA(i+ 1)− ~rCA(i− 1)
|2~rCA(i)− ~rCA(i+ 1)− ~rCA(i− 1)|

(1.39)

where l = 3Å and ~rCA indicates the coordinates of the i-th Cα centroid. For amino
acids at the beginning/end of the peptide chain(s) or for GLY the construction of eqn.
1.39 is not applicable and hence the effective Cβ centroid is taken to coincide with the
Cα one. A schematic view of the coarse graining procedure is given in Figs. 1.3.

The potential governing the interaction between the centroids is obtained by intro-
ducing quadratic penalties for displacing two centroids, i and j from their reference
positions, ~r0

i and ~r0
j , to generic ones, ~ri and ~rj . The energetic cost of a displacement is

precisely the same introduced by Tirion and given in 1.37.
The quadratic form of 1.37 is at the heart of the widely-used elastic or Gaussian

network approaches (Atilgan et al., 2001; Bahar et al., 1997; Delarue & Sanejouand,
2002; Hinsen, 1998; Micheletti et al., 2001, 2002, 2004; Tirion, 1996), which typically
adopt a single-centroid amino acid description. The effective free energy function intro-
duced in Micheletti et al. (2004) and used here includes, instead, pairwise contributions
from all pairs of centroids, be they of the Cα or Cβ type, whose reference distance falls
within a given interaction cutoff, as pictorially illustrated in Fig. 1.3c. Accordingly,
the resulting free energy of a trial structure, Γ, takes on the form:

EβGM (Γ) = 2
∑
i

V (~dCA−CAi,i+1 ) +
′∑
i<j

V (~dCA−CAi,j ) +
′∑
i,j

V (~dCA−CBi,j ) +
′∑
i<j

V (~dCB−CBi,j )

(1.40)
where i and j run over the residue indices, ~dX−Yi,j = ~rXi −~rYj denotes the distance vector
of the centroids of type X and Y of residues i and j, respectively, and the prime denotes
that the sum is restricted to the pairs whose reference separation is below the cutoff
distance of 7.5 Å. Consistently with the spirit of ENM and other approaches Tirion
(1996), the last three terms in eqn. 1.40 have the same strength irrespective of the
identity of the amino acids. The first term, on the other hand, accounts for the protein
chain connectivity and has a double strength to reflect the geometrical constraints of
the peptide chain.
As the positions of the Cβ centroids depend linearly on the coordinates of the Cα

ones, it is possible to analytically recast the expression 1.40 in the following quadratic
form involving simply the Cα degrees of freedom, retaining the same computational
complexity of the single centroids model:

EβGM (Γ) =
C

2

∑
i,j,µ,ν

Mij,µν xi,µ xj,ν =
C

2
xTMx (1.41)
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(a)       (b)       (c)

Figure 1.3: Pictorial representation of the coarse graining procedure: (a) atomic rep-
resentation of a two-helix bundle (backbone highlighted as a ribbon); (b) simplified
structural representation in terms of the Cα atoms for the backbone and the Cβ atoms
for the for the sidechains; (c) all pairs of non-consecutive centroids within 7.5 Å interact
through an harmonic potential, schematically shown as a thin bond.

where ~xi = ~rCAi −~r0CA
i is the deviation of i-th Cα centroid from the reference position,

M is a symmetric matrix whose linear size is three times the number of residues in
the protein, and the coefficient C is the phenomenological parameter controlling the
strength of the quadratic coupling.

As previously discussed, the most suitable framework to interpret 1.41 is in the con-
text of overdamped Langevin equation 1.27. For the case where the friction coefficients
of the Cα atoms take the same value γ, the eigenvectors of matrix M provide the inde-
pendent modes of structural relaxation in the protein, and the associated eigenvalues
are inversely proportional to the relaxation times. The eigenvectors of M relative to
the lowest non-zero eigenvalue are usually called low-energy modes.

The outcomes of βGM have been tested versus all-atom molecular dynamics simula-
tion, in different contexts, and providing good results (Carnevale et al., 2007b; Cascella
et al., 2005; De Los Rios et al., 2005; Micheletti et al., 2004).
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Chapter 2

Functional Structural Changes

and Internal Dynamics: the case

of Adenylate Kinases

2.1 Introduction

In this chapter we will illustrate many of the concepts previously introduced, applying
PCA and ENM on the study of an important enzyme, adenylate kinase, whose internal
dynamics is know to play a major role in the accomplishment of its biological function.
This reason make this enzyme an ideal case study for the investigation of the connection
between the functional dynamics and the intrinsic features of the free energy landscape.

Adenylate kinase(Adk) is a monomeric enzyme which regulates the energy charge
of the cell by balancing the relative abundance of AMP, ADP and ATP. The concen-
tration of the three nucleotides is controlled by the enzyme through the catalysis of the
phosphoryl transfer reaction:

ATP +AMP
Mg2+⇐⇒ 2ADP .

The differences in structural arrangement between the free E. Coli adenylate kinase
(AKE) and the enzyme complexed with an inhibitor mimicking both ATP and AMP
are illustrated in Fig.2.1 (Müller & Schulz, 1992; Müller et al., 1996). By comparing the
two portrayed crystal structures it is apparent that the formation of the ternary complex
stabilizes the enzyme in a form where the mobile Lid and AMP-binding subdomains
(highlighted in Fig. 2.1) close over the remainder core region. This rearrangement of
the two mobile subdomains is necessary for the accommodation of the nucleotides in
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an optimal catalytic geometry and the resulting closed enzyme conformation provides
a solvent-free environment for the phosphoryl transfer.

The conformational change sustained by adenylate kinase upon complexation with
ATP and AMP, and its reopening upon unbinding of the processed nucleotides, repre-
sents the rate-limiting step in the reaction turnover (Kern et al., 2005). A large num-
ber of experimental studies have consequently addressed the functional implications
of Adk structural elasticity (Han et al., 2002; Hanson et al., 2007; Henzler-Wildman
et al., 2007b; Kern et al., 2005; Müller & Schulz, 1992; Müller et al., 1996; Shapiro &
Meirovitch, 2006; Shapiro et al., 2000, 2002; Sinev et al., 1996; Wolf-Watz et al., 2004).
In particular, recent investigations based on a wide range of techniques, have provided
converging evidence for the fact that, even in the absence of the bound nucleotides, the
free enzyme is capable of interconverting between the open and closed forms. These
investigations have lead to formulating the hypothesis that evolutionary pressure has
endowed Adk, and arguably other enzymes (Beach et al., 2005; Eisenmesser et al., 2005),
with the innate ability to interconvert between the open and catalytically-potent forms.

These observations have stimulated a numerical study of the dynamical evolution
of the free (apo) AKE molecule in solution (Pontiggia et al., 2008), where I have collab-
orated with Francesco Pontiggia and Cristian Micheletti. By means of two extensive
MD simulations started from the available crystal structures we have characterized,
over various time scales, the conformational fluctuations sustained by the enzyme and
analyzed the extent to which they indicate the suggested innate predisposition to con-
nect the open and closed forms.

Several computational investigations of the flexibility of AdK exist and include
both mesoscopic and atomistic approaches. Coarse grained models have, for instance,
been applied to model the pathways connecting the open and closed forms of the en-
zyme (Chennubhotla & Bahar, 2007; Chu & Voth, 2007; Maragakis & Karplus, 2005;
Miyashita et al., 2003). Atomistic simulations have instead been used to probe the
free energy landscape in the neighborhood of several known enzyme conformers, as in
the recent investigations by Lou & Cukier (2006), Arora & Brooks (2007) and Henzler-
Wildman et al. (2007b). In the first study (Lou & Cukier, 2006), an advanced sampling
technique was used to show that the enzyme populated conformations compatible with
the holo-form geometry, as probed by FRET experiments (Sinev et al., 1996). Arora
& Brooks (2007) further showed that the free energy landscape along a pre-assigned
reaction coordinate connecting the open-closed forms of AKE is approximately flat for
the apo-form while, upon ligand binding, it changes favoring the closed state. Finally,
in the study of Henzler-Wildman et al. (2007b), carried out on Adk extracted from hy-
perthermophile Aquifex Aeolicus, a variety of experimental and computational probes
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b)a)

Lid

AMP−bd

Figure 2.1: Cartoon representation (Humphrey et al., 1996a) of crystallographic struc-
tures of E.Coli adenylate kinase in: (a) the open apo form and (b) the closed holo
form. The PDB codes for the two structures are 4ake and 1ake, respectively (Müller &
Schulz, 1992; Müller et al., 1996). The flexible Lid (amino acids 114-164) and AMP-
binding (amino acids 31–60) domains are colored in gray and black, respectively. The
succession of secondary elements is shown in the bottom panel. Helices are indicated
as grey boxes while β-strands are shown as black arrows.

33



2. FUNCTIONAL STRUCTURAL CHANGES AND INTERNAL
DYNAMICS: THE CASE OF ADENYLATE KINASES

have indicated the existence of several metastable configurations bridging open and

closed states.

In order to illustrate the picture on protein flexibility given in the previous chapter,

I will report here some of the results obtained in the study of this protein published

in Pontiggia et al. (2008). The long MD trajectories of AKE (obtained by Francesco

Pontiggia) were analyzed with the PCA and others specifically developed tools. We

first highlighted that the MD trajectories show a structural heterogeneity of the visited

conformational phase space. However the internal dynamics of the protein, observed

at different time scales and relatively to different conformations of the protein, re-

sults surprisingly homogeneous. These findings confirm the striking self-similarity of

the multiscale free-energy landscape, that we anticipated also in the previous chapter.

In the final part of the chapter we will make contact between the behavior of AKE

obtained from extensive MD simulations at the atomic level and the coarse-grained

characterizations of the system. As already mentioned, these approaches rely on har-

monic approximations of the free energy around the dominant states, in this case the

open and closed conformations. We will see that some aspects of the dynamics, and

in particular the directions of the collective functionally oriented movements of the

protein, are reproduced with remarkable accord by simplified topology based ENM (in

this case the βGM). This will serve as an a posteriori justification of the broad use of

this model that will be done in the rest of the thesis.

2.2 Molecular dynamics simulations

The data illustrated in this chapter come from the atomistic MD evolution of E. Coli

adenylate kinase, AKE, followed starting from two distinct initial structures, corre-

sponding to the open and closed form of the enzyme. More precisely, the initial con-

formation of the first simulation was the free (apo form) enzyme from the 4akeA PDB

crystal structure(Bernstein et al., 1977a). The second simulation followed, instead,

the evolution of the free closed form of the enzyme obtained by removing the Ap5A

inhibitor from the 1akeA PDB structure file. In the following, for simplicity, we shall

refer to the two simulations as the “open” and “closed” trajectories. The nomenclature

is only meant to remind of the starting configuration as, in fact, for both trajectories a

partial conversion to the complementary (open or closed) state is observed. The com-

putational details about MD simulations are provided in Pontiggia et al. (2008). Both

the trajectories here analyzed cover a simulation time of 40ns.

34



2.3 Structural fluctuations of the amino acids

2.3 Structural fluctuations of the amino acids

The two trajectories were first analyzed to assess the level of elasticity shown by the
protein during the overall time evolution. To this purpose we have considered the
overall mobility of individual amino acids in each trajectory. This was characterized by
means of the root mean square fluctuation (RMSF) profile of their α-carbon atoms. The
RMSF of the i-th Cα, whose instantaneous coordinate at time t is indicated by ~ri(t), is
given by

√
〈|~xi|2〉 where the brackets denote the time average and ~xi(t) ≡ ~ri(t) − 〈~ri〉

is the instantaneous displacement from its time-averaged (reference) position. The
average was taken after removing the rigid-body motions of the enzyme, exactly as it
was explained in section 1.3.

The RMSF profiles for the open and closed trajectories are shown in Fig. 2.2.
Observe that most of the mobility of the protein is due to the fluctuation of the Lid
and AMP-bind domains, while the core is, by converse, very stable. The rigidity of this
region is consistent with NMR and Xray studies, as well as with previous topology-based
characterizations of the protein’s elasticity (Chennubhotla & Bahar, 2007; Maragakis
& Karplus, 2005; Miyashita et al., 2003, 2005; Whitford et al., 2007).

Moreover, we observe that the open trajectory manifests a greater degree of mobility
respect to the closed trajectory, despite their lengths are the same. Indeed the total
MSF of the open trajectory is 18.04 nm2, while the MSF of the closed trajectory is
7.72 nm2. This aspect is clearly due to the more compact structure of the closed
conformations respect to the open ones, as the most compact is the structure, the most
the degrees of freedom of the amino acids are bounded.

2.4 Structural heterogeneity

Next we want to investigate the variety of structural conformations sampled in the
two MD trajectories, and to follow how these conformations change over the time.
To this purpose we have divided the trajectory in intervals of 1ns, and calculated the
average position of the Cα atoms in each interval. The density plot of the root mean
square distance (RMSD) between the average positions of the Cα atoms for each pair
of intervals is reported in Fig. 2.3, separately for the open and closed trajectory.

The block character of the matrix suggests that distinct conformational groups
are explored during the dynamical evolution, and the system evolution proceeds by
visiting distinct conformational substates through which the systems hops with rapid
”transitions” (e.g. in the open trajectory we can easily localize these transitions after
∼9ns, ∼19ns, and ∼27ns). This indicates that the system meets some local free energy
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Figure 2.2: Root mean square fluctuations of the Cα atoms observed in the 40-ns long
“open” and “closed” trajectory. The fluctuations have been calculated after an optimal
structural superposition of the Cα trace. The flexible Lid (amino acids 114-164) and
AMP-binding (amino acids 31–60) domains are highlighted.
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Figure 2.3: Density plot of the pairwise RMSD between the average structures of 1-ns
long intervals from the (a) open and (b) closed trajectory (time labels are shown on
both axes).

minima and settles there for a while, jumping then from one minimum to another. Note
that this behavior is more evident in the time evolution of the system starting from the
structure close to the inhibitor bound crystal structure, indeed from a visual inspection
of Fig. 2.3 it is readily seen that the repertoire of structures generated by the evolution
of the close conformation is much more heterogeneous than for the open one. This
behavior was expected as the closed structure is simulated without the bound ligand,
however it is interesting to observe that the system does not completely open up, at
least during the simulated time. In both the trajectories we observe that the enzyme
encounters locally stable states, where it dwells for about ten nanoseconds.

2.5 PCA of the open and closed trajectories

2.5.1 Fluctuations along the principal components

The next step of our investigation was to consider the principal components of the
trajectories, calculated as illustrated in section 1.3. Note that in this study we are
mainly focussed on the mobility of the backbone, therefore the covariance matrix that
we considered here is that of the positions of the Cα atoms.

In Fig. 2.4 we have reported the largest eigenvalues of the covariance matrix of the
open and closed trajectory. Let us remind that the value of and eigenvalue correspond
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Figure 2.4: Black and red circles represent the eigenvalues, in decreasing order of magni-
tude, obtained from Cα coordinates covariance matrix from respectively the closed and
open trajectory. The squares represent the cumulative sum of the largest eigenvalues,
until the corresponding index in abscissa. The sum of all the eigenvalues, that corre-
sponds to the total mean square fluctuation observed in the trajectory, is represented
as a dashed line and it is 7.72 nm2 for the closed trajectory (black) and 18.04 nm2 for
the open trajectory (red).

to the MSF of the trajectory projected along the relative eigenvector. Note that the

MSF along the projection of the first eigenvector of the open trajectory in 12.57 nm2.

This value has to be considered in relation to the fact that it is only one of the more

that 600 internal degrees of freedom of the protein, and that, as mentioned, the overall

MSF observed in the overall trajectory is 18.04 nm2. An analogous consideration is

true also for the closed trajectory.

The sum of the first n eigenvalues, also reported in Fig. 2.4, gives the MSF that is

accounted by the first n eigenvectors. For instance we have that, in the closed trajectory,

the first three eigenvectors are enough to account for the ∼77% of the overall MSF,

while in the open trajectory they account for ∼85%. Defining, as usual (Amadei et al.,

1999), the essential space of the protein as the one given by the first ten eigenvectors

of the protein, that is enough to account for more than 80% of the fluctuation for both
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the open and the closed trajectory.

2.5.2 Principal components and opening/closing motion

At this point we have investigated the relationship between the principal components
of the trajectories, and the overall the opening/closing motion of the protein. To this
purpose we have computed the average structure of the open trajectory rop and that
of the closed trajectory rcl. Assume that we have rigidly roto-translate one of the two
structures in order to minimize the RMSD between rop and rcl. We can calculate the
difference vector dop/cl = rop − rcl, whose normalized vector uop/cl = dop/cl/‖dop/cl‖
provides the direction of the opening/closing motions. As the eigenvectors {vi} of the
covariance matrix represent an orthonormal base, the normalized difference vector can
be written as: uop/cl =

∑
i civi, being ci = vi ·uop/cl. Clearly ci2 represents the fraction

of the opening/closing difference vector captured by the principal component vi.
In this way we have calculated that the fraction c1

2 of the direction that leads to
bridging the open/closed structures of the enzyme captured by the first eigenvector of
the covariance matrix for the open trajectory is ∼0.77. This result represents an strong
indication that the fluctuations of the protein are not random, but that they are specif-
ically oriented towards the closed, catalytically potent, state. As a consequence of this,
the free-energy landscape is organized so to facilitate the spontaneous interconversion
(in thermal equilibrium) of the protein from to open to the closed state, also in absence
of a ligand that induces the closing mechanism.

The same analysis applied to the eigenvectors of the closed trajectory provides a
trend less marked than for the open trajectory, however it results that the fraction∑10

i ci
2 of the opening/closing difference vector captured by the first 10 eigenvectors is

∼0.7. It results therefore that also the closed protein follows the principal components
to open up, but the correlation with the direction of the first principal components is
not so strict as observed in the case of the open protein. This is probably due to the
fact that there is not a unique and well characterized opened structure, but there is
an ensemble of them (indeed in Fig. 2.3a we observed displacements up to 8Å RMSD
between different structures sampled in the open trajectory).

2.5.3 Comparison of the essential spaces of the open and closed tra-

jectories

We want now to compare the essential spaces of the open and closed trajectory. The
simplest way to perform this comparison is to consider the scalar products vi · wj

between all the possible pairs of eigenvectors {vi} from the open trajectory and the
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{wi} form the closed one (assuming that the eigenvectors are indexed in decreasing
order of their eigenvalues). The scalar products between the first 10 eigenvectors (which
define the essential space) have been computed and reported in the density plot Fig. 2.5.
It can be seen that there is no precise one-to-one matching between the modes.

The measure that is typically adopted to compare two essential dynamical spaces
{v} = {v1, ...,vn} and {w} = {w1, ...,wn} is the root mean square inner product
(RMSIP):

RMSIP ≡

√√√√ 1
n

n∑
i,j=1

(vi ·wj)2 , (2.1)

which ranges from 0, for complete orthogonality of the {v} and {w} spaces, to 1 in
case of their perfect overlap. Note that the RMSIP (2.1) is a measure that compares
the vectorial spaces defined by the vectors {v} and {w}, and it is indeed invariant for
change of the base that defines the spaces. Hereafter we will assume that n = 10 in
(2.1), excepts where explicitly indicated, because, as previously mentioned, the essential
space is defined by the top 10 eigenvectors.

