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Abstract

The computational study of conformational transitions in nucleic acids still faces many
challenges. For example, in the case of single stranded RNA tetranucleotides, agree-
ment between simulations and experiments is not satisfactory due to inaccuracies in
the force fields commonly used in molecular dynamics. Improvement of force fields
is however hindered by the difficulties of decoupling those errors from the statistical
errors caused by insufficient sampling. We here tackle both problems by introducing a
novel enhancing sampling method and using experimental data to improve RNA force
fields.

In this novel method, concurrent well-tempered metadynamics are integrated in
a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different
strength of the bias potential exploiting the tunability of well-tempered metadynamics.
Using this method, free-energy barriers associated to individual collective variables are
significantly reduced compared with simple force-field scaling. The introduced method-
ology is flexible and allows adaptive bias potentials to be self-consistently constructed
for a large number of simple collective variables, such as distances and dihedral angles.

Additionally, a modified metadynamics algorithm is used to calculate correcting
potentials designed to enforce distributions of backbone torsion angles taken from ex-
perimental structures. Replica-exchange simulations of tetranucleotides including these
correcting potentials show significantly better agreement with independent solution ex-
periments for the oligonucleotides containing pyrimidine bases. Although the proposed
corrections do not seem to be portable to generic RNA systems, the simulations reveal
the importance of the a and ( backbone angles for the modulation of the RNA con-
formational ensemble. The correction protocol presented here suggests a systematic

procedure for force-field refinement.
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Chapter 1

Introduction

RNA is being recognized as a key player on many different functions in the cell [1-3]
and as a potential target for therapeutics [4, 5]. Understanding the physical interac-
tions of RNA molecules that are associated with folding, catalysis and other essential
molecular recognition processes can provide insight into those functions [6, 7]. In order
to understand the structure-function relations governing those processes one should go

beyond strict structural aspects and explore RNA dynamical features.

Beside experimental single molecular approaches based on fluorescence [8-10] and
force measurements techniques [11, 12|, computational techniques like molecular dy-
namics (MD) simulations [13, 14] have provided a microscopic picture of the mechanism
and dynamics of RNA systems [15, 16]. MD simulations as standalone experiments
started for proteins in 1975 [14] and for RNA in 1984 [17-20]. But as nucleic acids are
highly charged polymers, stable MD simulations of fully solvated systems were only
achieved with the introduction of the particle mesh Ewald method [21] for the treat-
ment of long-range electrostatic interaction in 1995 [22, 23]. Since then, MD has gained
in robustness and predictive power [24], and the advances in software and hardware
have made the simulation of complex conformational transitions like the folding and
refolding of RNA tetraloops [25-27], and the analysis of large molecular machines like
the ribosome [16, 28, 29], possible.

Simulation times of microseconds are normally accessible nowadays, and even longer
timescales can be simulated when specialized hardware is used [30]. However, many
molecular processes are rare events that could be seen only a few times, if seen at all,
in a microsecond timescale. In order to obtain precise averages from the computational
generated ensembles, advanced sampling techniques have been developed to accelerate
the exploration of the conformational space and bridge the gap between experiments
and simulations. However, in the case of RNA, simulations of short oligonucleotides
with parallel tempering (a popular enhanced sampling technique technique) and Hamil-
tonian replica exchange (another powerful technique) have been shown to generate un-
converged ensembles, even for simulations close to a 100 us [31, 32]. On the other hand,
the current empirical functions, force fields, used to represent the energetic interactions

in RNAs are not accurate enough to reproduce solution experiments of unstructured
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oligonucleotide systems [33, 34] or to predict the correct stability of RNA tetraloops
[27]. Therefore, further advances in enhanced sampling and force field refinements are
required in the field of computer-simulation experiments of RNA.

The results presented in this thesis are mainly concerned with the development of
a new enhanced sampling method for the study of RNA molecules and with the inclu-
sion of empirical corrections into the RNA force field that improve the agreement with
solution NMR experiments. The new method introduced here, replica exchange with
collective-variable tempering (RECT), greatly improves the conformational sampling
of the challenging RNA tetranucleotides, which have become a benchmark to evaluate
enhanced sampling techniques and force field accuracy [31-34]. Concerning the force
field corrections, a self-consistent procedure based on metadynamics [35, 36] is used
to calculate correcting potentials that enforce distributions of dihedral angles taken
from experimental structures in the RNA AMBER force field [37-39]. Since the target
distributions are multimodal, we use RECT to accelerate the convergence of the cor-
recting potential calculation. The resulting corrections are tested on tetranucleotides
where standard force field parameters are known to fail in reproducing NMR data. The
new AMBER force field lead to ambiguous results when applied to different tetranu-
cleotide sequences. However, the simulations reveal that by only penalizing a rotameric
phosphate-backbone conformation, the quality of the ensemble is significantly improved
to levels not reported before.

The material presented in this thesis is organized as follows:

In Chapter 2, an overview of RNA structure is presented, focused on the internal
motions that characterize the flexibility of single-stranded RNA structures. Chapter 3
is devoted to a brief summary of the state of the art of RNA force fields and enhanced
sampling methods commonly used to aid the exploration of RNA conformational space
in MD simulations. Special attention is dedicated to well-tempered metadynamics [40]
which is the base of the new enhancing sampling method presented in Chapter 4. In
this new method concurrent well-tempered metadynamics simulations are integrated
in a replica exchange framework so as to effectively overcome the high free energy
barriers of the RNA dihedral angles transitions. Chapter 5 presents the results from the
empirical correction of the RNA force field using a combination of metadynamics-based
techniques, which suggest a systematic procedure for force field refinement. Finally,

the conclusions of the thesis and the perspectives are contained in Chapter 6.

The results discussed in Chapter 4 and 5 are largely based on the following publi-

cations:

Gil-Ley, A and Bussi, G. Enhanced Conformational Sampling using Replica FEzx-
change with Collective- Variable Tempering. JOURNAL OF CHEMICAL THEORY AND
COMPUTATION. 2015, 11 (3), 1077-1085. (Cover article for the March 2015 issue of
JCTC, Figure 1.1)


http://pubs.acs.org/doi/abs/10.1021/ct5009087

Gil-Ley, A.; Bottaro, S.; Bussi, G. Empirical corrections to the Amber RNA force
field with Target Metadynamics. JOURNAL OF CHEMICAL THEORY AND COMPUTA-
TION. 2016, 12 (6), 2790—2798.

In addition, collaboration with other members of Prof. Bussi’s group has lead to

the following publications, not included in this thesis:

Bottaro, S.; Gil-Ley, A.; Bussi, G. RNA Folding Pathways in Stop Motion. NU-
CLEIC AcCID RESEARCH. 2016, 44 (12), 5883-5891.

Cesari, A.; Gil-Ley, A.; Bussi, G. Combining simulations and solution experiments
as a paradigm for RNA force field refinement. Submitted.

Journal of Chemical Theory and Computation
March 2015 Volume I Number 3 pubs.acs.org/JCTC

ACSPublications acs.
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Figure 1.1: Cover art highlighting the RECT method.


http://pubs.acs.org/doi/10.1021/acs.jctc.6b00299
http://nar.oxfordjournals.org/content/early/2016/04/15/nar.gkw239.abstract

Chapter 2

RNA Structure

RNA is a polymeric molecule formed by a combination of 4 different nucleotides [41-43].
Each nucleotide contains a furanose-type sugar (8-D ribose), an aromatic heterocyclic
base, and a phosphate group. The nucleotides are linked to one another in a linear man-
ner, by phosphodiester bonds between the sugar of one nucleotide and the phosphate
group of the adjacent nucleotide. The most common nucleobase types are: adenine
(A), cytosine (C), guanine (G), and uracil (U). Cytosine and uracil are derivatives of
the pyrimidine (Py) ring, while adenine and guanine have a purine (Pu) scaffold, a
pyrimidine ring fused to an imidazole ring. The phosphate groups have a negative
charge each, making RNA a polyanionic molecule. The structure of the ribose ring and
the nucleobases is represented in Figure 2.1.

The single stranded RNA flexibility is characterize by the motion of the nucleobase
with respect to the sugar (syn/anti orientation around the torsion angle x), the pseudo-
rotation of the furanose ring, and the conformation of the sugar-phosphate backbone
(torsion angles 7, «, 3, € and (, defined in Fig 2.2). In the following sections each of

these internal modes of motion will be discussed in more detail.

2.1 syn/anti orientation about the glycosyl bond

The glycosidic bond links a ribose sugar and a nucleobase. Structural constrains result
in marked preferences for the torsion angle x around this bond. There are two principal
low-energy domains for this angle, corresponding to the anti conformation (y = 180+
90°) and the syn conformation (xy = 0 £ 90°) [44]. In the anti conformation the face
of the nucleobase is directed away from the sugar ring, while in the syn it is over or
toward the sugar (Figure 2.3). In general, it is expected the anti conformation to be
more energetically favorable than the syn, as in the latter one the bulky part of the
base is located over the sugar, which generates close interatomic contacts. Due to
primarily steric hindrances, the barrier to the interconversion between syn and anti
conformations is higher for Py than for Pu [45-50]. Previous ultrasonic relaxation
experiments suggested that the barrier height for the base rotation in Pu nucleosides

(in a nucleoside no phosphate group is attached to the 5" hydroxyl group) was 6.2
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Figure 2.1: Chemical structure and atom notations of the most common purine and
pyrimidine ribonucleotides. The substituent atom take the same notation as the im-
mediate carbon or nitrogen in the sugar or base ring (e.g. the O2" indicates the oxygen
linked to the C2' of the sugar).

kcal/mol, and the transition rate was 0.25 ns~! [51]. Similarly, ultrasonic relaxation
with ribonucleotides 5-AMP and 5’-GMP showed that the activation enthalpy changes
for the rotation was 1 and 1.5 kcal/mol [52, 53]. Moreover, in this study the syn
conformation was found more stable than the anti, and its stability was believed to be

controlled by entropy rather than enthalpy. In the case of Py nucleosides, recent NMR

experiments estimated the free energy difference AGy,,,; ., to be 1.07 kecal/mol for
Cytosine and AGYy, 4 ., 1.45 for Uridine [54]. Although in RNA crystal structures

the anti rotamer is the most common, a recent study have revealed that the majority
of the syn nucleobases are in regions assigned to function, with many syn nucleobases

interacting directly with a ligand or ribozyme active site [55].

2.2 Pseudo-rotation of the sugar ring

The five-membered ribose sugar ring is innately nonplanar. This non-planarity is
termed puckering [43]. The ring can be puckered in an envelope (E) form with four
atoms in a plane and the fifth atom out by approximately 0.5 A; or in a twist (T) form
with two adjacent atoms displaced on opposite sides of a plane passing through the
other three atoms [42]. Conventionally, atoms displaced from these three- or four-atom
planes and on the same side as C5’, are called endo; those on the opposite side are called

ero. The sugar puckering modes are illustrated in Fig. 2.4, with the two most common
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Figure 2.2: Definition of torsion angles in RNA nucleotides. The sizes of the atom
circles illustrate their relative van der Waals radii. Atoms designated (n-1) and (n+1)
belong to adjacent units.

states of the ribose, the C2'-endo (*E) and the C3'-endo (3E). Several possible geometric
definitions of sugar puckering exist [56-63]. The furanose sugar has five internal sugar
torsions 0 — v4 but only two torsions angles are needed to define its geometry . In this
thesis we adopt the approaches introduced by Hill and Reilly [62] and by Huang et al.
[63]. The main difference between these approaches is the definition of the two dihedral
angles selected as pseudorotation variables (improper in [62] or proper in [63]). The
methods simplify the definition of pseudorotation of furanose puckering and allow easy
and accurate calculation of the structural quantities (See Fig. 2.5). Changes in sugar
pucker are important determinants of oligo- and polynucleotide structure because they
can alter the orientation of C1', C3" and C4’ substituents, resulting in major changes in
backbone conformation and overall structure (e.g. C3'-endo in A-DNA or RNA, while
C2'-endo in B-DNA) [43].

In solution the C2'-endo and C3’-endo sates are in rapid equilibrium, as shown
by NMR investigations and theoretical studies [64—69]. In general terms, free Py nu-
cleotides favor C3'-endo puckering while Pu derivatives occur preferentially in the C2'-
endo mode. The free-energy difference between C2'-endo and C3'-endo (AGgy o)
in RNA nucleosides has been estimated by NMR experiments: for Adenosine (0.43
kcal/mol [70]), Guanosine (0.36 [70]), Cytosine (-0.24 [54] / -0.36 [70]) and Uridine
(-0.15 [54] / -0.07 [70]). Interconversion between C2'-endo and C3'-endo states has two
principal routes, one with a barrier around O4’-endo and another one passing through
the O4'-ezo pucker. The O4'-ezo route is more energetically unfavorable [63, 717 |,
which can be understood based on steric hindrances: in the O4’-ezo pucker the base
and CbH’ exocyclic substituents are both in axial position which leads to steric interfer-

ence, while in the O4’-endo mode both are in equatorial orientation which place them
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Figure 2.3: Definition of anti and syn conformational ranges, shown for Pyr residue.
The nucleobase is toward the viewer and the base is rotated relative to the sugar.
Adapted from ref [42].

farther apart [42].

The interaction between the sugar and the nucleobase can modulate the two-state
C2'-endo = C3'-endo pseudorotational equilibrium on the basis of various steric and
stereoelectronic effects. In terms of steric effect alone, C2'-endo-type pseudorotamers
are energetically favored in comparison with C3'-endo-type counterparts, since the
pseudo-equatorially oriented nucleobase in the former exerts less steric repulsions with
the other substituents on the pentofuranose moiety than when it is pseudoaxial in the
latter [72, 73]. Stereoelectronic forces can also modulate the pseudorotational equilib-
rium. Some of these forces oppose to the steric ones and stabilize the C3'-endo-type
conformations in RNA nucleotides [74, 75]. Scrutiny of all nucleoside crystal data
suggests that Pu nucleosides with C2'-endo pucker adopt both syn and anti forms in
nearly equal distribution but C3'-endo puckering shifts the orientation about the glyco-
syl bond to anti [76]. For Py ribonucleosides, the syn form is found less frequently, and
it occurs with both C2'- and C3'-endo sugars, while the dominant anti conformation
is associated with C3'-endo [77-80].

It is important to summarize the distinction between the ribose and deoxyribose
puckering cycles, as the only difference between RNA and DNA comes from the pres-
ence of the hydroxyl substituent at the 2’ position. In polymeric DNA structures,
deoxyriboses are primarily in the C2'-endo form, while in RNA molecules, ribonu-
cleotides favor C3'-endo [42, 43]. Systematic surveys of 2'-substituted adenosine and
uridine derivatives indicated that the amount of the C3'-endo conformer increases lin-
early with the electronegativity of the 2’-substituent [75]. Moreover in RNA C3'-endo
is also stabilized by additional hydrogen bonding opportunities, for example a direct
hydrogen bond between O2'H and the O4' of the adjacent nucleotide, as well as a
water-mediated hydrogen-bonded bridge between O2'H and the 3'-phosphate, have
been advocated as factors of the C3'-endo stabilization in RNAs [81-86].
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Figure 2.4: C2'-endo and C3'-endo sugar puckering conformations for an Adenosine
nucleoside (right) and a Cytidine nucleoside (left). The conformation of the nucleobase
is anti in all the structures.

In resume, the conformational equilibrium of the ribose ring is energetically con-
trolled by various competing factors, like stereoelectronic effects, hydration, steric ef-
fects, inter and intramolecular hydrogen bonds or by the conformational constraints
imposed by the RNA polymorphism [42, 43, 75].

