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Introdution
Random ombinatorial problems and diluted spin systemsDuring the last two deades, in spite of many pioneering fundamental ontributions ([1℄ andreferenes therein), the main stream of analytial results in the �eld of statistial mehanis ofspin-glasses and disordered systems foused mainly on mean-�eld models of large degree1([2, 3,4, 5, 6℄ and referenes therein).In the more reent years, a major e�ort has been devoted to the study of models that ouldretain, at least in a statistial way, some features of �nite dimensionality, like �nite degrees andpresene of geometrial onstraints inuening both the stati and the dynamial propertiesof the systems. Spin glass models over diluted random graphs onstitute by now the naturalframework for the most advaned analytial studies onerning the glass transition in disorderedsystems.The interest in diluted spin system is by far not limited to physis. As we shall disussin great detail in this thesis, there exists a huge lass of open root problems in theoretialomputer siene and in disrete mathematis whih have a simple representation as dilutedspin system.From the point of view of pure physis, the study of diluted systems represents only a �rststep towards the treatment of �nite dimensionality or geometrially strutured models, andone ould think for instane to even more omplex or \semi-random" strutures where someregularity reminisent of a real lattie geometry is progressively introdued into the randomadjaeny matrix. But even if one limits the investigation to purely random diluted graphs andto lassial spin models de�ned on them, the questions that arise are still of a deep kind bothfrom a fundamental and from an appliation oriented point of view.Why are this models interesting? The main reasons an be summarized in the following:� From a fundamental point of view: they are still essentially mean �eld, however they retain�nite interation degrees that is reminisent of �nite dimensional ases. The presene oflarge sale strutures like large loops has to be taken into onsideration as a �rst stepin the understanding the role of topology and geometry for the olletive behavior ofomplex systems.� Moreover, they are widely aepted as prototype models in the study of fundamentalphenomena in the theory of Computational Complexity.� From an appliative (but not less important) point of view: they have a natural widerange of appliations to a lass of systems that span over the following �elds1In the following we will all degree what usually physiists all onnetivity, i.e. the number of neighborsof a vertex of the lattie or graph the model is de�ned on. We hose The �rst term in order to be onsistentwith mathematial and graph theory literature. 7



8 CONTENTS{ Statistial analysis of the behavior of realisti neural networks ([2, 6, 27, 28℄ andreferenes therein){ Combinatorial optimization problems ([27, 29, 30, 31, 32, 34, 35, 36, 37, 117℄ andreferenes therein){ Error orreting odes and ryptography ([27, 38, 39℄ and referenes therein){ Models of statistial information proessing and image restoration ([27℄ and refer-enes therein){ Statistial models of olletive phenomena in biology (for instane. gene and proteinregulatory networks, networks of ellular signalling pathways et.) ([40, 41℄ andreferenes therein){ Statistial analysis and optimal design in omplex arti�ial networks suh as theInternet or the World Wide Web ([43, 44, 45, 46℄ and referenes therein)In what follows we are going to deal both with basi theoretial aspets and with some spe-i� appliations belonging to omputer siene (ombinatorial optimization, error orretingodes and ryptography). We are going to study the low temperature equilibrium and out-of-equilibrium phases of diluted spin-glasses with the aim of eluidating the geometrial strutureof ground states underlying stati and dynami transitions. The omputational ounterpartof suh a study arises from the elementary observation that (hard) ombinatorial optimiza-tion problems an be easily reformulated as problems of �nding ground states in spin-glass-likeHamiltonians. In this sense the idea of studying their topologial struture is quite a naturalone [2℄. The reent e�orts in developing a mathematial and physial understanding of suhsystems over diluted strutures have opened new perspetives and new roads to solutions tothose problems, takling them in their natural milieu. The models reviewed and studied inthis thesis are all of random nature. While this is usually the most natural thing to do inphysis, the study of random ombinatorial problems has been revealing itself useful also inomputer siene where it allows to broaden to the typial-ase the lassial worst-ase notionsof omputational omplexity [34℄.This thesis is devoted to the analytial study of the dynami and stati transitions numer-ially observed in this whole lass of models, with spei� fous on ombinatorial optimizationproblems and error orreting odes, one mapped on spei� diluted spin systems. Stress isposed on the onnetion between the slowing down proesses in algorithms behavior and sta-tistial phase transitions due to some intrinsi property on the spin model, that an usually betraked down to the emergene of non trivial frustrated topologial strutures in the underly-ing graph. The reent ahievements [29, 30, 56℄ of a promising new lass of algorithms thatseems to outperform the other state-of-the-art searh proedures for typially hard ombina-torial problems are based on theoretial understanding rooted in the onepts reviewed in thiswork. This result, among others, seems to show how statistial physis of disordered systemshas still a lot to teah us when applied to the �eld of omputational omplexity.The thesis will be organized in the following way: in the �rst hapter some general guid-ing onepts of random graphs and modern statistial physis of disordered systems will bepresented, and the onnetion with relevant problems in theoretial omputer siene will bestressed. In hapter two we will introdue in detail the mathematial tehniques used to dealwith the analyti omputation of relevant physial quantities for a wide lass of spin modelsde�ned over diluted random strutures, suh as random graphs or random graphs with arbi-trary degree distribution (results for Erd�os-Renyi graphs will follow as a speial ase). The



CONTENTS 9omplete alulations will be shown in the ase of a generalization of the p-spin model oversuh strutures. Their validity an be seen to hold for a muh wider family of random om-binatorial optimization problem belonging to the NP lass in the worst ase, suh as K-SAT,Q-oloring[57, 58℄ and many others. Some appliations to spei� prototype examples will beshown in the third hapter, while hapter four will deal with spei� examples of two om-binatorial optimization problems, namely the 3-SAT and the bioloring problem of graphs ofuniform rank 32. Chapter �ve will be devoted to two relevant examples of the relation be-tween the algorithmi omputational omplexity of a problem and the presene (and nature)of dynami and stati phase transitions in the assoiated spin model. In the �rst examplethe mapping will essentially be between the searh for solutions of large random sparse lin-ear system over �nite �elds3 and the searh of the zero temperature ground states of somead ho de�ned multiple rank interation diluted ferromagnet. In the seond part essentiallythe same mapping will be used to study the dynami slowing down of parity hek algorithmsfor error orreting odes - with the onsequent onset of omputational omplexity - and theorrespondent dynami phase transition in spin glasses.The mathematial language used throughout this work will be that of replia theory: weare well aware that this is a very ontroversial �eld, due to the lankness of lear and rigorousfoundations that makes its mathematial interpretation obsure and its results \unreasonablysuessful"[42℄. And this even after more than 20 years after the original formulation of thetheory [59℄. In the neessary attempt to overome this problem a alulation in hapter six ispresented with the aim of showing how replia theory an be at least interpreted as a systemativariational method also in the ase on diluted models. The treatment will be a generalization ofthe method reently proposed by Guerra [60℄ for fully onneted models. Moreover, very reentwork [23, 24, 30℄ has lari�ed the equivalene between the avity method and the replia resultsalso in the diluted systems ase. Sine the �rst one deals with usual probabilisti objets, ithas a learer and more diret interpretation that ould lend itself to further rigorous studies.Some diretions for future work are summarized in the onlusions.The alulations and the results presented in this thesis are the output of a three years ollabo-ration with the I.C.T.P. ondensed matter and statistial physis group in the names of RiardoZehina, Silvio Franz, Alfredo Braunstein and Federio Rii-Tersenghi (now in Rome). Greatpart of the work was also the output of a ollaboration with Andrea Montanari (�Eole Normale,Paris). This work would not have been possible without them, and I wish to thank them deeply.

2the de�nition of graph and of rank will be given at the beginning of hapter 1.3See the de�nition in the hapter.
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Chapter 1General tehniques for diluted randommodels
1.1 Graphs and Hyper-graphs: preliminary de�nitionsDuring the whole length of this thesis we are going to deal with spin models de�ned on dilutedrandom strutures suh as simple random graphs or hyper-graphs [61, 62, 63℄. A graph G isommonly de�ned as a non-empty �nite set V (G) of elementary units alled verties or nodesor sites in our ommon notation, and a �nite set E(G) of distint unordered pairs of distintnodes alled edges or links . We all V (G) the vertex set and E(G) the edge set of G. In ournotation the ith site will be denoted by its Latin index i and an edge between sites i and j willbe denoted as the ouple ij. We will work with undireted edges (graphs). We will de�ne thesize or order of the graph as the ardinality of the vertex set or the number N of sites, we willallM the the ardinality of the edge set. A omplete graph is a graph whose edge set is madeof all possible links between nodes. In that ase one has M = N(N � 1)=2 � O(N2). Manyinteresting models an be de�ned on a generalization of graph strutures that go under thename of hyper-graphs. Let X = fx1; ::::; xNg be a �nite set., and let E = fEiji 2 Ig be a familyof subsets of X. E is said to be a hyper-graph on X if Ei 6= ; 8 i 2 I and Si2I Ei = X. Thestruture H = (X; E) is alled hyper-graph. Again, jXj = N is the order of the hyper-graph.It is easy ro see how a graph is simply a partiular ase of hyper-graph with E restrited tosubsets of exatly two elements. E will be the generalized edge set (or hyper-edge set) of H. Isit possible to draw a hyper-graph in many equivalent ways. One possibility is shown in �gure(1.1), where edges are shown as multiple verties plaquettes. This may not be the orthodox wayto represent a general hyper-graph, but is reminisent of the usual way to represent multi-spinor plaquette interation in lattie �eld theory or statistial mehanis, so we will adopt it in thefollowing. In the future hapters we will oasionally need the onept of inidene matrix asthe matrix Â = ((aji )) with M rows that represent the edges of H and N olumns representingits verties, suh that: aji = 1 if xj 2 Eiaji = 0 if xj =2 EiIn a hyper-graph H, the rank r(S) of a set S � X is de�ned asr(S) = maxijS \ Eij (1.1)11
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Figure 1.1: Trivial examples of a simple graph, two hyper-graphs of �xed rank 3 and an hyper-graph of rank 4 and minimal rank 2. also rank 2 edges are expressed in hyper-graph notation.All these example have N very small ompared with the strutures we will be interested in, sothey are only to be intended, along with others in the text, as a pitorial guide.The rank of the hype-graph is thereforer(X) = maxijX \ Eij (1.2)If r(X) = Ei 8 i, then the hyper-graph is said to be of uniform rank. A simple graph will thenbe a hype-graph of uniform rank 2.To eah hyper-graphH = (X;E1; :::; EM) there orresponds a dual hyper-graphH� = (E;X1; :::; XN)whose verties are points e1; :::; eM representing E1; :::; EM and whose edges are sets X1; :::; XNrepresenting x1; :::; xN where 8j, Xj = feiji �M ; Ei 3 xjg (1.3)When dealing with the graphial interpretation of error orreting odes, we will swith to arepresentation of hyper-graphs in terms of fator graphs [64, 65, 66℄ (see also the appendix fora graphial example), more familiar to omputer sientists, and where duality is made evidentand expliitly exploited. Any hyper-graph an be read as a bipartite graph where one subset isX and the other E, and where there is a edge pointing from xi to el if the orrespondent elementof the inidene matrix of the original hyper-graph is non-zero. Suh partiular bipartite graphis alled fator graph. Given a hyper-graph H, a hain of length q is de�ned [63℄ as a sequene(x1; E1; x2; E2; ::::; Eq; xq+1) s.t. � x1; ::::; xq are distint verties� E1; ::::; Eq are distint edges� xk; xk+1 2 Ek 8 k = 1; :::; qIn the physis jargon, hains are nothing but onneted omponents of the hyper-graph H.If q > 1 and xq+1 = x1, then the hain is alled a yle of length q. A yle in a graph of uniform
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rank 2 is nothing but a loop. In the physis of disordered and frustrated systems a partiularrole turn out to play those yles where every vertex belongs to an even number of edges.We will all those yles \ompat yles" , \hyper-yles" or \hyper-loops", for the similaritywith the graphs ase where loops always have this property. Two examples of very partiularyles (the �rst is also a ompat yle) are shown in �g. (1.1) for the ase of a hyper-graph ofuniform rank 3 (see also [19℄ for the �rst appliation to hyper-loops onepts to spin glasses, tomy knowledge). A hyper-graph is the said to be random [62, 69, 68℄ whenever the presene orabsene of eah of its edges is given with a de�ned arbitrary probability. Traditionally, randomgraphs were introdued as those where the probability of having an edge between two givenverties is a onstant r1: 8 i; j P rob(ij 2 E(G)) = r (1.4)If r / O(1) then the graph is said to be dense as well as its inidene matrix. If r / O(1=N)then the graph will be thin or diluted and its inidene matrix will be a sparse one. In thislast ase M / N . This will be the ase we'll onsidered it the rest of the thesis. Completehyper-graphs of �nite rank l have CNl / N l�1 edges 2. Therefore, in order to have a numberof edges proportional to N every plaquette ontaining l, verties must have a probability tobe present proportional to 1=N (l�1). If eah edge is present with the same �xed probability,properly resaled with N , the hyper-graph will be diluted and eah vertex i will have a �nitedegree ki drawn from a poissonian probability degree distributionk = e� kk! (1.5)where  is a free parameter determining mean value and variane of the distribution. A parti-ular \self similar" form is peuliar of the poissonian distribution: In this ase the probabilityk of �nding a vertex of degree k is equal to the probability qk of �nding a nearest neighborvertex with degree k + 1, as an be seen applying eq. (1.5) to the de�nition [69℄qk � (k + 1)k+1Pk kk = (k + 1)k+1< k > : (1.6)This note is very important in pratial alulations and is the origin of major simpli�ationsin the replia and the avity equations [23, 24℄ we will see later on. This is reeted by the fat1A very rih phenomenology of strutures appearing in the graph as a funtion of the degree and a ompletestudy of graphs behavior as r inreases with N has been performed on a rigorous mathematia basis staringfrom the seminal paper of �Erdos and R�enyi [61℄. For a systemati introdution see for instane [62℄ and [67℄and referenes therein. To my knowledge no omparable systemati study has been undertaken in the ase ofrank > 2 hyper-graphs yet. For a lear introdution to hyper-graphs see [68℄.2CNl � N !=((N � l)!l!) in the following.



14 CHAPTER 1. GENERAL TECHNIQUES FOR DILUTED RANDOM MODELSthat in the poissonian ase the mean value uniquely determines the variane and vie-versa.As a onsequene, a lot of simpli�ations and partiular behaviors of poissonian hyper-graphsannot be applied in wider families of random strutures. However, it is possible to onstrainthe probability of the value of the number of edges inident on a �xed vertex in order todraw diluted hyper-graphs from ensembles with arbitrary degree distributions (arbitrary k).The onstraints will be of global nature and will not introdue vertex-vertex orrelations, asit will be seen in the following. Sine the replia as well as the avity equation for spinmodels de�ned over diluted hyper-graphs will be onerned in the omputation of the loale�etive �elds ating on eah spin variable in absene of a partiular edge inident to thevertex under onsideration, The natural ensemble we are going to work with will indeed bethat of the qk and not that of the k. We stress again that this hange is immaterial in thepoissonian ase, where one falls bak into the same ensemble, but not in the general one.Moreover, one ould of ourse think to more omplex or \semi-random" strutures where someregularity reminisent of a real lattie geometry is progressively introdued into the randommatrix through the presene of orrelations of various kind (see [41℄ for one among possibleexamples) or through the presene of regular sub-hyper-graphs merged in the whole one in arandom way. But even if one limits the investigation to purely random diluted hyper-graphsand to simple lassial spin models de�ned on them, the questions that arise are still of a deepkind both from a fundamental and from an appliation oriented point of view. Nevertheless,the immediate future diretions for investigations will neessarily have to deal with the preseneof suh orrelations [72, 46, 70, 71, 73℄, as well as with models where the interation onstraintsare non loal in nature [74℄ or non purely lassial.1.2 Spin models on diluted struturesIn all ases, we are going to work with models that an be desribed, under appropriate map-ping, via some spin Hamiltonian H(J; s), where fJg represents an ensemble of disorderedinteration energy variables taking non zero values on the edges of the hyper-graph or de�nedas ombinations of more elementary interation terms as in the ase of the K-SAT. s) are N �1spin variables (0 or 1 Boolean variables in the usual ombinatorial problems enoding) living onthe verties of the hyper-graph. We will deal in the following with ases where the Hamiltonianan be written as a sum of loal energeti ontributions �� asH(J; s) =X� ��(fJ�g; fs�g) ; (1.7)where � indiates eah subset (usually an edge of the underlying hyper-graph or a lause in SAT-like formulation) that ontains a small number of both onstraints and spin variables, relativeto the total number N of variables3 . As a title of example, the simplest possible Hamiltonianis the Viana-Bray (see the original artile by Viana and Bray in [1℄):H(J; s) = �Xi<j Jijsisj : (1.8)The diluted hyper-graphs that de�ne the underlying topologial struture will be drawn fromthe appropriate hosen statistial ensemble, fully determining the probability distribution P (k)3� is usually alle \lause index" in SAT-like formulations, but it an be extended in general to other spinsystems.



1.2. SPIN MODELS ON DILUTED STRUCTURES 15of edge degrees and the probability distribution Q(l) of ranks. The rank on eah single hyper-graph edge is equal in the ases under onsideration to the number of spin variables in the loalenergeti term ��. Therefore the distribution Q(l) is going to be stritly related to the frationof l-variables interation terms Hamiltonians summing up to the total H(J; s)4.1.2.1 DisorderOne the set fJg of non zero ouplings (equivalent to the set of present edges) is set, itselements an take values aording to an a priori arbitrary distribution �(J). For disorderedpure ferromagneti-type models �(J) will read�(J) = Æ(J� 1̂) : (1.9)For disordered pure anti-ferromagnets �(J) = Æ(J+ 1̂) : (1.10)Finally, for the pure generalized �1 spin-glass ase5:�(J) = 12 �Æ(J� 1̂) + Æ(J+ 1̂)� (1.11)More in general, the same models an be studied for other forms of the oupling distribution�(J): ontinuous, mixtures of a ontinuous and a delta peaked part, mixtures of pure ferromag-neti and spin-glass terms, and so on. In hapter 5 we will work with models that are originallyde�ned as a mixture of the previous ferromagneti and spin-glass one�(J) = 12 �pÆ(J� 1̂) + (1� p)Æ(J+ 1̂)� (1.12)where p is a parameter tuning the amount of \average frustration" or \average glassiness"present into the system. Finally, the rigorous results presented in hapter 6 will be derived forgeneral forms of symmetri �(J).1.2.2 FrustrationIt was observed right at the beginning of spin-glass theory by Toulouse [2, 75℄ that a mixtureof ferromagneti and anti-ferromagneti ouplings an give rise to oniting onstraints, suhthat it is in general impossible to minimize loally all the energy terms ��. This propertyis widely known as frustration. In spin glass-models on diluted strutures (Viana-Bray), thistypially happens when the density of the graph allows partiular ompat strutures suh asloops to perolate in the system. In the ase of higher rank hyper-graphs, loops perolationturns out not to be a suÆient ondition for the existene of an extensive fration of frustratedonstraints, essentially beause the extra degrees of freedom due to the possibility of adjustingthe spin variables belonging to the edges but not to the loop. In fat, even more ompatstrutures suh as hyper-loops must perolate in the underlying matrix. The phenomenon isexempli�ed in �g. (1.2). The ommon presene of disorder and frustration allows for a phase4In fat the two frations will oinide in the generalized p-spin model.5Historially the spin-glass models have been de�ned only in the ase of two body interations, as a physiallysensible model for real magneti materials. However, a generalized multi-spin interation family of spin-glasstype models an be justi�ed not only for their use in random ombinatorial optimization, but as an e�etivemodel for many bodies systems of loal (often oniting) onstraints, where olletive phenomena naturallyemerge.
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Figure 1.2: Frustration in graphs and hyper-graphs. This Piture is very similar to the one wewill draw in hapter 2 for the ore resolution under the ation of the Leaf Removal algorithm(see setion 2.7 for details). It is important to keep in mind this similarity, beause it will bethe main ause of the e�etiveness of the algorithm in loating the spin-glass transition in thep-spin model.
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Figure 1.3: Pitorial one dimensional projetion of rough energy landsape.spae struture with a large - typially exponential - number of degenerate global ground statesas well as de�nite energy metastable states. Pitorially, one ould think that these systemsshow an energy landsape of the kind exempli�ed in �g. (1.3). This piture is however oftenvery misleading beause the x-axis in the piture is in fat a projetion of the high dimensionalphase spae, where all the topologial struture is hidden. The degree and nature of theinner struture of the phase spae an vary in priniple from problem to problem. A betterunderstanding of this topology in the ase of some models interesting in random ombinatorialoptimization, oding theory and more in general disordered systems physis, is the main aimof the present work.We would like to mention that the families of models studied in the following hapters isby no means exhaustive. For instane, a natural generalization of the tehniques explained isurrently been applied to Potts-like models [76℄ and ould be adapted in priniple to ClassialHeisenberg models and so on. However, in these last ases, the tehnial alulations aremore involved [57, 58℄ beause, as it turns out, one is fored to work with funtional orderparameters whih an be written as distributions of e�etive loal �elds of vetorial insteadof salar nature, as it is the ase of the examples treated in the present work. This leadsto self onsistent equations for the order parameters that are inter-wined in the various �eldomponents [58℄6. The body of the hapter will deal with the analytial replia tehniquesdevised to ompute thermodynamial quantities of physial systems on diluted hyper-graphs inabsene of orrelations and in presene of quenhed disorder. Let us now expliit the onnetionbetween this lass of models and ombinatorial optimization theory.6The oloring degree stati threshold obviously depend on the number of olors available for the oloring,at �xed graph. The urrently best rigorous upper bound for the 3-COL/UNCOL transition (three olors) inpoissonian degree distributed random graphs is 5:06[77℄. It was obtained using a re�ned �rst moment method,equivalent to an improved annealed approximation in statistial physis. The RS 5:1 threshold obtained in[57℄ exeeds the rigorous bound, while at the 1RSB level the authors of [58℄ were able to �nd a dynamialthreshold for an average degree equal to 4:42, followed by the 3-COL/UNCOL transition at 4:69. The valuesare onjetured to be exat by the authors, and are indeed in very good agreement with numerial simulations[78℄. The general disussion on the meaning of the dynamial threshold is done in hapter 2. Notie also thatthe alulations of hapter 6 will be in priniple extendible to the oloring problem, so we ould laim 4:69 tobe at least the best upper bound to date.



