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Introduction

Molecular biology and biochemistry have traditionally constituted an enormous reser-
voir of interesting and important problems for polymer physics and statistical me-
chanics. The two fundamental molecules of life are proteins and nucleic acids, such
as DNA and RNA. Their natural forms are far from being featureless, they instead
display a high degree of internal order. DNA is made up of two regular intertwin-
ing helices[1] of opposite chirality. Proteins (and also RNA) are known to fold
reproducibly[2] into native states which, thanks to nuclear magnetic resonance ex-
periments, are now known to be made up of building blocks, or ‘secondary structure’,
with high symmetry. For proteins these secondary structures are the well-known al-
pha helices and beta sheets[3]. Explaining the origin of the optimal shapes attained
by biomolecules, as well as describing even with a rough accuracy the folding process
is a long-standing question which can be only claimed to have been solved partially
at present day.

A second key question for biophysicists and molecular biologists is how these
molecules of life function, and further in what way their ��� -structure is related to
their biological role in the cell, i.e. ‘in vivo’. In this respect, the push is towards
an understanding of the thermodynamic, physical and mechanical behaviour of the
biopolymers as factors such as temperature and solvent composition are changed and
as external forces are exerted on them either ‘in vivo’ by molecular motors or by
means of sophisticated machinery in the laboratory.

Studying the physics and the response to external disturbances of one isolated
polymer, which is a nano- or micro-sized object, is by no means an easy task for
experimentalists. To this purpose, a completely new field, at the border between
physics and technology, has had to be started and developed very rapidly in the last
decade: that of single molecule experiments[4].

These single molecule techniques have enabled experimentalists to monitor with
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high sensitivity instruments the response of individual biomolecules to external stresses
and to manipulation in general. Since many years ago, the force versus elonga-
tion characteristic curves of single and double stranded DNA have stimulated the-
oretical research on models of polymer elasticity, culminating in the work of Ref.
[5] in which it was realized that the worm-like chain model accounts for all the
raw features observed. More recently, other puzzles have arisen as soon as tech-
niques like atomic force microscopes (AFM)[6], optical and magnetic tweezers[7],
and soft microneedles[8], have allowed to gather more and more measurements and
data. These experiments revealed and characterized the overstretching regime[9]
in pulled polymers, the unzipping transition in a double-stranded DNA[7] and in
RNA[10]. They also substantiate the theoretical prediction of a Rayleigh instabil-
ity when stretching a collapsed polymer, a protein or DNA molecule [11, 12, 13, 14].

On the one hand, these experiments have provided data against which to test
the prediction of various polymer physics models. At the same time, these stud-
ies, whether theoretical or experimental, are expected to have an important impact on
biology as well, because the mechanical performance of proteins, nucleic acids and
protein motors is often a fundamental feature of their biological function.

One instance of potentially high biological interest comes from DNA unzipping.
The double helical structure of DNA contains the genetic information in the core
of the double helix, preventing in this way easy access (and accidental damage) by
proteins to the genetic code. Since the elucidation of DNA structure, it has become
clear that DNA replication and DNA transcription into messenger RNA necessitate
the unwinding, or unzipping, of the two paired strands. Indeed it is known that DNA
replication is a correlated process involving many proteins and other molecules[15]
working at different points in space and time. Understanding the nature and origin
of this correlation is in fact a major motivation for statistical mechanics models of
DNA unzipping. It has been demonstrated[16, 17] that the force induced unzipping
of DNA is a genuine phase transition, different from its thermal melting denatura-
tion. It was hypothesized[16] that the initiation of replication at the origins along
the DNA, e.g, by dnaA for E.Coli[15, 18] or by the “origin recognition complex”
(ORC) in eukaryotes[19] is like this unzipping near the phase transition point (with
dnaA or ORC acting as the force-inducing agent) and the resulting correlation during
unzipping leads to the co-operativity required for replication. Furthermore, a sound
investigation of DNA replication in vitro requires an understanding of the coupling
between the opening of the strands and the subsequent events during the process. This
has motivated the introduction of coarse grained models which allow the study of the
unzipping transition and to characterize the dynamical behaviour, and the role of the
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solvent.

It should however be recalled that originally DNA unzipping experiments were
ideated with a somewhat more ’practical’ purpose. The ‘static’ force which is re-
quired to open a heterogeneous DNA, whose base pair content (i.e. the CG and AT
content, where A,T,C and G denote the well-known four bases of DNA) is not known
a priori, has been shown [7, 20] to contain a high degree of internal structure. Here
‘structure’ means mostly the oscillations which are observed in the force versus dis-
placement curves recorded experimentally. This ‘structure’ is related to the local
content of CG base pairs, which are more tightly bound by hydrogen than are AT
bonds, in the DNA sequence. In principle, one could hope of even ‘sequencing’ a
whole DNA by simply pulling it apart, which would constitute a dramatic improve-
ment over the present-day sequencing procedure which is time and money consum-
ing. This aim and (up to now unfulfilled) hope has brought up a very lively theoretical
debate. In the end, complete sequencing in present day experiments is unattainable
due to fundamental difficulties inherent in the measurements, according to Ref. [21],
though it should be possible to get coarse-grained information on the local CG vs AT
base pair content over patches of ten base pairs roughly. This would still be of rele-
vance for sequence determination, in case we want quick and coarse information on a
DNA composition: in many cases it is not necessary to have the whole base-by-base
sequencing to understand a particular issue related to that molecule. Also the possi-
bility of detecting point mutations has been discussed theoretically based on exactly
solvable models[22], as well as tested thoroughly experimentally[7]. This seems to
be more promising on a practical level than complete sequencing. Quite a few other
interesting experiments, such as that proposed in Ref. [23] in order to measure dy-
namical effects in the force versus elongation curves, have been suggested in recent
years by theorists working in the field.

A second biologically interesting phenomena is protein mechanical unfolding.
By applying forces to proteins, they can be deformed and eventually completely un-
folded. The unfolding dynamical pathways gives information on the shape of the free
energy surface in the neighbourhood of the native state, which is of importance for
theory and experiments. Moreover, many proteins are designed in such a way that
their native folded states are able to withstand forces without disrupting: stretching
experiments are expected to clarify the relation between ��� native state shape and
biological function. The giant titin protein, also known as connectin, which is found
in muscles is a well-known and well-studied example of a polypeptide whose me-
chanical properties are essential for its biological role. The passive tension developed
in muscle sarcomers when stretched is largely due to the rubberlike properties of titin.
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Stretching experiments[11] have revealed that the unfolding of this protein occurs via
different ‘steps’ in each of which a distinct immogluboline domain is stretched at a
time. These steps are clearly marked by peaks in the force versus extension experi-
mental curve.

We now step back to the first mentioned, crucial and still open problem, namely
that of protein folding. This in fact is one of the ‘hottest’ topic in molecular biology, or
at least that for which the biggest number of contributions from physicists have come
and in which the most lively debate is present nowadays between different groups
who have rather different views on this complicated and fascinating issue.

Protein folding is the process through which a protein, starting from a swollen
or extended configuration, reaches its native (ground) state. It is a pure physical-
chemical process, since many small globular proteins are able to fold spontaneously
‘in vitro’, without any assistance from cellular machinery, as was first shown in a fa-
mous experiment by Anfisen[2]. Denatured unfolded proteins, which are biologically
not active because of non physiological conditions (temperature, pH), or because they
have been mechanically opened (see above) restore their biological functionality by
returning to the native state. In other words, protein can fold and unfold reproducibly
in solution. Folded native conformations of globular proteins are compact, in order
to shield most of the hydrophobic residues in the core of the folded structure, leav-
ing most of the polar and charged side chains in contact with water molecules on
the outer surface of the protein. Anfinsen’s experiment provides the main reason for
the statistical mechanics approach to the protein folding problem. Indeed it can be
interpreted by assuming the native or folded state of a protein to be the free energy
minimum of a system composed by the polypeptide chain and the solvent molecules.
The folding of very large proteins is instead often facilitated by ‘chaperones’, which
prevent improper protein aggregation (think e.g. of the example of prion aggregation
in the bovine spongiform encephalopathy (BSE) disease, colloquially known as the
‘mad cow’ disease).

Since Anfisen’s experiment, a number of conceptual questions and real enigmas
have been posed by the folding of proteins. First, folding is thought to be driven
mainly by hydrophobic interactions which make so that the protein constitutes a core
where water cannot penetrate. Hydrophobic interactions alone however seem to be
insufficient to study the problem even in a very poor approximation, because a native
state is usually non-degenerate, whereas the compact phase of a polymer under the ac-
tion of a two-body attractive potential, which should mimic the hydrophobicity rather
well, has a high degeneracy. Moreover, protein folds have a hierarchical degree of
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order[24, 25]: chains of the order of ����� aminoacids forms secondary motifs, which
are helices and sheets which are then put together almost unspoiled in order to form
a tertiary structure. This are single domain proteins. Longer chains have another
hierarchical level where many independent ’domains’ aggregate to form a quater-
nary structure. On the other hand a polymer in its collapsed phase is featureless[26].
Heteropolymers with pairwise interaction potentials are expected to have glassy be-
haviour and thus the folding process from an extended conformation to the native
state would be dynamically rather difficult, as many local minima have to be over-
come before coming to the target state. On the other hand, proteins usually fold in
a fast and reproducible way[27]. In other words, it is thought that the free energy
surface has a rather large attraction basin near the native state (indeed the form of the
free energy is speculated to be that of a funnel[28], with high propensity towards the
native state), whereas heteropolymer models tend to have a ’golf-like’ rugged energy
landscape with a ground state which is non-degenerate but also with many competing
local minima.

Moreover, given that there are ��� aminoacids and that a typical protein length is
� ����� residues, there are in principle an enormous number of protein sequences
of aminoacids. However, many proteins, which have widely different sequences
(more than ����� of difference in the sequences) fold in the same, or nearly so, na-
tive state[29]. This has been to some extent substantiated also by calculations done
with toy models on the lattice[30, 31]. It has been found that the map sequence to
structure is many-to-one, not one-to-one, and that there were very few goal structures
which were selected as the ground state by many different sequences. Another sur-
prising property of proteins which is rather hard to account for is that they are very
flexible in order to perform a wide array of functions. In addition, some aminoacids
which are known to better (i.e. sterically) fit in an alpha helix, in some conditions
are accomodated in other secondary structures (a beta sheet or a loop), so that the
selection mechanism of structure should be versatile.

Plan of the thesis

In this thesis we develop coarse grained models aiming at understanding physical
problems arising from phase transitions which occur at the single molecule level. The
thesis will consist of two parts, grossly related to and motivated by the two subjects
dealt with above. In the first half, we will focus on critical phenomena in stretching
experiments, namely in DNA unzipping and polymer stretching in a bad solvent. In
the second part, we will develop a model of thick polymers, with the goal of under-
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standing the origin of the protein folds and the physics underlying the folding ‘tran-
sition’, as well as with the hope of shedding some light on some of the fundamental
questions highlighted in this Introduction.

In the first part of the thesis we will introduce a simple model of self-avoiding
walks for DNA unzipping. In this way we can map out the phase diagram in the
force vs. temperature plane. This reveals the present of an interesting cold unzipping
transition. We then go on to study the dynamics of this coarse grained model. The
main result which we will discuss is that the unzipping dynamics below the melting
temperature obeys different scaling laws with respect to the opening above thermal
denaturation, which is governed by temperature induced fluctuating bubbles.

Motivated by this and by recent results from other theoretical groups, we move on
to study the relation to DNA unzipping of the stretching of a homopolymer below the
theta point. Though also in this case a cold unzipping is present in the phase diagram,
this situation is richer from the theoretical point of view because the physics depends
crucially on dimension: the underlying phase transition indeed is second order in two
dimensions and first order in three. This is shown to be intimately linked to the failure
of mean field in this phenomena, unlike for DNA unzipping. In particular, the globule
unfolds via a series (hierarchy) of minima. In two dimensions they survive in the ther-
modynamic limit whereas if the dimension, � , is greater than � , there is a crossover
and for very long polymers the intermediate minima disappear. We deem it intriguing
that an intermediate step in this minima hierarchy for polymers of finite length in the
three-dimensional case is a regular mathematical helix, followed by a zig-zag struc-
ture. This is found to be general and almost independent of the interaction potential
details. It suggests that a helix, one of the well-known protein secondary structure, is
a natural choice for the ground state of a hydrophobic protein which has to withstand
an effective pulling force.

In the second part, we will follow the inverse route and ask for a minimal model
which is able to account for the basic aspects of folding. By this, we mean a model
which contains a suitable potential which has as its ground state a protein-like struc-
ture and which can account for the known thermodynamical properties of the folding
transition. The existing potential which are able to do that[32] are usually constructed
‘ad hoc’ from knowledge of the native state. We stress that our procedure here is
completely different and the model which we propose should be built up starting
from minimal assumptions. Our main result is the following. If we throw away the
usual view of a polymer as a sequence of hard spheres tethered together by a chain
(see also Chapter 1) and substitute it with the notion of a flexible tube with a given
thickness, then upon compaction our ’thick polymer’ or ’tube’ will display a rich
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secondary structure with protein-like helices and sheets, in sharp contrast with the
degenerate and messy crumpled collapsed phase which is found with a conventional
bead-and-link or bead-and-spring homopolymer model. Sheets and helices show up
as the polymer gets thinner and passes from the swollen to the compact phase. In this
sense the most interesting regime is a ‘twilight’ zone which consists of tubes which
are at the edge of the compact phase, and we thus identify them as ‘marginally com-
pact strucures’. Note the analogy with the result on stretching, in which the helices
were in the same way the ‘last compact’ structures or the ‘first extended’ ones when
the polymer is being unwinded by a force.

After this property of ground states is discussed, we proceed to characterize the
thermodynamics of a flexible thick polymer with attraction. The resulting phase dia-
gram is shown to have many of the properties which are usually required from protein
effective models, namely for thin polymers there is a second order collapse transi-
tion ( � collapse) followed, as the temperature is lowered, by a first order transition
to a semicrystalline phase where the compact phase orders forming long strands all
aligned preferentially along some direction. For thicker polymers the transition to
this latter phase occurs directly from the swollen phase, upon lowering � , through a
first order transition resembling the folding transition of short proteins.





Chapter 1

Background and Methodology

In this Chapter we introduce some of the basic terminology, background information
and methodology, both analytical and numerical, which will be used throughout this
thesis.

Most biomolecules (DNA, RNA and proteins) are polymers, i.e. they consist of
a linear chain made up of repeating structural units. In the case of DNA, these units
are the four bases cytosine (the shorthand is C), guanine (G), adenine (A), and timine
(T). For proteins, the repeating units which form the polypeptide chain are the twenty
aminoacids.

We will thus start with a simple introduction on mathematical models which aim
to describe a polymer. Then we will give a brief overview of the techniques used
in this thesis in order to treat these problems. The presentation is in increasing or-
der of problem difficulty: first we deal with analytical techniques, then with exact
numerical approaches, last with numerical simulations which are nowadays[33] an
indispensable tools for systems which are not amenable to exact analysis (such as a
three-dimensional self-avoiding walk with interaction[34] or the thick polymer study
in Part 2 of this thesis).

1.1 Biological background

1.1.1 Properties of DNA

The DNA molecules in each cell of an organism contain all genetic information nec-
essary to ensure the normal development and function of that organism. This genetic
information is encoded in the precise linear sequence of the nucleotide bases from
which DNA is built.
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DNA is a double-stranded molecule, i.e. it is made up of two strands paired to
one another by means of hydrogen bonds. There are four such nucleotide bases which
build each one of the two strands of DNA: adenine (A), cytosine (C), guanine (G),
and thymine (T). Bases A and G are classified as purine, C and T as pyrimidenes. The
bases are capable of forming hydrogen bonds among them, but in a selective way: A
can only couple to T and C to G, so in DNA there are two possible base pairs or
base pairing interactions: AT or TA, CG or GC. The C-G base pair (bp) involves the
formation of three hydrogen bonds, which makes it a stronger interaction than the
A-T bp, which involves two H bonds. The typical strength of one H bond is ��� �

KCal/mol. The two DNA strands are complementary to each other: the bases in one
strand are capable of making H bonds with the corresponding bases in the other one
(e.g. one strand is ATACCGG and the other one is TATGGCC). At room temperature,
all base pairs are intact: quantitatively, the probability that a base pair breaks due to
thermal fluctuations is of the order of ������� . However, by increasing the temperature,

� , this probability gradually increases and bubbles forms, i.e. regions where the two
DNA strands have their first and last bp’s joined and the rest unpaired. Ultimately,
we get to a value, called melting temperature or ��� , in which the number of intact
base pairs drops abruptly and DNA is in the denatured form, i.e. it is no longer a
double-stranded polymer but the two strands are better represented as single-stranded
chains virtually not interacting with each other. Experimental spectroscopic results on
DNA denaturation are very well-established[35]: the absorbance of light at �
	�� nm is
monitored as it is proportional to the number of broken bp’s. If room � is restored,
DNA reversibly recovers its native shape of double- stranded polymer.

We now come to the structure(s) of the DNA molecule. Early diffraction pho-
tographs of such DNA fibers taken by Franklin and Wilkins in London and interpreted
by Watson and Crick in Cambridge revealed two types of DNA: A-DNA and B-DNA.
The B-DNA form is obtained when DNA is fully hydrated as it is ‘in vivo’. A-DNA
is obtained under dehydrated non-physiological conditions.

Both A-DNA and B-DNA have the familiar local shape (also called secondary
structure in analogy with the nomenclature commonly adopted for proteins, see be-
low) of a double helix, or better of a right-handed helical staircase (see Fig. 1.1). The
rails are two parallel phosphate-sugar chains, which are helix of opposite handedness
(Fig. 1.1), and the rungs are purine-pyrimidine base pairs. In A-DNA there are an
average of � ���� base pairs per turn of the helix, which corresponds to an average
helical-twist angle of � ��� ��� from one base pair to the next. The spacing along the he-
lix axis from one base pair to the next is ��� �
 nm. In B-DNA these values are � � base
pairs, � � �� � and ��� �
� nm, respectively. There are, however, considerable variations



1.1 Biological background 11

Major
groove

Minor
groove

Figure 1.1: The DNA double-helix. We have highlighted the major and minor
grooves. All atoms in the two strands are shown in the picture.

in individual twist angles from the average values, and these variations are larger in
A-DNA than in B-DNA. Note also that the base pairs are attached asymmetrically to
the backbone. Due to this, one groove (i.e. separating distance) between the strands is
wider than the other. These are called the major and the minor groove. Both grooves
provide opportunities for base-specific interactions, but the major groove is better
suited for that task and more often observed as the primary binding site for proteins.

Though DNA is a double-stranded polymer, it is often useful and enough for
the needed accuracy of description, to think of it as a single polymer. The relevant
physical properties of DNA as a polymer are known since long time ago: DNA is a
linear molecule, its diameter is about � nm ( ��� � if it is hydrated), whereas if stretched
out its length can reach many millimeters (this length is referred to as the contour
length of the molecule). This means that concentrated solutions of DNA can be pulled
into fibers in which the long thin DNA molecules are oriented with their long axes
parallel. DNA is relatively stiff, it has a high resistance to bending, which is quantified
by its persistence length, which is around � � � base pairs (bps), or (see above) roughly
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� � nm.
Naked DNA is strongly self-repelling, mainly due to the electrostatic repulsion

between the charges along its backbone. In a solution, in presence of positive multi-
valent counterions, though, it can collapse into compact structures with very peculiar
shapes. In presence of a low concentration of counter-ions, DNA condenses into
spools or toroids of a radius of the order of its persistence length. For very long DNA
molecules, or for high counterion concentration, on the other hand, it will form a reg-
ular phase with long segments of DNA straight and parallel to each other in a way
which resembles the nematic phase of liquid crystals. Though these properties will
not be our concern, we will come back to the picture of DNA as a single polymer
(neglecting the double-strandedness) when we deal with thick polymers, by introduc-
ing a model which in principle is expected to describe well DNA when neglecting its
secondary structure. The model, which we introduce in Chapter 4, should be thought
of as an alternative to the usual polymer model of DNA in which the molecule is
modeled as a stiff, rather than a thick polymer.

1.1.2 Properties of proteins

It is customary to distinguish several levels of organization in protein structure.
The primary structure is the chemical sequence of aminoacids along the polypep-

tide chain.
Local ordered motifs occurring in most known proteins are called secondary

structures. They were first predicted theoretically by Pauling and Corey on the basis
of energetic considerations[3, 36, 37]. The different secondary structures are alpha
helix, beta strands and loops.

The compact packing of secondary structures determines the unique full three-
dimensional native conformation of a biologically active protein. It is also referred to
as the tertiary structure. It is the result of delicate tuning of various kinds of physical
interactions occurring between different atoms of the protein chain and between these
and solvent molecules.

Most natural proteins in solution have roughly spherical shapes, and thus are usu-
ally referred to as globular proteins. Larger proteins also exist: they are composed of
smaller globular regions called domains, separated by a few aminoacids. The domain
arrangement with respect to one another is called the quaternary structure.

We will now briefly analyze the physico-chemical and structural basic properties
of proteins at each level of hierarchical organization of their structure.

From a physico-chemical point of view, proteins are heteropolymers, made up of
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different aminoacids, which can be chosen from twenty different species. The generic
chemical structure of the aminoacids occurring in natural proteins is:

R�

H � N-CH-CO � H
where H � N is the amino group and CO � H is the acidic group. The twenty aminoacids
differ only in the chemical structure of the side chain R, except for prolyne, whose
side chain is bonded also to the nitrogen atom. The central carbon atom to which the
side chain is bonded is called the � -carbon, or C � . The other C atom is also referred
to as C’ atom.

The chemical composition of side chains varies significantly from one aminoacid
to another. Glycin is the lightest one and its side chain consists simply of one hydro-
gen atom. Triptophan is the heaviest one and its side chain contains both an aromatic
ring and an indole ring, with one nitrogen atom. The most frequent atoms in side
chains are H, C, N and O, but a sulphur atom is also present in two side chains, me-
thionine and cysteine. Except for glycine, the central C � atom is asymmetric. In all
known natural proteins, the C � ’s have left-handed chirality.

Proteins are formed by polycondensation of different aminoacids. The chemi-
cal binding of two aminoacids produces the peptide bond, with release of a water
molecule. The peptide bond links the two CH group attached to the side chains of two
neighbouring amminoacids via an NH group. All aminoacids forming a protein are
then linked via the peptide bond. Proteins are thus called polypeptide chains in which
the basic repeating unit is the aminoacid residue, which is the form the aminoacid
takes after polycondensation, when it is embedded in a chain. Length in proteins
range from � � � aminoacids, for small globular proteins, to � ������� , for compli-
cated multi-domain ones. In order to describe the protein secondary structure, it is
convenient to divide the polypeptide chain into peptide units (these are the repeating
units in the polymer) which go from one C � atom to the successive one in the chain
(see also models such as that in Part 2 of this thesis, in which the protein backbone
is schematized by the C � atoms only). Each C � atom thus, except from the first and
the last one, belongs to two such units. The reason for dividing the chain in this way
is that all the atoms in such a unit are fixed in a plane with the bonds and the bond
angles very nearly the same in all units in all proteins. Note that the peptide units do
not involve the side chains. The distance between two successive ��� atoms is ��� ���
nm roughly. Since the peptide units are effectively rigid groups that are linked into a
chain by covalent bonds at the C � atoms, the only degrees of freedom they have are
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rotations around these bonds. Each unit can rotate around two such bonds: the C � -C’
and the N-C � bonds. By convention the angle of rotation around the N-C � bond is
called � , and the angle around the C � -C’ bond from the same C � atom is called � . In
this way each aminoacid residue is associated with two conformational angles � and
� . Since these are the only degrees of freedom, the conformation of the whole main
chain (i.e. without the side chains) of the polypeptide is completely determined when
the � and � angles for each aminoacid are known.

All physical interactions occurring between the atoms in the polypeptide chain
and the solvent molecules are Coulomb electrostatic interactions at the microscopic
level. Such a microscopic approach has only very recently been tackled with a fully ab
initio quantum molecular dynamics method. Simulations of even very small peptides
are, however, computationally very expensive, and the study of a whole protein still
requires the introduction of semi-empirical classical interactions at a macroscopic
level, which can then be included in more traditional methodologies, such as energy
minimization, force-field molecular dynamics, Monte Carlo simulations.

