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Abstract

The computational study of conformational transitions in nucleic acids still faces many

challenges. For example, in the case of single stranded RNA tetranucleotides, agree-

ment between simulations and experiments is not satisfactory due to inaccuracies in

the force Ąelds commonly used in molecular dynamics. Improvement of force Ąelds

is however hindered by the diiculties of decoupling those errors from the statistical

errors caused by insuicient sampling. We here tackle both problems by introducing a

novel enhancing sampling method and using experimental data to improve RNA force

Ąelds.

In this novel method, concurrent well-tempered metadynamics are integrated in

a Hamiltonian replica-exchange scheme. The ladder of replicas is built with diferent

strength of the bias potential exploiting the tunability of well-tempered metadynamics.

Using this method, free-energy barriers associated to individual collective variables are

signiĄcantly reduced compared with simple force-Ąeld scaling. The introduced method-

ology is Ćexible and allows adaptive bias potentials to be self-consistently constructed

for a large number of simple collective variables, such as distances and dihedral angles.

Additionally, a modiĄed metadynamics algorithm is used to calculate correcting

potentials designed to enforce distributions of backbone torsion angles taken from ex-

perimental structures. Replica-exchange simulations of tetranucleotides including these

correcting potentials show signiĄcantly better agreement with independent solution ex-

periments for the oligonucleotides containing pyrimidine bases. Although the proposed

corrections do not seem to be portable to generic RNA systems, the simulations reveal

the importance of the α and ζ backbone angles for the modulation of the RNA con-

formational ensemble. The correction protocol presented here suggests a systematic

procedure for force-Ąeld reĄnement.
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Chapter 1

Introduction

RNA is being recognized as a key player on many diferent functions in the cell [1Ű3]

and as a potential target for therapeutics [4, 5]. Understanding the physical interac-

tions of RNA molecules that are associated with folding, catalysis and other essential

molecular recognition processes can provide insight into those functions [6, 7]. In order

to understand the structure-function relations governing those processes one should go

beyond strict structural aspects and explore RNA dynamical features.

Beside experimental single molecular approaches based on Ćuorescence [8Ű10] and

force measurements techniques [11, 12], computational techniques like molecular dy-

namics (MD) simulations [13, 14] have provided a microscopic picture of the mechanism

and dynamics of RNA systems [15, 16]. MD simulations as standalone experiments

started for proteins in 1975 [14] and for RNA in 1984 [17Ű20]. But as nucleic acids are

highly charged polymers, stable MD simulations of fully solvated systems were only

achieved with the introduction of the particle mesh Ewald method [21] for the treat-

ment of long-range electrostatic interaction in 1995 [22, 23]. Since then, MD has gained

in robustness and predictive power [24], and the advances in software and hardware

have made the simulation of complex conformational transitions like the folding and

refolding of RNA tetraloops [25Ű27], and the analysis of large molecular machines like

the ribosome [16, 28, 29], possible.

Simulation times of microseconds are normally accessible nowadays, and even longer

timescales can be simulated when specialized hardware is used [30]. However, many

molecular processes are rare events that could be seen only a few times, if seen at all,

in a microsecond timescale. In order to obtain precise averages from the computational

generated ensembles, advanced sampling techniques have been developed to accelerate

the exploration of the conformational space and bridge the gap between experiments

and simulations. However, in the case of RNA, simulations of short oligonucleotides

with parallel tempering (a popular enhanced sampling technique technique) and Hamil-

tonian replica exchange (another powerful technique) have been shown to generate un-

converged ensembles, even for simulations close to a 100 µs [31, 32]. On the other hand,

the current empirical functions, force Ąelds, used to represent the energetic interactions

in RNAs are not accurate enough to reproduce solution experiments of unstructured
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oligonucleotide systems [33, 34] or to predict the correct stability of RNA tetraloops

[27]. Therefore, further advances in enhanced sampling and force Ąeld reĄnements are

required in the Ąeld of computer-simulation experiments of RNA.

The results presented in this thesis are mainly concerned with the development of

a new enhanced sampling method for the study of RNA molecules and with the inclu-

sion of empirical corrections into the RNA force Ąeld that improve the agreement with

solution NMR experiments. The new method introduced here, replica exchange with

collective-variable tempering (RECT), greatly improves the conformational sampling

of the challenging RNA tetranucleotides, which have become a benchmark to evaluate

enhanced sampling techniques and force Ąeld accuracy [31Ű34]. Concerning the force

Ąeld corrections, a self-consistent procedure based on metadynamics [35, 36] is used

to calculate correcting potentials that enforce distributions of dihedral angles taken

from experimental structures in the RNA AMBER force Ąeld [37Ű39]. Since the target

distributions are multimodal, we use RECT to accelerate the convergence of the cor-

recting potential calculation. The resulting corrections are tested on tetranucleotides

where standard force Ąeld parameters are known to fail in reproducing NMR data. The

new AMBER force Ąeld lead to ambiguous results when applied to diferent tetranu-

cleotide sequences. However, the simulations reveal that by only penalizing a rotameric

phosphate-backbone conformation, the quality of the ensemble is signiĄcantly improved

to levels not reported before.

The material presented in this thesis is organized as follows:

In Chapter 2, an overview of RNA structure is presented, focused on the internal

motions that characterize the Ćexibility of single-stranded RNA structures. Chapter 3

is devoted to a brief summary of the state of the art of RNA force Ąelds and enhanced

sampling methods commonly used to aid the exploration of RNA conformational space

in MD simulations. Special attention is dedicated to well-tempered metadynamics [40]

which is the base of the new enhancing sampling method presented in Chapter 4. In

this new method concurrent well-tempered metadynamics simulations are integrated

in a replica exchange framework so as to efectively overcome the high free energy

barriers of the RNA dihedral angles transitions. Chapter 5 presents the results from the

empirical correction of the RNA force Ąeld using a combination of metadynamics-based

techniques, which suggest a systematic procedure for force Ąeld reĄnement. Finally,

the conclusions of the thesis and the perspectives are contained in Chapter 6.

The results discussed in Chapter 4 and 5 are largely based on the following publi-

cations:

Gil-Ley, A and Bussi, G. Enhanced Conformational Sampling using Replica Ex-

change with Collective-Variable Tempering. Journal of Chemical Theory and

Computation. 2015, 11 (3), 1077-1085. (Cover article for the March 2015 issue of

JCTC, Figure 1.1)

http://pubs.acs.org/doi/abs/10.1021/ct5009087
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Gil-Ley, A.; Bottaro, S.; Bussi, G. Empirical corrections to the Amber RNA force
Ąeld with Target Metadynamics. Journal of Chemical Theory and Computa-
tion. 2016, 12 (6), 2790–2798.

In addition, collaboration with other members of Prof. Bussi’s group has lead to

the following publications, not included in this thesis:

Bottaro, S.; Gil-Ley, A.; Bussi, G. RNA Folding Pathways in Stop Motion. Nu-

cleic Acid Research. 2016, 44 (12), 5883-5891.

Cesari, A.; Gil-Ley, A.; Bussi, G. Combining simulations and solution experiments

as a paradigm for RNA force Ąeld reĄnement. Submitted.

Figure 1.1: Cover art highlighting the RECT method.

http://pubs.acs.org/doi/10.1021/acs.jctc.6b00299
http://nar.oxfordjournals.org/content/early/2016/04/15/nar.gkw239.abstract


Chapter 2

RNA Structure

RNA is a polymeric molecule formed by a combination of 4 diferent nucleotides [41Ű43].

Each nucleotide contains a furanose-type sugar (β-D ribose), an aromatic heterocyclic

base, and a phosphate group. The nucleotides are linked to one another in a linear man-

ner, by phosphodiester bonds between the sugar of one nucleotide and the phosphate

group of the adjacent nucleotide. The most common nucleobase types are: adenine

(A), cytosine (C), guanine (G), and uracil (U). Cytosine and uracil are derivatives of

the pyrimidine (Py) ring, while adenine and guanine have a purine (Pu) scafold, a

pyrimidine ring fused to an imidazole ring. The phosphate groups have a negative

charge each, making RNA a polyanionic molecule. The structure of the ribose ring and

the nucleobases is represented in Figure 2.1.

The single stranded RNA Ćexibility is characterize by the motion of the nucleobase

with respect to the sugar (syn/anti orientation around the torsion angle χ), the pseudo-

rotation of the furanose ring, and the conformation of the sugar-phosphate backbone

(torsion angles γ, α, β, ϵ and ζ, deĄned in Fig 2.2). In the following sections each of

these internal modes of motion will be discussed in more detail.

2.1 syn/anti orientation about the glycosyl bond

The glycosidic bond links a ribose sugar and a nucleobase. Structural constrains result

in marked preferences for the torsion angle χ around this bond. There are two principal

low-energy domains for this angle, corresponding to the anti conformation (χ = 180 ±

90o) and the syn conformation (χ = 0 ± 90o) [44]. In the anti conformation the face

of the nucleobase is directed away from the sugar ring, while in the syn it is over or

toward the sugar (Figure 2.3). In general, it is expected the anti conformation to be

more energetically favorable than the syn, as in the latter one the bulky part of the

base is located over the sugar, which generates close interatomic contacts. Due to

primarily steric hindrances, the barrier to the interconversion between syn and anti

conformations is higher for Py than for Pu [45Ű50]. Previous ultrasonic relaxation

experiments suggested that the barrier height for the base rotation in Pu nucleosides

(in a nucleoside no phosphate group is attached to the 5’ hydroxyl group) was 6.2
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kcal/mol, and the transition rate was 0.25 ns−1 [51]. Similarly, ultrasonic relaxation

with ribonucleotides 5’-AMP and 5’-GMP showed that the activation enthalpy changes

for the rotation was 1 and 1.5 kcal/mol [52, 53]. Moreover, in this study the syn

conformation was found more stable than the anti, and its stability was believed to be

controlled by entropy rather than enthalpy. In the case of Py nucleosides, recent NMR

experiments estimated the free energy diference ∆G◦
anti→syn to be 1.07 kcal/mol for

Cytosine and ∆G◦
anti→syn 1.45 for Uridine [54]. Although in RNA crystal structures

the anti rotamer is the most common, a recent study have revealed that the majority

of the syn nucleobases are in regions assigned to function, with many syn nucleobases

interacting directly with a ligand or ribozyme active site [55].

2.2 Pseudo-rotation of the sugar ring

The Ąve-membered ribose sugar ring is innately nonplanar. This non-planarity is

termed puckering [43]. The ring can be puckered in an envelope (E) form with four

atoms in a plane and the Ąfth atom out by approximately 0.5 Å; or in a twist (T) form

with two adjacent atoms displaced on opposite sides of a plane passing through the

other three atoms [42]. Conventionally, atoms displaced from these three- or four-atom

planes and on the same side as C5’, are called endo; those on the opposite side are called

exo. The sugar puckering modes are illustrated in Fig. 2.4, with the two most common
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states of the ribose, the C2’-endo (2E) and the C3’-endo (3E). Several possible geometric

deĄnitions of sugar puckering exist [56Ű63]. The furanose sugar has Ąve internal sugar

torsions ν0−ν4 but only two torsions angles are needed to deĄne its geometry . In this

thesis we adopt the approaches introduced by Hill and Reilly [62] and by Huang et al.

[63]. The main diference between these approaches is the deĄnition of the two dihedral

angles selected as pseudorotation variables (improper in [62] or proper in [63]). The

methods simplify the deĄnition of pseudorotation of furanose puckering and allow easy

and accurate calculation of the structural quantities (See Fig. 2.5). Changes in sugar

pucker are important determinants of oligo- and polynucleotide structure because they

can alter the orientation of C1’, C3’ and C4’ substituents, resulting in major changes in

backbone conformation and overall structure (e.g. C3’-endo in A-DNA or RNA, while

C2’-endo in B-DNA) [43].

In solution the C2’-endo and C3’-endo sates are in rapid equilibrium, as shown

by NMR investigations and theoretical studies [64Ű69]. In general terms, free Py nu-

cleotides favor C3’-endo puckering while Pu derivatives occur preferentially in the C2’-

endo mode. The free-energy diference between C2’-endo and C3’-endo (∆G◦
C2′→C3′)

in RNA nucleosides has been estimated by NMR experiments: for Adenosine (0.43

kcal/mol [70]), Guanosine (0.36 [70]), Cytosine (-0.24 [54] / -0.36 [70]) and Uridine

(-0.15 [54] / -0.07 [70]). Interconversion between C2’-endo and C3’-endo states has two

principal routes, one with a barrier around O4’-endo and another one passing through

the O4’-exo pucker. The O4’-exo route is more energetically unfavorable [63, 71? ],

which can be understood based on steric hindrances: in the O4’-exo pucker the base

and C5’ exocyclic substituents are both in axial position which leads to steric interfer-

ence, while in the O4’-endo mode both are in equatorial orientation which place them
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farther apart [42].

The interaction between the sugar and the nucleobase can modulate the two-state

C2’-endo ⇌ C3’-endo pseudorotational equilibrium on the basis of various steric and

stereoelectronic efects. In terms of steric efect alone, C2’-endo-type pseudorotamers

are energetically favored in comparison with C3’-endo-type counterparts, since the

pseudo-equatorially oriented nucleobase in the former exerts less steric repulsions with

the other substituents on the pentofuranose moiety than when it is pseudoaxial in the

latter [72, 73]. Stereoelectronic forces can also modulate the pseudorotational equilib-

rium. Some of these forces oppose to the steric ones and stabilize the C3’-endo-type

conformations in RNA nucleotides [74, 75]. Scrutiny of all nucleoside crystal data

suggests that Pu nucleosides with C2’-endo pucker adopt both syn and anti forms in

nearly equal distribution but C3’-endo puckering shifts the orientation about the glyco-

syl bond to anti [76]. For Py ribonucleosides, the syn form is found less frequently, and

it occurs with both C2’- and C3’-endo sugars, while the dominant anti conformation

is associated with C3’-endo [77Ű80].

It is important to summarize the distinction between the ribose and deoxyribose

puckering cycles, as the only diference between RNA and DNA comes from the pres-

ence of the hydroxyl substituent at the 2’ position. In polymeric DNA structures,

deoxyriboses are primarily in the C2’-endo form, while in RNA molecules, ribonu-

cleotides favor C3’-endo [42, 43]. Systematic surveys of 2’-substituted adenosine and

uridine derivatives indicated that the amount of the C3’-endo conformer increases lin-

early with the electronegativity of the 2’-substituent [75]. Moreover in RNA C3’-endo

is also stabilized by additional hydrogen bonding opportunities, for example a direct

hydrogen bond between O2’H and the O4’ of the adjacent nucleotide, as well as a

water-mediated hydrogen-bonded bridge between O2’H and the 3’-phosphate, have

been advocated as factors of the C3’-endo stabilization in RNAs [81Ű86].
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In resume, the conformational equilibrium of the ribose ring is energetically con-

trolled by various competing factors, like stereoelectronic efects, hydration, steric ef-

fects, inter and intramolecular hydrogen bonds or by the conformational constraints

imposed by the RNA polymorphism [42, 43, 75].

2.3 Conformations of the sugar-phosphate backbone

The sugar-phosphodiester backbone of an oligonucleotide has six diferent torsion an-

gles, designated α, β, γ, δ, ϵ and ζ in addition to the Ąve internal sugar torsions ν0−ν4

and the glycosidic angle χ (Figure 2.2). Steric considerations alone dictate that the

backbone angles are restricted to discrete ranges [87, 88]. A common convention for

describing these ranges is to term values of ∼ 0° as cis, ∼ 180° as trans (t), and

∼ ±60° as gauche± (g±). The allowed ranges for these angles is shown in Figure 2.6.

Determining the energetic balance among the diferent allowed conformers is a diicult

task considering it is the result of several competing factors, like steric interactions,

stereolectronic efects and electrostatic repulsions [42, 79].

The orientation along the exocyclic C4’-C5’ bond is controlled by the γ angle.