18 CHAPTER 1. GENERAL TECHNIQUES FOR DILUTED RANDOM MODELS1.2.3 Combinatorial optimization problems as spin modelsClassial omplexity theory [34℄, as arising from Cook's theorem of 1971 [47℄, deals with the issueof lassifying ombinatorial optimization problems aording to the omputational ost requiredfor their solution. The hard problems are grouped in a lass named NP, where NP stands for`non-deterministi polynomial time'. These problems are suh that a potential solution anbe heked rapidly whereas �nding one solution may require an exponential time in the worstase. In turn, the hardest problems in NP belong to a sub-lass alled NP-omplete whih isat the root of omputational omplexity. The ompleteness property refers to the fat that ifan eÆient algorithm for solving just one of these problems ould be found, then one wouldhave an eÆient algorithm for solving all problems in NP. By now, a huge number of NP-omplete problems have been identi�ed [34℄, and the lak of an eÆient algorithm orroboratesthe widespread onjeture that NP 6=P, i.e. that no suh algorithm exists.Complexity theory is based on a worst-ase analysis and therefore does not depend onthe properties of the partiular instanes of the problems under onsideration. In pratiealgorithms display a huge variability of running times, ranging from linear to exponential, andtherefore a theory for their most probable behavior represents the natural omplement to theworst-ase senario.The most ommon problems enountered in omputer siene and issue of theoretial anal-ysis studies within omputational omplexity theory are of a type. A deision-making problemis often formulated as that of the maximization or minimization of a multi-variable funtion, anoptimization problem7. The funtion to be minimized (maximized) is alled objetive funtionor ost funtion, and basially ounts the number of violated onstraints , given a partiularon�gurational assignments to the variables on the problem. An example of ombinatorial op-timization problem familiar to physiists is that of �nding the ground state of an Ising model.More in general, any searh of ground states in any spin model on a given geometrial or topo-logial struture an be seen as partiular optimization problem. On the other hand, a largelass of purely ombinatorial optimization problems in priniple not related to physis an beseen equivalent to the searh for zero temperature ground states of ad ho onstruted spinmodels (often spin-glasses) on partiular topologial strutures. Among others we an ountthe number partitioning problem, the graph partitioning, the graph and hyper-graph olor-ing, the knapsak problem, the sheduling problem and the satis�ability (SAT) one. A learoverview of some of these examples an be seen in [27℄ and an introdution to the study statis-tial mehanis study of random ombinatorial optimization problems seen as spin systems anbe found in [35℄. In partiular, SAT has been extensively studied due to its NP-ompletenessand general nature. Its mapping on a partiular spin-glass model has been eluidated in [9℄.As well as in many of its variations, the SAT ost funtion an be read as the olletion ofM logial onstraints that have to be satis�ed by N boolean variables. It turns out [9℄ thatany SAT formula ost funtion an be written as the Hamiltonian of a spin model where 0� 1variables are replaed by �1 spins, and the onstraints are well determined olletions of edgesor plaquettes of various rank of a given hyper-graph that ompletely haraterizes the formulaunder study. If M � O(N), whih is the ase the most interesting formulas belongs to - i.e.those lose to the satis�ability threshold - then the underlying hyper-graph is a diluted one. Inorder to study the SAT problem in its spin-glass formulation it is therefore neessary to developa general formalism to be able to deal with topologial strutures suh as diluted hyper-graphs.7We will not here review in detail the omplexity theory of optimization problems, that an be found forexample in [34℄, together with the de�nition of P and NP omplexity lasses as well as more general ones



1.2. SPIN MODELS ON DILUTED STRUCTURES 19In the following this will be expliitly done for the ase of the general diluted p-spin like mod-els, but it will be then further generalized in order to takle problems like the K-SAT one.Whenever the onstraints forming the formula to be satis�ed are drawn randomly from a pre-viously de�ned ensemble, then the optimization problem will have a random nature. Instead ofworking on a partiular hyper-graph, this will amount to averaging over the hosen ensembleof \quenhed" strutures. It will be then interesting to disern whih properties (one for all theinner omplexity of the problem) survive in shifting the searh for solution from a partiularto a random ase. The following hapters will almost all be devoted to the appliation of thegeneral analytial tehniques developed here to various optimization problems, some of themused as toy models, as in hapter 3, some others of more omplex analysis, as in the remaininghapters.1.2.4 Quenhed disorder averages and general omputational strate-giesEvaluation of a physial quantity using a spin Hamiltonian of the type (1.8) or any moreompliated ase onsidered in this work starts from the trae over the spin variables for agiven �xed (quenhed) set of ouplings. For us, this orresponds to randomly hoosing a dilutedhyper-graph from a desired ensemble and a �xed form of the �(J). The free-energy of the systemF [J℄ = � 1� logTrs �e��H(J;s)� (1.13)an be harmlessly averaged over the quenhed disorder in the thermodynami limit, if the self-averaging ondition over extensive thermodynamial quantities (like indeed the free-energy) issatis�ed as we assume to be true throughout the whose treatment. This averaging proeduregoes under the name of on�gurational average :hF i � Z D�(J)F [J℄ (1.14)However, the dependene of the partition funtion on J is in general very ompliated and it isnot easy to alulate expression (1.14) diretly. Moreover, in the ase of real world optimizationproblems, the thermodynami limit ondition does not always hold, and more subtle singlesample analysis also in the typial ase have to be taken into onsideration [30℄.1.2.5 RepliasThe alulations are arried out via a \subtle trik": it muh easier to omputehlogZi = limn!0 Zn � 1n (1.15)The last equation is an identity for ontinuous n, but the trik onsists in alulating �rstZn for integer n, taking the 0 limit is a seond time. The repliated partition funtion, afteraveraging over the same disorder realization beomes a partition funtion of n systems, withoutdisorder, but with an e�etive attrative interation between the various replias. The reasonfor this attration is intuitively quite simple [79℄: beause they share the same Hamiltonianand the same disorder, the various replias will be attrated towards the same favorable regionsof the phase spae and repelled from the unfavorable ones. If one has a simple phase spae,



20 CHAPTER 1. GENERAL TECHNIQUES FOR DILUTED RANDOM MODELSwith basially a single large deepest valley, then the replias will all fall in that, and the orderparameter will be a number q whih will measure the average distane between replias withinthis single valley. But in a systems with several metastable states, the situation an be moreompliated, with some replias trapped in a valley and some in another. This e�et is alledreplia symmetry breaking (RSB). Tehnially it appears as a standard spontaneous breakingof a symmetry, the permutation symmetry Sn of the n replias. The problem is that thissymmetry is broken only when one onsiders some number of replias whih is non-integerand in fat smaller than one. Even though this point has been elegantly solved by Parisi [2℄,the validity of taking the n ! 0 limit still laks a general rigorous justi�ation ([60℄, [59℄ andreferenes therein). The last hapter will try to deal with this problem in an indiret way.We will not show (unfortunately) that the physial quantities de�ned on the n ! 0 vetorspaes are well de�ned mathematial objets, but at least that, on the lass of systems we areinterested in, the e�etive replia Hamiltonian an lead to rigorous variational results. In thease of fully onneted models, the replia mean �eld theory an be stated in terms of a singlesalar n�n matrix, whose elements are the overlaps hosen via a determinate sheme and thatplay the role of order parameters. In the ase of diluted systems, however, it emerges the needfor the determination of a full distribution of multi-spin overlaps [1, 9℄ that an be ompletelyharaterized via the introdution of a lass of funtional order parameters [8, 9, 12℄�(~�)that essentially enumerate the fration of repliated spins in a partiular replia state, as itwill beome lear in the ourse of the alulations8. These funtional order parameters havestill a mean �eld nature and will be expressed in terms of series of multi-spin overlap funtionsaveraged over the mean loal �elds distributions seen by an average vertex in a partiular state.The free-energy of the system an be written as a funtion of �(~�), and will therefore be afuntional of the loal �elds probability distributions, averaged over all possible states of thesystem. In the N ! 1 limit9, the dominant ontribution to the partition funtion is foundextremizing the free energy with respet to the funtional order parameterOne is left with a set of self onsistent integral equations for the e�etive �elds probabilitydistributions, that an be solved analytially or numerially (depending on the ases). In somespeial ases, namely on the T = 0 line for some lasses of models, these equations furthersimplify due to the ollapsing of the funtional form of the probability distributions into seriesof weighted delta funtions. When this happens, one is left with a set of algebrai equations inthe weights that often admit analyti solutions in a losed form. This is partiularly interestingin the �eld of ombinatorial optimization, thanks to the existing general mapping proedurebetween the solutions of the random ombinatorial problem and the zero temperature groundstates of the assoiated spin model. Moreover, the assignments of the problem variables witha given (typially low) number of violated onstraints orrespond to metastable loal groundstates with positive energy. The logarithm of the number N (e) of suh metastable states isa funtion of the their energy density e = E=N and is known as Con�gurational Entropy orComplexity[7℄ �: �(e) = 1N log[N (e)℄ (1.16)8There are at least two ways to de�ne the order parameter, depending on whether one fouses on the wholegraphs or on some part of it. See appendies C, C.1 and C.2 for some details.9N is the number of variables in the system.



1.2. SPIN MODELS ON DILUTED STRUCTURES 21Therefore, the measure of the extensivity of the Complexity will be an important indiret wayto study the hardness of the random ombinatorial problem depending on the position in thephase spae of the assoiated pin model, and will stress the deep onnetion between the theoryof the glassy transitions in disordered systems and the onepts of omputational omplexityin theoretial omputer siene.As we just said, the ingredients of frustration and/or disorder typially indue the onset oftransitions from a uniform paramagneti to one or more kind of glassy phases in the ontrolparameters10 spae of the model.1.2.6 CavityThe same solutions and the same physial insights an be reahed via the avity method. Cavitywas invented in 1986 for the solution of the SK model [2℄, but was reently reformulated in thediluted systems framework [23℄ and related to an algorithmi understanding of the proess inthe ase of its diret zero temperature formulation in [24, 30, 29℄. The basi idea of the methodapplied to spin models on diluted hyper-graphs is the following:� Assume that, like in the replia method, due to the loal tree-like struture of the hyper-graph and the mean �eld nature of the model, spin variables beome unorrelated at largedistanes if the system is in a single state. The inuene of the graph on a single spinan be therefore easily written in terms of unorrelated loal e�etive �elds ating on it.� Starting with a system of N variables, add now a variable S0 of degree k (on average onewill add a fration of spins k) and onnet it to the rest of the hyper-graph in order toomplete k lauses of funtion nodes of the N verties graphs with variables fS1a; :::; Skaga,where a is the rank index, i.e. it indexes all the variables other than S0 belonging to agiven lause (or energy onstraint, as equivalently indiated throughout this thesis).� Assume that fS1a; :::; Skaga where previously disonneted with probability one in the ther-modynami limit (no short loops) and therefore unorrelated:P (N)(fS1a; :::; Skaga) ' P (N)1 (fS1aga):::P (N)k (fSkaga) 'Ya P (N)1;a (S1a):::P (N)k;a (Ska) (1.17)Then it is possible to ompute the new P (N+1)(S0; fSa1 ; :::; Sakga) via Bayes theorem as:P (N+1)(S0; fS1a; :::; Skaga) ' kY�=1P (N)� (fS�a ga)e���(0)� (S0;fS�a ga) ' kY�=1Ya P (N)�;a (S�a )e���(0)� (S0;fS�a ga)(1.18)where �(0)� (S0; fS�a ga) is the loal energy onstraint �� of eq. (1.7) where the dependeneon the �-th lause spin variables has been made expliit, as well as the referene spinindex 0. Integrating over the variables fS1a ; :::; Skaga one �nally obtains:P (N+1)(S0) ' kY�=1Ya XS�a=�1P (N)�;a (S�a )e���(0)� (S0;fS�a ga) : (1.19)10We reall that the relevant ontrol parameters are in these models the temperature T , the graph dilution or � (depending on the notation in the literature) and in some ases some form of external magneti �eld, asit will be the ase in the setion dediated to error orreting odes.



22 CHAPTER 1. GENERAL TECHNIQUES FOR DILUTED RANDOM MODELSThis last equation de�nes an iterative method to alulate P (N+1)0 (S0) from fP (N)�;a (S�a )g�;a.Thanks to the �rst assumption, the equations for P (N)j (Sj) and P (N+1)(S0) an be easily writtenas P (N)j (Sj) = e�hjSj2 osh(�hj)P (N+1)0 (S0) = e�h0S02 osh(�h0) (1.20)Writing self onsistent equations for the avity �elds is then possible inserting (1.20) in (1.19)and iterating. In the typial ase, one an then average over all spins, getting an expressionfor the distribution P (h) weighted over the degree and rank distribution of the typial hyper-graphs.In fat, this assumption is globally valid only if the system is in a single pure state. Inmany states � = 1; :::;Nstates are present, the previous equations are valid within a given state�, i.e. a luster of solution separated by other lusters. Equations (1.20) will then be statedependent and the self onsistent ondition (1.19) will have to be averaged both over the sites iand over the states �. This piture orresponds to the one step replia symmetry breaking oneand is frequent in disordered spin systems. The avity method formulated in this way worksessentially by indution and assumes no non trivial orrelations within lusters or inside thesame luster that ould origin from the geometry of the graph, even though trivial orrelations ofa hierarhial nature an be taken into aount11. The disregarding of orrelations is ommonwith the replia approah, as it should be if we laim the two to be equivalent, and it is alimitation of the theory that will have to be overome in the near future if one wants to be ableto systematially attak problems with more omplex geometrial struture.During the avity iteration proess, one is bound to make a small error of order 1=N , sinethe ensemble of random graphs one is working with hanges slightly under the N ! N + 1avity iterations. This error an be healed via a lever balaning of verties and edges additionsand erasures. More in detail:� A hyper-graph HN;M with N verties and M edges is drawn from the desired ensemble.� A avity is arved in it, where q verties are left with degree equal to minus one theirinitial one, through a proper erasure of surrounding verties and edges. q is hosen as afuntion of the degree of the erased verties and the rank of the erased edges12.� Loal avity magneti �elds h�i ating on the avity spins Si are supposed to follow aninitially unknown probability distribution Pi(h�i ), in priniple di�erent from site to siteand with �eld values dependent on the state � of the system.� Under the addition of a new avity spin Sj of degree kj onneted with some of the previousavity sites through given number of hyper-edges of suitably hosen ranks, the probabilitydistributions of the new avity �elds are alulated in a self onsistent iterative way. The11Trivial orrelations are taken in priniple into aount via further lusterization steps the same \lusterswithin lusters" hierarhy implied by the RSB Parisi's onstrution.12For example for a hyper-graph of �xed rank l and �xed degree k, q will have value l(l � 1)k or integermultiples.



1.2. SPIN MODELS ON DILUTED STRUCTURES 23iteration is built in order to self onsistently stabilize the avity �elds distributions onethe original hyper-graph is retrieved13.� The proedure is repeated adding and deleting edges and verties in a balaned way, inorder to retrieve the hyper-graph belonging to the desired starting ensemble.� Energy shifts are alulated under the iteration, allowing to alulate the free energy,the energy density and other physial quantities (for example the omplexity) in thethermodynami limit.� Averages over the hyper-graphs ensemble and the model ouplings are performed.If applied to single spins, the avity method is mean �eld in nature. In order to possiblye�etively extend it to �nite dimensional models or with latties with some non trivial geometryone would need to onsider the inuene on the iteration of more omplex groups of variables.This has been partially done with the luster variationmethod (CVM) for ferromagneti models,but the extension in presene of frustration is still an open issue.1.2.7 Phase spae struturetwo possible senarios have been enountered in the models studied:� A Replia Symmetri phase (RS): generially, the distane on the lattie between twospins is large, at least of the order of random loops forming in the topology, i.e. of theorder O(logN). It is therefore reasonable to assume that the spins remain unorrelated.In the avity language this means that the Global Ground State (GGS) energy of a graphwith a referene avity of q spins arved in it an be written as an additive funtion ofthe values of the avity spins Si=1;:::;q, weighted by the loal �elds hi=1;:::;q ating on them.When onsidering the ensemble of random avity graphs, the loal �elds turn out to bei.i.d. random variables, and their distribution is denoted with P (h). The loal �eld willtherefore not utuate from state to state beause of the presene on only one GGS a,and the distribution P (h) will be an average over all sites. In the replia formalism, thesame P (h) will be the one determining the multi-spin overlaps ontained in the funtionalorder parameter �(~�).� A One Step Replia Symmetry Broken phase (1RSB): The phase spae splits inan exponential number of metastable Loal Ground States (LGS), de�ned as states inwhih the energy annot be lowered by ipping a �nite number of spins. In presene ofseveral ground states, the assumption is that there is a one-to-one orrespondene amongthe LGS before and after the addition of spins or edges (at least for the LGS with lowenergies). Equivalently we assume that the perturbation due to the hange of the valueof a avity spin propagates (in the limit N going to in�nity) only to an in�nitesimalfration of the lattie. Therefore it is possible to write an iteration proedure for thewhole population of LGS with given energy. However it may well be that the order of theLGS energies hange during the graph operations, and the GGS after iteration is not thesame LGS as the one before. The problem is to take into aount these level rossings,whih is not done in the RS solution and turns out to be automatially done in the RSB13Notie that an essentially equivalent proedure will be followed in hapter 5 to prove the variational natureof the replia method.
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Figure 1.4: Pitorial view of the energy landsape in the phase spae of a system in the 1RSBphase. The energy is on the vertial axis. utting the piture at de�nite values of the energyone �nds lusters of solutions inreasing in number and dimension.
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in Figure 1.5: 1RSB lustering in phase spae.solutions via the replia formalism. One is then fored to follow a large population ofthe LGS of lowest energy, large enough so that one an be sure to obtain the GGS wheniterating.In �g. (1.4) we show a pitorial view of the energy lusters in the 1RSB phase. Typial �xedenergy slies of this piture show how, inreasing the energy, di�erent lusters are seleted. Thisis shown is �g. (1.5). This qualitative piture as been extensively studied for p > 2-spin andK > 2-SAT models in reent years [11, 21, 53℄, mainly with variational tehniques. This is theintuitive idea we'll have in mind in the rest of this work. In some luky ases - and indeed thep-spin model will be one of them - this piture will turn out to have an exat interpretation.In some others, as for instane the random 3-SAT, no rigorous proof is present. Howeverthis piture is highly probable to be orret and what is more important it turned out to beextremely useful in the development of a new lass of algorithm of potential vast use. Indeedvery reently [30, 29℄ exat solutions of the p-spin model and the K-SAT at zero temperaturein a ertain range of the phase spae parameters have been ahieved under this assumption onthe form of the energy levels distribution.There are of ourse models for whih this piture is not omplete: non trivial orrelationsarise among LGS, leading to further steps of replia symmetry breaking. This is for example