2.3 Conformations of the sugar-phosphate backbone

The sugar-phosphodiester backbone of an oligonucleotide has six different torsion an-
gles, designated «, 3, v, 9, € and ( in addition to the five internal sugar torsions v0 —v4
and the glycosidic angle x (Figure 2.2). Steric considerations alone dictate that the
backbone angles are restricted to discrete ranges [87, 88]. A common convention for
describing these ranges is to term values of ~ 0° as cis, ~ 180° as trans (t), and
~ £60° as gauche® (g*). The allowed ranges for these angles is shown in Figure 2.6.
Determining the energetic balance among the different allowed conformers is a difficult
task considering it is the result of several competing factors, like steric interactions,
stereolectronic effects and electrostatic repulsions [42, 79].

The orientation along the exocyclic C4'-C5’ bond is controlled by the ~ angle.
Rotation about this bond plays a crucial role in positioning the 5-phosphate group
relative to the sugar and base. The 7 angle has three main rotamers g%, g~ and ¢, the
classical threefold staggered pattern of ethane. There is, however, a similarity between
the ¥ and 7 rotations: syn and g* position the nucleobase and the O5'PO3;? over the
ribose whereas anti and ¢~ or ¢ direct the base and O5'PO5? away from it. The three
rotamers are not uniformly populated because their distribution is dependent on sugar
pucker and on the base identity [42].

The rotations about C—O ester bonds are determined by the € and /3 torsion angles.

These rotations are the more restricted transitions in the nucleic acid backbone. In
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Figure 2.5: Pseudorotation wheel of the ribose sugar. Using the proper v; and 13
dihedral angles, or equivalently the improper 6; and 6,, a pair of Cartesian coordinates
Z,/Z, can be defined to described the conformation of the furanose moiety [63]. The
conformational ensemble of the Adenosine and Cytosine nucleosides generated with the
f199-bsc0-xors force field is projected onto the Z,/Z, space as an example of the effect
of the nucleobase in the pseudorotation equilibrium. Adapted from ref [63].

crystals of mono-, oligo-, and polynucleotides, the torsion angle § defining rotation
about the C5-O5' bond is largely limited to the ¢ range (Figure 2.6). The rotation
about the C3'-O3’ bond, denoted by ¢, follows a similar trend yet the main clustering
is not ¢ but is shifted slightly to 220° in the trans~ range (=5 « m) [79, 87, 89-92].
Theoretical considerations greatly agree with experimental data, showing that severe
steric hindrance between the phosphate group and sugar moiety restricts C—O torsion
angles [ essentially to t and € to the ¢ and ¢~ ranges [93-99].

Rotations about P—O ester bonds, controlled by the a and { angles, are less re-
stricted than rotations about C—O bonds, thus P—O bonds are the major pivots af-
fecting polynucleotide structure. The stereoelectronic effects favors orientations about
P—0 ester bonds to («/¢) g/g, t/g or g/t. Ab initio calculations, using dimethyl
phosphate anion as a model of the phosphodiester linkage, have determined that the
g~ /t and t/t conformers are 1.45 and 3.66 kcal/mol higher in energy, respectively, than
g~ /g~ (the energy profile is symmetric around the ¢ position, so the g /g™ is equally
favored). This preference for gauche conformations is due to a stabilizing interaction

caused by a lone pair located on O5' (or O3') that can partially donate charge to the
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Figure 2.6: Conformational wheel showing the allowed ranges of backbone torsion
angles. Values were taken from a X-ray structure of the large ribosomal unit from D.
Radiodurans (PDB: 3JQ4).
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Figure 2.7: Description of the stereoelectronic effect in phosphodiester backbone of
nucleic acids. The gauche conformation (left) of the C—O—P—O group is favorable
because an oxygen electron lone pair is trans to the adjacent, polarized P—O bond
and can donate electrons. In the trans orientation (right) orbitals and adjacent P—O
bonds are in g* positions and electron transfer is diminished. Adapted from ref [42].

0p_oz 5 antibonding orbital. This type of interaction is illustrated in Figure 2.7. The
inclusion of water and cations could affect the stabilization of the gauche conformation.
Principally, the complexation with a cation can change the charge distribution of the
phosphodiester group and decrease the stereoelectronic effect. Moreover, the symme-
try between the ¢~ /¢~ and ¢ /g conformations found in «a/( energy maps calculated
with dimethyl phosphates or dinucleoside monphosphates have been found to be broken
when the chain is elongated, due to close contacts between second neighbor phosphate
groups. In dinucleoside di- or triphosphates the g™ /gt orientations are less stable than
the g~ /g~ conformations [42]. This is also supported by X-ray crystal studies, which
show that the main geometrical arrangement of the a//( angles are right-handed helical
conformations, with rotamers in the g~ /¢~ range around 270° [42, 100]. In RNA struc-
tures the ¢ rotamers of these angles are found usually in loops and turns motives, but
disruption of the common ¢~ /¢~ phosphate conformation is energetically costly (loss
of the gauche effect is estimated at 2 kcal/mol) [101]. This energetic loss is partially
offset by a hydrogen bond between the nucleobases atoms or sugar and an oxygen of

the turning phosphate [101].

2.4 Summary

The unique structure-dynamic function relations in RNA are the result of a coopera-
tive interplay among ribose sugar, nucleobase and phosphodiester moieties [75]. In this
chapter we have briefly shown that the conformational equilibria of each of these struc-
tural motifs are driven by various internal effects, steric and stereoelectronic, and in-
teractions with counterions and water. Moreover, these internal degrees of freedom are
not uncorrelated, sugar conformation influences the orientation of the nucleobase, and
vice versa, and conformational transitions are transmitted through the sugar-phosphate

backbone to influence the rotameric preferences of the phosphodiester rotamers [74].
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This structural complexity imposes a challenge for the interpretation of RNA structural
experimental data [102] and for the molecular mechanics potentials used in computer

simulations to describe RNA conformational space.



Chapter 3

RNA Simulations

In classical MD simulations, the potential energy is expressed in terms of bond length,
angles between bonds, torsion angles, Lennard-Jones and Coulomb pairwise interac-
tions. The energy function is known as force field (FF). There are a great variety
of these FF, with slightly different functional forms, and each of them have different
set of parameters which have been developed over the years. The most populars ones
are AMBER [37], CHARMM [103], OPLS [104] and GROMOS [105]. The success of
MD simulation is intrinsically dependent of the quality of these FF parameters, which
describe the energetic landscape of the molecule. Despite the advances achieved in the
last decades, with the increase of computational power and the refinement of RNA
FFs, recent extensive simulations of unstructured oligonucleotides for which converged
sampling is affordable have unambiguously shown that current RNA force-field param-
eters are not accurate enough to reproduce solution experiments. On the other hand,
as new efforts in improving those force fields have been made it has been clear the
importance of applying enhanced sampling methods to generate well-converged con-
formational ensembles which could be used to identify problems and validate those
updates. The following sections present a discussion of the state of the art in RNA
FF and enhanced sampling methods commonly used to aid the exploration of RNA

conformational space.

3.1 RNA Force fields

Nucleic acids structures are complex and involve a subtle balance between charge in-
teractions, hydrogen bonding, stacking contacts, backbone conformational flexibility,
sugar puckers, and glycosidic torsions, all adding significant difficulty to the FF de-
velopment. Though modest success has been seen with regard to reevaluating experi-
mental data and qualitatively describing dynamics, the accuracy of RNA force fields is
still lagging behind that of FF used in protein simulations [106] and even to the most
recent DNA FF [107, 108]. The advantage of describing DNA over RNA could be due
to the fact that DNA molecules are mostly stable double helix while RNA molecules

are usually single-stranded that fold back upon themselves and show a very rich dy-
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namic [109]. Moreover, the O2’H group of RNA ribose, absent in DNA, is a powerful
donor and acceptor of hydrogen bonds that is involved in an astonishing repertoire of

non-Watson—Crick interactions.

Current atomistic simulations of nucleic acids are still mostly based on second-
generation pair-additive force fields derived in the 90s [15, 16, 27]. There have been
efforts to improve their performance by partial reparametrizations [26, 38, 39, 54].
Though attempts at improving RNA FF have been dominated by modifications of
dihedral parameters [38, 39, 54|, recent parameters have addressed also the various
problems with the non-bonded components [26, 110]. The most used FF for RNA
are descend from the AMBER [37] and CHARMM family [111 - 113]. For clarity FF
refinements have been divided into 2 groups, non-bonded corrections and the changes

in the dihedral parameters.

3.1.1 Improvement of dihedral angle rotations

The latest CHARMM force field for RNA is the CHARMMS36 [114], where the di-
hedral parameters of the O2'H group were tuned to improved the agreement with
quantum-mechanical energy profiles. Recent test have shown that CHARMM36 suf-
fers from some understabilization of canonical A-RNA helices on the nanosecond time
scale [115, 116]. In contrast to the good performance of CHARMM force field in the
proteins and B-DNA simulations, FF of the AMBER family are usually preferred for
long RNA simulations. Many variants of the AMBER Cornell et al. force field [37]
are currently in use by the RNA community. Most of them are based on a combina-
tion of AMBER99 (ff99) [117] and the bsc0 reparametrization of the a;/~ dihedral pair
[38], which eliminated spurious flips resulting in a progressive degradation of B-DNA
structure during simulations. Although bscO was devised for DNA, subsequent sim-
ulations have proved that it also improves the RNA description [115, 118]. In 2010,
a reparametrization of the glycosidic torsion, denoted as xors [39, 118], was devel-
oped to correct the formation of ladder-like structures in the microsecond time scale
in RNA canonical A-form helices [119]. The ff99-bscO-yor3 variant have been tested
on many RNA systems including RNA helices, tetranucleotides and tetraloops [31—
33, 115, 120, 121]. The experimental agreement of the ensemble generated with this
variant is far from robust, fundamentally in the prediction of the native conforma-
tion stability in single-stranded structures and hairpins. Another reparametrization of
the x torsion was independently suggested by I. Yildirim et al., using NMR data of
nucleosides to validate the new FF [54]. The ff99-bscO-yy; force field also prevents
the spurious ladder-like structures but causes some flattening of the A-form helix by
underestimation of inclination and roll parameters [118]. Subsequently, I. Yildirim et
al. extended their version by including a reparametrization of the ¢, (, and 3 torsions
[122], but latter tests have shown it caused canonical A-form helices to deteriorate
[123].
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3.1.2 Modifications of Non-bonded interactions

Though modifications of dihedral parameters have dominated the AMBER correc-
tions, recent works have suggested that changes in non-bonded parameters improve
key problems of the ff99 like over-stacking and the imbalance in solute-solvent interac-
tions. D. Case et al. reparametrized the van der Waals (vdW) radii of the oxygens in
the phosphate group to obtain consistent thermodynamic results with better balanced
electrostatic interactions between water and the phosphate oxygens [110]. REMD sim-
ulations of tetranucleotides [33] and tetraloops [27] showed that RNA simulations might
be improved by the implementation of this new parameters.

An alternative reparametrization of ff99 has been suggested by A. Chen and A.
Garcia (f199-vdWpase-xc) during their efforts to achieve a reversible folding of RNA
tetraloops [26]. They proposed a rescaling of the Lennard-Jones potential parame-
ters from the nucleobase heavy atoms, together with a modification of off-diagonal
Lennard-Jones terms in nucleobase—water interactions. The non-bonded corrections
were accompanied by an adjustment of the ff99 x dihedral potential. The main aim
of the new FF was to eliminate the known overestimation of the stacking interactions
[124, 125]. With these parameters it was possible to observe multiple folding events
to the folded state with correct signature interactions for two out of three studied
RNA tetraloops. A subsequent benchmark study by Cheatham et al. confirmed that
ff99-vdWyase-Xca leads to an improvement over all the current AMBER FF variants.
However, ff99-vdW,..-xcq may also lead to excessive stabilization of some non-native
base-pairs and to an imbalance between modified and unmodified vdW parameters, un-
derlining the difficulty of obtaining a force field that would simultaneously reproduce
all properties of RNA molecules [33, 126].

The effect of different water models on the experimental agreement of the RNA
ensembles have also been tested [115, 127, 128]. For example, in the simulation of
single-stranded RNA oligonucleotides the combination of AMBER parameters and the
OPC water model have shown a significant improvement over the commonly used
TIP3P water model [128]. However, variations of water models are unlikely to resolve
the limited accuracy of the primary solute force field, which originates from its inability

to reliably describe inherent conformational preference of nucleic acids.

3.2 RNA Sampling

Molecular dynamics (MD) with accurate force fields can in principle be used as a
virtual microscope to investigate motions at atomistic resolution [129]. However, its
applicability to problems such as folding or conformational transitions in proteins and
RNA is limited by the fact that only short time scales (~ pus) are directly accessible
by straightforward simulation. Although recently developed ad hoc hardware allowed
for a three-order-of-magnitude gain in the accessible time scales [106], many relevant

conformational transitions are still out of reach for accurate atomistic modeling. Several
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different techniques have been developed in the last decades to address this issue [130].
These techniques can be roughly classified in two groups: methods based on Annealing
[131] and techniques based on Importance Sampling [132]. The next sections will

introduce some basic concepts of these computational techniques.

3.2.1 Annealing-based methods

These class of methods were traditionally based on increasing the temperature of a MD
simulation to overcome high energy barriers [130]. This strategy relies on the fact that
in an Arrhenius process the logarithm of the relevant performance parameter (e.g. the
rate at which the barrier-crossing events happen) depends linearly on the reciprocal
of the temperature [133, 134]. Thus, for this kind of processes, a procedure where the
system is first heated and then cooled allows the quick generation of samples which
are largely uncorrelated. The annealing strategy was first translated from metallurgy
to combinatorial optimization in the seminal work of Kirkpatrick et al. [131], later
extended to spin glasses [135] and finally to biological systems [136].

The annealing procedure in molecular dynamics simulations has been implemented
mainly in two ways: Simulated annealing [137] and Parallel tempering [135, 136]. In
a typical parallel tempering simulation (also known as temperature replica exchange,
T-REMD) there is a ladder of replicas, each at a different temperature 7. Across the
replica ladder the temperatures increase progressively, the lowest replica is simulated
normally at a room temperature, and the highest (replica) temperature is chosen so
the system can easily cross barriers between minima. The coordinates of the replicas
are periodically exchanged between the ensembles and the velocities are appropriately
rescaled to the new temperature. Since the replicas do not interact, the partition
function of this larger (generalized) ensemble is given by the product of the individual
partition function of each (replica) ensemble. If the probability of attempting a swap
move («) is equal for all conditions, exchanges between ensembles i and j are accepted
with the probability

a = min (1, eA”') (3.1)

with A;; = (8;—3)(E;—E;), where j is the reciprocal temperature 7 and E; is the
potential energy of the system i (to simplify kg = 1). If we assume the systems
have Gaussian energy distributions, with mean (U(3)) and width o(/3), the probability
distribution of A will be also a Gaussian with mean Ay = (58,—5;)((£;) — (E;)) and
width of = (8;—0;)*(07 4+ 07). The min function can be evaluated analytically to

obtain the average acceptance ratio (a) [138], which is equal to

(a) = erfe (A0> . (3.2)

2]

Equation 3.2 can be used to estimate the acceptance between two replicas given

either the average Ay and the variance o of the A term. Assuming that the heat
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capacity of the system Cy is constant, then (E;) — (E;) = Cy(T; — T;) and 07 + 07 =
Cv (T} + T7) substituting both expressions in equation 3.2 leads to [139]

From this expression it can be seen that in systems where the Cy, is constant the

(3.3)

density of replicas should decrease as the temperature raises to maintain an uniform
acceptance: for a fixed replica spacing (constant AT; ;) if the magnitude of the tem-
peratures rises (1 1/T2 + T?) the () increases. In this case, a geometric distribution
of temperatures (constant ) has been found to be optimal to maintain an uniform «
across the replica ladder.