Rotation about this bond plays a crucial role in positioning the 5’-phosphate group

relative to the sugar and base. The γ angle has three main rotamers g+, g− and t, the

classical threefold staggered pattern of ethane. There is, however, a similarity between

the χ and γ rotations: syn and g+ position the nucleobase and the O5’PO−2
3 over the

ribose whereas anti and g− or t direct the base and O5’PO−2
3 away from it. The three

rotamers are not uniformly populated because their distribution is dependent on sugar

pucker and on the base identity [42].

The rotations about C−O ester bonds are determined by the ϵ and β torsion angles.

These rotations are the more restricted transitions in the nucleic acid backbone. In
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Figure 2.5: Pseudorotation wheel of the ribose sugar. Using the proper ν1 and ν3

dihedral angles, or equivalently the improper θ1 and θ2, a pair of Cartesian coordinates
Zx/Zy can be deĄned to described the conformation of the furanose moiety [63]. The
conformational ensemble of the Adenosine and Cytosine nucleosides generated with the
f99-bsc0-χOL3 force Ąeld is projected onto the Zx/Zy space as an example of the efect
of the nucleobase in the pseudorotation equilibrium. Adapted from ref [63].

crystals of mono-, oligo-, and polynucleotides, the torsion angle β deĄning rotation

about the C5’-O5’ bond is largely limited to the t range (Figure 2.6). The rotation

about the C3’-O3’ bond, denoted by ϵ, follows a similar trend yet the main clustering

is not t but is shifted slightly to 2200 in the trans− range (−π
2

↔ π) [79, 87, 89Ű92].

Theoretical considerations greatly agree with experimental data, showing that severe

steric hindrance between the phosphate group and sugar moiety restricts C−O torsion

angles β essentially to t and ϵ to the t and t− ranges [93Ű99].

Rotations about P−O ester bonds, controlled by the α and ζ angles, are less re-

stricted than rotations about C−O bonds, thus P−O bonds are the major pivots af-

fecting polynucleotide structure. The stereoelectronic efects favors orientations about

P−O ester bonds to (α/ζ) g/g, t/g or g/t. Ab initio calculations, using dimethyl

phosphate anion as a model of the phosphodiester linkage, have determined that the

g−/t and t/t conformers are 1.45 and 3.66 kcal/mol higher in energy, respectively, than

g−/g− (the energy proĄle is symmetric around the t position, so the g+/g+ is equally

favored). This preference for gauche conformations is due to a stabilizing interaction

caused by a lone pair located on O5’ (or O3’) that can partially donate charge to the
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Figure 2.6: Conformational wheel showing the allowed ranges of backbone torsion
angles. Values were taken from a X-ray structure of the large ribosomal unit from D.
Radiodurans (PDB: 3JQ4).
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σ
∗

P-O3’/5’

α = -77 ◦

α = 180 o

Figure 2.7: Description of the stereoelectronic efect in phosphodiester backbone of
nucleic acids. The gauche conformation (left) of the C−O−P−O group is favorable
because an oxygen electron lone pair is trans to the adjacent, polarized P−O bond
and can donate electrons. In the trans orientation (right) orbitals and adjacent P−O
bonds are in g± positions and electron transfer is diminished. Adapted from ref [42].

σ∗
P −O3′/5′ antibonding orbital. This type of interaction is illustrated in Figure 2.7. The

inclusion of water and cations could afect the stabilization of the gauche conformation.

Principally, the complexation with a cation can change the charge distribution of the

phosphodiester group and decrease the stereoelectronic efect. Moreover, the symme-

try between the g−/g− and g+/g+ conformations found in α/ζ energy maps calculated

with dimethyl phosphates or dinucleoside monphosphates have been found to be broken

when the chain is elongated, due to close contacts between second neighbor phosphate

groups. In dinucleoside di- or triphosphates the g+/g+ orientations are less stable than

the g−/g− conformations [42]. This is also supported by X-ray crystal studies, which

show that the main geometrical arrangement of the α/ζ angles are right-handed helical

conformations, with rotamers in the g−/g− range around 2700 [42, 100]. In RNA struc-

tures the t rotamers of these angles are found usually in loops and turns motives, but

disruption of the common g−/g− phosphate conformation is energetically costly (loss

of the gauche efect is estimated at 2 kcal/mol) [101]. This energetic loss is partially

ofset by a hydrogen bond between the nucleobases atoms or sugar and an oxygen of

the turning phosphate [101].

2.4 Summary

The unique structure-dynamic function relations in RNA are the result of a coopera-

tive interplay among ribose sugar, nucleobase and phosphodiester moieties [75]. In this

chapter we have brieĆy shown that the conformational equilibria of each of these struc-

tural motifs are driven by various internal efects, steric and stereoelectronic, and in-

teractions with counterions and water. Moreover, these internal degrees of freedom are

not uncorrelated, sugar conformation inĆuences the orientation of the nucleobase, and

vice versa, and conformational transitions are transmitted through the sugar-phosphate

backbone to inĆuence the rotameric preferences of the phosphodiester rotamers [74].
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This structural complexity imposes a challenge for the interpretation of RNA structural

experimental data [102] and for the molecular mechanics potentials used in computer

simulations to describe RNA conformational space.



Chapter 3

RNA Simulations

In classical MD simulations, the potential energy is expressed in terms of bond length,

angles between bonds, torsion angles, Lennard-Jones and Coulomb pairwise interac-

tions. The energy function is known as force Ąeld (FF). There are a great variety

of these FF, with slightly diferent functional forms, and each of them have diferent

set of parameters which have been developed over the years. The most populars ones

are AMBER [37], CHARMM [103], OPLS [104] and GROMOS [105]. The success of

MD simulation is intrinsically dependent of the quality of these FF parameters, which

describe the energetic landscape of the molecule. Despite the advances achieved in the

last decades, with the increase of computational power and the reĄnement of RNA

FFs, recent extensive simulations of unstructured oligonucleotides for which converged

sampling is afordable have unambiguously shown that current RNA force-Ąeld param-

eters are not accurate enough to reproduce solution experiments. On the other hand,

as new eforts in improving those force Ąelds have been made it has been clear the

importance of applying enhanced sampling methods to generate well-converged con-

formational ensembles which could be used to identify problems and validate those

updates. The following sections present a discussion of the state of the art in RNA

FF and enhanced sampling methods commonly used to aid the exploration of RNA

conformational space.

3.1 RNA Force fields

Nucleic acids structures are complex and involve a subtle balance between charge in-

teractions, hydrogen bonding, stacking contacts, backbone conformational Ćexibility,

sugar puckers, and glycosidic torsions, all adding signiĄcant diiculty to the FF de-

velopment. Though modest success has been seen with regard to reevaluating experi-

mental data and qualitatively describing dynamics, the accuracy of RNA force Ąelds is

still lagging behind that of FF used in protein simulations [106] and even to the most

recent DNA FF [107, 108]. The advantage of describing DNA over RNA could be due

to the fact that DNA molecules are mostly stable double helix while RNA molecules

are usually single-stranded that fold back upon themselves and show a very rich dy-
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namic [109]. Moreover, the O2’H group of RNA ribose, absent in DNA, is a powerful

donor and acceptor of hydrogen bonds that is involved in an astonishing repertoire of

non-Watson−Crick interactions.

Current atomistic simulations of nucleic acids are still mostly based on second-

generation pair-additive force Ąelds derived in the 90s [15, 16, 27]. There have been

eforts to improve their performance by partial reparametrizations [26, 38, 39, 54].

Though attempts at improving RNA FF have been dominated by modiĄcations of

dihedral parameters [38, 39, 54], recent parameters have addressed also the various

problems with the non-bonded components [26, 110]. The most used FF for RNA

are descend from the AMBER [37] and CHARMM family [111Ű113]. For clarity FF

reĄnements have been divided into 2 groups, non-bonded corrections and the changes

in the dihedral parameters.

3.1.1 Improvement of dihedral angle rotations

The latest CHARMM force Ąeld for RNA is the CHARMM36 [114], where the di-

hedral parameters of the O2’H group were tuned to improved the agreement with

quantum-mechanical energy proĄles. Recent test have shown that CHARMM36 suf-

fers from some understabilization of canonical A-RNA helices on the nanosecond time

scale [115, 116]. In contrast to the good performance of CHARMM force Ąeld in the

proteins and B-DNA simulations, FF of the AMBER family are usually preferred for

long RNA simulations. Many variants of the AMBER Cornell et al. force Ąeld [37]

are currently in use by the RNA community. Most of them are based on a combina-

tion of AMBER99 (f99) [117] and the bsc0 reparametrization of the α/γ dihedral pair

[38], which eliminated spurious Ćips resulting in a progressive degradation of B-DNA

structure during simulations. Although bsc0 was devised for DNA, subsequent sim-

ulations have proved that it also improves the RNA description [115, 118]. In 2010,

a reparametrization of the glycosidic torsion, denoted as χOL3 [39, 118], was devel-

oped to correct the formation of ladder-like structures in the microsecond time scale

in RNA canonical A-form helices [119]. The f99-bsc0-χOL3 variant have been tested

on many RNA systems including RNA helices, tetranucleotides and tetraloops [31Ű

33, 115, 120, 121]. The experimental agreement of the ensemble generated with this

variant is far from robust, fundamentally in the prediction of the native conforma-

tion stability in single-stranded structures and hairpins. Another reparametrization of

the χ torsion was independently suggested by I. Yildirim et al., using NMR data of

nucleosides to validate the new FF [54]. The f99-bsc0-χY IL force Ąeld also prevents

the spurious ladder-like structures but causes some Ćattening of the A-form helix by

underestimation of inclination and roll parameters [118]. Subsequently, I. Yildirim et

al. extended their version by including a reparametrization of the ε, ζ, and β torsions

[122], but latter tests have shown it caused canonical A-form helices to deteriorate

[123].
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3.1.2 Modifications of Non-bonded interactions

Though modiĄcations of dihedral parameters have dominated the AMBER correc-

tions, recent works have suggested that changes in non-bonded parameters improve

key problems of the f99 like over-stacking and the imbalance in solute-solvent interac-

tions. D. Case et al. reparametrized the van der Waals (vdW) radii of the oxygens in

the phosphate group to obtain consistent thermodynamic results with better balanced

electrostatic interactions between water and the phosphate oxygens [110]. REMD sim-

ulations of tetranucleotides [33] and tetraloops [27] showed that RNA simulations might

be improved by the implementation of this new parameters.

An alternative reparametrization of f99 has been suggested by A. Chen and A.

Garcia (f99-vdWbase-χCG) during their eforts to achieve a reversible folding of RNA

tetraloops [26]. They proposed a rescaling of the Lennard-Jones potential parame-

ters from the nucleobase heavy atoms, together with a modiĄcation of of-diagonal

Lennard-Jones terms in nucleobaseŰwater interactions. The non-bonded corrections

were accompanied by an adjustment of the f99 χ dihedral potential. The main aim

of the new FF was to eliminate the known overestimation of the stacking interactions

[124, 125]. With these parameters it was possible to observe multiple folding events

to the folded state with correct signature interactions for two out of three studied

RNA tetraloops. A subsequent benchmark study by Cheatham et al. conĄrmed that

f99-vdWbase-χCG leads to an improvement over all the current AMBER FF variants.

However, f99-vdWbase-χCG may also lead to excessive stabilization of some non-native

base-pairs and to an imbalance between modiĄed and unmodiĄed vdW parameters, un-

derlining the diiculty of obtaining a force Ąeld that would simultaneously reproduce

all properties of RNA molecules [33, 126].

The efect of diferent water models on the experimental agreement of the RNA

ensembles have also been tested [115, 127, 128]. For example, in the simulation of

single-stranded RNA oligonucleotides the combination of AMBER parameters and the

OPC water model have shown a signiĄcant improvement over the commonly used

TIP3P water model [128]. However, variations of water models are unlikely to resolve

the limited accuracy of the primary solute force Ąeld, which originates from its inability

to reliably describe inherent conformational preference of nucleic acids.

3.2 RNA Sampling

Molecular dynamics (MD) with accurate force Ąelds can in principle be used as a

virtual microscope to investigate motions at atomistic resolution [129]. However, its

applicability to problems such as folding or conformational transitions in proteins and

RNA is limited by the fact that only short time scales (∼ µs) are directly accessible

by straightforward simulation. Although recently developed ad hoc hardware allowed

for a three-order-of-magnitude gain in the accessible time scales [106], many relevant

conformational transitions are still out of reach for accurate atomistic modeling. Several
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diferent techniques have been developed in the last decades to address this issue [130].

These techniques can be roughly classiĄed in two groups: methods based on Annealing

[131] and techniques based on Importance Sampling [132]. The next sections will

introduce some basic concepts of these computational techniques.

3.2.1 Annealing-based methods

These class of methods were traditionally based on increasing the temperature of a MD

simulation to overcome high energy barriers [130]. This strategy relies on the fact that

in an Arrhenius process the logarithm of the relevant performance parameter (e.g. the

rate at which the barrier-crossing events happen) depends linearly on the reciprocal

of the temperature [133, 134]. Thus, for this kind of processes, a procedure where the

system is Ąrst heated and then cooled allows the quick generation of samples which

are largely uncorrelated. The annealing strategy was Ąrst translated from metallurgy

to combinatorial optimization in the seminal work of Kirkpatrick et al. [131], later

extended to spin glasses [135] and Ąnally to biological systems [136].

The annealing procedure in molecular dynamics simulations has been implemented

mainly in two ways: Simulated annealing [137] and Parallel tempering [135, 136]. In

a typical parallel tempering simulation (also known as temperature replica exchange,

T-REMD) there is a ladder of replicas, each at a diferent temperature Ti. Across the

replica ladder the temperatures increase progressively, the lowest replica is simulated

normally at a room temperature, and the highest (replica) temperature is chosen so

the system can easily cross barriers between minima. The coordinates of the replicas

are periodically exchanged between the ensembles and the velocities are appropriately

rescaled to the new temperature. Since the replicas do not interact, the partition

function of this larger (generalized) ensemble is given by the product of the individual

partition function of each (replica) ensemble. If the probability of attempting a swap

move (α) is equal for all conditions, exchanges between ensembles i and j are accepted

with the probability

α = min
(

1, e∆i,j



(3.1)

with ∆i,j = (βj−βi)(Ej−Ei), where β is the reciprocal temperature 1
T

and Ei is the

potential energy of the system i (to simplify kB = 1). If we assume the systems

have Gaussian energy distributions, with mean ⟨U(β)⟩ and width σ(β), the probability

distribution of ∆ will be also a Gaussian with mean ∆0 = (βj−βi)(⟨Ej⟩ − ⟨Ei⟩) and

width σ2
0 = (βj−βi)2(σ2

j + σ2
i ). The min function can be evaluated analytically to

obtain the average acceptance ratio ⟨α⟩ [138], which is equal to

⟨α⟩ = erfc

(

∆0

σ0



. (3.2)

Equation 3.2 can be used to estimate the acceptance between two replicas given

either the average ∆0 and the variance σ of the ∆ term. Assuming that the heat



3.2 RNA Sampling | 17

capacity of the system CV is constant, then ⟨Ej⟩ − ⟨Ei⟩ = CV (Tj − Ti) and σ2
j + σ2

i =

CV (T 2
j + T 2

i ) substituting both expressions in equation 3.2 leads to [139]

⟨α⟩ = erfc





√

CV
Tj − Ti
√

T 2
i + T 2

j



 . (3.3)

From this expression it can be seen that in systems where the CV is constant the

density of replicas should decrease as the temperature raises to maintain an uniform

acceptance: for a Ąxed replica spacing (constant ∆Ti,j) if the magnitude of the tem-

peratures rises (↑
√

T 2
j + T 2

i ) the ⟨α⟩ increases. In this case, a geometric distribution

of temperatures (constant Tj

Ti
) has been found to be optimal to maintain an uniform α

across the replica ladder.

Another factor inĆuencing α is the size of the system. The heat capacity is propor-

tional to the number of particles N (or degrees of freedom) which means the accep-

tance will decrease when N increases [140]. The parallel tempering simulation of large

biomolecular systems in water (hundreds of thousand of atoms) is computationally de-

manding, as it requires a large number of replicas to maintain a moderate acceptance in

a range of temperatures that allows the system to ensure transitions over high energy

barriers.

