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Part I

I N T R O D U C T I O N



1O U T L I N E O F T H E T H E S I S

1.1 some motivations

In this thesis we consider the following singular perturbation problem

−ε2∆u+ u = up in Ω, (1.1.1)

where Ω ⊂ Rn is a bounded domain, p ∈
(
1, n+2
n−2

)
is subcritical with respect to the Sobolev

embedding and ε > 0 is a small parameter.
We analyze the concentration phenomena of the solutions to the problem (1.1.1) in a

bounded domain Ω ⊂ Rn whose boundary is non-smooth.

Problem (1.1.1) or some of its variants arise in several physical and biological models.
Consider, for example, the Nonlinear Schrödinger Equation

i h
∂ψ

∂t
= −

 h2

2m
∆ψ+ Vψ− γ|ψ|p−2ψ, (1.1.2)

where  h is the Planck constant, V is the potential, and γ and m are positive constants. Then
standing waves of (1.1.2) can be found setting ψ (x, t) = e−iEt/

 hv (x), where E is a constant
and the real function v satisfies the elliptic equation

− h2∆v+ Ṽv = |v|p−2v

for some modified potential Ṽ . In particular, when one considers the semiclassical limit  h→ 0,
the last equation becomes a singularly perturbed one; see for example [4], [29], and references
therein.

Concerning reaction-diffusion systems, this phenomenon is related to the so-called Turing’s
instability. More precisely, it is known that scalar reaction-diffusion equations in a convex
domain admit only constant stable steady state solutions; see [16], [54]. On the other hand,
as noticed in [77], reaction-diffusion systems with different diffusivities might generate non-
homogeneous stable steady states. A well-known example is the Gierer-Meinhardt system,
introduced in [33] to describe some biological experiment. The system is the following:

ut = d1∆u− u+ up

vp in Ω× (0, +∞) ,

vt = d2∆v− v+ ur

vs in Ω× (0, +∞) ,
∂u
∂ν = ∂v

∂ν = 0 on ∂Ω× (0, +∞) .

(1.1.3)

The functions u and v represent the densities of some chemical substances, the numbers
p,q, r, s are non-negative and such that 0 < p−1

q < r
s+1 , and it is assumed that the diffusivities

d1 and d2 satisfy d1 � 1� d2. In the stationary case of (1.1.3), when d2 → +∞ the function
v is close to a constant (being nearly harmonic and with zero normal derivative at the
boundary), and therefore the equation satisfied by u is similar to (1.1.1), with ε2 = d1. We
refer to [57], [61] for more details.

Finally, one can consider the problem (1.1.1) with mixed boundary conditions in the study
of the population dynamics: suppose that a species lives in a bounded regionΩwhose boundary
has two parts, the Neumann part ∂NΩ, which is an obstacle that blocks the pass across, and
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the Dirichlet part ∂DΩ, which is a killing zone for the population. Moreover (1.1.1) with
mixed boundary conditions is a model of the heat conduction for small conductivity, when
there is a nonlinear source in the interior of the domain, with combined isothermal and
isolated regions at the boundary.

1.2 the case of Ω smooth

The study of the concentration phenomena at points for smooth domains is very rich and
has been intensively developed in recent years. The search for such condensing solutions is
essentially carried out by two methods. The first approach is variational and uses tools of
the critical point theory or topological methods. A second way is to reduce the problem to a
finite-dimensional one by means of Lyapunov-Schmidt reduction.

The typical concentration behavior of solution UQ,ε to (1.1.1) is via a scaling of the variables
in the form

UQ,ε (x) ∼ U

(
x−Q

ε

)
, (1.2.1)

where Q is some point of Ω̄, and U is a solution of the problem

−∆U+U = Up in Rn (or in Rn+ = {(x1, . . . , xn) ∈ Rn : xn > 0}), (1.2.2)

the domain depending on whether Q lies in the interior of Ω or at the boundary. When
p < n+2

n−2 (and indeed only if this inequality is satisfied), problem (1.2.2) admits positive radial
solutions which decay to zero at infinity; see [9, 10, 75]. Solutions of (1.1.1) with this profile
are called spike-layers, since they are highly concentrated near some point of Ω̄.

Let us now describe some results which concern singularly perturbed problems with
Neumann or Dirichlet boundary conditions, and specifically

−ε2∆u+ u = up in Ω,
∂u
∂ν = 0 on ∂Ω,

u > 0 in Ω,

(1.2.3)

and 
−ε2∆u+ u = up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω.

(1.2.4)

Consider first the problem with pure Neumann boundary conditions. Solutions of (1.2.3)
with a concentration at one or more points of the boundary ∂Ω as ε→ 0 are called boundary-
spike layers. They are peaked near critical points of the mean curvature. In particular, it
was shown in [59], [60] that mountain-pass solutions of (1.2.3) concentrate at ∂Ω near global
maxima of the mean curvature. One can see this fact considering the variational structure
of the problem. In fact, solutions of (1.2.3) can be found as critical points of the following
Euler-Lagrange functional

Iε,N (u) =
1

2

∫
Ω

(
ε2|∇u|2 + u2

)
dx−

1

p+ 1

∫
Ω

|u|p+1dx, u ∈ H1 (Ω) .

Plugging into Iε,N a function of the form (1.2.1) with Q ∈ ∂Ω one sees that

Iε,N
(
UQ,ε

)
= C0ε

n −C1ε
n+1H (Q) + o

(
εn+1

)
, (1.2.5)
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where C0,C1 are positive constants depending only on n and p, and H is the mean curvature;
see for instance [4], Lemma 9.7. To obtain this expansion one can use the radial symmetry of
U and parametrize ∂Ω as a normal graph near Q. From the above formula one can see that
the bigger is the mean curvature the lower is the energy of this function: roughly speaking,
boundary spike layers would tend to move along the gradient of H in order to minimize
their energy. Moreover one can say that the energy of spike-layers is of order εn, which is
proportional to the volume of their support, heuristically identified with a ball of radius ε
centered at the peak. There is an extensive literature regarding the search of more general
solutions of (1.2.3) concentrating at critical points of H; see [21], [36], [37], [38], [45], [47], [58],
[80].

Consider now the problem with pure Dirichlet boundary conditions. In this case spike layers
with minimal energy concentrate at the interior of the domain, at points which maximize the
distance from the boundary; see [46], [62]. The intuitive reason for this is that, if Q is in the
interior of Ω and if we want to adapt a function like (1.2.1) to the Dirichlet conditions, the
adjustment needs an energy which increases as Q becomes closer and closer to ∂Ω. Following
the above heuristic argument, we could say that spike layers are repelled from the regions
where Dirichlet conditions are imposed.

There are other types of solutions of (1.1.1) with interior and/or boundary peaks, possible
multiple, which are constructed by using gluing techniques or topological methods; see [18],
[19], [39], [40], [41], [79]. For interior spike solutions the distance function d from the boundary
∂Ω plays a role similar to that of the mean curvature H. In fact, solutions with interior peaks,
as for the problem with the Dirichlet boundary condition, concentrate at critical points of d,
in a generalized sense; see [46], [62], [81].

Concerning problem (1.1.1) with mixed Neumann and Dirichlet boundary conditions, in
two recent papers [31], [32] it was proved that, under suitable geometric conditions on the
boundary of a smooth domain, there exist solutions which approach the intersection of the
Neumann and the Dirichlet parts as the singular perturbation parameter tends to zero. In
particular, this concentration phenomenon on the interface between the Neumann and the
Dirichlet parts occurs for the mountain pass type solutions. In fact, denoting by uε,Q an
approximate solution peaked at Q and by dε the distance of Q from the interface between
the Neumann part and the Dirichlet part, then its energy turns out to be the following

Iε
(
uQ,ε

)
= C0ε

n −C1ε
n+1H (Q) + εne−2

dε
ε (1+o(1)) + o

(
εn+2

)
, (1.2.6)

where Iε is the functional associated to the mixed problem. Note that the first two terms in
(1.2.6) are as in the expansion (1.2.5), while the third one represents a sort of potential energy
which decreases with the distance of Q from the interface, consistently with the repulsive effect
which was described before for (1.2.4).

There is an extensive literature regarding this type of problems, but in almost all cases the
domain Ω was assumed to be smooth.

Concerning the case Ω non smooth, at our knowledge there is only a bifurcation result for
the equation {

∆u+ λf (u) = 0 in Ω,
∂u
∂ν = 0 on ∂Ω,

obtained by Shi in [74] when Ω is a rectangle (0,a)× (0,b) in R2.
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1.3 concentration phenomena for the neumann problem in non-smooth do-
mains

First we study the problem (1.1.1) with Neumann boundary conditions; this problem has
been studied in [23]. Assuming for simplicity that Ω ⊂ R3 is a piecewise smooth bounded
domain whose boundary ∂Ω has a finite number of smooth edges, one can fix an edge Γ
on the boundary and consider the function α : Γ → R which associates to every Q ∈ Γ the
opening angle at Q, α (Q). As in the smooth case, we can expect that the function α plays
the same role as the mean curvature H for a smooth domain. In fact, plugging into Iε,N a
function of the form (1.2.1) with Q ∈ Γ one obtains the analogous expression to (1.2.5) for this
kind of domains, with C0α (Q) instead of C0; see Lemma 3.2.3. Roughly speaking, we can
say that the energy of solutions is of order ε3, which is proportional to the volume of their
support, heuristically identified with a ball of radius ε centered at the peak Q ∈ Γ ; then, when
we intersect this ball with the domain we obtain the dependence on the angle α (Q).

The first result of this thesis is the following

Theorem (Theorem 3.0.2). Let Ω ⊂ R3 be a piecewise smooth bounded domain whose boundary ∂Ω
has a finite number of smooth edges, and 1 < p < 5. Fix an edge Γ , and suppose Q ∈ Γ is a local strict
maximum or minimum of the function α, with α (Q) 6= π. Then for ε > 0 sufficiently small problem
(1.2.3) admits a solution concentrating at Q.

Remark 1.3.1. The condition thatQ is a local strict maximum or minimum of α can be replaced
by the fact that there exists an open set V of Γ containing Q such that α (Q) > sup∂V α or
α (Q) < inf∂V α.

Remark 1.3.2. The condition α (Q) 6= π is natural since it is needed to ensure that ∂Ω is not
flat at Q.

Remark 1.3.3. We expect a similar result to hold in higher dimension, with substantially the
same proof. For simplicity we only treat the 3-dimensional case.

The general strategy for proving Theorem 3.0.2 relies on a finite-dimensional reduction; see
for example the book [4].

By the change of variables x 7→ εx, problem (1.2.3) can be transformed into{
−∆u+ u = up in Ωε,
∂u
∂ν = 0 on ∂Ωε,

(1.3.1)

where Ωε := 1
εΩ. Solutions of (1.3.1) can be found as critical points of the Euler-Lagrange

functional

Iε,N (u) =
1

2

∫
Ωε

(
|∇u|2 + u2

)
dx−

1

p+ 1

∫
Ωε

|u|p+1dx, u ∈ H1 (Ωε) . (1.3.2)

Now, first of all, one finds a manifold Zε of approximate solutions to the given problem,
which are of the form UQ,ε (x) = ϕµ (εx)U (x−Q), where ϕµ is a suitable cut-off function
defined in a neighborhood of Q ∈ Γ ; see the beginning of Section 3.2, Lemma 3.2.1.

To apply the method described in Section 2.1 one needs the condition that the critical
manifold Zε is non-degenerate, in the sense that it satisfies property ii) in Section 2.1. The
result of non-degeneracy in Ωε, obtained in Lemma 3.2.2, follows from the non-degeneracy of
a manifold Z of critical points of the unperturbed problem in K = K̃×R ⊂ R3, where K̃ ⊂ R2

is a cone of opening angle α (Q). In fact, one sees that Ωε tends to K as ε→ 0. To show the
non-degeneracy of the unperturbed manifold Z we follow the line of Lemma 4.1 in the book
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[4] or Lemma 3.1 in [52]. We prove that λ = 0 is a simple eigenvalue of the linearization of
the unperturbed problem at U ∈ Z; see Lemma 3.1.1. Moreover, if α (Q) < π, it has only one
negative simple eigenvalue; whereas, if α (Q) > π, it has two negative simple eigenvalues; see
Corollary 3.1.4. We note that in the case α (Q) = π, that is when ∂Ω is flat at Q, λ = 0 is an
eigenvalue of multiplicity 2. The proof relies on Fourier analysis, but in this case one needs
spherical functions defined on a portion of the sphere instead of the whole S2.

Then one solves the equation up to a vector parallel to the tangent plane of the manifold
Zε, and generates a new manifold Z̃ε close to Zε which represents a natural constraint for
the Euler functional (1.3.2); see the proof of Proposition 3.2.5. By natural constraint we mean a
set for which constrained critical points of Iε,N are true critical points.

We can finally apply the above mentioned perturbation method to reduce the problem to a
finite dimensional one, and study the functional constrained on Z̃ε. Lemma 3.2.3 provides an
expansion of the energy of the approximate solution peaked at Q and allows us to see that
the dominant term in the expression of the reduced functional at Q is α (Q). This implies
Theorem 3.0.2.

1.4 mixed problems in non-smooth domains

The second goal of this thesis is studying the concentration of solutions for the singular
perturbation problem with mixed Dirichlet and Neumann boundary conditions:

−ε2∆u+ u = up in Ω,
∂u
∂ν = 0 on ∂NΩ, u = 0 on ∂DΩ,

u > 0 in Ω.

(1.4.1)

Here Ω ⊂ Rn is a bounded domain whose bundary has an (n− 2)-dimensional smooth
singularity Γ , p ∈

(
1, n+2
n−2

)
is subcritical, ν denotes the outer unit normal at ∂Ω and ε > 0 is

a small parameter. Moreover ∂NΩ, ∂DΩ are two subsets of the boundary of Ω such that the
union of their closures coincides with the whole ∂Ω, and their intersection is the singularity.
This problem has been studied in [24].

We denote by H the mean curvature of ∂Ω restricted to the closure of ∂NΩ, that is
H : ∂NΩ→ R. The result we prove is the following:

Theorem (Theorem 4.0.6). Let Ω ⊂ Rn, n > 2, be a bounded domain whose boundary ∂Ω has an
(n− 2)-dimensional smooth singularity, and 1 < p < n+2

n−2 (1 < p < +∞ if n = 2). Suppose that
∂NΩ, ∂DΩ are disjoint open sets of ∂Ω such that the union of the closures is the whole boundary of
Ω and such that their intersection Γ is the singularity. Suppose Q ∈ Γ is such that α (Q) 6= 0 and
H|Γ is critical and non degenerate at Q, and that ∇H (Q) 6= 0 points toward ∂DΩ. Then for ε > 0
sufficiently small problem (1.4.1) admits a solution concentrating at Q.

Remark 1.4.1. (a) The non degeneracy condition in Theorem 4.0.6 can be replaced by the
condition that Q is a strict local maximum or minimum of H|Γ , or by the fact that there
exists an open set V of Γ containing Q such that H (Q) > sup∂V H or H (Q) < inf∂V H.

(b) With more precision, as ε→ 0, the above solution possesses a unique global maximum
point Qε ∈ ∂NΩ, and dist (Qε, Γ) is of order ε log 1ε .

The general strategy for proving Theorem 4.0.6 relies on a finite-dimensional reduction
as described below Remark 1.3.3. The main difference here is that one needs to adjust the
solution in such a way that it vanishes on the Dirichlet part, so we explain how the strategy
described before has to be adapted to this case. First, as before, one finds a manifold Z of
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approximate solutions to the given problem, which in our case are of the form (1.2.1), and
solve the equation up to a vector parallel to the tangent plane of this manifold. To do this
one can use the spectral properties of the linearization of (1.2.2), see Lemma 4.3.3. Then,
see Theorem 2.1.6, one generates a new manifold Z̃ close to Z which represents a natural
constraint for the Euler functional of (1.4.1), which is

Ĩε (u) =
1

2

∫
Ω

(
ε2|∇u|2 + u2

)
dx−

1

p+ 1

∫
Ω

|u|p+1dx, u ∈ H1D (Ω) ,

where H1D (Ω) is the space of functions H1 (Ω) which have zero trace on ∂DΩ.
Now, we want to have a good control of the functional Ĩε |Z̃. Improving the accuracy of the

functions in the original manifold Z, we make Z̃ closer to Z; in this way the main term in the
constrained functional will be given by Ĩε |Z, see Propositions 4.2.12, 4.2.14, 4.2.15. To find
sufficiently good approximate solutions we start with those constructed in literature for the
Neumann problem (1.2.3) (see Subsection 4.1.1) which reveal the role of the mean curvature.
The problem is that these functions are non zero on ∂DΩ, and even if one use cut-off functions
to annihilate them the corresponding error turns out to be too large. Following the line of [31]
and [62], we will use the projection operator in H1 (Ω), which associates to every function in
this space its closest element in H1D (Ω). To study the asymptotic behavior of this projection
we will use the limit behavior of the solution U to (1.2.2):

lim
r→+∞ errn−2

2 U (r) = cn,p, (1.4.2)

where r = |x| and cn,p is a positive constant depending only on the dimension n and p,
together with

lim
r→+∞ U

′ (r)

U (r)
= − lim

r→+∞ U
′′ (r)

U (r)
= −1, (1.4.3)

as it was done in some previous works, see for instance [46] and [82]. Moreover, we will
work at a scale d ' ε| log ε|, which is the order of the distance of the peak from Γ , see
Remark 1.4.1 (b). At this scale both ∂NΩ and ∂DΩ look flat; so we can identify them with
the hypersurfaces of equations xn = 0 and x1 tanα+ xn = 0, and their intersection with the
set {x1 = xn = 0}. Note that α = α (Q) is the angle between x1 and xn at a fixed point Q ∈ Γ .
Then we can replace Ω with a suitable domain ΣD, which in particular for 0 < α 6 π is
even with respect to the coordinate xn, see the beginning of Subsections 4.2.1 and 4.2.2. Now,
studying the projections in this domain, we will find functions which have zero xn-derivative
on {xn = 0} \ ∂ΣD, which mimics the Neumann boundary condition on ∂NΩ. After analyzing
carefully the projection in Subsections 4.2.1, 4.2.2, we will be able to define a family of suitable
approximate solutions to (1.4.1) which have sufficient accuracy for our analysis, estimated in
Propositions 4.2.12, 4.2.14, 4.2.15.

We can finally apply the above mentioned perturbation method to reduce the problem to a
finite-dimensional one, and study the functional constrained on Z̃. We obtain an expansion of
the energy of the approximate solutions, which turns out to be

Ĩε
(
uε,Q

)
= C̃0ε

n − C̃1ε
n+1H (Q) + εne−2

dε
ε (1+o(1))

+εne
−dε
ε

(
1+

√
2 tanα(Q)√

tan2 α(Q)+1

)
(1+o(1))

+ o
(
εn+2

)
,

in the case 0 < α < π
2 , and

Ĩε
(
uε,Q

)
= C̃0ε

n − C̃1ε
n+1H (Q) + εne−2

dε
ε (1+o(1)) + o

(
εn+2

)
, (1.4.4)
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in the case π
2 6 α < 2π. As for (1.2.6), we have that the first two terms come from the

Neumann condition, while the others are related to the repulsive effect due to the Dirichlet
condition. Let us notice that, in the first case, in the terms related to the Dirichlet condition
appears the opening angle α, whereas in the second case it does not; this phenomenon comes
from the fact that the distance of the point Q from the Dirichlet part ∂DΩ depends on α only
if 0 < α < π

2 .

We remark that the expansion given in (1.4.4) is coherent with the case of smooth domains
in which α = π (compare (1.4.4) with (1.2.6)).

Concerning the regularity of the solution, following the ideas in [34], it is possible to say
that it is influenced by the presence of the angle. In fact, the solution is at least C2 in the
interior of the domain, far from the angle; whereas, near the angle, one can split the solution
into a regular part and a singular one, whose regularity depends on the value of α. For more
details about the regularity of solutions in non-smooth domains we refer the reader to the
book [34].

The fact that the solution u is C2 in the interior of the domain allows to say also that it is
strictly positive, by using the strong Maximum Principle. In fact, we have that u > 0 in the
domain. Moreover, if there exists a point x0 in the interior of the domain such that u (x0) = 0,
we can consider a ball centered at x0 of small radius suct that it is contained in the domain;
since in the ball u is C2 we can conclude that u cannot be zero in x0.

1.5 existence problems involving the fractional laplacian

We would like to investigate the concentration phenomena of elliptic equations driven by the
fractional Laplacian. For instance, a natural question is whether the technique developed in
this thesis for equations involving classical Laplacian may be adapted to the construction
of solutions concentrating either in the interior or along the boundary of the domain for an
equation of the type

ε2s(−∆)su+ u = up, for s ∈ (0, 1).

To do this, a first step is constructing solutions in the whole of the space which might be used
as the leading order of a perturbation argument; see [26].

For this scope, let us first briefly review what happens in the classical setting s = 1. In this
case, one considers the problem{

−∆u+ ηu = λ|u|p−1u in Rn,

u ∈ H1(Rn), u 6≡ 0,
(1.5.1)

where λ and η are fixed positive constants and p > 1. Notice that, up to scaling the space
variables and up to a multiplicative normalization on the solution, one may reduce himself
to the case λ = η = 1, and so the case of positive solutions reduces to studying the equation
−∆u+ u = up.

The equation in (1.5.1) has been widely studied in the last decades, since it is the basic
version of some fundamental models arising in various applications (e.g., stationary states
in nonlinear equations of Schrödinger type). One of the first contributions to the analysis of
problem (1.5.1) was given by Pohozaev in [67], where he proved that there exists a solution u
of (1.5.1) if and only if 1 < p < 2∗−1, being 2∗ = 2n/(n− 2) the so-called critical Sobolev
exponent. In [67] also a by-now classical “identity” appears, in order to prove that there are
no solutions to (1.5.1) when p is greater or equal to 2∗− 1.
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Another important contribution to the analysis of problem (1.5.1) has been given in [9] (see
also [10]), in which the authors consider an extension of the equation in (1.5.1) by replacing the
nonlinearity −ηu+ λ|u|p−1u by a wider class of odd continuous functions g = g(u) satisfying
g(0) = 0 and some superlinearity and growth assumptions. Among other results, in [9] it has
been shown the existence of a solution u to (1.5.1), with some properties of symmetry and a
precise decay at infinity. It is worth pointing out that the method to prove the existence of
solutions to (1.5.1) relies on a variational approach

(
the constrained minimization method, see [9,

Section 3]
)
, by working directly with the energy functional related to (1.5.1).

A natural question could be whether or not this method can be adapted to deal with a
nonlocal version of the problem above. In this respect, we would like to extend the existence
and symmetry results in [9] for the nonlocal analogue of problem (1.5.1) by replacing the
standard Laplacian operator by the fractional Laplacian operator (−∆)s, where, as usual,
for any s ∈ (0, 1), (−∆)s denotes the s-power of the Laplacian operator and, omitting a
multiplicative constant C = C(n, s), we have

(−∆)su(x) = P.V .
∫

Rn

u(x) − u(y)

|x− y|n+2s
dy = lim

ε→0

∫
CBε(x)

u(x) − u(y)

|x− y|n+2s
dy. (1.5.2)

Here Bε(x) denotes the n-dimensional ball of radius ε, centered at x ∈ Rn, C denotes the
complementary set, and “P.V .” is a commonly used abbreviation for “in the principal value
sense”.

Recently, a great attention has been focused on the study of problems involving the fractional
Laplacian, from a pure mathematical point of view as well as from concrete applications, since
this operator naturally arises in many different contexts, such as, among the others, obstacle
problems, financial market, phase transitions, anomalous diffusions, crystal dislocations,
soft thin films, semipermeable membranes, flame propagations, conservation laws, ultra-
relativistic limits of quantum mechanics, quasi-geostrophic flows, minimal surfaces, materials
science, water waves, etc... The literature is really too wide to attempt any reasonable
comprehensive treatment here1. We would just cite some very recent papers which analyze
fractional elliptic equations involving the critical Sobolev exponent, [73, 76, 30, 12, 7, 66, 72].

Let us come back to the present thesis. In the last part of it, we will deal with the following
problem {

(−∆)su+ u = |u|p−1u in Rn,

u ∈ Hs(Rn), u 6≡ 0,
(1.5.3)

where Hs(Rn) denotes the fractional Sobolev space; we immediately refer to Section 5.1.2 for
the definitions of the space Hs(Rn) and of variational solutions to (1.5.3).

Precisely, we are interested in existence and symmetry properties of the variational solu-
tions u to (1.5.3), as stated in the following

Theorem (Theorem 5.0.7). Let s ∈ (0, 1) and p ∈ (1, (n+ 2s)/(n− 2s)), with n > 2s. There
exists a solution u ∈ Hs(Rn) to problem (1.5.3) which is positive and spherically symmetric.

Note that the upper bound on the exponent p is exactly 2∗s + 1, where 2∗s = 2n/(n− 2s) is
the critical Sobolev exponent of the embedding Hs ↪→ Lp. This fractional Sobolev exponent
also plays a role for the nonlinear analysis methods for equations in bounded domains; see
[72]. As in the classical case, the threshold given by this exponent is essentially optimal,

1 For an elementary introduction to this topic and a wide, but still not fully comprehensive, list of related references,
we refer to [22].
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since non-existence results may be obtained from a fractional Pohozaev identity (see, e.g.,
Lemma 5.1 in [30]).

The proof of Theorem 5.0.7 extends part of that of Theorem 2 in [9]; in particular, we will
apply the variational approach by the constrained method mentioned above, for the energy
functional related to (1.5.3), that is

E(u) :=
1

2

∫∫
Rn×Rn

|u(x) − u(y)|2

|x− y|n+2s
dxdy+

∫
Rn

(1
2
|u(x)|2 −

1

p+ 1
|u(x)|p+1

)
dx.

It is worth mentioning that the results in Theorem 5.0.7 for n = 1 have been obtained
in [83], where modulation stability of ground states solitary wave solutions of nonlinear
Schrödinger equations has been studied, via an unconstrained variational approach within
the “concentration-compactness” framework of P. L. Lions ([48, 49]). Also, in the more recent
papers [50] and [51], an alternative approach has been presented, which permits to handle a
very general context, also including the equations we are dealing with (see, in addition, [53],
where the decay of solutions is analyzed in the case s = 1/2).

Here, we will present a very simple proof, whose general strategy will follow the original
argument in [9]. The method used here (and in [9]) relies on the selection of a specific
minimizing sequence composed of radial functions: though this idea is now classical, we
thought it was interesting to point out that this argument also works in the case of the
fractional Laplacian. Clearly, we need to operate various technical modifications due to the
non-locality of the fractional Laplacian operator

(
and of the correspondent norm Hs(Rn)

)
.