Another factor influencing « is the size of the system. The heat capacity is propor-
tional to the number of particles N (or degrees of freedom) which means the accep-
tance will decrease when N increases [140]. The parallel tempering simulation of large
biomolecular systems in water (hundreds of thousand of atoms) is computationally de-
manding, as it requires a large number of replicas to maintain a moderate acceptance in
a range of temperatures that allows the system to ensure transitions over high energy
barriers.

In practical cases the specific heat is not a constant, and especially for biomolec-
ular systems in vacuum or implicit solvent, the C'y, can change significantly with the
temperature. In these cases a geometric distribution of temperatures will not gener-
ate a constant acceptance. On the other hand, in simulations of solvated molecules,
the acceptance ratio will be dominated by the specific heat of the water model, for
which the approximation of constant C', is more plausible. The selection of an optimal
distribution of temperatures is not trivial, but solutions to take into account a more
realistic dependence of the heat capacity with temperature in the context of explicit
solvent simulations are available [141].

Whereas parallel tempering is a powerful method and it has been applied to prac-
tically all biochemical systems with great results, temperature is an intensive quantity
and does not allow the selective enhancement of specific degrees of freedom. The
method is also ineffective on entropic barriers and in systems with anti-Arrhenius
behavior [142-144]. Scaling portions of the Hamiltonian is a common alternative (H-
REMD) and could have a better convergence behavior for large systems. A promising
technique in this group is replica-exchange with solute tempering, where solute-solvent
interactions and the force-field parameters of the solute are modified [145, 146]. T-
REMD and H-REMD can also be combined, by integrating both schemes on each
replica [147] or in a multidimensional framework [31]. In particular for RNA sys-
tems, the multidimensional replica exchange [31] have outperformed one-dimensional
T-REMD and H-REMD simulations, for the same conditions and total simulated time
[32]. Even for a small RNA system like a tetranucleotide, in order to generate a con-
verged ensemble, a total of 57.6 us of simulated time in a multidimensional replica

exchange framework (24 x 8 replicas) have shown to be required [31].



18 | RNA Simulations

3.2.2 Importance-sampling based methods

The second group of enhanced sampling techniques includes methods based on im-
portance sampling. This class has its root in the umbrella sampling method [132],
and includes local elevation [148], conformational flooding [149], adaptive biasing force
[150], and metadynamics [40, 151], among others. In this kind of methods the canonical
Boltzmann weighting is modified by a bias potential designed to cancel the effect of
free-energy barriers and increase the frequency of rarely-sampled conformations. The
potential is usually defined in a reduced set of coordinates, known as collective variables
(CVs). These techniques are very effective but require a careful choice of the CVs that
must provide a satisfactory description of the reaction coordinate [152, 153]. If impor-
tant degrees of freedom are not taken into account, it could hinder the exploration of
the phase space and generate hysteresis and lack of convergence. Moreover, when more
than a few (~ 3) CVs are used, the computational performance rapidly degrades as a
function of the number of variables. For many biomolecular systems it is difficult to
find a small number of effective CVs that describe all the slow degrees of freedom.
Consider a function s of the system coordinates s(z1, xs.., xy) that allow the pro-
jection of the system conformational space in a reduced surface and includes some
important features of the system dynamic and phase space. For example the minima
in the reduced space should correspond to the metastable states of the system, and
the relevant transition events should be represented there by matching barriers. The

probability distribution of the CV is given by

P(s) = ; [ i(s — s(a))da (3.4)

where Z is the partition function Z = [e V@) dz and the corresponding free energy

is estimated as

F(s) = —;ln/e_ﬁU(x)é(s — s(x))dx. (3.5)

In the umbrella sampling framework the normal dynamics of the system is biased
by a smartly chosen bias potential V' (s(x)) that depends on x only via s(z). The
bias potential facilitates the exploration of the system conformational space and so the

biased probability distribution P will be easier to estimate

P(s) = C3/(3_6(U(”"H'V(S(f”’))5(3 — s(x))dx (3.6)

here @) is the partition function of the biased ensemble. The effect of the bias potential

can be reweighed to obtain the unbiased probability distribution

P(s) = P(s)ePV) =0 (3.7)

where f = %ln% is a constant that does not depend on s. Equation 3.7 is the funda-

mental relation behind the umbrella sampling and related methods. These methods are
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very efficient but require large a priori information, in order to define a proper CV and
choose an efficient bias potential. One solution for the latter problem is the adaptive
construction of the bias potential during the MD or MC simulations using kernel func-
tions like Gaussians or splines. In this thesis we focus on well-tempered metadynamics
(WT-MetaD), a self-consistent adaptive-bias method introduced in 2008 by A. Bar-
ducci, G. Bussi and M. Parrinello [40], which is a variant of the original metadynamics
method devised by A. Laio and M. Parrinello in 2002 [151].

3.2.2.1 Well-tempered metadynamics

In well-tempered metadynamics a history dependent potential V(s,t) acting on the
collective variable s is introduced and evolved according to the following equation of
motion

kAT _vGo
BRL TRAT K (s — (1)) (3.8)

V(s,t) =

B
here kg is the Boltzmann constant, 1" the temperature, 75 is the characteristic time for
the bias evolution, AT is a boosting temperature, and K is a kernel function which is
usually defined as a Gaussian. For simplicity we consider the case of a single CV. The
variance of the Gaussian provides the binning in CV space and is usually chosen based
on CV fluctuations or adjusted on the fly [154]. By assuming that the bias is growing
uniformly with time one can show rigorously [40, 155] that in the long time limit the

bias potential tends to

AT
T+ AT
so that the following probability distribution is sampled

Jim V(s,1) = F(s) +C(t) (3.9)

Jim P(s,t) o ¢ FRUIT), (3.10)
The role of AT is that of setting the effective temperature for the CV. The explored
conformations are thus taken from an ensemble where that CV only is kept at an
artificially high temperature, similarly to other methods [156-158], but has the nice
feature that it is obtained with a bias that is quasi-static in the long lime limit. The
bias is usually grown by adding a Gaussian every Ng steps. As a consequence, to
obtain an initial growing rate equal to %, the initial Gaussian height should be
chosen equal to %NgAt where At is the MD time step.

3.2.3 F plurtbus unum

The advantage of replica exchange methods is that they generally require very little
a priori knowledge of the system, as opposed to the methods based on importance-
sampling. However, the former methods can be rather computationally expensive,

especially parallel tempering, and the expansion of the generalized ensemble could
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lead to problems of convergence. The combination of the replica exchange framework
with umbrella-sampling-type methods like Metadynamics could solve this problems and
reduce the own limitations of the importance sampling strategy. Such a combination
results in a synergic effect. Parallel tempering metadynamics [159], bias-exchange
metadynamics [160] and the well-tempered ensemble [161, 162] are great examples of
the integration between these two frameworks.

In the case of nucleic acid systems, compare to proteins, the application of these
methods have been limited, partly due to the difficulties of designing ad hoc CVs which
can correctly describe the conformational transitions. Some applications have circum-
vented this problem by biasing a large number of local CVs (e.g. dihedral angles).
For example, J. Curuksu and M. Zacharias introduced a technique where bias po-
tentials acting on dihedrals were used in a replica exchange framework to specifically
promote dihedral transitions in the nucleic acid backbone [163]. The dihedral angle
conformational space is discretized, in one or two-dimensions, to identify the position
of the metastable basins. For example, in a bidimensional €/( space once a minimum

is located (¢;,¢;) a bias potentials V(z) is settled, where  is the angular distance

\/ (e — €)%+ (¢ — ¢;)?. This function is constant when x < r, and at distances larger

than r it decreases continuously on its edges down to zero at a distance R.

V(T> = Emax (.I < 7”)
gz —r)’ = (r = RP’)®  (r<z<R)
= 0 (x > R)

After all the relevant basins in the dihedral angle space are determined a replica
exchange simulation is run where the height (Fy.x) of the bias potential is increased
along the replica ladder. This technique require very few replicas and it has been
upgraded to include a dynamic adjustment of the bias potential height during the
simulation to ensure high acceptance rates and a good mixing of sampled structures in
the replicas [164]. However, these potentials do not account for the specific identity of
each residue and for the cross-talk between correlated dihedrals.

Another approach have been attempted by Roe et al. who combined accelerated
molecular dynamics (aMD) with replica exchange method to explore the conformational
space of a RNA tetranucleotide [32]. In aMD a boosting potential is applied to the
torsion energy E(r) when its values drop below a user specific energy cutoff E oy

[165]. This boosting potential is a function of the torsion energy itself

(Ecutoff - E(r))Q
a+ (Ecutors — E(r))

and across the replica ladder its strength is incremented by reducing the value of a. In

Vi)oost (T) —

this application, the boosting potentials were not able to compensate the free-energy
barriers to rotation around many of the biased torsion angles, specially € and x angles.
The reason is that barriers to rotations do not include just steric and electrostatic
contributions from the dihedral atoms encoded in the torsion energy, but also long-

distance non-bonded contacts and solute-water interactions.
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3.3 Summary

In the first section of this chapter we present a survey of the different force fields
available for RNA. When compared with solution NMR experiments of RNA single-
stranded tetranucleotides none of the ensembles generated with the many AMBER FF
variants have given a satisfactory agreement. This could be caused by the inability
of pair-additive FFs to accurate reproduce RNA structural features, due to physical
approximations, like not considering explicitly polarization effects, or could be the
result of simplifications taken during the FF parametrization process, like assuming
the sugar-backbone angles are uncorrelated. One solution to this problem could be the
inclusion of correcting potentials into the FF, tuned in order to increase the agreement
with solution experiments.

In section 3.2, a short introduction to the field of enhanced sampling techniques
is given. An especial attention is taken on ad hoc sampling methods developed for
the simulation of nucleic acid systems. These methods have shown that acceleration
of RNA conformational transitions can be achieved effectively by biasing dihedral an-
gles or the dihedral energy. However, the method presented by J. Curuksu and M.
Zacharias [163] was only applied to a pair of dihedral angles in DNA backbone and in
the second method [32] discussed here only the energetic contributions to the rotameric
equilibrium of RNA dihedrals were considered, which led to residual free-energy barri-
ers that hindered some of the torsional angles rotations. In the spirit of these previous
methods, a new technique is introduced in the next chapter, that combines concurrent

well-tempered metadynamics simulations with replica exchange.



Chapter 4

Replica Exchange with

Collective-Variable Tempering

4.1 Overview

As discussed in Chapter 3, section 3.2.3, the combination of the replica exchange frame-
work with importance sampling techniques that biased a large number of local collective
variables (e.g. dihedral angles), have been employed effectively to promote confor-
mational transitions in nucleic acids. In the present chapter, a new methodology is
presented, which uses concurrent well-tempered metadynamics simulations [40] (WT-
MetaD) to build bias potentials acting on a large number of local CVs. We then show
how to integrate this approach in a Hamiltonian replica exchange (H-REMD) scheme,
exploiting the replica ladder to obtain unbiased conformations. In WT-MetaD the
compensation of the underlying free-energy landscape is modulated by the boosting
temperature AT. We here change this parameter across the replica ladder, adjusting
the ergodicity of each replica. The final bias can be also used as a static potential so
as to completely eliminate any non-equilibrium effect. Since the effect of the bias is
that of keeping the chosen CVs at an effectively higher temperature, we refer to the
introduced method as replica exchange with collective-variable tempering (RECT).
The method is first tested on alanine dipeptide in water and then applied to the con-
formational sampling of a RNA tetranucleotide where it outperforms dihedral-scaling
REMD and plain MD. The chosen tetranucleotide is a very challenging system that
has been extensively studied with long MD simulations and different variants of REMD
[31-34, 120, 128, 166].

4.2 Methods

In this Section we show how to use WT-MetaD as an effective method to build concur-
rent bias potentials that allow barriers to be easily crossed. One of the input parameters
of well-tempered metadynamics is a boosting temperature AT = (v — 1) T, where =

is the bias factor and 7T is the temperature of the system. In the rest of the chapter
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we will equivalently use either v or AT so as to simplify the notation. This parameter
can be used to smoothly interpolate between unbiased sampling (y =1, AT = 0) and
flat histogram (y = 0o, AT — o0). One can thus introduce a set of replicas using
different values of AT, ranging from 0 to a value large enough to allow all the relevant
barriers to be crossed. Metadynamics relies on the accumulation of a history dependent
potential and cannot be applied straightforwardly to a large number of CVs. In the
next subsection we show that this issue can be circumvented by constructing many,
low-dimensional, concurrent metadynamics potentials. We then show how to combine

many simulations of this kind in a multiple-replica scheme.

4.2.1 Concurrent Well-tempered Metadynamics
We here propose to introduce a separate history-dependent potential on each CV

. k AT _Va(sast)
Va(80) = o™ R8T K (s, — 5,(t)) (4.1)
B
where a« = 1,..., Ngy is the index of the CV and Ngy is the number of CVs. The
growth of each of these bias potentials will depend only on the marginal probability

for each CV

P(sq) x /d81d82 oo dSe—1dSat1 - dsngy P(S1,52, - - Sngy ) (4.2)

In the long time limit, this potential will tend to flatten the marginal probabilities for
every single CV. In the general case one should consider the fact that whenever a bias
is added on a CV also the distribution of the other CVs is affected. In the following we
will discuss this issue considering two CVs only, but the argument is straightforwardly
generalized to a larger number of CVs.

Two independent variables. If two CVs are independent, the joint probability is just
the product of the two marginal probabilities, i.e. P(sqa,S5) = Pa(sa)Ps(sp). Adding a
bias potential on a CV will not affect the distribution of the other. As a consequence, in
the long time limit the two bias potentials will converge independently to the predicted
fraction of the free energy as in Eq. 3.9. The final bias potential will be completely
equivalent to that obtained from a two-dimensional well-tempered metadynamics, but
will only need the accumulation of two one-dimensional histograms, thus requiring a
fraction of the time to converge. A simple example on a model potential is shown in
Fig. 4.1.

Two identical variables. We also consider the case of two identical CVs, s, = sg.
This can be obtained for instance by biasing twice the same torsional angle. Here the
potentials V,, and Vj will grow identically, and the total bias potential acting on s, will

be Vi, = 2V,. The total potential will grow as

2kp AT _Valsat) 2k AT
B2 7 RBAT K (s, — sa(t)) = —2

B B

_Viot(sa,t)
e 2kpAT

“/;fot(soc) -

K($0 — sa(t))  (4.3)
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Figure 4.1: A model two-dimensional energy potential where the two variables are indepen-
dent (left panel). Isolines are spaced by 4kpT. The free-energy space accessible to the system
at 4kpT is colored according to the canonical probability of each region. Projections on x
and y variables are also represented (right panels). Self-consistent bias potentials generated
by WTMetaD are shown acting on x (red) and y (green). The potentials calculated with
concurrent WTMetaD (fourth row) are identical to the bias potentials produced during the
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WTMetaD simulation of each variable independently (second and third rows).
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Figure 4.2: A model two-dimensional energy potential where the two variables are correlated.
Bias potentials calculated with WTMetaD for one of the two variables (x or y) separately
successfully compensate projected free-energy barriers on the respective variable. However,
this one-dimensional bias potential has a side effect on the distribution of the other variable
due to their correlation. This generates an additional effective bias potential that is shown in
light color (second and third rows). When the two one-dimensional bias potentials are applied
simultaneously, the action of the WTMetaD potential is superimposed to the action of the
effective bias potential. As a result, the space sampled by each variable is greatly restricted
(fourth row). The self-consistent construction of the two one-dimensional bias potentials by
concurrent WTMetaD eliminates this effect, generating bias potentials capable to flatten the
marginal probabilities when applied at the same time (fifth row).
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Thus, the net effect will be exactly equivalent to that of choosing a doubled AT
parameter. In other words, the AT parameter acts in an additive way on the selected
CVs. A similar effect can be expected if two CVs are linearly correlated.