1.2. SPIN MODELS ON DILUTED STRUCTURES 25the ase of the Viana-Bray model on diluted graphs [23, 24℄. In this models typially slowdeaying long range orrelations are present. However, from a omputational point of view theViana-Bray models turns out to be easy in the phase spae regions of interest. Indeed, it isalso due to the presene of this long range orrelations that Viana-Bray like models turn outto be omputationally simple, beause the solution spae will in general be onneted by pathsallowing the reahing of any phase spae point with a lever but sub-extensive sequene of loaladjustments.The main alulation steps reviewed in the last paragraphs are then the ones indiated inshema (1.6), where the onnetion to the �eld of ombinatorial optimization is made evident.Finally, some di�erenes between the replia and the avity methods are listed in the fol-lowing:� While replias fore the introdution of an order parameter that has already undergoneaverage over the quenhed disorder, the avity equations an also be written on a singlesample (hyper-graph). This makes the avity approah more apt to be applied to spei�real world problems.� The avity approah deals with well de�ned mathematial quantities and is manifestlyvariational, while the well de�niteness of the replia method (namely in the RSB ase) isstill unlear.� On the other hand, the replia method is muh more elegant and ompat (espeially at�nite temperature), it does not require further postulates and assumptions on the energylevel distribution, that in priniple depend on the model onsidered, and its equationsan be handled in full generality.We will develop the replia method, oasionally taking advantage of physial insights om-ing from the avity piture. A throughout treatment on the state of the art of the avity ap-proah to diluted models and ombinatorial optimization problems an be found in [23, 24, 30℄.
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Chapter 2The generalized diluted p-spin modelWe are now going to develop in details the analytial replia tehniques previously desribed. Indoing so we will hoose a spei� lass of models of general importane, namely a generalizationof the p-spin model on unorrelated random hyper-graphs with arbitrary degree and rankdistribution.If we de�ne k as the fration of spin variables with degree k and vl the fration of interationsof rank l, the resulting mixed hyper-graph struture will be haraterized by the followingdistributions: Q(l̂) = Xl vlÆ(l̂ � l) (2.1)P (k̂) = Xk kÆ(k̂ � k) (2.2)< l > = Xl lvl (2.3)< k > = Xl kk (2.4)We notie that we ould introdue two generating funtionsv(x) = Xl vlxl (2.5)(x) = Xk kxk (2.6)(2.7)where (2.6) is the same of [69℄, but the (2.5) generalizes it to more omplex strutures suhas the mixed rank hyper-graphs we work with. The generating funtion formalism is notstritly neessary, but an be very helpful when one is interested in omputing more omplextopologial properties of the hyper-graph and indeed will be expliitly used in some ases. Inthe generalized p-spin model the Hamiltonian therefore readsH = M �Xl Hl (2.8)Hl = Xi1<:::<il Ji1;:::;ilsi1 ; :::; sil (2.9)with M = < k >< l >N (2.10)27



28 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELand P (fJi1;:::;ilgl) = Yl Yi1<:::<il((1� l!lN l�1 )Æ(Ji1;:::;il) + l!lN l�1 Æ(Ji1;:::;il � 1)) (2.11)P (fJi1;:::;ilgl) = Yl Yi1<:::<il((1� l!lN l�1 )Æ(Ji1;:::;il) + (2.12)l!l2N l�1 (Æ(Ji1;:::;il � 1) + Æ(Ji1;:::;il + 1))respetively for the ferromagneti and for the frustrated ase, and l = (< k > = < l >)vl.2.1 Combinatorial optimization interpretation of p-spinmodels: the XOR-SATWe notie that these Hamiltonians an be also seen as the ost funtion of a lass a ombinatorialoptimization problems known under the name of XOR-SAT ([19, 21, 82℄, also extended in [25℄).The XOR-SAT problem is not NP , but it is nevertheless a very useful prototype treatableoptimization problem in order to test the power of statistial physis tools. Beside this, itsdiluted p-spin version bears many interesting properties from the point of view of struturalglasses and granular physis [79, 20, 15, 80, 81℄, so its study is interesting for a transversalnumber of disiplines. We show the ase of the K-XOR-SAT model with K variables peronstraint, whih an be viewed as a perfetly balaned version of the randomK-SAT problem1.Given a set of N Boolean variables fxi = 0; 1gi=1;:::;N , we onstrut an instane of K-XOR-SATas follows: given original K-SAT lauses (�xi1 _ �xi2 _ �xik) or (xi1 _ xi2 _ xik), every sub-lauseontained in one of them must appear direted and negated in the orresponding K-XOR-SATonstraint an even number of times. In the K = 2 ase we'll therefore de�ne the followingelementary onstraints (2-lauses sets with 50% satisfying assignments)C(ijj+ 1) = (xi _ �xj) ^ (�xi _ xj)C(ijj � 1) = (xi _ xj) ^ (�xi _ �xj) ; (2.13)In the K = 3 ase we'll have onstraints (4-lauses sets with 50% satisfying assignments)C(ijkj+ 1) = (xi _ xj _ xk) ^ (xi _ �xj _ �xk)^ (�xi _ xj _ �xk) ^ (�xi _ �xj _ xk)C(ijkj � 1) = (�xi _ �xj _ �xk) ^ (�xi _ xj _ xk)^ (xi _ �xj _ xk) ^ (xi _ xj _ �xk) ; (2.14)in the K = 4 ase we'll have 8-lauses of typeC(ijklj + 1) = (�xi _ �xj _ �xk _ xl) ^ (�xi _ �xj _ xk _ �xl)^ (�xi _ xj _ �xk _ �xl) ^ (�xi _ xj _ xk _ xl)^ (xi _ xj _ xk _ �xl) ^ (xi _ xj _ �xk _ xl)^ (xi _ �xj _ xk _ xl) ^ (�xi _ xj _ xk _ xl)1The ase K = 2 (Viana-Bray model) does not present any interesting omputational features as far ashardness is onerned beause it an be solved eÆiently both by loal and global methods.



2.1. COMBINATORIAL OPTIMIZATION INTERPRETATION OF P -SPINMODELS: THE XOR-SAT29C(ijklj � 1) = (xi _ xj _ xk _ xl) ^ (�xi _ �xj _ �xk _ �xl)^ (�xi _ �xj _ xk _ xl) ^ (�xi _ xj _ �xk _ xl)^ (xi _ xj _ �xk _ �xl) ^ (xi _ �xj _ xk _ �xl)^ (xi _ �xj _ �xk _ xl) ^ (�xi _ xj _ xk _ �xl) (2.15)and so on. Here ^ and _ stand for the logial AND and OR operations respetively andthe over-bar is the logial negation. Let's onentrate on the K = 3 ase, that ontains allgeneral elements. In the next hapter we will study a mixed version of this model in the aseof a mixture of 2 and 4 lauses, whih we will all 2+p-XOR-SAT as it shares many ommonfeatures to the 2+p-SAT model studied in [11℄. By randomly hoosing2 a set E of M triplesfi; j; kg among the N possible indies and M assoiated unbiased and independent randomvariables Jijk = �1, we onstrut a Boolean expression in Conjuntive Normal Form (CNF) asF = ^fi;j;kg2EC(ijkjJijk) : (2.16)A logial assignment of the fxig's satisfying all lauses, that is evaluating F to true, is alled asolution of the XOR-SAT problem. If no suh assignment exists, F is said to be unsatis�able.A slightly di�erent hoie of Jijk allows to onstrut XOR-SAT formul� whih are random butguaranteed to be satis�able. This will lead to the ferromagneti spin ase: to every Booleanvariable we assoiate independently drawn random variables "i = �1, and de�ne Jijk = "i"j"kfor all fi; j; kg 2 E. For this hoie, CNF formula in eq.(2.16) is satis�ed by fxi j xi = +1 if " =+1; xi = 0 if " = �1g. As we shall disuss in great detail, these formul� provide a uniformensemble of hard satis�able instanes for loal searh methods. We refer to this version of themodel as the satis�able hSAT. Indeed, the random signs of Jijk an be removed in this satis�ablease by negating all Boolean variables xi assoiated to negative "i. The resulting model hasJijk = +1 for all fi; j; kg 2 E, and the fored satisfying solution is xi = 1; 8i = 1; :::; N .The use of the f"ig is a way of hiding the latter solution by a random gauge transformationwithout hanging the properties of the model. The impossibility of inverting eÆiently thegauge transformation by loal methods is a onsequene of the branhing proess arising formthe presene of K = 3 variables in eah onstraint. For any K > 3 the same result would holdwhereas for K = 2 the problem trivializes. The XOR-SAT model an be easily desribed as aminimization problem of a ost-energy funtion over a random hyper-graph. Given a randomhyper-graph GN;M = (V;E), where V is the set of N verties and E is the set ofM hyper-edgesjoining triples of verties, the energy funtion to be minimized readsHJ [S℄ =M � Xfi;j;kg2E Jijk SiSjSk ; (2.17)where eah vertex i bears a binary \spin" variable Si = �1, and the weights Jijk assoiated tothe random bonds an be either �1 at random, in the so alled frustrated ase, or simply equalto 1 in the unfrustrated model. We see that this is indeed the partiular ase of the 3-spin ofeq.(2.9). One the mapping Si = 1 if xi = 1 and Si = �1 if xi = 0 is established, one an easilynotie that the energy funtion in eq.(2.17) simply ounts the number of violated lauses in thepreviously de�ned CNF formul� with the same set of J 's. The frustrated and the unfrustratedases orrespond to the XOR-SAT and to the satis�able XOR-SAT formul� respetively.2In the original random XOR-SAT version, v(x) will therefore be the generating funtion of a Poissoniandistribution.



30 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODEL2.2 From the partition funtion to the average free-energyThe onstraints on the degree distribution will have to be introdued along the omputation ofthe logarithm of the partition funtion.Z = e��MXsi e�PkHk (2.18)Following the approah of ref. [19℄, we ompute the free energy of the model with the repliamethod, exploiting the identity log < Zn >= 1+ n < logZ > +O(n2). The nth moment of thepartition funtion is obtained by repliating n times the sum over the spin on�gurations andthen averaging over the quenhed disorder The averaged n-th moment of the partition funtiontakes therefore the following form, a part from a normalization fator:< Zn >= e�n�M X~si < e�Pna=1PlPi1;:::;il Ji1;:::;ilsai1 :::sail > (2.19)where the average value of an observable is given by:< � > = �[P (k)℄ Z Yi1<:::<il P (Ji1;:::;il)(�) NYi=1 Æ(Xl Xi1<:::<il jsign(Ji1;:::;il)j � ki) � (2.20)Yl Æ(Mvl � Xi1<:::<il jsign(Ji1;:::;il)j) (2.21)�[P (k)℄ is a normalization fator neessary to resale to one the sum over the onstrainedprobability distribution of the ouplings:�[P (k)℄ � Z Yi1<:::<il P (Ji1;:::;il) NYi=1 Æ(Xl Xi1<:::<il jsign(Ji1;:::;il)j�ki)Yl Æ(Mvl� Xi1<:::<il jsign(Ji1;:::;il)j)(2.22)The two inserted delta funtions are there to ensure the onstraints on degree and interationterms distribution. In fat, the onstraint over the fration of �xed rank plaquettes is alreadytaken into aount in the partiular form of the distribution, therefore the normalization anbe limited to the term�[P (k)℄ � Z Yi1<:::<il P (Ji1;:::;il) NYi=1 Æ(Xl Xi1<:::<il jsign(Ji1;:::;il)j � ki) (2.23)Its value is alulated in the appendix in this ase. The �nal value in the large N limit is:�[P (k)℄ � e�N�<k>�Pk k log�<k>kk! �� (2.24)Even more in generality, Hl ould be in the formHl = Xi1<:::<il Ji1;:::;ilG(l)[~s℄ (2.25)where the funtions G(l) depend on the partiular model under onsideration. In this work, forinstane, we onsider other relevant examples suh as the Bioloring problem of a random rank 3hyper-graph, where only G(3) = �(si1si2 + si1si3 + si2si3 +2) is present, and the random 3-SAT



2.2. FROM THE PARTITION FUNCTION TO THE AVERAGE FREE-ENERGY 31model, where G(3) = Q3l=1 Æ(sil;�1) and the oupling variables follow a di�erent probabilitydistribution too. Going bak to our generalized p-spin model we an write the delta funtionsin their integral formYl Æ(Ml � Xi1<:::<il Ji1;:::;il) =Z Yl (d�l2� ) exp(�iMXl �lvl) exp(iXl �l Xi1<:::<il jsign(Ji1;:::;il)j) (2.26)Yi Æ(Xl X<i2;:::;il>i jsign(Ji1;:::;il)j � ki) =Z Yi (d i2� ) exp(�iXi  iki) exp(i Xi1<:::<il( kXj=1 ij )jsign(Ji1;:::;il)j) (2.27)In fat, as we said, the hoie we have made on the probability distribution of the ouplings (andthe onsequent value of the quantities k) already implies the �rst onstraint to be satis�ed inthe large N limit. Indeed, if we expliitly insert the �rst delta funtion (also the normalizationfator will aordingly hange), we are left with one supplementary series of saddle point equa-tions in the variables �l. Inserting the solutions for the latter variables into the ommon saddlepoint equations, we retrieve equivalent expressions. The averaged n-th power of the partitionfuntion beomes, in the ase of the diluted ferromagnet,< Zn > � exp(��nM)X~si Z Yi (d i2� ) exp �i NXi=1  iki!exp0��< k >< l >N +Xl vlN l�1 exp0�� Xi1;:::;ilXa sai1 :::sail + i lXj=1 ij1A1A (2.28)We ould now go on in the alulation treading a path similar to the one followed for thefully onneted models, traing out the repliated spin variables through the introdution ofa whole series of overlap and multi-overlap quantities. Due to the distribution of ranks anddegrees, however, the number of overlap funtion that we would need to take into onsiderationis in�nite, and we are better o� if we exploit a more ompat mathematial notation via agenerating funtion formalism of the overlap series 3. The orret generating funtion for thiskind of problems turns out to be writable as a funtional order parameter in the form [19, 9, 12℄�(~�) = 1N Xi Æ(~� � ~si)ei i : (2.29)In the ase of Poissonian hyper-graphs, due to the self similarity property of eq. (1.5) thatsubstituted int eq. (1.6) leads to qpoissk = poissk , the �elds  i are redundant and re-absorbed inthe degree distribution (Poissonian degree hyper-graphs are the ones obtained in the thermo-dynami limit when using the \free"ouplings probability distributions (2.11) and (2.12)). Inthis ase the quantity (2.29) diretly represents the fration of repliated spins sai in the repliastate �a in the whole graph as well as in the avity one. However, in the general ase it isneessary to add a �eld  i that an be physially interpreted in the following way: ei i is an3However, a full series expansion in terms of multi-overlaps will be treated formally in the disussion ofhapter 6



32 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELoperator that ats \erasing" from the spin fration the ontribution of the neighboring variablesdisonneted from the i-th one, during the removal of the oupling Ji1:::il. This means that thereplia automatially takes into aount the fat that we are working on the avity graph. Thissets the onnetion between the replia and the avity method, where in the ourse of the selfonsistent omputation edges and verties of the hyper-graph are opportunely erased [24℄. Thisfores us to work with the avity hyper-graph, shifting the degree probability ensemble andasking for a resaling of the value of the order parameter, that might not be normalized anymore. In partiular the ondition X~� �(~�) = 1 (2.30)is not automatially veri�ed anymore and we will have to pay attention to this fat in thefollowing alulations. One an see that �(~�) indeed is a multi-overlap generating funtionalobserving that�(~�) = 1N NXi=1 " nYa=1�1 + sai �a2 � ei i# =12nN NXi=1 24ei i +Xa sai �aei i +Xa<b sai sbi�a�bei i + Xa<b< sai sbisi�a�b�ei i + :::3512n 24� +Qaav�a +Xa<bQabav�a�b + Xa<b<Qabav�a�b� + :::35 (2.31)where the salar � � 1=NPNi=1 ei i is de�ned in the appendix and will anel out with thenormalization fator in the �nal expression for the free energy, and the overlaps Qav are theusual multi-replia overlaps Qab:::av � 1N NXi=1 sai sbisi :::ei i (2.32)omputed in the avity hyper-graph. This has an intuitive interpretation if we realize thatthese quantities orretly desribe the mean �eld nature of the models only when the diretonnetion between two verties is zero with probability 1 in the large N limit. This observationwill be of ruial importane in the determination of rigorous bounds in the last hapter. Wean introdue the funtional order parameter via the delta funtionÆ  �(~�)� 1N Xi Æ(~� � ~si)ei i! = Z d�(~�)d�̂(~�)2�N�1 exp �NX~� �(~�)�̂(~�) + �̂(~�)Xi Æ(~� � ~si)ei i!(2.33)where �̂(~�) is a onjugated funtional that we'll see to own an important physial meaning.Plugging (2.33) into (2.28) via integrals over the replia spin values we obtain< Zn > � exp ��nN< k >< l > !X~Si Z Yi (d i2� ) exp �i NXi=1  iki! exp �N< k >< l > ! �Z Y~� Nd�(~�)d�̂(~�)2� exp �NX~� �(~�) ^�(~�)! �exp0�N< k >< l > Xl vl X~�1;:::;~�l �(~�1):::�(~�l) exp(�Xa �a1 :::�al )1A �



2.2. FROM THE PARTITION FUNCTION TO THE AVERAGE FREE-ENERGY 33X~si exp X~� �̂(~�)Xi Æ(~� � ~si)ei i! (2.34)Where X~�1;:::;~�l �(~�1):::�(~�l) exp �Xa �a1 :::�al ! =1N l Xi1;:::;il X~�1;:::;~�l nYa=1 Æ(sai1 ; �a1):::Æ(sail; �al )ei i1 :::ei il exp �Xa �a1 :::�al ! =1N l Xi1;:::;il exp (i ( i1 + :::+  il)) exp �Xa sai1 :::sail! (2.35)Traing over the repliated spins and later integrating out the  i variables one obtains, for thelast term, Z Yi  d i2� ! exp �i NXi=1  iki!X~si exp iX~� �̂(~�)Xi Æ(~� � ~si)ei i! = (2.36)exp Xi log X~� (�̂(~�))ki(ki)! !! (2.37)Averaging over the P (k̂) this last term beomesexp Xk k log X~� (�̂(~�))kk! !! (2.38)For normalization onveniene we an resale the onjugate order parameter ^�(~�) �!< k >^�(~�). Adding then in the exponential in N the ontribution due to the quenhed disorderprobability distribution normalization fator (see appendix), the potential eventually reads:�n�F [�(~�); �̂(~�)℄ = � < k >X~� �(~�)�̂(~�)+ < k > �< k >< l > � n�< k >< l > +< k >< l > Xl vl X~�1;:::;~�l �(~�1):::�(~�l) exp �Xa �a1 :::�al !+Xk k log X~� �̂(~�)k! (2.39)The dominant ontribution F [�saddle(~�); �̂saddle(~�)℄ to the potential in the thermodynami limitis evaluated via the following funtional saddle point equations in the order parameters:ÆF [�(~�); �̂(~�)℄Æ�(~�) = 0() �(~�) = 1< k >Xk kk (�̂(~�))k�1P~�(�̂(~�))k (2.40)ÆF [�(~�); �̂(~�)℄Æ�̂(~�) = 0() �̂(~�) = 1< l >Xl lvl X~�2;:::;~�l �(~�2):::�(~�l) exp(�Xa �a�a2 :::�al ) (2.41)The ground state solution gives, in the ferromagneti ase, the value of the entropy of themodel both into the paramagneti and into the magnetized states. For the ase of spin-glasses,