Such macroscopic interactions are usually divided into covalent and non-covalent
interactions, according to their typical energy scale. The chemical structure of pro-
teins is determined by covalent bonds. Covalent interactions involve a typical en-
ergy ranging from

� � KCal/mol to � � � KCal/mol. At room temperature ��� � � ����	
KCal/mol ( ��� is the Boltzmann constant), thus covalent interactions for all practi-
cal purposes freeze the corresponding degrees of freedom to their minimum energy
value.

The secondary structure and the complex three-dimensional structure of the folded
native state is on the other hand the result of the interplay of non-covalent interac-
tions, between atoms which are far apart along the polypeptide chain but may come
into close spatial contact, and between atoms and solvent molecules. The charac-
teristic energy scale of non-covalent interactions ranges from � to

�
KCal/mol. The

associated degrees of freedom are thermally excited at room temperature, and are thus
responsible for the folding and the thermodynamics of proteins. Non-covalent inter-
actions between different atoms of the protein-solvent system are usually divided into
electrostatic forces, van der Waals interactions, and hydrogen bond interactions.

An easy way to present secondary structures in proteins is via the Ramachan-
dran plot [38] (Fig. 1.2). Many combinations of the conformational angles ( � and �
defined above) are not allowed because of steric collisions between the side chains
and the main chain. Ramachandran plots show allowed combinations of the confor-
mational angles � and � . Shaded areas show the sterically allowed regions, which
correspond to the regular motifs corresponding to secondary structures in proteins.
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Three types are highlighted: � helices, � sheets and collagen helix. Left-handed
helices are not observed, since the side chains would be too close to the backbone.

The right-handed alpha helix (shown in Fig. 1.3) is found when a stretch of con-
secutive residues all have the � , � angle pair approximately � 	�� � and � � � � (see Fig.
1.2). The � helix has ��� 	 residues per turn, which corresponds to a rise of ��� � � nm per
turn ( ��� � � nm per residue) along the helix axis. There are hydrogen bonds between
��� ��� of the � -th residue with ��� of the �
	 � -th. Thus all ��� and ��� ��� groups
are joined with hydrogen bonds except the first ��� and the last �� ��� groups at the
ends of the � helix. As a consequence, the ends of � helices are polar and are almost
always at the surface of protein molecules.

The second most regular and identifiable secondary structure is the � sheet (see
Fig. 1.4). The basic unit is the � strand, a planar zig-zag conformation with the side
chains alternatively projected in opposite directions. It may be considered a special
kind of helix with � residues per turn. A single � strand is not stable, as no interactions
are present among the atoms. The � -strand is stabilized only when two or more
strands are assembled into a � -sheet, a planar structure where hydrogen bonds are
formed between the peptide groups on adjacent � -strands. Side chains from adjacent
residues of the same strand protrude from opposite sides of the sheet and do not
interact with each other. Side chain from neighbouring residues of adjacent strands
are projected instead into the same side, and thus interact significantly. Adjacent � -
strands can be either parallel or antiparallel, and the resulting geometry varies slightly.
In antiparallel sheets, all hydrogen bonds are parallel to each other, whereas in parallel
sheets they are arranged in two different alternating directions.

We finish our survey of protein structures by mentioning two examples of tertiary
or better supersecondary motifs recurring in the tertiary structures of proteins (see
Ref. [24]): one is the helix-loop-helix or calcium binding motif, typical in all �
proteins (i.e. proteins with only � helices in their secondary structure content) and
the � � � ��� motif. The calcium binding motif is symbolized by a right hand
with forefinger and thumb up. The first helix runs from the tip to the base of the
’forefinger’, the flexed ’middle finger’ corresponds to the turn or loop which binds
calcium, and the second helix runs up to the end of the ’thumb’. In the � � � ���
motif, two adjacent parallel � strands are connected by a helix from the end of the
first strand to the beginning of the second one. The two strands lie in the same plane.



16 Background and Methodology

Figure 1.2: Ramachandran plot showing allowed values of the torsion angles � and
� for alanine residues (region contoured by solid lines). Additional conformations
are accessible to glycine (contoured by dashed lines) because it has a very small
side chain. The typical values of the torsion angles corresponding to the different
secondary structures are shown.
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Figure 1.3: (a) Idealized diagram of the backbone path in an � helix. (b) The same
as (a) but with approximate positions for the backbone atoms and hydrogen bonds
included. (c) Schematic diagram with the correct position of all backbone atoms.
Big dark circles represent side chains. (d) A ball-and-stick model of one � helix in
myoglobin.

Figure 1.4: (A) A single � strand. (B) A planar parallel � sheet. (C) A planar antipar-
allel � sheet. The horizontal direction in (A) is orthogonal to the plane represented in
(B) and (C).
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1.2 Polymer models

As we have seen, both DNA and proteins are polymers made up of different repeating
units, even though their physical properties are rather different. Flexible, semiflexi-
ble and rigid polymers can take up many configurations by the rotation of chemical
bonds. It is therefore meaningful to describe a polymer with the methods of statistical
physics. This is what we are going to do from now on in this Section.

1.2.1 Ideal polymers: the freely jointed chain

Let us start from the simplest possible model: a chain consisting of � links, each
connecting two beads and of length ��� , which we will take in the following to be
equal to � without loss of generality (every length will be scaled by ��� ). Such a model
is called the freely-jointed chain (FJC) [39, 40, 41]. A configuration of the FJC when
the dimension, � is e.g. � , is the set of the � � 	 ��� position vectors �	�
������� ��������� � � of
the beads. Equivalently, it can be characterized by the set of � links �	�
��

��� �
������

� ������� � � ,
with �
��

��� �
��� �
��

� �
��
��� . In the FJC the link vectors �
��

��� �
�

are independent of one
another, so that the weight given to a configuration ���
������� ��������� � � is:

� �����
�� ���� ��������� � �!� �
�"
���

�
# �
�
�
��
��� �

� �
� ���

�%$ & (1.1)

where
#

denotes the usual Dirac delta function and �%$ is the corresponding normal-
ization factor, to ensure that the integral of

� ��� �
�� ���� ��������� � �!� over the configuration
space is � .

To characterize the size of a polymer, we may consider the end-to-end distance,
denoted here by �
 and defined as �
'� �
 � � �
 ���'( ����

�

��
��� �

�
. If )�* denotes the

average with respect to the probability measure in Eq. 1.1, then it is immediate to
realize that )+�
 * � �� . Nevertheless, )+�
 � * is finite and can be used as a characteristic
length of a polymer. The same quantity is in general used in polymer physics to
define[40, 41] a critical exponent , of the chain in the following way:

) �
 � * � � ��- .%/ �10 2 � (1.2)

By making the explicit calculations, one gets , � �� for the FJC. Other common
attributes of polymer which identify its size are the gyration radius (see the definition
in Chapter 6) and the contour length, which is equal to �3��� .

Another important quantity in a polymer is the persistence length. It can be de-
fined in terms of the average dot products of two links which are far apart along the
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chain, i.e.: �
��� &
� � � )+�
�� � ��� ��� �
����
	 � ���
	�� � * � (1.3)

In usual models, one has
�

��� &
� � �

�
�
�
� � �

�
� �������� � �

	 �� , and the quantity � , which
is the typical range of decay of

�
�
�
� � �

�
� , and which typically depends on the inter-

actions between beads on the polymer, is usually called the persistence length of the
polymer chain, ���
������� ��������� � � .

Let us now consider a hyper-cubic lattice in � spatial dimensions, ��� . On the
lattice, the links can have only � � directions and the lattice counterpart of the FJC
is the well-known random walk. An N-link random walk (RW) is a set of points
���
�� �� � ��������� � � , with �
���� � ��� � � � & � � � & � , and with the property that �
��

and �
����
�

are nearest neighbour on ��� for any � � � & � � � & � � � . We will consider in Chapter
2 a simplified model of DNA unzipping with RWs directed along the lattice diago-
nal. This will have the virtue of being exactly solvable while retaining some of the
important features of the general solutions, which makes it a rather ideal and very
instructive case to be treated.

The FJC and the RW are useful model as most of their properties can be calculated
exactly and explicitly (as for example the average extension versus force curve, which
is nothing but the Langevin function[40, 42]). However, both neglect two important
features of real polymers: the first is semi-flexibility (many real polymers like DNA
are stiff), the second is self avoidance.

We will only briefly discuss how to take care of stiffness here, and discuss more
in detail the excluded volume interaction in the next paragraph. This is because in
this thesis we will fully implement excluded volume in our models, but we will not
usually treat stiffness, unless in some cases to show that our results are not dependent
on considering the polymer fully flexible. Indeed, the thick polymers introduced in
Part 2 do have an intrinsic stiffness which arise because of the thickness and has a role
in their physics. But we will defer a more thorough discussion on this to Chapter 4.

In order to study semi-flexible polymers, the FJC has to be substituted by the
worm-like chain (WLC) (see e.g. [5]). In its simplest version, the WLC is a FJC with
an energetic penalty against sharp bends, � �"!$# , of the form:

�%�&!'# � � �
�� ���� ��������� � � �)(
� ���*
���

�
�
��
��� �

�
� �
�� � ��� � � (1.4)

Very shortly, while the WLC is still ideal in the sense that , � �� , its force versus
extension curve behaves differently than the FJC for high forces[5], whereas for low
forces the behaviour is identical.
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1.2.2 Excluded volume interaction: the self-avoiding chain

In real polymers, contrarily to the ideal case described above, interactions among the
polymer links are not limited to a few neighbours along the chain, but are in principle
highly non-local, as links which are distant along the chain do interact if they come
sufficiently close together. Such an interaction is called ‘long range’ as opposed to
the ‘short range’ interactions of the ideal case. Note here that the term long range
interaction stands for steric effects, van der Waals attractions, and also other specific
interactions mediated by solvent molecules. However at large length scales statistical
mechanics suggests that the details of the interaction should not matter and the physi-
cal picture should be universal. In particular, there should be two universality classes
which the potential belongs to. We can discuss them jointly by introducing a com-
monly used two-body potential which acts between beads in �
��

and in �
 	 respectively
( � �� � ):

� � 
�� 	 � �
�

�
 � �� 	 �
� �

�� 	 (1.5)

where

�� 	 � �

�
��
� �
 	

�
. The square well potential considered in Chapters 5 and 6 is of

course expected to stay in the same universality class of the Lennard-Jones potential,
thus to be interchangeable with it.

The first universality class is that of purely repulsive interactions (
�

��� � ,
� � �

� ), in which attractions are not present: this is the self-avoiding chain in the continuum
space (e.g. in ��� ). A common choice is

�
� � �
	�� , where 	 and � fix the energy and

distance scales respectively. A self-avoiding walk (SAW) on the lattice �� , on the
other hand, is similarly defined as a random walk whose configurations � �
	�� �

� ������� � �
are such that no two beads can share the same lattice site, i.e.

�
�
��

� �
 	
���

� � � &
�
:

� �� � , � &
� � � & � � � & � . Both on the lattice and in the continuum, a self-avoiding

chain is in a different universality class than the FJC (
� � 
 � 	 ��� � ), as in this case

, � ��� � ��� � � � (this value is known via numerical simulations [43]).

The second class of potentials is one which couples a hard core at short distances
with an attractive tail for large distances: in Eq. 1.5 one would put

�
� &
� � � � (a

common choice is
�

� � ��	�� ,
� � � � ��	�� ). This can be straightforwardly generalized

to SAWs on the lattice, giving rise to the famous lattice model for the
�

transition
[39, 40, 41, 44, 45, 46]. Here the polymer + solvent system is in one of three states:
compact polymer (poor solvent), where , � � , for high enough 	 ; swollen polymer
(good solvent) for low 	 ( , � ��� � ��� � � � ), and

�
solvent at the transition ‘temperature’,
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correspondent to an energy scale 	�� . In a
�

solvent, the value of , , ,�� is given by:

,�� � ����
if ��� �

�� otherwise
(1.6)

1.2.3 Some analytical and numerical methods for polymers

We here introduce and sketch the basic analytical and ’numerical’ techniques used in
the following. By ’numerical’ we mean that the only numerics involved can be done
in a computer with almost arbitrary precision: they are meant to be contrasted to the
numerical simulations which we will deal with in the next Section.

A very powerful method for studying ideal polymers such as e.g. the RW is the
generating function technique. It can be viewed formally either as a Laplace trans-
form (discrete for RWs on the lattice) in mathematical terms or as a grand partition
function in statistical terms. Let us consider a concrete example. Suppose that we
want to calculate the return probability for a � -dimensional RW to its starting point.
If

� � � �	 � denotes the number of walks that after � steps reach the site �	 , we have that� ��� �	 � � #�
� � � , where
#

is the Kronecker
#
. Besides,

�
satisfies the following recursion

relation:
� � � � � �	 � � *

���
�

� � � � �	 	 � � � 	 � ��� �	 � � � � � & (1.7)

where � � denote the Euclidean versors. The generating function
� � �	 &�� � , correspond-

ing to
� ��� �	 � , is defined as:

� � �	 &�� � � �*� � � �
� � ��� �	 � & (1.8)

and � is called the fugacity. If we make the ansatz (satisfied in all physical cases) that:

� ��� �	 � � � � �� � ��� & (1.9)

valid for big � and � ��� � , and where � is an entropic exponent resulting in a sub-
leading correction in the free energy. We easily realize that

� � �	 &�� � has a singularity
for � � � � . The inverse of the critical fugacity, � ���� , is also known as the connectiv-
ity of the RW. From the Tauberian theorem[47] one can relate the behaviour of the
generating function near � � to the entropic exponent in the canonical ensemble. We
thus aim at computing

� � �� &�� � near � � � � , this will yield in turn via the Tauberian
theorem the number of RW’s with � step and with the last step in the origin, namely
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� � � �� � . In order to proceed, we define the Fourier transforms of
� ��� �	 � and

� � �	 &�� � ,� � � �� � � * 
�  � 
��� 
� � � � �	 � & (1.10)

� � �� &�� � � * 
�  � 
��� 
� � � �	 &�� � � (1.11)

From Eq. 1.8, and from the definition of inverse Fourier transform, one easily gets:

� � �� &�� � �
� � ��
� $ �

�
� � � � ( ��� ����� / � � � (1.12)

The singularity in the integral is obtained for � � � � � �
	 � � � � . In ��� � for example
one obtains: � � � &�� � � � � � � � � ����� � (1.13)

which means by the Tauberian theorem that:
� � � � � � � � � � � ����� � � (1.14)

As a consequence one easily realizes that the sum ( � � � � � � is divergent in � � � :
this physically means that the walker will surely return to the origin sooner or later.
As � � �	 � for generic � , one easily finds that the walker has a finite probability of
escaping from the origin only if � � � . We will use the generating function technique
in Chapter 2 in a case with interactions in order to solve a simplified version of our
model for DNA unzipping.

Let us now proceed to the case of a SAW on the lattice in ��� � . A simple
question would be to find its connective constant ���
� � , i.e. to find the number ���
� �
which satisfies the asymptotic equivalence � � � ����� � � for � 0 2 , where � � is
the number of � -step SAWs. Using the terminology just introduced, the inverse of
the connective constant is the critical fugacity of the generating function associated to� � . Another quantity of common interest is the critical exponent , for the � � SAW.
These are not accessible via elementary methods. One way to find an approximation
to them is to use a real space renormalization group procedure. If ����� �	 � is the number
of � -step SAW’s starting at the origin and ending at �	 , its corresponding generating
function is: �

� �	 &�� � � �*� � � � � � �	 � (1.15)

Though we do not make the derivation here, scaling theory requires the above quantity
to have the following functional form:�

� �	 &�� � � ��
�	
�

� � ������� �

�	
�

� � � ��� & (1.16)
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where � is an exponent called the anomalous dimension of the SAW and � is called
the correlation length. Now suppose there exists a mapping in the system from z to

� �� � � � (which can be shown to correspond physically to rescaling the lengths in the
system by a factor � ) such that:�

� �	 &�� � � � � 
� � � � � � �	 � & � �� � � ��� � (1.17)

After proving (which we do not do here) that such a mapping exists, then it follows
that:

��� � �� � � � � � � � � �� � (1.18)

At criticality, from scaling theory (see e.g. Ref. [40]) we know that � must diverge
like � � � � � � � - , so that one gets that, if the mapping is regular, it must have a fixed
point in � � , i.e. � �� � � � � � � � . Moreover, near � � ( � � � � 	 # � ):

� � � � � # � � � � � � � � � � � � ��� � ��� � ��� # � � � � � � � � � � - & (1.19)

so it is necessary that
�	� ��
�� �� � � ��� � � ��� - . We now come to the specific case of the � �

SAW. The mapping � �� corresponds to the � � � rescaling corresponding to the ��� �
cell renormalization shown in Fig. 1.5.

The equation of this mapping reads:

� �� � � � 	 � � � 	 � � � (1.20)

The fixed point of Eq. 1.20 is ��� � 	 � � � , which gives ���
� � � � 	 � � � ��� � � � � � (the
exact value is ��� 	 ��� � � � [47]). The exponent , is found via

� � � ��� � ��� � ��� � � - (1.21)

and , � ��� � � � � � (in good agreement with the exact value, � 	 � ). More accurate
mappings can be found by considering ��� � or larger cells. If we want to consider
interactions between the SAW sites, besides, it proved necessary to study the simul-
taneous renormalization of two ��� � cells. Apart from these details, the procedure
is completely analogous to the simpler case just discussed. This will be used in or-
der to rationalize the thermodynamics of the polymer stretching in a poor solvent in
Chapter 3. Though it was introduced by now a long time ago, we will see that the real
space renormalization group proves very useful there, in that it can account for the
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Figure 1.5: Schematic view of the rescaling leading to Eq. 1.20. The double line
indicates a step in the renormalized ��� � cell. Note that the walks corresponding to
this particular renormalized step must start from the lower left of the � � � cell and
end at the upper left corner. This explains why only the walks on the right contribute
to the renormalization of the step on the left.

fact that in � � � the unfolding transition is second order and becomes first order in
� � � . This very fact was under debate before and the reason for that behaviour was
not known.

We mention that another very useful method in order to deal with self-avoiding
walks is the transfer matrix which we will use in Chapter 3. We defer a brief intro-
duction to this method there, when it will be used. A more detailed understanding of
it is not needed in order to appreciate the results given in this thesis.

1.3 Monte-Carlo numerical simulations

We now come to the numerical Monte-Carlo techniques that we have made use of in
this thesis (see also Ref. [33] for more details). Monte-Carlo simulations are typ-
ically performed with two different goals: first, to find the ground state of a given
system (optimization problem); second, to calculate ensemble averages through ran-
dom sampling (equilibrium problem). Since the purposes are different, the methods
are also in general different. In this Section we will explain one common optimiza-
tion Monte-Carlo algorithm, simulated annealing, and one equilibration technique,
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parallel tempering (following the presentation of Ref.[34]).

1.3.1 Simulated annealing

In 1983, Kirkpatrick and coworkers[48] proposed a method of using a Metropolis
Monte Carlo simulation to find the lowest energy (most stable) of a system, which
is very commonly used in practical optimization problem such as the one we intend
to solve in Chapters 3 and 5: this method goes under the name of ‘simulated anneal-
ing’. The basic idea of simulated annealing is to search for a minimum of an energy
function in the same way as a real physical system whose equilibrium properties are
governed by that energy function reaches the ground state of minimal energy in the
limit of low temperature. One may think for example of crystalline solids which are
formed by several atoms. In practical context, low temperature is not a sufficient
condition for finding ground states of matter. Experiments that determine the low
temperature state of a material are done indeed by following a careful ‘annealing’
schedule: first the substance is made to melt, than the temperature is lowered very
slowly, spending a lot of time in the neighbourhood of the freezing point. If this is
not done carefully, the resulting crystal will have many defects, or the substance may
form a glass, with no crystalline order and only metastable locally optimal structure.

A simulated annealing optimization proceeds via a similar scheme. First, the
internal energy is replaced by the cost function to be minimized. Then, a fictitious
temperature is introduced. The fictitious temperature, � , is a control parameter in
the same unit as the cost function,

�
. Then the procedure consists in carrying out

numerical simulations by starting at a high temperature, then gradually decreasing it
from high values to lower ones, until the system has frozen in a configuration and no
further changes occur. For the procedure to be successful, it is in principle necessary
that the system be in thermodynamic equilibrium during all the cooling schedule. This
ensures that the system can overcome energy barriers in the free energy landscape and
as � is low enough, it falls into the ground state attraction basin and gives the optimal
configuration. This is of course ideal, because it would imply that we can cool the
system down at an infinitesimally slow schedule.

A natural and efficient way to simulate systems in thermodynamic equilibrium at
a given � is via Monte-Carlo stochastic dynamics in configuration space[43]. The
standard Metropolis algorithm[49] allows one to generate a stochastic process, more
often referred to as a Markov chain, which samples randomly the configuration space
with a probability proportional to the correct Boltzmann weight at the desired � . The
unnormalized Boltzmann weight of a configuration of the system, which we indicate
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by � , at the temperature � at which we want to sample is simply:

� � �	� ( ���� � � � � �	��� (1.22)

where � � �� is the inverse sampling temperature. The basic step in Monte-Carlo
dynamical simulations is to propose an update of the current system configuration,
� , into a trial configuration, which we call � � . This updating is done according
to a set of predetermined moves. In the case of our interest, in which the system
is a polymer chain, the dynamical moves are listed and described in Appendix A.
Afterwards, the move is accepted or rejected according to the Metropolis test. This
well-known algorithm consists in generating a random number, � , evenly distributed
from � to � and in comparing it with the quantity:

� � � 0 � � � ��� ��� � � &  ��� � � � � � � � � � � � � � ��� � � (1.23)

If � � � � � 0 � ��� the move is accepted and the system goes into configuration �� ,
otherwise it is rejected, and it remains in configuration � . This means that all the
moves which decrease the cost function

�
are automatically accepted. In the first

phase of the annealing, when � is high enough and the ‘freezing’ transition is quite
far, a relatively large percentage of the random steps that result in an increase in the
energy will also be accepted. After a sufficient number of Monte Carlo steps, or
attempts, � is decreased. The Metropolis Monte Carlo simulation is then continued.
This process is repeated until the final � is reached. As � gets lower, it will be more
and more unlikely to accept move which cause an increase in

�
.

The way in which the temperature is decreased is known as the cooling sched-
ule. In practice, the cooling schedule which is predominantly used is a proportional
one in which the new � is a constant � times the old � , where �

�� � (typically
between ���   and � ). Ideally, one could try to devise an optimal way to find the an-
nealing schedule, as the decrease rate and the number of Monte-Carlo steps per �
can be varied during the numerical simulation. In general, an important parameter to
monitor during the annealing is the number of accepted moves per � . At high � , this
number will be very high as nearly all the moves which do not violate physical con-
straints (such as self-avoidance in a polymer) are basically accepted, whereas for low

� almost all moves can be rejected. There will be a ‘critical region’ in which the ac-
ceptance rate drops rather abruptly. This is where the biggest number of moves should
be accumulated, as here the system is doing the crucial moves in order to choose its
optimal low � configuration. Another aspect is to determine how the amplitude of
the Monte-Carlo trial moves should depend on � . While at high � large moves are
in general better so as to enhance the portion of phase space sampled, at lower � ,
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they get useless because drastic changes are no longer possible and the system only
needs to rearrange its configuration in order to improve its energy via small steps.
In this way the acceptance rate is reasonable even at low � . One should also note,
when choosing the number of steps per � , that, while a pure Metropolis Monte Carlo
simulation (done e.g. in order to find canonical averages at a given � or � ) attempts
to reproduce the correct Boltzmann distribution at a given temperature, a simulated
annealing optimization only needs to be run, at a given � , long enough to explore
the regions of search space that should be reasonably populated. This allows for a
reduction in the number of Monte Carlo steps at each � , but the balance between the
maximum step size and the number of Monte Carlo steps is often difficult to achieve,
and depends very much on the characteristics of the search space or energy landscape.

1.3.2 Parallel tempering (multiple Markov chain method)

A rather frequent difficulty in Monte Carlo simulations of an equilibrium process is
encountered at low � , where the chain moves only little in the configuration space
and sampling becomes therefore inefficient (i.e. convergence to the Boltzmann distri-
bution probability is slow). A widely used way to mitigate this difficulty is to use the
parallel tempering algorithm[34].