The RMSIP between the essential spaces of the open and close trajectories is 0.77,
that is indicative of a good agreement (Amadei et al., 1999). The RMSIP between the
space defined by only the first three principal components of the trajectories is 0.69,
indicating that also these small spaces are quite in agreement despite the lack of precise
matching between the eigenvectors (see Fig. 2.5).

2.5.4 Consensus dynamical space

To go in further detail in the difference between the leading fluctuations for the open
and closed trajectory, we proceeded to identify the consensus set of collective modes
that best capture the common structural fluctuations of AKE encountered in the two
trajectories. The essential dynamics analysis applied to the two merged trajectories is
not adequate to this purpose as it is not designed to extract the dynamical features
that are shared by the two separate trajectories.

Expression (2.1) provides an average measure of accord of two essential dynamical
spaces, as the top 10 eigenvectors of the covariance matrix are treated on equal foot-
ing (degeneracy). This implies that the same value of RMSIP may be attained with
different detailed levels of accord of two spaces.

To characterize with a finer resolution the consistency of two sets of modes we in-
troduce a variational scheme that identifies their maximally-consistent (or inconsistent)
subspaces. The scheme, explained in detail in the Appendix A, is used to redefine two
new bases {v′} ≡ {v′1, ...,v′10} and {w′} ≡ {w′1, ...,w′10} for the same linear spaces
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Figure 2.5: The elements of the matrix represent the scalar products (in absolute value)
between the eigenvectors associated to the ten largest eigenvalues of the covariance
matrix obtained from the open trajectory, and from the closed trajectory. The values
of the scalar products are color coded from black (orthogonal vectors) to white (parallel
vectors).
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a) b)

Figure 2.6: The three consensus modes of the open and closed trajectories are shown
respectively with black, grey and white arrows superposed to the average structure of
the (a) open and (b) closed trajectories.

described by {v} and {w}. The redefined bases, {v′} and {w′}, possess two notable

properties: (i) a basis vector of one set is orthogonal to all basis elements of the other

set except the one with the same index and (ii) the index provides a natural ordering

of the basis vectors in terms of decreasing mutual consistency. Notice that the RMSIP

of the new basis vectors is the same of the original one.

The method provides an optimal redefinition of the basis vectors in the two sets of

modes which are returned in order of decreasing mutual consistency. We stress that the

new bases span the same linear spaces of the original sets so that the original RMSIP,

equal to 0.77, is unaltered by the redefinition.

It was found that the 10 lowest-energy modes of the two trajectories share, with

almost perfect overlap, a three-dimensional subspace. In fact, the scalar products of

the fist, second and third pair of redefined modes have scalar products greater than

0.9. These consensus modes are shown in Fig. 2.6.
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2.6 Consistency of the internal dynamics

In order to investigate the consistency of the outcomes of the PCA in trajectories of
length smaller than the total simulation time, we have subdivided each MD trajectory
in 40 intervals, each of duration of 1 ns (and hence comprising 2000 frames). For
each interval we built the covariance matrix and extracted the first 10 eigenvectors. A
pairwise comparison of the dynamics is finally carried out computing the RMSIP of
the two sets of 10 eigenvectors. The results for any two pairs of intervals for are shown
in the density plot in Fig. 2.7. The degree of consistency appears to be extremely high
throughout both the trajectories. The range of RMSIP values recorded is comprised
between ∼ 0.6 and ∼ 0.8. This has to be compared with the standard reference value
of 0.7 which typically accompanies the good consistency of essential dynamical spaces
in multi-ns MD trajectories on medium-size proteins (Amadei et al., 1999; Pontiggia
et al., 2007).

The observed degree of consistency is very striking in comparison with the level
of structural heterogeneity encountered during the evolution (see Fig. 2.3). The same
feature was previously observed by Pontiggia et al. (2007) in the context of a globular
protein, protein G, where the high consistency of the space of the 10 essential eigenvec-
tors was shown to result from a peculiar self-similar organization of the several minima
that, at various scales, result in the free energy landscape. Also for this much larger
protein it appears confirmed, a posteriori, that a low dimensional space of collective
variables is sufficient to account for the system dynamics over a time-span much larger
than the residence time in each of the salient free energy minima.

2.7 Comparison with the predictions of βGM

In the previous chapter we anticipated that topology based ENMs can be used to predict
the low-energy modes, which correspond to the directions of maximal fluctuations, of
a protein.

We can validate here the predictions of the βGM, introduced in section 1.6.1, con-
sidering the overlap between the low-energy modes of the model and the essential spaces
obtained from MD simulation. We observed that the RMSIP of the top 10 eigenvectors
of the covariance matrix with the top 10 modes predicted by the model, using the av-
erage structure as input, is 0.84 for the open trajectory; 0.79 for the closed one. Both
these numbers are very high, indeed MD simulations of the same protein starting from
different initial conditions have essential spaced with RMSIP∼ 0.7, as shown in this
chapter or in (Amadei et al., 1999; Pontiggia et al., 2007, 2008). The RMSIP of the top
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Figure 2.7: Density plot of the RMSIP between essential dynamical spaces of 1-ns long
intervals of the (a) open trajectory and (b) closed trajectory (time labels are shown on
both axes).

10 modes predicted applying the model to the open and closed structures is 0.84, also
very high. Finally the contribution of the first mode of the model to the jump between
the open to closed configuration is ∼ 75% for the open structure, ∼ 30% for the closed,
in good agreement with the results obtained previously for MD.

Moreover, some of the results obtained here from the analysis of the MD simulations
are very interesting in the perspective to understand a posteriori the use of these
simplified models. In first place, the observed homogeneity of the dynamics, that arise
from the striking self-similarity of the free-energy landscape, represents an important
point in favor of the topology based models. Indeed, if the directions of the fluctuations
would change as the protein visits different structural conformers, the interpretation of
the low-energy modes provided by ENM would be much more complex.

In second place, the observed correspondence between the principal modes (or low-
energy modes of the model) and the direction of opening/closing of the protein high-
lights that these collective motions have a precise directionality that appears, at least
in this case, functionally oriented.

2.8 Conclusions

In this chapter we have discussed, starting from extensive molecular dynamics simula-
tions of adenylate kinase, the predisposition of this enzyme to undergo major conforma-
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tional changes. The analysis of the data has exposed interesting functionally-oriented
characteristics of the internal dynamics of the enzyme and of the organization of its
free energy landscape.

During the free dynamical evolution, the enzyme populates distinct conformational
substates. The ensemble of different conformers is structurally heterogeneous, reflecting
the pronounced mobility of the AMP-binding and Lid subdomains.

We have carried out a covariance analysis of structural fluctuations recorded over
a temporal range wide enough to cover both the collective small scale fluctuations
within the substates and the larger-scale ones associated to inter-substate transitions.
Strikingly, irrespective of the probed time-scale, essential dynamical spaces turned out
to be highly consistent. The functional relevance of this consistency, which does not
originate from unspecific properties of overall amino acid mobility, is underscored by
the high overlap that the essential dynamical spaces have with the deformation vector
connecting the open and closed structures.

The analysis indicates that the free enzyme can be driven through various confor-
mational substates bridging the inactive and catalytically potent states through the
thermal excitation of a limited number of collective modes. These results show a func-
tionally oriented nature of the self-similar organization of the free energy landscape
(coherently with the observations on the G protein in Pontiggia et al. (2007)).

The results support the recent suggestion of (Adén & Wolf-Watz, 2007) that functionally-
oriented conformational fluctuations are innate properties of the free (apo) Adk. In
fact, the consistency of the salient features of the enzyme’s internal dynamics leads to
speculate about the fact that these property may have been promoted by evolutionary
pressure.

Finally we have validate the low-energy modes provided by the βGM. The over-
lap of these modes with the principal components provided by the MD simulation is
remarkable. Therefore the validity of the outcomes of the βGM, tested versus MD sim-
ulations also in (Carnevale et al., 2007b; Cascella et al., 2005; De Los Rios et al., 2005;
Micheletti et al., 2004), poses this method as a valuable instrument for the investigation,
also systematic, of the functionally-oriented conformational fluctuations.
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Chapter 3

Protein-protein Complexes: a

Dynamics-based Characterization

3.1 Introduction

Characterizing the physico-chemical processes that regulate protein-protein interactions
has always been a primary aim of molecular biology, as the majority of the biological
processes are regulated through association and dissociation of protein molecules. Ex-
amples of these processes range from enzyme-substate binding, to antigen-antibody
recognition, hormone-receptor binding, signal transduction, etc. The importance of
systematically characterize and classify the complex nature of protein interactions is
widely recognized, and has been addressed in a number of studies (Bogan & Thorn,
1998; Chakrabarti & Janin, 2002; Conte et al., 1999; Jones & Thornton, 1996; Keskin
et al., 1998; Ma et al., 2001; Tsai et al., 1998; Valdar & Thornton, 2001; Zhang et al.,
2003). These studies have important implications in applications aiming to predict
the conformations of multimeric assemblies and the cellular pathways, beyond being
important for drug design and protein docking. Despite the large number of studies,
many aspects of the mechanisms of protein-protein interactions are not yet completely
understood.

Protein-protein interfaces have been characterized in terms of their structural and
physical properties (size, shape, complementarity and packing) and their chemical
nature (amino acid composition, chemical group distributions, hydrophobicity/ hy-
drophilicity, electrostatic interactions, hydrogen bonding and interactions with water)
(Arkin et al., 2003; Jones & Thornton, 1996; Katchalskikatzir et al., 1992; Nooren &
Thornton, 2003; Todd et al., 2002; Wallis et al., 1998).

47



3. PROTEIN-PROTEIN COMPLEXES: A DYNAMICS-BASED
CHARACTERIZATION

Recently Keskin et al. (2004) have selected all the interfaces between two protein

chains obtained from protein-protein complexes in the Protein Data Bank. The inter-

faces have been next grouped according to the degree of similarity of their architectures,

and filtered to eliminate redundancy. The final set of clusters contains member proteins

as diverse as enzymes, antibodies, viral capsids, etc. Each cluster was assigned to one of

three main types of interfaces, which we briefly review as they will play an important

role in the study described hereafter. Type I, gathers clusters which share not only

the similarity of the interface, but also of the non-interface region. Type II, includes

clusters whose members share only the interface region (both sides); the members of

these groups, therefore, have a different overall structural organization. Finally, type

III groups are characterized by the fact that their members share only one side of the

interface region (i.e. a semi-interface). They have observed that the parental proteins

of members of the same type I cluster belong to the same functional family, while the

parental proteins of the members of the same type II or III cluster may belong to

different functional families.

This study has stimulated the investigation that we report in this chapter. The

question that we pose is whether different types of interfaces, according to the classifi-

cation of Keskin et al. (2004), are characterized also by specific dynamical properties.

To this purpose we provide here a detailed characterization of the equilibrium dynam-

ical properties of a comprehensive set of dimeric protein complexes, selected starting

from the database of Keskin et al. (2004). In order to characterize the flexibility of

the complexes we have used an ENM, as it provides, with a minimum computational

effort, the salient features of proteins’ internal dynamics. Moreover this approach has

two remarkable properties: to be systematically applicable; and to allow to account for

the influence of the binding parter in the mobility of the amino acids at the interface

of a monomer.

The chapter is organised as follows. The first part is devoted to describe the creation

of the dataset of protein-protein constructs. In the second part the salient structural

traits of the complexes and their interfaces are presented. The third part presents a

detailed account, organized per interface category, of the dynamical properties of amino

acids at the interface of the dimeric subunits. Finally we discuss how the findings can

be interpreted considering the expected role of conformational entropy to the stability

of dimeric interfaces.
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3.2 Dataset selection

The dataset of dimeric complexes was compiled so to capture and represent the largest
possible diversity of protein-protein constructs. The starting point for compiling the
dataset was the database of protein-protein interfaces of Keskin et al. (2004). This
comprehensive dataset was culled on the basis of two criteria. First, considerations
are restricted to dimeric protein interfaces. Next, we considered only dimers whose
fluctuation dynamics can be adequately captured by elastic network models.

In the following subsections we will describe in details the structurally nonredundant
dataset of two-chain protein-protein interfaces obtained by Keskin et al. (2004) and the
subsequent filtering of this database for the selection of the representative dimers which
we investigated in this study. Finally we will characterize the protein-protein interaction
among the selected dimers in terms of obligate and non-obligate interactions.

3.2.1 Structurally nonredundant dataset of two-chain protein-protein

interfaces

We recall there that the database of Keskin et al. (2004) was obtaiend through to the
following procedure:

1. all the multichain PDB entries in the Protein Data Bank (Berman et al., 2000)
were analyzed in order to get all the possible combinations of two-chains.

2. These were subsequently filtered, keeping only two-chain complexes where the
number of amino acids in each side of the interface was ≥ 10.

3. The selected complexes where then grouped into clusters. This was carried out
using a heuristic iterative procedure (Keskin et al., 2004) to cluster the com-
plexes according to the degree of structural similarity among their interfaces.
The similarity was quantified through a sequence-order-independent structural
comparison algorithm: the Geometric Hashing algorithm (Nussinov & Wolfson,
1991; Tsai et al., 1996).

4. The redundancy in sequence among members of a same cluster was later removed,
comparing the complete sequences of each member of a cluster, and if two or more
complexes shared more than 50% similarity only one was kept.

5. Only clusters with 5 or more members (which amount to a number of 103 clusters)
were kept and classified as type I, II or III according to the degree of structural
similarity of the members of the cluster.
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This final classification was carried out as follows. If in the structural alignment
of the interfaces, members of a same cluster have only one side of the interface that is
structurally aligneable, the cluster is classified of type III. If otherwise the structural
alignment of interfaces involves both sides, the cluster is classified of type I or II,
depending on the global structures of the two-chain complexes. The global folds of
each two-chain complex was evaluated, according to SCOP database (Murzin et al.,
1995). If all the members of a cluster have the same global fold, the cluster is classified
of type I; otherwise it is classified of type II. A total of 43, 13 and 47 clusters are
classified as type I, II and III respectively1.

Interestingly, it was observed that the parental chains members of the same cluster
belong to the same functional family for clusters of type I, while they may belong to
different functional families for members of type II or III clusters (Keskin & Nussinov,
2005, 2007).

3.2.2 Selection of dimeric non-homogeneous protein-protein com-

plexes

In the database of Keskin et al. there are many two-chain complexes that are part of
larger complexes, with more than two chains and consequently with many interfaces.
The influence of all the binding partners has to be taken into account in order to study
the dynamics of a particular chain. Consequently, the investigation of the dynamical
properties of a chain that is part of dimeric complex is a problem with a lower level of
complexity than the investigation of the dynamics of a chain that is part, for example,
of a trimer. In this study we have decided to keep the analysis at the first level of
complexity, so our investigations were limited to the dimeric proteins.

Consequently, the database of Keskin et al. (2004) was further filtered keeping only
the PDBs:

1. with complete structural information;

2. consisting of only two chains;

3. relative to proteins classified as dimers, according to the informations in the PDB
file and/or consulting the UNIPROT database (UniProt Consortium, 2008, 2009);

4. corresponding to structures for which the β Gaussian network model gives only
six zero-energy motions (the roto-translational degrees of freedom).

1 The data set is available at:

http://home.ku.edu.tr/∼okeskin/INTERFACE/INTERFACES.html.
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Note that the last condition is motivated by the fact that we will evaluate the
mobility of the amino acids using the βGM, as we will explain in section 3.4.1. The
βGM, as all the topology-based ENM, gives reliable results for globular proteins. The
existence of additional zero-energy modes beyond the ordinary six associated to the
roto-translational degrees of freedom indicates that in the protein there are exposed
loops or other parts, that in thermal equilibrium are expected to undergo diffusive-like
motion that topology-based models are not suitable to treat.

The application of the described filters yielded to the selection of 12 interfaces of
type I, from 8 different clusters; 8 of type II, form 6 clusters; 9 of type III, from 8 clusters.
In order to avoid redundant or correlated data, we took only one representative for each
cluster, the one ranked first in the clustering of Keskin et al. The selected proteins are
reported in Table 3.1.

3.2.3 Protein-protein interaction types in the selected dimers

The above-mentioned classification scheme is aptly complemented by the notion of
whether a given protein-protein complex observed in the PDB is biological or not, i.e.
it corresponds to a biologically relevant interaction or to non-specific crystal packing
contact. Furthermore, biological complexes can be obligatory or non-obligatory. In
the first case the individual monomers that constitute the complex are not stable on
their own; in the second case they are stable and can be found in the free form (non
complexed).

To distinguish between obligate, non-obligate and crystal packing interactions we
used here a recently developed automatic classification method, NOXclass (Zhu et al.,
2006). The classification is not trivial, therefore NOXclass do not provide a univocally
characterization, but assigns a probability to each possibility. In Table 3.1 we provided
the classification of the dimers in our dataset, reporting for each entry the most probable
interaction type according to NOXclass.

Observe that overall there are: fourteen obligate interfaces (seven of type I, three
of type II and four of type III); six non-obligate interfaces (one of type I, two of type
II and three of type III); and two non-biological interfaces (one of type II and one of
type III). Consequently, most dimers in Table 3.1 are obligate complexes.

The above facts prompt several observations in consideration that the subunits of
a dimer have in general a different structure in the bound form (i.e. when complexed)
and in the free form. For non-obligate interfaces, the bound-free conformational rear-
rangements are typically modest and are mostly localised at the interface region. For
obligate complexes, however, the changes are expected to be dramatic. In fact, the
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Figure 3.1: Distribution of sizes of (a) the first chain of the dimers reported in Table 3.1,
and (b) their semi-interfaces formed with the second chain.

free form of the monomers may not even correspond to a well-defined structure. In

view of these facts, to have a common term of comparison for the cases of obligate and

non-obligate interfaces we shall base our considerations exclusively on the bound forms.

3.3 Structural properties of dimers and their interfaces

Before considering the dynamical properties of the dimers, we shall discuss their struc-

tural properties. At the most fundamental level the first quantity to consider is the size

of the dimers, that is their length in terms of number of amino acids. The inspection

of the complexes size, see Table 3.1, indicates that the dataset covers a wide range of

lengths, from a minimum of 64 amino acids [PDB:1a93, 1tmz, 2a93] to 896 amino acids

for oxidoreductase [PDB:1ger]. Most of the largest complexes are of type I. In fact, five

of the seven complexes which have monomers comprising more than 200 residues are

of type I, one is of type II and one of type III. This property is readily perceived in

Fig. 3.1a, which reports the histogram of size of the first chain reported in Table 3.1

for each complex.
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Further properties to consider are related to the monomeric interfaces. Well-
established procedures exist to identify the interfaces. In this study, following Jones &
Thornton (1997), we rely to the following definition: the interface in a protein-protein
complex is the set of residues for which the accessible surface area (ASA), computed
for the isolated components (unbound form) and for the complex (bound form), differs
by more than 1Å2. Since the considered complexes are constituted by two chains, the
residues at the interface are divided into those which belong to the first and second
chain, which constitute two semi-interfaces. The interface size is the number of residues
that constitute the interface, and analogously the semi-interface size is the number of
residues that constitute the semi-interface. The interface size is clearly the sum of the
semi-interface sizes. For symmetric complexes the semi-interface sizes are equal, but
for asymmetric ones they can be different. The interface area is defined, according to
Conte et al. (1999), as the area of the accessible surface on both the partners that be-
comes inaccessible to the solvent due to the protein contacts. It is calculated as the sum
of the ASA of the isolated components minus that of the complex. In this study the
ASA per residue as well as the total ASA were obtained using the program NACCESS
(Hubbard & Thornton, 1993), with a probe spere of radius 1.4Å. The interface size
and area, and the semi-interface sizes, for each of the investigated dimers are shown in
Table 3.1.