In realistic applications one can expect the behavior to be somewhere in the middle
between these two limiting cases. The most important consideration here is that the
bias potentials will tend to flatten all the marginal probabilities, but there will be
no guarantee that the joint probability is flattened. Results for a simple functional
form can be seen in Appendix A, Fig. 4.1 and 4.2. In figure 4.2 it is possible to
appreciate importance of using a self-consistent procedure when CVs are correlated. In
ref [162] two metadynamics were applied on top of each other, namely on the potential
energy and on selected CVs, in a non self-consistent way. This was possible because
the correlation between the potential energy and the selected CVs is small. The need
for a self-consistent solution was also pointed out in a recent paper [167] where a
generalization of the adaptive biasing force method (ABF) [150] was introduced. In
that work independent one-dimensional adaptive forces were applied at the same time
to different CVs so as to enhance the sampling of a high multidimensional space.

In short, the novelty of the introduced procedure is that many low-dimensional
metadynamics potentials are grown instead of a single multi-dimensional one. This
allows the bias to converge very quickly to a flattening potential, with the degree
of flatness controlled by the parameter AT. The flattening is expected to enhance
conformational transitions which are otherwise hindered by free-energy barriers on the
biased CVs. When variables are correlated the exact relationship between bias and free

energy (Eq. 3.9) could be lost.

4.2.2 Hamiltonian Replica Exchange

The procedure introduced above produces conformations in an ensemble which is
in general difficult to predict. However, since the bias potential is known, one can in
principle reweight results so as to extract conformations in the canonical ensemble. In

the case of static bias potentials acting on the CVs, this can be done by weighting
> Valsa)

each frame as e  *sT . This can provide in principle correct results even if the joint
probability is not flattened. It must be noticed that such a reweighting can provide
statistically meaningful results only for small fluctuations of the total biasing potentials,
on the order of kgT [167]. However, in a typical setup one would be interested in biasing
all the torsional angles of a molecule. Even if each of them contributes with a few kgT,
the total fluctuation of the bias would grow with the system size. For similar reasons,
also the ABF-based scheme introduced in ref [167] is limited to a relatively low number
of CVs.

A more robust and scalable procedure can be designed by introducing a ladder
of replicas with increasing values of AT, ranging from 0 to a value large enough to
enhance the relevant conformational transitions. The first replica (y = 1,AT = 0)

can be used to accumulate unbiased statistics. Replicas other than the first one feel
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multiple biasing potentials on all CVs. From time to time an exchange of coordinates
between neighboring replicas is proposed and accepted with probability («) chosen so

as to enforce detailed balance with respect to the current biasing potential:
a = min (1, eA) (4.4)

50 V(S + 50 VO 50 VIO (58)) + 50 VO (50)
kgT kT

Here the suffix 7 = 1,..., N,, indicates the replica index, V., being the number

A:

(4.5)

of replicas. The exchanges allow the bias potential of every single replica to grow as
close as possible to equilibrium taking advantage of the enhanced ergodicity of the
more biased replicas. We notice that to reach a quasi-static distribution it is necessary
that all the bias potentials converge for all the replicas. Since the time scale for
convergence is related to the parameter 75 [40], it is convenient to use the same 75 for
all the replicas or, equivalently, to choose the initial deposition rate as proportional to
AT. The number of replicas required to span a given range in the AT parameter is
proportional to v/N¢y .

We notice that in principle one could use the bias potentials built with this protocol
to perform a replica-exchange umbrella sampling simulation. In this manner the final
production run would be performed with an equilibrium replica exchange simulation.
However, we observe that well-tempered metadynamics is designed so that the speed
at which the bias grows decreases with time and the potential becomes quasi-static. In

the practical cases we investigated, this second stage was not necessary.

4.2.3 Model systems
4.2.3.1 Alanine dipeptide

Alanine dipeptide (dALA) was modeled with the AMBER99SB-ILDN [168, 169] force
field and solvated in an truncated octahedron box containing 599 TIP3P [170] water
molecules. The LINCS [171, 172] algorithm was used to constrain all bonds and equa-
tions of motion were integrated with a timestep of 2 fs. For each replica the system
temperature was kept at 300 K by the stochastic velocity rescaling thermostat [173].
For all non-bonded interactions the direct space cutoff was set to 0.8 nm and the elec-
trostatic long-range interactions were treated using the default particle-mesh Ewald
[21] settings. All the simulations were run using GROMACS 4.6.5 [174] patched with
the PLUMED plugin [175], version 2.0. We underline that the possibility of running
concurrent metadynamics within the same replica is a novelty introduced in PLUMED
2.0.

The RECT simulation was performed with 6 replicas. The backbones dihedral
angles (U and @) and the gyration radius (R,) were selected as CVs. The v factors
were chosen from 1 to 15 following a geometric distribution. We recall that a geometric

replica distribution is optimal for constant specific-heat systems. In RECT, this would
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be true if the exploration of each of the biased CV were limited to a quasi-parabolic
minimum in the free-energy landscape. Whereas this is clearly not true in real cases
(e.g. double-well landscapes) we found that a geometric schedule was leading to a
reasonable acceptance in the cases investigated here. The possibility of optimizing the
replica ladder is left as a subject for further investigation. For the dihedral angles
the Gaussian width was set to 0.35 rad and for the R, to 0.007 nm. The Gaussians
were deposited every 500 steps. The initial Gaussian height was adjusted to the AT of
each replica, according to the relation h = %NGAIS, in order to maintain the same
Tp = 12 ps across the entire replica ladder. The CVs were monitored every 100 steps,
and exchanges were attempted with the same frequency. The simulation was run for
20 ns per replica.

A H-REMD simulation where the force-field dihedral terms were scaled (Hg;p-
REMD) was also performed, as implemented in an in-house version of the GROMACS
code [176]. The same initial structures, number of replicas and simulated time as in
RECT was used. The scaling factor A for each replica was selected using the relation
A = 1/7 to allow for a fair comparison of RECT and H-REMD. Finally a conventional

MD simulation in the NVT ensemble was run for 120 ns using the same settings.

4.2.3.2 Tetranucleotide

The second system considered was an RNA oligonucleotide, sequence GACC. The
initial coordinates were taken from a ribosome crystal structure (PDB: 3G6E), residue
2623 to 2626. Simulations were performed using the ff99-bscO-y o3 force field [38, 39,
168]. The system was solvated in a box containing 2502 TIP3P [170] water molecules
and the system charge was neutralized by adding 3 Na™ counterions, consistently with
previous simulations [120, 166]. A RECT simulation was performed using 16 replicas
simulated for 300 ns each. The v ladder was chosen in the range from 1 to 4 following
again a geometric distribution. The initial structures for the H-REMD were taken from
a 500 ps MD at 600 K, to avoid correlations of the bias during the initial deposition
stage of the WT-MetaD. Other details of the simulation protocol were chosen as for
the previous system. As depicted in Fig. 4.3, for each residue the dihedrals of the
nucleic acid backbone («, 3, €, 7, ¢ ), together with the pseudo-dihedrals angles of the
ribose ring (6, and 6,) and the glycosidic torsion angle () were chosen as CVs. To help
the free rotation of the nucleotide heterocyclic base around the glycosidic bond, the
minimum distance between the center of mass of each base with the other three bases
was also biased. For the WT-MetaD we used the same parameters as in the previous
system. Gaussian width for the minimum distance between bases was chosen equal to
0.05 nm.

For this system a Hy,-REMD, a T-REMD and a plain MD simulation were per-
formed in addition to the RECT. In the case of Hy,-REMD we used 24 replicas with
scaling factors A ranging from 1 to 0.25, so as to cover the same range of the v values
chosen for the RECT. In the T-TREMD 24 replicas were used to cover a temperature
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min(dz,d2,d3)

Figure 4.3: Schematic representation of the collective variables used for the tetranu-
cleotide simulation. For each nucleotide, the labeled dihedral angles and the minimum
distance between the nucleobase center of mass and the other three nucleobases were
biased.

range between 300 K and 400 K with a geometric distribution. For both methods,
T-REMD and Hg,-REMD, the simulation length was 200 ns per replica. Exchanges
were attempted every 120 steps. The conventional MD simulation was run for 4.8 us.
All the simulations (RECT, Hgy;,-REMD, T-REMD and conventional MD) correspond

to the same total simulated time.

4.2.4 Analysis
4.2.4.1 Dihedral entropy

As the bias compensates the underlying free energy the probability distribution of the
biased CVs is partially flattened. The main CVs used in our method are dihedrals
angles. To quantify the effect of the Hamiltonian modifications on the angle distribu-
tions one-dimensional entropies (S14) were estimated. The calculation procedure was
equivalent to the one used in ref [177] to evaluate the configurational entropy associ-
ated with soft degrees of freedom in proteins. We employed wrapped Gaussian kernels
to estimate the histogram profile of each dihedral. Histograms were calculated with
PLUMED 2.0. For all the distributions the bandwidth for the kernel density estima-
tion was set to 0.017 rad. We underline that using this definition we only evaluate the
flatness of the individual one-dimensional distributions, and cross-correlation between

CVs is ignored.
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4.2.4.2 RNA conformations

RNA conformations were classified according to the combination of the nucleotides x
angles rotameric states. Torsions orientations in the range of -0.26 to 2.01 rad were
consider as syn, while the remaining ones were classified as anti. The limiting values
were chosen according to the position of the barriers in the x free-energy profiles of
all the residues. The result of this clustering procedure gave 2* = 16 different states
that are kinetically well separated by the high torsional barriers. We observe that the
population of these states does not depend only on the torsional potential associated
to the y dihedrals but include contributions from base-base stacking, hydrogen bonds,

solvation of bases, etc.

4.3 Results

In this section we first test our methodology on a standard model system, dALA in
water. Then we present results for the more challenging case of the conformational
sampling of a tetranucleotide. For all the applications we benchmark against plain
MD and a H-REMD where the dihedral potentials are scaled. All the comparisons are

made using the same total simulated time.

4.3.1 Alanine Dipeptide

The goal of the introduced method is to enhance conformational sampling in the un-
biased replica. The possibility to explore different metastable conformations in this
replica relies on the fact that probability distributions in the biased replicas are flat-
tened and that conformations can travel across the replica ladder. These conditions
can be verified by monitoring the exchange rate and the flatness of the distributions.

The acceptance rate is in the range 65-72% for RECT and in the range 43-53% for
Hgin-REMD, indicating that the former method requires less replicas. This is likely
due to the fact that the total number of scaled dihedrals in Hy,-REMD is larger than
the number of biased CVs in RECT. For both REMD methods we also verified that all
the trajectories in the generalized ensemble sampled the same conformational ensemble
(see Fig. 4.4).

A quantitative measure of the flatness of the distribution in the biased replicas
can be obtained from the dihedral entropy, shown in Fig. 4.5 as a function of scaling
factors (v and A for RECT and Hg;,-REMD, respectively). The limiting value corre-
sponding to a flat distribution is also indicated. Entropy grows faster as a function of
the scaling factor when using RECT, indicating that free-energy barriers on the dALA
isomerization transition are more effectively compensated by the bias potentials. With
Hyin-REMD entropy of U angle saturates and apparently the distribution cannot be
further flattened by decreasing A. In the case of the ® angle, the dihedral entropy does
not grow monotonically when is decreased. This behavior indicates that the relevant

free-energy barriers are not only originating from the dihedral force-field terms. The
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Figure 4.4: Empirical probability distribution of heavy atom RMSD from the alanine
dipeptide in water as computed from the trajectories across the replica ladder, shown
for both REMD methods. Average probability is shown in solid line and range be-
tween maximum and minimum probability among all trajectories is shaded. It can be
appreciated that, for each method, all the trajectories span the same conformational
distribution.

conformational transitions involve indeed also changes in water coordination, reorga-
nization of hydrogen bonds, non-bonded interactions, etc. On the contrary, RECT
achieves an almost flat distribution for both dihedral angles at the highest value of the
~ factor. Backbone dihedral distributions for all the replicas are shown in Figs A.1-A.2.
The conformations sampled on each replica are shown projected on the ¥ free-energy
landscape in Fig. A.3, where it can be appreciated that all the relevant basins («a, S,
and ag) are explored and connected by points close to the minimum-action pathways.
(see refs [167, 178]).

To assess the efficiency and the accuracy of the introduced enhanced sampling
technique the free energy difference AF between the states ¢ € [—,0] and ¢ € [0, 7]
was calculated from the distribution of the unbiased replica. Results are shown as
a function of time in Fig. 4.6, for the two REMD schemes and for the reference
conventional MD. Both H-REMD methods converge to the right value with a similar
behavior, whereas plain MD needs several tens of ns for the first transition to be
observed. The similarity in the convergence of RECT and Hg,-REMD indicates that
for this system the moderate flattening of the distribution induced by Hg;,-REMD is
sufficient to achieve ergodicity on this time scale. In order to better evaluate differences
between the performance of RECT and Hg;,-REMD we applied this methodologies to

a more complex system. Results are shown in the next section.

4.3.2 Tetranucleotide

Also in this case we monitor the average exchange ratio (76-83% for Hgy;,-REMD, 25-
32% for T-REMD, and 60-80% for RECT). In Fig. 4.7 the variation of the exchange

ratios in time is shown for the exchanges between the first and the last 2 replicas of
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Figure 4.5: Entropy for ¥ (top) and ® (bottom) dihedral angles in alanine dipeptide.
Entropies are shown as a function of 1/\ and 7 for Hy,-REMD and RECT respec-
tively. As the entropies values increase the dihedral distributions become more flat.
The maximum entropy value corresponding to a flat distribution is represented with a
straight line.

each method. We also checked the consistency of trajectories along the replica ladder.
As it can be appreciated in Fig. 4.8, for RECT the trajectories in the generalized
ensemble are more consistent than those obtained with the other methods. On the
contrary, in the case of T-REMD, agreement among the distributions of RMSD is very
poor. During this simulation trajectories across the temperature space remain trapped
on different metastable conformations. The same behavior was obtained in ref 26
were several T-REMD simulations were performed on the same system, with the same
number of replicas and a similar temperature range. In that work divergence among
the obtained generalized ensembles was observed even for a simulated time as long as
2 us per replica. For Hg;,-REMD and RECT round-trip times are shown on Fig. A.4.
The average round-trip time is &~ 0.5 ns for Hy;,-REMD, ~ 1.8 ns for T-REMD, and
~ 1.2 ns for RECT.

In Fig. 4.9 we show the sum of the entropies for the 32 dihedrals used as CVs.
In this respect, RECT is clearly more effective than Hg,-REMD in flattening the
dihedral distributions, consistently with what was observed for dALA. Notably, the

entropic increment observed in RECT is close to the one observed in T-REMD when
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Figure 4.6: Estimate of the free-energy difference between the two metastable minima
in alanine dipeptide. Data are shown for both replica exchange methods (Hg;-REMD
and RECT) and for conventional MD as a function of the total simulation time.

using an equivalent temperature This confirms that RECT has an effect comparable
to that of raising the temperature of the biased CVs by a factor ~.

The significancy of this entropic values could be appreciated on the time series and
related histograms for all the dihedral angles shown in Figs. A.5-A.8 for the most and
least ergodic replica of Hg;,-REMD and RECT. It is clear that for RECT, at the most
ergodic replica, all the accessible torsional range is sampled. On the contrary, in the
highest replica of Hy,-REMD the distributions of some torsions are not flattened.