In practical cases the speciĄc heat is not a constant, and especially for biomolec-

ular systems in vacuum or implicit solvent, the CV can change signiĄcantly with the

temperature. In these cases a geometric distribution of temperatures will not gener-

ate a constant acceptance. On the other hand, in simulations of solvated molecules,

the acceptance ratio will be dominated by the speciĄc heat of the water model, for

which the approximation of constant CV is more plausible. The selection of an optimal

distribution of temperatures is not trivial, but solutions to take into account a more

realistic dependence of the heat capacity with temperature in the context of explicit

solvent simulations are available [141].

Whereas parallel tempering is a powerful method and it has been applied to prac-

tically all biochemical systems with great results, temperature is an intensive quantity

and does not allow the selective enhancement of speciĄc degrees of freedom. The

method is also inefective on entropic barriers and in systems with anti-Arrhenius

behavior [142Ű144]. Scaling portions of the Hamiltonian is a common alternative (H-

REMD) and could have a better convergence behavior for large systems. A promising

technique in this group is replica-exchange with solute tempering, where solute-solvent

interactions and the force-Ąeld parameters of the solute are modiĄed [145, 146]. T-

REMD and H-REMD can also be combined, by integrating both schemes on each

replica [147] or in a multidimensional framework [31]. In particular for RNA sys-

tems, the multidimensional replica exchange [31] have outperformed one-dimensional

T-REMD and H-REMD simulations, for the same conditions and total simulated time

[32]. Even for a small RNA system like a tetranucleotide, in order to generate a con-

verged ensemble, a total of 57.6 µs of simulated time in a multidimensional replica

exchange framework (24 × 8 replicas) have shown to be required [31].
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3.2.2 Importance-sampling based methods

The second group of enhanced sampling techniques includes methods based on im-

portance sampling. This class has its root in the umbrella sampling method [132],

and includes local elevation [148], conformational Ćooding [149], adaptive biasing force

[150], and metadynamics [40, 151], among others. In this kind of methods the canonical

Boltzmann weighting is modiĄed by a bias potential designed to cancel the efect of

free-energy barriers and increase the frequency of rarely-sampled conformations. The

potential is usually deĄned in a reduced set of coordinates, known as collective variables

(CVs). These techniques are very efective but require a careful choice of the CVs that

must provide a satisfactory description of the reaction coordinate [152, 153]. If impor-

tant degrees of freedom are not taken into account, it could hinder the exploration of

the phase space and generate hysteresis and lack of convergence. Moreover, when more

than a few (∼ 3) CVs are used, the computational performance rapidly degrades as a

function of the number of variables. For many biomolecular systems it is diicult to

Ąnd a small number of efective CVs that describe all the slow degrees of freedom.

Consider a function s of the system coordinates s(x1, x2.., xN) that allow the pro-

jection of the system conformational space in a reduced surface and includes some

important features of the system dynamic and phase space. For example the minima

in the reduced space should correspond to the metastable states of the system, and

the relevant transition events should be represented there by matching barriers. The

probability distribution of the CV is given by

P (s) =
1
Z

∫

e−βU(x)δ(s − s(x))dx (3.4)

where Z is the partition function Z =
∫

e−βU(x)dx and the corresponding free energy

is estimated as

F (s) = −
1
β

ln
∫

e−βU(x)δ(s − s(x))dx. (3.5)

In the umbrella sampling framework the normal dynamics of the system is biased

by a smartly chosen bias potential V (s(x)) that depends on x only via s(x). The

bias potential facilitates the exploration of the system conformational space and so the

biased probability distribution P̃ will be easier to estimate

P̃ (s) =
1
Q

∫

e−β(U(x)+V (s(x))δ(s − s(x))dx (3.6)

here Q is the partition function of the biased ensemble. The efect of the bias potential

can be reweighed to obtain the unbiased probability distribution

P (s) = P̃ (s)eβ(V (s)−f) (3.7)

where f = 1
β

ln Z
Q

is a constant that does not depend on s. Equation 3.7 is the funda-

mental relation behind the umbrella sampling and related methods. These methods are
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very eicient but require large a priori information, in order to deĄne a proper CV and

choose an eicient bias potential. One solution for the latter problem is the adaptive

construction of the bias potential during the MD or MC simulations using kernel func-

tions like Gaussians or splines. In this thesis we focus on well-tempered metadynamics

(WT-MetaD), a self-consistent adaptive-bias method introduced in 2008 by A. Bar-

ducci, G. Bussi and M. Parrinello [40], which is a variant of the original metadynamics

method devised by A. Laio and M. Parrinello in 2002 [151].

3.2.2.1 Well-tempered metadynamics

In well-tempered metadynamics a history dependent potential V (s, t) acting on the

collective variable s is introduced and evolved according to the following equation of

motion

V̇ (s, t) =
kB∆T

τB

e
−

V (s,t)
kB∆T K(s − s(t)) (3.8)

here kB is the Boltzmann constant, T the temperature, τB is the characteristic time for

the bias evolution, ∆T is a boosting temperature, and K is a kernel function which is

usually deĄned as a Gaussian. For simplicity we consider the case of a single CV. The

variance of the Gaussian provides the binning in CV space and is usually chosen based

on CV Ćuctuations or adjusted on the Ćy [154]. By assuming that the bias is growing

uniformly with time one can show rigorously [40, 155] that in the long time limit the

bias potential tends to

lim
t→∞

V (s, t) = −
∆T

T + ∆T
F (s) + C(t) (3.9)

so that the following probability distribution is sampled

lim
t→∞

P (s, t) ∝ e
−

F (s)
kB(T +∆T ) . (3.10)

The role of ∆T is that of setting the efective temperature for the CV. The explored

conformations are thus taken from an ensemble where that CV only is kept at an

artiĄcially high temperature, similarly to other methods [156Ű158], but has the nice

feature that it is obtained with a bias that is quasi-static in the long lime limit. The

bias is usually grown by adding a Gaussian every NG steps. As a consequence, to

obtain an initial growing rate equal to kB∆T
τB

, the initial Gaussian height should be

chosen equal to kB∆T
τB

NG∆t where ∆t is the MD time step.

3.2.3 E pluribus unum

The advantage of replica exchange methods is that they generally require very little

a priori knowledge of the system, as opposed to the methods based on importance-

sampling. However, the former methods can be rather computationally expensive,

especially parallel tempering, and the expansion of the generalized ensemble could
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lead to problems of convergence. The combination of the replica exchange framework

with umbrella-sampling-type methods like Metadynamics could solve this problems and

reduce the own limitations of the importance sampling strategy. Such a combination

results in a synergic efect. Parallel tempering metadynamics [159], bias-exchange

metadynamics [160] and the well-tempered ensemble [161, 162] are great examples of

the integration between these two frameworks.

In the case of nucleic acid systems, compare to proteins, the application of these

methods have been limited, partly due to the diiculties of designing ad hoc CVs which

can correctly describe the conformational transitions. Some applications have circum-

vented this problem by biasing a large number of local CVs (e.g. dihedral angles).

For example, J. Curuksu and M. Zacharias introduced a technique where bias po-

tentials acting on dihedrals were used in a replica exchange framework to speciĄcally

promote dihedral transitions in the nucleic acid backbone [163]. The dihedral angle

conformational space is discretized, in one or two-dimensions, to identify the position

of the metastable basins. For example, in a bidimensional ϵ/ζ space once a minimum

is located (ϵi, ζi) a bias potentials V (x) is settled, where x is the angular distance
√

(ϵ − ϵi)2 + (ζ − ζi)2. This function is constant when x ≤ r, and at distances larger

than r it decreases continuously on its edges down to zero at a distance R.

V (r) = Emax (x < r)

= Emax

(r−R)4 [(x − r)2 − (r − R)2]2 (r ≤ x ≤ R)

= 0 (x > R)

After all the relevant basins in the dihedral angle space are determined a replica

exchange simulation is run where the height (Emax) of the bias potential is increased

along the replica ladder. This technique require very few replicas and it has been

upgraded to include a dynamic adjustment of the bias potential height during the

simulation to ensure high acceptance rates and a good mixing of sampled structures in

the replicas [164]. However, these potentials do not account for the speciĄc identity of

each residue and for the cross-talk between correlated dihedrals.

Another approach have been attempted by Roe et al. who combined accelerated

molecular dynamics (aMD) with replica exchange method to explore the conformational

space of a RNA tetranucleotide [32]. In aMD a boosting potential is applied to the

torsion energy E(r) when its values drop below a user speciĄc energy cutof Ecutoff

[165]. This boosting potential is a function of the torsion energy itself

Vboost(r) =
(Ecutoff − E(r))2

α + (Ecutoff − E(r))

and across the replica ladder its strength is incremented by reducing the value of α. In

this application, the boosting potentials were not able to compensate the free-energy

barriers to rotation around many of the biased torsion angles, specially ϵ and χ angles.

The reason is that barriers to rotations do not include just steric and electrostatic

contributions from the dihedral atoms encoded in the torsion energy, but also long-

distance non-bonded contacts and solute-water interactions.
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3.3 Summary

In the Ąrst section of this chapter we present a survey of the diferent force Ąelds

available for RNA. When compared with solution NMR experiments of RNA single-

stranded tetranucleotides none of the ensembles generated with the many AMBER FF

variants have given a satisfactory agreement. This could be caused by the inability

of pair-additive FFs to accurate reproduce RNA structural features, due to physical

approximations, like not considering explicitly polarization efects, or could be the

result of simpliĄcations taken during the FF parametrization process, like assuming

the sugar-backbone angles are uncorrelated. One solution to this problem could be the

inclusion of correcting potentials into the FF, tuned in order to increase the agreement

with solution experiments.

In section 3.2, a short introduction to the Ąeld of enhanced sampling techniques

is given. An especial attention is taken on ad hoc sampling methods developed for

the simulation of nucleic acid systems. These methods have shown that acceleration

of RNA conformational transitions can be achieved efectively by biasing dihedral an-

gles or the dihedral energy. However, the method presented by J. Curuksu and M.

Zacharias [163] was only applied to a pair of dihedral angles in DNA backbone and in

the second method [32] discussed here only the energetic contributions to the rotameric

equilibrium of RNA dihedrals were considered, which led to residual free-energy barri-

ers that hindered some of the torsional angles rotations. In the spirit of these previous

methods, a new technique is introduced in the next chapter, that combines concurrent

well-tempered metadynamics simulations with replica exchange.



Chapter 4

Replica Exchange with

Collective-Variable Tempering

4.1 Overview

As discussed in Chapter 3, section 3.2.3, the combination of the replica exchange frame-

work with importance sampling techniques that biased a large number of local collective

variables (e.g. dihedral angles), have been employed efectively to promote confor-

mational transitions in nucleic acids. In the present chapter, a new methodology is

presented, which uses concurrent well-tempered metadynamics simulations [40] (WT-

MetaD) to build bias potentials acting on a large number of local CVs. We then show

how to integrate this approach in a Hamiltonian replica exchange (H-REMD) scheme,

exploiting the replica ladder to obtain unbiased conformations. In WT-MetaD the

compensation of the underlying free-energy landscape is modulated by the boosting

temperature ∆T . We here change this parameter across the replica ladder, adjusting

the ergodicity of each replica. The Ąnal bias can be also used as a static potential so

as to completely eliminate any non-equilibrium efect. Since the efect of the bias is

that of keeping the chosen CVs at an efectively higher temperature, we refer to the

introduced method as replica exchange with collective-variable tempering (RECT).

The method is Ąrst tested on alanine dipeptide in water and then applied to the con-

formational sampling of a RNA tetranucleotide where it outperforms dihedral-scaling

REMD and plain MD. The chosen tetranucleotide is a very challenging system that

has been extensively studied with long MD simulations and diferent variants of REMD

[31Ű34, 120, 128, 166].

4.2 Methods

In this Section we show how to use WT-MetaD as an efective method to build concur-

rent bias potentials that allow barriers to be easily crossed. One of the input parameters

of well-tempered metadynamics is a boosting temperature ∆T = (γ − 1) T , where γ

is the bias factor and T is the temperature of the system. In the rest of the chapter



4.2 Methods | 23

we will equivalently use either γ or ∆T so as to simplify the notation. This parameter

can be used to smoothly interpolate between unbiased sampling (γ = 1, ∆T = 0) and

Ćat histogram (γ = ∞, ∆T → ∞). One can thus introduce a set of replicas using

diferent values of ∆T , ranging from 0 to a value large enough to allow all the relevant

barriers to be crossed. Metadynamics relies on the accumulation of a history dependent

potential and cannot be applied straightforwardly to a large number of CVs. In the

next subsection we show that this issue can be circumvented by constructing many,

low-dimensional, concurrent metadynamics potentials. We then show how to combine

many simulations of this kind in a multiple-replica scheme.

4.2.1 Concurrent Well-tempered Metadynamics

We here propose to introduce a separate history-dependent potential on each CV

V̇α(sα) =
kB∆T

τB

e
−

Vα(sα,t)
kB∆T K(sα − sα(t)) (4.1)

where α = 1, . . . , NCV is the index of the CV and NCV is the number of CVs. The

growth of each of these bias potentials will depend only on the marginal probability

for each CV

P (sα) ∝
∫

ds1ds2 . . . dsα−1dsα+1 . . . dsNCV
P (s1, s2, . . . , sNCV

) (4.2)

In the long time limit, this potential will tend to Ćatten the marginal probabilities for

every single CV. In the general case one should consider the fact that whenever a bias

is added on a CV also the distribution of the other CVs is afected. In the following we

will discuss this issue considering two CVs only, but the argument is straightforwardly

generalized to a larger number of CVs.

Two independent variables. If two CVs are independent, the joint probability is just

the product of the two marginal probabilities, i.e. P (sα, sβ) = Pα(sα)Pβ(sβ). Adding a

bias potential on a CV will not afect the distribution of the other. As a consequence, in

the long time limit the two bias potentials will converge independently to the predicted

fraction of the free energy as in Eq. 3.9. The Ąnal bias potential will be completely

equivalent to that obtained from a two-dimensional well-tempered metadynamics, but

will only need the accumulation of two one-dimensional histograms, thus requiring a

fraction of the time to converge. A simple example on a model potential is shown in

Fig. 4.1.

Two identical variables. We also consider the case of two identical CVs, sα = sβ.

This can be obtained for instance by biasing twice the same torsional angle. Here the

potentials Vα and Vβ will grow identically, and the total bias potential acting on sα will

be Vtot = 2Vα. The total potential will grow as

V̇tot(sα) =
2kB∆T

τB

e
−

Vα(sα,t)
kB∆T K(sα − sα(t)) =

2kB∆T

τB

e
−

Vtot(sα,t)
2kB∆T K(sα − sα(t)) (4.3)
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Figure 4.1: A model two-dimensional energy potential where the two variables are indepen-

dent (left panel). Isolines are spaced by 4kBT . The free-energy space accessible to the system

at 4kBT is colored according to the canonical probability of each region. Projections on x

and y variables are also represented (right panels). Self-consistent bias potentials generated

by WTMetaD are shown acting on x (red) and y (green). The potentials calculated with

concurrent WTMetaD (fourth row) are identical to the bias potentials produced during the

WTMetaD simulation of each variable independently (second and third rows).
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Figure 4.2: A model two-dimensional energy potential where the two variables are correlated.

Bias potentials calculated with WTMetaD for one of the two variables (x or y) separately

successfully compensate projected free-energy barriers on the respective variable. However,

this one-dimensional bias potential has a side effect on the distribution of the other variable

due to their correlation. This generates an additional effective bias potential that is shown in

light color (second and third rows). When the two one-dimensional bias potentials are applied

simultaneously, the action of the WTMetaD potential is superimposed to the action of the

effective bias potential. As a result, the space sampled by each variable is greatly restricted

(fourth row). The self-consistent construction of the two one-dimensional bias potentials by

concurrent WTMetaD eliminates this effect, generating bias potentials capable to flatten the

marginal probabilities when applied at the same time (fifth row).
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Thus, the net efect will be exactly equivalent to that of choosing a doubled ∆T

parameter. In other words, the ∆T parameter acts in an additive way on the selected

CVs. A similar efect can be expected if two CVs are linearly correlated.