It is particularly interesting to relate the interface area and the number of residues
that constitute the interface or the semi-interfaces. As for the sizes of the dimers, the
sizes of the interfaces too span a wide range of values: from 21 amino acids (interface
area: 628Å2) of the cell adhesion protein [PDB:1lfa] to 233 amino acids (interface area:
9178Å2) of chlorophyll biosynthesis [PDB:2gsa]. The largest interfaces are of type I, in
fact seven of the eight interfaces of type I are larger than 3000Å2, while none of the
interfaces of type II and III are so large. All the six interfaces of type II and four of
type III have area ranging from 1400Å2 and 1900Å2, which is indicative of interfaces
of medium size (Conte et al., 1999).

It is worth pointing out that for most of the type I and II interfaces, the number
of residues in the two semi-interfaces is identical, while this is not true for type III
dimers which (unlike cases I and II) typically consists of differently-sized monomeric
units. Fig. 3.1b illustrates the size distribution of the semi-interface of the first chain
reported in Table 3.1 for each complex, for type I, II and III separately. We observe
that most of the semi-interfaces of type I consist of more than 30 amino acids, while
those of types II and III involve less than 30 amino acids.

The inspection of Table 3.1 indicates that the largest interfaces pertain to large
complexes. While this may be intuitively expected, it is interesting to notice that
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Figure 3.2: Distribution of secondary elements in the considered monomers and semi-
interfaces, separately for each interface type.

for medium-sized interfaces there is not a simple correlation between complex size

and interface size. For instance the leucine zipper [PDB:1a93], that is a complex of 64

amino acids, has an interface of 1565Å2, which is larger than the interface of chemokine

[PDB:1a15], a complex of 124 amino acids.

We conclude the structural characterization by discussing the secondary-structure

content of the complex and their the semi-interfaces. This is assigned using the DSSP

program (Kabsch & Sander, 1983), which defines seven secondary structure states: H

(alpha helix), B (residue in isolated beta-bridge), E (extended strand, participates in

beta ladder), G (3-helix), I (5 helix), T (hydrogen bonded turn) and S (bend). We then

performed a subdivision of the amino acids in terms of helix (H, G, I), strand (B, E)

and coil (T, S, or blank space).

The data, subdivided according to the three types of interfaces are reported in

Fig. 3.2. More than 50% of the amino acids of type II dimers take part to helices, while

the percentage decreases to 40% for type I and III cases. The fraction of amino acids in

coil state is close to 40% for the complexes of the three types, and the fraction of amino

acids taking part to strands is smaller than 20%. Considering the semi-interfaces, it is

noticed an increase of helical content; more than 70% of the amino acids are in helical

conformation for type II entries, while for type I and III the percentage is about 50%.

A related decrease of coil and strand content is consequently observed.
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3.4 Dynamical properties of dimers and dimeric interfaces

The investigation of the mobility of the amino acids at the dimeric interfaces was
carried out from a two-fold perspective. On one hand, it is interesting to compare how
the mobility of amino acids at the surface of a dimeric subunit depends on whether
they take part to the dimer interface or not. Next, from the comparison of properties
of several dimers we wish to establish which salient features (such as secondary and
tertiary organization etc.) impact on the interface mobility. Before illustrating the
results of our investigation, we will first show how it is possible to use the ENM, and
βGM in particular, to evaluate the mobility of amino acids in one of the monomer,
keeping into account of the influence of the binding partner

3.4.1 Evaluation of Amino Acids Mobility

For completeness we briefly recall here key facts about ENM approaches.
As we discussed at length in the first chapter, the internal large-scale concerted

movements that proteins sustain around their native state in thermal equilibrium can
be adequately captured by coarse-grained elastic network models (Atilgan et al., 2001;
Bahar et al., 1997; Delarue & Sanejouand, 2002; Hinsen, 1998; Micheletti et al., 2004;
Su lkowska et al., 2008; Tirion, 1996). These models typically take as input the Cα

positions of the protein native state, and estimate the energy cost of deviations form
the native state by adopting harmonic approximations.

In particular the βGM, as described in section 1.6.1, relies on the following quasi-
harmonic approximation of the free energy F of the protein: a displacement x =
{~x1, ~x2, . . . , ~xN} from the native state of the protein (where ~xi is the displacement
of the i-th Cα atom and N is the number of amino acids in the protein) is penalized
by an increment of free-energy:

F(x) =
C

2
xTMx (3.1)

where M is a 3N × 3N symmetric matrix which account for the pairwise interaction
between amino acids, whose terms are calculated as explained in section 1.6.1. Note
that this model has only one phenomenological parameter: the constant C, which
can be set so that the outcomes of the model optimally fit experimental data (e.g.
temperature factors in X-ray crystallography) or results of MD simulations.
In thermal equilibrium, the probability of occurrence of a deviation x is proportional
to the Boltzmann factor:

P (x) ∝ exp
(
− F(x)
KBT

)
(3.2)
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being KB the Boltzmann constant and T the temperature.
As highlighted in the first chapter, the motion of a protein in thermal equilibrium

can be described in terms of the overdamped langevin dynamics (see section 1.5).
Within this context, and assuming here that the friction coefficients are the same
for each Cα atom, it results that the collective large-scale movements of the system
correspond to the low-energy modes of (3.1), obtained diagonalizing the matrix M. This
matrix has six null eigenvalues that correspond to rigid-body rotations and translations.
For some proteins there are extra null eigenvalues, which are usually due to the fact that
the protein is not globular and some amino acids experience diffusive motion. In this
case the predictions are not trustable since the model is outside its field of applicability.
For this reason dimers with more than six zero eigenvalues have been excluded from
our dataset.
Let us indicate the normalized eigenvectors of M as vα = {~vα1 , ~vα2 , ..., ~vαN} and the rel-
ative eigenvalues λα (in increasing order for α = 1, ..., (3N − 6), having removed the
roto-translations). Eigenvectors associated to the lowest eigenvalues give the direction-
ality of the low-energy motions; the magnitude of the fluctuation along an eigenvector
is directly proportional to the inverse of the relative eigenvalue. In particular it results
(from equation 1.29 and using the assumption that we are here doing that the friction
coefficients are the same for each Cα atom) that the average displacement of the amino
acid i is: 〈

‖~xi‖2
〉
∝

3N−6∑
α=1

‖~vαi ‖2

λα
(3.3)

where the constant of proportionality depends on the temperature T of the system and
on the value of the constant C. In this study we are mainly interested in changes of
mobility, therefore we have fixed KBT and C to 1, so that the estimated fluctuations
are expressed in a common unit scale for all the proteins.
This yields to the following expression for the root mean square fluctuation (RMSF) of
the i-th amino acid:

RMSF(i) =

√√√√3N−6∑
α=1

‖~vαi ‖2
λα

(3.4)

which has been used as measure of its degree of mobility.
It is worth noticing that fluctuations predicted in this way will refer only to the

backbone motion, not to the side-chain one, since only Cα positions are used to calculate
the free energy. Finally, let us notice that the βGM, as others elastic network models,
is “native-centric”, i.e. it models around the input structure and gives predictions in
its center of mass.
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(a) (c)(b) (d)

Figure 3.3: Thermodynamic integration. (a) A dimer is constituted by two chains
A and B, respectively colored in blue and red. (b) Within an ENM approach, the free
energy of the dimer can be written in terms of the interaction among the amino acids
in chain A (blue), in chain B (red), and the coupling interaction between chains A
and B (green). (c,d) As described in the text, equation 3.7, it is possible to compute
the effective free energy governing the thermodynamics of subchain A alone (after
integration of the degrees of freedom of subchain B).

3.4.1.1 Thermodynamic Integration

The complexes considered here are constituted by two monomers that we shall distin-
guish with the labels A and B, as shown in Fig. 3.3a. We want to study the mobility
of monomer A in the bound form, i.e. we want to compute the degree of mobility of
amino acids of monomer A, in its center of mass, taking into account the presence of
B (Fig. 3.3d).

Within the βGM, we can model the free energy of the overall dimer as described
by F(x) in equation 3.1. Note that a generic displacement x of the N amino acids of
the dimer can be non-ambiguously decomposed into the displacement xA of the NA

amino acids of chain A plus the displacement xB of the NB amino acids of chain B.
Consequently the matrix M in 3.1 can be trivially reindexed so that the free energy
cost F(xA,xB) of a displacement xA of the amino acids in the first chain and xB of the
amino acids in the second chain is given by:

F(xA,xB) =
C

2
(

xTA xTB
) ( MA G

GT MB

) (
xA
xB

)
(3.5)

where the 3NA× 3NA interaction matrix MA represents the internal coupling between
the coordinates xA, and analogously the 3NB×3NB interaction matrix MB represents
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3.4 Dynamical properties of dimers and dimeric interfaces

the internal coupling between the coordinates xB. The 3NA × 3NB matrix G and
its transpose GT represent the coupling between the coordinates xA and xB. This
is graphically illustrated in Fig. 3.3b, where MA, MB and G are represented as the
interactions colored respectively in blue, red and green.

As prescribed by equation 3.2, a displacement of {xA,xB} has a probability P(xA,xB)
to be observed which is proportional to the Boltzmann factor for the free energy
F(xA,xB) written as in equation 3.5. Therefore the probability P̃(xA) to observe a
displacement xA in protein A, independently on the displacement in protein B, is ob-
tained integrating P(xA,xB) over all the possible displacements of xB (Carnevale et al.,
2006; Hinsen et al., 2000), and it yields:

P̃(xA) =
∫

P(xA,xB) dxB ∝ exp
(
− C

2KBT
xTA(MA −GMB

−1GT )xA

)
(3.6)

Thus the comparison between (3.2) and (3.6) gives that the effective free energy F̃(xA)
governing the effective interaction among the NA amino acids of chain A have still a
quadratic form, and can be written as:

F̃(xA) =
C

2
xTA M̃A xA (3.7)

where M̃A = (MA −GMB
−1GT ) is the interaction matrix of monomer A that oppor-

tunely accounts for the influence of B. This is represented graphically in Fig. 3.3c.
The degree of mobility of the amino acids in monomer A, calculated considering

also the influence of the binding partner B, is therefore given by equation (3.4), where
the eigenvalues and eigenvectors are those of matrix matrix M̃A.

3.4.2 Mobility of the amino acids at the interface

It is important to point out that the characterization of the mobility of amino acids in
a protein depends critically on the “reference frame” that is used for its description.
Usually, the adopted reference frame is the one where the equilibrium mean square
displacement of all amino acids are minimised. In such reference frame the center of
mass of the entire protein (complex) of interest remains fixed in space. For multimeric
or multidomain proteins this choice is not necessarily appropriate, as an appreciable
relative motion of the protein subparts can lead to artifactual results (Henzler-Wildman
et al., 2007b).

In the present context, where protein dimers are considered, the consideration of
the appropriate reference frame is therefore very important. In particular, when using
the above-mentioned criterion there are two possible natural choices for the reference

59



3. PROTEIN-PROTEIN COMPLEXES: A DYNAMICS-BASED
CHARACTERIZATION

frame for characterize the amino acid motion namely to minimize the mean-square

displacements of the entire protein or of one of the monomeric subunits.

The second choice is the one that will be adopted hereafter. In fact, considering the

“subunit frame of reference” appears appropriate in view of the comparisons that will

be carried out between the bound/unbound forms of the dimers. For subunits in the

bound state, the fluctuation dynamics of the amino acids will be calculated by properly

taking into account the presence of the partner monomer, as illustrated in the previous

sections.

For a dimer of type I or II the choice of which subunit to consider is arbitrary,

since they are usually identical and both the semi-interfaces are shared by members of

the same cluster. The situation is different for type III dimers, where only one side of

the interface is shared by members of the same cluster (and belongs to the first chain

reported in Table 3.1). We will therefore use the first chain reported in Table 3.1 to

define the “subunit frame of reference”, for all our dimers.

As anticipated, we shall first compare the mobility of residues in the semi-interface

of interest with that of other surface residues. We have defined, following (Jones &

Thornton, 1997), the surface residues as those having a relative accessible surface area

(RASA) greater than 5%. As for the ASA, the RASA per residue was obtained using

the program NACCESS (Hubbard & Thornton, 1993).

Considering all the proteins in our dataset, the total number of residues in the

monomeric units is 3774; ∼ 21% of them are at the semi-interface, and ∼ 57% are

surface but not interface residues. If the partner monomer were not present then most

of the residues at the semi-interface (∼ 96%) would be classified as surface residues.

By inspecting Fig. 3.4a it is possible to compare the distribution of the root mean

square fluctuations (RMSF) of residues at the semi-interface (for all the studied pro-

teins) with that of surface residues which are not at the semi-interfaces. The difference

of the two distributions is more readily perceived after normalization, see Fig. 3.4b.

Residues at the semi-interface appear to be, on average, less mobile than residues at

the surface. The graph further indicates that the fraction of resides with a RMSF lower

than 1 (in the units of the elastic network model) is ∼ 60% for semi-interface residues,

and it is ∼ 44% for surface residues. Finally, the graph offers a useful indication of

the typical range of amino acid mobility; in particular an RMSF value of 2 is indica-

tive of a rather large degree of mobility, as only about 10% of the amino acids at the

semi-interface have an RMSF value that overcomes this threshold.
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Figure 3.4: (a) Distribution and (b) normalized cumulative distribution of the RMSF
for the resides at the semi-interface, and at the surface but not at the semi-interface.
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3.4.3 Factors affecting the mobility of the amino acids at the interface

A priori, the observed diminished mobility of amino acids at the semi-interfaces, com-
pared to other surface residues, could be ascribed to two main factors:

(i) the intrinsic structural architecture of the monomeric unit (such as the locality of
the inter-residue contacts), and/or

(ii) the contact interactions with the partner monomer, which act as a mobility-limiting
constraint.

Aspects related to the interplay of these two factors, were considered before in
connection with the mobility of free and bound forms of monomeric units (Rajamani
et al., 2004; Smith et al., 2005; Yogurtcu et al., 2008). As discussed, the scope of the
free/bound comparison is essentially restricted to non-obligate interfaces. Most of the
interfaces considered here are obligate, implying that a well-structured free form of the
monomer may not necessarily exist

For the purpose of the present study it is important to point out that to understand
the interplay between (i) and (ii) it is not necessary to consider the free monomer. In
fact, considerable insight can be gained by using an elastic network model to study the
fluctuation dynamics of the monomer of interest and comparing the behaviour when the
partner monomer is present and when it is absent. If a realistic force-field was employed
to study the dynamics, the removal of the partner monomer would lead to a rapid loss of
structural organization of the subunit of interest; this is because the isolated monomer
would not correspond to a minimum of the free energy. Instead, by resorting to an
elastic network model, it is possible to study the “intrinsic” fluctuation dynamics of
the subunit of interest because the ENM approach amounts to introducing a model free
energy that, by construction, has a minimum in the input reference structure, in this
case the “virtual”, unbound structure.

In conclusion, the relative role of factors (i) and (ii) can be ascertained by an ENM
calculation of the fluctuation dynamics of the monomer of interest in the abence of the
partner monomer and in its presence. In the latter case, a suitable thermodynamic
integration of the degrees of freedom of the partner monomer needs to be carried, as
explained previously.

In can be anticipated that three possible cases can emerge from the comparison:

(a) the fluctuation of the semi-interface residues are small both in the bound and in
the virtual unbound forms;
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(b) the fluctuation of the semi-interface residues are small in the bound form and large
in the unbound one;

(c) the fluctuation of the semi-interface residues are large both for the bound and the
virtual unbound forms.

As the partner monomer acts as a constraint for the mobility of the monomer semi-
interface, the fourth case, where the semi-interface is more mobile in the bound than
the unbound form cannot occur.

Case (a) would indicate that factor (i), i.e. the structural architecture of the
monomer, is the main one influencing the mobility (the low degree of mobility, in
this case) of the residues. On the contrary, case (b) indicatives that the main factor is
(ii), i.e. the contact with the monomer partner. Case (c) is subtler as it would indicate
that neither factors (i) and (ii) are responsible for the observed diminished mobility
of the semi-interface residues, compared to other surface amino acids. It would be
particularly interesting to observe that semi-interface fluctuations in the bound and
virtual unbound forms were similar, as this would indicate that the binding partner has
an interface organised so to not alter the “intrinsic” fluctuations of the monomer of
interest.

The scatter plots of the bound fluctuation and the the virtual unbound fluctuation,
for the residues at the first semi-interface of the studied complexes, are given in Fig.3.5.
In these graphs, residues that are representative of behavior (a) would appear in prox-
imity of the origin; residues representing behavior (b) would occur along the x axis;
and residues representing behavior (c) would distribute in the region y < x. In the
notable case where the partner does not influence the intrinsic fluctuations of the first
monomer, the points would be distributed along the line y = x.

Fig. 3.5 indicates that all the three possible behaviors are present, albeit with
different weight. The first conclusion is, therefore, that there is not a typical relative
strength of factors (i) and (ii).

By inspecting Fig. 3.5, it emerges that the best examples of semi-interface mobility
that is diminished by interaction with the partner unit (case b), are provided by the
oxidoreductases 1a05 and 1gdh, the hydrolase 1hii and the calcium-binding protein
1a03. All these complexes have a type I interface. The best examples of fluctuations
not appreciably affected by the partner (case c) are observed for the chemokine 1a15,
the transcription factor 1a0a, and the leucine zipper 1a93. All these complexes are of
type II.

It is very interesting to notice in Fig. 3.6 that, while examples of case (a) are found
in complexes of type I, II and III, the behavior of type (b) is found only in type I,
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Figure 3.5: Scatter
plot of the bound
fluctuation and of the
virtual unbound fluc-
tuation for the amino
acids in the first chain
in the investigated
proteins reported in
Table 3.1. The amino
acids and the semi-
interface have been
represented differently
for each protein, and
reported in panel (a),
(b) of (c) in relation
to their interface type
(according to the clas-
sification of Keskin et
al.).
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Figure 3.7: Scatter plot of the bound fluctuation and of the virtual unbound fluctuation
for the amino acids at the semi-interface, colored according to their secondary structure
content.

and the behavior (c) is found only in types II and III. Many complexes of type I are
examples of behavior (b), as highlighted by the interpolating line (very low angular
coefficient). Furthermore, in most of type II complexes, the partner seems not to affect
the intrinsic fluctuations of the monomer residues (as highlighted in the figure by the
interpolating line, with angular coefficient close to 1). By converse, in complexes of
type III it appears that the partner partially influence the amount of fluctuation of the
semi-interface residues (as highlighted by the interpolating line, with angular coefficient
close to 1/2), although a definite conclusion cannot be drawn in this case due to the
limited size of the sample.