34 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELtypially there will exist a range of < k > = < l >4 where the ground state energy vanishesapproahing to zero temperature and again the free energy will oinide with the full entropy ofthe spin-glass states. Inreasing the average degree distribution leads to a ritial point beyondwhih the ground states energy beomes higher than zero also at zero temperature. In thisase the main ontribution to the potential gives us the internal energy of the model, whilethe entropy is sub-leading in temperature and has to be omputed from eq.(2.39) via the usualrelation S = �2�F�� (2.42)Before taking the � !1 limit. The thermodynami transition turns out to be of seond orderin the Viana-Bray ase5, as we will see in the next hapter. In other and more interesting ases,as well as in many relevant ombinatorial optimization problems like K-SAT, the transitionbetween the paramagneti to the spin-glass (or magnetized in the ase of the ferromagnet) stateis �rst order and preeded (in the SG ase) by a dynami transition where the total entropyan be split in two ontribution: A omplexity term [7, 19, 22, 26, 24℄ due to the exponentialmultipliity of the metastable states, and a residual entropy ontribution (see last setion fordetails). In the pure p > 2 spin glass model [19, 26℄ the two terms are ompletely separateddue to a property of orthogonality for the stable states.Paramagneti and � = 0 asesEquations (2.40) and (2.41) admit the ompletely paramagneti solution �(~�) = ^�(~�) = 1=2n.Inserting it in (2.39) and retaining order O(n) terms, one easily obtains:�n�Fpara = � < k > +n < k > log 2+ < k > �< k >< l > � n�< k >< l > +< k >< l > + n< k >< l > log (osh(�)) + (< k > �1)n log 2 (2.43)= n " 1� < k >< l > ! log 2 + < k >< l > (log(2 osh(�))� �)# (2.44)8 �, so that Spara;T=0 =  1� < k >< l > ! log 2 (2.45)S�=0 = log 2 : (2.46)2.2.1 Some onsiderations on normalizationThe omission of the expliit delta funtion on the hyper-graph rank distribution onstraintleads to apparently slightly di�erent expressions for the free energy and for the saddle pointequation. Normally the equations would have been�n�F = � < k >X~� �(~�)�̂(~�)+ < k > �n�< k >< l > +4in the ase of Poissonian graphs, for example, < k > = < l >=  is a ontinuous parameter that an befreely adjusted5and, more generally, whenever the fration v2 of 2-spins interations is hight enough ompared to the rest,as will be shown in hapter four



2.2. FROM THE PARTITION FUNCTION TO THE AVERAGE FREE-ENERGY 35< k >< l > Xl vl log0� X~�1;:::;~�l �(~�1):::�(~�l) exp �Xa �a1 :::�al !1A+Xk k log X~� �̂(~�)k! (2.47)and �(~�) = 1< k >Xk kk (�̂(~�))k�1P~�(�̂(~�))k (2.48)�̂(~�) = 1< l >Xl lvlP~�2;:::;~�l �(~�2):::�(~�l) exp(�Pa �a�a2 :::�al )P~�1;:::;~�l �(~�1):::�(~�l) exp(�Pa �a1 :::�al ) (2.49)respetively. It is easy to see, however, that the expressions are numerially equivalent bothinto the RS and the 1RSB ases. One an easily hek this equivalene exploiting the fat thatgiven a term A that in the seond ase appears inside the new logarithm, the quantity is alwaysin the form An, so we an exploit the \replia trik" in the n! 0 limit to show the equivaleneof the two expressions6. Moreover, in the saddle point equations, we have introdued no La-grangian parameter ensuring the normalization of the order parameters. Indeed, the two orderparameters written in the form of (2.29) and its onjugate are not in priniple properly normal-ized. There is an equivalent but somehow more umbersome way of introduing a normalizedorder parameter via the use of a Lagrange multiplier, as we will show for ompleteness in thepartiular ase of the 3-spin in a next paragraph, but it is easy to show that, in the presentase, the normalization lets the equations unhanged, leaving us with the possibility of workingon �(~�) and �̂(~�) as if they were the normalized ones �n(~�) and �̂n(~�). Indeed, we an de�ne�n(~�) = �(~�)� (2.50)�̂n(~�) = �̂(~�)�̂ (2.51)(2.52)with � = X~� �(~�) (2.53)�̂ = X~� �̂(~�) (2.54)Moreover, as an be easily seen from (2.40)-(2.41)or (2.49),X~� �(~�)�̂(~�) = 1 (2.55)and ��̂ = 1< k >Xk kkP~� �̂n(~�)k�1P~�(�̂n~�)k : (2.56)6In fat we must ompute that limit in order to retrieve the physial expressions



36 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELAs we will see in the following setion, a general term P~� �̂n(~�)t and �n(~�)t an be writtenrespetively as Ant � 1 + n logAt and Bnt � 1 + n logBt where At and Bt do not depend on nany more. Consequently eq.(2.56) beomes��̂ � 1< k >Xk kk (1 + n logAk�1)(1 + n logAk) �1 + n< k >Xk kk log�Ak�1Ak � (2.57)This result tells us that the funtional order parameter are already normalized in the n ! 0limit. Moreover, the term P~� �n(~�)�̂n(~�) an be written as 1 + n
 where again 
 does not de-pend of n. If we plug eq.(2.57) and this last expression into eq.(2.47), alling 1<k>Pk kk log �Ak�1Ak � �C we get�n�F [�(~�); �̂(~�)℄ = � < k > (1 + n
)(1 + nC)+ < k > �n�< k >< l > +< k >< l > Xl vl log0� X~�1;:::; ~�l �n( ~�1):::�n(~�l) exp Xa �a1 ::::�al !1A+ < k > log(1 + nC) +Xk k log X~� �̂(~�)k!= �n�F [�n(~�); �̂n(~�)℄ (2.58)As we will see later, this is not true anymore in the 1RSB ase, where the normalization fatorswill be proportional to a power of the replia parameter m whih in general does not tendto zero. Nevertheless, in that ase the normalization parameters expliitly disappear fromthe expression of the RSB potential for any value of m, leaving it formally unhanged. Wedrop the subindex "n = norm" in the following. In the frustrated spin glass version of themodel, all previous alulations are still valid, provided one uses (2.12) instead of (2.11). As aonsequene, all previous equations are left unhanged but for the substitution of the followinginternal fators: exp(�Xa �a1 :::�ak) =) osh(�Xa �a1 :::�ak)exp(�Xa �a�a2 :::�ak) =) osh(�Xa �a�a2 :::�ak) (2.59)For a more general hoie of �(J), we will have to hange:exp �Xa �a1 :::�ak! =) Z d�(J) exp �JXa �a1 :::�ak!exp �Xa �a�a2 :::�ak! =) Z d�(J) exp �JXa �a�a2 :::�ak! (2.60)The expression in presene of a magneti �eld will be shown when treating error orretingodes. If �J is symmetri in any omponent of J the system will be a pure spin-glass. Theresulting e�et is that the potential will be expliitly symmetri under the exhange of thepositive and the negative support values of the funtional order parameters. However, thevalue of the pure ferromagneti and pure J = �1 spin-glass potentials will oinide at the



2.3. THE REPLICA SYMMETRIC RESULTS 37saddle point sine the partiular hoie of symmetri order parameters is supported also in theferromagneti ase. While in the spin glass the symmetri �(�) will desribe also the minimalenergy states, the ferromagneti ground state will be asymmetri. and will be desribed byan order parameter with no negative support in the zero temperature limit7. Therefore, if wefore to write a solution to the ferromagneti saddle point equations that is to be symmetriunder the spin inversion, we'll �nd positive energy saddle point metastable states that oinidein energy with the glassy ground states due to the oinidene of the potential at the saddlepoint. No other metastable solutions are found other than the symmetri ones in the purespin-glass. We must keep this in mind when we'll write apparently di�erent expressions for thetwo models, nevertheless using some saddle point results of the ferromagneti ase into the spinglass one.2.3 The Replia Symmetri ResultsIn the replia symmetri (RS) ase we an unravel the struture of the order parameter interms of the e�etive �elds ating onto the � spins. Indeed, if we assume �(~�)8 to be symmetriunder the permutation Sn of the replia variables �1; :::; �n, we an write it in terms of thedistribution funtion of the loal magnetization P (m):P (m) � 1N Xi Ya Æ (sai �m) (2.61)suh that �(~�) � Z dmP (m)Ya 1 +m�a2 =Z dmP (m)�1 +m2 �n+ �1�m2 �n�Z dmP (m) 1�m24 !n2 �1 +m1�m� 12Pa �a =Z dmP (m) 1�m24 !n2 exp 12 tanh�1(m)Xa �a! (2.62)If we then de�ne an e�etive �eld h at any temperature ash = 1� tanh�1(m) (2.63)we an eventually write an expression of the funtional order parameters in terms of the �eldsating on the diret as well as the dual hyper-graph:�(~�) = Z dhP (h) e�hPna=1 �a(2 osh(�h))n (2.64)�̂(~�) = Z duQ(u) e�uPna=1 �a(2 osh(�u))n (2.65)7for ases of hyper-graphs of only even rank there will be of ourse the usual twofold degeneray8and onsequently its onjugated parameter



38 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELSine the replia saddle point equations in the n ! 0 are equivalent to the avity iterationequations, the e�etive �eld h turns out to be the loal avity �eld ating on a vertex of givendegree. The index on the vertex has been dropped in the RS ase where only one state is presentand therefore the �eld distribution does not depend on the partiular spin one is working with,but only on the average degree distribution. Substituting de�nitions (2.64) and (2.65) intothe saddle point equations, and notiing that we an fully haraterize the distributions in then! 0 limit, the saddel point equations readZ dhP (h)e�hf = 1< l >Xk kk Z k�1Yt=k dutQ(ut)e�fPt ut= 1< k >Xk kk Z dhe�hf Z k�1Yt=1 dutQ(ut)Æ  h�Xt ut! (2.66)Z duQ(u)e�uf = 1< l >Xk kk Z l�1Yt=1 dhtP (ht)eftanh�1(tanh(�)Qt tanh(�ht))= 1< l >Xl lvl Z due�uf Z l�1Yt=1 dhtP (ht)Æ (u� u(�; fhtgt)) (2.67)with f � Pna=1 �a and u(�; fhtgt) � 1� tanh�1  tanh(�)Yt tanh(�ht)! (2.68)We thus obtain self onsistent equations for the �elds probability distributions in a form readyfor further analytial manipulation or for numerial solution:P (h) = 1< k >Xk kk Z k�1Yt=1 dutQ(ut)Æ  h�Xt ut! (2.69)Q(u) = 1< l >Xl lvl Z l�1Yt=1 dhtP (ht)Æ  u� 1� tanh�1  tanh(�)Yt tanh(�ht)!! (2.70)for the diluted ferromagnet, andP (h) = 1< k >Xk kk Z k�1Yt=1 dutQ(ut)Æ  h�Xt ut! (2.71)Q(u) = 1< l >Xl lvl Z l�1Yt=1 dhtP (ht) "Æ  u� 1� tanh�1  tanh(�)Yt tanh(�ht)!! +Æ  u+ 1� tanh�1  tanh(�)Yt tanh(�ht)!!# (2.72)for the spin glass.Notie that these equations ould have also been easily obtained via the avity method underthe hypothesis of only one state and substituting the loal energeti terms of the generalizedp-spin Hamiltonian into (1.20), and following the avity proedure introdued in hapter 1.The number of multiple integrals involved and the struture of the equation is not well suitedfor a diret numerial integration, but an iterative method like an ad ho devised population



2.3. THE REPLICA SYMMETRIC RESULTS 39dynamis [23℄ works very well this ase. Substituting into the expression for the potential onederives:��F = � < k > Z Z dhduP (h)Q(u) log (1 + tanh(�h) tanh(�u)) +< k >< l > Xl vl Z lYt=1 dhtP (ht) log 1 + tanh(�) lYt=1 tanh(�ht)!+ < k >< l > (log(osh(�))� �)+Xk k Z kYt=1 dutQ(ut) log kYt=1(1 + tanh(�ut)) + kYt=1(1� tanh(�ut))! (2.73)for the ferromagnet, and��F = � < k > Z Z dhduP (h)Q(u) log (1 + tanh(�h) tanh(�u)) + < k >< l > (log(osh(�))� �)< k >< l > Xl vl Z lYt=1 dhtP (ht) "log 1 + tanh(�) lYt=1 tanh(�ht)!+log 1� tanh(�) lYt=1 tanh(�ht)!#+Xk k Z kYt=1 dutQ(ut) log kYt=1(1 + tanh(�ut)) + kYt=1(1� tanh(�ut))! (2.74)for the spin glass. The alulations are the same as the manipulations of the saddle pointequations. The only di�erene lying in the fat that one is led to retain O(n) terms. Theaverage values < l > and < k > an be varied smoothly and they play the role of tuningparameters within a �xed hoie of probability distribution types. This has been in partiularinvestigated in spin models on Poissonian distributed graphs, but an be extended to any othergeometrial struture. varying < l > and < k > at T = 0 one typially enters two di�erentregimes. A paramagneti phase of vanishing �elds (at low values of < l > = < k > and a phaseof frozen �elds whih dominate and ollapse at zero temperature to integer values.2.3.1 Vanishing �eldsIn this phase, where present, the equations take the same form as before, but for a resaling�u �! u and �h �! h.P (h) = 1< k >Xk kk Z k�1Yt=1 dutQ(ut)Æ  h�Xt ut! (2.75)Q(u) = 1< l >Xl lvl Z l�1Yt=1 dhtP (ht)Æ  u� 1� tanh�1(tanh(�)Yt tanh(ht))! ; (2.76)with��F = � < k > Z Z dhduP (h)Q(u) log (1 + tanh(h) tanh(u)) +< k >< l > Xl vl Z lYt=1 dhtP (ht) log 1 + tanh(�) lYt=1 tanh(ht)!+ < k >< l > (log(osh(�))� �)+Xk k Z kYt=1 dutQ(ut) log kYt=1(1 + tanh(ut)) + kYt=1(1� tanh(ut))! (2.77)



40 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELfor the ferromagnet, and��F = � < k > Z Z dhduP (h)Q(u) log (1 + tanh(h) tanh(u)) + < k >< l > (log(osh(�))� �)< k >< l > Xl vl Z lYt=1 dhtP (ht) "log 1 + tanh(�) lYt=1 tanh(ht)!+log 1� tanh(�) lYt=1 tanh(�ht)!#+Xk k Z kYt=1 dutQ(ut) log kYt=1(1 + tanh(ut)) + kYt=1(1� tanh(ut))! (2.78)for the spin glass. However, it is easy to see that the trivial solution P (h) = Æ(h) is the only onein the T = 0 limit. This result is on�rmed in numerial evaluation of (2.76) and in numerialsimulations. This is NOT the ase of other models like for instane random K-SAT, where anon trivial struture of the P (h) appears as soon as the degree , whih plays the same role as< k > = < l >, departs from the zero value, as it was seen in [9, 83℄ via a Taylor funtionalexpansion of the P (h) in series of Dira delta funtion around < k >= 0. The role of thevanishing �eld is not ompletely lear yet. In partiular, their inuene ould extend downto T = 0 in the RSB phase, where their value is tehnially zero, but their presene ouldontribute in induing non trivial orrelations between loal ground states. As we will sayin hapter 3, this seems not to be the ase for K-SAT in the satis�able region, even thoughevidene of 1-RSB is retrieved for very high values of .2.3.2 Analytial Ansatz for T = 0 solutions with non vanishing �eldsSolutions of the saddle point equations and the free energy, as well as other thermodynamiquantities that an be similarly de�ned and omputed, an be found via an iterative populationdynamis proedure desribed in [23℄. However, we are here mainly interested in the behaviorof diluted systems at zero temperature, keeping in mind the onnetion between the searh forT = 0 ground states of the Hamiltonians and that for the solutions of orresponding randomombinatorial optimization models [9, 19, 35℄. This onnetions will be further exploited in thefollowing hapters. If we look for T = 0 solutions with non vanishing �elds, we an hope to�nd analytial results using an Ansatz that supports �elds only on integer values. Indeed, thesaddle point equation at zero temperature read, after properly taking the � !1 limit,P (h) = 1< k >Xk kk Z k�1Yt=1 dutQ(ut)Æ  h�Xt ut! (2.79)Q(u) = 1< l >Xl lvl Z l�1Yt=1 dhtP (ht)Æ  u�min(1; jh1j; :::; jhl�1j)Yt sign(ht)! (2.80)and it is evident the self onsisteny of an integer �eld Ansatz. Moreover, it is lear fromthe parallel avity approah[26, 29, 30℄ that the �elds u (also alled \avity biases"), are theinformation felt by a spin upon the magnetization bias oming from a de�nite hyper-edge theonsidered spin belongs to. This bias an be 0 or �1 at zero temperature. The avity �elds hare then the sum of all biases ating on the spin, after deleting (avity) one hyper-edge inidenton the onsidered vertex. The situation is exempli�ed in �g. (2.3.2), a pitorial view of the



2.3. THE REPLICA SYMMETRIC RESULTS 41e�etive �elds ating on a given hyper-edge a and on a given spin S in a hyper-graph of uniformrank 3: h1 and h2 are the sums of the avity \biases" fu1igi and fu2jgj oming from the bluehyper-edges, and in turn generate a new bias ua attahed to the red hyper-edge. The biasua merges following the avity/replia iterative presription (also alled sum/produt rule inomputer siene) with bias ub oming from hyper-edge b. Together they form �eld h atingon spin S. The �elds are then further propagated in the rest of the hyper-graph (white in thepiture) and updated through eqs. (2.79) and (2.80). The general rank ase is analogous. Theinteger �elds Ans�atze readP (h) = +1Xt=�1 ptÆ(h� t) (2.81)Q(u) = q+Æ(u� 1) + q�Æ(u+ 1) + q0Æ(u) (2.82)with Pt pt = 1, Pt>0 pt = p+, Pl<0 pl = p� and q+ + q� + q0 = 1. The funtional saddle pointequations turn into a set of self onsisteny equations for the distribution weights:pt = 1< k >Xk kk Xn+;n�;n0�0 (k � 1)!n+!n�!n0!qn++ qn�� qn00 Æn++n�+n0;k�1Æn+�n�;t (2.83)p+ = 1< k >Xk kk Xn+;n�;n0�0;n+>n� (k � 1)!n+!n�!n0!qn++ qn�� qn00 Æn++n�+n0;k�1 (2.84)p� = 1< k >Xk kk Xn+;n�;n0�0;n�>n+ (k � 1)!n+!n�!n0!qn++ qn�� qn00 Æn++n�+n0;k�1 (2.85)q+ = 12 < l >Xl lvl((p+ + p�)l�1 + (p+ � p�)l�1) (2.86)q� = 12 < l >Xl lvl((p+ + p�)l�1 � (p+ � p�)l�1) (2.87)In the spin glass ase the last two equations are expliitly symmetri in the exhange p+ $ p�:q+ = q� = 12 < l >Xl lvl(p+ + p�)l�1 (2.88)2.3.3 The ferromagneti solutionThe saddle point equations of the ferromagneti ase admit a zero energy solution with p� =q� = 0 other than the trivial paramagneti one:p0 = 1< k >Xk kk(1� 1< l >Xl lvl(1� p0)l�1)k�1q+ = 1� q0 = 1< l >Xl lvl(1� p0)l�1p+ = 1� p0 (2.89)The energy of the ferromagneti solution is always equal to zero, so the value of the potentialreturns the zero temperature entropy of the ground states (GS). With a little algebra we get:SGS = log(2)[� < k > (1� p0)(1� q0) + < k >< l > Xl vl(1� p0) +
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Figure 2.1: Pitorial view of the e�etive �elds ating on a given hyper-edge a and on a givenspin S in a hyper-graph of uniform rank 3. The rank 3 was taken as the simplest example of ageneral-like ase.