Suppose we want to sample the configuration of a system at some value � which
is rather low, so that convergence is very slow; but that we know that convergence is
fast at some other values � ����� � � � � � ��� � � . The idea is to select a set of values
� � � � � � � � � � � � � � � � � to interpolate between � � and � so that there is
considerable overlap in the distributions of two neighbouring ‘replica’ of the system,
at � � and at � � � � for � � � & � � � & � . The Markov chains at � � & � � � & � � are evolved in
parallel for a specified number of time steps. Afterwards, an adjacent pair � � & � � � � of
temperature values is chosen randomly, uniformly from the � � � adjacent pairs of
‘replicas’, and, as a trial move, the configurations at these � values are swapped. Let
� � and � � � � represent the configurations of the replicas at � � � � � ��� and � � � � � � ���� � �
respectively, and let

� # � � � � stand for the probability that the system is in the state �
at inverse temperature � � : then, the probability that the trial swapping between the
states is accepted is:

$ � ��� 0 � 	 ��� � � ��� � � & � # ����� � � � � � # � � � � � � �� # � � � � � � # ����� � � � � � ��� (1.24)

� � ��� � � & ���� � � � � � � � � � � � � � � � � � � � ��� � �
If each Markov chain is ergodic, so is also the composite Markov chain.
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The advantages of the method over a traditional set of unrelated Monte-Carlo
simulations at different values of � is apparent. In traditional calculations, the con-
figuration of the system at low � tends to have a high probability of getting trapped
in a local minimum or metastable configurations. This creates a two-fold difficulty:
on the one hand, this minimum being in general only metastable, we will have a poor
characterization of the true ground state of the system; secondly, as it is very diffi-
cult for the system to sample configurations which have little overlap with that of the
minimum it is trapped into, we will get a very biased and unreliable estimate for the
ensemble average we want to compute, as they will be calculated on the basis of the
knowledge of a restricted portion of the configuration space. Note that this is not a
question of waiting for longer simulations, as the time that it takes to the system in or-
der to cross any finite free energy barrier at low enough � gets so high that to it can be
considered infinite for all practical purposes. On the other hand, the swapping moves
proposed during parallel tempering are drastic, in that we exchange configurations
coming from different ‘histories’. So the chance of getting trapped in non-optimal
local minima is significantly lower, provided that there are high enough temperatures
(low enough � ’s) in the set of interpolating � values so that for those � ’s overcom-
ing energy barrier is not an issue. At the same time we can enhance the sampling
efficiency as configurations coming from different dynamical evolutions will have a
much lower overlap with each other with respect to configurations coming from the
same dynamical evolution. In technical terms, this means that via parallel tempering
we enhance the mobility of the chain, and at the same time we reduce the ‘corre-
lation time’ � , in the region of low � . The ‘correlation time’ of a quantity

�
in a

Monte-Carlo run at a given � or more generally in a Markov chain is defined as the
time � after which the ensemble average (i.e. average over distinct realizations of the
Markov chain) ) � ��� � � � � ��* becomes smaller than �� .

From a practical point of view, parallel tempering is almost always necessary
when wanting to sample a polymer in a compact phase (which occurs at low � ), in
order to get meaningful values for ensemble averages, especially when dealing with
technically ‘difficult’ quantities such as the specific heat which is defined in terms of
the energy fluctuation (see in particular Chapter 6 where we use parallel tempering
extensively in order to find the phase diagram of a thick polymer).



PART 1: From compact to swollen

I knew a man who grabbed a cat by the tail and learned 40 per cent more about cats
than the man who didn’t.

Mark Twain (19th century), Carlos Bustamante (2000)





Chapter 2

Statics and dynamics of DNA
unzipping

We have given the motivations for the study of DNA unzipping (single molecule
experiments and DNA replication) in the Introduction and we have quickly introduced
the elementary biological notions on DNA in Chapter 1.

In this Chapter, we will begin by analyzing an ideal single molecule DNA unzip-
ping experiment. Then, we will introduce a polymer physics model to study the force-
induced unzipping transition. This requires in general self-avoiding walks, which
makes the treatment rather cumbersome and unattackable with analytical methods. A
simpler version of the model is then presented. This is amenable to exact solutions
and will be used as a guide as it retains the basic features of the complete model,
both for statics and dynamics. We then comment on the differences between the two
descriptions and discuss the role of disorder. We finally discuss the possible fate of
sequencing ideas based on unzipping experiments.

2.1 An ideal unzipping experiment

In Fig. 2.1a we show a typical DNA unzipping experimental setup, while in Fig.
2.1b we show the corresponding result, some force versus extension experimental
and theoretical curves. For other possible setups and further details on experiments
see Refs. [50, 51, 52, 53, 54, 55].

The setup shown in Fig. 2.1a refers to a soft microneedle experiment. Other
possible setups would involve laser tweezers or atomic force microscopes. With the
setup shown, experiments have been performed with DNA coming from phage � , of
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bead of polystyrene

glass microscope
         slide

   linker DNA glass
microneedle

the bottom of the needle is fixed

Figure 2.1: a) (Top) Schematical view of the force measurements in the DNA un-
zipping experiment of Ref. [20] described in the text. b) (Bottom) Force versus
elongation (x) curves for a � phage DNA obtained in Ref. [20]. The bottom and
middle curves come from experiments performed with a displacement velocity of the
piezo translational stage of respectively � � and � ��� nm/s. The middle curve is shifted
upwards by � pN for clarity. The third curve, shifted by � pN upwards, is obtained in
Ref. [20] with a theoretical calculation. Note that experiments are stopped before the
DNA molecule is completely unzipped.
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contour length of several micrometers ( � � � � � � � �
�

base pairs), at room temperature,
and in physiological conditions (physiological pH, i.e. � ). Note that in physiological
conditions a typical DNA melting temperature is ��� � � ��� � , so that in present
experiments � 	 � � is around ��� � . However, � can be changed roughly from a few
degrees Celsius to the melting temperature, and ��� itself can be modified by acting
on the pH of the buffer solution (the maximum melting temperature being around � � �
� ). This means that present-day values of � 	 ��� could in principle range between
��� � � and � roughly. This ratio � 	 � � is of interest to us because it is the parameter
which enables ideally our results to be compared with experimental possibilities. A
lot of emphasis is usually put on the fact that the persistence length of double-stranded
(ds) DNA (roughly � � � base pairs, see Chapter 1) is from ��� to

� � times higher than
the persistence length of the single-stranded DNA, which is usually a few base pairs.
Though in our simple models we neglect this, as the gross features of our results are
unaffected by such features, we will discuss the quantitative role of dsDNA stiffness
afterwards.

In the guide experiment that we consider, the two strands of the dsDNA at one
end are attached via a linker DNA arm to a glass microscope slide, and to a micro-
scopic polystyrene bead (at the other end the strands are joined). The tip of a glass
microneedle is attached to the bead and serves as a force lever to measure the tension
exerted by the strands. In this experiment, the open end distance is controlled, as the
microscope slide is moved at a nearly constant velocity by using a piezo translational
stage. The slide velocity � is of the order of � � to � ��� nm/s. This means that every
second around 	�� to � ����� bases of DNA are opened. In order for an equilibrium cal-
culation to reproduce as much as possible the data, it is necessary that this velocity be
as low as possible, because non-equilibrium and dynamical effects are expected to in-
fluence strongly fast unzipping measurements. What is then measured is the average
force that is necessary to keep the ends of the two strands at a mutual distance 	 , with	 � � � , and � is time. The resulting characteristic curves are force versus elongation
curves. A change in the lever deflection below ��� � � � can be confidently resolved.
As the lever stiffness used in Ref. [20] is �
� � pN 	�� � , the force resolution is better
than ��� � � pN. If we look at the force versus elongation curves in Fig. 2.1b (note that
the curves in the figure are translated for clarity), we note that these curves are consti-
tuted by a rugged plateau followed by a sharp increase (which is known to be present
but is not shown in the two experimental curves). The average force in the plateau is
around � � pN, but there are excursions and fluctuations about � � � pN wide. The
fluctuations in the force are mainly related to changes in the local sequence in the part
of DNA which is unzipped when the two open ends are at the distance read in the
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f
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Figure 2.2: One configuration for our SAW model for the unzipping of DNA in ����� .

abscissa. The force needed to open a DNA with only CG or GC hydrogen bonds is
around � � pN, whereas in order to open a DNA with only AT or TA base pairs one
would need a force or around � � pN. So in principle fluctuations of about � � � � can
be nowadays detected in average force measurements.

2.2 A model for DNA unzipping

Our wish here is to define a set of minimal models, in the spirit of statistical mechan-
ics, for which on one hand the unzipping transition can be characterized with high
accuracy, and on the other hand such that the results will apply also to more detailed
approaches. On the basis of the equilibrium solution, a detailed study of the dynamics
not relying on any mean-field approximation can be performed.

Our lattice model is an extensions of the famous Poland and Sheraga model
[56, 57, 58, 59]. Quite a few papers related to ours have recently been written both
on the unzipping [16, 17, 60, 61, 62, 63, 64, 65, 66, 67, 68] and on the thermal denat-
uration [69, 70, 71, 72, 73, 74] of DNA. In the case of Ref.[56] the strands are taken
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as random walkers with base pair interaction between corresponding monomers, i.e.
wrong base pairing is forbidden. This means that the � � th monomer in the first strand
interacts via base pair interaction only with the � � th monomer in the second strand,
gaining an energy ��	 ( 	 � � ) if the two occupied sites are nearest neighbours on the
lattice, and nothing otherwise. In our model there is also a force �� (whose magni-
tude we call

�
) pulling the open end of the walks (tied at the other end). Our models

are different from that of Ref. [56], as we incorporate the self and mutual-avoidance
(hard-core repulsion) of the strands (see Fig. 2.2 where a typical configuration of the
two filaments of DNA in our model is shown). This ensures that the zero-force melt-
ing temperature � � takes a finite value also in � � � unlike in Ref. [56]. Contrarily
to what happens when describing the bubble statistics in the denaturation transition
[69, 70], it will become apparent that apart from this self-avoidance is not too crucial
a property to understand the unzipping transition. In formulas, the configurations of
DNA in the canonical ensemble where the number of base pairs, � , is kept fixed is
labelled by the possible configurations of two self-avoiding walks, � � and � � , on the
hypercubic lattice, �  . The chain ��� , with � � � & � is specified by the position on
�  of its � sites, i.e. ���
 � � ���� ��������� � � ��� . The energy of a DNA configuration, ��� � & � � � is
called � ��� � & � � � and explicitly reads:

� ��� � & � � � � ��	
� �*

��� �
# � � �
 �� ��� �� � & � 	� �

��
 � � � �
 � � � �
 ��  & (2.1)

where
# ��� &� � is the Kronecker delta and

� 	 ��� � is the Euclidean distance between 	
and � in lattice units. Note that we have taken, without loss of generality, �� directed
along the � axis, whose versor is


 � .
Two different types of models can be defined at this level:
( � ) The “Y-model” in which the two strands are zipped together up to a bifurcation

point, i.e. the only allowed configurations are those which have the first � � �

monomers bound and the remaining � separated as in a Y.
( � � ) The “b-model” in which configurations with “bubbles” are allowed. In real

situations there are single-strand binding (SSB) proteins which bind to the opened
strands to prevent rejoining. This justifies the “Y-model” where the bubble formation
(rejoining) is completely suppressed. However in vitro studies need not contain the
SSB proteins and bubbles (denatured regions) can form anywhere along the strands
due to thermal fluctuations. This is realized in the “b-model” (see e.g. Figs. 2.2 and
2.3).

Throughout all the calculations 	 ��	 � and therefore all the thermodynamic prop-
erties of the systems depend on the temperature � � � ��� and on the force

�
. The
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free energy per monomer ����� � &
� � , is

� ��� � &
� � � � �

� �
� � � � *  � � � � � � �!�  (2.2)

where the sum is over all the possible pairs of N-step � ��� ’s � � and � � . The phase
diagram can be studied by looking at the average fraction number of contacts[56]

�

and at the z-component of the average end point separation ) � � * defined as:

�
� ) � � *
� � �

�� 	 � � & ) � � * � �� � ��� � � ��� (2.3)

In the denaturated regime
�

should vanish whereas it should be nonzero in the zipped
phase. To compute averages, for fixed values of

�
and � , Monte-Carlo simulations

of the model have been performed by a Metropolis based hybrid algorithm[75, 76]
that consists of local and global (pivot moves) deformations attempted on each strand
of the polymer. In addition a move that tries to interchange the position of pairs of
zipped (or unzipped) portions of the double chain had been considered.

While, as it is defined, the b-model with complete self-avoidance in ����� can be
approached only by means of numerical schemes, we can define a simplified model,
in which mutual avoidance is still worked out exactly, but self-avoidance is only ac-
counted for partially. In this model the two strands of DNA are modelled by two
directed self and mutually avoiding walks (see next Section and Fig. 2.3). This sim-
plified model has the virtue of being solvable exactly. The main features of the SAW
model introduced here will be shown to be present also in the simplified model. hence
we will thus consider it as our guide model in order to derive results explicitly. Dis-
cussions will follow after each of the results to assert their limits of validity. Results
for the SAW model will be given only when different than those for the simplified
model.

So in the next Section we will find the exact phase diagram in the directed walk
case. We will find that the equilibrium phase diagram displays a re-entrant region
at low � : for a finite range of forces the molecule gets unzipped by decreasing the
temperature. A simple and general physical reason for this counterintuitive feature
of our results will be given. The dynamics of both the b- and the Y-models in the
various phases and on the phase boundary are then studied, in the next section, by
starting from a non-equilibrium bound state as the initial condition. By using Monte-
Carlo dynamics, we find that in all regimes above or on the phase boundary, the time
evolutions of the order parameters follow dynamical scaling laws. The basic features
of both statics and dynamics are maintained for any � . Exceptions occur for the b-
model and are noted below.
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Figure 2.3: The figure shows a typical configuration of the two strands in the directed
walk model. Denaturation bubbles are shown, together with the definition of the
quantity � (number of liberated monomers) and 	 (open end distance).

2.2.1 Statics

We now derive the solution for the model with directed self-avoiding walks shown
in Fig. 2.3. We consider the � � � case for simplicity. Generalizations to � � �
are easy and will be discussed below. In � � � on the square lattice (see Fig. 2.3),
the two walks are forced to follow the positive direction of the diagonal axis � � & ���
(i.e. the coordinate along this direction always increases). The force acts along the
transverse � � � & ��� direction (the 	 -direction). By measuring the 	 separation in unit
of the elementary square diagonal, we say as in Eq. 2.1 that two complementary
monomers are in contact when 	 � � (recall that a binding energy � � is gained
for each contact). Due to the geometrical properties of the lattice, all these contacts
contributing to the energy involve monomers labelled by the same base pair index, as
one would require for base pairing in DNA.

The partition function of the two � -step chains, one starting at � � & ��� and the other
at � � & � � , at temperature � � � ��� (with the Boltzmann constant � � � ��� and under
a force

�
is ��� � � &

� � � ( ��� � ����� 	 � ���� � � � 	 � , where ��� � 	 � represents the fixed
distance partition function, i.e., the sum over all interacting pairs of directed chains
whose last monomers are at distance 	 . The model can be asymptotically solved
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by locating the singularity closest to the origin of its related generating (or grand
partition) function[69, 77, 78] (see also Chapter 1):

� ��� & � &
� � � �*

�
� � �

� ��� � � &
� � & (2.4)

where � is the fugacity.
The quantity ��� � 	 � in the b-model is seen to obey the recursion relation:

��� � � � 	 � ��� � ��� � 	 � 	 ��� � 	 	 ��� 	 ��� � 	 � ������� � 
	 � ��� # � � � 	 �
� & (2.5)

together with the boundary conditions:

����� � � � � � � & (2.6)

� ��� 	 � � # � � � � (2.7)

In order to find the two competing singularities of the grand partition function, it
proves useful to define the generating function of � � � 	 � , i.e.:

� � 	 &�� � � �*
� � � ��� �

	 � � � (2.8)

From Eq. 2.5, one finds that � � 	 & � � obeys the following equations:

� � 	 & � � � # � � � 	 � � � 
	 � ��� # � � � 	 � � � � � � 	 & � � 	 � � 	 	 � & � � 	 � � 	 � � &�� ��� � (2.9)

One can solve Eq. 2.9, by the following ansatz on � � 	 &�� � :
� � 	 &�� � � � � � � �+� � � � & (2.10)

with
� � � � and � � � � to be determined starting from Eq. 2.9. One obtains two condi-

tions from Eq. 2.9, respectively when 	 � � and when 	 � � . These allow one to
solve for

� � � � and � � � � , finding in this way:

�+� � � � � � � � �� � � � �� � (2.11)

� � � � � �

� � � � �  	 � � 	 � � � ����� � (2.12)

One can then insert the explicit form of � � 	 &�� � into Eq. 2.4 and find the explicit value
of the grand partition function,

� ��� & � &
� � . In particular one can find the two com-

peting singularities of
� ��� & � &

� � , which allows an asymptotic solution of the directed
walks model. The first such singularity reads:

� � ��� � �  � 	 � � 	  � 	 & (2.13)
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Figure 2.4: Phase diagram of the exactly solvable directed walk model. It is also
a good schematic phase diagram for the more complicated SAW model, in that the
general features are retained.

and depends only on � , while the second one is found to be:

� � � �
� � � 	 � � / � � � � ��� (2.14)

and also depends on the external force.
When the smallest singularity is the latter, the molecule is in the unzipped phase,

otherwise it is in the zipped phase. By equating these two singularities we get the
critical line,

� � � � � , separating the two phases. For the b-model one obtains
� � � � � �

� � � / � ��� � �+� � � � � � , with �+� � � � �
	 � � � � � (see Fig. 2.4). For the Y model, we get a
similar

� � � � � but with �+� � � �  	 .
For both the models, the critical force at � � � is

� � � � . There is a maximum
threshold

���
such that for

�
�
���

the system is always in the unzipped state. For the
b-model, � � � ����	� � � � and

��� � �
� � � ����� 	�� � � , while � � � ����	� � and
��� � � � � � � � � ��� � �

for the Y-model. The average fraction of contacts is zero when
�
�
� � � � � , but non-

zero for
� � � � � � � .

Two other quantities of interest are the average open-end-separation ) 	 * � � ��
���� 	�� ,
and the average number of “liberated” monomers (i.e. from the last contact to the
end), � (See Fig.1a.). Both these quantities take nonzero values only for

�
�
� � � � � .
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The transition line is first order everywhere for both the models except for the b-model
at

� � � � � � � in ��� ��� �
: this can be seen by noticing that the average number

of contacts on the transition line is finite in all but these cases. For
� �

�
�
�
� �

the usual zipping transition is present but if the temperature is still lowered the two
strands cleave again through a “cold unzipping”.From the free energy of the exactly
solvable model, one finds that the average number of liberated monomers, � , and 	
both diverge near criticality like[16]:

) 	 * � ) � * � �� � � � & (2.15)

so suggesting that ) � * 	 � and ) 	 * 	 � are scaling functions of the argument � � � � � � � .
The above models and exact results are useful to understand reentrance in a more

general and model independent way. Let us consider a dominant low � configuration
of DNA where only the first � � � monomers are zipped and the remaining are
completely stretched by the force

�
.

The free energy of this dominant configuration is simply:

� � � & �3� � � � � � � 	 � � � � ��� � � � � � � � � � � & (2.16)

where � is the entropy per bounded unit and � � � in our model. The minimum of
the free energy switches from � � � (completely zipped) to � � � (completely
unzipped) when the force crosses the critical threshold

� � � � � 	 � � ��	 � : this is the
phase boundary at low � which shows the emergence of reentrance. This argument
is intuitively appealing and clarifies that reentrance is due to the entropy loss that the
DNA strands undergo during the unzipping at low � : in this regime they denature
from a double-stranded self-avoiding walk with extensive entropy into two single-
stranded stretched walk which at low � basically have entropy � . At higher � , on the
other hand, the two single strands gain mobility and after a crossover � their entropy
exceeds that of the single double stranded self-avoiding walk. At the same time, the
simplicity of the argument suggests that reentrance is model independent being due to
the entropy loss discussed above. When comparing with realistic DNA experiments,
however, we should point out that the value of � is far from being universal, rather it
depends on the stiffness of the double stranded DNA, which in order to mimic the real
situation should be much higher than that of the single-stranded DNA. This fact might
confine reentrance to regimes which are not accessible experimentally: In other words
the effect is theoretically present and robust to model details, while the ratio � 	 � � up
to which it persists is extremely sensitive to all details. To give an idea of the typical
values, if we call � �����

the temperature at which
� � � � � attains its maximum value,
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we have � ����� 	 � � � ��� ��� ��� � according to the relative stiffness of single-stranded
and double-stranded DNAs with the directed walk model, while the ratio is slightly
higher for the undirected SAW model in Fig. 2.2 (around ��� � � ��� � ). This argument
thus suggests that with a proper choice of solvent and double stranded polymers, this
reentrance should be observable.

Note that in the continuum approximation of Refs.[16, 17, 61] this effect is not
found since the validity of those continuum models does not extend to the low temper-
ature regime. This is due to the fact that two gaussian chains at high force poorly rep-
resent two DNA strands under large tension, because the Gaussian chain bonds are in-
finitely extendible. Two FJC’s (see Chapter 1) are a better choice and they do show the
correct low � behaviour, namely that

� � increases with � as � 0 � . Remarkably, the
reentrance character is even more enhanced and one finds

� � � � � � � � � � � � � � � � � �
for � 0 � . The most realistic model would however consider each of the two strands
as a semiflexible polymer, which could be done by modelling each of the strands by
a worm-like chain. On the one hand, it is clear from what we have said that the crit-
ical force will again rise at low � . Though one cannot solve this model unless with
drastic mean field approximations, it can be found that the exact low � behaviour for
two WLC’s is different than that of the two FJC’s: this time one obtains a still steeper
increase and

� � � � � � � � � � � � � ��� � .

2.2.2 Dynamics

We now consider the dynamics of the b-model and the Y-model. In both cases, we
start from a non-equilibrium initial condition with the two chains zipped in a zig-zag
configuration (as at zero temperature), and let the system evolve at a temperature �
and under a force

�
, with � and

�
chosen so that the equilibrium state is either on or

above the phase boundary. Let us first consider the two-dimensional case. The five
regimes considered are marked A-E in Fig. 1b. Numerically, a Monte-Carlo dynamics
with one-bead local move (discretized Rouse model) is used to monitor the time evo-
lution of � and 	 previously introduced. We accept or reject the moves according to
a probability given by the Boltzmann factor as in the standard Metropolis algorithm.
We reject configurations where the strands cross. In the Y-model, recombination of
the unzipped part is not allowed.
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In all cases we find the following dynamical scaling laws to hold good[79]

� � � � ���  �
�
� � �
� � � � � � � � & � � � �

� �� � � & (2.17)

	 � � � � 	 � � � ��� ��
�
� � �
� � � � � � � � & � � � � � �� � � & (2.18)

(omitting the average signs for simplicity of notation). Here � is the length of each
chain and

�
� � � are two scaling functions. Eqs. (2.17,2.18) also define the exponents

� � � � and � � � � for the two variables with � � � � describing the early time evolution away
from saturations. Note that � � � � can be obtained through equilibrium considerations as
one requires � � � � � �  � and 	 � � � � �  � for ��0 2 . The crossover to the equilibrium
behavior is described by the “dynamic” exponents � � � � .

The exponents are obtained from simulations by collapsing (see Fig. 2.5) the
Monte-Carlo data according to Eqs.(2.17,2.18)[80]. The results are summarized in
Table I.

The dynamics displays two different time scales mirrored in the difference of the
exponents � � � � in regimes A and C. One time scale ( � � � � � ) quantifies the time
necessary for the unbinding (or unzipping) of the bases while the other ( � � � � � )
gives the time needed to open (and to stretch whenever

� �
� � ) the two chains up to

their equilibrium open-end-separation. At � � ��� the two processes are virtually the
same, because the unbinding (or unzipping) is dragged by the stretching. However,
above � � , the processes decouple and the unbinding gets faster, being controlled by
the temperature, yielding � � � � � . Furthermore, in the numerical calculations we
found large sample-to-sample fluctuations, thereby requiring a huge number of runs
( � ��� � ) to reduce statistical fluctuations in � ��� � and 	 � � � . This is due to the long
time correlation that exists in the system, which keeps samples with different initial
histories far apart for any � . Apart from these general considerations, it is possible to
explain the exponents for the Y-model found numerically.