It can also be observed that the examples of behavior (b) are obligate complexes,
while examples of behavior (c) came either from obligate or non-obligate complexes.
Furthermore, the size of the interfaces seems to be correlated to the observed behavior.
In fact, all the mentioned examples of behavior (b) have an interface area larger than
3000Å2, while behavior (c) is observed in interfaces of medium size. Behavior (a) is
observed both in large and medium interfaces.

Finally, it is worth considering the secondary-structure content of the semi-interfaces
and its correlation with the three types of behaviour. To address this point, the same
data of Fig. 3.5 have been reproduced in Fig. 3.7 using a color scheme depending on
the secondary structure to which each amino acid belongs to. Observing the plot for
type I (Fig. 3.7a), it can be noticed that the highest virtual “unrestricted” fluctuation
is observed for interface residues belonging to loops and beta strands. These amino
acids experience the largest variation of fluctuation due to the influence of the partner
monomer. In the plot for type II (Fig. 3.7b) it emerges that the interface residues are
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mainly in alpha-helices (excluded some beta strands that came from [PDB:1a15]). In
the plot for type III (Fig. 3.7c) most of the more fluctuating residues are alpha-helices.

3.5 Discussion

It was observed that for some complexes the residues at the interface have a low degree
of mobility, and that this is an intrinsic characteristic of the structural architecture of
the monomer units. In other cases it is the binding partner that causes the interface
residues to have a limited mobility. This behavior is observed in large interfaces of
type I, according to the classification of Keskin et al.. There are also cases where
the interface residues do not have a low mobility, despite the presence of the partner
monomer. This behavior is observed in medium-sized interfaces which are usually of
type II.

An attempt to rationalise these observations can be made considering the relative
role that enthalpic and entropic effects are expected to have on the formation of protein
dimers.

It is known that entropy plays a fundamental role in the binding processes, and
several studies have shown that the entropy associated to the fluctuations (usually called
vibrational energy) makes a substantial contribution to the association free energy of
a complex (Daniel et al., 2003; Tidor & Karplus, 1994). The precise calculation of this
entropy is a challenging task even for non-obligate complexes, and therefore it is beyond
the scope of the present study to attempt a quantitative estimate of this contribution
to the formation of the (often obligate) complexes considered here.

Nevertheless, the following euristic argument can be helpful to interpret the results
from a simple perspective.

If the presence of the monomeric partner diminishes the mobility of residues at the
semi-interface, this indicates that the partner unit provides a significant limitation to
the conformational space of the semi-interface. This will come at an entropic cost which
must be compensated by an enthalpy gain for the formation of the dimer.

This simple observation provides some clues as to the different behaviour observed
for large versus small interfaces. In fact, a large surface of interaction can more easily
lead to a large enthalpy gain and hence these complexes can afford to have an apprecia-
ble loss of conformational entropy upon binding (and hence a decrease of semi-interface
mobility upon going from the unbound to the bound form). Consistently with this ob-
servation it can be noticed that this behavior was observed only in type I interfaces,
which are very specific and characterised by a large gain in enthalpy upon dimerization.
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Furthermore, if the residues at the semi-interface have an intrinsically low mobil-
ity then binding will not appreciably modify the fluctuation amplitude of the semi-
interface. Consequently, at variance with the previous case, there is not an appreciably
entropic cost to be compensated by enthalpy. This explains why this behavior was
found in all the different typologies of the interfaces, also in medium and non specific
ones.

Analogously, it is expected that there is not an appreciably entropic cost to be com-
pensated by enthalpy also for the semi-interfaces whose mobility is largely unaffected
by the presence of the partner monomer. Such kind of behavior is likely to be observed
for semi-interfaces with a great degree of dynamical affinity. Consistently with these
observations, examples of this behavior are found most frequent for type II interfaces
and less so for type III. In fact interfaces of type II have both of the sides that are
specific, being conserved among members of the same cluster, while in type III only
one side is conserved and consequently less specific.
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Chapter 4

Dynamics-based Alignment: a

Pairwise Comparison of

Low-energy Modes in Proteins

4.1 Introduction

Proteins are customarily characterized according to their sequence, structure and func-
tion. Available alignment tools detect similarities among different proteins in the se-
quence (Altschul et al., 1997; Chenna et al., 2003; Higgins & Sharp, 1988; Thompson
et al., 1994) and in the structure (Holm & Park, 2000; Holm & Sander, 1996, 1999;
Konagurthu et al., 2006; Micheletti & Orland, 2009; Notredame et al., 2000; Shatsky
et al., 2004b). These tools have helped to clarify the sequence and structure relation-
ship. It is known that high degree of sequence similarity (sequence identity above about
30%) reflects into a structural similarity (Chothia & Lesk, 1986; Chothia et al., 2003;
Orengo & Thornton, 2005). On the other end, it has been observed that the same
fold is sometimes adopted also by proteins with negligible sequence similarity (Holm
& Sander, 1994; Murzin et al., 1995; Orengo et al., 1997). This behavior is typically
interpreted in terms of convergent evolution of proteins structure (Andreeva & Murzin,
2006; Banavar et al., 2002; Chen et al., 1997; Denton & Marshall, 2001a; Krishna &
Grishin, 2004; Seno & Trovato, 2007).

The sequence of a protein encodes and determines both its structural and func-
tional properties. Note however that the knowledge of the three dimensional structure
represents an important source of additional information with respect to the sequence
code alone for the understanding of the molecular mechanisms that regulate the biolog-
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ical function of a protein. These considerations and the availability of structures with
no biochemical annotations have motivated attempts to predict protein function from
sequence and structural information (Redfern et al., 2008; Sadowski & Jones, 2009).
The determination of the function is “easy” when the investigated protein has striking
similarities in sequence with other proteins for which the function is well known, as
this denotes common evolutionary pathways. However, when no striking homologies
are observed, determining function directly from tertiary structure has proven to be a
highly challenging problem. The problem is related to the fact that, despite a signifi-
cant correlation is observed between certain folds and some specific functions, the same
structure can be used by different proteins to perform different functions, and it is not
necessary to adopt a particular structure to carry out a particular function (Ausiello
et al., 2007; Bork et al., 1993; Carnevale et al., 2006; Russell, 1998).

In this chapter we introduce and apply a general quantitative scheme to address
functional relationships of enzymes by extending the alignment procedures to the dy-
namical properties. We focus on a common although not universal feature of enzymatic
function, namely internal large-scale concerted movements. A large body of evidence
links these movements to the structural changes that often accompany protein func-
tions, as we have seen in the second chapter for the specific case of adenylate kinase.
Moreover, the displacements involved in allosteric changes in many proteins occur along
the collective coordinates corresponding to the low-energy modes of the two biologi-
cally relevant states (Alexandrov et al., 2005; Delarue & Sanejouand, 2002; Falke, 2002;
Ming & Wall, 2005; Rod et al., 2003; Smith et al., 2005; Zheng et al., 2007).

As we have already discussed in the first chapter, the collective and large-scale
character of these fluctuations has justified their characterization by means of simplified
approaches, typically elastic network models (ENM) (Atilgan et al., 2001; Bahar et al.,
1997; Delarue & Sanejouand, 2002; Hinsen, 1998; Micheletti et al., 2004; Su lkowska
et al., 2008). We recall that these models rely on a simplified free-energy function with
quadratic dependence on displacements of amino acids from their reference position.
Linear combinations of the ten lowest-energy modes predicted by ENMs are generally
sufficient to describe most of the conformational fluctuations observed in extensive MD
simulations as well as functionally-oriented changes between apo and holo forms of
enzymes (Alexandrov et al., 2005; De Los Rios et al., 2005; Delarue & Sanejouand,
2002; Falke, 2002; Ming & Wall, 2005; Rod et al., 2003; Smith et al., 2005; Zheng et al.,
2007), as we have seen specifically for adenylate kinase in the second chapter.

Here we apply the collective low-energy modes of amino acids determined by these
simplified models, to protein alignment. Unlike in structural alignments, matched
amino acids need show only loose spatial proximity. The spatial tolerance is such that
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the relative movements in the two enzymes are well defined, yet sufficiently generous to
establish correspondences between, for example, different types of secondary structure
elements.

This study extends the recent surveys of Capozzi et al. (2007); Carnevale et al.
(2006), where common features were detected among the low-energy modes of prote-
olytic enzymes and EF-hand motifs, the structural alignments of which were known.
Here we avoid the asymmetric treatment of structural and dynamical features by us-
ing a novel optimization scheme that identifies the set of amino acids which has the
highest consistency of large-scale displacements, within tolerant structural correspon-
dence. Combining structural and dynamical criteria on an equal footing appears to
be necessary to detect general analogies of the internal motion of biomolecules. A
pure dynamical alignment, i.e., rewarding the consistency of the low-energy modes’
directionality in two sets of amino acids regardless of their relative spatial relationship
would, in fact, not necessarily identify regions that undergo analogous dynamical mod-
ulations. At the same time, the matching of the ENM-derived low-energy modes does
not simply establish correspondences of simple local geometric features of two protein
structures. The algorithm, in fact, goes beyond capturing correspondences between
the profiles of amino acid mobility, which largely reflect static local structural (density)
features (Halle, 2002), and promotes the accord of non-local correlations of amino acid
displacements in thermal equilibrium. In view of the collective, non-local, nature of the
ENM-derived equilibrium fluctuations exploited by the algorithm it appears justified
to term the alignment as dynamics-based.

The chapter is organized as follows. The first part is devoted to a detailed de-
scription of the dynamics-based alignment method. In the second part the alignment
procedure is applied to all pairs from a set of 76 enzymes which represent the main
functional families with minimal structural redundancy. The alignment score of ∼30
enzyme pairs was found to be outstanding by standard criteria of statistical significance.
Two thirds of such alignments reflect global or partial correspondences in the fold ar-
chitecture. Notably, the remaining third involve proteins with only loose analogies
of secondary and tertiary structural elements but with precisely-matching large-scale
dynamics. Even for structurally-dissimilar pairs of enzymes the dynamics-based align-
ment can induce a remarkable spatial superposition of functionally-relevant regions.
This suggests a biological rationale underlying specific common concerted movements.
Further development of tools capable of detecting such dynamical correspondences is
expected to provide novel elements and perspectives to address the relationship between
sequence, structure and function of enzymes.
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4.2 Dynamics-based alignment

The pairwise alignment method that we have developed for the comparison of the low-
energy modes in proteins, is aimed at establishing correspondences between groups of
amino acids experiencing similar (large-scale) motions in two given proteins. As in other
contexts (Altschul et al., 1997; Chenna et al., 2003; Holm & Sander, 1996; Konagurthu
et al., 2006; Lesk, 2004; Notredame et al., 2000; Shatsky et al., 2004a,b) an alignment
is a one-to-one pairing among a subset of “marked” amino acids in the two proteins.
The number n of marked amino acids range up to the maximum length dictated by the
shorter protein. Given a particular value of n, the alignment procedure, schematically
represented in Fig. 4.1, is based on an iterative scheme that proceeds in the following
way:

(a) generation of a tentative alignment of n amino acids, i.e. selection of a subset of
n amino acids in each protein to be put in a one-to-one correspondence;

(b) identification of the low-energy modes of the selected amino acids, calculated
within an elastic network approach;

(c) evaluation of the spatial/dynamical consistency of the tentative alignment through
an alignment score that measures the accord of both the spatial position and the
concerted movements of amino acids in pairwise correspondence.

These steps are repeated within a stochastic optimization method for maximizing the
alignment score over thousands possible correspondences of n amino acids, finally ob-
taining the best scoring alignment of length n.

For each protein pair we apply this procedure for several values of n. We associate
to each best scoring alignment of n amino acids a homogeneous score that allows the
comparison of alignments of different lengths. The optimal alignment for the specific
protein pair is finally found by taking as “winning” alignment the one with maximum
homogeneous score.

A detailed description of the mentioned steps of the alignment follows.

4.2.1 Calculation of low-energy modes of marked amino acids

We start by considering a given tentative alignment of n amino acids between two pro-
teins. As mentioned, we need to identify the lowest-energy modes of the amino acids
marked for the alignment, and to compare them in a common Cartesian reference frame.
We shall accordingly assume that one of the two proteins has been roto-translated to
minimize the root mean square distance between the matching amino acids. After the
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optimal superposition, a model free energy is introduced to characterize the thermal
equilibrium fluctuations of the marked amino acids. To this purpose we adopted the
well-established elastic network approach (Atilgan et al., 2001; Bahar et al., 1997; De-
larue & Sanejouand, 2002; Hinsen, 1998; Micheletti et al., 2004). As described in the
first chapter, we recall that the free-energy F associated to a displacement δ~xk of the
k-th Cα from its reference position is:

F =
1
2

∑
i,j

δ~xi ·Mijδ~xj . (4.1)

To calculate the entries of matrix M , in the dynamics-based alignment we have imple-
mented the β-Gaussian network model of Micheletti et al. (2004), illustrated in section
1.6.1. Note however that the dynamics-based alignment method could be used in con-
junction with other ENMs for the evaluation the matrix M , or use the interaction
matrix obtained by QHA of an MD trajectory.

The model energy F is used to compute, for each protein, the effective matrix, M̃ ,
providing the quadratic potential of mean force acting on the sole degrees of freedom of
interest, that is, the positions of the n Cα’s marked for alignment. In the following we
shall assume that the amino acids have been re-indexed so that the first n amino acids
(out of a total of N amino acids) correspond to the marked ones. To illustrate how M̃

is calculated it is useful to divide the M matrix into blocks reflecting the distinction
of the degrees of freedom that we wish to retain (the displacement of the first n amino
acids), from the rest:

M =
(
Ma V
V T M b

)
(4.2)

where the superscript T denotes the transpose. The physical interpretation of the
blocks is straightforward: Ma corresponds to the interactions among the first n amino
acids themselves; M b contains the interactions within the remaining N−n amino acids
and V contains the interactions between the two groups.

The problem of finding M̃ is analogous to the calculation of the effective matrix
of interaction of a monomer in contact with another monomer, as illustrated in the
previous chapter (section 3.4.1.1). Owing to the simple quadratic nature of F in eqn.
(4.1), the calculation of the effective energy F̃(δ~x1, δ~x2, ...δ~xn) governing the effective
interaction among the first n amino acids can be done explicitly (Carnevale et al., 2006,
2007a; Hinsen et al., 2000) yielding

F̃ =
1
2

n∑
i,j=1

δ~xi · M̃ijδ~xj ≡
1
2

n∑
i,j=1

δ~xi ·
[
Ma
ij + ∆Mij

]
δ~xj , (4.3)
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where ∆M = −V [M b]−1V T , being [M b]−1 is the pseudoinverse of M b. The lowest-
energy non-zero modes of the matching amino acids are identified as the eigenvectors
associated with the smallest non-zero eigenvalues of M̃ . In the following we shall
indicate with {~vαi }i=1,...,n and {~wαi }i=1,...,n the α-th low-energy mode of the marked
amino acids for the first and second protein, respectively.

Note that the lowest-energy modes have to be recalculated for each different choice
of the amino acids marked for the alignment. This calculation is computationally
expensive, as it involves matrix inversion, multiplication and diagonalization.

4.2.2 Spatial/dynamical consistency of an alignment of n amino acids

As customary we shall assume that the ten lowest-energy modes are sufficient to account
for the essential dynamics of the aligned amino acids (Amadei et al., 1999). Accordingly,
the quality of each tentative alignment involving n amino acids is quantified with the
following combined measure of spatial and dynamical consistency:

qn =

√√√√√max

 0 ,
1
10

10∑
α,β=1

 n∑
j=1

~vαj · ~w
β
j

[ n∑
i=1

~vαi · ~w
β
i f(di)

] (4.4)

where di is the distance between the Cα positions of the ith aligned residue of the two
proteins, and

f(d) =
1
2

[
1− tgh

(
d− dc

2

)]
is a distance weighting factor interpolating the asymptotic values of 0 and 1 for distances
respectively much larger and smaller than dc = 4 Å. Observe that qn is bounded between
0 and 1, and its value is 1 in case of a perfect correspondence between both low-energy
modes and distances of aligned amino acids (which we recall have been previously
optimized by the superposition of the aligned amino acids).

The measure (4.6) does not depend on the choice of the basis of the lowest-energy
modes and generalises the familiar root mean square inner product,

RMSIP =

√√√√ 1
10

10∑
α,β=1

∣∣∣∣∣
n∑
i=1

~vαi · ~w
β
i

∣∣∣∣∣
2

(4.5)

used to measure the consistency of the dynamical spaces of the same protein in two
different MD trajectories. The inclusion of the structural modulation f(di) is sought
here as we wish to promote not the mere overall dynamical correspondence of matching
amino acids per se but only when these also have a good space proximity.
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4.2.3 Stochastic exploration of the space of amino acids correspon-

dences

The space of all possible alignments of two proteins is too large for an exhaustive ex-
ploration. We therefore relied on a stochastic exploration of partial, yet statistically
significant correspondences between subsets of n amino acids between the two proteins.
The stochastic search of putative alignments of fixed length n is performed by partition-
ing the n amino acids in blocks of at least 10 amino acids for each protein. The block
assignment is done independently for each protein; as a result the number of blocks
and their lengths are generally different for the two proteins. The amino acids taking
part in the blocks are numbered sequentially from the N to the C terminus. The align-
ment is defined as the pairwise correspondence between the marked amino acids with
the same index. This pairing scheme implies that the explored alignments must follow
the sequential order of the amino acids. This condition, common to other alignment
methods (Holm & Park, 2000), rules out the possibility to establish correspondences
between groups of amino acids that have different block order in the two proteins.

Given a tentative alignment, i.e. an initial block assignment in the two proteins, a
new tentative alignment, or trial alignment, is generated by modifying its block sequence
by merging, splitting or shifting the blocks. Each trial alignment is accepted/rejected
with the standard Metropolis criterion, within a replica-exchange scheme (Tesi et al.,
1996), to promote the maximum score qn. In particular, we have six different repli-
cas Ri(t), i = 1, ..., 6, (which correspond to different correspondences of amino acids
between the two proteins) for each time-step t, with an associated score q(Ri(t)) calcu-
lated using to equation 4.4. At every timestep t each replica Ri(t) is used to generate a
trial alignment R̃i, which has an associated score q(R̃i). The i-th replica at time t+ 1,
Ri(t+ 1), is posed equal to the trial alignment R̃i with a probability:

PRi(t+1)=R̃i
= min

{
1, exp

(
q(R̃i)− q(Ri(t))

Ti

)}
where Ti is a fictitious temperature associated to the i-th replica, otherwise Ri(t +
1) = Ri(t) (Metropolis criterion). Observe that, if the fictitious temperature is zero,
only trial alignments which increase the score are accepted. In our implementation
each replica has a different temperature, and after every interval of five time-steps,
swaps between the different replicas are tried. The swap between replicas i and j

is accepted/rejected depending on the scores of the replicas and their temperatures,
according to the following probability to accept the swap:

PRi↔Rj = min
{

1, exp
[(

q(Ri)
Tj

+
q(Rj)
Ti

)
−
(
q(Ri)
Ti

+
q(Rj)
Tj

)]}
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(replica exchange criterium). Within this scheme, and having appropriately fixed the
temperatures, we observe that we obtain an alignment that maximize the alignment
score qn after a few thousand time-steps.