The transition around the glycosidic bond, from anti to syn, is among the slowest
relaxation times in RNA dynamics [26]. To evaluate the convergence of the unbiased
replica we analyzed the population of the anti rotamer for each nucleotide x angle.
Populations are shown in Fig. 4.10 as a function of the total simulated time. For all
the nucleotides the anti conformations are preferred. The guanosine is the nucleotide
with the highest syn proportion, and the cytidines the ones with the smallest (<
2%), as correspond to their rotameric preferences [43]. Values from both H-REMD
approaches seem well consistent, except for the population of the first nucleotide. From
the time behavior of these populations, it is clear that for all the REMD approaches the
guanosine proportion of anti is the most difficult to converge. Here RECT can reach
values close to a longer reservoir-REMD simulation [120] while both Hg;,-REMD and
T-REMD show results closer to those obtained from conventional MD, with a higher
occupation of the anti conformer.

We observe that our method is enforcing the exploration of both anti and syn
conformations in the biased replicas for each nucleotide independently. This however
does not guarantee that all the 16 combinations of anti and syn conformations are
explored. Fig. 4.11 shows the free energy of the RNA structures grouped by the
combination of the x angle anti(a)/syn(s) rotamers. All 16 combinations, except for
ssss and asss, are sampled in the unbiased replica from RECT. On the contrary, the
unbiased replica from T-REMD and Hg;,-REMD explores respectively 13 and 8 of the
states, and plain MD only 5 of them. The most populated cluster corresponds to an



34 | Replica Exchange with Collective-Variable Tempering

100 T T T T T T T T T T
R RECT Hqin-REMD
§ 880 . A~ e~
% 60 L _
—~
&
o 40 fF . 3 B
<
<
% 20 | § L 4
63| Rep. 1-2 —— Rep. 1-2 ——
Rep. 15—16 —— Rep. 23—24 ——
0.8 1.6 2.4 3.2 4
100 T T T T T
T-REMD Rep. 1-2 — Total simulated time (us)
2 Rep. 23—24 ——
é 80 E
2
% 60} .
~
&
o 40 .
< WW.AIW\V\N\NW—MWW\/\/
<
g 20 AR e e et A e
62

0.8 1.6 24 3.2 4

Total simulated time (us)

Figure 4.7: Average exchange ratio in subsequent blocks of 2 ns for the exchange be-
tween the first two and the last two replicas. In the case of RECT, since the bias
potential is changing during the simulation, the acceptance ratio has a higher fluctua-
tion.

all-anti conformation, followed by the saaa. Then, the three clusters asaa, ssaa and
sasa appear with similar population.

In the same figure the free energy values for the ergodic replica show that all the
16 combinations are populated in RECT within a range of 6kgT". In the case of Hy;-
REMD the most ergodic replica visits only 9 combinations with a population that is
very close to that of the unbiased replica.The most ergodic replica in T-REMD explores
14 clusters, but their populations have a large statistical errors. We highlight the fact
that results from T-REMD could be affected by the lack of convergence of trajectories
across the temperature space (see Fig. 4.8). This could lead to an underestimation of

the errors as evaluated from block analysis

4.4 Discussion

The introduced method allows to build bias potentials for a Hamiltonian replica-
exchange scheme using concurrent well-tempered metadynamics on several CVs at the
same time. Replicas are simulated using a ladder of well-tempered bias factors v. When
CVs are correlated, the self-consistency among the bias potentials is crucial to achieve

flat sampling in each individual CV, as illustrated in Fig. 4.2. In this case the exact
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Figure 4.8: Empirical probability distribution of heavy atom RMSD from the canonical
A-form as computed from the trajectories across the replica ladder, shown for all REMD
methods. Average probability is shown in solid line, and range between maximum and
minimum probability among all trajectories is shaded. It can be appreciated that the
agreement among the conformational distributions of trajectories from T-REMD and
Hgin-REMD is poorer than the one of those obtained with RECT. We notice that RECT
samples a very different generalized ensemble from those of T-REMD and H4,-REMD
schemes.

relationship between bias and free energy is lost. We also remark that here flattening
is not complete but modulated by the value of 7. This is useful since it avoids sampling
very high energy states (e.g. with steric clashes) that would have a very low chance
of being accepted in the unbiased replica. The method compares favorably with both
conventional MD and Hg,-REMD. The method slightly outperforms T-REMD, where
the entire system is heated, indicating that for these small systems there is not a sub-
stantial advantage in schemes where part of the system is biased. However, RECT can
be straightforwardly generalized to large systems since the acceptance only depends on
the size of the biased portion.

Results from both dALA and tetranucleotide simulations show that the bias poten-
tials constructed with concurrent WT-MetaD are able to gradually scale the free-energy
barriers. We notice that only barriers in the one-dimensional free-energy profiles are
compensated, which means that some regions in the multidimensional space of all the
CVs might not be explored. In principle this could hide some important minima that
would never be observed. We did not observe this problem in the applications presented
here.

The second application on which we tested RECT, namely conformational sampling
of a tetranucleotide, is particularly challenging. The conformational space of these
small RNA molecules is not constrained by Watson-Crick pairings and ergodic sampling
is out of reach of conventional MD simulations [120, 166]. So far, converged ensembles

have been obtained only trough highly expensive multidimensional REMD simulations,
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Figure 4.9: Total entropy of backbone, puckering and glycosidic dihedral angles in the
tetranucleotide for both replica exchange methods. Entropies are shown as a function
of 1/X and v for Hy;-REMD and RECT respectively. For T-REMD, temperature is
chosen as T' = v-300K. As the entropy increases the dihedral distributions become more
flat. The maximum entropy value corresponding to a flat distribution is represented
with a straight line. Entropies obtained for the unbiased replicas in the three methods
are consistent within their error bars (error not shown).

corresponding to a total simulated time of several tens of us [31, 32]. One of the reasons
for this difficult convergence is the long relaxation time for the anti to syn transitions,
which could be additionally hindered by an incorrect force-field description of base-base
stacking and base-solvent interactions [26].

Fig. 4.11 illustrates the ability of RECT to accelerate conformational transitions
among the x angle anti/syn rotamers. Although the conformational space of the more
biased replicas is highly expanded, the convergence in the unbiased replica is not af-
fected. On the contrary the method facilitates the sampling of glycosidic rotamer
conformations that otherwise would not be explored by MD simulations of the same
overall length. We finally remark that our procedure can be combined with weighted

histogram [179] so as to include the statistics of the biased replicas.

4.4.1 Comparison with related state-of-the-art methods

RECT is based on the idea of building a replica ladder where a large set of selected
CVs is progressively heated. CVs are heated by flattening their distribution with con-
current well-tempered metadynamics. We first discuss the possibility of using methods
other than well-tempered metadynamics to build the replica ladder. Possible alterna-
tives here include ABF [150] or a recently proposed variational approach [180]. These
methods could be used in a RECT scheme provided they are suitably extended so as

to sample a partially flattened distribution. We also observe that other methods aimed
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Figure 4.10: Estimated glycosidic angle anti population for each nucleotide as a func-
tion of the total simulation time. Data are shown for Hy;,-REMD and RECT unbiased
replicas and for conventional MD. Reference values taken from ref [120] are shown as
dashed lines.

at keeping selected CVs at a given temperature have been proposed based on coupling
thermostats to CVs directly [156-158]. These techniques have been mostly used in the
past with an exploration purpose relying on additional calculations so as to provide
free energies (see ref. [181]) but it is not clear if they can be integrated in a RECT
scheme.

In the following we discuss the comparison of RECT with related methods that are
not based on CV tempering.

Comparison with H-REMD of Curuksu and Zacharias. Our method is closely re-
lated to the one introduced in ref [163] (see also section 3.2.3). There, a bias potential
aimed at disfavoring the most probably rotamers is manually constructed and applied
on several replicas using a scaling factor. This bias disfavors the major minima but
does not ensure a proper compensation of the free-energy barriers, as their positions
and magnitudes are not a priori known. The main advantage of RECT is that several
low-dimensional bias potentials are built with a self-consistent procedure so that the
technique can be straightforwardly applied to a large number of degrees of freedom.

Comparison with bias-exchange metadynamics. In bias-exchange metadynamics
every replica performs an independent metadynamics simulation so that one CV at
a time is feeling the flattening potential. Thus, it is typically used with a relatively
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Figure 4.11: Estimated free energies for the tetranucleotide conformations clustered ac-
cording to the x angle anti/syn rotameric combinations (circles). Free energies are com-
puted as —kgT log P;, where P; is the normalized population of each cluster in the unbi-
ased replica. Grey boxes represent relative populations higher than 1%. Confidence in-
tervals are shown as bars and span the range [—kgT log(P,+AP;), —kgT log(P;,—AP;)],
where AP; is the standard deviation of the average P, as obtained from four blocks.
Clusters which are observed in only one of the four blocks has an infinite upper bound.
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small number of ad hoc designed CVs capable to describe the relevant conformational
transitions. On the other hand, RECT is designed to be used with a very large number
of dummy CVs with little a priori information and to bias them concurrently to exploit
their cooperation in enhancing conformational sampling. For this reason, the two
approaches are complementary and could even be combined in a multidimensional
replica exchange suitable for a massively parallel environment.

Comparison with solute tempering and related methods. In replica exchange solute
tempering the solute Hamiltonian is scaled so as to obtain an effect equivalent to a rise
in the simulation temperature [145, 146]. Any set of atoms can be identified as solute,
giving the opportunity to enhance sampling in a region localized in space [176, 182].This
requires modifying charges of the enhanced region, with long range effects and sometime
affecting fundamental properties such as hydrophobicity. In our method, the bias
potentials act on precisely selected degrees of freedom without perturbing their coupling
with the rest of the system. Moreover, the bias is adaptively built so as to compensate
the free energy and not the potential energy, so that with properly chosen CVs it could
be used to compensate entropic barriers.

Comparison with hyperdynamics and accelerated MD. In these methods the poten-
tial energy of the system is modified so as to decrease the probability to sample minima
on the potential energy [32, 165, 183] (see section 3.2.3). On the contrary, RECT em-
ploys a bias which is related with the free energy so as to achieve a flatter histogram
on the selected CVs.

We finally remark that RECT, although formally based on the a priori choice of a
set of CVs, typically requires the same amount of information as methods not based on
CVs. Indeed, as we have shown, the method can be easily applied to a very large number
of CVs, virtually including by construction all the slow degrees of freedom of the system.
Additionally, when a few relevant CVs can be identified based on chemical intuition,
RECT can be straightforwardly combined with standard metadynamics similarly to
parallel tempering [159] or solute tempering [184].

4.5 Conclusion

Replica exchange with collective-variable tempering (RECT) has been here proposed as
a novel and flexible enhanced-sampling method. RECT takes advantage of the adaptive
nature of well-tempered metadynamics to build bias potentials that compensate free-
energy barriers. The flattening of the barriers is modulated by the well-tempered
factor -, and the chosen collective variables (CVs) are effectively kept at a higher
temperature. The biasing potentials are built combining concurrent low-dimensional
metadynamics protocols so as to be usable on a very large number of CVs. Multiple
replicas are then used so as to smoothly interpolate between a highly biased, ergodic
simulation and an unbiased one (7 = 1). The number of required replicas scales with
the square root of the number of chosen CVs for a fixed range of v factors. This allows

a very large number of CVs to be biased, so that virtually all the relevant transitions
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can be accelerated. The CVs used here were mostly dihedral angles, which exhibit
relevant barriers in many biomolecular conformational transitions, but the method
can be used with any CV. The application of this technique to the dALA in water
shows that the CV probability distributions are effectively flattened by the action of
the bias potentials and unbiased statistics is correctly recovered. In the case of the
tetranucleotide conformational sampling is greatly enhanced since RECT effectively
overcome the high free energy barriers of the y angle transitions that hindered the
conformational sampling at room temperature. RECT is a promising tool to enhance
the exploration of the conformational space in highly flexible biomolecular systems

such as RNA, proteins, or RNA /protein complexes.



Chapter 5

Empirical corrections to the Amber
RNA force field

5.1 Overview

Recent tests [33, 34] have shown that state-of-the-art force fields for RNA are still not
accurate enough to produce ensembles compatible with NMR data in solution in the
case of single stranded oligonucleotides. Similar issues have been reported for DNA
and RNA dinucleosides [185, 186]. Previous studies have shown that the distribution
of structures sampled from the protein data bank (PDB) may approximate the Boltz-
mann distribution to a reasonable extent [187-190] and could even highlight features
in the conformational landscape that are not reproduced by state-of-the-art force fields
[191, 192]. This has been exploited in the parametrization of protein force fields. For
example, a significant improvement of the force fields of the CHARMM family has
been obtained by including empirical corrections commonly known as CMAPs based
on distributions from the PDB [193, 194].

In this work, we apply these ideas to the RNA field and show how it is possible
to derive force-field corrections using an ensemble of X-ray structures. At variance
with the CMAP approach [195], we here correct the force field using a self-consistent
procedure where metadynamics is used to enforce a given target distribution [35, 36].
Correcting potentials are obtained for multiple dihedral angles using the metadynamics
algorithm in a concurrent fashion. Since the target distributions are multimodal, we
also use the enhanced sampling technique introduced in Chapter 4, replica exchange
with collective-variable tempering (RECT), to accelerate the convergence of the algo-
rithm. The correcting potentials are obtained by matching the torsion distributions
for a set of dinucleoside monophosphates. The resulting corrections are then tested on
tetranucleotides where standard force field parameters are known to fail in reproducing
NMR data.
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5.2 Methods

In this Section we briefly describe the target metadynamics approach and discuss the

details of the performed simulations.

5.2.1 Targeting Distributions with Metadynamics

Metadynamics (MetaD) has been traditionally used to enforce an uniform distribution
for a properly chosen set of collective variables (CV) that are expected to describe the
slow dynamics of a system [151]. However, it has been recently shown that the algo-
rithm can be modified so as to target a preassigned distribution which is not uniform
[35, 36]. In this way a distribution taken from experiments, such as pulsed electron
paramagnetic resonance, or from an X-ray ensemble, can be enforced to improve the
agreement of simulations with empirical data. We refer to the method as target meta-
dynamics (T-MetaD), following the name introduced in ref [35]. For completeness, we
here briefly derive the equations. It is also important to notice that the same goal
could be achieved using a recently proposed variational approach [180, 196].

In our implementation of T-MetaD a history dependent potential V (s, t) acting on
the collective variable s at time ¢ is introduced and evolved according to the following
equation of motion

T (5, 1) = weP P~ Finas) —B(350) 50 (5.1)
Here § = 1/kgT, kp is the Boltzmann constant, 7' the temperature, w is the initial
deposition rate of the kernel function which is here defined as a Gaussian with width o,
F (s) is the free energy landscape associated to the target distribution, Fiax indicates
the maximum value of the function F, and D is a constant damping factor. The
target distribution is thus proportional to e PF©) We define w = % where 7 is
the characteristic time of bias deposition. The term B (F ()= Finax) adjusts the height of
the bias potential, making Gaussians higher at the target free-energy maximum and
lower at its minimum. This forces the system to spend more time on regions where the
targeted free-energy is lower. We notice that a similar argument has been used in the
past to derive the stationary distribution of both well-tempered metadynamics, where
Gaussian height depends on already deposited potential [40], and of adaptive-Gaussian
metadynamics, where Gaussian shape and volume is changed during the simulation
[154]. The subtraction of Fl. sets an intrinsic upper limit for the height of each
Gaussian, thus avoiding the addition of large forces on the system. We notice that
other authors used terms such as the minimum of F' or the partition function to set
an intrinsic lower limit for the height of each Gaussian [35, 36]. At the same time, the
term e PCF*) acts as a global tempering factor [155] and makes the Gaussian height
decrease with the simulation time so as to make the bias potential converge instead
of fluctuating. As observed in ref [35], the tempering approach used in well-tempered

MetaD in this case would lead to a final distribution that is a mixture of the target
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one with the one from the original force field. For this reason, we prefer to use here a

global tempering approach [155].
In the long time limit (quasi-stationary condition) the bias potential will on average

grow as [40, 155]

_(f=9)?