Regime A:
� � � , � � � � : Above the critical temperature the dominance of the

entropy implies that at every time step one base pair breaks, yielding a linear behavior
with � � � � and � � � � . Also 	 ��� � tends to increase, up to its equilibrium value � �
(a fact reflected in the upward derivative at 	 � � of the equilibrium probability
distribution). This suggests that the dynamics of this quantity should be in the same
universality class of the one-dimensional Kardar-Parisi-Zhang equation[79], and so

� � � �
	 � , � � � �
	 � , and � � ��� 	 � .
Regime B:

� � � , � � � � : In this regime � � � �� � � ���� because at criticality
the probabilities to increase and to decrease � are expected to be equal, so that �
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performs, roughly speaking, a random walk in time with reflecting boundaries at � �
� & � . Also for the open-end-separation, steps toward larger or smaller values of 	 are
equally probable, and therefore the time evolution of 	 should be in the universality
class of the one-dimensional Edward-Wilkinson equation[79]. Hence, � � � �� and

� � ��� .
Regime C:

�
� � , � � � � : The strands tend to stretch along the direction of

the pulling force. However, once we have pulled the two chains up to an open-end-
separation 	 , to increase 	 further by one unit we first need to move all the stretched
part, which would take a time typically of order 	 . In other words, one has 	 � � 	 � � � �	 � � � 	 ���� and we expect the dynamical exponent � � to be �� ( � � � � as before and
� � � � � � ).

Regime D: � � � � ,
�
�
� � � � � : Here the only microscopic mechanism for open-

ing the fork is through the applied force: the strands must stretch completely in the
vicinity of the bifurcation point and only at this point will the fork liberate one more
monomer. Thus, 	 � � , and, using arguments as done for regime � , � � � � � �� ,
� � � � � � . In ref.[60] it was found, in a mean field approach for a model resembling
our Y-model, that the time necessary to unzip the two strands completely is of the
order of � � . This is consistent with our analysis, but works only in this regime.

Regime E: � � � � ,
� � � � � � � : On the phase boundary, one expects that the

cost for unzipping and zipping is the same (the equilibrium probability distribution of
having � monomers unzipped or an open-end-separation equal to 	 is flat), so that	 � � 	 � � � � 	 � � � � ���� with equal probability. Therefore, the open-end-separation makes
a random walk in the rescaled time

�� so that 	 � � �� � �� implying � � � � � �� . Moreover,
� � � � � � since at coexistence there is a finite fraction of liberated monomers. Another
way of obtaining � � � �� is to demand that a kink liberated at the fork needs to diffuse
out of the end before the next one is released. In other words, the rate of change of
� is determined by the diffusion of a kink over a distance � . The latter time-scale
being of order � � � , we expect � � 	 � � � � � � which gives � � �

�� .
Turning to the b-model with bubbles, the dynamical exponents in regimes B, E

and D with � � � � are the same as found in the Y-model. This establishes that at
� � � � not only for statics, as we saw previously, but also for the dynamics, bubbles
are not relevant in the scaling properties. At �

�
� � , on the other hand, the opening

of bubbles heavily affects the base unpairing process, unlike the Y-model case where
bubbles are forbidden1. The length of the unzipped part in the present case now can
change by

� � � � � , where � � � � is the typical length of bubbles, and the motion of the
fork point can by no means be approximated by a simple random walk ( and so � �

1Regime � is a borderline case: bubbles heavily affect the evaluation of � but do not change �	� .
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 �� � �  � � � � � � � � � � � ������ � � � � 	 � � 	 � �
	 ����  � ��	 � � 	 � � 	 � � 	 � �
	 ��
���

&� � � �
	 � � 	 � � �
	 �
� ��� � � � � � �
	 �

�
���

&� � � �
	 � � � �
	 �
� ���

&� � � �
	 � � � �
	 �
Table 2.1: ”Dynamic” and equilibrium exponents for the Y-model (Y) and the b-
model with bubbles (b) as defined in Eqs.(2.17, 2.18). The regimes A,B,C,D and E
are those shown in Fig.1.

changes as shown in Table I). The quantity 	 � � � instead has a dynamics in the b-model
similar to the fork case and indeed � � is the same for both the models in all regimes.
We show in Fig. 2.5 the collapse leading to � � � �� in regime

�
.

An important question is the dependence of our results on dimensionality (let us
consider only � � for simplicity). As for the Y-model, the arguments we gave above
for � � for regimes A-E suggest that there be no � -dependence. For the b-model,
instead, the � -independence should be true only in regimes D and E for � � � � ,
where the Y-model gives the exact result; at �

�
��� , on the other hand, bubbles

play a dominant role and so we expect a dependence on � . We confirmed this picture
with some calculations on a simpler model which should be in the same universality
class of the one under study: that of a single random walk, pinned at the origin by
an attractive interaction and subject to a stretching external force. In this system � is
defined as the number of monomers from the last visit to the origin to the end of the
walk. For � � � � , in regimes

�
and � , our calculations show that the exponent � �

increases as dimension increases, and we conjecture that in these regimes:

� � �
�
�

� � � & (2.19)

� � �
�
�
	 ��
 � � � � �� � �  � � ��� ��� � ��� & (2.20)

� � �
�
�

�
� ��� (2.21)

Just at criticality at zero force, instead, we find that the exponent � � is very close to
�� in any � . The emerging picture of robust results for � � � � and model-dependent
dynamics for �

�
� � would be preserved even if, in the original models, the direct-
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Figure 2.5: Plot of
��� ���� vs

�
���� for various values of � (regime A, b-model): the

collapse of all curves indicates that � � � � , � � � �
� and � � � �� .

edness constraint is relaxed (as for the statics). In particular in regimes
�

and � with
SAWs we get that � � is slightly bigger than � , whereas in � � � we find � � � � 	 � ,
but in that case local moves are known not to be ergodic (the chains may get trapped)
even for a single SAW so this could render the evaluation of the exponents less easy.

The arguments presented so far could be generalized to add other ingredients of
dynamics also. An example is the nonlocal effects in dynamics, as is the case e.g. in
the Zimm model. In ref.[60], the author suggests that, in the regime we call � , in the
mean field approximation, non-locality could speed up the opening so that � � � � would
be ��

��� instead of �� ( � is the exponent characterizing the length dependence of the
mobility as defined, e.g., for the Zimm model, see [60] for the notation and [41] for a
review). In regime

�
, we can combine our arguments with the same reasoning to get

� � � � � � �� ��� . As we expect, the Rouse model results are obtained with � � � .

2.3 Unzipping random DNAs: the effect of disorder

The above analysis can be extended to binary disorder in the contact potential, which
is of course a realistic feature to be included in the model, i.e. the energy of the contact
of the � -th base may be 	 � � 	 	
	 �

, 	 �
being a random variable with binary distribu-

tion (equal to
� 	 ) and zero mean. The Y-model offers a good starting point for the

study of the effects of heterogeneity, because the critical line of the quenched model
can be proved to be the same as that of the pure model with energy 	 . By quenched



46 Statics and dynamics of DNA unzipping

disorder we mean that in principle the free energy should be obtained as follows: first
it should be calculated as

� � ��� , if � is the partition function, for all realizations of the
binary disorder, and only at this level can the average over the sequence distribution
probability be taken. This is contrasted to the annealed average, in which the averag-
ing is done at the level of the partition function, so that the logarithm of the average of� is taken instead of the average of the logarithm of � . Of course quenched averages
are the most difficult to perform, whereas the annealed system is virtually equivalent
in its properties to the pure system.

A model analogous to our Y model was proposed in Ref. [17], where the scaling
analysis of Eq. 2.15 was generalized to consider sequence quenched disorder. It was
found that Eq. 2.15 generalizes to:

) � * � ) 	 * � �
� � � � � � � & (2.22)

as
� 0 � �� . This can be understood as done in Ref. [17, 65] in a simple way. If

we call � � � � the free energy density of a configuration with � (out of � ) unzipped
monomers, then within the Y model (we expect this to be true also in the b-model
sufficiently below the melting region) one has:

� ��� � � � � �
� � �*
� �

�
	 � � �

� 	 � � � � � 	� 	
� � � � � � 	 ��� / � �

�
� � � 	 � � � � � (2.23)

where we take 	 �
’s to be uncorrelated. Now, the partition function � is found via� � � � �  ��� ����� ��� . One can see that in � � � � � appears in the combination

� � � � � � � , near
� � � � . So if 	 � � � for every � we recover Eq. 2.15. Now, with

sequence heterogeneity, the typical random contribution to � � � � is of order � 	 � ;
the random part exceeds the average contribution � � � � � � � for � �� 	� � � � � � � , which
is a length scale which diverges more rapidly than �
	 � � � � � � , suggesting that there
should be a crossover to the scaling in Eq. 2.22 for

� � � � � 	 	 � .
We now come to the role of randomness on the dynamics. We expect on general

grounds that
� � � & � � , the probability of having � monomers unzipped at time � , will

obey a master equation with transition rates
��
 � � depending on the realization of

disorder, i.e. we expect that
��
 � � ( � � �� �� 	 �������������� & ��� , where from Eq. 2.23

� �  � � � � � � 	 	 �� �� 	��� �
� � � � � 	 ��� / � � �� � � 2, which can be seen to consist of a

2At  �!#" , $&%('�)+*-,/.'0, displays also a subleading (for large � ) entropic contribution which in1 !32 is 4 �5 , . This should not affect the mapping proposed in the text except perhaps just at the
critical temperature 6 , .
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Figure 2.6: Plots of the phase diagram for homo-DNA (top) made up of the more
attractive base ( 	 � � 	 � ), and for the annealed (middle) and quenched (bottom) dis-
ordered models. The numbers refer to the values of the exponent � � in the various
regions of the phase diagram, which we believe to hold on the basis of the mapping
onto Temkin’s model. Note that above the annealed critical line at � � � � and ev-
erywhere at � � ��� the pure system results are recovered. Interestingly, the annealed
line does not show the re-entrant behavior found in Section II and in the quenched sys-
tem. “?” indicates the regime where we do not have numerical evidence in support of
our results. We took 	 � � � � � and 	 � � ��� � in the calculations.

zero-mean random “noise” ( 	 �� �� ) plus a “bias”. We thus believe that the dynamics
of the Y-model can be mapped onto Temkin’s model of a random walker in a random
environment [47] (provided that at � � � � we rescale time as described above in
regimes � and

�
), so that, following Ref. [81], there will be a region around the

critical line, at � � � � , in which � & 	�� �
�
� (and just on the critical line at

� �
� �

one has � & 	 � � � � � � �� � � � ). The quantities � & 	 are now quenched averages over
realizations of disorder.

The scenario we propose is sketched in Fig. 2.6. The curve bounding the region
where, at � � � � , disorder should be important for the dynamics has been found by
applying the criterion of Ref. [81] to the system with the above transition rates. This
curve coincides with the critical line of the static model with annealed disordered.
Runs at very low � suggest that as � 0 � , for a given realization of disorder and with
any force between 	 � and 	 � (the two binding energies), the unzipping will take place
as far as the first more attractive base pair is found. Besides, the probability that the
monomer of index � � will ever be unzipped decays exponentially:

� � � � ��( � � � �
.

This is consistent with the mapping suggested above.

So far, we have considered the effects of randomness on scaling properties: the
fact that base pair heterogeneity can in some instances change the critical behaviour
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of this single molecule phase transition is certainly interesting for a theoretical physi-
cists, and can also lead to new experiments aiming at confirming the values of all
the exponents predicted here. We should not forget, however, what the original aim
of biophysicists was when proposing single molecule DNA unzipping experiments:
that of sequencing a DNA by looking at the features of the force versus displace-
ment curves. In order to make our models apter to study the theoretical feasibility
of this project, it would be necessary to work in the ensemble conjugate to the fixed
force ensemble in which we are now considering. This would create some technical
problems because Monte-Carlo simulations with constraints are very hard to perform.
Moreover, the two ensembles are equivalent in the thermodynamic limit, but for finite
DNAs with single realizations of disorder (i.e. no quenched averaging) the force vs.
x curves are highly different[22, 65]. A good basis to start working on the feasibility
of sequencing DNA is to consider the b-model in Fig. 2.3 for which exact transfer
matrix methods can be used (see Fig. 2.7). This model was used in Ref. [22] to
verify the feasibility of a) mutation detection, b) sequence determination from the
unzipping force on a theoretical level, i.e. neglecting other difficulties coming from
the experimental setup as those discussed in Ref. [21]. The analysis in Ref. [22]
was also confined to the case in which dynamics effects (important in the analysis in
Ref. [23]) are not an issue. The numbers coming from this model suggest that the
detectability of a point mutation would be possible in principle with present day tech-
nology if the point mutation is sufficiently near the point we are unzipping at, whereas
if it is far apart the point we start the unzipping, the entropy of the single strands ren-
ders the identification not reliable. Other factors limiting resolution are chain length
and temperature or pH. The situation for sequencing is very different: even neglect-
ing the apparatus, the conditions for complete sequencing with present-day reachable
resolution suggested that it would be possible in principle only for unrealistically
short chains or low temperatures. Nevertheless, in very beautiful experiments such as
that in Refs. [20, 7] cited above, coarse-grained information about the local sequence
(CG-vs-AT content), are possible, and base pairing of patches of ten bases or so might
be recognizable in the near future.

���������������������������

We close this Chapter by highlighting a possible relevancy to the biology of DNA
replication of our results on the unzipping dynamics. The observed power-law and
scaling behaviours in Eqs.(2.17,2.18), imply that in our model there is scale invari-
ance. As it is generally accepted[79], this could be due to the presence of strong
temperature driven fluctuations or of long range time correlations (necessary to build
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Figure 2.7: The force vs stretching distance curves for heterogeneous DNAs (b-
model). The sequences are chosen randomly but both share the same sequence ( � �����
	 ’s) from the open, pulled end. For the fixed stretch ensemble, curves (a) and (b), the
pattern is identical over a region of 	 . Curve (c) is the fixed force ensemble phase
coexistence curve with finite-size effect.

up a cooperative mechanism) in the unzipping. In a replication process, it is expected
that fluctuations in unzipping, after its initiation at the origin (Step I), would affect
the binding of the next set of proteins (Step II). A proper theory, so far lacking, needs
to couple these two steps. We note that the difference in the dynamical scaling at
the thermal denaturation point and on the unzipping phase boundary can in principle
provide a natural selection mechanism on the basis of which Step II might not initiate
a replication after an occasional zero-force fluctuation induced bubble formation, but
would rather wait for the correct force-induced unzipping to start. However, at this
point, this remains speculative.





Chapter 3

Stretching of a polymer below the
�

point

In this Chapter, we study a physical phenomena which intuitively looked very similar
to DNA unzipping, namely the force-induced unfolding of proteins or homopolymeric
collapsed chains (below the

�
point, or in a bad solvent). Also the first treatments

of these subjects (see Refs. [82, 83, 84]) were based on a mean field like description
and a first order phase transition was predicted together with a general phenomenol-
ogy (e.g. � independence) similar in many aspects to that detailed in the preceding
Chapter. We show here that mean field is for several aspects a poor approximation to
the present phenomena. Other more experiment oriented theoretical papers have also
been written recently[85, 86].

We begin the Chapter by discussing the experimental and theoretical knowledge
from existing literature and the open questions. The following Sections are then
mainly focused on two theoretical models aimed at understanding the unfolding be-
haviour of polymers in a poor[40, 87] solvent (globules), i.e. below the theta temper-
ature, � � . One is the familiar model for � transition in � � � on the lattice, where
a lot is known when there is no force. The main reason for restricting to the lattice
is the wealth of exact numerical methods which can be used in this case. The other
model is that of a self-avoiding chain in the three-dimensional continuum space sub-
ject to a homopolymeric attractive potential and to a stretching force. For both the
models, we will first study the ground states, then go into the thermodynamic proper-
ties. Finally, we discuss the behaviour of heteropolymers, which better mimic protein
stretching experiments, and we comment on the dynamical behaviour, highlighting
which differences and similarities with DNA unzipping we expect here.
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3.1 Experimental and theoretical knowledge

Unlike for DNA unzipping, the response to stretch of homopolymers in a poor solvent
is relevant also to real experiments. For example in case one wants to describe the
stretching of collapsed DNA molecules[13], and of other polymeric globules such as
those studied in the experiment of Ref.[14], one can restrict a realistic model to one in
which the interactions between monomers are all the same. In order to study protein
unfolding, on the other hand, such as the problems arising from titin stretching[11]
the heteropolymeric nature of polypeptides is vital and has to be taken into account.
This will be discussed at the end of the Chapter.

There is a vast number of experimental results in the literature. In particular, var-
ious force vs elongation (

�
vs 	 ) curves have been recorded in experiments studying

stretching phenomena in a poor solvent [13, 14]. We stress once more (see also pre-
ceding Chapter) that in a typical experiment the end-to-end distance is controlled, and
the average force needed to do so is measured, so that the natural ensemble in which
to do calculations would be the fixed stretch ensemble.

In most cases a curve consisting of three distinct regimes (namely first linear re-
sponse for low stretches, then a characteristic plateau for intermediate stretch[13, 14],
and finally a sharp increase when the contour length of the polymer is approached)
have been observed (see e.g. the DNA chain response in Fig. 3.1a). In a few ex-
amples, for somewhat shorter DNA molecules, a stick-release pattern with hysteresis
has been found (see Fig. 3.1b, curve B). Other, still different curves, with only the
linear response followed by the plateau, have also been reported, but occurred less
frequently (see Ref. [13] for details).

The first observation is in good agreement with the mean field theory proposed
in Ref.[82], and the plateau strongly suggests the presence of a first order phase tran-
sition (see also the recent measurements in [14]). In the plateau region, the typical
configuration in the thermodynamic limit in the experiment ensemble is constituted
by two stretched chains of variable extension with a globule in the middle.

Our results suggest that there might be more than one possible shape for the
�

vs. 	 curves according to � , the spatial dimension and to polymer length, so that a
different behaviour occurs when mean field theory1 is qualitatively incorrect.

It is to be noted that the study of these models has a remarkable interest even
on a purely theoretical ground. First, the numerical study recently performed in Ref.

1Note that we use ‘mean field theory’ in a broader sense, including approaches which consider the
relative stability of the globule and the coil only (see also [84]). Mean field theories should be all
equivalent as regards universality.
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Figure 3.1: (Left) Response of single � phage DNA molecules to an applied force
with condensing concentrations of the trivalent cations CoHex and spermidine, taken
from Ref. [13]. The unstretched molecule is thus in its collapsed state, and one can
see that the force vs. extension curves display a plateau for 	 � ��� � � � � M in
good agreement with mean field theory. The curve for the uncondensed molecule
(background buffer) is also shown for comparison. (Right) Curves obtained when
stretching plasmid-length DNA. The spermidine concentration for curves B and C
is � � ��� � M, from Ref. [13]. (A) Uncondensed molecule force-extension curves
(WLC like). Force-extension curves for condensed DNA molecules show two distinct
behaviors. (B) Most of the curves show a stick-release pattern. During the relaxing
phase, the DNA shows no stick-release behavior, but the F-x curve displays hysteresis.
(C) A few DNA tethers show a force plateau behavior during both stretch and release.
The F-x curve displays a plateau at a force of � ��� pN. This figure has been taken
from Ref. [13].
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[88] has suggested the possibility that the force-induced unfolding transition is second
order in � � � and first order in � � � . This has been confirmed to some extent in a
study of the model on a hierarchical lattice with fractal dimension two[89]. The ��� �
case is important as it is below the upper critical dimension for

�
collapse and mean

field predictions may well be incorrect. A thorough analysis and a clear physical
mechanism underlying the difference of the nature of the transition as � changes are
the first theoretically minded purpose of this Chapter.

Second, the mean field analysis of Ref.[84] has suggested there could be a re-
entrant region in the phase diagram for low temperature similar to what happens for
DNA unzipping as was explained in Chapter 2. However the exact results in[89] prove
mean field is not valid in � � � . Then, our other aim here is to describe theoretically
the unfolding transition of globules not relying on the mean field approximation.

In what follows, we first characterize the evolution of the ground states of a fi-
nite polymer as the pulling force increases. This will help to understand the ther-
modynamics. In particular, we compute the phase diagram in the temperature–force
� � &

� � -plane in � � � on the lattice, where we can use the transfer matrix method
(Fig. 3.4) together with exact enumerations (Fig. 3.2).

3.2 Ground states in ��� � and in ��� �
We begin by considering a self-avoiding walk (SAW) on the square lattice with fixed
origin. The model partition function (generating function) in the canonical ensemble
in which � and

�
, the stretching force, are fixed is:

� ��� � & � � � * �  � 	�� � � � � * 	 � 
 �� 
�� � &  � 
	 � 	 � � ����� � (3.1)

where � is the number of monomers (including the origin) of the SAW, � ���+� (re-
ferred to a configuration � , i.e. to a SAW) is the energy of a SAW,  is the number of
pairs of neighboring occupied sites not adjacent along the chain, � � �� is as usual the
inverse temperature, ��� 
�� � &� � is the number of configurations of a SAW with fixed
origin � and end-to-end distance � , of length � and  contacts,


 � is the projection
along the force direction ( 	 axis) of � . We take as usual both the Boltzmann constant
and 	 equal to one.

When � is low, one may look for the ground states among the rectangles of
sides � � and ��� that are completely covered by the SAW (in other words such that
� � ��� � � , where we neglect the small effects arising when this rectangle cannot
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be constructed with both � � � � integers). The energy of this rectangular Hamiltonian
walk with a non zero

�
is:

� � � � � � � ��� & � � � � � � � � � �� � 	 � 	 � � � � � ��� � (3.2)

The minimum of � � � & � � � for given � with respect to � � yields the most stable
configuration for various values of

�
. The minimum occurs for an

�
-dependent value

of � � � � �� � � &
� � , namely:

� �� � � &
� � � �

� � � � (3.3)

For any
� � � one thus has a compact configuration. However, when the critical

value
� � � (for � � � ) is reached all integer values of � � from � (stretched coil)

to � � � � ��� � (compact globule) become degenerate for large � . Note that this does
not hold in � � � where it is well known that there is a Rayleigh instability in the
thermodynamic limit[14, 82, 88]. This can be seen by comparing the globule energy
- which in ��� � is � � in the large � limit - with the energy of a parallelepiped, with
elongation along �� equal to � � and with edges � ��� � � in the perpendicular plane.
The force above which (for � � � ) the parallepiped is a better ground state than the
three-dimensional globule is � � � ( � � � � ��� � ), and there is no longer any degeneracy
at the critical force

� � ��� (at � � � ).
In Fig. 3.2a we sketch the situation in � � � . The minima hierarchy, shown

in the shaded area in the top panel, affects the low � region of the � 	 � (average
elongation) vs.

�
curves for finite length (bottom panel). However, only one transition

survives in the large � limit and represents a true phase transition (as represented
in Fig. 3.2a by the shaded wedge ending in just one point in the � ��� � � axis).
Similarly, when � is raised the multi-step character of the � 	 � vs.

�
curves is lost

due to fluctuations which blur the ground state dominance in the partition. In Fig.
3.2b we show the analogous picture for a � � � model discussed below. Short chains
in � � � and � behave similarly whereas in the infinite length limit the � � � -case
shows an abrupt unfolding transition.

Let us now discuss the � � � case. The model we used is the freely jointed chain
(FJC) (see e.g. [87, 41, 40]) in the continuum (off lattice). The FJC is subject to
a compacting pairwise attractive potential between non-consecutive beads and to a
stretching force �� at the extrema. The pairwise potential is chosen to be an asymmet-
ric square well with a hard core radius, � 
 � � , which acts between non-consecutive
beads along the chain, and an attraction range



� � �



� � , i.e. the distance up to
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Figure 3.2: a) � � � Schematic diagram of minima for polymers of different sizes
(top) and low � � 	 � vs.

�
curve for � � � � (bottom) found with exact enumera-

tions in � � � . b) d=3: Same as in a), except that the � 	 � vs.
�

curve (bottom) is
for � ����� and is found by simulated annealing.

which the particles interact. We have checked that the results reported in the follow-
ing do not appreciably depend on the two-body potential details. The parameters we
have used to generate the configurations shown in Fig. 3.2b (top panel) are



� � � ����	 ,


� � � � 	 where the unit length is the distance between successive beads along the
chain.

