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Abstract

In this thesis we consider a scenario where gravitational dynamics emerges
from the holographic hydrodynamics of some microscopic, quantum system
living in a local Rindler wedge. We start by considering the area scal-
ing properties of the entanglement entropy of a local Rindler horizon as a
conceptually basic realization of the holographic principle. From the gen-
eralized second law and the Bekenstein bound we derive the gravitational
dynamics via the entropy balance approach developed in [Jacobson 1995].
We show how this setting can account for the equilibrium and the non-
equilibrium features associated with the gravitational dynamics and ex-
tend the thermodynamical derivation from General Relativity to general-
ized Brans-Dicke theories. We then concentrate on the possibility to define
a version of fluid/gravity correspondence within the local Rindler wedge
setting. We show how the hydrodynamical description of the horizon can
be directly associated to a hydrodynamical description of the thermal fields.
Because of the holographic behavior, the properties of the Rindler wedge
thermal gauge theory are effectively encoded in a codimension one system
living close to the Rindler horizon. In a large scale analysis, this system
can be thought of as a fluid living on a codimension one stretched horizon
membrane. This sets an apparent duality between the horizon local geome-
try and the fluid limit of the thermal gauge theory. Beyond the connection
between the classical Navier-Stokes equations and a classical geometry, we
discuss the possibility to realize such a duality at any point in spacetime
by means of the equivalence principle. Given the shared local Rindler ge-
ometric setting, we eventually deal with the intriguing possibility to link
the fluid/Rindler correspondence to the derivation of the gravitational field
equations from a local non-equilibrium spacetime thermodynamics.
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Chapter 1

Introduction

1.1 State of Art

Einstein’s general theory of relativity describes how spacetime makes matter move, at
a kinematic level, as well as how matter tells spacetime to curve, at a dynamic level.
The former case - kinematics - essentially derives from the basic assumption of the
equivalence principle [Einstein 1907]. As far as the dynamics, on the other hand, a
funding principle is effectively still missing.

In the last two decades, several results, from different theoretical frameworks, have
indicated that this principle may be understood within the apparently deep connection
between gravity and thermodynamics.

A first hint in this direction is provided by kinematics itself. By stating that gravity
is nothing but acceleration in disguise, the equivalence principle suggests that horizons,
as direct byproduct of acceleration, necessarily play a fundamental role. Interestingly,
this role becomes clear only when quantum physics is considered.

The work of Hawking and Unruh in the early 1970s shows that uniform acceleration
in flat spacetime, corresponding, via equivalence principle, to gravitational forces, acts
as to thermalize quantum fields (Hawking-Unruh effect)[Hawking 1975a; Unruh 1976;
Sewell 1982]. In the local accelerating frame, described by a local Rindler metric, the
Minkowski vacuum appears as a thermal state. Therefore, one can study the entropy
associated with this system. This idea originally goes back to two different calculations
by ’t Hooft [’t Hooft 1985] and Bombelli, Koul, Lee, and Sorkin (BKLS)[Bombelli 1986;
Srednicki 1993]. In particular, ’t Hooft calculates the thermal partition function at the
Hawking temperature for a scalar field outside a very massive Schwarzschild black hole,
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which the Rindler spacetime closely approximates. Since the local Unruh temperature
T = ~a/2π diverges at the horizon, the entropy diverges as well and must be regularized
by replacing the horizon with a brick wall boundary condition. The resulting entropy
scales like the cross-sectional area of the horizon.

Separately, BKLS point out that the entropy of the fields localized by the hori-
zon can be given also in terms of a generic statistical von Neumann entropy, Sent =
−Trρ̂ ln ρ̂, where ρ̂ is an entanglement density matrix that results from tracing over the
unobservable regions of the Hilbert space. Again, this entropy must be regularized with
a ultraviolet (UV) cutoff, which yields in four spacetime dimensions Sent ∼ A/`2c . In-
terestingly, the thermal and quantum pictures of the entropy turn out to be equivalent,
because the density matrix ρ̂ is precisely a thermal Gibbs state.

Quantum fields thermal character and entropy area scaling behavior are at the
root of the thermodynamical description of black holes dynamics developed in 1970s
[Israel 1967; Bardeen 1973; Carter 1973; Hawking 1971; Hawking 1975a]. At classical
level, Hawking’s area law, associated with the general presence of irreversible processes
in black hole dynamics [Penrose 1971; Christodoulou 1971; Hawking 1971], suggests
the idea that a black hole should carry an entropy proportional to its horizon area.
The intuition of Bekenstein then produces the expression SBH = αA/~G, measuring
the area in units of the squared Planck length `2p = ~G/ c3, with an interpretation
of the horizon entropy1 as the logarithm of the number of ways in which black hole
might have been formed [Bekenstein 1973; Hawking 1976]. Later on, the discovery
of the Hawking-Unruh effect clarifies the thermal nature of black holes and fix the
value of the horizon entropy to the universal Bekenstein-Hawking value, SBH = A/4G.
The ultimate evidence of a consistent characterization of the black hole entropy with
the laws of classical thermodynamics is then provided by Bekenstein’s conjecture of
the generalized second law, stating that the sum of the entropy outside the black hole
and the entropy of the black hole itself will never decrease, d(Sout + αA/~G) ≥ 0
[Bekenstein 1973].

Horizons appear then to be deeply related to the notion of entropy. In particular, the
fact that entropy in general scales like the area of the horizon, provides a fundamental
relation between thermodynamics and spacetime geometry.

1A statistical mechanics derivation of such horizon entropy is originally attempted in [Gerlach 1976].
Also, in [Bekenstein 1975] the entropy is interpreted as the number of internal black hole states consis-
tent with a single black hole exterior, while as the number of horizon quantum states in [’t Hooft 1990;
Susskind 1994]. More formal or geometrical interpretations are given in [Jacobson 1994c; Visser 1993;
Bañados 1994] and in [Frolov 1997a; Frolov 1997b], based on thermo-field theory. Also, a considerable
amount of work has been done in calculating black hole entropy based on different candidate models
for quantum gravity [Rovelli 2004; Das 2000].
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A fundamental step forward consists in realizing that the physical meaning of this
relation should go beyond the framework of black hole dynamics. In fact, the Hawking-
Unruh effect itself, for its local nature, contributes to shift the focus from the ther-
mal properties of black holes toward the thermodynamics of horizons. As a general
consequence of quantum physics involving horizons, the framework of black hole ther-
modynamics is then extended to general spacetimes, whenever these are endowed with
a stationary horizon, associated with a global or local approximate notion of Killing
symmetry [Jacobson 2003; Wald 1992].

Now, being rooted on gravitational kinematics, horizon thermodynamics has no
apparent relation with gravitational dynamics, since no gravitational field equations
are involved in the picture. However, in the last decade, several investigations have
shown that this relation indeed exists and is apparently very deep, as it seems to relate
different newly recognized patterns concerning gravity.

At a formal level, this relation appears in the equivalence between the gravita-
tional field equations evaluated on a horizon and the thermodynamic identity TdS =
dE + PdV [Padmanabhan 2002]. Such equivalence is demonstrated for a wide class
of models including stationary axisymmetric and spherically symmetric horizons in
Einstein gravity [Kothawala ; Paranjape 2006], generic static horizons and dynamical
apparent horizons in Lanczos-Lovelock gravity [Cai 2008; Kothawala 2009], three di-
mensional BTZ black hole horizons [Jamil 2009], FRW cosmological models in various
gravity theories [Cai 2005], up to the case of Hořava-Lifshitz gravity [Cai 2010].

Further, second order gravitational action functionals have been shown to be gen-
erally characterized by a holographic relationship between bulk and surface terms.
Interestingly, when surface terms are evaluated at the horizon, in any given solution,
they give the horizon entropy [Padmanabhan 2002; Mukhopadhyay 2006]. Again, this
result extends far beyond Einstein’s theory to situations in which the entropy is not
proportional to horizon area. Because the surface term has the thermodynamic inter-
pretation, as horizon entropy, and is related holographically to the bulk term, these
results again led to suspect an indirect connection between spacetime dynamics and
horizon thermodynamics [Padmanabhan 2010].

In this line, it is interestingly shown the gravitational field equations of any diffeo-
morphism invariant theory can be effectively derived from a principle of maximization
of the horizon entropy [Padmanabhan 2002]. Note that, within this context, a ther-
modynamical derivation of gravitational dynamics is always derived from an “on shell”
argument, the gravitational dynamics being already encoded in the Noether charge
entropy defined in terms of the gravitational action [Wald 1992; Padmanabhan 2010].
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In this sense, the thermodynamical derivation of the Einstein equations appears close
to a formally equivalent rewriting of the hamiltonian formulation.

Beyond the formal equivalence, gravitational dynamics can be deduced from a ther-
modynamic principle even without any direct knowledge about the gravitational ac-
tion. In any neighborhood of spacetime, the proportionality between the area of the
local acceleration horizon and entropy of the locally Minkowski vacuum fields provides
a constitutive relation between spacetime geometry and matter. Perturbations of the
quantum fields thermal state, described in terms of entropy variations at thermodynam-
ical level, intuitively reflect in a perturbation of the horizon causal structure, measured
by an area change. In this sense, one can expect spacetime dynamics to be induced
by matter via a thermodynamical principle associated with the entropy variation. It
turns out that this principle consist in the general equilibrium entropy balance law,
TdS = δQ, with S, δQ and T interpreted as the entanglement entropy, the energy
flux and temperature associated with an accelerated observer just inside the horizon.
For the equivalence principle, then, this relation holds for all the local Rindler causal
horizons through each spacetime point. Viewed in this way, the Einstein equation is
an equation of state1 [Jacobson 1995].

The variety and coherence of thermodynamical aspects characterizing the gravita-
tional dynamics then starts being considered as an effective viable road to understand
gravity, in parallel to quantum gravity. In particular, the setting provides an intriguing
and intuitive way to re-interpret the nature of some possible microscopic quantum de-
grees of freedom of spacetime, coming from various corners of quantum gravity research,
in light of the gravity/thermodynamics correspondence.

A fundamental step towards the idea of geometrodynamics as a form of thermo/hydro
dynamics was accomplished in the 70s, thanks to the introduction of the so called
membrane paradigm approach [Damour 1979; Thorne 1986]. The membrane paradigm
regards the event horizon as a two-dimensional membrane that resides in three dimen-
sional space. This membrane is formally described as a viscous fluid with charge, finite
entropy and temperature, entailing the fundamental properties of the quantum fields
leaving close to the effective horizon surface. The interaction of the horizon with the
external universe is therefore described in terms of familiar laws of the horizon’s fluid,
i.e., Navier-Stokes equation, Ohm’s law, tidal force equation, and first and second laws
of thermodynamics [Thorne 1986].

1The same approach holds when a local generalization of the Noether charge entropy is
used, in place of entanglement entropy. This generalizes the“on-shell” thermodynamic derivation
[Padmanabhan 2002] to a more general local approach [Parikh 2009].
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Now, for black holes, the relationship between the dynamics of a fluid and the
dynamics of event horizon is just an analogy. The reason is that hydrodynamics is
only a valid effective theory of many-body systems on long spatial and temporal scales
[Forster 1995; Lifshitz 2000]. In order for hydrodynamics to be a valid description,
the characteristic wavelength and time scale of perturbations to the system must be
much larger than the microscopic scale set by a correlation length (or mean free path).
This basic criterion cannot be fulfilled even in the familiar example of a spherically
symmetric Schwarzschild horizon.

However, the more general Rindler horizons do not have an intrinsic curvature scale.
Therefore, a large scale hydrodynamic limit exists in this case. Hence, in particular,
the horizon hydrodynamics can be used to extend the framework of horizon thermo-
dynamics to the non-equilibrium regime, where dissipative effects can be taken into
account [Eling 2008]. In this case, the thermodynamical derivation of the gravitational
equations of motion via the entropy balance principle is generalized to include dissipa-
tive effects associated with the propagation of gravitational degrees of freedom which
are turned off in the equilibrium regime. Within this setting, the thermodynamical
derivation of gravitational dynamics can be extended to generalized theories of gravity,
whenever the entanglement entropy can be casted in a form proportional to the horizon
area. [Eling 2006; Chirco 2010b; Chirco 2011b].

In this sense, the interplay between gravitational dynamics and thermodynamics is
strengthened not only beyond Einstein’s general theory of relativity, but, interestingly,
also beyond the equilibrium setting. However, to the striking breakthrough given by the
thermodynamical interpretation for gravity corresponds the conceptually mind boggling
puzzle, regarding the presence of an underlying microscopic level of description for
spacetime.

In fact, this puzzle introduces a new dimension to the problem: a funding principle
for gravitational dynamics will necessarily have to do with the way gravity emerges from
a consistent characterization of the microscopic degrees of freedom associated with the
thermodynamical behavior at the macroscopic scale, though, one should expect such a
general principle to be independent of the specific details of the underlying microscopic
theory.

In quantum gravity, the problem of a statistical mechanical level of description
for gravity deals with the idea that a microscopic, or quantum, description of gravity
should derive from a quantization of space and time, that is, from a quantization of
geometry. In this sense, string theory, loop quantum gravity, group field theory and
lattice models, attempt to develop a quantum pre-geometric replacement for classical
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differential geometry. Such pre-geometric level of description is supposed to be rel-
evant at extremely small distances, where the quantum aspects of the theory would
be expected to dominate, while at larger distances (where the classical aspects dom-
inate) one would hope to recover both ordinary differential geometry and specifically
Einstein gravity or some generalization of it [Carlip 2001; Smolin 2003; Friedan 2003;
Rovelli 2004; Bousso 2004; Oriti 2005; Freidel 2005].

An alternative point of view consists in looking at the emergence of gravitational
dynamics as a direct manifestation on a macroscopic scale of the thermodynamics
of the vacuum. The idea follows the suggestion, typically attributed to Sakharov
[Sakharov 1968; Visser 2002], that gravity itself may not be fundamental physics, in
the same way fluid mechanics, as an example, is only the low-energy low-momentum
limit of a known underlying microphysics, given by molecular dynamics. In this case,
the concepts of density and velocity field make no sense at the microphysical level
and emerge only as one averages over time-scales and distance-scales larger than the
mean free time and mean free path. Analogously, in such induced gravity picture, the
description of spacetime in terms of a metric, gab(t,x), is considered as an emergent
phenomenon, valid at scales large compared with some critical length, which possibly
could be the Planck length [Adler 1982; Novozhilov 1991; Fursaev 2004]. In partic-
ular, in the emergent perspective, interesting insights are given by the study of non
gravitational analogue models, which set several parallels between induced gravity and
condensed matter systems [Barceló 2005].

In all these cases, a fundamental element for the understanding of a possible emer-
gent scenario is given by the area scaling behavior of the horizon entropy. From a
statistical thermodynamics point of view, the entropy measures the number of inde-
pendent quantum states compatible with the macroscopic parameters characterizing a
thermal state, that is N = eS . This number corresponds to the number of microscopic
degrees of freedom, say N = ln N, which are necessary to fully describe the physics
of the thermal state. Now, for the thermalized quantum fields responsible for the
Hawking-Unruh effect the area/entropy proportionality implies that N ∝ A, whereas,
for a general local quantum field theory this number generally is proportional to the vol-
ume of the system. The holographic behavior of the localized fields then suggests that
gravity is associated with a reduction of the degrees of freedom necessary to describe
the ambient quantum fields, whatever is their detailed nature.

This phenomenon originally led t’Hooft and Susskind to conjecture a description
of the microscopic degrees of freedom associated with the back hole entropy given by
means of a quantum field theory in one dimension less [’t Hooft 1993; Susskind 1995].
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More radically, this conjecture is then formalized in a holographic principle stating that
the physics of a region delimited by a boundary of area A should be fully describd by
no more than A/4 degrees of freedom. For the black hole solution, for example, this
implies that the lower dimensional quantum field theory should contain all the physical
information of the gravitational solution. In this sense, the holographic principle for-
mally interpret the effect of gravitational dynamics on the quantum field Hilbert space
in terms of an effective duality between gravity in (d+1) dimensions and quantum field
theories in (d) dimensions.

The most prominent example of holographic duality is realized by the AdS/conformal
field theory (CFT) correspondence [Maldacena 1998; Gubser 1998; Aharony 2000] in
which the gravity theory, given by Type IIB string theory in asymptotically Anti-
de Sitter spacetimes, AdS5 × S5, is dual to SU(N) N = 4 Super Yang-Mills (SYM)
conformal field theory on the boundary.

In such a duality, a classical black hole in AdS spacetime corresponds to a strongly
coupled thermal CFT at the Hawking temperature leaving on the spacetime boundary.
In particular, in reminiscence of the membrane paradigm, the large scale dynamics
of the black hole therefore is dual to the hydrodynamics of the thermal gauge theory
[Bhattacharyya 2008a; Rangamani 2009]. The resulting map between gravity and fluid
dynamics has come to be known as the fluid/gravity correspondence. Hydrodynamic
transport coefficients such as viscosities are calculated from a microscopic theory us-
ing “Kubo formulas”, which involve finite temperature Green’s functions of conserved
currents. The duality picture allows one to determine the transport coefficients of
these strongly coupled theories by mapping the calculation of Green’s functions into
a classical boundary value problem in the bulk spacetime [Son 2007]. As a conse-
quence, the transport coefficients of the dual gauge theory can be calculated directly
at the black hole horizon from the membrane paradigm [Kovtun 2003a; Saremi 2007;
Starinets 2009; Iqbal 2009]. In particular, a key early result that emerged from this
work is that, in the limit of infinite coupling, any (not necessarily conformal) gauge
theory with an Einstein gravity dual has a shear viscosity to entropy density ratio of
η/s = ~/4πkB. This value was conjectured by Kovtun, Son, and Starinets (KSS) to be
a universal lower bound [Kovtun 2005].

Again, the fluid/gravity map suggests a strong connection between gravity and
statistical physics [Hubeny 2011].

Indeed, the picture described above conceptually leads to think of Einstein’s equa-
tions in the presence of a regular event horizon as the strong coupling analogue of
the Boltzmann transport equations. In particular, the analogy with the Boltzmann
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transport equations implies that these equations are irreversible, somehow in line with
the non-equilibrium thermodynamical description. In analogy with the Boltzmann H-
theorem, which asserts that a certain functional of kinetic variables called H always
increases in time and is maximum in equilibrium, Einstein’s equations, together with
the assumption of regularity of future event horizons (and physical energy conditions),
always obey the classic area increase theorem of general relativity. The condition of
regularity of the future event horizon then seems to break the time reversal invariance
of Einstein’s equations. The Boltzmann theorem has a local analogue in fluid dynamics,
which maps to the statement that the equations of fluid dynamics are accompanied by
a local entropy current with everywhere non-negative divergence. The area increase
theorem of general relativity can be used to construct such an entropy current for the
fluid dynamics generated from the fluid/gravity map.

Overall then, the holographic duality scenario provides further support to the idea
of gravity as an emergent phenomenon, arising from some microscopic description that
does not know about its existence. The effective thermodynamical or more generally
hydrodynamical character of gravitational dynamics seems to originate from some inter-
play between irreversibility and causality, which is encoded in the fundamental notion
of entropy and its generalized second law and somehow reflected in a statistical me-
chanical description of the fundamental microscopic level. When a geometric structure
of spacetime is introduced in the game the notion of entropy is associated with the
notion of horizon while somehow irreversibility is encoded in the holographic principle.

In this sense, as far as the query for a funding principle for gravitational dynam-
ics, the holographic principle seems to be more fundamental than thermodynamics
itself. Following this line of thought, a further different emergent gravity argument has
been recently proposed by Verlinde [Verlinde 2011]. In this approach, inspired by the
AdS/CFT and open closed string correspondence, the nature of the degrees of free-
dom of the fundamental microscopic theory is generally treated as information, to be
associated with matter and its location on the emergent level of description. This in-
formation is measured in terms of entropy associated with the general boundary/screen
constraining the matter volume, by means of the holographic principle. Changes in the
entropy, associated with matter displacement at macroscopic level, are consequence of
the statistical averaged random dynamics at the microscopic level. Therefore, gravita-
tional dynamics is interpreted as the ultimate effect of an entropic force. In this sense,
the thermodynamical description of gravity effectively derives from the holographic
principle together with the equivalence principle.

8



1.2 A Very Local Point of View

Out of this wide picture, gravity seems to loose its status of fundamental force. De-
spite the number of different theoretical approaches involved, the set of fundamental
principles which lead to such a suggestion, is small and very general. Given that the in-
terplay between gravity, quantum mechanics and thermodynamics arises at a local level,
with the Hawking-Unruh effect at first, we wonder whether it is possible to reproduce
the conceptual series of arguments which led us from the equivalence principle to the
holographic principle at a local level, starting from the point of view of an accelerated
observer, that is from the physics of a Rindler acceleration horizon in flat Minkowski
spacetime. Despite the apparently oversimplified emergent scenario, an affirmative an-
swer to this question would be quite interesting, given that, being locally Minkowski,
gravity would be actually absent.

In this thesis we shall consider this point of view by starting from the local hori-
zon thermodynamics framework. We will take the area scaling properties of the en-
tanglement entropy of the Rindler horizon as a conceptually basic realization of the
holographic principle. From the generalized second law and the Bekenstein bound
we derive the gravitational dynamics via the entropy balance approach developed in
[Jacobson 1995].

Here, we show how this setting can account for the equilibrium and the non-
equilibrium features associated with the gravitational dynamics, in relation with the
activation and the propagation of the gravitational degrees of freedom entailed in the
definition of the entropy functional, via the area-entropy proportionality relation. We
suggest that the allowed gravitational degrees of freedom can be fixed by the kinematics
of the local spacetime causal structure, through the specific equivalence principle for-
mulation used, providing an interpretative advance in support of the thermodynamical
derivation of gravity. These considerations lead us to a first extension of the thermody-
namical derivation of the gravity field equations from General Relativity to generalized
Brans-Dicke theories.

We concentrate then on the possibility to define a version of fluid/gravity corre-
spondence within the local Rindler wedge setting. We show how the hydrodynamical
description of the horizon can be directly associated with a hydrodynamical description
of the thermal fields. Because of the holographic behavior, the properties of the Rindler
wedge thermal gauge theory are effectively encoded in a codimension one system living
close to the Rindler horizon. In a large scale analysis, this system can be thought of as
a fluid living on a codimension one stretched horizon membrane. This sets an apparent
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duality between the horizon local geometry and the fluid limit of the thermal gauge
theory.

From this field theory, with a classical linear response approach, we derive the
horizon viscosity via a holographic Kubo formula in terms of a two-point function
of the stress tensor of matter fields in the bulk. The entanglement viscosity over
entropy density ratio turns out to satisfy the universal Kovtun-Son-Starinets value in
four dimensions, 1/4π, suggesting the universal ratio may be a fundamental property
of quantum entanglement and its associated holography more than being rooted in
quantum gravitational physics [Chirco 2010a].

This approach naturally identifies the underlying fundamental system with the
Minkowski vacuum, in an induced gravity flavor, in line with the work done by Can-
delas and Sciama [Candelas 1977], where black holes are shown to be effectively con-
form to the principles of nonequilibrium and irreversible thermodynamics, in the form
of a fluctuation-dissipation theorem and the dissipation of a gravitational perturba-
tion [Hawking 1972] can be measured in terms of the quantum fluctuations of the black
hole gravitational field. Note, however, that the actual nature of the microscopic de-
grees of freedom is not central in our analysis.

Beyond the connection between the classical Navier-Stokes equations and a classical
geometry, based on some recent works [Bredberg 2011b; Bredberg 2011a; Compere 2011]
suggesting the possibility of an underlying holographic duality relating a theory on fixed
rc to the interior bulk of the Rindler spacetime, we discuss the possibility to realize
such a duality at any point in spacetime by means of the equivalence principle. Given
the shared local Rindler geometric setting, the fluid/Rindler correspondence seems to
be naturally linked to derivations of the gravitational field equations from a local non-
equilibrium spacetime thermodynamics. Interestingly, given the possibility to derive
the gravitational dynamics from the horizon hydrodynamics and contemporarily define
a duality between the horizon fluid and a dimensionally reduced quantum field theory,
we consider the opportunity to make gravity emerge in an holographic way from the
dual theory fluid dynamics. Therefore, we eventually deal with the intriguing possibil-
ity to produce a gravitational dynamics as a dual of a non relativistic emergent field
theory and discuss the possible consequence of these results within the context of the
emergent gravity scenario.
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1.3 Plan of the Thesis

The thesis content is organized as follows. Chapter 2 will provide a toolbox for the
basic physics involved in the general framework of emergent gravity thermodynamics.
Here we set a basic conceptual chain of arguments connecting the equivalence prin-
ciple to the holographic principle, which will be successively reproduced in our local
approach. Chapter 3 will introduce and characterize the notion of local Rindler frame
associated with a local acceleration horizon. This frame will constitute a sort of local
gedanken laboratory, where gravitational dynamics can be studied as an effectively ap-
parent phenomenon. In this chapter we introduce the thermodynamical derivation of
Einstein’s equation based on the thermal properties of the local Minkowski vacuum.
This approach will be repeatedly adopted throughout the thesis work. The next three
chapters contain the work developed during the PhD studies. In Chapter 4 we argue
on the necessity of a non-equilibrium treatment of the thermodynamical derivation and
discuss its extension to generalized gravity theories. At this stage we deal with a sce-
nario where gravity emerges from the holographic hydrodynamics of some microscopic,
quantum system. In Chapter 5 we characterize the link between horizon hydrodynam-
ics and vacuum fluctuations by proposing an entanglement derivation of the horizon
viscosity coefficient. Chapter 7 proposes an extension of the fluid/gravity duality to
higher order gravity theories and discuss about the possibility to realize a dual de-
scription at a local level, with a consequential connection to the local thermodynamical
derivation of gravity form the setting previously discussed. Eventually, in Chapter 8 we
will conclude with a comment on the reliability of the proposed scenario, its possible
connections with the different approaches reviewed and its future perspectives.
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Chapter 2

Gravity as Thermodynamics: a

Toolbox

In this chapter we collect the minimal set of arguments necessary to conceptually relate
the equivalence principle to the holographic principle in a spacetime neighborhood.
From this set, by mean of a local horizon thermodynamics we will start, in the following
chapters, to investigate the problem of gravitational dynamics in a way similar, in spirit,
to using freely falling observers to determine the kinematics of gravity.

2.1 Equivalence Principle ⇔ Acceleration

The Equivalence Principle is already incorporated in Newtonian gravity. Newton points
out in the Principia that the “mass” of any body — meaning the quantity that regulates
its response to an applied force — and the “weight” of the body — the property
regulating its response to gravitation — should be equal. This equivalence is later
reformulated [Bondi 1957] in terms of a distinction in the definition of mass: the inertial
mass, the ratio between force and acceleration in Newton’s second law, which measures
a particle’s resistance to acceleration, and the gravitational mass, gravitational analog
of electric charge, which appears in the equation for the attractive force

f = −Gmm
′

r2
, (2.1)

G being the gravitational constant. Because of the symmetry of Eq. (2.1) (Newton’s
third law), in Newton’s theory the two masses are essentially equivalent. In this sense,
the Newton’s equivalence principle states that for all particles, inertial and gravitational
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masses are in the same proportion. In particular, given that all particles experience the
same gravitational field, the path followed by a particle in space and time is entirely
independent of its internal structure and composition.

Newton’s equivalence principle, or Weak Equivalence Principle (WEP), thus pre-
dicts that mechanics will take precisely the same course in a freely falling laboratory
(e.g. the famous elevator cabin) as in a laboratory that is unaccelerated and far away
from all attractive masses, i.e., as in a strict inertial frame.

In the general theory of relativity (GR), Einstein essentially assumes that the rest
of physics goes along with mechanics and thereby postulates that [Einstein 1907] “ all
local freely falling, non rotating laboratories are fully equivalent for the performance of
all physical experiments”.

More technically, Einstein’s reformulation of the equivalence principle, known as
Strong Equivalence Principle (SEP), states that [Will 1981]: (i) the WEP is valid for
self-gravitating bodies as well as for test bodies, (ii) the outcome of any local test
experiment is independent of the velocity of the freely-falling apparatus and (iii) the
outcome of any local test experiment is independent of where and when in the universe
it is performed.

Therefore, the SEP essentially extends the validity of the WEP to self-gravitating
bodies and adds two more important statements: Local Lorentz Invariance (LLI) and
Local Position Invariance (LPI).

A freely-falling observer carries a local frame in which test bodies have unaccelerated
motions, i.e. a local inertial frame (LIF). According to the requirements of the LLI, the
outcomes of all experiments are independent of the velocity of the LIF and therefore
if two such frames located at the same event P have different velocities, this should
not affect the predictions for identical experiments. LPI requires that the above should
hold for all spacetime points. Therefore, roughly speaking, in local freely falling frames
the theory should reduce to Special Relativity.

This implies that there should be at least one second rank tensor field which in
LIF reduces to the Minkowski metric ηab. In particular, since at each event P there
exist local frames called local Lorentz frames, one can find suitable coordinates at P,
by which

gab = ηab + O

(∑
a

|xa − xa(P)|2
)

(2.2)

and ∂gab/∂x
a = 0. Therefore, in local Lorentz frames, the geodesics of the metric gab

are straight lines. In particular, free-fall trajectories are straight lines in a local freely-
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falling frame1. This is extremely important as it ensures the possibility to define light
cones and hence causality at local level.

The extension of LLI and LPI to all the local experiments, including local gravita-
tional experiments, is a quite strong requirement. For the time being there is no theory
other than GR that satisfies the SEP 2.

However, one can consider a weaker formulation of the equivalence principle, where
only local non gravitational experiments are taken into account. Such a formulation is
provided by the Einstein Equivalence Principle (EEP): (i) the WEP is valid, (ii) the
outcome of any local non-gravitational test experiment is independent of the velocity of
the freely-falling apparatus (LLI) and (iii) the outcome of any local non-gravitational
test experiment is independent of where and when in the universe it is performed (LPI).

Again, EEP predicts that in local freely falling frames the theory should reduce to
Special Relativity. However, in this case, the second rank tensor field in the local freely
falling frame can reduce to a metric which is conformal with the Minkowski one. The
freedom of having an arbitrary conformal factor is due to the fact that the EEP does
not forbid a conformal rescaling in order to arrive to special-relativistic expressions for
the physical laws in the local freely-falling frame3.

One can then conclude that rescaling coupling constants and performing a con-
formal transformation leads to a metric gab which, in every freely falling local frame
reduces (locally) to the Minkowski metric ηab. It should be stressed that all conformal
metrics ϕgab (ϕ being the conformal factor) can be used to write down the equations
or the action of the theory. However, since at each event P there exist local frames
called local Lorentz frames, one can find suitable coordinates in which the expression
(2.2) holds [Sotiriou 2007a].

The possibility of considering different formulations of the equivalence principle will
be extremely important for our approach to gravitational dynamics (see Chapter 3).
However, at this stage, we want to essentially focus on the basic implication of the
equivalence between gravitational and inertial mass, that is the fact that no external

1Identifying the two frames we realize that the geodesics of gab coincide with free falling trajectories.
2It should be stressed that in principle it is possible to build up other theories that satisfy the SEP

but up to this point only one is actually known: Nordström’s conformally-flat scalar theory, which dates
back to 1913 [Nordström 1913]. However, this theory is not observationally viable since it predicts no
deflection of light.

3Note however, that while one could think of allowing each specific matter field to be coupled to
a different one of these conformally related second rank tensors, the conformal factors relating these
tensors can at most differ by a multiplicative constant if the couplings to different matter fields are to
be turned into constants under a conformal rescaling as the LPI requires (this highlights the relation
between the LPI and varying coupling constants).
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Figure 2.1: Carter Penrose diagrams of causal horizon in conformal compactification of
A) Asymptotically flat black hole spacetime and B) de–Sitter spacetime. Future null
infinity is denoted by I+, while future time-like infinity by i+.

static homogeneous gravitational field can be detected in a local inertial frame. This
effectively implies that one can not only locally eliminate gravity by free fall, but
equivalently locally create it by acceleration.

2.2 Acceleration ⇔ Horizons

In a local inertial frame, an accelerating observer will necessarily outrun photons.
Clearly, this observer will never reach the speed of light; however, if light starts out
from a point sufficiently far behind her, it will never catch her up. As a consequence,
there will be a causally hidden region of events whose forward light cones never inter-
sect the observer’s world line. In the observer’s accelerating frame, the boundary of
the hidden region defines a causal horizon.

2.2.1 Causal Horizons

A causal horizon is generally defined as the boundary of the past of any time-like curve
λ of infinite proper length in the future direction [Gibbons 1977].
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For a black hole in asymptotically flat spacetime, e.g., the event horizon is the
boundary of the past of all of I+ . However, an equivalent definition is given by the
boundary of the past of any time-like curve that goes to future time-like infinity i+.
Thus, the event horizon can be equivalently defined as the boundary of the past of i+

itself (see Fig. 2.2). In this sense, the black hole horizon is defined with reference to
the intrinsic asymptotic structure of the spacetime, without referring to a particular
class of observers.

Differently, in a spacetime that is asymptotically de Sitter in the future, an asymp-
totic de Sitter horizon is defined by the boundary of the past of a time-like worldline
reaching a point p at space-like I+ , or equivalently the boundary of the past of p.
Since there are many different points at I+ , in this case there will be many inequiva-
lent asymptotic de Sitter horizons. Therefore, an asymptotic de Sitter horizon is said
to be observer-dependent. The observer dependent character of this notion of horizon
will be important for a universal characterization of the thermodynamical description
of gravity.

In particular, in asymptotically flat spacetime, one can generally define an observer
dependent asymptotic Rindler horizon (ARH) by the boundary of the past of an accel-
erated worldline that goes to a point p on I+ (which is here null), or equivalently the
boundary of the past of p.

In Minkowski spacetime an ARH is just what is usually meant by a Rindler horizon.
This is the simplest context where horizons arise for a class of observers. In particular,
having in mind the conceptual expedient by which in a local inertial frame gravity can
be “created” by means of acceleration, the properties of the Rindler horizon associated
with an accelerated observer in Minkowski spacetime will constitute the basic setting
for our discussion.

2.2.2 Rindler Wedge

The Minkowski line element in general (d+1)-dimensions can be written in both Carte-
sian (Minkowski), xa = (t, z, xi), and polar (Rindler) coordinates, ya = (τ, ξ, xi), where
i = 1..d (d is the number of transverse spatial dimensions),

ds2 = −dt2 + dz2 + dxidxi = −κ2ξ2dτ2 + dξ2 + dxidxi, (2.3)
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the Rindler metric being obtained by the coordinate transformation,

t = ξ sinh(κτ)

z = ξ cosh(κτ)

xi = xi (2.4)

Here κ is an arbitrary constant with dimensions [L]−1 associated with the normalization
of the time-like Killing vector ∂τ . The opportunity to introduce the constant κ will be
discussed in Chapter 3.

Unlike the global inertial coordinates xa, the Rindler coordinates only cover a
“wedge” subregion of Minkowski space where z > |t|, the so called Rindler wedge.

In the first form of the line element the translation symmetries generated by the
Killing vectors ∂t and ∂z are manifest, while, in the second form, the boost (hyper-
bolic rotation) symmetry generated by the Killing vector ∂τ is manifest. The latter is
clearly analogous to rotational symmetry in Euclidean space. In particular, the time-
like Killing flow ∂τ is equivalent to a continuous boost in the z direction. The respective
boost time parameter τ is proportional to the proper time along the worldlines of the
uniformly accelerated observer defined by the ξ = const hyperbolas.

Therefore, the Rindler acceleration horizon associated to a uniformly accelerated
observer in flat spacetime is a bifurcate Killing horizon1. The pair of planes at z = t

(in Cartesian coordinates) defines a bifurcate Killing horizon associated to the boost
Killing flow ∂τ , the bifurcation surface coinciding with the xi plane at z = 0 and t = 0.

This symmetry has a fundamental role when quantum physics comes into play.

2.3 Killing Horizon Symmetry⇔ Thermal Quantum Fields

The Rindler wedge of Minkowski, where ξa = (∂τ )a is time-like, can be seen locally as a
spacetime in its own right. In particular, one can construct a quantum field theory for
this region, using ξa as the time-like Killing vector field. However, in the 1970’s, it was
realized that quantization of fields on the Rindler spacetime (2.3) is inequivalent to the
usual field quantization in full Minkowski spacetime. The reason is that the Rindler

1A causal horizon whose generators coincide with some Killing flow is a Killing horizon, i.e. a
null hypersurface generated by a Killing flow. A bifurcate Killing horizon (in four dimensions) is a
pair of Killing horizons which intersect in a particular two dimensional space-like cross section - called
the bifurcation surface - on which the Killing vector vanishes. Examples of these occur in Minkowski,
de Sitter, Anti de Sitter, and Schwarzschild spacetimes. Given that the various examples of Killing
horizons are all indistinguishable in a neighborhood of the bifurcation surface smaller than the curvature
scale, the acceleration horizon provides a universal template for all of them.
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Hamiltonian generates a flow in boost time. It follows that the notion of the vacuum
for the Rindler quantization must be different than the usual Minkowski vacuum |0〉.
In particular, a non-inertial observer will determine a different zero energy state, called
the Fulling-Rindler vacuum |F 〉 [Fulling 1973].

2.3.1 The Unruh Effect

On the other hand, Unruh’s discovery [Unruh 1976] was that when expressed in the
Rindler wedge Fock space the restriction of the Minkowski vacuum |0〉 appears to be a
thermal state, characterized by a density matrix ρ = Z−1 exp (−HB/T ), where HB is
the operator generating Lorentz boost on the quantum fields and the “temperature” is
T = ~κ/2πc. This temperature does not have dimensions of energy. However, if one
rescales HB to generate proper time translations defined by ξa on the world line of the
uniformly accelerated observer, this temperature becomes the Unruh temperature,

TU = T (κξ)−1 = ~a/2πc, (2.5)

associated to an observer with acceleration a = ξ−1. Thus there is already something
“thermal” about the vacuum fluctuations even in flat spacetime and effect is rooted in
the existence of the causal horizon and its stationarity properties.

Owing to the symmetry of the Minkowski vacuum under translations and Lorentz
transformations, the vacuum will appear stationary in a uniformly accelerated frame.
Moreover, since it is the ground state, it is stable to dynamical perturbations. Station-
arity and stability of the state alone are sufficient to indicate that the state is a thermal
one, as shown by Haag [Haag 1992] in axiomatic quantum field theory.