4.2.4 Comparison of alignments of different lengths

Observe that the quantity qn, defined in 4.4, can be used to compare two different
alignments, only provided that they have the same number of amino acids n into
correspondence. Indeed the larger the length n of the alignment the lower (in average)
the quantity qn.

In order to quantify how much qn is affected by the length of the alignment,
dynamics-based alignments of different lengths were carried out among the 56 represen-
tatives with minimal structural relatedness (highlighted in Table 4.1). The stochastic
search of optimal alignments was performed by maximising qn separately for each con-
sidered length n =75, 100, 125,... For each explored value of n we obtained the statistics
of the optimal qn over all pairwise alignments and computed the first two moments of
the distribution, 〈qn〉 and δq2

n ≡ 〈q2
n〉 − 〈qn〉2.

The values of 〈qn〉 and δqn are represented in Fig. 4.2 by the filled circles and the
error bars, respectively. The trend of 〈qn〉 is well captured by the single exponential fit,
f(n) = 0.5115 ∗ exp(−n/336) indicated with the continuous red line. This exponential
trend was subtracted from the “raw” quantity qn, allowing a homogeneous comparison
of alignment scores of different length. Accordingly, the score of a given alignment of
n amino acids was computed as:

sn = qn − f(n) . (4.6)

Notice that the dispersion of qn (denoted by the errorbars) is visibly constant for all
explored values of n (except at the largest lengths owing to poorer statistics). Conse-
quently, it is not necessary to include in eq. (4.6) a correction for “regularizing” also
the n-dependent breadth of the score distribution.

Given a protein pair, its optimal alignment is the alignment of length n associated
to the maximum score sn.

4.2.5 Statistical significance of an alignment

Given a protein pair, the dynamics-based alignment provides an optimal alignment
which involves n amino acids and has an associated alignment score sn. When is the
alignment score sn large enough to consider the alignment significant? The usual way
to tackle this question is to perform a significance analysis by comparing the score
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Figure 4.2: Average and dispersion of qn from pairwise alignments within the subset
of enzymes with minimal structural redundancy. The red line provides the exponential
best fit to the data points and corresponds to the function f(n) = 0.5115 exp(−n/336).

sn with a reference distribution of scores recorded over a set of proteins which are not
expected a priori to lead to a sizeable number of meaningful alignments. This reference
set was assembled by selecting one representative protein, the longest, for each of the
56 different topologies in the data set of enzymes reported in Table 4.1. The resulting
distribution of the 1540 alignment scores was compared against standard statistical
distributions arising in alignment contexts (Levitt & Gerstein, 1998; Taylor, 2006)
including the extreme value (Gumbel) and the Gaussian distributions, see Fig. 4.3.
Assuming a Poissonian uncertainty of the height of the histogram the χ2 associated
to the Gumbel distribution is 3.7, while that of the Gaussian distribution is 1.1. As
visible in Fig. 4.3, the Gaussian distribution appears to provide a good fit to the data
set within three standard deviations to the left and right of the mean value.

The latter distribution was consequently taken a posteriori as providing the so
called “null distribution” of the alignment score sn, i.e. the reference distribution
for alignment scores of unrelated protein pairs. In this way, to each alignment it
is associated a z-score or, equivalently, a p-value. The former is a measure of how
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and an extremal-value one (blue). Assuming, as customary, a Poissonian un-
certainty of the height of the histogram the χ2 associated to the extremal-value
distribution is 3.7, while that of the Gaussian distribution is 1.1. The latter
distribution was consequently taken as providing a viable statistical description
of the observed measurements.
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Figure 2: Histogram of the alignment scores, sn, collected over the 1540 distinct
pairings of the 56 representatives. The red and blue curves represent respectively
the best fits using the Gaussian and Gumbel distributions. Parameters (mean
and spread) of the best-fitting Gaussian: µ = 0.041413 σ = 0.041493.

5

Figure 4.3: Histogram of the alignment scores, sn, collected over the 1540 distinct pair-
ings of 56 protein representatives a priori unrelated. The red and blue curves represent
respectively the best fits using the Gaussian and Gumbel distributions. Parameters
(mean and spread) of the best-fitting Gaussian: µ = 0.0414 σ = 0.0415.

distant (in terms of standard deviations) is the obtained score from the average random
reference case. The p-value, instead, corresponds to the probability that an alignment
of n amino acids of two unrelated proteins returns a score higher than the one actually
observed. The lower is the p-value (i.e. the higher the z-score), the more atypical, and
hence significant, is the alignment.

4.2.6 Graphical representation of corresponding modes

The score qn of eqn. (4.4), and consequently also the alignment score sn in eqn. (4.6),
are invariant upon replacing the orthonormal set of the ~v’s (or ~w’s) with another one
obtained by their suitable linear combination. This property is used to convey in a
graphically optimized way the consistency of two sets of low-energy modes. The first
optimized basis vector in each set, ~v′1 =

∑
j=1...10 aj ~vj and ~w′1 =

∑
j=1...10 bj ~wj is
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found by optimizing the linear weights, a’s and b’s so that the scalar product ~v′1 · ~w′1 is
maximum (the unit norm of ~v′1 and ~w′1 is implied). The procedure is iterated to define
the remaining vectors of the new basis which must be orthogonal to those already
identified. This is exactly the procedure that we have described in detail in appendix
A in the context of comparison of essential dynamical spaces.

4.2.7 A test case: dynamics-based alignment of HIV-1 protease and

BACE

The dynamics-based alignment is applied in the following section of this chapter, to
cases of single-chain and single-domain proteins. However we want to stress that the
applicability of the dynamics-based alignment scheme goes beyond these cases. Com-
parisons between multimeric proteins (i.e. constituted by two or more chains) are
possible, considering all the possible orderings of the chains in the protein. For a given
chain ordering, the amino acids of the entire multimer are numbered consecutively and
the simple pairing procedure is applied. The optimal alignment is provided by the
ordering of the chains associated to the maximum alignment score.

An example of an alignment that involves a multimeric protein is provided by the
comparison between HIV-1 protease (PDB code: 1nh0) and human β-secretase (BACE,
PDB code: 1er8), respectively a viral and an eukaryotic Asp proteases. The former
is a homo-dimer of 198 amino acids, each subunit being composed of 99 amino acids
(Baca & Kent, 1993; Fitzgerald & Springer, 1991; Hong et al., 2000), while the latter is
a monomer of 330 amino acids. They differ for size and structure, however it is known
that they are evolutionary related (Blundell & Srinivasan, 1996; Carnevale et al., 2006;
Cascella et al., 2005; Neri et al., 2005). The result of their dynamics-based alignment
is shown in Fig. 4.4a and comprises 150 amino acids with a total RMSD of 5.5 Å and
RMSIP of 0.73. Note that the alignment induces the superposition of the ASP dyad
(the amino acids involved in the chemical catalysis) for the two proteases, as shown
in Fig. 4.4b. In this figure we also notice that the dynamical alignment highlights the
correspondence between the movements sustained by the flexible flaps opposite to the
ASP dyas, which delimit the active site.
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(a)

HIV BACE

(b)

Figure 4.4: Dynamics-based alignment of the dimeric HIV-1 PR (PDB code: 1nh0)
and the monomeric BACE (PDB code: 1er8) over n = 150 amino acids. In panel (a)
the amino acids marked for the alignment have been colored in red and in blue for
HIV and BACE respectively. The sets of arrows in each protein represent the two best
corresponding lowest-energy modes for the aligned regions, as desdribed in section 4.2.6.
In panel (b) the structures of HIV and BACE, represented respectively as red and blue
transparent tubes, have been optimally superimposed according to the dynamics-based
alignment. The two consensus lowest-energy modes are represented for each protein.
The ASP dyan, corresponding to resides 32 and 215 of BACE and 25 (for both the
chains) for HIV, has been highlighted in Van der Waals representation.
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4.3 Dynamics-based comparison of enzymatic functional

families

In Carnevale et al. (2006) and in Capozzi et al. (2007) it has been shown that different
members of some specific enzymatic superfamilies, respectively proteases and calcium
binding proteins, have similar large-scale movements in thermodynamic equilibrium,
despite they do not share a striking sequence or structure similarity. In Carnevale
et al. (2006) the similarities in the dynamics of the proteases where detected on the
base of partial structural similarities, while in Capozzi et al. (2007) the calcium binding
proteins where compared within a framework ad hoc developed for them.

The availability of the dynamics-based alignment allows a more general approach
for the comparison of the dynamical properties of enzymatic families. As a first appli-
cation of this method we have therefore selected and compared a set of enzymes, with a
minimal structural similarity, which represent the main enzymatic functional families.
The aim of this investigation is to study the relationship between structure, dynam-
ics and function of proteins. Paralleling the studies that have clarified the relationship
between sequence and structure, we want to use the dynamics-based alignment to high-
light cases where enzymes show similarity in their dynamical properties also without
an underlying striking structural similarity. Hereafter we shall describe the results of
this investigation.

4.3.1 Dataset selection

The enzymes considered here were selected exploiting the hierarchical classification
provided by the Enzyme Commission1 (EC) database (Porter et al., 2004). The EC
functional annotation provides a transparent, though qualitative, criterion for defining
an enzymatic functional distance which was used in the analysis to investigate the
existence of correlations between functional and dynamics-based pairwise similarities.
The reference data set was constructed by uniformly covering each of the 6 EC classes,
whose enzyme-catalyzed reactions are:

EC 1 Oxidoreductases: catalyze oxidation/reduction reactions (i.e. transfer of H and
O atoms or electrons from one substance to another);

EC 2 Transferases: transfer of a functional group from one substance to another (the
group may be methyl-, acyl-, amino- or phosphate group);

EC 3 Hydrolases: formation of two products from a substrate by hydrolysis;
1 http:/www.ebi.ac.uk/thornton-srv/databases/CSA/
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EC 4 Lyases: non-hydrolytic addition or removal of groups from substrates (C-C, C-N,
C-O or C-S bonds may be cleaved);

EC 5 Isomerases: intramolecule rearrangement (i.e. isomerization changes within a
single molecule);

EC 6 Ligases: join together two molecules by synthesis of new C-O, C-S, C-N or C-C
bonds with simultaneous breakdown of ATP.

The entire EC database was filtered to remove overall structural redundancies within
each class, selecting one representative, by default the longest enzyme, of each group of
molecules sharing the same structural class, architecture and topology, as defined by the
CATH classification of protein structural patterns (Orengo et al., 1997). Only PDBs
with complete structural information and constituted by a single chain and a single
domain were treated, because this is a simple criterium to select enzymes expected to
work as a single monomer (note however that it is not excluded that some of them could
work as part of a multimeric biological unit). The resulting set consisted of 76 enzymes,
reported in Table 4.1, with the following functional distribution: oxidoreductases (8),
transferases (12), hydrolases (36), lyases (12), isomerases (7), ligases (1). As the removal
of structural redundancy was carried out for each EC class separately, representatives
of different functional families can have the same topology, according to the CATH
classification. This degeneracy, which affects only 47 of the 2850 distinct pairings
of the 76 representatives, was retained as its removal would have led to an uneven
representation of the distinct EC families. The total structural variability contains 56
different topologies, representing 3 CATH structural classes and 15 architectures.

As can be observed in Table 4.1, the length (in terms of number of amino acids)
of the selected enzymes is heterogeneous, and the average is 245 ± 118 amino acids
per protein. Pairwise sequence alignments, performed using ClustalW (Chenna et al.,
2003), among members of the set yield 12.2 ± 2.3 % sequence identity on average. This
value indicates the absence of a strict sequential correspondence among the selected
enzymes.

4.3.2 Results of the dynamics-based alignments

The resulting scores of the dynamics-based alignment for each enzyme pair are graphi-
cally represented in Fig. 4.5 in which the two matrices of panels (a) and (b) differ only
in the way the entries are ordered. In (a) rows and columns appear in order of EC code;
in (b), in order of CATH code. These two alternative groupings allow an intuitive per-
ception of how functional and structural analogies are reflected by the alignment score.
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PDB EC CATH length PDB EC CATH length

1pb3 1.1.1.42 3.40.718.10 416 1ivb 3.2.1.18 2.120.10.10 390

2et7 1.2.3.4 2.60.120.10 201 2ayh 3.2.1.73 2.60.120.200 214

1d7o 1.3.1.9 3.40.50.720 297 1dy4 3.2.1.91 2.70.100.10 434

3cd2 1.5.1.3 3.40.430.10 206 4skn 3.2.2.3 3.40.470.10 223

1k03 1.6.99.1 3.20.20.70 399 1p7m 3.2.2.20 1.10.340.30 187

1xm0 1.8.4.6 2.170.150.20 147 8cpa 3.4.17.1 3.40.630.10 307

6pah 1.14.16.1 1.10.800.10 308 3pbh 3.4.22.1 3.90.70.10 317

1dfx 1.15.1.1 2.60.40.730 125 1avp 3.4.22.39 3.40.395.10 199

4tms 2.1.1.45 3.30.572.10 316 1qjj 3.4.24.21 3.40.390.10 200

1cia 2.3.1.28 3.30.559.10 213 1f82 3.4.24.69 3.90.1240.10 424

1h17 2.3.1.54 3.20.70.20 754 1lba 3.5.1.28 3.40.80.10 146

1cjw 2.3.1.87 3.40.630.30 166 1lqy 3.5.1.88 3.90.45.10 184

1fp9 2.4.1.25 3.20.20.80 500 1ko3 3.5.2.6 3.60.15.10 230

1qcd 2.4.2.7 3.40.50.2020 236 1rgy 3.5.2.6 3.40.710.10 360

1dtp 2.4.2.36 3.90.175.10 190 1mjz 3.6.1.1 3.90.80.10 175

1fps 2.5.1.10 1.10.600.10 348 2acy 3.6.1.7 3.30.70.100 98

1ajz 2.5.1.15 3.20.20.20 282 1l6t 3.6.3.14 1.20.20.10 79

1ax3 2.7.1.69 2.70.70.10 162 2had 3.8.1.5 3.40.50.1820 310

1ohb 2.7.2.8 3.40.1160.10 258 1ojr 4.1.2.19 3.40.225.10 274

2f65 2.7.6.3 3.30.70.560 158 2dhn 4.1.2.25 3.30.1130.10 121

4p2p 3.1.1.4 1.20.90.10 124 1yb7 4.1.2.39 3.40.50.1820 256

1u32 3.1.3.16 3.60.21.10 293 1v3w 4.2.1.1 2.160.10.10 173

2f6f 3.1.3.48 3.90.190.10 302 1v9i 4.2.1.1 3.10.200.10 261

2ffz 3.1.4.3 1.10.575.10 245 1gqn 4.2.1.10 3.20.20.70 252

1ako 3.1.11.2 3.60.10.10 268 1vbl 4.2.2.2 2.160.20.10 416

1dmu 3.1.21.4 3.40.600.20 299 1hv6 4.2.2.3 1.50.10.110 351

1vas 3.1.25.1 1.10.440.10 137 2g64 4.2.3.12 3.30.479.10 140

1goc 3.1.26.4 3.30.420.10 156 1cqh 4.2.99.18 3.40.30.10 105

2fmb 3.1.26.4 2.40.70.10 104 1fx2 4.6.1.1 3.30.70.1230 235

1bol 3.1.27.1 3.90.730.10 222 2plc 4.6.1.13 3.20.20.190 274

1k2a 3.1.27.5 3.10.130.10 136 1rtv 5.1.3.13 2.60.120.10 184

1de3 3.1.27.10 3.10.450.30 150 1h0p 5.2.1.8 2.40.100.10 182

1kab 3.1.31.1 2.40.50.90 136 1pbk 5.2.1.8 3.10.50.40 116

1b1y 3.2.1.2 3.20.20.80 500 1nsj 5.3.1.24 3.20.20.70 205

2fba 3.2.1.3 1.50.10.10 492 8cho 5.3.3.1 3.10.450.50 125

3eng 3.2.1.4 2.40.40.10 213 1mek 5.3.4.1 3.40.30.10 120

1bhe 3.2.1.15 2.160.20.10 376 1id8 5.4.99.1 3.40.50.280 137

2f47 3.2.1.17 1.10.530.40 175 1dbs 6.3.3.3 3.40.50.300 224

Table 4.1: Enzymes dataset. List of the 76 representatives used in this study identi-
fied by their PDB codes (Bernstein et al., 1977b), EC (Porter et al., 2004) and CATH
(Orengo et al., 1997) classification and number of amino acids. The first number of
the EC field denotes the different functional classes: 1: oxidoreductases, 2: trans-
ferases, 3: hydrolases, 4: lyases, 5: isomerases, 6: ligases. For proteins 1h17 and 1avp
five highly-exposed terminal amino acids, at the N- and C-terminus respectively, were
omitted. Underlined PDB codes indicate the subset of enzymes with different topology
(the longest enzyme was taken for each group with same topology). This subset was
considered to be minimally structurally redundant.
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Figure 4.5: Matrices reporting the dynamics-based score for all aligned en-
zyme pairs. Good [poor] alignment scores are shown with dark blue [white] color.
In (a) enzymes are ordered in each axis according to EC codes, black and red lines
delimit enzymes with the same first and first two EC number, respectively. In (b)
enzymes are ordered according to CATH codes. Black [red] lines separate different
classes [architectures].

The qualitative appearance of the two plots is markedly different. The minimally-
redundant coverage of the different EC families produces a fairly uniform scatter of
good scores across various EC groups (Fig. 4.5a). It is nevertheless interesting to no-
tice the presence of light bands corresponding to EC groups that are poorly alignable
in general. The most notable of such groups comprises hydrolases acting on acid an-
hydrides (principal EC codes: 3.6). By contrast, the uneven representation of different
structural classes, architectures and topologies in the data sets leads to a manifest in-
homogeneous character of the matrix ordered by structure of Fig. 4.5b. In particular,
the class with the largest proportion of good scores is the α-β one (class 3), which is
also the most populated class in the set. Not all its architectural subgroups, however,
display the same degree of “alignability”. Both in absolute and relative terms, the
most prominent architecture is the α-β barrel (principal CATH numbers: 3.20). It is
also worth noting that good alignment scores are attained for several interarchitecture
alignments; a few of such cases will be discussed later. Finally a notable case of overall
poor alignability is the set of the mainly-α/Up-Down Bundle (principal CATH num-
bers: 1.20), which shows correspondences only with enzymes belonging to the same
structural group.
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Figure 4.6: Distribution of alignment scores. (a) Distribution of the alignment
score calculated over all 2850 enzyme pairs (the inset presents an enlargement of the
histogram highlighting pairs with the same topology). The contribution of pairs with
the same structural class, architecture and topology are also shown. The dashed line
represents the “null” distribution (i.e. a Gaussian with mean µ = 0.041413, and spread
σ = 0.041493). (b) Tail of the distribution associated with the highest alignment
scores. Pairs that have same topology and homologous superfamily are highlighted.
(c) Number of non statistically significant (false positive) alignments expected to arise
within the top-ranking alignments.
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The extent to which the various degrees of structural relatedness impact on the
dynamical correspondences is summarized Fig. 4.6a. The histogram portrays the dis-
tribution of optimized scores for all enzyme pairs and also pairs having the same class,
architecture and topology. It is noted (see inset) that the very few pairings (47 en-
tries) of enzymes with the same topology tend to have alignment scores distinctively
better than typical enzyme pairs. On the other hand no such pronounced deviation
from the average behaviour is observed for pairs with the same structural class or even
architecture (that is, the two highest levels of the hierarchical structural classification
in CATH).