2.3. THE REPLICA SYMMETRIC RESULTS 43p d 2 1/2 1/23 0.818469 0.9179354 0.772278 0.9767705 0.701780 0.9924386 0.637080 0.997380Table 2.1: Stati and Dynami Thresholds for the p-spin on Poissonian distributed hyper-graphs. < k > (1� q0) +Xk kqk0 � < k >< l > ℄= �< k >< l > log 2(1 +Xl vl(l(1� p0)l � (1� p0)l � l(1� p0)l�1)) +log 2Xk k(1� 1< l >Xl lvl(1� p0)l�1)k (2.90)The appearane of a solution of (2.89) as a funtion of a partiular values of < k > = < l >� dsignals the birth of a metastable ferromagneti state, that beomes thermodynamially favoredwhen Spara = SGS. Typially, the two entropy lines will ross at a ritial value of < k > = <l >� . After that value the GS entropy will gradually tend to zero. In the dense hyper-graphlimit one retrieves the usual in�nite dimensional mean �eld ferromagnet with zero ferromagnetiGS entropy and a �nite number (2) of ground states. An example of this urves an be seenin �g.(2.21) for the Poissonian 3-spin ase. In the pure 2-spin ase the transition if always ofseond order, regardless of the graph degree distribution:d =  = 1=2 ; (2.91)whih is the perolation point. Indeed, the system progressively magnetizes as soon as itperolates, i.e. as soon as a magneti perturbation an propagate along a �nite fration of thegraph.A speial ase: Poissonian random hyper-graphs of average degree < k >=< l > This simpler speial ase an be retrieved puttingk = e�<l>(< l > )kk! (2.92)and onsequently obtainingp0 = e�Pl lvl(1�p0)l�1 (2.93)SGS = log 2[p0(1� log(p0))� Xl vl(1� (1� p0)l)℄ (2.94)In the table 2.1 the values of gamma at the appearane of the ferromagneti solution and atthe ferromagneti transition are shown for some models of inreasing �xed rank l.



44 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELWe alled the ferromagneti thresholds with the same name of the spin-glass ones, beause wewill see further in the text how the values oinide in the two lasses of models. The 3-spin(3-XOR-SAT) [19℄ and the 2+p-spin [21℄ speial ases are ontained in these equations. Nosign of replia symmetry breaking is present in the pure ferromagneti models. As we will seein the next setion, the physial interpretation of the RSB phenomenon an be explained in thegeneralized p-spin ase (but also in a more general framework, for instane in the K-SAT ase)as a lustezization proess in the spae of solutions (ground states) of the model. The numberof suh lusters is in general exponential in N as well as the number of solution within eahluster. Solutions in di�erent lusters are separated by O(N) spin ips. In the ferromagnetiase, however, there are only ferromagneti solutions, forming a single lusters. After thetransition from the paramagneti to the ferromagneti state, there annot be a further phasetransition. We will also see that in the 2-spin-glass ase also the SG transition is seond orderin nature. Clusterization is therefore not possible beause the whole system progressively fallsin the same GS attration basin. If the hyergraph is made of a fration of rank 2 and anotherof higher rank, the two phenomena an be seen to ompete as it is shown in an applied examplein hapter 5.2.3.4 The spin-glass states and the RS energy linesThe glass saddle point equations an be further simpli�ed expliitly exploiting the symmetryof the e�etive �elds and biases distributions P (h) and of the Q(u). Everything an be writtenas a funtion of the single parameter p0, that ounts the fration of free spins:p0 = 1< k >Xk kk [ k�12 ℄Xn (1� 1< l >Xl lvl(1� p0)l�1)2n( 12 < l >Xl lvl(1� p0)l�1)k�1�2n (2.95)q+ = q� = 1� q02 = 12 < l >Xl lvl(1� p0)l�1 (2.96)p+ = p� = 1� p02 (2.97)For Poissonian hyper-graphs the general replia symmetri result will read, after some algebraimanipulation of the series de�ning p0 and the general pt9,p0 = exp �Xl lvl(1� p0)l�1! I0  Xl lvl(1� p0)l�1! (2.98)pk = p�k = exp �Xl lvl(1� p0)l�1! Ik  Xl lvl(1� p0)l�1! (2.99)(2.100)The GS energy of the glassy states will be:E0 = � < k > (1� p0)(1� q0)2 + < k >< l > Xl vl(1� p0)l +2Xk k Xn+;n�;n0�0 k!n+!n�!n0! (1� q02 )n++n�qn00 min(n+; n�)Æn++n�+n0;k (2.101)9Notie that the next expressions are normalized thanks to the propertyP+1t=�1 It(x) = ex.



2.4. THE 1RSB CALCULATIONS 45This expression further simpli�es in the ase of �xed rank models. In partiular for the 3-spinthe GS energy reads10: E0 = (1� p0)32 � 3(1� p0)22 p1 : (2.102)However, the above equation leads to wrong preditions: a solution di�erent from the trivialparamagneti one, Qj(u) = Æ(u) 8 spins j, appears at RSd = 1:16682 with a negative energy.At RS = 1:29531 the energy beomes positive, giving a lower bound for the true energy ofthe system. The bakbone (1 � p0, fration of �xed spins) values are respetively 1 � pd) =0:52042 and 1� p = 0:656153. The values of RSd and RS an be variationally re�ned via theintrodution of a frational valued �elds Ansatz as in [9℄, that an be seen to lose on the saddlepoint equations. In partiular, the best \RS" stati threshold was ground down to 1:216. ThisAnsatz has however no physial meaning.On the other hand, the numerial zero temperature Monte-Carlo simulations indiate thatthere exits a non-trivial solution from the point  � 0:82. A areful look at the numeris ofthe population dynamis solution of the more general 1RSB equations we'll write in the nextsetion shows that the probability distributions of avity �elds u on a given site i indeed takethe form Qi(u) = �i Æ(u) + 1� �i2 [Æ(u� 1) + Æ(u+ 1)℄ ; (2.103)with �elds distribution salar weights labeled by the site indies and utuating from site to site,and with a fration t always being trivial, i.e. �i = 1 and Qi(u) = Æ(u). This is the signature ofreplia symmetry breaking. The positive energy GS orresponds, in the optimization probleminterpretation, to the fat that inreasing the number of onstraints over that of variables thereis usually a thershold beyond whih some onstraints are violated even by the globally bestvariable assignments. The RS T = 0 energy urve for the poissonian 3-spin is shown in �g. (2.2),while in �g. (2.3) the funtion G(p0; ) � p0 � e�3(1�p0)2I0(3(1 � p0)2) in the paramagnetiphase and at RSd and RS is shown as a title of example.2.4 The 1RSB alulationsIn this setion we will fous on the 1RSB solution. When working at T = 0 we will disregard theontribution of vanishing �elds. As we antiipated in the previous setion, the replia symmetriresults are orret for the ferromagneti disordered models, but give wrong quantitative resultsfor the transition thresholds and for the energy in the spin-glass ase. To go one further steptowards the exat solution of this lass of models, we observed good numerial evidene thatthe replia symmetry does in fat spontaneously break down in a region suÆiently lose to thesatis�ability threshold. Therefore, the quantitatively wrong results of the RS piture underliea very di�erent qualitative struture of the phase spae.The 1RSB hypotesis assumes that on a given site i, the loal avity �elds in the variousstates, hai , are i.i.d. variables taken from the same distribution Pi(h) ([14, 12℄ and De Dominiis-P. Mottishaw and Wong-Sherrington in [1℄). However, the distribution Pi(h) utuates fromsite to site, so that the orret order parameter is a funtional P[P (h)℄ giving the probability,when one piks up a site at random to �nd on this site a avity �eld distribution Pi(h) = P (h).Moreover the avity �elds and the LGS energies are not orrelated (There will however beorrelation between the loal �elds and the energy shifts omputed in the avity approah).10Notie that it will be possible to reprodue the RS results as a limiting ase of the 1RSB alulation.
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Figure 2.2: Integer �elds RS spin-glass energy in the Poissonian 3-spin ase. It is negativebelow .
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2.4. THE 1RSB CALCULATIONS 47The same hypothesis must hold in for the u-�elds ating on the nodes of the dual hyper-graph (hek nodes in the fator graph notation, see appendix). Averaging over the sites andassuming the validity of the Parisi breaking sheme [2℄, the funtional orders paramenets annow be written as�(~�) = Z dPP[P ℄ Z n=mYg=1 dhgPg(hg) n=mYg=1 0� e�hgPma=1 �ag(2 osh(�hg))m1A (2.104)�̂(~�) = Z dQQ[Q℄ Z n=mYg=1 dugQg(ug) n=mYg=1 0� e�ugPma=1 �ag(2 osh(�ug))m1A (2.105)where the n replias have been eah divided into n=m groups of m repliated spins, and �agrepresents the a-th replia spin belonging to group g. Pg and Qg are loal �elds probabilitiesdistributions within group g. In the RS ase there is only one state �. The e�etive �elds annottherefore utuate from LGS to LGS and the unique global ground state an be obtained inthis framework by �xing the loal distribution to be Pi(h) = Æ(h� ~hi), so that all the LGS areautomatially equal. On a given site i, this distribution is �xed by the single number ~hi. Thevarious ~hi's are i.i.d., taken from a distribution PRS(~h) suh thatPRS[P (�)℄ = Z d~hPRS(~h)Æ �P (�)� Æ((�)� ~h)� (2.106)Substituted into (2.104) gives bak de�nition (2.64) with~h ! hPRS(~h) ! P (h)and therefore satis�es exatly the RS reursion relation. The same onsiderations as usualapply to the u-�elds.Finding a lose analytial solution to the self onsistent equations (2.40) and (2.41) in the1RSB ase is in general not easy. In order to proeed we �rst propose a simpler variationalapproximation of the free-energy (2.39) and of the funtional order parameters spae. In thegeneral ase this Ansatz is NOT exat beause neglets orrelations between LGS indued bydi�erent degree utuations from site to site and assumes an extra symmetry that is usually notontained in the model. Nevertheless, it is pointed out in [22℄ and we will see later in the hapterthat it gives very good variational estimates on the transition thresholds and orretly preditsfor the models studied the presene of a dynamial region haraterized by a non zero valueof the omplexity. Moreover, for the p-spin there exists a lass hyper-graphs (namely the �xeddegree ones) where the Ansatz self onsistently loses under the original omplete form (2.39)of the potential, and it gives nearly exat results in the low temperature region in remarkableagreement with the numeris. Overall this simpler variational alulation is important beauseit introdues some key features of the full solution:2.4.1 The variational fatorized AnsatzIn the following propose the use of a simple Ansatz whih was �rst studied in (Wong andSherrington in [1℄), and developed for the Bethe lattie spin glass by Goldshmidt and Lai (in[1℄), is named the Fatorized Ansatz. The underlying idea is to assume that the distributions



48 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELPi(h) are i independent, i.e. that the P[P ℄ is a funtional Æ funtionP[Pg℄ = Æ (Pg � P ) (2.107)Q[Qg℄ = Æ (Qg �Q) (2.108)The assumption is simple beause the order parameter is a single funtion P (h) and the RSequation are only slightly modi�ed. However one should note that, in general, one may expet aPi(h) whih utuates: as antiipated,this is obviously the ase whenever the degree utuates,but also in the ase of the �xed degree, the fatorized Ansatz is not neessarily exat. Somespeial models where the fatorized Ansatz gives an exat solution have been studied reentlyin the ontext of error orreting odes [154℄. Using (2.107) and (2.107) into (2.104) and (2.105)one immediately �nds: �(~�) = n=mYg=1 �g( ~�g)�g( ~�g) = Z dhgP (hg) e�hgPma=1 �ag(2 osh(�hg))m (2.109)�̂(~�) = n=mYg=1 �̂g( ~�g)�̂g( ~�g) = Z dugQ(ug) e�ugPma=1 �ag(2 osh(�ug))m (2.110)Notie that eqs. (2.109) and (2.110) give bak the RS solution for m = n! 0.In the replia n! 0 limit we an write:X~� �(~�)�̂(~�) = n=mYg=1(X~�g �g( ~�g)�̂g( ~�g) � 1 + nm log(X~�g �g( ~�g)�̂g( ~�g))Xk k log(X~� ( ^�(~�))k) = nmXk k log(X~�g ( ^�g( ~�g))k) (2.111)X~�1;:::;~�l �(~�1):::�(~�l) exp(�Xa �a1 :::�al ) = nm X~�g;1;:::; ~�g;l �g( ~�g;1):::�g( ~�g;l) exp(�Xa �g;1a:::�g;la)where the new �g vetors are m-dimensional quantities (the replia index runs now from 1 tom) inside eah single luster. Due to luster equivalene the index g will be dropped in thefollowing. We are left with the following expression for the potential:��mF [�;m℄ = � < k > log(X~� �(~�)�̂(~�))� �< k >< l > +< k >< l > Xl vl log( X~�1;:::;~�l �(~�1):::�(~�l) exp(�Xa �a1 :::�al )) +Xk k log(X~� ( ^�(~�))k) (2.112)at the saddle point, the previous quantity will represent the free energy of a single generiluster. The stationary ondition on (2.112) leads to saddle point equations:�(~�) = X~� �(~�)�̂(~�) 1< k >Xk kk (�̂(~�))k�1P~�(�̂(~�))k (2.113)



2.4. THE 1RSB CALCULATIONS 49�̂(~�) = X~� �(~�)�̂(~�) 1< l >Xl lvlP~�1;:::;~�l�1 �(~�1):::�(~�l�1) exp(�Pa �a�a1 :::�al�1)P~�1;:::;~�l �(~�1):::�(~�l) exp(�Pa �a1 :::�al ) (2.114)Equations (2.112), (2.113) and (2.114) are homogeneous in the order parameters �(~�) and�̂(~�) that an be onsidered as automatially normalized. We reall that now P (h) and Q(u)are single inner luster distributions. Substituting into the saddle point equations, after aalulation analogous to the RS ase we obtain11:P (h) = (2 osh(�h))m< k > * (2 osh(�(u0 + h0)))m(2 osh(�h0)2 osh(�u0))m+u0;h0 �Xk kk� Æ(h�Pk�1t=1 ut)(Qk�1t=1 2 osh(�ut))m�futg� (2 osh(Pkt=1 ut))m(Qkt=1 2 osh(�ut))m�futg (2.115)Q(u) = 2m< l > * (2 osh(�(u0 + h0)))m(2 osh(�h0)2 osh(�u0))m+u0;h0 �Xl lvl DÆ(u� 1� tanh�1(tanh(�)Ql�1t=1 tanh(�ht)))EfhtgD(1 + tanh(�)Qlt=1 tanh(�ht))mEfhtg (2.116)for the diluted ferromagnet. The spin glass solutions oinide with the previous ones at thesymmetri saddle point in the same way as in the RS ase. As a funtion of the e�etive �elds,the potential now reads�m�F = � < k > log hA(�; h; u)mih;u +Xk k log hB(�; u1; :::; uk)miu1;:::;uk +< k >< l > Xl vl log�(osh �)m DC+(�; h1; :::; hl)mEh1;:::;hl�� �m< k >< l > (2.117)for the ferromagnet and�m�F = � < k > log hA(�; h; u)mih;u) +Xk k log hB(�; u1; :::; uk)miu1;:::;uk +< k >2 < l >Xl vl �log�(osh �)m DC+(�; h1; :::; hl)mEh1;:::;hl� +log�(osh �)m DC�(�; h1; :::; hl)mEh1;:::;hl��� �m< k >< l > (2.118)for the spin glass, with: A(�; h; u) = 1 + tanh(�h) tanh(�u)2B(�; u1; :::; uk) = 2 osh(�Pkt=1 ut)Qkt=1 2 osh(�ut)C�(�; h1; :::; hl) = 1� tanh(�) lYt=1 tanh(�ht) (2.119)11From now on we will often use the notation R dxP (x)(�) � h(�)ix.



50 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELFerromagneti metastable states and spin-glass LGS symmetryIt ould seem useless to write the 1RSB expressions also for the ferromagneti model, sinewe know that in this ase the RS solution is orret for the GS. Foring the 1RSB fatorizedAnsatz on the ferromagnet physially means that we look at the struture of the positive energymetastable states. We did it to stress the fat that the saddle point equations of the two modelsadmit a ommon symmetri solution also in the non paramagneti phase. The expression forthe free-energy of the two models oinide at this saddle point. However, the symmetri oneis NOT the lowest energy GS solution of the ferromagneti model, whih always have zeroreferene energy, but it desribes positive energy metastable states. On the other hand, thesemetastable states oinide with the LGS of the spin-glass in the disordered phase. This propertyis a peuliar symmetry of the p-spin model and will give us an alternative way to ompute theexat omplexity without resorting to the omplete 1RSB solution.The zero temperature phaseIf we adopt zero temperature Ans�atze (2.81), (2.82) and keepm� = y (2.120)�nite, we get the following saddle point equations:q0 = 1� 1Pl lvl 1
l Xl lvl 1
l (1� p0)l�1 (2.121)p0 = 1� 2Pk kk 1�k Pn+>n�;n0�0 (k�1)!n+!n�!n0!qn++ qn�� qn00 e�2yn�Æn++n�+n0;k�1Pk kk 1�k Pn+;n�;n0�0 (k�1)!n+!n�!n0!qn++ qn�� qn00 e�2ymin(n+;n�)Æn++n�+n0;k�1 (2.122)p� = 1� p02 (2.123)q� = 1� q02 (2.124)with 
l = 1 + e�2y � 12 (1� p0)l (2.125)�k = Xn+;n�;n0�0 k!n+!n�!n0!qn++ qn�� qn00 e�2ymin(n+;n�)Æn++n�+n0;k (2.126)and the expression for the potential an be written in terms of y as:F (y) = 1y "< k > log(1 + e�2y � 12 (1� q0)(1� p0))� < k >< l > Xl vl log
l �Xk k log(�k)#(2.127)The hoie (2.120) is neessary to �nd a solution that is self onsistent and in best possibleagreement with numerial simulations. In fat, the saling parameter y has a muh deeperphysial meaning that will be eluidated in the following.The stationary onditions also admit a ompletely paramagneti p0 = 1, q0 = 1, F = 0solution that puts us bak into the paramagneti phase. In the limit y ! 012 one retrieves12This limit an indeed be read as m! n.



2.4. THE 1RSB CALCULATIONS 51the RS results. In order to �nd the physial value of the free-energy, expression (2.127) forthe potential has to be further maximized with respet to the parameter y. The study of thepotential F (y) allows us to reah a qualitative understanding of the typial phase diagrams, eventhough the exat nature of the symmetry phenomena is not properly aught by the fatorizedAnsatz. The following piture will therefore retain its validity in the omplete 1RSB solution.2.4.2 The onstrution of the phase diagramIn order to build the zero temperature phase diagram of this lass of models we have to makease by ase a sensible hoie of the ontrol parameters13. A priori the ontrol parameters spaeis very large, inluding the values of all the frations fkg and fvlg. However, typially onlya small number of this quantities plays a relevant role: the dilution parameter  =< k > = <l >14, the fration of 2-edges v2, the quotient v2=v315 and few other olletive ombinations onthe rank and degree distributions weights.If the fration v2 is bigger than a ertain ritial value depending on the remaining orderparameters, the model is found to be Viana-Bray like. In the ferromagneti ase, the transitionis a ontinuous one from the trivial paramagneti to the magnetized phase. In the spin-glass, theglassy phase most probably is reahed through a ontinuous1-RSB asade. The onset of theontinuous transition is set by the 2-loops perolation ondition of the fration of rank 2 graphmerged in the whole topologial struture. There are no preursor phenomena in neither ofthe transitions, whih means no formation of �nite energy metastable states in the ferromagnetand no LGS omplexity in the spin-glass. From the physial point of view, the 1RSB piture -even in the general treatment - is therefore only an approximation of the Viana-Bray spin-glassbehavior. From the omputational omplexity side, however, the GS searh is simpler beauseof the absene of metastable states of Hamming distane O(N). The zero temperature related2-XOR-SAT like problems are Polynomial also in the UNSAT phase and they present no hardregion before the SAT/UNSAT transition.Whenever a triritial point [11, 21℄ ondition an be met16, the models undergo a rossoverinto a phase diagram where the transition are disontinuous: paramagneti/1RSB or para-magneti/�rst order ferromagneti respetively. In these ases overwhelming evidene for apreursors/dynamial region has been observed. From the omputational omplexity point ofview, the presene of a dynamial region oinides with typial (exponential or polynomial,depending on the problem lass) slowing down in the solution times of the searh algorithms.From the physis point of view, preursors are LGS that appear with a higher energy but expo-nential in number, so that the system freezes without reahing the still present E = 0 true GSessentially for entropi reasons. In the optimization problem these states orrespond to quasioptimal solutions with deep enough basins of attration to trap the searhing proedure. Forsome partiular hoies of the rank and degree distributions the ondition for the existene ofthe triritial point annot be ful�lled. In those ases intermediate models an be explored,that show both a dynamial region and a ontinuous phase transition, followed by a further dis-ontinuous jump. Examples of these somehow pathologial ases are shown in the �rst setionof hapter 5. The dynamial region is denoted by the hyper-graph diluteness interval [d; ℄.13This is true in general and has to be done also in the RS and in the omplete 1RS ase.14often denoted with � in the literature, for instane in the K-SAT ase.15The importane of this quotient will be stressed in two examples in hapter 3 and 5.16We antiipate the ondition to be v2 = 3v3 = 1=(2triritial) in the generalized p-spin ase.