We provide two derivations of the Unruh effect, both of which are valid for arbitrary
interacting scalar fields in spacetime of any dimension. The arguments will closely
follow a simple and clear exposition provided by Jacobson in his notes on Black Hole
Thermodynamics [Jacobson 2005].

2.3.2 Two-point Function and KMS Condition

A thermal density matrix ρ = Z−1 exp(−βH) has two identifying properties. First, it
is stationary, since it commutes with the Hamiltonian H. Second, because exp(−βH)
coincides with the evolution operator exp(−itH) for t = −iβ, expectation values in
the state ρ possess a certain symmetry under translation by −iβ, known as the KMS
condition [Sewell 1986; Haag 1992]: Let 〈A〉β denote the expectation value tr(ρA), and
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let At denote the time translation by t of the operator A. Using cyclicity of the trace
we have

〈A−iβB〉β = Z−1tr
(
e−βH(eβHAe−βH)B

)
(2.6)

= Z−1tr
(
e−βHAB

)
= 〈AB〉β

Note that for nice enough operators A and B, 〈A−iτB〉β will be analytic in the strip
0 < τ < β. Now let us compare this behavior with that of the two-point function along
a uniformly accelerated worldline in the Minkowski vacuum.

If, as usual, the vacuum state shares the symmetry of Minkowski spacetime, then,
in particular, the 2-point function G(x, x′) = 〈ϕ(x)ϕ(x′)〉 must be a Poincaré invariant
function of x and x′. Thus it must depend on them only through the invariant interval,
so one has G(x, x′) = f((x − x′)2) for some function f . Now consider an observer
traveling along the hyperbolic trajectory ξ = a−1. This worldline has constant proper
acceleration a, and aτ is the proper time along the world line. Let us examine the
2-point function along this hyperbola

G(τ, τ ′) ≡ G(x(τ), x(τ ′)) (2.7)

= f
(
[x(τ)− x(τ ′)]2

)
= f

(
4a−2 sinh2[(τ − τ ′)/2]

)
,

where the third equality follows from (2.4)1. Now, since sinh2(τ/2) is periodic under
translations of τ by 2πi, it appears that G(τ, τ ′) is periodic under such translations
in each argument. In terms of the 2-point function the KMS condition implies G(τ −
iβ, τ ′) = G(τ ′, τ), which is not the same as translation invariance by −iβ in each
argument. This does not mean that in fact the 2-point function in the Minkowski
vacuum along the accelerated worldline is not thermal. First of all, a Poincaré invariant
function of x and x′ need not depend only on the invariant interval. It can also depend
on the invariant step-function θ(x0 − x′0)θ((x − x′)2). More generally, the analytic
properties of the function f have not been specified, so one cannot conclude from the
periodicity of sinh2(τ/2) that f itself is periodic2.

To reveal the analytic behavior of G(x, x′), it is necessary to incorporate the con-
1Note that we will put κ, ~, c = 1 all through the following argument.
2For example, f might involve the square root, sinh(τ/2), which is anti-periodic. In fact, this is

just what happens.
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ditions that the spacetime momenta of states in the Hilbert space lie inside or on the
future light cone and that the vacuum has no four-momentum. One can show (by in-
serting a complete set of states between the operators) that these imply the existence
of an integral representation for the 2-point function of the form

G(x, x′) =
∫
dnkθ(k0)J(k2)e−ik(x−x′) (2.8)

where J(k2) is a function of the invariant k2 that vanishes when k is space-like. Now
let us evaluate G(τ, τ ′) along the hyperbolic trajectory. Lorentz invariance allows us to
transform to the frame in which x − x′ has only a time component which is given by
2a−1 sinh[(τ − τ ′)/2]). Thus we have

G(τ, τ ′) =
∫
dnkθ(k0)J(k2)e−i2a−1k0sinh[(τ−τ ′)/2] (2.9)

Now consider analytic continuation τ → τ − iθ. Since only k0 > 0 contributes, the
integral is convergent as long as the imaginary part of the sinh is negative. One has
sinh(x+ iy) = sinhx cos y+ i coshx sin y, so the integral converges as long as 0 < θ <

2π. Since sinh(x−iπ) = sinh(−x), we can finally conclude thatG(τ−i2π, τ ′) = G(τ ′, τ),
which is the KMS condition (2.7).

2.3.3 The Vacuum State as a Thermal Density Matrix

The essence of the Unruh effect is the fact that the density matrix describing the
Minkowski vacuum, traced over the states in the region z < 0, is precisely a Gibbs
state for the boost Hamiltonian HB at a temperature T = 1/2π,

trz<0|0〉〈0| = Z−1 exp(−2πHB), (2.10)

with
HB =

∫
Tab(∂τ )adΣb. (2.11)

This rather amazing fact has been proved with varying degrees of rigor by many different
authors. A proof of such a result is provided here by a path integral argument.

As anticipated at the top of the section, since the boost Hamiltonian has dimensions
of an action rather than energy, so does the temperature. Note from (2.4) that the norm
of the Killing field ∂τ on the orbit ξ = a−1 is a−1, whereas the observer has unit 4-
velocity. If the Killing field is scaled by a so as to agree with the unit 4-velocity at
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ξ = a−1, then the boost Hamiltonian (2.11) and temperature are scaled in the same
way. Thus the temperature appropriate for the observer at ξ = a−1 is T = a/2π. Since
a is the proper acceleration of this observer, we recover the Unruh temperature defined
above. Alternatively, the two-point function defined by (2.10) along the hyperbola
obviously satisfies the KMS condition relative to boost time τ at temperature 1/2π.
When expressed in terms of proper time aτ , this corresponds to the temperature a/2π.

In particular, one can view the relative coolness of the state at larger values of ξ
as being due to a redshift effect - in this case a Doppler shift - as follows. Suppose
a uniformly accelerated observer at ξ0 sends some of the thermal radiation he sees to
another uniformly accelerated observer at ξ1 > ξ0. This radiation will suffer a redshift
given by the ratio of the norms of the Killing field: say p is the spacetime momentum
of the radiation, then p · ∂τ is conserved [Wald 1984], but the energy locally measured
by the uniformly accelerated observer is p · ∂τ/|∂τ |, so that E1/E0 = |∂τ |0/|∂τ |1. This
is precisely the same as the ratio T1/T0 of the locally measured temperatures. At
infinity |∂τ | = ξ diverges, so the temperature drops to zero, which is consistent with
the vanishing acceleration of the boost orbits at infinity.

The path integral argument to establish (2.10) goes like this: Let H be the Hamil-
tonian generating ordinary time translation in Minkowski space. The vacuum |0〉 is the
lowest energy state, and we suppose it has vanishing energy: H |0〉 = 0. If |ψ〉 is any
state with nonzero overlap with the vacuum, then exp(−t̃H)|ψ〉 becomes proportional
to |0〉 as the imaginary time t̃ goes to infinity. That is, the vacuum wavefunctional
Ψ0[ϕ] for a field ϕ is proportional to 〈ϕ| exp(−t̃H)|ψ〉 as t̃ → ∞. Now this is just a
matrix element of the evolution operator between imaginary times t̃ = −∞ and t̃ = 0,
and such matrix elements can be expressed as a path integral in the “lower half” of
Euclidean space,

Ψ0[ϕ] =
∫ ϕ(0)

ϕ(−∞)
Dϕ exp(−I), (2.12)

where I is the Euclidean action. The key idea in recovering (2.10) is to look at (2.12) in
terms of the angular “time”-slicing of Euclidean space instead of the constant t̃ slicing.
The relevant Euclidean metric (restricted to two dimensions for notational convenience)
is given by

ds2 = dt̃
2 + dσ2 = ρ2dθ2 + dρ2. (2.13)

Adopting the angular slicing, the path integral (2.12) is seen to yield an expression for
the vacuum wavefunctional as a matrix element of the boost Hamiltonian (2.11) which
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coincides with the generator of rotations in Euclidean space,

〈ϕLϕR|0〉 = N 〈ϕR| exp(−πHB)|ϕL〉 (2.14)

where ϕL and ϕR are the restrictions of the boundary value ϕ(0) to the left and right
half spaces respectively, and a normalization factor N is included. The Hilbert space
HR on which the boost Hamiltonian acts consists of the field configurations on the
right half space z > 0, and is being identified via reflection (actually composed with
CPT [Bisognano 1975; Bisognano 1976; Sewell 1982]) with the Hilbert space HL of field
configurations on the left half space z < 0. The entire Hilbert space is H = HL

⊗
HR,

modulo the degrees of freedom at z = 0.
Using the expression (2.14) for the vacuum wave functional we can now compute the

reduced density matrix for the Hilbert space HR: Now consider the vacuum expectation
value of an operator OR that is localized on the right half space,

〈ϕ′|(trL|0〉〈0|)|ϕ〉 =
∑
ϕL

〈ϕLϕ
′|0〉〈0|ϕLϕ〉 (2.15)

= N2
∑
ϕL

〈ϕ′| exp(−πHB)|ϕL〉〈ϕL| exp(−πHB)|ϕ〉

= N2〈ϕ′| exp(−2πHB)|ϕ〉

where (2.14) was used in the second equality.
This shows that, as far as observables located on the right half space are concerned,

the vacuum state is given by the thermal density matrix (2.10). More generally, this
holds for observables localized anywhere in the Rindler wedge, as follows from boost
invariance of (2.10). This path integral argument directly generalizes to all static
spacetimes with a bifurcate Killing horizon, such as the Schwarzschild and deSitter
spacetimes [Laflamme 1989; Jacobson 1994a]. In the general setting, the state defined
by the path integral cannot be called the vacuum, but it is a natural state that is
invariant under the static Killing symmetry of the background and is nonsingular on the
time slice where the boundary values of the field are specified, including the bifurcation
surface.
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2.4 Thermal Field Theory ⇔ Black Hole Thermodynam-

ics

One can generally consider a black hole as being analogous to an ordinary dynamical
system with many degrees of freedom [Wald 1992].

In a general non-equilibrium setting, the state of an ordinary dynamical system can
be defined only given a complete knowledge of its microscopic structure and dynamics.
However, in thermal equilibrium, the same state can be characterized by a small number
of macroscopic extensive parameters such as total energy, E, entropy, S, volume, V ,
and particle number, N .

Analogously, the description of a general non stationary black hole state requires
the detailed initial data of general relativity, as well as the full Einstein equation to
determine its time evolution. On the other hand, the black hole uniqueness theorem
states that a stationary black hole can be characterized by only three parameters: mass,
M , angular momentum, J , and charge, Q. [Israel 1967; Hawking 1971; Carter 1973;
Wald 1984].

For a slight deviation from stationarity, the black hole state parameters are related
one to each other by,

dM = ΩdJ + ΦdQ+ κdA/8πG, (2.16)

where Ω and Φ are the horizon angular velocity and electric potential, while κ is the
surface gravity of the horizon1. Stationarity, from Killing symmetry, assures that κ, Ω
and Φ, though defined locally, will stay constant over the black hole horizon.

In fact, the horizon quantities characterize the black hole state in the same way a
thermal equilibrium state is characterized by the intensive parameters such as temper-
ature, T , chemical potential, µ, and pressure, P .

In this sense, equation (2.16) is mathematically equivalent to the ordinary first law
of thermodynamics, relating two states in thermal equilibrium connected by a reversible
transformation,

TdS = dE + PdV − µdN. (2.17)

The formal analogy effectively extends to the ordinary second law of thermody-
namics — non decreasing total entropy — in relation to the black hole area theorem
[Hawking 1971], which states that the area of a black hole event horizon never decreases

1The surface gravity is defined as the magnitude of the gradient of the norm of the horizon gener-
ating Killing field χa = ξa + Ωψa at the horizon, κ2 ≡ −χ;aχ

;a, or more physically as the magnitude
of the acceleration, with respect to the Killing time, of a stationary zero angular momentum particle
just outside the horizon.
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with time, assuming Cosmic Censorship and a positive energy condition. The presence
of irreversibility in the two contexts is what suggests the connection between black hole
physics and thermodynamics has a deep physical content.

This connection is strengthened by the further consistence with the zeroth law of
thermodynamics, which states that for a body in thermal equilibrium the temperature
must be uniform over the body [Carter 1973; Racz 1992], in analogy with the constant
value of the surface gravity along the stationary horizon. While, the third law of
thermodynamics states that a thermal system can not be lowered at absolute zero
temperature by an equilibrium process, with an analog, in black hole physics, given by
the Israel theorem, stating that the surface gravity of the horizon cannot be reduced
to zero in a finite nuber of steps [Israel 1986]. Therefore, remarkably, classical general
relativity predicts a relation between κ and T , as well as for A and S, whose physical
meaning is set by quantum physics [Bekenstein 1973; Bardeen 1973].

2.4.1 Hawking Effect

One can onsider an accelerated nonrotating observer sitting at fixed radius r outside
a Schwarzschild black hole. For r very near the horizon Rs, the acceleration a is very
large, and the associated timescale a−1 is very small compared to Rs. The curvature
of the spacetime is negligible on this timescale, so one expects the vacuum fluctuations
on this scale to have the usual flat space form, provided the quantum field is in a
state which is regular near the horizon. A freely falling observer will describe the state
at these scales as the vacuum. However, under these assumptions, the accelerated
observer will experience the Unruh effect: the vacuum fluctuations will appear to this
observer as a thermal bath at a temperature T = (~/2π)a. The outgoing modes of this
thermal bath will be redshifted as they climb away from the black hole. The ratio of
the temperatures measured by static observers at two different radii is T2/T1 = χ1/χ2,
where χ is the norm of the time-translation Killing field. At infnity χ∞ = 1, so one
has an outgoing thermal flux in the rest frame of the black hole at the temperature
[Hawking 1975a]

T∞ = χ1 ~a/2π = ~κ/2π (2.18)

where κ is the surface gravity. Therefore, a black hole radiates exactly like a black
body at temperature ~κ/2π. In this sense, κ is not merely a mathematical analogue of
temperature, but literary the physical temperature of the black hole.
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2.4.2 Black Hole Entropy

From the point of view of an outside observer, the formation of a black hole appears to
violate the second law of thermodynamics. The collapsing system may have arbitrary
entropy, while the final state has none. So the phase space of the collapsing system
appear to be drastically reduced. However, during the collapse, the area of the event
horizon will grow. The area theorem then suggests to use the area increase of the event
horizon as a compensation for the loss of matter entropy.

With this reasoning, Bekenstein proposes that a black hole should carry an entropy
proportional to its horizon area, SBH = αA/~G, measured in units of the squared
Planck lenght `2p = ~G/ c3 [Bekenstein 1973]. Later on, via the first law of horizon
thermodynamics, Eq. (2.16), the Hawking effect described above then fixes the coeffi-
cient α in the Bekenstein entropy formula to be 1/4.

Bekenstein’s original idea was that the entropy of a black hole is the logarithm of the
number of ways it could have formed. This is closely related to the Boltzman definition
of entropy as the number of microstates compatible with the macrostate. Hawking
noted that a potential problem arises if one contemplates increasing the number of
species of fundamental fields. There would seem to be more ways of forming the black
hole, however the entropy is fixed at A/4. Hawking’s resolution of this was that the
black hole will also radiate faster because of the extra species, so that there would
be less phase space per species available for forming the hole. Presuming these two
effects balance each other, the puzzle would be resolved. This argument was further
developed by Zurek and Thorne [Zurek 1985], whose analysis makes it uneccessary to
presume that the two effects cancel.

2.4.2.1 Thermal Entropy of Unruh Radiation

Another proposed interpretation is that black hole entropy actually should be iden-
tified with the entropy of the thermal bath of quantum fields outside the horizon
[’t Hooft 1985]. Let us assume the black hole is nonrotating for simplicity. Recall
that the quantum field outside the horizon is in a thermal state with respect to the
static vacuum. More precisely, in the Unruh state which results from collapse this is
true only for the outgoing modes, while it is strictly true for the Hartle–Hawking state
which has incoming thermal radiation as well. Since the outgoing radiation dominates
the calculation, we use the Hartle–Hawking state for convenience.

The density matrix ρ for the field outside in the Hartle–Hawking state |HH〉 can
be obtained by a calculation similar to the one which yields the Minkowski vacuum as
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a thermal state, with the result

ρext ≡ Trint|HH〉〈HH| = exp(−βH). (2.19)

Here β = 1/TH , and H is the static Hamiltonian

H =
∫
Tabχ

adΣb, (2.20)

where χa is the static Killing field, and the integral is over a spatial slice extending
from the horizon to infinity.

The entropy associated with this thermal state can be evaluated as for any thermal
state. However, since it is infinite, some regulator is required. One can then give
a simple argument displaying the nature of the divergence, in the same line of the
calculation performed by ’t Hooft, where the entropy is evaluated using a mode sum
and the cutoff at height `c above the horizon is referred to as a “brick wall”.

The total entropy of the bath is the integral of the local entropy density s over the
volume outside the black hole,

S =
∫
s 4πr2dl, (2.21)

where d` is the proper length increment in the radial direction and we have assumed
spherical symmetry. The local temperature T is given by T = TH/χ ' (κ/2π)/(κ`) =
1/2π`, which diverges as the horizon is approached. Therefore it suffices to consider
massless radiation, for which S ∝ T 3, and the dominant contribution (in a finite box)
will come from the region near the horizon. Cutting off the integral at a proper height
`c, we thus have

S ∼ A

∫
H
`−3d` ∼ A/`2c . (2.22)

Because of the local divergence at the horizon, the result comes out proportional to
the area. It is remarkable that this simple estimate gives an area law for the entropy.
If the cutoff height is identified with the Planck length, then the entropy even has the
correct order of magnitude.

2.4.2.2 Entanglement Entropy

Another proposal is that the black hole entropy is a measure of the information hidden
in correlations between degrees of freedom on either side of the horizon [Bombelli 1986;
Srednicki 1993]. For instance, although the full state of a quantum field may be pure,
the reduced density matrix ρext (defined above for the Hartle–Hawking state) will be
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mixed. The associated information-theoretic entropy,

Sent = −Trρext ln ρext, (2.23)

should perhaps thus be part of the black hole entropy. This entropy is sometimes
called entanglement entropy. (It has also been called geometric entropy.) If the formal
calculation establishing (2.19) can be trusted, we know that entanglement entropy is
identical to the thermal entropy of the quantum field outside the horizon as defined
above. In particular, it will diverge in the same way. Instead of thinking of this
as an infinite temperature divergence, one can think of it as due to the correlations
between the infinite number of short wavelength degrees of freedom on either side
of the horizon. These correlations are evident from the form of the state near the
horizon when expressed in terms of excitations above the inside and outside static
vacua. This notion is quite appealing since it traces back the entropy directly to the
defining character of the horizon as a causal barrier that hides information, and it
also naturally accounts for the scaling with area. Moreover, it allows the generalized
second law to be understood as a consequence of causality [Sorkin 1986; Bombelli 1986].
However, it is problematic in the quantitative measure of missing information (which
appears to be infinite in ordinary field theory and to depend on the number of species)
and in the neglect of the quantum fluctuations of the horizon itself. These issues are
tied up with the renormalization of Newton’s constant.

2.4.2.3 Species Problem

Besides the divergence, which might be cut off in some way, there is another problem
with the idea that the thermal or entanglement entropies of quantum fields be identified
with black hole entropy. Namely, this entropy depends on the number of different fields
in nature, whereas the black hole entropy is universal, always equal to A/4~G.

Various resolutions to the species problem have been suggested. The most natu-
ral one is that the renormalized Newton constant, which appears in the Bekenstein-
Hawking entropy A/4~G, depends on the number of species in just the right way to ab-
sorb all species dependence of the black hole entropy [Jacobson 1994b; Susskind 1994].
To understand this point, one must include the gravitational degrees of freedom in the
description.
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2.4.3 Entropy from Horizon Fluctuations

Another clue to the nature of the horizon states counted by A/4 comes from an old
analysis by Candelas and Sciama [Candelas 1977; Sciama 1981]. They showed how the
relationship between near equilibrium transition rates for a system in contact with a
horizon and horizon area is extended to non-equilibrium processes. They interpreted the
viscous dissipation rate of a shearing horizon, via the fluctuation-dissipation theorem,
in terms of the quantum gravitational spectrum of shear fluctuations.

This explains “why” a horizon has a coefficient of viscosity, and suggests that it is,
at least in part, the quantum shear states of the fluctuating horizon that the entropy
counts. We will discuss about a characterization of the horizon viscosity in chapters 4
and 5. In particular, we will consider the physical meaning of a horizon bulk viscosity, in
addition to the shear viscosity, within the thermodynamical derivation of the Einstein’s
equations. Note that even when both shear and bulk viscosity are absent the horizon
acts as a “perfect dissipator” [Candelas 1977; Sciama 1981] via just the area expansion.

2.4.4 Quantum Gravitational Statistical Mechanics

After the discovery of the Hawking effect, Gibbons and Hawking proposed a formulation
of quantum gravitational statistical mechanics that enabled them to compute the black
hole entropy [Gibbons 1977].

The basic idea is to imitate standard methods of handling thermodynamic ensembles
in other branches of physics. Thus, the goal is to compute the partition function Z =
Tr exp(−βH) for the system of gravitational and matter fields in thermal equilibrium
at temperature T , from which the entropy and other thermodynamic functions can be
evaluated. In fact, it is better in principle to consider the microcanonical ensemble
rather than the canonical one. This is because the canonical ensemble is unstable for a
gravitating system. If a black hole is in a large heat bath at the Hawking temperature,
a small fluctuation to larger mass will cause its temperature to drop, which leads to a
runaway growth of the hole. Conversely, a small fluctuation to smaller mass will lead
to a runaway evaporation of the hole.

This instability can be controlled by putting the black hole in a very small container,
with radius less than 3/2 times the Schwarzschild radius (for a Schwarzschild black
hole), and somehow holding the temperature at the box fixed1. Alternatively one can

1The reason this eliminates the instability is interesting: although a fluctuation to (say) larger mass
causes the Hawking temperature to drop, this is more than compensated by the fact that the horizon
has moved out, so the local temperature at the box is less redshifted than before, so the hole is in fact
locally hotter than the box [Jacobson 2005].
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work with the more physical microcanonical ensemble, in which the total energy is
fixed.

An actual computation of Z would seem to require an understanding of the Hilbert
space of quantum gravity, something still missing. Gibbons and Hawking sidestepped
this difficulty by passing to a path integral representation for Z whose semiclassical
approximation could be plausibly evaluated. Thus, one writes

Z = Tr exp(−βH) =
∫
DgDϕe−I[g,ϕ], (2.24)

where g and ϕ stand for the metric and matter fields respectively and I is the Euclidean
action. The stationary point of the action is the Euclidean black hole, with mass
determined by the condition that there be no conical singularity in the r − t plane at
the Euclidean horizon. The Euclidean Rindler coordinates are just polar coordinates,
ds2 = ξ2dτ2 + dξ2, so this means the period of the “angular” coordinateτ must be 2π.
Since τ = κt (cf. section 3.2.3), it follows that κ = 2π/β. The zeroth order contribution
to the entropy is then obtained as

S0 =
(
β
∂

∂β
− 1
)
I[g0, ϕ0] (2.25)

where (g0, ϕ0) is the classical stationary point.
To include quantum fluctuations one could write g = g0 + g̃ and ϕ = ϕ0 + ϕ̃, and

integrate over g̃ to obtain an effective action Ieff [g0, ϕ0] = − lnZ.
This effective action will contain a Ricci scalar term with a coefficient 1/16πGren,

where Gren is the renormalized Newton constant, as well as higher curvature terms,
non-local terms etc. The contribution of the fluctuations to the entropy is primarily
through their effect on the renormalization of G.

Viewed in a different way, the fluctuation contribution can be related to the thermal
entropy of acceleration radiation or the (formally equivalent) entanglement entropy
discussed earlier. The path integral over g̃ and ϕ̃ formally gives Tr exp(−βH0[g̃, ϕ̃]),
whereH0 is the evolution operator for the fluctuations in the background (g0(β), ϕ0(β)).
Thus, the contribution S′ of the fluctuations to the entropy

S = S0 + S′ = (β
∂

∂β
− 1)Ieff [g0, ϕ0] (2.26)

looks at first just like the entanglement entropy.
However, in computing the entanglement entropy only the period β of the back-
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ground is varied, while otherwise the background is fixed. By contrast, in computing
S as above, one also must differentiate with respect to the β-dependence of the back-
ground (g0(β), ϕ(β)) [Frolov 1996]. Formally, this extra variation makes no contribu-
tion, since (g0, ϕ0) is chosen to be a stationary point of the effective action. Thus the
two computations might yield the same result. However, the calculation in which only
the period is varied introduces a conical singularity at the horizon, and this can lead
to some difference.

2.4.5 Horizon Entropy and Noether Charge

In alternative to the statistical interpretation, Wald showed that in general theories
of gravity the entropy of stationary black holes with bifurcate Killing horizons is a
Noether charge [Wald 1992]. We shall now briefly describe how these results arise in a
class of theories which are natural generalizations of Einstein gravity. The argument
follows the exposition given in [Wald 1993; Padmanabhan 2010].

Consider a theory for gravity described by the metric gab coupled to matter. We
will take the action describing such a theory in D dimensions to be

A =
∫
dDx

√
−g[L(Rab

cd, gab)] + Lmatt(gab, qA), (2.27)

where L is any scalar built from metric and curvature and Lmatt is the matter La-
grangian depending on the metric and some matter variables qA 1. Varying gab in Eq.
(2.27) we get δ(Lmatt

√
−g) = −(1/2)

√
−gT abδgab and

δ(L
√
−g) =

√
−g(Gabδgab +∇aδv

a). (2.28)

The variation of the gravitational Lagrangian density generically leads to a surface
term which is expressed by the ∇aδv

a term. Ignoring this term for the moment (we
will comment on this later) we get equations of motion to be 2Gab = Tab where the
explicit form of Gab is

Gab = Pa
cdeRbcde −

1
2
Lgab − 2∇c∇dPacdb ≡ Rab − 2∇c∇dPacdb, (2.29)

where
Pabcd ≡

∂L

∂Rabcd
. (2.30)

(Our notation is based on the fact that Gab = Gab and Rab = Rab in Einstein’s gravity.)
1We have assumed that L does not involve derivatives of curvature tensor, to simplify the discussion
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For any Lagrangian L, the functional derivative of Gab satisfies the generalized Bianchi
identity: ∇aG

ab = 0.
Many such theories have been investigated in the literature and most of them have

black hole solutions. Whenever the black hole metric can be approximated by a Rindler
metric near the horizon, it is possible to associate a temperature with the horizon, using
the procedures described earlier. On the other hand, the entropy can be introduced by
the following argument.

In any generally covariant theory, the infinitesimal coordinate transformations xa →
xa + ξa leads to conservation of a Noether current which depends on ξa. To derive the
expression for the Noether current, let us consider the variations in δgab which arise
through the diffeomorphism xa → xa + ξa. In this case, δ(L

√
−g) = −

√
−g∇a(Lξa),

with δgab = (∇aξb +∇bξa). Substituting these in equation (2.28) and using ∇aG
ab = 0,

we obtain the conservation law ∇aJ
a = 0, for the current,

Ja ≡ 2Gabξb + Lξa + δδξv
a = 2Rabξ

a + δξv
a, (2.31)

where δξva represents the boundary term which arises for the specific variation of the
metric in the form δgab = (∇aξb +∇bξa). Quite generally, the boundary term can be
expressed as [Deruelle 2004; Lopes Cardoso 2000],

δva =
1
2
αa(bc)δgbc +

1
2
β

a(bc)
d δΓd

bc. (2.32)

The coefficient βabcd arises from the derivative of Lgrav with respect to Rabcd and hence
possesses all the algebraic symmetries of the curvature tensor. In the special case of
diffeomorphisms, xa → xa + ξa, the variation δξva is given by Eq. (2.32) with

δgab = −∇(aξb); δΓd
bc = −1

2
∇(b∇c)ξ

d +
1
2
Rd

(bc)mξ
m. (2.33)

Using the above expressions in Eq. (2.31), it is possible to write an explicit expression
for the current Ja for any diffeomorphism invariant theory. It is also convenient to
introduce an antisymmetric tensor Jab by Ja = ∇bJ

ab. For the general class of theories
we are considering the Jab and Ja can be expressed in the form

Jab = 2P abcd∇cξd − 4ξd(∇cP
abcd), (2.34)

Ja = −2∇b(P adbc + P acbd)∇cξd + 2P abcd∇b∇cξd − 4ξd∇b∇cP
abcd, (2.35)

where P abcd ≡ (∂L/∂Rabcd). (The expressions for Ja, Jab are not unique. This ambi-
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guity has been extensively discussed in the literature but for our purpose we will use
the Ja defined as above.) We shall see that, for most of our discussion, we will not
require the explicit form of δξva except for one easy to prove result: δξva = 0 when ξa

is a Killing vector and satisfies the conditions

∇(aξb) = 0; ∇a∇bξc = Rcbadξ
d. (2.36)

The expression for Noether current simplifies considerably when ξa a satisfies Eq. (2.36)
and is given by

Ja = 2Gabξb + Lξa = 2Rabξb. (2.37)

The integral of Ja over a space-like surface defines the conserved Noether charge, N.
To obtain a relation between the horizon entropy and Noether charge, we first note

that on-shell, i.e. when field equations hold (2Gab = Tab), we can write

Ja = (T ab + gabL)ξb. (2.38)

Therefore, for any vector ka which satisfies kaξ
a = 0, we get the result

(kaJ
a) = T abkaξb. (2.39)

The change in this quantity, when T ab changes by a small amount δT ab, will be
δ(kaJ

a) = kaξbδT
ab. It is this relation which can be used to obtain an expression

for the horizon entropy in terms of the Noether charge. When some amount of matter
with energy-momentum tensor δT ab crosses the horizon, the corresponding energy flux
can be thought of as given by integral of kaξbδT

ab over the horizon where ξa is the
Killing vector field corresponding to the bifurcation horizon and ka is a vector orthog-
onal to ξa which can be taken as the normal to a time-like surface, infinitesimally away
from the horizon (In Chapter 3 we will treat this surface as a “stretched horizon”,
defined by the condition N = ε, where N is the lapse function with N = 0 representing
the horizon.) In the (D − 1)- dimensional integral over this surface, one coordinate is
just time; since we are dealing with an approximately stationary situation, the time
integral reduces to multiplication by the range of integration. Based on our discussion
earlier we will assume that the time integration can be restricted to the range (0, β)
where β = 2π/κ and κ is the surface gravity of the horizon. (The justification for this
requires a much more detailed mathematical analysis which we shall not get into here.)
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Thus, on integrating δ(kaJ
a) over the horizon we get

δ

∫
H
dD−1x

√
h(kaJ

a) =
∫
H DD−1x

√
hkaξjδT

aj

= β
∫
H dD−2x

√
hkaξjδT

aj , (2.40)

where the integration over time has been replaced by a multiplication by β = (2π/κ)
assuming approximate stationarity of the expression. The integral over δT aj is the flux
of energy δE through the horizon so that βδE can be interpreted as the rate of change
in the entropy associated with this energy flux. One can obtain, using these facts, an
expression for entropy, given by

SNoether ≡ βN = β

∫
dD−1ΣaJ

a =
β

2

∫
dD−2ΣabJ

ab, (2.41)

where dD−1Σa = dD−1x
√
hka, the Noether charge is N and we have again introduced

the antisymmetric tensor Jab by Ja = ∇bJ
ab. In the final expression, the integral is

over any surface with (D−2) dimension which is a space-like cross-section of the Killing
horizon on which the norm of ξa vanishes.

As an example, consider the special case of Einstein gravity in which Eq. (2.35)
reduces to

Jab =
1

16π

(
∇aξb −∇bξa

)
. (2.42)

If ξa is the time-like Killing vector in the spacetime describing a Schwarzschild black
hole, we can compute the Noether charge N as an integral of Jab over any two surface
which is a space-like cross-section of the Killing horizon on which the norm of ξa van-
ishes. The area element on the horizon can be taken to be δΣab = (laξb− lbξa)

√
σdD−2x

in Eq. (2.41) with la being an auxiliary vector field satisfying the condition laξa = −1.
Then the integral in Eq. (2.41) reduces to

SNoether = − β

8π

∫ √
σdD−2x(laξb)∇bξa = −βκ

8π

∫ √
σdD−2x =

1
4
AH , (2.43)

where we have used equation ξb∇bξ
a = κξa, the relation laξ

a = −1, and the fact that
ξa is a Killing vector. The result, of course, agrees with the standard one.

It is also possible to show, using the expression for Jab, that the entropy in Eq.(2.41)
is also equal to

SNoether =
2π
κ

∮
S

(
∂L

∂Rabcd

)
εabεcddΣ, (2.44)
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where κ is the surface gravity of the horizon and the (D− 2)-dimensional integral is on
a space-like bifurcation surface with εab denoting the bivector normal to the bifurcation
surface.

The variation is performed as if Rabcd and the metric are independent and the
whole expression is evaluated on a solution of the equation of motion. A wide class
of theories have been investigated using such a generalization in order to identify the
thermodynamic variables relevant to the horizon.

The validity of Walds proposal has been checked in many examples in a string the-
ory context where the direct counting of microstates can be compared explicitly to the
Noether charge entropy [Lopes Cardoso 2000].

The notion of black hole Boltzmann entropy, at the quantum statistical level, ex-
tends of to stationary states of all causal horizons, i.e. generally to Killing hori-
zons. Therefore, any Killing horizon is endowed with a surface entropy density of
1/4 [Jacobson 2003]. In particular, this will be true for a a fundamental step toward
the generalization of the black hole thermodynamic framework to a general spacetime
neighborhood.

2.5 Causal Horizon Entropy ⇔ Holographic Principle

The realization that horizon entropy is an intrinsically observer dependent notion raises
a natural interpretative question on the states that the horizon entropy counts. In
particular, the nonextensive nature of the Bekenstein horizon entropy, together with its
quantum statistical interpretation, provide an intriguing puzzle on the effective number
of degrees of freedom characterizing the fundamental level of description underlying
gravity and quantum fields [’t Hooft 1993; Susskind 1995].

In the previous sections an effective framework for such a “fundamental system”
was given by local quantum field theory on a classical background spacetime satisfying
Einstein’s equations [Birrell 1982; Wald 1992; Jacobson 1994b]. One can define the
number of degrees of freedom of a quantum-mechanical system1, N , to be the logarithm
of the dimension N of its Hilbert space H:

N = ln N = ln dim(H). (2.45)
1The number of degrees of freedom is equal (up to a factor of ln 2) to the number of bits of

information needed to characterize a state. For example, a system with 100 spins has N = 2100 states,
N = 100 ln 2 degrees of freedom, and can store 100 bits of information.
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Now, a general quantum-mechanical system has an infinite-dimensional Hilbert space.
Thus, the answer to our question appears to be N = ∞. However, these considerations
do not take into account the effects of gravity altogether.

A finite estimate is obtained by including gravity at least in a crude, minimal
way [Bousso 2002]. One might expect that distances smaller than the Planck length,
`p = 1.6× 10−33cm, cannot be resolved in quantum gravity. So let us discretize space
into a Planck grid and assume that there is one oscillator per Planck volume. Moreover,
the oscillator spectrum is discrete and bounded from below by finite volume effects. It
is also bounded from above because it must be cut off at the Planck energy, Mp =
1.3× 1019GeV. This is the largest amount of energy that can be localized to a Planck
volume without producing a black hole. Thus, the total number of oscillators is V
(in Planck units), and each has a finite number of states, n. (A minimal model one
might think of is a Planckian lattice of spins, with n = 2.) Hence, the total number of
independent quantum states in the specified region is

N ∼ nV . (2.46)

The number of degrees of freedom is given by

N ∼ V lnn & V. (2.47)

This result successfully captures our prejudice that the degrees of freedom in the world
are local in space, and that, therefore, complexity grows with volume. It turns out,
however, that this view conflicts with the laws of gravity.

2.5.1 Bekenstein Entropy and Generalized Second Law

When a matter system is dropped into a black hole, its entropy is lost to an outside
observer. That is, the entropy Smatter starts at some finite value and ends up at zero.
But the entropy of the black hole increases, because the black hole gains mass, and so
its area A will grow. Thus it is at least conceivable that the total entropy, Smatter + A

4 ,
does not decrease in the process. With this reasoning Bekenstein conjectures that in
a consistent generalization of the second law of thermodynamics, accounting for black
hole physics, the sum of the entropy outside the black hole and the entropy of the black
hole itself will never decrease,

d(Sout + αA/~G) ≥ 0. (2.48)
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This defines the generalized second law (GSL).
However, it is by no means obvious that the generalized second law will hold. The

growth of the horizon area depends essentially on the mass that is added to the black
hole; it does not seem to care about the entropy of the matter system. If it were
possible to have matter systems with arbitrarily large entropy at a given mass and size,
the generalized second law could still be violated1

In this sense, one would expect that requiring the validity of GSL would lead to a
universal bound on the entropy of matter systems in terms of their extensive parameters.

2.5.2 Bekenstein Bound

If the thermodynamic properties of black holes developed above, including the assign-
ment of entropy to the horizon, are sufficiently compelling to be considered laws of
nature, then one may demand that the generalized second law hold in all processes. In
this line of thought, for any weakly gravitating matter system in asymptotically flat
space, Bekenstein [Bekenstein 1981] argues that the GSL implies the following bound:

Smatter ≤ 2πER. (2.49)

In full, S ≤ 2πkER/(~c) (note that Newton’s constant does not enter). Here, E is
the total mass-energy of the matter system. The circumferential radius R is the radius
of the smallest sphere that fits around the matter system. Therefore, the Bekenstein
bound define an upper limit on the matter entropy that can be contained within a given
finite region of space associated with a finite amount of energy. On the other hand, this
bound remarkably implies that the information necessary to fully describe the system
must be finite, if the region of space and the energy is finite.

2.5.3 Complexity According to the Area Scaling Entropy

Thermodynamic entropy has a statistical interpretation. Let S be the thermodynamic
entropy of an isolated system at some specified value of macroscopic parameters such as
energy and volume. Then eS is the number of independent quantum states compatible
with these macroscopic parameters. Thus, entropy is a measure of our ignorance about
the detailed microscopic state of a system. In particular, the number of states will

1The GSL is automatically protected by Unruh radiation as long as the entropy of the matter
system does not exceed the entropy of unconstrained thermal radiation of the same energy and volume.
This is plausible if the system is weakly gravitating and if its dimensions are not extremely unequal
[Unruh 1982].
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simply be N = eS .
Considering an interpretation of horizon entropy as the entropy of the quantum

fields localized by the causal horizon, the saturated bound,

SBH =
A

4
, (2.50)

suggest that the number of degrees of freedom in a region bounded by the horizon of
area A is given by

N =
A

4
; (2.51)

the number of states is
N = eA/4. (2.52)

Therefore this result would suggest that, because of gravity, not all degrees of freedom
that field theory apparently supplies can be used for generating entropy, or storing
information. In particular, one can generally argue that A/4 degrees of freedom are
sufficient to fully describe any stable region in asymptotically flat space enclosed by a
sphere of area A [Bousso 2002]. This invalidates the field theory estimate, Eq. (2.47),
and suggest an holographic interpretation.