The ground states of short chains (up to � � ��� bead long) has been determined
by performing simulated annealing employing Monte-Carlo dynamical simulations.
The FJC is evolved dynamically by means of three sets of moves: the pivot, repta-
tion and crankshaft moves (see Appendix A and Ref. [43]). We lower � during the
simulation according to a standard annealing schedule as detailed in Chapter 1. We
found evidence also in this ��� � case that the unfolding of a finite length homopoly-
mer proceeds in a multistep fashion. The collapsed globule first orients itself along
the pulling force as soon as there is a nonzero

�
. At larger

�
the globule is slightly

elongated (much less than in the ��� � case) and after this a helix forms followed by
a zig-zag curve and finally by a stretched coil. This succession of minima, shown in
fig. 3.2b is intriguing for a two-fold reason: firstly because it suggests that helices,
one of the well known building block of proteins, come out rather naturally as one of
a few stable minima of a homopolymer in a poor solvent subject to a finite stretching
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force; secondly because the unfolding transition of a finite polymer in this model ap-
pears to be markedly different from a globule-to-coil (two-state) transition. The mean
field picture of an all or none transition is recovered for infinite length. The situation
is depicted in Fig. 3.2b. Since in � � � the transition is first order, the mean field
treatment is correct in the thermodynamic limit.

The fact that helices become better ground states than compact globules could be
easily verifiable in experiments made in the fixed force ensemble. These can now be
confidently performed, with not more substantial difficulties than the more conven-
tional ones, performed in the fixed stretch ensemble. Indeed the stick-release pattern
reported in Ref.[13] (Fig. 3.1b) shows several different peaks in the

�
vs. 	 curve,

and is compatible with a ‘multi-step transition’ in which the globule undergoes more
than one conformational changes (signalled by the peaks) during the unfolding. In-
triguingly, we recall that this pattern is reported for smaller polymers, a fact which
would be in agreements with our findings; whereas for large � this effect is much
less important and the curves have a single (dominant) plateau. In order to give this
observation a more quantitative basis, we have taken ��� points from the data in Fig.
3.1b (curve B) and calculated numerically the free energy as a function of 	 , � � 	 � , by
integrating the average force

� � 	 � , according to the well-known thermodynamic rela-
tion

� � 	 � � �	
� � � � �� � . The resulting free energy is shown in Fig. 3.3 and shows regions

of different convexity. From the free energy we can calculate the average elongation
vs. f curve, which we would obtain in our calculations. We do not know what value of
� is appropriate for the case at hand, but one can clearly see that when � is high and
entropy does not play too big a role, the ) 	 * vs

�
curve displays a distinct multi-step

behaviour. Though the agreement is only qualitative and the free energy obtained in
the experiment might not correspond to the equilibrium free energy but might rather
have dynamical effects in it, we consider the agreement with our picture remarkable.
In passing, we note that this also shows that the experimental fixed stretch ensemble
contains more information than the fixed force ensemble, as it would not have been
possible to re-obtain the fixed stretch ensemble force vs. 	 curve from our fixed force
results. This is completely analogous to what was observed in the previous Chapter.

Helices appear as ground states for a potential consisting of a force term and
a hydrophobic contact potential because they are both elongated and offer a good
shielding from the outside solvent to the monomers lying in its interior. Note also that
helices arise as optimal states of tubes of non-zero thickness subject to compaction
(see Ref. [90] and the second Part of this thesis). If a worm-like chain is used instead
of the FJC, the picture should not change, because the elongated states such as the
helices and the zig-zag are stiffer than the collapsed globule (sharp corners between



58 Stretching of a polymer below the
�

point

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

x µ m)

F
re

e 
en

er
gy

(1
0 

  p
J)

(

−
6

0 2 4 6 8 10
0

0.5

1

1.5

β=1
β=10
β=100

x
µ

m
)

(

f (pN)

Figure 3.3: a) (Left) Plot of the free energy � � 	 � as a function of the stretch for the
data of Fig. 3.1 b, curve B. b) (Right) Plot of ) 	 * (with same data) for various values
of � . For high � entropy is not important and the multi-step character inherent in the
experimental situation shows up. The solid line refers to the case � 0 2 .

successive monomers are necessary in this state) and so should be even more favoured
as
�

is increased.

3.3 Thermodynamic properties

We now turn to the thermodynamic behaviour of the SAW model on a square lattice.
We use the transfer matrix (TM) technique, following Refs.[91, 92, 93].

Let us introduce briefly the principal features of the TM approach: the partition
function of a polymer of � sites is given by Eq. (3.1), with

� � � . In the thermo-
dynamic limit ( � 0 2 ) we expect that � � � � � � � ��� � � � � , then the free energy per
monomer � is simply, � � � � � � � � � � � . It is more convenient[91] to introduce the
following generating function ( � is the step fugacity)

� � 
 � * �+� 	 �
� 
	 	 �� 
�� � &� � (3.4)

It is known that for � � � � � � � � �
	���� � � , the inverse SAW connectivity, � � 
 �
 ��� � � 
 � 	 � � � & � ��� , where � � � & � � is the correlation length and


 � is the projection
of � along 	 . We study the stretching of an interacting SAW in a strip of finite size
� along � and infinite length along 	 . It is possible to define[91] an � -dependent
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correlation length � ! � � & � � via the formula:

� ! � � & � � � � �� � � � ! � � & � � & (3.5)

where � ! � � & � � is the largest eigenvalue of the transfer matrix, that equals � at � �� �! � � � . We apply the phenomenological renormalization, to find successive estimates
for � � � � � � � � � !�� � � �! � � � . Including the force via Eq. (3.1), the equation for the
critical force

� � � � � is then ideally found via:� � � � � � � �� � � � � � � � � � �!�� �
� � � � ! � (3.6)

The order of the limits in Eq. (3.6) and a correct choice of the boundary conditions
(see below) are crucial. For example if we take

� � � !�� �
� � � � � ��� � � � � � � � � ! one would

trivially get
� � � � so that at any non-zero force the polymer would be stretched.

Similarly, from Ref. [40] one might be tempted to generalize the scaling behaviour
) 	 * � � ��� - ��� to collapsed polymers finding in this way again there is no finite force
collapsed phase. But this is not true for infinitely long collapsed polymers, as seen
e.g. in the experiments2.

In Fig. 3.4 the phase diagram for the stretched interacting SAW is shown. With
the TM, a right choice of the boundary conditions is needed[91, 92, 93]. We have
used both periodic (PBC) and free boundary conditions (FBC). PBC have been em-
ployed to get the best estimate of � � � � � through phenomenological renormalization.
This value is then used with FBC, to find the correct � -dependent critical eigenvalue

� ! � � � � � � & � � . Finally, adopting the extrapolation algorithm of [95],
� � � !�� � � ! � � � � � � & � �

is obtained which, through Eq. (3.6), allows to get the phase diagram. As expected, in
the case of FBC, there are oscillations in data going from odd � to even � . As usual
in this context, a separated analysis of even and odd � data was necessary for ob-
taining a better convergence (see Fig. 3.4). One point on the transition line obtained
previously in [88], is recovered here.

One can get an approximate description of the transition if one requires that the
globule and coil phases coexist. The globule free energy is easily estimated in terms

2In Ref. [94] it was also suggested that there is no transition as force increases, in a different model,
that of a directed self-avoiding walk in

1 ! 2 . This model is solvable with high precision with the
procedure used here for the undirected case. In our view, the result in Ref. [94] is due to numerical
errors which prevent the author from realizing that the  ! " singularity persists up to some  �� � " .
Indeed we have made extensive transfer matrix calculation (data not shown in the thesis) which fully
support our view that the critical fugacity is ���	�  ! "�
 and decreases only below  ���� 6
 , which can be
found analytically.
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Figure 3.4: Phase diagram for the stretching of a SAW on a � � -lattice, obtained with
the TM technique. Inset: plot of

� � � � vs.
� � � � for � � ��� � .

of Hamiltonian walks[87]. On a square lattice the energy is simply given by minus
the length of the polymer whereas the entropy is given in terms of the number of
Hamiltonian walks which grows exponentially with � [87]. Thus the globule free
energy per monomer is ��� � � ��� � � � � � ��	  � where we have used the accurate mean
field estimate of the entropy as given in [96]. The coil free energy � � is approximated
by that of an unconstrained random walk in presence of a pulling force and contacts
are neclected. We thus get � � � �

� � � � � � � 	 � � / � � � � ��� � . At coexistence one finds� � � � � � � ��� / � ��� � �  ��� � �
	 � � ��� � ��� (the continuos curve in Fig. 3.4).
We note that

� � � � � � � is the exact result and at low � the phase diagram displays
a reentrant region. As � 0 � � , � approaches � rather smoothly. We can give an
argument to predict the value of the exponent � defined via:� � � � � � � � � � � � � � 0 � � � (3.7)

The free energy � behaves, near the point � � � � & � � � � � , as:

� � � ��� -�� � � � � &
� 0 �

�
(3.8)

� � � � � � � � � � �
�
��� � � & (3.9)

where , � & � � & � are the critical exponents characterizing the
�

collapse. By matching
the two scaling laws one gets ��� -��

�
� �

� � �� � � � �
� , a value compatible with our data.

Within the TM approach one can also infer the order of the transition. To do this
we observe that, if for � 0 � � � � � � :

�+� � � � � � & � � � �+� � & � � � � � � � � � � � � 	 & (3.10)
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then 	 � � ( 	 � � ) means a second (first) order transition, as � 	 � � � � �
� � � �� ���

for
� � � � . Our data at not too low � are compatible with a second order transition

(inset of Fig. 3.4), with 	 � ����	 , though its evaluation is difficult with the data we
have. By noting that for an infinitely long stretched polymer with ) 	 * 	 � 0 � de
Gennes’s scaling must hold, so that ) 	 * 	 � � � � �

� � � ��� - � � � � ��� , we obtain that 	 is
the critical exponent of the polymer at the critical force below the

�
point. This is

particularly interesting because it implies that 	 is a new critical index of a polymer,
to be added to the ones already known. It is most easily seen as a generalization of
, � at non-zero force: at � � � � the polymer is neither compact nor swollen, here at� � below � � it is neither open nor compact (as from our numerics we get 	 � ��� � ).
Of course for � � � or at � � � one has coexistence due to the first order transition
and thus 	 � � .

Inspired by the encouraging result obtained by exact renormalization group (RG)
on the Sierpinski lattices in Ref. [89], we now give an argument which aims at ex-
plaining in a theoretical way the reason of the change in character of the transition
from ��� � to ����� . We can obtain the approximate RG equation in � � dimensional
lattices, in a way similar to the one outlined in Chapter 1, though here the situation is
more cumbersome, having to deal with an interacting SAW. We defer to Ref. [98] for
the detailed derivation which here we skip. The RG recursions relations can be writ-
ten for the generating function representing polymers traversing a hypercube of linear
size � once,

�
, and �  ��� -times,

�
(Fig. 3). The terms

�
and

�
represent parts of the

chain which are in the coil and globular state respectively. The recursion relations can
be calculated as in Ref.[97] or by enumerating the SAWs on � � � or � � � � � cells
as in [98]. To leading order in

�
at � �� � � � �

� � � � � 	 � � � � � �
� �

&
�
� � � � � �

� � � & (3.11)

where � � � � and � � � � are � � dependent constants. There are three fixed points in the

flux in Eq. 3.11:
�
� � ,

�
�
�
� � � � � � � �

� � � � corresponds to the globular phase,
� � &
�

��� � � & � � to the coil phase, while the last non-trivial fixed point
�
�
� � �

��
� � �  � � ��� � � ,

�
�
�
�

characterizes the unfolding transition. Wee display in Fig. 3.6
the flux of the equations in Eq. 3.11 in ����� .

The value of the term �!� � � affects the behaviour of the RSRG flux near the fixed
point � � � &

�
� � . One can see3 that �!� � � �

� � if � � � and is � in � � � . When
� � � � �� � (i.e. in ��� � ), the RG flux is smooth near � � � &

�
� � and the critical fugacity

3These facts can be proved exactly in a family of Sierpinski gaskets (see [89] for an example),
where

1
is the fractal dimension. On conventional lattices, an approximate RG treatment as in [98]

gives qualitatively the same behaviour.
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Figure 3.6: Plot of the flux lines resulting from the simplified RG equations in Eq.
3.11

near
� � � � � � � behaves as � � � � � � � � & � ��� � � � � & � � � � � � � � � � � � � signalling a second

order transition with 	 � �
	 � in Eq.3.10. On the other hand when � � � ��� � (i.e.
� � � ), the transition is first order and two-state like. The presence of the mixed term
in Eq. (3.11) is crucial and enhances the entropy of the coil phase since it contributes
to
� � . Consequently, the � � � two-state approximation in Fig. 3.4 gives a transition

line which is higher than the numerical result for � �
� � � � � . The entropy gain in

the stretched coil, as � 0 � , is hampered as it costs a finite surface energy (dominant
as � 0 � ) to change locally an elongated globular region into a coil and vice-versa.
This is why the solid curve in Fig. 2 matches our numerics as � 0 � .

In particular, by taking into account all the hierarchy of stretched states (shaded
region in Fig. 3.2a), we find that the �10 � limit of the critical force is given by
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�����	��
 �  , where � � � � and � � � �� ! are the connective

constants of the Hamiltonian walks without constraints and confined in a strip of
length � respectively. Our � 0 � limit in Fig. 3.4 takes into account the terms up to
� � � and so is strictly speaking an upper bound to the real � 0 � slope.

3.4 Sequence specificity, proteins & dynamics

Up to this point, the discussion was valid for homopolymers such as the DNA molecules
of Fig. 3.1. If we consider real proteins, then this is no longer a good approximation
and one needs to introduce heteropolymer models. The simplest would be one in
which monomers can be either hydrophopic (H) or polar (P) and the energy of two
neighbouring monomers can take three different values according to whether the sites
in contact are HH, HP or PP. This is known as the ’HP’ model and is a well respected
model for proteins on the lattice. For more than two (say � ) kind of ’aminoacids’ in
the protein sequences, the contact energy is best viewed as a matrix (with � � � 	 ����	 �
different entries). Irrespective of the model we choose, we observe that as � 0 �
all proteins should reach their folded state, which is unique (up to trivial symmetry
transformations). This means that, at least in our lattice models, there should be no
reentrance as there is no entropy loss in the unfolding. In continuum models, e.g. for
the FJC or WLC, on the other hand, one has nevertheless an entropy loss in stretching
a string and reentrance should be present although relegated to very low values of �
(see the corresponding cases in the previous Chapter). The finite � behaviour is ex-
pected to be richer. Interestingly, as we will also see in the second Part of this thesis,
there are basically two model behaviour for the folding of proteins. Some proteins
have a ’folding’ transition to the unique ground state which is coincident with the

�

collapse, whereas others below some temperature, � � form a collapsed globule with
very little resemblance to the native state, and only at some lower temperature, ��� ,
they go into the unique folded state. For this second kind of proteins, the unfolding
behaviour will depend on � : when � is between ��� and � � we expect multi-step
behaviour to occur for finite samples as for homopolymers, whereas below ��� one
gets an all-or-none transition. In ��� � , the order of the transition might also change,
being likely to be second order for ��� � � � � � , and first order for � � ��� .

This picture is confirmed to some extent by exact enumerations which have been
performed on � 	�� mers with unique ground state: for low � there is no reentrance and
the transition is basically two-state (data not shown). Also the numerics in Ref. [85]
is consistent with this picture, showing a first-order like transition and no re-entrancy.
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In Ref. [84] this was given as an example of re-entrancy in protein models, however
both the formula cited by the authors and the phase diagram show this is not the case.
There is indeed a small dip in the force vs � critical line, which is however referred
to a finite sample, and is most probably due to the trivial symmetry degeneracy of the
ground state discussed above, which does not cause entropy to be non-zero at low � .

We close this Chapter by mentioning an interesting point which deserves further
work. The unfolding dynamics of a homopolymer at infinite size in � � � should
closely resemble, as regards the scaling laws, the dynamics of homo-DNA unzipping,
in that e.g. for

�
�
� � one has ) 	 � � � * � � ��� � , while at criticality the dynamic exponent

should get �
	 � . For finite samples, however, the �
	 � behaviour will be recovered only
for strong enough forces, above those which yield the helix as the ground state. So
in a sense the finite size samples might curiously more closely follow the heteroge-
neous case for DNA unzipping. Further work is needed to test this hypothesis. As a
successive step one could search for the differences in protein unfolding dynamics,
which most likely will display a closer similarity to the homogeneous case for infinite
samples as for statics.

**********

In this Chapter, we have discussed the unfolding transition of a homopolymer
under the action of an external pulling force in � � � on the lattice and in � � � off
lattice. A ground state analysis shows that for finite length polymers, the unfolding
is not abrupt, rather it occurs via a multi step sequence of states. These are more
elongated than the globule and make more contacts than a coil. In � ��� helices arise
naturally as ground states at intermediate forces. For infinite polymers, on the other
hand, the situation is different: in � � � the intermediate ground states disappear
due to the Rayleigh instability, and the transition is effectively two-state, whereas in
� � � they survive in the thermodynamic limit. Indeed, from the transfer matrix
results, it is apparent that the mean field hypothesis is incorrect in � � � even at
rather low � : indeed the transition is second order as also found in Ref. [88] and
not first order[84] although the prediction of the re-entrant region[84] agrees with the
TM results. Furthermore a renormalization group based argument is in agreement
with this picture.



PART 2: From swollen to compact

Some molecules are so long and skinny that they act like strands of spaghetti. In this
experiment we will see how the long, skinny molecules called polymers can

sometimes behave the same way.

Kathleen A. Carrado, in ’ChemShorts for Kids from 1993’.





Chapter 4

A model for thick polymers

4.1 Introduction

The outline of the second Part of the thesis is as follows. In this Chapter, starting from
a review of Edwards’s well-known polymer model, we present a description of thick
polymers that is well defined in the continuum, and we introduce the discrete model
with which we make the numerical calculations. This involves three-body constraints
as well as two-body interactions in the potential. Then, in Chapter 5 we describe the
numerical results that we have obtained when looking for the minima (through simu-
lated annealing) of a short thick polymer under compaction. We show the marginally
compact structures that are found when the polymer thickness is tuned with the at-
traction and compare them with naturally occurring secondary structure in proteins
and other biopolymers. In Chapter 6, we study the physics at non-zero temperature of
a thick polymer: we do so first by applying the mean field approximation to a chain of
coins (first section), as it is more tractable analytically than is a polymer with three-
body constraints; then by performing Monte-Carlo simulations in the original model
(last section). Technical details are deferred to the Appendixes.

4.2 From Edwards’s model to thick polymers

We shall consider here the case in which the interacting particles are restricted to lie
on, or close to, a curve embedded in the � dimensional Euclidean space


  . This
system is widely studied in polymer science [40, 41, 99, 100]. Generalization to
2-dimensional manifolds describing random surfaces or membranes have also been
recently studied (see [101, 102] and references therein). One of the paradigm of
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polymer science is the celebrated Edwards’s model which is the continuum version
of the FJC with excluded volume interaction introduced in Chapter 1. It describes a
polymer in terms of a continuous curve, �� � ��� , with an effective energy given by

� � �� � � �
�

� !
�

�
�� � ��� � � � 	 � �

	

� !
�

� !
�

# � �� � ��� � �� � � � � � � � � � � 	
	 � �

��

� !
�

� !
�

� !
�

# � �� � ��� � �� � � � ��� # � �� � ��� � �� � � � � � � � � � � � � � � � 	 � � � (4.1)

The first term in the above equation takes into account the chain entropy. It is
simply due to the central limit theorem. Indeed one can derive it in the case of a
non interacting chain of beads tethered together by a potential � � � 	 � 	�� � � , with � ��� � �
� �� � � �� � �

, acting between adjacent beads and keeping them at a typical mean square
distance � � . This means that the probability to find the

�
-th step joining the positions

�� 	 and �� 	 � � is proportional to ���� � � � �� 	 � 	 � � �

. Using the central limit theorem one

easily derives that the probability to find the first beads at ���� and the � -th at ���� is well
approximated by

� # � �� � � ���� � � (  ��� � �
�
� � � � � �� � � ���� � �  (4.2)

for large � . Considering now � pieces of such � -step chains, the probability to
have a ‘coarse grained’ chain with given positions �� � � for � � � & � & � � � & � is given by

� � �� � & �� � & � � � & �� �%�)( ���� � �
�
� � � � �*

���
�
� �� � � ��� � � � �� � � � �  � (4.3)

In the continuum limit one defines 	 � � � � 	 � and the total ‘length’ of the ‘coarse
grained’ chain, � � � 	 , is kept fixed while � 0 2 (this implies that � 0 � ). Thus
the previous equation represents the definition of the formal expression of eq.(4.1), in
the case of �

� � � & � � � & � & � � � , since

� � �� � �
�*

���
�
� �� ��� � ��� � � �� � � � � � � 	 ��� � !

�
�
�� � ��� � � � (4.4)

where �� � � � �� � � � � .
In the self interacting case one again starts from a string of beads as before, where the
total energy is given by,

� � � �
� � � * 	 � � � 	 � 	�� � � 	

*
� � �

� � � ��� � � (4.5)
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with
� � � � being a two-body interaction between any pair of beads at a distance � .

A typical shape could be the one of a Lennard Jones potential with both repulsive
and attractive part (e.g. 	 � � � shape as in Chapter 1). The connection between
eqs.(4.1) and (4.5), i.e. the continuum limit model in eq.(4.5), is made through the
virial expansion. The � � ’s in eq.(4.1)represent effective � -body interactions for the
continuum chain, �� � ��� , and they depend on the temperature, � . At high (low) �

� � � � ( � � � � ) whereas � � � � . The three-body term is strictly necessary only in
the low � region in order to stabilize the system. The model defined by eq.(4.1) is
widely used in the literature and it has been shown to have a precise meaning in per-
turbation theory using renormalization group techniques (see [100] and the original
references therein) 1. It is possible to give a heuristic explanation of why the contin-
uum version of eq.(4.5) can only give rise to interaction terms which are the singular
(
#
-like) potentials present in eq.(4.1). Suppose the potential

� � � � in eq.(4.5) has a
repulsive part which increases as � decreases. Then in order to take the continuum
limit the bead density along the chain increases, because the � potential constrains
the successive beads to reduce their mutual distance ( � 0 � ). Consequently the num-
ber of bead-pairs laying at a distance corresponding to the repulsive region of the

�
potential increases since the chain constrains nearby (not only adjacent ones) beads
to approach each other as � decreases. This would imply that the continuum chain
has an infinite energy and an infinite rigidity. This is avoided only if simultaneously
to � 0 � also the repulsive region of the interaction potential

�
in eq.(4.5) shrinks

leading to singular
#

-like potentials as in eq.(4.1).

In the following we want to consider models of self-avoiding curves that are non-
singular, and which include an explicit thickness length scale. In mathematical terms,
starting from a continuous curve �
 � ��� , � � � � � , which we will also call � , and
which we assume to be smooth and continuously differentiable to any order, we can
define a smooth solid tube or thick polymer centered in � and of thickness


 � , and

1One can formally map the model in eq. 4.1 into a field theory of an � -component field,
�� � �� 
 . In

the grand canonical formulation with a fugacity per unit length, � , the Hamiltonian of the field theory
is given by ��� �	� ��
 
�! � 1 ' � ��2���� �� ��� ���� � �� 5 ��� ,�� ,��� �

�� 5 
 , 
 (4.6)

Correlation functions for the corresponding polymer model are calculated from the
��

correlation in the��� " limit [103, 104]. Renormalizability of such field theory is well known and it guarantees that
from perturbative expansion finite results can be extracted which depend only on a finite number of
parameters.
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we call this object � � � � � � . The ’tube’ � � � � � � is then the union, over all points �� in � ,
of all the circular disks of radius


 � centered at �� and contained in the plane normal
to � at the point �� .

In particular, in order to describe a thick polymer, as we will demonstrate below,
we will have to replace the singular delta-function potential above by a smooth po-
tential

� � � � (such as e.g. a Lennard-Jones potential) that is dependent upon a single
scalar variable � . Our continuum models will retain the following two desirable fea-
tures of their discrete version: i) all finite-energy configurations of the manifold are
non-self-intersecting, with a positive distance of closest approach (see below), and ii)
the explicit form of the potential

� � � � provides a characteristic length scale for the dis-
tance of closest approach of the manifold. The difficulty in constructing such models
is that the standard choice of taking the argument � of the potential to be the Euclidean
pairwise distance cannot satisfy our two desiderata when the underlying system is
continuous. The basic idea beyond this is simple. For a generic one-dimensional
curve such as that depicted in Figure 1, one wishes to penalize true points of closest
approach between distinct parts of the curve, without penalizing adjacent points from
the same part of the curve. The pairwise Euclidean distance simply cannot distinguish
between these two cases; in other words, it cannot distinguish between proximity of
points that is forced by continuity of the manifold in any configuration, and the real
phenomenon of interest, namely proximity of points due to large scale geometrical
deformation in some configurations. One can show[105, 106, 107] that the above two
requirements can be achieved simply by taking the argument � to be a quantity other
than the Euclidean distance between two points.

