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Introduction

This book is not of today or of the future.
It tells of no place.

It serves no cause, party or class.
It has a moral which grows on the pillar of understanding:

"The mediator between brain and muscle must be the Heart."

Thea von Harbou, Metropolis

The interplay between Physics and Biology is certainly one of the most exciting
field in modern Science. In particular, the discovery that proteins, DNA and RNA
have rather peculiar spatial arrangements [1, 2, 3] has convinced biological physicists
that these simple forms may be deduced from an underlying principle. Besides, new
experimental techniques have supplied high-quality data, which can be investigated
and compared to theoretical models.

In particular, in this Thesis, we have focused our attention on the theoretical study
of some elastic and thermodynamic properties of polymers and, in particular, biopoly-
mers such as proteins, DNA and RNA [4].

This research work is organized as follows:

� In Chap. 1, we introduce some basic concept on polymers and biopolymers.

In particular, biopolymers has attracted the attention of many research groups.
Probably, their most appealing property is that they are organized in simple
hierarchical structures [5]. In fact, the primary amino acid sequence of proteins
is disposed in some fascinating forms as �-helices and �-strands, which at an
outer level form compact structures called domains. Moreover, 50 years ago,
Watson and Crick [2] discovered the marvelous double helix of DNA.

Furthemore, polymers seem to display many intriguing features, since they can
not be described in terms of ordinary solids. This is due to the covalent nature of
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the bonds between consecutive monomers. Due to temperature fluctuations of
these bonds, a polymer can not be viewed as a rigid macromolecule. Since these
fluctuations favor many different spatial conformation, a Statistical Mechanics
approach has revealed very useful [3]. Then, we focus on the important problem
of polymer elasticity and introduce some preliminary concepts as the Kuhn
length and the persistence length [4].

� In Chap. 2, we focus our attention about some recent experiments on polymer
stretching.

Firstly, we begin with a brief introduction to some recent experimental tech-
niques. Mainly, we focus on optical tweezers [6], atomic force microscopes
[7] and soft microneedles [8]. We also give a short explanation about their
technical features, including practical limitations and available force ranges.

Besides, we describe in great details many force driven phase transition which
occur in real polymers. Then, Statistical Mechanics allows for a rigorous ap-
proach to these phenomena. As explained above, we also address the important
problem of elasticity in polymers, introducing the freely jointed chain (FJC)
model and the worm like chain (WLC) model [3].

� In Chap. 3, we describe the stretching behaviour of polymers, with the intro-
duction of some chosen 2d on-lattice models and 3d off-lattice models.

In the framework of a simplified approach on a self-interacting directed self-
avoiding walk (DSAW) [9], we have discussed the importance of some scaling
laws that we think to be of more general validity. Then, we introduce a more
realistic model for a self-interacting SAW [9]. In particular we are able to
describe its phase diagram.

Through the introduction of an off-lattice self-avoiding polymer, we also give
a simple explanation of some recent puzzling experimental results described in
Chap. 2.

� In Chap. 4, we shall focus our attention on the stretching behaviour of polymer
in a good solvent [10].

Generalizing the WLC approach of Marko and Siggia [11], we obtain a new
interpolation formula, which perfectly describes some numerical data, obtained
with Monte Carlo simulations. Furthermore, this formula seems to be more
powerful than Marko and Siggia’s one. In fact, it fits well some experimental
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data taken from literature, that the previous approach was not able to describe
correctly.

Finally, we outline final conclusions and perspectives.





Chapter 1

Polymers and biopolymers

I believe... that it’s aerodynamically impossible for a bumblefee to fly, that light is a
wave and a particle, that there’s a cat in a box somewhere who’s alive and dead at

the same time (although if they don’t ever open the box to feed it it’ll eventually just
be two different kinds of dead),...

Neil Gaiman, American Gods

In this Chapter we give some definitions taken from some standard literature on
polymers. We do not pretend to be exhaustive and a precise chemical approach is
beyond the scopes of this Thesis. In Sec. 1.1 we introduce some simple concepts
about polymer chemistry. In Sec. 1.2 we focus on biopolymers such as proteins or
DNA. Then, in Sec. 1.3 we discuss the physical origin of polymer flexibility.

1.1 Polymers: basic definitions

The usual description of a polymer is given in terms of its structural subunits [12,
10]. These are minimal chemical structures whose valence can be two or more. A
linear polymer is the most simple example and is illustrated in Fig. 1.1. It is made
by a sequential repetition of subunits (indicated with the symbol A) whose valence
is strictly two, apart from the endings (A0 and A00) which have valence one. x is
the degree of polymerization and corresponds to the number of structural units in
the chain1. Let us remark that the subunits may be equal or different. In this latter

1For artificial polymers x � 102� 104. Natural polymers such as DNA may reach x � 109� 1010

[4].
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A’                 A A ...... A"

A’ ( A ) A"x−2

Figure 1.1: Scheme of a linear polymer.

case, more precisely, we call it a (random) copolymer or a heteropolymer. Typically,
covalent bonds (whose energy is about 1� 10 eV) link the monomers in the chain.

A more complex polymeric structure emerges when some subunits have a three
or higher valence (they are indicated with the capital letter Y in Fig. 1.2). In this case
we call it a branched polymer. The intriguing feature of these molecules is that they
can not usually be described in terms of a regular lattice, as the ordinary solids: they,
in fact, form a network structure whose arrangement in space may be disordered.

The structural units represent residues from the monomeric compounds employed
in the preparation of the polymer. Usually, there is a direct correspondence between
the monomer(s) and the structural unit(s): in this case they possess identical atoms
occupying similar relative positions. Nevertheless, there are some polymers which
may have two or more structural units (they derive from two or more monomers),
which form the repeating unit of the chain. In accordance with the functionality
concept given by Carothers [13, 14], all monomers which when polymerized may
join with two, and only two, other monomers are termed bifunctional. Of course,
in branched polymers, we have some polyfunctional units, i.e. their functionality
exceeds two.

The topic of this Thesis is the theoretical analysis of linear polymers. So in the
following we always refer to them simply as polymers, having in mind the simple
characterization we have given above.
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A’

A

YA A Y ...

A

....

Figure 1.2: Scheme of a branched polymer.

1.2 Biopolymers

In this Section we shall introduce some simple concepts about biopolymers such as
proteins, DNA and RNA. Monomer units of a protein chains are residues of the so
called amino acids [1] and have structure of the sort�C 0O�C�HR�NH�, where
R stands for a radical or side chain (see Fig. 1.3 for a schematic picture of alanine).
We have 20 different types of radicals [1]. The most simple is just a hydrogen atom
(glycine). The sequence of amino acid residues in the chain is different for different
proteins and the number of monomer units N in each protein molecule usually varies
from a few tens up to a few hundreds.

The chemical structure of a protein chain primary sequence is sketched in Fig.
1.4. The �C 0O � NH� bond links together �C�HR� groups that are specific to
each unit. It is called a peptide bond (see Fig 1.5); that is why the whole protein
molecule is often referred to as a peptide chain.

The peptide units are effectively rigid groups that are linked into a chain by cova-
lent bonds at the C� atoms. Then, the only degrees of freedom they have are rotations
around these bonds. The Ramachandran’s � and  angles describe, respectively, the
angle of rotation around the N �C� bond and that around the C��C 0 bond (see Fig.
1.6) [5]. Moreover, the conformation of the whole main chain is completely deter-
mined when the � and  angles for each amino acid are defined with high accuracy.
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Figure 1.3: Schematic diagram of the amino acid alanine. A central carbon atom (C�) is

attached to an amino group (NH2), a carboxyl group (C0OOH), a hydrogen atom (H) and a

radical or side chain (R), that in this case is CH3.

Figure 1.4: The chemical structure of a protein chain primary sequence. The �N � C��

peptide bonds form the main chain backbone. X symbolizes side groups of various amino

acid residues.

Figure 1.5: Scheme of the formation of a peptide bond. The carboxyl group of an amino acid

has formed a peptide bond, C� � N , to the amino group of another amino acid. One water

molecule is eliminated in this process.
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Figure 1.6: The �,  angles of an amino acid residue. Protein molecules flexibility results

from the rotational freedom of these bonds (see also Sec. 1.3).

Let us remark that most combinations of � and  angles for an amino acid are not
allowed, due to steric collisions between the side chains and the main chain. The plot
of all allowed (�;  ) pairs is called a Ramachandran plot [5] and is shown in Fig. 1.7.

The chemical structure of DNA is made up of alternating sugar (deoxyribose) and
phosphate groups; due to the latter, the whole strand has a negative charge. A nitric
base is attached to each sugar group. There are four possible bases: adenine (A),
cytosine (C), guanine (G), and thymine (T). RNA strands have a similar structure,
with a different type of sugar in the main chain and the base uracil (U) replacing
thymine. In Fig. 1.8 a scheme of the chemical structure of double stranded DNA
(dsDNA) is shown.

1.2.1 Hierarchical structures of biopolymers

Biopolymers are characterized by a hierarchy of structures: there is a primary, sec-
ondary, tertiary and sometimes quaternary structure.

The primary structure is given by the simple sequence of repeat units in the chain
(see Fig. 1.4).

Secondary and tertiary structure are the short-scale and long-scale order in the
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Figure 1.7: Ramachandran plot. Colored areas show sterically allowed regions.

monomers’ positions, respectively. The main secondary structures of proteins, the �-
helices (see Fig. 1.9) and �-sheets (see Fig. 1.10), were discovered in the 1940’s and
1950’s by the American chemist Linus Pauling [15]. Both these regular structures
are characterized by hydrogen-bonding between the main-chain N �H and C 0 = O

groups, and they are formed when a number of consecutive residues have the same �,
 angles (see Fig. 1.6).

� �-helices are found when a stretch of consecutive residues all have the �,  
angle pair approximately �60Æ and �50Æ (see Fig. 1.7). The �-helix has 3:6

residues per turn with hydrogen bonds betweenC 0 = O of residue n andN�H
of residue n+4, which corresponds to 5:4 Å (1:5 Å per turn) [5] (see Fig. 1.11).

� �-sheets are built up from a combination of several regions (�-strands) of the
polypeptide chain, in contrast to �-helices, which are built up from one con-
tinuous region [5] (see Fig. 1.12). These �-strands are usually from 5 to 10
residues long and are in an almost fully extended conformation with �,  an-
gles within the broad structurally allowed region in the upper left quadrant of
the Ramachandran plot (see Fig. 1.7). �-strands are aligned adjacent to each
other such that hydrogen bonds can form between C 0 = O groups of one �-
strand and N � H groups on an adjacent �-strand and viceversa. Two config-
urations are possible: parallel and antiparallel �-sheets. In the former case,
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Figure 1.8: Scheme of the chemical structure of double stranded DNA (dsDNA). The phos-

phate of one deoxyribonucleotide binding to the 30 carbon of the deoxyribose of another forms

the sugar-phosphate backbone of the DNA (the sides of the “ladder”). The hydrogen bonds

between the complementary nucleotide bases (adenine-thymine; guanine-cytosine) form the

rungs. Note the antiparallel nature of the DNA. One strand ends in a 50 phosphate and the

other ends in a 30 hydroxyl.

Figure 1.9: Idealized scheme of the path of the main chain in an �-helix.
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Figure 1.10: Illustration of the twist of a �-sheet.

the amino acids in the aligned �-strands can all run in the same biochemical
direction, amino terminal to carboxy terminal. In the latter one, amino acids
in successive strands have alternating directions, amino terminal to carboxy
terminal followed by carboxy terminal to amino terminal, followed by amino
terminal to carboxy terminal, and so on. Sometimes �-strands can also com-
bine into mixed �-sheets. As they occur in known protein structures, almost all
�-sheets (parallel, antiparallel and mixed) have twisted strands (see Fig. 1.10).

As for the three-dimensional structure, it is known that in a living cell, DNA
molecules consist of two strands (see Fig. 1.13) that form a double helix. It is essential
that these two strands are mutually complementary. This means that, say, adenine in
one of the strands always corresponds to thymine in the other, whereas guanine always
corresponds to cytosine (see Fig. 1.8). Physically, the reason for this is that the nitric
bases are located in the very core of the double helix, where only the pairs A-T and
G-C can fit perfectly without distorting the shape of the double helix. Hence, the
second strand of the double helix contains no extra information, but merely helps to
reproduce the information and to make multiple copies of it. The normal secondary
structure of DNA was discovered in 1953 by Francis Crick and James Watson at the
University of Cambridge in England [2].

They are made stable by the hydrogen bonds. In fact, the reason why the loops
of the helix and the �-folds are formed is simply that this is the arrangement that
achieves the maximum saturation of the hydrogen bonds.

The tertiary stucture is formed by packing such structural elements (�-helices
and �-sheets) into one or several compact globular units called domain. A beautiful
example is given by �-secretase and plotted in Fig. 1.14.
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Figure 1.11: Scheme of an �-helix. The hydrogen bonds are shown in green. The hydrogen

bonds connect the amido-hydrogens to carbonyl oxygens one loop of the helix above or below

them.

Figure 1.12: Scheme of a parallel �-sheet. Two strands run side-by-side, linked by hydrogen

bonds (shown in green). This time the hydrogen bonds connect two strands running parallel

to one another.
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Figure 1.13: Picture of a DNA double helix segment (Courtesy of K. Spiegel, Sissa-Isas,

Trieste, Italy).

Figure 1.14: Picture of �-secretase (Courtesy of M. Cascella, Sissa-Isas, Trieste, Italy).
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Figure 1.15: Spatial structure of a polyethylene chain segment, whose structure is composed

of atoms of carbon and hydrogen.

1.3 Flexibility mechanisms

In spite of their chemical composition, linear polymers cannot be described in terms
of a one-dimensional lattice. This is mainly due to their flexibility, which is one of
the central issues of this Thesis (see Chap. 4).

To understand this mechanism, let us consider one simple example of linear poly-
mer, polyethylene, whose spatial structure is sketched in Fig. 1.15. The covalent
bonds between consecutive carbon atoms fix the spatial arrangement of a short chain
segment, which has a one-dimensional character. Nevertheless, due to temperature,
fluctuations in bond angles become important on longer length scales. At room tem-
perature (� 300 K) typical fluctuations are of the order of 1�10 degrees. In addition,
parts of the molecule may rotate with respect to each other, around the axes of single
covalent bonds (but not around double ones). In this case, it is said that a molecule
may have different rotational-isomeric forms [4, 12]. So, for polyethylene, flexibility
mechanisms are due to different reasons.

If only temperature fluctuations are possible (due to geometrical constraints, as
in double stranded DNA [4]) the polymer is usually less flexible. The flexibility
properties of a protein are mainly determined by temperature fluctuations of the Ra-
machandran angles � and  (Sec. 1.2).

Now, let us introduce two length scales, the Kuhn length and the persistence length
that will play a central role in this Thesis. As already said, polymer flexibility is not
noticeable at short scale, but becomes important at larger scales. Then, a critical
length LK must exist for each polymer. Any polymer segment shorter than LK can
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θ(s)

s

Figure 1.16: Diagram explaining the concept of persistence length.

be regarded as rigid; that is, its end-to-end distance is roughly the same as its contour
length. At the same time, different segments of length LK are virtually independent.
For a polymer whose contour length is Lc, there are N = Lc=LK independent seg-
ments. In literature LK is known as the Kuhn length2.

There is quite a large range of Kuhn lengths for real polymers: from 1 nm for
simple synthetic chain to 100 nm for dsDNA [4, 16].

This is mainly due to the flexibility of the chain. Let us suppose to fix the direction
of a segment of the chain. At first, the change in direction is not noticeable. We
can say that the chain has a sort of memory of the initial direction. Farther on, this
memory starts fading, and then completely disappears. So, let us choose two points
on the chain, separated by a segment of contour length s (Fig. 1.16). Since the chain
flexes, its direction at the two points are different: we call �(s) the angle between
them. Since this angle fluctuates due to thermal motion a meaningful value is the
average hcos �(s)i. It turns out that for large s,

hcos �(s)i ' exp

�
� s

Lp

�
: (1.1)

Eq. (1.1) defines the persistence length Lp [4, 16], which, as we shall see, plays
a central role in polymer physics. Its physical meaning is the following: memory
of chain direction is retained on length scales shorter than Lp, but lost once Lp is
exceeded.

In particular, in Appendix B, it is shown that, for a worm like chain (WLC), LK =

2Lp.

2A more rigorous definition of Kuhn length will be given in Appendix A.
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In principle, Lp should vary with the temperature. The higher the temperature
of a chain, the more it bends, and hence, the shorter its persistence length and Kuhn
length.

1.4 Conclusions

In this Chapter, we have introduced some simple concepts about polymer physics.

� After a brief introduction to polymer chemistry (and, in particular, to linear
polymers), we have focused on some important aspects about biopolymers,
which will play a central role in this Thesis. A great emphasis was given to
their hierarchical organization.

� Then, we have discussed the important problem of polymer flexibility, intro-
ducing the Kuhn length LK and the persistence length Lp. As said above, the
first defines the length scale above which different polymer segments may be
regarded as independent. The latter measures the length scale over which the
memory of the chain direction is retained.

The important issue of excluded volume effects in polymer chains will be discussed
in Appendix D.
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Chapter 2

Polymer stretching: experimental
techniques

You are clever man, friend John; you reason well, and your wit is bold; but you are
too prejudiced. You do not let your eyes see nor your ears hear, and that which is

outside your daily life is not of account to you. Do you not think that there are things
which you cannot understand, and yet which are; that some people see things that

others cannot?

Bram Stoker, Dracula

In this Chapter we focus on some recent techniques used to monitor the stretch-
ing behaviour of some kind of polymers. In particular, in Sec. 2.1 we give a brief
description of these techniques. Then, in Sec. 2.2 we emphasize the importance of
some recent results whose analysis is the starting point of this research work.