Moreover, we will need some energy estimates and preliminary results, also including the
analogue of the classical Polya-Szegö inequality, as given in forthcoming Section 5.1.3.

As for the decay of the solution, a precise bound may be obtained via the construction of
exact barriers (see Lemma 3.1 in [71] and, also, Lemma 8 in [64]). Remarkably, the decay of
the solutions in the fractional case is only polynomial, and not exponential as it happens in
the classical case and this feature is, of course, the source of major complications. As a matter
of fact, a slow decay of the solutions in the entire space may reflect an additional difficulty in
localizing possible interior concentration points.

Also, it could be taken into account to extend all the results above in order to investigate
a problem of type (1.5.3) by substituting the nonlinearity with an odd continuous function
satisfying standard growth assumptions, in the same spirit of [9].2

The thesis is organized as follows. In the first part we deal with some concentration
phenomena for the singularly perturbed equation (1.1.1) in non-smooth domains. In Chapter
2 we introduce the abstract perturbation method that we use in the subsequent chapters and
we make some some geometric preliminaries. In Chapters 3 and 4 we construct the solutions
to the problem (1.1.1) with both Dirichlet and mixed Dirichlet and Neumann boundary
conditions. In the second part we study the problem (1.5.3). Finally, in the third part, we
describe some future projects.

Notation

Generic fixed constant will be denoted by C, and will be allowed to vary within a single
line or formula. The symbols O (t) (respectively o (t)) will denote quantities for which O(t)

|t|

stays bounded (respectively o(t)
|t| tends to zero) as the argument t goes to zero or to infinity.

2 After completing this project, we have heard of an interesting work, where related results have been presented by
using different techniques (see [28]).
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The symbols oε (1), oR (1) oε,R (1) will denote respectively a function depending on ε that
tends to 0 as ε → 0, a function depending on R that tends to 0 as R → +∞ and a function
depending on both ε and R that tends to 0 as ε → 0 and R → +∞. We will often use the
notation d (1+ o (1)), where o (1) stands for a quantity which tends to zero as d→ +∞. We
will work in the space H1 (Ωε), endowed with the norm ‖u‖2 =

∫
Ωε

(
|∇u|2 + u2

)
dx, which

we denote simply by ‖u‖, without any subscript.
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Part II

C O N C E N T R AT I O N O F S O L U T I O N S F O R A S I N G U L A R LY
P E RT U R B E D E L L I P T I C P D E P R O B L E M I N N O N - S M O O T H

D O M A I N S



2S O M E P R E L I M I N A R I E S

In this chapter we introduce the abstract perturbation method which takes advantage of the
variational structure of the problems we consider, and allows us to reduce them to finite
dimensional ones. We refer the reader mainly to [4], [52] and the bibliography therein.

In the second part we make some computations concerning the parametrization of the
boundary ∂Ω and ∂Ωε, and in particular of the edge.

2.1 perturbation in critical point theory

In this section we recall some results about the existence of critical points for a class of
functionals which are perturbative in nature. We refer the reader mainly to [4], [52] and the
bibliography therein for the abstract method. Given an Hilbert space H, which might depend
on the perturbation parameter ε, let Iε : H→ R be a functional of class C2 which satisfies the
following properties

i) there exists a smooth finite-dimensional manifold, compact or not, Zε ⊆ H such that
‖I ′ε(z)‖ 6 Cε for every z ∈ Zε and for some fixed constant C, independent of z and ε;
moreover ‖I ′′ε(z) [q]‖ 6 Cε ‖q‖ for every z ∈ Zε and every q ∈ TzZε;

ii) letting Pz : H → (TzZε)
⊥, for every z ∈ Zε, be the projection onto the orthogonal

complement of TzZε, there exists C > 0, independent of z and ε, such that PzI ′′ε(z),
restricted to (TzZε)

⊥, is invertible from (TzZε)
⊥ into itself, and the inverse operator

satisfies
∥∥∥(PzI ′′ε(z))

−1
∥∥∥ 6 C.

We assume that Zε has a local C2 parametric representation z = zξ, ξ ∈ Rd. If we set
W = (TzZε)

⊥, we look for critical points of Iε in the form u = z+w with z ∈ Zε and w ∈W.
If Pz : H→W is as in ii), the equation I ′ε (z+w) = 0 is equivalent to the following system{

PzI
′
ε (z+w) = 0 (the auxiliary equation) ,

(Id− Pz) I
′
ε (z+w) = 0 (the bifurcation equation) .

(2.1.1)

First we solve the auxiliary equation by means of the Implicit Function Theorem. In fact, the
following result holds:

Proposition 2.1.1. (See Proposition 2.2 in [52]) Let i), ii) hold. Then there exists ε0 > 0 with the
following property: for all |ε| < ε0 and for all z ∈ Zε, the auxiliary equation in (2.1.1) has a unique
solution w = wε(z) such that:

j) wε(z) ∈ W is of class C1 with respect to z ∈ Zε and wε(z)→ 0 as |ε|→ 0, uniformly with
respect to z ∈ Zε, together with its derivative with respect to z, w ′ε;

jj) more precisely one has that ‖wε(z)‖ = O (ε) as ε→ 0, for all z ∈ Zε.

We shall now solve the bifurcation equation in (2.1.1). In order to do this, let us define the
reduced functional Iε : Zε → R by setting Iε(z) = Iε(z+wε(z)).
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Theorem 2.1.2. (See Theorem 2.3 in [52]) Suppose we are in the situation of Proposition 2.1.1, and
let us assume that Iε has, for |ε| sufficiently small, a critical point zε. Then uε = zε +w(zε) is a
critical point of Iε.

From a geometric point of view the argument can be outlined as follows. Consider the
manifold Z̃ε = {z+wε(z) : z ∈ Zε}. If zε is a critical point of Iε, it follows that uε = zε +

w(zε) ∈ Z̃ε is a critical point of Iε constrained on Z̃ε and thus uε satisfies I ′ε(uε) ⊥ Tuε Z̃ε.
Moreover, the definition of wε, see Proposition 2.1.1, implies that I ′ε(z +wε(z)) ∈ TzZε.
In particular, I ′ε(uε) ∈ TzεZε. Since, for |ε| small, Tuε Z̃ε and TzεZε are close, see j) in
Proposition 2.1.1, which is a consequence of the smallness of w ′ε, it follows that I ′ε(uε) = 0.
A manifold with these properties is called a natural constraint for Iε.

The next result is a useful criterion for applying Theorem 2.1.2, based on expanding Iε on
Zε in powers of ε.

Theorem 2.1.3. (See Theorem 2.4 in [52]) Suppose the assumptions of Proposition 2.1.1 hold, and
that for ε small there is a local parametrization ξ ∈ 1εU ⊆ Rd of Zε such that, as ε→ 0, Iε admits
the expansion Iε(zξ) = C0 + εG(εξ) + o(ε), for ξ ∈ 1

εU, for some function G : U → R. Then we
still have the expansion Iε(zξ) = C0 + εG(εξ) + o(ε), as ε→ 0. Moreover, if ξ̄ ∈ U is a strict local
maximum or minimum of G, then for |ε| small the functional Iε has a critical point uε. Furthermore,
if ξ̄ is isolated, we can take uε − zξ̄/ε = o(1/ε) as ε→ 0.

Remark 2.1.4. The last statement asserts that, once we scale back in ε, the solution concentrates
near ξ̄.

To study the concentration phenomena for the solutions to (1.4.1) we will use some small
modifications of the arguments in [4] and [52], which can be found in Subsection 2.1 of [31].

Given an Hilbert space H, which might depend on the perturbation parameter ε, we
consider manifolds embedded smoothly in H, for which

i)’ there exists a smooth finite-dimensional manifold Zε ⊆ H and C, r > 0 such that for any
z ∈ Zε, the set Zε ∩ Br (z) can be parametrized by a map on BRd

1 whose C3 norm is
bounded by C.

Moreover we are interested in functionals Iε : H→ R of class C2,γ which satisfy the following
properties:

ii)’ there exists a continuous function f : (0, ε0) → R with limε→0 f (ε) = 0 such that
‖I ′ε(z)‖ 6 f (ε) for every z ∈ Zε; moreover ‖I ′′ε(z) [q]‖ 6 f (ε) ‖q‖ for every z ∈ Zε and
every q ∈ TzZε;

iii)’ there exist C,γ ∈ (0, 1], r0 > 0 such that ‖I ′′ε‖Cγ 6 C in the subset {u : dist (u,Zε) < r0};

iv)’ letting Pz : H → (TzZε)
⊥, for every z ∈ Zε, be the projection onto the orthogonal

complement of TzZε, there exists C > 0, independent of z and ε, such that PzI ′′ε(z),
restricted to (TzZε)

⊥, is invertible from (TzZε)
⊥ into itself, and the inverse operator

satisfies
∥∥∥(PzI ′′ε(z))

−1
∥∥∥ 6 C.

As before, we set W = (TzZε)
⊥, and we look for critical points of Iε in the form u = z+w

with z ∈ Zε and w ∈W. If Pz : H→W is as in iv) ′, the equation I ′ε (z+w) = 0 is equivalent
to the system in (2.1.1).

Now, we solve the auxiliary equation by means of the Implicit Function Theorem.
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Proposition 2.1.5. (See Proposition 2.1 in [31]) Let i) ′ − iv) ′ hold true. Then there exists ε0 > 0
with the following property: for all |ε| < ε0 and for all z ∈ Zε, the auxiliary equation in (2.1.1)
has a unique solution w = wε(z) ∈ W, which is of class C1 with respect to z ∈ Zε and such that
‖wε(z)‖ 6 C1f (ε) as |ε|→ 0, uniformly with respect to z ∈ Zε. Moreover the derivative of w with
respect to z, w ′ε satisfies the bound ‖w ′ε(z)‖ 6 CC1f (ε)

γ.

We shall now solve the bifurcation equation in (2.1.1).

Theorem 2.1.6. (See Proposition 2.3 in [31]) Suppose we are in the situation of Proposition 2.1.5,
and let us assume that Iε has, for |ε| sufficiently small, a stationary point zε. Then uε = zε+w(zε)

is a critical point of Iε. Furthermore, there exist c̃, r̃ > 0 such that if u is a critical point of Iε
with dist (u,Zε,c̃) < r̃, where Zε,c̃ = {z ∈ Zε : dist (z,∂Zε) > c̃}, then u has to be of the form
zε +w(zε) for some zε ∈ Zε.

2.2 geometric preliminaries

In this thesis we deal with non-smooth domains, so it is useful to introduce a new set of
coordinates in order to stretch the non-smooth parts of the boundary. Moreover, for our
purposes, we make the change of variables x 7→ εx, and we consider the scaled domain
Ωε := 1

εΩ.

More precisely, in chapter 3, we consider a piecewise smooth bounded domain Ω ⊂ Rn

whose boundary ∂Ω has a finite number of smooth edges. We fix an edge Γ of the boundary
and we denote by Γε the scaled edge.

Let us describe ∂Ωε near a generic point Q on the edge Γε of ∂Ωε. Without loss of
generality, we can assume that Q = 0 ∈ Rn, that x1-axis is the tangent line at Q to Γ in ∂Ωε,
or ∂Ω. In a neighborhood of Q, let γ : (−µ0,µ0)→ R2 be a local parametrization of Γ , that is
(x2, x3) = γ (x1) = (γ1 (x1) , . . . ,γ2 (x1)). Then one has, for |x1| < µ0,

(x2, x3) = γ (x1)

= γ (0) + γ ′ (0) x1 +
1

2
γ ′′ (0) x21 +O

(
|x1|

3
)

=
1

2
γ ′′ (0) x21 +O

(
|x1|

3
)

.

On the other hand, Γ is parametrized by (x2, x3) = γε (x1) := 1
εγ (εx1), for which the

following expansions hold

γε (x1) =
ε

2
γ ′′ (0) x21 +O

(
ε2|x1|

3
)

,

∂γε

∂x1
= εγ ′′ (0) x1 +O

(
ε2|x1|

2
)

. (2.2.1)

Now we introduce a new set of coordinates on Bµ0
ε

(Q)
⋂
Ωε:

y1 = x1, (y2,y3) = (x2, x3) − γε (x1) .

The advantage of these coordinates is that the edge identifies with y1-axis, but the corre-
sponding metric g =

(
gij
)
ij

will not be flat anymore. If γε (x1) = (γε1 (x1) ,γε2 (x1)), the
coefficients of g are given by

(
gij
)

=

(
∂x

∂yi
· ∂x
∂yj

)
=


1+ ∂γε1

∂y1

∂γε1
∂y1

+ ∂γε2
∂y1

∂γε2
∂y1

∂γε1
∂y1

∂γε2
∂y1

∂γε1
∂y1

1 0

∂γε2
∂y1

0 1

 .
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From the estimates in (2.2.1) it follows that

gij = Id+ εA+O
(
ε2|x1|

2
)

, (2.2.2)

where

A =

(
0 γ ′′ (0) x1

γ ′′ (0)T x1 0

)
.

It is also easy to check that the inverse matrix
(
gij
)

is of the form gij = Id− εA+O
(
ε2|x1|

2
)
.

Furthermore one has detg = 1. Therefore, by (2.2.2), for any smooth function u there holds

∆gu = ∆u− ε

[
2

(
γ ′′ (0)y1 · ∇(y2,y3)

∂u

∂y1

)
+
(
γ ′′ (0) · ∇(y2,y3)u

)]
+O

(
ε2|x1|

2
)

|∇2u| +O
(
ε2|x1|

2
)

|∇u|. (2.2.3)

Now, let us consider a smooth domain Ω̃ ⊂ R3 and Ω̃ε = 1
εΩ̃. In the same way we can

describe ∂Ω̃ε near a generic point Q ∈ ∂Ω̃ε. Without loss of generality, we can assume that
Q = 0 ∈ R3, that {x3 = 0} is the tangent plane of ∂Ω̃ε, or ∂Ω̃, at Q, and that the outer normal
ν (Q) = (0, 0, −1). In a neighborhood of Q, let x3 = ψ (x1, x2) be a local parametrization of
∂Ω̃. Then one has, for | (x1, x2) | < µ1,

x3 = ψ (x1, x2)

=
1

2

(
AQ (x1, x2) · (x1, x2)

)
+CQ (x1, x2) +O

(
| (x1, x2) |4

)
,

where AQ is the Hessian of ψ at (0, 0) and CQ is a cubic polynomial, which is given precisely
by

CQ (x1, x2) =
1

6

2∑
i,j,k=1

∂3ψ

∂xi∂xj∂xk
(0, 0) xixjxk.

On the other hand, ∂Ω̃ε is parametrized by x3 = ψε (x1, x2) := 1
εψ (εx1, εx2), for which the

following expansions hold

ψε (x1, x2) =
ε

2

(
AQ (x1, x2) · (x1, x2)

)
+ ε2CQ (x1, x2) +O

(
ε3| (x1, x2) |4

)
,

∂ψε

∂xi
(x1, x2) = ε

(
AQ (x1, x2)

)
i
+ ε2DiQ (x1, x2) +O

(
ε3| (x1, x2) |3

)
, (2.2.4)

where DiQ are quadratic forms in (x1, x2) given by

DiQ (x1, x2) =
1

2

2∑
j,k=1

∂3ψ

∂xi∂xj∂xk
(0, 0) xjxk.

Concerning the outer normal ν, we have also

ν =

(
∂ψε
∂x1

, ∂ψε∂x2
, −1

)
√
1+ |∇ψε|2

=

(
ε
(
AQ (x1, x2)

)
+ ε2DQ (x1, x2) , −1+

1

2
ε2|AQ (x1, x2) |2

)
+O

(
ε3| (x1, x2) |3

)
. (2.2.5)
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Now we introduce a new set of coordinates on Bµ1
ε

(Q)
⋂
Ω̃ε:

z1 = x1, z2 = x2, z3 = x3 −ψε (x1, x2) .

The advantage of these coordinates is that ∂Ω̃ε identifies with {z3 = 0}, but, as before, the
corresponding metric g̃ =

(
g̃ij
)
ij

will not be flat anymore. Its coefficients are given by

(
g̃ij
)

=

(
∂x

∂zi
· ∂x
∂zj

)
=


1+ ∂ψε

∂z1

∂ψε
∂z1

∂ψε
∂z1

∂ψε
∂z2

∂ψε
∂z1

∂ψε
∂z2

∂ψε
∂z1

1+ ∂ψε
∂z2

∂ψε
∂z2

∂ψε
∂z2

∂ψε
∂z1

∂ψε
∂z2

1

 .

From the estimates in (2.2.4) it follows that

g̃ij = Id+ εA+ ε2B+O
(
ε3| (z1, z2) |3

)
, (2.2.6)

where

A =

(
0 AQ (z1, z2)(

AQ (z1, z2)
)T

0

)
,

and

B =

(
AQ (z1, z2)⊗AQ (z1, z2) DQ (z1, z2)(

DQ (z1, z2)
)T

0

)
.1

It is also easy to check that the inverse matrix
(
g̃ij
)

is of the form g̃ij = Id− εA+ ε2C+

O
(
ε3| (z1, z2) |3

)
, where

C =

(
0 −DQ (z1, z2)

−
(
DQ (z1, z2)

)T
|AQ (z1, z2) |2

)
.

Furthermore one has det g̃ = 1. Therefore, by (2.2.6), for any smooth function u there holds

∆g̃u = ∆u− ε

[
2

(
AQ (z1, z2) · ∇(z1,z2)

∂u

∂z3

)
+ trAQ

∂u

∂z3

]
+ε2

[
−2

(
DQ · ∇(z1,z2)

∂u

∂z3

)
+ |AQ (z1, z2) |2

∂2u

∂z3∂z3
− divDQ

∂u

∂z3

]
+O

(
ε3| (z1, z2) |3

)
|∇2u| +O

(
ε3| (z1, z2) |3

)
|∇u|.

Moreover, from (2.2.5), we obtain the expression of the unit outer normal to ∂Ω̃ε, ν̃, in the
new coordinates z:

ν̃ =

(
ε
(
AQ (z1, z2)

)
+ ε2DQ (z1, z2) , −1+

3

2
ε2|AQ (z1, z2) |2

)
+O

(
ε3| (z1, z2) |3

)
.

Finally the area-element of ∂Ω̃ε can be estimated as

dσ =
(
1+O

(
ε2| (z1, z2) |2

))
dz1dz2.
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Now, locally, in a suitable neighborhood of Q ∈ Γ , we can consider Ω as the intersection
of two smooth domains Ω̃1 and Ω̃2 if the opening angle at Q is less than π, or as the
union of them if the opening angle is greater than π. In the first case one has ∂Ω =(
∂Ω̃1 ∩ Ω̃2

)
∪
(
∂Ω̃2 ∩ Ω̃1

)
, whereas in the second case ∂Ω =

(
∂Ω̃1 ∩ Ω̃c2

)
∪
(
∂Ω̃2 ∩ Ω̃c1

)
.

Then, locally, one can straighten Γ and stretch the two parts of the boundary using the
coordinates z for the smooth domains Ω̃1 and Ω̃2.

In chapter 4 we consider a bounded domain Ω ⊂ Rn, n > 2, whose boundary ∂Ω has an
(n− 2)-dimensional smooth singularity. Moreover, we suppose that there are two disjoint
open sets of the boundary ∂Ω, which will be denoted by ∂NΩ and ∂DΩ, such that the union
of their closures is the whole boundary of Ω and such that their intersection, that we will call
Γ , is the singularity.

As in the previous case, it can be shown that near a generic point Q ∈ Γ the boundary of Ω
can be described by a coordinate system y = (y1, . . . ,yn) such that

(a) ∂NΩ coincides with {yn = 0},

(b) ∂DΩ coincides with {y1 tanα+ yn = 0}, where α = α (Q) is the opening angle of Γ at
Q,

(c) the corresponding metric coefficients are given by gij = δij +O (ε).

Remark 2.2.1. (i) We stress that, in the new coordinates y, the origin parametrizes the
point Q, and those functions decaying as |y|→ +∞ will concentrate near Q.

(ii) It is also useful to understand how the metric coefficients gij vary with Q. Notice that
condition (c) says that the deviation from the Kronecker symbols is of order ε, and we
are working in a domain scaled of 1ε ; hence a variation of order 1 of Q corresponds to a
variation of order ε in the original domain. Therefore, a variation of order 1 in Q yields
a difference of order ε2 in gij, and precisely

∂gij

∂Q
= O

(
ε2|y|2

)
,

with a similar estimate for the derivatives of the inverse coefficients gij. For more details
see the end of Subsection 9.2 in [4].

20



3C O N C E N T R AT I O N O F S O L U T I O N S F O R A S I N G U L A R LY P E RT U R B E D
N E U M A N N P R O B L E M I N N O N - S M O O T H D O M A I N S

introduction

In this chapter we study the following singular perturbation problem with Neumann boundary
condition in a bounded domain Ω ⊂ R3 whose boundary ∂Ω is non smooth, in the sense
that is has smooth edges: {

−ε2∆u+ u = up in Ω,
∂u
∂ν = 0 on ∂Ω.

(3.0.1)

Here p ∈ (1, 5) is subcritical and ν denotes the outer unit normal at ∂Ω.
If we denote by Γ an edge of ∂Ω, we can consider the function α : Γ → R which associates

to every Q ∈ Γ the opening angle at Q, α (Q).
By the change of variables x 7→ εx, problem (3.0.1) can be transformed into{

−∆u+ u = up in Ωε,
∂u
∂ν = 0 on ∂Ωε,

(3.0.2)

where Ωε := 1
εΩ. Solutions of (3.0.2) can be found as critical points of the Euler-Lagrange

functional

Iε,N (u) =
1

2

∫
Ωε

(
|∇u|2 + u2

)
dx−

1

p+ 1

∫
Ωε

|u|p+1dx, u ∈ H1 (Ωε) . (3.0.3)

As in the smooth case, we can expect that the function α plays the same role as the mean
curvature H for a smooth domain (see Section 1.2). In fact, plugging into Iε,N a function of
the form (1.2.1) with Q ∈ Γ one obtains an expression similar to (1.2.5), with C0α (Q) instead
of C0; see Lemma 3.2.3. Roughly speaking, we can say that the energy of solutions is of order
ε3, which is proportional to the volume of their support, heuristically identified with a ball of
radius ε centered at the peak Q ∈ Γ ; then, when we intersect this ball with the domain we
obtain the dependence on the angle α (Q).

The main result of this chapter is the following

Theorem 3.0.2. LetΩ ⊂ R3 be a piecewise smooth bounded domain whose boundary ∂Ω has a finite
number of smooth edges, and 1 < p < 5. Fix an edge Γ , and suppose Q ∈ Γ is a local strict maximum
or minimum of the function α, with α (Q) 6= π. Then for ε > 0 sufficiently small problem (3.0.1)
admits a solution concentrating at Q.

Remark 3.0.3. The condition thatQ is a local strict maximum or minimum of α can be replaced
by the fact that there exists an open set V of Γ containing Q such that α (Q) > sup∂V α or
α (Q) < inf∂V α.

Remark 3.0.4. The condition α (Q) 6= π is natural since it is needed to ensure that ∂Ω is not
flat at Q.

Remark 3.0.5. We expect a similar result to hold in higher dimension, with substantially the
same proof. For simplicity we only treat the 3-dimensional case.
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The general strategy for proving Theorem 3.0.2 relies on a finite-dimensional reduction; see
Section 2.1.

Now, first of all, one finds a manifold Zε of approximate solutions to the given problem,
which are of the form UQ,ε (x) = ϕµ (εx)U (x−Q), where ϕµ is a suitable cut-off function
defined in a neighborhood of Q ∈ Γ ; see the beginning of Section 4, Lemma 3.2.1.

To apply the method described in Section 2.1 one needs the condition that the critical
manifold Zε is non-degenerate, in the sense that it satisfies property ii) in Section 2.1. The
result of non-degeneracy in Ωε, obtained in Lemma 3.2.2, follows from the non-degeneracy of
a manifold Z of critical points of the unperturbed problem in K = K̃×R ⊂ R3, where K̃ ⊂ R2

is a cone of opening angle α (Q). In fact, one sees that Ωε tends to K as ε→ 0. To show the
non-degeneracy of the unperturbed manifold Z we follow the line of Lemma 4.1 in the book
[4] or Lemma 3.1 in [52]. We prove that λ = 0 is a simple eigenvalue of the linearized of the
unperturbed problem at U ∈ Z; see Lemma 3.1.1. Moreover, if α (Q) < π, it has only one
negative simple eigenvalue; whereas, if α (Q) > π, it has two negative simple eigenvalues; see
Corollary 3.1.4. We note that in the case α (Q) = π, that is when ∂Ω is flat at Q, λ = 0 is an
eigenvalue of multiplicity 2. The proof relies on Fourier analysis, but in this case one needs
spherical functions defined on a portion of the sphere instead of the whole S2.

Then one solves the equation up to a vector parallel to the tangent plane of the manifold
Zε, and generates a new manifold Z̃ε close to Zε which represents a natural constraint for
the Euler functional (3.0.3); see the proof of Proposition 3.2.5. By natural constraint we mean a
set for which constrained critical points of Iε are true critical points.

We can finally apply the above mentioned perturbation method to reduce the problem to a
finite dimensional one, and study the functional constrained on Z̃ε. Lemma 3.2.3 provides an
expansion of the energy of the approximate solution peaked at Q and allows us to see that
the dominant term in the expression of the reduced functional at Q is α (Q). This implies
Theorem 3.0.2.

The chapter is organized in the following way. In Section 3.1 we prove the non-degeneracy
of the critical manifold for the unperturbed problem in the cone K. In Section 3.2 we construct
the manifold of approximate solutions, showing that it is a non-degenerate pseudo-critical
manifold, expand the functional on the natural constraint and deduce Theorem 3.0.2.

3.1 study of the non degeneracy for the unperturbed problem in the cone

Let us consider K = K̃×R ⊂ R3, where K̃ ⊂ R2 is a cone of opening angle α, and the problem{
−∆u+ u = up in K,
∂u
∂ν = 0 on ∂K,

(3.1.1)

where p > 1.
If p < 5 and if u ∈ H1 (K), solutions of (3.1.1) can be found as critical points of the functional
IK : H1 (K)→ R defined as

IK (u) =
1

2

∫
K

(
|∇u|2 + u2

)
dx−

1

p+ 1

∫
K

|u|p+1dx. (3.1.2)

Note that Ik is well defined on H1 (K); in fact, since K is Lipschitz, the Sobolev embeddings
hold for p 6 5; see for instance [1], [34].