<V(s)> = /ds’weﬁ(ﬁ(sl)_pmax)6_5(%)6 22 P(s) (5.2)

where P(s) is the probability distribution of the biased ensemble. Defining the function

nIOVANEE» _ 3(VYmax . . . . .
g(8") = wePF ()= Fnax) e=B(TE*) we can see this equation is a convolution of a Gaussian

and a positive definite function.

(V) = [ ds'e 5 g(s)P(s). (5.3)

As shown in ref [40, 155] this average should be independent of s in stationary
conditions, so that the function g(s')P(s’) should be also independent of s, though

still dependent on time

hoe F )~ Fna) =805 p() — CO(4). (5.4)

By recognizing that Fa and V. do not depend on s, one can transform the last

equation to

PFE P(s) = C'(¢) (5.5)
which implies that

P(s) oc e PF), (5.6)

Thus, the system will sample a stationary distribution of s which is identical to the

enforced one.

Whereas the equations are here only described for a single CV, this method can
be straightforwardly applied to multiple CVs in a concurrent manner. In this case,
the total bias potential is the sum of the one-dimensional bias potentials applied to
each degree of freedom. Indeed, similarly to the concurrent metadynamics used in
RECT [197] (see also Chapter 4), all the distributions are self-consistently enforced
[36]. This is particularly important when biasing backbone torsion angles in nucleic
acids since they are highly correlated [42, 198]. In this situation it is also convenient
to use a biasing method that converges to a stationary potential through a tempering
approach, to include in the self-consistent procedure of MetaD an additional effective
potential associated to the correlation between the dihedral angles that is as close as

possible to convergence.
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5.2.2 Model systems
5.2.2.1 RNA dinucleoside monophosphates

Fragments of dinucleoside monophosphate with the sequence CC, AA, CA, and AC
were extracted from the PDB database of RNA X-ray structures at medium and high
resolution (resolution < 3 A). The selected structures were protonated using pdb2gma
tool from GROMACS 4.6.5 [174] Free-energy profiles along the backbone dihedral
angles were calculated with the driver utility of PLUMED 2.1 [175].

Molecular dynamics simulations of the chosen RNA dinucleoside monophosphate
sequences were performed using the ff99-bsc0-yor3 force field (named here Amber14)
[37-39]. The systems were solvated in an octahedron box of TIP3P water molecules
[170] with a distance between the solute and the box wall of 1 nm. The system charge
was neutralized by adding 1 Na™ counterion. The LINCS [171] algorithm was used
to constrain all bonds containing hydrogens and equations of motion were integrated
with a timestep of 2 fs. All the systems were coupled to a thermostat through the
stochastic velocity rescaling algorithm [173]. For all non-bonded interactions the direct
space cutoff was set to 0.8 nm and the electrostatic long-range interactions were treated
using the default particle-mesh Ewald [21] settings. An initial equilibration in the NPT
ensemble was done for 2 ns, using the Parrinello-Rahman barostat [199]. Production
simulations were run in the NVT ensemble. All the simulations were performed using
GROMACS 4.6.7 [174] patched with a modified version of the PLUMED 2.1 plugin
[175].

T-MetaD simulations were run to enforce the probability distributions of the angles
€1, (1, az and (B, which were calculated from the X-ray fragments. The target free-
energy profiles were calculated with PLUMED 2.1. Distributions were estimated as
combination of Gaussian kernels, with a bandwidth of 0.15 rad, and written on a grid
with 200 bins spanning the (—m, w) range. The bias potential used for the T-MetaD was
grown using a characteristic time 7 = 200 ps and a dampfactor D = 100. Gaussians
with a width of 0.15 rad were deposited every Ng = 500 steps.

We underline that simulations performed using T-MetaD could be non ergodic
for two reasons. First, there could be significant barriers acting on CVs that are
not targeted and thus not biased at this stage (e.g. x dihedral angles). Second, if
the enforced distribution of a CV is bimodal it will be necessary to help the system
in exploring both modes with the correct relative probability. It is thus necessary to
combine the T-MetaD approach with an independent enhanced-sampling scheme. Here
we used RECT, a replica exchange method, introduced in Chapter 4, where a group
of CVs is biased concurrently using a different bias factor for each replica and one
reference replica is used to accumulate statistics [197]. When T-MetaD and RECT
are combined, in each replica a T-MetaD is run with the same settings, including the
reference replica. The T-MetaD/RECT simulation was run with 4 replicas for 1 us
each. For each residue the dihedrals of the nucleic acid backbone («, 3, v, €, (),
together with one of the Cartesian coordinates of the ring puckering [63] (Zx) and the
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glycosidic torsion angle (x) were chosen as accelerated CVs. To help the free rotation
of the nucleotide heterocyclic base around the glycosidic bond, the distance between
the center of mass of nucleobases was also biased. For the dihedral angles the Gaussian
width was set to 0.25 rad and for the distance it was set to 0.05 nm. The Gaussians
were deposited every Ng = 500 steps. The initial Gaussian height was adjusted to the
bias factor v of each replica, according to the relation h = %;A)NgAt, in order to
maintain the same 75 = 12 ps across the entire replica ladder. The bias factor + ladder
was chosen in the range from 1 to 2, following a geometric distribution. In replicas with
v # 1 the target free energy was scaled by a factor 1/v. Exchanges were attempted
every 200 steps. Statistic was collected from the unbiased replica.

Finally, a new RECT simulation was run for each dinucleoside with the bias poten-
tials obtained from the T-MetaD applied statically on each replica. These calculations
represent the results obtained with a force field that includes the corrections from the
PDB distributions and are thus labeled as Amber,. Statistics from these simulations
were collected to evaluate the effects of the corrections. The simulation time was 1 us

per replica.

5.2.2.2 RNA Tetranucleotides

To test the force field corrections derived on dinucleoside monophosphates, temperature
replica-exchange molecular dynamics (T-REMD) simulations [136] were performed on
different tetranucleotide systems with sequence CCCC, GACC and AAAA. The cor-
recting potentials calculated for the AA and CC dinucleosides were applied to all the
backbone angles of AAAA and CCCC tetranucleotides, respectively. For the GACC
tetranucleotide we combined the correcting potentials from the T-MetaD simulations
of AA, AC and CC, assuming a similarity between purines A and G.

The T-REMD data related to the Amber14 force field and the protocol for the new
simulations performed using the Amber,q, force field were taken from ref [192]. The
systems were solvated with TIP3P waters and neutral ionic conditions. We used 24
replicas with a geometric distribution of temperatures from 300 to 400 K. Exchanges

were attempted every 200 steps. The simulation length was 2.2 us per replica.

5.2.3 Analysis
5.2.3.1 Comparison with experimental data

The result of the molecular dynamics simulations was compared to NMR experimental
data of dinucleosides [185, 200-202] and tetranucleotides [34, 166, 203]. We used *.J
scalar couplings and NOE distances from those experiments to evaluate the quality of
the FF ensembles.

The vicinal nuclear spin-spin 3.J scalar couplings constants were calculated accord-
ing to the conformation of the related torsion angles using the Karplus relationship in
the form J(¢) = Acos*(¢+¢)+ B cos(d+ ) +C [204, 205]. Several sets of coefficients
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are available for each specific observable/torsion equation (see ref [206]) and there has
been no clear consensus on which of them is to be preferred. We took into account
the analysis made in refs [185, 207, 208] to select the most precise sets of parameters.
For *Jy,, u,, and ®Jy,, 1., we derived a simplified expression for the generalized Karplus
equation in the form J(¢) = A cos?(¢)+ B cos(¢)+ B sin(¢) cos(¢)+C. The parameters
used in this study are listed in Table 5.1.

Coupling Angle | A B B C % Ref
3JH1/H2/a3JH2/H3/73JH3/H4/ V123 9.67 | -2.03 0 0 0 [34]
8 JH, H, 0 8.31(-0.99 | 0.27 | 1.37 | -120° | [209]
3T, Hey, o 831 |-0.99 | -4.72 | 1.37 0 [209]
3JH5,p Ié] 18.1 | -4.8 0 0 -120° | [210]
3 Jr,p B 181 -48 | 0 | 0 | 120° |[210]
3 Ju,p e [153] 61| 0 | 16| 1200 | [211]
SJoap e |69 34| 0 |07 |-1200][211]
SJowp Ble | 6.9 | -3.4 0 0.7 0 [211]
S Jcam, X [39] 17| 0 |03 |-704°|[212]
S Jeary X |36 1.8 | 0 |04 |-686°|][212
3 Joem,, X | 48] 07 | 0 |03 |-66.9 212
8 Jesi X | 42]-05] 0 |03 |-689 212

Table 5.1: Karplus parameters for the dihedral angles considered in this study. x’
indicates the H1’-C1’-N1/9-C6/8 torsion along with a phase shift of 60°, which in the
special case of base planar at N1/9 is equal to y. Actually, the relations of 3.Jo_y with
the y angle have been shown to depend non-trivially on the sugar pucker and on the
nonplanarity of nucleobases [208, 213].

The 3J scalar couplings from the simulations were calculated as the ensemble av-

erage over the sampled conformational space, using the following equation

(J) = XW: f(0)J(6)06 (5.7)

O=—n
where J (0) represent the Karplus relation between the vicinal coupling and the
dihedral angle and f (6) is the probability density of the dihedral angle bin. To calculate
the torsion angle histograms we employed wrapped Gaussian kernels with a bandwidth
of 0.017 rad. Histograms were calculated with PLUMED 2.1 [175].
The overall agreement between the NMR data and the average values calculated in

this study was measured using the root mean square error (RMSE):

N
RMSE = \IN—I S () ate — Jicap)? (5.8)
=1

The consistency of the error measurements was analyzed by blocking the trajectory
in 4 blocks of equal length and calculating the standard deviation of the different error
estimations.

2D NOESY experiments of different tetranucleotide sequences have provided rig-
orous benchmarks for force-fields modifications [34, 166, 203, 214]. NOE distances
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were calculated by averaging pairwise proton-proton distances over all the structures
within the ensemble. The deviation of MD distances from experimental NOE derived

distances is calculated as [175]

N
1

RMSE = |N-! Z Z )76 — )2 (5.9)

A very important indicator of the ensemble agreement with the experiment is the

number of proton-proton contacts with an MD averaged distance of < 5 A which are

not visible in the NOESY spectra [34]. Calculations were performed using the software

tool baRNAba [215].

5.2.3.2 Thermodynamics

To calculate the free-energy of stacking we used the definition similar to the one of ref
[34] to define the stacked and unstacked states. In particular, we calculate the distance
between the center of mass of the nucleobases using only the heteroatoms (with a cutoff
of 5 A), the angle between the vectors normal to the planes of the bases (from 0° to
45° and from 135° to 180°) to separate the parallel to the T-shaped complexes, and
the angle between the distance vector between the bases and the 5’-nucleobase normal

vector (< 50°). This definition is very similar to the one used on ref [34].

5.2.3.3 Mutual Information and Jensen-Shannon divergence

The correlation between the dihedral angles in the tetranucleotide T-REMD simu-
lations was estimated with the Mutual Information (MI) [216]. We used the driver
command of PLUMED 2.1 [175] to calculate the MI as an average along the trajectory.

M, = (| K ) (5.10

p(x)p(y)
The difference between the probability distributions from the A-form and Non-
A-form sub-ensembles was measured using the Jensen—Shannon divergence (JS) [217,
218]. The JS is zero for identical distributions and reaches it maximum (In 2) for non-

overlapping ones. The probability distributions used to estimated JS are shown in Figs.
5.6, B.1 and 5.10.

S e AU e I

5.3 Results

As a first step we identified the dihedral angles whose correction could benefit the
most the experimental agreement of the whole conformational ensemble. Then, we

used our approach to enforce for those dihedrals the distributions from the X-ray
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fragments on monophosphate dinucleosides AA, AC, CA, and CC. Finally, we show
that the corrections are partly transferable and could improve agreement with solution

experiments for tetranucleotides.

5.3.1 Selection of the target collective variables

The prevalence of compact intercalated and inverted conformations in the ensembles
of RNA tetranucleotides generated with AMBER force fields is a known problem (see
Fig 5.1 for a representation of typical structures) [33, 34]. This can be due to an over-
stabilization of stacking interactions, poor water models, and/or incorrect dihedral
parameters. Changing the non-bonded interactions in a force field to improve stack-
ing is a difficult task, as the classification of stacked (closed) and non-stacked (open)
structures in a molecular dynamic simulation is largely arbitrary and slight changes
can lead to very different values of the open-closed population ratio [219, 220]. On the
other hand, dihedrals terms are more flexible and small corrections in the free-energy
profiles of a minimal number of angles can have huge impact on the whole nucleic
acids ensemble [16]. Therefore, we decided to correct the free energy landscape of an
essential group of dihedral angles in the RNA, in order to improve the state-of-the-art
AMBER force field agreement with solution NMR data.

For this analysis we used the T-REMD simulations of AAAA, GACC, and CCCC
tetranucleotides performed on ref [192] using the Amber14 force field. We divided each
of the Amberl4 ensembles into two groups, in order to identify the structural features
that differentiate the structures compatible with the NMR data (A-form-like conforma-
tions) from the non-compatible compact structures that overpopulate the ensembles.
The A-form sub-ensemble was defined as the set of conformations with a distance-
RMSD < 2.5 A form the canonical A-form, while the Non-A-form group comprises the
rest of the frames. The ratio between the population of the Non-A-form sub-ensemble
over the A-form one is different for each tetranucleotide: ~5.5 for AAAA, ~1.4 for
GACC and ~21.7 for CCCC.