52 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELThe omplexityThe omplexity �(e; ) was de�ned as the logarithm of the number of the LGS of a givenenergy density e at a value of the diluteness , divided by the number of the variables N . Itis a ruial thermodynamial quantity17 whose presene tell us we are in a symmetry brokenphase. The expliit omputation of �(e; ) at T = 0 has been arried out in [24, 30℄ for theViana-Bray and the 3-SAT model. The ase of the generalized p-spin is ompletely analogousand we refer to those papers for details. It turns out that the zero temperature omplexity anbe alulated as the Legendre transform of the potential F (y). Indeed, the T ! 0 limit of thedisussion in [7℄ gives e�yF (y) = Z deN (e; )eye ; (2.128)where we have already de�ned the number of metastable states at a given energy density e andtuning parameter  in terms of the omplexity �(e; ) viaN (e; ) � e�N�(e;) : (2.129)therefore we obtain, retaining only dominant ontributions at the saddle point in y in the largeN limit, �(e; ) = ye� yF (y) (2.130)e = �yF (y)�y (2.131)y = d�(e; )de (2.132)at �xed . From the previous equations we an also write�(y; ) = y2�F (y)�y ; (2.133)that is the T = 0 orret limit of the onstrution of [7℄. We see eventually the physial meaningof the saling parameter y as the derivative of the omplexity with respet to a variation of theenergy of the loal ground states. This quantity therefore regulates the quantity of metastablestates one is bound to meet varying the energy. The distribution density of these states turn outto determine a level rossing phenomenon under the 1RSB avity equations iteration. Indeed,one of the postulates [24℄ of the avity method that was not learly yet stated is that the energiesE�0 of the �-LGS of low energy (near to that of the GGS) are assumed to be i.i.d. variableswith a distribution given by a Poisson proess of density�(E0) = exp(y(E0 � Eref)) (2.134)where Eref is a referene energy, whih is near to the GGS energy, and y must be equal to ourreplia saling parameter in order for the two methods to give the same results in the 1RSBase. During the iteration of the avity equations, the loal energy shifts an therefore induea level rossing, and the �elds distributions have to be re-weighted aordingly. Sine the levelrossing dynamis will be driven by the geometry of the phase spae whih in turn is determinedby (2.134), we see how the saling parameter y is so important. Its role is automatially taken17of not trivial de�nition, sine the notion of LGS in disordered systems is still not ompletely lear.



2.4. THE 1RSB CALCULATIONS 53in the orret aount by Parisi's RSB presription in replia method, where the parameterm adds an extra variational dimension in the variational spae and maximizing the potentialwith respet to m essentially orresponds to hoosing the best replia symmetry broken statesdistribution piture. Lowering the temperature the replia states landsape hanges and mmust follow aordingly. Sine the equations for the potential an be written in terms of m�in the low temperature limit, is is natural to explore the possibility of m saling as 1=�. Inthe avity piture there is no initial notion of RSB, that has to be introdued via an ad hopostulate. However, as we have seen, this allows to larify the physial meaning of this 1=�saling.How an one pratially draw the phase diagram from the knowledge of the potential(2.127)?� In general, for regions of high hyper-graph diluteness (very low ), F (y) is equal to zero:the system is paramagneti and the only possible non trivial ontribution to the entropyare given by the presene of vanishing �elds. As it was already mentioned in the RSsetion, this is however not the ase of the p-spin model, where it is possible to prove 18that the paramagneti phase is always trivial. This result is in perfet agreement withnumeris.� Entering the dynamial region, F (y) is negative for any value of y and monotoniallyinreasing, with typial shape shown in �g. (2.4). Its maximum tends bak to zero inthe limit y ! 1. In this limit, eqs. (2.121)-(2.124) redue to a non trivial symmetriglassy solution with p0 ; q0 > 0 that we will expliitly write for the ase of the Poissonian3-spin in the following. This solution is in fat not exat, beause it disregards site to siteutuations that lead to a non zero fration of spins i with free �elds (i.e. with pi0 = qi0 =1) that are numerially observed solving the full equations via a population dynamisintrodued in [23, 24℄. Indeed, numerially is well observed an adiabati like separationin the degrees of freedom of some spins ompared to others, as it was doumented in [18℄.This is reeted in the fat that not all spins have the same �elds distributions, but thesame distribution of �elds distributions. This onept is at the basis of the omplete 1RSBpiture and will be made lear in the next setion. Nevertheless, we an here ompute avariational bound omplexity at energy density e = 0, even if its nature is not ompletelylear in the variational Ansatz ontext.{ �(e = 0) is found to be non zero in [d; ℄, monotonially dereasing with . How-ever, the spin-glass has already an exponential number of LGS, even if in this phasee = 0 and therefore they are also GGS.{ At  = d the omplexity is non zero only for e = 0, whih means that LGS appearinitially as GGS, and the searh algorithms, even if trapped in one of them, still ansolve the problem.{ If d <  < , a non zero energy density omplexity interval forms, s.t. �(e) > 0for e 2 [0; ed℄. The dynamial region is therefore not only haraterized by a suddenlustering of ground states: at the same point an exponential number of metastablestates appear. Suh states are expeted to at as a trap around ed > 0 sub-optimalsolutions for loal searh algorithms, ausing an exponential slowing down of the18Calulations have been done but are not shown in this thesis.



54 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELsearh proess. This piture applies for instane to simulated annealing or greedyproedures based on loal information.� At  =  the zero energy density omplexity goes to zero. This means that the numberof GGS is not exponential any more and the assoiated ombinatorial problem has nozero ost solutions in the typial ase. There ould be of ourse rare satis�able instanesevents, suh that the probability of �nding non zero energy goes exponentially to zerowith N , but is stritly zero only in the thermodynami limit. These rare events an playa relevant role in pratial design of searh solution proedures in [85, 86, 87, 88℄, butthey will not be studied here. The  =  point orresponds to the ferromagneti �rstorder transition in the unfrustrated model the rossing points of the Sferro and the Sparaanalytial lines of �g (2.21).� For  >  the maximum of F (y) is positive and it is reahed for a �nite value y� ofthe saling parameter. This orresponds to a positive value of the lowest energy: it is nolonger possible to satisfy simultaneously all the hyper-edges onstraints.As will have said, it is possible to alulate the omplexity �(e) of states with e > 0 by theLegendre transform of the potential F (y). �(e) is found to be typially non negative inside anenergy density interval [e; ed℄19. This orresponds to the dashed regions of the urves for thepotential F (y) in �g. (2.4)-A, where dF (y)=dy < 0. An energy therefore gap opens up, s.t.e > 0 and inreases with .Explanation of �g. (2.4):�g.A: Qualitative typial sheme of the potential F (y) and behavior. The piture reproduesthe RS limit along the line y = 0. The 1RSB potential urves tend to the RS result in thislimit, and orrespond to the maximum of the potential only on the lower dimensional y = 0 line.Enlarging the variational spae introduing y, and therefore taking into aount the omplexity,gives the blue point better results. We will argue in the next setion that in the omplete 1RSBpiture this variational spae is indeed large enough to �nd the exat solution for the p-spinmodel. Reently it has been shown [30℄ that this ould be the ase also for more ompliatedmodels. In order to obtain the results for non negative omplexity one only needs the funtionF (y) in the left region where dF (y)=dy � 0. �g.B: �(e) at inreasing values of . The meaningof ed, e and ̂ is explained in the text. Regions of negative omplexity are not shown. Theomplexity shows a somewhat unusual two branhed form: the lower branh is onave andgoes from e = e, the ground state (GGS) energy where the omplexity vanishes, to e = ed, themaximal energy beyond whih one does not �nd any loal ground state, whih orresponds toa value y = yM . It orresponds to the blak ontinuous regions of the F (y) urves in A Theupper branh is onvex, and interpolates between the RS solution (obtained at y = 0) and themaximal omplexity point (obtained at y = yM). This seond branh does not seem to have adiret physial interpretation and in this ontext an be simply ignored. On the other hand,it must be present insofar as the y ! 0 limit of our RSB solution gives bak the RS solution(the green arrow in A represent the branh of the potential urves that tend to the red RS sub-spae, where eah point is piked by a partiular value of ). Clearly a better understandingof this seond branh would be welome. �g.C-D: ed, e,�(ed), �(e) as a funtion of . This19in the interval [0; e) �(e) < 0. This means that the probability of �nding a state of energy density withinthat interval is exponentially small in N . �(e) = 0.
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Figure 2.4: Typial behavior of the Potential F (y) and derived thermodynamial quantities inthe 1RSB piture. We refer to the text for an exhaustive explanation.



56 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELis the typial piture given by the fatorized Ansatz in the �xed degree p-spin. In the aseof utuating degree, �(ed) is found to inrease with  also for p > 2, as in the ase of the�xed degree Viana-Bray model. It has not been heked yet whether this is an artifat of thefatorized approximation. Let's ompare the two models at the same �xed l and suh thatthe average degree l of the Poissonian ase is equal to k of the �xed degree one: for low the high fration of \free" spins in the utuating degree ase has a large weight and thereforeontributes a lot to lowering the on�gurational entropy. This e�et is more pronouned forlarge l. Inreasing , the utuating model tends to the �xed degree one, and both of them tothe fully onneted l-spin in the  !1 limit. Therefore, the lowering e�et on the omplexityof the free spins diminishes and the total value of the threshold energy omplexity inreases tosaturate the �xed degree upper bound. The piture is qualitatively shown in �g .(2.6).It is important to notie that in the dynamial region the y ! 1 limit means that theenergy/omplexity urves have in�nite derivative in e = 0. This means not only that thenumber of metastable states is exponential, but that its relative variation with energy is in�nitewhen they appear. This property follows diretly from the de�nition of omplexity and from theonstraint of having a �nite value of it already at zero energy density. This enormous explosionof states is however surprising. It indiates a ritial transition in omplexity haraterized byan in�nite \susettivity" of the number of GS to an in�nitesimal hange in energy. Thereforee = 0 is an ritial instability point of the system. In the dynamial region, this instability pointis not separated from the higher energy metastable states. The number of GGS is large, butnevertheless the number of LGS at energy density just above zero is exponentially larger. Thispitures realls qualitatively the formation of sale-free domains at any size at the ritial pointin ontinuous phase transitions. Above , on the other hand, even if the utuations in therelative number of metastable states are large, they loosely speaking explore an almost emptyspae beause the total number of states is o(1). Beause of this disonnetedness property ofthe on�gurational spae at energy below e, In the thermodynami limit (and for all pratialpurposes for very large single instanes in ombinatorial optimization problems), the systemdoes not feel the presene of the instability beause it is in a region that an be explored onlyby means of rare events. At , the typial number of GGS is O(1), so it is lear that the jumpmust be in�nite at e = 0, sine we havey�() � 1O(N2) dN (e)de je=0 (2.135)and the variation of states must be exponential in order to have �nite omplexity at e > 0. Thesituation is shown in the blow up in �g. (2.5)and in �gs. (2.8) and (2.9), where the exponentialexplosion in the number of metastable states is underlined. In those \pathologial" ases wherea ontinuous transition appears inside the dynamial region, the zero energy omplexity dropssuddenly to zero as shown in �g (5.9). Some examples of energy/omplexity urves have beenomputed in �g. (2.7) for partiular values of  in the Poissonian 3-spin. Analogous urves inthe ontext or error orreting odes are shown in hapter 5. In regions of very high , it mightour that e ! ed ! 0 and the number of LGS might ease to be exponential for all energies.Clusters of sub-optimal solutions ould be no more separated by a Hamming distane of orderN In fat, in that region the validity of the 1RSB piture for  >>  is still unertain. This inpartiularly ould be true in more ompliated models as the K-SAT, as it has been noted in[89, 90℄. The 1RSB piture, however, gives a bound on the asymptoti values of the omplexity,in ase no further symmetry breaking was present inreasing graph density.



2.4. THE 1RSB CALCULATIONS 57

Σ

e

e0

Σ(e)

rare events region

instability

Figure 2.5: �(e) lose to e = 0 in the dynamial region.

Σd

Σ(ed)Σd =

Σ

γγd

d
Poiss

Fixed

0Figure 2.6: �(ed) as a funtion of  for the Poissonian utuating and the �xed degree at equall > 2 in the fatorized Ansatz piture.



58 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODEL3-spin with Poissonian degree distributionIn the ase of Poissonian degree distributions, the summations into the saddle point equationsand the free energy an be expliitly done, leading to more ompat expressions. This anbe done in general for any degree k, but we will here only give the expressions for the 3-spin(< k >= 3), without loosing generality. After some algebra one �ndsp0 = I0(z1)I0(z1) + 2Pk>0 Ik(z1)ey�k (2.136)pl = = p�l = Il(z1)ey�lI0(z1) + 2Pk>0 Ik(z1)ey�k (2.137)z1 = 3
 (1� p0)2 (2.138)
 = ey � (1� p0)3 sinh(y) (2.139)for the saddle point equations andF (y) = �1y ( log
� log�� z1 osh(y)� z1 sinh(y)p0) +  (2.140)� = 1I0(z1) + 2Pk>0 Ik(z1)ey�k (2.141)for the potential. Il(x) is the modi�ed Bessel funtion of l-th order. Following the previouspresription on the potential, in the y� =1 limit eq. (2.136) redues top0 = 12e 3(1�p0)22�(1�p0)3�1 ; (2.142)with limy!1 F (y) = 0. Besides the trivial paramagneti one, equation (2.142) admits a sym-metri zero energy non trivial solution in the dynamial region [d; ℄ = [0:851428; 0:939083℄.One an expliitly hek that no other non trivial y� < 1 solutions are stable in this region.At d = 0:851428, the transition is disontinuous and a �nite bak-bone suddenly appears withweight 1 � p0 = 0:798335. At , the predited value for the bakbone is 1 � p0 = 0:9309.This means that in the fatorized Ansatz approximation more than 93% of the spins are �xedwith probability 1 at the transition, for the 3-spin model. These values are upper bounds forthe true values, that will be retrieved via the omplete 1RSB alulation. In piture (2.7) thebehavior of the �(e; ) and F (y) for some examples around the stati transition is shown. Oneould argue that the natural saling to orretly fous on the ritial behavior of the potentialurve around the transition is given by the hange of variable t � e�y. The plot of F (t) is alsoshown as a title of example. From that plot the singularity in the y !1() t! 0 is madeevident. In the plots of the potential, the ourrene of the stati transition point is betterseen resaling the y axis as t � e�y 2 (0; 1). Notie how for values of y too small the solutionis unstable with respet to the paramagneti one. In partiular this implies the instability ofthe RS solution (y ! 0).2.4.3 On the physial ir-relevane of frational �eldsThe zero temperature saddle point equations for the potential admit a losed solution also if thee�etive �elds h have rational support. This solutions an be seen as an improvable RS sheme
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Figure 2.7: �(e; ), F (y) and F (t) for the 3-spin model around the variational stati threshold.and an be proved to give variational results with the tehnique of hapter 6. Solutions of suha kind have been explored in the past for the random 3-SAT model [9℄, and very reently ina RS approah20 to the graph oloring problem in [57℄. However, it is lear from the physialnature of the u and h �elds that their non vanishing part should be integer at zero temperature.Nevertheless, sine we are working in a variational ontext, the attempt to re�ne the thresholdvalues via rational �elds is legitimate. Let us again speialize to the Poissonian 3-spin ase. Ifwe introdue a frational �eld Ansatz as in [9, 11℄Pr(h) = +1Xl=�1 p lr Æ  h� lr! = Pr(�h) (2.143)bypassing the introdution of loal u-�elds saddle point equations readp lr<1 = �eg0(y)�l (2.144)� = e�g0(y)�0 + 2Pl>0 �l (2.145)�l = e ylr Z 2�0 d�2� os(l�)ePrj=1 g jr (y)os(�j) (2.146)g0(y) = 3
 (1� (1� p0)2) (2.147)20At the beginning of this thesis the RS analysis with frational �elds has been extensively arried out withpedagogial purpose also for the 3-spin and the 3-hyper-graph bioloring problem, with results analogous to theones in [9℄ and that are not reported here.



60 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELg lr<1(y) = 12
 (p lr + 1� p0 � 2 lXl0=1 p l0r )p lr e� ylr (2.148)g1(y) = 12
 (1� p02 � r�1Xl=1 p lr )2e�y (2.149)
 = 1� (1� p0)32 + 12 rXl=1((1� p0 � 2 l�1Xj=1 p jr )3 � (1� p0 � 2 lXj=1 p jr )3)e� 2lyr ;(2.150)where r is a �lter parameter that an be arbitrarily inreased to thiken the �elds sieve. As itturns out in the alulation (analogously to the RS ase), only the �rst r weights are neededto write the potential F (y) = �1y ( log(
)� 3 + �) +  (2.151)Analogous equations an be written in the general l-spin ase, the bioloring and the random 3-SAT models and - in a muh less ompat form - for generi hoies of the generating funtions(2.5) and (2.6). However, we won't further write down the equations beause frational �eldsdo not show to improve the optimal saddle point value of (2.127). Numerially, no solutionsseem to be stable at zero temperature other than the integer �elds one. This is also the asefor the other studied models: Bioloring over 3-hyper-graphs and random 3-SAT. This result isdi�erent from the RS ase, where in fat the frational Ansatz gave better empirial thresholdvalues. This is a hint for the frational Ansatz to be a sign of RSB phenomena. Sine we arealready working here in a RSB framework, it is therefore plausible for this spurious solutionnot to be stable any more.2.4.4 A partiular exat ase: hyper-graphs with �xed degree dis-tributionThe ase of �xed rank and degree hyper-graphs21 is a peuliar one, beause all spins are topo-logially equivalent on the hyper-graph, leading to a fatorized losed form of the ompletesaddle point equations. This is not peuliar of p-spin like models, but an be extended, as wewill see for the biolorig problem, to other systems of spins on a random graph with �xed rankand degree. Notie that stritly speaking the solution is still non exat, beause it negletssite to site utuations that may depend on the state of the system and not on its topologialproperties. However, it gives results [22℄ in very good agreement with numeris. In this asethe exat equations (2.40) and (2.41) an be written in a fatorized and normalized losed formas �(~�) = (�̂(~�))k�1P~�(�̂(~�))k�1 (2.152)�̂(~�) = X~�1;:::;~�l�1 �(~�1):::�(~�l�1) exp(�Xa �a�a1 :::�al�1 � 1) (2.153)21or the slightly more general version of a degree distribution with onstant sub-degrees, taking advantage ofthe alternative formalism of appendies C.