2.1 Experimental apparatus

In this Section we introduce some experimental techniques, used to probe polymer
stretching. In particular, we focus on three different apparatus: optical tweezers (Sub-
sec. 2.1.1), atomic force microscopes (AFM, Subsec. 2.1.2) and soft microneedles
(Subsec. 2.1.3). Other technique (such as, e.g., flow fields) are described in Ref. [8].
Some remarks about the main differences between different tools are also given.
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Figure 2.1: Schematic unzipping of a double stranded DNA (dsDNA) with optical tweezers

(from Ref. [6]).

2.1.1 Optical tweezers

For the sake of convenience, here we shall refer to Ref. [6], where the authors de-
scribe the unzipping of a double stranded DNA (dsDNA). Nevertheless, the pulling
behaviour of a generic polymer proceeds, mutatis mutandis, in the same fashion. Usu-
ally, an optical trapping interferometer is chosen because it combines high measure-
ments stiffness (the trap compliance is almost negligible compared to the molecular
compliance) with a sub-pN1 resolution.

The experimental configuration is schematically presented in Fig. 2.1 (from Ref.
[6]). The force measurements are performed in vitro on a molecular construction that
is anchored between a glass microscope slide and a silica bead. The bead is held in an
optical trap and the surface is laterally displaced which leads to a progressive opening
of the double helix. The force is obtained from a measurement of the bead position
within the trap. A scheme for the optical trapping interferometer is shown in Fig.
2.2. It allows for measurements of force up to 100 pN with, as already said, a sub-pN
resolution.

In brief, a gradient beam optical trap is created by tightly focusing an infrared
laser beam with a high-numerical-aperture microscope objective. The force acting on
the bead is derived from an interferometric measurement of the position difference
between the bead and the trap center. The beam of a diode-pumped Nd-Yag cw laser
first passes a Faraday isolator to avoid back-reflection into the laser cavity that oth-
erwise causes important intensity fluctuations. Then, the polarization of the linearly

1pN � piconewton.
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Figure 2.2: Scheme of an optical tweezers apparatus (from Ref. [6]).

polarized laser light is rotated with a �=2 plate to illuminate a first Wollastron prism
with the electric field tilted by 45Æ with respect to the prism axis. This leads to an
angular splitting of the beam and, in the focal plane of the objective, to two partially
overlapping, diffraction-limited spots of equal intensity. The two spots exhibit or-
thogonal linear polarization and a center-to-center distance of� 200 nm: silica beads
(mean diameter � 1 �m) are then trapped in aqueous solution, close to the center of
the twin spot. Since the center-to-center distance is significantly smaller than the bead
diameter, the net effect of the trap along the axis of interest (the line connecting the
two spots in the sample plane) can be described by an effective Hooke constant, ktrap.
The two polarization are then recombined by a second Wollastron prism. Finally, the
light is modulated and the signal is detected by a silicon photodiode.

2.1.2 Atomic Force Microscopes (AFM)

In the force-measuring mode of the AFM [7], a single molecule is stretched between
the microscopic silicon nitride tip of a flexible cantilever and a flat substrate that is
mounted on a highly accurate piezoelectric positioner, Fig. 2.3. A layer of protein,
or other biological polymer, is either adsorbed to the substrate or linked to it through
the formation of covalent bonds. When the tip and substrate are brought together and
then withdrawn, one or more molecules can attach to the tip by adsorption. As the
distance between the tip and substrate increases, extension of the molecule generates
a restoring force that causes the cantilever to bend. This causes deflection of a laser
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Figure 2.3: Scheme of an Atomic Force Microscope (AFM) (from Ref. [7]).

beam directed toward the upper surface of the cantilever, which is measured using
a photodetector. The output of the photodetector can be related to the angle of the
cantilever and therefore to the applied force, if the elastic properties of the cantilever
are known.

2.1.3 Soft microneedles

In the example shown in Fig. 2.4, a bendable microneedle coated in myosin heads (not
shown) catches an actin filament. This filament is brought into contact with a glass
coverslip coated in myosin molecules. In the presence of ATP, the myosin drags the
actin filament across the coverslip and generates a force on the microneedle, which is
observable by videofluorescence spectroscopy.

2.1.4 Some remarks

As pointed out in [8], the three experimental tools described above have different
technical features whose knowledge is of extreme importance in designing the right
procedure. In Table 2.1 (from Ref. [8]) we have indicated with k and Fmin�max
the achievable stiffness and force ranges, respectively, and with �xmin the minimum
displacement. Of course these values are only empirical and do not represent absolute
limits. The stiffness parameter k describes the elastic properties of the probe, which
is usually assumed to follow the Hooke’s law. A softer probe have more sensitivity,
although a stiffer one may achieve larger force values.

Strictly speaking, a spring-like device experiences a mean-square displacement
noise, h�x2i = kBT=k, where T is the temperature, and kB is the Boltzmann con-
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Figure 2.4: Scheme of a soft microneedle used to measure the force of myosin acting on

actin (from Ref. [8]).

Methods k (N�m�1) Fmin�max (N) �xmin (m)

opt. tweezers 10�10 � 10�3 10�13 � 10�10 10�9

AFM 0:001� 100 10�11 � 10�7 10�10

microneedles 10�6 � 1 10�12 � 10�10 10�9

Table 2.1: Technical features of the experimental methods described in the text (from Ref.

[8]).
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stant. For a linear device, the corresponding mean-square force noise is h�F 2i =

kBTk. The signal-to-noise ratio (SNR) S=N = F=
p
2
kBTB, where F is the force

generated by a molecule attached to a transducer, 
 is the friction coefficient of the
device and B is the sampling bandwidth. So, the SNR is independent of the stiffness
and can be increased, decreasing 
 or B (the latter, being limited by the frequency of
the biological event of interest) [17].

2.2 Experimental results

Due to the recent development of the experimental techniques described above and
the high quality of data avalaible, there is a growing interest among physicists that
have devoted their attention to the topic of polymer stretching. In this paragraph we
are going to illustrate some important results recently appeared in literature. Many
biologically relevant polymers have been extensively studied and the following large
amount of data requires a careful examination. But, why do experimentalists decide
to use force probes to study polymers?

In many cases these methods have been applied to the important problem of pro-
tein folding [1, 7]. As known, a protein must fold to perform its biological function.
Proteins are responsible for a wide variety of mechanical functions, such as muscle
contraction or vesicular secretion and a common feature is that they contain many
individually folded domains. Known examples as immunoglobulin (Ig)-type fold and
fibronectin-type fold show that unfolding and folding of domains occur when a pro-
tein executes its mechanical function.

At a very elementary level, the protein folding can be roughly described as a
two-state process between an unfolded state and the folded one (states U and F, re-
spectively, in Fig. 2.5) separated by a potential barrier (transition state, Fig. 2.5).
According to the Arrhenius law of thermodynamics the rate of unfolding is �0 �
exp(���GF�T ), where � = 1=kBT and �GF�T is the free energy difference be-
tween the transition state and the folded one. When axial stress is applied to a folded
protein (or, simply, to a folded domain) the protein will unravel. If the applied force
is F and �x is the distance over which the unfolding event occurs, the unfolding
rate is � = �0 exp(�F�x). Of course, by releasing the protein, one can observe the
possible refolding.

As pointed out in [7], the force required to unfold a domain is highly dependent on
the topology of the bonds in the fold whose location and strength determine mechani-
cal stability and the dependence of the rates of unfolding and refolding on the applied
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Figure 2.5: Scheme of the free energy barrier describing the protein folding as a two-state

process.

force. These properties could be crucial to the physiological function of mechanical
proteins.

When a polymer is relaxed in a good solvent, it forms a coiled structure, maxi-
mizing its entropy [10]. When it is stretched, its entropy decreases, so an opposing
force is generated. This phenomenon is called entropic elasticity and usually, in this
case, the behaviour of the polymers under stretching is well described by the so called
worm-like chain (WLC) model (see, e.g., [11] and Appendix B for more details). This
model describes the polymer as a continuous elastic string of a given total contour
length. The bending properties are influenced by the persistence length (the distance
beyond which two tangent vectors to the string decorrelate).

Nevertheless the stretching behaviour may be more complicated than that de-
scribed above. Consecutive unfolding of different domains may give rise to a compli-
cated sawtooth pattern behaviour, as pointed out for the first time with titin [18] (see
Fig. 2.6) and confirmed by Fisher et al. in [7]. The characteristic sawtooth pattern of
unfolding can be explained as stepwise increases in the contour length of a polymer
whose elastic properties are described by the WLC model. Fig. 2.6 shows a force ex-
tension curve obtained by stretching of a single Ig8 titin fragment (a recombinant titin
fragment consisting of an 8-Ig segment in the I-band of titin, see Ref. [18]). Several
peaks are evident. The force vs extension curve (F (x) vs x) leading up to each peak
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Figure 2.6: Sawtooth pattern of the unfolding of a single Ig8 titin fragment (from Ref. [18]).

is well described by the WLC equation (see Ref. [11]):

�LpF (x) =
1

4(1� x=Lc)2
� 1

4
+

x

Lc
; (2.1)

with a persistence length Lp = 0:4 nm and contour length Lc that goes from 58 nm
(first peak) and then increases by 28 � 29 nm for every peak due to each Ig domain
unfolding. This value is close to the 30 nm predicted by fully extending a polypeptide
chain comprising 89 amino acids (minus a folded length of 4 nm) [18]. Unfolding of
the first domain reduces the force to zero, whereas unfolding of consecutive domains
reduces the force to a lesser extent. This is easily explained, since every domain
lengthens the polypeptide and reduces the peak force to this predicted by the WLC
model with a increased contour length.

The WLC model was firstly used to model the entropic elasticity of �-phage DNA
[11, 19]. As pointed out, DNA is unique among polymers both for its size and for
its long persistence length, Lp ' 50 nm. Due to this rather peculiar feature DNA
was extensively studied and many theoretical models were proposed to rationalize
experimental data.

First of all double-stranded DNA (dsDNA) or B-DNA is, as already said, very
stiff. This implies many simplifications:

� the applied force reduces the entropy of the chain;

� self-interactions are considered negligible;

� a simple elastic model is usually used.
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Then, an equilibrium statistical mechanics approach is highly desiderable. During
past years many models were proposed: the Edwards model [20] and the freely jointed
chain (FJC) model (see Appendix A and Ref. [3]). The former describes the polymer
as a chain of beads connected by springs, interacting via a Æ-like repulsive potential.
The latter depicts a chain of beads joined by rigid connections, whose orientation is
free to rotate. For the FJC model an exact solution can be given (see Appendix A):

hxi
Lc

= coth(�Fb)� 1

�Fb
; (2.2)

where b is the so called Kuhn length2.
Both these models ignore the elastic behaviour of the polymer and they are able

to fit only the low force data. In particular, the main difference between Eqs. (2.1)
and (2.2) is that they predict completely different large force behaviours:

1� hxi
Lc

'
�

1=
p
F (WLC)

1=F (FJC)
: (2.3)

In Fig. 2.7 (from Ref. [11]), a plot of experimental data together with the two fits
of Eqs. (2.1) and (2.2) is reproduced. The disagreement with the FJC model (dashed
line) is evident.

In Ref. [22], Odijk proposed an interesting and simple theory that adds to the
hamiltonian of the bare WLC model a term which takes into account the intrinsic
elasticity of the polymer. In the large force regime, this term contributes with a linear
(Hooke-like) term to the force vs extension relation. The final equation is:

hxi
Lc

= 1� 1

2
p
�LpF

+
F

K0
: (2.4)

Here, K0 is an elastic constant with dimension of force. As described in the caption
of Fig. 2.7, K0 = 500kBT=nm. The Odijk model predicts a crossover between the
entropic regime described by the WLC behaviour, Eq. (2.1), and the enthalpic regime
where the dsDNA follows the Hooke’s law.

In Ref. [23], Smith et al. proposed a similar theory to study a conformational
transition in an overstretching experiment on DNA. They, simply, added a stretching
modulus to the bare FJC model, obtaining the following equation

hxi
Lc

=

�
coth(2�FLp)� 1

2�FLp

��
1 +

F

K0

�
: (2.5)

2For a rigorous definition of the Kuhn length, see Appendix A.
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Figure 2.7: Solid line: fit of Eq. (2.1) to experimental data of Smith et al. [21] (97004 bp

DNA, 10 mM Na+). The predicted fitting parameters are Lc = 32:8 �m and Lp = 53 nm.

Dashed line: the FJC result, Eq. (2.2), for b = 2Lp = 100 nm (see Appendix B) approximates

the data well only in the low force regime. Inset: F�1=2 vs x for the highest force; the WLC

result (solid line) is in this plot a straight line extrapolating to Lc = 32:8 �m from which the

experimental points begin to diverge above x ' 31 �m; including intrinsic elasticity (see Eq.

2.4) with K0 = 500kBT=nm, dotted curve, improves the fit (from Ref. [11]).
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The authors observed that under a longitudinal stress of � 65 pN, dsDNA molecules
in aqueous buffer undergo a highly cooperative transition into a stable form with 5.8
Å rise per base pair, that is, 70% longer than B-form dsDNA. When the stress was
relaxed below 65 pN, the molecules rapidly and reversibly contracted to their normal
contour lengths. This transition was affected by changes in the ionic strength of
the medium and the water activity or by cross-linking of the two strands of dsDNA.
Individual molecules of single-stranded DNA (ssDNA) were also stretched giving a
persistence length of 7.5 Å and a stretch modulus of 800 pN. The overstretched form
may play a significant role in the energetics of DNA recombination.

In the following, we are going to describe three experiments [24, 25] on the
stretching behaviour of DNA molecules under various solvent conditions. For the
sake of convenience, we shall call them EXP1, EXP2 and EXP3, respectively.

1. EXP1:

The F � x curve of a single � DNA molecule under various ionic conditions
is plotted in Fig. 2.8. In the presence of monovalent cations the curve displays
a WLC behaviour, with a persistence length Lp = 95 nm and a contour length
Lc = 16:5 �m. When strong condensing agents (such as 25 �M CoHex or 100
�M spermidine) are added to the solution, the high force regime is characterized
by a lower stiffness. The low force behaviour shows a new regime: a force
plateau appears near three-fourths maximal extension (x = 13 � 14 �m) and
stretched � DNA molecules abruptly depart from WLC behaviour. Moreover,
this behaviour is reproducible during both stretch and release cycle.

2. EXP2:

In Ref. [25], the authors obtained a similar result, recording the stretching
behaviour of a single DNA molecule under different solvent conditions. Fig.
2.9 shows the force-extension curve before and after the solution exchange.
The above force change was observed at (A ! B). When the DNA molecule
was stretched after the solution exchange a force plateau at 1:6 � 2 pN was
observed at (B ! C). It is considered that the force plateau indicates a coil-
globule bimodal state due to an intramolecular collapse. After the molecule
was stretched at D, the molecule was relaxed. In this relaxed process, the force
plateau could not be observed (D ! C ! A). Then, the stretched and relaxed
processes were repeated; however, the force plateau could not be observed (A

 C 
 D). In this case, the f � x curve is well fit in Eq. (2.1) with Lp = 27

nm and Lc = 5:0 �m. After the intramolecular collapse, the hysteresis on the
f � x curve was observed in the stretched and relaxed processes.
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Figure 2.8: Response of single � DNA molecules to an applied force with condensing con-

centrations of the trivalent cations CoHex and spermidine. The molecule in the low monova-

lent salt background buffer (�) displayed low and high force entropic elasticity indicative of

a WLC with Lp = 95 nm and Lc = 16:5 �m (solid curve). Upon addition of either 25 �M

CoHex (�) or 100 �M spermidine (Æ) to this low monovalent salt buffer, � DNA molecules

displayed high force elasticity indicative of a WLC with increased chain flexibility (Lp < 50

nm). Near three-fourths extension (x = 13 � 14 �m), an abrupt loss of WLC behaviour oc-

curred, replaced by a force plateau (1 � 4 pN in magnitude) which was reproducible during

both stretch and release cycles. The vertical broken line represents the B form contour length

of � DNA (from Ref. [24]).
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Figure 2.9: The f � x curve before and after the exchange of the solution in the sample

cell from buffer solution to 2 mM spermidine. Before the exchange (open circle) the DNA

molecule was stretched at A. After the exchange the force increased at B, and then the DNA

molecule was stretched (solid square) to D following the force plateau (B ! C). When the

molecule was relaxed (open square) the force plateau could not be observed (D ! C ! A).

After reaching A, though the stretched (solid triangle) and relaxed (open triangle) processes

were repeated, the force plateau could not be observed (A
 C
D). The solid line describes

the WLC in Eq. (2.1) with Lp = 27 nm and Lc = 5:0 �m (from Ref. [25]).
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3. EXP3:

Another experiment recorded the force-extension relation for plasmid-length
DNA molecules at relatively high spermidine concentrations (> 200 �M), where
most of the DNA molecules are condensed and only a small fraction are not
condensed. In Fig. 2.10(A), the F�x curve for uncondensed molecules is plot-
ted. The data follow a WLC behaviour, withLp = 38:25 nm andLc = 1324 nm.
In Fig. 2.10(B) and (C), the F � x curve for condensed molecules show two
different behaviours: a stick-release pattern and a plateau, respectively. The
first behaviour is similar to the experiment reproduced in Fig. 2.6: the DNA
begins with a given stiffness and apparent contour length, and then slips into
a different stiffness and contour length. The F � x curves preceding the four
peaks in Fig. 2.10 represent polymers of decreasing stiffness (see the caption,
for more details). The completely stretched polymer has a stiffness identical
to an uncondensed DNA tether (Lp ' 40 nm). Again, this phenomenon can
be due to the release of successive turns of DNA in a coiled structure. A con-
densed plasmid forms several independent condensed globules. The plateau
reproduced in Fig. 2.10(C) is reminiscent of the overstretching behaviour of
DNA discussed above [23] and may be due to an interaction between two or
more condensed DNA tethers.