Let us consider also the elliptic equation in R3

−∆u+ u = up, u ∈ H1
(

R3
)

, u > 0, (3.1.3)
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which has a positive radial solution U; see for instance [4, 9, 10, 52, 75]. It has been shown
in [44] that such a solution is unique. Moreover U and its radial derivatives decay to zero
exponentially: more precisely satisfy the properties

lim
r→+∞ errU (r) = c3,p, lim

r→+∞ U
′ (r)

U (r)
= − lim

r→+∞ U
′′ (r)

U (r)
= −1,

where r = |x| and c3,p is a positive constant depending only on the dimension n = 3 and p;
see [9].

Now, if p is subcritical, the function U is also a solution of problem (3.1.1). Moreover, if
we consider a coordinate system with the x1-axis coinciding with the edge of K, the problem
(3.1.1) is invariant under a translation along the x1-axis. This means that any

Ux1 (x) = U (x− (x1, 0, 0))

is also a solution of (3.1.1). Then the functional Ik has a non-compact critical manifold given
by

Z =
{
Ux1 (x) : x1 ∈ R

}
' R.

Now, to apply the results of Section 2.1, we have to characterize the spectrum and some
eigenfunctions of I ′′K

(
Ux1

)
. More precisely we have to show the following

Lemma 3.1.1. Suppose α ∈ (0, 2π) \ {π}. Then the following properties are true:

a) TUx1Z = Ker
[
I ′′K (Ux1

)
]
, for all x1 ∈ R;

b) I ′′K
(
Ux1

)
is an index 0 Fredholm map 1 , for all x1 ∈ R.

Remark 3.1.2. The properties a) and b) imply that Z satisfies condition ii) in Section 2.1 and
then it is non-degenerate for IK.

Proof. We will prove the lemma by taking x1 = 0, hence U0 = U. The case of a general x1
will follow immediately.

Let us show a). It is known that there holds the inclusion TUZ ⊂ Ker
[
I ′′K (U)

]
; see for

instance [4], Section 2.2. Then it is sufficient to prove that Ker
[
I ′′K (U)

]
⊂ TUZ. Now, v ∈ H1 (K)

belongs to Ker
[
I ′′K (U)

]
if and only if{

−∆v+ v = pUp−1v in K,
∂v
∂ν = 0 on ∂K.

(3.1.4)

We use the polar coordinates in K, r, θ, ϕ, where r > 0, 0 6 θ 6 π and 0 6 ϕ 6 α. Then we
write v ∈ H1 (K) in the form

v (x1, x2, x3) =

∞∑
k=0

vk (r) Yk (θ,ϕ) , (3.1.5)

where the Yk (θ,ϕ) are the spherical functions satisfying{
−∆S2Yk = λkYk in K,
∂Yk
∂ϕ = 0 ϕ = 0,α.

(3.1.6)

1 A linear map T ∈ L (H,H) is Fredholm if the kernel is finite-dimensional and the image is closed and has finite
codimension. The index of T is dim (Ker [T]) − codim (Im [T]).
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Here ∆S2 denotes the Laplace-Beltrami operator on S2 (acting on the variables θ, ϕ). To
determine λk and the expression of Yk, let us split Yk as

Yk (θ,ϕ) =

∞∑
m=0

Θk,m (θ)Φk,m (ϕ)

so that

∆S2Yk =

∞∑
m=0

[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ
∂2

∂ϕ2

]
Θk,mΦk,m

=

∞∑
m=0

[
1

sin θ
d

dθ

(
sin θΘ ′k,m

)
Φk,m +

1

sin2 θ
Θk,mΦ

′′
k,m

]
.

Then (3.1.6) becomes
−
∑∞
m=0

[
1

sinθ
d
dθ

(
sin θΘ ′k,m

)
Φk,m + 1

sin2 θ
Θk,mΦ

′′
k,m

]
=
∑∞
m=0 λk,mΘk,mΦk,m in K,

Φ ′k,m (0) = Φ ′k,m (α) = 0.

(3.1.7)

If we require that for all m{
−Φ ′′k,m = µmΦk,m in [0,α] ,

Φ ′k,m (0) = Φ ′k,m (α) = 0,
(3.1.8)

we obtain that Φk,m (ϕ) = ak,m cos
(
πm
α ϕ

)
satisfies (3.1.8) with µm = π2m2

α2
. Replacing this

expression in (3.1.7) we have
∑∞
m=0

[
− 1

sinθ
d
dθ

(
sin θΘ ′k,m

)
+ 1

sin2 θ
π2m2

α2
Θk,m

]
Φk,m

=
∑∞
m=0 λk,mΘk,mΦk,m in K,

Φ ′k,m (0) = Φ ′k,m (α) = 0.

Since the Φk,m are independent, we have to solve, for every m, the Sturm-Liouville equation

1

sin θ
d

dθ

(
sin θΘ ′k,m

)
+

[
λk,m −

1

sin2 θ
π2m2

α2

]
Θk,m = 0. (3.1.9)

Let us rewrite (3.1.9) in the following form

−
1

sin θ
d

dθ

(
sin θΘ ′k,m

)
+

1

sin2 θ
π2m2

α2
Θk,m = λkΘk,m, (3.1.10)

so that we have to determine the eigenvalues λk,m and the eigenfunctions of the operator

−
1

sin θ
d

dθ

(
sin θΘ ′ (θ)

)
+

1

sin2 θ
π2m2

α2
Θ (θ) .

In order to do this, let us consider the case α = π, that is the following equation

−
1

sin θ
d

dθ

(
sin θΘ ′k,m

)
+

1

sin2 θ
m2Θk,m = λk,mΘk,m. (3.1.11)
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Now, for every m, (3.1.11) has solution if λk,m = k (k+ 1), with k > |m|, and the solutions are
the Legendre polynomials Θk,m (θ) = Pk,m (cos θ); see for instance [35], [42], [55], [56]. Then,
for a given value of k, there are 2k+ 1 independent solutions of the form Θk,m (θ)Φk,m (ϕ),
one for each integer m with −k 6 m 6 k. Now, by the classical comparison principle, if we
decrease α the corresponding eigenvalues λk,m, given by (3.1.10), should increase, whereas
if we increase α they should decrease; see for instance [17]. More precisely, if m = 0 the
equations (3.1.10) and (3.1.11) are the same, therefore the eigenvalues do not change (and they
are 0, 2, 6, ...). If m > 1 we cannot give an explicit expression for the λk,m for general α, but we
can use the comparison principle. In conclusion, we obtain that each Yk =

∑∞
m=0Θk,mΦk,m

satisfies

−∆S2Yk = λk,mYk. (3.1.12)

Now, one has that

∆ (vkYk) = ∆r (vk) Yk +
1

r2
vk∆S2Yk, (3.1.13)

where ∆r denotes the Laplace operator in radial coordinates, that is ∆r = ∂2

∂r2
+ 2
r
∂
∂r . Then,

using (3.1.5), (3.1.12) and (3.1.13), the condition (3.1.4) becomes

∞∑
k=0

[
−v ′′k −

2

r
v ′k + vk +

λk,m

r2
vk − pUp−1vk

]
Yk = 0.

Since the Yk are independent, we get the following equations for vk:

Ak,m (vk) := −v ′′k −
2

r
v ′k + vk +

λk,m

r2
vk − pUp−1vk = 0, m = 0, 1, 2..., k > m.

Let us first consider the case m = 0. If k = 0, we have to find a v0 such that

A0,0 (v0) = −v ′′0 −
2

r
v ′0 + v0 − pUp−1v0 = 0.

It has been shown in [44], Lemma 6, that all the solutions of A0,0 (v) = 0 are unbounded.
Since we are looking for solutions v0 ∈ H1 (R), it follows that v0 = 0.

For k = 1 we have to solve

A1,0 (v1) = −v ′′1 −
2

r
v ′1 + v1 +

2

r2
v1 − pUp−1v1 = 0.

Let Û (r) denote the function such that U (x) = Û (|x|), where U (x) is the solution of (3.1.3).
Reasoning as in the proof of Lemma 4.1 in [4], we obtain that the family of solutions of

A1,0 (v1) = 0, with v1 ∈ H1 (R), is given by v1 (r) = cÛ ′ (r), for some c ∈ R.
Now, let us show that the equation Ak,0 (vk) = 0 has only the trivial solution in H1 (R),

provided that k > 2. First of all, note that the operator A1,0 has the solution Û ′ which does
not change sign in (0,∞) and therefore is a non-negative operator. In fact, if σ denotes its
smallest eigenvalue, any corresponding eigenfunction ψσ does not change sign. If σ < 0,
then ψσ should be orthogonal to Û ′ and this is a contradiction. Thus σ > 0 and A1,0 is
non-negative. Now, we can write

Ak,0 = A1,0 +
λk,0 − 2

r2
.

Since λk,0− 2 > 0 whenever k > 2, it follows that Ak,0 is a positive operator. Thus Ak,0 (vk) =

0 implies that vk = 0.
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If m > 1 and α < π, using the comparison principle, we obtain that each λk,m is greater
than 2. Then, reasoning as above, we have that each vk = 0.

Let us consider the case α > π. If m = 1 and k = 1, using again the comparison principle,
we have that 0 < λ1,1 < 2; whereas for m = 1, k > 2, and for m > 2, k > m, we have that each
λk,m > 2. Then in the last two cases we can use the non-negativity of the operator A1,0 and
conclude that vk = 0. In the case m = 1 and k = 1 we note that the operator

A1,1 (v1) := −v ′′1 −
2

r
v ′1 + v1 +

λ1,1

r2
v1 − pUp−1v1

has a negative eigenvalue, instead of the eigenvalue 0, since λ1,1 < 2. Then also v1 = 0.
Putting together all the previous information, we deduce that any v ∈ Ker [I ′′ (U)] has to be

of the form

v (x1, x2, x3) = cÛ ′ (r) Y1 (θ,ϕ) .

Now, Y1 is such that −∆S2Y1 = λ1,mY1, namely it belongs to the kernel of the operator
−∆S2 − λ1,mId, and such a kernel is 1-dimensional. In conclusion, we find that

v ∈ span
{
Û ′Y1

}
= span

{
∂U

∂x1

}
= TUZ.

This proves that a) holds. It is also easy to check that the operator I ′′K (U) is a compact
perturbation of the identity, showing that b) holds true, too. This complete the proof of
Lemma 3.1.1.

Remark 3.1.3. Since U is a Mountain-Pass solution of (3.1.3), the spectrum of I ′′K (U) has one
negative simple eigenvalue, 1− p, with eigenspace spanned by U itself. Moreover, we have
shown in the preceding lemma that λ = 0 is an eigenvalue with multiplicity 1 and eigenspace
spanned by ∂U

∂x1
. If α < π the rest of the spectrum is positive. Whereas if α > π there is an

other negative simple eigenvalue, corresponding to an eigenfunction Ũ given by

Ũ (r, θ,ϕ) = ũ (r) cos
(π
α
ϕ
)
Θ̃ (θ) ,

where Θ̃ satisfies (3.1.9) with m = 1 and k = 1, and ũ satisfies the equation

−v ′′ −
2

r
v ′ + v+

λ1,1

r2
v− pUp−1v = 0. (3.1.14)

From (3.1.14) one has that there exists a positive constant C such that, for r sufficiently large,
ũ (r) 6 Ce−r/C. In conclusion, one has the following result:

Corollary 3.1.4. Let U and Ũ be as above and consider the functional IK given in (3.1.2). Then for
every x1 ∈ R, Ux1 (x) = U (x− (x1, 0, 0)) is a critical point of IK. Moreover, the kernel of I ′′K (U) is
generated by ∂U

∂x1
. If α < π the operator has only one negative eigenvalue, and therefore there exists

δ > 0 such that

I ′′K (U) [v, v] > δ ‖v‖2 , for every v ∈ H1 (K) , v⊥U,
∂U

∂x1
.

If α > π the operator has two negative eigenvalues, and therefore there exists δ > 0 such that

I ′′K (U) [v, v] > δ ‖v‖2 , for every v ∈ H1 (K) , v⊥U, Ũ,
∂U

∂x1
.
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3.2 proof of theorem 3.0.2

For every Q on the edge Γ of ∂Ωε, let µ = min {µi}, so that in Bµ
ε

(Q)
⋂
Ωε we can use the

new set of coordinates z. Now we choose a cut-off function ϕµ with the following properties
ϕµ (x) = 1 in Bµ

4
(Q) ,

ϕµ (x) = 0 in R3 \Bµ
2

(Q) ,

|∇ϕµ| + |∇2ϕµ| 6 C in Bµ
2

(Q) \Bµ
4

(Q) .

(3.2.1)

For any Q ∈ Γ , we define the following function, in the coordinates (z1, z2, z3),

UQ,ε (z) := ϕµ (εz)UQ (z) , (3.2.2)

where UQ (z) = U (z−Q). Then we consider the manifold

Zε =
{
UQ,ε : Q ∈ Γ

}
.

Now, we estimate the gradient of Iε,N at UQ,ε, showing that Zε constitute a manifold of
pseudo-critical points of Iε,N.

Lemma 3.2.1. There exists C > 0 such that for ε small there holds∥∥I ′ε,N
(
UQ,ε

)∥∥ 6 Cε, for all Q ∈ Γ .

Proof. Let v ∈ H1 (Ωε). Since the function UQ,ε is supported in B := B µ
2ε

(Q), see (3.2.2), we
can use the coordinate z in this set, and we obtain

I ′ε,N
(
UQ,ε

)
[v] =

∫
∂Ωε

∂UQ,ε

∂ν̃
vdσ̃+

∫
Ωε

(
−∆g̃UQ,ε +UQ,ε − |UQ,ε|

p
)
vdVg̃ (z)

+ I+ II.

Let us now estimate I:

I =

∫
∂Ωε1

∂UQ,ε

∂ν̃1
vdσ̃1 +

∫
∂Ωε2

∂UQ,ε

∂ν̃2
vdσ̃2 + I1 + I2.

If K = Kα(Q) denotes the cone of angle equal to the angle of the edge in Q, we have

I1 =

∫
∂K

(
UQ (z)∇ϕµ (εz) · ν̃1 +ϕµ (εz)∇UQ (z) · ν̃1

)
vdσ̃1

=

∫
∂K

[
UQ (z)∇ϕµ (εz) ·

(
ε
(
AQ (z1, z2)

)
+ ε2DQ (z1, z2) , −1+

3

2
ε2|AQ (z1, z2) |2

)
+ϕµ (εz)∇UQ (z) ·

(
ε
(
AQ (z1, z2)

)
+ ε2DQ (z1, z2) , −1+

3

2
ε2|AQ (z1, z2) |2

)]
·v
(
1+O

(
ε2| (z1, z2) |2

))
dz1dz2

+ a+ b.

Since ∇ϕµ (ε·) is supported in R3 \B µ
4ε

(Q) and UQ has an exponential decay, we have that,
for ε small,

|a| 6 Cεe−
µ
4ε

∫
∂K

|v|dz1dz2. (3.2.3)
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On the other hand

b =

∫
µ
4ε6|z−Q|6 µ

2ε

ϕµ (εz)∇UQ (z)

·
(
ε
(
AQ (z1, z2)

)
+ ε2DQ (z1, z2) , −1+

3

2
ε2|AQ (z1, z2) |2

)
·v
(
1+O

(
ε2| (z1, z2) |2

))
dz1dz2

+

∫
|z−Q|6 µ

4ε

ϕµ (εz)∇UQ (z)

·
(
ε
(
AQ (z1, z2)

)
+ ε2DQ (z1, z2) , −1+

3

2
ε2|AQ (z1, z2) |2

)
·v
(
1+O

(
ε2| (y1,y2) |2

))
dy1dy2

6 Cεe−
µ
4ε

∫
∂K

|v|dz1dz2 +Cε

∫
∂K

|∇UQ| · |v|dz1dz2. (3.2.4)

The estimates (3.2.3) and (3.2.4), and the trace Sobolev inequalities imply |I1| 6 Cε ‖v‖. In the
same way we can estimate I2, getting

|I| 6 Cε ‖v‖ . (3.2.5)

Now let’s evaluate II. Using (2.2.3) one has

II =

∫
K

(
−∆UQ,ε +UQ,ε − |UQ,ε|

p
)
vdVg̃ (z)

+ε

∫
K

[
2

(
γ ′′ (0) z1 · ∇(z2,z3)

∂UQ,ε

∂z1

)
+
(
γ ′′ (0) · ∇(z2,z3)UQ,ε

)]
vdVg̃ (z)

+O
(
ε2
) ∫
K

(
|z1|

2|∇2UQ,ε| + |z1|
2|∇UQ,ε|

)
vdVg̃ (z)

+ II1 + εII2 +O
(
ε2
)
II3.

Since ∆UQ,ε = UQ∆ϕµ (εz) + 2∇UQ · ∇ϕµ (εz) + ϕµ (εz)∆UQ and both ∆ϕµ (ε·) and
∇ϕµ (ε·) are supported in R3 \B µ

4ε
(Q), we get

II1 =

∫
µ
4ε6|z−Q|6 µ

2ε

(
−UQ∆ϕµ (εz) − 2∇UQ · ∇ϕµ (εz)

)
v (1+O (ε|z|))dz

+

∫
µ
4ε6|z−Q|6 µ

2ε

(
−ϕµ (εz)∆UQ +UQ,ε − |UQ,ε|

p
)
v (1+O (ε|z|))dz

+

∫
|z−Q|6 µ

4ε

(
−∆UQ +UQ − |UQ|p

)
v (1+O (ε|z|))dz. (3.2.6)

Since UQ is a solution in R3 the last term in (3.2.6) vanishes, and using the exponential decay
of UQ at infinity and the properties of the cut-off function, see (3.2.1), one has

|II1| 6 Ce−
µ
4ε

∫
K

|v|dz.
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By (3.2.2) we can compute also ∇(z2,z3)
∂UQ,ε
∂z1

and ∇(z2,z3)UQ,ε and we have

II2 =

∫
K
2γ ′′ (0) z1 ·

[
∇(z2,z3)

∂ϕµ (εz)

∂z1
UQ +∇(z2,z3)ϕµ (εz)

∂UQ

∂z1

]
+2γ ′′ (0) z1 ·

[
∂ϕµ (εz)

∂z1
∇(z2,z3)UQ +ϕµ (εz)∇(z2,z3)

∂UQ

∂z1

]
+γ ′′ (0) ·

[
∇(z2,z3)ϕµ (εz)UQ +ϕµ (εz)∇(z2,z3)UQ

]
vdVg̃ (z)

=

∫
µ
4ε6|z−Q|6 µ

2ε

2γ ′′ (0) z1 ·
[
∇(z2,z3)

∂ϕµ (εz)

∂z1
UQ +∇(z2,z3)ϕµ (εz)

∂UQ

∂z1

+
∂ϕµ (εz)

∂z1
∇(z2,z3)UQ

]
+ γ ′′ (0) · ∇(z2,z3)ϕµ (εz)UQvdVg̃ (z)

+

∫
|z−Q|6 µ

2ε

ϕµ (εz)

[
2γ ′′ (0) z1 · ∇(z2,z3)

∂UQ

∂z1
+ γ ′′ (0) · ∇(z2,z3)UQ

]
vdVg̃ (z) .

Hence

|II2| 6 C

∫
µ
4ε6|z−Q|6 µ

2ε

[
2|γ ′′ (0) | · |z1|

(
|UQ| + |

∂UQ

∂z1
| + |∇(z2,z3)UQ|

)
+|γ ′′ (0) | · |UQ|

]
|v|dVg̃ (z)

+

∫
|z−Q|6 µ

2ε

2|ϕµ (εz) | · sup
Q

|γ ′′ (0) |(
|z1| · |∇(z2,z3)

∂UQ

∂z1
| + |∇(z2,z3)UQ|

)
|v|dVg̃ (z) .

Using again the exponential decay of UQ at infinity one can estimate the first term by
Ce−

µ
4ε
∫
K |v|dz and conclude that the second term is bounded. In the same way we can

estimate II3, getting

|II| 6 Cε ‖v‖ . (3.2.7)

From (3.2.5) and (3.2.7) we obtain the conclusion.

Now, we need a result of non-degeneracy, which allows us to say that the operator
I ′′ε,N

(
UQ,ε

)
is invertible on the orthogonal complement of TUQ,εZε.

Lemma 3.2.2. There exists δ̄ > 0 such that for ε small, if α < π, there holds

I ′′ε,N
(
UQ,ε

)
[v, v] > δ̄ ‖v‖2 , for every v ∈ H1 (Ωε) , v⊥UQ,ε,

∂UQ,ε

∂Q
,

and, if α > π, there holds

I ′′ε,N
(
UQ,ε

)
[v, v] > δ̄ ‖v‖2 , for every v ∈ H1 (Ωε) , v⊥UQ,ε, ŨQ,ε

∂UQ,ε

∂Q
,

where ŨQ,ε is defined as UQ,ε in (3.2.2).

Proof. Let us consider the case α < π. Let R � 1; consider a radial smooth function
χR : R3 → R such that 

χR (x) = 1 in BR (0) ,

χR (x) = 0 in R3 \B2R (0) ,

|∇χR| 6 2
R in B2R (0) \BR (0) ,

(3.2.8)
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and set

v1 (x) = χR (x−Q) v (x) , v2 (x) = (1− χR (x−Q)) v (x) .

A straight computation yields

‖v‖2 = ‖v1‖2 + ‖v2‖2 + 2

∫
Ωε

(∇v1 · ∇v2 + v1v2)dx.

We write
∫
Ωε

(∇v1 · ∇v2 + v1v2)dx = γ1 + γ2, where

γ1 =

∫
Ωε

χR (1− χR)
(
v2 + |∇v|2

)
dx,

γ2 =

∫
Ωε

(
v2∇v · ∇χR − v1∇v · ∇χR − v2|∇χR|2

)
dx.

Since the integrand in γ2 is supported in B2R (Q) \ BR (Q), using (3.2.8) and the Young’s
inequality we obtain that |γ2| = oR (1) ‖v‖2. As a consequence we have

‖v‖2 = ‖v1‖2 + ‖v2‖2 + 2γ1 + oR (1) ‖v‖2 .

Now let us evaluate I ′′ε
(
UQ,ε

)
[v, v] = σ1 + σ2 + σ3, where

σ1 = I ′′ε
(
UQ,ε

)
[v1, v1] , σ2 = I ′′ε

(
UQ,ε

)
[v2, v2] , σ3 = 2I ′′ε

(
UQ,ε

)
[v1, v2] .

Similarly to the previous estimates, since UQ decays exponentially away from Q, we get

σ2 > C−1 ‖v2‖2 + oε,R (1) ‖v‖2 ,

σ3 > C−1γ1 + oε,R (1) ‖v‖2 . (3.2.9)

Hence it is sufficient to estimate the term σ1. From the exponential decay of UQ and the fact

that v⊥UQ,ε, ∂UQ,ε
∂Q it follows that(
v1,UQ,ε

)
H1(Ωε) = −

(
v2,UQ,ε

)
H1(Ωε) = oε,R (1) ‖v‖2 ,(

v1,
∂UQ,ε

∂Q

)
H1(Ωε)

= −

(
v2,

∂UQ,ε

∂Q

)
H1(Ωε)

= oε,R (1) ‖v‖2 . (3.2.10)

Moreover, since UQ,ε is supported in B := B µ
2ε

(Q), see (3.2.2), we can use the coordinate z in
this set, and we obtain(

v1,UQ,ε
)
H1(Ωε) =

∫
∂Ωε

v1
∂UQ,ε

∂ν̃
vdσ̃+

∫
Ωε

v1
(
−∆g̃UQ,ε +UQ,ε

)
dVg̃ (z)

=
(
v1,UQ

)
H1(K) + oε (1) ‖v1‖ , (3.2.11)

where K = Kα is the cone of opening angle equal to the angle of Γ in Q. In the same way we
can obtain that(

v1,
∂UQ,ε

∂Q

)
H1(Ωε)

=

(
v1,

∂UQ

∂Q

)
H1(K)

+ oε (1) ‖v1‖ . (3.2.12)

From the estimates (3.2.10), (3.2.11) and (3.2.12), we deduce that for R sufficiently large and ε
sufficiently small (

v1,UQ
)
H1(K) = oε,R (1) ‖v1‖ ,(

v1,
∂UQ

∂Q

)
H1(K)

= oε,R (1) ‖v1‖ .
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Now we can apply Lemma 3.1.1, getting

I ′′
(
UQ
)
[v1, v1] > δ ‖v1‖H1(K) + oε,R (1) .

Then the following estimate holds

σ1 = I ′′
(
UQ
)
[v1, v1] + oε (1) ‖v1‖ > δ ‖v1‖H1(K) + oε,R (1) ‖v‖

> δ ‖v1‖+ oε,R (1) ‖v‖ . (3.2.13)

In conclusion, from (3.2.9) and (3.2.13) we deduce

I ′′ε,N
(
UQ,ε

)
[v, v] > δ ‖v‖+ oε,R (1) ‖v‖ >

δ

2
‖v‖ ,

provided R is taken large and ε sufficiently small. This concludes the proof.
The case α > π has substantially the same proof, but we have to consider also the function

Ũ and use the exponential decay of ũ at infinity, see Remark 3.1.3.

The following lemma provides an expansion of the functional Iε,N
(
UQ,ε

)
with respect to

Q.

Lemma 3.2.3. For ε small the following expansion holds

Iε,N
(
UQ,ε

)
= C0α (Q) +O (ε) , (3.2.14)

where

C0 =

(
1

2
−

1

p+ 1

) ∫∞
0

∫π
0

|UQ (r) |p+1r sin2 θdrdθ.

Proof. Since the function UQ,ε is supported in B := B µ
2ε

(Q), see (3.2.2), we can use the
coordinate z in this set, and we obtain

Iε,N
(
UQ,ε

)
=
1

2

∫
B∩Ωε

(
|∇g̃UQ,ε|

2 +U2Q,ε

)
dVg̃ (z) −

1

p+ 1

∫
B∩Ωε

|UQ,ε|
p+1dVg̃ (z) .