In realistic applications one can expect the behavior to be somewhere in the middle

between these two limiting cases. The most important consideration here is that the

bias potentials will tend to Ćatten all the marginal probabilities, but there will be

no guarantee that the joint probability is Ćattened. Results for a simple functional

form can be seen in Appendix A, Fig. 4.1 and 4.2. In Ągure 4.2 it is possible to

appreciate importance of using a self-consistent procedure when CVs are correlated. In

ref [162] two metadynamics were applied on top of each other, namely on the potential

energy and on selected CVs, in a non self-consistent way. This was possible because

the correlation between the potential energy and the selected CVs is small. The need

for a self-consistent solution was also pointed out in a recent paper [167] where a

generalization of the adaptive biasing force method (ABF) [150] was introduced. In

that work independent one-dimensional adaptive forces were applied at the same time

to diferent CVs so as to enhance the sampling of a high multidimensional space.

In short, the novelty of the introduced procedure is that many low-dimensional

metadynamics potentials are grown instead of a single multi-dimensional one. This

allows the bias to converge very quickly to a Ćattening potential, with the degree

of Ćatness controlled by the parameter ∆T . The Ćattening is expected to enhance

conformational transitions which are otherwise hindered by free-energy barriers on the

biased CVs. When variables are correlated the exact relationship between bias and free

energy (Eq. 3.9) could be lost.

4.2.2 Hamiltonian Replica Exchange

The procedure introduced above produces conformations in an ensemble which is

in general diicult to predict. However, since the bias potential is known, one can in

principle reweight results so as to extract conformations in the canonical ensemble. In

the case of static bias potentials acting on the CVs, this can be done by weighting

each frame as e

∑

α
Vα(sα)

kBT . This can provide in principle correct results even if the joint

probability is not Ćattened. It must be noticed that such a reweighting can provide

statistically meaningful results only for small Ćuctuations of the total biasing potentials,

on the order of kBT [167]. However, in a typical setup one would be interested in biasing

all the torsional angles of a molecule. Even if each of them contributes with a few kBT ,

the total Ćuctuation of the bias would grow with the system size. For similar reasons,

also the ABF-based scheme introduced in ref [167] is limited to a relatively low number

of CVs.

A more robust and scalable procedure can be designed by introducing a ladder

of replicas with increasing values of ∆T , ranging from 0 to a value large enough to

enhance the relevant conformational transitions. The Ąrst replica (γ = 1, ∆T = 0)

can be used to accumulate unbiased statistics. Replicas other than the Ąrst one feel
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multiple biasing potentials on all CVs. From time to time an exchange of coordinates

between neighboring replicas is proposed and accepted with probability (α) chosen so

as to enforce detailed balance with respect to the current biasing potential:

α = min
(

1, e∆


(4.4)

∆ =
∑

α V (i)
α (s(i)

α ) +
∑

α V (j)
α (s(j)

α )
kBT

−
∑

α V (i)
α (s(j)

α ) +
∑

α V (j)
α (s(i)

α )
kBT

(4.5)

Here the suix i = 1, . . . , Nrep indicates the replica index, Nrep being the number

of replicas. The exchanges allow the bias potential of every single replica to grow as

close as possible to equilibrium taking advantage of the enhanced ergodicity of the

more biased replicas. We notice that to reach a quasi-static distribution it is necessary

that all the bias potentials converge for all the replicas. Since the time scale for

convergence is related to the parameter τB [40], it is convenient to use the same τB for

all the replicas or, equivalently, to choose the initial deposition rate as proportional to

∆T . The number of replicas required to span a given range in the ∆T parameter is

proportional to
√

NCV .

We notice that in principle one could use the bias potentials built with this protocol

to perform a replica-exchange umbrella sampling simulation. In this manner the Ąnal

production run would be performed with an equilibrium replica exchange simulation.

However, we observe that well-tempered metadynamics is designed so that the speed

at which the bias grows decreases with time and the potential becomes quasi-static. In

the practical cases we investigated, this second stage was not necessary.

4.2.3 Model systems

4.2.3.1 Alanine dipeptide

Alanine dipeptide (dALA) was modeled with the AMBER99SB-ILDN [168, 169] force

Ąeld and solvated in an truncated octahedron box containing 599 TIP3P [170] water

molecules. The LINCS [171, 172] algorithm was used to constrain all bonds and equa-

tions of motion were integrated with a timestep of 2 fs. For each replica the system

temperature was kept at 300 K by the stochastic velocity rescaling thermostat [173].

For all non-bonded interactions the direct space cutof was set to 0.8 nm and the elec-

trostatic long-range interactions were treated using the default particle-mesh Ewald

[21] settings. All the simulations were run using GROMACS 4.6.5 [174] patched with

the PLUMED plugin [175], version 2.0. We underline that the possibility of running

concurrent metadynamics within the same replica is a novelty introduced in PLUMED

2.0.

The RECT simulation was performed with 6 replicas. The backbones dihedral

angles (Ψ and Φ) and the gyration radius (Rg) were selected as CVs. The γ factors

were chosen from 1 to 15 following a geometric distribution. We recall that a geometric

replica distribution is optimal for constant speciĄc-heat systems. In RECT, this would



28 | Replica Exchange with Collective-Variable Tempering

be true if the exploration of each of the biased CV were limited to a quasi-parabolic

minimum in the free-energy landscape. Whereas this is clearly not true in real cases

(e.g. double-well landscapes) we found that a geometric schedule was leading to a

reasonable acceptance in the cases investigated here. The possibility of optimizing the

replica ladder is left as a subject for further investigation. For the dihedral angles

the Gaussian width was set to 0.35 rad and for the Rg to 0.007 nm. The Gaussians

were deposited every 500 steps. The initial Gaussian height was adjusted to the ∆T of

each replica, according to the relation h = kB∆T
τB

NG∆t, in order to maintain the same

τB = 12 ps across the entire replica ladder. The CVs were monitored every 100 steps,

and exchanges were attempted with the same frequency. The simulation was run for

20 ns per replica.

A H-REMD simulation where the force-Ąeld dihedral terms were scaled (Hdih-

REMD) was also performed, as implemented in an in-house version of the GROMACS

code [176]. The same initial structures, number of replicas and simulated time as in

RECT was used. The scaling factor λ for each replica was selected using the relation

λ = 1/γ to allow for a fair comparison of RECT and H-REMD. Finally a conventional

MD simulation in the NVT ensemble was run for 120 ns using the same settings.

4.2.3.2 Tetranucleotide

The second system considered was an RNA oligonucleotide, sequence GACC. The

initial coordinates were taken from a ribosome crystal structure (PDB: 3G6E), residue

2623 to 2626. Simulations were performed using the f99-bsc0-χOL3 force Ąeld [38, 39,

168]. The system was solvated in a box containing 2502 TIP3P [170] water molecules

and the system charge was neutralized by adding 3 Na+ counterions, consistently with

previous simulations [120, 166]. A RECT simulation was performed using 16 replicas

simulated for 300 ns each. The γ ladder was chosen in the range from 1 to 4 following

again a geometric distribution. The initial structures for the H-REMD were taken from

a 500 ps MD at 600 K, to avoid correlations of the bias during the initial deposition

stage of the WT-MetaD. Other details of the simulation protocol were chosen as for

the previous system. As depicted in Fig. 4.3, for each residue the dihedrals of the

nucleic acid backbone (α, β, ϵ, γ, ς ), together with the pseudo-dihedrals angles of the

ribose ring (θ1 and θ2) and the glycosidic torsion angle (χ) were chosen as CVs. To help

the free rotation of the nucleotide heterocyclic base around the glycosidic bond, the

minimum distance between the center of mass of each base with the other three bases

was also biased. For the WT-MetaD we used the same parameters as in the previous

system. Gaussian width for the minimum distance between bases was chosen equal to

0.05 nm.

For this system a Hdih-REMD, a T-REMD and a plain MD simulation were per-

formed in addition to the RECT. In the case of Hdih-REMD we used 24 replicas with

scaling factors λ ranging from 1 to 0.25, so as to cover the same range of the γ values

chosen for the RECT. In the T-TREMD 24 replicas were used to cover a temperature
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Figure 4.3: Schematic representation of the collective variables used for the tetranu-
cleotide simulation. For each nucleotide, the labeled dihedral angles and the minimum
distance between the nucleobase center of mass and the other three nucleobases were
biased.

range between 300 K and 400 K with a geometric distribution. For both methods,

T-REMD and Hdih-REMD, the simulation length was 200 ns per replica. Exchanges

were attempted every 120 steps. The conventional MD simulation was run for 4.8 µs.

All the simulations (RECT, Hdih-REMD, T-REMD and conventional MD) correspond

to the same total simulated time.

4.2.4 Analysis

4.2.4.1 Dihedral entropy

As the bias compensates the underlying free energy the probability distribution of the

biased CVs is partially Ćattened. The main CVs used in our method are dihedrals

angles. To quantify the efect of the Hamiltonian modiĄcations on the angle distribu-

tions one-dimensional entropies (S1d) were estimated. The calculation procedure was

equivalent to the one used in ref [177] to evaluate the conĄgurational entropy associ-

ated with soft degrees of freedom in proteins. We employed wrapped Gaussian kernels

to estimate the histogram proĄle of each dihedral. Histograms were calculated with

PLUMED 2.0. For all the distributions the bandwidth for the kernel density estima-

tion was set to 0.017 rad. We underline that using this deĄnition we only evaluate the

Ćatness of the individual one-dimensional distributions, and cross-correlation between

CVs is ignored.
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4.2.4.2 RNA conformations

RNA conformations were classiĄed according to the combination of the nucleotides χ

angles rotameric states. Torsions orientations in the range of -0.26 to 2.01 rad were

consider as syn, while the remaining ones were classiĄed as anti. The limiting values

were chosen according to the position of the barriers in the χ free-energy proĄles of

all the residues. The result of this clustering procedure gave 24 = 16 diferent states

that are kinetically well separated by the high torsional barriers. We observe that the

population of these states does not depend only on the torsional potential associated

to the χ dihedrals but include contributions from base-base stacking, hydrogen bonds,

solvation of bases, etc.

4.3 Results

In this section we Ąrst test our methodology on a standard model system, dALA in

water. Then we present results for the more challenging case of the conformational

sampling of a tetranucleotide. For all the applications we benchmark against plain

MD and a H-REMD where the dihedral potentials are scaled. All the comparisons are

made using the same total simulated time.

4.3.1 Alanine Dipeptide

The goal of the introduced method is to enhance conformational sampling in the un-

biased replica. The possibility to explore diferent metastable conformations in this

replica relies on the fact that probability distributions in the biased replicas are Ćat-

tened and that conformations can travel across the replica ladder. These conditions

can be veriĄed by monitoring the exchange rate and the Ćatness of the distributions.

The acceptance rate is in the range 65-72% for RECT and in the range 43-53% for

Hdih-REMD, indicating that the former method requires less replicas. This is likely

due to the fact that the total number of scaled dihedrals in Hdih-REMD is larger than

the number of biased CVs in RECT. For both REMD methods we also veriĄed that all

the trajectories in the generalized ensemble sampled the same conformational ensemble

(see Fig. 4.4).

A quantitative measure of the Ćatness of the distribution in the biased replicas

can be obtained from the dihedral entropy, shown in Fig. 4.5 as a function of scaling

factors (γ and λ for RECT and Hdih-REMD, respectively). The limiting value corre-

sponding to a Ćat distribution is also indicated. Entropy grows faster as a function of

the scaling factor when using RECT, indicating that free-energy barriers on the dALA

isomerization transition are more efectively compensated by the bias potentials. With

Hdih-REMD entropy of Ψ angle saturates and apparently the distribution cannot be

further Ćattened by decreasing λ. In the case of the Φ angle, the dihedral entropy does

not grow monotonically when is decreased. This behavior indicates that the relevant

free-energy barriers are not only originating from the dihedral force-Ąeld terms. The
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Figure 4.4: Empirical probability distribution of heavy atom RMSD from the alanine
dipeptide in water as computed from the trajectories across the replica ladder, shown
for both REMD methods. Average probability is shown in solid line and range be-
tween maximum and minimum probability among all trajectories is shaded. It can be
appreciated that, for each method, all the trajectories span the same conformational
distribution.

conformational transitions involve indeed also changes in water coordination, reorga-

nization of hydrogen bonds, non-bonded interactions, etc. On the contrary, RECT

achieves an almost Ćat distribution for both dihedral angles at the highest value of the

γ factor. Backbone dihedral distributions for all the replicas are shown in Figs A.1-A.2.

The conformations sampled on each replica are shown projected on the Φ,Ψ free-energy

landscape in Fig. A.3, where it can be appreciated that all the relevant basins (α, β,

and αR) are explored and connected by points close to the minimum-action pathways.

(see refs [167, 178]).

To assess the eiciency and the accuracy of the introduced enhanced sampling

technique the free energy diference ∆F between the states ϕ ∈ [−π, 0] and ϕ ∈ [0, π
2
]

was calculated from the distribution of the unbiased replica. Results are shown as

a function of time in Fig. 4.6, for the two REMD schemes and for the reference

conventional MD. Both H-REMD methods converge to the right value with a similar

behavior, whereas plain MD needs several tens of ns for the Ąrst transition to be

observed. The similarity in the convergence of RECT and Hdih-REMD indicates that

for this system the moderate Ćattening of the distribution induced by Hdih-REMD is

suicient to achieve ergodicity on this time scale. In order to better evaluate diferences

between the performance of RECT and Hdih-REMD we applied this methodologies to

a more complex system. Results are shown in the next section.

4.3.2 Tetranucleotide

Also in this case we monitor the average exchange ratio (76-83% for Hdih-REMD, 25-

32% for T-REMD, and 60-80% for RECT). In Fig. 4.7 the variation of the exchange

ratios in time is shown for the exchanges between the Ąrst and the last 2 replicas of
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Figure 4.5: Entropy for Ψ (top) and Φ (bottom) dihedral angles in alanine dipeptide.
Entropies are shown as a function of 1/λ and γ for Hdih-REMD and RECT respec-
tively. As the entropies values increase the dihedral distributions become more Ćat.
The maximum entropy value corresponding to a Ćat distribution is represented with a
straight line.

each method. We also checked the consistency of trajectories along the replica ladder.

As it can be appreciated in Fig. 4.8, for RECT the trajectories in the generalized

ensemble are more consistent than those obtained with the other methods. On the

contrary, in the case of T-REMD, agreement among the distributions of RMSD is very

poor. During this simulation trajectories across the temperature space remain trapped

on diferent metastable conformations. The same behavior was obtained in ref 26

were several T-REMD simulations were performed on the same system, with the same

number of replicas and a similar temperature range. In that work divergence among

the obtained generalized ensembles was observed even for a simulated time as long as

2 µs per replica. For Hdih-REMD and RECT round-trip times are shown on Fig. A.4.

The average round-trip time is ≈ 0.5 ns for Hdih-REMD, ≈ 1.8 ns for T-REMD, and

≈ 1.2 ns for RECT.

In Fig. 4.9 we show the sum of the entropies for the 32 dihedrals used as CVs.

In this respect, RECT is clearly more efective than Hdih-REMD in Ćattening the

dihedral distributions, consistently with what was observed for dALA. Notably, the

entropic increment observed in RECT is close to the one observed in T-REMD when
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Figure 4.6: Estimate of the free-energy diference between the two metastable minima
in alanine dipeptide. Data are shown for both replica exchange methods (Hdih-REMD
and RECT) and for conventional MD as a function of the total simulation time.

using an equivalent temperature This conĄrms that RECT has an efect comparable

to that of raising the temperature of the biased CVs by a factor γ.