Similarities in dynamics between structurally-related enzymes is expected. We
therefore wish to focus particularly on the alignments that are highest ranking ac-
cording to the dynamics-based score. The distribution of their scores is shown in
Fig. 4.6b. In this figure, alignments among enzymes with the same topology (the first
three CATH numbers) and same topology plus homology (the entire CATH code) have
been highlighted. Among the top ∼20 alignments are 6 pairs sharing the full CATH
code (the total number of such homologous pairs in the set is 8). This confirms the
intuitive expectation that significant sequence and structural similarities result likely
in pronounced dynamical similarities (Keskin et al., 2000).

However, it is important to note that in Fig. 4.6b, besides these expected good
correspondences, a fraction of the alignments approaching the tail pertain to pairs that
differ at the level of class or architecture. These cases are of particular interest as they
would not be singled out by criteria based solely on the CATH structural classification.
A selection of these alignments, as well as other structurally-induced ones, will be
discussed in the following.

4.3.3 Statistically relevant alignments

Our considerations will now concentrate on alignments that are statistically significant.
As described in section 4.2.5, the statistical significance of an alignment is obtained by
the comparison of its score with a null distribution. In agreement with the previous
considerations, the null distribution in this case is provided by the alignments between
the representative set of enzymes with different topology, highlighted in Table 4.1.
Their distribution is optimally fitted by a Gaussian distribution (see Fig. 4.3). This
null Gaussian distribution, renormalized for the dataset size, has been reported in
Fig. 4.6a.

From the p-value analysis we estimated the number of non-significant entries (false
positives) expected among the top alignments (Levitt & Gerstein, 1998; Storey & Tib-
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shirani, 2003). The associated curve, shown in Fig. 4.6c, indicates that within the top
26 alignments, fewer than 10% are expected to be false positives. This threshold pro-
vides an acceptable balance between the number of entries declared significant (26) and
the fraction which is deemed reliable (>90%). All further considerations will therefore
be limited to the pairings in the top 26 alignments, which are reported in Table 4.2.

Within this set, the number of pairings that can be ascribed to overall similarities
of the global fold topology is 16, including 6 homologous cases. A more refined and
quantitative study of the level of subtler structural correspondence in the set was carried
out with DALI (Holm & Park, 2000; Holm & Sander, 1996), a powerful structural
alignment tool that detects partial similarities based on the similarity between two
proteins of inter-residue distance matrices. For a consistent comparison with our results,
the statistical confidence threshold on the DALI results (Sierk & Pearson, 2004) was also
set to 90% (leading to 18 significant DALI pairings). It was found that 14 of our top 26
alignments had significant DALI scores. These included 12 pairs with same topology
(including all the 6 homologous pairs). Of the ten pairings with different topology
selected by our method only two turned out to have significant partial alignments
according to DALI. These alignments were between proteins 2dhn-2g64 and 1dy4-2ayh.
Importantly, within the 18 statistically-significant DALI pairings these two alignments
were the only ones involving different CATH topology. Consequently, the remaining 8
of the 26 (i.e. ∼ 30%) dynamics-based alignments deemed significant involved pairings
between enzymes whose structural relatedness is not easily detectable at the same level
of statistical significance.

4.3.4 Discussion of alignment results

A selected number of significant alignments, exemplifying the sophisticated interplay
of structural and dynamical features, are shown: hydroxynitrile lyase-haloalkane de-
halogenase (200 aligned amino acids) in Fig. 4.7; human thioredoxin-disulfide isomerase
(75 aligned amino acids) in Fig. 4.8; dethiobiotin synthetase-phosphoribosyl anthrani-
late isomerase (100 aligned amino acids) in Fig. 4.9; exonuclease III-enoyl reductase
(175 aligned amino acids) in Fig. 4.10; cellobiohydrolase I-endo-1,3-1,4-β-D-glucan 4-
glucanohydrolase (75 aligned amino acids) in Fig. 4.11 and exonuclease III-human aden-
ovirus proteinase (75 aligned amino acids) in Fig. 4.12. The first two pairs are examples
of alignments between enzymes with different functions (first EC number) but similar
fold (i.e., same CATH code) while the opposite is true for examples Fig. 4.11 and
Fig. 4.12. Cases Fig. 4.9 and Fig. 4.10 are, instead, examples of alignments between
enzymes that differ in both function and fold.
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Figure 4.7: Dynamics-based alignment between hydroxynitrile lyase (1yb7) and
haloalkane dehalogenase (2had). The number of aligned amino acids is 200. The rank
of this alignment is 3, as reported in Table 4.2. Structural-dynamical properties of
the selected alignment are graphically summarized by rendering, on the left and in
the middle, in blue the first listed protein and in red the second. Aligned regions are
represented as thick tubes, while non-aligned regions are represented as thin tubes. Ar-
rows are used to indicate the directionality and magnitude of the distortions entailed
by the most consistent dynamical space (section 4.2.6). The location of the catalytic
residues are highlighted as Van der Waals surfaces. The rightmost panel presents the
superposition of the aligned regions.

One of the enzyme pairs with the highest structural-dynamical correspondence in-

volves hydroxynitrile lyase (PDB: 1yb7, length 256, EC: 4.1.2.39, CATH: 3.40.50.1820)

and haloalkane dehalogenase (PDB: 2had, length 310, EC: 3.8.1.5, CATH: 3.40.50.1820).

These differ in EC class but have the same first four CATH codes. Their best alignment,

which spans 200 amino acids, covers a substantial fraction of both enzymes. Fig. 4.7

summarizes the results graphically. For clarity, the aligned regions and associated low-

energy modes are shown separately for the two enzymes. Given the impossibility of

conveying graphically the dynamics covered by the 10 lowest-energy modes, we have

reported only the maximally consistent subspace in the two sets of modes (see section

4.2.7). The RMSD over the 200 aligned amino acids is 4.5 Å which compares well

with the purely-structural DALI alignment of the same proteins: RMSD = 3.0 Å over

226 amino acids. Indeed, unlike other cases discussed in the following, this optimal

alignment is also very good from a purely-structural point of view. The quality of the

overall consistency of the low-energy modes is also striking, as it possesses a RMSIP

of 0.81, which exceeds the reference values that typically denote good consistency of

molecular dynamics trajectories of the same protein (Amadei et al., 1999).

Another high-ranking alignment for both the dynamics-based procedure and the
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Figure 4.8: Dynamics-based alignment between human thioredoxin (1cqh) and disulfide
isomerase (1mek). The number of aligned amino acids is 75. The rank of this alignment
is 2, as reported in Table 4.2. Structural-dynamical properties of the selected alignment
are graphically summarized by rendering, on the left and on the right, in blue the first
listed protein and in red the second. Aligned regions are represented as thick tubes,
while non-aligned regions are represented as thin tubes. Arrows are used to indicate
the directionality and magnitude of the distortions entailed by the most consistent
dynamical space (section 4.2.6).

purely-structural one is the pair of enzymes: human thioredoxin (PDB: 1cqh, length

105, EC: 4.2.99.18, CATH: 3.40.30.10) and disulfide isomerase (PDB: 1mek, length

120, EC: 5.3.4.1, CATH: 3.40.30.10) where as many as 75 amino acids correspond, with

an RMSD as low as 2.8 Å and RMSIP again exceeding 0.87. Fig. 4.8 shows the high

quality of the accord between structure and dynamics.

Over a third of the reliable alignments involve pairs that have dissimilar structural

organization. Two notable examples appear in Fig. 4.9 and in Fig. 4.10; for the pairs:

dethiobiotin synthetase (PDB: 1dbs, length 224, EC: 6.3.3.3, CATH: 3.40.50.300) and

phosphoribosyl anthranilate isomerase (PDB: 1nsj, length 205, EC: 5.3.1.24, CATH:

3.20.20.70) in panel (c); and exonuclease III (PDB: 1ako, length 268, EC: 3.1.11.2,

CATH: 3.60.10.10) and enoyl reductase (PDB: 1d7o, length 297, EC: 1.3.1.9, CATH:

3.40.50.720) in panel (d). Even though no strong global structural correspondences

can be established between these pairs, there is a discernible consistency of the aligned

regions. For the 100 aligned amino acids of the pair in Fig. 4.9 and 175 aligned amino

acids in Fig. 4.10, the RMSD values are 5.7 Å and 8.4 Å respectively. The “structural

tolerance” of this dynamics-based alignment is such that even elements with different

secondary organization can be put in structural correspondence (e.g., loops and helices).

In these two cases also, low-energy modes are in very good agreement (RMSIP equal to
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Figure 4.9: Dynamics-based alignment between dethiobiotin synthetase (1dbs) and
phosphoribosyl anthranilate isomerase (1nsj). The number of aligned amino acids is
100. The rank of this alignment is 11, as reported in Table 4.2. The alignment is
graphically represented as in in Fig. 4.8.

Figure 4.10: Dynamics-based alignment between exonuclease III (1ako) and enoyl
reductase (1d7o). The number of aligned amino acids is 175. The rank of this alignment
is 17, as reported in Table 4.2. The alignment is graphically represented as in in Fig. 4.7.
The location of the catalytic residues of 1ako and of the bound ligands of 1d7o are
highlighted as Van der Waals surfaces.
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Figure 4.11: Dynamics-based alignment between cellobiohydrolase I (1dy4) and the
endo-1,3-1,4-β-D-glucan 4-glucanohydrolase (2ayh). The number of aligned amino acids
is 75. The rank of this alignment is 16, as reported in Table 4.2. The alignment is
graphically represented as in in Fig. 4.7. The location of the catalytic residues are
highlighted as Van der Waals surfaces.

0.78 and 0.70 respectively) and outline a consistent movement of fairly large compact
regions in the enzyme pairs.

Another interesting observation concerns the spatial proximity of the catalytic sites
induced by dynamics-based alignments. Bartlett et al. (2003) have shown that evo-
lutionarily distantly related enzyme pairs that catalyze different reactions on similar
structural scaffolds, retain the location of the active site and of functional structural
elements, suggesting that evolution acts by changing roles and identities of amino acids
at certain positions rather than recruiting new positions. Those observations raise the
possibility that, besides local structural patterns, also the plasticity, i.e., the conforma-
tional fluctuations, of the active sites have played a role in such conservation (Maguid
et al., 2006; Sacquin-Mora et al., 2007). These observations prompted us to investigate
whether any of the dynamics-based pairings induce correspondences of features related
to catalysis or substrate binding.

Indeed, in our analysis we found that several high-ranking alignment bring active
site amino acids into proximity. The rightmost panel in Fig. 4.7 shows the superposi-
tion of the 200 aligned amino acids hydroxynitrile lyase (PDB: 1yb7) and haloalkane
dehalogenase (PDB: 2had), which, being evolutionarily related, are characterized by the
same four CATH numbers: 3.40.50.1820, and belong to hydrolases (EC class 3) and
lyases (EC class 4), respectively. Despite the different biological functions of the two
enzymes, the positions of their catalytic residues are almost coincident. In particular
HIS235, ASP207 and SER80 of hydroxynitrile lyase are equivalent to HIS289, ASP260
and ASP124 of haloalkane dehalogenase respectively.
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The alignment between the cellobiohydrolase I (PDB: 1dy4) and the endo-1,3-1,4-
β-D-glucan 4-glucanohydrolase (PDB: 2ayh), is also noteworthy as they differ at the
CATH architecture level, though they share the same fold according to SCOP (Murzin
et al., 1995). The enzymes, which are both Glycosylases (EC code: 3.2.1) have anal-
ogous catalytic residues (Porter et al., 2004): GLU212, HIS228, ASP214, GLU217 for
the first enzyme; GLU105, ASP107, GLU109 for the second one. Despite the fact that
only 20% of the larger enzyme is involved in the alignment, it is interesting to observe
a remarkable space proximity of the two GLU-ASP-GLU triads (Fig. 4.11) which, in
both cases, are located in an antiparallel β−sheet. Further aspects of this alignment
deserve comment. For 1dy4 the active site is found in a cleft delimited by loops and
which can accommodate the 1-(isopropylamino)-3-(1-naphthyloxy)-2-propanol ligand
(see leftmost panel in Fig. 4.11). Also for 2ayh the active site is surrounded by loops,
that form a groove which can arguably accomodate the corresponding ligand (see central
panel of Fig. 4.11). The dynamics-based alignment has singled out a correspondence
between the loops delimiting the binding clefts (amino acids 369 to 379 and 185 to 195
respectively for 1dy4 and 2ayh) and the directions of the matching low-energy modes are
intuitively consistent with the opening/closing mechanism related to substrate binding
in both enzymes (Divne et al., 1998).

We now turn to specific enzyme pairing whose global/partial structural correspon-
dences are not easily detectable, as indicated by the much higher, and more significant,
dynamics-based ranking compared to the one found by purely-structural criteria (Holm
& Park, 2000). Two of these pairings involve the exonuclease III (PDB: 1ako) which
is aligned both with the enoyl reductase (PDB: 1d7o), and with the human adenovirus
proteinase (PDB: 1avp). As in previous cases, the dynamics-based alignment induces
a good superposition of the functionally-relevant regions of the exonuclease III and the
enoyl reductase. As shown in Fig. 4.10, in fact, the active site of 1ako is well superim-
posed with the ligands bound by 1d7o and in both cases the corresponding low-energy
modes develop an outward/inward concerted movement in the sorroundings of these
regions. This relationship is plausible, given the chemical similarity of the ligands that
these proteins bind (Mol et al., 1995; Pidugu et al., 2004; Roujeinikova et al., 1999;
Stockwell & Thornton, 2006).

A close relatedness of the nature of the ligands is also found for the pairing of exonu-
clease III and human adenovirus proteinase Fig. 4.12. Both enzymes, in fact, bind DNA
(in double- and single-stranded forms, respectively). The possibility of establishing a
dynamics-based connection between them is particularly interesting as they are not
evolutionary related and are characterized by two different architectures, 4-Layer Sand-
wich (CATH: 3.60.10.10) for 1ako and 3-Layer(αβα) Sandwich (CATH: 3.40.395.10),
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Figure 4.12: Dynamics-based alignment between exonuclease III (1ako) and human
adenovirus proteinase (1avp). The number of aligned amino acids is 75. The rank of
this alignment is 26, as reported in Table 4.2. The alignment is graphically represented
as in in Fig. 4.7. The location of the catalytic residues are highlighted as Van der Waals
surfaces.

for 1avp. Despite these features, the active site of the enzymes is well-superimposed
after the dynamics-based alignment. Notably, the aligned region comprises a segments
of amino acids which have been previously suggested to be involved in the binding of
DNA (Gupta et al., 2004; Mol et al., 1995).

Finally, among the alignments involving two structurally-unrelated enzymes, we
mention also the case of dihydropteroate synthetase (PDB: 1ajz) and dethiobiotin syn-
thetase (PDB: 1dbs). Despite the differences in architecture, α-β barrel (CATH:
3.20.20.20) for 1ajz and 3-Layer (αβα) sandwich (CATH: 3.40.50.300) for 1dbs, and of
the catalyzed reactions, the catalytic residues are found in good correspondence and
one-to-one pairings can be established between the three catalytic residues of 1dbs and
three of the four catalytic residues of 1aj7 (Porter et al., 2004; Yang et al., 1997). The
Cα distances of such pairings range from 5.4 to 7.5 Å.

The specific cases discussed so far provide concrete illustrations of the biological im-
plications of the dynamics-based alignment. They suggest particularly that functional
correspondences in protein may be revealed on the basis of similarity in dynamics,
thereby complementing available powerful strategies based on similarity at the level of
sequence or at the level of structure. It is, in fact, well known that nonhomologous
enzymes with similar mechanisms can share the spatial configuration of active site cat-
alytic residues: On the basis of this observation it is possible to detect proteins with
related functions on by identifying similar configurations of catalytic residues. The
alignment scheme considered here is motivated by the fact that some enzymes undergo
conformational changes as an integral part of their function. This observation has been
applied in a spirit analogous to the structure-based inference mentioned above. In
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particular it is considered that proteins with similar mechanisms might share not only

similar configurations of catalytic residues, but also similarities in dynamics, and that

these similarities might be detectable computationally. The specific cases discussed

here suggest that proteins can show convergent evolution to shared dynamics related

to function.

4.4 Conclusions

From the comparative analysis of large-scale movements in representatives of different

functional categories of enzymes, ∼30 outstanding alignments are identified using es-

tablished criteria for statistical significance. Detailed analysis of the results indicates

that good dynamical similarities in enzyme pairs can arise even in the absence of strict

correspondence of structure or sequence. Indeed, one third of the outstanding pairings

involve enzymes with different structural organization at the global or partial fold level.

Strikingly, it is found that, even in the absence of easily-detectable structural cor-

respondences, dynamics-based alignment can establish spatial relationships among re-

gions involved in catalysis or substrate binding. In addition, the common dynamical

features are oriented towards the structural rearrangements that arguably accompany

the enzymatic functionality. This implies that a biological, function-related rationale

underlies several of the outstanding alignments (though this is not necessarily true for

all alignments, as large-scale movements are not expected to be involved in function

for every enzyme).

These facts suggest that dynamics-based criteria can be profitably introduced in

protein alignment contexts to expose functionally-related correspondences that would

not be capturable, at the same level of significance, using purely sequence- or structure-

based criteria. As a complement to these established techniques, further developments

of dynamics-based approaches can contribute novel elements for exploring relationships

between sequence, structure and function of enzymes.

In this respect the results reported in this chapter along with previous studies of

dynamical-relatedness within specific enzymatic families (Capozzi et al., 2007; Carnevale

et al., 2006) suggest that tools capable of exposing dynamics-based correspondences

may provide a general quantitative and natural framework to group proteins according

to their large-scale movements.

Furthermore, by cross-referencing results of purely structural and dynamics-based

alignment it might be possible to address if, and to what extent, structural and
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dynamically-related functional features have been subjected to different selective pres-
sure. Two extreme scenarios may, in fact, be envisaged behind function-related dy-
namical correspondences between structurally-diverse enzymes. On one hand common
large-scale dynamics may reflect features present in ancestral proteins/enzymes pre-
served during evolution, or they might reflect features selected by the necessity of well-
defined movements for biological function (requiring only very general relationships
between sequences and structures). Analogous questions have arisen about protein
folds: it appears that both convergence and conservation have resulted in the lim-
ited number of available folds (Andreeva & Murzin, 2006; Chothia, 1992; Denton &
Marshall, 2001b; Lupas et al., 2001; Rose et al., 2006).