Differences among the collective variable (CV) distributions of the sub-ensembles
were measured using the Jensen-Shannon divergence between the two-dimensional
probability distributions of dihedrals (« to x), puckering coordinates (Z,) and the
nucleobase-nucleobase coordination number (S): a8, Bv, vZ:, ZzX, SX, Zz€, €(, Ca.
Coordination numbers were estimated using a switching function with form m
with 79 = 0.3nm. In Fig. 5.2 it can be appreciated the JS divergences for each pair
of CVs, while the probability distribution maps employed in the JS calculation are
shown in Fig 5.3, B.1 and B.2. The pair of CVs with the highest JS values are the
ones containing x, ¢ and «. It should be noticed that JS values in AAAA for the
Z,x and Sy pairs are in general higher than the ones corresponding to the GACC
and CCCC. Analysis of the probability distributions shows that in the case of AAAA
the x angle in the A-form sub-ensemble favors the high-anti and syn conformations

instead of the canonical A-form all anti rotamer, while in the Non-A-form group the
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Intercalated
A-form Intercalated 2-extruded

Cluster #1 Cluster #2
Reference Size 459 Size 7%
RMSD 0.0 A RMSD 5.5 & RMSD 5.8 &
1-3_2-4 stack A-form syn

Cluster #3 Cluster #4
Size 7% Size 5%
RMSD 6.4 & RMSD 1.1 &

Figure 5.1: Representative clusters of the tetranucleotide Amber14 ensemble of AAAA.
The clusters were calculated with the gromos [221] algorithm implemented in the
g__cluster tool of Gromacs [174]. Representative structures for the CCCC and GACC
can be appreciated in ref [33], for a highly sampled Amber14 ensemble.

minima are shifted to the anti state. For the tetranucleotides containing pyrimidines
the y angles mainly populates the anti state in both sub-ensembles. This result could
suggest some problematic behavior of the y angle in adenosine that should be further
investigated (see ref [33] for a discussion of problematic behavior of x angle in RNA
tetraloops). A consistent trend among all tetranucleotide is related to the high JS
values for a3, ¢ and (a dihedral pairs. Looking into the probability distributions it
is clear that the high JS divergence values are due to a shift of the (o minimum from
the ((¢7)/a(g™) (the one corresponding to the right-handed helix) in the A-form sub
ensemble, to the ((¢7)/a(g™) conformation in the Non-A-form. Each (/o minimum

seems to be characteristic of each sub-ensemble independently of the RNA sequence,



50 | Empirical corrections to the Amber RNA force field

AAAA Amberl4 AAAA Amberl4
0.5 0.8 resid 1
* g resid 2 ©
0.4 1 o @ * M2
E * o ‘g 0.6 - 7] resid 3 X
gﬁ 0.3 ¥ = = resid 4 V
2 X o E 0.4f X
L | [6)
2 0.2 A o x °
% ERal i
= 0.1} - S 7k ¥ o
o = *
o ~ v X
o L ¥ = 0 0 o L= e
aB By vZ, Z,x Sx Z,¢ €« (o aBl By vZ, Z,x Sx Z.e ¢ Ca
GACC Amberl4 GACC Amberl4d
0.5 0.8
0.4 g
g < 0.6 BK—
5 £
9 0.3 4 £ o o
= o x| E 04f .
A 0.2 X x 1 ~
©n S [¢) b3
1 E 0.2 | Q o .
= 0.1t o Y 9 o o g v
o o = X = x X X
oLL—¥ T Y | | | | 0 5 N % | Yy . L L
aB By vZ, Z,x Sx Z,¢ €« (o aBl Py vZ, Z,x Sx Zye ¢ (Ca
CCCC Amberl4 CCCC Amberl4d
0.5 0.8 5
0.4 g
§ ’ s 0.6 o
$ 0.3 F . % o
o o=
= o * = 0.4 o O N
A 0.2 ¥ ¥ — =
@ g 5L
- o0.1f o ¥y 8 o of 2 0 o Y X
o o = = *
ol_x -~ Y oy o LM g X X _x
aB By vZ, Z,x Sx Z.e ¢ (a aB By vZ, Z,x SX Z€ € (o
CVs CVs

Figure 5.2: Jensen-Shannon (JS) divergence and Mutual Information (MI) calculated from
the joint probability distributions of the CV{CV3 pairs indicated in the labels. The distribu-
tions were estimated from the tetranucleotides Amberl4 ensembles taken from ref [192]. The
Amberl4 ensemble was divided into two groups, containing the A-form-like and Non-A-form
structures respectively. The Jensen-Shannon divergence measures the difference between the
bidimensional CV;CVs probability distributions from the A-form-like and Non-A-form struc-
tures. The Mutual Information was calculated for the full Amberl4 ensemble. MI indicates
the correlation between the CVy with respect to the CVy. The shaded areas represent the JS
and MI values obtained for a random generated set of data of the same size of the Amber14
ensemble. Those values differ from zero due to the finite size of the datasets. The significance
of the calculated JS and MI values is proportional to their distance from the shaded area.

while y and stacking are very system dependent. Taking these results into account
we hypothesize that changing the stability of the gauche minima in (/o can improve
the experimental agreement of the force field, as most conformations compatible with

the canonical A-form extended structure will be favored, despite the properties of the
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sugar-base domain not been changed.

The ¢ and « torsion angles are highly correlated between each other and with the
e and [ angles respectively, as appreciated in Fig 5.2. Therefore, we assume that any
modification on the phosphodiester backbone should include also the adjacent torsions.

The probability distributions of the RNA backbone angles obtained from the PDB
can be a good reference to correct the Amberl4 force field, as long as those distribu-
tions are compatible with the solution RNA ensemble at room temperature. In order to
analyze the suitability of the PDB distributions, we used solution NMR data of RNA
dinucleosides as a reference. RNA dinucleoside monophosphates can be considered as
the smallest structural unit of the RNA that includes all the major conformational
degrees of freedom. Thanks to their small size, converged ensembles are easily gener-
ated using enhanced sampling simulations. Moreover, taking fragments of dinucleotides
from the RNA X-ray structures, instead of tetranucleotides, improves considerably the
statistics. In Fig B.3 the agreement between experimental and calculated 3J scalar
couplings for the dinucleosides is shown. For the X-ray ensemble in general the agree-
ment with the scalar couplings of the backbone angles (e and () is better than that
of angles of the ribose-nucleobase region (x, Z, and ). The disagreement in the last
region is expected considering the X-ray ensemble is biased to the anti and Cs-endo
states, which predominate on the double helical structures. Compared to the force
field performance, the 3J RMSD of the PDB fragments is at least 0.5 Hz lower for
the backbone angles. All the calculated and experimental 3.J scalar couplings used are
presented in Table B.1.

We decided then to enforce the X-ray distributions of «, 3, €, and ¢ dihedral angles

in the Amber14 force field, using concurrent Target Metadynamics simulations.

5.3.2 Calculation of correcting potentials

The Amberl4 force field is considered to be one of the most accurate ones for RNA,
though it is failing to reproduce solution experiments for short flexible oligomers. Re-
cent benchmarks of different AMBER force field modifications based on reparametriza-
tion of the torsion angles and non-bonded terms have shown that these changes did not
lead to a satisfactory agreement with solution experiments for tetranucleotides [33, 34].
On the other hand, ensembles of tetranucleotides taken from the PDB have a very good
agreement with NMR data [192]. We thus decided to add correcting potentials to the
dihedral angle terms of Amber14, based on information recovered from high-resolution
X-ray structures of RNA deposited in the PDB. The probability distributions obtained
from fragments of X-ray structures were enforced on the backbone dihedrals with T-
MetaD. RNA dinucleoside monophosphates were chosen as model systems to obtain
the correcting potentials. As the corrections are sequence dependent, for each nucle-
obase combination we generated an ensemble of experimental conformations from the
PDB database that had the same sequence as the dinucleoside monophosphates.

In Fig. 5.4 we show the free energy profiles of AA and CC dinucleosides projected on
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Figure 5.3: Probability distributions of dihedral angles (backbone, puckering and gly-
cosidic angle) and coordination number of the nucleobases center-of-mass distance.
These CVs values corresponding to the RNA canonical A-form are marked with a gray
dashed line. The probability distributions were calculated from the AAAA T-REMD
simulations.[192] The distributions marked as “A-form” includes the structures with
a distance RMSD < 2.5 A to the canonical A-form conformation in the Amber14 en-
semble, while the “Non A-form” group contains the rest, mostly compact and highly
stacked structures.

the €, ¢, a and 3 angles. Amberl4, Amberpqy,, as well as the target PDB ensembles are
represented. The profiles of AC and CA are shown in Fig B.3. The similarity between
the PDB and Amber,q, profiles makes it clear that the corrections efficiently enforce

the distributions taken from the X-ray ensemble. Although some differences are visible
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Figure 5.4: Free-energy profiles of backbone dihedral angles for the AA and CC dinu-
cleosides monophosphates from the X-ray ensemble (PDB) and the RECT simulations
with the standard force-field (Amber14) and the correcting potential (Amberpqp).

around the free-energy barriers, they are expected not to be relevant for room temper-
ature properties at equilibrium. Nevertheless, the transition times and the behavior of
the Amber,q, potential at high temperatures could be affected by these barriers. In
general, barriers in the experimental ensemble are several k,T" lower than those from the
Amberl14 force field. In the corrected ensemble the multimodal character of the force
field probability distributions for the angles €, ¢ and « is reduced, to favor the confor-
mations corresponding to the canonical A-form. The observed agreement between the
PDB and Amber,q, one-dimensional probability distributions for the selected angles
is not necessarily translated into equivalence of the respective ensembles. This is seen
for example in the two-dimensional distributions shown in Figs B.4-B.7.

Correcting potentials might in principle also affect the distribution of non-biased
degrees of freedom if the latter ones are correlated with the former ones. The distribu-
tion of non-biased degrees of freedom, such as the angles v, x and puckering coordinate
Z., is shown in Fig. B.8. Overall, no difference is observed between the Amber14 and
Amber,q;, free-energy profiles, with the exception of the ratio between the C3’-endo
and C2’-endo conformations in CC. This is a consequence of the significant correlation
between the backbone angle € and the puckering.

To asses the validity of the corrections, we compared all the ensembles against
NMR experimental data [185] (Fig 5.5). Individual 3J vicinal coupling values from the
experiments and the simulations are reported in Table B.1. In the case of AA, AC
and CA dinucleosides the agreement of Amber,q, with the experimental data is better
than that of Amber14 and of the X-ray ensemble. This can be explained noticing that
Amber,q, combines the good agreement with NMR experiments of Amber14 for angles
in the nucleoside (dihedrals v, v3 and ) with that of the PDB distribution for angles in
the backbone (dihedrals € and (), as shown in Fig B.9. A notable exception is the CC
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dinucleoside, where the correlation of backbone angles with puckering mentioned above
leads to slightly larger deviation in Amberpq, with respect to Amber14. It should be
noticed that the NMR observables analyzed here cannot be used to directly determine
the conformation around the phosphodiester backbone (a/(), so the comparison with
the NMR 3J vicinal coupling dataset does not take intoaccount the distribution of

these angles.

Amber14 @ Amber,y O

PDB O
—~ 9
N
T
—~ 15k -
@
S
=05

AA AC cA ce

Figure 5.5: Agreement with the NMR 3.J vicinal coupling dataset of dinucleosides, mea-
sured using the root mean square error (RMSE), for the ensembles of X-ray structures
(PDB), the AMBER force field (Amber14) and the corrected force field (Amberpap).

Statistical errors were calculated using block averaging.

We noticed that, whereas the NMR data was measured at 293 K (AA, CA and AC)
and 320 K (CC), simulations were performed at 300 K. However, the agreement between
the data for CC obtained at 320K and similar NMR data obtained for a smaller number
of couplings at 280K [202] shows that deviations induced by temperature changes are
expected to be much smaller than the typical deviations between molecular dynamics
and experiment observed here. It is also important to mention that these RMSE values
do not take into account systematic errors in the Karplus formulas employed in this
study.

It is also interesting to measure the effect of the proposed backbone corrections on
the stacking interactions. Stacking free energies computed according to the definition
used in a recent paper [34] show that the correcting potential have barely no effect on
stacking (Fig B.10). These numbers can also be compared with experimental values
[201, 202, 222], and indicate that AMBER force field is likely overestimating stacking
interactions as suggested by several authors [26, 220]. This comparison is however
affected by the definition of stacked conformation, which introduces a large arbitrariness

in the estimation of stacking free energies from MD.

5.3.3 Validation of Amber,q4, potential on RNA tetranucleotides

The correcting potentials discussed above are designed so as to enforce the PDB distri-
bution on dinucleosides monophosphates. We here used these corrections to perform
simulations on larger oligonucleotides. In particular, we performed extensive simu-
lations of tetranucleotides, which are considered as good benchmarks for force-field

testing, as their small size makes the generation of converged ensembles accessible to
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Figure 5.6: Agreement with the experimental 3.J vicinal couplings and NOE distances
of tetranucleotides. For the calculation of the 3.J RMSE the RNA torsion angles were
divided in two groups: a) the dihedral angles in the ribose-ring region (, » and 7) and
b) the phosphate-backbone angles (e, ¢, a and /3). In ¢) the RMSE between calculated
and predicted average NOE distances is presented and in d) it is shown the number of
false positives, i.e. the predicted distances below 5 A not observed in the experimental
data.

modern enhanced sampling techniques. We performed three T-REMD simulations with
the Amber,q, potential for the tetranucleotide sequences AAAA, GACC and CCCC.
These systems have been used before in very long (hundred of us) simulations [31—
33, 120, 128] and NMR experimental data is available [34, 166, 203]. The Amberl4
T-REMD data were taken from ref [192].

The 3J coupling RMSE, the NOE-distance RMSE, and the number of distance
false positives, i.e. the MD predicted NOEs not observed in the experiment, are pre-
sented in Fig 5.6. For these systems the number of false positives is one of the most
important parameters to assess the quality of the MD ensembles [34]. In the case of
tetranucleotides containing pyrimidines (GACC and CCCC), the correcting potential

improves significantly the agreement with the experimental data, mostly for the NOEs



56 | Empirical corrections to the Amber RNA force field

AAAA  Amberl4d AAAA Amber,q, AN PDB
s — ™ — 1 s 1
A
™ ™ ™
2 ‘ 2 . & 2
S Q of 05 ¥ 0 0.5
_T _T ‘ _ T ‘
2 2 2
—T " —T I : 0 —T L 0
-3 0 % -3 0 % o« -3 0 % o«
¢1 ¢1 ¢1
cceC Amberld CCCC Amber,y, cc PDB
s /o) 1 s
s s s
2 ‘ 2 2
S Q0 05 ¥ 0
_T _T ‘ _T ‘
2 2 2
- i o 0 r i ;
= - 0 3 = -f 0 § 7 = - 0 3
¢1 ¢1 ¢1
GACC Amberl4 GACC Amber,, AL PDB
™ 1 ™ 1 ™
1
2
3 0 Hos 9 0 05 3 0f
=z =z Q ]l @
2 2 2
—T 0 —T = 0 —T
=% 0 § = =% 0 § = - 5 0 3
¢1 ¢1 ¢1

Figure 5.7: Probability distributions of the backbone dihedral angles of AAAA and
CCCC tetranucleotides, in the region between residue 1 and 2. Results from the
RECT simulations with the standard force-field (Amberl4), the correcting potential
(Amberpqg,) and the dinucleoside X-ray ensembles (PDB) used to generate the correct-

ing potentials.

(see Fig B.11). This is confirmed by the root-mean-square deviation (RMSD) distribu-
tion shown in Figure 5.8 where it can be appreciated that for these two sequences the
corrections lead to an overall improvement of the ensemble by disfavoring the interca-
lated and inverted structures with a large RMSD from native. A completely different
scenario is found for the Amber,q;, ensemble of AAAA, where the corrections surpris-
ingly diminish the agreement with experiments. This can be also appreciated in a shift
of the Amber,q, RMSD distribution peaks to higher RMSD values due to an increased
population of compact structures (Fig 5.8). It should be noticed that the effect of
the correcting potentials in purines and pyrimidines depends strongly on the sequence
length. Whereas the AAAA tetranucleotide is negatively affected by the corrections,
the AA dinucleoside is the one that benefits the most from them.

As discussed in the section 5.3.1, the conformation along the phosphodiester back-

bone is very different between compact and extended tetranucleotide structures. The
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Figure 5.8: Empirical probability distribution of heavy atom RMSD from the canonical
A-form as computed for the reference replica trajectory. Distributions are shown for the
REMD simulations with Amber14 (black) and Amber,q,(red). The total probability is
shown in solid line and the above and below limits determined by the blocking error are
shaded. It can be appreciated that the correcting potentials increase the population
of extended structures (RMSD ~ 1-2 A) for the CCCC and GACC tetranucleotides,
while for AAAA the Amber,q, ensemble is farther from the canonical A-form.

probability distribution maps of the ay/(; backbone dihedral angles from the tetranu-
cleotides T-REMD simulations and the dinucleosides X-ray ensembles used to generate
the corrections are depicted in Fig B.1. Only phosphodiester backbone torsion an-
gles are shown, because they are the ones mostly affected by the correction. The
other backbone angles maps are shown in the Appendix B (Figs B.12-B.20). In the
PDB ensembles the distributions are always unimodal, independently of the sequence,
with a peak at the a(¢~)/((¢g~) conformation, whereas in the Amberl4 ensemble the
a(g™)/¢(¢g") and a(g7)/¢(g~) conformations are both significantly populated. The ef-
fects of the corrections, as seen before, are highly sequence dependent. In case of GACC
and CCCC, the a(g~)/¢(g™) rotamer is stabilized in the Amber,q;, distributions, with
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the population of a(g*)/((g") significantly decreased with respect to Amber14. On the
contrary, for AAAA the a(¢g7)/{(g") conformation is not unfavored by the correcting
potentials, despite not being significantly present in the PDB ensemble. This could be
due to the fact that the one dimensional target free-energy profile for dihedrals o and
¢ for the AA (Fig 5.4) exhibits barriers which are approximately 4 k,7" smaller with
respect to the ones from the Amberl4 force field. The effect of the decreased barrier
height can be appreciated in the ay/(; probability distribution of AAAA, where the

amount of torsional space explored is increased by the corrections.
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Figure 5.9: Empirical probability distribution of heavy atom RMSD from the canonical
A-form computed for the reweighted Amber14 ensemble as a function of the Gaussian
potential height For all sequences the increase of the penalty potential shifts the dis-
tributions closer to the A-form structure.