The signiĄcancy of this entropic values could be appreciated on the time series and

related histograms for all the dihedral angles shown in Figs. A.5-A.8 for the most and

least ergodic replica of Hdih-REMD and RECT. It is clear that for RECT, at the most

ergodic replica, all the accessible torsional range is sampled. On the contrary, in the

highest replica of Hdih-REMD the distributions of some torsions are not Ćattened.

The transition around the glycosidic bond, from anti to syn, is among the slowest

relaxation times in RNA dynamics [26]. To evaluate the convergence of the unbiased

replica we analyzed the population of the anti rotamer for each nucleotide χ angle.

Populations are shown in Fig. 4.10 as a function of the total simulated time. For all

the nucleotides the anti conformations are preferred. The guanosine is the nucleotide

with the highest syn proportion, and the cytidines the ones with the smallest (<

2%), as correspond to their rotameric preferences [43]. Values from both H-REMD

approaches seem well consistent, except for the population of the Ąrst nucleotide. From

the time behavior of these populations, it is clear that for all the REMD approaches the

guanosine proportion of anti is the most diicult to converge. Here RECT can reach

values close to a longer reservoir-REMD simulation [120] while both Hdih-REMD and

T-REMD show results closer to those obtained from conventional MD, with a higher

occupation of the anti conformer.

We observe that our method is enforcing the exploration of both anti and syn

conformations in the biased replicas for each nucleotide independently. This however

does not guarantee that all the 16 combinations of anti and syn conformations are

explored. Fig. 4.11 shows the free energy of the RNA structures grouped by the

combination of the χ angle anti(a)/syn(s) rotamers. All 16 combinations, except for

ssss and asss, are sampled in the unbiased replica from RECT. On the contrary, the

unbiased replica from T-REMD and Hdih-REMD explores respectively 13 and 8 of the

states, and plain MD only 5 of them. The most populated cluster corresponds to an
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Figure 4.7: Average exchange ratio in subsequent blocks of 2 ns for the exchange be-
tween the Ąrst two and the last two replicas. In the case of RECT, since the bias
potential is changing during the simulation, the acceptance ratio has a higher Ćuctua-
tion.

all-anti conformation, followed by the saaa. Then, the three clusters asaa, ssaa and

sasa appear with similar population.

In the same Ągure the free energy values for the ergodic replica show that all the

16 combinations are populated in RECT within a range of 6kBT . In the case of Hdih-

REMD the most ergodic replica visits only 9 combinations with a population that is

very close to that of the unbiased replica.The most ergodic replica in T-REMD explores

14 clusters, but their populations have a large statistical errors. We highlight the fact

that results from T-REMD could be afected by the lack of convergence of trajectories

across the temperature space (see Fig. 4.8). This could lead to an underestimation of

the errors as evaluated from block analysis

4.4 Discussion

The introduced method allows to build bias potentials for a Hamiltonian replica-

exchange scheme using concurrent well-tempered metadynamics on several CVs at the

same time. Replicas are simulated using a ladder of well-tempered bias factors γ. When

CVs are correlated, the self-consistency among the bias potentials is crucial to achieve

Ćat sampling in each individual CV, as illustrated in Fig. 4.2. In this case the exact
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Figure 4.8: Empirical probability distribution of heavy atom RMSD from the canonical
A-form as computed from the trajectories across the replica ladder, shown for all REMD
methods. Average probability is shown in solid line, and range between maximum and
minimum probability among all trajectories is shaded. It can be appreciated that the
agreement among the conformational distributions of trajectories from T-REMD and
Hdih-REMD is poorer than the one of those obtained with RECT. We notice that RECT
samples a very diferent generalized ensemble from those of T-REMD and Hdih-REMD
schemes.

relationship between bias and free energy is lost. We also remark that here Ćattening

is not complete but modulated by the value of γ. This is useful since it avoids sampling

very high energy states (e.g. with steric clashes) that would have a very low chance

of being accepted in the unbiased replica. The method compares favorably with both

conventional MD and Hdih-REMD. The method slightly outperforms T-REMD, where

the entire system is heated, indicating that for these small systems there is not a sub-

stantial advantage in schemes where part of the system is biased. However, RECT can

be straightforwardly generalized to large systems since the acceptance only depends on

the size of the biased portion.

Results from both dALA and tetranucleotide simulations show that the bias poten-

tials constructed with concurrent WT-MetaD are able to gradually scale the free-energy

barriers. We notice that only barriers in the one-dimensional free-energy proĄles are

compensated, which means that some regions in the multidimensional space of all the

CVs might not be explored. In principle this could hide some important minima that

would never be observed. We did not observe this problem in the applications presented

here.

The second application on which we tested RECT, namely conformational sampling

of a tetranucleotide, is particularly challenging. The conformational space of these

small RNA molecules is not constrained by Watson-Crick pairings and ergodic sampling

is out of reach of conventional MD simulations [120, 166]. So far, converged ensembles

have been obtained only trough highly expensive multidimensional REMD simulations,
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Figure 4.9: Total entropy of backbone, puckering and glycosidic dihedral angles in the
tetranucleotide for both replica exchange methods. Entropies are shown as a function
of 1/λ and γ for Hdih-REMD and RECT respectively. For T-REMD, temperature is
chosen as T = γ ·300K. As the entropy increases the dihedral distributions become more
Ćat. The maximum entropy value corresponding to a Ćat distribution is represented
with a straight line. Entropies obtained for the unbiased replicas in the three methods
are consistent within their error bars (error not shown).

corresponding to a total simulated time of several tens of µs [31, 32]. One of the reasons

for this diicult convergence is the long relaxation time for the anti to syn transitions,

which could be additionally hindered by an incorrect force-Ąeld description of base-base

stacking and base-solvent interactions [26].

Fig. 4.11 illustrates the ability of RECT to accelerate conformational transitions

among the χ angle anti/syn rotamers. Although the conformational space of the more

biased replicas is highly expanded, the convergence in the unbiased replica is not af-

fected. On the contrary the method facilitates the sampling of glycosidic rotamer

conformations that otherwise would not be explored by MD simulations of the same

overall length. We Ąnally remark that our procedure can be combined with weighted

histogram [179] so as to include the statistics of the biased replicas.

4.4.1 Comparison with related state-of-the-art methods

RECT is based on the idea of building a replica ladder where a large set of selected

CVs is progressively heated. CVs are heated by Ćattening their distribution with con-

current well-tempered metadynamics. We Ąrst discuss the possibility of using methods

other than well-tempered metadynamics to build the replica ladder. Possible alterna-

tives here include ABF [150] or a recently proposed variational approach [180]. These

methods could be used in a RECT scheme provided they are suitably extended so as

to sample a partially Ćattened distribution. We also observe that other methods aimed
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Figure 4.10: Estimated glycosidic angle anti population for each nucleotide as a func-
tion of the total simulation time. Data are shown for Hdih-REMD and RECT unbiased
replicas and for conventional MD. Reference values taken from ref [120] are shown as
dashed lines.

at keeping selected CVs at a given temperature have been proposed based on coupling

thermostats to CVs directly [156Ű158]. These techniques have been mostly used in the

past with an exploration purpose relying on additional calculations so as to provide

free energies (see ref. [181]) but it is not clear if they can be integrated in a RECT

scheme.

In the following we discuss the comparison of RECT with related methods that are

not based on CV tempering.

Comparison with H-REMD of Curuksu and Zacharias. Our method is closely re-

lated to the one introduced in ref [163] (see also section 3.2.3). There, a bias potential

aimed at disfavoring the most probably rotamers is manually constructed and applied

on several replicas using a scaling factor. This bias disfavors the major minima but

does not ensure a proper compensation of the free-energy barriers, as their positions

and magnitudes are not a priori known. The main advantage of RECT is that several

low-dimensional bias potentials are built with a self-consistent procedure so that the

technique can be straightforwardly applied to a large number of degrees of freedom.

Comparison with bias-exchange metadynamics. In bias-exchange metadynamics

every replica performs an independent metadynamics simulation so that one CV at

a time is feeling the Ćattening potential. Thus, it is typically used with a relatively
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Figure 4.11: Estimated free energies for the tetranucleotide conformations clustered ac-
cording to the χ angle anti/syn rotameric combinations (circles). Free energies are com-
puted as −kBT log Pi, where Pi is the normalized population of each cluster in the unbi-
ased replica. Grey boxes represent relative populations higher than 1%. ConĄdence in-
tervals are shown as bars and span the range [−kBT log(Pi+∆Pi), −kBT log(Pi−∆Pi)],
where ∆Pi is the standard deviation of the average Pi as obtained from four blocks.
Clusters which are observed in only one of the four blocks has an inĄnite upper bound.
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small number of ad hoc designed CVs capable to describe the relevant conformational

transitions. On the other hand, RECT is designed to be used with a very large number

of dummy CVs with little a priori information and to bias them concurrently to exploit

their cooperation in enhancing conformational sampling. For this reason, the two

approaches are complementary and could even be combined in a multidimensional

replica exchange suitable for a massively parallel environment.

Comparison with solute tempering and related methods. In replica exchange solute

tempering the solute Hamiltonian is scaled so as to obtain an efect equivalent to a rise

in the simulation temperature [145, 146]. Any set of atoms can be identiĄed as solute,

giving the opportunity to enhance sampling in a region localized in space [176, 182].This

requires modifying charges of the enhanced region, with long range efects and sometime

afecting fundamental properties such as hydrophobicity. In our method, the bias

potentials act on precisely selected degrees of freedom without perturbing their coupling

with the rest of the system. Moreover, the bias is adaptively built so as to compensate

the free energy and not the potential energy, so that with properly chosen CVs it could

be used to compensate entropic barriers.

Comparison with hyperdynamics and accelerated MD. In these methods the poten-

tial energy of the system is modiĄed so as to decrease the probability to sample minima

on the potential energy [32, 165, 183] (see section 3.2.3). On the contrary, RECT em-

ploys a bias which is related with the free energy so as to achieve a Ćatter histogram

on the selected CVs.

We Ąnally remark that RECT, although formally based on the a priori choice of a

set of CVs, typically requires the same amount of information as methods not based on

CVs. Indeed, as we have shown, the method can be easily applied to a very large number

of CVs, virtually including by construction all the slow degrees of freedom of the system.

Additionally, when a few relevant CVs can be identiĄed based on chemical intuition,

RECT can be straightforwardly combined with standard metadynamics similarly to

parallel tempering [159] or solute tempering [184].

4.5 Conclusion

Replica exchange with collective-variable tempering (RECT) has been here proposed as

a novel and Ćexible enhanced-sampling method. RECT takes advantage of the adaptive

nature of well-tempered metadynamics to build bias potentials that compensate free-

energy barriers. The Ćattening of the barriers is modulated by the well-tempered

factor γ, and the chosen collective variables (CVs) are efectively kept at a higher

temperature. The biasing potentials are built combining concurrent low-dimensional

metadynamics protocols so as to be usable on a very large number of CVs. Multiple

replicas are then used so as to smoothly interpolate between a highly biased, ergodic

simulation and an unbiased one (γ = 1). The number of required replicas scales with

the square root of the number of chosen CVs for a Ąxed range of γ factors. This allows

a very large number of CVs to be biased, so that virtually all the relevant transitions
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can be accelerated. The CVs used here were mostly dihedral angles, which exhibit

relevant barriers in many biomolecular conformational transitions, but the method

can be used with any CV. The application of this technique to the dALA in water

shows that the CV probability distributions are efectively Ćattened by the action of

the bias potentials and unbiased statistics is correctly recovered. In the case of the

tetranucleotide conformational sampling is greatly enhanced since RECT efectively

overcome the high free energy barriers of the χ angle transitions that hindered the

conformational sampling at room temperature. RECT is a promising tool to enhance

the exploration of the conformational space in highly Ćexible biomolecular systems

such as RNA, proteins, or RNA/protein complexes.



Chapter 5

Empirical corrections to the Amber

RNA force field

5.1 Overview

Recent tests [33, 34] have shown that state-of-the-art force Ąelds for RNA are still not

accurate enough to produce ensembles compatible with NMR data in solution in the

case of single stranded oligonucleotides. Similar issues have been reported for DNA

and RNA dinucleosides [185, 186]. Previous studies have shown that the distribution

of structures sampled from the protein data bank (PDB) may approximate the Boltz-

mann distribution to a reasonable extent [187Ű190] and could even highlight features

in the conformational landscape that are not reproduced by state-of-the-art force Ąelds

[191, 192]. This has been exploited in the parametrization of protein force Ąelds. For

example, a signiĄcant improvement of the force Ąelds of the CHARMM family has

been obtained by including empirical corrections commonly known as CMAPs based

on distributions from the PDB [193, 194].

In this work, we apply these ideas to the RNA Ąeld and show how it is possible

to derive force-Ąeld corrections using an ensemble of X-ray structures. At variance

with the CMAP approach [195], we here correct the force Ąeld using a self-consistent

procedure where metadynamics is used to enforce a given target distribution [35, 36].

Correcting potentials are obtained for multiple dihedral angles using the metadynamics

algorithm in a concurrent fashion. Since the target distributions are multimodal, we

also use the enhanced sampling technique introduced in Chapter 4, replica exchange

with collective-variable tempering (RECT), to accelerate the convergence of the algo-

rithm. The correcting potentials are obtained by matching the torsion distributions

for a set of dinucleoside monophosphates. The resulting corrections are then tested on

tetranucleotides where standard force Ąeld parameters are known to fail in reproducing

NMR data.
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5.2 Methods

In this Section we brieĆy describe the target metadynamics approach and discuss the

details of the performed simulations.

5.2.1 Targeting Distributions with Metadynamics

Metadynamics (MetaD) has been traditionally used to enforce an uniform distribution

for a properly chosen set of collective variables (CV) that are expected to describe the

slow dynamics of a system [151]. However, it has been recently shown that the algo-

rithm can be modiĄed so as to target a preassigned distribution which is not uniform

[35, 36]. In this way a distribution taken from experiments, such as pulsed electron

paramagnetic resonance, or from an X-ray ensemble, can be enforced to improve the

agreement of simulations with empirical data. We refer to the method as target meta-

dynamics (T-MetaD), following the name introduced in ref [35]. For completeness, we

here brieĆy derive the equations. It is also important to notice that the same goal

could be achieved using a recently proposed variational approach [180, 196].

In our implementation of T-MetaD a history dependent potential V (s, t) acting on

the collective variable s at time t is introduced and evolved according to the following

equation of motion

V̇ (s, t) = ωeβ(F̃ (s(t))−F̃max)e−β( Vmax
D

)e−
(s−s(t))2

2σ2 (5.1)

Here β = 1/kBT , kB is the Boltzmann constant, T the temperature, ω is the initial

deposition rate of the kernel function which is here deĄned as a Gaussian with width σ,

F̃ (s) is the free energy landscape associated to the target distribution, F̃max indicates

the maximum value of the function F̃ , and D is a constant damping factor. The

target distribution is thus proportional to e−βF̃ (s). We deĄne ω = DkBT
τ

where τ is

the characteristic time of bias deposition. The term eβ(F̃ (s)−F̃max) adjusts the height of

the bias potential, making Gaussians higher at the target free-energy maximum and

lower at its minimum. This forces the system to spend more time on regions where the

targeted free-energy is lower. We notice that a similar argument has been used in the

past to derive the stationary distribution of both well-tempered metadynamics, where

Gaussian height depends on already deposited potential [40], and of adaptive-Gaussian

metadynamics, where Gaussian shape and volume is changed during the simulation

[154]. The subtraction of F̃max sets an intrinsic upper limit for the height of each

Gaussian, thus avoiding the addition of large forces on the system. We notice that

other authors used terms such as the minimum of F or the partition function to set

an intrinsic lower limit for the height of each Gaussian [35, 36]. At the same time, the

term e−β( Vmax
D

) acts as a global tempering factor [155] and makes the Gaussian height

decrease with the simulation time so as to make the bias potential converge instead

of Ćuctuating. As observed in ref [35], the tempering approach used in well-tempered

MetaD in this case would lead to a Ąnal distribution that is a mixture of the target
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one with the one from the original force Ąeld. For this reason, we prefer to use here a

global tempering approach [155].