We now argue what the argument � should be for a thick polymer. A tube of
thickness


 � is different from a continuous polymer of Edwards’s kind because it is
not enough that �
 � ��� �� �
 � � � � unless � ��� � for a curve � to constitute an acceptable
configuration (when inflated) for the corresponding tube of thickness


 � , � � � � � � . For
this to happen, � � � � � � must also neither have local sharp bends nor non-local self-
intersection. A convenient criterion to check whether � is an allowed ’axis’ for � � � � � �
turns out (computationally) to be the following: given � , we inflate it until it is so thick
to have self-intersection, at that point we stop and we call 	 � � � the thickness of the
maximally inflated tube, before self-intersections appear. If 	 � � � �


 � , then the
curve � corresponds to a valid configuration of a tube with thickness


 � .
Therefore, we need a working procedure in order to calculate 	 � � � . It is rather

simple to see[108] that the thick polymer � � � � � becomes locally singular (i.e. self-
intersecting) when � is bigger than the local radius of curvature of � at any point ��
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in � . The local radius of curvature of � in �� � � , ��! � ��%� , is the radius of the circle
which best approximates � . On the other hand, � � � � � � may also become singular if
two portions of it which pertain to values of �� � ��� & �� � � � � correspondent to points which
are distant along � , come into close contact with each other. This is a non-local effect,
which can be shown[108] to be related to the presence of two non-adjacent points of
closest approach on � . A pair of points � �� & �� � � are said to belong to the set (which
we will call � ) of all pairs of points of closest approach on � , if �� & �� �

� � and if

�� � �� � is orthogonal to the tangent vectors to � at both �� and �� � . One can convince
with some thought that it is sufficient to consider these two cases in order to rule out
self-intersecting configurations of a thick polymer. As a consequence, the thickness
of the maximally inflated tube around � , 	 � � � , reads:

	 � � � � � ���
�
� ��� 
��� � �
! � �� � & � ��� 
� � 
� 
 ���

�
�� � �� �

�

�

�
� (4.7)

In other words, the thickness of the maximally inflated tube is either the minimal
value of the local radius of curvature or half the minimum distance of closest ap-
proach, whichever is smaller. We can introduce a quantity which encompasses both
cases, namely the global radius of curvature of � at �� , �	��� ��%� . The global radius of
curvature of a curve � in �� is defined in terms of the triplet radii


 � �� & �� � & �� � ��� , with

�� & �� � & �� � � non-coincident and belonging to the curve � . The quantity

 � �� & �� � & �� � � � (see

also Fig. 4.1) is nothing but the radius of the (unique) circle which goes through

�� & �� � & �� � � . Note that when �� � & �� � � 0 �� the triplet radius goes by definition to the local
radius of curvature � ! � �� � . On the other hand, when �� � � 0 �� � , the circle defining the
triplet radius is one which contains �� and is tangent to � in �� � . We now define the
global radius of curvature in �� � � as:

�
��� �� � ��� ��� 
��� � �
��� ��%� � (4.8)

Now, the thickness of the maximally inflated tube is given by:

	 � � � ��� ��� 
��� � �
� � ��%� ��� ��� 
� � 
� 
 � 
� 
 
 � � 
 � �� & �� � & �� � � � � (4.9)

In order to prove this one first has to realize that the extremality condition in Eq.
4.8 implies that the global radius of curvature is either the local radius of curvature
or (if it is smaller) the radius of a circle passing through �� and tangent in another
point �� � . Second, as we have to minimize over �� as well, the quantity � ��� 
��� � �
� � �� � �
� � � 
� � 
� 
 � 
� 
 
 � � 
 � �� & �� � & �� � � � is either the minimum local radius of curvature, or (if it is
smaller) the radius of a sphere which contains no portion of the curve in its interior
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and is tangent to the curve at both portions at two diametrically opposite points �� and

�� � . At such points the symmetry property

 � �� & �� � & �� � � �


 � �� & �� & �� � � holds and then ��
and �� � belong to � . By definition this means that the minimum over �� of the global
radius of curvature of � at �� is 	 � � � .

Thus a suitable potential to describe a thick polymer in the continuum may be a
hard core constraint on the triplet radii, which forbids any of them (and hence the
minimum, thus 	 � � � ) from being smaller than


 � . In this way we naturally introduce
a three-body term in the continuous potential, which here has a well-defined physical
meaning. In general, we may introduce different functions of the triplet radii (such
as Lennard-Jones potentials as a function of the above defined


 � �� & �� & �� ��� , � � � ! � ��%� ,
	 � � � etc.) as polymer potentials with which to make calculations, in case we want to
favour a given value either of the thickness, or of the local or global radii of curvature,
or of each of the triplet radii. In any case, the scalar argument � that we were looking
for in order to describe thick tubes is the triplet radius (see Fig. 4.1).

When the argument � of
� � � � depends as is here the case upon more than simply

two points, for example triplets or quadruplets of points (which pertain to the case of
surfaces [107], which are not our concern here), we shall refer to

� � � � as a many-body
or multi-point potential. The use of many-body potentials is an essential ingredient
in the models of continuous systems that we propose, and they should not be viewed
as a higher-order correction to two-body or pairwise potentials, as is the case in Ed-
wards’s model. Indeed our proposal for continuous models is to replace pairwise
self-interaction potentials, which must be singular, with many-body self-interaction
potentials, which need not be singular.

Knotted polymer problems have recently attracted considerable interest among
physicists[109, 110, 111]. A feature of our treatment, which is appealing, is that it is
the first continuum formulation to our knowledge which allows one to study systems
within a knot class, i.e. with a fixed number of knots. A drawback of Edwards’s
formulation, indeed, as of any two-body potential (with singular potentials like in eq.
(4.1)) formulation, is that the self-intersection of the chain is possible though it costs
some energetic penalty, so that one can change at will the knotting number and the
linking number of the polymer. This is not what usually occurs realistically in the first
place. Secondly, many physical problems require estimates on entropic exponents and
weights of polymer configurations with a fixed linking number. With this formalism
these would become tractable at least in principle from a theoretical point of view,
whereas at present they are manageable only numerically.
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Figure 4.1: This is one of the triplets in the curve which are used to calculate its
thickness.
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CHAIN   OF   SPHERES    CHAIN   OF   COINS 

Figure 4.2: In this figure we contrast the model of a chain of coins, which should
model a discrete thick polymer, to the usual chain of spheres tethered together.

4.3 Discrete thick polymers

We now come to the case of our interest, in which a spaghetto or thick polymer (tube)
is meant to mimic the backbone of a protein or of other biopolymers. Due to this, the
model we want to consider deals with discrete chains rather than continuous as in the
preceding Section.

The discrete model we will consider in the numerical calculation is the following.
Two beads at positions �� � and �� 	 interact through the two-body potential:

� � � � � 	 � �
���� 2 if � � � 	 � � 
 � � � �
� � if � 
 � � � � � � � � 	 � 


�
� if



� � � � � 	

(4.10)

so that



� is the attraction range ( � � 	 in what follows) and



� � � � is the hard core radius,
which we take to be ��� 	 in our calculations.

Since this is a discrete model, the thickness is no longer uniquely defined. One
way to capture it would be the discretization of the definition of � � � � � � , i.e. would
be to consider at each bead of the chain a ’hard coin’ and to constrain the physical
configuration of the system to be such that coins attached to distinct beads do not
compenetrate. In Fig.4.2 we show how a chain of coins looks like and oppose it to
the usual chain of spheres. An alternative choice to capture the non-zero thickness
[105, 107] of the discrete chain is to discretize Eq. 4.9, so that we disallow in our



4.3 Discrete thick polymers 75

model conformations for which the quantity (discretized 	 � � � ):

	 � � ��� ����
	��� � 
�� � 	 � � & (4.11)

where

�� � 	 � � is the radius of the circle going through the centers of the beads � , � and

� (Fig. 4.1), is smaller than

 � .

These two implementation of the thickness are strictly equal only in the contin-
uous limit, but we expect them to give the same results physically also for discrete
chains. For this reason we will choose the most convenient one from time to time. In
particular, in the Monte-Carlo simulations of Chapter 6 it is more convenient to use
the second procedure, whereas when applying mean field it is easier to deal with the
chain of coins.

At this point, let us recall that for us thick polymers are meant to represent a
protein C � backbone better than a conventional chain of spheres. We have described
in Chapter 1 the elementary biological facts about proteins. In intuitive terms, we
expect the thickness to be due to the steric constraints given by the side chains, which
are neglected when putting a hard core radius only on the C � atoms. Such a fact will
also cause the emergence of an anisotropy in the system of which there is no trace in
the conventional treatment.

However, this is only heuristics and a more quantitative answer to the question ’Is
a protein backbone modellable by a thick polymer ?’ must be given. In order to move
in this direction, we analyzed the previously defined �	� � ��%� (suitably discretized as
done above for 	 � � � )– which gives a measure of the local thickness at the residue in

�� in the chain – for every residue of ��� unrelated protein native structures taken from
the protein data bank ([112]). The result is shown in Fig. 4.3. It is apparent from it
that the distribution of � ��� ��%� , or equivalently of local thicknesses, is sharply peaked

around a central value, which is roughly ��� � �� . This lends credibility, as a suitable
zero-th order approximation, to our model in which a protein is approximated by a
tube of uniform thickness. Of course a more realistic model would have to take into
account fluctuations and hence dishomogeneity in the local thickness of the polymer
and also heterogeneity in the two body potential, as pertaining to the different kinds
of aminoacids found in nature. We will see in the next Chapter, however, that our
model is detailed enough to fully account for protein secondary structures.
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Figure 4.3: Probability distribution of the local thickness per residue for all
aminoacids of ��� unrelated protein native structures taken from the protein data bank.

4.4 How stiff is a thick polymer ?

Usually, it is believed that suitable models for biopolymers such as proteins and, most
notably, for DNA must take into account the fact that the biomolecule is not fully
flexible, but it rather has an intrinsic persistence length or equivalently an intrinsic
stiffness, which is an adjustable free parameter in the model (example models are the
semiflexible polymer or the WLC defined in Chapter 1). Here we do not introduce a
stiffness; however it is clear from intuition that the thickness of the polymer specifies
also a non-zero stiffness. Here we want to predict how much this stiffness will be.

Let us thus consider a thick polymer of thickness

 � , and look for its persistence

length, � (of course the bigger � is, the stiffer the polymer is). To get a prediction
on � , we consider only the simple case in which there is no self-interaction and in
which the polymer is in the swollen phase, so that non-local triplets (i.e. other than
the triplets such as �� � � ��� � �

��� � ) do not feel the constraint imposed by the thickness. The
thickness constraint on neighbouring links �� � � �� ��� � � �� � , �� ��� �

� �� ��� � � �� ��� � , instead,
is the following:

�� � � ��
���

�
�

� � �
� 
 ��


 �
�

�
	 � (4.12)

�� � � ��
���

�
�

� � � 
 � �� 	 � /  (4.13)
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for every � � � & � � � & � ��� . Let us now calculate the average of �� � � �� � , � & � �
� & � � � & � � � , � � � taken with the portion of the chain from bead � to � � � fixed.
We obtain:

) �� � * 
� � ������� � 
��� � � � ��� / � �� � ��� & (4.14)

where � denotes average over the allowed values of �� � � �� �
�
�
� ��� / � . So one gets:

) �� � * 
� � ������� � 
� � � � � � �
	 � 	 � � � �
� 
 �� � 	 � � �� � ��� � (4.15)

Taking the dot product with �� � and averaging over the portion of the chain that before
was kept fixed we get:

) �� � � �� � * � � � � �
�

 �� � ) �� � ��� � �� � * � (4.16)

Eq. 4.16 is a recursion relation to be solved with the initial condition ) �� � � �� � * � � .
The solution is:

) �� � � �� � * � � � � �
�

 �� � � � � � � (4.17)

� ���� � � � � � �
� � � � � �

� � � � 
 � � � � � � &
so that the persistence length of a non-interacting thick polymer from Eq. 4.17 is:

��� 
 � � � � �� � � � � � � � 
 � � � � � � (4.18)

It is interesting to apply Eq. 4.18 to some realistic cases. If we want to model
a single stranded DNA (ssDNA) as a thick polymer with one bead per base pair, the
value of


 � pertaining to this case would be � ��� � � ��� � (the diameter is roughly one
bp, the number given is influenced by discreteness). Consequently, the persistence
length is � � � � � � bp according to the number chosen for


 � . This is in good
agreement with the experimental data for ssDNA[35]. If on the other hand we want
to model double stranded, ds, DNA by a thick polymer, we must recall (see Chapter
1) that its diameter is ��� � nm, so that its thickness


 � measured in bp’s is slightly
more than � (discreteness effects here change the value less than for ssDNA). From
Eq. 4.18, we obtain that for dsDNA � would be � ��� bp’s, which is roughly half
of the correct value[35]. Despite this, we deem it interesting that with no adjustable
parameters we obtain that � is � to � orders of magnitude bigger in dsDNA with
respect to ssDNA. Discrepancy might be due to the fact that dsDNA has an internal
double-helical structure stabilized by H bonds which enhances its stiffness which here
we neglect.





Chapter 5

Ground states of a short thick
polymer

In this Chapter we discuss how the ground state of a short thick polymer evolves
when its thickness,


 � , and the attraction range,



� , are varied continuously. If we
had only hard spheres not tethered together into a chain, the analogous task would be
to look for the optimal cluster obtained by varying the attraction range (see Appendix
A). In that case we know that when



� is just above the hard core radius the opti-

mal configuration is the face-centered cubic lattice, which is employed in many real
physical solid system. So our task can be rephrased as the search for the analogous of
the face-centered-cubic lattice (and the other lattices which are stabilized by different
values of



� ) for a thick polymer, i.e. for its ‘crystalline’ state. In this calculation, for

simplicity we will fix a value of



� and see what happens on varying

 � (no substan-

tial differences are found when

 � changes and the arising picture is as in Fig. 5.1).

This is equivalent to varying the ratio

 � 	 
 � , i.e. the ratio between the tube thickness

and the attraction range. We will call this quantity
�

.

When the above defined quantity
�

is very large compared to 1, the tube is so fat
that it is unable to benefit from the attractive interactions. The constraints of the three
body interaction dominate (the pairwise interaction plays no role) and one then ob-
tains a swollen phase – all self-avoiding conformations of the tube are equally likely
and the vast majority of them is not effective in filling the space in the core of the
structure (globular proteins fold in order to squeeze out water from the core, which
houses the hydrophobic amino acids, see Introduction). On the other hand, for a tube
with a very small

�
compared to 1, one obtains many conformations, leading to an

energy landscape studded with numerous multiple minima. We thus expect a transi-
tion to occur for intermediate value of

�
, when the thickness is comparable with the
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Figure 5.1: Succession of minima as the thickness,

 � , and the attraction range,



�

are varied continuously. This is valid for short chains. Longer chains will be treated
separately below and in the next Chapter.

attraction range (see Fig. 5.1). We call the resulting conformations marginally com-
pact structures because they make a non neglectable number of contacts but lie at the
edge of the compact phase: a rather small increase in the tube thickness is enough to
change these into swollen configurations unable to benefit from the attracting poten-
tial. This situation is conceptually similar to the one encountered in Chapter 3, where
marginally compact structures arose when stretching a finite size globule, for a force
slightly below the critical force needed to unfold it completely.
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5.1 Results and discussion

Our goal is to study the ground state conformations on varying the tube thickness.
For a short tube, made up of � balls, subject to pair-wise attractive interactions, let
us denote by � � � � &


 � � the maximum number of contacts (each gaining an energy
of -1 according to Eq. (4.10)) that can be made respecting the hard-core and the
three body constraints. Quite generally, one would expect that, for a fixed � , � � is a
decreasing function of


 � and that the decrease occurs in discrete steps corresponding
to the inability to form the same number of contacts as before. Physically, of course,
for a given contact energy (or equivalently number of contacts), one would choose
the largest possible thickness in order to provide as much internal wiggle room (for
the side-chains) within the tube as possible.

We have carried out Monte-Carlo simulations by using the standard simulated
annealing algorithm (see Chapter 1) in order to find the ground state of the thick
polymer. As we have already mentioned, it is known that this procedure may cause
the system to ‘trap’ into metastable minima. This is avoided in two ways: first by
repeating the simulation many times, changing the algorithm parameters (such as the
amplitude of our dynamical moves), second by comparing the annealing performance
with that of a recently proposed algorithm [113], originally proposed in order to find
the density of states of the polymer. The results we present in this Section do not
depend on the algorithm.

We have made simulations for several values of � and present the scenario for
� � � � , which is representative for values of � between 	 and � � . A schematic
“minima diagram” is shown in Figure 5.1, while Figure 5.2 is a plot of � � (or equiv-
alently the negative of the ground state energy) as a function of the tube thickness.
For small


 � one gets a highly degenerate phase with � � saturated at a value of � �

for � � � � – the conformations that the tube adopts depend rather strongly on the
details of the pair-wise potential. For


 � between � ��� � � and ��� � , there is an en-
ergy plateau in which the degeneracy is greatly reduced and helices are the ground
states. Furthermore, for the tube with the largest thickness in this plateau, one obtains
a specific helix as the unique ground state (see upper conformation in “Marginally
compact phase” of Fig. 5.1 and Fig. 5.3 (A2)). For


 � between ��� � and ��� �� , several
classes of conformations including saddles (which are planar hairpin conformations
distorted into three dimensional structures) (see Fig. 5.3 (C2)), generalized helices
(in which the distance between successive balls along the helical axis is not constant
but is periodic) (see Fig. 5.3 (A3)), helices made up of strands (see Fig. 5.3 (B2)) and
other more disordered conformations compete.
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Figure 5.2: Plot of the number of contacts, � � , vs.

 � for a short thick tube ( � � � � ).

The points refer to simulations, the solid line to the numerical exact minimization
in the space of regular and generalized helices (see the text, below). The amount of
degeneracy is minimum at the rightmost edge of each step. It is pictorially represented
in the first such step by the height of the shaded triangle.
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At the end of each plateau in Figure 5.2 (there are as many as three major plateaus
in this range of tube thickness, and each plateau comprises several distinct sub-steps
or smaller plateaus), we find an ordered unique ground state (see some examples in
Fig. 5.3, second row). (It is interesting to note here the fact that helices and sheet-
like conformations emerge as the conformations of choice at the end of some of the
major plateaus for other parametrizations of the potential energy of interaction as well
[114].) One may show that helices are excluded from being the ground states, when

the tube thickness exceeds

 � � � � � � �� � �

� � 	 
 � �  	 � � ���� � � which is obtained

when two parallel straight lines (successive turns of the helix treated as circles with
infinite radius) are parallel and face each other at the bond length



� .

For

 � � ��� �� , the ground state structures become more and more planar, first

locally then globally. For large � , the winning planar structures entail the combina-
tions of strands into a sheet structure. (We find that sheet structures persist for � as
large as at least � � , whereas the persistence length for helices is expected to be some-
what smaller.) For two zig-zag antiparallel strands facing each other, one can easily
show that the maximum thickness is obtained (leaving aside the edge effect of how
the strands are connected together in a hairpin) when the global radius of curvature
is constant and furthermore when the local and the smallest non-local radii of curva-
ture have the same value. Indeed, this condition leads to the following relationship
between the tube thickness


 � and the bond length



�

 �

� 	 � 	



�
 � � �

 �� � � & (5.1)

which yields a value of

 � � � � � � � � , when



� � � � 	 . In order to get Eq. 5.1,

it is enough to use elementary geometry considerations, and then to maximize the
function � � � � � 	 � � 
�� 	

� with respect to � , the angle between two successive links in
the zigzags, and 	 , the distance between the two strands.

The swollen phase, which occurs for even larger values of tube thickness has two
energy plateaus. The first of these plateaus has just one contact and comprises all
swollen conformations whose two ends make a contact – the thickest tube which is
able to make � contact has a unique ground state of a closed polygon with � edges
of unit length and � of length



� . Likewise, the plateau of � contacts has the limiting

thickness situation of a straight, infinitely fat tube. Indeed, starting from the zig-zag
conformation, the unique conformations corresponding to the largest possible thick-
ness compatible with a given energy (or number of contacts) all share the intriguing
property that the local and the smallest non-local radius are exactly equal (It is in-
teresting to note that the optimal helix of Fig. 5.3 (A1) has a ratio of the smallest
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non-local to the local radius of around ������ which is very close to the corresponding
value for � helices occurring in proteins [90]).

In Fig. 5.2 we also plot (solid line) the energy obtained from numerical minimiza-
tion over a subset of configurations, over which the optimization can be handled with
very high accuracy (indeed the result is ’exact’ for any practical purpose). The subset
of configurations used for the solid line of Fig. 5.2 is that of regular and generalized
discrete helix. A regular discrete helix or a discrete helix with constant pitch, whose
axis we can take with no generality loss to be the � axis, and in which two successive
beads stay at unit distance, is characterized uniquely by the rise per bead, � , and by
the azimuthal (around � ) rotation angle per bead, $�	 � . From here it can be seen that
� , which is not necessarily integer, is the number of beads per turn in the helix. The
position of the � � th bead, � ����� , for a helix, ( � � � & � � � & �3� , is thus parametrized as
follows:

� ����� �
�� 
 ��� / � � $ � 	 � �
 / � � � � $ � 	 � �
� �

��
& (5.2)

where the radius



is fixed by the condition that two successive beads have a relative
distance � , i.e.:

� 
 � � � � ��� / � � $�	 � � � 	 �
� � � � (5.3)

Generalized helices, on the other hand, are characterized by a number of beads per
turn, a real number, and a variable rise per bead, which is now no longer constant, but
depends on the bead index, and is a periodic function of this variable.

We now come to the discussion of our simulation outputs. Helices and sheets are
of course the well-known building blocks of protein structures [36, 37] (see Fig. 5.3
(A1) and (D1) for two examples). In addition to the prediction of these motifs in our
calculations, it is interesting to note that some of the other marginally compact con-
formations bear a qualitative resemblance to secondary folds in biopolymers. Helices
analogous to Figure 5.3 (A3) with an irregular contact map occur, e.g., in the HMG
protein NHP6a [115] with pdb code 1CG7. Fig. 5.3 (C1) shows the “kissing hairpins”
[116] of RNA (pdb code 1KIS), each of which is a distorted and twisted hairpin struc-
ture while Fig. 5.3 (C2) is a saddle conformation, which is a hairpin distorted into a
three-dimensional structure. Figure 5.3 (B1) shows a helix of strands found experi-
mentally in Zinc metalloprotease [117] (pdb code: 1KAP), whereas Figure 5.3 (B2)
is the corresponding marginally compact conformation obtained in our calculations.

We point out that the results above, specific for � � � � , apply in general for
‘short’ thick polymers, where ‘short’ here means, though it is not too easy to quantify,
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Figure 5.3: Building blocks of biomolecules and ground state structures associated
with the marginally compact phase of a short tube. The axis in the middle indicates
the direction along which the tube thickness


 � increases. The top row shows some
of the building blocks of biomolecules, while the bottom row depicts the correspond-
ing structures obtained as the ground state conformations of a short tube. (A1) is an
� -helix of a naturally occurring protein, while (A2) and (A3) are the helices obtained
in our calculations – (A2) has a regular contact map and is obtained when


 � � ��� ���
whereas (A3) (


 � � ��� � � ) is a distorted helix in which the distance between suc-
cessive atoms along the helical axis is not constant but has period � . (B1) is a helix
of strands in the alkaline protease of pseudomonas aeruginosa, whereas (B2) shows
the corresponding structure (


 � � ��� ��� ) obtained in our computer simulations. (C1)
shows the “kissing” hairpins of RNA and (C2) the corresponding conformation ob-
tained in our simulations with


 � � ���  � . Finally (D1) and (D2) are two instances of
quasi-planar hairpins. The first structure is from the same protein as before (the alka-
line protease of pseudomonas aeruginosa) while the second is a typical conformation
found in our simulations when


 � � ��� �� . All the cases shown correspond to tubes of
14 � � atoms, except for the sheet-like structure (D3), which employed 33 ��� atoms.
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Figure 5.4: This is the ground state, or at least one of the low energy states for a tube
of thickness ���� with � � beads.

less than approximately ��� � ��� monomers depending on the value of

 � . If we

consider longer tubes, a preferred ground state at least for polymers with thickness
greater then


 � � ��� � is one in which the different portion of the tube are parallel
(see Fig.5.4). This is expected to be, in the continuum, the ground state of a thick
tube in the thermodynamic limit. The fact that section of the tubes in contact must
position themselves parallel with respect with each other can be rationalized rather
simply also in the continuum model. If we computed the interaction energy of two
cylinders whose axis points are subject to a two-body potential such as that in Eq.
4.10, we would see (as is apparent from intuition) that for thin tubes (


 � � 

� ) the

attraction roughly is not dependent on the angle between the two axis, whereas for
thicker tubes (



� � 
 � ) there is a marked maximum for parallel axis [118] (because

otherwise the tubes would ’stay close’ for a smaller portion of their length leaving the
remaining portion unable to avail of the attractive potential).