Integrating by parts, we get

Iε,N
(
UQ,ε

)
=

1

2

∫
B∩∂Ωε

UQ,ε
∂UQ,ε

∂ν̃
dσ̃+

1

2

∫
B∩Ωε

UQ,ε
(
−∆g̃UQ,ε +UQ,ε

)
dVg̃ (z)

−
1

p+ 1

∫
B∩Ωε

|UQ,ε|
p+1dVg̃ (z)

+ I+ II,

where I is the surface integral over the boundary and II refers to the last two terms. Now, I
can be split in two terms which correspond to the surface integrals on the "faces" of the edge
Γ :

I =
1

2

∫
B∩∂Ωε1

UQ,ε
∂UQ,ε

∂ν̃1
dσ̃1 +

1

2

∫
B∩∂Ωε2

UQ,ε
∂UQ,ε

∂ν̃2
dσ̃2 + I1 + I2.
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It is sufficient to evaluate I1, since the estimate of I2 is similar. Using the expression of UQ,ε,
see (3.2.2), we get

I1 =
1

2

∫
B∩∂Ωε1

UQ,ε
(
UQ∇ϕµ (εz) +ϕµ (εz)∇UQ

)
·
(
ε
(
AQ (z1, z2)

)
+ ε2DQ (z1, z2) , −1+

3

2
ε2|AQ (z1, z2) |2

)
·
(
1+O

(
ε2| (z1, z2) |2

))
dz1dz2

=
1

2

∫
µ
4ε6|z−Q|6 µ

2ε

ϕµ (εz)U2Q∇ϕµ (εz)

·
(
ε
(
AQ (z1, z2)

)
+ ε2DQ (z1, z2) , −1+

3

2
ε2|AQ (z1, z2) |2

)
·
(
1+O

(
ε2| (z1, z2) |2

))
dz1dz2

+
1

2

∫
|z−Q|6 µ

2ε

ϕ2µ (εz)UQ∇UQ

·
(
ε
(
AQ (z1, z2)

)
+ ε2DQ (z1, z2) , −1+

3

2
ε2|AQ (z1, z2) |2

)
·
(
1+O

(
ε2| (z1, z2) |2

))
dz1dz2.

Similarly to the previous estimates, we get I1 = O
(
e−

µ
2ε

)
+O (ε). Then we obtain that

I = O (ε) . (3.2.15)

Now, we have to evaluate II:

II =
1

2

∫
B∩Ωε

UQ,ε
(
−∆UQ,ε +UQ,ε

)
(1+O (ε|z|))dz

+
ε

2

∫
B∩Ωε

UQ,ε

[
2γ ′′ (0) z1 · ∇(z2,z3)

∂UQ,ε

∂z1
+ γ ′′ (0) · ∇(z2,z3)UQ,ε

]
· (1+O (ε|z|))dz

+O
(
ε2|z1|

2
)

−
1

p+ 1

∫
B∩Ωε

|UQ,ε|
p+1 (1+O (ε|z|))dz.

We have

II =

(
1

2
−

1

p+ 1

)
α (Q)

∫∞
0

∫π
0

|UQ (r) |p+1r sin2 θdrdθ+O (ε) . (3.2.16)

Putting together (3.2.15) and (3.2.16), we obtain (3.2.14) and this concludes the proof.

Let PQ : H1 (Ωε) −→
(
TUQ,εZε

)⊥
be the projection onto the orthogonal complement of

TUQ,εZε, for all Q on the edge Γ of ∂Ωε. According to the Lemma 3.2.2, we have that for ε
sufficiently small the operator LQ = PQ ◦ I ′′ε,N

(
UQ,ε

)
◦ PQ is invertible and there exists C > 0

such that∥∥∥L−1
Q

∥∥∥ 6 C.

Now, using the fact that I ′′ε,N
(
UQ,ε

)
is invertible on the orthogonal complement of TUQ,εZε,

we will solve the auxiliary equation.
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Proposition 3.2.4. Let Iε,N be the functional defined in (3.0.3). Then for ε > 0 small there exists a

unique w = w (ε,Q) ∈
(
TUQ,εZε

)⊥
such that I ′ε,N

(
UQ,ε +w (ε,Q)

)
∈ TUQ,εZε. Moreover the

function w (ε,Q) is of class C1 with respect to Q and there holds

‖w (ε,Q)‖ 6 Cε,
∥∥∥∥∂w (ε,Q)

∂Q

∥∥∥∥ 6 Cε. (3.2.17)

Proof. We want to find a solution w ∈
(
TUQ,εZε

)⊥
of PQI ′ε,N

(
UQ,ε +w

)
= 0. For every

w ∈
(
TUQ,εZε

)⊥
we can write

I ′ε,N
(
UQ,ε +w

)
= I ′ε,N

(
UQ,ε

)
+ I ′′ε,N

(
UQ,ε

)
[w] + RQ,ε (w) ,

where RQ,ε (w) is given by

RQ,ε (w) = I ′ε,N
(
UQ,ε +w

)
− I ′ε,N

(
UQ,ε

)
− I ′′ε,N

(
UQ,ε

)
[w] .

Given v ∈ H1 (Ωε) there holds

RQ,ε (w) [v] = −

∫
Ωε

(
|UQ,ε +w|p − |UQ,ε|

p − p|UQ,ε|
p−1w

)
vdx.

Using the following inequality

| (a+ b)p − ap − pap−1b| 6

{
C (p) |b|p for p 6 2,

C (p)
(
|b|2 + |b|p

)
for p > 2,

for a,b ∈ R, |a| 6 1, the Hölder’s inequality and the Sobolev embeddings we obtain

∥∥RQ,ε (w) [v]
∥∥ 6 C

∫
Ωε

(
|w|2 + |w|p

)
|v|dx 6 C

(
‖w‖2 + ‖w‖p

)
‖v‖ . (3.2.18)

Similarly, from the inequality

| (a+ b1)
p − (a+ b2)

p − pap−1 (b1 − b2) |

6

{
C (p)

(
|b1|

p−1 + |b2|
p−1

)
|b1 − b2| for p 6 2,

C (p)
(
|b1| + |b2| + |b1|

p−1 + |b2|
p−1

)
|b1 − b2| for p > 2,

for a,b1,b2 ∈ R, |a| 6 1, we get∥∥RQ,ε (w1) [v] − RQ,ε (w2) [v]
∥∥

6 C

∫
Ωε

(
|w1| + |w2| + |w1|

p−1 + |w2|
p−1

)
|w1 −w2| · |v|dx

6 C
(
‖w1‖+ ‖w2‖+ ‖w1‖p−1 + ‖w2‖p−1

)
· ‖w1 −w2‖ · ‖v‖ . (3.2.19)

Now, by the invertibility of the operator LQ = PQ ◦ I ′′ε,N
(
UQ,ε

)
◦ PQ, we have that the

function w solves PQI ′ε,N
(
UQ,ε +w

)
= 0 if and only if

w = −
(
LQ
)−1 [

PQI
′
ε,N

(
UQ,ε

)
+ PQRQ,ε (w)

]
.
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Setting

NQ,ε (w) = −
(
LQ
)−1 [

PQI
′
ε,N

(
UQ,ε

)
+ PQRQ,ε (w)

]
,

we have to solve

w = NQ,ε (w) .

The norm of I ′ε,N
(
UQ,ε

)
has been estimated in Lemma 3.2.1. Then from (3.2.18) and (3.2.19)

we obtain the two relations∥∥NQ,ε (w)
∥∥ 6 C1ε+C2

(
‖w‖2 + ‖w‖p

)
, (3.2.20)∥∥NQ,ε (w1) −NQ,ε (w2)

∥∥ 6 C
(
‖w1‖+ ‖w2‖+ ‖w1‖p−1 + ‖w2‖p−1

)
· ‖w1 −w2‖ . (3.2.21)

Now, for C̄ > 0, we define the set

WC̄ =

{
w ∈

(
TUQ,εZε

)⊥
: ‖w‖ 6 C̄ε

}
.

We show that NQ,ε is a contraction in WC̄ for C̄ sufficiently large and for ε small. Clearly,
by (3.2.20), if C̄ > 2C1 the set WC̄ is mapped into itself if ε is sufficiently small. Then, if
w1,w2 ∈WC̄, by (3.2.21) there holds∥∥NQ,ε (w1) −NQ,ε (w2)

∥∥ 6 2C
(
C̄ε+ C̄p−1εp−1

)
‖w1 −w2‖ .

Therefore, again if ε is sufficiently small, the coefficient of ‖w1 −w2‖ in the last formula is
less than 1. Hence the Contraction Mapping Theorem applies, yielding the existence of a
solution w satisfying the condition

‖w‖ 6 C̄ε. (3.2.22)

This concludes the proof of the existence part.
Now the C1-dependence of the functionw onQ follows from the Implicit Function Theorem;

see also [4], Proposition 8.7. In order to prove the second estimate in (3.2.17), let us consider
the map H : R3 ×H1 (Ωε)×R×R −→ H1 (Ωε)×R defined by

H (Q,w,α, ε) =

 I ′ε,N
(
UQ,ε +w

)
−α

∂UQ,ε
∂Q(

w, ∂UQ,ε
∂Q

)  .

Thenw ∈
(
TUQ,εZε

)⊥
is a solution of PQI ′ε,N

(
UQ,ε +w

)
= 0 if and only if H (Q,w,α, ε) = 0.

Moreover, for v ∈ H1 (Ωε) and β ∈ R, there holds

∂H

∂ (w,α)
(Q,w,α, ε) [v,β] =

 I ′′ε,N
(
UQ,ε +w

)
[v] −β

∂UQ,ε
∂Q(

v, ∂UQ,ε
∂Q

)  (3.2.23)

=

 I ′′ε,N
(
UQ,ε

)
[v] −β

∂UQ,ε
∂Q(

v, ∂UQ,ε
∂Q

) +O
(
‖w‖+ ‖w‖p−1

)
.
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To prove the last estimate it is sufficient to use the following inequality

| (a+ b)p−1 − ap−1| 6

{
C (p) |b|p−1 for p 6 2,

C (p)
(
|b| + |b|p−1

)
for p > 2,

for a,b ∈ R, |a| 6 1, the Hölder’s inequality and the Sobolev embedding. Using the invertibil-
ity of the operator LQ = PQ ◦ I ′′ε,N

(
UQ,ε

)
◦ PQ, it is easy to check that ∂H

∂(w,α)
(Q, 0, 0, ε) is

uniformly invertible in Q for ε small. Hence, by (3.2.22) and (3.2.23), also ∂H
∂(w,α)

(Q,w,α, ε)
is uniformly invertible in Q for ε small. As a consequence, by the Implicit Function Theorem,
the map Q 7→

(
wQ,αQ

)
is of class C1. Now we are in position to provide the norm estimate

of ∂w(ε,Q)
∂Q . Differentiating the equation

H
(
Q,wQ,αQ, ε

)
= 0

with respect to Q, we obtain

0 =
∂H

∂Q
(Q,w,α, ε) +

∂H

∂ (w,α)
(Q,w,α, ε)

∂
(
wQ,αQ

)
∂Q

.

Hence, by the uniform invertibility of ∂H
∂(w,α)

(Q,w,α, ε) it follows that

∥∥∥∥∥∂
(
wQ,αQ

)
∂Q

∥∥∥∥∥ 6 C

∥∥∥∥∥∥∥
 I ′′ε,N

(
UQ,ε +w

) [∂UQ,ε
∂Q

]
−α

∂2UQ,ε
∂Q2(

w, ∂
2UQ,ε
∂Q2

) 
∥∥∥∥∥∥∥

6 C

(∥∥∥∥I ′′ε,N
(
UQ,ε +w

) [∂UQ,ε

∂Q

]∥∥∥∥+ |α| ·

∥∥∥∥∥∂2UQ,ε

∂Q2

∥∥∥∥∥+ ‖w‖ ·

∥∥∥∥∥∂2UQ,ε

∂Q2

∥∥∥∥∥
)

6 C

(∥∥∥∥I ′′ε,N
(
UQ,ε +w

) [∂UQ,ε

∂Q

]∥∥∥∥+ |α| + ‖w‖+ ε

)
.

Note that α, similarly to w, satisfies |α| 6 Cε. By the estimate in (3.2.23) we obtain∥∥∥∥I ′′ε,N
(
UQ,ε +w

) [∂UQ,ε

∂Q

]∥∥∥∥ 6

∥∥∥∥I ′′ε,N
(
UQ,ε

) [∂UQ,ε

∂Q

]∥∥∥∥+C
(
‖w‖+ ‖w‖p−1

)
.

Using the fact that I ′′
(
UQ
) [∂UQ

∂z1

]
= 0 we obtain∥∥∥∥I ′′ε,N

(
UQ,ε +w

) [∂UQ,ε

∂Q

]∥∥∥∥ 6

∥∥∥∥I ′′ε,N
(
UQ,ε

) [∂UQ
∂z1

]
− I ′′

(
UQ
) [∂UQ

∂z1

]∥∥∥∥
+Cε+C

(
‖w‖+ ‖w‖p−1

)
.

For any v ∈ H1 (K), one finds

|
(
I ′′ε,N

(
UQ,ε

)
− I ′′

(
UQ
)) [∂UQ

∂z1
, v
]

| 6 p

∫
K∩Ωε

|UQ,ε −UQ|
∂UQ

∂z1
v+Cε.

The last three formulas implies the estimate for ∂w(ε,Q)
∂Q . This concludes the proof.

Now we can state the following result, which allows us to perform a finite-dimensional
reduction of problem (3.0.2) on the manifold Zε.
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Proposition 3.2.5. The functional Ψε : Zε → R defined by Ψε (Q) = Iε
(
UQ,ε +w (ε,Q)

)
is of

class C1 in Q and satisfies

Ψ ′ε (Q) = 0 =⇒ I ′ε,N
(
UQ,ε +w (ε,Q)

)
= 0.

Proof. This proposition can be proved using the arguments of Theorem 2.12 of [4]. From a
geometric point of view, we consider the manifold

Z̃ε =
{
UQ,ε +w (ε,Q) : Q ∈ Γ

}
.

Since (3.2.17) holds, we have that for ε small

TUQ,εZε ∼ TUQ,ε+w(ε,Q)Z̃ε. (3.2.24)

If UQ,ε +w (ε,Q) is a critical point of Iε,N constrained on Z̃ε, then I ′ε,N
(
UQ,ε +w (ε,Q)

)
is perpendicular to TUQ,ε+w(ε,Q)Z̃ε, and hence, from (3.2.24), is almost perpendicular to
TUQ,εZε. Since, by construction of Z̃ε, it is I ′ε,N

(
UQ,ε +w (ε,Q)

)
∈ TUQ,εZε, it must be

I ′ε,N
(
UQ,ε +w (ε,Q)

)
= 0. This concludes the proof.

3.2.1 Proof of Theorem 3.0.2

First of all we have

Ψε (Q) = Iε,N
(
UQ,ε +w (ε,Q)

)
= Iε,N

(
UQ,ε

)
+ I ′ε,N

(
UQ,ε

)
[w (ε,Q)] +O

(
‖w (ε,Q)‖2

)
.

Now, using Lemma 3.2.1 and the estimate (3.2.17) we infer

Ψε (Q) = Iε,N
(
UQ,ε

)
+O

(
ε2
)

.

Hence Lemma 3.2.3 yields

Ψε (Q) = C0α (Q) +O (ε) .

Therefore, if Q ∈ Γ is a local strict maximum or minimum of the function α, the thesis follows
from Proposition 3.2.5.
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4C O N C E N T R AT I O N O F S O L U T I O N S F O R A S I N G U L A R LY P E RT U R B E D
M I X E D P R O B L E M I N N O N - S M O O T H D O M A I N S

introduction

In this chapter we study the following singular perturbation problem with mixed Dirichlet
and Neumann boundary conditions in a bounded domain Ω ⊂ Rn whose boundary ∂Ω is
non smooth: 

−ε2∆u+ u = up in Ω,
∂u
∂ν = 0 on ∂NΩ, u = 0 on ∂DΩ,

u > 0 in Ω.

(4.0.1)

Here p ∈
(
1, n+2
n−2

)
is subcritical, ν denotes the outer unit normal at ∂Ω and ε > 0 is a small

parameter. Moreover ∂NΩ, ∂DΩ are two subsets of the boundary of Ω such that the union of
their closures coincides with the whole ∂Ω, and their intersection is an (n− 2)-dimensional
smooth singularity.

We are interested here in finding boundary spike-layers for the mixed problem (4.0.1). We
call Γ the intersection of the closures of ∂NΩ and ∂DΩ, and suppose that it is an (n− 2)-
dimensional smooth singularity. Then we can consider the function α : Γ → R which
associates to every Q ∈ Γ the opening angle at Q, α (Q). Moreover we denote by H the mean
curvature of ∂Ω restricted to the closure of ∂NΩ, that is H : ∂NΩ→ R.

The main result of this chapter is the following:

Theorem 4.0.6. Let Ω ⊂ Rn, n > 2, be a bounded domain whose boundary ∂Ω has an (n− 2)-
dimensional smooth singularity, and 1 < p < n+2

n−2 (1 < p < +∞ if n = 2). Suppose that ∂NΩ,
∂DΩ are disjoint open sets of ∂Ω such that the union of the closures is the whole boundary of Ω
and such that their intersection Γ is the singularity. Suppose Q ∈ Γ is such that α (Q) 6= 0 and
H|Γ is critical and non degenerate at Q, and that ∇H (Q) 6= 0 points toward ∂DΩ. Then for ε > 0
sufficiently small problem (4.0.1) admits a solution concentrating at Q.

The general strategy for proving Theorem 4.0.6 relies on a finite-dimensional reduction, as
outlined in Section 2.1. Namely, one finds first a manifold Z of approximate solutions to the
given problem, which in our case are of the form (1.2.1), and solve the equation up to a vector
parallel to the tangent plane of this manifold. To do this one can use the spectral properties of
the linearization of (1.2.2), see Lemma 4.3.3. Then, see Theorem 2.1.6, one generates a new
manifold Z̃ close to Z which represents a natural constraint for the Euler functional of (4.0.1),
which is

Ĩε (u) =
1

2

∫
Ω

(
ε2|∇u|2 + u2

)
dx−

1

p+ 1

∫
Ω

|u|p+1dx, u ∈ H1D (Ω) ,

where H1D (Ω) is the space of functions H1 (Ω) which have zero trace on ∂DΩ. By natural
constraint we mean a set for which constrained critical points of Ĩε are true critical points.

Now, we want to have a good control of the functional Ĩε |Z̃. Improving the accuracy of the
functions in the original manifold Z, we make Z̃ closer to Z; in this way the main term in the
constrained functional will be given by Ĩε |Z, see Propositions 4.2.12, 4.2.14, 4.2.15. To find
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sufficiently good approximate solutions we start with those constructed in literature for the
Neumann problem 

−ε2∆u+ u = up in Ω,
∂u
∂ν = 0 on ∂Ω,

u > 0 in Ω.

(4.0.2)

(see Subsection 4.1.1) which reveal the role of the mean curvature. The problem is that these
functions are non zero on ∂DΩ, and even if one use cut-off functions to annihilate them the
corresponding error turns out to be too large. Following the line of [31] and [62], we will use
the projection operator in H1 (Ω), which associates to every function in this space its closest
element in H1D (Ω). To study the asymptotic behavior of this projection we will use the limit
behavior of the solution U to (1.2.2):

lim
r→+∞ errn−2

2 U (r) = cn,p, (4.0.3)

where r = |x| and cn,p is a positive constant depending only on the dimension n and p,
together with

lim
r→+∞ U

′ (r)

U (r)
= − lim

r→+∞ U
′′ (r)

U (r)
= −1, (4.0.4)

as it was done in some previous works, see for instance [46] and [82]. Moreover, we will
work at a scale d ' ε| log ε|, which is the order of the distance of the peak from Γ , see
Remark 1.4.1 (b). At this scale both ∂NΩ and ∂DΩ look flat; so we can identify them with
the hypersurfaces of equations xn = 0 and x1 tanα+ xn = 0, and their intersection with the
set {x1 = xn = 0}. Note that α = α (Q) is the angle between x1 and xn at a fixed point Q ∈ Γ .
Then we can replace Ω with a suitable domain ΣD, which in particular for 0 < α 6 π is
even with respect to the coordinate xn, see the beginning of Subsections 4.2.1 and 4.2.2. Now,
studying the projections in this domain, we will find functions which have zero xn-derivative
on {xn = 0} \ ∂ΣD, which mimics the Neumann boundary condition on ∂NΩ. After analyzing
carefully the projection in Subsections 4.2.1, 4.2.2, we will be able to define a family of suitable
approximate solutions to (4.0.1) which have sufficient accuracy for our analysis, estimated in
Propositions 4.2.12, 4.2.14, 4.2.15.

We can finally apply the above mentioned perturbation method to reduce the problem to a
finite-dimensional one, and study the functional constrained on Z̃. We obtain an expansion of
the energy of the approximate solutions, which turns out to be

Ĩε
(
uε,Q

)
= C̃0ε

n − C̃1ε
n+1H (Q) + εne−2

dε
ε (1+o(1))

+εne
−dε
ε

(
1+

√
2 tanα(Q)√

tan2 α(Q)+1

)
(1+o(1))

+ o
(
εn+2

)
,

in the case 0 < α < π
2 , and

Ĩε
(
uε,Q

)
= C̃0ε

n − C̃1ε
n+1H (Q) + εne−2

dε
ε (1+o(1)) + o

(
εn+2

)
,

in the case π
2 6 α < 2π. As for (1.2.6), we have that the first two terms come from the

Neumann condition, while the others are related to the repulsive effect due to the Dirichlet
condition. Let us notice that, in the first case, in the terms related to the Dirichlet condition
appears the opening angle α, whereas in the second case it does not; this phenomenon comes
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from the fact that the distance of the point Q from the Dirichlet part ∂DΩ depends on α only
if 0 < α < π

2 .

Concerning the regularity of the solution, following the ideas in [34], it is possible to say
that it is influenced by the presence of the angle. In fact, the solution is at least C2 in the
interior of the domain, far from the angle; whereas, near the angle, one can split the solution
into a regular part and a singular one, whose regularity depends on the value of α. For more
details about the regularity of solutions in non-smooth domains we refer the reader to the
book [34].

The fact that the solution u is C2 in the interior of the domain allows to say also that it is
strictly positive, by using the strong Maximum Principle. In fact, we have that u > 0 in the
domain. Moreover, if there exists a point x0 in the interior of the domain such that u (x0) = 0,
we can consider a ball centered at x0 of small radius suct that it is contained in the domain;
since in the ball u is C2 we can conclude that u cannot be zero in x0.

The plan of the chapter is the following. In Section 4.1 we collect some preliminary material:
we recall some known results concerning the Neumann problem (4.0.2). In Section 4.2 we
construct a model domain to deal with the interface, analyze the asymptotics of projections
in H1 and then construct approximate solution to (4.0.1). Finally in Section 4.3 we expand
the functional on the natural constraint, prove the existence of critical points and deduce
Theorem 4.0.6.

4.1 preliminaries

We want to find solutions to (4.0.1) with a specific asymptotic profile, so it is convenient to
make the change of variables x 7→ εx, and study (4.0.1) in the dilated domain

Ωε :=
1

ε
Ω.

Then the problem becomes
−∆u+ u = up in Ωε,
∂u
∂ν = 0 on ∂NΩε, u = 0 on ∂DΩε,

u > 0 in Ωε,

(4.1.1)

where ∂NΩε and ∂DΩε stand for the dilations of ∂NΩ and ∂DΩ respectively. Moreover we
denote by Γε the intersection of the closures of ∂NΩε and ∂DΩε.

Solutions of (4.1.1) can be found as critical points of the Euler-Lagrange functional

Iε (u) =
1

2

∫
Ωε

(
|∇u|2 + u2

)
dx−

1

p+ 1

∫
Ωε

|u|p+1dx, u ∈ H1D (Ωε) .

Here H1D (Ωε) denotes the space of functions in H1 (Ωε) with zero trace on ∂DΩε.

4.1.1 Approximate solutions for (4.0.1) with Neumann conditions

In this subsection we recall some results from [4] and [31] concerning approximate solutions
to the Neumann problem.
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Recalling the new coordinate system that we introduced in Section 2.2, we assume that this
coordinate system y is defined in Bµ0 (Q), with µ0 > 0 sufficiently small. Now, in this set of
coordinates we choose a cut-off function χµ0 with the following properties

χµ0 (x) = 1 in Bµ0
4

(Q) ,

χµ0 (x) = 0 in Rn \Bµ0
2

(Q) ,

|∇χµ0 | + |∇2χµ0 | 6 C in Bµ0
2

(Q) \Bµ0
4

(Q) ,

and we define the approximate solution ūε,Q as

ūε,Q (y) := χµ0 (εy)
(
UQ (y) + εwQ (y)

)
, (4.1.2)

where UQ (y) = U (y−Q) and wQ is a suitable function obtained in Subsection 2.2 of [31] by
a small modifications of Lemma 9.3 in [4], satisfying the following estimate

|wQ (y) | + |∇wQ (y) | + |∇2wQ (y) | 6 CΩ

(
1+ |y|K

)
e−|y|, (4.1.3)

where CΩ and K are constants depending on Ω, H, n and p.
The next result collects estimates obtained following the same arguments of Lemmas 9.4,

9.7 and 9.8 in [4].

Proposition 4.1.1. There exist C,K > 0 such that for ε small the following estimates hold

|
∂ūε,Q

∂νg
| (y) 6

{
Cε2

(
1+ |y|K

)
e−|y| for |y| 6 µ0

4ε ,

Ce−
1
Cε for µ04ε 6 |y| 6 µ0

2ε ;

| −∆gūε,Q + ūε,Q − ū
p
ε,Q| (y) 6

{
Cε2

(
1+ |y|K

)
e−|y| for |y| 6 µ0

4ε ,

Ce−
1
Cε for µ04ε 6 |y| 6 µ0

2ε ;

Iε,N
(
ūε,Q

)
= C̃0 − C̃1εH (εQ) + o

(
ε2
)

;

∂

∂Q
Iε,N

(
ūε,Q

)
= −C̃1ε

2H ′ (εQ) + o
(
ε2
)

,

where

C̃0 =

(
1

2
−

1

p+ 1

) ∫
Rn+

Up+1dy, C̃1 =

(∫∞
0
rnU2rdr

) ∫
Sn+

yn|y ′|2dσ.

An immediate consequence of this proposition is that∥∥I ′ε (ūε,Q
)∥∥ 6 Cε2 for all Q ∈ ∂NΩε such that dist (Q, Γε) >

µ0

ε
, (4.1.4)

where C > 0 is some fixed constant and µ0 is as before.
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4.2 approximate solutions to (4.1.1)

To construct good approximate solutions to (4.1.1), we will start from a family of known
functions which constitute good approximate solutions to (4.1.1) when we impose pure
Neumann boundary conditions. Since we have to take into account the effect of the Dirichlet
boundary conditions, we will modify these functions in a convenient way. Following the line
of [31] and [62], we will use the projection operator onto H1D (Ωε), which associates to every
element in H1 (Ωε) its closest point in H1D (Ωε). Explicitly, this is constructed subtracting to
any given u ∈ H1 (Ωε) the solution to

−∆v+ v = 0 in Ωε,

v = u on ∂DΩε,
∂v
∂ν = 0 on ∂NΩε.

(4.2.1)

This solution can be found variationally by looking at the following minimum problem

inf
v=u on ∂DΩε

{∫
Ωε

(
|∇v|2 + v2

)
dx

}
.