2.5.4 Unitarity and a Holographic Interpretation

In a field theory description, there are far more than A/4 degrees of freedom. The
restriction to a finite spatial region provides an infrared cut-off, precluding the gener-
ation of entropy by long wavelength modes. Hence, most of the entropy in the field
theory estimate comes from states of very high energy. But a spherical surface cannot
contain more mass than a black hole of the same area. According to the Schwarzschild
solution, the mass of a black hole is given by its radius. Hence, the mass M contained
within a sphere of radius R obeys

M . R. (2.53)

For example, consider a sphere of radius R = 1 cm, or 1033 in Planck units. Suppose
that the field energy in the enclosed region saturated the naive cut-off in each of the
∼ 1099 Planck cells. Then the mass within the sphere would be ∼ 1099. But the most
massive object that can be localized to the sphere is a black hole, of radius and mass
1033.

Thus, most of the states included by the field theory estimate are too massive to be
gravitationally stable. Long before the quantum fields can be excited to such a level,
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a black hole would form.1 If this black hole is still to be contained within a specified
sphere of area A, its entropy may saturate but not exceed the entropy bound.

Therefore any attempt to excite more than A/4 of these degrees of freedom is
thwarted by gravitational collapse. From the outside point of view, the most entropic
object that fits in the specified region is a black hole of area A, with A/4 degrees of
freedom [Bousso 2002].

A conservative interpretation of this result is that the demand for gravitational
stability merely imposes a practical limitation for the information content of a spatial
region. If we are willing to pay the price of gravitational collapse, we can excite more
than A/4 degrees of freedom—though we will have to jump into a black hole to verify
that we have succeeded. Still, with this interpretation, all the degrees of freedom of
field theory should be effectively retained. The region will be described by a quantum
Hilbert space of dimension eV .

However, unitarity provides a compelling consideration in this sense. Quantum
mechanical evolution preserves information; it takes a pure state to a pure state. Let’s
suppose a region was described by a Hilbert space of dimension eV , and suppose that
region was converted to a black hole. According to the Bekenstein entropy of a black
hole, the region is now described by a Hilbert space of dimension eA/4. The number
of states would have decreased, and it would be impossible to recover the initial state
from the final state. Thus, unitarity would be violated. Hence, the Hilbert space must
have had dimension eA/4 to start with.

The insistence on unitarity in the presence of black holes led ’t Hooft [’t Hooft 1993]
and Susskind [Susskind 1995] to embrace a more radical, “holographic” interpretation
of Eq. (2.51).

Holographic principle [Bousso 2002]. A region with boundary of area A is fully
described by no more than A/4 degrees of freedom, or about 1 bit of information per
Planck area. A fundamental theory, unlike local field theory, should incorporate this
counterintuitive result.

2.5.5 Implications of the Holographic Principle

The holographic principle implies a radical reduction in the number of degrees of free-
dom we use to describe nature. It exposes quantum field theory, which has degrees of

1Thus, black holes provide a natural covariant cut-off which becomes stronger at larger distances.
It differs greatly from the fixed distance or fixed energy cutoffs usually considered in quantum field
theory.
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freedom at every point in space, as a highly redundant effective description, in which
the true number of degrees of freedom is obscured. In particular, the holographic prin-
ciple challenges to formulate a theory in which a covariant formulation of the entropy
bound is manifest [Bousso 2002].

Clearly, since physics appears to be local to a very good approximation to do so,
such a formulation will have to deal with the problem of locality. A possibility would be
to retain locality and consider that a local theory could be rendered holographic if an
explicit gauge invariance is identified, leaving only as many physical degrees of freedom
as dictated by the covariant entropy bound. The challenge, in this case, is to implement
such an enormous and rather peculiar gauge invariance [’t Hooft 1999; ’t Hooft 2001;
’t Hooft 2003]. Otherwise, one can regard locality as an emergent phenomenon without
fundamental significance. In this case, the holographic data are primary. In particular,
since light-sheets are central to the formulation of the holographic principle, one would
expect null hypersurfaces to play a primary role in the classical limit of an underlying
holographic theory.

An argument in support of the latter type of approach is given by the AdS/CFT
correspondence. The AdS/CFT correspondence defines quantum gravity - albeit in a
limited set of spacetimes. Anti-de Sitter space contains a kind of holographic screen,
a distant hypersurface on which holographic data can be stored and evolved forward
using a conformal field theory (Sec. 2.5.6).

2.5.6 The AdS/CFT Correspondence

The most prominent example of the AdS/CFT correspondence concerns type IIB string
theory in an asymptotically AdS5 × S5 spacetime (the bulk), with n units of five-form
flux on the five-sphere1 [Maldacena 1998; Gubser 1998; Witten 1998a]. This theory,
which includes gravity, is claimed to be non-perturbatively defined by a particular
conformal field theory without gravity, namely 3+1 dimensional supersymmetric Yang-
Mills theory with gauge group U(n) and 16 real supercharges. One generally refers to
this theory as the dual CFT.

The metric of AdS5 × S5 is

ds2 = R2

[
−1 + r2

1− r2
dt2 +

4
(1− r2)2

(
dr2 + r2dΩ2

3

)
+ dΩ2

5

]
, (2.54)

where dΩd denotes the metric of a d-dimensional unit sphere. The radius of curvature
1There is a notational conflict with most of the literature, where N denotes the size of the gauge

group. In this review, N is reserved for the number of degrees of freedom.
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is related to the flux by the formula

R = n1/4, (2.55)

in units of the ten-dimensional Planck length.
The proper area of the three-spheres diverges as r → 1. After conformal rescaling

[Hawking 1975b], the space-like hypersurface, t = const, 0 ≤ r < 1 is an open ball,
times a five-sphere. (The conformal picture for AdS space thus resembles the world
volume occupied by a spherical system) Because the five-sphere factor has constant
physical radius, and the scale factor vanishes as r → 1, the five-sphere is scaled to a
point in this limit. Thus, the conformal boundary of space is a three-sphere residing at
r = 1.

It follows that the conformal boundary of the spacetime is R×S3. This agrees with
the dimension of the CFT. Hence, it is often said that the dual CFT “lives” on the
boundary of AdS space.

The idea that data given on the boundary of space completely describe all physics
in the interior provide an effective realization of the holographic principle. The dual
CFT seems to achieve what local field theory in the interior could not do. It contains
an area’s worth of degrees of freedom, avoiding the redundancy of a local description.

However, to check quantitatively whether the holographic bound really manifests
itself in the dual CFT, one must compute the CFT’s number of degrees of freedom, N .
This must not exceed the boundary area, A, in ten-dimensional Planck units. Also,
one must actually verify that there is a light-sheet that contains all of the entropy in
the spacetime.

It is worth to provide here a qualitative description of the problem in some details.
We will follow the synthetic exposition given in [Bousso 2002].

The proper area of the AdS space boundary is divergent. The number of degrees of
freedom of a conformal field theory on a sphere is also divergent, since there are modes
at arbitrarily small scales. In order to make a sensible comparison, Susskind and Witten
[Susskind 1998] regularized the bulk spacetime by removing the region 1 − δ < r < 1,
where δ � 1. This corresponds to an infrared cutoff. The idea is that a modified
version of the AdS/CFT correspondence still holds for this truncated spacetime.

41



The area of the S3 × S5 boundary surface1 is approximately given by

A ≈ R8

δ3
(2.56)

In order to find the number of degrees of freedom of the dual CFT, one has to under-
stand how the truncation of the bulk modifies the CFT. For this purpose, Susskind and
Witten [Susskind 1998] identified and exploited a peculiar property of the AdS/CFT
correspondence: infrared effects in the bulk correspond to ultraviolet effects on the
boundary.

There are many detailed arguments supporting this so-called UV/IR relation (see
also, e.g., [Balasubramanian 1999b; Peet 1999]. Here we give just one example. A
string stretched across the bulk is represented by a point charge in the dual CFT.
The energy of the string is linearly divergent near the boundary. In the dual CFT
this is reflected in the divergent self-energy of a point charge. The bulk divergence is
regularized by an infrared cut-off, which renders the string length finite, with energy
proportional to δ−1. In the dual CFT, the same finite result for the self-energy is
achieved by an ultraviolet cutoff at the short distance δ.

We have scaled the radius of the three-dimensional conformal sphere to unity. A
short distance cut-off δ thus partitions the sphere into δ−3 cells. For each quantum
field, one may expect to store a single bit of information per cell. A U(n) gauge theory
comprises roughly n2 independent quantum fields, so the total number of degrees of
freedom is given by

N ≈ n2

δ3
. (2.57)

Using Eq. (2.55) we find that the CFT number of degrees of freedom saturates the
holographic bound,

N ≈ A, (2.58)

where we must keep in mind that this estimate is only valid to within factors of order
unity. Thus, the number of CFT degrees of freedom agrees with the number of physical
degrees of freedom contained on any light-sheet of the boundary surface S3 × S5.

One must also verify that there is a light-sheet that contains all of the entropy in
the spacetime. If all light-sheets terminated before reaching r = 0, this would leave the
possibility that there is additional information in the center of the universe which is not
encoded by the CFT. In that case, the CFT would not provide a complete description of

1Unlike Susskind and Witten [Susskind 1998], we do not compactify the bulk to five dimensions in
this discussion; all quantities refer to a ten-dimensional bulk. Hence the area is eight-dimensional.
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the full bulk geometry—which is, after all, the claim of the AdS/CFT correspondence.
Thus, the CFT state on the boundary (at one instant of time) contains holographic

data for a complete slice of the spacetime. The full boundary of the spacetime includes
a time dimension and is given by R×S3×S5. Each instant of time defines an S3×S5

boundary area, and each such area admits a complete future directed light-sheet. The
resulting sequence of light-sheets foliate the spacetime into a stack of light cones. There
is a slice-by-slice holographic correspondence between bulk physics and dual CFT data.

To summarize, the AdS/CFT correspondence exhibits the following features:

• There exists a slicing of the spacetime such that the state of the bulk on each
slice is fully described by data not exceeding A bits, where A is the area of the
boundary of the slice.

• There exists a theory without redundant degrees of freedom, the CFT, which
generates the unitary evolution of boundary data from slice to slice.

Assuming the validity of the covariant entropy bound in arbitrary spacetimes,
Bousso [Bousso 1999b] showed that a close analogue of the first property always holds.
The second, however, is not straightforwardly generalized. It should not be regarded
as a universal consequence of the holographic principle, but as a peculiarity of Anti-de
Sitter space.

An important consequence of the AdS/CFT correspondence is that the dynamics
of the stress-energy-momentum tensor in a large class of d-dimensional strongly cou-
pled quantum field theories is governed by the dynamics of Einstein’s equations with
negative cosmological constant in d+ 1 dimensions. As a consequence, the relativistic
hydrodynamics of the gauge theory can be effectively described by the long time, long
wavelength dynamics of a black hole in AdS [Bhattacharyya 2008a]. In this frame-
work, the relativistic Navier–Stokes equations turn out to be equivalent to the subset
of the General Relativity (GR) field equations called the momentum constraints, which
constrain “initial” data on the time-like AdS boundary. Moreover, the incompressible
Navier–Stokes equations describing ordinary, everyday fluids can be obtained by taking
a particular non-relativistic limit of these results [Bhattacharyya 2009].

Again, it’s worth to consider this scenario in some details, as many of the concepts
involved will be used throughout the thesis work. In the exposition we follow the
arguments given in the recent rewiev [Hubeny 2011].
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2.6 Holographic Principle ⇔ Fluid/Gravity Duality

In the realization of the AdS/CFT correspondence discussed above, the gauge theory
reduces to a classical Type IIB string theory in the ’t Hooft limit (N → ∞, fixed λ).
Even classically, string theory has complicated dynamics; however in the strong gauge
coupling (λ → ∞) regime, it reduces to the dynamics of Type IIB supergravity (by
decoupling the massive string states). Now, Type IIB supergravity on AdS5×S5 admits
several consistent truncations. Among these, the simplest and most universal one is
the truncation to Einstein’s equations with negative cosmological constant,

Eab ≡ Rab −
1
2
Rgab + L gab = 0, L ≡ −d (d− 1)

2R2
AdS

. (2.59)

In particular, the AdS/CFT dictionary provides a one-to-one map between single
particle states in the classical Hilbert space of string theory and single-trace operators
in the gauge theory. For instance the bulk graviton maps to the stress tensor of the
boundary theory. Therefore, by taking the collection of such single trace operators as
a whole, one can try to formulate dynamical equations for their quantum expectation
values in the field theory. While this can be done in principle, the resulting system is
non-local in terms of the intrinsic field theory variables themselves.

However, because we can associate the quantum operators (and their expectation
values) of the gauge theory at strong coupling to the classical fields of string the-
ory/supergravity, the set of classical equations one actually need to look for are just
the local equations of Type IIB supergravity on AdS5 × S5. This reduction, whilst
retaining lots of interesting physics, still turns out to be too complicated from the field
theory perspective. For one, the space of single trace operators is still infinite dimen-
sional (at infinite N), and relatedly attempting to classify the solution space of Type
IIB supergravity is a challenging problem.

However, the fact that on the string side one can reduce the system to (2.59), implies
that there is a decoupled sector of stress tensor dynamics in N = 4 SYM at large λ.

Actually, there is an infinite number of conformal gauge theories which have a
gravitational dual that truncates consistently at the two-derivative level to Einstein’s
equations with a negative cosmological constant; N = 4 SYM theory is just a par-
ticularly simple member of this class. Thus (2.59) describes the universal decoupled
dynamics of the stress tensor for an infinite number of different gauge theories.

In particular, one can try to characterize the behavior of quantum field theory
stress tensors starting from the basic organizing principle of physics: separation of

44



scales. Indeed, analogously to many situations in physics, complicated UV dynamics
results in relatively simple IR dynamics. As a general principle of finite temperature
physics, the dynamics of nearly equilibrated systems at high enough temperature may
be described by an effective theory called hydrodynamics. The key dynamical equation
of hydrodynamics is the conservation of the stress tensor

∇a T
ab = 0, (2.60)

where ∇a is the covariant derivative compatible with the background metric γab on
which this fluid lives. As this equation is an autonomous dynamical system involving
just the stress tensor, it should lie within the sector of universal decoupled stress tensor
dynamics.

Given that the AdS/CFT correspondence asserts that this universal sector is gov-
erned by (2.59), we are led to conclude that (2.59) must, in an appropriate high tem-
perature and long distance limit which we refer to as the long wavelength regime, reduce
to the equations of d-dimensional hydrodynamics. Indeed, this expectation has been
independently verified in [Bhattacharyya 2008a] and the resulting map between gravity
and fluid dynamics has come to be known as the fluid/gravity correspondence.

Given any solution to the these fluid dynamical equations, the fluid/gravity map
explicitly determines a solution to Einstein’s equations (2.59) to the appropriate order
in the derivative expansion. The solutions in gravity are simply inhomogeneous, time-
dependent black holes, with slowly varying but otherwise generic horizon profiles.

2.6.1 The Fluid/Gravity Correspondence

The connection between the fluid/gravity map at the full non-linear level is established
and extensively studied much earlier at the linearized level in the AdS/CFT context
[Policastro 2001]. The first hints of the connection between fluid dynamics and gravity
at the non-linear level are obtained in attempts to construct non-linear solutions dual
to a particular boost invariant flow [Janik 2006], which provided inspiration for the
fluid/gravity map. Such a map was also suggested by the observation that the properties
of large rotating black holes in global AdS space are reproduced by the equations of
non-linear fluid dynamics [Bhattacharyya 2008b; Rangamani 2009].

According to the gauge/gravity dictionary, distinct asymptotically AdS bulk ge-
ometries correspond to distinct states in the boundary gauge theory. The pure AdS ge-
ometry, i.e., the maximally symmetric negatively curved spacetime, corresponds to the
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vacuum state of the gauge theory. A large1 Schwarzschild-AdS black hole corresponds
to a thermal density matrix in the gauge theory. This can be easily conceptualized in
terms of the late-time configuration a generic state evolves to: in the bulk, the com-
bined effect of gravity and negative curvature tends to make a generic configuration
collapse to form a black hole which settles down to the Schwarzschild-AdS geometry,
while in the field theory, a generic excitation will eventually thermalize.

On the boundary, the essential physical properties of the gauge theory state (such
as local energy density, pressure, temperature, entropy current, etc.) are captured
by the expectation value of the boundary stress tensor, which in the bulk is related
to normalizable metric perturbations about a given state. It can be extracted via a
well-defined Brown-York type procedure [Balasubramanian 1999a].

To describe gravity duals of fluid flows, a useful starting point is the map between
the boundary and bulk dynamics in global thermal equilibrium. In the field theory, one
characterizes thermal equilibrium by a choice of static frame and a temperature field.
On the gravity side, the natural candidates to characterize the equilibrium solution are
static (or more generally stationary) black hole spacetimes, as can be seen by demanding
regular solutions with periodic Euclidean time. The temperature of the fluid is given
by the Hawking temperature of the black hole, while the fluid dynamical velocity is
captured by the horizon boost velocity of the black hole. For planar Schwarzschild-AdS
black holes the temperature grows linearly with horizon size; the AdS asymptotics thus
ensures thermodynamic stability as well as providing a natural long wavelength regime.

Now one can consider to move away from the equilibrium configuration. Starting
with the stationary black hole (namely the boosted planar Schwarzschild-AdSd+1) so-
lution, one wish to use it to build solutions where the fluid dynamical temperature
and velocity are slowly-varying functions of the boundary directions. Intuitively, this
mimics patching together pieces of black holes with slightly different temperatures and
boosts in a smooth way so as to get a regular solution of (2.59). In order to obtain a
true solution of Einstein’s equations, the patching up procedure cannot be done arbi-
trarily; one is required at the leading order to constrain the velocity and temperature
fields to obey the equations of ideal fluid dynamics.2 Further, the solution itself is cor-
rected order by order in a derivative expansion, a process that likewise corrects the fluid

1Note that AdS is a space of constant negative curvature, which introduces a length scale, called
the AdS scale RAdS, corresponding to the radius of curvature. The black hole size is then measured in
terms of this AdS scale; large black holes have horizon radius r+ > RAdS.

2These constraints are actually the radial momentum constraints for gravity in AdS and imply
(2.60). In contrast to the conventional ADM decomposition, we imagine foliating the spacetime with
time-like leaves and “evolve” into the AdS bulk radially.
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equations. All these steps may be implemented1 in detail in a systematic boundary gra-
dient expansion. The final output is a map between solutions of negative cosmological
constant gravity and the equations of fluid dynamics in one lower dimension, i.e. the
fluid/gravity map.

2.7 Within a Spacetime Neighborhood

In the Rindler wedge setting the notion of entanglement entropy naturally accounts
for the scaling with the area. This notion allows the generalized second law, and
consequently the entropy bound, to be understood as a consequence of causality and
ultimately associated with the presence of a horizon. Also, we saw that when the
Minkowski vacuum is restricted to the Rindler wedge, the quantum fluctuations of this
step have a dual, thermal description associated with the horizon. Moreover, given
that the vacuum quantum fields degrees of freedom in this thermal atmosphere are
essentially piled up near the horizon boundary, one may consider the possibility to
construct an equivalent holographic description in terms of a dimensionally reduced
theory, living on a codimension one stretched horizon membrane.

In particular, given that an effective description of the large scale dynamics of the
vacuum thermal state is always provided by hydrodynamics, one could even imagine
a duality between the dimensionally reduced thermal gauge theory and the long time,
long wavelength dynamics of the causal horizon. In this sense, the series of conceptual
steps presented above seems to be a priori reproducible starting from the physics of
quantum field theory in a Rindler wedge.

However, the Rindler wedge physics provide a fundamental extra ingredient. Grav-
itational dynamics can be directly derived from the thermodynamical properties of
the Minkowski vacuum [Jacobson 1995; Eling 2006; Eling 2008; Chirco 2010b]. For the
intrinsic observer dependent nature of the causal horizon, this framework gives the pos-
sibility to characterize the emergence of gravitational dynamics at a local level, starting
from an accelerated observer in the locally flat surroundings of any point in spacetime.

In this sense, in the following chapters, we will consider a scenario where gravi-
tational dynamics emerges from the holographic hydrodynamics of some microscopic,
quantum system leaving in a local Rindler system. We will then consider the possibility

1In the technical implementation of this program, it is important that one respects boundary
conditions. We require that the bulk metric asymptote to γab (up to a conformal factor) and further
be manifestly regular in the part of the spacetime outside of any event horizon.
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to develop a local Rindler wedge fluid/gravity duality on the basis of the thermody-
namical properties of the local causal horizons and the universality of the holographic
principle. Eventually, we will combine the two pictures and discuss on the possibil-
ity to use them to provide an idea of how emergent gravity might arise from a local
holographic behavior and be extended to any spacetime, via the equivalence principle.
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Chapter 3

Local Rindler Setting

The notion of causal horizon can be generalized at local level, by considering the bound-
ary of the past of any set of events, with no reference to the infinite future. Therefore,
in principle, any locally accelerating frame in a local Lorentz frame will be associated
with a local Rindler horizon

In a local Lorentz frame, the spacetime is locally Minkowski and the Minkowski
isometries can be reproduced as a local approximation. An observer who accelerates
uniformly in this frame will follow an orbit associated with a one-parameter group of
Lorentz boost isometries generated by an approximate Killing field ξa.

Similarly, the global notion of bifurcate Killing horizon can be localized by focusing
on a neighborhood of the bifurcation surface or by extending a neighborhood of a piece
of a single Killing horizon to a neighborhood of a bifurcate Killing horizon including the
bifurcation surface, provided the surface gravity is constant and nonvanishing within the
neighborhood [Racz 1992]. The constancy of the surface gravity can be derived either
using Einstein equations and the dominant energy condition [Bardeen 1973] or from
the assumption that a neighborhood of the horizon is static or stationary-axisymmetric
with a t− ϕ reflection isometry [Carter 1973; Racz 1996].

In this sense, the whole phenomenology characterizing the interplay between gravity,
quantum field theory and thermodynamics should be somehow reproducible at a very
local level, as a consequence of the quantum vacuum physics in presence of a local
acceleration horizon with its symmetries.
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3.1 Local Rindler Frame

At every event in spacetime, one can introduce uniformly accelerating observers and
use the horizon thermodynamics perceived by these local Rindler observers to constrain
the geometry of the background dynamics.

Given a point p in a generic spacetime (M, gab), one can generally consider a local
causal horizon at p, as one side of the boundary of the past of a space-like 2-surface patch
B including p. Thereby, in a neighborhood of p, the local horizon will be constituted
by the congruence of null geodesics orthogonal to B, characterized by the past pointing
tangent null vector ka.

With respect to the point p, one can then invoke Local Lorentz Invariance of space-
time1 to introduce a local inertial frame (LIF) with normal Riemann coordinates {xa},
such that p stays at xa = 0. This is allowed as long as one restricts to a region of
size L� R(p)−1/2, where R(p) gives the value of the smaller scale associated with the
radius of curvature at p (which will be generically non zero).

Within this region the metric will be approximately Minkowski, that is

gab = ηab + O(ε2), (3.1)

the order of approximation ε being fixed by the local curvature.
On the introduced LIF, one can construct a local Rindler frame (LRF) by the

coordinate transformations introduced in the previous chapter (see 2.3). Therefore,
with x = ξ cosh(τκ) and t = ξ sinh(τκ), the LRF metric2 takes the form

ds2 = −κ2ξ2dτ2 + dξ2 + dy2 + dz2. (3.2)

The metric above corresponds to the action of a Lorentz boost, with acceleration a =
1/ξ, associated with the approximate Killing vector ξa = ∂τ . The lapse function is
N = κξ, where κ is an arbitrary constant associated with the normalization of boost
time τ3.

Therefore, within a small neighborhood of p, one can associate the boundary of the
1Note that the construction of the local Rindler frame requires to fully use the equivalence principle,

at least in its Einstein formulation, in order to identify geodesics motion.
2Essentially, the introduction of the LRF uses the fact that we have two length scales in the problem

at any event. The first one is the length scale R−1/2, associated with the curvature components of the
background metric, over which we have no control while the second is the length scale κ−1 associated
with the accelerated trajectory which we can choose. Hence we can always ensure that κ−1 � R−1/2.

3It is convenient here to introduce an arbitrary rescaling factor κ for the proper time, in order to
have a clear label for the Rindler wedge temperature in the following derivation.
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past of the patch B to a section of the approximate Killing horizon. The future pointing
approximate boost Killing vector ξa, is tangent to the null congruence comprising the
causal horizon and, by definition, leaves invariant the tangent plane to B at p.

In terms of the approximate Killing vector ξa, one can introduce a time1 label v
along the horizon null hypersurface, defined by ξa∇av = 1.

Given the approximate Killing symmetry, the parameter v can be expressed in terms
of the null congruence affine parameter λ, via the standard relation

λ = −e−κv. (3.3)

Thereby, the point p will be located at v = ∞ with respect to the Killing flow, while
at λ = 0 for the affinely parametrized flow.

As a consequence, one gets ξa = (dλ/dv) ka, with (dλ/dv) = −κλ and, in the same
way,

θ̂ =
(
dλ

dv

)
θ = −κλ θ and σ̂ =

(
dλ

dv

)
σ = −κλσ, (3.4)

which gives some helpful relations between the Killing expansion θ̂ and shear σ̂ and the
respective affine geodesics quantities.

3.1.1 Local Horizon Temperature

By assuming that the ground state of the fields in the LIF is locally approximated
by the Minkowski vacuum, stability of the vacuum and local Lorentz summetry, guar-
antee that, the system of quantum field fluctuations at short distances outside the
local Rindler horizon is well described by a canonical ensemble, with an approximate
temperature2

T ≈ TU N =
~κ
2π
, (3.5)

where TU is the Unruh temperature defined in Chapter 2. The expression in (3.5)
shows that T stays constant throughout the Rindler wedge, because of the gravitational
Doppler factor (lapse function) N = κ ξ associated with the Unruh temperature, and
it is well defined on the horizon. Therefore, the thermal character of the Rindler state
is effectively extended from the single Rindler observer to the whole wedge.

1Notice that there is no relation between the proper time τ defined in the wedge and the Killing
parameter v along the horizon. Nevertheless we need to keep the same scaling κ for dimensional
consistence.

2It can be proved formally that the stability of the Rindler metric (Lorentz invariance), hence the
Rindler horizon stationarity, actually implies the KMS conditions [Haag 1992; Haag 1977], responsible
for the thermal character of the vacuum energy fluctuations as measured by a Rindler observer.
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Alternatively, one can introduce a general temperature for the local horizon by mov-
ing to the Euclidean analogue of the Rindler space. The region around p is represented
in the Euclidean sector obtained by analytically continuing to imaginary values of t by
tE = it. The horizons t = ±x reduce to the origin of the Euclidean section and the
hyperbolic trajectory of a Rindler observer becomes a circle of radius κ−1 around and
arbitrarily close to the origin. The Rindler coordinates (t, x) become — on analytic
continuation to tE = it — the polar coordinates (r = x, θ = κtE) near the origin.
The local temperature on the stretched horizon will be β−1

loc = β−1N = κ/2πN so that
β−1 ≡ κ/2π.

3.1.2 Local Horizon Entropy

As a further step, one needs to introduce a notion of entropy for the local horizon
system. Such a notion can be generally introduced via an entanglement argument. In
the Rindler wedge, an accelerated observer can only access information on space-like
slices bounded by the bifurcation plane. Thereby, since vacuum fluctuations between
the inside and the outside of the wedge are correlated, she will perceive an entangle-
ment entropy, which scales with the area of the local boundary and diverges with the
density of field states in the UV limit. However, with the introduction of an UV cut-off
(generically justified via the quantum fluctuations of the horizon at the Planck scale,
the so called zitterbewegung) one can make this entropy become actually proportional
to the area, that is

S = αA, (3.6)

where the proportionality factor α can a priori depend on the nature of the quantum
fields as well as be some complicate function of the position in spacetime [’t Hooft 1985;
Bombelli 1986]. As we discussed in the previous chapter, the entanglement entropy is
equivalent to the thermal entropy of the fields outside the horizon. Then, together with
the temperature T , this notion of entropy is enough to consider the local Rindler wedge
with its Killing horizon as an analogue of a canonical ensemble (Gibbs state) bounded
by a diathermic wall.

3.2 Local Horizon Thermodynamics

In Chapter 2 we showed how the thermal properties of the Rindler wedge can be
effectively encoded in the thermodynamics of its horizon boundary [Eling 2008]. At
local level, the notion of equilibrium for the Rindler thermal fields will be associated
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with the stationarity given by the approximate Killing symmetry of the local causal
horizon.

In particular, the equilibrium state for the system is identified with the horizon
cross-section at p, the bifurcation surface, where the Killing expansion θ̂ and shear σ̂
vanish and the horizon is instantaneously stationary with respect to λ, that is

dS

dλ
=
d(αA)
dλ

= 0. (3.7)

Moving away from the bifurcation surface at p, the spacetime will become dynamical
and the presence of matter will eventually distort the local Rindler causal structure,
perturbing the Minkowski vacuum thermal state at the same time. In this sense, the
affine parameter λ measures the distance from the equilibrium configuration along the
null geodesic congruence.

From a geometrical point of view, the realization of equilibrium just requires that
the affine quantities (θ, σ) are not diverging in p. This condition can be read as a
restriction on the local curvature of B at p, which is responsible for the geometrical
properties of the horizon null congruence and consequently the value of affine expansion
and shear at p. In this sense, in order to define an equilibrium surface one just need
to require a suitably smooth curvature for B at p, without fixing a priori the values of
affine expansion and shear.

This is a very delicate point, as we will see that the properties of B at p, and the
corresponding values of the optical scalars of the associated null congruence, actually
select the theories of gravity which may arise from the thermodynamical approach by
fixing the gravitational degrees of freedom of the theory. In this sense, we will show
that the choice of B can be directly related to the Equivalence Principle formulation,
which plays a fundamental role in the argument.

3.2.1 Local Rindler Wedge Perturbation

As long as the departure from equilibrium is small and slow, it can be described in
analogy with a quasi-static process where a suitably small amount of energy is thrown
through the horizon, in analogy with the “physical process version” for the first law
of black hole horizon. In this way, spacetime geometry deformations will be related to
variations of the fields energy content.

Suppose some energy is added to the system, in such a way that δρ� ρ. Then, the
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respective variations in entropy and energy will be related by

δS = δE/T. (3.8)

In the Rindler frame the appropriate energy-momentum density is T a
b ξ

b. The inte-
gral of the energy momentum density gives the Rindler Hamiltonian

HR =
∫
T a

b ξ
bdΣa, (3.9)

which leads to evolution in Rindler time τ and appears in the thermal density matrix
ρ = exp(−βHR).

A local Rindler observer, moving along the orbits of the Killing vector field ξa with
four velocity ua = ξa/N , will associate an energy density ua(Tabξ

b) and an energy

δE =
∫

(Tab ξ
b) dΣa (3.10)

where dΣa = ua dv ε̃ = uadVprop, with v being the time along the observer trajectory
and ε̃ indicating the area element of the associated 2-dim cross-section .

Thus, if this energy gets transferred across the horizon, the corresponding entropy
transfer will be given by Eq. (3.8), with T = β−1

loc as the local (redshifted) temperature
of the horizon. Since βloc u

a = (βN) (ξa/N) = β ξa, one finds that

δS = β ξaξb Tab dVprop. (3.11)

Therefore, given that the area-scaling entanglement entropy is equivalent to the thermal
entropy of the fields outside the horizon, one can interpret the gravitational entropy as
giving the response of the spacetime deformations due to the presence of matter.

From (3.6), the variation on the horizon entropy can be written as

δS = αδA, (3.12)

where a UV cut-off is implicitly introduced via the proportionality constant α. With
this choice, changes in the entanglement entropy of the fields in the wedge, can be
effectively described in terms of geometrical variations of the horizon cross-section.

Note that, in general one would have dS = δ(αA) (i.e. α can be some spacetime
function). The α = constant assumption, made in the GR derivation of [Jacobson 1995;
Eling 2006], can be indeed recast as an explicit choice of a specific formulation of the
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Equivalence principle. As said, generally the UV cut-off α is fixed at the quantum
gravity scale. This can be identified as the scale at which the gravitational action is
of the order of the quantum of action ~. For GR this is the standard Planck length
lp =

√
G~/c3 and hence it is directly related to the Newton constant. However, for a

general scalar-tensor theory, i.e. a theory compatible just with the Einstein Equivalence
principle (EEP) [Will 2005], G is promoted to a spacetime field. As a consequence of
this, one should expect that the cut-off will be generically position dependent. In
this sense, assuming dS = αδA is equivalent to assume the strong formulation of the
Equivalence Principle (SEP) [Will 2005], hence this implies that one will be able to
recover the dynamics of at most one of the two SEP-compatible gravity theories: GR
and Nordström gravity [Gerard 2007].

Given the assumption in (3.12), a quantitative expression for the system entropy
variation is obtained just by applying the definition for the change of the horizon area
in terms of the expansion rate of the null geodesics comprising it, that is

δA =
∫

H
ε̃ θ dλ. (3.13)

Moving away along the null congruence, from the equilibrium surface at λ = 0, the
infinitesimal evolution of θ is given by a linear expansion around its equilibrium value
at p, up to the first order in λ,

θ ≈ θp + λ
dθ

dλ

∣∣∣∣
p

+ O(λ2) . (3.14)

This first order coefficient will be determined as usual by the Raychaudhuri equation,

dθ

dλ
= −1

2
θ2 − ‖σ‖2 −Rabk

akb , (3.15)

where ‖σ‖2 stands for the squared congruence shear σabσab.1

In this way, the entropy variation, up to O(λ2), is given by

δS = α

∫
H

ε̃ dλ

[
θ − λ

(
1
2
θ2 + ||σ||2 +Rabk

akb

)]
p

. (3.16)

Now, with respect to the null congruence parameters, or equivalently in the limit
1Here we consider a vanishing twist, as the null congruence is taken hypersurface orthogonal.
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for ξaξa → 0, Eq. (3.10) reads

δQ =
∫

H
ε̃ dλ (−λκ) Tabk

akb . (3.17)

Therefore by asking that (3.8) holds, one gets an effective relation between matter
and geometry, without making any use of the gravitational equations of motion.

3.2.1.1 Entropy Balance with Noether Charge

A similar relation can be obtained, by considering a local restriction of the Noether
charge entropy. Since ξa is locally a Killing vector, βloc J

a can be thought of as local
entropy current, with Ja =

(
Lξa + 2Gabξb

)
(see (2.37) and (2.38) in Chapter 2). On-

shell, i.e. when field equations hold (2Gab = Tab), one can write:

Ja =
(
T aj + gajL

)
ξj (3.18)

Therefore, for any vector ka which satisfies kaξ
a = 0, it follows,

(kaJ
a) = T ajkaξj . (3.19)

The change in this quantity, when T aj changes by a small amount δT aj , will be
δ(kaJ

a) = kaξjδT
aj . It is this relation which can be used to obtain an expression

for horizon entropy in terms of the Noether charge. In fact, on integrating δ(kaJ
a) over

the horizon we get

δ

∫
H
dD−1x

√
h(kaJ

a) =
∫

H
dD−1x

√
hkaξjδT

aj

= β

∫
H
dD−2x

√
hkaξjδT

aj (3.20)

where the integration over time has been replaced by a multiplication by β = (2π/κ)
assuming approximate stationarity of the expression. The integral over δT aj is the flux
of energy δE through the horizon so that βδE can be interpreted as the rate of change
of the entropy associated with this energy flux.

Therefore, one can take δSgrav = βloc ua J
a dVprop as the gravitational entropy as-

sociated with a volume dVprop as measured by a local Rindler observer, moving along
the orbits of the Killing vector field ξa with four velocity ua = ξa/N 1.

1Note that the conservation of Ja ensures that there is no irreversible entropy production in the
spacetime.
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In particular, one has [Padmanabhan 2010]

δSgrav = βlocN ua J
a dVprop = β ξa J

a dVprop = β[ξj ξa (2Gaj) + L(ξjξj)] dVprop (3.21)

As one approaches the horizon, ξaξa → 0 making the second term vanish and we find
that

δSgrav = β [ξjξa(2Gaj)] dVprop (3.22)

In the same limit ξj will become proportional to the original null vector kj .
Therefore, in this case, assuming the equations of motion (2Gab = Tab) turns out

to be equivalent to the condition δSgrav = δSmatter.

In this sense, in the same way the local inertial frame was originally introduced to
study how gravity couples to matter, one can use local Rindler frames to interpret the
physical content of the field equations.

The thermodynamical characterization of the local Rindler wedge system is not
based just on the properties of the local causal horizon hypersurface neither on the
physics of the local thermal gauge theory describes interaction of the local horizon and
wedge fields, but effectively on the interaction of the two.

In particular, from a dynamical point of view, the interaction between the wedge
fields and the local horizon is well captured by a membrane paradigm approach, where
the acceleration horizon, at N = 0, is approximated by the time-like surface associated
with the orbits of the Killing vector field ξa, with N = constant, in the limit N =
ξaξa → 0. Such a time-like stretched horizon can be formally associated with a fictitious
fluid membrane living on the horizon which can be used to study the dynamics the
boundary of the past of B in a more general non-equilibrium setting. In particular, the
mechanical interaction of the horizon geometry with the outside fields will be captured
by the transport coefficients of the fluid.