EXP1 and EXP2 seem to be in apparent conflict with the results of EXP3. A
possible explanation on this puzzling question will be given in Sec. 3.2.

2.3 Conclusions

In this Chapter we have introduced some recent techniques probing the stretching
behaviour of polymers. After a brief description of the most popular devices we have
focused on some recent intriguing results.

� We have shown that, under condensing conditions, some polymers such as titin
[18] (Fig. 2.6) and plasmid-length DNA [24] (Fig. 2.10) unfolds following a
sawtooth pattern. This reveals a cooperative mechanism through which differ-
ent polymer domains successively unfold. Every unfolding domain pathway is
well described by the WLC model.

� This result seems to be in contrast with other experimental results obtained
studying the stretching behaviour under condensing conditions of � DNA. In
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Figure 2.10: Stretching plasmid-length DNA tethers at condensing conditions where the

spermidine > 200 �M. (A) Uncondensed molecules displayed force-extension curves char-

acteristics of a worm-like chain. Data at F < 5 pN was well fit by Eq. (2.1), yielding

Lp = 38:25 nm and Lc = 1324 nm (solid line). Force-extension curves for condensed DNA

molecules showed two distinct behaviours. (B) Most of the curves showed a stick-release pat-

tern. Here the DNA molecule begins with a given stiffness and apparent contour length, and

slips into a different stiffness and contour length, with a variable degree of slip (100-150 nm).

The F � x curves preceding the four force peaks represent polymers of decreasing stiffness

(Lp = 24; 19; 18, and 11 nm from left to right), with the completely stretched polymer pos-

sessing a stiffness identical to an uncondensed DNA tether (Lp = 40 nm). During the relaxing

phase, the DNA shows no stick-release behaviour, but the F � x curve displays hysteresis.

(C) A few DNA tethers show a force plateau behaviour during both stretch and release. The

F � x curve displays a plateau (� 20 pN) where little or no additional force is required for

increased extension (from Ref. [24]).
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fact, these curves show a clear force plateau (Fig. 2.8), as the one observed also
in Fig. 2.9 during a stretching experiment of a collapsed single DNA molecule.

In Chap. 3, we shall show that this question can be answered in the framework of
a very simple model.



Chapter 3

Stretching of a polymer below the �

point

That Crawford Tillinghast should ever have studied science and philosophy was a
mistake. These things should be left to the frigid and impersonal investigator for they

offer two equally tragic alternatives to the man of feeling and action; despair, if he
fail in his quest, and terrors unutterable and unimaginable if he succeed.

Howard Phillips Lovecraft, From Beyond

As already stressed, new experimental tools (see Chap. 2) make it possible to
monitor the behaviour under tension of various biopolymers and then to elucidate the
mechanism of some force-driven phase transitions occurring at the single molecule
level, such as the unfolding of the giant titin protein [18, 26], the stretching of single
collapsed DNA molecules [24, 27], the unzipping of DNA [6]. Theoretically, on the
other hand, quite a few statistical mechanics models have been subsequently proposed
to explain the experimental results and to identify the physical mechanisms behind
these phase transitions [28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

In particular, the nature of the collapsed phase that a polymer attains in poor sol-
vent conditions (see Appendix D and Ref. [10]) is still under debate (see e.g. [38, 39]
and references therein). Until very recently, most of the existing studies on this sub-
ject dealt with refined version of the mean field studies originally proposed in Ref.
[28]. A common characteristic of such studies is that, for a self-attracting polymer,
they predict a first order phase transition in any dimension at a critical force fc(T ).
At temperatures below the �-transition, where the self-attraction prevails, and for an
applied force less than fc the polymer is in a compact phase. For forces greater than
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fc the self-attraction is unable to maintain the polymer in its compact conformation
and the polymer chain is stretched along the force direction. However in d = 2 exten-
sive Monte-Carlo simulations [32], performed on a self-avoiding walk (SAW) model,
suggested that the transition is second order. An exactly solvable model, on a lattice
of fractal dimension 2, has been analyzed in Ref. [33] and a second order transition
was found at a critical force fc(T ).

In the following we shall propose some simple models which will clarify some
aspects on this important issue.

The Chapter is organized as follows:

� In Sec. 3.1 we shall introduce an exactly solvable model for a stretched self-
interacting directed self-avoiding walk (DSAW) on a 2d lattice; a complete
characterization of the unfolding transition is given. In particular, the phase
diagram in the (T; f)-plane is found exactly and the phase transition is found
to be second order.

� In Sec. 3.2 (see also Ref. [40]) we shall make the previous model more realistic,
studying an on-lattice (off-lattice) model of self-interacting self-avoiding walk
(SAW) in d = 2 (d = 3).

1. Studying the ground state conformations of our models, we shall give a
simpler explanation about some recent experimental results (see Sec. 2.3).

2. In d = 2, we also characterize the thermodynamic behaviour of the SAW
and the corresponding phase diagram is found numerically.

3. A rationale was given for the change in order of the transition as the spatial
dimension, d, goes past 2, by means of a renormalization group based ar-
gument. Within that framework, it was found that, near criticality, the pro-
jection of the end-to-end distance along the force direction per monomer
goes like (f � fc)

1=��1 (f > fc), near the phase transition, where � is
a new critical exponent. Numerical uncertainties are too big to critically
test this prediction in the SAW model of Refs. [32, 40], whereas � = 2=3

for the DSAW model (i.e. the transition is second order [32]).

4. Another feature of interest of the 2d SAW model is that the transition line
fc(T ) shows a re-entrance at low temperature, i.e. fc(T ) increases at low
T and after reaching a maximum it decreases becoming zero at T�, the
temperature of the �-transition. The re-entrant behaviour is due to the
fact that, in the low T limit, since the entropy does not play any role, the
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energy dominates the free energy and the open chain is the most favorable
configuration. Let us notice that this behaviour is similar to the one found
in theoretical models of pulling of double stranded DNA [37, 41, 42].

3.1 Directed polymers: an exactly solvable case

As already anticipated, in this Section we study the thermodynamics of an exactly
solvable model of a 2d self-interacting partially directed self-avoiding walk (DSAW),
i.e. steps with negative projection along the x�axis, (1; 0), are forbidden. This model
proved to be helpful in the past in order to find the phase diagram in the (temperature,
fugacity) plane for a simplified � transition [43, 44, 45, 46, 47]. We take advantage
of previous contributions and generalize the model to the presence of a pulling force
along the direction (1; 0) (see also Ref. [48]). With a sophisticated enumeration
technique [46] we show the correlation critical exponent, �, takes on a non trivial
value on the critical line, numerically very close to �� = 2=3, the exponent at the �
transition. It is not clear whether this is an accidental degeneracy or if it can apply
also in the undirected case, too. For example in the 3d Sierpinski gasket an exact
renormalization leads to a non trivial f -dependence of � [33].

This Section is structured as follows. In Subsec. 3.1.1, we introduce the model
and the basic quantities of interest. In Subsec. 3.1.2, we outline how the transfer
matrix can be applied to our model, find explicitly the phase diagram (critical line) and
give a rough estimate of the exponent �. A scaling argument is proposed to suggest
that at criticality � = �. In Subsec. 3.1.3, we review the enumeration technique
proposed in Ref. [46], which we use in Subsec. 3.1.4 in order to estimate the value
of � on the critical line. In Subsec. 3.1.5, we critically analyze our scaling ansatz and
the hypothesis that � = �. Finally, in Subsec. 3.1.6 we draw our conclusions. In
Appendix E, we derive the exact critical exponents in the continuum approximation,
through a technique developed in Ref. [47] and generalized for f 6= 0.

3.1.1 The model

The model is a DSAW on a two-dimensional square lattice (see Fig. 3.1), with (non-
consecutive) nearest-neighbor interactions. A force f , directed along the same axis of
the walk, is pulling on one end of the DSAW, the other one being fixed at the origin.
Given a particular configuration C the energy is

EC = ��m� fRx; (3.1)
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Figure 3.1: An example of DSAW configuration. The quantities yi and the force direction

are also displayed. Thick dashed lines indicate contacts.

wherem is the number of interacting pairs and � the energy per pairs, f the modulus of
the applied force and Rx the longitudinal extension of the walk. Then, the canonical
partition function can be written

QL = QL(��; �f) =
X
C
e��EC ; (3.2)

where L is the number of the steps of the walk and ��1 = T , is the temperature in
units of the Boltzmann constant. From now on will set � = 1 without loss of gener-
ality. From the canonical partition function we construct the grancanonical partition
function (generating function),

G(T; f; z) =
1X
L=1

QLz
L; (3.3)

z being the step fugacity. The (real) singularity closest to the origin, zc(T; f), of the
generating function Eq. (3.3) is related to the free energy per monomer as follows

ln zc(T; f) = � lim
L!1

lnQL

L
(3.4)

From the singularities of the generating function when f = 0, a complete phase
diagram can be extracted (see Refs. [44, 45, 47]). In particular, a singularity is found
in the free energy at T = T�, called the � temperature.
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3.1.2 Transfer matrix calculations and phase diagram

Starting from the definition of the generating function, Eq. (3.3), when f = 0, we
observe that it can be conveniently rewritten [43, 44] as

G(T; f; z) =
X
Lx

GLx(T; z) exp (�fLx); (3.5)

where GLx =
P

LQL;Lxz
L, QL;Lx being the partition function restricted to walks of

total length L of which Lx steps are along the x direction.
This is useful because now GLx can be written in terms of a transfer matrix, T , of

dimensionality L2
y, where Ly is the size of our system along the y-direction [43, 44]1.

Such a transfer matrix T is defined via its actions on the vectors fvigi=1;:::;L2y
, with

vi = (yi; yi+1), yi being the height of the site in the i�th row which precedes the
right-bound horizontal link in that column (see Fig. 3.1), as follows:

T (vi; vi+1) = exp[� (minfjrij; jri+1jg)�(�ri � ri+1)] exp[(jrij+ 1) ln z]: (3.6)

where ri = yi+1 � yi and �(x) is the Heaviside step function. It can be shown
that G(T; f = 0; z) develops a singularity when �, the largest eigenvalue of T , goes
through 1 [49]. This means that for large Lx

GLx / (�(T; z))Lx : (3.7)

Consequently the force-dependent singularity, zc(T; f) occurs when

�(T; z) exp (�f) = 1: (3.8)

Eq. (3.8) has a rather deep consequence. If the critical fugacity and hence the free
energy has to display a singularity at a non-zero value of the force, i.e. in order for the
force induced unfolding transition to exist as a thermodynamic transition and not only
as a crossover, it is necessary that �(T; z), the largest eigenvalue of the transfer matrix
when there is no force, has itself a singularity as z approaches zc(T; f = 0) � zc

2.
Otherwise, from Eq. (3.8) it is clear that there can be no such singularity. If there is a
transition, then we get the following equation for the critical force:

fc(T ) = �T lim
z!z�c

ln�(T; z): (3.9)

1A brief introduction to the transfer matrix formalism applied to the SAW problem is given in
Appendix G.

2Here we are conjecturing that the smallest singularity comes only from z c, which from now on
indicates the singularity at f = 0 and T < T�.
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Figure 3.2: Exact critical line as in Eq. (3.11) together with points corresponding to estimates

with the transfer matrix calculation, with strip size Ly = 20; 40.

In Eq. (3.9) the value of � to be put in the right hand side of the equation is the one
pertaining to the infinite system. �(T; z) for z slightly less than zc is plotted in Fig. 3.3
with a lateral size Ly up to 40. It is rather clear that a singularity has to be expected
at z = zc in the infinite size limit. It was indeed shown [44, 45] that for T < T�
(T� = 0:8205 : : : in this model) there is a singularity of the grand partition function
for z = zc = exp(��) and for this value of the fugacity the biggest eigenvalue is
strictly smaller than 1, being [44]:

�(�; z = zc = exp(��)) � �(�) =
zc
�
1 +

p
zc
�

1�pzc : (3.10)

The � transition temperature is obtained when �(�; z = zc = exp(��)) = 1. Conse-
quently, the critical line, fc(T ), is obtained by putting �(�) = exp (��fc(T )), i.e.:

fc(T ) = T ln

�
1� exp (��=2)

exp (��) (1 + exp (��=2))
�
; (3.11)

and is plotted in Fig. 3.2, where also the results obtained with the transfer matrix with
system size up to Ly = 40 are displayed. In view of Eqs. (3.8) and (3.9), we can
define a new critical exponent � which characterizes the directed self-avoiding walk.
From Eq. (3.9), if the largest eigenvalue approaches its limit value according to the
law:

�(z�c )� �(z) � (zc � z)� (3.12)
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Figure 3.3: Plot of the largest eigenvalue (T = 0:4 < T�) versus z. It is apparent that the

largest eigenvalue approaches a limit value as z approaches zc = exp(��) (< 1) from below.

Thus a transition exists in the thermodynamic sense.

then one straightforwardly obtains (via Eqs. (3.8) and (3.9))

lim
L!1

hRx(L)i
L

� (f � fc(T ))
1=��1 (3.13)

where hRx(L)i is the average projection of the end-to-end distance of the DSAW
along the axis (1; 0). From Fig. 3.3 we estimated 1=2 < � < 1, with � ' 0:7 though
a precise determination is difficult. If � < 1 we call the transition second order. It is
widely accepted that for d > 2 the transition is first order and so � = 1. In the Sec.
3.2 a renormalization group based argument in d = 2, on the other hand, will give for
the (undirected) SAW � = 1=2. This argument would apply also to the present case.
Given that the transition is second order in our model, it is also sensible to look for
the value of the critical exponent � (defined as Rg � L� , for large number of steps
L, where Rg is the gyration radius of the L�site polymer. In Section 3.1.5, using a
scaling argument, we shall demonstrate that � = �.

In the next Subsection, we shall study the complete canonical partition function,
Eq. (3.2), using a powerful method of exact enumeration introduced in [46], that
allows us to reach large values of L.
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3.1.3 The method of enumeration

As already said, the configurations of the model are directed walks on a two-dimensio-
nal square lattice with nearest-neighbor interactions. For convenience, we demand
that these walks end with a horizontal segment. Since the walks are directed in the
x-direction we can describe these configurations through the distance ri between two
horizontal steps, measured in the positive y direction. Thus, we associate to each con-
figuration an N -tuple (r1; r2; :::; rN) corresponding to a configuration of total length
L =

PN
i=1 jrij+N .

The energy due to the nearest-neighbor interactions for each of these configura-
tions is (see Eq. (3.6))

U(r1; r2; :::; rN) = �
N�1X
i=1

min(jrij; jri+1j)�(�ri � ri+1): (3.14)

In the following, we assign weights x for steps in the horizontal direction and y
for steps in the vertical direction. Then, the canonical partition function is

QL(x; y; !) =
LX

N=1

(xe�f )N
X

jr1j+jr2j+:::+jrN j=L�N
yL�N!U(r1;r2;:::;rN);

where ! = exp(�).
Now, it is convenient to consider the partition functions Z (r)

L = Z(r)
L (x; y; !) for

walks of total length L+ 1 which start with a vertical segment of height r. Then, we
have

QL+1(x; y; !) =
LX

r=�L
Z(r)
L ; (3.15)

(note that Z (0)
L = xQL(x; y; !)) which satisfies the following recursion relation

Z(r)
L = xyjrj

8<
:Æjrj;L + e�f

L�jrj�1X
s=�L+jrj+1

!U(r;s)Z(s)
L�jrj�1

9=
; ; (3.16)

obtained concatenating these walks. In Eq. (3.16), r = �L; :::; L, withL = 0; 1; 2; :::.
Using the symmetry Z (r)

L = Z(�r)
L , Eq. (3.16) can be written only for non negative r

as

Z(r)
L = xyr

(
Ær;L + e�f

L�r�1X
s=0

Z(s)
L�r�1 + e�f

L�r�1X
s=1

!min(r;s)Z(s)
L�r�1

)
: (3.17)
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Figure 3.4: Plot of hRx(L)i=L vs. f for various length, L, of the walk.

Setting x = y = 1 in (3.17), we obtain the iteration scheme and the free energy
FL(!) = � 1

�L
lnZ(0)

L . The average longitudinal length of the walk hRx(L)i is simply

hRx(L)i = @

@(�f)
lnZ(0)

L : (3.18)

Then, we shall proceed as follows:

1. we calculate the free energy using the iteration scheme proposed in Eq. (3.17);

2. using Eq. (3.18), we determine how the quantity hRx(L)i=L varies against the
applied force f .

3.1.4 Results

The plot of hRx(L)i=L vs. f for various values of L is represented on Fig. 3.4 at
T = 0:4 which is below the � transition occurring at T� ' 0:8205:::. From Eq. (3.11)
we have fc(T = 0:4) ' 0:764:::

From a careful examination of Fig. 3.4, we deduce that the quantity hRx(L)i=L
decreases as L��1, where the critical exponent � might depend on the temperature T .
In particular the data are consistent with � < 1 if f � fc(T ) and � = 1 if f > fc(T ).
In order to find more precise values for the critical exponent, we shall proceed along
the same lines of Ref. [46].

An estimation of the critical exponent through the use of the Padé approximants
(see, e.g., A. J. Guttman in [50]) is given in Table 3.1.
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f � L

< fc 0:501(7) � 1900

= fc 0:68(8) � 1900

> fc 1:00000 � 1300

Table 3.1: Estimates for the critical exponents from a Padé approximants analysis. Note that

in the f > fc case the error is completely negligible.