5.3.4 Consequences on future force field refinements

The good agreement of the Amber,q, ensembles with the NMR observables, in the case
of CCCC and GACC tetranucleotides, suggests that the RNA conformational space
sampled by state-of-the-art force field could be modified to better match experimental
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solution data by penalizing rotamers of the a and ¢ angles. As a further test, we
reweighted the T-REMD Amber14 ensembles with an additional two-dimensional pe-
nalizing Gaussian potential centered on the a(g™)/((¢g") conformation (See Fig 5.9).
Results are shown in Fig 5.10 for different Gaussian heights. Overall, the agreement
with the NMR experimental data improves considerably with respect to the original
force field as the Gaussian height increases. The relative population of the /¢ confor-
mations has an important impact on the number of false positive NOE contacts which
indicates the presence of intercalated structures. This improvement is achieved without
changing the non bonded interactions as it has also been proposed [26]. It is however
important to observe that these results are obtained by performing a reweighting, and
that corrections should be validated by performing separate simulations with this bias

potential.
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Figure 5.10: Agreement with the experimental data for the Amber14 reweighted ensem-
ble as a function of the Gaussian potential height. The bias potential was centered on
a(97)/¢(g") conformation (7, §) with a sigma per angle of 0.7 rad. “A-form” represent
a canonical A-form structure and “X-ray” an ensemble of tetranucleotide fragments,
with the same sequence, from the PDB (all taken from ref [192]).
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5.4 Discussion

In this chapter we apply targeted metadynamics to sample preassigned distributions
taken from experimental data [35, 36]. At variance with the original applications, we
here combine T-MetaD with enhanced sampling showing that these protocols can also
be used when the investigated ensembles have non-trivial energy landscapes separated
by significant barriers .

We apply the method to RNA oligonucleotides, for which the Amber14 force field
was proven to be in significant disagreement with solution NMR data [31, 33, 34, 120,
128, 166, 203, 214]. Since tetranucleotide fragments extracted from high resolution
structures in the PDB were shown to match NMR experiments better than Amber14
force field [192], we here used X-ray structures to build reference distributions of back-
bone dihedral angles that are then used to devise correcting potentials. More precisely,
we use T-MetaD to enforce the empirical distribution of the dihedral angles in the
phosphate backbone (e, a, ¢ and () on four dinucleoside monophosphates.

We calculated the correcting potentials concurrently for all the four angles in order
to change the distribution of these consecutive dihedrals along the backbone chain tak-
ing into account their correlation. The method successfully enforced the distributions
taken from the PDB on all the angles. The new ensemble generated by the corrected
force field (Amberyq,) was independently validated against solution NMR data that
was not used in the fitting of the corrections. For three of the four dinucleosides stud-
ied, Amber,q, showed a better agreement with the NMR data compared with Amber14
and with the X-ray ensemble.

We then tested the portability of the correcting potentials by simulating three
tetranucleotides, GACC, CCCC and AAAA. In the case of GACC and CCCC the
agreement with NMR data is significantly improved by the corrections. Surprisingly,
for AAAA the corrections have the opposite effect and increase the probability of vis-
iting compact structures making the simulated ensemble less compatible with solution
experiments. It should be noticed here that this is a non obvious result since the PDB
database is expected to have an intrinsic bias towards A-form structures and should
thus in principle increase the agreement with solution experiments in this specific case.
This indicates that porting the corrections from dinucleosides to tetranucleotides is not
straightforward because the coupling between the multiple corrected dihedrals could
affect the resulting ensemble in an non-trivial way. Additionally, corrections applied to
dihedral angles alone might be not sufficient to compensate errors arising from inexact
parametrization of van der Waals or electrostatic interactions [26]. Overall, the tests
we performed indicate that the corrections derived here should not be considered as

portable corrections for the simulation of generic RNA sequences.

Nevertheless, by comparing the backbone angle distributions on the different RNA
simulations and the X-ray ensembles, we were able to find possible hints pointing at
where refinement of dihedral potentials could lead to an advancement in RNA force

fields. In this respect, the results for GACC an CCCC show the significant improvement
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observed in the Amber,q, simulations for those systems could be reproduced by simply
penalizing the a(g")/C(g") conformation, which is overpopulated in Amberl4. By
a straightforward reweighting procedure, we showed that simple Gaussian potentials
that disfavor this conformation significantly improved the experimental agreement with
solution experiments for all the three tetranucleotides. Recent modifications of the
Lennard-Jones parameters for phosphate oxygens [110] and different water models [128]
were shown to affect the conformational ensemble of RNA tetranucleotides [33, 128]. It
might be interesting to combine these modified parameters for non-bonded interactions
with the here introduced procedure for dihedral angle refinement.

The nature of the correction methodology discussed in this chapter is very different
from the classical approach to force field parametrization, as it aims to correct the free
energy of the system, instead of fitting the potential energy landscape of the dihedral
angles while constraining the other degrees of freedom. It is important to notice that
the dihedral angle distributions taken from the fragments of the PDB structures do not
necessarily represent the conformational ensembles of dinucleosides or tetranucleotides
in solution. Indeed, some of the interaction patterns that are present in large structures
crystallized in the PDB do not exist in short oligonucleotides. For this reason, in this
work the distributions were validated against independent solutions NMR experiments.
This allowed the dihedral angles from the PDB distributions that performed better
than the force field to be identified. We also recall that in our procedure the force-
field torsion energy function is not refitted, but a bias potential is added to the total
energy of the system in order to match the free-energy profile of the torsion angles with
target ones. Thus, a major advantage of this approach is that it takes explicitly into
account the entropic contributions, the cross correlations between torsional angles, and

inaccuracies in the non-bonded interactions, among other effects.

5.5 Conclusion

In conclusion, in this work we applied the target metadynamics protocol to modify
dihedral distributions in dinucleosides. The procedure successfully enforces reference
distributions taken from the PDB without affecting the distribution of the dihedral an-
gles that were not biased. However, the attempt to port these corrections to tetranu-
cleotides lead to ambiguous results when applied to different sequences. This could
be partly due to the fact that distribution form the PDB are not necessarily a good
reference for refinement.

Nevertheless, the simulations revealed the importance of the a/( angles rotamers
on the modulation of the conformational ensemble, and that by only penalizing the
a(g™)/C(gT) rotamer the quality of the ensemble is significantly improved to levels not

reported before.



Chapter 6

Conclusions and Perspectives

In this thesis the problem of conformational sampling in MD simulations of RNA
systems and the low agreement of current RNA force fields is addressed with the in-
troduction of a novel and flexible enhancing sampling method, replica exchange with
collective-variable tempering (RECT), and the calculation of correcting potentials that
enforce distributions of dihedral angles taken from experimental structures. RECT
takes advantage of the adaptive nature of well-tempered metadynamics to build bias
potentials that compensate free-energy barriers. The results from a simulation of a
single-stranded RNA tetranucleotide show this new method is a promising tool to
accelerate the exploration of RNA conformational space. On the other hand, the intro-
duction of the corrected potentials on the AMBER force field lead to a better agreement
with independent solution experiments for the oligonucleotides containing pyrimidine
bases, but failed for the oligomer containing only Adenosine. However, the simulations
reveal that by only penalizing the a(g™)/((g") rotamer the experimental agreement of

the ensemble is significantly improved for all RNA tetranucleotide sequences.

Perspectives of this PhD thesis will be presented now. An issue with the current
formulation of RECT is that the convergence of the bias potentials could take some
time (tens of nanoseconds or more). To alleviate this, RECT could be modified to
allow each replicas feel the bias potentials of the other replicas, in the way of Multiple
Walker [223] and Altruistic Metadynamics [224]. Additionally, the geometric replica
distribution used here is merely heuristic: In the replicas with high v the Gaussian
approximation for the distribution of bias potentials is satisfactory, but the behavior
in the lower replicas diverges from the prediction. Finding a distribution of replicas
that maintain a constant acceptance ratio across the replica ladder is not a simple task,
but for the systems studied here a geometric distribution resulted in high acceptance
ratios and low round-trip times. Even if the number of CV is very large, the density
of replicas in RECT should not be higher than in other popular H-REMD methods,
as just moderated 7 factors are needed in the highest replicas to accelerate dihedral
transitions. Applying RECT in larger systems could be negatively affected by the
computational cost of building hundreds of WT-MetaD potentials at the same time. If

that is the case, the use of multiple-time step to integrate the biasing forces [225] could
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provide the necessary speed up. Moreover, if there is an a priori knowledge of the
system, knowledge-based CVs can be included in RECT, like CVs based on eRMSD,
which in nucleic acids are particularly well-suited to distinguish among conformational
states [215]. RECT can be also integrated with other replica exchange methods, like
parallel tempering [136] or solute tempering [146]. This combination could make a
difference in the difficult task of generating converged ensembles of RNA oligomers,
which demands hundreds of microseconds of simulated time and is fundamental for the
evaluation of new FF parameters or ad hoc corrections [33].

As it was mentioned before, the empirical corrections to the AMBER FF calcu-
lated here led to ambiguous results when applied to different tetranucleotide sequences.
We recognize the dihedral free-energy profiles estimated from X-ray ensembles are
not completely reliable. One solution to this problem could be to apply quality fil-
ters on the X-ray ensembles to eliminate conformational errors from the experimental
structures [102]. Moreover, free-energy profiles from QM/MM calculations in solution
could be used to generate accurate correcting potentials, in the spirit of the QM /MM
force matching approach [226]. The penalty potential suggested here for a rotameric
phosphate-backbone conformation has recently been tested in RNA tetraloops, result-

ing in a significant improvement over the Amber14 force field [227].
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Figure A.3: The projection of each replica trajectory on the dihedral free-energy landscape F'(¥,®) for both H-REMD methods. Although
uniform exploration of F'(¥, ®) is not achieved, each angle is uniformly sampled.
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C2exo  C3endo v1

Figure A.5: Time series and histograms of the 32 torsion angles biased during the
RECT simulation for the unbiased replica.
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Figure A.7: Time series and histograms of the 32 torsion angles with energies scaled
during the Hy;,-REMD simulation for the unbiased replica.
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Figure A.8: Time series and histograms of the 32 torsion angles with energies scaled

during the Hy;,-REMD simulation for replica 24.
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Figure B.3: Free-energy profiles of backbone dihedral angles for all the dinucleosides
monophosphates studied here, from the X-ray ensemble (PDB) and the RECT simula-
tions with the standard force-field (Amber14) and the correcting potential (Amberyqp).




Appendix | 75

|‘l
Q

—
J\,) 0
-
_: P
3 .
—a L 2
- ~§ 0 3
el
m
s
2 L
—
(W or
o A
2
T . ) L
- ~F 0}
el
m
iy
2
20
. |y
2
T . . X
- -F 0}
el

Figure B.4: Probability distributions of the backbone dihedral angles of AA dinucleo-
side monophosphate, from the X-ray ensemble (PDB) and the RECT simulations with
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Figure B.5: Probability distributions of the backbone dihedral angles of CC dinucleo-
side monophosphate, from the X-ray ensemble (PDB) and the RECT simulations with
the standard force-field (Amber14) and the correcting potential (Amber,qp).
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Figure B.6: Probability distributions of the backbone dihedral angles of AC dinucleo-
side monophosphate, from the X-ray ensemble (PDB) and the RECT simulations with
the standard force-field (Amber14) and the correcting potential (Amber,qp,).
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Figure B.7: Probability distributions of the backbone dihedral angles of CA dinucleo-
side monophosphate, from the X-ray ensemble (PDB) and the RECT simulations with
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Figure B.12: Probability distributions of the backbone dihedral angles of AAAA
tetranucleotide, in the region between residue 1 and 2. First are shown the dihedral
distributions from the RECT simulations with the standard force-field (Amber14) and
in second the ones performed with the correcting potential (Amberpa,). The dihedral
distributions of AA dinucleoside taken from the PDB are presented in the last row.
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Figure B.13: Probability distributions of the backbone dihedral angles of AAAA
tetranucleotide, in the region between residue 2 and 3. First are shown the dihedral
distributions from the RECT simulations with the standard force-field (Amber14) and
in second the ones performed with the correcting potential (Amberpa,). The dihedral
distributions of AA dinucleoside taken from the PDB are presented in the last row.

0.5

0.5

0.5



86 | Appendix
AAAA Amberld
™ T T T 1 ™ T T T 1 ™ - ~F
ks 7T kis
2 2 1 2
B) 1 ®
0 05 ¥ 0 05 & 0
T _z y _=z
3T 1 ) 2
. - PR — N, Ll . 4
- 0 5 = % 0 3 w =5 0 § m
€3 ¢3 ad
AAAA Amberpdb
™ T T T 1 ™ T T T 1 T L ZEmame -
w kis iy
0 05 ¥ 0 05 & 0
T _x . _x
2 7 2 2
—T . 0 —T . 0 —T — '}
=5 0 § = =5 0 § w =5 0 § m
€3 ¢3 a4l
AL PDB
m 1 ™ 1 T .g
T T iy
2 T 2 2
0 05 F 0 05 & 0
s ™ g ™
—2 Q —2 —3
—TT A 0 —TT n 0 —TT Ll n
=~ 0 § = % 0 § = =% 0 § m
el ¢1 a2

Figure B.14: Probability distributions of the backbone dihedral angles of AAAA
tetranucleotide, in the region between residue 3 and 4. First are shown the dihedral
distributions from the RECT simulations with the standard force-field (Amber14) and
in second the ones performed with the correcting potential (Amberpa,). The dihedral
distributions of AA dinucleoside taken from the PDB are presented in the last row.
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Figure B.15: Probability distributions of the backbone dihedral angles of CCCC
tetranucleotide, in the region between residue 1 and 2. First are shown the dihedral
distributions from the RECT simulations with the standard force-field (Amber14) and
in second the ones performed with the correcting potential (Amberpa,). The dihedral
distributions of CC dinucleoside taken from the PDB are presented in the last row.
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Figure B.16: Probability distributions of the backbone dihedral angles of CCCC
tetranucleotide, in the region between residue 2 and 3. First are shown the dihedral
distributions from the RECT simulations with the standard force-field (Amber14) and
in second the ones performed with the correcting potential (Amberpa,). The dihedral
distributions of CC dinucleoside taken from the PDB are presented in the last row.
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Figure B.17: Probability distributions of the backbone dihedral angles of CCCC
tetranucleotide, in the region between residue 3 and 4. First are shown the dihedral
distributions from the RECT simulations with the standard force-field (Amber14) and
in second the ones performed with the correcting potential (Amberpa,). The dihedral
distributions of CC dinucleoside taken from the PDB are presented in the last row.
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Figure B.19: Probability distributions of the backbone dihedral angles of GACC
tetranucleotide, in the region between residue 2 and 3. First are shown the dihedral
distributions from the RECT simulations with the standard force-field (Amber14) and
in second the ones performed with the correcting potential (Amberpq,). The dihedral
distributions of AA, AC and CC dinucleosides, taken from the PDB, are presented in

the last row.
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