In the long time limit (quasi-stationary condition) the bias potential will on average

grow as [40, 155]

〈

V̇ (s)
〉

=
∫

ds′ωeβ(F̃ (s′)−F̃max)e−β( Vmax
D

)e−
(s′

−s)2

2σ2 P (s′) (5.2)

where P (s) is the probability distribution of the biased ensemble. DeĄning the function

g(s′) = ωeβ(F̃ (s′)−F̃max)e−β( Vmax
D

) we can see this equation is a convolution of a Gaussian

and a positive deĄnite function.

〈

V̇ (s)
〉

=
∫

ds′e−
(s′

−s)2

2σ2 g(s′)P (s′). (5.3)

As shown in ref [40, 155] this average should be independent of s in stationary

conditions, so that the function g(s′)P (s′) should be also independent of s′, though

still dependent on time

h0e
β(F̃ (s(t))−F̃max)e−β( Vmax

D
)P (s) = C(t). (5.4)

By recognizing that F̃max and Vmax do not depend on s, one can transform the last

equation to

eβF̃ (s)P (s) = C ′(t) (5.5)

which implies that

P (s) ∝ e−βF̃ (s). (5.6)

Thus, the system will sample a stationary distribution of s which is identical to the

enforced one.

Whereas the equations are here only described for a single CV, this method can

be straightforwardly applied to multiple CVs in a concurrent manner. In this case,

the total bias potential is the sum of the one-dimensional bias potentials applied to

each degree of freedom. Indeed, similarly to the concurrent metadynamics used in

RECT [197] (see also Chapter 4), all the distributions are self-consistently enforced

[36]. This is particularly important when biasing backbone torsion angles in nucleic

acids since they are highly correlated [42, 198]. In this situation it is also convenient

to use a biasing method that converges to a stationary potential through a tempering

approach, to include in the self-consistent procedure of MetaD an additional efective

potential associated to the correlation between the dihedral angles that is as close as

possible to convergence.
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5.2.2 Model systems

5.2.2.1 RNA dinucleoside monophosphates

Fragments of dinucleoside monophosphate with the sequence CC, AA, CA, and AC

were extracted from the PDB database of RNA X-ray structures at medium and high

resolution (resolution < 3 Å). The selected structures were protonated using pdb2gmx

tool from GROMACS 4.6.5 [174] Free-energy proĄles along the backbone dihedral

angles were calculated with the driver utility of PLUMED 2.1 [175].

Molecular dynamics simulations of the chosen RNA dinucleoside monophosphate

sequences were performed using the f99-bsc0-χOL3 force Ąeld (named here Amber14)

[37Ű39]. The systems were solvated in an octahedron box of TIP3P water molecules

[170] with a distance between the solute and the box wall of 1 nm. The system charge

was neutralized by adding 1 Na+ counterion. The LINCS [171] algorithm was used

to constrain all bonds containing hydrogens and equations of motion were integrated

with a timestep of 2 fs. All the systems were coupled to a thermostat through the

stochastic velocity rescaling algorithm [173]. For all non-bonded interactions the direct

space cutof was set to 0.8 nm and the electrostatic long-range interactions were treated

using the default particle-mesh Ewald [21] settings. An initial equilibration in the NPT

ensemble was done for 2 ns, using the Parrinello-Rahman barostat [199]. Production

simulations were run in the NVT ensemble. All the simulations were performed using

GROMACS 4.6.7 [174] patched with a modiĄed version of the PLUMED 2.1 plugin

[175].

T-MetaD simulations were run to enforce the probability distributions of the angles

ϵ1, ζ1, α2 and β2, which were calculated from the X-ray fragments. The target free-

energy proĄles were calculated with PLUMED 2.1. Distributions were estimated as

combination of Gaussian kernels, with a bandwidth of 0.15 rad, and written on a grid

with 200 bins spanning the (−π, π) range. The bias potential used for the T-MetaD was

grown using a characteristic time τ = 200 ps and a dampfactor D = 100. Gaussians

with a width of 0.15 rad were deposited every NG = 500 steps.

We underline that simulations performed using T-MetaD could be non ergodic

for two reasons. First, there could be signiĄcant barriers acting on CVs that are

not targeted and thus not biased at this stage (e.g. χ dihedral angles). Second, if

the enforced distribution of a CV is bimodal it will be necessary to help the system

in exploring both modes with the correct relative probability. It is thus necessary to

combine the T-MetaD approach with an independent enhanced-sampling scheme. Here

we used RECT, a replica exchange method, introduced in Chapter 4, where a group

of CVs is biased concurrently using a diferent bias factor for each replica and one

reference replica is used to accumulate statistics [197]. When T-MetaD and RECT

are combined, in each replica a T-MetaD is run with the same settings, including the

reference replica. The T-MetaD/RECT simulation was run with 4 replicas for 1 µs

each. For each residue the dihedrals of the nucleic acid backbone (α, β, γ, ϵ, ζ),

together with one of the Cartesian coordinates of the ring puckering [63] (Zx) and the
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glycosidic torsion angle (χ) were chosen as accelerated CVs. To help the free rotation

of the nucleotide heterocyclic base around the glycosidic bond, the distance between

the center of mass of nucleobases was also biased. For the dihedral angles the Gaussian

width was set to 0.25 rad and for the distance it was set to 0.05 nm. The Gaussians

were deposited every NG = 500 steps. The initial Gaussian height was adjusted to the

bias factor γ of each replica, according to the relation h = kBT (γ−1)
τB

NG∆t, in order to

maintain the same τB = 12 ps across the entire replica ladder. The bias factor γ ladder

was chosen in the range from 1 to 2, following a geometric distribution. In replicas with

γ ̸= 1 the target free energy was scaled by a factor 1/γ. Exchanges were attempted

every 200 steps. Statistic was collected from the unbiased replica.

Finally, a new RECT simulation was run for each dinucleoside with the bias poten-

tials obtained from the T-MetaD applied statically on each replica. These calculations

represent the results obtained with a force Ąeld that includes the corrections from the

PDB distributions and are thus labeled as Amberpdb. Statistics from these simulations

were collected to evaluate the efects of the corrections. The simulation time was 1 µs

per replica.

5.2.2.2 RNA Tetranucleotides

To test the force Ąeld corrections derived on dinucleoside monophosphates, temperature

replica-exchange molecular dynamics (T-REMD) simulations [136] were performed on

diferent tetranucleotide systems with sequence CCCC, GACC and AAAA. The cor-

recting potentials calculated for the AA and CC dinucleosides were applied to all the

backbone angles of AAAA and CCCC tetranucleotides, respectively. For the GACC

tetranucleotide we combined the correcting potentials from the T-MetaD simulations

of AA, AC and CC, assuming a similarity between purines A and G.

The T-REMD data related to the Amber14 force Ąeld and the protocol for the new

simulations performed using the Amberpdb force Ąeld were taken from ref [192]. The

systems were solvated with TIP3P waters and neutral ionic conditions. We used 24

replicas with a geometric distribution of temperatures from 300 to 400 K. Exchanges

were attempted every 200 steps. The simulation length was 2.2 µs per replica.

5.2.3 Analysis

5.2.3.1 Comparison with experimental data

The result of the molecular dynamics simulations was compared to NMR experimental

data of dinucleosides [185, 200Ű202] and tetranucleotides [34, 166, 203]. We used 3J

scalar couplings and NOE distances from those experiments to evaluate the quality of

the FF ensembles.

The vicinal nuclear spin-spin 3J scalar couplings constants were calculated accord-

ing to the conformation of the related torsion angles using the Karplus relationship in

the form J(ϕ) = A cos2(ϕ+φ)+B cos(ϕ+φ)+C [204, 205]. Several sets of coeicients
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are available for each speciĄc observable/torsion equation (see ref [206]) and there has

been no clear consensus on which of them is to be preferred. We took into account

the analysis made in refs [185, 207, 208] to select the most precise sets of parameters.

For 3JH4′ H5′
and 3JH4′ H5′′

we derived a simpliĄed expression for the generalized Karplus

equation in the form J(ϕ) = A cos2(ϕ)+B cos(ϕ)+B̃ sin(ϕ) cos(ϕ)+C. The parameters

used in this study are listed in Table 5.1.

Coupling Angle A B B̃ C φ Ref
3JH1′ H2′

,3JH2′ H3′
,3JH3′ H4′

ν1,2,3 9.67 -2.03 0 0 0 [34]
3JH4′ H5′

γ 8.31 -0.99 0.27 1.37 -120o [209]
3JH4′ H5′′

γ 8.31 -0.99 -4.72 1.37 0 [209]
3JH5′ P β 18.1 -4.8 0 0 -120o [210]
3JH5′′ P β 18.1 -4.8 0 0 120o [210]
3JH3′ P ϵ 15.3 -6.1 0 1.6 120o [211]
3JC2′P ϵ 6.9 -3.4 0 0.7 -120o [211]
3JC4′P β/ϵ 6.9 -3.4 0 0.7 0 [211]

3JC2H1′
χ 3.9 1.7 0 0.3 -70.4o [212]

3JC4H1′ χ 3.6 1.8 0 0.4 -68.6o [212]
3JC6H1′

χ′ 4.8 0.7 0 0.3 -66.9o [212]
3JC8H1′ χ′ 4.2 -0.5 0 0.3 -68.9o [212]

Table 5.1: Karplus parameters for the dihedral angles considered in this study. χ′

indicates the H1’-C1’-N1/9-C6/8 torsion along with a phase shift of 60o, which in the
special case of base planar at N1/9 is equal to χ. Actually, the relations of 3JC−H with
the χ angle have been shown to depend non-trivially on the sugar pucker and on the
nonplanarity of nucleobases [208, 213].

The 3J scalar couplings from the simulations were calculated as the ensemble av-

erage over the sampled conformational space, using the following equation

⟨J⟩ =
π
∑

θ=−π

f (θ) J (θ) δθ (5.7)

where J (θ) represent the Karplus relation between the vicinal coupling and the

dihedral angle and f (θ) is the probability density of the dihedral angle bin. To calculate

the torsion angle histograms we employed wrapped Gaussian kernels with a bandwidth

of 0.017 rad. Histograms were calculated with PLUMED 2.1 [175].

The overall agreement between the NMR data and the average values calculated in

this study was measured using the root mean square error (RMSE):

RMSE =

√

√

√

√N−1
N
∑

i=1

(⟨Ji⟩calc − Ji,exp)2 (5.8)

The consistency of the error measurements was analyzed by blocking the trajectory

in 4 blocks of equal length and calculating the standard deviation of the diferent error

estimations.

2D NOESY experiments of diferent tetranucleotide sequences have provided rig-

orous benchmarks for force-Ąelds modiĄcations [34, 166, 203, 214]. NOE distances
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were calculated by averaging pairwise proton-proton distances over all the structures

within the ensemble. The deviation of MD distances from experimental NOE derived

distances is calculated as [175]

RMSE =

√

√

√

√

√N−1
noes
∑

i

((
1
N

N
∑

j=1

(
1
r6

j

))− 1
6 − dexp

i )2 (5.9)

A very important indicator of the ensemble agreement with the experiment is the

number of proton-proton contacts with an MD averaged distance of ≤ 5 Å which are

not visible in the NOESY spectra [34]. Calculations were performed using the software

tool baRNAba [215].

5.2.3.2 Thermodynamics

To calculate the free-energy of stacking we used the deĄnition similar to the one of ref

[34] to deĄne the stacked and unstacked states. In particular, we calculate the distance

between the center of mass of the nucleobases using only the heteroatoms (with a cutof

of 5 Å), the angle between the vectors normal to the planes of the bases (from 0o to

45o and from 135o to 180o) to separate the parallel to the T-shaped complexes, and

the angle between the distance vector between the bases and the 5’-nucleobase normal

vector (< 50o). This deĄnition is very similar to the one used on ref [34].

5.2.3.3 Mutual Information and Jensen-Shannon divergence

The correlation between the dihedral angles in the tetranucleotide T-REMD simu-

lations was estimated with the Mutual Information (MI) [216]. We used the driver

command of PLUMED 2.1 [175] to calculate the MI as an average along the trajectory.

MIxy =

〈

ln



p(x, y)
p(x)p(y)

]〉

(5.10)

The diference between the probability distributions from the A-form and Non-

A-form sub-ensembles was measured using the JensenŰShannon divergence (JS) [217,

218]. The JS is zero for identical distributions and reaches it maximum (ln 2) for non-

overlapping ones. The probability distributions used to estimated JS are shown in Figs.

5.6, B.1 and 5.10.

JSAB =
1
2

〈

ln



2pA(x, y)
pA(x, y) + pB(x, y)

]〉

A

+
1
2

〈

ln



2pB(x, y)
pA(x, y) + pB(x, y)

]〉

B

(5.11)

5.3 Results

As a Ąrst step we identiĄed the dihedral angles whose correction could beneĄt the

most the experimental agreement of the whole conformational ensemble. Then, we

used our approach to enforce for those dihedrals the distributions from the X-ray
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fragments on monophosphate dinucleosides AA, AC, CA, and CC. Finally, we show

that the corrections are partly transferable and could improve agreement with solution

experiments for tetranucleotides.

5.3.1 Selection of the target collective variables

The prevalence of compact intercalated and inverted conformations in the ensembles

of RNA tetranucleotides generated with AMBER force Ąelds is a known problem (see

Fig 5.1 for a representation of typical structures) [33, 34]. This can be due to an over-

stabilization of stacking interactions, poor water models, and/or incorrect dihedral

parameters. Changing the non-bonded interactions in a force Ąeld to improve stack-

ing is a diicult task, as the classiĄcation of stacked (closed) and non-stacked (open)

structures in a molecular dynamic simulation is largely arbitrary and slight changes

can lead to very diferent values of the open-closed population ratio [219, 220]. On the

other hand, dihedrals terms are more Ćexible and small corrections in the free-energy

proĄles of a minimal number of angles can have huge impact on the whole nucleic

acids ensemble [16]. Therefore, we decided to correct the free energy landscape of an

essential group of dihedral angles in the RNA, in order to improve the state-of-the-art

AMBER force Ąeld agreement with solution NMR data.

For this analysis we used the T-REMD simulations of AAAA, GACC, and CCCC

tetranucleotides performed on ref [192] using the Amber14 force Ąeld. We divided each

of the Amber14 ensembles into two groups, in order to identify the structural features

that diferentiate the structures compatible with the NMR data (A-form-like conforma-

tions) from the non-compatible compact structures that overpopulate the ensembles.

The A-form sub-ensemble was deĄned as the set of conformations with a distance-

RMSD < 2.5 Å form the canonical A-form, while the Non-A-form group comprises the

rest of the frames. The ratio between the population of the Non-A-form sub-ensemble

over the A-form one is diferent for each tetranucleotide: ∼5.5 for AAAA, ∼1.4 for

GACC and ∼21.7 for CCCC.

Diferences among the collective variable (CV) distributions of the sub-ensembles

were measured using the Jensen-Shannon divergence between the two-dimensional

probability distributions of dihedrals (α to χ), puckering coordinates (Zx) and the

nucleobase-nucleobase coordination number (S): αβ, βγ, γZx, Zxχ, Sχ, Zxϵ, ϵζ, ζα.