It would therefore be most interesting to address these issues connected to the evo-
lutionary convergence/conservation of functionally-oriented motions, for specific enzy-
matic families that have been the subject of thorough investigation from an evolutionary
perspective (Lesk & Fordham, 1996; Scheeff & Bourne, 2005; Xu et al., 1999).
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4. DYNAMICS-BASED ALIGNMENT: A PAIRWISE COMPARISON
OF LOW-ENERGY MODES IN PROTEINS
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Chapter 5

Prediction of Nucleic Acid

Binding Sites in Proteins using

the Dynamics-base Alignment

5.1 Introduction

As already mentioned, the functionality of proteins and enzymes often relies on the
capability of these biomolecules to sustain large-scale conformational changes (Frauen-
felder et al., 1991). It has been established that these concerted functional movements
are typically shared by members of enzymatic superfamilies which may otherwise differ
significantly by fold, oligomeric state, and even by the details of the catalytic chem-
istry (Capozzi et al., 2007; Carnevale et al., 2006). In the previous chapter we have
introduced a quantitative algorithm to detect similar motions in protein pairs. The
procedure is termed dynamics-based alignment because it allows the establishment of
one-to-one correspondences between amino acids that experience similar large-scale
movements in the two molecules (Zen et al., 2008). Applying this method to a set of
representatives of enzymatic functional families, we have shown that a dynamics-based
alignment can result in a remarkable spatial superposition of functionally relevant re-
gions even for structurally dissimilar families of proteins. These results suggest that
specific common concerted movements may have a functional rationale (Carnevale et al.,
2006; Zen et al., 2008).

The goal of this study is to illustrate this concept using as a model system the OB
fold, a well characterized nucleic-acid binding motif for which several structures are
available in the PDB database in both their free and bound forms. Most commonly,
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the OB fold consists of a closed barrel formed by two three-stranded antiparallel β-
sheets. β1 is shared by both sheets whilst β3 and β5 close the barrel partially or
completely by forming a parallel network of hydrogen bonds (Murzin, 1993; Theobald
et al., 2003). The structure and topology of a canonical OB-fold representative are
shown in fig. 5.1a.

A relatively distant member of the OB family known to bind nucleic acids is formed
by the AXH motif. So far, AXH motifs have been identified in two apparently unrelated
human proteins of medical importance (Mushegian et al., 1997): the HMG box tran-
scription factor HBP1 and the polyglutamine-containing ATX1 protein (Banfi et al.,
1994; Lesage et al., 1994). Both proteins are thought to be transcription factors (Berasi
et al., 2004; Tsai et al., 2004). HBP1, first identified as a target for family members of
the retinoblastoma tumor suppressor (Lavender et al., 1997; Tevosian et al., 1997), is
involved in cancer signalling pathways (Paulson et al., 2007). Mutations in ATX1 cause
the spinocerebellar ataxia type-1 (SCA1), an autosomal-dominant neurodegenerative
disorder characterized by ataxia and progressive motor deterioration (reviewed in Orr
& Zoghbi (2001)).

The two AXH domains of ATX1 and HBP1 (ATX1 AXH and HBP1 AXH) share
a sequence identity of ca. 30% and a homology of ca. 50% depending on the species.
Though evolutionarily related, the two proteins have different domain boundaries and
distinct properties (de Chiara et al., 2003). ATX1 AXH, as solved by crystallography
(Chen et al., 2004), forms a dimer of asymmetric dimers. The structure of the dimer
formed by chains A and B and topology of chain A are shown in fig. 5.1c. The cor-
responding region of HBP1 is a monomer in solution as assessed by nuclear magnetic
resonance (NMR) (de Chiara et al., 2005), and its structure and topology are shown in
fig. 5.1b. Possibly because of their self-association properties and because of a long in-
sertion in HBP1 AXH, the two domains have the same secondary structure but are not
topologically equivalent (see fig. 5.1). The AXH motifs seem to play an important role
in the function of the respective proteins as most of the interactions of both ATX1 and
HBP1 with other molecular partners map into these regions (de Chiara et al., 2003; Yue
et al., 2001). Both domains have been shown to bind nucleic acids in vitro, although
with different specificities. ATX1 AXH binds RNA homopolymers with preference for
poly(rG) and poly(rU) (de Chiara et al., 2003). This preference corresponds to the
same specificity observed for the full-length protein (Yue et al., 2001). HBP1 AXH
(de Chiara et al., 2003; Yue et al., 2001) binds poly(rU) and poly(rA). Weaker or no
binding was observed for poly(rG) and poly(rC). No structure of an AXH complex with
RNA or DNA is available, and the surface of interaction to RNA was hypothesized only
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(a)

(b)

(c)

RPA70 HBP1_AXH

ATX1_AXH

L12

L23

L45

L12
L45

L34

L34

L45

Figure 5.1: Comparison of topologies and structures of (a) the canonical OB-fold
(RPA70, repeat DBD-A) and the non-canonical one of (b) HBP1 AXH and (c) the
dimeric ATX1 AXH. Corresponding β-strands are indicated with the same colors
thereby highlighting the different sequential order and sequence directionality of match-
ing strands. In ataxin-1, the green strand is from the contiguous monomer (only this
element is indicated). It is also worth noting that the symmetry of the dimer breaks
around this region and strand β5 in monomer A corresponds to a short 3-10 helix in
monomer B.
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on the basis of the combined use of sequence conservation and structure-based analy-
sis. AXH domains therefore constitute a paradigmatic example on which to test the
possibilities of a dynamics-based alignment approach.

Our analysis is organized in two steps. First, the viability of a dynamics-based
alignment as a scheme to predict putative binding sites, was investigated by aligning
OB-fold members whose interaction surface with RNA or DNA is known. By adopting
an ENM (Atilgan et al., 2001; Bahar et al., 1997; Delarue & Sanejouand, 2002; Hinsen,
1998; Micheletti et al., 2004), the βGM (Micheletti et al., 2004), we calculated the low-
energy modes for members of the OB fold family. Using the dynamics-based alignment
(Zen et al., 2008), introduced in the previous chapter, we identified the regions sharing
similar dynamics. These regions were correlated to the surfaces involved in nucleic
acid binding and/or recognition. We found that the amino acids involved in several
pairwise dynamics-based alignments have a good overlap with the known surface of
interaction with nucleic acids. Based on this validation, the dynamics-based alignment
was next used to predict the putative DNA/RNA interaction surfaces of HBP1 AXH
and ATX1 AXH. The predicted sites are a subset of those previously singled-out on the
basis of supervised structural alignments (de Chiara et al., 2005) and do not involve
positively-charged amino acids.

We propose the dynamics-based method as a new approach for predicting functional
regions in protein families.

5.2 Consensus profile of dynamics-based alignments

We recall that dynamics-based alignment establishes one-to-one correspondences be-
tween groups of amino acids experiencing similar large-scale motions in two given pro-
teins. As described in detail in previous chapters, the method is based on a stochastic
exploration of the space of the correspondences of amino acids, aimed at obtaining
the matches that maximize the alignment score, a quantity that measures the simi-
larity of the large-scale motions of the amino acids into correspondence. These large
scale motions of the residues marked for the alignment are evaluated using βGM (see
first chapter). We have seen in the previous chapter how the ENMs’ approach allows a
transparent treatment of the influence of the amino acids non marked for the alignment
on the mobility of the aligned ones.

The alignment score accounts for both the agreement between the low-energy modes
of the marked amino acids and their good space proximity after an optimal alignment.
We wish to recall here that we can assign to each alignment a statistical significance,
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5.2 Consensus profile of dynamics-based alignments

which is obtained from the comparison of its score against an empirical (Gaussian) ref-
erence distribution for alignment scores involving residues in a priori unrelated protein
pairs (see section 4.2.5). In this way, each alignment between two given proteins has a
corresponding z-score and p-value.

Here, we present a systematic analysis to identify the key aligned residues that re-
currently appear in significant alignments (i.e. alignments with p-value larger than a
suitable threshold). For each protein we calculated the consensus profile of dynami-
cal accord, that is the residue-wise average contribution to the statistically-significant
alignment with other OB-fold members.

The degree of dynamical involvement of the k-th amino acid of the reference protein
A, in an alignment of n amino acids with a protein B, is measured as:

ξ
[AB]
k ≡ n

10

10∑
α,β=1

~vαi · ~w
β
i

 n∑
j=1

~vαj · ~w
β
j

 (5.1)

where {vα}α=1,...,10 and {wβ}β=1,...,10 are the 10 non-zero lowest-energy modes of the
n aligned amino acids, for proteins A and B respectively; j runs over the indices of the
aligned amino acids and i is the index of the matching pair to which amino acid k takes
part to1. If the k-th amino acid of A does not take part to the alignment, ξ[AB]

k is set
to zero.

The physical meaning of ξ[AB]
k is transparent as, apart from a multiplicative fac-

tor, it represents the local contribution to the mean square inner product (MSIP) of
the modes of the aligned residues. Indeed, the comparison with equation 4.5 yields:
MSIP = 1

n

∑
k ξ

[AB]
k . Therefore, for a perfect matching of the modes {vα}α=1,...,10 and

{wβ}β=1,...,10, the average value of ξ[AB]
k per aligned amino acids is 1.

Based on this observation, the alignment consensus score ξAk of the k-th amino acid
of protein A is defined as the average of ξ[AX]

k over all the NA
n significant alignments of

length n involving A:

ξAk ≡
〈
ξ

[AX]
k

〉
X

=
1
NA
n

′∑
X

ξ
[AX]
k (5.2)

1 It is worth noticing that equation 5.1 rewrites, in terms of the optimally consistent lowest-energy

modes {v′α} and {w′β} (see sections 4.2.6 and A), in the following way:

ξ
[AB]
k ≡ n

10

10X
α=1

~v′
α

i · ~w′
α

i

`
v′
α ·w′α

´
where we have used that v′

α ·w′β =
Pn
j=1

~v′
α

j · ~w′
β

j = 0 if α 6= β. It is clear from this expression that

the most consistent modes gives the biggest contribution to ξ
[AB]
k .
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where the prime in the rightmost expression indicate the summation over the proteins
X which have a significant alignment of length n with A.

The consensus score, which provides an indication of the dynamically most impor-
tant amino acids of a protein, is used in this study to predict a set of residues putatively
involved in the binding of the nucleic acids.

5.3 Validation of the dynamics-based prediction scheme

A set of canonical OB-fold representatives was compiled based on the OB-fold survey of
Theobald et al. (2003). The detailed list of representatives is shown in Table 5.1. Note
that some of the selected OB-fold domains are part of bigger proteins. The part of the
protein selected for this study is reported in the last column of the table. The selected
OB-folds are holo forms, i.e. they are complexed with nucleic acids. In this way we can
compare our predictions, that clearly have to be obtained removing the nucleic acids,
with the true binding sites, i.e. amino acids that actually bind the nucleic acids.

The holo forms are hence used to validate the dynamics-based prediction scheme.
However, the ultimate purpose of the aligment is to predict the regions putatively
involved in the binding of nucleic acids, in proteins for which the holo form is clearly
not available. It is known that the structure of the apo form of a protein can be different
from the holo form, see Fig. 5.2. Considering that the dynamics-based alignment partly
relies on structural information, a fundamental question has to be addressed: is it
appropriate to validate our prediction method on holo forms, and then apply that on
apo forms? To justify to use the holo forms, we cana priori argue that the dynamics-
based alignment has a spatial tolerance that allows one to establish correspondences
also among different secondary elements, provided that their dynamics is similar. A
further support in favor of the strategy is that we have checked a posteriori that when
we considered also the corresponding apo forms of some of the OB-folds reported in
table 5.1, we obtained results perfectly coherent with those of the holo forms.

5.3.1 Dynamics-based alignment of the OB-fold representatives

Dynamics-based alignments were carried out among all 120 distinct pairings of the 16
canonical OB-fold representatives constituted by all the domains listed in Table 5.1.
The quality of each alignment is conveyed by an alignment score which rewards corre-
spondences between amino acids that have (i) similar geometric relationships in the two
proteins and (ii) sustain similar large-scale movements. The combined consideration of
structural and dynamical features ensures that high-scoring alignments reflect genuine
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5.3 Validation of the dynamics-based prediction scheme

Figure 5.2: Apo and holo forms, represented respectively in blue and red, of the OB-
fold domain RPA70. DNA for the holo form is represented in red. The conformational
change upon ligand binding can be appreciated as the structures as been optimally
superimposed minimizing the RMSD between their Cα atoms.
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5. PREDICTION OF NUCLEIC ACID BINDING SITES IN
PROTEINS USING THE DYNAMICS-BASE ALIGNMENT

Table 5.1: OB-fold representatives (holo forms) considered in this study.

# Structure bound ligand PDB id domain (chain, residue range)

1 RPA70 ssDNA 1jmc DBD-A (A, 198-289)
2 RPA70 ssDNA 1jmc DBD-B (A, 305-402)
3 EcSSB ssDNA 1eyg (A, 1007-1112)
4 EcRho ssRNA 2a8v (A, 48-118)
5 OnTEBP α1 ssDNA 1jb7 domain 1 (A, 36-204)
6 OnTEBP α1 ssDNA 1jb7 domain 2 (A, 205-314)
7 OnTEBP α2 ssDNA 1kix domain 1 (A, 36-204)
8 OnTEBP α2 ssDNA 1kix domain 2 (A, 205-314)
9 OnTEBP β ssDNA 1k8g domain 1 (A, 36-203)
10 OnTEBP β ssDNA 1k8g domain 2 (A, 205-315)
11 EcAspRS tRNA anticodon 1c0a (A 1-104)
12 ScAspRS tRNA anticodon 1asy domain 1 (A, 68-201)
13 ScAspRS tRNA anticodon 1asy domain 2 (B, 68-201)
14 RecG Junction DNA 1gm5 (A, 157-245)
15 S12 16S rRNA 1j5e (L ,26-110)
16 S17 16S rRNA 1j5e (Q, 3-102)

correspondences of large-scale rearrangements in two given proteins. The statistical

significance of each alignment is quantified by comparing the score against a reference

distribution of scores from a heterogeneous set of enzymes. From this comparison,

we could calculate a p-value (or equivalently a z-score). Given the limited size of the

database considered, we assumed as indicative of a significant alignment a z-score > 2.3,

corresponding to a p-value < 0.01.

The dynamics-based scores for all pairwise alignments among the proteins in Table

5.1 are provided in the density maps of fig. 5.3a. The accompanying graph, see fig. 5.3b,

summarises the dynamics-based correspondences having a statistical significance higher

than the above mentioned threshold. Inspection of the graph reveals the existence of

several triangular relations (i.e. protein A is in relation with proteins B and C, and

also B is in relation with C). Proteins OnTEBP, RPA70 and RecG, for instance, form

a completely connected subgraph. These circular relationships suggest the existence

of a common alignable core among these proteins. This can be verified by inspecting

fig. 5.4 which shows pileup representations of the alignments involving OnTEBP α2
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Figure 5.3: (a) Density map of the z-score for all pairwise dynamics-based alignment
of canonical OB-fold representatives (indexing according to the Table 5.1). (b) Graph
representation of significant pairwise alignments (z-score > 2.3).

(domain 1), RecG and RPA70 (repeat DBD-B) and the alignable partners.
The structural superposition of OnTEBP α2 (domain 1) with RecG and with RPA70

(repeat DBD-B) is shown in Figs. 5.5a and 5.5b, respectively. The alignable regions
involve amino acids that are flexible and in proximity of the bound nucleic acid, as can
be appreciated by comparison with the complexes in fig. 5.6, where the nucleic acid is
represented.

This observation suggests that the set of amino acids of a given OB-fold that can be
significantly aligned with several other OB-fold partners are typically located in regions
involved in nucleic acid binding.

5.3.2 Performance of the dynamics-based prediction scheme

The dynamics based prediction of nucleic acid binding amino acids is compared, for
validation purposes, against the sites that actually bind DNA or RNA. As in (Jones
et al., 2003), they are identified as the amino acids whose accessible surface area (ASA)
changes by more than 1Å2 upon omitting the nucleic acid from the available structure
of the protein/DNA (or RNA) complex. The calculation of the ASA was performed
with NACCESS (Hubbard & Thornton, 1993). For most of the proteins in Table 5.1,
the typical fraction of residues contacting nucleic acids is 20%.
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5.3 Validation of the dynamics-based prediction scheme

(a)

(b)

OnTEBP

OnTEBP RPA70

RecG

Figure 5.5: The dynamics-based alignment of OnTEBP α2 domain 1 and RecG is
shown in (a), while the one between OnTEBP α2 domain 1 and RPA70 repeat DBD-B
is shown in (b). Amino acids involved in alignments are colored. The arrows represent
the three best corresponding lowest-energy modes for the aligned regions, see section
4.2.6.
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(c)(b)(a)

OnTEBP RecG RPA70

Figure 5.6: Panels (a), (b) and (c) illustrate, respectively, the consensus residues of
OnTEBP α2 domain 1, RecG and RPA70 repeat DBD-B. Two different views are
displayed, the upper one is the same adopted in fig. 5.5, the lower is rotated of 90o

around the z-axis. Nucleic acid strands are shown as yellow tubes and the sidechains
of consensus residues are highlighted in color.
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5.3 Validation of the dynamics-based prediction scheme

Amino acids are divided in those predicted to interact or not to interact with nu-
cleic acids according to whether their consensus score is, respectively above, or below
a given threshold. All possible values for the threshold were considered and the per-
formance of the prediction was assessed by comparison against the sets of amino acids
that are known to interact (or not interact) with DNA/RNA. For a given threshold
value, the prediction is characterized, as customary, in terms of the number of true
positives (TP), false positives (FP), true negatives (TN) and false negatives (FN). The
TP are the amino acids that are correctly predicted to interact with DNA or RNA,
while TN are those correctly predicted not to interact. The FP are the amino acids
that are incorrectly predicted to interact with DNA or RNA, while FN are those incor-
rectly predicted not to interact. These basic quantities are used to define the accuracy,
specificity and selectivity of the prediction (Baldi et al., 2000).

The accuracy is the fraction of correct prediction for amino acids that are, or are
not, contacting nucleic acids and is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (5.3)

The specificity, defined as:

Specificity =
TP

TP + FP
, (5.4)

represents the fraction of correct hits among residues predicted.
The sensitivity:

Sensitivity =
TP

TP + FN
, (5.5)

is the fraction of residues known to interact with DNA/RNA which are predicted to do
so.

The predictive performance of the method as a function of the consensus score
threshold is aptly summarized by the Receiver Operating Characteristic curve (ROC
curve) obtained by plotting “hit rate” (sensitivity, TP/(TP+FN)) versus the “false
alarm rate” (false positive rate, FP/(FP+TN)).

We computed the consensus alignment score for all amino acids of proteins RPA70
(repeat DBD-A), EcSSB, EcRho, OnTEBP α1 (domain 1), OnTEBP α2 (domain 1),
OnTEBP β (domain 1), EcAspRS, ScAspRS (domain 1), RecG. Notice that proteins
S12 and S17, that are largely surrounded by nucleic acids, were not considered for
the test and that, to limit redundancy, only the N terminal domain was retained for
multidomain proteins. Since in this study most of the significant alignments that we
have obtained have length n=70, we have used only the alignments of 70 residues to
calculate the consensus score.

111
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(a) (b)
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Figure 5.7: (a) Trend for the accuracy, sensitivity and specificity of dynamics-based
predictions of amino acids at the protein/nucleic acid interface are shown as a function
of the consensus score threshold. (b) Corresponding receiver operating characteristic
(ROC) curve.

Amino acids with a sufficiently high consensus score are expected to be relevant

for the functional dynamics and hence to correlate with sites involved in nucleic acid

binding. To assess the extent to which the consensus score can be used to predict

interaction sites with DNA/RNA we carried out the performance analysis. The results

are summarised in the plots in fig. 5.7.