Our estimate of the critical exponent, at the critical force, is close to 2
3

, the � value
at the � point at f = 0 [45, 47]. As shown in Appendix E, this is the exact value.

To get a deeper insight, let us define an L�dependent critical exponent �(L)
through the formula

�(L) =
lnhRx(L+ 1)i � lnhRx(L)i

ln(L+ 1)� lnL
(3.19)

Plotting �(L) versus an estimated correction-to-scaling term a careful extrapolation
to L!1 can be performed, determining the critical exponent � for all the values of
the force. Let us consider three different regimes:

1. f < fc.

As an example let us consider f = 0:4. We have found that successive estimates
for the exponent � � 1 with increasing L follow a straight line when plotted
against a correction-to-scaling term of 1=L0:5 (see also the case of Ref. [46] at
f = 0). The plot is shown in Fig. 3.5. The extrapolated value for L!1 gives
� � 1 ' �0:4998, then � ' 1

2
, the exponent typical of a compact phase.

2. f > fc.

As before, we have plotted the exponent ��1 against a well-defined correction-
to-scaling term. Now, this term is order of 1=L. Fig. 3.6 shows the f = 1:0

case as typical example. Now, the extrapolated value gives �� 1 ' 3:0� 10�6,
then � = 1 within the numerical precision.

3. f = fc.
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Now, the correction-to-scaling term is of 1=L0:28 (see Fig. 3.7) and � � 1 '
�0:3336, which implies � ' 2

3
.

Thus we find that the value of � for f = fc(T ) is equal (in the limit of numerical
precision) to the value 2

3
, which corresponds to that for f = 0 at T = T� [45, 47].

This is a non trivial result. In particular, we have to expect that along all the critical
line f = fc(T ), � takes the value 2

3
(see also the Appendix E). Moreover, as pointed

out in [47], the correction-to-scaling term when f = 0 and T = T� is of 1=L1=3. In
our case, we found that this correction increases to 1=L0:28, for T = 0:4. Within the
numerical errors, this implies that the correction to scaling term depends on force as
well as on temperature3.

Finally, in Table 3.2 we have summarized the above results.
In the next Subsection, we shall introduce a scaling theory that rationalizes what

we have found on the critical behaviour of the average horizontal end-to-end displace-
ment hRx(L)i.

3.1.5 Scaling theory

Our previous results suggest the following scaling ansatz (see also Ref. [32]):

hRx(L)i = L��(�fL ) (3.20)

3Let us remark that with other correction-to-scaling terms the data do not fall on a straight line.
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f �

< fc 1=2

= fc 2=3

> fc 1

Table 3.2: Estimates for the critical exponents from an extrapolation to L ! 1, obtained

plotting the L-dependent critical exponent �(L), Eq. (3.19), versus an estimated correction-

to-scaling term.

where �f � f � fc(T ). The scaling function �(x) must have the following be-
haviour:

�(x) �

8>>>>><
>>>>>:

x(1��)= if x! +1

�0 if x! 0

jxj(1=2��)= if x! �1

; (3.21)

with �0 a not-zero constant value. Then, the quantity hRx(L)i obeys to the equations:

hRx(L)i �

8>>>>><
>>>>>:

L�f (1��)= if �f > 0; 1��
 

> 0

L� if �f = 0

L1=2j�f j(1=2��)= if �f < 0; 1=2��
 

< 0

; (3.22)

in agreement with the results found in the previous Subsection.
Now, let us observe that the free energy contribution to the singular part is

�F = hRx(L)if � hRx(L)ifc = hRx(L)i�f
= �fL��(�fL ) (3.23)

where we have used Eq. (3.20) and f is the applied force. Since �F is a contribution
to the total free energy (not a free energy density), we expect it depends only on
the “dimensionless” combination of the scaling fields �f and L with the appropriate
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exponents. This implies that � =  . Comparing Eqs. (3.13) and (3.22), we deduce
that � = � = 2=3.

Let us again remark that it is not clear if the relation � = 2=3 is an accidental
degeneracy due to the model. In fact, in Ref. [33], the authors found that for a 3d

Sierpinski gasket � = �(f). Anyway, we think that the relation � =  has a more
general validity and does not depend on the simple model described here.

Now, Eq. (3.20) can be written as hRx(L)i = L2=3�(�fL2=3).
To test this prediction, we have plotted in Fig. 3.8 the function L�2=3hRx(L)i

versus f � fc, where fc is again determined from the exact formula, Eq. (3.11). It is
evident that, apart from obvious finite size scaling corrections, our ansatz is justified.
Then, we have derived the scaling function �(x). The final result is shown in Fig.
3.9.

3.1.6 Conclusions

In spite of the relative simplicity of the model studied above, the critical indices of
the unfolding transition, which is second order, are not trivial.

� The transition is characterized by two exponents, the usual correlation length
critical exponent �, and one which we called �. In particular, the exponent � at
f = fc (see Eq. (3.22)) is different both from 1=2, the collapsed polymer value,
and from 1, the extended polymer value (see again Eq. (3.22)). The � expo-
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nent characterizes the singular behaviour of the chain elongation per monomer
along the force direction as the critical force is approached from above (see Eq.
(3.13)).

� Through a powerful enumeration technique taken from the literature [46], cou-
pled with a finite size scaling to extrapolate our results to infinitely long chains,
we find that � is very close to 2=3. A scaling analysis also suggests that � = �

at least within our numerical precision.

In the Sec. 3.2, we are going to extend these results to the more important case
of a self-interacting self-avoiding walk (SAW). Then, we shall also introduce some
simple off-lattice models of polymers.

3.2 More sophisticated models

In this Section, the unfolding of a polymer below the � point when pulled by an
external force is studied introducing a 2d model on the lattice (self-interacting SAW)
and a 3d off lattice model. As shown, we have found the following intriguing results:

� at T = 0 and for finite length chains, it is found that the globule unfolds via
multiple steps, corresponding to transitions between different minima, in both
cases. In d = 3 one of these intermediates is a regular helix. In the infinite
length limit, these steps have a qualitative effect only in d = 2;
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� the phase diagram in d = 2 is determined via the Transfer Matrix (TM) tech-
nique;

� we give a simple explanation about the questions arisen in Sec. 2.3, suggesting
that different unfolding pathways may be due to the different contour lengths
of the molecules studied.

To rationalize these results, energy-entropy and renormalization group arguments are
given.

As described in Chap. 2, most cases of various force vs elongation (f vs x) curves
recorded in experiments display three distinct regimes, and, in particular, a plateau for
intermediate stretch [24, 25, 27]; whereas in a few examples, for shorter polymers,
a stick-release peak pattern with hysteresis has been found. The first observation is
in good agreement with the mean field theory proposed in Ref. [28], and the plateau
strongly suggests the presence of a first order phase transition.

Our results suggest that there might be more than one possible shape for the f vs.
x curves according to d, the spatial dimension and to polymer length. In particular
our picture can qualitatively explain the peak pattern in Refs. [24, 25]. These models
are interesting also on a purely theoretical ground. First, the numerical study recently
performed in [32] has suggested that the transition may be second order in d = 2 and
first order in d = 3. This has been confirmed to some extent in a hierarchical lattice
model where the fractal dimension is 2 [33] and by our results sketched in Sec. 3.1.

Let us remark that the d = 2 case is important as it is below the upper critical
dimension for � collapse and mean field4 predictions may well be incorrect. Then,
a thorough analysis and a clear physical mechanism underlying the difference of the
nature of the transition as d changes are needed. Second, the mean field analysis
of Refs. [31, 51] has suggested there could be a re-entrant region [29] in the phase
diagram for low temperature as the one observed for DNA unzipping [37]. However
the exact results in [33] prove mean field is not valid in low dimensions.

Here we describe theoretically the unfolding transition of globules not relying on
the mean field approximation. First of all, we characterize the evolution of the ground
states of a finite polymer as the pulling force increases. Then, we compute the phase
diagram in the temperature–force (T; f)-plane in d = 2 on the lattice, where we can
use exact enumerations together with the Transfer Matrix method.

4Note that we use “mean field theory” in a broader sense, including approaches which consider the
relative stability of the globule and the coil only (see also [31, 51]). Mean field theories should be all
equivalent as regards universality.
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3.2.1 Interacting SAWs on a 2d lattice

We begin by considering a self-avoiding walk (SAW) on the square lattice with fixed
origin. The model partition function in the canonical ensemble in which T and f , the
stretching force, are fixed is:

ZN(f; T ) =
X
C
e��H(C) =

X
b;R

woR(N; b)e
�(b�+fRx) (3.24)

where N is the number of monomers (including the origin) of the SAW, H(C) (re-
ferred to a configuration C) is the energy of a SAW, b is the number of pairs of neigh-
boring occupied sites not adjacent along the chain, � � 1=kBT is the inverse temper-
ature, woR(N; b) is the number of configurations of a SAW with fixed origin o and
end-to-end distance R, of length N and b contacts, Rx is the projection along the
force direction (x axis) of R. kB and � are again set to 1.

3.2.2 Phase diagram

Now, we want to characterize the thermodynamic behaviour of the SAW model.
Then, we use the Transfer Matrix (TM) technique (see Appendix G and Ref. [49]).

It is convenient [49] to introduce the generating function

GoR =
X
N;b

zNe�bwoR(N; b); (3.25)

where z is the step fugacity. It is known that for z < zc(T ) = 1=�(T ), the inverse
SAW connectivity, GoR � exp[�Rx=�(z; T )], where �(z; T ) is the correlation length
and Rx is the projection of R along x.

We study the stretching of an interacting SAW in a strip of finite size L along
y and infinite length along x. It is possible to define [49] an L-dependent correla-
tion length �L(z; T ) via the formula �L(z; T ) = �1= log�L(z; T ), where �L(z; T )
is the largest eigenvalue of the transfer matrix, that equals 1 at z = zLc (T ). We ap-
ply the phenomenological renormalization, to find successive estimates for zc(T ) =
limL!1 zLc (T ). The equation for the critical force fc(T ) is then ideally found via (see
Eq. (3.9)):

fc = �T lim
z!zc(T )�

lim
L!1

log�L: (3.26)

As already stressed, the order of the limits in Eq. (3.26) and a correct choice of the
boundary conditions (see below) are crucial.

In Fig. 3.10 the phase diagram for the stretched interacting SAW is shown. With
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the TM, a right choice of the boundary conditions is needed [49]. We have used both
periodic (PBC) and free boundary conditions (FBC). PBC have been employed to get
the best estimate of zc(T ) through phenomenological renormalization. This value is
then used with FBC, to find the correct L-dependent critical eigenvalue �L(zc(T ); T ).
Finally, adopting the extrapolation algorithm of [52], limL!1 �L(zc(T ); T ) is ob-
tained which, through Eq. (3.26), allows to get the phase diagram. In principle, with
FBC, there can be oscillations in data going from odd L to even L. Thus, a separated
analysis of even and odd L data was done and reveals that both series of data agree
within the error bars (see Fig. 3.10). One point on the transition line obtained in [32],
is recovered here.

One can get an approximate description of the transition if one requires that the
globule and coil phases coexist. The globule free energy is estimated in terms of
hamiltonian walks [9]. On a square lattice the energy is given by minus the length of
the polymer whereas the entropy is given in terms of the number of hamiltonian walks
which grows exponentially with N [9]. Thus the globule free energy per monomer is
Fg = �1�T log(4=e) where we have used a mean field estimate of the entropy [53].
The coil free energy Fc is approximated as that of an unconstrained random walk in
presence of a pulling force and contacts are neglected: Fc = � log 2[1 + cosh(�f)].
At coexistence one finds

fc(T ) = T cosh�1[2 exp(1=T � 1)� 1]; (3.27)

which is plotted in Fig. 3.10 (continuous curve).

We note that fc(0) = 1 is the exact result and at low T the phase diagram displays
a reentrant region. As T ! T�, f approaches 0 rather smoothly, consistently with
the prediction f � (T� � T )��=��=4=3 [33]. As in Sec. 3.1, we notice that within the
TM approach one can also infer the order of the transition, since hxi � (f � fc)1=��1
for f � fc

5 (see Eq. 3.13). Our data at T = 0:7 are compatible with a second order
transition (inset of Fig. 3.10).

Inspired by exact renormalization group (RG) on the Sierpinski lattices [33], and
on approximate RG in d�dimensional lattices [54], we propose the following simpli-
fied real space RG which rationalizes our results.

The RG recursions relations can be written for the generating function represent-
ing polymers traversing a hypercube of linear size 1 once, A, and 2d�1-times, B. The
terms A and B represent parts of the chain which are in the coil and globular state

5We again stress that � is a new critical exponent, unrelated to those previously known for the
interacting SAW.
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respectively. The recursion relations can be calculated as in Ref. [55] or by enumer-
ating the SAWs on 2 � 2 or 2 � 2 � 2 cells as in [54]. To leading order in A at
0 6= T � T�

A0 = A2 + �(d)A2B2; B0 = 
(d)B2d; (3.28)

where �(d) and 
(d) are d�dependent constants.

There are three fixed points in the flux in Eq. (3.28): A = 0, B = B� =


(d)�1=(2
d�1) corresponds to the globular phase, (A;B) = (1; 0) to the coil phase,

while the last non-trivial fixed point A = A� = 1=[1 + �(d)(B�)2], B = B� charac-
terizes the unfolding transition.

The value of�(d) affects the behaviour of the RG flux near the fixed point (A�; B�).
One can see6 that �(d) 6= 0 if d = 2 and is 0 in d > 2. When �(d) 6= 0 (i.e. in
d = 2), the RG flux is smooth near (A�; B�) and the critical fugacity near f = fc(T )

is zc(fc(T ); T ) � zc(f; T ) � (f � fc(T ))
2 signalling a second order transition with

� = 1=2. On the other hand when �(d) = 0 (i.e. d > 2), the transition is first
order and two-state like. The presence of the mixed term in Eq. (3.28) is crucial and
enhances the entropy of the coil phase since it contributes to A0.

Consequently, the d = 2 two-state approximation in Fig. 3.10 gives a transition
line which is higher than the numerical result for 0 6= T � T�. The entropy gain in
the stretched coil, as T ! 0, is hampered as it costs a finite surface energy (dominant
as T ! 0) to change locally an elongated globular region into a coil and vice-versa.
This is why the solid curve in Fig. 3.10 matches our numerics as T ! 0.

3.2.3 Ground state analysis in d = 2

When T is low, one may look for the ground states among the rectangles of sides Lx
and Ly that are completely covered by the SAW (in other words such that LxLy = N ,
where we neglect the small effects arising when this rectangle cannot be constructed
with both Lx;y integers). The energy of this rectangular hamiltonian walk with a non
zero f is �H(N � LxLy; Lx) = N � Lx � N

Lx
+ 1 + f(Lx � 1). The minimum

of H(N;Lx) for given N with respect to Lx yields the most stable configuration
for various values of f . The minimum occurs for an f -dependent value of L0

x �
L0
x(N; f), namely L0

x(N; f) =
p
N=(1� f). For any f < 1 one has a compact

configuration. However, when the critical value f = 1 (for T = 0) is reached all

6These facts can be proved exactly in a family of Sierpinski gaskets (see [33] for an example),
where d is the fractal dimension. On conventional lattices, an approximate RG treatment as in [54]
gives qualitatively the same behaviour.
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integer values of Lx from N (stretched coil) to Lx � N1=2 (compact globule) become
degenerate for large N7.

Let us notice that this does not hold in d = 3 where it is well known that there
is a Rayleigh instability in the thermodynamic limit [27, 28, 32]. This can be seen
by comparing the globule energy - which in d = 3 is 2N in the large N limit -
with the energy of a parallelepiped, with elongation along f equal to Lx and with
edges Ly = Lz in the perpendicular plane. The force above which (for T = 0)
the parallepiped is a better ground state than the three-dimensional globule is 2Ly
(Ly � N1=3), and there is no longer any degeneracy at the critical force fc = 2 (at
T = 0). A sketch is given in Fig. 3.11(a).

The minima hierarchy, shown in the shaded area in the top panel, affects the low
T region of the hxi (average elongation) vs. f curves for finite length (bottom panel).

7Let us remark that calculations will be performed in the ensemble where the force is fixed, which
is related to the experimental ensemble (fixed stretch) by means of a usual Legendre transform [56].
These two ensembles are equivalent only in the large N limit. A recent interesting discussion on this
topic can be found in Ref. [57].
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However, only one transition survives in the large N limit and represents a true phase
transition (as represented in Fig. 3.11(a) by the shaded wedge ending in just one point
in the N�1 = 0 axis). Similarly, when T is raised the multi-step character of the hxi
vs. f curves is lost due to fluctuations which blur the ground state dominance in the
partition.

In this framework, we give a simple explanation about the apparent conflict be-
tween the stretching behaviour under condensing condition of �DNA and single DNA
molecule (Figs. 2.8 and 2.9) from one side and plasmid-length DNA (Fig. 2.10) from
the other. Again, we shall make use of the notation EXP1, EXP2 and EXP3 (see Sec.
2.2).

As already remarked, until very recently, many of the theoretical predictions were
refined versions of the original mean field approach first proposed in Ref. [28]. The
mean field approximation predicted that the force versus elongation curves should
consist of a plateau followed by the steep increase which is also present in the case of a
swollen polymer (i.e. DNA with no counterions). The plateau is due to configurations
where stretched and globular state coexist within the same chain, as is typical in a
first order transition. The instability of other configurations, such as an ellipsoid like
shape for instance, with respect to these coexisting conformations can be seen as a
manifestation of the Rayleigh instability [27, 32]. The mean field prediction of a
force plateau successfully accounts for the curves of EXP1 and EXP2. However,
these experiments seem to be in conflict with the results of EXP3.