Coordination numbers were estimated using a switching function with form 1
1+(r/r0)6

with r0 = 0.3nm. In Fig. 5.2 it can be appreciated the JS divergences for each pair

of CVs, while the probability distribution maps employed in the JS calculation are

shown in Fig 5.3, B.1 and B.2. The pair of CVs with the highest JS values are the

ones containing χ, ζ and α. It should be noticed that JS values in AAAA for the

Zxχ and Sχ pairs are in general higher than the ones corresponding to the GACC

and CCCC. Analysis of the probability distributions shows that in the case of AAAA

the χ angle in the A-form sub-ensemble favors the high-anti and syn conformations

instead of the canonical A-form all anti rotamer, while in the Non-A-form group the
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Reference 

RMSD 0.0 Å

Cluster #1 

Size 45% 

RMSD 5.5 Å

Cluster #2 

Size 7% 

RMSD 5.8 Å

A-form Intercalated

Intercalated 

2-extruded

Cluster #3 

Size 7% 

RMSD 6.4 Å

Cluster #4 

Size 5% 

RMSD 1.1 Å

1-3_2-4 stack A-form syn

Figure 5.1: Representative clusters of the tetranucleotide Amber14 ensemble of AAAA.
The clusters were calculated with the gromos [221] algorithm implemented in the
g_cluster tool of Gromacs [174]. Representative structures for the CCCC and GACC
can be appreciated in ref [33], for a highly sampled Amber14 ensemble.

minima are shifted to the anti state. For the tetranucleotides containing pyrimidines

the χ angles mainly populates the anti state in both sub-ensembles. This result could

suggest some problematic behavior of the χ angle in adenosine that should be further

investigated (see ref [33] for a discussion of problematic behavior of χ angle in RNA

tetraloops). A consistent trend among all tetranucleotide is related to the high JS

values for αβ, ϵζ and ζα dihedral pairs. Looking into the probability distributions it

is clear that the high JS divergence values are due to a shift of the ζα minimum from

the ζ(g−)/α(g−) (the one corresponding to the right-handed helix) in the A-form sub

ensemble, to the ζ(g+)/α(g+) conformation in the Non-A-form. Each ζ/α minimum

seems to be characteristic of each sub-ensemble independently of the RNA sequence,
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Figure 5.2: Jensen-Shannon (JS) divergence and Mutual Information (MI) calculated from

the joint probability distributions of the CV1CV2 pairs indicated in the labels. The distribu-

tions were estimated from the tetranucleotides Amber14 ensembles taken from ref [192]. The

Amber14 ensemble was divided into two groups, containing the A-form-like and Non-A-form

structures respectively. The Jensen-Shannon divergence measures the difference between the

bidimensional CV1CV2 probability distributions from the A-form-like and Non-A-form struc-

tures. The Mutual Information was calculated for the full Amber14 ensemble. MI indicates

the correlation between the CV1 with respect to the CV2. The shaded areas represent the JS

and MI values obtained for a random generated set of data of the same size of the Amber14

ensemble. Those values differ from zero due to the finite size of the datasets. The significance

of the calculated JS and MI values is proportional to their distance from the shaded area.

while χ and stacking are very system dependent. Taking these results into account

we hypothesize that changing the stability of the gauche minima in ζ/α can improve

the experimental agreement of the force Ąeld, as most conformations compatible with

the canonical A-form extended structure will be favored, despite the properties of the
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sugar-base domain not been changed.

The ζ and α torsion angles are highly correlated between each other and with the

ϵ and β angles respectively, as appreciated in Fig 5.2. Therefore, we assume that any

modiĄcation on the phosphodiester backbone should include also the adjacent torsions.

The probability distributions of the RNA backbone angles obtained from the PDB

can be a good reference to correct the Amber14 force Ąeld, as long as those distribu-

tions are compatible with the solution RNA ensemble at room temperature. In order to

analyze the suitability of the PDB distributions, we used solution NMR data of RNA

dinucleosides as a reference. RNA dinucleoside monophosphates can be considered as

the smallest structural unit of the RNA that includes all the major conformational

degrees of freedom. Thanks to their small size, converged ensembles are easily gener-

ated using enhanced sampling simulations. Moreover, taking fragments of dinucleotides

from the RNA X-ray structures, instead of tetranucleotides, improves considerably the

statistics. In Fig B.3 the agreement between experimental and calculated 3J scalar

couplings for the dinucleosides is shown. For the X-ray ensemble in general the agree-

ment with the scalar couplings of the backbone angles (ϵ and β) is better than that

of angles of the ribose-nucleobase region (χ, Zx and γ). The disagreement in the last

region is expected considering the X-ray ensemble is biased to the anti and C3′-endo

states, which predominate on the double helical structures. Compared to the force

Ąeld performance, the 3J RMSD of the PDB fragments is at least 0.5 Hz lower for

the backbone angles. All the calculated and experimental 3J scalar couplings used are

presented in Table B.1.

We decided then to enforce the X-ray distributions of α, β, ϵ, and ς dihedral angles

in the Amber14 force Ąeld, using concurrent Target Metadynamics simulations.

5.3.2 Calculation of correcting potentials

The Amber14 force Ąeld is considered to be one of the most accurate ones for RNA,

though it is failing to reproduce solution experiments for short Ćexible oligomers. Re-

cent benchmarks of diferent AMBER force Ąeld modiĄcations based on reparametriza-

tion of the torsion angles and non-bonded terms have shown that these changes did not

lead to a satisfactory agreement with solution experiments for tetranucleotides [33, 34].

On the other hand, ensembles of tetranucleotides taken from the PDB have a very good

agreement with NMR data [192]. We thus decided to add correcting potentials to the

dihedral angle terms of Amber14, based on information recovered from high-resolution

X-ray structures of RNA deposited in the PDB. The probability distributions obtained

from fragments of X-ray structures were enforced on the backbone dihedrals with T-

MetaD. RNA dinucleoside monophosphates were chosen as model systems to obtain

the correcting potentials. As the corrections are sequence dependent, for each nucle-

obase combination we generated an ensemble of experimental conformations from the

PDB database that had the same sequence as the dinucleoside monophosphates.

In Fig. 5.4 we show the free energy proĄles of AA and CC dinucleosides projected on
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Figure 5.3: Probability distributions of dihedral angles (backbone, puckering and gly-
cosidic angle) and coordination number of the nucleobases center-of-mass distance.
These CVs values corresponding to the RNA canonical A-form are marked with a gray
dashed line. The probability distributions were calculated from the AAAA T-REMD
simulations.[192] The distributions marked as ŞA-formŤ includes the structures with
a distance RMSD ≤ 2.5 Å to the canonical A-form conformation in the Amber14 en-
semble, while the ŞNon A-formŤ group contains the rest, mostly compact and highly
stacked structures.

the ϵ, ζ, α and β angles. Amber14, Amberpdb, as well as the target PDB ensembles are

represented. The proĄles of AC and CA are shown in Fig B.3. The similarity between

the PDB and Amberpdb proĄles makes it clear that the corrections eiciently enforce

the distributions taken from the X-ray ensemble. Although some diferences are visible
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Figure 5.4: Free-energy proĄles of backbone dihedral angles for the AA and CC dinu-
cleosides monophosphates from the X-ray ensemble (PDB) and the RECT simulations
with the standard force-Ąeld (Amber14) and the correcting potential (Amberpdb).

around the free-energy barriers, they are expected not to be relevant for room temper-

ature properties at equilibrium. Nevertheless, the transition times and the behavior of

the Amberpdb potential at high temperatures could be afected by these barriers. In

general, barriers in the experimental ensemble are several kbT lower than those from the

Amber14 force Ąeld. In the corrected ensemble the multimodal character of the force

Ąeld probability distributions for the angles ϵ, ζ and α is reduced, to favor the confor-

mations corresponding to the canonical A-form. The observed agreement between the

PDB and Amberpdb one-dimensional probability distributions for the selected angles

is not necessarily translated into equivalence of the respective ensembles. This is seen

for example in the two-dimensional distributions shown in Figs B.4-B.7.

Correcting potentials might in principle also afect the distribution of non-biased

degrees of freedom if the latter ones are correlated with the former ones. The distribu-

tion of non-biased degrees of freedom, such as the angles γ, χ and puckering coordinate

Zx, is shown in Fig. B.8. Overall, no diference is observed between the Amber14 and

Amberpdb free-energy proĄles, with the exception of the ratio between the C3’-endo

and C2’-endo conformations in CC. This is a consequence of the signiĄcant correlation

between the backbone angle ϵ and the puckering.

To asses the validity of the corrections, we compared all the ensembles against

NMR experimental data [185] (Fig 5.5). Individual 3J vicinal coupling values from the

experiments and the simulations are reported in Table B.1. In the case of AA, AC

and CA dinucleosides the agreement of Amberpdb with the experimental data is better

than that of Amber14 and of the X-ray ensemble. This can be explained noticing that

Amberpdb combines the good agreement with NMR experiments of Amber14 for angles

in the nucleoside (dihedrals γ, ν3 and χ) with that of the PDB distribution for angles in

the backbone (dihedrals ϵ and β), as shown in Fig B.9. A notable exception is the CC
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dinucleoside, where the correlation of backbone angles with puckering mentioned above

leads to slightly larger deviation in Amberpdb with respect to Amber14. It should be

noticed that the NMR observables analyzed here cannot be used to directly determine

the conformation around the phosphodiester backbone (α/ζ), so the comparison with

the NMR 3J vicinal coupling dataset does not take intoaccount the distribution of

these angles.
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Figure 5.5: Agreement with the NMR 3J vicinal coupling dataset of dinucleosides, mea-
sured using the root mean square error (RMSE), for the ensembles of X-ray structures
(PDB), the AMBER force Ąeld (Amber14) and the corrected force Ąeld (Amberpdb).
Statistical errors were calculated using block averaging.

We noticed that, whereas the NMR data was measured at 293 K (AA, CA and AC)

and 320 K (CC), simulations were performed at 300 K. However, the agreement between

the data for CC obtained at 320K and similar NMR data obtained for a smaller number

of couplings at 280K [202] shows that deviations induced by temperature changes are

expected to be much smaller than the typical deviations between molecular dynamics

and experiment observed here. It is also important to mention that these RMSE values

do not take into account systematic errors in the Karplus formulas employed in this

study.

It is also interesting to measure the efect of the proposed backbone corrections on

the stacking interactions. Stacking free energies computed according to the deĄnition

used in a recent paper [34] show that the correcting potential have barely no efect on

stacking (Fig B.10). These numbers can also be compared with experimental values

[201, 202, 222], and indicate that AMBER force Ąeld is likely overestimating stacking

interactions as suggested by several authors [26, 220]. This comparison is however

afected by the deĄnition of stacked conformation, which introduces a large arbitrariness

in the estimation of stacking free energies from MD.

5.3.3 Validation of Amberpdb potential on RNA tetranucleotides

The correcting potentials discussed above are designed so as to enforce the PDB distri-

bution on dinucleosides monophosphates. We here used these corrections to perform

simulations on larger oligonucleotides. In particular, we performed extensive simu-

lations of tetranucleotides, which are considered as good benchmarks for force-Ąeld

testing, as their small size makes the generation of converged ensembles accessible to
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Figure 5.6: Agreement with the experimental 3J vicinal couplings and NOE distances
of tetranucleotides. For the calculation of the 3J RMSE the RNA torsion angles were
divided in two groups: a) the dihedral angles in the ribose-ring region (χ, ν and γ) and
b) the phosphate-backbone angles (ϵ, ζ, α and β). In c) the RMSE between calculated
and predicted average NOE distances is presented and in d) it is shown the number of
false positives, i.e. the predicted distances below 5 Å not observed in the experimental
data.

modern enhanced sampling techniques. We performed three T-REMD simulations with

the Amberpdb potential for the tetranucleotide sequences AAAA, GACC and CCCC.

These systems have been used before in very long (hundred of µs) simulations [31Ű

33, 120, 128] and NMR experimental data is available [34, 166, 203]. The Amber14

T-REMD data were taken from ref [192].

The 3J coupling RMSE, the NOE-distance RMSE, and the number of distance

false positives, i.e. the MD predicted NOEs not observed in the experiment, are pre-

sented in Fig 5.6. For these systems the number of false positives is one of the most

important parameters to assess the quality of the MD ensembles [34]. In the case of

tetranucleotides containing pyrimidines (GACC and CCCC), the correcting potential

improves signiĄcantly the agreement with the experimental data, mostly for the NOEs
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Figure 5.7: Probability distributions of the backbone dihedral angles of AAAA and
CCCC tetranucleotides, in the region between residue 1 and 2. Results from the
RECT simulations with the standard force-Ąeld (Amber14), the correcting potential
(Amberpdb) and the dinucleoside X-ray ensembles (PDB) used to generate the correct-
ing potentials.

(see Fig B.11). This is conĄrmed by the root-mean-square deviation (RMSD) distribu-

tion shown in Figure 5.8 where it can be appreciated that for these two sequences the

corrections lead to an overall improvement of the ensemble by disfavoring the interca-

lated and inverted structures with a large RMSD from native. A completely diferent

scenario is found for the Amberpdb ensemble of AAAA, where the corrections surpris-

ingly diminish the agreement with experiments. This can be also appreciated in a shift

of the Amberpdb RMSD distribution peaks to higher RMSD values due to an increased

population of compact structures (Fig 5.8). It should be noticed that the efect of

the correcting potentials in purines and pyrimidines depends strongly on the sequence

length. Whereas the AAAA tetranucleotide is negatively afected by the corrections,

the AA dinucleoside is the one that beneĄts the most from them.

As discussed in the section 5.3.1, the conformation along the phosphodiester back-

bone is very diferent between compact and extended tetranucleotide structures. The
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Figure 5.8: Empirical probability distribution of heavy atom RMSD from the canonical
A-form as computed for the reference replica trajectory. Distributions are shown for the
REMD simulations with Amber14 (black) and Amberpdb(red). The total probability is
shown in solid line and the above and below limits determined by the blocking error are
shaded. It can be appreciated that the correcting potentials increase the population
of extended structures (RMSD ∼ 1-2 Å) for the CCCC and GACC tetranucleotides,
while for AAAA the Amberpdb ensemble is farther from the canonical A-form.

probability distribution maps of the α2/ζ1 backbone dihedral angles from the tetranu-

cleotides T-REMD simulations and the dinucleosides X-ray ensembles used to generate

the corrections are depicted in Fig B.1. Only phosphodiester backbone torsion an-

gles are shown, because they are the ones mostly afected by the correction. The

other backbone angles maps are shown in the Appendix B (Figs B.12-B.20). In the

PDB ensembles the distributions are always unimodal, independently of the sequence,

with a peak at the α(g−)/ζ(g−) conformation, whereas in the Amber14 ensemble the

α(g+)/ζ(g+) and α(g−)/ζ(g−) conformations are both signiĄcantly populated. The ef-

fects of the corrections, as seen before, are highly sequence dependent. In case of GACC

and CCCC, the α(g−)/ζ(g−) rotamer is stabilized in the Amberpdb distributions, with
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the population of α(g+)/ζ(g+) signiĄcantly decreased with respect to Amber14. On the

contrary, for AAAA the α(g+)/ζ(g+) conformation is not unfavored by the correcting

potentials, despite not being signiĄcantly present in the PDB ensemble. This could be

due to the fact that the one dimensional target free-energy proĄle for dihedrals α and

ζ for the AA (Fig 5.4) exhibits barriers which are approximately 4 kbT smaller with

respect to the ones from the Amber14 force Ąeld. The efect of the decreased barrier

height can be appreciated in the α2/ζ1 probability distribution of AAAA, where the

amount of torsional space explored is increased by the corrections.
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Figure 5.9: Empirical probability distribution of heavy atom RMSD from the canonical
A-form computed for the reweighted Amber14 ensemble as a function of the Gaussian
potential height For all sequences the increase of the penalty potential shifts the dis-
tributions closer to the A-form structure.

5.3.4 Consequences on future force field refinements

The good agreement of the Amberpdb ensembles with the NMR observables, in the case

of CCCC and GACC tetranucleotides, suggests that the RNA conformational space

sampled by state-of-the-art force Ąeld could be modiĄed to better match experimental
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solution data by penalizing rotamers of the α and ζ angles. As a further test, we

reweighted the T-REMD Amber14 ensembles with an additional two-dimensional pe-

nalizing Gaussian potential centered on the α(g+)/ζ(g+) conformation (See Fig 5.9).