The plots can be used to set the threshold for the consensus score so to have a

balanced predictive performance in terms of accuracy, specificity and selectivity. In

fact, excessively large threshold values correspond to very few predictions for amino

acids interacting with DNA/RNA and this reflects in a poor coverage of the sites that

are known to interact with nucleic acids. Conversely, very small threshold values result

in predicting that almost all amino acids interact with DNA/RNA thus leading to a

large fraction of false positives. A balance between these two limiting situations is

achieved by setting the consensus score threshold to 0.7. Examples of the consensus

regions are given in fig. 5.6a-c.

The corresponding overall accuracy of the algorithm is 79%, specificity is 38% and

sensitivity is 24%.
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5.4 Prediction of the nucleic acid binding surface of the AXH domains

5.3.3 Comparison between dynamics-based and other prediction schemes

A useful term of reference for these values is provided by advanced sequence-based
techniques for the prediction of nucleic-acids binding sites. For instance, an accuracy
of 71%, a specificity of 35% and a sensitivity of 53% was calculated for the method
implemented by Yan et al. (2006), in a different dataset of DNA-binding proteins.

In addition, on the specific dataset considered in this study, the on-line sequence-
based method1 of Hwang et al. (2007) for DNA binding-sites prediction had an accuracy
of 63%, a specificity of 23% and a sensitivity of 45%. In fig. 5.8 it is shown the
dynamics-based and sequence-based predictions for OnTEBP α2, RecG and RPA70, in
comparison with the actual DNA-binding residues.

It therefore emerges that the dynamics-based approach compares well with other
prediction schemes in terms of accuracy and specificity, while returns appreciably
smaller values for sensitivity. This aspect is rationalised by the observation that the
dynamics-based alignment will be especially promoted in correspondence of flexible
amino acids, and consequently the residues close to the nucleic acid chain and with a
low mobility are likely to have a low consensus score. The dynamics-based predictions
are therefore particularly targeted at a specific subset of nucleic acid binding sites (the
mobile ones) and this reflects in a diminished sensitivity of the algorithm compared
to the complementary sequence-based methods. Additionally, regions which cannot be
aligned and that are therefore not common to all OB folds may be also involved in
binding and be the ones responsible for recognition specificity.

5.4 Prediction of the nucleic acid binding surface of the

AXH domains

The above results indicate that, within the limits of binding specificity, the consensus
residues point at regions involved in nucleic acid binding. The approach was used as
a predictive tool for representatives of the AXH-domain family. The first model of the
PDB file 1v06 was taken as the reference structure of HBP1 AXH, while for ATX1 AXH
we considered the dimer (chains A and B) of PDB file 1oa8.

Prediction of the nucleic acid binding surface based on sequence and structural
comparison with other members of the OB-fold was previously attempted (de Chiara
et al., 2005). However, the two families are too divergent to extract useful hints from
sequence conservation, whereas a structure-based analysis was inconclusive. It was

1 From the available on-line web server (http://lcg.rit.albany.edu/dp-bind) we selected the mode

“sequence-based binary encoding” to input the protein sequence.
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OnTEBP

RecG

RPA70

Binding
residues

dynamics-based
consensus core

sequence-based
prediction

Figure 5.8: Comparison between the nucleic acid binding residues, the dynamics-based
consensus residues and the sequence-based DP-bind prediction (Hwang et al., 2007) for
DNA binding residues. Proteins here shown are OnTEBP α2 domain 1 (top panel),
RecG (middle panel) and RPA70 repeat DBD-B (bottom panel), as in fig. 5.6. DNA
strands are shown as yellow tubes and residues that actually bind DNA are highlighted
in green. Their sidechains are explicitly reported in green (first column). Sidechains
highlighted in red (second column) corresponds to our dynamics-based consensus cose,
and sidechains highlighted in blue (third column) correspond to a sequence-based pre-
diction. Two different views are here displayed, as in figure 5.6.
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5.4 Prediction of the nucleic acid binding surface of the AXH domains

only through a combined use of sequence and structural conservation that two distinct
patches of conserved or semi-conserved residues could be identified. Only one of them
corresponds to the surface involved in nucleic acid binding in other OB-folds. We
therefore reasoned that this example would be an appropriate case for attempting a
dynamics-based prediction.

5.4.1 Comparison between canonical and non-canonical OB-folds

The salient differences of the canonical and non-canonical OB-folds are illustrated in
fig. 5.1. Structurally-corresponding β-strands in RPA70 and the AXH domains are
shown with the same colour (and same letter in the secondary structure topologies).
Strands β1, β2 and β3 of RPA70 match strands β3, β4 and β5 of HBP1. However,
strands β5 and β4 of RPA70 do not correspond to β7 and β6 of HBP1, as expected
for preserved β-strands succession, but with β1 and β2. The latter, in addition, have
opposite sequence directionality with respect to RPA70.

Alignments where amino acids are paired sequentially from the N- to C-termini can-
not set correspondences of all five β-strands in canonical and non-canonical OB-folds.
As described in the previous section, the space of possible alignments of two proteins
is too large for an exhaustive exploration, therefore some constraints were introduced
within the dynamics-based alignment, to restrict the search space of matching residues.
One of these constraints was that the one-to-one correspondences between the amino
acids follow the sequential ordering. The pairing scheme was accordingly generalised by
”remapping” the amino acid indices so to achieve a consistent β-strands matching on
canonical and non-canonical folds. The procedure is illustrated in fig. 5.9. Amino acid
reindexing was performed by (i) introducing a single ”virtual cut” in HBP1, and (ii) by
changing the order of the two subchains and the sequence directionality in one of the
two (see diagrams at bottom of panel d). The location of the virtual cut is found by
identifying which blocks of residues, and in which sequence order, can be put in loose
structural correspondence by local structural alignments. This was done by structurally
superposing short segments of 20 amino acids in RPA70 and HBP1. Such superposi-
tions may induce the spatial proximity (Cα separation below 3Å) of other amino acids
besides those in the two segments. Several local superpositions imply global correspon-
dences in that they entail more than half of the residues in RPA70 are in proximity with
a residue in protein HBP1. The matrix in fig. 5.9 reports the mapping of such global
pairings, which being induced by local structural superpositions can capture robust
global structural correspondences that are elusive to structural alignments methods
employing various combinatorial explorations of matching segments. Inspection of the
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mapping, allows a transparent identification of the virtual cut for both HBP1 (fig. 5.9)
and ATX1.

5.4.2 Predictions and discussion

Since HBP1 AXH is monomeric and therefore easier to deal with than ATX1 AXH, we
aligned it (1v06) first against OB-fold representatives using their dynamics properties.
HBP1 AXH can be significantly aligned with two distinct regions of RPA70 (z-score
3.5) (fig. 5.10a). It also aligns with RecG with a z-score of 2.5.

The single stranded DNA-binding domain of human RPA70 (residues 183-420) con-
tains two tandem OB-fold repeats. Dynamics-based alignments of HBP1 AXH against
both repeats are highly consistent and involve residues 212-237 and 214-235 (including
β1 and β2) with a reversed backbone orientation to regions β4 and β5 (fig. 5.1a) of
DBD-A and DBD-B. The consensus regions emerging from such alignments strongly
suggest that nucleic acid binding involves HBP1 residues N228, K229, E230, S270,
V271, S272, F273, G274, E275, T286, V287 and E288 which correspond to the cavity
formed by loops β1/β2, β3/β4 and β4/β5 of HBP1 (fig. 5.10a, left). These residues cor-
respond to residues in direct contact with DNA in the holo-form of RPA70 (fig. 5.10a,
right). The predicted residues are not positively charged, suggesting that the inter-
action would not be electrostatically driven but rather sequence or structural specific.
They are well consistent with those previously predicted on the base of a structural
alignment (fig. 5.10b, citedeChiara:2005p868).

ATX1 AXH aligns with RecG with a z-score of 3.3 (fig. 5.11a). The aligned
sidechains are all exposed and do not interfere with dimer formation (fig. 5.11b).

Finally, the dynamics-based alignment between HBP1 AXH and ATX1 AXH com-
prises residues 257-271, 274-288, 290-339, 222-213 and 609-623, 624-638, 639-688, 565-
574 respectively (fig. 5.12a). It is worth noting that the region 222-213 of HBP1 AXH,
which is not topologically equivalent in the two proteins, aligns with a reverse orienta-
tion in sequence with the corresponding region of ATX1 AXH (fig. 5.1b,c). This could
suggest that despite their difference, the two regions share a functional role within the
context of the domain.

ATX1 AXH (monomer A) and HBP1 AXH can be superposed by structural criteria
(fig. 5.12b) with an RMSD of 3.8 Å over 84 amino acids. The two folds differ for the
topology of an N-terminal β1, β2 and α1 motif which packs differently in the two
structures.

At the same time, the spacing between these three elements of secondary structure is
different and only the regions 260-335 of HBP1 AXH and 612-684 of ATX1 AXH can be
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Figure 5.9: In HBP1 AXH the canonical order and directionality of β-strands is
achieved (for alignment convenience) by juxtaposing the two parts separated by the
virtual cut, as shown. The procedure to identify the virtual cut is described in the
text.
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(a)

(b)

HBP1_AXH RPA70
domain DBD-B

RPA70
domain DBD-A

HBP1_AXH

Figure 5.10: (a) Ribbon representations of HBP1 AXH (left) and of the DBD-B repeat
of RPA70 (right) as dynamically aligned. The side chains of consensus residues are
explicitly reported. (b) Comparison of HBP1 AXH (left) and of the DBD-A repeat of
RPA70 (right) in complex with DNA (in blue) as aligned structurally (adapted from
fig. 5 of de Chiara et al. (2005)). The side chains of completely and semiconserved
residues of HBP1 AXH are indicated in green, additional lysines and arginines that
could contribute to binding are shown in blue. DNA and the side chains of residues
of RPA70 DBD-A in contact with DNA are indicated explicitly in blue and green
respectively.
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5.4 Prediction of the nucleic acid binding surface of the AXH domains

(a)

(b)

ATX1_AXH RecG

ATX1_AXH

Figure 5.11: (a) Dynamics-based alignment of the ATX1 AXH dimer (left) with RecG.
(right). Aligned regions are shown in cyan and green respectively. Arrows represent the
three best corresponding lowest-energy modes for the aligned residues, as described in
section 4.2.6. (b) The sidechians of the consensus residues are shown on the ATX1 AXH
dimer in cyan. The two subunits forming the dimer are in gold and silver.
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HBP1_AXH ATX1_AXH

dynamical
alignment

structural
alignment

(a)

(b)

Figure 5.12: (a) Dynamics-based alignment of HBP1 AXH (left) and ATX1 AXH
(right). Aligned regions are colored in purple and cyan respectively. The dynamics-
based alignment involves 90 residues with an RMSD of 3.5 Å. The RMSIP of the ten
lowest-energy modes (the best corresponding three are shown as arrows) as calculated
using the βGaussian network model, is 0.77. (b) Structurally-based alignment of the
same proteins as achieved by DALIlite. 84 residues were aligned with an RMSD of
3.8 Å.
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5.5 Conclusions

meaningfully aligned. These regions are a subset of the residues alignable on structural
considerations (de Chiara et al., 2005). Exposed conserved and semiconserved residues
of the AXH subfamily (corresponding to K217, E235, D236, E268, G285, P324, N344,
K225, E230, W231, R239, A240, E246, E269, L298, K307, E327, L328, I330 and N341
in HBP1, fig. 5.10b) cluster near the two exposed patches that comprise or are directly
contiguous to those predicted by dynamics-based alignment. Interestingly, as for the
alignment of ATX1 AXH with other OB-folds, the two AXH folds would not lead to
interference of nucleic acid binding with the dimerization interface of the ATX1 AXH
domain, thus being well compatible with the knowledge that this domain is an obligate
dimer in solution (de Chiara et al., 2005).

5.5 Conclusions

Several methods, both sequence- and structure-based, exist that provide predictions
for nucleic acid binding sites in proteins. While sequence-based techniques have the
advantage of being applicable when structural models are not available, it is commonly
recognized that exploiting structure-based information (such as surface shape, solvent
accessibility, interatomic interaction potentials etc.) can significantly improve predic-
tion. Here we introduce and discuss a new method that, while not making use of
primary sequence information, identifies putative binding sites on the basis of similari-
ties in the dynamics of a family of proteins. The new approach may be used (possibly
in conjunction with other criteria) to predict the interaction surface within a protein
family.

We have shown here a specific application to the OB-fold, selected because it rep-
resents an ancient fold, able to evolve to accommodate a wide range of sequences
and ligand binding functions, and with a structure tolerant to mutation. A the large
plethora of data is available for this domain. By comparing the dynamics of a com-
prehensive subset of members of the family known both in their free and bound forms,
we observed that nucleic acid binding sites share common dynamical properties. This
observation prompts the consideration that the large-scale movements that putatively
accompany/assist biological functionality may be conserved among protein families and
that can be detected using dynamics-based alignments. We then used this information
to a non-canonical OB-fold, for which the putative nucleic acid binding surface could
not be easily predicted from sequence or structural (static) considerations.

While still in need of further validation using different and even more divergent
examples, for which sequence and structure-based alignments may be not obvious, our
present results encourage us to believe that our method may develop into a useful and
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powerful predictive tool. Natural applicative avenues for the method, which we plan
to validate in other contexts, are structure/function genomics studies.
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Concluding Remarks

In this thesis we reported on a number of investigations where statistical mechanical
tools and concepts were introduced and used to characterize aspects of the relationship
between structure and function.

Specifically, in chapter 2, we first considered the functionally-relevant movements
in a enzyme of primary biological interest, namely adenylate kinase. Consistently with
other theoretical and experimental studies (Henzler-Wildman et al., 2007b), our find-
ings indicate that the thermal fluctuations of this enzyme have a preferred directional-
ity, arguably encoded in the protein fold, that assist the free enzyme in attaining the
catalytically competent form (Pontiggia et al., 2008). The third chapter was instead
devoted to investigating the role of the dynamics in the protein-protein interactions.
To this purpose we have studied, using an elastic network model, the mobility at the
monomer-monomer interface in a dataset of dimeric proteins and highlighted how the
obligatory or not nature of the complexes correlates with detectably different dynamical
traits.

In the fourth chapter we introduced and applied a quantitative tool for com-
paring the internal dynamics of proteins (Zen et al., 2008). The method, termed
dynamics-based alignment, is used to gain insight into the last step of the logical ladder
sequence → structure → function, which is a used guideline to characterize proteins
and enzymes. The tool was applied to a dataset of enzymes covering the main functional
and structural classes. Notably, it was found that a number of significative alignments
involved enzymes without substantial global or local structural similarity, a fact that
highlights the complex relationship between structure and function.

Finally, as described in the final chapter, the alignment method was used to pre-
dict the nucleic acid binding residues on the basis of comparative dynamics. It was
found that the performance of the dynamics-based prediction scheme compared well
with other existing sequence- or structure-based prediction methods (Zen et al., 2009).
This suggests that dynamics-based criteria may profitably be introduced to identify
functionally-important protein regions in other contexts too. In particular, it would be
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Concluding Remarks

most interesting to introduce dynamics-based criteria, along side sequence and struc-
ture ones, to investigate the evolutionary relationship of member of various protein
families.
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Appendix A

Comparing Essential-Dynamics

Spaces

In the first and second chapter we have shown that the fluctuations of a protein are
often proficiently described by a small set of collective modes, which can arise from
from NMA, from PCA of a MD trajectory or from ENM. There is often the necessity
to compare the modes provided by different methods, or the essential spaces obtained
from two different MD trajectories of the same protein (e.g. starting from different
initial configurations). Assume here, for example, that we want to compare the vectorial
spaces V and W , spanned by the top N principal components, {v1,v2, . . . ,vN} and
{w1,w2, . . . ,wN} respectively, of two MD trajectories of the same protein1. A measure
that is commonly used to quantify the similarity between the spaces V and W is the
root mean square inner product (RMSIP):

RMSIP =

√√√√ 1
N

N∑
i,j=1

|vi ·wj |2 =

√
1
N
Tr(PV PW ) (A.1)

where Tr(·) is the trace, PV =
∑

i |vi〉 〈vi| is the projector into the vectorial space
V and PW is the projector into W . Observe that the RMSIP is 1 in case of perfect
correspondence between spaces V and W , and it is 0 if they are orthogonal. Typically,
the RMSIP of the top 10 principal components calculated from different MD trajectories
of the same protein is ∼ 0.7.

1 Notice that each of these vectors is defined in a space that is in general much bigger than the

number N of compared vectors.

125



A. COMPARING ESSENTIAL-DYNAMICS SPACES

We wish to establish if, or to what approximation, V and W share a common sub-
space. The problem amounts to find new orthonormal basis vectors for V and W ,
{v′1,v′2, . . . ,v′N} and {w′1,w′2, . . . ,w′N} respectively, which are ranked with decreasing
mutual consistency. In principle, this could be accomplished through an iterative pro-
cedure where the first pair of vectors, v′1 (belonging to V ) and w′1 (belonging to W ), is
picked so to have the largest possible scalar product. This optimal selection procedure
is next repeated in the remaining complementary spaces of V and W and so on. The
sought pairs of vectors v′i and w′i are such to make stationary the following functional:

f(v′i,w
′
i) = 〈w′i|v′i〉 − αi 〈v′i|v′i〉 − βi 〈w′i|w′i〉 (A.2)

Coefficients αi and βi have been introduced to enforce normalization. Let Ai,j and
Bi,j be the two N dimensional orthogonal matrices representing the change of basis:
|v′i〉 =

∑N
j=1Ai,j |vj〉 and |w′i〉 =

∑N
j=1Bi,j |wj〉; and let ~ai and ~bi be the rows of matrices

A and B respectively. Defining the non-symmetric N-dimensional real matrix C as
Cij = 〈wi|vj〉, the functional in equation (A.2) can be rewritten as:

f(~ai, ~bi) = ~bi · C~ai − α ~ai · ~ai − β ~bi · ~bi . (A.3)

The stationary condition gives the following set of eigenvalue equations:

CTC ~ai = λi~ai (A.4)

CCT ~bi = λi~bi (A.5)

with i = 1, . . . N , ~ai and ~bi are vectors with unit norm, and the coefficient λi equals
4αiβi. It’s important to note that the two solutions are not independent. Assuming
we have a solution ~ai for (A.4); then it’s easy to see that ~bi = 1√

λi
C~ai is a solution

for (A.5), and the scalar product of the vectors v′i and w′i associated to this solution
is 〈w′i|v′i〉 =

√
λi. As CTC is an NxN symmetric matrix, we have a complete solution

to the eigenproblem of equation (A.4). Let’s consider the non-degenerate case with
λi 6= λj ∀ i 6= j and order the eigenvalues in descending order λ1 > λ2 > · · · > λN .
Vectors v′i and w′i are defined by the i-th solution of (A.4), as follows:

|v′i〉 =
N∑
j=1

Ai,j |vj〉 |w′i〉 =
N∑
j=1

Bi,j |wj〉 (A.6)

and their scalar product is
√
λi. Notice also that 〈w′i|v′j〉 =

√
λiδij in case of no

degeneration in solutions of (A.4).
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