We suggest that this behaviour may be due to the different contour lenghts of the
molecules used in the experiments.

The � phage molecule used in EXP1 was relatively long (Fig. 2.8), its contour
length being � 16:5 �m, corresponding to roughly 48:5 kilobases or 330 persistence
lengths (the base pair separation in double stranded DNA is � 0:34 nm and the DNA
persistence length is usually agreed to be � 50 nm, though it has been reported to
depend on the salt concentration in solution also [11]). The plasmid length DNA
used in EXP1 is around 24 persistence lengths, so much shorter. Finally, the length of
the DNA used in EXP2 is intermediate, and is roughly 90 persistence length (� 4:5

�m).

Let us again consider a self avoiding polymer under the action of a stretching
force along the y-direction, on the 2d lattice. This means that the kind of agreement
we expect is qualitative. The lattice spacing corresponds to the persistence length and
the walk can change its direction after it has traveled one persistence length.

The polymer in this model is fully characterized by the attraction energy between
non-consecutive beads, �, by the variable force, f , and by the number of persistence
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Figure 3.12: Average end-to-end scaled by N (number of persistence lengths in the chain)

as a function of pulling force for a semiflexible polymer of different contour lengths in the

ground state approximation (� = 1 in Eq. (3.29)). As the contour length increases, the

transition looks more and more like an all-or none transition as will be the case for infinite

length. The data have been obtained in the ground state approximation, i.e., by considering

only the configurations which minimizes the energy function defined in Eq. (3.29). The

minimum has been searched among all rectangles of edges of sizes m and int(N=m), where

int(a) denotes the integer closest to a and smaller than or equal to a.

lengths, N . Again, we will restrict to the case of low temperature, where the entropic
fluctuations are negligible and ground state dominates. Indeed, the typical energy in
the unfolding experiments considered here (see, e.g., Fig. 2.8) is � 105kBT (force �
pN and extension � �m) where kB is the Boltzmann constant and T is the absolute
temperature, so that T driven fluctuations are virtually absent.

In this situation, the partition function is dominated by the ground state. In our
simplified model the energy of a self-avoiding polymer chain is:

H = �Nc�� fy; (3.29)

where Nc is the number of self contacts of the polymer, f is the modulus of the
pulling force and y is the elongation along the force direction. Since we are interested
in the ground state only, we can restrict our analysis to rectangular walks elongated
along the force axis which do not leave empty spaces in their interior (known also
as rectangular hamiltonian walks [9]). Let us consider the case of a chain consisting
of 25 persistence lengths (see Fig. 3.12): as f increases we go from a configuration
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Figure 3.13: Plot of the average end-to-end distance versus pulling force in the ground state

approximation (T = 0) for the EXP3 data (see Fig. 2.10).

with extension 4 along the y axis to one with elongation 8 and finally to the stretched
coil. Thus here the unfolding occurs in steps, and each step is stable in a window of
force values. In Fig. 3.12 we plot the average (scaled) elongation versus force for
different lengths of the chain (different values of N ): as the chain gets longer each
step is stable only for a very small interval of forces, apart from the globule and the
coil states, and indeed for infinitely long chains there would be an abrupt transition
between these two states only.

What one learns from this simple exact calculation is that the steps are less and
less pronounced as the chain gets longer, and that for short chains there is a number
of intermediate states which is likely to be responsible of the observed peak pattern.
We then come to a quantitative analysis of the experimental data. This is shown in
Figs. 3.13 and 3.14.

From the available force versus elongation characteristic curves, which are not
easily obtainable in theoretical calculations, we can extract via a numerical integration
the free energy as a function of the end to end elongation.

IfF(x) is the free energy of a polymer with end-to-end elongation (along a chosen
axis) equal to x and f(x) denotes the average force needed to keep an end-to-end
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approximation (T = 0) for the EXP2 data (see Fig. 2.9).

distance of x, the two quantities are related by (we choose F(0) = 0):

F(x) =

Z x

0

f(x0)dx0: (3.30)

From this, by neglecting thermal fluctuations, we can find the average elongation
versus force characteristic curves. This is equivalent to find how the minimum of the
function F(x) � fx moves as the parameter f is varied. We used data coming from
EXP2 and EXP3. In the curve extracted from EXP3 data, multi-step behaviour is very
pronounced (Fig. 3.13), while it gets less clear in the curve obtained from the EXP2
data (Fig. 3.14) and finally disappears for EXP1 data (Fig. 2.8)8.

As noted, the experimental ensemble is not the same of the one in which we did
the calculations. Indeed, it is known [56] that the two ensembles are not equivalent.
Our analysis shows in particular that the fixed stretch ensemble uniquely determines
the fixed force curve, while the converse is not true, since non-monotonicity can not
appear in our theoretical calculations. However, in general an ascending peak pattern

8Let us remark that the agreement with our theory is only qualitative as F(x) obtained from the
experiments might not correspond to the equilibrium free energy. It might indeed have dynamical
effects in it. Moreover, when dealing with double-stranded DNA, one should also consider the stiffness
of the molecule. Nevertheless the agreement with our picture is quite remarkable.
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– where by ascending we mean that the peak values of the force increase as the elon-
gation increases – always gives rise to a multistep elongation versus force curve, so
that the ground state changes with force. This is the case observed in the experiments
for short and medium size chains. Conversely, as the steps in the fixed force ensemble
resemble first order transition though at finite size, one can apply the usual theory of
phase transition. Thus there is a latent heat connected with these transitions, and it
can be shown that the fixed stretch characteristic curve will show peaks.

3.2.4 An off-lattice model in d = 3

The model we used is the freely jointed chain (FJC) (see Appendix A and [20]) in
the continuum (off-lattice). The FJC is subject to a compacting pairwise attractive
potential between non-consecutive beads and to a stretching force f at the extrema.
The pairwise potential is chosen to be an asymmetric square well with a hard core
radius, 2Rhc, which acts between non-consecutive beads along the chain, and an at-
traction range R1 > 2Rhc, i.e. the distance up to which the particles interact. We
have checked that the results reported in the following do not appreciably depend on
the two-body potential details. The parameters we have used to generate the config-
urations shown in Fig. 3.11(b) (top panel) are Rhc = 0:6, R1 = 1:6 where the unit
length is the distance between successive beads along the chain.

The ground states of short chains (up to N = 30) have been determined by per-
forming simulated annealing [58] employing Monte Carlo dynamical simulations (see
Appendix F and Refs. [59, 60, 61]). The FJC is evolved dynamically by means of
three sets of moves: the pivot, reptation and crankshaft moves [59]. We lower T dur-
ing the simulation according to a standard annealing schedule. We found evidence
also in this d = 3 case that the unfolding of a finite length homopolymer proceeds in
a multistep fashion. The collapsed globule first orients itself along the pulling force
as soon as there is a nonzero f . At larger f the globule is slightly elongated (much
less than in the d = 2 case) and after this a helix forms followed by a zig-zag curve
and finally by a stretched coil.

This succession of minima, shown in Fig. 3.11(b) is intriguing for a two-fold rea-
son: firstly because it suggests that helices, one of the well known building block of
proteins, come out rather naturally as one of a few stable minima of a homopolymer
in a poor solvent subject to a finite stretching force; secondly because the unfolding
transition of a finite polymer in this model appears to be markedly different from a
globule-to-coil (two-state) transition. The mean field picture of an all or none transi-
tion is recovered for infinite length. The situation is depicted in Fig. 3.11(b). Since
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in d = 3 the transition is first order, the mean field treatment is correct in the thermo-
dynamic limit.

The fact that helices become better ground states than compact globules could be
easily verifiable in experiments done in the fixed force ensemble. These can now be
confidently performed, with not more substantial difficulties than the more conven-
tional ones, performed in the fixed stretch ensemble.

Helices appear as ground states for a potential consisting of a force term and
a hydrophobic contact potential because they are both elongated and offer a good
shielding from the outside solvent to the monomers lying in its interior. Note also that
helices arise as optimal states of tubes of non-zero thickness subject to compaction
[62].

3.2.5 Conclusions

Briefly, here we have discussed the unfolding transition of a homopolymer under the
action of an external pulling force in d = 2 on the lattice and in d = 3 off lattice. We
have found many intriguing results:

� a ground state analysis shows that for finite length polymers, the unfolding is
not abrupt, rather it occurs via a multi step sequence of states. These are more
elongated than the globule and make more contacts than a coil. In d = 3 helices
arise naturally as ground states at intermediate forces. For infinite polymers, on
the other hand, the situation is different: in d = 3 the intermediate ground states
disappear due to the Rayleigh instability, and the transition is effectively two-
state, whereas in d = 2 they survive in the thermodynamic limit. Data taken
from some recent experiments [24, 25] confirm this picture;

� indeed, from the Transfer Matrix results, it is apparent that the mean field hy-
pothesis is incorrect in d = 2 even at low T : the transition is second order
as also found in Ref. [32] and confirmed in Sec. 3.1, although the prediction
of the re-entrant region agrees with the TM results. A renormalization group
based argument is in agreement with this picture.
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Chapter 4

A new interpolation formula

A mind truly opened to what science has to teach must see that it is a little thing. It
may be that save in this little planet, this speck of cosmic dust, invisible long before

the nearest star could be attained – it may be, I say, that nowhere else does this thing
called pain occur. But the laws we feel our way towards – Why, even on this earth,

even among living things, what pain is there?

Herbert George Wells, The Island of Doctor Moreau

In this Chapter, we focus our attention mainly on the pulling of a polymer under
good solvent conditions [10], in which case we give an analytical prediction for the
force versus extension curve. We also discuss other cases by means of numerical sim-
ulations and direct connections to experiments. Usually, the models adopted describe
the polymer as an elastic (ideal) chain, where self-avoidance is not taken into account.
Typically, freely jointed (FJC) or worm like chain (WLC) are studied [63].

The former describes a chain of beads connected by links of constant distance
(see Appendix A), whereas the latter, which has received considerably great attention
in the recent past [64, 65, 66, 67, 68], introduces an intrinsic stiffness between two
consecutive bonds (see Appendix B) and, in particular, is shown to correctly describe
a wide range of experimental results on double-stranded (ds) DNA, single plasmid and
lambda phage DNA [11, 24, 69]. In this case, the large force behaviour 1 � z=Lc �
1=
p
F is found, where z is the elongation along the direction of the force, Lc the

contour length of the polymer and F is the applied force [11, 68]. Let us note that
in these cases the continuous version of the WLC model is always used, where the
persistence length [11] Lp is very large, compared to the base separation (roughly one
persistence length is 150 base pairs).
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Here, we focus on the discrete version of the WLC model, that satisfactorily de-
scribes the pulling behaviour of a polymer in good solvent. We broadly identify three
regimes in the force vs extension curves obtained in our analytical and numerical cal-
culations. The low force (or low stretch) regime is highly affected by the details of
the interactions between the beads (which in nature are, e.g., caused by the different
concentration of ions in solution). This regime is discussed only marginally here, as,
though it is potentially very interesting, experimental data in this range of forces are
quite rare and not precise enough to allow a comparison with theoretical predictions.
There is then a second regime, of intermediate stretches or forces, in which the force
versus extension characteristic curves obey approximately the laws predicted a few
years ago in Ref. [11] by means of a continuum theory of the WLC. Finally, for
very large forces (beyond a polymer dependent crossover value), we get a universal,
model-independent, freely-jointed-chain like behaviour. The Chapter is organized as
follows:

� in Section 4.1, we show how the discrete WLC model can be related to the well
known continuous version;

� in Section 4.2, we compare our theory with some recent experiments;

� then, in Section 4.3, we introduce some extension vs force curves obtained from
Monte-Carlo calculations for models of stiff polymers with a chosen potential
between non nearest neighbour beads. We shall consider two different cases:
a pure repulsive potential and a more realistic Lennard-Jones potential and we
show that in the latter case our formula agrees with the numerical data only
in the case of high temperatures or, for lower temperatures in the high force
regime. Below the � point a force plateau appears, as predicted by some recent
theoretical works [28, 40, 70, 71] and confirmed by experiments [24].

� Finally, Sections 4.4 and 4.5 are left for discussion and conclusions, respec-
tively.

4.1 The model

As discussed in Appendix B, our model describes a chain of beads, where the distance
between the nearest neighbours is kept fixed (we can put it equal to b) and a suitable
stiffness K is introduced. Then, the corresponding Boltzmann weight reads [72, 73,
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74]:

e��H =
NY
i=1

Æ(jtij � b)e�K
PN�1

i=1 t̂it̂i+1+�F
PN

i=1 ti; (4.1)

where � = 1=T , T being the temperature in units of Boltzmann constant, ti � ri �
ri�1 (ri being the position vector for the i-th bead, i = 1; :::; N and N is the total
number of bonds), t̂i = ti=b and F = F ẑ is the applied force which defines the
z-direction. The partition function for the model described by (4.1) is

ZN =

Z NY
i=1

dtie
��H: (4.2)

The average elongation hziN along the stretching direction is

hziN = T
@

@F
logZN : (4.3)

Let us now consider the large force behaviour. Due to the Æ-function in Eq. (4.1),
the term �Kt̂i;z t̂i+1;z can be re-written with the substitution t̂i;z ' 1 � t

2
i;?=2b

2

and, analogously, the force term in the exponential becomes �F � ti = �Fti;z '
�Fb

�
1� t

2
i;?=2b

2
�
, where ti;? = (ti;x; ti;y) [11]. Keeping only quadratic terms in

the ti;?’s, we get:

� � lim
N!1

hziN
Nb

= 1� Tp
(bF )2 + 4bKF

: (4.4)

The continuum approximation of Eq. (4.4) (see also Appendix B) is obtained with
the following substitutions [75]:

�K ! Lp=b; (4.5)

in the formal limit b ! 0, where Lp is the persistence length. The final result � =

1 � 1=2
p
�LpF does agree with the celebrated result of Marko and Siggia [11].

However, our result is more general, since it predicts a crossover force Fc =
4Lp
�b2

:

WLC-like behaviour: 1� � � 1=
p
F ; F � Fc

FJC-like behaviour: 1� � � 1=F; F � Fc

(4.6)

Let us notice that the validity of the continuum approximation proposed in Ref. [11]
is not simply related to the value of the dimensionless ratio b=Lp but rather to F=Fc.
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A naive derivation of Fc is given in the following: from the Hamiltonian defined
in Eq. (4.1), we can see that the stiffness and the force terms are of the same order at
Fc � K=b = Lp=�b

2, where Eq. (4.5) has been used. So the meaning of Fc is the one
where the bending energy competes with the external force.

From Eq. (4.4) with the substitution (4.5), we deduce that:

�bF =
2Lp
b

2
4
s
1 +

�
b

2Lp

�2
1

(1� �)2
� 1

3
5 : (4.7)

The low force behaviour of Eq. (4.3) is

� =
�bF

3

1 + y(Lp=b)

1� y(Lp=b)
; (4.8)

where y(x) = coth(x) � 1=x [20]. Again, in the limit b ! 0, Eq. (4.8) agrees with
the result of Marko and Siggia [11].

Following [11], we give an interpolation formula starting from Eqs. (4.7) and
(4.8). We calculate the lim � ! 0 of Eq. (4.7) and compare to Eq. (4.8). Matching
the two results gives the following approximate equation:

�bF =
2Lp
b

2
4
s
1 +

�
b

2Lp

�2
1

(1� �)2
�
s
1 +

�
b

2Lp

�2
3
5

+

 
3
1� y(Lp=b)

1 + y(Lp=b)
� b=2Lpp

1 + (b=2Lp)2

!
�: (4.9)

It is easy to verify that Eq. (4.9) correctly reproduces the right large and small force
behaviours, Eqs. (4.7) and (4.8), and that in the continuum limit b! 0 we obtain the
well known interpolation formula [11]:

�LpF =
1

4(1� �)2
� 1

4
+ �: (4.10)

In next Section, we shall apply our formula, Eq. (4.9), to two recent experiments.
The first discusses the stretching of a single plasmid DNA molecules, to which the
formula (4.10) was previously applied with success [24]. Nevertheless, our formula
predicts a non trivial value for the parameter b, that gives an estimate for the intra bead
distance. Then, the second experiment [76, 77] demonstrates that Eq. (4.9) gives the
right large force behaviour.

In the following, we shall define � = z=Lc, where z is the elongation along the
direction of the force and Lc = Nb is the contour length of the polymer (see also Eq.
(4.4)).
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Figure 4.1: (+): experimental data taken from Ref. [24]. Long dashed line: fit with the curve,

Eq. (4.9), yielding Lc = 1324 nm, Lp = 38 nm and b = 2:5 nm. Short dashed line: fit with

the curve, Eq. (4.10), yielding Lc = 1324 nm and Lp = 38 nm, see Ref. [24].

4.2 Comparison with two recent experiments

Let us consider the experimental data reported in the plot at the top of Fig. 2.10 (from
Ref. [24]). The authors considered the elastic response of a single plasmid of DNA
molecules, probed using optical tweezers [6]. They found that, according to the envi-
ronmental conditions, it can be very different. In particular, for condensed molecules,
the stretching curves display a stick-release pattern, where the DNA molecule can be
described as a succession of different WLC’s of different contour and persistence
lengths. We are mainly interested to the case of uncondensed molecules, whose
stretching pattern is reproduced in Fig. 4.1.

As described in the caption, the contour and persistence lengths obtained with our
formula, Eq. (4.9), and with Eq. (4.10) are perfectly compatible. Nevertheless Eq.
(4.9) predicts a non trivial value for the intra bead effective distance b = 2:5 nm, that
corresponds to 7 � 8 base pairs. Let us notice that this matches the DNA hydration
thickness (here, we have used � 0:34 nm as the distance between two consecutive
base pairs [24]).
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If we take T = 300 K, the crossover force Fc � 100 pN and F=Fc . 0:16 for
the data of Ref. [24], thus justifying the use of the interpolation formula, Eq. (4.10).
However, as pointed out in Eq. (4.6), the discrete nature of the chain does emerge,
when F & Fc. Notice also that for forces considerably smaller than Fc double-
stranded DNA would undergo an overstretching transition [23, 78], where a more
sophisticated theory is needed [63].