2.4. THE 1RSB CALCULATIONS 61where �̂(~�) has to be normalized: �̂(~�) ! (2 osh(�)�m�̂norm(~�) and �̂norm(~�) ! �̂(~�). Aftersome algebra one obtains:�m�F (�;m) = (1� k(l � 1)l ) log(X~� �̂(~�)k) + k(l � 1)l log(X~� �̂(~�)k�1) (2.154)with: P (h) = (2 osh(�h))m � Æ(h�Pk�1t=1 ut)Qk�1t=1 (2 osh(�ut))m�futg� (2 osh(�Pkt=1 ut))mQkt=1(2 osh(�ut))m �futg (2.155)Q(u) = *Æ  u� 1� tanh�1(tanh(�) l�1Yt=1 tanh(�ht))!+fhtg (2.156)For the l-spin with even degree the Ansatz loses on q0 = 0 = p0 and onsequently p� =q� = 1=2, beause on every spin the e�etive avity �eld is given by the ontribution of k � 1odd � loal �elds. using this result a very simple expression in the saling regime m� = y isobtained22: F (y) = �1y  (1� k(l � 1)l ) log( 12k kXi=0 k!(k � i)!i!eyjk�2ij)+ (2.157)k(l � 1)l log( 12k�1 k�1Xi=0 (k � 1)!(k � 1� i)!i!eyjk�1�2ij)!For odd degrees eq. (2.158) is more involved and has the formF (y) = �1y  (1� k(l � 1)l ) log g(k; y) + k(l � 1)l log(k � 1; y)! (2.158)g(k; y) = ey�k Xn+;n�;n0>0 k!n+!n�!n0! (q02 )n0(1� q02 )n++n�e�2ymin(n+;n�)Æk;n0+n++n�(2.159)In table 2.4.4 the optimal value y� of the saling parameter and the GS energy densities egs =�y=y�(yF (y)) = F (y�) are shown in the 3-spin for various values of the graph degree k. We alsoreport numerial estimations of the GS energy (enumgs ) obtained by extrapolating the results ofexhaustive enumerations (sizes up to N = 60 averaged over 1000��10000 samples). Moreoverin [22℄ the y� value for the 3-spin model with l = 4 has been estimated to be 1:41(1), perfetlyompatible with our analyti value. In �gs (2.8)-(2.11), some examples of the behavior of �(e),F (y), e(y) and �(y) for �xed degree and rank hyper-graphs are shown. Notie the di�erentbehavior of l = 2 ases, orresponding to the Viana-Bray models. The meaning of the di�erenturves branhes has been previously explained and is the same as in �g (2.4). In �g (2.12) thedependene of �(ed) on k at �xed rank l. In �g (2.13) the dependene of the �(e) urve on lfor a �xed degree (k = 10 in the example) is shown.22With the alternative formalism of appendix C.1 we an write an exat fatorized Ansatz for struture witharbitrary degree distribution and �xed sub-degrees (one for eah k-sub-hyper-graph). The �nal formulas arereported in appendix C.2.
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k egs enumgs y�1{3 -(k)/3 14 -1.21771 -1.218(6) 1.411555 -1.39492 -1.395(7) 1.095726 -1.54414 -1.544(9) 0.90163Table 2.2: Optimal value y� of the saling parameter and the GS energy densities for the 3-spinand for various values of the graph degree k.
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2.5. THE GENERAL 1RSB EQUATIONS 652.5 The general 1RSB equationsThe piture that ame out from the use of the faorized Ansatz was a big improvement omparedto the RS approximation and it will qualitatively hold in many aspets in the following, butwe pointed out some not satisfatory features of it, in partiular the fat thet we are stillessentially negleting site dependene of the loal �elds distributions. If we stik to the moregeneral (within Parisi's sheme) forms (2.104) and (2.104) of the funtional order parametersand we plug it into the exat expression for the potential (2.39) we an write, after a alulationthat is longer and a bit more involved but essentially equivalent to the RS ase:m�F1RSB(m; �) = �< k >< l > � < k >< l > hlog(osh(�J))iJ + (2.160)< k > *log* 2 osh(�(h+ u))2 osh(�h)2 osh(�u)!m+h;u+P;Q �Xk k *log* 2 osh(�Pkt=1 utQkt=1 2 osh(�ut)!m+futg+fQtg �< k >< l > Xl vl *log* 1 + tanh(�J) lYt=1 tanh(�ht)!m+fhtg+fPtg;JOne has to keep in mind that there are now two levels of distributions, and the avity �elds onone site are not �xed in one state anymore, but are only \biased" toward one set of values bya given site dependent distribution. In this sense the u-�elds (that are the polarizations felt byone spin oming from neighboring variables) have been alled avity biases. In the same sense,an algorithm that exploits the RSB biases struture to propagate information along the vertiesof the hyper-graph will have to work pass information on the whole probability distributions- the survey - of biases instead of a simple belief of the salar value of the �eld. This is thereason why the new algorithm lass presented in [29, 30℄ has been alled Survey Propagation.The survey passing proedure ating on a single spin S0 is shown in �g 2.14). The ompletesaddle point onditions are this time translated into integral equations on P[P ℄ and Q[Q℄23:P(P ) = 1< k >Xk kk Z k�1Yt=1 DQtQ(Qt)Æ(P (�)� P (�jQ1; :::; Qk�1)) (2.161)Q(Q) = 1< l >Xl lvl l�1Yt=1DPtP(Pt) hÆ (Q(�)�Q(�jP1; :::; Pl�1; J))iJ (2.162)Q(ujP1; :::; Pl�1; J) = N l�1P [P1; :::; Pl�1; J ℄ Z l�1Yt=1 dhtPt(ht)Bl�1J (h1; :::; hl�1)mÆ (u� uJ(h1; :::; hl�1))(2.163)P (hjQ1; :::; Qk�1) = N k�1Q [Q1; :::; Qk�1℄(2 osh(�h))m Z k�1Yt=1 dut Qt(ut)(2 osh(�ut))m Æ(h� kXl=1 ul)(2.164)where N k�1Q [Q1; :::; Qk�1; J ℄ and N l�1P [P1; :::; Pl�1℄ insure normalization and Bl�1J (h1; :::; hl�1) isa resaling term that an be re-absorbed in the normalization in the ase of the p-spin model24.23For the reader interested in reproduing this results we remind that in the following expression the limit forthe number of replia groups = n=m! 0 has been taken. In (2.160) the terms of order O(n=m) are retained.24In that ase it does not depend on the �elds.
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2.5. THE GENERAL 1RSB EQUATIONS 67Eqs (2.161)- (2.164) are very general and valid for models other that the p-spin. From modelto model the nature of the funtions uJ and Bl�1J hange. J represent the set of all ouplingsontained in an elementary energeti onstraint, and it is a simple salar for the p-spin. m is anumber in the interval (0; 1℄, whih selets families of solutions at di�erent free-energy levels.The physial free-energy is estimated maximizing over m. For the p-spin uJ has the usual formuJ(h1; :::; hl�1) = 1� tanh�1  tanh(�J) l�1Yt=1 tanh(�ht)! ; (2.165)where J is a salar beause only one oupling enters the loal energeti term. Another exampleis the K-SAT ase, where with alulations very similar to the p-spin model one �ndsuJ(h1; :::; hp�1) � uJ(fJtg; fhtg) = J� tanh�1 24 �2 Qp�1t=1 �1+Jt tanh(�ht)2 �1 + �2 Qp�1t=1 �1+Jt tanh(�ht)2 �35 (2.166)BJ(h1; :::; hp�1) � B(fJtg; fhtg) = 1 + �2 p�1Yt=1  1 + Jt tanh(�ht)2 ! : (2.167)It is evident the re-weighting of the inner distributions with m that beomes responsible for they-regulated T = 0 level rossing25 Depending on the hoie of the quenhed disorder distribution�(J), we an speialize (2.160) the the ferromagneti as well as the spin-glass ases. Theexpression for the free-energy for models other than the p-spin an be alulated along thesame lines. For instane, the general 1RSB energy for the K-SAT model is given in hapter 6.2.5.1 General Solution at T = 0The previous equations an be iteratively solved via a population dynamis algorithm pre-sented in [23℄ and valid in priniple at all temperatures. The algorithm expliitly makes useof the re-weighting terms in (2.161)-(2.164). The zero temperature limit of (2.161)-(2.164) and(2.160) an be diretly omputed, or from the replia equations or exploiting the straightfor-ward generalization of the T = 0 replia/avity self onsistent equations written in [24℄ for theVian-Bray model. Equivalently, their limit an be diretly alulated from the replia results(2.161)-(2.164), substituting (in the saling regime y � m�) 2 osh(�h)2 osh(�ut)!m ! e�y�Pk�1t=1 jutj����Pk�1t=1 ut���� (2.168)in the general ase,uJ(h1; :::; hl�1)! min(jJ j; jh1j; :::; jhl�1j) � sign J l�1Yt=1 ht! (2.169)for the p-spin, uJ(fJtg; fhtg) ! �J2 K�1Yt=1 �(Jtht) (2.170)B(fJtg; fhtg)m ! 1 (2.171)25The re-weighting is obviously present also at �nite temperature, as well as the level rossing, and is evenmore ompliated due to thermal e�ets. We foused on zero temperature beause of the diret onnetion withoptimization theory.



68 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELfor the K-SAT26 and resaling the normalization fators aordingly. If the quenhed disorderdistribution �(J) has support only on �1 values, eq. (2.169) redues to the usualuJ(h1; :::; hl�1)! J �min(1; jh1j; :::; jhl�1j) � sign l�1Yt=1 ht! (2.172)already seen in the p-spin spin-glass in the RS and fatorized ases. We would like to stresshere that all alulations ould be redone for a more general hoie of �(J). The exponentialterm, when alulated diretly via the avity method, readse�y(e(N+1)min �e(N)min) = e�(�(N+1)min ��(N)min) (2.173)and plays the role of a re-weighting of states due to a population shifts in the number (omplex-ity) of states (lusters) under the avity equation iteration from an N to an N +1 hyper-graph.This terms essentially favors terms with low minimal (min in the equation) energy or omplex-ity, helping the equations to onverge towards the orret GS. Notie that inside the dynamialregion the GS is found for y !1.In this ase the re-weighting fator (2.173) will beome in general an Indiator funtion�(A(fP (h)g)) (or �(A(fQ(u)g)), depending on whih �elds we deide to work with) over theset A of e�etive �elds distributions that do not lead to loal onstraints ontradition andtherefore do not inrease the value of the energy from the e = 0 GS one. Beyond  thisin in the typial ase no longer possible, beause no all loal ontraditions an be satis�eddue to frustration perolation. However, solutions with a minimal number of violated energyonstraints will be favored.Similarly to the RS or the fatorized ase, one an on physial grounds require the form ofa given site �eld distribution funtion to lose on an integer support27. Given ki the degree ofspin i belonging to an edge of rank li we an writeP (hjki � 1)( ~pi;ki) = ki�1Xr=�ki+1 pi;kir Æ(h� r) (2.174)P (ujli � 1)( ~qi;l�i) = 1Xr=�1 qi;lir Æ(u� r) (2.175)It is parametrized by a vetor of weights, ~pi = (pi�ki; :::; piki)28 whih an utuate from one sitei to the next. Sine at T = 0 the �elds take integer values, the probability depends on a �nitenumber (2k) of parameters for all frations of verties of degree k, and the full order parameteris not a funtional, but a funtion R(~p) of the vetor of weights whih is given in the limit oflarge N by:Rh(~p) = 1N Xj 24 ki�1Yr=�ki+1 Æ �pjr � pr�35 = 1< k >Xk kk 24 k�1Yr=�k1 Æ �pkr � pr�35 ; (2.176)26In [30℄, where for the 3-SAT ase all details of the alulation via the avity method are shown, the funtionuJ appears resaled by a fator 2 neessary to work with integer �elds. Indeed, the fator an be simply re-absorbed from the beginning de�ning the K-SAT Hamiltonian has twie the value of the ost funtion of theombinatorial problem. The same holds for other models suh has the hyper-graphs Bioloring of hapter 4.27In some ases, as for instane the K-SAT, this hypothesis is the only one possible.28we have dropped the apex ki.
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Figure 2.15: Probability distribution of the p0 weights in the Viana-Bray model, obtained afterevolving a population of N = 105 sites. Plotted are the ases y = 0:4 (blak), y = 0:8 (red)and y = 1:2 (green). Notie the big e�et of non-fatorization. The best fatorized solution,with y = 0:4174, would give a Æ peak at p0 = :3353. The RS solution would give a Æ peak atp0 = 1=3.where pkr is the weight of a �led r of a spin of degree k and the seond equation holds on thetypial sample, one averaged over the hyper-graph ensemble. Analogously for the u-biases:Ru(~q) = 1N Xj 24 1Yr=�1 Æ �qjr � qr�35 = 1< l >Xl lvl 24 lYr=�l Æ �qlr � qr�35 ; (2.177)Therefore, two Ans�atze have to be heked in order to �nd an analytial solution: the one onthe weights of a single site distribution , attahed to P (h) or Q(u), and the frations of sitesgiven a ertain distribution of �elds, attahed to Rh(~p) and Rq(~u). Di�erently from the RS andthe fatorized Ansatz approah, the qualitative onsequenes of the general RSB equations arelearly visible on the fat that the probability distribution of avity �elds is site dependent, andthis piture survive at zero temperature, as it is shown for instane for the ase of the Viana-Bray model in �g. (2.15). There the probability distributions P (p0) = (1=N)Pi Æ (pi0 � p0) forthe zero avity �elds weights p0 (0 in the �gure) are shown for di�erent values of the salingparameter y. The distributions are broad due di�erent site-to-site. Both the RS and thefatorized solution give a single Æ peak in the same situation. taken from [24℄. Moreover, theindividual avity �eld distributions Pi(~p) are not symmetri under �eld reversal (i.e. Pi(pr) 6=Pi(p�r)), while only the full order parameter is statistially symmetri (i.e. the site to siteutuations of pr are idential to those of p�r).If as a title of example one speializes to the Poissonian p-spin ase, whose spei� resultshave been already given in the last setions, equations (2.169) and (2.171) redue to a single



70 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELlosed form that an be written only in terms of the u-biases distributions:Q0(u) = C0 Z p�1Yt=1 ktY�=1 du�tQt(u�t )Æ0�u� uJ 0� k1X�=1 u�1 ; : : : kp�1X�=1 u�p�11A1A �� exp 24�y wJ 0� k1X�=1 u�1 ; : : : kp�1X�=1 u�p�11A35 ; (2.178)where C0 is a normalization fator, � is the \lause" index,wJ 0� k1X�=1 u�1 ; : : : kp�1X�=1 u�p�11A = 1� p�1Xt=1 ������ ktX�=1 u�t ������ (2.179)is the re-weighting fator and numbers fktgp�1t=1 are i.i.d. random numbers taken from a Poissondistribution of mean p29. Sine the avity biases, as said, take values f0;�1g, symmetrisolutions of the form Qi(u) = �i Æ(u) + 1� �i2 [Æ(u� 1) + Æ(u+ 1)℄ ; (2.180)an be sought in general30. Indeed, form (2.180) is very well observed numerially, with afration r of trivial distributions with �i = 1. Moreover, the weights �i an be omputedanalytially [26, 30℄. As in the fatorized Ansatz ase, various phases are found, their stabilitydepending on .The histogram piture for the site �elds distributionsQi(ui) is pitorially shown in �g. (2.16)From eq. (2.178), in the limit y ! 0, the site �elds distributions onentrate on one single deltafuntion for eah site i. There is no re-weighting fator and the averageQ(Q(u)) � 1N NXi=1Qi(ui) (2.181)an be seen as an average over the values of the single salar �elds ui, giving bak the averageRS solution (alulations an be diretly done via inspetion).In the fatorized Ansatz ase, due to the re-weighting, a normalization Ci(y) is present (C0for the referene spin S0 in (2.178)). However in this ase Ci(y) = C(y) 8i 2 f1; :::; Ng, beauseall sites share the same state to state utuations (see again �g. (2.16).In the general 1RSB ase, the normalization (and the re-weighting) fators are site depen-dent, all site distributions (or their numerial oeÆients at T = 0) utuate from site to siteand eq. (2.181) gives the general 1RSB replia solutions31.Looking at the iteration equation for general values of y (2.178), the only way one an obtaina trivial distribution Q0(u) = Æ(u) on the l.h.s. is when 9 t suh that all the kt distributionsare trivial Therefore, for one given iteration with given fktg, the probability that Q0(u) = Æ(u)29Notie that the sums here go up to k instead of the k � 1 of the avity original formulation. This is apeuliarity of the Poissonian degree distribution \self similarity" as it has been already seen in the previoussetions.30�i � qi0 of eq.(2.177).31Again alulations an be heked diretly. In order to prove equivalene the reitrodution of h �eldsdistributions is then not neessary, but it simpli�es a bit the notation.
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72 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELis 1� Qp�1t=1 (1� rkt). The average over iterations and over the random onnetivities fktgleadto a simple equation for the fration of trivial distributions:r = e�2p 1Xk1;:::;kp�1=0 p�1Yt=1 (p)ktkt! �1� p�1Yt=1(1� rkt)� = 1� �1� e�p(1�r)�p�1 : (2.182)For  < d the only solution is r = 1, while above d a non-trivial solution appears. Notiethat equation (2.182) is idential to the magnetization ondition of the ferromagneti model,on�rming our previous observations of thresholds oinidene.For large y, numerial results show that the avity biases spontaneously divide in twoategories: avity biases of type \a" with Qi(u) = Æ(u) and those of type \b" with Qi(u) =12 [Æ(u� 1) + Æ(u+ 1)℄ that are responsible for the propagation of the interations. In fat, thefollowing distribution of avity biasesQi(u) = ( Æ(u) with prob: r (`type a0)12 [Æ(u� 1) + Æ(u+ 1)℄ with prob: 1� r (`type b0) (2.183)is a �xed point under the iteration proess (2.178) for y = 1, provided the fration of trivialknowledges t satis�es (2.182). Using the extension to the hyper-graphs ase of the expressionsin [24℄, one �nds the omplete 1RSB expression for the potential F (y ! 1) = 0, whih isindeed the expeted result.Beyond d: the loation of the stati phase transitionIn order to study the omplexity and the phase transition point one needs to take are of theleading orretions in the limit y � 1. For �nite y, the distribution (2.183) is no longer stable;we need to study a more general distribution of biases whih takes are of the appearane of anon-trivial ontribution to the peak in u = 0, arising from frustrated interations:Qi(u) = ( Æ(u) with prob: r (`type a0)12(1� �i) [Æ(u� 1) + Æ(u+ 1)℄ + �i Æ(u) with prob: 1� r (`type b0) (2.184)where the fration r of trivial biases is always �xed by (2.182). For large y, substituting thisdistribution into the self-onsisteny equation (2.178) shows that the weight an be omputedas a series expansion in powers of e�y, rapidly dereasing for large y. If one proeeds in doingso the expression for the potential F (y) an be alulated around the stati transition and avalue of  again oiniding with the ferromagneti one in found.Thanks to the Legendre transform already used in the fatorized Ansatz approximation theomplexity am be alulated, leading to important orretions to the fatorized results.We would like to stress in onlusion that this is only an introdutory review of the steps ofomplete 1RSB solution, that an be found in details in [26, 30℄, and that the 1RSB equationsan be reformulated also in the single sample avity analysis presented in [29, 30℄ for the 3-SAT model, where the re-weighting fator (2.173) lies at the hearth of the e�etiveness of theproposed Survey Propagation algorithm. There, the indiator funtion �(A) plays the role of a�lter on the messages surveys that would lead to oniting information oming from a funtionnode (lause) to the variable to be �xed.