3.2.2 Rindler Fluid Membrane

Imagine to perform a 2+1+1 split of the local wedge where the foliating space-like
surfaces are surfaces of constant time according to a family of accelerated observers
with 4-velocity ua. The time-like surface associated with the orbits of the Killing
vector field ξa, at N = constant, has unit space-like normal na. Since this vector
field can be extended throughout the local spacetime as the normal to all surfaces of
constant N , we have a 2 + 1 + 1 split defined by ua and na. This time-like slices admit
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a smooth limit to causal hoorizon when N → 0, with

N ua → χa

N na → χa (3.23)

where χa will be the null generator of the horizon.
From a mathematical point of view, the dynamics of the time-like congruence com-

prising the stretched horizon is consistently described by fluid mechanics. In this sense,
one can formally identify the stretched horizon system with a “fluid”, the Killing vec-
tor ξa defining the horizon fluid rest frame. In particular, one can introduce a moving
frame for the fluid, by means of a boost in the xi ≡ (x, y) directions

τ̂ = γ(τ − βixi)

x̂i = γ(xi − βiτ), (3.24)

The (boosted) Rindler horizon has fixed area and the entropy is unchanging.
In this equilibrium state we expect the fluid is described by a surface stress tensor

in the perfect fluid form
T ab

S = (ε+ P )uaub + Pγab (3.25)

where γab = gab − nanb and the superscript S indicates this is a surface tensor. Just
like the entropy density s, the surface energy density ε and pressure P are formally
divergent quantities that may depend on the number and nature of fields in the thermal
atmosphere.

As usual one deals with this by introducing a UV cutoff `c, whose value is initially
unknown. The stretched horizon boundary metric

ds2 ≈ gabdx
adxb = −κ2ξ2dτ2 + dξ2 + dy2 + dz2. (3.26)

is flat and invariant under translations in time and space. These local translational
symmetries in the boundary imply the surface stress tensor is conserved. In particular,
by using the thermodynamic relations ε + P = sT , dε = Tds, and dP = sdT one can
show that the entropy density current

∂µ(s ua) = 0 (3.27)

is conserved, as expected.
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In fact, the stretched horizon system and the equilibrium fluid do not agree in
general: the fluid velocity ua is not proportional to ξa except as τ →∞ at x = y = 0.
We have chosen this point because in the limit N → 0, it approaches the bifurcation
point at p. This supplies the notion of local equilibrium in the general fluid.

When we move beyond the equilibrium, the fluid description gives a more complete
description of the dynamics. For the non-equilibrium horizon fluid entropy is created
externally via heat flux from the outside of the system, but also internally from the
friction of expansions and shears. As before, this implies the horizon area is not fixed,
the entropy current in Eq. (3.27) is not conserved, and the spacetime can no longer be
exactly flat. However, in this case, we can study the local geometry perturbation via
hydrodynamics. To parameterize the near horizon curved metric we follow the construc-
tion used by [Bhattacharyya 2008a] to study perturbations of black brane metrics and
assume the previously constant κ, in Eq. (3.26), and boost parameter βi, in Eq. (3.24),
as functions of the stretched horizon coordinates xa ≡ (τ, x, y). Therefore,

ua = N−1γ(xa)
(
∂

∂τ
+ βi(xa)

∂

∂xi

)
, (3.28)

with κ(xa) and the boost parameter βi(xa) approaching constant values at (∞, 0, 0),
where there is no entropy production and the expansion and shear must vanish.

For hydrodynamics to be an applicable description, the horizon gradients ∇b lnκ
(or equivalently of lnT ) and ∇bβ

i(xa) (or of ua) in the local Rindler coordinates need
to be small compared to the inverse of the fluid mean free path at (∞, 0, 0).

By dimensional analysis the inverse mean free path of this thermal state is position
dependent and goes like g2T/~, where g2 is an unknown dimensionless parameter. The
gradients and the inverse mean free path are divergent as we approach the true causal
horizonN → 0, but their ratios are finite. The horizon gradient of the local temperature
is ∇b lnT ∼ N−1∇b lnκ(xa), while Eq. (3.23) implies that the gradient has the form

∇bu
a = N−1∇bχ

a. (3.29)

Thus, we need ∇b lnκ,∇bχ
a � g2T0/~ ∼ κg2 where now xa = (v, xi) for horizon

Killing time v. This criterion is clearly satisfied for derivatives in v. This can be seen
because the local equilibration time for the system goes like g−2κ−1, while the process
is assumed to occur for an infinite amount of Killing time before terminating in the
equilibrium state [Eling 2006].

Furthermore, in introducing the LIF, there was no requirement on the size of the
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changes in xi directions. This implies no scale restriction for the horizon fluid. The
stretched horizon cross-section at τ → ∞ can be tuned so that the changes in β(xi)
and lnκ(xi) are � κg2 near p. Thus, there is no obstruction to working in the hydro-
dynamic regime and therefore an order by order expansion in derivatives is justified.
In the next subsection we will use the equations of hydrodynamics and the properties
of stretched horizons to generalize the equilibrium relation (3.8) to a near-equilibrium
entropy balance law.

3.2.3 Entropy Balance Law and Vacuum Viscosity

Following the above review of hydrodynamics, we can proceed to add a dissipative part
to the perfect fluid stress tensor (3.25) and expand it in derivatives of the flow velocity.
Using conservation of the stress tensor in the stretched horizon, the thermodynamic
relations ε+ P = sT , dε = Tds, dP = sdT , and within the gauge choice Πµνu

µ = 0, it
follows [Landau 2000] that the entropy balance law for the horizon fluid is

∂a(s ua) =
δQ

T
+

2η
T
σabσ

ab +
ζ

T
θ2, (3.30)

where σab = ∇(aub) − (1/2) θ γab, θ = ∇bu
b and the Clausius term is just the flux of

bulk matter energy into the fluid, as heat. We will see below that the entropy change
on the left hand side of this equation is a finite quantity; the ratios of the divergent
quantities on the right hand side will be finite.

Integrating over a volume in the horizon fluid we find∫
∂µ(s uµ)NdτdD−2x = N

2π
~κ

∫ [
Tabu

anb + 2ησabσ
ab + ζθ2

]
dτdD−2x (3.31)

Using Stokes theorem on the left hand side and then taking the limit N → 0 along
with (3.23) yields

δS(v) =
2π
~κ

∫ [
Tabχ

aχb + 2ησ̂abσ̂
ab + ζθ̂2

]
dvdD−2x, (3.32)

where the σ̂µν and θ̂ are now the expansion and shear of the null horizon generator
χµ. Notice how the N dependence has also canceled out of the right hand side and the
relativistic entropy balance law (3.31) has been reduced to a non-relativistic form in
the horizon limit, with the left hand side just a change in total entropy in Killing time.
This result agrees with the equation for the “long-time” evolution of black hole entropy
in the membrane paradigm [Thorne 1986; Damour 1979], if we identify ~κ/2π as a
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Hawking temperature. This approach then provides a new conceptual picture of the
entropy balance law as a consequence of relativistic hydrodynamics. This is not present
in the Damour–Price–Thorne membrane paradigm because no hydrodynamic limit was
identified. Thus, η and ζ are not just analogous to viscosities; in our framework it is
consistent to identify them as the shear and bulk viscosity of the horizon fluid.

Working with the bifurcation point parameterized as v = ∞ is not convenient;
therefore we change to the affine parameter λ = −κ−1e−κv so that p is at the origin:
λ = 0 and x = y = 0. Using the relations χa = (dλ/dv)ka, θ̂ = (dλ/dv)θ, σ̂ab =
(dλ/dv)σab, yields

δS(v) = −2π
~

∫ [
Tabk

akb + 2ησabσ
ab + ζθ2

]
λdλdD−2x (3.33)

which is consistent with the form of the entropy balance law written in terms of the
optical scalars of the null bundle of geodetics definig the boundary of the past of B

with tangent vector ka (see next chapter, eq. (4.3)). Therefore, in the entropy balance
the viscous terms provide an extra internal production entropy diS.

Beyond the formal identification, the fluid description of the local stretched horizon
has an interesting physical interpretation. Indeed, the Minkowski vacuum, a thermal
state once localized in the Rindler wedge, obeys the holographic principle. The area-
scaling behavior of the wedge fields entanglement entropy suggests that the degrees
of freedom in the vacuum thermal state are encoded into the 2 + 1 stretched horizon
boundary of the wedge. In this sense, the hydrodynamical perturbations of the vacuum
should be manifest in the dynamics of the stretched horizon fluid.

In the next chapter we will show how gravitational dynamics can be derived, within
this setting, from the hydrodynamical reformulation of the entropy balance (3.8). Af-
terwards, in the following chapters, we will consider the possibility to find an effective
connection between such hydrodynamical derivation and the gauge/gravity duality aris-
ing in the string theory framework.
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Chapter 4

The Einstein Equation of State

Starting from the entropy balance principle introduced in the previous chapter Jacobson
[Jacobson 1995] was able to derive the Einstein equations as equilibrium constitutive
equations for spacetime, starting from the thermodynamical properties of local causal
horizons and the thermal nature of the Minkowski vacuum. Here we essentially review
the details of the original derivation, strongly characterized by the equilibrium formu-
lation. Thereby, we consider the logic extension to non-equilibrium associated with the
hydrodynamical setting [Chirco 2010b].

4.1 The Einstein Equation of State

We reconsider the situation of a small change of the stationary local Rindler frame,
corresponding to a small deformation of the approximated Killing horizon. From the
fundamental assumption

dS = αδA, (4.1)

the system entropy variation is obtained just by applying the definition for the change
of the horizon area

δA =
∫

H
ε̃ θ dλ. (4.2)

Thereby, by using the Raychaudhury equation, the change of the horizon area is ex-
pressed in terms of the expansion rate of the null geodesics comprising it. It follows,
up to O(λ2),

dS = α

∫
H

ε̃ dλ

[
θ − λ

(
1
2
θ2 + ||σ||2 +Rabk

akb

)]
p

. (4.3)
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The corresponding matter stress tensor perturbation comes at first order in λ, namely

δQ =
∫

H
ε̃ dλ (−λκ) Tabk

akb . (4.4)

Therefore, by asking for relation δS = δQ/T to hold for all null vectors ka, one can
equate the O(λ) integrands in (4.3) and (4.4). At the zeroth order in λ, the value of
heat flux at p is zero, hence one necessarily gets θp = 0. Then, to the first order,

2π
~α

Tab`
a`b = (‖σ‖2 +Rab`

a`b)p . (4.5)

In fact, in a stationary picture, associated somehow to the adiabatic process considered,
the first order nature of the matter perturbation suggest that the metric perturbation
itself, and therefore θ and σ will be of first order. In this sense the terms θ2 and σ2

can be generally be neglected in such a stationary formulation. In this sense, Eq. (4.5)
reduces to

2π
~α

Tab = Rab + Φ gab , (4.6)

where Φ is an undetermined integration function.
Eventually, by assuming the local energy conservation, that is ∇bTab = 0, applying

the divergence operator on both sides of (4.6), and using the contracted Bianchi identity
∇bRab = 1

2∇aR, one finally gets Φ = −1
2R− Λ, hence

2π
~α

Tab = Rab −
1
2
Rgab − Λ gab , (4.7)

where Λ is some arbitrary integration constant. Once the condition

α =
1

4~G
(4.8)

is imposed, one can easily recognize the familiar Einstein equations. Noticeably, Eq.(4.8)
implies that the entropy density of the local Rindler horizon is the same as the one of
a black hole.

This fundamental result states that, given the entropy and energy conservation for
the system, the local thermodynamical equilibrium condition is, in fact, equivalent to
the Einstein equation for the local thermal spacetime. Furthermore, the EP implies
that the above construction can be done at any spacetime point p, and hence that
equation (4.7) holds everywhere in spacetime.

However, such a thermodynamical approach does not have a detailed control over
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the degrees of freedom of the resulting gravity theory. In particular, on the way they
are effectively involved in the perturbation of the spacetime causal structure. Indeed,
by allowing for some shear at p, the local equilibrium condition is formally split in two
parts: a ka dependent part, which leads to the Einstein equation, and a ∂ka dependent
part, related to the shear term, which remains unexplained. Indeed, getting rid of
σ2 terms implies an assumption on the equilibrium value of the shear, i.e. σp = 0.
This assumption would be in any case arbitrary without a dynamical constraint. In
this sense the local equilibrium condition is broken by the unavoidable presence of
non-local terms, ∂ka.

From a geometrical point of view, the equilibrium thermodynamics can give a suit-
able description only under the assumption that the affine congruence orthogonal to B
has zero expansion and shear at p. However, we saw that this is equivalent to require
that the chosen B (and hence its associated null congruence) is less general than the
one allowed by the assumed entropy-area relation (or alternatively by the SEP). Such
an ansatz seems too restrictive for considering (4.7) as a general result.

4.2 Non-equilibrium Thermodynamics

In fact, a non zero affine shear at p may change the way in which the equilibrium is
approached by the system in the Killing frame. Given the relations

θ̂ =
(
dλ

dv

)
θ = −κλ θ and σ̂ =

(
dλ

dv

)
σ = −κλσ, (4.9)

one realizes that the Killing shear falls off to zero at p as σ̂ ∼ e−2κv when σ vanishes,
while only as σ̂ ∼ e−κv when σ is non vanishing. In this sense, for a non vanishing
affine shear, the equilibrium approach can be considered slow enough for the system to
be in a near-equilibrium regime. This was firstly realized in [Eling 2006].

The limits of the derivation above seem to be overcome if one allows for some shear
in p. As discussed in the previous section, the LRF is not sensitive to the exact value of
the affine expansion and shear at p. Therefore, setting σp = 0 is an unjustified arbitrary
choice.

This argument was used in [Eling 2006] to recast the thermodynamical derivation
in a non-equilibrium setting, where the hydrodynamical description of the horizon
dynamics provides the evidence for

dS > δQ/T. (4.10)
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In this new context, the Clausius law is replaced by the entropy balance law,

dS(v) = −2π
~

∫ [
Tabk

akb + 2ησabσ
ab + ζθ2

]
λdλdD−2x (4.11)

or, equivalently
dS = δQ/T + diS, (4.12)

The extra shear term in (4.5) is then associated with the internal entropy production
diS, generated by the system out of equilibrium. The internal entropy contribution,
O(λ), has the form

diS = −4πη
~

∫
H

ε̃λ dλ ||σ||2p (4.13)

and it is interpreted as an internal entropy production term due to some internal
spacetime viscosity, with η = ~α/4π 1. Furthermore, it is also noticed in [Eling 2006]
that by using (4.8), one gets η = 1/(16πG) in agreement with the value obtained for
the shear viscosity of the stretched horizon of a black hole in the so called membrane
paradigm [Price 1986; Thorne 1986; Damour 1979]. This result concludes the review
of the argument described in [Jacobson 1995; Eling 2006; Eling 2008].

In some way, the shear contribution in (4.5) brings into the entropy balance process
a new degree of freedom, which is not fixed by the Ricci tensor and so has nothing to
do with the local matter energy sources. Actually, the surface shear is srelated to the
Weyl tensor and usually associated with the distortion on the geodesics congruence due
to a gravitational perturbation.

In fact, this argument opens an issue about the absence so far of any role for
gravitational fluxes in the system energy perturbation mechanism. Due to their non-
local nature, the gravitational energy fluxes cannot be taken into account with a proper
stress-energy tensor (SET). However, allowing for non-local terms, as the one in ‖σ‖2

in (4.5), seems at odds with neglecting the role of these non-local energy contributions.
On the other hand, the interpretation of the internal entropy contribution as a by-

product of some sort of viscous work on the system, given in [Eling 2006; Eling 2008],
is very reasonable, because the term (4.13) is actually related to some mechanical
deformation due to the presence of shear in the null congruence generating the horizon.

In this sense, such a spacetime viscosity seems naturally related to the distorsive
effect of a gravitational flux, to be intended as a local curvature perturbation which is
independent from the Einstein equation. This suggests that gravitational energy fluxes

1The internal entropy production terms originating from the squared gradients of state variables is
a universal property of systems with viscosity in non-equilibrium thermodynamics [de Groot 1962],
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can possibly play a role into the total entropy balance of the system without entering
into the Einstein equilibrium relation.

Starting from these remarks, we are led to reconsider the thermodynamical argu-
ment of this section in a fully non-equilibrium setting. In particular, for the motivations
given above, we show that the internal entropy production, such as (4.13), actually indi-
cates the presence of dissipative (irreversible) processes, to be related to the conformal
components of the spacetime curvature.

4.3 Internal Entropy Production

In classical non-equilibrium thermodynamics, the rate of change of the entropy is gen-
erally written as the sum of two contributions:

dS = deS + diS, (4.14)

where deS is the rate of entropy exchange with the surroundings while diS comes from
the process occurring inside the system and is a non-negative quantity, accordingly to
the second law of thermodynamics. In particular, diS is zero for reversible (quasi-static)
processes and positive for irreversible processes.

The Clausius relation used for the equilibrium approach in section III, is actually
equivalent to the Clausius definition of entropy for the equilibrium system, that is

deS = δQ/T and diS = 0, (4.15)

as, in that case, the horizon perturbation is effectively described as a quasi-static process
occurring in continuous equilibrium with the surrounding. However, this definition does
not hold true any more as irreversible processes come into play.

Actually, in the non-equilibrium thermodynamical setting, the Clausius definition
of entropy is generalized to the expression

dS =
δQ

T
+ δN, (4.16)

where δQ is classically referred to as compensated heat , that is the heat transferred
between the system and its surroundings, while δN , the so called uncompensated heat ,
indicates the amount of entropy associated with the heat which is intrinsic to the system
when it undergoes an irreversible process.

Let us stress that the above definition is very general, as it does not require either
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an a priori specification of the nature of the non-equilibrium variable, or the nature of
the process involved. It generalizes the notion of local equilibrium by extending the
entropy balance to the unbalanced contributions related to the irreversible processes,
like dissipation (see e.g. [D. Jou 2001]).

The generalized Clausius relation (4.16) is helpful in order to clarify the nature of
the equilibrium and non-equilibrium contributions defining our system entropy. In fact,
by using the definition of the non-equilibrium entropy given in (4.14), we can write

deS + diS =
δQ

T
+ δN , (4.17)

and identify the external and internal entropy in terms of the compensated and un-
compensated heat, respectively

• deS = δQ/T , at the reversible level,

• diS = δN , at the irreversible level.

With this approach, the argument described in the previous section acquires a straight-
forward interpretation. Indeed, the extra contribution (4.13) introduced by the non
vanishing horizon shear is an internal entropy production term allowed by the most gen-
eral choice of the null congruence associated with B compatible with the area-entropy
relation for GR (that we linked to the choice of the EP formulation). Therefore, it has
to be seen as a by-product of the presence of internal/purely gravitational degrees of
freedom of the theory which can be responsible for irreversible dissipative processes.

However, in order to physically identify an internal entropy contribution diS into the
general expression for the horizon entropy given in (4.3), one needs a clear understand-
ing of the relation between non-equilibrium forces and intrinsic spacetime properties
involved.

Since all the thermal information of the Rindler wedge vacuum is recorded on the
horizon boundary [Eling 2008], the internal spacetime variables involved in the non-
equilibrium process should be related to the null geodesic congruence kinematics around
p. In this sense, a possible way to capture non-equilibrium features of the thermal
system is to use the analogy between the congruence bundle comprising the horizon
and a classical fluid.
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4.4 GR from Non-equilibrium Spacetime Thermodynam-

ics

We now have a clear way to relate the non-equilibrium features, arising in the thermo-
dynamical derivation of the Einstein equations, to those kinematical degrees of freedom
of the horizon congruence which are turned on by the local spacetime curvature. The
horizon kinematics actually defines the intrinsic spacetime properties involved in the
irreversible processes.

We can then reproduce the thermodynamical derivation of the Einstein equations
within the hydrodynamical setting introduced in the previous chapter, simply by start-
ing, in a quite general way, from a generic spacelike 2-surface patch B at p, with non
vanishing θp and σp.

Since we are now dealing with a non-equilibrium setting, we expect that the entropy
can be expressed as a sum of two different contributions dS = deS + diS. Moreover,
for the argument given in section (4.2), we are able to identify the form of the non-
equilibrium, unbalanced, entropy terms. Therefore, we can split (4.3) as

deS = α

∫
H

ε̃ dλ (θ − λRabk
akb)p (4.18)

diS = −α
∫

H
ε̃ dλλ

(
1
2
θ2 + ‖σ‖2

)
p

, (4.19)

and separate, as previously argued, the reversible and irreversible levels

• (4.18) = δQ/T , at the reversible level,

• (4.19) = δN , at the irreversible level.

From the first expression above, one has

deS = α

∫
H

ε̃ dλ
(
θ − λRabk

akb
)

p
= (4.20)

= −2π
~

∫
H

ε̃ dλλTabk
akb =

δQ

T
,

where the heat flux is still defined by the expression in (4.4). Even for the non-
equilibrium setting the reversible heat will vanish at λ = 0. Thereby, at the zero order
in λ, one deduces again θp = 0, while, at the first order, the relation Rab + Φgab =
(2π/~α)Tab, is recovered for all null vectors `a. Following the previous discussion this
implies, together with the conservation of the matter stress-energy tensor, the Einstein

68



equations if α = (4~G)−1.
On the other hand, for the irreversible level, we have, in accordance with (4.13),

δN = diS = −α
∫

H
ε̃ dλλ ‖σ‖2p . (4.21)

This again identifies the shear contribution as an internal entropy term, associating it
to some irreversible dissipative process occurring in the thermal Rindler wedge.

To get a physical interpretation of δN with respect to the thermal properties of the
Rindler wedge, it is helpful to express equation (4.21) in terms of the Killing horizon
parameters. In the new frame,

δN = diS =
α

κ

∫
H

ε̃ dv ‖σ̂‖2p ≥ 0, (4.22)

in accordance with the second law of thermodynamics.
By a comparison with expression (4.12), one can actually interpret the expression

in (4.22) as the standard entropy production term for a fluid with shear viscosity η,
defined by

2η
T

=
α

κ
, (4.23)

that is η = ~α/4π, in agreement with the universal relation for the viscosity to entropy
density ratio found in the AdS/CFT context [Maldacena 1998].

4.4.0.1 Tensorial Degrees of Freedom and Gravitational Dissipation

While the previous discussion shows that the spacetime thermodynamics nicely fits
into a non-equilibrium hydrodynamical setting, we now want to take this arguments a
step further and ask whether the expression in (4.22) can be effectively related to some
gravitational energy flux.

The expression for the uncompensated heat given in (4.22) quantifies the energy of
the system which is effectively dissipated by the viscous process,

T δN =
αT

κ

∫
H

ε̃ dv ‖σ̂‖2p. (4.24)

Then, by substituting α = (4~G)−1, from the reversible sector of the thermodynamical
approach, the quantity in (4.24) reads

T δN =
1

8πG

∫
H

ε̃ dv ‖σ̂‖2p, (4.25)
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which coincides with the Hartle–Hawking formula for the tidal heating of a clas-
sical black hole [Teukolsky 1974; Hawking 1972; Chandrasekhar 1983; Poisson 2004;
Poisson 2005].1

This is a striking result as it defines the internal entropy production as a purely
gravitational effect. Indeed, it can be associated with the work done on the horizon by
the perturbative tidal field which is described by the electric part of the Weyl curvature
tensor2. Furthermore, relation (4.23) suggests that such a work has to be seen as acted
upon the internal/microscopic degrees of freedom of the theory rather than on macro-
scopic quantities (in this sense (4.25) cannot be interpreted as a standard/reversible
work term). The horizon viscosity implies that such a work will be converted into
internal heat. Hence, the presence of the internal entropy term can then be directly
related to the process of dissipation via gravitational/internal degrees of freedom. In
this sense, the irreversible sector contains the information about the possible activa-
tion/propagation of such degrees of freedom of the theory.

4.5 Summary and Discussion

In a non-equilibrium hydrodynamical description of the horizon dynamics the viscous
dissipative effects appear to be naturally associated with purely gravitational energy
fluxes. Their association with the irreversible/dissipative sector of the theory strongly
suggests an interpretation of their nature as, non-local, internal heat flows associated
with the internal spacetime degrees of freedom and clarifies why in GR a local, back-
ground independent, description of gravitational waves is precluded.

Noticeably, in order to recover the field equations one always needs to effectively iso-
late these dissipative contributions by neatly separating the reversible and irreversible
sectors of the constitutive equation. The analogy between the stretched horizon mem-
brane and the fluid allows to recognize the natural terms related to the irreversible
sector of the entropy balance. This effective separation of the reversible and irreversible
regimes is further supported, at least in GR, by the fact that the energy contributions
occurring in the equilibrium constitutive relations have a local nature, being always re-
lated to the gravity field sources (Ricci curvature), whereas the non-equilibrium terms

1Note that both in [Teukolsky 1974] and in [Chandrasekhar 1983] the Hartle–Hawking formula
expressing the relation between the horizon area variation and the horizon shear is utilized with a
definition of the surface gravity ε which is half of that used in [Hawking 1972].

2Even though the magnetic part of the Weyl tensor is actually necessary in order to define the Weyl
curvature and the equations governing its propagation (Bianchi identities), this part does not play any
direct role in determining the time derivative (evolution) of the congruence kinematic quantities, as it
is just related to their spatial gradients.
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are intrinsically non-local and related to those curvature components which are inde-
pendent from the sources distribution (Weyl curvature). This actually shows that the
thermodynamical derivation of the gravitational field equations is very general as it is
sensitive to the whole spacetime curvature.

However, a different issue is the interpretation of the internal entropy production
terms related to dissipation with respect to a particular spacetime solution. While the
association between internal entropy and allowed form of gravitational fluxes seems
quite clear (e.g. we showed that the energy dissipated in GR coincides exactly the
Hartle-Hawking tidal heating term), it might seem however puzzling that the arbitrari-
ness in the choice of B allows for non-zero shear and expansion of the null congruence
(and hence for internal entropy production terms) even, for example, if one imagine to
have performed the local Rindler wedge construction in a Minkowski spacetime.

In fact, the thermodynamical approach is providing us just with the constitutive
equations of the thermal system associated with local Rindler wedge, not of the space-
time in which the latter is constructed. The arbitrariness of the choice of B (and hence
of the thermal system properties) implies that such equations will at most characterize
the structure of the gravitational theory selected by the entropy-area relation (the EP
formulation). In this sense they will not be associated with physical fluxes or curvatures
of the spacetime as a whole. Hence, the possible presence of internal entropy terms,
even when the local Rindler wedge is constructed in flat spacetime, does not imply that
the latter can be seen as a system in a non-equilibrium state.

Of course, one might take an alternative point of view, and claim that the above
discussion actually shows an intrinsic limitation of the standard construction adopted
here, as in [Jacobson 1995; Eling 2006]. In addressing this issue, a possibility could
consist in a further characterization of the local Rindler wedge construction. In fact, one
might choose to construct the 2-surface B in such a way that it will be sensitive to the
local curvature at p and reduce to a plane in the flat spacetime case (i.e. B would lead
generically to a non-zero θp and σp but would also reduce to the standard bifurcation
surface at p for a Rindler wedge, whose orthogonal null congruence has θp = σp = 0, in
the flat spacetime limit). For example, this could be achieved by constructing B as a
totally geodesic 2-dimensional spacelike sub-manifold of the spacetime passing through
p [O’Neill 1983]. (That is, any geodesic passing through p and there tangent to B would
have to be completely contained in B.) Within this alternative approach, while all the
formula would still pertain to the thermodynamical behavior of the local Rindler wedge
at p 1, they would now be able to specialize to a specific spacetime choice and hence

1E.g. one can talk about dissipation only with reference to the local Rindler wedge as spacetime
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link the dynamical behavior of the wedge to the actual local matter-curvature content
of the chosen spacetime.

We do not see at the moment a decisive argument to go in one sense or the other.
All in all, the whole point of the thermodynamical approach is not to provide an
instrument able to reconstruct the kind of spacetime one is living in. Rather it is
aimed to put in evidence the thermodynamical structure and the internal degrees of
freedom of gravitational theories. In this sense the traditional construction, with an
arbitrary B, seems sufficient. We plan however to further explore this issue in future
work.

The extension to non-equilibrium suggests that the Einstein equations effectively
arise from the hydrodynamics of the local vacuum. Remarkably, this argument also
fixes the entropy density and shear viscosity of the vacuum such that their ratio is
~/4π.

This picture seems to imply that microscopic dynamics (which could include quan-
tum gravity below the cutoff) leads to (semi-)classical Einstein gravity as collective
hydrodynamic behavior at low energies. The interesting point [Eling 2006] consists
in the fact that some hydrodynamic properties turn out to be universal although we
initially allowed for the properties of the horizon fluid to depend on the number and na-
ture of the quantum fields and treated the viscosities as being purely phenomenological.
Once the value of the the UV cutoff scale `c is fixed to be roughly a Planck length, the
entropy density associated with all local Rindler horizons is the Bekenstein–Hawking
entropy density and η/s is universally ~/4π. All the dependence on the number and na-
ture of the quantum fields is apparently absorbed into the low energy Newton constant
GN . This in accord with arguments that the Bekenstein–Hawking entropy is dependent
implicitly on the nature of quantum fields through the renormalization of the gravita-
tional constant and is either partly or wholly the entanglement entropy of the thermal
atmosphere. Low energy physics (the balance law) and this one observation turn out
to be enough to determine the entropy density and the shear viscosity of the fluid.
However,the bulk viscosity is not fixed by the balance law.Though somehow required
by the fluid analogy, a straightforward physical interpretation for the bulk viscosity is
missing. We shall consider this issue in the next chapter.

Finally, the value ~/4π also appears in the AdS/CFT literature as the universal
value of the shear viscosity to entropy density ratio of gauge theories with an Ein-
stein gravity dual. This naturally leads to the question whether a connection between
this gauge/gravity duality result and the hydrodynamic derivation should be expected.

as a whole as to be seen as a conservative system.
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First, in both cases holography is crucial: we postulated the thermal vacuum state is
holographic, while AdS/CFT is a precise realization of the equivalence of a higher di-
mensional gravity theory to a lower dimensional non-gravitational theory on a bound-
ary. Furthermore, in the duality, d dimensional gauge theories in high temperature
deconfining phases are dual to large black hole or black brane spacetimes in d+ 1 AdS
[Witten 1998b]. Therefore one can use classical perturbations of the large black hole or
black brane spacetimes (see [Son 2007] for a review) to perform analytical computations
of the hydrodynamic transport coefficients. According to the AdS/CFT dictionary the
notion of viscosity is meaningful in the infrared regime of the gauge theory, which
corresponds to the near horizon limit of the translationally invariant black object. In
this sense these black objects have viscosities, just like the viscosity we found for local
stretched horizons. In both cases the hydrodynamics of a flat spacetime system is man-
ifested in the dynamics of a horizon boundary. However, since ~/4π holds for all local
acceleration horizons it seems more fundamental than the AdS/CFT results for large
black holes and black branes in AdS spacetimes [Eling 2006]. These considerations will
become central in the last two chapters.

73



Chapter 5

Generalized Gravity Theories

from Thermodynamics

A crucial assumption in the previous derivation was the validity of the SEP which
allowed to consider the entropy density α as a constant. One might wonder what are
the consequences of relaxing such an assumption in favor of the less restrictive Einstein
Equivalence Principle (EEP). In this case, one might generically expect that the entropy
density is promoted to a spacetime function (basically because the EEP is consistent
with a spacetime dependent Newton constant). However, in the definition for the
entanglement entropy of the Rindler wedge, this implies a possibly very complicated
spacetime dependence for the UV cut-off. Furthermore, the specific form of such a
cut-off is not uniquely fixed by the EEP correspondingly to the fact that the latter
generically allows for many generalized theories of gravity.

5.1 Thermodynamical Derivation of F(R) Gravity

In order to make the argument as simple as possible, following [Eling 2006], we start
by considering the specific case of F (R) gravity, which is known to be equivalent to a
single field scalar-tensor theory (more precisely a Brans-Dicke theory with ω = 0 and
a specific potential for the scalar field [Sotiriou 2010])1 In this case, the UV cut-off is
known to be proportional to some function of the curvature f(R) ≡ F ′(R) (where the
prime indicates the derivative with respect to R), playing the role of the inverse of the

1In a similar thermodynamical approach, f(R) gravity is alternatively considered in [Akbar 2007;
Elizalde 2008]. See also [Paranjape 2006] for a further extension of the thermodynamical perspective
with a Lanczos-Lovelock gravity.
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gravitational coupling. In this case, the area entropy relation is known to be given by

S = α f(R) ε̃ (5.1)

where α is still a constant (albeit a priori different from the one considered in the
previous section).

It is easy to see that in this case the entropy variation along the null congruence
will be

dS

dλ
= α

(
df

dλ
ε̃ + f

d ε̃

dλ

)
, (5.2)

where, by definition ε̃−1d ε̃/dλ = θ.
Consequently, the entropy change along the horizon will read [Eling 2006]

dS = α

∫
H

ε̃ dλ (ḟ + f θ), (5.3)

therefore acquiring, with respect to the previous argument, an extra contribution ḟ

coupled to the dynamics of the scalar function f . (Here the dot stays for differentiation
with respect to λ.)

For this reason, in order to set the instantaneous stationarity condition at p, that
is dS = 0, the affine expansion is no more a good dynamical variable. In this sense, it
is helpful to define the quantity θ̃ ≡ (θ f + ḟ) as a sort of effective expansion for the
congruence [Chirco 2011b]. Consequently, the equilibrium surface for the system will
be fixed by the condition

θ̃p = 0 , (5.4)

that is θp = −ḟ/f , where ḟ = f ′(R) kaR,a is generally nonzero. In particular, this
actually provides an example of LRF equilibrium surface, for which θp is always non-
vanishing, apart from the trivial case where f is constant, for which the theory will be
equivalent to GR.

From the discussion in the previous chapter, we could already expect that the
presence of the non-vanishing affine expansion would produce a non-equilibrium contri-
bution to the system entropy. In order to get a quantitative expression for the entropy
change in the neighborhood of p, one again can consider an infinitesimal deviation of
the entropy from its equilibrium value.

Let us then Taylor expand the integrand in (5.3) around p up to the first order in
λ, that is

θ̃ = θ̃p + λ
˙̃
θ
∣∣∣
p

+ O(λ2), (5.5)
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where
˙̃
θp = (f̈ − f−1ḟ2 + f θ̇)p. (5.6)

One can use the Raychaudhuri equation and the geodesic equation kakb
;a = 0, to

obtain the O(λ) expression for the entropy change

dS = α

∫
H

ε̃ dλλ
[
(f;ab − f Rab) kakb− (5.7)

− 3/2 f θ2 − f ||σ||2
]
p
,

where relation (5.4) is used to substitute f−2ḟ2 = θ2 at p. Now, keeping the expression
in (4.4) for the heat flux, one can finally reproduce the same approach shown in the
previous chapter (see section 4.4).

At the reversible level, the generalized Clausius relation gives

f Rab − f;ab + Ψ gab = (2π/~α)Tab (5.8)

where Ψ is an undetermined function. Following the original argument given in [Jacobson 1995;
Eling 2006], one then requires the conservation of the matter stress-energy tensor and
use the contracted Bianchi identity to write the commutator of the covariant derivative
as 2vc

;[ab] = Rabd
c vd. In this way, one finds

(f Rab − f;ab);a =
(

1
2
f − � f

)
,b

, (5.9)

and thereby

Ψ =
(

� f − 1
2
f

)
. (5.10)

Eventually, equation (5.10), together with (5.8) exactly leads, as expected, to the
field equations of f(R) gravity

f Rab − f;ab +
(

� f − 1
2
f

)
gab =

2π
~α

Tab. (5.11)

with the identification α = (4~G)−1. In [Eling 2006], the same result was obtained
starting from the entropy balance relation dS = δQ/T , assuming σ = 0, and then
identifying the extra entropy term in θ in the second line of (5.8) with a suitable internal
entropy term. There, it was also shown that the alternative route of keeping the θ2 in
equation (5.9) is not compatible with the conservation of the matter energy-momentum
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tensor.
Indeed, following the previous discussion, the above term is expected (together

with a shear dependent term) as an unavoidable contribution related to the irreversible
sector of the generalized Clausius relation δS = δQ/T + δN ,

δN = −
∫

H
ε̃ dλλ (α f)

[
3
2
θ2 + ||σ||2

]
p

, (5.12)

which identifies the internal entropy production terms of the system.
As expected, the internal entropy in (5.12) now shows contribution both from scalar

and tensorial degrees of freedom. Indeed, by using the same argument as in the GR case,
we again have a natural interpretation for the expression in (5.12) as the dissipative
function of the system.

The shear squared contribution is equivalent to the one found for GR, with a shear
viscosity coefficient which now takes a factor f ,

η =
~α f
4π

, (5.13)

as a consequence of the UV cut-off chosen for the area entropy relation.
On the other hand, the internal entropy contribution due to the scalar degree of

freedom is now given by

diSθ = −
∫

H
ε̃ dλλ (α f)

3
2
θ2
p. (5.14)

By making use of a kinematical analogy, and by expressing the above equation in the
Killing frame, one is naturally led to define the bulk viscosity ζ as

ζ

T
=

3α f
2κ

, (5.15)

that is ζ = 3 ~α f/4π, as already found in [Eling 2006].

5.1.1 Gravitational Dissipation in Scalar-Tensor Gravity

In order to give a physical interpretation to (5.14), one can use the equivalence between
f(R) and scalar-tensor gravity, thereby interpreting f as an effective massive dilaton
[Chirco 2010b; Chirco 2011b].
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The action for f(R) gravity is given by

A =
~α
4π

∫
d4x

√
−g f(R) + Amat. (5.16)

By introducing an auxiliary field1 ϕ ≡ f(R) and assuming f ′′(R) 6= 0 for all R, one can
take V (ϕ) as the Legendre transform of f(R) so that R = V ′(ϕ), thereby rewriting the
expression in (5.16) as

A =
~α
4π

∫
d4x

√
−g [ϕR + V (ϕ)] + Amat. (5.17)

The Euler-Lagrange equations, in the Jordan frame, take the form

ϕ

(
Rab −

1
2
gabR

)
+ (gab�−∇a∇b)ϕ + (5.18)

+
1
2
gabV (ϕ) =

2π
~α

Tab,

equivalent to field equations given in (5.11).
In this frame, by using the relation (5.4), one can express the dissipated energy

coupled to the bulk and shear viscosity in (5.14), in terms of the auxiliary scalar field
ϕ

TδN = −
∫

H
ε̃ dλλ (αϕ)T

[
3
2
ϕ−2 ϕ̇2 + ||σ||2

]
p

. (5.19)

Similarly to the GR case, one expect that relation (5.19) expresses some purely
gravitational energy loss for the system, this time involving both scalar and tensorial
fluxes. The interpretation of the term related to the shear is straightforward as it is
clearly the generalization to a scalar-tensor theory of the tidal heating already obtained
for the GR case [Will 1981].

More problematic is the interpretation of the bulk viscosity (purely scalar) contri-
bution as no equivalent derivation as that for the tidal heating term in GR has been
performed (to our knowledge) for scalar-tensor theories of gravity.