Instead of studying (4.2.1) directly, it is convenient to modify the domain in order that the
region of the boundary near Γε becomes flat. We fix Q ∈ Γε and consider the opening angle
of Γε at Q, α = α (Q). Since the construction of this new domain is different for 0 < α 6 π

and π < α < 2π, we will study separately the two cases in the following two subsections.

4.2.1 Case 0 < α 6 π

For technical reasons we construct a domain Σ in the following way: we consider two
hypersurfaces defined by the equations x1 tanα + xn = 0 and x1 tanα − xn = 0, which
obviously intersect at {x1 = xn = 0}. Then we close the domain between the two hypersurfaces
with x1 < 0 if 0 < α < π

2 and with x1 > 0 if π2 6 α 6 π with a smooth surface, in such a way
that the scaled domain

ΣD = DΣ, (4.2.2)

defined for a large number D, contains a sufficiently large cube. In ΣD we denote by ΓD
the singularity, which lies on {x1 = xn = 0}. The following figure represents a section of the
domain in the plane x1, xn.
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The advantage of dealing with this set is that if we solve a Dirichlet problem in ΣD with data
even in xn, then for suitable boundary conditions the solution in the upper part ΣD ∩ {xn > 0}

will be qualitatively similar to that of (4.2.1).

Our next goal is to consider the following problem{
−∆ϕ̃+ ϕ̃ = 0 in ΣdD,

ϕ̃ = U (·− dQ0) on ∂ΣdD,
(4.2.3)

where Q0 = (−1, 0, · · · , 0). By a scaling of variables, this problem is equivalent to{
− 1
d2
∆ϕ+ϕ = 0 in ΣD,

ϕ = U (d (·−Q0)) on ∂ΣD,
(4.2.4)

Asymptotic analysis of (4.2.4)

First of all we need to know if (4.2.4) is solvable. It follows from Lemma 3.1 in [31]; in fact,
making a modification of some arguments in [34], they construct barrier functions for the
operators ∆ and −∆+ 1 at all boundary points of the set Σ. This guarantees, via the classical
Perron method, the existence of a solution for the problem (4.2.4).

If we consider the function φ = − 1d logϕ, then φ satisfies{
1
d∆φ− |∇φ|2 + 1 = 0 in ΣD,

φ = − 1d log (U (d (·−Q0))) on ∂ΣD.
(4.2.5)

Using the limit behavior of the function U given by (4.0.3), it is easy to show the following:

Lemma 4.2.1. For any fixed constant D > 0 we have that

−
1

d
log (U (d (·−Q0)))→ | ·−Q0| uniformly on ∂ΣD (4.2.6)

as d→ +∞.

Since Lemma 4.2.1 states that the boundary datum is everywhere close to the function
|x−Q0|, it is useful to consider the following auxiliary problem{

1
d∆φ− |∇φ|2 + 1 = 0 in ΣD,

φ = |x−Q0| on ∂ΣD.
(4.2.7)

Lemma 4.2.2. Let D > 1 be a fixed constant. Then, when d → ∞, problem (4.2.7) has a unique
solution φd, which is everywhere positive, and which more precisely satisfies the estimates

tanα√
tan2 α+ 1

< φd (x) < C in ΣD, (4.2.8)

if 0 < α < π
2 , and

1 < φd (x) < C in ΣD, (4.2.9)

if π2 6 α 6 π, where C depends only on D and Σ.
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Proof. Applying the transformation inverse to the one at the beginning of this subsection and
using the existence of barrier functions for the operator −∆+ 1, as shown in [31], Lemma 3.1,
we get existence. Uniqueness and positivity of φd follows from the maximum principle.

To prove the estimates (4.2.8) and (4.2.9), we can reason as in [31], Lemma 3.4, or in [62],
Lemma 4.2. In the case 0 < α < π

2 , we have that φd− (x) ≡ tanα√
tan2α+1

in ΣD is a subsolution

to (4.2.7), since dist (Q0,∂ΣD) = tanα√
tan2α+1

; whereas, in the case π
2 6 α 6 π, we have that

dist (Q0,∂ΣD) = 1, and then the subsolution is given by φd− (x) ≡ 1. Moreover, in both the
two cases, the function φd+ (x) = C+ x1 is a supersolution for C sufficiently large. Then our
claim follows.

We next show some pointwise bounds on φd, which in particular imply a control on the
gradient within some region in the boundary of ΣD. We obtain gradient bounds only near
smooth parts of the boundary, away from the singularity ΓD.

Lemma 4.2.3. Let D > 1 be as in Lemma 4.2.2. Then, there exists a constant C > 0 such that for
any σ > 0 sufficiently small there exist δ̄ > 0 and dσ > 0 so large that

|φd (x)−φd (zx) | 6 C|x− zx|, zx ∈ ∂ΣD, dist (zx,DΓD) > σ, |x− zx| 6 δ̄, d > dσ.

In the above formula zx denotes the point in ∂ΣD closest to x.

Proof. Let us first consider the case 0 < α < π
2 . Let us fix σ > 0 small and consider, for

every 0 < δ < δ̄ = σ tanα, the points x ∈ ΣD of the form z+ δν (z), where z ∈ ∂ΣD and
ν (z) is the inner unit normal at z. Note that there is no problem in the representation of x if
dist (z,DΓD) > σ; whereas if dist (z,DΓD) < σ, we follow the inner normal direction given
by ν (z) and stop at xn = 0 if we reach this hyperplane at a distance from the boundary
smaller than δ̄. Let us call Λδ this set of points x ∈ ΣD at distance δ from the boundary. Note
that the Λδ’s are all disjoint as δ varies in

[
0, δ̄
]
. Now in Λδ we can define the functions

φ1 (x) = |z1 (x) −Q0| +Mδ1 (x) ,

φ2 (x) = |z2 (x) −Q0| +Mδ2 (x) ,

where z1 (x), z2 (x) are the points in ∂ΣD closest to x with the n-th coordinate respectively
positive and negative; δ1 (x), δ2 (x) give the distance of x from z1 (x), z2 (x). If we set

φ̂d+ (x) = min {φ1 (x) ,φ2 (x)} ,

we choose the constant M so large that φ̂d+ (x) > φd (x) when x ∈
{
z+ δ̄ν (z) : z ∈ ∂ΣD

}
. The

existence of such constant M is guaranteed by Lemma 4.2.2.
Next we consider a smooth function ρ ∈ C∞0 (Rn), such that suppρ ⊂ B1 (0), and∫

Rn ρ (x)dx = 1. Moreover we define the function

λ (x) = −
2

δ̄
δ2 (x) + 2δ (x) , for x ∈

{
z+ δν (z) : z ∈ ∂ΣD, δ ∈

[
0, δ̄
]}

.

Then we construct a mollifiers

ρλ(x) (y) =
1

λn (x)
ρ

(
y

λ (x)

)
, (4.2.10)

in such a way that the support of each ρλ(x) depends on the point x, and, in particular, it
shrinks to a point when we are close to the boundary.
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Finally we regularize φ̂d+ using the convolution with the mollifiers defined in (4.2.10). Then
we obtain the following smooth function

φd+ (x) =
(
φ̂d+ ∗ ρλ(·)

)
(x) =

∫
Rn
φ̂d+ (x− y) ρλ(x) (y)dy.

It is easy to see that, for i = 1, . . . ,n− 1,

∂φ1

∂xi
< o (1) −

1

C
M, (4.2.11)

∂φ2

∂xi
< o (1) −

1

C
M. (4.2.12)

Moreover, using (4.2.11) and (4.2.12), we have that

∂φd+
∂xi

=

∫
Rn

∂φ̂d+
∂xi

(x− y) ρλ(x) (y)dy+

∫
Rn
φ̂d+ (x− y)

∂ρλ(x)

∂λ
(y)

∂λ

∂xi
(x)dy

6 o (1) −
1

C
M+

∫
Rn
φ̂d+ (x− y)

∂ρλ(x)

∂λ
(y)

∂λ

∂xi
(x)dy. (4.2.13)

Now we need an estimate for the last term in (4.2.13), let us call it A. If we add and subtract
φ̂d+ (x) in the integral, we obtain

A =

∫
Rn
φ̂d+ (x)

∂ρλ(x)

∂λ
(y)

∂λ

∂xi
(x)dy+

∫
Rn

[
φ̂d+ (x− y) − φ̂d+ (x)

] ∂ρλ(x)

∂λ
(y)

∂λ

∂xi
(x)dy

=
∂λ

∂xi
(x)

∫
Rn

[
φ̂d+ (x− y) − φ̂d+ (x)

] ∂ρλ(x)

∂λ
(y)dy;

in the last step we have used the fact that φ̂d+ (x) and ∂λ
∂xi

(x) do not depend on y, and the fact

that
∫

Rn
∂ρλ(x)

∂λ (y)dy = ∂
∂λ

∫
Rn ρλ(x) (y)dy = 0, since

∫
Rn ρλ(x) (y)dy = 1, for every λ > 0.

Now, from (4.2.10), a simple computation yields

∂ρλ(x)

∂λ
(y) = −nλ−n−1 (x) ρ

(
y

λ (x)

)
− λ−n−2 (x)y∇ρ

(
y

λ (x)

)
.

Then, using the fact that ∂λ∂xi (x) ' −Cxi, for some positive constant C, and making the change
of variable y = λ (x) z, we have

A = Cλ−1 (x) xi

∫
Rn

[
φ̂d+ (x− λ (x) z) − φ̂d+ (x)

]
· [ρ (z) + z∇ρ (z)]dz. (4.2.14)

Since φ̂d+ is a Lipschitz function, from (4.2.14) we get that

A 6 Cxi

∫
Rn

|z| · [ρ (z) + z∇ρ (z)]dz,

and then A 6 o (1). It follows that, for M sufficiently large, the norm of ∇φd+ can be
arbitrarily big on its domain. By (4.2.8), if M is large then φd+ is everywhere bigger than φd

on ΣD ∩
{
dist (·,∂ΣD) = δ̄

}
, so φd+ is a supersolution of (4.2.7) in ΣD ∩

{
dist (·,∂ΣD) < δ̄

}
.

On the other hand, we claim that the function φd− (x) = |x−Q0| is a subsolution of (4.2.7)
in ΣD ∩

{
dist (·,∂ΣD) < δ̄

}
. In fact, if we consider the set ΣD \ Bδ̃(d) (Q0), where δ̃ (d) is a

small positive number depending on d, we can see by easy computation that here φd− satisfies

1

d
∆φd− − |∇φd−|2 + 1 =

n− 1

d|x−Q0|
.
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Moreover, since φd is positive, we can choose δ̃ (d) sufficiently small so that φd− < φd. Hence
we obtain that φd− 6 φd in the closure of ΣD ∩

{
dist (·,∂ΣD) < δ̄

}
.

Finally, the conclusion follows from the fact that φd− and φd+ coincide on the set

{x ∈ ∂ΣD : dist (x,DΓD) > σ}

and that we have uniform bounds on the gradient here, independently on d.
In the case π

2 6 α 6 π, we can repeat essentially the same construction of the proof of
Lemma 3.5 in [31] and obtain the same conclusion.

Using the same arguments as in Lemma 3.6 in [31] we are able to extend the gradient
estimate which follows from the previous lemma to a subset of the interior of the domain.

Lemma 4.2.4. Let D > 1 be as in Lemma 4.2.2. Then, there exists a constant C > 0 such that for
any σ > 0 sufficiently small there exists dσ > 0 so large that

|∇φd (x) | 6 C in
{
x ∈ ΣD : dist (x,DΓD) > σ

}
, d > dσ. (4.2.15)

The next proposition is about the asymptotic behavior of the solutions of (4.2.7).

Lemma 4.2.5. Let φd be the solution of (4.2.7), then we have that

φd (x)→ φ (x) := inf
z∈∂ΣD

(|x− z| + |z−Q0|) , as d→∞, (4.2.16)

uniformly on the compact sets of ΣD.

Proof. We will show (4.2.16) in two steps:

1) we prove that the function on the right-hand side of (4.2.16) is the supremum of all the
elements of

F = {v ∈W1,∞ (ΣD) : v (x) 6 |x−Q0| on ∂ΣD, |∇v| 6 1 a.e. in ΣD};

2) we prove that for any sequence dk → ∞, there is a subsequence dkl → ∞ such that
φ
dkl → φ uniformly on the compact sets of ΣD as dkl → ∞. Then it follows that
φd → φ uniformly on the compact sets of ΣD as d→∞.

We first prove 1). To begin we show that φ ∈ F. If x1, x2 ∈ ΣD and z2 ∈ ∂ΣD realizes the
infimum for x2, we have

|φ (x1) −φ (x2) | 6 ||x1 − z2| + |z2 −Q0| − |x2 − z2| − |z2 −Q0|| 6 |x1 − x2|.

Then, taking x1, x2 close, we get φ ∈W1,∞ (ΣD) and |∇φ| 6 1 a. e. in ΣD. Moreover, it is easy
to see that φ (x) = |x−Q0| if x ∈ ∂ΣD. We next show that φ is the maximum element of F. We
construct a δ neighborhood ΣδD of ΣD in this way: consider Q0 = (−1, 0, · · · , 0) and, for every
z ∈ ∂ΣD, the line from Q0 to z. If δ > 0 is small enough, each point x in ΣδD \ ΣD is uniquely
determined by the equation x = z+ δr (z), where z ∈ ∂ΣD is the intersection point of the line
from Q0 to x with ∂ΣD, r (z) is the unit outer vector on the line, and 0 < δ < δ

cosθ(z) ; here
θ (z) is the angle between r (z) and the unit outer normal at z, ν (z), in the plane generated by
r (z) and ν (z). Note that for the point on the boundary z ∈ {z1 = zn = 0} we can consider
ν (z) just taking the normal to the hypersurface defined by the equation x1 tanα+ xn = 0 or
to the one defined by the equation x1 tanα− xn = 0, and it is well defined since the angle
θ (z) is the same for those points. In addition, the map x→

(
z, δ
)

is continuous in ΣδD \ ΣD.
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Now, we can extend every v ∈ F to a ṽ ∈W1,∞ (ΣδD), taking v = ṽ in ΣD and ṽ (x) = v (z) for
x ∈ ΣδD \ ΣD. Moreover, if we consider the function

K̃ (x) =

{
1 in ΣD,

1+Cδ in ΣδD \ ΣD,

for some large constant C > 0 independent of δ, we get |∇ṽ| 6 K̃ a. e. in ΣδD. Now, we
regularize ṽ using the convolution with mollifiers, that is considering, for λ > 0 small enough,
vλ := ṽ ∗ ρλ, with ρλ (x) = λ−nρ (x/λ), ρ ∈ C∞0 (Rn), suppρ ⊂ B1 (0),

∫
Rn ρ (x)dx = 1. Then

we have

|∇vλ| 6 |∇ṽ| ∗ ρλ 6 K̃ ∗ ρλ 6 1+Cλ

on ΣD and vλ → v in C (ΣD) as λ → 0. Let now x,y ∈ ΣD and consider the function
ξ (t) = tx+ (1− t)y, for t ∈ [0, 1]; then we can estimate

|vλ (x) − vλ (y) | 6
∫1
0

|∇vλ (ξ (t)) | · |dξ
dt

|dt 6
∫1
0

|1+Cλ| · |x− y|dt 6 (1+Cλ) · |x− y|.

Letting λ → 0, we obtain |v (x) − v (y) | 6 |x− y|. Hence v (x) 6 v (y) + |x− y|, and v (x) 6
|y−Q0| + |x− y| for all y ∈ ∂ΣD. So v 6 φ.

We next prove 2). By gradient estimate and the Ascoli-Arzelà theorem we know that the
φd’s admit limit φ̂ in the whole closure of ΣD. Moreover it is easy to see that φ̂ belong to
the set F; hence φ̂ 6 φ. We need then to prove only φ 6 φ̂. Let v ∈ F. Similarly to 1), we
extend v to ṽ in ΣδD and regularize ṽ to vλ in such a way that we have ‖v− vλ‖L∞(ΣD) 6 Cλ

and |∇ṽ| 6 K̃. Hence as before we get |∇vλ| 6 1+Cλ on ΣD and vλ → v in C (ΣD) as λ→ 0.
By simple computation we obtain that vλ satisfies{

1
d∆vλ − |∇vλ|2 + 1+Cλ+ 1

dAλ > 0 in ΣD,

vλ 6 |x−Q0| +Cλ on ∂ΣD,

where Aλ > 0. If we define

ṽλ :=
vλ√

1+Cλ+ 1
dAλ

,

by comparison we deduce that

ṽλ 6 φ
d
√
1+Cλ+ 1

dAλ +Cλ. (4.2.17)

Choosing d = d ′kl in (4.2.17) such that

dkl = d ′kl

√
1+Cλ+

1

d ′kl
Aλ,

we see that

vλ√
1+Cλ

6 φ̂+Cλ

as d ′kl →∞. Then, letting λ→ 0, we obtain v 6 φ̂; in particular, φ 6 φ̂. Hence φ = φ̂.

46



Next we analyze the asymptotic behavior of the solutions of (4.2.5). From now on in this
subsection we study separately the two cases 0 < α < π

2 and π
2 6 α 6 π. Let us consider the

first case.

Proposition 4.2.6. Suppose that 0 < α < π
2 . Let D be a large fixed constant and Φd the solution of

(4.2.5). Then we have

Φd (x)→ min {d1 (x) ,d2 (x)} , as d→∞,

uniformly on the compact sets of ΣD ∩ B̄D
4

(0), where

d1 (x) :=

√(
x1 −

tan2 α− 1

tan2 α+ 1

)2
+ |x ′′|2 +

(
xn −

2 tanα
tan2 α+ 1

)2
, (4.2.18)

d2 (x) :=

√(
x1 −

tan2 α− 1

tan2 α+ 1

)2
+ |x ′′|2 +

(
xn +

2 tanα
tan2 α+ 1

)2
. (4.2.19)

Remark 4.2.7. Note that d1 and d2 are the distance functions, respectively, from the point

Q1 =
(

tan2α−1
tan2α+1

, 0, · · · , 0, 2 tanα
tan2α+1

)
, which is the symmetrical point to Q0 with respect to

the hypersurface defined by the equation x1 tanα + xn = 0, and from the point Q2 =(
tan2α−1
tan2α+1

, 0, · · · , 0, − 2 tanα
tan2α+1

)
, which is the symmetrical point to Q0 with respect to the

hypersurface defined by the equation x1 tanα− xn = 0. So the function φ (x) is even with
respect to the coordinate xn and a.e. differentiable. The problem is that it does not have zero
xn-derivative on {xn = 0}.

Proof. If φd is a solution of (4.2.7), it is easy to see that

φd + sup
x∈∂ΣD

||x−Q0| +
1

d
log (U (d (x−Q0))) |

is a supersolution of (4.2.5) and

φd − sup
x∈∂ΣD

||x−Q0| +
1

d
log (U (d (x−Q0))) |

is a subsolution. Then Φd must lie in between these two functions. Hence, by Lemma 4.2.1,
it is sufficient to prove the analogous statement for φd. The proof of the latter fact is a
consequence of Lemma 4.2.5 and the following Lemma 4.2.8.

Lemma 4.2.8. Suppose that 0 < α < π
2 . If φ (x) is as in (4.2.16), then

φ (x) = min {d1 (x) ,d2 (x)} , x ∈ B̄D
4

(0) ,

where d1 and d2 are as in (4.2.18) and (4.2.19).

Proof. Consider a point x = (x1, · · · , xn) with xn > 0.
By construction of ΣD, the point z ∈ ∂ΣD which realizes the infimum will necessarily

belong to the set {{x1 tanα+ xn = 0}∩ {x1 < 0}}. This implies that

φ (x) = inf
z∈{{x1 tanα+xn=0}∩{x1<0}}

(|x− z| + |z−Q0|) .
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Now we can reason as follows: given x, the level sets of the function z→ |x− z| + |z−Q0| are
the axially symmetric ellipsoids with focal points x and Q0. The smaller is the ellipsoid, the
smaller is the value of this function; so we are reduced to find the smallest ellipsoid which
intersects {{x1 tanα+ xn = 0}∩ {x1 < 0}}. We note that if we fix x1, xn and vary only x ′′, the
corresponding infimum z has the same z1, zn and different z ′′; so we can determine z1, zn
in the simplest case x ′′ = (0, · · · , 0), and obviously z ′′ = (0, · · · , 0). Then we are reduced to
consider the minimum problem

min
(z1,zn)∈{{x1 tanα+xn=0}∩{x1<0}}

(√
(x1 − z1)

2 + (xn + tanαz1)
2 +

√
(z1 + 1)2 + tan2 αz21

)
.

Deriving with respect to the variable z1 we obtain that at a minimum point

−(x1 − z1) + tanα (xn + tanαz1)√
(x1 − z1)

2 + (xn + tanαz1)
2

+
(z1 + 1) + tan2 αz1√
(z1 + 1)2 + tan2 αz21

= 0,

which implies

z1 =
−2 tanαx1 +

(
tan2 α− 1

)
xn(

tan2 α+ 1
)
(tanαx1 + xn − tanα)

, (4.2.20)

zn =
2 tan2 αx1 − tanα

(
tan2 α− 1

)
xn(

tan2 α+ 1
)
(tanαx1 + xn − tanα)

. (4.2.21)

Now assume that x ′′ 6= (0, · · · , 0) and x1, xn are as before. By the previous observation we
know that the coordinates z1, zn of the corresponding infimum are given by (4.2.20) and
(4.2.21). So we have to determine only z ′′. To do this let us consider the minimum problem

min
z ′′∈Rn−2

(√
(x1 − z1)

2 + |x ′′ − z ′′|2 + (xn + tanαz1)
2 +

√
(z1 + 1)2 + |z ′′|2 + tan2 αz21

)
.

(4.2.22)

Again by differentiation we obtain that a minimum point must satisfy

z ′′ − x ′′√
(x1 − z1)

2 + |x ′′ − z ′′|2 + (xn + tanαz1)
2

+
z ′′√

(z1 + 1)2 + |z ′′|2 + tan2 αz21

= 0,

which gives

z ′′ = x ′′

√
(z1 + 1)2 + tan2 αz21√

(x1 − z1)
2 + (xn + tanαz1)

2 +

√
(z1 + 1)2 + tan2 αz21

. (4.2.23)

If we plug (4.2.20), (4.2.21) and (4.2.23) into (4.2.22), we obtain that φ (x) = d1 (x). Reasoning
in the same way for points with xn < 0, we have φ (x) = d2 (x). Then we get the conclusion.

Remark 4.2.9. Note that φ is a viscosity solution of the Hamilton-Jacobi equation |∇φ|2 = 1

in ΣD. In fact, what we have to show is that

i) |p|2 6 1, for every x ∈ ΣD and every p ∈ D+φ (x),

ii) |p|2 > 1, for every x ∈ ΣD and every p ∈ D−φ (x),
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where D+φ (x) and D−φ (x) are respectively the superdifferential and the subdifferential of
φ at x. Now we can use the description of D+φ (x) and D−φ (x) given in Theorem 3.4.4 in
[15]: let Ω ⊂ Rn be open and S ⊂ Rm be compact; let F = F (s, x) be continuous in S×Ω
together with its partial derivative DxF, and let us define u (x) = mins∈S F (s, x); given x ∈ Ω,
let us set

M (x) = {s ∈ S : u (x) = F (s, x)} , Y (x) = {DxF (s, x) : s ∈M (x)} .

Then, for any x ∈ Ω,

D+u (x) = co (Y (x)) , (4.2.24)

and

D−u (x) =

{
{p} if Y (x) = p,

∅ if Y (x) is not a singleton.
(4.2.25)

Now we can take Ω = ΣD, S = {Q1,Q2} and φ (x) = mini∈{1,2} {di (x)}; so

M (x) =
{
Qi : φ (x) = di (x)

}
, Y (x) = {Dxdi (x) : Qi ∈M (x)} .

Then, using (4.2.24) and (4.2.25), it is easy to see that, if we take x ∈ ΣD with xn > 0, then
D+φ (x) = D−φ (x) = {Dxd1 (x)}; in the same way, if xn < 0, then D+φ (x) = D−φ (x) =

{Dxd2 (x)}. So in these two cases properties i), ii) are trivially verified. In the case xn = 0,
we have that φ (x) = d1 (x) = d2 (x); then M (x) = {Q1,Q2} and Y (x) = {Dxd1 (x) ,Dxd2 (x)}.
Hence, using again (4.2.24), (4.2.25), we obtain D+φ (x) = co

{
x−Q1
d1(x) , x−Q2

d2(x)

}
=
x−co{Q1,Q2}

φ(x)

and D−φ (x) = ∅. Then we have only to prove property i), since ii) is again trivially verified.
To show i) it is sufficient to observe that every p ∈ D+φ (x) is of the form p = x−Q

φ(x)
, where Q

belongs to the line joining Q1 to Q2, and that |x−Q| 6 φ (x).

Let us consider now the case π2 6 α 6 π. We have the analogous of the Proposition 4.2.6.

Proposition 4.2.10. Suppose that π2 6 α 6 π. Let D be a large fixed constant and Φd the solution
of (4.2.5). Then we have

Φd (x)→ Φ̄ (x) , as d→∞, (4.2.26)

uniformly on the compact sets of ΣD ∩ B̄D
4

(0), where

Φ̄ (x) =

 min {d1 (x) ,d2 (x)} , if tanα 6
x1−

√
x21+x

2
n

xn
,√(

1+
√
x21 + x2n

)2
+ |x ′′|2, if tanα >

x1−
√
x21+x

2
n

xn
.

(4.2.27)

Proof. We can reason as in the proof of Proposition 4.2.6, obtaining that it is sufficient to show
the convergence in (4.2.26) for the function φd. To prove the latter assertion we have to use
Lemma 4.2.5, together with the fact that in the case π

2 6 α 6 π the function φ defined in
(4.2.16) is equal to that one defined in (4.2.27). We can obtain this expression by mixing the
arguments used in the proof of Lemma 4.2.8 and those used in Lemma 3.9 in [31].
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4.2.2 Case π < α < 2π

In this case we construct the domain Σ in the following way: we consider the set {xn = 0}∩
{x1 6 0} and the hypersurface defined by the equation x1 tanα+ xn = 0 with xn 6 0. Then
we close the domain with a smooth surface; the following figure represents a section of the
domain in the plane x1, xn.

We define the scaled domain ΣD as in (4.2.2) and denote by ΓD the singularity, which lies
on {x1 = xn = 0}. As in the previous case, the solution of a Dirichlet problem in ΣD will be
qualitatively similar to that of (4.2.1).