In experiments and real situations, a situation for some aspects analogous to what
is obtained in our simulations often occurs. First, in real proteins it is known that
when the protein concentration in the cell is higher than a certain critical threshold,
then the proteins misfold and tend to aggregate, by forming amyloid fibers. In the case
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of prion, for example, this form of protein aggregation causes the arising of the bovine
spongiform encephalopathy (BSE) disease. The shape of the aggregate can be visual-
ized in a coarse grained way by thinking of different parts of the aggregate as portion
of tubes which are aligned with respect to each other. Another famous example is
that of DNA subject to condensation due to the presence of polyvalent counterions in
solution. The globule structure formed by DNA upon condensation is often chosen
between a circular donut or spool with a hole in its interior, when DNA is short or
concentration is low, and a ‘nematic-like’ state with different portions of the molecule
aligned along a local director, when the concentration is high. Our model can on one
hand explain the qualitative shape of the minima and also that the crossover between
the two different kinds of behaviour should be observed by changing the tube length,
which is equivalent to increasing concentration in real experiments. In the case of
DNA, we should mention however in the first place that one gets a donut or spool,
i.e. a kind of not space filling helix, because one has to take into account the stiffness
of the double-stranded DNA molecule which makes it energetically unfavourable to
bend the tube. Second, the crossover value of � is much higher than the one pro-
posed here. However, the values of


 � and



� are very different from the true ones in
DNA and this can explain in part this discrepancy. The agreement thus is completely
qualitative but remarkable all the same.

5.2 A new phase for polymers ?

At the beginning of this Chapter, and in Fig. 5.1 we spoke of a marginally compact
’phase’. Though we used the term in a non rigorous way there, at this point this
definition deserves a more thorough discussion. Self interacting polymers (with zero
thickness) are usually said to exist in one of three phases: compact, swollen or

�

polymers according to the temperature (or equivalently to the nature of the solvent
interactions with the polymer). The compact or collapsed phase can be however of
different kinds: either isotropic or anisotropic, i.e. with nematic order, as occurs for
semiflexible chains and for our long thick polymers. Neither of these compact phases,
however, has the property of being protein-like, in the sense of having a secondary
structure which consists of helices and sheets. In this sense, we are tempted to say
that our marginal compact structures obtained for short tubes and for short globules
under a stretching force do constitute a novel phase for polymers, which is on the
edge of compactness and yet not swollen. However, we should remark that strictly
speaking for us to speak of a phase we should need those characteristics to persist
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in the thermodynamic limit, i.e. for long chains. In the case treated in Chapter 3,
marginally compact structures simply disappear after a model dependent crossover
length. The situation for tubes is more interesting. For infinite length, the marginally
compact regime observed for shorter chains maps into a regime of nematic order
plus most probably a small region or a single point in which the structures are planar
or quasi planar. The planar point is characterized by different exponents than the
compact phase and in this case does represent a different phase, namely one in which
the walk is compact in two dimensions. Further work could be done in order to find
whether the peculiar behaviour found in ��� � , that compact structures upon inflation
choose to arrange themselves in an ordered way on a � � - plane before disrupting, is
common also to cases in � � � .



Chapter 6

Phase diagram for a thick polymer

In this Chapter we want to find the phase diagram, i.e. to study the thermodynamics,
at a temperature � of a polymer with non-zero thickness


 � whose non-consecutive
beads are subject to an attractive pair-wise potential as in the previous Chapter. This
model should be equivalent to a chain of coins, whose individual circle radius is


 � ,
as regards universal properties (this is useful because for a chain of coins we can ex-
ploit results coming from liquid crystal theory and make analytical progress in the
treatment, see below). In the next Section we write down mean field approximations
for these two models and solve them explicitly. This is used as a guide towards the
numerical solution. Then, in the following Section, we report the results coming from
a series of Monte-Carlo computer simulations aiming at characterizing the thermody-
namics of a self-attracting tube of varying thickness


 � . Technical details concerning
the mean field calculation are deferred to the Appendixes.

6.1 Mean field treatments

The chain of coins

Let us consider a chain of � coins, whose centers are identified by � vectors
� �� �  ��� � ������� � � , each of radius


 � . The coins cannot compenetrate and there is a � -body
purely attractive potential

� � 	 � �� � � �� 	 � whose argument is the distance between pairs
of coin centers. The centers of the coin also cannot approach closer than twice a
given hard core radius



� � . This is necessary for our mean field treatment to give a

�

collapse, otherwise the free energy minimum would always have a non-zero density
and would thus never be the swollen phase. The partition function of this system at
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an inverse temperature � � �� is:

� �
� �"

� �
�
� �� �

� ���"
���

�
# �
�
�� ��� � � �� �

�
� ���  ��� ����� 
 ��� �
	 ��� �� �


� � � 
� � � � (6.1)

�"
� � 	  � � 	 � �

� �
	 � � � �� 	 �
�"

� � 	  � � 	�� �
� � 	 � � � �� 	 � &

where
� � � �� 	

(
� � � �� 	

) is � � if the coins (spheres) centered in �� � and in �� 	 compenetrate,
and is � otherwise. We have taken the length of a link between two successive coins
equal to � . We can also take �� � � �� without loss of generality.

We now introduce a density field � � �� & �� � , where �� � � �� � � �� � ��� , defined as follows:

� � �� & �� � �
�*
��� �

# � �� � �� � � # � �� � �� � � � (6.2)

We can expand the effective Hamiltonian in Eq. 6.1 in powers of
� � � � � � � �� 	

as in a stan-
dard virial expansion. By enforcing the definition in Eq. 6.2 through the introduction
of a conjugate density field



� � �� & �� � , and by restricting the virial expansion in the free

energy to two particle clusters in
� � � �� 	

and up to three particle clusters in
� � � �� 	

(see the
Appendix for more details on these steps), we can rewrite Eq. 6.1 as:

� �
���

�
� 

�  ���

��� � � &


� �  (6.3)

where the explicit form of
�

is given in the Appendix. From Eq. 6.3 one obtains the
saddle point equations

# � 	 # � � # � 	 # 
� � � . Solving them is equivalent to finding
the optimal density configurations of the system. However an explicit solution is not
possible without further approximations. A very common one, which we adopt in the
following, is the mean field approximation: in our present case it consists in looking
for solutions of the saddle point equations which have the form � � �� & �� �

� � � � ���� (and
consequently one has also



� � �� & �� �

� 
� 
� � �� � ). If we now use the self-consistent saddle
point equations and insert them back into Eq. 6.3, we find that the mean field free
energy functional per particle to be minimized is:�

� � � � & � � �
�
� �� � � �� � � � � � � � �� � � � �

� �
�
� �� � � 	 � �� � � 	 �� � $


 �� � (6.4)

	
�
� � 	 � � $ 
 ��

�
� ��
�
� �� �

�
� � � �� � �� � � � 

�
� � � �� � � � �� � ���
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where the first term is the entropy contribution coming from the chain constraint,
the next three terms arise due to the two-body potential (the first is the attractive
interaction and the other two are the repulsive terms and are necessary in order to de-
scribe a

�
transition in our theory), whereas the last term is the coin excluded volume

mean field interaction which brings forth the anisotropy in the model[119], and where� ����� ��� �� � ��� �� � � � � ��� �� � � � � �
��� � � � / � � � � � �� � � 
 �� � � � � � � � �� 	 � � � � � ��� / � � � � in the

approximated treatment given in the Appendix. In the last formula � � 	 � is � if 	 � �
and � otherwise. It is to be noted, however, that the qualitative form of the resulting
phase diagram (see below and Fig. 6.1), does not depend at all on the numerical value
of
�

, but just on its presence and on its being greater than � in order to render the
density of the globule finite when the system is in the compact phase.

We now have to minimize Eq. 6.4 with respect to � and � . We call � � �� � � 	 � ��%� �
� � , the only feature of the two body attractive potential which affects the mean field
solution.

If � is high ( � is small), the minimum of
�
� � occurs for � � � � �� � � � : this

is the swollen isotropic phase. At a critical value of the temperature, namely for

� � � � ���� �
�

�
� �� � �� � � � � �� � , there is a phase transition into a phase with � �

� � and
� � � , which is physically an isotropic globular phase. This transition is second
order within the mean field approximation ( � ( � � ��� � � as � 0 �

�� ). If � is further
lowered, we find a second phase transition to an anisotropic globule (with non-zero
orientational order parameter � ) at a temperature:

� � ��� � � �
� 	 � � �� �� � � (6.5)

This is a first order transition, as can be also seen by realizing that our system is
equivalent to the liquid crystal theory treated in Ref. [120] and then following the
calculations reported there. Another important point is that the ratio between the two
critical temperatures (see Eq. 6.5) approaches � for large


 � as � � �� �� , with � � � a
constant. The precise form of the phase diagram is shown in Figure 6.1.

From that it is clear that we can distinguish two regimes: the first is one in which
the tube is ‘thin’, which occurs when


 � � � � � roughly, and in which there are two
clearly distinct transition as � decreases, the first (the usual

�
transition) from coil

to globule, and the other one, which we call ‘folding transition’, between an isotropic
globule and a compact configuration in which there is orientational order. After this
second transition, the chain of coins ground state resembles the aggregate that we
found in the preceding Section as a ground state for a long thick polymer, hence the
name ‘folding temperature’.
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Figure 6.1: Phase diagram for a chain of coins in the � � &

 � � plane obtained in the

mean field approximation.

A different regime is instead met when the thickness

 � is above roughly �
� � : in

this case we speak of ‘thick tubes’. In this second regime there is practically only
one transition, i.e. the system is almost never in the isotropic globule state. We also
ascribe the fact that in our theory there is always a small isotropic globular phase to
a weakness of our mean field approximation. A similar situation was observed in
[121, 122], in which the authors find two transitions in the mean field approximation
for stiff polymers whereas simulations indicate that the true solution should display a
single first order transition. It is to be noted that from experiments and recent theoret-
ical results on the thermodynamics of proteins [123, 124] it is rather well established
that real proteins may fall in either of these two situations.

The ‘tube’, i.e. a polymer with a constraint on the triplet radii

We briefly give the results of the same mean field treatment applied to a tube-
like polymer with a three body constraint (see preceding section). Here once more
the suitable order parameters are � , the density, and � � �� � , the link orientational order
parameter. With respect to the chain of coins, there is no region in which there are
two transitions. The transition temperature is � � � � �� � � � � � ���� � � � � � , where

�
� 
 � � �
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�� � � � � �� � � �� � � �� � � � � �� � & �� � & �� � � # �
�
�� � � �� �

�
� ��� , which goes to � as


 � 0 2 . In
this formula

�
� is � if the radius of the circle constructed with the triplet �� � � ��� � is

greater than

 � and � otherwise: this term acts as an effective two-body hard core

(but thickness dependent), whereas
�

is the volume occupied by the system in the
canonical ensemble. We have also considered in general the presence of a standard
two-body hard core which prevents the critical temperature from being infinitive in
the


 ��� � case. The
�

collapse is from a swollen phase to an isotropic globule if
 � � �� , and to an anisotropic globule otherwise. This time the transition is second
order in any case. We point out that the wormlike chain model (see e.g. [5] for the
definition) with compacting potential would give a qualitatively similar phase diagram
in this mean field calculation. This is so because indeed at first order in the cluster
expansion the tube nature is important only in disallowing strong bends, as happens
also for polymers with stiffness. However, higher order in the virial expansions would
consider configurations with non-local thickness effects where different portions of
the tube come into contact with one another. Below we present the phase diagram
found with Monte-Carlo simulations, which does take every feature into account.

6.2 Monte-Carlo evaluation of the phase diagram

We now consider a tube of a given thickness, schematized as explained above with
a three body effective constraint. We want here to find the thermodynamics of the
system without relying on a mean field approximation.

The methods employed are Monte-Carlo simulations, with the parallel tempering
or multiple Markov chain technique (see [34] and Chapter 1). The number of replicas
equilibrated simultaneously ranges from ��� to � 	 in our simulations. When needed, to
estimate canonical averages at other values than those simulated, we used the multi-
hystogram method as in Ref. [125].

In all formulas below ) � * denotes ensemble averaging. For each thickness consid-
ered, we calculate the specific heat � as:

� � � &

 � � � � � � ) � � * � ) � * � � & (6.6)

where
�

is the internal energy (contact number) and � � �� is the inverse temperature;
and the radius of gyration



� defined as:



� � � &


 � � � ) (
����

� � � 	 � � 	 � �!� � 	 � � � � � � �!� � 	 � � � � � � � � � �
� * ��� � & (6.7)
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where � 	 � & � � &�� �  ��� � ������� � � represent the coordinates of the � beads and � 	 � � & � � � &�� � � 
the coordinates of the center of mass of the polymer.

We also record three simulated probability distributions: the distribution of the
chirality1 � , which is a number between � � and � defined for every consecutive
quadruplet of beads along the chain, whose position vectors are �� � � ��� � �

��� ��� ��� � , as:

� � �� � � ��� � � � ��
���

� �
��� ��� �� ��� ��� ��� � � & (6.8)

the distribution of � � / � � � , where � is the angle between two consecutive links along
the chain, and that of � � / � � � where � is the angle between two links which are in
contact. Note that we define two links ( �� ��� � � �� � and �� 	�� � � �� 	 ) to be in contact
when

�
�� � � �� 	

� � 

� . We label these probability distributions

� � � � , � � ��� / � � � � and� � � � / ��� ��� respectively. For comparison it is useful to remember the shapes of these
distributions for non-interacting random walk, which are immediately found to be:

� � � � � � � � � � �
$ (6.9)� � ��� / � � � � � � � � � / ��� ��� � ��� � / 
 �

As with all Monte Carlo algorithms, finding canonical averages and particularly
the specific heat below the transition is difficult. The multiple Markov chain (or
parallel tempering) algorithm is a way to take care of this because the mobility of
the chain at low � is enhanced. To further improve results at low � , we have first
performed one or more parallel tempering runs collecting both data for canonical
averages and specific heat and the low � configurations, starting from an open initial
conditions (all chains more or less straight are chosen for all the replicas). Then
another run is performed with the replicas starting from a ‘folded’ conformation, the
one with the minimum energy found with the preceding runs. This is a way to sample
more correctly the low � configurations, giving a bias towards the ‘correct’ ground
state for very low � . On can check that the high � behaviour is the same for all runs.

From our data, we found that the phase diagram we obtain (see Figure 6.10 in
which the phase transition critical lines are plotted in the � � &


 � � plane) suggests the
presence of two quite distinct regimes as for the mean field approximation results: the
first holds for ‘thin polymers’ (for thickness up to roughly ��� � ), the second for ‘thick
tubes’ (


 � � ��� � ). This is similar to what we found in the mean field analysis of the
chain of coins.

1The chirality is mathematically the mixed product of three consecutive links (see Eq.6.8). It is
useful for us because it gives information on the structure of the chain. A helix has a chirality which is
constant throughout the chain, a planar structure on the other hand has � ! " for any quadruplets.
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In the graphs in Figures 6.5,6.9 we show the behaviour of the specific heat and
of the gyration radius for two different thickness values, typical respectively of thin
(

 � � ��� � ) and thick (


 � � ���� � ) tubes. In the other Figures 6.2-6.8 on the other hand
we show typical histograms for the previously defined

� � � � &
� � ��� / � � � � &

� � � � / � � � � .
We considered polymers with � � ��� & � � and 	�� . We have performed Monte-Carlo
runs scanning the thickness


 � every ��� � � units.

Regime 1: thin polymers:

 � � ��� �

For small thickness, the thermodynamic behaviour of the polymer is for many
aspects found to be similar to the one reported in Ref. [126], which holds for conven-
tional polymers whose thickness is actually � . We consider the case


 � � ��� � as the
representative one. By looking at the gyration radius (see Fig. 6.5), one would place
the ’

�
-like’ collapse transition point at the � for which the three curves intersect,

since on the transition line for the usual
�

collapse one expects that


�
� � ��� � (as

it should be , � , � � �
	 � ). From Fig. 6.5, we see that even for a polymer with
a (small) non-zero thickness, the polymer critical exponent , at the transition line is
�
	 � . This means that roughly � � � � � � . The specific heat however displays a peak
only for � approximately equal to � (see Fig. 6.5), a value significantly smaller than
the previous one. Moreover, our data suggest that there could be another transition
for even smaller values of � . The specific heat points are however very noisy in this
region (see Fig.6.5) and hamper a clear identification of this second transition. If we
look at

� � � � , we see that after we pass through the
�

-like point where the gyration
radius drops, the distributions changes from one peaked around � � � (more strongly
than in the random walk case), to a more or less flat distribution. This remains true
after the first specific heat peak is gone through, whereas as the polymer meets the
second peak of the specific heat the distribution develops many peaks for non-zero
values of � . The analysis of the distribution of the angle � between successive links
suggests that at high � the distribution is flat but is such that negative values are disal-
lowed because of the thickness constraint. After the first transition, values of � � / � �%�
correspondent to tubes not tightly bent locally are penalized; after the specific heat
peak this is more pronounced (and two peaks develop in the small angle region). Note
that after the ‘

�
-like’ transition, the values of � � / � � � which are not penalized corre-

spond to a local thickness roughly between ��� � (the constraint), and slightly more
than ��� � , in a way that one can summarize the situation by saying that ‘locally thin’
tubes only dominate the thick polymer distribution probability after the � -like col-
lapse. Last, analysis of

� � ��� / � � � � suggests that the second peak in the specific heat,
corresponding to the hypothetical third transition temperature, is connected to an in-
creased probability of contacts to occur between parallel links. This suggests that the
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second specific heat might mean a transition between an isotropic to an anisotropic
crystalline state for the polymer. This effect is rather mild though, because locally
the tubes are not straight: this might be due to finite size effects and in this view only
in the thermodynamic limit the mean field picture of a nematic-like phase would be
recovered.

In Ref. [126] it was suggested that there is a first
�

transition from coil to globule,
equivalent to the usual gas-to-liquid transition. This is signalled by the drop of the
gyration radius as well as by a shoulder in the specific heat. Subsequently, the globule
crystallizes (as in a liquid-to-solid transition for clusters of hard spheres) giving raise
to the first peak in the specific heat, which should correspond to a first order transition
in contrast with the second-order transition of standard

�
collapse. Lastly, there is a

second transition, which the authors refer to a solid-to-solid first order transition.

It is interesting to notice that even with exact enumerations on interacting self-
avoiding walks on the two-dimensional lattice, though for the rather small values
manageable for these problems (which means roughly � of order � � ), one gets a
similar behaviour[127], in that the gyration radius drops at a higher � than the one at
which the specific heat displays a peak, and at still lower � one finds a second specific
heat peak.

In our case, we believe that the thermodynamics of a thin tube is equivalent to the
one proposed in Ref. [126] up to the first specific heat peak. However, what happens
below is most probably different and peculiar to the cylindrical shape of the polymer.
In particular, we have only a partial numerical evidence that the second specific heat
peak corresponds to a physical transition. Also, if there is such a transition, we are
lead to believe that in our calculation the nature of this transition should be different
than the second solid-to-solid transition observed with conventional polymers: it is
likely that the second specific heat peak corresponds to the transition between an
isotropic compact state into an anisotropic one, as in the mean field result.

Regime 2: thick polymers

For higher thicknesses (roughly from

 � � ��� � on), the thermodynamic behaviour

is different. In this case, the point in which the scaled curves for


� intersect and the

location of the peak in the specific heat (see Fig. 6.9) are not very different as in the
case of thin polymers. This suggests that in this case there is a single transition. Also
the data for the specific heat per monomer, within the Monte-Carlo errors, suggest
that this quantity diverges at the transition. We thus predict that this is a first order
direct transition from a swollen phase to a ‘nematic-like’ globular phase. This pre-
diction is in agreement with the mean field analysis of the preceding Subsection, and
is also confirmed by looking at the other data from the simulation (see below). That
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the low temperature phase is indeed characterized by portion of the tubes trying to
position themselves parallel with respect to one another is rather clear by looking at
the distribution

� � ��� / � � , which at low � has sharp peaks in � � and in � . By anal-
ogy with the continuum ground state for long tubes, we also conjecture that for long
tubes the ground state for very low � will happen with tube portions oriented parallel
to one another (Abrikosov lattice state, as in Fig.5.4). It is to be noted however that
the portion of the tubes which face each other are more or less straight only for not
too thick tubes (around


 � � ���  in our simulations, see Fig. 5.4), otherwise the
thickness constraint makes so that, for


 � � ���  � for example, we do not get a peak
corresponding to � in the distribution

� � ��� / � � � � . The analysis of
� � � � (Fig.6.6) re-

veals that at high � the chirality distribution is wedge-shaped, so the peak in � � � is
more enhanced with respect to the case of low thickness. This shape persists almost
up to the transition point, and there are no pre-transition effects as in the thin polymer
case, consistently with the transition being first order, i.e. sharp. Below the transition,
three peaks develop, one for � � � , not present for


 � � ��� � , and the other two
roughly symmetric at the edge of the � spectrum visited by the system. The central
one might be due to the richness of planar or quasi-planar structures in the sampled
configurations (as a planar structure has � � � ).

The critical exponent , for this case of thick polymers deserves some further
discussion. Note that, once again, the gyration radius data (Fig. 6.9) intersect when
scaled by � ��� � , which would suggest that the polymer critical exponent along the
transition line is , � �� as in the standard

�
point transition. Though, a rather good

scaling is also obtained with , � ��� � ��� � � � (the exponent of polymers in the swollen
phase). Indeed, if there is coexistence at the transition point (as is usually the case
in a first-order transition), one would get , � ��� � ��� � � � . Note also, however, that if
we move in the phase diagram at � � � , we expect that the ground state obtained
for


 � � � � � � � � � � � (the value in Eq. 5.1) is a compact configuration in � � � , thus
corresponding again to , � �� . So if at the transition point the configuration is planar
or quasi-planar, the exponent would be � 	 � along all the transition line. Both these
possibilities are equally likely from our data.

The phase diagram in Fig. 6.10 was computed by marking as transitions only
the specific heat peaks, even if for thin polymers there may be one more transition
corresponding to the gyration radius drop as discussed above. It is intriguing that the
‘triple point’ in the phase diagram, which discriminates between ‘thin’ polymers and
‘thick’ polymers (that we have identified as being roughly ��� � ), in which anisotropy of
the cylindrical chain starts to play a major role, seems to coincide with the thickness
corresponding with the onset of the marginally compact region in the minima analysis
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for short polymers detailed in Section III. The phase diagram in Fig. 6.10 should be
compared with that of a stiff polymer with no thickness (see e.g. Ref. [96, 121, 122]).
Also stiff polymers are known to undergo either two transitions, one of second and
the other of first order, or only one transition of first order, according to whether the
stiffness is small or high. The thickness of the tube indeed makes it impossible for
it to have sharp bends and this is reflected in the tube having a bigger persistence
length than a polymer with no thickness: in other words, the thickness acts locally
as a stiffness. However, the thickness has an important role also non-locally both in
providing a simple mechanism through which distant portions of the polymers must
orient themselves selectively in order to take advantage of attractive interactions, and,
more important, provide a natural way in which naturally occurring secondary motifs
arise with no need of heterogeneity in the model. To our knowledge no secondary
structures appear in the resulting ground states when dealing with only stiff polymers,
whereas with thick polymers we obtain both � helices and � sheets. Also, thick
discrete polymers display a planar phase at high values of the thickness which cannot
be obtained with stiff polymers.