The entropy production terms associated with the quadratic expansion appear as
an extra purely scalar dissipative contribution. However, the scalar dissipative contri-
bution seems to be formally local, as a derivative of a scalar field at a point. Being
local, this term would be frame independent, thereby it would exist for any observer

1Note that the fact that in f(R) gravity the associated scalar field is not a generic spacetime
function but rather just of R, makes it possible to derive a closed system of equations without having
to assume the equations of motion of the scalar field separately.
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(accelerated or inertial) in the local patch of spacetime and would always end up de-
scribing the dynamics of the global spacetime. Therefore, an interpretation of this term
as a dissipative contribution would imply waves of the scalar field would be dissipative
in the spacetime. This is inconsistent with that fact that classical gravitational theories
are time reversal invariant.

In order to address this problem, we start in this work by extending the thermody-
namical approach, previously applied to metric F (R) gravity, and work in the Palatini
formalism, where the connection is a priori an independent variable from the metric.

5.2 Palatini F (R) Gravity

In the Palatini formalism, one treats the connection as an a priori independent variable.
The Riemann tensor Rabrl, constructed out of this connection, is now therefore also
independent of the metric.

Our starting point will be an entropy density which is an arbitrary function of the
independent Ricci scalar

S = α

∫ √
hf(R)d2x. (5.20)

If the thermodynamic approach works in this case, we expect now two equations, which
are the equations of motion following from the variation of the Lagrangian

IP =
α

4π

∫ √
−g(F (R) + Lmatt(gab, ψ)) (5.21)

with respect to gab and Γλ
ab. Note that in the Palatini formalism the matter part of

the action is assumed not to depend on the independent connection.
Palatini F (R) gravity theory has been discussed extensively over the past decade

as an alternative theory of gravity [Sotiriou 2010]. Here we pause briefly to review the
properties of this theory. Defining f = dF/dR as before, the equations of motion are

f(R)Rab −
1
2
F (R)gab =

(
2π
α

)
Tab (5.22)

∇̄s(
√
−gf(R)gs(adb)

l − ∇̄l(
√
−gf(R)gab) = 0, (5.23)

where ∇̄ represents the covariant derivative defined with respect to the independent
connection. The connection equation is equivalent to the more compact condition

∇̄l(
√
−gf(R)gab) = 0. (5.24)
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Note that when f is equal to a constant this equation reduces to the usual metric com-
patibility condition for gab. Therefore we see the textbook equivalence of the Palatini
and metric formalisms of GR. In general however, (5.24) implies the conformally related
metric

ḡab = f(R)gab (5.25)

is compatible with the connection. Imposing this condition, one can relate the Ricci
tensor and scalar constructed from ḡab to the metric quantities

Rab = Rab +
3
2

1
f2

(∇af
′)(∇bf)

− 1
f

(∇a∇b −
1
2
gab�)f (5.26)

R = R+
3
2

1
f2

(∇af)(∇af) +
3
f

�f. (5.27)

These equations can be substituted into (5.22) to yield [Sotiriou 2010]

fGab =
(

2π
α

)
Tab −

1
2
gab (fR− F (R))

+
1
f

(∇a∇b − gab�)f − 3
2

1
f2

[(∇af)(∇bf)

−1
2
gab(∇f)2]. (5.28)

Solving the trace of (5.22) for R in terms of T , one can completely eliminate the
connection as an independent variable and reduce the system to one equation of motion
that looks like GR with a modified source. Following the reasoning of [Chirco 2010b]
one then should expect that no bulk viscosity term appears in this case, as no-extra
dynamical gravitational degree of freedom with respect to the metric appears in Palatini
F (R) gravity.

5.2.1 Thermodynamic Formalism

With the connection now an independent variable and the metric no longer a priori
compatible with it, we want to consider the effect (if any) on the basics of the ther-
modynamics of spacetime formalism introduced in Section II. This is not only worth
doing for checking the validity of the above discussed expectation (no-bulk viscosity
associated with F (R)) but also as a first step towards the generalization of the space-
time thermodynamics formalism to the broader class of metric-affine theories of gravity
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[Chirco 2011b].
In the neighborhood of each point, spacetime is still locally flat and we still can

construct the boost Killing vector χa since the Killing equation Lχgab = 0 does not
depend on the connection. On the local horizon χa is still a null generator. However,
in the presence of an independent connection, there is a priori an ambiguity in whether
χa is a geodesic with respect to the independent connection or the metric one. We have
either

χb∇̄bχ
a = κ̄χa (5.29)

or
χb∇bχ

a = κχa, (5.30)

and the corresponding choices for the affine parametrization

χa = −κ̄λ̄ka (5.31)

χa = −κλka. (5.32)

Each vector above is affinely parameterized with respect to either the independent or
the Levi-Civita connection: kb∇̄bk

a = 0 or kb∇bk
a = 0. Therefore, in the entropy

change δS, one must consider changes with respect to either affine parameter. A priori
the different Clausius relations could yield two different equations of motion. In the
next two subsections we will consider variations with respect to λ̄ and λ in turn.

5.2.1.1 Variation using Independent Connection

First we consider the heat flux. We express the Killing field in terms of the affine ka

using the formula χa = −λ̄ka, where we scale the κ̄ = 1 as usual.1 Therefore,

δQ

T
= 2π

∫
TM

abk
akb(−λ̄)dλ̄

√
hd2x. (5.33)

In the expression above, differently from Eq. (4.4), we use the affine null vector ka

with respect to the independent connection and the null geodesic bundle comprising the
horizon is now parametrized by λ̄. On the other hand, as the matter only feels the metric
gab, the relevant volume element is still given by

√
g, reducing to

√
h on the horizon.

In this sense, we can write the relevant horizon volume element as dΣb = ka
√
hd2xdλ̄.

1It is worth noticing here that there is an ambiguity about which κ (barred or unbarred) would
actually appear in the Tolman–Unruh temperature T ( see Chapter 2 ). If the unbarred κ is chosen,
due to the coupling of matter fields only to metric, then we assume the ratio of the two surface gravities
can be scaled to unity without loss of generality.
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Along the same parameter λ̄, we now consider a general variation of the entropy.
This has the same form as (4.3), but we express it in a slightly different way,

δS =
∫ √

hfθ̄d2x, (5.34)

where

θ̄ =
1√
h

d
√
h

dλ̄
+

1
f

df

dλ
=
d ln(f

√
h)

dλ̄
. (5.35)

This suggests that the new expansion measuring the product of f and of the transverse
element is the relevant one. Thus, we make the transformation√

h̄ = f(R)
√
h. (5.36)

so that in terms of this new variable, the entropy is an area entropy

S = α

∫ √
h̄d2x. (5.37)

Imposing the entropy balance equation and matching order by order in λ̄ we find the
zeroth order equilibrium condition, which can be expressed as

θ̄ = 0 → ka∇̄a(
√
h̄) = ka∇̄a(f ′

√
h) = 0. (5.38)

Note that we could have performed the above conformal transformation also in metric
F (R) gravity, but in that case the equilibrium condition involves the Levi–Civita con-
nection. On the other hand, the above formula in terms of the independent connection
is reminiscent of the metric compatibility condition (5.24).

First, note that the vanishing of the expansion θ̄ can be expressed as

d

dλ̄

√
det(ḡabe

a
Ae

b
B) =

d

dλ̄

√
det(ḡab)det(eaAe

b
B) = 0. (5.39)

The quantities eaA are basis vectors in the cross-section of the horizon and the index A
runs over the two transverse directions. Since these basis vectors by construction are
Lie transported along the horizon, we must have that

d

dλ̄

√
−ḡ = 0. (5.40)
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But since
d

dλ̄

√
−ḡ =

1
2
ḡab

d

dλ̄
ḡab = 0, (5.41)

this condition implies that
d

dλ̄
(
√
−ḡḡab) = 0. (5.42)

Demanding this equation hold for all null vectors ka, at each point p, and using the
fact that (5.36) implies

ḡab = fgab, (5.43)

we arrive at the metric compatibility equation (5.24),

∇̄λ(f
√
−ggab), (5.44)

as the equivalennt of the auxiliary equilibrium condition in the metric formalism.
Now we go back to the entropy balance law and continue to next order in λ̄. We

find

δS = α

∫ √
h̄
dθ̄

dλ̄
λ̄d2x. (5.45)

Using the Raychaudhuri equation this can be re-expressed as

δS = −α
∫ √

h̄Rabk
akbλ̄d2x, (5.46)

in terms of the Ricci tensor constructed from ḡab. Note the appearance of
√
h as opposed

to the
√
h̄ = f

√
h. Imposing the Clausius relation, and matching both sides, we find

fRab + Φgab =
(

2π
α

)
TM

ab . (5.47)

The f in front of the Ricci tensor has reappeared to account for the mismatch between
the effective volume element and the metric volume element felt by matter flux.

In the Palatini formalism, ∇̄aTab 6= 0, but the usual metric conservation law
∇aTab = 0 holds. Imposing this condition yields

∇bΦ = −f∇aRab − Rab∇af. (5.48)

The main problem is to calculate the g covariant divergence of the ḡ Ricci tensor. We
know that Rab is related to Rab via a conformal transformation with conformal factor
f1/2. The connection relating the covariant derivatives with respect to the two metrics
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has the form
Γσ

ab = −δσ
(a∇̄b) ln f ′ +

1
2
ḡabḡ

σδ∇̄δ ln f ′. (5.49)

Using the formula (see e.g. [Koivisto 2006])

∇aGab = −∇a ln fRab (5.50)

and defining Gab = Rab − 1
2gabR, we ultimately find that

∇bΦ = −1
2
f∇̄bR = −1

2
∇̄bF, (5.51)

so that Φ = −1/2F + const. as we expect. Therefore in the irreversible sector, there is
no need for a bulk viscosity term, and the shear viscosity remains the same as in GR
and metric F (R) gravity.

5.2.1.2 Variation using Levi–Civita Connection

Now we re-consider the same problem, but working instead with quantities defined with
respect to the Levi–Civita connection. Hence we consider the affinely parameterized
tangent to be ka. The representation of the heat flow and the entropy change is exactly
the same as for the metric F (R) case in section 5.16. As a result, the analysis shows
that we have an equation

fRab −∇a∇bf +
3
2f
∇af∇bf + Φgab =

(
2π
α

)
TM

ab, (5.52)

but instead of the fully metric-derived object f(R), now we have f(R). The Ricci tensor
that appears explicitly is constructed from the metric and comes from the Raychaudhuri
equation in terms of metric compatible variables.

We need to solve for the unknown function Φ. In the metric theory this lead to a
contradiction and one had to cancel the kinetic ∇af∇af by introducing a bulk viscosity
(or equivalently, move it into the irreversible sector), but here we have to consider the
presence of two different curvature tensors. Taking a covariant divergence of (5.52), we
find that

∇bΦ = −(∇af)Rab − f∇aRab +∇a∇a∇bf

+
3

2f2
∇af∇af∇bf −

3
2f

�f∇bf

− 3
2f
∇af∇a∇bf. (5.53)
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Next, we use the Bianchi identity, ∇aRab = 1
2∇bR and a contracted version of the

commutator of covariant derivatives

∇a∇bVa −∇b∇aVa = Rτ
bVτ , (5.54)

where Va ≡ ∇af to re-express the second and third terms on the right hand side above.
In addition, note that the last term can be re-expressed as

− 3
2f
∇af∇a∇bf = − 3

4f
∇b(∇af∇af) =

−∇b

(
3
4f
∇af∇af

)
− 3

4f2
∇af∇af∇bf. (5.55)

Combining these results, we obtain

∇bΦ = ∇b

(
�f − 3

4f
∇af∇af

)
− 1

2
f(R)∇bR

−
(

3
4f2

∇af∇af +
3
2f

�f

)
∇bf. (5.56)

Here, the key term is the −1/2f(R)∇bR. We can introduce the following ansatz

R = R− Y, (5.57)

where Y is some unknown function. Then this term can be manipulated into total
derivative terms plus a term multiplying ∇bf :

− 1
2
f(R)∇bR = −1

2
∇bf +

1
2
∇b(fY ) +

1
2
Y∇bf. (5.58)

As total derivatives, the first two pieces contribute to the solution for Φ, which now
agrees with the set of terms proportional to gab in the single equation of motion (5.28).
The last term above combines with the terms proportional to∇bf in (5.56). Demanding
that term be zero as a type of consistency or integrability condition implies

Y = R−R =
3

2f2
∇af∇af +

3
f

�f, (5.59)

which is exactly the relationship between the two Ricci scalars in (5.27) derived from
the conformal transformation.

We have derived (albeit somewhat indirectly) the equations of motion for Palatini
F (R) gravity when the connection is eliminated as a independent variable. The fact
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that equations of motion derived in Sections 5.2.1.1 and 5.2.1.2 are equivalent can be
seen a posteriori from the conformal relationship between ḡab and gab. This implies
that the Killing vector χa is geodesic with respect to both the independent and metric
connections. Therefore, we have shown that the thermodynamic approach can be
extended to encompass the Palatini formalism and Palatini F (R) gravity. In this case
no additional bulk viscosity term is needed in the analysis.

5.3 Scalar-Tensor Representations

It is well known that both the metric and Palatini versions of F (R) gravity are equiv-
alent to particular scalar-tensor theories. First consider the metric F (R) action. One
can treat f(R) ≡ ∂F

∂R as an auxiliary field ϕ and assume F ′′(R) 6= 0 for all R. Then
one can take the potential V (ϕ) as the Legendre transform of F (R) so that R = V ′(ϕ).
Therefore one can rewrite the action in the equivalent form

Iω=0 =
α

4π

∫
d4x

√
−g(ϕR+ V (ϕ) + Lmatt). (5.60)

This is the Jordan frame representation of a Brans-Dicke scalar-tensor theory with the
Dicke coupling constant set to ω = 0. The corresponding equations of motion are

R = V ′(ϕ) (5.61)

ϕGab = ∇a∇bϕ+
(

2π
α

)
TM

ab − gab�ϕ

−1
2
gabV (ϕ). (5.62)

These equations also simply follow from the metric equation of motion

fRab −∇a∇bf + Φgab =
(

2π
α

)
TM

ab, (5.63)

with the identification f ≡ ϕ. Hence in the scalar-tensor representation the “bulk
viscosity” term has the form [Chirco 2010b]

δNbulk = α

∫
d2xdλλ

√
h

3
2ϕ
kakb∇aϕ∇bϕ. (5.64)
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The procedure is the same for the Palatini action (5.21) and one finds

Ipal =
α

4π

∫
d4x

√
−g(ϕR+ V (ϕ) + Lmatt). (5.65)

Using the relationship between R and R found earlier in (5.27) we can express this
action (up to surface terms) as

Iω=−3/2 =
α

4π

∫
d4x

√
−g(ϕR+

3
2ϕ
∇aϕ∇aϕ+ V (ϕ) + Lmatt), (5.66)

which is the Brans–Dicke theory with ω = −3/2.
To apply the thermodynamic formalism, much of the previous analysis can be car-

ried over, just with the identification ϕ = f . However, it is initially unclear how the
equations of motion for the scalar field can emerge out of this analysis. To start, we
assume the holographic entropy has the form

S = α

∫ √
hϕd2x. (5.67)

Suppose we follow [Eling 2006] and cancel out the expansion term by treating it as a
part of the irreversible sector. Then we arrive at

ϕRab −∇a∇bϕ+ Φgab =
(

2π
α

)
TM

ab, (5.68)

for some undetermined function Φ. To determine Φ we can demand the local con-
servation of matter-energy as usual. Imagine that we know the action for the matter
fields present. It is a functional of Imatt(gab, ψ), where ψ represents some arbitrary
matter. Using the diffeomorphism invariance of this action and assuming the matter
fields satisfy their equation of motion δImatt/δψ = 0, one can easily show the following
conservation equation holds1

∇aTM
ab = 0. (5.69)

Imposing this equation we find the following equation for Φ,

∇bΦ = −(∇aϕ)Rab − ϕ∇aRab +∇a∇a∇bϕ. (5.70)

Using the contracted Bianchi identity and the commutator of covariant derivatives, we
1In general, the matter part of the action can also depend on the scalar field: Imatt(g, ψ, ϕ). Then

the matter stress tensor is not conserved: ∇aTM
ab = 1

2
Tϕ∇bϕ, where Tϕ = (

√
−g)−1δImatt/δϕ.
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are left with
∇bΦ = ∇b(�ϕ)− 1

2
∇b(ϕR) +

1
2
R∇bϕ. (5.71)

Now in order to solve this equation, we must impose the following “integrability condi-
tion” on the last term of the r.h.s of the previous equation. Namely, we assume it can
be expressed as the derivative of some function, chosen to have the form 1

2 V (ϕ), i.e.
1
2R∇bϕ = 1

2 ∇bV (ϕ). Therefore, we have the condition that

dV

dϕ
= R. (5.72)

Meanwhile, the solution for Φ is

Φ = �ϕ− 1
2
ϕR+

1
2
V (ϕ) + Λ, (5.73)

and the reversible equation becomes

ϕRab −∇a∇bϕ−
1
2
ϕRgab + gab�ϕ

+
1
2
gabV (ϕ) =

(
2π
α

)
TM

ab, (5.74)

where we have absorbed the cosmological constant Λ into the potential V (ϕ). This is
exactly the set of field equations for the ω = 0 theory. The scalar equation of motion
is an integrability condition we must impose for consistency with the conservation of
local energy-momentum.

Suppose, on the other hand, that we do not introduce a bulk viscosity term. Then
equation describing reversible changes is

ϕRab −∇a∇bϕ+
3
2ϕ
∇aϕ∇bϕ+ Φgab =

(
2π
α

)
TM

ab. (5.75)

This has the same form as the F (R) equations of motion

fRab −∇a∇bf +
3
2f
∇af∇bf + Φgab =

(
2π
α

)
TM

ab, (5.76)

but now that ϕ is an independent field, we can repeat the analysis above to solve for
the unknown Φ function and find the scalar equation of motion as an integrability
condition.
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Taking a covariant divergence of (5.75), we find that

∇bΦ = −(∇aϕ)Rab − ϕ∇aRab +∇a∇a∇bϕ+
3

2ϕ2
∇aϕ∇aϕ∇bϕ

− 3
2ϕ

�ϕ∇bϕ−
3
2ϕ
∇aϕ∇a∇bϕ. (5.77)

As before, we can use the Bianchi identity and the commutator of covariant derivatives
(5.54) along with the formula (5.55) in Section (5.2.1.2). Combining these results, we
obtain

∇bΦ = ∇b

(
�ϕ− 1

2
ϕR− 3

4ϕ
∇aϕ∇aϕ

)
+
(

1
2
R− 3

4ϕ2
∇aϕ∇aϕ− 3

2ϕ
�ϕ

)
∇bϕ. (5.78)

We now impose the integrability condition on the second term as before

dV

dϕ
= R+

3
2ϕ2

∇aϕ∇aϕ− 3
ϕ

�ϕ, (5.79)

which allows us to solve for Φ. The resulting metric field equation is

ϕRab −
1
2
ϕRgab −∇a∇bϕ+

3
2ϕ
∇aϕ∇bϕ+ �ϕgab −

3
4ϕ
∇aϕ∇aϕgab

+
1
2
V (ϕ)gab =

(
2π
α

)
TM

ab. (5.80)

Therefore we arrive at the equations of motion for Palatini F (R) theory in ω = −3/2
scalar-tensor representation.

5.4 General Brans–Dicke Theories and “Bulk Viscosity”

as a Heat Flux

In the above section we showed how the thermodynamic approach can be used to derive
the field equations for both metric and Palatini F (R) gravity purely in their scalar-
tensor representations. However, the entropy functional (5.67) holds also for a general
Brans–Dicke theory, which has the action

Igen =
∫ √

−g d4x

[
α

4π

(
ϕR− ω

ϕ
∇aϕ∇aϕ+ V (ϕ)

)
+ Lmatt

]
. (5.81)

89



Previously we were only able to derive the equations of motion for the special cases
ω = 0 and ω = −3/2, depending on whether “bulk viscosity” term is needed. In
particular, for the ω = −3/2 case equivalent to Palatini, no such term was needed to
complete the analysis.

Whether or not we need an additional term appears to be directly related to the
existence of an additional propagating scalar degree of freedom in F (R) and scalar-
tensor gravity, as was first hypothesized in [Chirco 2010b]. Since in Palatini F (R) the
connection is only an auxiliary field, one would not identify it with any additional prop-
agating degree of freedom. It is possible to more clearly show this distinction between
an auxiliary field and dynamical propagating one in the scalar-tensor representation.
Consider, for example, the ω = 0 theory (any general ω will do). The trace of the
metric field equation (5.74) and the scalar integrability condition (5.72) yield

3�ϕ+ 2V (ϕ)− ϕ
dV

dϕ
=
(

2π
α

)
TM a

a, (5.82)

so the propagation of the scalar is determined by the matter sources, as usual. On the
other hand, in the special case where ω = −3/2 the same procedure yields

2V (ϕ)− ϕ
dV

dϕ
=
(

2π
α

)
TM a

a. (5.83)

Therefore in this case the scalar field is algebraically related to the matter sources and
does not propagate.

In Chapter 3 we considered the possibility that an additional scalar degree of free-
dom could be associated with an effective new “gravitational” channel available for
dissipating energy (e.g. for relaxing horizon perturbations). As far as the shear
squared term, the additional tensorial degree of freedom was thought of as indicat-
ing a channel for horizon dissipation. In GR, this channel is sourced by a flux of
gravitational perturbations across the horizon (specifically, a perturbation of the elec-
tric part of the Weyl tensor) and gives rise to the Hartle-Hawking tidal heating term
[Hartle 1976; Chandrasekhar 1983; Poisson 2004; Poisson 2005]

δNshear =
1

8πGN

∫
σ̂abσ̂

abdv
√
hd2x. (5.84)

Indeed, the above expression generalizes in metric F (R) in a similar way, acquiring
only an overall f(R) factor.

Note that this does not mean gravitational waves are dissipative. While the space-
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time dynamics is completely conservative, dissipation only exists for the thermody-
namical horizon system. Furthermore, in the thermodynamical argument, the shear
at p only depends on the warping of B and therefore is completely independent of the
spacetime geometry1.

On the other hand, it is unclear if also the term (5.64) related to the additional
scalar degree of freedom should be associated with some irreversible branch of the
thermodynamic equations. The problem with this interpretation can be realized by
analyzing the form of the “bulk viscosity” term itself given in (5.64): Unlike the shear
squared term, it does not depend on derivatives of ka and both the integral over the
horizon and the arbitrary ka vectors can be peeled off. Hence, like the other terms
with this structure, it has a local interpretation, which is consistent with fact that a
scalar field has a local stress tensor. After the ka vectors are peeled off, local terms
at p are frame independent. They exist for any observer (accelerated or inertial) in
the local patch of spacetime and always end up describing the dynamics of the global
spacetime. Indeed, the expansion is no longer an arbitrary quantity defining the local
horizon system, but instead fundamentally linked to the derivative of the scalar field
on the spacetime. Therefore, if we insist that this term is irreversible, in this case it
would imply waves of the scalar field would be effectively dissipative in the spacetime.
This is inconsistent with the fact that classical gravitational theories are time reversal
invariant.

Indeed, one can effectively interpret this term as a contribution to the heat flux
δQ of reversible thermodynamics [Chirco 2011b]. Let us return to the beginning of the
argument and the entropy

S =
∫
d4x

√
hϕ(x). (5.85)

Here we have promoted the entropy density to be an independent field in the spacetime,
with dimensions of [L]−2. In order to be consistent with the principle of background
independence, this field should not be a fixed structure, it must be varied like other
fields. It also must contribute to the total Lagrangian of the theory, i.e.

Lmatt(gab, ψ) + Lscalar(gab, ϕ) (5.86)

where ψ represents “ordinary” matter fields. Upon varying with respect to the metric,
1Gravitational waves have no local stress tensor, and correspondingly the Hartle-Hawking term

has a non-local character as the integral over the horizon of an object constructed out of derivatives
of the null normal ka. This term is consistent with an irreversible flux, which in non-equilibrium
thermodynamics [de Groot 1962; Landau 2000] is positive definite and constructed out of derivatives
of the state functionals of the system.
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we have the usual stress tensor of the various matter fields which do not contribute to
the horizon entropy, plus a stress tensor for the scalar field. The components relevant
for the heat flux across the horizon are given by contraction with the null vectors

δQ ∼ kakb(TM
ab + Tϕ

ab). (5.87)

Generally, the Lagrangian for a scalar field consists of possible interaction terms, e.g. a
mass squared term, ϕ4 term, etc. These can be represented as part of a generic scalar
potential V (ϕ). However, in the stress tensor, this term’s contribution is proportional
to gab, so it does not appear in the heat flux. On the other hand, kinetic terms in the
scalar field action must contribute. We assume that the action is constructed out of first
derivatives of the scalar field. This eliminates non-minimally coupled k-essence models
[Armendariz-Picon 2000], where the scalar fields have non-canonical kinetic terms.

Based on dimensional analysis, the most general contribution of the scalar to the
heat flux has the basic form

δQscalar ∼
Ω(ϕ)
ϕ

kakb∇aϕ∇bϕ (5.88)

where Ω is some dimensionless function. Since ϕ is dimensionfull, one would have to
introduce a new length scale in order to construct a non-trivial Ω. Therefore we take
Ω to be an arbitrary constant. The general form of the heat flux is now

δQ

T
= −

∫
d4x

√
hλ

[
2πTM

ab k
akb +

(
Ω
ϕ

)
kakb∇aϕ∇bϕ

]
. (5.89)

Following the analysis as before, the equation of motion the reversible sector is now
(5.75), but with the extra heat flux contribution

ϕRab −∇a∇bϕ+
(

3/2− Ω
ϕ

)
∇aϕ∇bϕ+ Φgab = 2πTM

ab, (5.90)

which captures any Brans-Dicke theory if we set the Dicke constant ω = Ω− 3/2.
In the special case when ω = −3/2, Ω = 0 and there is no additional contribution

to heat flux from the scalar. This is consistent with the fact that the ϕ field is non-
propagating (has no kinetic term) in this particular case. In addition, note that when
ω < −3/2 the scalar field flux comes in as a “ghost” with a negative sign and the change
in the black hole entropy can no longer be positive definite due to the violation of the
null energy condition. This is consistent with the study of the classical second law for
Brans–Dicke theory done in [Kang 1996] and the numerical results of the gravitational
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collapse of scalar matter pulses [Hwang 2010], which indicated a violation of weak
cosmic censorship when ω < −3/2.

It is also interesting to make the transformation to the so-called Einstein frame of
the Brans–Dicke theory. One makes a conformal transformation and a redefinition of
the scalar field

g̃ab = ϕgab

dϕ̃ =
dϕ

ϕ
(5.91)

in the action (5.81). The action now has the form

IEin =
∫ √

−g̃d4x [R̃− (ω + 3/2)∇̃aϕ̃∇̃aϕ̃+ exp(−2ϕ̃)Lmatt(g̃)], (5.92)

which is just Einstein gravity with the scalar field as a matter field minimally coupled
to gravity, but universally coupled to the other matter fields1.

In the thermodynamic approach, this transformation returns the entropy to just an
area in the new conformally related metric. Working in terms of this new metric, we
arrive at the just the Einstein equations

G̃abk
akb = 2πT total

ab kakb, (5.93)

where
T total

ab ∼ δ(Iscalar(g̃, ϕ̃) + Imatt(g̃, ϕ̃, ψ))
δg̃ab

. (5.94)

In this case there is no need for a bulk viscosity term, but in order to be consistent
with the equations of motion we now must explicitly include a scalar flux as a part of
the heat flow due to the matter fields. This has the form

δQscalar = (ω + 3/2)
∫
d4x
√
h̃kakb∇̃aϕ̃∇̃bϕ̃. (5.95)

Rewriting this term in the Jordan frame using (5.91), we find it is exactly the scalar
field flux we argued for in (5.89). Therefore the new interpretation of the scalar field

1Note that our redefinition for the scalar field differs from the standard one used in [Faraoni 2004].
In that case there is an overall factor of (ω+3/2)−1/2 in (5.91), which normalizes the scalar kinetic term
to the canonical unity value in the Einstein frame. Hence, in this ansatz one cannot go to the Einstein
frame in the ω < −3/2 regime, where the theory is likely to be sick as we discussed earlier. Also in our
case one can clearly see that something goes wrong in the same region of parameter space: Eq. (5.92)
shows in fact that for ω < −3/2 the kinetic term for the field ϕ̃ changes sign leading effectively to a
ghost field
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contribution as a heat flux ultimately does not depend on the choice of conformal frame.
We can work in a frame where the scalar is purely matter, with no contribution to the
entropy, or in a frame where it is another gravitational field.

5.5 Discussion

In this chapter we have extended the thermodynamics of spacetime formalism to Pala-
tini gravity, where the connection is a priori an independent variable from the metric.
We applied this procedure to Palatini F (R) gravity and derived the field equations as
a consequence of enforcing an entropy balance law on the local Rindler wedge system.
Unlike the metric F (R) case studied previously in [Eling 2006], no “bulk viscosity”
term was required in order to have equations consistent with the conservation of lo-
cal energy-momentum. Motivated by the fact that both versions of F (R) gravity are
equivalent at the classical level to particular Brans–Dicke theories, we considered an
entropy density that is a scalar spacetime function ϕ(x). This amounts to promoting
the inverse of the Newton constant to be an independent scalar field. We showed how
the thermodynamic derivation in this case can capture both the field equations of the
metric and the scalar field. As a key part of our analysis, we recognized that previous
interpretations introducing an irreversible bulk viscosity were incorrect. Instead, we
argue that the heat flux δQ naturally contains a separate contribution from the scalar
field. This description also is consistent when one works ab initio in the Einstein con-
formal frame of the scalar-tensor theory. In these theories, it seems the bulk viscosity
ξB should actually be zero.

It is worth noting that if one works a priori the metric F (R) theory, as was done
in [Eling 2006], interpreting the extra term needed for consistency with local energy-
momentum conservation as a separate heat flux is not as clear. In this representation,
there isn’t a distinct scalar field we need to endow with its own dynamics, only the
metric and the general function f(R). Of course, it is well-known that there is an
extra dynamical scalar degree of freedom in a theory of gravity which is fourth order in
metric derivatives. For example, the trace of the equation of motion (5.63) gives a wave
equation relating �f to the trace of the matter stress tensor TM ; there is no longer
just an algebraic link between scalar curvature and TM as in GR. Therefore, one can
argue that f needs its own dynamics, but it appears there is no way this can be done
a priori starting only with an entropy functional

∫ √
hd2xf(R). Instead, the warning

that there is an extra degree of freedom (effectively, an extra flux) is given by the fact
that local energy-momentum conservation fails.
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These results naturally raise the question whether other diffeomorphism invariant
theories of gravity admit a thermodynamic interpretation. In particular, what kind
of heat fluxes and viscosities appear in different theories? For example, generalized
Lovelock gravities are of particular interest and have been studied in a different ther-
modynamic picture of gravity [Paranjape 2006]. Some other interesting examples are
the generalized Palatini gravities discussed in [Vitagliano 2010] and the “metric-affine”
theories [Sotiriou 2007b; Vitagliano 2011], where the matter is now coupled to the in-
dependent connection and not just the metric. One can also consider theories with a
non-zero torsion, either as a dynamical propagating field [Carroll 1994] or algebraically
determined by spin, as in Einstein–Cartan theory [Hehl 1976]. How do these types of
geometrical structures get mapped into thermodynamics?

Finally, note that while we argued for generalizations of the entanglement entropy
density by appealing to less restrictive formulations of the equivalence principle, our
choices were always consistent with [Vollick 2007; Faraoni 2010] Wald’s Noether charge
entropy formula [Wald 1993]. Since the field equations are an assumption in the deriva-
tion of the Noether charge entropy, one may worry our approach is just a consistency
check.
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Chapter 6

Rindler Horizon Viscosity from

Entanglement

In Chapter 3 we showed that the Einstein equations effectively arise from the hydro-
dynamics of the local vacuum. Remarkably, the non equilibrium thermodynamical
derivation of gravitational dynamics also fixed the entropy density and shear viscosity
of the vacuum such that their ratio is ~/4π. Given that the value ~/4π also appears in
the AdS/CFT literature, as the universal value of the shear viscosity to entropy density
ratio of gauge theories with an Einstein gravity dual, we raised the question whether a
connection between this gauge/gravity duality result and the hydrodynamic derivation
may exist. In this chapter, we will consider some results suggesting that the answer
may be in the affirmative.

6.1 Horizon Transport Coefficients from Vacuum Fluctu-

ations

The relationship between the dynamics of a fluid and the dynamics of any black hole
event horizon is just an analogy. The reason is that hydrodynamics is only a valid
effective theory of many-body systems on long spatial and time scales [Forster 1995;
Lifshitz 2000]. In order for hydrodynamics to be a valid description, the characteristic
wavelength and time scale of perturbations to the system must be much larger than the
microscopic scale set by a correlation length (or mean free path). This basic criterion
cannot be fulfilled even in the familiar example of a spherically symmetric Schwarzschild
horizon. This is the reason why the membrane paradigm relates the black hole horizon
to a fictitious fluid with unphysical negative bulk viscosity [Eling 2009; Eling 2010].
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However, there are black hole spacetimes where a large scale hydrodynamic limit
exists. Important examples are black holes and branes in asymptotically Anti-de Sit-
ter (AdS) spacetimes. These have been extensively studied in the literature over the
past decade due to their role in the celebrated AdS/conformal field theory (CFT) cor-
respondence [Maldacena 1998; Aharony 2000]. The correspondence relates (quantum)
gravity in D dimensional asymptotically AdS spacetimes to certain conformal field the-
ories on the D − 1 dimensional AdS boundary. In the duality, a classical black hole in
AdS spacetime corresponds to a strongly coupled thermal CFT on the boundary at the
Hawking temperature. The large scale dynamics of the black hole therefore is dual to
the hydrodynamics of the thermal gauge theory [Bhattacharyya 2008a].

Hydrodynamic transport coefficients such as viscosities are calculated from a micro-
scopic theory using “Kubo formulas”, which involve finite temperature Green’s func-
tions of conserved currents. This is not an easy calculation even at weak coupling (see
for example, [Jeon 1995]), and seems to be extremely hard at strong coupling. However,
the duality picture allows one to determine the transport coefficients of these strongly
coupled theories in a fairly straightforward way by mapping the calculation of Green’s
functions into a classical boundary value problem in the bulk spacetime [Son 2007].
An application of this mapping is that the transport coefficients of the dual gauge the-
ory can be calculated directly at the black hole horizon from the membrane paradigm
[Kovtun 2003a; Saremi 2007; Fujita 2008; Starinets 2009; Iqbal 2009]. A key early re-
sult that emerged from this work is that, in the limit of infinite coupling, any (not nec-
essarily conformal) gauge theory with an Einstein gravity dual has a shear viscosity to
entropy density ratio of η/s = ~/4πkB. This value was conjectured by Kovtun, Son, and
Starinets (KSS) to be a universal lower bound [Kovtun 2005]. Using the membrane for-
malism, general formulas have been recently developed which characterize the shear vis-
cosity of gauge theories with generalized gravity duals in terms of an effective coupling
of gravitons at the horizon [Brustein 2009b; Banerjee 2009; Myers 2009a; Paulos 2010].

Although the universal KSS ratio seems to be rooted in gravitational physics, curi-
ously it does not depend on the Newton constant GN . Furthermore, the ratio also
appears to be saturated even for a Rindler acceleration horizon in flat Minkowski
spacetime [Eling 2006; Eling 2008; Chirco 2010b], where gravity is absent. Indeed,
one can assume that, like a black hole, the Rindler causal horizon can be endowed
with a finite area entropy density s. Although there is no holographic duality like
AdS/CFT in this case, the hydrodynamic limit exists and a shear viscosity of ~s/4πkB

emerges when one studies the dynamics of the horizon using the membrane paradigm
[Eling 2009; Eling 2010].
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However, in the absence of a clear holographic duality, the interpretation of this
shear viscosity to entropy density ratio seems to be unclear. For example, what is the
underlying fluid system that is being probed by these calculations?

The fluctuation-dissipation theorem links viscous dissipation to fluctuations of a
thermal equilibrium state. An attempt to interpret the viscous dissipation rate of a
horizon in terms of the quantized gravitational fluctuations of the horizon shear was
already developed many years ago [Candelas 1977]. Here we take a different approach,
based on the notion of quantum entanglement together with the properties of vacuum
fluctuations.

It is well-known that observables restricted to the Rindler “wedge” of the global
spacetime perceive the Minkowski vacuum to be a mixed thermal state at the Tolman–
Unruh temperature [Unruh 1976]. In addition, there is a corresponding statistical en-
tanglement entropy for matter fields in the Rindler wedge. This quantity is quadrat-
ically ultraviolet (UV) divergent, due to the infinite redshift/blueshift at the horizon.
When a cut-off is introduced, the entropy scales not with volume of the wedge, but in-
stead like the area of the horizon boundary. Hence the Rindler wedge is equipped
with thermodynamic properties, which seem to be naturally encoded into a “pre-
holographic” lower dimensional description associated with the horizon boundary.

On large scales this thermal vacuum state should behave as a fluid, with hydro-
dynamics as an effective description. In this regime, we expect to find a holographic
“entanglement viscosity” which, when similarly cut off, scales exactly with the entan-
glement entropy so that the KSS ratio is satisfied universally. To test this hypothesis,
we propose a microscopic Kubo-like formula for the shear viscosity associated with the
fluid description of the vacuum thermal state. The Kubo formula is constructed from
the Green’s functions of the energy-momentum stress tensor for the matter fields in
the wedge. All quantum fields in nature must contribute to the vacuum fluctuations
and therefore to the entanglement entropy and viscosity. For simplicity, we start by
considering a free, minimally coupled scalar field theory. Remarkably, we show that
the ratio of our shear viscosity to the entanglement entropy density is exactly the KSS
ratio. This suggests that the KSS ratio may be a fundamental holographic property of
spacetime (rather than just of the aforementioned AdS black hole solutions).

In the following of this chapter we discuss two examples where a shear viscosity
emerges from classical hydrodynamics applied to the Rindler thermal state. This serves
as a motivation for the Kubo formula developed in section 7.2. Section 6.4 contains our
calculations for the free, non-minimally coupled scalar field. We conclude in section 6.5
with the possible implications of our result, a discussion of the relationship between
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entanglement entropy and black hole entropy, and extensions to higher dimensions.

6.2 Rindler Wedge Viscosity

We want to consider the perturbation of a global Rindler spacetime on a large scale,
with the dynamics governed by Einstein equation [Eling 2009; Eling 2010].