We have to study the asymptotic behavior of the solution of the problem{
− 1
d2
∆ϕ+ϕ = 0 in ΣD,

ϕ = U (d (·−Q0)) on ∂ΣD,

To do this we consider the function φ = − 1d logϕ, which satisfies{
1
d∆φ− |∇φ|2 + 1 = 0 in ΣD,

φ = − 1d log (U (d (·−Q0))) on ∂ΣD.
(4.2.28)

Since the asymptotic analysis is very similar to that one made in Subsection 4.2.1 for 0 < α 6 π

we will not repeat the computations. What we obtain is the following result:

Proposition 4.2.11. Suppose that π < α < 2π. Let D be a large fixed constant and Φd the solution
of (4.2.28). Then we have

Φd (x)→ dist (x,Q0) =

√
(x1 + 1)2 + |x ′|2, as d→∞,

uniformly on the compact sets of ΣD ∩ B̄D
4

(0).

4.2.3 Definition of the approximate solutions

In order to apply the theory in Section 2.1, in this subsection we construct a manifold of
approximate solutions to (4.1.1). Since the limit function of the solutions of (4.2.5) is not the
same for different angles α, as we have seen in Subsections 4.2.1 and 4.2.2, we will distinguish
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the cases. We will give the precise construction only for 0 < α < π
2 ; in fact in this case the

computations are quite different from the flat case α = π. In the other cases the estimates for
the approximate solutions are the same (for π2 6 α 6 π) or very similar (for π < α < 2π) to
that ones obtained in [31], Subsection 3.2, and then we will omit the proofs.

Case 0 < α < π
2

Since the function ūε,Q defined in Subsection 4.1.1 is an approximate solution of (4.1.1) with
pure Neumann boundary conditions, we need to modify it in the following way. If Φd the
solution of (4.2.5), the function

Ξd (y) = e−dΦ
d(yd+Q0) (4.2.29)

solves the problem {
−∆Ξd + Ξd = 0 in d (ΣD −Q0) ,

Ξd = U (·) on d (∂ΣD −Q0) .
(4.2.30)

We can obtain a solution to (4.2.30) looking at the minimum problem

inf
v=U on d(∂ΣD−Q0)

{∫
d(ΣD−Q0)

(
|∇v|2 + v2

)
dy

}
. (4.2.31)

From (4.2.31) we can derive norm estimate on Ξd. In fact, we can take a cut-off function
χ1 : d

(
ΣD −Q0

)
→ R such that

χ1 (y) = 1 for dist (y,d (∂ΣD −Q0)) 6 1
2 ,

χ1 (y) = 0 for y ∈ d (ΣD −Q0) , dist (y,d (∂ΣD −Q0)) > 1,

|∇χ1 (y) | 6 4 for all y,

and then consider the function v̄ (y) = χ1 (y)U (y). It is easy to see that ‖v̄‖H1(d(ΣD−Q0))
6

e−d(1+o(1)), so by (4.2.31) we find that

‖Ξd‖H1(d(ΣD−Q0))
6 ‖v̄‖H1(d(ΣD−Q0))

6 e−d(1+o(1)). (4.2.32)

We can also obtain pointwise estimates on Ξd. In fact, from Proposition 4.2.6 we obtain that,
as d→ +∞,

Ξd (y) = exp

− min


√√√√(

y1 − d−
d
(
tan2 α− 1

)
tan2 α+ 1

)2
+ |y ′′|2 +

(
yn ∓

2d tanα
tan2 α+ 1

)2


·eo(d), (4.2.33)

for y ∈ d (V −Q0), where V is any set compactly contained in ΣD. Finally, we have pointwise
estimates for the gradient of Ξd. Indeed, using the uniform convergence in (4.2.6) and
reasoning as in the proof of Lemmas 4.2.3 and 4.2.4, we obtain that (4.2.15) holds true also for
Φd. Then we can apply the arguments in [46] (see in particular Proposition 1.4, Lemma 1.5
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and Lemma B.1) to conclude that ∇Φd → ∇φ uniformly as d → +∞ in any set compactly
contained in ΣD on which ∇φ is defined. This convergence implies that, as d→ +∞,

∇Ξd (y) =

− exp

− min


√√√√(

y1 − d−
d
(
tan2 α− 1

)
tan2 α+ 1

)2
+ |y ′′|2 +

(
yn ∓

2d tanα
tan2 α+ 1

)2


·eo(d) ·
(
∇φ

(y
d

+Q0

)
+ o (1)

)
, (4.2.34)

for y ∈ d (V −Q0), where V is as before.
Now, we want to obtain similar bounds and estimates for ∂Ξd∂d and its gradient. Using the

definition of Ξd (y) = ϕ
(y
d +Q0

)
and the fact that also ϕ depends on d, we have that

∂Ξd

∂d
(y) =

∂ϕ

∂d

(y
d

+Q0

)
−
y

d2
· ∇ϕ

(y
d

+Q0

)
. (4.2.35)

Since ϕ is the solution of (4.2.4), we can differentiate (4.2.4) obtaining{
− 1
d2
∆∂ϕ∂d + ∂ϕ

∂d = − 2
d3
∆ϕ = − 2dϕ in ΣD,

∂ϕ
∂d (x) = ∇U (d (x−Q0)) · (x−Q0) on ∂ΣD,

(4.2.36)

Because of the asymptotic behavior of U at infinity, there exists a positive constant CD such
that for d large we have

1

CD
U (d (x−Q0)) 6 −∇U (d (x−Q0)) · (x−Q0) 6 CDU (d (x−Q0)) . (4.2.37)

Hence, from (4.2.4), (4.2.37), the fact that ϕ > 0 and the maximum principle we obtain
that σ := −∂ϕ∂d > 1

CD
ϕ in Γ̂D. Moreover, as for (4.2.5) we can check that the function

Υd := − 1d logσ satisfies{
1
d∆Υ

d + |∇Υd|2 + 1− ϕ
dσ = 0 in ΣD,

Υd (x) = − 1d log (−∇U (d (x−Q0)) · (x−Q0)) on ∂ΣD,
(4.2.38)

Since ϕσ stays bounded, ϕdσ tends to zero as d→ +∞. Moreover, using again the asymptotic
behavior of U at infinity, we can say that the boundary datum in (4.2.38) converges in every
smooth sense (where ∂ΣD is regular) to |x−Q0| as d→ +∞. As a consequence, the previous
analysis adapts to Υd and allows to conclude that still

Υd → φ and ∇Υd → ∇φ (4.2.39)

uniformly as d→ +∞ in any set compactly contained in ΣD on which ∇φ is defined.
From (4.2.36), reasoning as for (4.2.32), we have that∥∥∥∥∂ϕ∂d ( ·d +Q0

)∥∥∥∥
H1(d(ΣD−Q0))

6 e−d(1+o(1)). (4.2.40)

On the other hand, from (4.2.30) one finds that the function $ := y
d2
· ∇ϕ

(y
d +Q0

)
=

y
d · ∇Ξd (y) satisfies

−∆$+$ = −
2

d
Ξd in d (ΣD −Q0) .
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To control the boundary value of $ we divide ∂d (ΣD −Q0) into its intersection with {yn = 0}

and its complement. In the first region we have simply that $ = y
d · ∇U (y). In the second

instead the estimates in (4.2.33) and (4.2.34) hold true, which shows that the L2 norm of the

trace of $ on ∂d (ΣD −Q0) is of order e−d(1+o(1)) + e
−d

[
1+ 2 tanα√

tan2 α+1

]
(1+o(1))

. This fact and
the latter formula imply that

‖$‖H1(d(ΣD−Q0))
6 e−d(1+o(1)) + e

−d

[
1+ 2 tanα√

tan2 α+1

]
(1+o(1))

. (4.2.41)

Then, from (4.2.40) and (4.2.41), we conclude that∥∥∥∥∂Ξd∂d
∥∥∥∥
H1(d(ΣD−Q0))

6 e−d(1+o(1)) + e
−d

[
1+ 2 tanα√

tan2 α+1

]
(1+o(1))

. (4.2.42)

Now, using the fact that ϕ 6 CD|∂ϕ∂d | and (4.2.39), together with the Harnack inequality
(which implies |∇ϕ| 6 Cdϕ in d (V −Q0)) one also finds

∂Ξd

∂d
(y) = − exp

− min


√(

y1 −
2d tan2 α
tan2 α+ 1

)2
+ |y ′′|2 +

(
yn ∓

2d tanα
tan2 α+ 1

)2


·eo(d) ·
(
1+ o

(
|y|

d

))
, (4.2.43)

and

|∇∂Ξd
∂d

(y) | 6 exp

− min


√(

y1 −
2d tan2 α
tan2 α+ 1

)2
+ |y ′′|2 +

(
yn ∓

2d tanα
tan2 α+ 1

)2


·eo(d), (4.2.44)

for d (V −Q0) and d→ +∞.

After these preliminaries, we are now in position to introduce our approximate solutions.
Let us define two smooth non negative cut-off functions χD : Rn → R, χ0 : R→ R satisfying
respectively 

χD (y) = 1 for |y| 6 dD
16 ,

χD (y) = 0 for |y| > dD
8 ,

|∇χD| 6 32
dD on Rn,

(4.2.45)

and 
χ0 (y) = 1 for y 6 0,

χ0 (y) = 0 for y > 1,

χ0 is non increasing on R.

(4.2.46)

Now, using the new coordinates y introduced at the end of Section 2.2, we define

uε,Q (y) := χµ0 (εy)
[(
UQ (y) − Ξd (y)

)
χD (y) + εwQ (y)χ0 (y1 − d)

]
. (4.2.47)

Following the line of [31] we prove that the uε,Q’s are good approximate solutions to (4.1.1)
for suitable conditions of Q.
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Proposition 4.2.12. Let µ0 be the constant appearing in Subsection 4.1.1. Then there exists another
constant CΩ, independent of ε, such that, for CΩ 6 d 6 1

εCΩ
and for Dd < µ0

εCΩ
, the functions

uε,Q satisfy

∥∥I ′ε (uε,Q
)∥∥ 6 C

(
ε2 + εe−d(1+o(1)) + e

−d

[
1
2

√
D tanα(tanα+1)

tan2 α+1
+ 2 tanα√

tan2 α+1

]
(1+o(1))

+e−
d(p+1)
2 (1+o(1)) + e

−d

(
p
2+

√
2 tanα√

tan2 α+1

)
(1+o(1)))

, (4.2.48)

for a fixed C > 0 and for ε sufficiently small.

Proof. Using the coordinates y, we can split uε,Q (y) = ūε,Q (y) + ǔε,Q (y), where ūε,Q is
defined in (4.1.2) and

ǔε,Q (y) = χµ0 (εy)
[
(χD (y) − 1)UQ (y) − χD (y)Ξd (y) + ε (χ0 (y1 − d) − 1)wQ (y)

]
.

(4.2.49)

Then, if we test the gradient of Iε at uε,Q on any function v ∈ H1D (Ωε), we obtain

I ′ε
(
uε,Q

)
[v] =

∫
Ωε

(
∇guε,Q∇gv+ uε,Qv

)
dy−

∫
Ωε

u
p
ε,Qvdy

=

∫
Ωε

(
∇gūε,Q∇gv+ ūε,Qv

)
dy−

∫
Ωε

ū
p
ε,Qvdy

+

∫
Ωε

(
∇gǔε,Q∇gv+ ǔε,Qv

)
dy−

∫
Ωε

(
ū
p
ε,Q − u

p
ε,Q

)
vdy

= I ′ε
(
ūε,Q

)
[v] +A1 +A2, (4.2.50)

where

A1 =

∫
Ωε

(
∇gǔε,Q∇gv+ ǔε,Qv

)
dy; A2 =

∫
Ωε

(
ū
p
ε,Q − u

p
ε,Q

)
vdy.

By Proposition 4.1.1 and in particular by (4.1.4) we have that I ′ε
(
ūε,Q

)
[v] is of order at most

ε2. Hence we only need to estimate A1 and A2 in the last line of (4.2.50).
To estimate A1 we divide further ǔε,Q = ǔε,Q,1 + ǔε,Q,2 + ǔε,Q,3, where

ǔε,Q,1 (y) = χµ0 (εy) (χD (y) − 1)UQ (y) ; ǔε,Q,2 (y) = χµ0 (εy)χD (y)Ξd (y) ;

ǔε,Q,3 (y) = χµ0 (εy) ε (χ0 (y1 − d) − 1)wQ (y) .

Then we write A1 = A1,1 +A1,2 +A1,3, with

A1,i =

∫
Ωε

(
∇gǔε,Q,i∇gv+ ǔε,Q,iv

)
dy, i = 1, 2, 3.

Since χD (y) is identically equal to 1 for |y| 6 dD
16 and since χ0 (y1 − d) − 1 = 0 for y1 6 d,

from (4.0.3) and (4.1.3) we get

|A1,1| 6 e−
dD
16 (1+o(1)) ‖v‖H1D(Ωε) ; |A1,3| 6 Cε

(
1+ |d|K

)
e−d ‖v‖H1D(Ωε) . (4.2.51)

To control A1,2 we write that

A1,2 =

∫
Ωε

(
∇gǔε,Q,2∇gv+ ǔε,Q,2v

)
dy =

∫
Ωε

(
gij∂iǔε,Q,2∂jv+ ǔε,Q,2v

)
dy

=

∫
Ωε

(
∇ǔε,Q,2∇v+ ǔε,Q,2v

)
dy+

∫
Ωε

(
gij − δij

)
∂iǔε,Q,2∂jvdy.
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From the condition (c) in Subsection 2.2 we have that |gij − δij| 6 Cε|y|; then

∣∣∣A1,2 −

∫
Ωε

(
∇ǔε,Q,2∇v+ ǔε,Q,2v

)
dy
∣∣∣ 6 Cε

(∫
Ωε

|y|2|∇ǔε,Q,2|
2dy

) 1
2

‖v‖H1D(Ωε) .

Since the support of ǔε,Q,2 is contained in the set
{
|y| 6 dD

8

}
, we obtain from the last formula

and (4.2.32) that∣∣∣A1,2 −

∫
Ωε

(
∇ǔε,Q,2∇v+ ǔε,Q,2v

)
dy
∣∣∣ 6 CεdDe−d(1+o(1)) ‖v‖H1D(Ωε) .

Now, since Ξd satisfies (4.2.30), we have∫
Ωε

(
∇ǔε,Q,2∇v+ ǔε,Q,2v

)
dy =

∫
Ωε

(
∇
(
Ξd (y)

(
χµ0 (εy)χD (y) − 1

))
∇v

+Ξd (y)
(
χµ0 (εy)χD (y) − 1

)
v
)
dy. (4.2.52)

Since also Dd < 1
CΩ

µ0
ε , the function χµ0 (εy)χD (y) − 1 is identically zero in the set{

|y| 6 dD
16

}
if CΩ is sufficiently large. Then, using (4.2.33), (4.2.34) and the Hölder inequality,

we find that (also for D large)∣∣∣ ∫
Ωε

(
∇
(
Ξd (y)

(
χµ0 (εy)χD (y) − 1

))
∇v+ Ξd (y)

(
χµ0 (εy)χD (y) − 1

)
v
)
dy
∣∣∣

6 e
−

[
dD
16 +d

2

√
D tanα(tanα+1)

tan2 α+1
+ 2d tanα√

tan2 α+1

]
(1+o(1))

‖v‖H1D(Ωε) . (4.2.53)

The last three formulas imply

|A1,2| 6 C

εdDe−d(1+o(1)) + e
−

[
dD
16 +d

2

√
D tanα(tanα+1)

tan2 α+1
+ 2d tanα√

tan2 α+1

]
(1+o(1))

 ‖v‖H1D(Ωε) .

From (4.2.51) and the latter formula it follows that

|A1| 6 C
[
εdDe−d(1+o(1)) + e

−

[
dD
16 +d

2

√
D tanα(tanα+1)

tan2 α+1
+ 2d tanα√

tan2 α+1

]
(1+o(1))

+ε
(
1+ |d|K

)
e−d

]
· ‖v‖H1D(Ωε) . (4.2.54)

It remains to estimate A2. First of all, let us recall that the following inequality holds:

|ū
p
ε,Q − u

p
ε,Q| 6

{
C|ūε,Q|p−1|ǔε,Q| for ǔε,Q ∈

(
0, 12 ūε,Q

)
,

C|ūε,Q|p−1|ǔε,Q| +C|ǔε,Q|p otherwise,
(4.2.55)

for a fixed constant C depending only on p. Moreover, using (4.0.3) and (4.1.3), we can say
that there exists a small constant cK,n such that

ūε,Q (y) >
7

8

e−|y|

1+ |y|
n−1
2

; for |y| 6
1

εcK,n
.

We divide next Ωε into the two regions

B1 =

{
|y| < min

{
d

2
,
1

εcK,n

}}
; B2 = Ωε \B1.
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For y ∈ B1 we have that χµ0 (εy) ≡ 1, χD (y) ≡ 1, χ0 (y1 − d) ≡ 1, and hence ǔε,Q (y) ≡

−Ξd (y). By (4.2.33) we have also that |ǔε,Q (y) | = |Ξd (y) | 6 e
−d
2−

√
2d tanα√
tan2 α+1

+o(d)
< 1
2 ūε,Q

for y ∈ B1. This fact, (4.2.55) and the Hölder inequality yield∫
B1

|ū
p
ε,Q −u

p
ε,Q||v|dy 6 C

∫
B1

|ūε,Q|p−1|ǔε,Q||v|dy 6 Ce
−d
2−

√
2d tanα√
tan2 α+1

+o(d)
‖v‖H1D(Ωε) .

On the other hand , in B2 we have that |ū
p
ε,Q| < C

(
e−

d
2+o(d) + e

−
1+o(1)

ε
cK,n

)
and that |ǔε,Q| 6

e−d+o(d); therefore (4.2.55) and the Hölder inequality imply again∫
B2

|ū
p
ε,Q − u

p
ε,Q||v|dy 6 C

[(
e−

(p−1)d
2 +o(d) + e

−
p−1+o(1)

ε
cK,n

)
e−d+o(d) + e−pd+o(d)

]
· ‖v‖H1D(Ωε) .

The last two formulas provide

|A2| 6 C

[
e
−dp
2 −

√
2d tanα√
tan2 α+1

+o(d)
+ e−pd+o(d) +

(
e−

(p−1)d
2 +o(d) + e

−
p−1+o(1)

ε
cK,n

)
e−d+o(d)

]
· ‖v‖H1D(Ωε) . (4.2.56)

Finally, we obtain the conclusion from (4.1.4), (4.2.50), (4.2.54) and (4.2.56).

We have next another estimate for the functional Iε, which allows to say that the condition
ii) ′ in Section 2.1 holds true for Iε and the manifold of the uε,Q’s.

Proposition 4.2.13. Let µ0 be the constant appearing in Subsection 4.1.1. Then there exists another
constant CΩ, independent of ε, such that, for CΩ 6 d 6 1

εCΩ
and for Dd < µ0

εCΩ
, the functions

uε,Q satisfy

∥∥I ′′ε (uε,Q
)
[q]
∥∥ 6 C

(
ε2 + εe−d(1+o(1)) + e

−d

(
1
2

√
D tanα(tanα+1)

tan2 α+1
+ 2 tanα√

tan2 α+1

)
(1+o(1))

+e−
d(p+1)
2 (1+o(1)) + e

−d

(
p
2+

√
2 tanα√

tan2 α+1

)
(1+o(1)))

‖q‖ , (4.2.57)

for some fixed C > 0 and for ε sufficiently small. In the above formula q represents a vector in
H1D (Ωε) which is tangent to the manifold of the uε,Q’s (when Q varies).

Proof. Since the arguments are quite similar to those in the proof of Proposition 4.2.12, we
will be rather quick. Using the fact that det

(
gij
)

= 1 and the first line in (4.2.50), for any
given test function v ∈ H1D (Ωε) we can write that

I ′ε
(
uε,Q

)
[v] =

∑
i,j

∫
Rn+

(
gij∂iuε,Q∂jv+ uε,Qv

)
dy−

∫
Rn+

u
p
ε,Qvdy.

We want to differentiate next with respect to the parameter Q, taking first a variation qT of
the point Q for which d stays fixed, namely we take the tangential derivative to the level set
of the distance d to the interface. Let us notice that in the above formula the dependence on
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Q is in the metric coefficients gij and in the function wQ appearing in the expression of uε,Q
(see (4.2.47)). Therefore we obtain

∂

∂QT
I ′ε
(
uε,Q

)
[v] = I ′′ε

(
uε,Q

) [∂uε,Q

∂QT
, v
]

=
∑
i,j

∫
Rn+

∂gij

∂QT
∂iuε,QT ∂jvdy+

∑
i,j

∫
Rn+

(
gij∂i

∂uε,Q

∂QT
∂jv+

∂uε,Q

∂QT
v

)
dy

−p

∫
Rn+

u
p−1
ε,Q

∂uε,Q

∂QT
vdy. (4.2.58)

From Remark 2.2.1 (ii) we have that ∂gij

∂QT
is of order ε2|y|. Moreover, computing the

expression of ∂uε,Q
∂QT

we obtain ∂uε,Q
∂QT

= εχµ0 (εy)χ0 (y1 − d)
∂wQ
∂QT

= o
(
ε2
(
1+ |y|K

)
e−|y|

)
,

see Subsection 2.2 in [31]. Reasoning as in the proof of Proposition 4.2.12 we then have∥∥∥∥ ∂

∂QT
I ′ε
(
uε,Q

)
[v]

∥∥∥∥ 6 Cε2 ‖v‖H1D(Ωε) for every v ∈ H1D (Ωε) . (4.2.59)

On the other hand, when we take a variation qd of Q along the gradient of d, similarly to
(4.2.58) we get

∂

∂Qd
I ′ε
(
uε,Q

)
[v] = I ′′ε

(
uε,Q

) [∂uε,Q

∂Qd
, v
]

=
∑
i,j

∫
Rn+

∂gij

∂Qd
∂iuε,Qd∂jvdy+

∑
i,j

∫
Rn+

(
gij∂i

∂uε,Q

∂Qd
∂jv+

∂uε,Q

∂Qd
v

)
dy

−p

∫
Rn+

u
p−1
ε,Q

∂uε,Q

∂Qd
vdy. (4.2.60)

Concerning the derivatives of gij with respect to Qd we can argue exactly as for QT , to find∣∣∣∑
i,j

∫
Rn+

∂gij

∂Qd
∂iuε,Qd∂jvdy

∣∣∣ 6 Cε2 ‖v‖H1D(Ωε) .

Now, computing the derivative of uε,Q with respect to Qd is more complicated than the

previous case, because ∂uε,Q
∂Qd

has a more involved expression. If we assume that the cut-off
function χD (y) is defined as χ̄D

(y
d

)
for some fixed χ̄D, we obtain

∂uε,Q

∂Qd
= −χµ0χD

∂Ξd

∂d
+
1

d2
χµ0

(
Ξd −UQ

)
y · ∇χ̄D

(y
d

)
+ εχµ0wQ

∂χ0 (y1 − d)

∂Qd

+εχµ0χ0 (y1 − d)
∂wQ

∂Qd
. (4.2.61)

It is easy to see that the last two terms in the right hand side give a contribution to (4.2.60) of
order at most εed(1+o(1)) ‖v‖H1D(Ωε) and ε2ed(1+o(1)) ‖v‖H1D(Ωε) respectively. Concerning

the second one, we can use the fact that the support of∇χD is contained in the set
{
|y| > dD

16

}
,

together with (4.2.33), (4.2.34) to see that the contribution of this term is at most of ordere−
(
dD
16 +d

2

√
D tanα(tanα+1)

tan2 α+1
+ 2d tanα√

tan2 α+1

)
(1+o(1))

+ e−
dD
16 (1+o(1))

 ‖v‖H1D(Ωε) .
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We can then focus on the first term in the right hand side of (4.2.61), and consider the
quantity

−
∑
i,j

∫
Rn+

(
gij∂i

(
χµ0χD

∂Ξd

∂d

)
∂jv+ χµ0χD

∂Ξd

∂d
v

)
dy+ p

∫
Rn+

u
p−1
ε,Q χµ0χD

∂Ξd

∂d
vdy.

(4.2.62)

Now, using condition (c) at the end of Section 2.2 and (4.2.42), if we substitute the coefficients
gij with the Kronecker symbols we find a difference of order

ε

e−d(1+o(1)) + e
−d

(
1+ 2 tanα√

tan2 α+1

)
(1+o(1))

 .

Next, since Ξd satisfies −∆Ξd + Ξd = 0, when we differentiate with respect to d we get the
same equation for ∂Ξd∂d , so reasoning as for (4.2.52), (4.2.53), together with (4.2.43), (4.2.44),
we find ∣∣∣ ∫

Rn+

(
∇
(
χµ0χD

∂Ξd

∂d

)
· ∇v+ χµ0χD

∂Ξd

∂d
v

)
dy
∣∣∣ 6

Ce
−

(
dD
16 +d

2

√
D tanα(tanα+1)

tan2 α+1
+ 2d tanα√

tan2 α+1

)
(1+o(1))

· ‖v‖H1D(Ωε) .

It remains to estimate the last term in (4.2.62). Using (4.2.42), (4.2.43) and the exponential
decay of uε,Q and reasoning with argument similar to those for (4.2.56), we find that it is of
order

e−d(1+o(1))

e−d
(
p−2
2 +

√
2 tanα√

tan2 α+1

)
+ e−

d(p−1)
2 + o

(
ε2
) ‖v‖H1D(Ωε) .

All the above comments yield that∥∥∥∥ ∂

∂Qd
I ′ε
(
uε,Q

)
[v]

∥∥∥∥ 6

C

ε2 + εe−d(1+o(1)) + e
−d

[
1
2

√
D tanα(tanα+1)

tan2 α+1
+ 2 tanα√

tan2 α+1

]
(1+o(1))

 ‖v‖H1D(Ωε)

+C

e−d(p+1)
2 (1+o(1)) + e

−d

(
p
2+

√
2 tanα√

tan2 α+1

)
(1+o(1))

 ‖v‖H1D(Ωε) . (4.2.63)

From (4.2.59) and (4.2.63) we finally obtain the desired conclusion.

Case π2 6 α 6 π

In this subsection we introduce the manifold of approximate solutions in the case π2 6 α 6 π.
Since the construction is substantially the same as in the previous subsection, we will be
rather sketchy.

Let us consider the solution of (4.2.5),Φd, and the function Ξd defined in (4.2.29). Reasoning
as at the beginning of the Subsection 4.2.3, we derive norm estimate for Ξd:

‖Ξd‖H1(d(ΣD−Q0))
6 e−d(1+o(1)).
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Moreover, from Proposition 4.2.10 we also obtain pointwise estimates for Ξd and its gradient.
Now, using the cut-off functions (4.2.45), (4.2.46), we define, in the new coordinates y

introduced in Subsection 4.1.1, the functions

uε,Q (y) := χµ0 (εy)
[(
UQ (y) − Ξd (y)

)
χD (y) + εwQ (y)χ0 (y1 − d)

]
.