An interesting question is how this treatment may be applied to single-stranded
DNA (ssDNA). On one hand, if we keep as physical parameters the persistence length
of ssDNA� 1 nm, and as the equivalent of b the separation between two phosphates,
i.e. 0:5 nm roughly, we would end up with a crossover force again of the order of 70
pN. Data in this regime do exist [76, 77], and suggest that the WLC grossly fails to
fit the data [77, 79]. In fact (see Fig. 4, Ref. [77]), the authors pointed out that the
corresponding fit with Eq. 4.10 gives good results in the large force regime, but with a
calculated persistence length (' 0:21 nm) which is clearly not physical. Our equation
does not do much better for low and intermediate force, in which case, as shown in
Ref. [77], evidently the self-interactions dominate the behaviour. Still a large force
fit, even if a bit dependent on the contour length which we choose, suggests that the
large force exponent in the (log(1��); log(F )) plane is�1 as predicted by our model
(see Fig. 4.2). The calculated fitting parameters Lp and b (see the caption of Fig. 4.2)
give Fc ' 300 pN. However, it can be seen that the fit is good already for F ' 100

pN, in order-of-magnitude agreement with the naive guess proposed above.

Let us notice that in this case b=Lp ' 0:46, an order of magnitude larger than the
dsDNA value b=Lp ' 0:07. This is a clear indication of the fact that ssDNA is more
flexible than dsDNA and that our formula predicts the correct high force behaviour.

In next Section we introduce some Monte-Carlo calculations and compare them
to Eqs. (4.9) and (4.10).

4.3 Monte-Carlo calculations

As already said, our model is a stiff chain described by the Boltzmann weight, Eq.
(4.1), where the intra bead distance b is now kept fixed to 1.

Firstly, we have considered the case when the intra bead potential is zero, K = 40

and � = 1. In Fig. 4.3 we have plotted the Monte-Carlo data (+) and the curves given
by Eqs. (4.9) and (4.10) (long and short dashed line, respectively), for Lp = 40, and
� = 1. As observed, the agreement is perfect only for Eq. (4.9). In fact, the discrete
nature of the chain emerges around F = Fc � 160 (in the chosen units) and the WLC
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Figure 4.2: (+): experimental data taken from Ref. [77]. Continuous line: fit with the curve,
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Figure 4.3: (+): Monte-Carlo data for a stiff chain of N = 100 beads and stiffness K = 40,

for � = 1. Long dashed line: Eq. (4.9) with Lp = 40 and b = 1. Short dashed line: Eq.

(4.10) with Lp = 40. The crossover force Fc, see Eq. (4.6), is also shown.

approximation is no more valid.
To render the model more realistic, let us introduce a short range repulsive poten-

tial Vrep(r) between non consecutive nearest neighbour beads. We have adopted the
following functional form:

Vrep(r) =
1

r12
(4.11)

where r is the distance between two beads. Then, we have to multiply the Boltzmann
weight, Eq. (4.1), by

e�
�
2

PN
i6=j=0 Vrep(rij ) (4.12)

where we have defined rij = jri � rjj.
In Fig. 4.4 we have plotted the Monte-Carlo results (+) for K = 30 and � = 1,

together with the two fitting lines obtained from Eqs. (4.9) and (4.10) (long and short
dashed lines, respectively) where the corresponding persistence lengths are Lp ' 31

(b is kept fixed to 1) and Lp ' 34:9. Again, we can observe that our formula works
better than Eq. (4.10). Moreover, this last result is in agreement with some theoretical
works [69, 80, 81, 82], that predicts that the net effect of the repulsive potential is to
renormalize the persistence length, making it larger than the bare one.
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Figure 4.4: (+): Monte-Carlo data for a stiff chain of N = 100 beads, stiffness K = 30 and

interaction potential given by Eq. (4.11), for � = 1. Long dashed line: fit obtained from Eq.

(4.9) with Lp ' 31 (b = 1). Short dashed line: fit obtained from Eq. (4.10) with Lp ' 34:9.
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In practice, for a stiff chain, self-avoidance can be treated as a perturbation and
we again find a good agreement with Eq. (4.9). This suggests that the low force
discrepancy observed in Fig. 4.2 between experimental results and our fit is due to
other types of interactions than self-avoidance.

Now, let us introduce a more realistic potential, adding to the repulsive core an
attractive part too. It is interesting to notice that the approaches of Refs. [80, 81]
can not be generalized, since the attractive part introduces some instabilities and the
perturbation scheme discussed there is no more valid.

We have chosen the following Lennard-Jones kind functional form VLJ(r):

VLJ(r) = V0

�
1

r12
� �

r6

�
: (4.13)

The parameters V0 and � are chosen in such a way that the minimum of the energy is
located at r = rmin = 1:5 and VLJ(r = rmin) = �1. We expect that Eq. (4.10) does
not work well in this case. Our goal is to test our formula, Eq. (4.9).

Firstly, we show the effects of increasing stiffness on the force vs extension
curves. To fix the ideas, we begin to consider a sufficiently high temperature, i.e.
above the � point [10, 20], whose location, however, is not exactly known. In Ref.
[83], the authors were able to numerically determine the � temperature T� for a model
of homopolymer with a square well potential, whose depth is fixed to�1. They found
that T� ' 3. Our T� should be somewhat smaller due to the stiffness.

Initially, we fix � = 0:3 (T = 3:333:::), with K = 10. The numerical results and
the corresponding fitting line are plotted in Fig. 4.5. The corresponding fitting pa-
rameters are described in the caption. In this case we allowed b to be a free parameter
and we have determined it through a best fit of the data even though in the simulated
model b = 1. The fit with our formula is surprisingly good, in contrast with the result
obtained with Eq. (4.10). Moreover, the predicted value for b is of the correct order.
This means that the effect of the stiffness compensates the attraction due to the poten-
tial and the behaviour is similar to a FJC. Let us stress on the fact that if we fix b = 1,
the corresponding fits are considerably less precise.

We have also simulated the case with K = 80. In Fig. 4.6 we have plotted the
numerical data together with the two fitting lines (the fitting parameters are reported
in the caption). The agreement with our formula is again perfect, in contrast with Eq.
(4.10).

For both situations plotted in Figs. 4.5 and 4.6, we note that the main effect due to
the potential is a considerable reduction in the persistence length due to the attractive
part, which evidently renormalize also the intra bead distance.
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Figure 4.5: (+): Monte-Carlo data for a stiff chain of N = 100 beads, stiffness K = 10 and

interaction potential given by Eq. (4.13), for � = 0:3. Long dashed line: fit obtained from

Eq. (4.9) with Lp ' 2:12, b ' 1:26. Short dashed line: fit obtained from Eq. (4.10) with

Lp ' 2:41.
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Figure 4.6: (+): Monte-Carlo data for a stiff chain of N = 100 beads, stiffness K = 80 and

interaction potential given by Eq. (4.13), for � = 0:3. Long dashed line: fit obtained from

Eq. (4.9) with Lp ' 23:33 and b = 0:86. Short dashed line: fit obtained from Eq. (4.10) with

Lp ' 25:95.
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Figure 4.7: Plot of the correlation functions ht1 � t1+ri vs r, calculated from the data of

Figs. 4.3 to 4.6 and the corresponding theoretical predictions (continuous lines), given by Eq.

(4.15).

As a check, let us notice that the correlation function hti � ti+ri for the WLC is
[20]:

hti � ti+ri = y(�K)r; (4.14)

where the function y(x) has been defined above. In the continuum limit

hti � ti+ri = exp(�r=Lp): (4.15)

This result is exact for all r but holds in a more general context, like the case with
interaction, in the large r limit. In Fig. 4.7 we have plotted the correlation functions
ht1 � t1+ri vs r for the data of Figs. 4.3 to 4.6 and compared them to the theoretical
ones as given by Eq. (4.15). The corresponding persistence lengths are those found
with our formula. The agreement is perfect.

Let us now consider the case of � = 0:5 (T = 2). In Fig. 4.8 we have plotted the
case for K = 10. As it can be seen a first order phase transition emerges [40, 84].
In this case our formula is able to describe only the part of the plot at relatively large
forces.
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Figure 4.8: (+): Monte-Carlo data for a stiff chain of N = 100 beads, stiffness K = 10 and

interaction potential given by Eq. (4.13), for � = 0:5. Long dashed line: fit obtained from

Eq. (4.9) with Lp ' 4:42 and b = 1:03. Short dashed line: fit obtained from Eq. (4.10) with

Lp ' 4:85. Let us remark that we have tried to fit only the range of data at large forces.
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A complete characterization of the force vs extension behaviour in this case needs
a more complete theory (see also Ref. [85] for some recent Monte-Carlo results about
stiff polymers).

4.4 Discussion

Though our main results refer to a situation in which attractive interactions are not
very important, it is useful to further comment on how our results change in the pres-
ence of such a situation in a real experiment. Such attractions change the picture
depicted so far as, if they are strong enough, they can cause a phase transition in the
molecule (see Chap. 3).

An effective self-attraction, like the one considered here by means of a 6 � 12

Lennard-Jones potential, arises due to hydrophobic interactions in polypeptides and
due to a suitably large concentration of polyvalent counterions in the case of double-
stranded DNA. If this is the case, the polymer is in poor solvent conditions or equiva-
lently below the � point (in the nomenclature of the models discussed above). In these
cases at zero stretch the force attains (in a thermodynamically long chain) a non-zero
value followed by a force plateau for long molecules [40]. This indicates the presence
of a first order transition. From Molecular Dynamics simulations reported in [86], it
can be seen that in this situation (i.e. in poor solvent conditions) the two ensembles,
fixed force and fixed stretch, are not equivalent for short chains1 and indeed in the
experiments the stretching curves of small DNA’s or of DNA’s in presence of a high
concentration of polyvalent counterions in reality show peaks. As seen in Chap. 3,
a thorough explanation of this effect includes polyelectrolyte modeling, finite size
corrections as well as dynamical effects. More details can be found in Refs. [40, 70].

A different scenario holds for ssDNA and for RNA (this scenario would also be
retraced if a self-attractive polymer such as dsDNA in presence of condensing agents
is restricted conformationally to stay in a quasi-two-dimensional film). In these cases
the single molecule phase transition is second order and thus at low stretch the charac-
teristic force curves are non-zero and then rise smoothly. Furthermore, the attraction
in ssDNA and RNA is brought forth by the base pairing interactions between bases
far apart in the chain. If sequence disorder is neglected, the low force regime can be
written as follows (see Eq. (3.13)):

� � (f � fc)
1=��1 (4.16)

1This topic has been discussed in several papers. See, e.g., [56, 57, 87, 88, 89].
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where fc is the critical force. The exponent � is between 0:5 (the value of native
branched polymer-like configurations arising from base stacking [90]) and 1 (for a
polymer in a good solvent). While present day experiments show that as the ex-
tension goes to 0 the force is non-zero [91], the data are not clean enough to allow
discriminating between the exponents above. To be noted that within a simplified
theory [91], it was possible to find a law implying � = 1=2.

4.5 Conclusions

Here, we have revised the well known WLC model that correctly describes the be-
haviour under pulling of a stiff polymer.

� We have pointed out that its discrete version has a different large force be-
haviour respect to the continuous version by Marko and Siggia [11], Eq. (4.6).
We predict a crossover force between these two different regimes. It should
be noticed that a recent paper by Livadaru et al. [92] reports a similar result.
However, here we have given a simpler formula, Eq. (4.9), which can be tested
on real polymers as well as on numerical simulations, where self-interactions
are present.

� So, firstly, we have used it to fit some experimental data on dsDNA, Fig. 4.1,
and ssDNA, Fig. 4.2. In the former case, where Eq. (4.10) was already applied
with success, we find that Eq. (4.9) predicts a not trivial intra bead distance,
which is much smaller than the predicted persistence length. This implies that
the crossover force is much greater than the achievable experimental forces and
justifies the approach by Marko and Siggia. In the latter case, we observe a
clear crossover between the two regimes. In fact, now the intra bead distance
is of the same order of magnitude of the persistence length and the crossover
force can be easily achieved. Thus our Eq. (4.9) is more appropriate than Eq.
(4.10) in this case.

� Then, we have performed some Monte-Carlo simulations to verify the validity
of our formula. We have analyzed different kinds of intra bead potentials. For
a short range repulsive potential we have correctly found that our formula is
in good agreement with the numerical data, predicting a renormalized stiffness
[80, 81]. For a more realistic Lennard-Jones potential the situation is more
complicated. For temperatures above the � point, Eq. (4.9) gives a good fit. The
main result is that, now, both the persistence length and the intra bead distance
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b are renormalized by the potential. For temperatures below the � point, our
formula agrees with the numerical data only at large forces.

� Finally, we have discussed how an attractive potential can modify the pulling
behaviour of a polymer under poor solvent conditions.
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– How, then, did you deduce the telegram?
– Why, of course I knew that you had not written a letter, since I sat opposite to you

all morning. I see also in your open desk there that you have a sheet of stamps and a
thick bundle of postcards. What could you go into the post-office for, then, but to send

a wire? Eliminate all other factors, and the one which remains must be the truth.

Sir Arthur Conan Doyle, Sign of Four

This research work can be divided in two parts:

� In the first part, we have discussed the stretching of a polymer in poor solvent
conditions, i.e., below the � temperature.

Firstly, we have described a simple 2d on-lattice model of directed self-avoiding
walk, which is amenable to an analytical treatment. Then, we have discovered
an interesting scaling relation, which seems to be rather general and not due to
the simplicity of the model. In particular, we have given a strong confirmation
that in 2d the stretching transition must be second order. After having compli-
cated the model, we have discussed the Thermodynamics of the unfolding by
means an applied external force, and found the corresponding phase diagram.
Besides, with a Monte Carlo calculation applied to a 3d continuous model we
have given a unifying picture of three recent experimental results (see Sec. 2.3),
which in principle seem to contradict each other.

� In the second part, we have discussed the stretching pathway of a polymer in
good solvent conditions.

Here, we have suggested a new interpolation formula that generalizes the one
proposed some years ago by Marko and Siggia in Ref. [11]. We have correctly
taken into account the possibility of a finite intra bead distance, which acts as a
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new parameter. Then, we have tested our equation on some Monte Carlo and
experimental data. The final result is that we were able to reproduce not only
the results of the old formula, but also to investigate new regimes where the
Marko and Siggia’s result completely fails.

Of course, our models contains a certain number of approximation and much
research work must be devoted to improve and generalize our results.

In particular, it would be interesting to study the unfolding transition and Ther-
modynamics for an interacting model of self-avoiding polymer in d = 3. This was
partially due [32, 93, 94] for some on-lattice models, although it would highly appeal-
ing to concentrate on a more realistic off-lattice model. We should expect a first order
unzipping transition (for T < T�), and, in particular, the scaling theory developed for
the 2d model should be revised.

Then, as already said, the study of the ground states (at T = 0) of an interacting
flexible polymer has explained the multistep behaviour of some real polymers. In
principle, the introduction of a suitable stiffness in our model could complicate this
picture and modify the ground states described above. In particular, we can suspect
that the globule conformation at zero force is no more achievable, due to the large
amount of stiffness energy. But other more or less compact configurations could be
found.

We think these future investigations could be helpful not only from a theoretical
point of view, but they could be also an intriguing starting point for further experi-
mental observations.



Appendix A

The freely jointed chain (FJC) model

We have already stressed that during the last years much research work was devoted
to the development and study of many models of polymers. One of the most widely
used is the random-walk model by Edwards [20], that adequately describes the global
properties of several polymeric systems. Another simple model is the so called freely
jointed chain (FJC) model that describes a polymer whose bonds have a fixed length
(we put it equal to 1) and whose bond angle are unconstrained. Then the energy of a
FJC chain is the same for all the configuration.

The corresponding Boltzmann weight in the presence of an external force field
reads:

e��H =
1

(4�)N

NY
i=1

Æ(jtij � 1)e�F�ti; (A.1)

where ti = ri � ri�1 (ri being the chain vector of the i’s monomer), F = F ẑ is the
applied force and N + 1 is the total number of monomers along the discrete chain.
The partition function is:

ZN(F ) = 1

(4�)N

Z NY
i=1

dtiÆ(jtij � 1)e�F�ti =
�
sinh(�F )

�F

�N
; (A.2)

from the simple factorization of Eq. (A.1). Then, the normalized extension � �
hziN=N , where z is the extension along the direction of the applied force, is

� =
@

@�F
log

�
sinh(�F )

�F

�
= coth(�F )� 1

�F
: (A.3)

The large force behaviour predict that 1� � � 1=F .
FixingF = 0, let us now calculate the average end-to-end distanceRN �

phR2
Ni

where RN � rN � r0.
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It is evident that

hR2
Ni =

NX
i;j=1

hti � tji = N +
1

2

NX
i<j=2

hti � tji = N; (A.4)

since hti � tji = 0 if i 6= j. Then, RN = N1=2, which is the well-known end-to-end
displacement of a random walk [20].

If the bonds have a length equal to b (instead of 1), we simply have RN = bN1=2.
Though the FJC is a very simple model, the result RN / N1=2 holds for more general
result (see Appendix B and Ref. [20]).

Now let us define the Kuhn length [20], LK � R2
N=Rmax, where Rmax is the

maximum length of the end-to-end vector1. For a FJC with b 6= 1, LK = b.