We start with a general D dimensional flat manifold in the Rindler coordinates
Y a = (τ, ξ, xi), where i = 1..d (we will use D = d+ 2, to identify d with the number of
transverse spatial dimensions),

ds2 = gabdY
adY b = κ2 ξ2 dτ2 − dξ2 −

d∑
i=1

dxidxi, (6.1)

obtained by a coordinate transformation of the usual Minkowski inertial coordinates
Xa. To work conveniently at the horizon we rewrite the Rindler metric in Eddington–
Finkelstein like coordinates with the following parameterization

v = τ + (2κ)−1 ln(r)

r = κ ξ2

x̃i = κ−1xi, (6.2)

so that the metric has the form

ds2 = κrdv2 − dvdr − κ2
d∑

i=1

dx̃idx̃i. (6.3)

Consider a uniform boost of the Rindler spacetime (6.3) in x̃i directions, which is an
isometry of the vacuum state. The result is a boosted metric

ds2 = κruµuνdx̃
µdx̃ν − uµdx̃

µdr − κ2Pµνdx̃
µdx̃ν , (6.4)

where the now d+1 dimensional set of coordinates is x̃µ = (v, x̃i), the d+1 dimensional
vector uµ = (γ, γvi) (i.e. uξ = 0), and the projection tensor Pµν = ηµν + uµuν . One
can think of this bulk spacetime as describing a general flow of the thermal state with
velocity vi with respect to the frame of a static observer.

Now imagine, for example, gravitational waves are impinging on the system. As
described in Chapter 3, though in a slightly different setting, to parameterize the per-
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turbations, we can take ua(x̃a) and κ(x̃µ) (thereby associating a scale with κ), so that
the temperature and d + 1 velocity of the flow are slowly varying functions of the x̃µ

coordinates. In particular, the hydrodynamic limit requires the scale L of the pertur-
bations to satisfy L� κ−1. The metric

ds2 = κ(x̃)r uµ(x̃)uν(x̃)dx̃µdx̃ν − uµ(x̃)dx̃µdr − κ2(x̃)Pµνdx̃
µdx̃ν , (6.5)

is no longer flat and hence does not satisfy Rab = 0. However we can obtain a solution
(at least in principle) to the vacuum Einstein equations working order by order in a
derivative expansion. We take u(λx̃µ) and κ(λx̃µ) where λ is a book keeping factor to
keep track of derivatives of temperature and velocity (see also Chapter 7). For example,
at lowest order there should be solution to the equations Rab = 0 +O(λ2) of the form

gab = g
(0)
ab + λg

(1)
ab (∂u, ∂κ), (6.6)

where g(1)
ab is a O(λ) correction to the metric (6.5).

In the membrane paradigm, we want to consider the subset of (d + 1) vacuum
Einstein equations projected into the Rindler horizon

Rµνk
ν = 0, (6.7)

where kµ is the null normal to the horizon. At lowest order, kµ = uµ. Note that
uµ is unit normalized with respect to the flat metric ηµν , but is null on the horizon
(r = 0) of the full bulk metric. Using the horizon Gauss–Codazzi equations and the
membrane paradigm, this set of Einstein equations can be expressed solely in terms
of horizon geometrical variables - i.e. the extrinsic curvature components (the horizon
shear, expansion, surface gravity) and intrinsic metric of the horizon surface. At the
lowest orders in λ, it is sufficient to calculate these quantities directly from the metric
(6.5), the near-horizon data, and a choice of gauge. For example, the horizon shear is
just the fluid shear, which is given by the symmetric, trace-free transverse part of ∂µuν

σ̃µν = P ρ
µP

σ
ν (∂ρuσ + ∂σuρ − 2/d ηρσ∂δu

δ), (6.8)

and the horizon expansion is

θ̃ = ∂µu
µ + duµ∂µ lnκ. (6.9)
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Remarkably, up to O(λ2) the Einstein equations (6.7) imply

Rµνk
ν = ∂νT(F )

ν
µ

= 0, (6.10)

where ∂νT(F )
ν
µ

= 0 are the hydrodynamic equations of a viscous conformal fluid living
on a flat Minkowski metric in one less dimension. In general, a viscous fluid stress
tensor has the form of a perfect fluid, plus shear and expansion terms that are first
order in λ

T(F )
µ
ν

= εuµuν + P (δµ
ν + uµuν)− 2ησµ

ν − ξB(∂ρu
ρ)δµ

ν . (6.11)

Here ξB = 0, consistent with the conformal condition that Tµ
µ = 0, while the shear

viscosity is η = v/16πGN [Eling 2010], where v is a scalar area density associated with
the horizon. Assuming a Bekenstein-Hawking area entropy density v/4GN , the shear
viscosity to entropy density ratio turns out to be precisely the KSS ratio.

This picture is consistent with what seen in the non equilibrium thermodynamical
derivation described in Chapter 3, where the equation describing reversible changes
matched the Einstein equation, with Newton’s constant determined by the entropy
density s,

GN =
1
4s
, (6.12)

or conversely, s = 1/4GN = 1/4L2
P . In that case, the shear viscosity is 1/16πGN and

that the dissipative term

δN =
s

κ

∫
σ̂abσ̂

abdτd2A (6.13)

can be exactly identified with the well-known Hartle-Hawking formula for the tidal
heating of a classical black hole [Hawking 1972; Teukolsky 1974; Chandrasekhar 1983;
Poisson 2004; Poisson 2005].

It seems that once we demand a finite area entropy density for Rindler horizons, an
entropy balance law can naturally imply gravity. This would more generally indicate
that any Lorentz invariant quantum field theory with a UV cutoff (and therefore a finite
entropy and a large, but finite number of degrees of freedom) must have gravity. Inter-
estingly, this sort of induced gravity is consistent with the AdS/CFT correspondence. In
the usual formulation, the CFT on the boundary has no cutoff and infinite entanglement
entropy. This corresponds to the case where G(d+1)

N = 0 and the CFT on the boundary
is not coupled to gravity. Introducing a cutoff to the CFT corresponds to a brane in the
AdS bulk that cuts off the region from some radial coordinate r0 to infinity. The dual
CFT on the brane is coupled to gravity and has a finite entanglement entropy that seems

101



to match the BH entropy [Hawking 2001; Ryu 2006; Brustein 2006; Emparan 2006].

6.3 Microscopic Description and Kubo Formula

Together the two examples above provide a mutually consistent picture of a shear vis-
cosity coefficient emerging from large scale perturbations of the Rindler thermal state.
Typically, in classical hydrodynamics the viscosities are phenomenological coefficients,
either measured directly in the laboratory or calculated by matching to a microscopic
description of the fluid system. However, in the above examples, our classical calcula-
tions require both the entropy density and the viscosity to have a trivial relation to the
observed low energy Newton constant. All the dependence on the number and nature
of the quantum fields is apparently absorbed into this quantity. In order to explore this
unexpected universality further, we would like to find a microscopic description for the
shear viscosity in terms of the fluctuations of a thermal state in a finite temperature
quantum theory.

6.3.1 Linear Response Theory in the AdS/CFT Framework

First, it is instructive to consider calculations of viscosity in the AdS/CFT correspon-
dence. In this case, η and s are the viscosity and entropy density of an infinitely strongly
coupled (d+ 1)-dimensional finite temperature gauge theory with a dual gravitational
description in terms of a black hole or brane in AdS spacetime. The conformal theory
lives in flat Minkowski spacetime and is thought of as being on the hologram at the
AdS boundary. In the AdS/CFT prescription, a massless field ϕ in the bulk spacetime
is dual to an operator O in the boundary field theory. In particular, perturbations of
the bulk field act as sources for the field theory operators on the boundary via the
coupling ∫

ϕ0O dd+1x, (6.14)

where ϕ0 is the boundary value. For small perturbations, determining the change of
the expectation value of O is a well-known problem in time dependent perturbation
theory. In Fourier space (k0,~k) the result is [Kapusta 2006]

〈δO(k0,~k)〉 = GR(k0,~k)ϕ0(k0,~k), (6.15)
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where GR is the retarded two point thermal Green’s function (the brackets represent a
thermal average) of O,

GR(k0,~k) =
∫
dtddxeik

0te−i~k·~xθ(t)〈[O(x),O(0)]〉. (6.16)

On the other hand, linear response theory [de Groot 1962] implies that in the large
scale limit k0,~k → 0

〈δO(k0,~k)〉 = χ∂tϕ0, (6.17)

where χ is some generic phenomenological transport coefficient. Matching these two
descriptions, one finds the Kubo formula

χ = lim
k0→0

1
k0
ImGR(k0,~k = 0). (6.18)

Therefore, generic dissipative transport phenomena are described by fluctuations about
the thermal equilibrium state. In the case of shear viscosity, the relevant field opera-
tor O is the stress tensor T xy (or, in general, the trace-free spatial parts of Tµν , see
(6.11)), while the classical source ϕ is identified with corresponding transverse metric
perturbations, for example hxy.

The prescription for computing the retarded Green’s function is to first solve the
perturbation equations for hµν , subject to the Dirichlet condition at the asymptotic
boundary and requiring at the horizon the field be purely ingoing [Son 2002]. From the
on-shell action, one can derive [Iqbal 2009]

χ = lim
ka→0

lim
r→∞

Π(r, k0,~k)

ik0ϕ(r, k0,~k)
, (6.19)

where Π is the radial canonical momentum conjugate to the field. In the low frequency
limit it turns out that the radial evolution of Π is trivial. Essentially all the relevant
physics is at the horizon and this is the natural place to evaluate the above quantity.
In the near-horizon limit the geometry of a black hole solution dual to a gauge theory
thermal state reduces to the Rindler metric. Furthermore, in the membrane paradigm,
the condition that fields be regular at the horizon immediately fixes the shear viscosity
in terms of the coupling constant for transverse gravitons. In Einstein gravity, the
result is simply the universal gravitational coupling η = (16πGN )−1 (which matches
the results discussed in Section II), while in higher derivative theories one can derive a
formula for η in terms of horizon quantities similar to Wald’s Noether charge formula
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for the entropy [Brustein 2009b; Banerjee 2009; Myers 2009a; Paulos 2010].

6.3.2 Rindler Horizon Pre-holography

In flat Rindler space, there is no holographic duality of the AdS/CFT type, i.e. no
string theoretic mapping between classical bulk fields and operators in a strongly cou-
pled theory and no time-like boundary surface at infinity capable of supporting a dual
holographic theory. Therefore the type of constructions reviewed above for calculating
Green’s functions do not appear to be available to us. However, as we have seen, there
is a type of holography at the horizon due to entanglement when observables in the
vacuum state are restricted to a subregion. For example, the entropy of fields in the
Rindler wedge is naturally associated with the horizon boundary. Since the degrees of
freedom in the wedge are packed into this membrane surface, the physics of the bulk
spacetime can be effectively reduced to a lower dimensional description associated with
a “stretched horizon” boundary. Hence, the shear viscosity associated with the Rindler
horizon must be induced by the matter fields in the quantum vacuum state, just like
the entanglement entropy.

The dual lower dimensional description of the vacuum state and the near-horizon
degrees of freedom are characterized by the stress-energy tensor (6.11) and as such can
be associated to a strongly coupled thermal CFT living effectively on the flat Minkowski
metric ds2 = ηµνdx

µdxν = dτ2 −
∑

i dxidx
i. In addition, we expect the total energy-

momentum in the bulk Rindler space should be the total energy-momentum of the dual
description.

In Rindler space the explicit translational symmetry in the z (or ξ) direction is
broken. However, the symmetry in the other directions remains, so that the Lagrangian
of a field theory must be invariant under

xµ → xµ + aµ (6.20)

Using the Noether theorem we can write a canonical energy-momentum tensor for the
bulk fields in the Rindler spacetime

T(R)
µ
ν =

∂LR

∂(∂µψ)
∂νψ − δµ

νLR, (6.21)

where ψ represents a generic matter field. This stress tensor is conserved quantity
in the flat spacetime sense: ∂µTR

µ
ν = 0. Note that the Lagrangian density is LR =

√
−gLMink (where LMink is the field Lagrangian in Minkowski spacetime) and evaluates
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to LR = κξLMink. Therefore, the canonical energy-momentum tensor for the Rindler
wedge is κξ times the (µν) components of usual Minkowski space stress tensor, T a

b .
On large scales, the holographic state must be described by a conserved lower di-

mensional stress tensor operator 〈T̂ (d+1)µν〉,

∂µ〈T̂ (d+1)µν〉 = 0. (6.22)

Here the brackets represent a thermal average Z−1Tr(ρT̂ (d+1)µ
ν ) at the Tolman-Unruh

temperature, which is equivalent to the Minkowski vacuum expectation value 〈0|T̂ (d+1)µ
ν |0〉.

As a simple ansatz we assume

〈T̂ (d+1)µ
ν 〉 =

∫ ∞

`c

dξ 〈T̂(R)
µ
ν 〉 =

∫ ∞

`c

dξ κξ〈T̂µ
ν 〉, (6.23)

that the energy-momentum density in the lower dimensional description is a radial
integral of the bulk quantities, which as usual must be cut off at a stretched horizon
located at proper distance `c from the true horizon in order to be rendered finite.

This prescription is consistent with the literature on thermodynamic quantities in
Rindler wedge. The Minkowski vacuum expectation value 〈0|T̂ a

b |0〉 for free spin-0, spin-
1/2 and spin-1 fields in the Rindler wedge was calculated long ago [Sciama 1981]. To
regularize the stress tensor operator, one can impose a Fulling–Rindler subtraction

〈F |T̂ a
b |F 〉 = 0. (6.24)

As expected, one finds that the Minkowski vacuum expectation value has the form of a
perfect fluid stress tensor. For example, in four spacetime dimensions the bulk energy
density for a scalar field has the Planckian form

ε(ξ) =
π2T 4

30
=

1
480π2ξ4

. (6.25)

From our ansatz (6.23), we find an energy density that appropriately scales like the
area of the horizon boundary [Dowker 1994]

ε2+1 =
κ

960π2`2c
. (6.26)

Using the Gibbs relation ε + P = sT , and equation of state ε = 3P for the massless
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bulk scalar field, we find the entropy density s obeys

s =
2π3

45
T 3 =

1
180πξ3

. (6.27)

Integrating over ξ from `c to ∞ to find the effective area entropy yields

s =
1

360π`2c
, (6.28)

which agrees with standard results in the literature for the brick wall/entanglement
entropy [’t Hooft 1985; Susskind 1994; Dowker 1994].

If we apply the formalism of viscous hydrodynamics to this system, the shear vis-
cosity should be given by the Kubo formula (6.18) in terms of the effective stress tensor
of the lower dimensional theory associated with the horizon

η = lim
ω→0

1
ω

∫
dτddxeiωτθ(τ)〈[T d+1

xy (τ, x, y), T d+1
xy (0)]〉, (6.29)

where ω is a Rindler frequency. Using our ansatz that the lower dimensional densities
are radial integrals of the bulk matter stress-tensor, we arrive at the following formula

η = lim
ω→0

1
ω

∫ ∞

`c

dξ′
∫ ∞

`c

dξ

∫
dτddxeiωτθ(τ)κ2ξξ′〈[Txy(τ, x, y, ξ), Txy(0, ξ′)]〉. (6.30)

Since we have translational invariance in (τ, x, y), we can safely choose one of the
points to be at τ = x = y = 0, so that the most general expression is a func-
tion GR

xy,xy(τ, x, y, ξ, ξ
′). This type of expression is similar to those developed in

[Yarom 2005; Brustein 2005; Brustein 2004]. The authors showed that correlation func-
tions of certain operators expressed as an integral of a density over a sub-volume of
Minkowski are UV divergent and scale like the horizon/boundary area. As an example,
they found the heat capacity due to entanglement in the Rindler wedge.

As a first test case of our viscosity formula, we consider the thermal state to consist
of a free, minimally coupled scalar field in a four dimensional Rindler spacetime. One
apparent problem with this choice is that the shear viscosity in a free field theory is
typically ill-defined. In physical terms, shear viscosity measures the rate of transverse
momentum diffusion between the elements of a fluid. Although the quasi-particle de-
scription in kinetic theory is not a good one in a strongly coupled system, we can gain
some guidance by thinking of shear viscosity as a diffusion process. One can show that
η ∼ εlmfp, where lmfp is the mean free path of the fluid. Since in a free field theory the
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mean free path diverges, η diverges as well. This is just a consequence of the breakdown
of the effective hydrodynamic theory.

On the other hand, in our case the equivalence principle implies a field theory
in Rindler space can be thought of as being in a constant gravitational field. As
we argued in section 6.2, imposing a UV cutoff on this system seems to introduce
gravitational dynamics. If the cutoff is placed near the Planck length (as we suspect)
the gravitational dynamics is strongly coupled there. The idea is that the dominant
effect in the relaxation of the vacuum thermal state is the strongly coupled gravitational
interaction. This also seems to explain how there can be universality in the result for η.
In principle, all quantum matter fields should be present in the vacuum state. However,
the ratio η/s should be 1/4π regardless of the type of quantum fields in the wedge or
the dimension of the spacetime. Since gravity interacts with all fields in the same way,
it should not make a difference whether we consider the soup of fields to be made up
of a free scalar field, free fermions, or some type of interacting fields.

6.4 Universal Viscosity to Entropy Ratio from Entangle-

ment

Since the thermal average is at the Tolman-Unruh temperature T0, it is equivalent to
an ordinary Minkowski vacuum expectation value

〈0|[Txy(τ, x, y, ξ), Txy(0, ξ′)]|0〉 (6.31)

which makes calculations much simpler. One can compute the correlator in the Minkowski
vacuum state, change from inertial coordinates XA to Rindler coordinates Y A and then
perform the Fourier transform. The Minkowski stress tensor for a free, massless scalar
field has the form

T a
b =

∂L

∂(∂aϕ)
∂bϕ− δa

bL, (6.32)

where L = gAB∂Aϕ∂Bϕ. One can insert this in Eqn. (6.30) which is in terms of the
retarded Green’s function, but it is also possible to write the Kubo formula in terms
of different types of Green’s functions. Since the thermal Green’s functions satisfy the
relation [Son 2002]

G1(ω,p) = − coth
( ω

2T

)
ImGR(ω,p), (6.33)

where the G’s represent any bosonic operator, one can also work with the symmetrized
Schrodinger-Hadamard correlator of the stress tensor G1(ω,p) . So we have, for exam-
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ple

η =
1

2T0
lim
ω→0

∫ ∞

`c

dξ′
∫ ∞

`c

dξ

∫
eiωτdt

∫
d2xκ2ξξ′G1

xy,xy(τ, x, y, ξ, ξ
′). (6.34)

Furthermore, in the hydrodynamic limit (ω,k � ~−1T0) the symmetrized correlator is
not different from the Wightman correlator

G+
xy,xy = 〈T̂xy(τ, x, y, ξ, ξ′)T̂xy(0, 0, 0, ξ′)〉. (6.35)

At the quantum level the difference between the correlators in frequency space is smaller
than the correlators themselves by the factor ω/T , and the hydrodynamic limit here is
exactly where ω � T [Kovtun 2003b].

In practice, we found it was easiest to work with the Wightman correlator. We
first expand the scalar field operator into the usual set of normal mode solutions to the
Klein-Gordon field equation

ϕ̂(t,x) =
∫

dd+1p

(2π)d+1
√

2ω

[
a(p)eip·x−iωt + a†(p)e−ip·x+iωt

]
, (6.36)

where ω = |p| and a(p) and a†(p) are creation and annihilation operators. Inserting
this into the Wightman function, we find

G+
xy,xy(t, x, y, z, z′) =

∫
d3pd3qd3p′d3q′

4(2π)12
√
pp′qq′

pxqyp
′
xq

′
y〈0| · · · |0〉 (6.37)

where the · · · represent sixteen terms involving combinations of four creation and an-
nihilation operators and exponentials of the momenta. However, the only two terms
that contribute are

〈0|a(p)a†(q)a(p′)a†(q′)|0〉e−i(Pa−Qa)xa
e−i(P ′

a−Q′
a)x′a

+〈0|a(p)a(q)a†(p′)a†(q′)|0〉e−i(Pa+Qa)xa
ei(P

′
a+Q′

a)x′a , (6.38)

where Pa = (|p|,p) and x′a = (0, 0, 0, z′). Using the commutation relation

[a(p), a†(p′)] = (2π)d+1δd+1(p− p′), (6.39)

we find that

〈0|a(p)a†(q)a(p′)a†(q′)|0〉 = (2π)6δ3(p′ − q′)δ3(p− q) (6.40)
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and

〈0|a(p)a(q)a†(p′)a†(q′)|0〉 = (2π)6
(
δ3(p− p′)δ3(q − q′) + δ3(q − p′)δ3(p− q′)

)
.

(6.41)
Putting this together and integrating gives

G+
xy,xy(t, x, y, z, z′) =

∫
d3pd3q

4(2π)6
1
pq

[
(p2

xq
2
y + pxpyqxqy)e−i(P a+Qa)(xa−x′a) + pxpyqxqy

]
.

(6.42)
The last term, which comes from the first piece in (6.38) seems to give an infinite
contribution in general. It is associated with the summation over the zero point modes
and would be absent if we had followed the usual prescription of normal ordering the
stress tensor operator so that its expectation value is set to zero. Instead, if we use the
Fulling-Rindler subtraction (6.24) these Casimir type terms must be present. In the
present case, however, the integration over this term over the momentum space gives
zero identically. This is consistent with the perfect fluid form of expectation value of
T̂µν , whose (xy) components are zero in the equilibrium rest frame.

In order to deal with the remaining term, note that the Wightman function for the
scalar field operator is

G+(t, x, y, z, z′) = 〈0|ϕ(t, x, y, z)ϕ(0, 0, 0, z′)|0〉 =
∫

d3p

2p(2π)3
e−iPa(xa−x′a). (6.43)

Therefore the Wightman function of the stress tensor can be expressed in terms of
derivatives of the scalar field Wightman function

G+
xy,xy(t, x, y, z, z′) = (∂2

xG
+(t, x, y, z, z′))(∂2

yG
+(t, x, y, z, z′))

+ (∂x∂yG
+(t, x, y, z, z′))(∂x∂yG

+(t, x, y, z, z′)). (6.44)

The scalar Wightman function for a massless field has the form [Bogoliubov 1980]

−1
4π2

1
λ+ ε(t)iε

(6.45)

where λ = −t2 + x2 + y2 + (z − z′)2 is the spacetime interval between the two points
and ε(t) is sign function (+1 if t > 0, -1 if t < 0). The iε prescription for dealing with
the singularity here is interpreted as

lim
ε→0

1
λ± iε

= P/λ∓ iπδ(λ), (6.46)
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where P represents the Cauchy principal value. Using (6.44) we find the Wightman
function for the stress tensor is

G+
xy,xy(τ, x, y, ξ, ξ

′) =
1

16π4

(
128x2y2

(λ+ iε)6
− 16x2

(λ+ iε)5
− 16y2

(λ+ iε)5
+

4
(λ+ iε)4

)
(6.47)

where we re-express the interval in Rindler coordinates: λ = ξ2 − 2ξξ′ cosh(κτ) + ξ′2 +
x2 + y2.

We want to calculate the Fourier transform into Rindler frequency and momentum
(taking the zero momentum limit)

G̃+
xy,xy(ω, ξ, ξ

′) =
∫ ∞

`c

dξ′
∫ ∞

`c

dξ

∫ ∞

−∞
eiωτdτ

∫ ∞

−∞
dx

∫ ∞

−∞
dy κ2ξξ′ G+

xy,xy(τ, x, y, ξ, ξ
′).

(6.48)
We first make a coordinate change to

x = ρ cos(θ) (6.49)

y = ρ sin(θ) (6.50)

so that the integrations over the x and y directions become∫ ∞

0
ρdρ

∫ 2π

0
dθ. (6.51)

After integrating over the angular direction (6.48) becomes

G̃+
xy,xy(ω, ξ, ξ

′) =
∫ ∞

`c

dξ′
∫ ∞

`c

dξ

∫ ∞

−∞
eiωτdτ

∫ ∞

0
dρκ2ξξ′

(
2ρ5

π3(ρ2 + α)6

− 2ρ3

π3(ρ2 + α)5
+

ρ

2π3(ρ2 + α)4

)
, (6.52)

where α = ξ2 + ξ′2 − 2ξξ′ cosh(κτ) + iε. Since α is complex valued, the integration of
ρ over the real axis is well-defined and yields

G̃+
xy,xy(ω, ξ, ξ

′) =
∫ ∞

`c

dξ′
∫ ∞

`c

dξ

∫ ∞

−∞
eiωτdτ

1
30π2

κ2ξξ′

(ξ2 + ξ′2 − 2ξξ′ cosh(κτ))3
. (6.53)

This function has a periodicity in the τ coordinate due to the cosh function. We need
a prescription for dealing with the poles, which are always on the real axis at

τ0 = ±κ−1 ln(ξ/ξ′). (6.54)
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The usual way for handling these types of integrations is to assume τ is a complex
variable and that the contour for the integration in the complex τ plane should be
rectangular. One horizontal piece is along the real axis (the part we want), the other
in the opposite direction at τ = i2π/κ to keep the cosh function invariant. Because of
this fact there are also poles at

τ0 = ±κ−1 ln(ξ/ξ′) + 2πi/κ. (6.55)

The vertical parts are at τ = i∞ and do not contribute. The result will be the sum of
the residues enclosed in the contour,

I = 2πi(1− e−2πω/κ)−1 Σ(res), (6.56)

where I is the integral in (6.53).
There are multiple choices we can make for this contour depending on which poles

we choose to enclose. However, it turns out we have to include an even number of the
poles (two or all four) in order to preserve the symmetry of the integrand under the
interchange of ξ and ξ′. In the case of the Wightman function, we have the explicit iε
prescription, which is to include both poles on the real axis in the contour (by pushing
them up), while leaving out the ones at 2πi/κ. Computing the residues, and taking the
ω → 0 limit, we find

G̃+
xy,xy(0, ξ, ξ

′) =
ξξ′κ

30π3

−3(ξ4 − ξ′4) + 2ξ4 ln(ξ/ξ′) + 8ξ2ξ′2 ln(ξ/ξ′) + 2ξ′4 ln(ξ/ξ′)
(ξ2 − ξ′2)5

.

(6.57)
Next, we must perform the radial integrations over ξ and ξ′. The first integration

of (6.57) over ξ gives

G̃+
xy,xy(0, ξ

′) =
κ

240π2

ξ′4 + 4`2cξ
′2 − 5`4c + 4`4c ln(`c/ξ′) + 8`2cξ

′2 ln(`c/ξ′)
(`2c − ξ′2)4

. (6.58)

Integrating this expression over ξ′ and multiplying by the overall (2T0)−1 = π/κ in
(6.34), we ultimately arrive at

η =
1

1440π2`2c
, (6.59)

which, as expected, is divergent in the limit `c → 0 and scales in `c as a 2 + 1 quantity.
The final task is to compare this result with the entanglement entropy density for

the wedge. Comparing with our η in (6.59) with the entanglement entropy density
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calculated previously (6.28), we find

η/s = 1/4π. (6.60)

The UV cutoff length cancels out and we are left with exactly the KSS ratio.

6.5 Summary and Discussion

In this chapter we have argued that the universal shear viscosity to entropy density
ratio of 1/4π is also associated with a Rindler causal horizon in a flat (either globally
or locally) spacetime. Its appearance in this case is mysterious since there is no gravity
and the familiar formalism of AdS/CFT holography is completely absent. In order to
provide a microscopic basis for this result, we have turned to the properties of quantum
entanglement and vacuum fluctuations. Namely, when a quantum state is restricted
to a sub-region of the spacetime (in this case Minkowski vacuum state in the Rindler
wedge), quantum fluctuations of this state have a dual, thermal description associated
with the horizon boundary. An effective description of the large-scale dynamics of this
vacuum thermal state is always provided by hydrodynamics. To this end, we have
developed a simple Kubo-like formula for the viscosity induced on the horizon in terms
of a two point stress-energy tensor correlation function for the quantum fields in the
Rindler wedge. We calculated this quantity in the simplest case of a free massless scalar
field in a four dimensional spacetime and found the ratio of our η to the entanglement
entropy s is exactly 1/4π1.

The results found suggest that the 1/4π ratio might be a fundamental property of
quantum entanglement and its associated holography. It also provides support for the
hypothesis that semi-classical gravity on macroscopic scales is induced or emergent as
an effective theory of some lower dimensional, strongly coupled quantum system with
a large number of degrees of freedom. In this picture, the 1/4π ratio is saturated in
gauge theories with a Einstein gravity dual because 1) they have an area (BH) entropy
and 2) as we mentioned at the end of section 7.2, in the large N limit the number of
degrees of freedom diverges and gravity is turned off as the Newton constant goes to
zero.

It would be useful to understand if our results can be extended to more general
quantum field theories and to higher dimensional spacetimes. Since all fields in nature

1Note that, strictly speaking, we have not proven our result is independent of the regularization
scheme used on η and s. However, we do not expect the choice of regularization to matter since both
divergences arise in the same radial integration over the local energy-momentum density.
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contribute in principle to the vacuum fluctuations, our hypothesis is that the η/s ratio
is 1/4π universally for any matter field. Also, the arguments of section 7.2 can be ex-
tended to any dimension; since the BH entropy density is (4GD

N )−1 and η = (16πGD
N )−1

for a general spacetime dimension D, the ratio should not depend on the number of
dimensions.

As a simple first check of a different field theory, we considered a massless, but now
non-minimally coupled scalar field given by the action

Is =
1
2

∫ √
−g(∇aϕ∇aϕ− ξCRϕ

2). (6.61)

In the flat spacetime limit, the stress tensor reduces to

Tab = ∂aϕ∂bϕ−
1
2
ηab(∂ϕ)2 − 2ξc∂a(ϕ∂bϕ) + 2ξcηab∇c(ϕ∇cϕ). (6.62)

Repeating the steps at the beginning of Section IV, we arrive at the following for the
Wightman function of the stress tensor G+

xy,xy(τ, x, y, ξ, ξ
′) in terms of the scalar field

Wightman function G(τ, x, y, ξ, ξ)

G+
xy,xy(τ, x, y, ξ, ξ

′) = (1− 2ξC)2(∂2
xG

+)(∂2
yG

+)− 4ξ(1− 2ξ)(∂xG
+)(∂x∂

2
yG

+)

−4ξ(1− 2ξ)(∂yG
+)(∂2

x∂yG
+) + 4ξ2CG

+(∂2
x∂

2
yG

+)

+(1− 4ξC + 8ξ2C)(∂x∂yG
+)(∂x∂yG

+). (6.63)

Inserting in the form of the Wightman function (6.45), we can calculate the Fourier
transform in (6.48). Integrating over x and y as before, we find (7.45) again. The
dependence on the coupling to the scalar curvature ξC vanishes in the low momentum
regime, and therefore η is not changed.

There are different results in the literature for the entropy density s of a non-
minimally coupled scalar field. In [Demers 1995], the authors worked in the brick-wall
approach, calculating the density of states for a thermal field outside the horizon. In
this case, since the scalar curvature on the background spacetime is always zero, the ξC
dependence drops out of the scalar field equation and the entropy density is unchanged.
This is consistent with our calculation and, if we use this result, the KSS ratio is
preserved. However, there is an important difficulty here that cannot be overlooked.
The divergence in the entropy density found by [Demers 1995] cannot be absorbed into
the renormalization of the Newton constant, which is ξC dependent. This is a problem
since we have argued both the entanglement entropy and the viscosity are proportional
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to the (renormalized) Newton constant.
On the other hand, the entropy can also be calculated in an Euclidean functional

integral approach from the one-loop effective action. In this case, one works off-shell
and includes the contributions of manifolds where β 6= 2π/κ. When the solution is not
the Hartle–Hawking instanton (β = 2π/κ), the manifolds have a conical singularity and
therefore the scalar curvature coupling contributes a delta function term to the partition
function. The resulting entropy is ξC dependent and can in fact be reabsorbed into
the renormalized Newton constant [Solodukhin 1995; Larsen 1996]. However, there is
an interpretational issue with this result. When ξc > 1/6 the statistical mechanical
contribution to the entropy seems to be negative, while Sent = −Trρ̂ ln ρ̂ must be
positive definite [Hotta 1997].

The reason for this unusual behavior is rooted in the fact that the black hole entropy
has in this case an additional non-statistical term proportional to the integral of ϕ2

over the horizon
SN = 2πξc

∫
H
ϕ2
√
−hd2x, (6.64)

which can be thought of as a Noether charge correction term [Frolov 1997b]. Indeed,
if one considers a non-minimal field coupled to gravity

Igrav =
∫
d4x

√
−g
(

R

16πG
+

1
2
(∇ϕ)2 − ξC

2
Rϕ2

)
(6.65)

the resulting theory is a scalar-tensor theory of gravity, whose classical Wald Noether
charge entropy [Wald 1993] includes the correction (6.64). Note that this kind of cor-
rection is not limited to non-minimally coupled scalar fields. It also appears in generic
vector field theories [Frolov 1998]. The black hole entropy is generally composed of
three contributions: a statistical entanglement entropy, the non-statistical “bare” grav-
itational entropy and the Noether charge term. Induced gravity models remove the
need for the bare gravitational entropy, but they currently cannot fully explain the
existence of the Noether charge term from a statistical point of view [Fursaev 2005].

Hence our preliminary investigation of the viscosity to entropy density ratio in dif-
ferent field theories has lead us to a key issue. Namely, while the η/s ratio seems to
remain 1/4π if we compare our entanglement viscosity only to the statistical entan-
glement entropy, in general the relevant quantities are the black hole (Wald) entropy
and likely a corresponding general definition of viscosity. The problem is that the Wald
entropy in a general diffeomorphism invariant theory of gravity does not just depend on
the horizon area. This does not seem to fit with the induced gravity scenario implied by
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the thermodynamics of spacetime argument, reviewed in Chapter 3, where the horizon
entropy is purely due to entanglement.

In this sense, the investigations [Eling 2006; Eling 2008; Chirco 2010b] seem to lend
some insight towards a possible resolution. In particular, different formulations of the
equivalence principle and their role in determining the characteristics of a gravitational
theory may be the key point. The only theory of gravity known to be consistent with
the strong equivalence principle is Einstein gravity. The strong equivalence principle
implies that gravity is purely geometrical. Physics (gravity included) is the same in
any locally flat region of spacetime, which means GN is a universal constant and there
are no extra gravitational fields. Under these conditions the UV cutoff `c should be a
constant. However, in a general theory of gravity (such as scalar-tensor theories), the
strong equivalence principle is not satisfied. Consequently, it is reasonable to assume
the UV cutoff to be dependent on the spacetime location. In this case it is necessary
to promote it to a spacetime field, which will have to be a dynamical one in order
to assure the background independence of the resulting gravitational theory. This is
exactly what is naturally suggested by the extensions of the spacetime thermodynamics
approach beyond General Relativity [Eling 2006; Eling 2008; Chirco 2010b]. If this is
true, it may be always possible to re-express the Wald entropy in the form of an
entanglement entropy by suitably characterizing the spacetime dependence of `c1.

1A related proposal can be found in [Brustein 2009a; Elizalde 2008], where the authors found that
Wald entropy evaluated on static, spherically symmetric black hole solutions in generalized theories of
gravity can be expressed as A/4Geff , where Geff is an effective gravitational coupling at the horizon.
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Chapter 7

The Rindler Horizon Fluid: An

Effective Duality

Beyond the connection between the classical Navier–Stokes equations and a classical ge-
ometry, some recent works have introduced a novel formalism to describe a holographic
fluid theory defined on an arbitrary time-like surface in a general spacetime with a causal
horizon [Bredberg 2011b]. On this surface, one fixes the boundary condition that the
induced metric is flat, and in the spirit of the Wilsonian approach to the renormal-
ization, the asymptotic physics outside this surface plays no role. Moving this surface
between the horizon and the asymptotic boundary can be thought of as a renormaliza-
tion group flow between a boundary fluid and a horizon fluid. In [Bredberg 2011a] the
authors considered the specific case of perturbations about a Rindler metric, taking the
time-like surface to be one of the family of hyperbolas associated with the worldlines of
an accelerated observer. Working in the non-relativistic hydrodynamic expansion, the
authors presented a geometry that is a solution to the Einstein equations if the data
on surfaces of rc satisfy the incompressible Navier–Stokes equations. Alternatively, one
can consider the physically inequivalent near-horizon expansion in small rc and obtain
the same results.

These works actually suggested the possibility of an underlying holographic duality
relating a theory on fixed rc to the interior bulk of the Rindler spacetime. A first step
toward a detailed study of the behavior of this dual system was taken in [Compere 2011],
with the introduction of an algorithm for constructing the geometry and the explicit
expression for the viscous transport coefficients to second order in the hydrodynamic
expansion.

The independence of the fluid/Rindler holographic duality from the asymptotic ge-
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ometry makes this correspondence interesting beyond the AdS/CFT context. Indeed,
the Rindler metric is associated with an accelerated observer in the locally flat sur-
roundings of any point in spacetime. Therefore, one can ask whether the flat spacetime
duality can be applied locally and then possibly used to patch together a holographic
description of any spacetime [Compere 2011; Chirco 2011a].

In this chapter, we will study the approach given in [Bredberg 2011a] and try to
provide a further probe to the duality by asking what effect higher curvature terms in
the dual gravitational theory have on the transport coefficients of the fluid dual to the
Rindler geometry. In the AdS/CFT correspondence, such terms are associated with
quantum corrections or other deformations, which modify the values of the transport
coefficients. Remarkably, we show here that the shear viscosity of the Rindler fluid is not
modified if higher curvature terms are introduced. Equivalently, at lowest orders in the
non-relativistic expansion, the dual metric solution has the property of being a solution
to GR and to any higher curvature theory of gravity. The first place the higher curvature
corrections appear is in the second order transport coefficients of the fluid. Working
in the case where the higher curvature theory is Einstein–Gauss–Bonnet gravity, we
calculate some of these coefficients [Chirco 2011a]. We then conclude with a discussion
of the implications of these results and their possible connection to approaches using
the local Rindler geometry as a tool for a thermodynamical derivation of gravitational
dynamics.

7.1 General Setup

We want to construct a Lorentzian geometry that acts as the holographic dual descrip-
tion of a fluid flow in d+ 1 dimensions. Based on the holographic principle, we expect
the fluid is defined on a d+1 dimensional time-like surface Sc embedded in a D = d+2
dimensional bulk spacetime. We choose the time-like surface to be defined by fixed
bulk radial coordinate, r = rc. We also specialize to the case where the fluid moves on
a flat background. In this case, the induced metric on Sc should be flat as well, e.g.