Following the line of the Subsection 4.2.3 we prove that the uε,Q’s are good approximate
solutions to (4.1.1) for suitable conditions of Q. Since the computations in the following
proposition are the same as in Proposition 3.12 and Proposition 3.13 in [31] we will omit the
proof.

Proposition 4.2.14. Let µ0 be the constant appearing in Subsection 4.1.1. Then there exists another
constant CΩ, independent of ε, such that, for CΩ 6 d 6 1

εCΩ
and for Dd < µ0

εCΩ
, the functions

uε,Q satisfy∥∥I ′ε (uε,Q
)∥∥ 6 C

(
ε2 + εe−d(1+o(1)) + e−

d(p+1)
2 (1+o(1)) + e−

3
2d(1+o(1))

)
, (4.2.64)

and ∥∥I ′′ε (uε,Q
)
[q]
∥∥ 6

C
(
ε2 + ε exp−d(1+o(1)) +e−

d(p+1)
2 (1+o(1)) + e−

3
2d(1+o(1))

)
‖q‖ , (4.2.65)

for some fixed C > 0 and for ε sufficiently small. In (4.2.65) q represents a vector in H1D (Ωε) which
is tangent to the manifold of the uε,Q’s (when Q varies).

Case π < α < 2π

In this subsection we introduce the manifold of approximate solutions in the case π < α < 2π.
Also in this case we will be very quick, since the construction is the same as in the previous
subsections.

Let us consider the solution of (4.2.5),Φd, and the function Ξd defined in (4.2.29). Reasoning
as at the beginning of the Subsection 4.2.3, we derive norm estimate for Ξd:

‖Ξd‖H1(d(ΣD−Q0))
6 e−d(1+o(1)).

Moreover, from Proposition 4.2.11 we also obtain pointwise estimates for Ξd and its gradient.
Now, using the cut-off functions (4.2.45), (4.2.46), we define, in the new coordinates y

introduced in Subsection 4.1.1, the functions

uε,Q (y) := χµ0 (εy)
[(
UQ (y) − Ξd (y)

)
χD (y) + εwQ (y)χ0 (y1 − d)

]
.

Following the line of the Subsection 4.2.3 we obtain that the uε,Q’s are good approximate
solutions to (4.1.1) for suitable conditions of Q. Since the computations in the following
proposition are very similar to those in Proposition 3.12 and Proposition 3.13 in [31] we will
omit the proof.

Proposition 4.2.15. Let µ0 be the constant appearing in Subsection 4.1.1. Then there exists another
constant CΩ, independent of ε, such that, for CΩ 6 d 6 1

εCΩ
and for Dd < µ0

εCΩ
, the functions

uε,Q satisfy∥∥I ′ε (uε,Q
)∥∥ 6 C

(
ε2 + εe−d(1+o(1)) + e−

d(p+1)
2 (1+o(1)) + e−

d
2 (1+o(1))

)
, (4.2.66)
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and ∥∥I ′′ε (uε,Q
)
[q]
∥∥ 6

C
(
ε2 + ε exp−d(1+o(1)) +e−

d(p+1)
2 (1+o(1)) + e−

d
2 (1+o(1))

)
‖q‖ , (4.2.67)

for some fixed C > 0 and for ε sufficiently small. In (4.2.67) q represents a vector in H1D (Ωε) which
is tangent to the manifold of the uε,Q’s (when Q varies).

4.3 proof of theorem 4.0.6

To prove our main Theorem we need to derive an expansion in terms of Q and ε of the energy
of approximate solutions. Then we can apply the abstract theory in Section 2.1 to obtain the
existence result.

In the case π
2 6 α 6 π the energy expansions for the approximate solutions uε,Q are

the same as in the case α = π, see Proposition 4.1 and Proposition 4.2 in [31]. Then also
the definition of the critical manifold and the study of the reduced functional are the same.
Therefore for the proof of Theorem 4.0.6 in the case π2 6 α 6 π we refer the reader to Section
4 in [31].

In the case π < α < 2π, even if the approximate solutions are different from the previous
case, the energy expansions turn out to be the same. Then also in this case we omit the proof
of Theorem 4.0.6 and refer the reader to Section 4 in [31].

In the case 0 < α < π
2 the energy expansions are quite different, so we will give the proof

in the details.
From now on we will assume 0 < α < π

2 .

4.3.1 Energy expansions for the approximate solutions uε,Q

Here we expand Iε
(
uε,Q

)
in terms of Q and ε, where uε,Q is the function defined in (4.2.47).

Proposition 4.3.1. For ε→ 0 and d = d (Q)→ +∞, the following expansion holds

Iε
(
uε,Q

)
= C̃0− C̃1εH (εQ) + e−2d(1+o(1)) + e

(
−d− d

√
2 tanα√

tan2 α+1

)
(1+o(1))

+ o
(
ε2
)

, (4.3.1)

where C̃0 and C̃1 are the constants in Proposition 4.1.1.

Proof. As in the proof of Proposition 4.2.12, let us write uε,Q (y) = ūε,Q (y) + ǔε,Q (y), see
(4.1.2) and (4.2.49). Then, using the coordinates y introduced in Subsection 4.1.1, we find that

Iε
(
uε,Q

)
= Iε

(
ūε,Q

)
+

∫
Ωε

(
∇gūε,Q∇gǔε,Q + ūε,Qǔε,Q

)
dy

+
1

2

∫
Ωε

(
|∇gǔε,Q|2 + ǔ2ε,Q

)
dy+

1

p+ 1

∫
Ωε

(
|ūε,Q|p+1 − |uε,Q|p+1

)
dy (4.3.2)

Using condition (c) at the end of Section 2.2 we have that∣∣∣ ∫
Ωε

(
∇gūε,Q∇gǔε,Q + ūε,Qǔε,Q

)
dy−

∫
Rn+

(
∇ūε,Q∇ǔε,Q + ūε,Qǔε,Q

)
dy
∣∣∣

6 Cε

∫
Rn+

|y| · |∇ūε,Q| · |∇ǔε,Q|dy; (4.3.3)
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∣∣∣ ∫
Ωε

(
|∇gǔε,Q|2 + ǔ2ε,Q

)
dy−

∫
Rn+

(
|∇ǔε,Q|2 + ǔ2ε,Q

)
dy
∣∣∣ 6 Cε

∫
Rn+

|y||∇ǔε,Q|2dy. (4.3.4)

Concerning (4.3.3), we can divide the domain of integration into Bd
2

(0) and its complement
and use (4.0.3), (4.1.3), (4.2.32), (4.2.33), (4.2.34) to find

Cε

∫
Rn+

|y| · | ∇ūε,Q| · |∇ǔε,Q|dy 6 Cε

e− 3
2d(1+o(1)) + e

−d

(
1+

√
2 tanα√

tan2 α+1

)
(1+o(1))

 .

For (4.3.4), the same estimates yield

Cε

∫
Rn+

|y| · |∇ǔε,Q|2dy 6 Cε

e−2d(1+o(1)) + e
−d

(
1+

√
2 tanα√

tan2 α+1

)
(1+o(1))

 .

The last two formulas, (4.3.2), (4.3.3), (4.3.4) imply

Iε
(
uε,Q

)
= Iε

(
ūε,Q

)
+

∫
Rn+

(
∇ūε,Q∇ǔε,Q + ūε,Qǔε,Q

)
dy

+
1

2

∫
Rn+

(
|∇ǔε,Q|2 + ǔ2ε,Q

)
dy

+
1

p+ 1

∫
Ωε

(
|ūε,Q|p+1 − |uε,Q|p+1

)
dy

+o

(
ε

(
e−

3
2d(1+o(1)) + e

−d−
√
2d tanα√
tan2 α+1

))
. (4.3.5)

Using the same notation as in the proof of Proposition 4.2.12, we write ǔε,Q = ǔε,Q,1 +

ǔε,Q,2 + ǔε,Q,3. Formulas (4.0.3) and (4.1.3)) imply∣∣∣ ∫
Rn+

(
∇ūε,Q∇ǔε,Q,1 + ūε,Qǔε,Q,1

)
dy
∣∣∣ 6 Ce−

dD
16 (1+o(1));

∣∣∣ ∫
Rn+

(
∇ūε,Q∇ǔε,Q,3 + ūε,Qǔε,Q,3

)
dy
∣∣∣ 6 Cεe−2d(1+o(1)),

from which we deduce that∫
Rn+

(
∇ūε,Q∇ǔε,Q + ūε,Qǔε,Q

)
dy =

∫
Rn+

(
∇ūε,Q∇ǔε,Q,2 + ūε,Qǔε,Q,2

)
dy

+o
(
e−

dD
16 (1+o(1)) + εe−2d(1+o(1))

)
.

Similar estimates also yield∫
Rn+

(
|∇ǔε,Q|2 + ǔ2ε,Q

)
dy =

∫
Rn+

(
|∇ǔε,Q,2|

2 + ǔ2ε,Q,2

)
dy

+o
(
e−

dD
16 −d(1+o(1)) + εe−2d(1+o(1))

)
.

From a straightforward computation one finds that for any function v

∇ǔε,Q,2∇v+ ǔ2ε,Qv =

∇Ξd · ∇
(
χµ0 (ε·)χDv

)
+ Ξdχµ0 (ε·)χDv+∇

(
χµ0 (ε·)χD

)
(Ξd∇v− v∇Ξd) .
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Applying this relation for v = ūε,Q and v = ǔε,Q,2 respectively, and using (4.0.3), (4.1.3),
(4.2.32), (4.2.33) and (4.2.34) we find that∫

Rn+

(
∇ūε,Q∇ǔε,Q,2 + ūε,Qǔε,Q,2

)
dy =∫

Rn+

(
∇
(
χµ0 (ε·)χDūε,Q

)
∇Ξd + χµ0 (ε·)χDūε,QΞd

)
dy

+o
(
e
−

(
d+

√
2d tanα√
tan2α+1

)
(1+o(1))

+ e−
3
2d(1+o(1))

+e
−

(
dD
16 +d

2

√
D tanα(tanα+1)

tan2 α+1
+ 2d tanα√

tan2 α+1

)
(1+o(1)))

;

∫
Rn+

(
|∇ǔε,Q,2|

2 + ǔ2ε,Q,2

)
dy =

∫
Rn+

(
|∇
(
χµ0 (ε·)χDΞd

)
|2 +

(
χµ0 (ε·)χDΞd

)2)
dy.

Using now the fact that, by our construction, the function

χµ0 (ε·)χDuε,Q = χµ0 (ε·)χD
(
ūε,Q + ǔε,Q

)
vanishes on d (∂ΣD −Q0), from (4.2.30) we obtain∫

Rn+

(
∇
(
χµ0 (ε·)χDūε,Q

)
∇Ξd + χµ0 (ε·)χDūε,QΞd

)
dy

+
1

2

∫
Rn+

(
|∇
(
χµ0 (ε·)χDΞd

)
|2 +

(
χµ0 (ε·)χDΞd

)2)
dy

=
1

2

∫
Rn+

(
∇
(
χµ0 (ε·)χDūε,Q

)
∇Ξd + χµ0 (ε·)χDūε,QΞd

)
dy.

From (4.3.5) and the last eight formulas we find

Iε
(
uε,Q

)
= Iε

(
ūε,Q

)
+
1

2

∫
Rn+

(
∇ūε,Q∇ǔε,Q + ūε,Qǔε,Q

)
dy

+
1

p+ 1

∫
Ωε

(
|ūε,Q|p+1 − |uε,Q|p+1

)
dy

+o

(
e−

dD
16 (1+o(1)) + e

−d−
√
2d tanα√
tan2 α+1

(1+o(1))

+ ε
(
e−

3
2d(1+o(1)) + e

−d−
√
2d tanα√
tan2 α+1

(1+o(1))))
.

From (4.0.3), (4.1.3), (4.1.4) and (4.2.32) we have that∫
Rn+

(
∇ūε,Q∇ǔε,Q + ūε,Qǔε,Q

)
dy = I ′ε

(
ūε,Q

) [
ǔε,Q

]
+

∫
Ωε

|ūε,Q|pǔε,Qdy

6 Cε2e−d(1+o(1)) +

∫
Ωε

|ūε,Q|pǔε,Qdy,
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and then

Iε
(
uε,Q

)
= Iε

(
ūε,Q

)
+
1

2

∫
Ωε

|ūε,Q|pǔε,Qdy+
1

p+ 1

∫
Ωε

(
|ū
p+1
ε,Q − |uε,Q|p+1

)
dy

+o

(
e−

dD
16 (1+o(1)) + e

−d−
√
2d tanα√
tan2 α+1

(1+o(1))

+ ε
(
e−

3
2d(1+o(1)) + e

−d−
√
2d tanα√
tan2 α+1

(1+o(1))))
+o
(
ε2e−d(1+o(1))

)
. (4.3.6)

Using a Taylor expansion we can write that

|ūε,Q|p+1 − |uε,Q|p+1

=

 −(p+ 1) |ūε,Q|p|ǔε,Q| + o
(
|ūε,Q|p−1ǔ2ε,Q

)
for ǔε,Q ∈

(
0, 12 ūε,Q

)
,

o
(
|ūε,Q|p|ǔε,Q| + |ǔε,Q|p+1

)
otherwise,

(4.3.7)

As for the estimate of A2 in (4.2.56), we divide the domain into the two regions B1, B2, and
deduce that

1

p+ 1

∫
Ωε

(
|ūε,Q|p+1 − |uε,Q|p+1

)
dy = −

∫
Ωε

|ūε,Q|pǔε,Qdy

+o

(
e
−
d(p+1)
2 − 2d

√
2 tanα√

tan2 α+1
(1+o(1))

+ e−
d(p+2)
2 (1+o(1)) + e−d(1+o(1))e

− 1

ε
cK,n

)
.

Therefore using (4.3.6) the energy becomes

Iε
(
uε,Q

)
= Iε

(
ūε,Q

)
−
1

2

∫
Ωε

|ūε,Q|pǔε,Qdy

+o

(
e
−d−

√
2d tanα√
tan2 α+1

(1+o(1))
+ e−

d(p+2)
2 (1+o(1))

)

+o

(
ε

(
exp− 3

2 (1+o(1)) +e
−d−

√
2d| tanα|√
tan2 α+1

(1+o(1))

)
+ ε2e−d(1+o(1))

)
.

From (4.2.33), the expression of ǔε,Q and the estimates in the same spirit as above one finds
that ∫

Ωε

|ūε,Q|pǔε,Qdy = −

(
e−2d(1+o(1)) + e

−d−
√
2d tanα√
tan2 α+1

(1+o(1))

)
,

and hence from Proposition 4.1.1 we finally find

Iε
(
uε,Q

)
= C̃0 − C̃1εH (εQ) +O

(
ε2
)

+ e−2d(1+o(1)) + e
−d−

√
2d tanα√
tan2 α+1

(1+o(1))

+o

(
e
−d−

√
2d tanα√
tan2 α+1

(1+o(1))
+ e−

d(p+2)
2 (1+o(1))

)

+o

(
ε

(
e−

3
2 (1+o(1)) + e

−d−
√
2d tanα√
tan2 α+1

(1+o(1))

)
+ ε2e−d(1+o(1))

)
. (4.3.8)

The conclusion follows from the Schwartz inequality.
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We give also a related result about the computation of the derivative of the energy with
respect to Q. Again, we will be rather sketchy in the proof since the arguments are quite
similar to the previous ones.

Proposition 4.3.2. For ε→ 0 and d = d (Q)→ +∞, the following expansions hold

∂

∂QT
Iε
(
uε,Q

)
= −C̃1ε

2∇TH (εQ) + o
(
ε2
)

; (4.3.9)

∂

∂Qd
Iε
(
uε,Q

)
= −C̃1ε

2∇dH (εQ) − e

(
−d− d

√
2 tanα√

tan2 α+1

)
(1+o(1))

+ o
(
ε2
)

, (4.3.10)

where C̃0 and C̃1 are the constants in Proposition 4.1.1.

Proof. After some elementary calculations, recalling the definition of ūε,Q in (4.1.2), we can
write

I ′ε
(
uε,Q

) [∂uε,Q

∂Q

]
=

∂

∂Q
Iε
(
ūε,Q

)
+

∫
Ωε

(
∇gūε,Q∇g

∂ǔε,Q

∂Q
+ ūε,Q

∂ǔε,Q

∂Q

)
dy

−

∫
Ωε

ū
p
ε,Q

∂ǔε,Q

∂Q
dy

+

∫
Ωε

(
∇gǔε,Q∇g

∂uε,Q

∂Q
+ ǔε,Q

∂uε,Q

∂Q

)
dy

+

∫
Ωε

(
ū
p
ε,Q − u

p
ε,Q

) ∂uε,Q

∂Q
dy, (4.3.11)

where ǔε,Q = uε,Q − ūε,Q was defined in (4.2.49). The first term on the right hand side is
estimated in Proposition 4.1.1. The next two, integrating by parts and using Proposition 4.1.1,
can be estimated in terms of a quantity like

Cε2
∫
Ωε

(
1+ |y|K

)
|
∂ǔε,Q

∂Q
|dy.

From the same arguments as in the proof of Proposition 4.2.13 one deduces that the latter

integral is of order ε2
(
e−2d(1+o(1))+

−d−
√
2d tanα√
tan2 α+1

(1+o(1))

)
. To control the first integral in

the last line of (4.3.11) we can reason as for the estimate of A1,2 in the proof of Proposition

4.2.12 to see that this is of order e−d(1+o(1))
(
ε+ e−d(1+o(1))

)∥∥∥∂uε,Q
∂Q

∥∥∥
H1D(Ωε)

. From the

proof of Proposition 4.2.13 one can deduce that
∥∥∥∂uε,Q
∂Q

∥∥∥
H1D(Ωε)

6 C
(
ε2 + e−d(1+o(1))

)
, and

hence the integral under interest is controlled by o
(
ε2
)
+ e−3d(1+o(1)).

Finally, the last term in (4.3.11) can be estimated using a Taylor expansion as for the term
A2 in the proof of Proposition 4.2.12, and up to higher order is given by

p

∫
Rn+

U
p−1
Q (y) ǔε,Q∇UQ (y) · qdy,

where q stands either for the variation of Q in the coordinates y. If q preserves d, the latter
integral gives a negligible contribution, and we find (4.3.9). If instead q is directed toward the
gradient of d the above estimates (and in particular (4.2.33)) allow to deduce (4.3.10).

64



4.3.2 Finite-dimensional reduction and study of the constrained functional

We apply now the abstract setting described in Section 2.1. In fact, the following two Lemmas
hold.

Lemma 4.3.3. If CΩ is as in the previous section and if we choose

Zε =

{
uε,Q : CΩ < d <

1

εCΩ

}
,

then the properties i) ′, iii) ′ and iv) ′ in Section 2.1 hold true, with γ = min {1,p− 1}.

Proof. It is immediate to prove that i) ′ and iii) ′ hold; in particular, the value of γ comes
from the standard properties of Nemitski operators. Property iv) ′ can be easily deduced
from the fact that the kernel of the linearization of (1.2.2) in the half space is spanned by
∂U
∂x1

, . . . , ∂U
∂xn−1

, as proved in [63], and from some localization arguments which can be found
in Subsections 4.2, 9.2 and 9.3 of [4].

Lemma 4.3.4. For any small positive constant δ, if we take

Zε =

{
uε,Q : (2− δ) | log ε| < d <

1

εCΩ

}
,

then also property ii) ′ in Section 2.1 holds true, with

f (ε) = ε
min
{
3−δ,p+1

2 (2−δ),(2−δ)
(
1
2

√
D tanα(tanα+1)

tan2 α+1
+ 2 tanα√

tan2 α+1

)
,(2−δ)

(
p
2+

√
2 tanα√

tan2 α+1

)}
.

Proof. This lemma simply follows from Propositions 4.2.12 and 4.2.13.

As a corollary of the above two lemmas we can apply Proposition 2.1.5 and Theorem 2.1.6,
so we expand next the reduced functional and its gradient on the natural constraint Z̃ε.

Proposition 4.3.5. With the choice of Z̃ε in Lemma 4.3.4, if wε is given by Proposition 2.1.5, then
we have

Iε
(
uε,Q

)
:= Iε

(
uε,Q +wε

(
uε,Q

))
= C̃0 − C̃1εH (εQ) + e−2d(1+o(1))

+e
−d

(
1+

√
2 tanα√

tan2 α+1

)
(1+o(1))

+ o
(
ε2
)

; (4.3.12)

∂

∂QT
Iε
(
uε,Q

)
= −C̃1ε

2∇TH (εQ) + o
(
ε2
)

; (4.3.13)

∂

∂Qd
Iε
(
uε,Q

)
= −C̃1ε

2∇dH (εQ) + e
−d

(
1+

√
2 tanα√

tan2 α+1

)
(1+o(1))

+ o
(
ε2
)

, (4.3.14)

as ε → 0, where C̃0 and C̃1 are as in Proposition 4.3.1 and where QT , Qd are as in the proof of
Proposition 4.2.13.
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Proof. By Propositions 2.1.5 and 4.2.12 we have that∥∥wε (uε,Q
)∥∥ 6 C1

∥∥I ′ε (uε,Q
)∥∥

6 C
(
ε2 + εe−d(1+o(1))

)
+C
(
e
−d

(
1
2

√
D tanα(tanα+1)

tan2 α+1
+ 2 tanα√

tan2 α+1

)
(1+o(1))

+e
−d

(
p
2+

√
2 tanα√

tan2 α+1

)
(1+o(1))

+ e−
d(p+1)
2 (1+o(1))

)
.

From the regularity of Iε and Proposition 4.3.1 we then have

Iε
(
uε,Q +wε

(
uε,Q

))
= Iε

(
uε,Q

)
+ I ′ε

(
uε,Q

) [
wε
(
uε,Q

)]
+ o

(∥∥wε (uε,Q
)∥∥2)

= C̃−1 − C̃1εH (εQ) + e−2d(1+o(1)) + e
−d

(
1+

√
2 tanα√

tan2 α+1

)
(1+o(1))

+o
(
ε2
)

+ o
(
ε6−2δ + ε(p+1)(2−δ)

+ε
(2−δ)

(√
D tanα(tanα+1)

tan2 α+1
+ 4 tanα√

tan2 α+1

)
+ ε

(2−δ)

(
p+ 2

√
2 tanα√

tan2 α+1

))
.

This immediately gives (4.3.12), since p > 1 and δ is small.
The remaining two estimates are also rather immediate for p > 2 : in fact in this case

property iii) ′ in Section 2.1 holds true for γ = 1, so we also have
∥∥∂Qwε∥∥ 6 Cf (ε) by the

last statement in Proposition 2.1.5. This, together with the Lipschitzianity of I ′ε implies that

∂

∂Q
Iε
(
uε,Q

)
= I ′ε

(
uε,Q +wε

) [
∂Quε,Q + ∂Qwε

]
=

∂

∂Q
Iε
(
uε,Q

)
+ I ′′ε

(
uε,Q

) [
wε,∂Quε,Q

]
+ I ′′ε

(
uε,Q

) [
wε,∂Qwε

]
+ ‖wε‖γ+1 (∥∥∂Quε,Q

∥∥+
∥∥∂Qwε∥∥)

=
∂

∂Q
Iε
(
uε,Q

)
+ o

(
f (ε)2

)
=

∂

∂Q
Iε
(
uε,Q

)
+ o
(
ε6−2δ + ε(p+1)(2−δ)

+ ε
(2−δ)

(√
D tanα(tanα+1)

tan2 α+1
+ 4 tanα√

tan2 α+1

)
+ ε

(2−δ)

(
p+ 2

√
2 tanα√

tan2 α+1

))
,

(4.3.15)

since γ = 1. The last two estimates then follow from Proposition 4.3.2.
For the case 1 < p < 2, we reason as in the proof of Proposition 4.5 in [31] to obtain the

estimates. This concludes the proof.

4.3.3 Proof of Theorem 4.0.6

We use degree theory and the previous expansions. First of all, since Q is non degenerate for
H |Γ , we can find a small neighborhood V of Q in Γ such that ∇H |Γ 6= 0 on ∂V and such that
in some set of coordinates

deg (∇H |Γ ,V , 0) 6= 0.
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Then, if δ is as in Lemma 4.3.4, we choose 0 < β < δ
2 , and consider the set

Y = {(d,Q) : d ∈ ((2−β) | log ε|, (2+β) | log ε|) , εQ ∈ V} .

Since ∇H |Γ (Q) corresponds to ∇TH (εQ) in the scaled domain Ωε, by using (4.3.13) and
our choice of V we know that, as ε→ 0

∇QT Iε
(
uε,Q

)
= −C̃1ε

2∇TH (εQ) + o
(
ε2
)
6= 0 on

1

ε
∂V . (4.3.16)

On the other hand, by (4.3.14) we also have

∇QdIε
(
uε,Q

)
= −ε

(2−β)

(
1+

√
2 tanα√

tan2 α+1

)
for d = (2−β) | log ε|, (4.3.17)

and

∇QdIε
(
uε,Q

)
= −C̃1ε

2∇dH (εQ) + o
(
ε2
)

, for d = (2+β) | log ε|. (4.3.18)

Since we are assuming that the gradient of H points toward ∂DΩ near the interface Γ ,
∇dH (εQ) is negative and therefore the two d-derivatives in the last two formulas have
opposite signs. It follows from the product formula for the degree and (4.3.16)-(4.3.18) that

deg (∇Iε, Y, 0) = − deg (∇H |Γ ,V , 0) 6= 0,

which proves the existence of a critical point for Iε in Y. Since we can choose V and β

arbitrarily small, the solution has the asymptotic behavior required by the theorem, and
more precisely by Remark 1.4.1 (b): the uniqueness of the global maximum follows from the
asymptotics of the solution and standard elliptic regularity estimates.

Remark 4.3.6. To prove also the assertion in Remark 1.4.1 (a), using (4.3.12) in the case
of local maximum it is easy to construct an open set of Zε where the maximum of Iε
at the interior is strictly larger than the maximum at the boundary. On the other hand,
when we have a local minimum, one can construct a mountain-pass path connecting the
two points parametrized by

(
1
εQ, (2−β) | log ε|

)
and

(
1
εQ, (2+β) | log ε|

)
. Using a suitably

truncated pseudo-gradient flow, one can prove that the evolution of the path remains inside
1
εV × ((2−β) | log ε|, (2+β) | log ε|), and still find a critical point of Iε.
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introduction

In this chapter we will deal with the following problem{
(−∆)su+ u = |u|p−1u in Rn,

u ∈ Hs(Rn), u 6≡ 0,
(5.0.1)

where Hs(Rn) denotes the fractional Sobolev space; we immediately refer to Section 5.1.2 for
the definitions of the space Hs(Rn) and of variational solutions to (5.0.1).