1The physical meaning of the Kuhn length was given in Sec. 1.3.



Appendix B

The worm like chain (WLC) model

This Appendix is a systematic introduction to the so called worm like chain (WLC)
model, which has already been examined in Chap. 4.

This model does take into account the internal stiffness that many polymeric
molecules have and it was introduced much time ago by Kratky and Porod [95]. Its
relevant physical parameter is the persistence length Lp, which gives an estimate of
the length scale over which the tangent vector along the contour of the chain backbone
are correlated. Then, we are interested in those cases when Lp is of the same order of
magnitude of the total contour length of the chain Lc. A well known example is the
double stranded DNA (dsDNA) filament, whose persistence length is about � 53 nm
[11].

As known, to estimate the persistence length a force must be applied to the poly-
meric chain and then the end-to-end distance is measured [96]. So, from the extension
vs. force plot is possible to obtain Lp, which then acts as a free parameter. The WLC
model with stretching [95, 11] is described by the following hamiltonian:

�HWLC =
Lp
2

Z L

0

�
dt

ds

�2

ds� f �
Z L

0

t(s)ds: (B.1)

In Eq. (B.1), � = 1=kBT , f = �F, where F is the applied force and t(s) = @sr,
where r(s) is the position of a monomer along the chain, labeled by the internal
coordinate, s. t(s) satisfies the constraint

t
2(s) = 1: (B.2)

This means that the bonds between nearest monomers in the polymeric chain are
fixed (see, for example, Thirumalai and Ha in [16]). As a matter of convenience, we
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introduce the following discrete version of the WLC model (see Eq. 4.1):

�Hdiscr = �K
N�1X
i=1

ti � ti+1 � h �
NX
i=1

ti with

�
K � �J

h � �H
; (B.3)

with the condition

t
2
i = 1; 8i = 1; :::; N; (B.4)

where, as described in Appendix A, ti = ri�ri�1 (ri being the chain vector of the i’s
monomer) and N + 1 is the total number of monomers along the discrete chain. The
definition for the partition function and the average extension are given in Eqs. (4.2)
and (4.3)1. To recover the continuum version, Eq. (B.1), from Eq. (B.3) we require
that [75]:

Lp = limb!0Kb

f = limb!0 h=b
; (B.5)

where b is the monomer-monomer distance along the chain. In Eq. (B.3) we have
used periodic boundary conditions, i.e, tN+1 � t1. This is not a serious assumption:
at the end we shall perform the thermodynamic limit N !1, which is independent
of the chosen boundary conditions.

Let us stress the fact that Eq. (B.3) with the condition (B.4) is the hamiltonian
for an Ising chain [97], where we indicate with d the dimension of the spin vector ti
(O(d)-model). It is a well known result that the model (B.3) is exactly solvable only
for d = 1 (see, for example, Stanley in [98]). The d = 1 case is exactly solvable,
too and it corresponds to the so called spherical model [99]: the demonstration was
firstly given by Stanley [100].

B.1 Exact results

Here, we briefly review some well known results:

1. F ! 0.

This means (Eqs. (B.3) and (B.5)) that h ! 0. Then, the partition function

1As in Appendix A, in the following we shall make use of the normalized extension � � hzi
N
=N .
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Zd
N(K; h) is

Zd
N (K; h) ' Zd

N(K; 0)

 
1 +

1

2

NX
l;m=1

h(h � tl)(h � tm)i
!

= Zd
N(K; 0)

 
1 +

h2

2d

NX
l;m=1

htl � tmi
!
: (B.6)

where h�i indicates the average value with the hamiltonian (B.3) and h = 0. Us-
ing well known results [101], it is easy to verify that � in the thermodynamical
limit (N !1) is

� =
h

d
� 1 + yd(K)

1� yd(K)
; (B.7)

where yd(K) = Id=2(K)=Id=2�1(K) and Iq(K) is the first kind modified Bessel
function of order q and argument K [102]. In the continuum limit, Eq. (B.7)
becomes, simply,

� =
2

d

2

d� 1
�LpF: (B.8)

2. F !1.

In complete analogy as before, this means that h ! 1. Then, writing the
vector t = (t?; tk), that is along the components perpendicular and parallel to
the applied field, respectively, we can write

tk =
p
1� (t?)2 ' 1� (t?)2

2
: (B.9)

So, the hamiltonian (B.3) becomes

�Hdiscr '
NX

i;j=1

��
K +

h

2

�
Æij � K

2
(Æi;j�1 + Æi;j+1)

�
t
?
i �t?j �

NX
i;j=1

Mijt
?
i �t?j :

(B.10)
Let us compute the average value h(t?i )2i:

h(t?i )2i =
d� 1

2

1

K [(1 + h=(2K))2 � 1]1=2
: (B.11)

Now, the average value h�i is made with the hamiltonian (B.10)2. In the con-
tinuum limit Eq. (B.11) becomes h(t?(s))2i = d�1

2
p
�LpF

, where we have sub-

stituted the discrete index i with the continuum index s. Then � = htk(s)i is,

2Let us notice that Eq. (B.11) corresponds to Eq. 4.4 with d = 3.
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simply,

� = 1� d� 1

2

1p
4�LpF

: (B.12)

Fixing F = 0, let us now calculate the average end-to-end distanceRN �
phR2

Ni
(see Appendix A) and consider the particular case d = 3.

It is easy to show that

R2
N =

1 + y3(K)

1� y3(K)
b2N: (B.13)

where we have fixed the bond length equal to b 6= 1 and y3(K) = coth(K) � 1=K.
Then, RN / N1=2 holds and the Kuhn length (see Appendix A) LK obeys the equa-
tion

LK =
1 + y3(K)

1� y3(K)
b: (B.14)

In the continuum limit, Eq. (B.5), LK = 2Lp, which is a well known result [4].



Appendix C

Including 1=d corrections in wormlike
chains

C.1 Introduction

Here, we perform a 1=d-expansion on the WLC model described in Appendix B,
where d is the number of the spatial components of the spatial vectors. The corre-
sponding continuum limit extend the calculations reported in Ref. [103]. The calcu-
lation shows that the 1=d terms give an improved behaviour in the limit of low forces
and the correct one in the limit of large forces.

We shall proceed along the following lines:

1. expanding around the d =1 limit, we calculate the free energy for the system
up to the 1=d term;

2. we calculate the equation of state (see [99]) in the form of � = �(h; �), where
� is the normalized extension of the chain;

3. then, we calculate the continuum limit, with the help of the Eqs. (B.5);

4. at the end of the calculation we shall fix d = 3, which is the case of physical
interest.

In Sec. C.2, we shall proceed along the same lines of Refs. [81, 103], while the
general formalism about one-dimensional O(d) and more complicated models can be
found in [104].
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In next Section, we shall analyze the exact behaviour of the model in the limiting
cases F ! 0 and F ! 1. Then, at the end we shall compare our approximate
formula with these results.

C.2 Outline of the calculations

Focusing our attention on the hamiltonian �Hdiscr (Eq. (B.3)), with the constraint
given by Eq. (B.4), the partition function reads as:

Z(d)
N (�) =

Z NY
i=1

d
(ti)e
��Hdiscr ; (C.1)

where

d
(ti) =
�(d=2)

�d=2
Æ(t2i �1)ddti =

�(d=2)

�d=2
� 1

2�i

Z ci+i1

ci�i1
e��i(t

2
i�1)d�i�ddti: (C.2)

In Eq. (C.2), ci is chosen large enough in order the integral representation of the
Æ-function makes sense.

Finally, inserting Eq. (C.2) in (C.1), we easily obtain:

Z(d)
N (�) =

�
�(d=2)

�d=2

�N Z ci+i1

ci�i1

NY
i=1

d�i

Z +1

�1

NY
i=1

ddti exp

(
NX
i=1

�i � tiMijtj + h �
NX
i=1

ti

)
;

(C.3)
with the matrixM defined as

Mij = �iÆij � K

2
(Æi;j�1 + Æi;j+1); Æij =

�
1 if i = j

0 if i 6= j
(C.4)

Now, with the above prescription on the ci’s, we can invert the integration in (C.3),
with the result

Z(d)
N (�) /

Z ci+i1

ci�i1

NY
i=1

d~�i exp

"
�d
 
�

NX
i=1

~�i +
1

2
Tr log ~M� 1

2
~h2
X
i;j

~M�1
ij

!#

�
Z ci+i1

ci�i1

NY
i=1

d~�i exp
h
�dF(f~�g; ~h)

i
; (C.5)

where we have neglected unimportant multiplicative constants, “Tr” is the Trace op-
erator and f~�g indicates the whole set of the variables ~�i. In Eq. (C.5) we have made
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the following statements:

~�i = �i=d

~h = h=d (C.6)
~M = M=d:

and analogous definitions for the corresponding quantities ~J and ~H (see Eq. (B.3))
hold.

In the large d limit, it is possible to calculate the integral in Eq. (C.5) using the
saddle point approximation [100, 104]. The equation for the saddle point is simply
given by

@

@ ~�i
F(f~�g; ~h) = 0; 8i = 1; :::; N: (C.7)

It is a well known result [100] that Eq. (C.7) leads to the uniform solution ~�i = ~�0.
So, the equation for the saddle point becomes

~K

2
41�

 
~h

2 ~K

!2
1

z20

3
5 =

1

2
p
(z0 + 1)2 � 1

; with z0 � ~�0 � ~K
~K

: (C.8)

In the continuum limit (Eq. (B.5)) and using the definitions (C.6), Eq. (C.8) reads as

2Lp

"
1�

�
�F

2Lp

�2
1

ẑ20

#
=

dp
2ẑ0

; with ẑ0 = lim
b!0

z0
b2
: (C.9)

Eq. (C.8) gives the saddle point for the spherical model (d = 1) (see, for exam-
ple, [99]); instead Eq. (C.9) gives the saddle point in the large d limit, but for d <1.
This agrees with the results of the Refs. [81, 103]. But, let us notice that the 1=d ex-
pansion must be performed in the variables normalized to d (see Eqs. (C.6)) and that
only at the end of the calculations, we can substitute the “normalized” variables with
those that appear in the definition of the hamiltonian, Eq. (B.1), in the continuum
limit.

Now, to include the 1=d terms, we had to expand in a Taylor series the function
F(f~�g; ~h), defined in Eq. (C.5), around the saddle point ~�i = ~�0. Finally, we easily
obtain

F(f~�g; ~h) ' �N ~Kz0 +
N

2

Z 2�

0

dp

2�
log
h
2 ~K (z0 + 1� cos(p))

i
� N

2

~h2

2 ~Kz0
+

+
1

2

@2F
@�i@�j

����
�i=�j=z0

(�i � z0)(�j � z0)

� �N�(z0; ~h) + 1

2

@2F
@�i@�j

����
�i=�j=z0

(�i � z0)(�j � z0) (C.10)
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where �i � ~�i� ~K
~K

and

@2F
@�i@�j

����
�i=�j=z0

= �2 ~K2 �
2
4� ~M�1

ij

�2
+ 2

 
~h

2 ~Kz0

!2

~M�1
ij

3
5
������
�i=�j=z0

: (C.11)

Then we can compute the free energy F = F (�; ~h) for the system, up to including
the 1=d terms. The final results is

��F (�; ~h)
dN

= �(z0; ~h)� 1

2d

Z 2�

0

dq

2�
log
���F̂�i�j (q)��� : (C.12)

In Eq. (C.12), the function
���F̂�i�j(q)��� is the modulus of the Fourier transform of the

function defined in the Eq. (C.11)1:

F̂�i�j (q) = �1

2

�Z 2�
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�
1
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4 2(z0 + 1)p

z20 + 2z0

1
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3
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(C.13)

� is defined via the relation

� =
d

d~h

 
��F (�; ~h)
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!
: (C.14)

Then, at the end of the calculation we obtain the following relation:

� =
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41� 1

2d

Z 2�

0

dq

2�

1���F̂�i�j (q)���
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� 1
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1
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3
5 ;

(C.15)
where we have used the equation

@z0

@~h
=

1

2�00(z0)

~h
~Kz20

; with �00(z0) =
~h2

2 ~Kz30
+

1

2

z0 + 1

[(z0 + 1)2 � 1]3=2
(C.16)

1Again, let us remark that we have made use of periodic boundary conditions.
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To obtain Eq. (C.16), we have taken into account the fact that �0(z0(~h); ~h)) � 0, by
definition. Now, let us notice that in the limit d = 1, Eq. (C.15) becomes, simply,
� =

~h
2 ~Kz0

, that in conjunction with Eq. (C.8) gives the equation of state for the
spherical model in one dimension [99].

Now, starting from the Eq. (C.16) and using the definitions (B.3), (B.5), (C.6),
and that for ẑ0 (see Eq. (C.9)), it is possible to obtain the final expression for � in the
continuum limit. The calculations are quite boring, so we report the final results and
give a detailed description of them. This will be done in next Section.

C.3 Final results

The final expression for � is:

� =
�F

2Lpẑ0

�
1� 1

2d
�(F; Lp; �; ẑ0)

�
(C.17)

where, as already said, ẑ0 satisfies Eq. (C.9). � has the following functional form:

� = �1 + �2 � �3 (C.18)

with

�1 =
4ẑ0
p
2ẑ0��

ẑ0
p
2ẑ0 + 4(�F )2=(dLp)

� �
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(C.19)
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2ẑ0
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��1=2 :
Then, let us calculate the leading behaviour in the two important limits: F ! 0 and
F !1. The final results are:

m =

(
1� d�1

2
1p

4�LpF
if F !1�

2
d

�2
�
�
d+1
d
Lp
�
F if F ! 0

: (C.20)

It is interesting to compare Eq. (C.20) with the exact results of Sec. B.1.
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While the results for F ! 0 agree at first order in d, as one could expect, the
corresponding ones for F ! 1 give, surprisingly, the same behaviour. This is a
beautiful result, showing that if we perform the expansion including 1=d2 terms we
do not gain nothing in the large force limiting case.



Appendix D

Excluded volume effects

In this Appendix, we shall briefly discuss the important problem of the excluded
volume effects in real polymers. For more details, we shall refer to some excellent
reviews and books, present in literature (see, e.g., Refs. [3, 10, 12, 20, 105])

D.1 Formulating the problem

The models introduced in Appendices A and B describe an ideal polymer. This means
that we have systematically neglected all the interactions between different monomers
along the chain. For many practical purposes this may be a good approximation. In
fact monomer-monomer attraction energy along the chain has a typical scale of 5 eV
(covalent bond), that is much higher than other interactions (say, between the polymer
and the solvent or between different monomers far apart along the chain, whose scale
is � 0:1 eV).

At room temperatures (KBT � 0:025 eV) covalent bonds can not be broken. But
this energy scale can compete with the other interactions described above: conse-
quently, the properties of real polymers may be richer than those predicted by the
simple models described in Appendices A and B.

As already said, the excluded volume effects arise due to long range interactions,
i.e., to interactions involving pairs of monomers which are remote in the chain se-
quence, though, of course, near to one another in space when involved in mutual
interaction. This interaction can be roughly described by a potential V (r) (where r is
the distance between two monomers), whose shape is plotted in Fig. D.1.

Let us notice that:

� if r is small, V (r) is positive and very large. This is because two monomers



96 Excluded volume effects

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

V
(r

) 
(a

rb
itr

ar
y 

un
its

)

r (arbitrary units)

r0

-ε

Figure D.1: A typical dependence of the interaction energy V (r) between two monomers on

the distance r between them. The units on the x and y axes are arbitrary. The minimum �� is

located at r = r0.

can not penetrate into each other (excluded volume effect);

� as r becomes larger, monomers usually start to attract each other.

The crossover distance between these two regimes is located at r0, which should have
the same magnitude as the size of a monomer unit, that is, r0 � 10 Å.

In practice, to bring two monomers together, as close as r, some work has to be
done. This work is stored in V (r). It is done against the solvent molecules, as they
need to be squeezed out of the way. Hence, V (r) represents the effective interaction
of monomers through the solvent. It should depend, therefore, on the contents and
state of the solvent, as well as on the temperature.

D.2 Good and bad solvents

If KBT is large compared to the absolute value of the minimum of the potential �,
only repulsion at short distance dominates. It makes the coil swell. In this case the
polymer behaves as a self avoiding walk (SAW), rather than a random walk. The
end-to-end displacement RN is no more given by RN � N1=2 (see Appendix A). In
this case, RN � N� , where � is the SAW critical exponent. It is known that a good
approximation for the exponent � is given by the Flory formula [3, 10]

� =
3

d+ 2
; (D.1)
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where d is the number of spatial dimensions. If KBT � �, we say that the polymer
is in a good solvent.

If KBT � �, attraction becomes important. Now the polymer is in a special
compact state, called a globule. Its behaviour resembles the one of a hamiltonian
walk [9, 105] and its end-to-end distance RN � N1=d. We say that the polymer is in
a bad (or poor) solvent.

Finally, a special condition may be realized, when at a given temperature T = T�
attraction and repulsion exactly compensates. In this case (� condition) the polymer
behaves as ideal1.

1Let us remark that, rigorously, this is true for d � 3, when we can neglect three-body interactions.
For d < 3 the polymer at the � temperature does not behave as a random walk [9, 10, 105].
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Appendix E

Exact evaluation of the critical
exponents

In this Appendix we will show that, generalizing the continuous DSAW model intro-
duced in Ref. [47] for f 6= 0, the exact critical line fc(T ) can be calculated. More
importantly, we have obtained an exact derivation of the critical exponents at f > fc
and f = fc and we will show that they do not depend on T for T � T�. The Appendix
is organized as follows:

� in Sec. E.1 we introduce some general concepts about tricritical scaling;

� in Sec. E.2 we review the analytical methods developed in Ref. [47] and apply
them to extract the critical exponents.