γµνdx
µdxν = −Φ(rc)dt2 + e2Ψ(rc)dxidx

i, (7.1)

where Φ and Ψ are some functions of r. We use the notation that coordinates on
the hypersurface Sc are xµ = (t, xi), where i = 1...d. The d + 2 dimensional bulk
coordinates are defined with the notation xa = (t, xi, r). The final requirement is
that the bulk spacetime must contain a regular, stationary causal horizon. The bulk
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spacetime therefore has a time-like Killing vector field, which becomes null on the
horizon. The full bulk metric therefore has the general form [Bredberg 2011b],

ds2 = −Φ(r)dt2 + 2dtdr + e2Ψ(r)dxidx
i, . (7.2)

where at some radius r = rh there is a horizon where Φ(r) = 0 and the time-like
Killing vector χa = (∂t)a becomes null. If one considers quantum field theory on the
background (7.2), one finds equilibrium thermal states associated with the presence of
the horizon. For example, one can compute the Hawking temperature (in units where
~ = c = 1)

TH =
κ

2π
=

Φ′(rh)
4π

, (7.3)

where the surface gravity κ can be defined via χb∇bχ
a = κχa. Dividing by the redshift

factor at rc,
√
−gtt =

√
Φ(rc) yields the local Tolman temperature

Tloc =
Φ′(rh)

4π
√

Φ(rc)
. (7.4)

There is also an associated Bekenstein–Hawking entropy proportional to the cross-
sectional area of the horizon

SBH = 4πedΨ(rh), (7.5)

where here and throughout we use units such that 16πG = 1. We want to identify
these thermodynamical properties with the thermodynamical properties of the dual
fluid in d+ 1 dimensions. Therefore, the general metric can be thought of as the dual
geometrical description of an equilibrium thermal state associated with some lower
dimensional theory defined on the surface r = rc.

The metric (7.2) can describe many different black hole solutions. Here we will
focus on the special case of a region of flat (d+2) dimensional Minkowski spacetime in
“ingoing Rindler” coordinates

ds2 = −rdt2 + 2dtdr + dxidx
i, (7.6)

where in terms of the above parametrization, Φ(r) = r and Ψ(r) = 0. The null surface
r = 0 acts as a horizon to accelerated observers, whose worldlines correspond to surfaces
of constant r = rc.
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Although the Rindler metric is just a patch of flat spacetime, a general horizon
thermodynamics allows to define a local Unruh temperature, associated with surfaces
of r = rc

T =
1

4π
√
rc
. (7.7)

and to assign the Rindler horizon a Bekenstein–Hawking entropy based on the holo-
graphic principle, or, more concretely, via the thermal entanglement entropy of the
quantum fields in Rindler wedge, i.e.

s = 4π. (7.8)

Given the existence of an equilibrium Unruh temperature and a Bekenstein–Hawking
entropy density, the metric (7.6) can be thought of as a dual geometrical description of
a perfect fluid in one lower dimension. This duality can be formalized by considering
the Brown–York stress energy tensor [Brown 1993], which in GR takes the form,

TBY
µν = 2(Kγµν −Kµν), (7.9)

where Kµν = 1
2LNγµν and LN is the Lie derivative along the normal to the slice NA.

One can show that TBY
µν (and its generalization for higher curvature gravity) is indeed

equivalent to the stress energy tensor of the perfect fluid with a rest frame energy
density ρ and pressure P . In this case

ρ = 0, p =
1
√
rc
. (7.10)

7.2 Equivalence of Viscous Hydrodynamics in Einstein

and Higher Curvature Gravities

7.2.1 The Seed Metric

In this section we will argue that the first order viscous hydrodynamics of the fluid
defined on Sc is independent of whether the dual gravitational theory is Einstein or
some higher curvature generalization. In order to study the hydrodynamics of this
fluid, we must perturb the background Rindler geometry. To start, we review the
formalism for perturbing the Rindler metric developed in [Compere 2011]. The first
step is to make a set of coordinate transformations to obtain a new metric (or class
of metrics). These transformations should keep the induced metric at rc flat. The
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transformed metric should also preserve a perfect fluid form of the stress energy tensor
associated with the slice, as well as the time-like Killing vector and the homogeneity in
the xi direction. It was shown in [Compere 2011] that these set of conditions uniquely
identify two diffeomorphisms, namely a boost and the translation.

The boost of the metric takes the form,

√
rct→

√
rct− γβix

i, xi → xi − γβi√rct+ (γ − 1)
βiβj

β2
xj , (7.11)

where γ = (1 − β2)−1/2 and βi = r
−1/2
c vi is the boost parameter. The linear shift of

the radial coordinate and re-scaling of t, which moves the horizon from r = 0 to an
r = rh < rc, is instead

r → r − rh, t→ (1− rh/rc)−1/2t. (7.12)

The resulting metric for the flat spacetime is

ds2 =
dt2

1− v2/rc

(
v2 − r − rh

1− rh/rc

)
+

2γ√
1− rh/rc

dtdr − 2γvi

rc
√

1− rh/rc
dxidr

+
2vi

1− v2/rc

(
r − rc
rc − rh

)
dxidt+

(
δij −

vivj

r2c (1− v2/rc)

(
r − rc

1− rh/rc

))
dxidxj .

(7.13)

We now want to investigate the hydrodynamic system dual to the above metric.
To do that, we need to consider the dynamics of the metric perturbations within a
hydrodynamic limit. One can perturb (7.13) by promoting the spatial velocity and
horizon radius to be functions of space and time: vi(t, xi) and rh(t, xi). Now the
metric is no longer flat and no longer a solution of the vacuum Einstein equation.
However, one can introduce a particular non-relativistic hydrodynamical expansion
[Fouxon 2008; Bhattacharyya 2009] in terms of a small parameter ε,

vi ∼ εvi(εxi, ε2t) P ∼ ε2P (εxi, ε2t), (7.14)

where the non-relativistic pressure P (t, xi) is defined in the following way as a small
perturbation of the horizon radius, 1

rh = 0 + 2P +O(ε4). (7.15)
1Note that the ε expansion is performed in such a way that at zeroth order vi = rh = 0 so that the

standard Rindler metric (7.6) is recovered. Also, there is no scaling of bulk radial derivatives.
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Using (7.14) one scales down the amplitudes (ε can be thought of as the inverse of
the speed of light), while at the same time scaling to large times t and spatial distances
xi. This corresponds to looking at small perturbations in the hydrodynamic limit.

Expanding the metric (7.13) out to O(ε2) in this manner yields the “seed metric” so-
lution originally found by Bredberg, Keeler, Lysov and Strominger in [Bredberg 2011a],

ds2 = −rdt2 + 2dtdr + dxidx
i

− 2
(

1− r

rc

)
vidx

idt− 2vi

rc
dxidr

+
(

1− r

rc

)[
(v2 + 2P )dt2 +

vivj

rc
dxidxj

]
+
(
v2

rc
+

2P
rc

)
dtdr. (7.16)

The seed metric is the unique singularity-free solution to the vacuum Einstein equations
up to O(ε3), provided ∂iv

i = 0. As required, the induced metric on the slice r = rc is
flat.

In GR, the momentum constraint equations on the surface Sc can be expressed in
terms of the Brown-York stress tensor

RµaN
a = ∂νTBY

µν = 0. (7.17)

At second and third order in ε, momentum constraint equations are

R(2,3)
µa Na = r−1/2

c R
(2,3)
tµ + r1/2

c R(2,3)
rµ = 0, (7.18)

while the Brown-York stress-tensor for the seed metric is given by [Bredberg 2011a]

TBY
µν dxµdxν =

d~x2

√
rc
− 2vi√

rc
dxidt+

v2

√
rc
dt2 + r−3/2

c

[
Pδij + vivj − 2rc∂ivj

]
dxidxj +O(ε3) .

(7.19)

Then, at second order, using the expression in (7.19), the momentum constraint equa-
tions (7.17) reduce to the incompressibility condition ∂iv

i = 0 we discussed above. At
third order one finds the Navier-Stokes equations with a particular kinematic viscosity

∂tvi + vj∂jvi + ∂iP − rc∂
2vi = 0. (7.20)

Therefore, imposing the the incompressible Navier-Stokes equations on the fluid vari-
ables guarantees the dual metric is a solution to the field equations.

Noticeably, these results can be obtained as a non-relativistic expansion of a rela-
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tivistic viscous fluid stress tensor. To see this, we work in the relativistic hydrodynamic
expansion in derivatives of the fluid velocity and pressure: ∂u and ∂p. Then, at first
order, the relativistic viscous fluid stress tensor has the form,

T fluid
µν = ρuµuν + phµν − 2ηKµν − ξhµν(∂λu

λ). (7.21)

Here hµν = γµν +uµuν , while Kµν = hλ
µh

σ
ν∂(λuσ) is the fluid shear, η the shear viscosity,

and ξ the bulk viscosity.
The viscous terms above are written in the Landau or transverse frame [Landau 2000],

which can be defined as a condition on the first order part of the stress tensor

T fluid (1)
µσ uσ = 0. (7.22)

This frame is constructed so that the viscous fluid velocity is defined as the velocity
of energy transport. The seed stress tensor in (7.19) follows from the ε expansion of
(7.21), if we identify

uµ =
1√

rc − v2
(rc, vi), ρ = 0 +O(ε3), p =

1
√
rc

+
P

r
3/2
c

, η = 1. (7.23)

This is consistent with the earlier equilibrium calculation of ρ and p in (7.10). Note
also that the bulk viscosity term in (7.21) actually drops out and bulk viscosity is not
an independent transport coefficient. This is due to the fact that at viscous order we
can impose the ideal order equation ∂µu

µ = 0, which follows from ρ = 0 and continuity.

7.2.2 Higher Curvature Gravity

Now we want to study how the hydrodynamics of the fluid is modified when the gravity
theory is not GR, but instead some theory with higher curvature terms. The first
question is whether we need a new, modified seed metric in a higher curvature theory
of gravity. Interestingly, we can show that the seed metric (7.16) and itsO(ε3) correction
is a solution to a wide class of higher curvature gravity theories at lowest orders in the
ε expansion.

We start by noting that the flat, equilibrium Rindler metric at zeroth order is a
vacuum solution to both Einstein and higher curvature gravity theories. The higher
curvature terms could be thought of as modified gravity theories in their own right or
they can be seen as quantum corrections to Einstein gravity in an effective field theory
picture. Here we will not consider exotic theories involving inverse powers of curvature
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invariants.
As a first example of a higher curvature theory we consider Einstein-Gauss-Bonnet

gravity (in the absence of a cosmological constant), defined by the action

IGB =
∫
dd+2x

√
−g
[
R+ α

(
R2 − 4RcdR

cd +RcdefR
cdef

)]
, (7.24)

where α is the Gauss–Bonnet coupling constant. We consider d ≥ 3 since for d < 3 the
Gauss–Bonnet term is topological and does not affect the field equations. The interest
in looking at a Gauss–Bonnet term is twofold. Such a term arises in the low energy
limit of string theories. Secondly, Einstein–Gauss–Bonnet gravity is notable because
even though the action is higher order in the curvature, for the unique combination
of curvature invariants in the second term of (7.24), the field equations remain second
order in derivatives of the metric.

Varying this action with respect to the metric yields the field equations,

Gab + 2αHab = 0, (7.25)

where the Lovelock tensor HAB is

Hab = RRab − 2RacR
c
b − 2RcdRacbd +Ra

cdeRbcde

−1
4
gab

(
R2 − 4RcdR

cd +RcdefR
cdef

)
. (7.26)

Now, using the seed metric, the first non-zero components of the Riemann tensor Rabc
d

are at O(ε2). If we examine the Lovelock tensor, (7.26), it is clear that the first contri-
butions from the Gauss-Bonnet terms can only appear at O(ε4) at the lowest. A similar
conclusion obviously holds for Lovelock gravities [Lovelock 1971], which are the exten-
sion of the action (7.24) including contributions with higher powers of the curvature
but still yielding 2nd order field equations.

The field equations of other higher curvature theories of gravity generally involve
covariant derivatives of the Riemann tensor and its contractions. These are no longer
second order in metric derivatives. At second order in the curvature the gravitational
action has the form

I =
∫
dd+2x

√
−g
(
R+ β1R

2 + β2RabR
ab + β3RabcdR

abcd
)
. (7.27)
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The field equations can be expressed in the form Gab = Seff
ab , where

Seff
ab = β1

(
RRab −∇a∇bR+ gab(�R−

1
2
R2)

)
+

β2

(
gabRcdR

cd + 4∇c∇bR
c
a − 2�Rab − gab�R− 4Rc

aRcb

)
+ β3

(
gabRabcdR

abcd − 4RacdeRb
cde − 8�Rab + 4∇b∇aR

+8Rc
aRcb − 8RcdRacbd

)
. (7.28)

Let’s consider the possible terms that can appear at the lowest orders in ε. First, the
second covariant derivative terms of R could in principle contribute βi corrections at
O(ε2). However, the Ricci scalar R = gabRab can be expanded out as follows,

R = gttRtt + 2grtRtr + 2gtiRti + 2griRri + grrRrr + gijRij . (7.29)

Before imposing incompressibility, one can show that the only non-zero component of
Rab at O(ε2) is

Rtt = 1
2
∂iv

i. (7.30)

However, for the background Rindler metric (7.6), the zeroth order gtt
(0) is zero, so

the Ricci scalar R is in fact higher order. Since one cannot form a scalar constructed
from vi, P , ∂t, and ∂i with odd powers of ε, we expect R is of O(ε4). For instance, the
spatial vector Rti is O(ε3), but this multiplies gti, which is O(ε). Therefore, R is O(ε4)
and its covariant derivatives are of the same order or higher.

The remaining terms of interest are the �Rab and ∇c∇bR
c
a terms proportional

to β2 and β3. We know that Rab a priori has non-zero components at O(ε2) and
O(ε3). The question is whether the radial derivatives and background connection for
the Rindler metric (7.6) allow the above two terms to also contribute at these orders
in ε thereby affecting the hydrodynamics at these orders. This we checked with an
explicit calculation. The result is again negative.

Thus, as a general principle, higher curvature corrections to the Einstein equations
come in at O(ε4), at least when we perturb the fluid dual to the flat Rindler spacetime
geometry. Terms of even higher order in the curvature (schematically ∼ Rn, where n >
2) will typically appear at even higher orders. This includes the often studied case of
f(R) theories, when f can be expanded around the Hilbert term: f = R+R2+R3+· · · .

As a result, the solution to the higher curvature theories at the lowest orders
O(ε2) and O(ε3) is the same as the GR solution found previously [Bredberg 2011a;
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Compere 2011]. Since all the higher curvature quantities vanish at the lowest orders,
this solution has the property of being approximately strongly universal [Coley 2008] .
The explicit solution atO(ε3) can be constructed from the algorithm for Einstein gravity
given in [Compere 2011], which we will expand upon and generalize to Einstein–Gauss–
Bonnet in the next section. At the present, we note that the equivalence of the solutions
to O(ε4) implies that the 1st order viscous hydrodynamics of the dual fluid is the same
both in Einstein gravity and its higher curvature generalizations. In particular, the
incompressible Navier–Stokes equations (7.20) are the same in any theory, with the
kinematic viscosity fixed to be rc. Furthermore, as Compère, et. al. pointed out, it
is clear that the non-relativistic ε expansion is capturing the non-relativistic limit of a
relativistic fluid theory whose full structure is unknown. Nevertheless, the ε expansion
seems to be able to capture some of the transport properties of this fluid theory. In
particular, the shear viscosity of the relativistic fluid, η, is apparently fixed to be 1 (or
(16πG)−1 if we restore the gravitational constant).

One may worry about using the non-relativistic limit to draw conclusions about the
properties of the relativistic parent fluid. However, we can show that our analysis of
higher curvature terms can be extended to the relativistic hydrodynamics. The first
step is write the metric (7.13) in a manifestly boost covariant form. This metric turns
out to be

ds2 = −(1 + p2(r − rc))uµuνdx
µdxν − 2puµdx

µdr + hµνdx
µdxν . (7.31)

In this line element we have replaced rh with the relativistic pressure p using the general
formula

p =
1√

rc − rh
. (7.32)

Expanding ua and p in terms of vi and P using (7.23), the metric (7.31) reproduces
the seed metric up to O(ε2). In addition, if we compute the Brown–York stress tensor
at r = rc for this metric (7.31), we find directly

Tµνdx
µdxν = phµνdx

µdxν , (7.33)

which is the ideal part of (7.21) with ρ = 0.
To perturb in this case, we now treat uµ(xµ) and p(xµ), but leave rc fixed. The

metric is no longer a solution to the vacuum Einstein equations, but one can expand
and work order by order in derivatives of uµ and p as discussed earlier. This follows the
standard approach used in the fluid-gravity correspondence [Bhattacharyya 2008a].
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We now have that (7.31) is a zeroth order solution, i.e. Rab = 0 +O(λ), where the
parameter λ counts derivatives of uµ and p. Therefore, Rabc

d ∼ O(λ) and the curvature
squared terms in (7.28) must appear at O(λ2). The other terms involve the covariant
derivatives of the Ricci scalar and tensor. The generalization of (7.29) is

R(1) = grrR(1)
rr + 2grµR(1)

rµ + gµνR(1)
µν . (7.34)

From (7.31) we find

R(1)
rr = 0

R(1)
rµ = 0

R(1)
µν = ∂(µpuν) +Dp uµuν +

1
2
p(∂λu

λ)uµuν + pu(µaν), (7.35)

where we have defined D = uµ∂µ and aµ = uλ∂λuµ. Since gµν = hµν , which projects
orthogonal to uµ, R(1) = 0. Finally, the fact that the remaining terms �Rab and
∇c∇bR

c
a are also of O(λ2) can be shown by explicit calculation as before.

Therefore, we conclude again that the higher curvature terms affect only the second
order viscous hydrodynamics. The equilbrium stress tensor will be given by Eqn. (7.33)
in any higher curvature theory of gravity. This follows just from the fact that the zeroth
order metric (7.31) is a solution in any theory. Computing the O(λ) corrections to (7.31)
and (7.33) confirms that η = 1 and the bulk viscosity is not a transport coefficient, but
we will save the details for another paper [Chirco ].

In higher curvature theories, the entropy is given by the Wald formula [Wald 1993].
In general, Bekenstein–Hawking area entropy will be modified by the higher curvature
terms, leading to an expression that can depend on both the intrinsic and extrinsic
geometry of horizon. However, since we are working with a Rindler horizon in flat
spacetime, all these corrections vanish and the equilibrium entropy density s remains
4π. The ratio η/s = 1/4π was first derived in the context of the AdS/CFT corre-
spondence [Policastro 2001]. It was shown that the ratio goes to this value for any
infinitely strongly coupled holographic gauge theory fluid with an Einstein gravity dual
[Buchel 2004]. On the gauge theory side, the number of colors N →∞ and the ’t Hooft
coupling λ → ∞. This is essentially a classical limit; quantum corrections to the η/s
ratio at finite N and λ, which can be calculated in specific string theory realizations
[Myers 2009b], correspond to specific higher derivative corrections to the dual gravi-
tational theory. Another approach is to work outside the context of particular string
theories and consider a generic higher curvature gravity action of the form given in
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(7.27). In this case, it has been shown [Brigante 2008; Kats 2009; Cai 2011] that ratio
changes to

η

s
=

1
4π

(1− 8β3). (7.36)

This result holds in five spacetime dimensions and to linear order in the βi, which are
effectively suppressed by powers of the Planck length. It is also important to note that
while the ratio is unchanged when β3 = 0, both η and s do depend on β1,2. Finally, in
the special case of Einstein–Gauss–Bonnet, (7.24), β3 = α. Given the nice properties
of this theory (linked to the field equations remaining 2nd order in derivatives), one
can work non-perturbatively and consider finite α corrections which allow the ratio to
approach zero.

It is then remarkable that in the case of a flat Rindler background there is no higher
curvature correction to the ratio or to the viscosity itself. The viscosity is protected
against quantum corrections or other deformations to the dual theory. At a technical
level, the difference is that the result (7.36) follows by considering perturbations around
a background asymptotically AdS black brane solution in the higher curvature gravity
theory. In Einstein–Gauss–Bonnet gravity with negative cosmological constant, this
solution is [Cai 2002]

ds2 = N2f(r)− 1
f(r)

dr2 + r2dxidx
i (7.37)

where N is some constant and

f(r) =
r2

4α

1−

√
1− 8α

(
1−

r4h
r4

) , (7.38)

with rh the value of the horizon radius. In this solution, thermodynamic quantities
such as the temperature and entropy density depend explicitly on α, which translates
into the calculations of the entropy and shear viscosity.

In contrast, in the Rindler case the metric does not depend on α and the Unruh
temperature and entanglement entropy are kinematical quantities in the sense that they
are independent of the underlying gravitational theory. The shear viscosity seems to
have the same behavior since it is also unaffected by the choice of gravitational dynam-
ics. This is further evidence for the picture of η/s = 1/4π as a kinematical property
associated with entanglement in Rindler spacetime [Chirco 2010a], as discussed in the
previous chapter.

Before moving on, we want to point out the interesting duality here between the
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relativistic λ expansion in derivatives in the holographic theory and an effective field
theory expansion of the bulk gravitational theory. First note that the λ expansion is
equivalent to an expansion in small dimensionless Knudsen number, which is defined as
Kn = `mfp

L , where `mfp is the mean free path associated with the microscopic system
and L is the characteristic size of the perturbations to the system. Secondly, although
the bulk gravity theory is non-renormalizable, it is still valid as an effective theory when
the dimensionless ratio of the Planck length to the radius of curvature, Lplanck

Rcurv
, is small.

The effective action is given as an expansion in this ratio. At zeroth order there is some
cosmological constant, at first order, the Hilbert term, and then the pieces higher order
in curvature invariants.

In the duality, the scale of perturbations L in the system on r = rc is linked to the
scale Rcurv of perturbations to the flat bulk spacetime. As we have seen, a flat spacetime
is dual to the fluid in equilibrium, Einstein gravity dual to the viscous hydrodynamics
characterized by a shear viscosity, and second order transport coefficients linked to
curvature squared terms. It is tempting to associate the universality of the shear
viscosity with the universality of the Hilbert action at low energies and take `mfp ∼
Lplanck, the scale at which gravity is strongly coupled. This line of reasoning also
suggests it may be interesting to consider a seed metric constructed from the region of
a de Sitter spacetime where there is also a causal “observer dependent” horizon and the
associated thermodynamics. What effect does a non-zero cosmological constant have
on the dual fluid?

7.3 Second Order Transport Coefficients

Now let’s consider the hydrodynamic expansion at higher order in derivatives. Here we
expect the gravitational dynamics to affect the hydrodynamics of the dual fluid. To
second order, O(λ2), the general stress tensor for a relativistic fluid with zero energy
density (hence incompressible) has the form [Compere 2011]

T fluid
µν = ρuµuν + phµν − 2ηKµν

+ c1K
λ
µKλν + c2K

λ
(µΩ|λ|ν) + c3Ω λ

µ Ωλν + c4P
λ
µP

σ
ν DλDσ ln p

+ c5σµν D ln p+ c6D
⊥
µ ln pD⊥

ν ln p, (7.39)
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where D = uµ∂µ, D⊥
µ = P ν

µ∂ν , and Ωµν = P λ
µP

σ
ν ∂[λuσ]. There are also viscous correc-

tions to the energy density ρ at this order, which can be parameterized as

ρ = b1KµνK
µν + b2ΩµνΩµν + b3D ln pD ln p+ b4D

2 ln p+ b5D
⊥
µ ln pD⊥µ ln p. (7.40)

The ci, i = 1..6, and bj , j = 1..5, are the possible new transport coefficients. When one
expands these expressions in powers of ε, many of the second order transport coefficients
appear at O(ε4) in a general non-relativistic fluid stress tensor,

T fluid (4)
µν dxµdxν = r−3/2

c

[
v2(v2 + P )− ηrcσijv

ivj +
b1r

3/2
c

2
σijσ

ij +
b2r

3/2
c

2
ωijω

ij
]
dt2

+ r−5/2
c

[
vivj(v2 + P ) + 2ηrcv(i∂j)P + c4r

3/2
c ∂i∂jP +

c1
4
r3/2
c σikσ

k
j

+
c3
4
r3/2
c ωikω

k
j −

c2
4
r3/2
c σk(iωj)

k − 2ηr2cv(i∂
2vj) − ηrcv(i∂j)v

2

− rc
2
ησijv

2
]
dxidxj . (7.41)

Here σij = 2∂(ivj) and ωij = 2∂[ivj]. Only c5, c6 and b3, b4, and b5 are absent at this
order in the ε expansion.

We argued that O(ε4) is the first to receive corrections from any higher curvature
terms in the gravity theory. In the next section, we will solve for the fourth order (non-
relativistic) metric in five dimensional Einstein-Gauss-Bonnet gravity. With this result
in hand, we will use the corresponding Brown-York stress tensor to read-off various
second order transport coefficients for the dual fluid.

7.3.1 Constructing the Einstein–Gauss–Bonnet Solution

We first outline the construction due to [Compere 2011], where one starts with the
metric solution at O(εn−1). In practice, the first n is 3 , i.e. one starts the process
with the seed metric solution (7.16). We then want to add to the metric a new piece
gν
ab that solves the field equations to O(εn+1). Since radial derivatives carry no powers

of ε, the addition of gν
ab produces a change in the bulk curvature tensors at the same

order. This is effectively a perturbation around the zeroth order background Rindler
metric (7.6). We work in the gauge where

gν
ra = 0, (7.42)
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for all the contributions with n ≥ 3. With this choice, we find that changes in the
Einstein tensor δGab = δRab − 1

2
g
(0)
ab δR have the form

δGν
rr = −1

2
∂2

rg
ν
ii,

δGν
ij = −1

2
∂r(r∂rg

ν
ij)−

1
2
δij
(
∂2

rg
ν
tt − ∂r(r∂rg

ν
ij)
)
,

δGν
ti = −rδGν

ri = −r
2
∂2

rg
ν
ti,

δGν
tt = −rδGν

rt = −r
4
(
2r∂2

rg
ν
ii + ∂rg

ν
ii

)
. (7.43)

We define gν
ii ≡ δijgν

ij and δGν
ii ≡ δijδGν

ij . In contrast, there is no change to the Lovelock
tensor (7.26) at the same order n since the curvature of the Rindler background is zero
and any term in the variation would contain some factor of curvature at zero order.

We want to find the gν
ab that cancels out the O(εn) part of the field equations arising

from the pre-existing solution at O(εn−1). That is, we require

δGν
ab + Ĝν

ab + 2αĤν
ab = 0 (7.44)

where the hat denotes the parts of the curvature arising from the pre-existing solution.
In order for this set of equations to be consistent, one must impose the integrability
conditions

Êν
tt + rÊν

tr = 0 (7.45)

Êν
ti + rÊν

ri = 0 (7.46)

∂r(Êν
tr + rÊν

rr) + (1/2)Êν
rr = 0 (7.47)

where we have defined Êν
ab = Ĝν

ab +2αĤν
ab. These are consistent with the Bianchi iden-

tity and (7.45) follows from the conservation of the Brown-York stress tensor extended
to Gauss-Bonnet gravity [Davis 2003], i.e.

(Gaν + 2αHaν)Na = ∂µTµν = 0, (7.48)

where
Tµν = 2(Kγµν −Kµν) + 4α(Jγµν − 3Jµν − 2P̂µρνσK

ρσ). (7.49)

The symbol P̂µρνσ = R̂µρνσ + 2R̂ρ[νγσ]µ − 2R̂µ[νγσ]ρ + R̂γµ[νγσ]ρ is the divergence free
part of the induced Riemann tensor and can be neglected here because we work with a
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flat induced metric, while

Jµν =
1
3
(2KKµσK

σ
ν +KσλK

σλKµν − 2KµσK
σλKλν −K2Kµν). (7.50)

Using (7.43), one can solve the differential equations subject to two conditions: (i)
that gν

ab = 0 at r = rc (the metric on Sc remains flat) and (ii) that there is no singularity
at r = 0. The resulting solution is

gν
tt = (1− r/rc)F ν

t (t, xi) +
∫ rc

r
dr′
∫ rc

r′
dr′′

2
3

(
Êν

ii − 4Êν
tr − 2rÊν

rr

)
(7.51)

gν
ti = (1− r/rc)F ν

i (t, xi)− 2
∫ rc

r
dr′
∫ rc

r′
dr′′Êν

ti (7.52)

gν
ij = −2

∫ rc

r
dr′

1
r

∫ r′

0
dr′′

(
R̂ν

ij + 2α(Ĥν
ij −

1
3
Ĥν

kk)
)

(7.53)

where F ν
t (t, xi) and F ν

i (t, xi) are arbitrary functions.
These two remaining functions can be fixed by imposing gauge choices on the Brown-

York stress tensor of the fluid (7.49). The addition of the new metric piece at O(εn)
has the following effect on the extrinsic curvature at the same order

δKν
µν = 1

2

√
rc∂rg

ν
µν

∣∣
Sc

(7.54)

implying that

δKν
tt = −F

ν
t (t, xi)
2
√
rc

, δKν
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ν
i (t, xi)
2
√
rc

,
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√
rc

∫ rc

0
dr′
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ij + 2α(Ĥν
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1
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δijĤ

ν
kk)
)
. (7.55)

By explicit calculation, we verified that there is no corresponding O(εn) variation of
the Jµν part of the stress tensor. Thus, the variation δT ν

µν comes only from the linear
part in the extrinsic curvature:

δT ν
tt = −

√
rc

∫ rc

0
2Rν

ii, δT ν
ti =

F ν
i (t, xi)√

c

δT ν
ij = δij
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t (t, xi)

r
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+
2
√
rc
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0
dr′(Rν

kk +
2α
3
Ĥν

kk)

)
− 2
√
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0
dr′(R̂ν

ij + 2αĤν
ij).
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The complete stress-tensor has the form

T ν
µν = δT ν

µν + 2
(
K̂νγµν − K̂ν

µν

)
+ 4α

(
Ĵνγµν − 3Ĵν

µν

)
, (7.57)

where as before, the hat notation indicates the part of the stress-tensor originating
from the solution at O(εn−1). The function F ν

i (t, xi) is fixed by imposing the Landau
gauge condition (7.22) order by order in the non-relativistic expansion. This plays a
role only at odd orders in ε. The other function F ν

t (t, xi), which appears at even orders,
is fixed by requiring that there are no higher order corrections to the definition of the
non-relativistic pressure, i.e. the isotropic part of Tij is

T iso
ij =

(
1
√
rc

+
P

r
3/2
c

)
δij (7.58)

at all orders.

7.3.2 Solution to O(ε5)

We now apply the algorithm to solve for the metric to O(ε5). One first starts with the
seed metric solution (7.16) and constructs the solution at O(ε3). As we argued earlier,
the corrections due to the Gauss-Bonnet coupling constant arise at O(ε4). Therefore,
the Gauss-Bonnet terms do not contribute and the solution reduces to the GR one
found previously in [Compere 2011], where the only non-vanishing component is

g
(3)
ti =

r − rc
2rc

[(
v2 + 2P

) 2vi

rc
+ 4∂iP − (r + rc)∂2vi

]
. (7.59)

The next step is to compute the R̂
(4)
AB and Ĥ

(4)
AB using this metric. Via direct

calculation of the Lovelock tensor (7.26), we find that

H
(4)
ij =

3
4r2c

(
ωikω

k
j + 1

2
δijωklω

kl
)

(7.60)

with all other components of H(4)
ab equal to zero. At even order in ε, Rti = 0 and as a

result g(4)
ti = 0. The remaining components to compute are R(4)

tt , R(4)
rr , R(4)

rt , and R
(4)
ij ,

which we will not display explicitly here.
Using (7.60), the solution for g(4)

tt in (7.51) reduces to

g
(4)
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(7.61)
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and we find that

g
(4)
tt = (1− r/rc)F

(4)
t (t, xi) +

(r − rc)2

8rc

(
8vk∂

2vk − σklσ
kl
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8rc
ωklω

kl.

(7.62)

The gauge condition on the stress tensor (7.58) fixes

F
(4)
t (t, xi) =

9
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Pv2 +

P 2
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− 2rcvi∂
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(
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2
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kl − α

2
ωklω

kl

− 2∂tP + 2vk∂kP. (7.63)

Note that in these expressions we have imposed incompressibility ∂iv
i = 0, used the

Navier-Stokes equation (7.20) to eliminate time derivatives of vi, and imposed

∂2P = −∂ivj∂
jvi, (7.64)

which also follows from (the divergence of) Navier-Stokes. Meanwhile Eqn. (7.53),
yields
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We now use (7.57) and (7.56) to find the stress tensor components T (4)
tt and T

(4)
ij .

The non-zero components of the J (4)
µν tensor are

J
(4)
tt = − 1

24r1/2
c

σijσ
ij , J
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c

σikσ
k
j (7.66)

Using this result, we find

T
(4)
tt = r−3/2
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[
v2(v2 + P )− r2c
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σijσ
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(7.67)
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and
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Note that the T
(4)
tt has no α corrections. They cancel out and the energy density

Tµνu
µuν is not affected by α at fourth order. Comparing with the general form of the

fluid stress tensor (7.41) we read off that

b1 = −
√
rc , b2 = 0 , c1 = −2

√
rc

(
1 +

2α
rc

)
, c3 = −4

√
rc

(
1 +

3α
rc

)
, c2 = c4 = −4

√
rc

(7.69)

as expected, there is no change in the value of η = 1. However, the Gauss-Bonnet term
does modify the two transport coefficients c1 and c3 from their purely GR values.

7.4 Discussion

We have argued that higher curvature corrections to the Einstein equations always
come in at O(ε4) in the non-relativistic hydrodynamic expansion and at O(λ2) in the
relativistic Knudsen number expansion, at least when we perturb the fluid dual to the
flat Rindler spacetime geometry. Hence, the solution to the higher curvature theories
at the lowest orders is the same as the GR solution found previously [Bredberg 2011a;
Compere 2011]. Working in the specific case where the higher curvature theory is
Einstein–Gauss–Bonnet gravity, we then showed explicitly that the 1st order viscous
hydrodynamics of the dual fluid is the same both in Einstein gravity and its higher
curvature generalization, while the effect of the higher curvature corrections shows
up in the second order transport coefficients of the fluid. We calculated some of these
transport coefficients and found that two of them depend on the Gauss–Bonnet coupling
constant. It would be interesting to complete the relativistic calculation outlined in
section ?? in order to find all the second order transport coefficients in both the Einstein
and Einstein–Gauss–Bonnet examples.

The approximate strong universality [Coley 2008] of the seed solution about which
the hydrodynamic expansion is made is an interesting result. The lack of a higher curva-
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ture correction to the viscosity implies that it is protected against quantum corrections
or other deformations to the dual theory. One way of thinking about these results
is to note that shear viscosity and entropy density typically scale like T d, where T is
the equilibrium temperature of the thermal system. In AdS/CFT, this temperature is
given by the Hawking temperature TH of the black brane solution, which would depend
in this case on the Gauss–Bonnet coupling constant, due to the non-trivial curvature
of the background solution. In contrast, the shear viscosity and entropy density are
constants independent of the temperature in the Rindler case. This suggests the two
types of holographic duality are different.

Given the independence of the fluid/Rindler holographic duality from the asymp-
totic geometry, one is naturally lead to consider the case of the Rindler metric is
associated with an accelerated observer in the locally flat surroundings of any point
in spacetime. In this sense, one can ask whether the flat spacetime duality can be
applied locally and then possibly used to patch together a holographic description of
any spacetime [Compere 2011].

In the previous chapter, we showed how the idea that gravity may emerge from
the holographic hydrodynamics of some microscopic, quantum system can be effec-
tively developed in a local Rindler system [Jacobson 1995; Eling 2006; Eling 2008;
Chirco 2010b]. We saw how non equilibrium thermodynamical derivation, associated
with the hydrodynamics of the local horizon, yields the GR Einstein equation and
fixes the shear viscosity to entropy density ratio to be 1/4π. Also, we proved that
the bulk viscosity does not appear as an independent transport coefficient [Eling 2008;
Chirco 2011b], which is strikingly similar to the viscous hydrodynamics of the global
Rindler fluid.

On the other hand, extensions of this type of derivation to f(R) gravities [Eling 2006;
Chirco 2010b; Chirco 2011b] require the horizon entropy to depend on the curvature,
which inevitably leads to the same behavior in the shear viscosity. Ultimately, while
the metric around any point is flat, the curvature itself does not vanish at the point.
This fact means that one cannot simply import results pertaining to perturbations of
the globally flat Rindler solution into the locally flat patch. However, there is some
evidence that the inherent fuzziness in the local Killing vector, which is associated with
the local notion of thermal equilibrium, may be of the same order of magnitude as
higher curvature corrections [Eling 2006]. If this is the case, the approximate notion
of a local fluid would not be affected by these corrections. It would be interesting to
investigate further the relationship between the fluid/Rindler correspondence and these
ideas of emergent gravitational dynamics.
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Chapter 8

Conclusions

In this thesis we considered the possibility to reproduce a scenario where gravity emerges
from the holographic hydrodynamics of some microscopic, quantum system by starting
from the “synthetic” setting of an accelerating observer. Effectively, we took the local
Rindler horizon as the basic structure to study the nature of gravitational dynamics.

Starting from the notion of local causal horizon we reviewed the arguments leading
to a localization of black hole thermodynamics toward the construction of a general
horizon thermodynamics, where the entropy of the local Rindler horizon is holographi-
cally identified with the finite area entanglement entropy of the local Minkowski vacuum
state. Perturbations to the horizon system are then described in terms of the hydrody-
namics of a local stretched horizon membrane and assumed to obey an entropy balance
law, relating a change in the entropy to the “heat” associated with a flux of matter,
plus an internal entropy production term from shear viscosity. Gravitational dynamics
is therefore derived from the horizon hydrodynamics, as the equivalent of an equation
of state.

We then concentrated on the possibility to provide a physical interpretation for
the relation between gravity and the fluid description of the local stretched horizon
dynamics in our local setting. We started from the assumption that the Minkowski
vacuum, a thermal state once localized in the Rindler wedge, obeys the holographic
principle. The area-scaling behavior of the wedge fields entanglement entropy was then
interpreted as an evidence of the fact that the degrees of freedom in the vacuum thermal
state are encoded into the 2+1 stretched horizon boundary of the wedge. In this sense,
the hydrodynamical perturbations of the vacuum are expected to be manifested in the
dynamics of the stretched horizon fluid.