Precisely, we are interested in existence and symmetry properties of the variational solu-
tions u to (5.0.1), as stated in the following

Theorem 5.0.7. Let s ∈ (0, 1) and p ∈ (1, (n+ 2s)/(n− 2s)), with n > 2s. There exists a solution
u ∈ Hs(Rn) to problem (5.0.1) which is positive and spherically symmetric.

Note that the upper bound on the exponent p is exactly 2∗s + 1, where 2∗s = 2n/(n− 2s) is
the critical Sobolev exponent of the embedding Hs ↪→ Lp.

The proof of Theorem 5.0.7 extends part of that of Theorem 2 in [9]; in particular, we will
apply the variational approach by the constrained method mentioned above, for the energy
functional related to (5.0.1), that is

E(u) :=
1

2

∫∫
Rn×Rn

|u(x) − u(y)|2

|x− y|n+2s
dxdy+

∫
Rn

(1
2
|u(x)|2 −

1

p+ 1
|u(x)|p+1

)
dx. (5.0.2)

It is worth mentioning that the results in Theorem 5.0.7 for n = 1 have been obtained
in [83], where modulation stability of ground states solitary wave solutions of nonlinear
Schrödinger equations has been studied, via an unconstrained variational approach within
the “concentration-compactness” framework of P. L. Lions ([48, 49]). Also, in the more recent
papers [50] and [51], an alternative approach has been presented, which permits to handle a
very general context, also including the equations we are dealing with (see, in addition, [53],
where the decay of solutions is analyzed in the case s = 1/2).

Here, we will present a very simple proof, whose general strategy will follow the original
argument in [9]. The method used here (and in [9]) relies on the selection of a specific
minimizing sequence composed of radial functions: though this idea is now classical, we
thought it was interesting to point out that this argument also works in the case of the
fractional Laplacian. Clearly, we need to operate various technical modifications due to the
non-locality of the fractional Laplacian operator

(
and of the correspondent norm Hs(Rn)

)
.

Moreover, we will need some energy estimates and preliminary results, also including the
analogue of the classical Polya-Szegö inequality, as given in forthcoming Section 5.1.3.

As for the precise decay of the solution found, a precise bound may be obtained via the
construction of exact barriers (see Lemma 3.1 in [71] and, also, Lemma 8 in [64]). Also, it
could be taken into account to extend all the results above in order to investigate a problem
of type (5.0.1) by substituting the nonlinearity with an odd continuous function satisfying
standard growth assumptions, in the same spirit of [9].1

1 After completing this project, we have heard of an interesting work, where related results have been presented by
using different techniques (see [28]).
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The chapter is organized as follows. In Section 5.1 below, we fix notation and we state and
prove some preliminary results. Section 5.2 is devoted to the proof of Theorem 5.0.7.

5.1 preliminary results

In this section, we state and prove a few preliminary results that we will need in the rest of
the paper. First, we will recall some definitions involving the fractional Laplacian operator
and we give the definition of the solutions to the problem we are dealing with.

5.1.1 Notation

We consider the Schwartz space S of rapidly decaying C∞ functions in Rn, with the
corresponding topology generated by the seminorms

pk(ϕ) = sup
x∈Rn

(1+ |x|)k
∑

|α|6k

|Dαϕ(x)| , k = 0, 1, 2, ... ,

where ϕ ∈ S (Rn). Let S ′(Rn) be the set of all tempered distributions, that is the topological
dual of S (Rn). As usual, for any ϕ ∈ S (Rn), we denote by

Fϕ(ξ) =
1

(2π)n/2

∫
Rn
e−iξ·xϕ(x)dx

the Fourier transform of ϕ and we recall that one can extend F from S (Rn) to S ′(Rn).
For any s ∈ (0, 1), the fractional Sobolev space Hs(Rn) is defined by

Hs(Rn) =

{
u ∈ L2(Rn) :

|u(x) − u(y)|

|x− y|
n
2+s

∈ L2(Rn ×Rn)

}
, (5.1.1)

endowed with the natural norm

‖u‖Hs(Rn) =

(∫
Rn

|u|2 dx +

∫∫
Rn×Rn

|u(x) − u(y)|2

|x− y|n+2s
dxdy

)1
2

,

where the term

[u]Hs(Rn) = ‖(−∆)
s
2u‖L2(Rn) :=

(∫∫
Rn

|u(x) − u(y)|2

|x− y|n+2s
dxdy

)1
2

(5.1.2)

is the so-called Gagliardo semi-norm of u.

5.1.2 A few basic results on the fractional Laplacian and setting of the problem

In the following, we make use of equivalent definitions of the fractional Laplacian and the
Gagliardo semi-norm via the Fourier transform. Indeed, the fractional Laplacian (−∆)s can
be seen as a pseudo-differential operator of symbol |ξ|s, as stated in the following

Proposition 5.1.1. (see, e.g., [22, Proposition 3.3] or [78, Section 3]). Let s ∈ (0, 1) and let
(−∆)s : S → L2(Rn) be the fractional operator defined by (1.5.2). Then, for any u ∈ S ,

(−∆)su = F−1(|ξ|2s(Fu)) ∀ξ ∈ Rn,

up to a multiplicative constant.
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Analogously, one can see that the fractional Sobolev space Hs(Rn), given by (5.1.1), can be
defined via the Fourier transform as follows

Hs(Rn) =

{
u ∈ L2(Rn) :

∫
Rn

(1+ |ξ|2s)|Fu(ξ)|2 dξ < +∞} . (5.1.3)

This is a natural consequence of the equivalence stated in the following proposition, whose
proof relies on the Plancherel formula.

Proposition 5.1.2. (see, e.g., [22, Proposition 3.4]). Let s ∈ (0, 1). For any u ∈ Hs(Rn)

[u]2Hs(Rn) =

∫
Rn

|ξ|2s|Fu(ξ)|2 dξ, (5.1.4)

up to a multiplicative constant.

Finally, we recall the definition of variational solutions u ∈ Hs(Rn) to

(−∆)su+ u = |u|p−1u in Rn, u 6≡ 0, (5.1.5)

where p > 1.
For any s ∈ (0, 1), a measurable function u : Rn → R is a variational solution to (5.1.5) if∫∫

Rn×Rn

(
u(x) − u(y)

)(
ϕ(x) −ϕ(y)

)
|x− y|n+2s

dxdy+

∫
Rn
u(x)ϕ(x)dx

=

∫
Rn

|u(x)|p−1u(x)ϕ(x)dx, (5.1.6)

for any function ϕ ∈ C10(R
n).

As stated in the Introduction, a natural method to solve (5.1.5) is to look for critical points
of the related energy functional E on the space Hs(Rn) defined in (5.0.2), that is

E(u) :=
1

2
[u]2Hs(Rn) −

∫
Rn
G(u)dx, (5.1.7)

where [u]Hs is defined by 5.1.2 and we denoted by G the function

G(u) :=
1

p+ 1
|u|p+1 −

1

2
|u|2. (5.1.8)

Therefore, from now on we will focus on the following variational problem

min
{

[u]2Hs(Rn) : u ∈ Hs(Rn),
∫

Rn
G(u)dx = 1

}
. (5.1.9)

5.1.3 Tools

For any measurable function u consider the corresponding symmetric radial decreasing
rearrangement u∗, whose classical definition and basic properties can be found, for instance,
in [43, Chapter 2]. As in the classic case (i. e., the Polya-Szegö inequality [68]), also in the
fractional framework the energy of u∗ decreases with respect to that of u. Again, by using
the Fourier characterization of [u]Hs(Rn) given by Proposition (5.1.2), one can plainly apply
the symmetrization lemma by Beckner ([8]; see also [2]) to obtain the following
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Lemma 5.1.3. (see, e.g., [65, Theorem 1.1]). Let s ∈ (0, 1). For any u ∈ Hs(Rn), the following
inequality holds∫∫

Rn×Rn

|u∗(x) − u∗(y)|2

|x− y|n+2s
dxdy 6

∫∫
Rn×Rn

|u(x) − u(y)|2

|x− y|n+2s
dxdy, (5.1.10)

where u∗ denotes the symmetric radial decreasing rearrangement of u.

Next we recall two results which we will use in the proof of Theorem 5.0.7 (see, in particular,
Step 2 there). The first one is the following radial lemma.

Lemma 5.1.4. Let u ∈ L2(Rn) be a nonnegative radial decreasing function. Then

|u(x)| 6

(
n

ωn−1

)1/2
|x|−n/2‖u‖L2(Rn), ∀x 6= 0,

where ωn−1 is the Lebesgue measure of the unit sphere in Rn.

Proof. Setting r = |x|, we have that, for every r > 0,

‖u‖2
L2(Rn)

=

∫
Rn

|u(x)|2 dx > ωn−1

∫R
0

|u(r)|2rn−1 dr > ωn−1|u(R)|2
Rn

n
,

where in the last inequality we used the fact that u is decreasing.

The second result is a compactness lemma due to Strauss [75] (see also [9, Theorem A.I] for a
simple proof).

Lemma 5.1.5. Let P,Q : R→ R be two continuous functions satisfying

P(t)

Q(t)
→ 0, as |t|→ +∞. (5.1.11)

Let uk : Rn → R be a sequence of measurable functions such that

sup
k

∫
Rn

|Q(uk(x))|dx < +∞, (5.1.12)

and

P(uk(x))→ v(x) a.e. in Rn as k→ +∞. (5.1.13)

Then, for every bounded Borel set B, we have∫
B

|P(uk(x)) − v(x)|dx→ 0 as k→ +∞. (5.1.14)

If we further assume that

P(t)

Q(t)
→ 0 as t→ 0, (5.1.15)

and

uk(x)→ 0 as |x|→ +∞, uniformly with respect to k, (5.1.16)

then P(uk) converges to v in L1(Rn) as k→ +∞.
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We conclude this section with the following Lemma 5.1.6, in which we state and prove
some Hs estimates, which, in turn, imply that there exists a nontrivial competitor for the
variational problem (5.1.9), as described in the subsequent Remark 5.1.8.

Lemma 5.1.6. Let ζ, R > 0. For any t > 0 let

vR(t) :=


ζ if t ∈ [0,R],

ζ (R+ 1− t) if t ∈ (R,R+ 1),

0 if t ∈ [R+ 1, +∞).

For any x ∈ Rn, let wR(x) := vR(|x|).
Then, wR ∈ Hs(Rn) for any s ∈ (0, 1) and there exists C(n, s,R) > 0 such that ‖wR‖Hs(Rn) 6

C(n, s,R) ζ.

Proof. We take ζ := 1 (the general case follows by multiplication by ζ). Notice that wR
is uniformly Lipschitz and vanishes outside BR+1. In particular wR ∈ H1(BR+1). Also,
if x ∈ BR+1 \BR and y ∈ BR+2 \BR+1, we have

|wR(x) −wR(y)| = R+ 1− |x| 6 |y| − |x| 6 |x− y|,

therefore ∫∫
BR+1×(Rn\BR+1)

|wR(x) −wR(y)|2

|x− y|n+2s
dxdy

6
∫∫

(BR+1\BR)×(BR+2\BR+1)

|wR(x) −wR(y)|2

|x− y|n+2s
dxdy+C1(n, s,R) 6 C2(n, s,R).

Hence, by Proposition 2.2 in [22],

‖wR‖Hs(Rn) 6 C

(∫∫
BR+1×(Rn\BR+1)

|wR(x) −wR(y)|2

|x− y|n+2s
dxdy+ ‖wR‖Hs(BR+1)

)
6 C3(n, s,R)

(
1+ ‖wR‖H1(BR+1)

)
6 C4(n, s,R),

which proves the desired result.

Remark 5.1.7. Here is another proof of Lemma 5.1.6 based on an interpolation inequality:
given u ∈ H1(Rn), by Proposition 5.1.2, using the Hölder inequality with exponents 1/s
and 1/(1− s), we have

[u]Hs(Rn) =

√∫
Rn

|ξ|2s|Fu(ξ)|2s|Fu(ξ)|2(1−s) dξ

6

(∫
Rn

|ξ|2|Fu(ξ)|2 dξ

)s/2(∫
Rn

|Fu(ξ)|2 dξ

)(1−s)/2

= [u]s
H1(Rn)

‖u‖1−s
L2(Rn)

,

which clearly implies Lemma 5.1.6 by choosing u := wR.
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Remark 5.1.8. By Lemma 5.1.6, the set in the minimum problem (5.1.9) is not empty. Indeed,
if wR ∈ Hs(Rn) is defined as in Lemma 5.1.6, we have that∫

Rn
G (wR(x)) dx =

∫
BR+1

G (wR(x)) dx

=

∫
BR

G (wR(x)) dx+

∫
BR+1\BR

G (wR(x)) dx

> G (ζ) |BR| − |BR+1 \BR|

(
max
t∈[0,ζ]

|G(t)|

)
,

where | · | denotes the Lebesgue measure. This implies that there exist two positive constants
C1 and C2 such that∫

Rn
G (wR(x)) dx > C1R

n −C2R
n−1,

and so we can choose R > 0 large enough such that
∫

Rn G (wR(x)) dx > 0.
Now we make the scale change wR,σ(x) = wR (x/σ), and a suitable choice of σ > 0, so that∫

Rn
G
(
wR,σ(x)

)
dx = σn

∫
Rn
G (wR(x)) dx = 1.

5.2 proof of theorem 5.0.7

In the same spirit of the proof of Theorem 2 in [9], we divide that of Theorem 5.0.7 in a few
steps. For the reader’s convenience, we will give full details of the proof, by taking into
account the preliminary results in Section 5.1.3 together with the modifications due to the
presence of the fractional Sobolev spaces.

Proof.
Step 1 - A minimizing sequence uk. Consider a sequence {uk} ⊆ Hs(Rn) such that∫

Rn
G(uk)dx = 1

and

lim
k→+∞[uk]

2
Hs(Rn) = inf

{
[u]2Hs(Rn) : u ∈ Hs(Rn),

∫
Rn
G(u)dx = 1

}
> 0. (5.2.1)

By triangle inequality, ∣∣|uk(x)| − |uk(y)|
∣∣ 6 |uk(x) − uk(y)|

thus the Gagliardo semi-norm of |uk| is not bigger than the one of uk.
So, without loss of generality, we may suppose that uk is nonnegative. Let u∗k denote the

symmetric radial decreasing rearrangement of uk. Then∫
Rn
G(u∗k)dx =

∫
Rn
G(uk)dx = 1

and so, in view of Lemma 5.1.3, we have that {u∗k} is also a minimizing sequence.
These observations imply that we can select a sequence {uk} in such a way that, for every

k ∈N, uk is nonnegative, spherically symmetric and decreasing in r = |x|.
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Step 2 - A priori estimates for uk. We want to obtain bounds uniform in k on ‖uk‖Lq(Rn), for
every 2 6 q 6 2n/(n− 2s), and on ‖uk‖Hs(Rn).

We begin with ‖uk‖Hs(Rn). Clearly, by (5.2.1), [uk]
2
Hs(Rn) 6 C for some positive constant

C (recall also Remark 5.1.8). Therefore, it remains to prove that ‖uk‖L2(Rn) is bounded. To
do this, we set

g1(t) := |t|p−1t, g2(t) := t, G1(t) :=
1

p+ 1
|t|p+1 and G2(t) :=

1

2
|t|2.

Then
g(t) = g1(t) − g2(t),

and so

G(z) =

∫z
0
g(t)dt =

∫z
0
g1(t)dt−

∫z
0
g2(t)dt = G1(z) −G2 (z) , ∀z > 0. (5.2.2)

Since 1 < p < (n+ 2s)/(n− 2s), we have that for every ε > 0 there exists a positive constant
Cε such that g1(t) 6 Cε|t|

n+2s
n−2s + εg2(t) for any t > 0. This implies that G1(z) 6 Cε|z|

2n
n−2s +

εG2(z) for any z > 0. Choosing ε = 1/2, we get

G1(z) 6 C|z|
2n
n−2s +

1

2
G2(z). (5.2.3)

Now, the condition
∫

Rn G(uk)dx = 1 can be written in the following form∫
Rn
G1(uk)dx =

∫
Rn
G2(uk)dx+ 1. (5.2.4)

Putting together (5.2.3) and (5.2.4), we obtain

1

2

∫
Rn
G2(uk)dx+ 1 6 C

∫
Rn

|uk|
2n
n−2s dx. (5.2.5)

Now we use the fractional Sobolev embedding theorem (see, e.g., [22, Theorem 6.5]) to say
that

‖un‖
L
2n
n−2s (Rn)

6 C[uk]Hs(Rn),

where the constant C does not depend on k. Thus, since uk is a minimizing sequence,
the boundedness of [uk]

2
Hs(Rn) yields that of ‖uk‖

L
2n
n−2s (Rn)

. By the definition of G2, the

inequality in (5.2.5) implies that

1

2

∫
Rn
u2k dx =

∫
Rn
G2(uk)dx 6 C,

and thus we bound ‖uk‖2L2(Rn)
(and so ‖uk‖2Hs(Rn)) uniformly in k.

Finally, by the bounds on ‖uk‖L2(Rn) and ‖uk‖
L
2n
n−2s (Rn)

, using the Hölder inequality, we

obtain that ‖uk‖Lq(Rn) 6 C for every 2 6 q 6 2n/(n− 2s).

Step 3 - Passage to the limit and conclusion of the proof. Since uk ∈ L2(Rn) is a sequence of
nonnegative radial decreasing functions, we can apply Lemma 5.1.4 to get

|uk(x)| 6

(
n

ωn−1

)1
2

|x|−n/2‖uk‖L2(Rn). (5.2.6)
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From the previous step we have that uk is uniformly bounded in L2(Rn); then |uk(x)| 6
C|x|−n/2, with C independent of k. This implies that uk(x)→ 0 as |x|→ +∞ uniformly with
respect to k. Now, since uk is bounded in Hs(Rn), we can extract a subsequence of uk, again
denoted by uk, such that uk converges weakly in Hs(Rn) and almost everywhere in Rn to a
function u. Moreover, by construction, u ∈ Hs(Rn) is spherically symmetric and decreasing
in r.

Now, in order to apply Lemma 5.1.5 (with P := G1), consider the polynomial function Q
defined by

Q(t) := t2 + |t|
2n
n−2s .

Since the sequence uk is uniformly bounded in L2(Rn) and in L
2n
n−2s (Rn), we have that Q

satisfies∫
Rn

|Q(uk(x))|dx =

∫
Rn

(
u2k(x) + |uk(x)|

2n
n−2s

)
dx 6 C, for every k ∈N.

Moreover, if G1 is defined as in the previous step, by the fact that p ∈
(
1, n+2s
n−2s

)
we derive

G1(t)

Q(t)
→ 0, as t→ +∞ and t→ 0.

Since uk converges almost everywhere in Rn to u, we have that also G1 (uk) converges
G1 (u). Finally, uk(x)→ 0 as |x|→ +∞ uniformly with respect to n. Therefore Lemma 5.1.5
holds, getting∫

Rn
G1 (uk(x)) dx →

∫
Rn
G1 (u(x)) dx as k→ +∞.

Thus, using Fatou’s Lemma in (5.2.4), we obtain that∫
Rn
G1 (u(x)) dx >

∫
Rn
G2 (u(x)) dx+ 1, (5.2.7)

that is ∫
Rn
G (u(x)) dx > 1.

On the other hand, using again Fatou’s Lemma, we have that

[u]2Hs(Rn) 6 lim
k→+∞[uk]

2
Hs(Rn)

= inf
{

[u]2Hs(Rn) : u ∈ Hs(Rn),
∫

Rn
G(u)dx = 1

}
.

(5.2.8)

Now, suppose by contradiction that
∫

Rn G(u(x))dx > 1. Then, by the scale change uσ(x) =

u(x/σ), we have∫
Rn
G (uσ(x)) dx = σn

∫
Rn
G (u(x)) dx = 1 (5.2.9)

for some

σ ∈ (0, 1) . (5.2.10)

Moreover, we have

[uσ]2Hs(Rn) = σn−2s[u]2Hs(Rn)

6 σn−2s inf
{

[u]2Hs(Rn) : u ∈ Hs(Rn),
∫

Rn
G(u)dx = 1

}
, (5.2.11)

76



due to (5.2.8), and

inf
{

[u]2Hs(Rn) : u ∈ Hs(Rn),
∫

Rn
G(u)dx = 1

}
6 [uσ]2Hs(Rn),

thanks to (5.2.9). Combining the last two inequalities and recalling (5.2.10), we get

inf
{

[u]2Hs(Rn) : u ∈ Hs(Rn),
∫
Rn
G(u)dx = 1

}
= 0,

hence also [u]2Hs(Rn) = 0. Then u ≡ 0, which is in contradiction with (5.2.7). Therefore,∫
Rn G (u(x)) dx = 1 and [u]Hs(Rn) = inf

{
[u]Hs(Rn) : u ∈ Hs(Rn),

∫
G(u)dx = 1

}
; that is, u

solves the minimization problem (5.1.9).
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Part IV

F U RT H E R P R O J E C T S A N D P E R S P E C T I V E S



Concentration phenomena of mountain pass solutions. An interesting topic of research
is to detect whether the mountain pass solutions of a mixed Dirichlet and Neumann problem
in non-smooth domains concentrate either at interface points or at the interior points of the
Neumann part. In particular, we would like to study the boundary concentration phenomena
of the equation 

−ε2∆u+ u = up in Ω,
∂u
∂ν = 0 on ∂NΩ, u = 0 on ∂DΩ,

u > 0 in Ω,

where Ω is a Lipschitz (but not smooth) set, p ∈
(
1, n+2
n−2

)
and ∂NΩ, ∂DΩ are two subsets of

the boundary of Ω such that the union of their closures coincides with the whole ∂Ω, and
their intersection is an (n− 2)-dimensional smooth singularity.

The main difficulty with respect to the smooth case (dealt with in [32]) lies in the use of the
moving plane method, which can be obstructed by the presence of the angle. To deal with
this difficulty, we plan to obtain a careful asymptotic expansion of the solution near the angle,
which should allow us to use the moving plane, at least for some range of the opening of the
angle.

Also, it would be interesting to exclude concentration on the Neumann part by adapting
the technique of [32].

Concentration phenomena for fractional operators. We would like to investigate also the
concentration phenomena of elliptic equations driven by the fractional Laplacian. For instance,
a natural question is whether the technique developed in this thesis may be adapted to the
construction of solutions concentrating either in the interior or along the boundary of the
domain for an equation of the type

ε2s(−∆)su+ u = up, for s ∈ (0, 1).

With regard to this, a first step was performed in [26] where we constructed solutions in the
whole of the space which might be used as the leading order of a perturbation argument.
This project is very challenging and to complete it one needs to overcome several conceptual
complications that arise in the fractional setting.

First of all, to apply the perturbation argument, some type of non-degeneracy condition is
required. Checking this condition will be much harder than in the classical case, since it is
usually very difficult to compute explicitly fractional derivatives and singular integrals. A
partial answer in this direction is given by a very recent preprint [20], where a non-degeneracy
condition was checked in a particular case.

It may be possible that a dramatic change of perspective is needed to attack the non-
degeneracy condition in the fractional case, for instance by reducing to check such condition
in a somehow generic sense or only for some specific choice of operators.

Also, we recall that the decay of the solutions in the fractional case is only polynomial, and
not exponential as it happens in the classical case and this feature is, of course, the source of
major complications. As a matter of fact, a slow decay of the solutions in the entire space may
reflect an additional difficulty in localizing possible interior concentration points.

Moreover, if dealing with Neumann or mixed boundary conditions, one needs to understand
how such prescription translates into the fractional setting. The main difficulty is that solutions
are, in general, uniformly continuous but not C1 up to the boundary, hence the normal
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derivative is not defined in this case. One possibility could be to replace the normal derivative
at a point x0 ∈ ∂Ω with a fractional derivative of order s of the type

lim
Ω3x→x0

u(x) − u(x0)(
dist(x,∂Ω)

)s .

Another possibility could be to test the associated Euler-Lagrange functional on the functions
with finite Hs-norm.

Fractional perimeters. With respect to asymptotic features of fractional problems, we think
that a nice topic of research is also given by the s-perimeters. Namely the following functional
is studied in [13]: given a fixed bounded domain Ω and a measurable set E ⊆ Rn, let

Pers(E;Ω) := Is(E∩Ω, Rn \ E) + Is(Ω \ E,E \Ω),

with

Is(A,B) :=

(
1

2
− s

)
s

∫∫
A×B

dxdy

|x− y|n+2s

for any disjoint, measurable sets A, B and for a fixed s ∈ (0, 1/2). The reason for which the
above functional may be seen as a fractional perimeter is that, as s↗ 1/2 the above functional
approaches the classical perimeter of E in Ω, up to a normalizing dimensional constant and
in a sense made precise in [14] and [6].

An interesting topic of research is, we believe, the asymptotics of this fractional perimeter
as s ↘ 0. A first result in this direction was given by the recent preprint [25], where the
limit as s↘ 0 of the fractional perimeter is related to a convex combination of the Lebesgue
measures of Ω∩ E and Ω \ E, the interpolation parameter being given by an averaged volume
of E \Ω (provided that the limit exists, some counterexamples are also constructed in [25]).
This topic of research probably deserves some further investigation, in terms of geometric and
functional convergence. For instance, it would be desirable to decide whether some uniform
limit on the behavior of the set may be obtained or whether the minimality conditions make
sense in the limit. To answer these type of questions some new idea is needed since the
constants of the geometric and functional estimates in [13], [14] and [6] may blow-up as s↘ 0.
Also, it would be desirable to build perturbations argument that bifurcate from s = 0 towards
a small s > 0. This is again a challenging problem, since the case s = 0 does not seem to have
any regularity theory.

Free boundary problems. Another interesting topic of research is trying to better under-
stand the free boundary problems for the fractional Laplacian, for instance when we are in
presence of two phases driven by different powers of the Laplacian. Some technical difficulties
here are that the fractional Dirichlet energy is not additive (different from the classical case)
and that the set in which the phase change may charge the energy too (because it may interact
with both the phases due to the non-local energy effect), so we expect that the regularity
theory in this case is considerably more subtle than in the local framework.

Elliptic systems. Other research projects concern the systems of the semilinear elliptic par-
tial differential equations arising in biology in order to study the cohexistence and segregation
of different species, such as 

∆u = uv2,

∆v = vu2,

u, v > 0.
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Following the work in [11] we know that the positive solutions of these systems of equations in
low dimension possess several geometric properties and enjoy additional symmetry features.
It would be interesting to generalize these results to other types of nonlinearities and operators.
For instance, one should be able to include the singular or degenerate cases driven by the
p-Laplacian operator, the case of fractional diffusion and the one of stratified hambient space.
To consider these cases, it will be useful to follow the geometric technique of [27], as extended
in [69] and [70].
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