Results are shown in Fig 5.10 for diferent Gaussian heights. Overall, the agreement

with the NMR experimental data improves considerably with respect to the original

force Ąeld as the Gaussian height increases. The relative population of the α/ζ confor-

mations has an important impact on the number of false positive NOE contacts which

indicates the presence of intercalated structures. This improvement is achieved without

changing the non bonded interactions as it has also been proposed [26]. It is however

important to observe that these results are obtained by performing a reweighting, and

that corrections should be validated by performing separate simulations with this bias

potential.
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Figure 5.10: Agreement with the experimental data for the Amber14 reweighted ensem-
ble as a function of the Gaussian potential height. The bias potential was centered on
α(g+)/ζ(g+) conformation (π
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2
) with a sigma per angle of 0.7 rad. ŞA-formŤ represent

a canonical A-form structure and ŞX-rayŤ an ensemble of tetranucleotide fragments,
with the same sequence, from the PDB (all taken from ref [192]).
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5.4 Discussion

In this chapter we apply targeted metadynamics to sample preassigned distributions

taken from experimental data [35, 36]. At variance with the original applications, we

here combine T-MetaD with enhanced sampling showing that these protocols can also

be used when the investigated ensembles have non-trivial energy landscapes separated

by signiĄcant barriers .

We apply the method to RNA oligonucleotides, for which the Amber14 force Ąeld

was proven to be in signiĄcant disagreement with solution NMR data [31, 33, 34, 120,

128, 166, 203, 214]. Since tetranucleotide fragments extracted from high resolution

structures in the PDB were shown to match NMR experiments better than Amber14

force Ąeld [192], we here used X-ray structures to build reference distributions of back-

bone dihedral angles that are then used to devise correcting potentials. More precisely,

we use T-MetaD to enforce the empirical distribution of the dihedral angles in the

phosphate backbone (ϵ, α, ζ and β) on four dinucleoside monophosphates.

We calculated the correcting potentials concurrently for all the four angles in order

to change the distribution of these consecutive dihedrals along the backbone chain tak-

ing into account their correlation. The method successfully enforced the distributions

taken from the PDB on all the angles. The new ensemble generated by the corrected

force Ąeld (Amberpdb) was independently validated against solution NMR data that

was not used in the Ątting of the corrections. For three of the four dinucleosides stud-

ied, Amberpdb showed a better agreement with the NMR data compared with Amber14

and with the X-ray ensemble.

We then tested the portability of the correcting potentials by simulating three

tetranucleotides, GACC, CCCC and AAAA. In the case of GACC and CCCC the

agreement with NMR data is signiĄcantly improved by the corrections. Surprisingly,

for AAAA the corrections have the opposite efect and increase the probability of vis-

iting compact structures making the simulated ensemble less compatible with solution

experiments. It should be noticed here that this is a non obvious result since the PDB

database is expected to have an intrinsic bias towards A-form structures and should

thus in principle increase the agreement with solution experiments in this speciĄc case.

This indicates that porting the corrections from dinucleosides to tetranucleotides is not

straightforward because the coupling between the multiple corrected dihedrals could

afect the resulting ensemble in an non-trivial way. Additionally, corrections applied to

dihedral angles alone might be not suicient to compensate errors arising from inexact

parametrization of van der Waals or electrostatic interactions [26]. Overall, the tests

we performed indicate that the corrections derived here should not be considered as

portable corrections for the simulation of generic RNA sequences.

Nevertheless, by comparing the backbone angle distributions on the diferent RNA

simulations and the X-ray ensembles, we were able to Ąnd possible hints pointing at

where reĄnement of dihedral potentials could lead to an advancement in RNA force

Ąelds. In this respect, the results for GACC an CCCC show the signiĄcant improvement



5.5 Conclusion | 61

observed in the Amberpdb simulations for those systems could be reproduced by simply

penalizing the α(g+)/ζ(g+) conformation, which is overpopulated in Amber14. By

a straightforward reweighting procedure, we showed that simple Gaussian potentials

that disfavor this conformation signiĄcantly improved the experimental agreement with

solution experiments for all the three tetranucleotides. Recent modiĄcations of the

Lennard-Jones parameters for phosphate oxygens [110] and diferent water models [128]

were shown to afect the conformational ensemble of RNA tetranucleotides [33, 128]. It

might be interesting to combine these modiĄed parameters for non-bonded interactions

with the here introduced procedure for dihedral angle reĄnement.

The nature of the correction methodology discussed in this chapter is very diferent

from the classical approach to force Ąeld parametrization, as it aims to correct the free

energy of the system, instead of Ątting the potential energy landscape of the dihedral

angles while constraining the other degrees of freedom. It is important to notice that

the dihedral angle distributions taken from the fragments of the PDB structures do not

necessarily represent the conformational ensembles of dinucleosides or tetranucleotides

in solution. Indeed, some of the interaction patterns that are present in large structures

crystallized in the PDB do not exist in short oligonucleotides. For this reason, in this

work the distributions were validated against independent solutions NMR experiments.

This allowed the dihedral angles from the PDB distributions that performed better

than the force Ąeld to be identiĄed. We also recall that in our procedure the force-

Ąeld torsion energy function is not reĄtted, but a bias potential is added to the total

energy of the system in order to match the free-energy proĄle of the torsion angles with

target ones. Thus, a major advantage of this approach is that it takes explicitly into

account the entropic contributions, the cross correlations between torsional angles, and

inaccuracies in the non-bonded interactions, among other efects.

5.5 Conclusion

In conclusion, in this work we applied the target metadynamics protocol to modify

dihedral distributions in dinucleosides. The procedure successfully enforces reference

distributions taken from the PDB without afecting the distribution of the dihedral an-

gles that were not biased. However, the attempt to port these corrections to tetranu-

cleotides lead to ambiguous results when applied to diferent sequences. This could

be partly due to the fact that distribution form the PDB are not necessarily a good

reference for reĄnement.

Nevertheless, the simulations revealed the importance of the α/ζ angles rotamers

on the modulation of the conformational ensemble, and that by only penalizing the

α(g+)/ζ(g+) rotamer the quality of the ensemble is signiĄcantly improved to levels not

reported before.



Chapter 6

Conclusions and Perspectives

In this thesis the problem of conformational sampling in MD simulations of RNA

systems and the low agreement of current RNA force Ąelds is addressed with the in-

troduction of a novel and Ćexible enhancing sampling method, replica exchange with

collective-variable tempering (RECT), and the calculation of correcting potentials that

enforce distributions of dihedral angles taken from experimental structures. RECT

takes advantage of the adaptive nature of well-tempered metadynamics to build bias

potentials that compensate free-energy barriers. The results from a simulation of a

single-stranded RNA tetranucleotide show this new method is a promising tool to

accelerate the exploration of RNA conformational space. On the other hand, the intro-

duction of the corrected potentials on the AMBER force Ąeld lead to a better agreement

with independent solution experiments for the oligonucleotides containing pyrimidine

bases, but failed for the oligomer containing only Adenosine. However, the simulations

reveal that by only penalizing the α(g+)/ζ(g+) rotamer the experimental agreement of

the ensemble is signiĄcantly improved for all RNA tetranucleotide sequences.

Perspectives of this PhD thesis will be presented now. An issue with the current

formulation of RECT is that the convergence of the bias potentials could take some

time (tens of nanoseconds or more). To alleviate this, RECT could be modiĄed to

allow each replicas feel the bias potentials of the other replicas, in the way of Multiple

Walker [223] and Altruistic Metadynamics [224]. Additionally, the geometric replica

distribution used here is merely heuristic: In the replicas with high γ the Gaussian

approximation for the distribution of bias potentials is satisfactory, but the behavior

in the lower replicas diverges from the prediction. Finding a distribution of replicas

that maintain a constant acceptance ratio across the replica ladder is not a simple task,

but for the systems studied here a geometric distribution resulted in high acceptance

ratios and low round-trip times. Even if the number of CV is very large, the density

of replicas in RECT should not be higher than in other popular H-REMD methods,

as just moderated γ factors are needed in the highest replicas to accelerate dihedral

transitions. Applying RECT in larger systems could be negatively afected by the

computational cost of building hundreds of WT-MetaD potentials at the same time. If

that is the case, the use of multiple-time step to integrate the biasing forces [225] could
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provide the necessary speed up. Moreover, if there is an a priori knowledge of the

system, knowledge-based CVs can be included in RECT, like CVs based on εRMSD,

which in nucleic acids are particularly well-suited to distinguish among conformational

states [215]. RECT can be also integrated with other replica exchange methods, like

parallel tempering [136] or solute tempering [146]. This combination could make a

diference in the diicult task of generating converged ensembles of RNA oligomers,

which demands hundreds of microseconds of simulated time and is fundamental for the

evaluation of new FF parameters or ad hoc corrections [33].

As it was mentioned before, the empirical corrections to the AMBER FF calcu-

lated here led to ambiguous results when applied to diferent tetranucleotide sequences.

We recognize the dihedral free-energy proĄles estimated from X-ray ensembles are

not completely reliable. One solution to this problem could be to apply quality Ąl-

ters on the X-ray ensembles to eliminate conformational errors from the experimental

structures [102]. Moreover, free-energy proĄles from QM/MM calculations in solution

could be used to generate accurate correcting potentials, in the spirit of the QM/MM

force matching approach [226]. The penalty potential suggested here for a rotameric

phosphate-backbone conformation has recently been tested in RNA tetraloops, result-

ing in a signiĄcant improvement over the Amber14 force Ąeld [227].



Appendix A

0

0.5

1

1.5

−� −�⁄2 0 �⁄2 �F
re

q
u

en
cy

dihedral angle (rad)

� = 1 ��
0

0.5

1

1.5

−� −�⁄2 0 �⁄2 �F
re

q
u

en
cy

dihedral angle (rad)

� = 1.72 ��

0

0.5

1

1.5

−� −�⁄2 0 �⁄2 �F
re

q
u

en
cy

dihedral angle (rad)

� = 2.95 ��
0

0.5

1

1.5

−� −�⁄2 0 �⁄2 �F
re

q
u

en
cy

dihedral angle (rad)

� = 5.08 ��

0

0.5

1

1.5

−� −�⁄2 0 �⁄2 �F
re

q
u

en
cy

dihedral angle (rad)

� = 8.73 ��
0

0.5

1

1.5

−� −�⁄2 0 �⁄2 �F
re

q
u

en
cy

dihedral angle (rad)

� = 15 ��
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Figure A.5: Time series and histograms of the 32 torsion angles biased during the
RECT simulation for the unbiased replica.
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Figure A.6: Time series and histograms of the 32 torsion angles biased during the
RECT simulation for replica 16.
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Figure A.7: Time series and histograms of the 32 torsion angles with energies scaled
during the Hdih-REMD simulation for the unbiased replica.
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Figure A.8: Time series and histograms of the 32 torsion angles with energies scaled
during the Hdih-REMD simulation for replica 24.
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Figure B.1: Same as Fig. 5.6 but for the CCCC Amber14 ensemble.
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Figure B.2: Same as Fig. 5.6 but for the GACC Amber14 ensemble.
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Figure B.3: Free-energy proĄles of backbone dihedral angles for all the dinucleosides
monophosphates studied here, from the X-ray ensemble (PDB) and the RECT simula-
tions with the standard force-Ąeld (Amber14) and the correcting potential (Amberpdb).
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Figure B.4: Probability distributions of the backbone dihedral angles of AA dinucleo-
side monophosphate, from the X-ray ensemble (PDB) and the RECT simulations with
the standard force-Ąeld (Amber14) and the correcting potential (Amberpdb).
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Figure B.5: Probability distributions of the backbone dihedral angles of CC dinucleo-
side monophosphate, from the X-ray ensemble (PDB) and the RECT simulations with
the standard force-Ąeld (Amber14) and the correcting potential (Amberpdb).
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Figure B.6: Probability distributions of the backbone dihedral angles of AC dinucleo-
side monophosphate, from the X-ray ensemble (PDB) and the RECT simulations with
the standard force-Ąeld (Amber14) and the correcting potential (Amberpdb).
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Figure B.7: Probability distributions of the backbone dihedral angles of CA dinucleo-
side monophosphate, from the X-ray ensemble (PDB) and the RECT simulations with
the standard force-Ąeld (Amber14) and the correcting potential (Amberpdb).
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Figure B.8: Free-energy proĄles of non-corrected degrees of freedom (χ, γ and puck-
ering Zx) from the RECT simulations of the standard force-Ąeld (Amber14) and the
correcting potential (Amberpdb).
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Figure B.9: RMSE between experimental and calculated 3J scalar couplings for 2
diferent subset of dihedral angles: Nucs.) containing the nucleoside-unit angles (χ,γ
and ν3) and Back.) including the angles from the monophosphate backbone (ϵ, ζ, α
and β).
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Figure B.11: Predicted versus experimental NOE distance for all ensembles and for
all 5 systems are shown below. Bars on the y-axis show experimentally determined
minimum and maximum range, while error bars on the predicted values represent
statistical errors and were calculated with a blocking procedure. Intra-nucleotide and
inter-nucleotide proton-proton distances are shown in blue and green, respectively.
Calculations were performed using the software tool baRNAba.[215]
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Figure B.12: Probability distributions of the backbone dihedral angles of AAAA
tetranucleotide, in the region between residue 1 and 2. First are shown the dihedral
distributions from the RECT simulations with the standard force-Ąeld (Amber14) and
in second the ones performed with the correcting potential (Amberpdb). The dihedral
distributions of AA dinucleoside taken from the PDB are presented in the last row.
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Figure B.13: Probability distributions of the backbone dihedral angles of AAAA
tetranucleotide, in the region between residue 2 and 3. First are shown the dihedral
distributions from the RECT simulations with the standard force-Ąeld (Amber14) and
in second the ones performed with the correcting potential (Amberpdb). The dihedral
distributions of AA dinucleoside taken from the PDB are presented in the last row.



86 | Appendix

Figure B.14: Probability distributions of the backbone dihedral angles of AAAA
tetranucleotide, in the region between residue 3 and 4. First are shown the dihedral
distributions from the RECT simulations with the standard force-Ąeld (Amber14) and
in second the ones performed with the correcting potential (Amberpdb). The dihedral
distributions of AA dinucleoside taken from the PDB are presented in the last row.
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Figure B.15: Probability distributions of the backbone dihedral angles of CCCC
tetranucleotide, in the region between residue 1 and 2. First are shown the dihedral
distributions from the RECT simulations with the standard force-Ąeld (Amber14) and
in second the ones performed with the correcting potential (Amberpdb). The dihedral
distributions of CC dinucleoside taken from the PDB are presented in the last row.
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Figure B.16: Probability distributions of the backbone dihedral angles of CCCC
tetranucleotide, in the region between residue 2 and 3. First are shown the dihedral
distributions from the RECT simulations with the standard force-Ąeld (Amber14) and
in second the ones performed with the correcting potential (Amberpdb). The dihedral
distributions of CC dinucleoside taken from the PDB are presented in the last row.
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Figure B.17: Probability distributions of the backbone dihedral angles of CCCC
tetranucleotide, in the region between residue 3 and 4. First are shown the dihedral
distributions from the RECT simulations with the standard force-Ąeld (Amber14) and
in second the ones performed with the correcting potential (Amberpdb). The dihedral
distributions of CC dinucleoside taken from the PDB are presented in the last row.
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Figure B.18: Probability distributions of the backbone dihedral angles of GACC
tetranucleotide, in the region between residue 1 and 2. First are shown the dihedral
distributions from the RECT simulations with the standard force-Ąeld (Amber14) and
in second the ones performed with the correcting potential (Amberpdb). The dihedral
distributions of AA, AC and CC dinucleosides, taken from the PDB, are presented in
the last row.
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Figure B.19: Probability distributions of the backbone dihedral angles of GACC
tetranucleotide, in the region between residue 2 and 3. First are shown the dihedral
distributions from the RECT simulations with the standard force-Ąeld (Amber14) and
in second the ones performed with the correcting potential (Amberpdb). The dihedral
distributions of AA, AC and CC dinucleosides, taken from the PDB, are presented in
the last row.
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Figure B.20: Probability distributions of the backbone dihedral angles of GACC
tetranucleotide, in the region between residue 3 and 4. First are shown the dihedral
distributions from the RECT simulations with the standard force-Ąeld (Amber14) and
in second the ones performed with the correcting potential (Amberpdb). The dihedral
distributions of AA, AC and CC dinucleosides, taken from the PDB, are presented in
the last row.
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