The natural development of this line of thought consisted in identifying an effective
dimensionally reduced local quantum field theory leaving on the 2+1 stretched surface,
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hoping to find a consistent vocabulary to realize a local Rindler holographic duality.
We then argued about the possibility to think of this duality as a local realization
of a fluid/gravity correspondence. Indeed, very interestingly, such a framework could
provide a consistent picture of gravity as an effective theory which emerges from the
holographic hydrodynamics of some microscopic, quantum system. In this picture, we
then argue that the effective, thermodynamical/hydrodynamical level of description
would naturally arise in a co-dimension one holographic screen, while gravity would be
extracted in the “bulk” via an entropy balance law gluing the fluid dynamics at the
different slices, in reminiscence of a renormalization group flow in the fluid.

Along this view, the holographic principle, which we described as a consequence of
gravity, then becomes a premise for gravitational dynamics. As a conclusive argument,
in this sense, we want to reconsider the holographic derivation of gravity as an entropic
force, starting again from the spacetime neighborhood of a point.

8.1 Horizons, Holographic Screens and Entropic Force

The holographic characterization of the local, observer dependent Rindler horizon is
very close to the concept of general holographic screen which plays a central role in the
interpretation of gravity as an entropic force given in [Verlinde 2011].

Here, starting from a static background with a global time like Killing vector ξa,
holographic screens are defined by surfaces at constant redshift eϕ =

√
−ξaξa. The

redshift perpendicular to the screen is then understood microscopically as originating
from an entropy gradient 1. It is useful here to reproduce part of the argument given
in [Verlinde 2011]. One can start by considering the force that acts on a particle of
mass m. In a general relativistic setting, one can give an invariant meaning to the
concept of force by using the time-like Killing vector [Wald 1992]. The four velocity
ua of the particle and its acceleration ab ≡ ua∇au

b can be expressed in terms of the
Killing vector ξb as

ub = e−ϕξb, ab = e−2ϕξa∇aξ
b (8.1)

Then, by making use of the Killing equation ∇aξb +∇bξa = 0 and the definition of ϕ,
one can express the acceleration in the simple form

ab = −∇bϕ (8.2)
1Note the notation in which c and kB are put equal to one, while G and ~ are kept explicit.
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Therefore, like in the non relativistic situation, the acceleration is perpendicular to a
holographic screen S. In particular, one can turn it into a scalar quantity by contracting
it with a unit outward pointing vector nb normal to the screen S and to ξb.

The local temperature T on the screen is defined by

T =
~
2π
eϕnb∇bϕ, (8.3)

as measured with respect to the reference point at infinity. To find the force one
assumes that the change of entropy at the screen is 2π for a displacement by one
Compton wavelength normal to the screen. Hence,

∇aS = −2π
m

~
na (8.4)

where the minus sign comes from the fact that the entropy increases when we cross
from the outside to the inside. The entropic force now follows from (8.3)

Fa = T∇aS = −meϕ∇aϕ. (8.5)

This is indeed the correct gravitational force that is required to keep a particle at fixed
position near the screen, as measured from the reference point at infinity. It is the
relativistic analogue of Newton’s law of inertia F = ma. The additional factor eϕ is
due to the redshift. Note that ~ has again dropped out.

The force equation (8.5) can be rewritten in a microcanonical form. Let S(E;xa) be
the total entropy associated with a system with total energy E that contains a particle
with mass m at position xa. Here E also includes the energy of the particle.

From a statistical point of view, a general system with many degrees of freedom
shows the tendency to sample the microscopic states in an unbiased way, that is to
increase its entropy. As a consequence, configurations corresponding to a larger number
of micro states than others are favored. Then, a change in the phase space volume, due
to some excluded volume effect, corresponds to a gradient in the entropy of the system
which yields a macroscopic dynamics that prefers configurations that are denser in
terms of micro-states. This configurational interaction is called entropic force. Entropic
interactions are not mediated by forces acting at micro scales. Entropic forces exist
even in systems that at a microscopic level posses no energies other than the kinetic
one. Interestingly, yet, at a macroscopic level such a system is subject to configurational
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accelerations.
Now, an entropic force can be determined micro-canonically by adding by hand an

external force term, and impose that the entropy is extremal. For this situation this
condition looks like

d

dxa
S(E + eϕm,xa) = 0 (8.6)

One easily verifies that this leads to the same equation (8.5) and fixes the equilibrium
point the one at which the external force, parametrized by ϕ(x) and the entropic force
statistically balance each other.

Equation (8.6) tells us that the entropy remains constant if we move the particle and
simultaneously reduce its energy by the redshift factor. This also means that redshift
function ϕ(x) is entirely fixed by the other matter in the system.

The fundamental idea in [Verlinde 2011] is that Eq. (8.6) can effectively be obtained
by starting from the microscopics and defining the space dependent concepts in terms of
them. In this line of thought, the redshift must be seen as a consequence of the entropy
gradient and not the other way around. The equivalence principle tells us that redshifts
can be interpreted in the emergent spacetime as either due to a gravitational field or
due to the fact that one considers an accelerated frame. Both views are equivalent in
the relativistic setting, but neither view is microscopic. Acceleration and gravity are
both emergent phenomena.

8.2 Future Perspectives

Our choice to study the nature of gravitational dynamics within a local Rindler horizon
setting has proven to be conceptually very convenient. With such a basic geometro-
dynamical structure, one can account for the fundamental physics features at the root of
the holographic conjecture and the fluid/gravity duality. Moreover, for its local nature,
this system provides an ideal tool for the study of gravity as an emergent phenomenon.
The local Rindler horizon system, in fact, plays the role of a spacetime microscope.

In particular, the most remarkable advantage of going local actually consists in the
possibility to deal with non-equilibrium effects, which, at the global level, would be
killed by the symmetries of the specific gravitational solution considered.

Now, if one supports the possibility to derive gravity as an effective theory from
statistical thermodynamics, then the most exiting perspective is associated with find
a consistent conceptual extension to the non-equilibrium sector of such an approach.
Indeed, being effectively characterized by the specific properties of the microscopic
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level of description, the non-equilibrium setting would necessarily provide fundamental
insights on the nature of the microscopic degrees of freedom of spacetime.

In our semiclassical approximation of the microscopic fundamental system, non-
equilibrium is expressly associated with the random fluctuations of the vacuum fields.
Fluctuations are related to dissipation, which on macroscopic scale give raise to entropy
production and account for the dissipative character of the horizons. Dissipation, at the
microscopic level, turns out to be naturally associated with the non local propagation
of the tensorial gravitational degrees of freedom, at the macroscopic level.

In the same line, in the AdS/CFT correspondence, the non-equilibrium transport
coefficients actually characterize the nature of the dual lower dimensional field theory.
Also, in the fluid/gravity duality Einsteins equations in the presence of a regular event
horizon are conceptually thought of as the strong coupling analogue of the Boltzmann
transport equations.

In the original entropic gravity approach this non-equilibium framework is appar-
ently not taken into account. This is due to the fact that the derivation is conceived
as a direct offspring of the holographic principle. In fact, the covariant entropy bound
conjecture, at the root of the holographic principle, is based on a time reversal invari-
ant argument [Bousso 1999a]. Hence, its origin cannot be thermodynamic, but must
be statistical. In this sense, the gravitational entropic force is described as a reversible
force, arising from the changes in the phase space of the microscopic theory degrees of
freedom, via a purely statistical argument.

Now, in general, the reversibility of the entropic force at the macroscopic level de-
pends on the properties of the heat bath. In particular, reversibility, and the consequent
conservative character of the force, is again effectively associated with a microscopic
thermal equilibrium condition, or equivalently, to the presence of an infinite thermal
heat bath for the microscopic system. For the case of gravity the speed of light deter-
mines the size of the heat bath, since its energy content is given by E = Mc2. So in
the non relativistic limit the heat bath is infinite. Indeed, Newton’s laws are perfectly
conservative. When one includes relativistic effects, the heat bath is no longer infinite.
Here one should expect some irreversibility [Verlinde 2011].

From a classical statistical mechanical point of view, the irreversible nature of ther-
modynamics is associated with the presence of “instability” at the microscopic level
[Nicolis 1977]. In our work, we provided some evidence for the fact that, within a ther-
modynamical derivation of gravity, the equilibrium setting cannot account for several
fundamental features of gravitational dynamics. In this sense, gravity actually seems
to require for some “irreversibility” or “instability” at the microscopic dynamic level.
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Intriguingly, a deep understanding of irreversibility, in a thermodynamical emergent
scenario, would then shed some light on the nature of causal horizons in gravity.

This thesis work can be considered as an attempt to put together the viable hints in
this direction, coming from different approaches, into a general, though oversimplified,
setting. Much needs to be done. However, the recent advances here described seem to
suggest that, at last, some light can be shed on the fundamental nature of space-time
and gravity. It is up to us now to take over the challenge.
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Université Pierre et Marie Curie, Paris VI. 4, 60, 65

[Das 2000] Sumit R. Das and Samir D. Mathur. The Quantum Physics of Black Holes:
Results from String Theory. Annual Review of Nuclear and Particle Science,
vol. 50, no. 1, pages 153–206, 2000. 2

146



REFERENCES

[Davis 2003] S. C. Davis. Generalised Israel junction conditions for a Gauss-Bonnet
brane world. Phys. Rev., vol. D67, page 024030, 2003. 130

[de Groot 1962] S. R. de Groot and P. Mazur. Non-equilibrium thermodynamics.
North-Holland, 1962. 65, 91, 103

[Demers 1995] Jean-Guy Demers, R. Lafrance and R. C. Myers. Black hole entropy
without brick walls. Phys. Rev., vol. D52, pages 2245–2253, 1995. 113

[Deruelle 2004] N. Deruelle, J. Katz and S. Ogushi. Conserved charges in Einstein
Gauss-Bonnet theory. Class. Quant. Grav., vol. 21, page 1971, 2004. 32

[Dowker 1994] J. S. Dowker. Remarks on geometric entropy. Class. Quant. Grav.,
vol. 11, pages L55–L60, 1994. 105, 106

[Einstein 1907] A. Einstein. Über das Relativitätsprinzip und die aus demselben gezo-
gene Folgerungen. Jahrb. Radioakt, vol. 4, page 411, 1907. 1, 14

[Eling 2006] C. Eling, R. Guedens and T. Jacobson. Non-equilibrium Thermodynamics
of Spacetime. Phys. Rev. Lett., vol. 96, page 121301, 2006. 5, 47, 54, 59, 64, 65,
71, 72, 73, 74, 75, 76, 77, 87, 94, 97, 115, 135

[Eling 2008] C. Eling. Hydrodynamics of spacetime and vacuum viscosity. JHEP,
vol. 11, page 048, 2008. 5, 47, 52, 65, 67, 97, 115, 135

[Eling 2009] C. Eling, I. Fouxon and Y. Oz. The Incompressible Navier-Stokes Equa-
tions From Membrane Dynamics. Phys. Lett., vol. B680, pages 496–499, 2009.
96, 97, 99

[Eling 2010] C. Eling and Y. Oz. Relativistic CFT Hydrodynamics from the Membrane
Paradigm. JHEP, vol. 02, page 069, 2010. 96, 97, 99, 101

[Elizalde 2008] E. Elizalde and P. J. Silva. F(R) gravity equation of state. Phys. Rev.,
vol. D78, page 061501, 2008. 74, 115

[Emparan 2006] R. Emparan. Black hole entropy as entanglement entropy: A holo-
graphic derivation. JHEP, vol. 06, page 012, 2006. 102

[Faraoni 2004] V. Faraoni. Cosmology in scalar tensor gravity. 2004. Dordrecht,
Netherlands: Kluwer Academic. 93

[Faraoni 2010] V. Faraoni. Black hole entropy in scalar-tensor and f(R) gravity: an
overview. 2010. 95

147



REFERENCES

[Forster 1995] D. Forster. Hydrodynamic fluctuations, broken symmetry, and correla-
tion functions. Westview Press, 1995. 5, 96

[Fouxon 2008] I. Fouxon and Y. Oz. Conformal Field Theory as Microscopic Dynamics
of Incompressible Euler and Navier-Stokes Equations. Phys. Rev. Lett., vol. 101,
page 261602, 2008. 120

[Freidel 2005] L. Freidel. Group field theory: An Overview. Int.J.Theor.Phys., vol. 44,
pages 1769–1783, 2005. 6

[Friedan 2003] D. Friedan. A tentative theory of large distance physics. J. High Energy
Phys., vol. 2003, no. 10, 2003. 6

[Frolov 1996] V. P. Frolov, D. V. Fursaev and A. I. Zelnikov. Black Hole Entropy:
Off-Shell vs On-Shell. PHYS.REV.D, vol. 54, page 2711, 1996. 31

[Frolov 1997a] V. P. Frolov and D. V. Fursaev. Mechanism of the generation of black
hole entropy in Sakharov’s induced gravity. Phys. Rev. D, vol. 56, no. 4, pages
2212–2225, Aug 1997. 2

[Frolov 1997b] V. P. Frolov, D. V. Fursaev and A. I. Zelnikov. Statistical origin of black
hole entropy in induced gravity. Nucl. Phys. B, vol. 486, pages 339–352, 1997.
2, 114

[Frolov 1998] V. P. Frolov and D. Fursaev. Black hole entropy in induced gravity:
Reduction to 2D quantum field theory on the horizon. Phys. Rev., vol. D58,
page 124009, 1998. 114

[Fujita 2008] M. Fujita. Non-equilibrium thermodynamics near the horizon and holog-
raphy. JHEP, vol. 10, page 031, 2008. 97

[Fulling 1973] S. A. Fulling. Nonuniqueness of canonical field quantization in Rieman-
nian space-time. Phys. Rev., vol. D7, pages 2850–2862, 1973. 19

[Fursaev 2004] D. V Fursaev. Can One Understand Black Hole Entropy without Know-
ing Much about Quantum Gravity? page 38, 2004. arxiv/gr-qc/0404038. 6

[Fursaev 2005] D. V. Fursaev. Can one understand black hole entropy without knowing
much about quantum gravity? Phys. Part. Nucl., vol. 36, pages 81–99, 2005.
114

148



REFERENCES

[Gerard 2007] Jean-Marc Gerard. The strong equivalence principle from gravitational
gauge structure. Class. Quant. Grav., vol. 24, pages 1867–1878, 2007. 55

[Gerlach 1976] U. H. Gerlach. Why is a black hole hot? Phys. Rev. D, vol. 14, no. 12,
pages 3290–3293, Dec 1976. 2

[Gibbons 1977] G. W. Gibbons and S. W. Hawking. Cosmological Event Horizons,
Thermodynamics, and Particle Creation. Phys. Rev., vol. D15, pages 2738–
2751, 1977. 16, 29

[Gubser 1998] S. S. Gubser, I. R. Klebanov and A. M. Polyakov. Gauge theory cor-
relators from non-critical string theory. Phys. Lett., vol. B428, pages 105–114,
1998. 7, 40

[Haag 1977] R. Haag and E. Trych-Pohlmeyer. Stability properties of equilibrium states.
Communications in Mathematical Physics, vol. 56, pages 213–224, 1977. 51

[Haag 1992] R. Haag. Local quantum physics. Springer-Verlag, Berlin, 1992. 19, 51

[Hartle 1976] J. B. Hartle and S. W. Hawking. Path Integral Derivation of Black Hole
Radiance. Phys. Rev., vol. D13, pages 2188–2203, 1976. 90

[Hawking 1971] S. W. Hawking. Gravitational radiation from colliding black holes.
Phys. Rev. Lett., vol. 26, pages 1344–1346, 1971. 2, 24

[Hawking 1972] S. W. Hawking and J. B. Hartle. Energy and angular momentum flow
into a black hole. Commun. Math. Phys., vol. 27, pages 283–290, 1972. 10, 70,
101

[Hawking 1975a] S. W. Hawking. Particle Creation by Black Holes. Commun. Math.
Phys., vol. 43, pages 199–220, 1975. 1, 2, 25

[Hawking 1975b] Stephen W. Hawking and G. F. R. Ellis. The large scale structure
of space-time (cambridge monographs on mathematical physics). Cambridge
University Press, 1975. 41

[Hawking 1976] S. W. Hawking. Black Holes and Thermodynamics. Phys. Rev. D,
vol. 13, pages 191–197, 1976. 2

[Hawking 2001] S. Hawking, J. M. Maldacena and A. Strominger. DeSitter entropy,
quantum entanglement and AdS/CFT. JHEP, vol. 05, page 001, 2001. 102

149



REFERENCES

[Hehl 1976] F. W. Hehl, P. Von Der Heyde, G. D. Kerlick and J. M. Nester. General
Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys.,
vol. 48, pages 393–416, 1976. 95

[Hotta 1997] M. Hotta, T. Kato and K. Nagata. A comment on geometric entropy and
conical space. Class. Quant. Grav., vol. 14, pages 1917–1925, 1997. 114

[Hubeny 2011] V. E. Hubeny, S. Minwalla and M. Rangamani. The fluid/gravity cor-
respondence. 2011. arXiv/hep-th/1107.5780. 7, 43

[Hwang 2010] Dong-il Hwang and Dong-han Yeom. Responses of the Brans-Dicke field
due to gravitational collapses. Class. Quant. Grav., vol. 27, page 205002, 2010.
93

[Iqbal 2009] N. Iqbal and H. Liu. Universality of the hydrodynamic limit in AdS/CFT
and the membrane paradigm. Phys. Rev. D, vol. 79, page 025023, 2009. 7, 97,
103

[Israel 1967] W. Israel. Event Horizons in Static Vacuum Space-Times. Phys. Rev.,
vol. 164, no. 5, pages 1776–1779, Dec 1967. 2, 24

[Israel 1986] W. Israel. Third Law of Black-Hole Dynamics: A Formulation and Proof.
Phys. Rev. Lett., vol. 57, no. 4, pages 397–399, Jul 1986. 25

[Jacobson 1994a] T. Jacobson. A Note on Hartle-Hawking vacua. Phys.Rev., vol. D50,
pages 6031–6032, 1994. 23

[Jacobson 1994b] T. Jacobson. Black hole entropy and induced gravity. 1994. arXiv/gr-
qc/9404039. 28, 35

[Jacobson 1994c] T. Jacobson, G. Kang and R. C. Myers. On black hole entropy. Phys.
Rev. D, vol. 49, no. 12, pages 6587–6598, Jun 1994. 2

[Jacobson 1995] T. Jacobson. Thermodynamics of space-time: The Einstein equation
of state. Phys. Rev. Lett., vol. 75, pages 1260–1263, 1995. iii, 4, 9, 47, 54, 62,
65, 71, 76, 135

[Jacobson 2003] T. Jacobson and R. Parentani. Horizon Entropy. Found. Phys., vol. 33,
pages 323–348, 2003. 3, 35

[Jacobson 2005] T. Jacobson. Introductory Lectures on Black Hole Thermodynamics.
2005. www.physics.umd.edu/grt/taj/776b/lectures.pdf. 19, 29

150



REFERENCES

[Jamil 2009] M. Jamil and M. Akbar. Wormhole Thermodynamics at Apparent Hori-
zons. 2009. 3

[Janik 2006] R. A. Janik and R. B. Peschanski. Asymptotic perfect fluid dynamics as
a consequence of AdS/CFT. Phys. Rev., vol. D73, page 045013, 2006. 45

[Jeon 1995] S. Jeon. Hydrodynamic transport coefficients in relativistic scalar field the-
ory. Phys. Rev., vol. D52, pages 3591–3642, 1995. 97

[Kang 1996] G. Kang. On black hole area in Brans-Dicke theory. Phys. Rev., vol. D54,
pages 7483–7489, 1996. 92

[Kapusta 2006] J. I. Kapusta and C. Gale. Finite-temperature field theory: Principles
and applications. 2006. 102

[Kats 2009] Y. Kats and P. Petrov. Effect of curvature squared corrections in AdS on
the viscosity of the dual gauge theory. JHEP, vol. 01, page 044, 2009. 127

[Koivisto 2006] T. Koivisto. Covariant conservation of energy momentum in modified
gravities. Class. Quant. Grav., vol. 23, pages 4289–4296, 2006. 84

[Kothawala ] D. Kothawala, S. Sarkar and T. Padmanabhan. 3

[Kothawala 2009] D. Kothawala and T. Padmanabhan. Thermodynamic structure of
Lanczos-Lovelock field equations from near-horizon symmetries. Phys. Rev. D,
vol. 79, no. 10, page 104020, 2009. 3

[Kovtun 2003a] P. Kovtun, D. T. Son and A. O. Starinets. Holography and hydrody-
namics: Diffusion on stretched horizons. JHEP, vol. 10, page 064, 2003. 7,
97

[Kovtun 2003b] P. Kovtun and L. G. Yaffe. Hydrodynamic fluctuations, long-time tails,
and supersymmetry. Phys. Rev., vol. D68, page 025007, 2003. 108

[Kovtun 2005] P. Kovtun, D. T. Son and A. O. Starinets. Viscosity in strongly inter-
acting quantum field theories from black hole physics. Phys. Rev. Lett., vol. 94,
page 111601, 2005. 7, 97

[Laflamme 1989] R. Laflamme. Geometry and Thermofields. Nucl.Phys.B, vol. 324,
page 233, 1989. 23

[Landau 2000] L. D. Landau and E. M. Lifshitz. Fluid mechanics. Butterworth-
Heinemann, 2000. 60, 91, 122

151



REFERENCES

[Larsen 1996] F. Larsen and F. Wilczek. Renormalization of black hole entropy and
of the gravitational coupling constant. Nucl. Phys., vol. B458, pages 249–266,
1996. 114

[Lifshitz 2000] E. M. Lifshitz and L. P. Pitaevsky. Physical kinetics. Butterworth-
Heinemann, 2000. 5, 96

[Lopes Cardoso 2000] G. Lopes Cardoso, B. de Wit and T. Mohaupt. Deviations from
the area law for supersymmetric black holes. Fortsch. Phys., vol. 48, pages 49–64,
2000. 32, 35

[Lovelock 1971] D. Lovelock. The Einstein tensor and its generalizations. J. Math.
Phys., vol. 12, pages 498–501, 1971. 123

[Maldacena 1998] J. M. Maldacena. The large N limit of superconformal field theories
and supergravity. Adv. Theor. Math. Phys., vol. 2, pages 231–252, 1998. 7, 40,
69, 97

[Mukhopadhyay 2006] A. Mukhopadhyay and T. Padmanabhan. Holography of grav-
itational action functionals. Phys. Rev. D, vol. 74, no. 12, page 124023, Dec
2006. 3

[Myers 2009a] R. C. Myers, M. F. Paulos and A. Sinha. Holographic Hydrodynamics
with a Chemical Potential. JHEP, vol. 06, page 006, 2009. 97, 104

[Myers 2009b] R. C. Myers, M. F. Paulos and A. Sinha. Quantum corrections to η/s.
Phys. Rev., vol. D79, page 041901, 2009. 126

[Nicolis 1977] Prigogine I. Nicolis G. Self organization in nonequilibrium systems: From
dissipative structures to order through fluctuations. John Wiley & Sons, Inc,
1977. 140

[Nordström 1913] G. Nordström. Zur Theorie der Gravitation vom Standpunkt des
Relativitätsprinzips. Annalen der Physik, vol. 347, no. 13, pages 533–554, 1913.
15

[Novozhilov 1991] Y. V. Novozhilov and D. V. Vassilevich. Induced gravity. 1991.
In *Moscow 1991, Proceedings, Sakharov memorial lectures in physics, vol. 1*
73-81. 6

[O’Neill 1983] B. O’Neill. Semi-riemannian geometry: with applications to relativity.
Academic Press, San Diego, California, 1983. 71

152



REFERENCES

[Oriti 2005] D. Oriti. Quantum gravity as a quantum field theory of simplicial geometry.
2005. arXiv/gr-qc/0512103. 6

[Padmanabhan 2002] T. Padmanabhan. Classical and quantum thermodynamics of
horizons in spherically symmetric spacetimes. Class. Quan. Grav., vol. 19, page
5387, 2002. 3, 4

[Padmanabhan 2010] T. Padmanabhan. Thermodynamical Aspects of Gravity: New
insights. Rept. Prog. Phys., vol. 73, page 046901, 2010. 3, 31, 57

[Paranjape 2006] A. Paranjape, S. Sarkar and T. Padmanabhan. Thermodynamic route
to field equations in Lancos-Lovelock gravity. Phys. Rev., vol. D74, page 104015,
2006. 3, 74, 95

[Parikh 2009] M. K. Parikh and S. Sarkar. Beyond the Einstein Equation of State:
Wald Entropy and Thermodynamical Gravity. 2009. 4

[Paulos 2010] M. F. Paulos. Transport coefficients, membrane couplings and universal-
ity at extremality. JHEP, vol. 02, page 067, 2010. 97, 104

[Peet 1999] A. W. Peet and J. Polchinski. UV/IR relations in AdS dynamics. Phys.
Rev., vol. D59, page 065011, 1999. 42

[Penrose 1971] R. Penrose and R. M. Floyd. Extraction of rotational energy from a
black hole. Nature, vol. 229, pages 177–179, 1971. 2

[Poisson 2004] E. Poisson. Absorption of mass and angular momentum by a black hole:
Time-domain formalisms for gravitational perturbations, and the small-hole /
slow-motion approximation. Phys. Rev., vol. D70, page 084044, 2004. 70, 90,
101

[Poisson 2005] E. Poisson. Metric of a tidally distorted, nonrotating black hole. Phys.
Rev. Lett., vol. 94, page 161103, 2005. 70, 90, 101

[Policastro 2001] G. Policastro, D. T. Son and A. O. Starinets. The shear viscosity of
strongly coupled N = 4 supersymmetric Yang-Mills plasma. Phys. Rev. Lett.,
vol. 87, page 081601, 2001. 45, 126

[Price 1986] R. H. Price and K. S. Thorne. Membrane View-point on Black Holes:
Properties and Evolution of the Stretched Horizon. Phys. Rev., vol. D33, pages
915–941, 1986. 65

153



REFERENCES

[Racz 1992] I. Racz and R. M. Wald. Extension of space-times with Killing horizon.
Class. Quant. Grav., vol. 9, pages 2643–2656, 1992. 25, 49

[Racz 1996] I. Racz and R. M. Wald. Global extensions of space-times describing
asymptotic final states of black holes. Class. Quant. Grav., vol. 13, pages 539–
553, 1996. 49

[Rangamani 2009] M. Rangamani. Gravity and Hydrodynamics: Lectures on the fluid-
gravity correspondence. Class. Quant. Grav., vol. 26, page 224003, 2009. 7,
45

[Rovelli 2004] C. Rovelli. Quantum gravity. Cambridge University Press, 2004. 2, 6

[Ryu 2006] S. Ryu and T. Takayanagi. Holographic derivation of entanglement entropy
from AdS/CFT. Phys. Rev. Lett., vol. 96, page 181602, 2006. 102

[Sakharov 1968] A.D. Sakharov. Vacuum quantum fluctuations in curved space and the
theory of gravitation. Sov. Phys. Dokl., vol. 12, pages 1040–1041, 1968. 6

[Saremi 2007] O. Saremi. Shear waves, sound waves on a shimmering horizon. 2007.
arXiv/hep-th/0703170. 7, 97

[Sciama 1981] D. W. Sciama, P. Candelas and D. Deutsch. Quantum Field Theory,
Horizons and Thermodynamics. Adv. Phys., vol. 30, pages 327–366, 1981. 29,
105

[Sewell 1982] G. L. Sewell. Quantum fields on manifolds: PCT and gravitationally
induced thermal states. Annals Phys., vol. 141, pages 201–224, 1982. 1, 23

[Sewell 1986] G. L. Sewell. Quantum Theory of Collective Phenomena. Oxford Uni-
versity Press, Oxford, 1986. 19

[Smolin 2003] L. Smolin. How far are we from the quantum theory of gravity?, 2003.
arXiv/hep-th/0303185. 6

[Solodukhin 1995] S. N. Solodukhin. One loop renormalization of black hole entropy
due to nonminimally coupled matter. Phys. Rev., vol. D52, pages 7046–7052,
1995. 114

[Son 2002] D. T. Son and A. O. Starinets. Minkowski-space correlators in AdS/CFT
correspondence: Recipe and applications. JHEP, vol. 09, page 042, 2002. 103,
107

154



REFERENCES

[Son 2007] D. T. Son and A. O. Starinets. Viscosity, Black Holes, and Quantum Field
Theory. Ann. Rev. Nucl. Part. Sci., vol. 57, pages 95–118, 2007. 7, 73, 97

[Sorkin 1986] R. D. Sorkin. Toward a proof of entropy increase in the presence of
quantum black holes. Phys. Rev. Lett., vol. 56, pages 1885–1888, 1986. 28

[Sotiriou 2007a] T. P. Sotiriou. Modified Actions for Gravity: Theory and Phenomenol-
ogy. 2007. Ph.D. Thesis. 15

[Sotiriou 2007b] T. P. Sotiriou and S. Liberati. Metric-affine f(R) theories of gravity.
Annals Phys., vol. 322, pages 935–966, 2007. 95

[Sotiriou 2010] T. P. Sotiriou and V. Faraoni. f(R) Theories of Gravity. Rev. Mod.
Phys., vol. 82, pages 451–497, 2010. 74, 79, 80

[Srednicki 1993] M. Srednicki. Entropy and Area. Phys. Rev. Lett., vol. 71, pages
666–669, 1993. 1, 27

[Starinets 2009] A. O. Starinets. Quasinormal spectrum and the black hole membrane
paradigm. Phys. Lett., vol. B670, pages 442–445, 2009. 7, 97

[Susskind 1994] L. Susskind and J. Uglum. Black hole entropy in canonical quantum
gravity and superstring theory. Phys. Rev., vol. D50, pages 2700–2711, 1994. 2,
28, 106

[Susskind 1995] L. Susskind. The World as a hologram. J. Math. Phys., vol. 36, pages
6377–6396, 1995. 6, 35, 39

[Susskind 1998] L. Susskind and E. Witten. The Holographic bound in anti-de Sitter
space. 1998. arXiv/hep-th/9805114. 41, 42

[’t Hooft 1985] G. ’t Hooft. On the Quantum Structure of a Black Hole. Nucl. Phys.
B, vol. 256, page 727, 1985. 1, 26, 52, 106

[’t Hooft 1990] G. ’t Hooft. The black hole interpretation of string theory. Nucl. Phys.
B, vol. 335, no. 1, page 138, 1990. 2

[’t Hooft 1993] G. ’t Hooft. Dimensional reduction in quantum gravity. Abdus Salam
Festschrift: A Collection of Talks, World Scientific, Singapore, 1993. 6, 35, 39

[’t Hooft 1999] G. ’t Hooft. The holographic principle: Opening lecture. 1999.
arXiv/hep-th/0003004. 40

155



REFERENCES

[’t Hooft 2001] G. ’t Hooft. Quantum mechanics and determinism. 2001. arXiv/hep-
th/0105105. 40

[’t Hooft 2003] G. ’t Hooft. Determinism in free bosons. Int. J. Theor. Phys., vol. 42,
pages 355–361, 2003. 40

[Teukolsky 1974] S. A. Teukolsky and W. H. Press. Perturbations of a rotating black
hole. III - Interaction of the hole with gravitational and electromagnet ic radia-
tion. Astrophys. J., vol. 193, pages 443–461, 1974. 70, 101

[Thorne 1986] R. H. Thorne K. S.and Price and D. A. MacDonald. Black holes: the
membrane paradigm. Yale University Press, 1986. 4, 60, 65

[Unruh 1976] W. G. Unruh. Notes on black hole evaporation. Phys. Rev. D, vol. 14,
page 870, 1976. 1, 19, 98

[Unruh 1982] W. G. Unruh and R. M. Wald. Acceleration Radiation and Generalized
Second Law of Thermodynamics. Phys. Rev., vol. D25, pages 942–958, 1982. 37

[Verlinde 2011] E. Verlinde. On the origin of gravity and the laws of Newton. Journal of
High Energy Physics, vol. 2011, pages 1–27, 2011. 10.1007/JHEP04(2011)029.
8, 137, 139, 140

[Visser 1993] M. Visser. Dirty black holes: Entropy as a surface term. Phys. Rev. D,
vol. 48, no. 12, pages 5697–5705, Dec 1993. 2

[Visser 2002] M. Visser. Sakharov’s induced gravity: A modern perspective. Mod. Phys.
Lett. A, vol. 17, pages 977–992, 2002. 6

[Vitagliano 2010] V. Vitagliano, T. P. Sotiriou and S. Liberati. The dynamics of gen-
eralized Palatini Theories of Gravity. Phys. Rev., vol. D82, page 084007, 2010.
95

[Vitagliano 2011] V. Vitagliano, T. P. Sotiriou and S. Liberati. The dynamics of metric-
affine gravity. Annals Phys., vol. 326, pages 1259–1273, 2011. 95

[Vollick 2007] D. N. Vollick. Noether Charge and Black Hole Entropy in Modified The-
ories of Gravity. Phys. Rev., vol. D76, page 124001, 2007. 95

[Wald 1984] R. M. Wald. General relativity. University of Chicago Press, 1984. 22, 24

[Wald 1992] R. M. Wald. Quantum field theory in curved spacetime and black hole
thermodynamics. University of Chicago Press, 1992. 3, 24, 31, 35, 137

156



REFERENCES

[Wald 1993] Robert M. Wald. Black hole entropy is the Noether charge. Phys. Rev.,
vol. D48, pages 3427–3431, 1993. 31, 95, 114, 126

[Will 1981] C. M. Will. Theory and experiment in gravitational physics. Cambridge
University Press, New York, 1981. 14, 78

[Will 2005] C. M. Will. The confrontation between general relativity and experiment.
Living Rev. Rel., vol. 9, page 3, 2005. 55

[Witten 1998a] E. Witten. Anti-de Sitter space and holography. Adv. Theor. Math.
Phys., vol. 2, pages 253–291, 1998. 40

[Witten 1998b] E. Witten. Anti-de Sitter space, thermal phase transition, and confine-
ment in gauge theories. Adv. Theor. Math. Phys., vol. 2, pages 505–532, 1998.
73

[Yarom 2005] A. Yarom and R. Brustein. Area-scaling of quantum fluctuations. Nucl.
Phys., vol. B709, pages 391–408, 2005. 106

[Zurek 1985] W. H. Zurek and K. S. Thorne. Statistical mechanical origin of the entropy
of a rotating, charged black hole. Phys. Rev. Lett., vol. 54, page 2171, 1985. 26

157


	Contents
	List of Figures
	1 Introduction
	1.1 State of Art
	1.2 A Very Local Point of View
	1.3 Plan of the Thesis

	2 Gravity as Thermodynamics: a Toolbox
	2.1 Equivalence Principle  Acceleration
	2.2 Acceleration  Horizons
	2.2.1 Causal Horizons
	2.2.2 Rindler Wedge

	2.3 Killing Horizon Symmetry  Thermal Quantum Fields
	2.3.1 The Unruh Effect
	2.3.2 Two-point Function and KMS Condition
	2.3.3  The Vacuum State as a Thermal Density Matrix

	2.4 Thermal Field Theory  Black Hole Thermodynamics 
	2.4.1 Hawking Effect
	2.4.2 Black Hole Entropy
	2.4.2.1 Thermal Entropy of Unruh Radiation
	2.4.2.2 Entanglement Entropy
	2.4.2.3 Species Problem

	2.4.3 Entropy from Horizon Fluctuations
	2.4.4 Quantum Gravitational Statistical Mechanics
	2.4.5 Horizon Entropy and Noether Charge

	2.5 Causal Horizon Entropy  Holographic Principle 
	2.5.1 Bekenstein Entropy and Generalized Second Law
	2.5.2 Bekenstein Bound
	2.5.3 Complexity According to the Area Scaling Entropy
	2.5.4 Unitarity and a Holographic Interpretation
	2.5.5 Implications of the Holographic Principle
	2.5.6 The AdS/CFT Correspondence

	2.6 Holographic Principle  Fluid/Gravity Duality
	2.6.1 The Fluid/Gravity Correspondence

	2.7 Within a Spacetime Neighborhood

	3 Local Rindler Setting
	3.1 Local Rindler Frame
	3.1.1 Local Horizon Temperature
	3.1.2 Local Horizon Entropy

	3.2 Local Horizon Thermodynamics
	3.2.1 Local Rindler Wedge Perturbation
	3.2.1.1 Entropy Balance with Noether Charge

	3.2.2 Rindler Fluid Membrane
	3.2.3 Entropy Balance Law and Vacuum Viscosity


	4 The Einstein Equation of State
	4.1 The Einstein Equation of State
	4.2 Non-equilibrium Thermodynamics
	4.3 Internal Entropy Production
	4.4 GR from Non-equilibrium Spacetime Thermodynamics
	4.4.0.1 Tensorial Degrees of Freedom and Gravitational Dissipation

	4.5 Summary and Discussion

	5 Generalized Gravity Theories from Thermodynamics
	5.1 Thermodynamical Derivation of F(R) Gravity
	5.1.1 Gravitational Dissipation in Scalar-Tensor Gravity

	5.2 Palatini F(R) Gravity
	5.2.1 Thermodynamic Formalism
	5.2.1.1 Variation using Independent Connection
	5.2.1.2 Variation using Levi--Civita Connection


	5.3 Scalar-Tensor Representations
	5.4 General Brans--Dicke Theories and ``Bulk Viscosity" as a Heat Flux
	5.5 Discussion

	6 Rindler Horizon Viscosity from Entanglement
	6.1 Horizon Transport Coefficients from Vacuum Fluctuations
	6.2 Rindler Wedge Viscosity
	6.3 Microscopic Description and Kubo Formula
	6.3.1 Linear Response Theory in the AdS/CFT Framework
	6.3.2 Rindler Horizon Pre-holography

	6.4 Universal Viscosity to Entropy Ratio from Entanglement
	6.5 Summary and Discussion

	7 The Rindler Horizon Fluid: An Effective Duality
	7.1 General Setup
	7.2 Equivalence of Viscous Hydrodynamics in Einstein and Higher Curvature Gravities
	7.2.1 The Seed Metric
	7.2.2 Higher Curvature Gravity

	7.3 Second Order Transport Coefficients
	7.3.1 Constructing the Einstein--Gauss--Bonnet Solution
	7.3.2 Solution to O(5)

	7.4 Discussion

	8 Conclusions
	8.1 Horizons, Holographic Screens and Entropic Force
	8.2 Future Perspectives

	References