E.1 A brief outline on the tricritical scaling

We here introduce some concepts about the theory of the tricritical scaling, which is
believed to describe the � transition of a dilute solution of polymers. As already said,
the model we have in mind is the self-interacting DSAW (see Chap. 3). However, our
approach is rather general and far beyond the DSAW model1.

The partition function for a self-interacting DSAW with L sites is given by:

ZL(!) =
X
C
cL(m)!m; (E.1)

where cL(m) is the total number of walks of L steps with m contacts and ! = e��,
being �� the nearest-neighbour energy contact and the sum is over all configurations

1More details may be found in Refs. [106, 107, 108].
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Figure E.1: Singularity diagram for a DSAW with self-interactions (from Ref. [46]).

of the L-step walk. The generating function is defined as

G(!; z) =
1X
L=1

ZL(!)zL; (E.2)

where z is the fugacity. The total free energy is given by

FL(!) = � 1

�
logZL(!): (E.3)

In the large L limit we have the free energy per step

f1(!) = lim
L!1

1

L
FL(!); (E.4)

which in turn implies
FL(!) ' Lf1(!) + o(L): (E.5)

Inserting Eq. (E.5) in Eq. (E.2), we deduce that the generating function has a sin-
gularity for z = z1(!) = e�f1(!). A plot of z1(!) in the (!; z)-plane is named a
singularity diagram. For a DSAW, it is shown in Fig. E.1 [44, 46].

Different parts of the singularity diagram correspond to distinct features of the
model. For the DSAW model, in the thermodynamic limit, the model undergoes a
phase transition at some temperature T� and the free energy f1(!) (and so z1(!)) is
singular at !� = e���, where �� = 1=kBT�. The line z1(!) for ! < !� corresponds
to the high temperature phase, whilst for ! > !� corresponds to the low temperature
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collapsed phase. It is possible to show that the average length of the walk is finite
in the region 0 � z < z1(!). Let us notice that the region above z1(!) has not
physical meaning.

A suitable transformation of coordinates in the (!; z)-plane

(!; z)! (!; q = !z)

makes it easier to characterize the tricritical scaling [106]: of course the critical line
is now q1(!). Then, we continue by defining the ingredients that go into forming our
picture.

At high temperature (small !) the generating function, Eq. (E.2), diverges in the
limit q ! q1(!) as

G(!; q) � (q1(!)� q)�
+; (E.6)

whereas at the tricritical (or �) point

G(!�; q) � (q1(!�)� q)�
� : (E.7)

Instead, at low temperature (! > !�), G(!; q) converges in the limit q ! q1(!), with
an essential singularity.

Now, let us assume that a tricritical scaling holds and consider the following ther-
mal scaling field t = !� � ! and fugacity field p = q1(!�) � q. In this framework,
the � point is simply (t; p) = (0; 0). For t > 0, the shape of the critical line p+ � t ,
where  is the shift exponent. The singular part Gs of the generating function reads:

Gs(t; p) � jtj�
ug�(pjtj�1=�); (E.8)

where the � superscripts refer to temperatures above and below the � point,

g�(x) �
� jxj�
u� if x!1

1 if x! 0
; (E.9)


u = 
�=� and � is the tricritical crossover exponent. For t > 0, G is singular along
the critical line p+(t). Then, we have

g+(x) � (x� _x+)�
+ if x! _x+; (E.10)

where _x+ is the singularity. This ensures that  = 1=�. From the generating function
it is possible to calculate hLx;yi, the average lengths along the x and y directions. In
the same fashion, it is possible to define the critical exponents �x;y+ , �x;y� and �x;yu . The
following scaling relations hold: � = �x� �

x
u and � = �y� =�

y
u.
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E.2 Detailed calculations

We briefly outline the main results of Ref. [47]. The authors proposed a continuous
model of DSAW, where the ri’s in the nearest-neighbor energy term, Eq. (3.14), are
not restricted to integer values. As shown, this model is the continuous limit of the
discrete DSAW and has the same critical exponents.

We assign an energy U(r1; :::; rN) to each configuration of length L and number
of vertical segments N , where each vertical segment, i = 1; :::; N , has length ri
measured in the positive y direction, giving L =

PN
i=1 jrij. This energy is given by

U(r1; :::; rN) = ��
N�1X
i=1

u(ri; ri+1) (E.11)

where
u(ri; ri+1) = min(jrij; jri+1j)H(�ri � ri+1) (E.12)

and H(r) is the Heaviside step function:

H(r) =

8<
:

0; r < 0

1=2; r = 0

1; r > 0

: (E.13)

The function u(ri; ri+1) measures the overlap of successive segments. The thermo-
dynamics can be deduced from the canonical partition function

ZL(!) =
1X
N=1

Z 1

�1
dr1:::

Z 1

�1
drNÆ

 
NX
i=1

jrij � L

!
!
PN�1

i=1 u(ri;ri+1); (E.14)

where, as stated, ! = e�� (! � 1). For mathematical convenience we introduce the
generalized partition function:

G(y;!) =
Z 1

0

yLZL(!)dL; (E.15)

where y is a fixed monomer fugacity. Using Eq. (E.14), Eq. (E.15) can be written as

G(y;!) =
1X
N=1

ZN(y;!) (E.16)

where

ZN(y;!) =

Z 1

�1
dr1:::

Z 1

�1
drNe

��E[ri] (E.17)
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and

��E[ri] = ��
NX
i=1

jrij+ ��
N�1X
i=1

u(ri; ri+1) (E.18)

where � > 0 and y = e�� < 1. Our goal is to find the generalized partition function
G(y;!).

Then, we extend our aim introducing a counting variable x � 1 for the number of
horizontal steps, defining the function

G(x; y;!) =
1X
N=1

xNZN(y;!) (E.19)

and the function

�N (z) =

Z 1

�1
dt exp[�� jtj + ��min(jtj; jzj)H(�tz)]�N�1(t) (E.20)

with �0(z) = 1; hence ZN(y;!) = �N (0). We are interested in finding G(x; y;!)
via the generating function

�(z) =
1X
N=1

xN�N (z) (E.21)

and hence G(x; y;!) = �(0). Next step, is to find an integral equation which �(z)

satisfies. Defining �(z) � e�Kz�(z), where K = ��=2, we obtain after some algebra
the following differential equation

d2�

dz2
= K2�(z) � 2Kxe�Hz[�(z) + e�Kz] (E.22)

where H = � � ��. Eq. (E.22) can be put in the more familiar form

u2
d2F

du2
+ u

dF

du
+ (u2 � �2)F (u) = �u

2+�

a�
(E.23)

where � = 2K=H . Eq. (E.23) is an inhomogeneous form of Bessel’s differential
equation.

Solving Eq. (E.23) the following exact form for the x-generalized partition func-
tion is derived [47]:

G(x; y;!) = �1 + ��1
J�(��)

J
0

�(��)
; (E.24)

where � = (4x=��)1=2 and � = ��
���� . J� and J

0

� are, respectively, the Bessel function
of order � and its derivative. The generalized partition function, Eq. (E.15), is given
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by Eq. (E.24), with x = 1. The critical fugacity is given by the solution of the
equation J

0

�(��) = 02 and the critical point is given by � = 1 or ��� = 4 [102]. In
fact, for � > 1, J

0

�(��) = 0 has a solution at some finite �. Instead, for � < 1, only
the solution � = 1 (y = !�1) exists. Then, � > 1 (< 1) describes the high (low)
temperature phase.

From known properties of the Bessel’s functions G(y;!) can be written

G(y;!) ' �
�

�

1� �2

�1=2 Ai(�2=3�)
Ai0(�2=3�)

�1=3 (E.25)

where Ai(x) and Ai0(x) are, respectively, the Airy function and its first derivative
[102] and

2

3
j � �j3=2 =

(
log 1+

p
1��2
�

�p1� �2 if � < 1p
�2 � 1� cos�1

�
1
�

�
if � > 1

: (E.26)

Around the � point (��� = 4; y = y� = e����), we have

j�j � j1� �2j � jT � T�j � jtj and � � (y� � y) � �y�1: (E.27)

Eq. (E.25) can be recast in the following form:

G(�z; t) ' Ai(��z�2=3t)
Ai0(��z�2=3t)�z

�1=3: (E.28)

From Eqs. (E.8) and (E.28) the critical exponents can be deduced: 
t = 1=3 and
� = 2=3. For t > 0 there is a simple pole, so 
+ = 1 (for t < 0 there are no poles).
In the limit �z ! 0, G � t�1=2 and 
u = 1=2. Then, the scaling relation 
u = 
�=�

is verified.
From Eq. (E.24), it is possible to define an average horizontal length as

hNi = @ logG(x; z;!)
@ logx

����
x=1

: (E.29)

When f = 0, the exact critical exponents are �x+ = 1 for T > T� (� > 1), �x� = 2=3

for T = T� (� = 1) and �xu = 1. Again, the scaling relation � = �x� �
x
u is verified3.

To generalize for f 6= 0, we have replaced x with xe�f (as in Sec. 3.1) and, then,
put x = 1. Formally, Eqs. (E.24) and (E.29) still remain valid, with � = (4e�f=��)1=2.
The critical line, determined by the equation � = 1, gives fc = fc(T ) = 1

�
log(��

4
)

and is plotted in Fig. E.2. It can be easily understood, once it is realized that Eq.

2We are supposing � � 0, i.e. y � !�1.
3Here, the notation is slightly different from that proposed in Sec. 3.1 and consistent with that used

in this Appendix.
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Figure E.2: Exact critical line in the continuum approximation.

(3.11) for � 6= 1 reads

fc(T ) = T ln

�
1� exp (���=2)

exp (���) (1 + exp (���=2))
�
: (E.30)

It is easy to verify that the continuum limit is formally achieved when �! 0.
The exact critical exponents are �x+ = 1 for f > fc (� > 1) and �xfc = 2=3 for

f = fc (� = 1), which agree with the results of the discrete model (Sec. 3.1.4).
Notice that the shape of the transition line at low T is an unphysical feature of the

continuum approximation, as discussed in [41, 37].
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Appendix F

A brief introduction to Monte Carlo
techniques

In this Appendix we briefly introduce some Monte Carlo techniques we have adopted
in this Thesis (see Chapp. 3 and 4). Here, we will focus on dynamic methods [60]
and describe in details the moves we have chosen to perform.

The idea of dynamic Monte Carlo is to invent a stochastic process with state space
S having � as its unique equilibrium distribution. In this Thesis, the state space
contains all the configurations of (off-lattice) self-avoiding walks with a well defined
potential between non nearest neighbour monomers and � = e��H is the Boltzmann
weight, where H is the energy of a particular configuration of the walk.

In practice, we assume that our stochastic process is a Markov process. We then
suppose that ergodicity hold (each state can be reached from each other state) and
� is a stationary distribution. Next step consists in specifying the set of elementary
moves, i.e. the transitions from one configuration to another and the probabilities for
the allowed elementary moves. As stated above, we suppose that the probabilities
are given by the Boltzmann weight. Moreover, we suppose that the detailed balance
condition is satisfied1 and we shall adopt the Metropolis rejection criterion [61].

F.1 Classification of Moves

Here, we focus on moves that conserve the total number of monomers of the walk
[60]. We have used a local move (crankshaft), a bilocal move (reptation) and a non
local move (pivot).

1This condition automatically implies the stationarity condition [61].
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F.1.1 Local moves

A local move is one that alters only a few consecutive sites of the walk, leaving the
other sites unchanged. In this Thesis we have used the so called crankshaft move.

We have selected randomly two beads i; j (i < j) such that j � i � nc + 2,
with nc � N � 1 (most frequently we have used nc = 6 or nc = 3). Then rotate
beads i + 1; : : : ; j of an angle ��c around the axis rj � ri. The angle ��c is chosen
randomly with a uniform distribution in the interval [���m=2;��m=2], where ��m
is a suitable chosen angle. So it may well correspond to a physical move of the
polymer in a real dynamics.

F.1.2 Bilocal moves

A bilocal move is one that alters two disjoint small groups of consecutives sites of the
walk; these two groups may in general be very far from each other. One trivial way of
making an N -conserving bilocal move is to make two independent (nonoverlapping)
N -conserving local moves, i.e. those in which one subwalk loses sites and the other
subwalk gains them.

The reptation move used here is also known as the slithering-snake move. It
consists in deleting nr (nr = 1; : : : ; Nr, with Nr most frequently chosen as 5) beads
from one end of the chain and appending them to the other end, after a rotation around
a random axis of an angle ��r, chosen uniformly from 0 to �. Then, it alters two
disjoint small groups of consecutive beads of the chain. Reptation is used as a physical
dynamical move in models in which the polymer migrates in a fixed environment or
is subject to some displacing field and is subject to no constraints.

F.1.3 Non local moves

The pivot move adopted in this Thesis is an example of non local move.
We have selected randomly one bead i (0 < i < N � 1) as the pivot point, and

then rotated the part of the chain subsequent to the pivot point while keeping fixed the
rest of the chain, using the pivot point as the origin. The rotation is around a random
axis chosen with uniform probability among all the versors on the unit sphere and the
pivot rotation angle is uniformly chosen between ���0m and ��0m (which in general
is different from ��m).

Pivot moves are global ones, since they involve a rearrangement of a macroscopic
portion of the chain. A pivot move is unlikely as a physical dynamical move.



Appendix G

Transfer Matrix and
Phenomenological Renormalization

In this Appendix, we briefly explain the Transfer Matrix (TM) technique used in Sec.
3.2, followed by a discussion on phenomenological renormalization (PR).

Let us suppose that one wants to study the critical properties of a two-dimensional
model with coupling constant x. Using the TM one can calculate the correlation
length �n(x) of a strip of width n. The PR, which is based on finite-size scaling
arguments [109], consists in writing a renormalization equation

(1=n)�n(x) = (1=m)�m(x
0) (G.1)

which expresses the changes of the interaction x associated with the change of scale
of ratio n=m. The critical point and the exponent � of the two-dimensional problem
can be calculated from the following equations:

(1=n)�n(xc) = (1=m)�m(xc) (G.2)

1

�
=

log [d�n=dxjxc(d�m=dxjxc)�1]
log(n=m)

� 1: (G.3)

As far as n and m are finite, the method is an approximation which can be im-
proved by choosing n as large as possible and m = n� 1 [109].

In order to use the PR method for the SAW, one has to define the correlation length
as a function of a parameter x in the same way as for spin models. This can be done
using the famous q ! 0 limit of the classical q-component Heisenberg model [110]

lim
q!0
hS0SRi =

1X
p=0

xpN0R(p) = G0R(x): (G.4)
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N                            N      N+1     N0 R A B                 C      

Figure G.1: The configurations A and B represent the part of the polymer on the strip at the

left of columns N and N +1 respectively. The dashed links are the monomers one has to add

to configuration A at column N to give rise to configuration B at column N +1. The number

of these monomers is here five. So the matrix element between these configurations A and B

is x5. Configuration C is an example of a forbidden configuration.

Eq. (G.4) relates the correlation function hS0SRi of Heisenberg spins located on sites
0 and R to the number of self-avoiding walks N0R(p) of length p going from site 0

to site R, x is the nearest-neighbour interaction in the Heisenberg model. When the
distance R between the two sites becomes large, the correlation function decreases
exponentially in the high-temperature phase. In the q ! 0 limit this defines the
correlation length �(x) for the polymer problem as a function of xwhich is a chemical
potential of monomers

G0R(x) � exp(�R=�(x)): (G.5)

It is now possible to explain how �(x) can be calculated for a strip of any width.
Suppose that sites 0 and R belong to two columns N0 and NR on the strip. If one
cuts the strip at column N between N0 and NR, the part of the polymer at the left of
column N is made of several branches: one site of column N is connected to site 0 of
column N0 whereas some of the other sites of column N are connected by pairs (Fig.
G.1). The writing of the TM needs two steps.

First, one needs the list of all the possible configurations C at column N . One
configuration is defined by the site of column N connected to site 0 and by the pairs
of sites connected by the part of the strip at the left of column N . Configurations
A and B of Fig. G.1 are examples of such configurations. One can notice that the
different branches which reach column N will be connected together by the right part
of the strip to form a single polymer. So, some configurations are eliminated (like
configuration C of Fig. G.1) where there are crossings between the different branches
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of the configuration.
For each allowed configuration C, one can define the function HN(C) by

HN(C) =
1X
p=0

xpNN(p; C) (G.6)

where NN(p; C) is the number of ways one can put p monomers at the left of column
N in order to realize configuration C at column N . The transfer matrix T is defined
by the set of linear relations which allow the calculation of the HN+1(C) as functions
of the HN(C):

HN+1(C) =
X
C0
T (C; C 0)HN(C 0): (G.7)

Obviously T (C; C 0) = xt(C;C
0) where t(C; C0) is the number of monomers one has to

add to configurations C 0 at column N to give rise to configuration C at column N +1.
If there is no way to connect two configurations C and C 0, the matrix element T (C; C 0)
is zero.

So the size of the TM is the number of configurations C and its elements are either
zeros or integral powers of x1. Clearly, when the two columns N0 and NR are very
far from one another, one has

G0R(x) � [�(x)]R (G.8)

where �(x) is the largest eigenvalue of the matrix T . So the correlation length �(x)
can be calculated by

�(x) = � 1

log(�(x))
: (G.9)

Finally, let us remark that in Sec. 3.2 we focused our attention on a self-interacting
SAW. This means that the corresponding TM is slightly more complicated than the
simple model discussed in this Appendix. There, the configurations are built consid-
ering two columns, since the energy parameter ! = e�� is present. Nevertheless, the
generalization is rather straightforward [111, 112].

1From a practical point of view, the size of the matrix can be reduced using the symmetries of the
strip.
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