We also performed an analysis of the ‘unfolded state’, i.e. of the ensemble of
configurations typical for the polymer just above the transition point (the first peak
of the specific heat when there is ambiguity). Again the situation is different for
thin tubes and thick tubes. In the former case, the unfolded state is one in which
some contacts are already formed, so it is distinct from a swollen phase, though it
has no regularity typical of the crystalline phase. In the latter case, on the other hand,
consistently with the fact that the transition is found to be first-order-like, we observe
that just above the transition point the chain is still indistinguishable from a typical
configuration in the swollen phase. One can get an idea of this by looking at the
distribution of

� � ��� / � � shown before. In the case of a thick tube, one can see there is
almost no statistics for this quantity until at the transition temperature (i.e. for higher

� there are practically never sampled configurations with one or more contacts, which
is why we can only start at � � ��� � with the measure of this probability distributions
in Fig. 6.8), suggesting thus that the unfolded state in this case is swollen and that
the transition is sharp, of all-or-none kind. In the case of a thin tube, on the other
hand, even for � � � � � and higher (not shown) we sampled a reasonable number of
configurations with self-contacts, which are better characterized as partially folded
than as completely unfolded.
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Conclusions and Perspectives

This thesis consists of two parts. The first part dealt with original physical questions
motivated by single molecule experiments in DNA unzipping and in stretching of col-
lapsed polymer.

In the first Chapter, within a lattice model of self-avoiding walks, we proved that
the force versus temperature phase diagram in DNA unzipping displays a regime in
which it becomes harder to open the molecule as � increases. This corresponds to
a reentrant transition line and has been explained as a rather simple energy-entropy
effect. Even more realistic models, in which heterogeneity and dsDNA stiffness are
fully taken into account would show the same behaviour, rendering this reentrance
a robust phenomenon. However, estimates coming from our model suggest that in
real experiments this effect should be relegated to values of the temperature which
are lower than those which can nowadays be reached. A complete characterization
of the dynamics in terms of the dynamical critical exponents has been given for the
homogeneous system, and a partial analysis has been performed for random DNA,
limited to the case when denaturation bubbles are neglected (which is a valid approx-
imation as long as � is consistently below the melting temperature). The values of
critical exponents have also been explained by heuristic arguments. To our judgment,
the most relevant result is that the mechanism of unzipping below the denaturation
transition is super-universal, in that it does not depend on the dimension and on the
specific details of the model (complete self-avoidance, stiffness, etc.). On the other
hand, the zero-force melting dynamical mechanism appears to be much more model
dependent, thus giving in principle a ’dynamical criterion’ according to which during
replication a fluctuation induced bubble can be promptly distinguished from a proper
force-induced unwinding of the strands. At this point, the model will have to be made
more realistic in order for it to represent faithfully the first step of DNA replication.
The most important missing ingredient is the intrinsic helicity of DNA in its double-
stranded form. Careful further work is needed in order to ascertain its role on the var-
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ious aspect of the phase transition. Nevertheless, the predictions highlighted above
are expected to be robust with respect to the introduction of these realistic details.

In the second Chapter, we discussed the seemingly related topic of the stretching
of a polymer in a poor solvent. We studied a model of a self-avoiding chain sub-
ject to a compacting potential and to a stretching force. Usually data obtained from
these kind of experiments are compared with mean field theoretical calculations. We
showed in this Chapter that mean field is often very unreliable in making predictions.
In particular, we showed that for finite chains the transition is not an all-or-none tran-
sition, rather it proceeds in a multi-step fashion. It is to be noted that this multi-step
character has nothing to do with the expectations that dynamically a globule might
get trapped in metastable configurations during its opening: our results show that
(for sufficiently short chains) at intermediate values of the force the optimal config-
uration (global minimum of the internal energy) is neither a compact globule nor an
open state, but a state which is both elongated and has a large number of contacts: we
might call the ensemble of such states a ’marginally compact phase’ to underscore the
strict analogy with what found in the second Part of the thesis. So above a crossover
value for the chain length – for very long chains – in three dimensions, mean field
theory is recovered and the transition is thermodynamically first order, but below it
marginally compact states show up. Remarkably, among the selected ground states
we find a regular helix. This fact does not depend on the potential details provided
that the attraction range is of the order of the distance between successive beads. This
is an intriguing fact because it suggests that helices are naturally chosen whenever
there is the requirement that a polymer must withstand a significant applied force and
still have portion of the chains which are able to form non covalent or hydrophobic
interactions. This would concur in explaining why helices recur so often in nature.
We also found it pleasing that our multi-step non-mean field theory is in qualitative,
although non quantitative, agreement with experimental data from Ref. [13], which
were not interpreted before. In this experiment the authors observed that for very
long collapsed DNA molecules the force versus elongation characteristic curves have
a single plateau and are in good agreement with mean field theory, whereas this is no
longer true for data corresponding to somewhat shorter DNA’s (roughly by a factor
of � � ). In this last case a series of peaks was observed. These oscillations mean that
the elongation versus the stretching force evolves in a multi-step fashion as shown in
the thesis. Though there is hysteresis and hence dynamical effects will have affected
the data, the agreement remains qualitative but significant. In two dimensions, on the
other hand, we find that marginally compact states persist up to infinitely long chains.
This drives the thermodynamic transition second order. A real space renormalization
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group argument can explain the nature of the thermodynamic unfolding in different
dimensions satisfactorily. We hope that these results on polymer stretching can stim-
ulate other experiments to verify whether helices are possible structures before the
polymer is completely stretched. Theoretically, we have not treated dynamical ef-
fects: in the future we plan to consider them in our models in order to find whether
they can spoil possible experimental verification of our predictions.

The second part of this thesis has been devoted to the development and charac-
terization of a model to describe thick polymers. This was meant as a coarse-grained
model for protein folding which takes into account only the common characteris-
tics of all proteins. Real proteins indeed at first approximation are schematized by
chains, whose beads stand for the C � atoms in the polypeptide backbone. At every
site (C � atom) there is a hard core sphere (which acts in usual models on the other
non-consecutive beads only) so that the chain is self-avoiding. Moreover, in conven-
tional ’protein folding’ coarse grained models all C � interact via a (generally pair
dependent) compacting potential. However, the presence of side chains and all other
atoms imposes additional steric constraints on the allowed configuration of a chain
which mimics a polypeptide. A way to encompass this is to replace a self-avoiding
chain by a self-avoiding tube with a non-zero effective thickness.

First, in Chapter 4, we have shown that in order to have a model of self-avoiding
interacting curves with a non-zero thickness and with a well-defined continuum limit
(without singularities), it is necessary to introduce three body constraints in the po-
tential. These three body terms have nothing to do with those which arise e.g. in
Edwards’s model and which come from the virial expansion: here they have a physi-
cal meaning as their typical scale gives the thickness of the polymer.

In Chapter 5 we have discussed the optimal configurations which arise when we
want to compactify discrete thick polymers. Our main result is that if we tune the
tube thickness to be of the order of the attraction range, the different portions of the
polymer need to position themselves parallel to each other, and we obtain ’marginally
compact structures’ which are still able to shield water from their core but have also
internal wiggle room for their side chains. When we go from compact to swollen,
we thus encounter again a marginally compact phase. From thinner to thicker, the
marginally compact structures come from helices to sheets, passing through a range
of interpolating motives, namely helices of strands and saddles. All of them are found
as more common (helices and sheets) or less common (helices of strands and saddles)
naturally occurring secondary structures of biopolymers. We stress that no coarse
grained model, which neglects chemical details, had been found before to have a
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protein-like ground state (apart from the ad-hoc constructed Go-model). In addition,
in our model no sequence specificity has been used in order to find the optimal states.
For longer tubes, unless we are near the onset of planarity, we observe a crossover to
a nematic-like state, rather similar to the structures met in amyloid fibers or in protein
aggregates, which are usually linked to the inability to correctly fold of a protein
consequent to a disease. It is interesting that the crossover to these states is controlled
by polymer length, as it is similar to what occurs in real situations, where the amyloid
or aggregate formation is enhanced by increasing the concentration of polymers in
solution.

In Chapter 6, we have finally studied the thermodynamics of thick polymers. By
mean field theory and Monte-Carlo simulations, we have identified two regimes. The
first is that of ’thin’ tubes: decreasing � , the tube first undergoes a standard

�
collapse

(second order), then a second transition at a lower � from an isotropic globule into a
’nematic’ phase (first order) where isotropy is broken. In the second regime the tube
is ’thick’ and there is a direct first order transition to the nematic phase (which for
small � gives protein-like structures).

Coming back to the questions raised in the Introduction, we see now that the
proposed model of a thick polymer with hydrophobic interactions may shed light
on some of them. First, it is no longer true that a thick homopolymer when it is
collapsed has a highly degenerate ground state: if its thickness is tuned, the optimal
state is practically unique. Second, the free energy landscape is highly affected by the
three body constraints: in the marginally compact phase there are only a few minima
among which to choose, and the dynamics will thus be more efficient and less likely to
get stuck. Third, our results occur for homopolymers and thus suggest that, regardless
of the aminoacidic sequence, many different proteins may share the same secondary
structural elements provided their effective thickness is similar. Last, the observed
protein versatility might be connected to the fact that, as we have seen, the ’twilight
zone’ in which marginally compact structures exist is relatively small and in order
to switch from an � helix to a � sheet the thickness must be increased only slightly.
Even if these observations are to some extent speculative, we believe that our results
are encouraging and convincing enough to prove that thickness is an important feature
to consider or incorporate in coarse-grained models for protein folding subsequent
to ours. Of course, further developments will be needed. In particular, though we
obtain faithful analogues of protein secondary structures, upon compaction of bigger
chains, as noted above, we obtain nematic structures, we never find tertiary folds
within the present scheme. It would be both important and interesting to see how
our model can be minimally expanded in order to include them. It is likely that a
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dishomogeneity in the local thickness of the tube and/or in the compacting potential,
due to aminoacid diversity, is needed. Preliminary results in this direction are rather
promising in particular for the stabilization of bundles of helices, whereas mixed
� 	 � folds are more elusive. In any case, the size of the polymers needed is larger
and simulations are harder and more time consuming. We hope that our results on
marginally compact structures and on thick polymers will spur interest and further
more advanced work theoretically and, also, experimentally.
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Appendix A

Monte-Carlo moves

The configuration space we want to sample is the set, � � , of � � beads discrete
chains, ���
�� ���� ��������� � � ��� , having a fixed constant distance between consecutive beads,
which we take to be � . In all cases considered in this thesis there is a hard core re-
pulsion at a distance � 
 � � between non-consecutive beads, while the detailed form of
the potential,

�
, depends on the specific problem we want to tackle, and is defined in

the body of this thesis every time a Monte-Carlo run is performed. Another possible
way to define the configuration of a chain is via the Ramachandran angles introduced
in Chapter 1, but here we have not used this angle formulation mainly for simplicity
of the computer code.

We have employed four different types of moves in the Monte-Carlo dynamics.
All moves do not violate the constraint of fixed constant difference between consecu-
tive beads along the chain, but we have to check whether the propose updated config-
uration satisfies other constraints that we want to enforce, which in our case sums up
to checking self-avoidance. When the trial configuration violates self-avoidance, it is
rejected before performing the Metropolis test on it (see Chapter 1). We now list the
moves we used and discuss their local/global character, with respect to the number of
beads involved in the move, as is customary in polymer physics [43, 33].

Cranckshaft move: Select randomly two beads � &
�

( � � � ) such that
� � � �

� � 	 � , with � � � � � � (most frequently we have used � � � 	 ). Then rotate
beads � 	 � & � � � &

�
of an angle 	 � � around the axis �
 	 � �
��

. The angle 	 � � is
chosen randomly with a uniform distribution in the interval � � 	 � � 	 � & 	 � � 	 � � . This
is a local move, since only � � beads are involved. So it may well correspond to a
physical move of the polymer in a real dynamics (as the one used for DNA unzipping
in Chapter 2 on the lattice).
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Reptation move: This kind of move is also known as the slithering-snake move.
It consists in deleting � � ( � � � � & � � � & � � , with � � most frequently chosen as

�
) beads

from one end of the chain and appending them, after a rotation around a random axis
of an angle 	 � � chosen uniformly from � to $ . Reptation is a bilocal move, since it
alters two disjoint small groups of consecutive beads of the chain. Reptation is used
as a physical dynamical moves in models in which the polymer migrates in a fixed
environment or is subject to some displacing field and is subject to no constraints.

Pivot move: Select randomly one bead � ( � � � � � � � ) as the pivot point,
and then rotate the part of the chain subsequent to the pivot point while keeping fixed
the rest of the chain, using the pivot point as the origin. The rotation is around a
random axis chosen with uniform probability among all the versors on the unit sphere
and the pivot rotation angle is uniformly chosen between ��	 � �� and 	 � �� (which in
general is different from 	 � � ). Pivot moves are global ones, since they involve a
rearrangement of a macroscopic portion of the chain. A pivot move is unlikely as a
physical dynamical move.

Cut-and-rotate move: This move consists in cutting all the links of the chain, i.e.
in breaking the chain � �
�� ���� ��������� � � ��� , in rotating randomly (as above, by an angle from
� to a maximum value 	 � � �� ) a fraction � � � � � � of the links, and then in reassembling
them in the same order as before. This can be seen as equivalent in spirit to making
many pivot moves simultaneously. Cut-and-rotate moves are expected to rearrange
drastically the whole shape of the chain, thus ensuring a more efficient search in con-
figurational space, though they have an acceptance rate which is lower that that of the
above moves. For optimization it proved to be very helpful, while in equilibration
calculation it was less efficient and we did not use it.

To conclude, we note that the efficiency of Monte Carlo dynamics may depend
crucially on tuning the different control parameters which we have introduced, namely
� � , � � , � � � � � � , 	 � � , 	 � �� , 	 ��� � � �� , possibly considering them as non-constant func-
tions of the temperature. Efficiency also depends on the relative frequency of the
different moves that we use. In general of course, the best efficiency for different pur-
poses (i.e. optimization or equilibration) is attained for different values of the control
parameters.
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Ground state of clusters of interacting
hard spheres

We consider spheres with a hard core



� � subject to a compacting potential
�

between
all pairs. The potential is an asymmetrical square well, identical to that of Eq.4.10.
We consider the two and three-dimensional cases in detail below. By keeping the hard
core radius fixed to the value



� � � ��� � , we want to find the ground state (gs) of the

potential for different values of



� , the range of the attracting potential.
Some features of the solution to this problem do not depend on � and on other

details and are worth being mentioned. First, the ground state is unique only for
particular values of the contact potential range



� . In general there is a degeneracy.

There are windows or steps of values of



� : the degeneracy is one only at the left
edge of each plateau and then it increases (compare Fig. B.1 valid for this problem
with. Fig. 5.2 which is the analogous one for the thick tube problem). Second,
the recurring ground state is different for different steps unless in the trivial one-
dimensional case. Third, note that when



� tends to � 
 � � one reduces to the well

studied task of finding the structure giving the maximally compact packing of hard
spheres: in the thermodynamic limit, in ��� � this structure is the triangular lattice, in
����� it is the face centered cubic (fcc) lattice. Last, in contrast to the case discussed
in Section III of the thick polymer, here there is in general a greater degeneracy: this
suggests that the anisotropy present there is a key to gs selection and degeneracy
reduction.

Two-dimensional case

In � � � it is well known that there is a unique way of packing hard disks so that
the compaction is maximal. The optimal packing is performed by placing the centers
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of the disks in a triangular lattice, for which every site has six nearest neighbours.
This is consequently the ground state of our problem when



� � �



� � . For generic

values of the attraction range



� , we study what the best possible way to compact
hard disks at that particular value of



� is. So we look for the ground state in the

thermodynamic limit.

We expect that the ground state for big � is again a lattice because the thermo-
dynamic limit must be translationally invariant (contrarily to the case of a finite size
sample). We show in Fig. B.1 below the best possible lattice as a function of



� .

The first plateau corresponds to a triangular lattice. As



� increases this ground state
is more and more degenerate. A measure of the degeneracy inside the class of two-
dimensional lattice only is given by the height of the vertical segment in Fig. B.1.
Of course this measure being limited to the sub-class of lattices, it gives an under-
estimate of the real degeneracy. When the attraction range becomes � � , it is more
advantageous for the points to arrange themselves on a square lattice, because in this
way also the second neighbours have a distance which falls within the potential well.
Intriguingly, the system continues oscillating between the triangular lattices and other
kinds of Bravais lattices also for bigger values of



� as is shown in Fig. B.1 (in the

first few steps the competing lattices comprise the square lattice, but in general this
is not true). For big enough (size-dependent)



� the degeneracy becomes so huge

that the gs is again a gas as in the case



� � � 
 � � � . We stress once more that Fig.
B.1 shows the best possible lattice for the compaction at a given attraction range



� .

In order to support our expectation that there does not exist a structure which for a
given



� (in the thermodynamic limit) has a bigger energy than one of the lattices in

Fig. B.1, we have performed Monte-Carlo simulated annealing on a system of a finite
number of disks in a finite box ( � � � � disks in the structures of Fig. B.2 ).

Though we only deal with finite size samples, we can define effectively a ‘bulk
coordination’ or ‘bulk contact number’ of the structures coming out from the simula-
tions. One first definition might be the maximum number of contacts performed by
any bead given that the surface spheres can make fewer contacts than the bulk parti-
cles. The ‘bulk contact numbers’ defined in this way of the structure found with the
simulated annealing are below those of the � � lattices except in two cases (fig. B.3).
These two counterexamples both occur near the end of one step where degeneracy is
high and are due to defects in which there can be more contacts locally. If we define
the ‘bulk contact number’ as the maximum number of contacts made by a bead with
the constraint that this maximum must be attained at least a given number � of times
this quantity is always below the coordination of the optimal lattice at the correspond-
ing



� (provided wee choose at least � � � in our example with � � � � ).



Ground state of clusters of interacting hard spheres 129

R

E

1

0

5
10
15
20
25
30
35
40
45
50
55
60

1 1.5 2 2.5 3 3.5 4

lattice energy
(d

eg
re

es
)

θ

Amount of 

Degeneracy

R 1

60

65

70

75

80

85

90

1 1.5 2 2.5 3 3.5 4

Figure B.1: Top figure: lattice energy vs. attraction range for two dimensional Bravais
lattices. Bottom figure: this gives a measure of the degeneracy of the gs lattice.
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Figure B.2: Structures obtained as ground states of a box with � � attracting hard
disks, for various values of the attraction range



� (shown in the figure).
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Three-dimensional case

Though it has been proved rigorously only a few years ago, it has been conjectured
since Kepler’s time that the optimal packing in ��� � for hard spheres is given by the
face centered cubic crystal (fcc crystal) arrangement. In this Bravais lattice all the
sites have � � nearest neighbours so that the energy in the thermodynamic limit is 	 � .

In the three-dimensional case, however, the fcc lattice is not the unique ground
state when



� � �



� � � . There are in fact an infinite series of degenerate ground

states. These maximally compact states are found by superimposing one onto the
other two-dimensional triangular lattices. If the configuration corresponding to the
center of the spheres in the first layer is labelled ’A’, then the second triangular lattice
might position its centers either in the depression available between the spheres in the
first layer (labelled ’B’) or directly on top of the first layer (’A’ again). Once these
two layers are positioned, the position of the third triangular lattice might choose
three different configurations: ’A’ if it is placed on top of the first layer, ’B’ if the
spheres are put on top of the second layer, or ’C’ if the centers are put into the de-
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pressions unused by the second layer of spheres. The configuration repeated such that
the following layers have successive configurations A and B, ’ABABAB’ etc., is the
hexagonal close packed lattice, or hcp; whereas the structure ’ABCABCABC � � � ’ is
the fcc lattice. It is to be noted that the fcc lattice is the only Bravais lattice between
those of this set of structures which maximally fill the space.

So our strategy for finding a guess for the ground states at varying attraction ranges
is the following. First we look among all the 3d Bravais lattices (labelled by three
angles: � , between the first two Bravais vectors; � , � the polar and azimuthal angle
respectively for the third vector in the system generated by the first two vectors and
the perpendicular to their plane) for the one which maximizes the potential

�
. The

resulting plot of the energy versus



� is shown in Fig. B.4. Second, we try to position
triangular or square lattice on top of each other and look for the optimal structures of
this kind (not necessarily a Bravais lattice) obtained in this way. Third, as we cannot
be sure that the ground state is found among either three-dimensional Bravais lattices
or two-dimensional Bravais lattices laying one onto the other, we have performed
Monte-Carlo simulations of hard spheres in a box.

By considering the bulk of the spheres cluster in practice we can simulate the
thermodynamic limit of the systems. As in � � � with these simulations one is not
able to improve over the energies found by enumerating the � � � optimal Bravais
lattices found before, meaning that the bulk number of pairwise contacts of the � �
Bravais lattices is greater than the corresponding Monte-Carlo generated structures.
We can therefore consider the minima in Fig. B.4 with a sufficient degree of certainty
to be the true ground states of our potential

�
.

In Fig. B.4 we show the gs energy found by following the strategy outlined above
and also mention the corresponding structures for the first minima with increasing


� (the structure is known once we give the angles, as we are dealing with Bravais
lattices). With respect to the two-dimensional case, there are many more states which
come up with increasing



� . In particular note that the third step corresponds to

the simple hexagonal lattice; this situation corresponds to that studied in[126]. The
authors there find a competition between the spheres either connected by a chain
or free, in doing triangular and square lattices: this is precisely what happens in a
hexagonal simple lattice, in which the unit cell is a prism in which two faces are
triangles and the other are squares.

In Fig. B.5 we show some examples of ground state configuration found by pack-
ing � � � � ( � � 	
� ) hard spheres. These finite size ground states do not have the
symmetry of lattices, the number of constituent particles being so low that boundary
effect become predominant and the chosen structures are those that lose less energy
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Figure B.5: We show in this figure typical minima resulting from simulated annealing.

due to surface exposure rather than those which make more contacts in the bulk. In
order to find the ground states in Fig. B.5 we used simulated annealing with Monte-
Carlo dynamics. It is to be noted that the Monte-Carlo dynamics is not trivial and one
has to combine local one sphere moves with some global cluster moves that prevent
the systems from dividing itself in several subcluster not interacting with one another.
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Mean field calculations

In this Appendix we derive the formulas for the mean field free energy Eqs. 6.3, 6.4.
We consider only the case of the chain of coins, the case of the polymer with triplet
constraint is similar. We start from the partition function in Eq. 6.1:

� �
�

� �
� �"
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���
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We can rewrite it as:
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���

�
� �� � # � �� � � �� ��� � 	 �� � � (C.2)

# �
�
�� ��� � � �� �

�
� ��� # � � �

�*
� �

�
# � �� � �� � � # � �� � �� � � � ) � � � � * � �!� �

We have called:

) � � � � * � � � � ����� � � �� � � �� � � �� � 	  � � 	�� � � � 	
� � � �� 	 ��� �� � 	  � � 	�� � � � 	

� � � �� 	 �� � � � � �� � � �� � & (C.3)
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where with the symbol ��� we mean integration with respect to the density � � �� & �� � :�
�

"
� � �� � � �� � � � "

� � �� � � �� � # �
�
�� ��� � � �� �

�
� ��� # � �� � � �� ��� � 	 �� � � (C.4)

# � � �
�*
���

�
# � �� � �� � � # � �� � �� � � � �

Through a standard virial or cluster expansion[120] truncated at second order in
� � � �

and at first in
� � � � 1, we get:
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where by � � ��%� we mean � � �� � � �� & �� � . Now in Eq. C.2 we use the well-know identity:
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In this way we can rewrite eq. C.2 as in Eq. 6.3 with:
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1The derivation of Eq. C.5 implies neglecting the chain constraint in the interaction part. It is

possible but more cumbersome to take into account the chain constraint properly also here[128]. To
our purpose however however it suffices to show that one obtains a term of second order in � in the
free energy.
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where we have called
� � 
� � the polymeric partition function, which reads:
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The saddle point equation read �
�

�
� � �

�
�
�� � � . In this form they are not solvable

explicitly. As in the text, we here make the ‘mean field approximation’ � � �� & �� �
�

� � � �� � � � � �� � (and consequently from the saddle point equations one finds
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� � �� � ). After this one gets

� � 
� � � � � �� # � � �� � � � �  � � �� � 
� � and the equation
�

�
�
�� � � takes on the form of a self-consistent equation for � and
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or equivalently:

� 
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� � * � � �� & �� �� � (C.10)

where with ) � * we denote ensemble averaging with respect to the measure � � �� # � � �� � � � � � .
In this way we recover the free energy in Eqs. 6.4, by recalling also the formula for
the mean excluded volume of two coins, with axis �� � and �� � , and radius


 � which is
due to Onsager[119] and reads:
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