2.6. "FERROMAGNETIC COMPLEXITY" 732.6 "Ferromagneti omplexity"From the usual de�nition of the free energy �F = �E � Stot and from the fat that we areworking with a lusterized system of m replias, we an split the total entropy of our system inan mS part ounting the ontribution within lusters and a omplexity � ounting the lustersmultipliity. We an therefore write �m�F (m; �) = �(�;m) + mS(�) � m�U(�;m), whereU is the total internal energy. The omplexity of the original, m = 1 system will be thereforegiven by the stationary point ondition [7℄��(�) = m2��F (m; �)�m jm=1 (2.185)at �nite temperature. However, if we want to ompute ��(1) we must solve the saddle pointequations for m = 1, and then take the zero temperature limit, whih is a ase not ontainedin the y !1 limit of the previous setion. This limit in priniple underestimates the numberof LGS at � = 1, and does not allow to ompute the omplexity at �nite energy above thestati transition, beause in that ase the states at y = 0 (and m = 1 ounts part of them)turn out not to be loally stable, as we have seen on the general disussion on the omplexity.In the general ase therefore ��(1) 6= �(y�) (2.186)and it is not orret. We will all ��(1) maybe with abuse of language the zero temperatureferromagneti omplexity of the diluted p-spin model for the following reasons: eq. (2.185) doesompute the on�gurational entropy of the metastable states of the ferromagneti p-spin dilutedmodel, and indeed, expliitly solving the T = 0 1RSB saddle point equations for m = 1 with aalulation similar to the RS ase32 one �nds:��() = Spara()� SRSferro() (2.187)where Sferro simply is the zero temperature entropy of the RS ferromagneti solution and wehave made expliit the dependene on . This result is valid for all degrees distributions in theferromagnet33.The existene of a metastable states omplexity for disordered ferromagnets is not in on-trast with the fat that the GS is replia symmetri. After the magnetization transition, aferromagneti solution is always present in the model, but is the enter of a single luster.There annot be more than one magnetized luster, beause the �xed spins are the ones be-longing to a ore subgraph that is univoally de�ned and shared by all other solutions, atHamming distane O(1) and found by spin ipping in the paramagneti fration of variables.This properties will be disussed in the last setion for the spin-glass ase, but is valid alsofor the single ferromagneti luster. However, also in this ases a dynamial transition in themetastable states is present. Between d and  an exponential number of states appear be-tween e = 0 and e = ed. Even though all lusters at e = 0 are identially magnetized, the32The reader interested in reproduing this alulation should nevertheless be areful to the fat that whilein the RS limit the analyti ontinuation of x �Pna=1 �a 2 = is taken, in this ase obviously x �Pma=1 �a =sigma1 = �1.33Notie that when more that one possible value for SRSferro() is present one has to take the largest one whihis the thermodynamially favored entropy within the non paramagneti hoies. This means in ase the systemundergoes a ontinuous transition before the disontinuous one (see hapter 5 for examples), ��() drops tozero at the transition point  = 1=(2v2).
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Figure 2.18: Energy landsape above the ferromagneti transition. The narrow entral diprepresents the zero energy ferromagneti solution.presene of non zero energy metastable states is responsible for a slowing down of the dynamisanalogous to the glassy ase. A �nite omplexity therefore arises and indeed an be alulatedvia a 1RSB steps. The glassy behavior of p > 2-spin ferromagnets has been studied in [20℄also at �nite temperature as a model for strutural glass transition or bloked on�gurationsomplexity in granular systems [80℄. Also the models studied in hapter 5 in the error orret-ing odes appliation are ferromagneti in nature. It is important to notie that also in thisases a dynamial transition in the metastable states only is present. After  an energeti gapin omplexity opens up. However, di�erently from the spin-glass ase, a single ferromagnetiluster at zero energy is always present. This situation in pitorially shown in �gs.(2.17) and(2.18), and is also the ase of some ad ho built ferromagneti-like hard-satis�able versions ofthe satis�ability model we studied in [55℄ and exploited to build a generator of very hard butsatis�able lauses. For this lass of models we expet loal searh algorithms of any presentlyavailable kind not to be able to overome the energy gap and �nd the global ferromagnetisolution for large system sizes. This was suessfully veri�ed with SAT solvers like walk-sat in
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entropically unfavouredFigure 2.19: Sheme of solution lustering in ferromagneti models with dynamial 1RSB phase.[55℄ and for deoding sum-produt algorithms in e... in hapter 5, as well as for simulatingannealing. Moreover, this should be the ase also for algorithms that are muh less a�etedfrom the dynamial transition and perform very well throughout the [d; ℄ region, like SurveyPropagation [29, 30℄.The luster piture in energy and  is modi�ed onsequently in the way show in �g. (2.19)Some real omplexity plots for the ase of error orreting odes will be shown in Chapter 5.For Poissonian degrees distribution the ferromagneti omplexity reads��() = log 2 1� p0(1� log p0)� Xl vl(1� p0)l! (2.188)and ��() = log 2 �1� p0(1� log p0)� (1� p0)3� (2.189)for the 3-spin. Remarkably enough, ��() is in perfet agreement with numerial simulations [19,22℄ of the true �(e = 0; ) and with the general 1RSB analytial results of the previous setion,with the Poissonian ase and an in priniple be seen for any l and any degree distribution.In �g. (2.22) The analyti expression for �3�spin poiss(e = 0; ) alulated via eq. (2.185) isompared with numerial simulations. The results of numerial lustering with an overlap ut-o� of 0.7 (averaged over 1000, 1000, 500 and 50 samples) onverge to the analytial predition.Extensive numerial experiments on both versions (ferromagneti and spin-glass) of T = 0 3-spin (3-XOR-SAT) were performed in [19℄ in order to on�rm analytial preditions. We remindthat in a region where an extensive number of GGS is present, the ombinatorial problem isPolynomial in the worst ase as will be extensively review (and exploited) in hapter 3 and5. We used a global polynomial method that redues the problem of the GGS searh to thatof solving a large sparse linear system in Galois Field 2 (GF[2℄)34. The simulations whoseoutput is shown in �gs. (2.20),(2.21) and (2.22) used the polynomial proedure as well as loalalgorithms, namely the Davis-Putnam (DP) omplete baktrak searh [91℄ and the inompletewalk-SAT randomized heuristi searh [92℄ , to hek the hardness of the problem for loalsearh35. The existene of at least one solution in the satis�able 3-XOR-SAT allowed us to run34This method will be reviewed in hapters 3 and 5 for the interested reader.35mixed randomized and baktraking proedures have been also reently investigated. See for example [88℄,based on a systemati study reported in [93℄.
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Figure 2.20: The probability that a formula is SAT as a funtion of the oupling density. Inset:The energy reahed by a deterministi rule beomes di�erent from zero at the dynamial ritialpoint.
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Figure 2.21: The lowest lines are the analytial expressions for the entropy of the ferromagnetimodel. The numerial estimation (not reported) perfetly oinide. Dashed parts orrespondto metastable states. The rest of the data (entropy in the main body and energy and bakbonesize in the inset) ome from exhaustive enumeration of the ground states in the spin-glass modeland of �rst exited states in the ferromagneti one (only N = 40; 60) and they oinide.walk-SAT in the whole range of , the halting riterion always being �nding a SAT assignment.These results are quite surprising beause tells us that the dynami and stati p-spin spin-glassthresholds oinide with the values of appearane of a metastable ferromagneti solution andwith the thermodynami ferromagneti transition (some values where given in the Poissonianand l �xed ase in table 2.4.4). We will see in the next setion why it is so.2.6.1 Hiding solutions in random satis�ability problemsWe would like to make here a very brief digression to say, as we pointed out a few lines above,that the peuliar low and zero temperature solutions spae struture of the ferromagneti-likemodels desribed in this hapter is not restrited to the generalized p-spin model, but the samequalitative piture of �gs. (2.17), (2.18) and (2.19) also applies to ad ho onstruted ferro-magneti versions of ombinatorial optimization problems suh as Hyper-graphs Bioloring3636See later hapter 3 for details.
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Figure 2.22: Ground states on�gurational entropy versus mean onnetivity for the Poissonian3-spin. With the analyti result we mean in this ase ��(), whih is also in perfet agreementwith the omplete 1RSB urve.and random K-SAT. In this ontext, the extreme hardness of �nding the narrow basin fer-romagneti solution hidden among a muh larger exponential number of metastable states athigher energies, for  >> d, has revealed itself very useful in the design of hard and solvableombinatorial instanes. Indeed, this is a very welome in omputer siene, sine a majorproblem in evaluating stohasti loal searh algorithms for NP-omplete problems is the needfor a systemati generation of hard test instanes having previously known properties of theoptimal solutions. On the basis of statistial mehanis results, we therefore proposed a lassof random generators of hard and satis�able instanes for the 3-satis�ability problem based ofa well suited ferromagneti version of it. The design of the hardest problem instanes is basedon the existene of a �rst order ferromagneti phase transition and the glassy nature of exitedstates. This subjet would surely deserve a hapter on its own, but we deided not to inludeit here in order not to overload the thesis. However, at the end of this hapter we inluded thepublished artile [55℄ - presenting our results - in its entireness. We would also like to men-tion that the generator desribed in the artile was e�etively implemented and submitted inthe SAT2002 Cininnati Sat-Solvers ompetition, where it performed exellently. We believethese results to be e very lear example of the utility of statistial physis insight in the �eldof ombinatorial optimizationNotie, on the opposite side, we will see in details in hapter 5 how error orreting odesalgorithms expliitly try to avoid entering the dynamial region (and therefore to work ina regime of an e�etive  < d) in order to work eÆiently, sine a larger basin of for theferromagneti solution37 is needed for the algorithms to rapidly onverge.37The ferromagneti solution an be gauged to orrespond to the omplete retrieved original (before orrup-tion) message parity hek error orreting odes. See hapter 5 for details.



78 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODEL2.7 An exat alternative solution of the p-spin model atT = 0We would like here to review a rigorous alternative solution for both the dynamial and statithresholds of the generalized p-spin. We stress that the following solution is exat. No needfor either replia or avity alulations is enountered. This does not invalidate the relevaneof previous setions, beause this last method is limited to the p-spin at zero temperature (p-XOR-SAT), whose on�gurational spae symmetries do not in general our in other models.Moreover, this derivation is a strong psyhologial argument in favor of the exatness of 1RSBalulations in more ompliated ases. The method was presented in [26℄ for the speial aseof the 3-spin Poissonian hyper-graphs (as the prototype model of this whole line of researh)and, with an almost equivalent formulation, in [94℄. In this setion we'll stritly follow [26℄,where all the results have been already established. Extending the alulations to arbitraryrank and degree distribution hyper-graphs was straightforward, so that this setion will notontain any original result. It was only written for ompleteness, to show a lear example ofthe growing interplay between statistial physis methods and algorithms analysis. Indeed, alarge amount of work is urrently being performed in this diretion with bene�ts for both �elds.See [95, 93℄ and referenes for some examples. We will exploit onepts from graph theory andall the alulations will be simple annealed averages, whih are rigorous. All the formulas willbe written for the generi p-spin, and the partiular ase p = 3 on Poissonian hyper-graphs willbe onsidered in order to make onnetion with the expliit results of the previous setions.The physial idea behind the graph theoretial derivation is the following. In a randomhyper-graphs there are many variables with onnetivities 0 and 1, whose avity/e�etive �eldsat zero temperature are null. A small utuation in the number of these variables, indue verylarge utuations in physial observables, as for example in the entropy. Thus, the idea is toremove all these \oppy" spins and to study the properties of the residual hyper-graph, the\ore", where oniting onstraints, if present, must lie. We �nd that, on the ore, sample-to-sample utuations are negligible and this allows us to study its properties by mean of verysimple annealed averages.2.7.1 The onset of frustration: hyper-loops in the graphAnalogously to what happens with loops in usual graphs (p = 2), in a disordered model de�nedon a hyper-graph (p > 2) frustration is indued by the presene of hyper-loops [19, 21℄, whihare also alled hyper-yles in the literature [68, 63℄ and where already introdued in hapter1 and �g. (1.1). We reall here that a hyper-loop is a sub-hyper-graph C � H, suh thatevery vertex in C has even degree in C. In terms of the inidene matrix Â, the hyper-looporresponds to a set of rows R suh that, for every olumn, the sum modulo 2 of the elementsis zero, i.e. Pi2R aji mod[2℄ = 0 8j. The presene of hyper-loops is diretly related to thepresene of frustration in the system: If the produt of the signs of hyperloop interations isnegative, Qm2C Jm = �1, then not all suh interations an be satis�ed at the same time. Theritial point , where hyperloops perolate, is a T = 0 phase boundary for the p-spin glassmodels de�ned by Hamiltonian (2.9): For  <  all the interations an be satis�ed and theGS energy is zero, while for  >  the system is in a frustrated spin glass phase and GGS ofzero energy no longer exist. The ritial point  orresponds to the SAT/UNSAT thresholdfor the random p-XORSAT problem. In terms of the random linear system Â ~x = ~y mod[2℄, aslong as  < , solutions to the system will exist with probability 1 in the large N limit for any
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TWO STEPS IN THE LEAF REMOVAL ALGORITHM

FOR A MIXED 2−3 RANK HYPER−GRAPH

Figure 2.23: Two generi steps of the leaf removal algorithm on a portion of 2+3-hyper-graph.y. We would like to reall again the existene of somehow anomalous models. If the fration v2of rank 2 edges is larger than a ertain ritial threshold, a giant omponent made of a purely2-sub-hyper-graph (plus frations of other edges of order lO(1)), forms. Within this extensiveonneted sub-graph, 2-loops perolate at  = 1=2 and give rise to frustration. More generalhyper-loops, formed by a �nite fration of all ranks edges, perolate at the stati threshold(2.187), giving rise to a disontinuous ferromagneti transition in ferromagneti models38 , orspin-glass in the frustrated ases. But at that point the ontinuous transition at  = 1=2 hasalready taken plae. In fat, these models do not radially di�er from the other ases, beausethe topologial emergent strutures that lead to propagation of frustration in the hyper-graphare the same. The only di�erene being a \time"39 sale separation in the �xed rank hyper-graphs An axample of general phase diagram that inlude these ases will be drawn in the �rstsetion of hapter 5.2.7.2 Leaf removal algorithmGiven a hypergraph the leaf removal algorithm proeeds as follows [96℄: As long as there isa vertex of degree 1 remove its unique hyper-edge. Two subsequent steps of the algorithmare illustrated in �g. 2.23 for a 2 + 3-hyper-graph. Very similar algorithms have been reentlystudied in [97, 95℄. During the whole proess the remaining hyper-graph is still a random one,sine no orrelation an arise among the hyper-edges if it was not present at the beginning.When there are no more verties of degree 1 in the hypergraph the proess stops and we allore the resulting hypergraph, leared of all isolated verties. However, while in poissonianases we an infer the degree distribution of k � 2 verties to remain poissonian during thewhole preess [95, 26℄, when working in a more general ase the leaf removal in priniple allowsfor a trajetory in the random graphs ensemble spae. The evolution equations at eah stepan still be written, but one is not guaranteed eny more that the solutions will refer to thestarting graph of to some di�erent struture. Sine the equations we will retrieve oinide tothe ones givin the ferromagneti thresholds also in the general ase, we believe the method to38Rigorously speaking, hyper-loops are not responsible for the ferromagneti transition, but only for thespi-glass one. The extensive ferromagneti luster appears when similar strutures that have been alled hyper-onstraints perolate. A pitorial example of suh a struture, whih is stritly speaking also a yle, is givenin the right drawing of �g. (1.1). However, in the random hyper-graph these strutures are both of typial sizeO(logN) and they di�er one from the other by a small stattistial variation of the graph. We therefore inferthat tey appear at the same time. This is the physial reason for the oinidene of ritial lines at T = 0 inthe ferromagneti and in the spin-glass model.39I.e. the growing hyper-graph mean density , if we imagine to randomly grow the hyper-graph from aninitial set of disonneted verties.



80 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELwork also away from the poissonian ase.The leaf removal algorithm is not able to break up any hyper-loop, sine eah vertex in thehyperloop has at least degree 2. The  value where the ore size beomes di�erent from zero,let us all it d, is therefore ertainly smaller than the perolation point of hyperloops  (forp = 2 these two values oinide).The evolution of a hypergraph in extensive time T 2 [0;M ℄ under the appliation of theleaf removal algorithm an be desribed in terms of the probability, k(t), of �nding a vertexof degree k after having removed T = tN hyperedges where the resaled `time' t ranges from 0to . let us all Nk(T ) the number of surviving verties of degree k at extensive time T , andMl(T ) the number of l-edges at time T . At time T +1 (one leaf removal iteration) we randomlyhoose vertex of degree one and remove the edge among the vertex belongs to. Therefore thenumber of zero degree verties will inrease by one, plus the probability N1(T )=sumk0k0Nk0(T )that the other l� 1 verties of the erased edge have degree one (in that ase also those vertieswill have degree zero after the iteration), weighted over the probability lMl(T )=Pl0 l0Ml0(T ) ofhaving found a rank l edge. Putting all together one an write:N0(T + 1) = N0(T ) + 1 + N1(T )Pl(l � 1)lMl(T )Pk0 k0Nk0(T )Pl0 l0Ml0(T ) (2.190)In the same way we an write the evolution equations for Nk(T ) as:N1(T + 1) = N1(T )� 1 + (2N2(T )�N1(T ))Pl(l � 1)lMl(T )Pk0 k0Nk0(T )Pl0 l0Ml0(T ) (2.191)Nk>1(T + 1) = Nk(T )� 1 + ((k + 1)Nk+1(T )� kNk(T ))Pl(l � 1)lMl(T )Pk0 k0Nk0(T )Pl0 l0Ml0(T ) : (2.192)De�ning a resaled time t = T=N 2 [0; ℄ andk(t) � Nk(T )N = Nk(tN)N (2.193)(k(t) and vl(t) are well behaved quantities in the N large limit, with of ourse k(0) = k andvl(0) = vl of the initial hyper-graph), to the leading order in N we an write the evolutionequations (see Ref. [95℄ for a detailed derivation of similar equations) for the frations k(t) as�0(t)�t = Pl l(l � 1)vl(t)1(t)< l >t< k >t + 1 ;�1(t)�t = Pl l(l � 1)vl(t)(22(t)� 1(t))< l >t< k >t � 1 ; (2.194)�k(t)�t = Pl l(l � 1)vl(t)((k + 1)k+1(t)� kk(t)< l >t< k >t 8k � 2 ;where < k >t= Pk kk(t) =< k > ( � t), sine the mean degree linearly dereases withtime (we remove one interation per step) and vanishes at t = ; while < l >t= Pl lvl(t).These equations are the generalization of eqs.(22) in [26℄, sine one has to take into aountthe probability / lvl that the edge removed has rank l. It is more onvenient in the generalase to resort to the generating funtional formalism of eqs. (2.5) and (2.6): summing up allpower-weighted terms of (2.194) one obtains the general evolution equation_(x; t) = (1� x) "1 + v00(1; t)v0(1; t) 0(x; t)0(1; t)# (2.195)



2.7. AN EXACT ALTERNATIVE SOLUTION OF THE P -SPIN MODEL AT T = 0 81where _f(x; t) � �f(x; t)=�t and f 0(x; t) � �f(x; t)=�x. On the other hand, we must follow inparallel the evolution equation for the rank fration vl(t): we an writeMl(T + 1) =Ml(T )� lMl(T )Pl0 l0Ml0(T ) ; (2.196)Resaling as the time as before in t! tN as in the degrees equation and notiing thatMl(tN) =Nvl(t), we are left with: _v(x; t) = 1 � t "v(x; t)� xv0(x; t)v0(1; t) # (2.197)The partiular boundary onditions under whih we are interested in solving eqs. (2.195) and(2.197) are v(x; 0) = v(x)(x; 0) = (x)v0(1; 0) = v0(1) = 0(1) = 0(1; 0) :Eqs (2.195) and (2.197) are standard partial linear di�erential equations. Exploiting (2.198),after some analytis we an write:v(x; t) = 11� t v  xv�1  1� t!! (2.198)(x; t) = 0�1 + 0 ��1 �1� t��0(1) (x� 1)1A+(1� x) 1� �1  1� t!! 0  �1  1� t!! (2.199)It is onvenient to work in the variable z � v�1(1� t=), s.t. the fration of degree 1 variablesan be written as _(0; t) = 0  1 + v0(z)v0(1)! 0(z)0(1) � (1� z)v0(z) : (2.200)A part from the always present _(0; ) = 0 solution, more non trivial solutions z� of the equation1� z� = 0 �1 + v0(z�)v0(1) �0(1) (2.201)an be found in ertain regions of values of . This equation turns out to be equivalent to theself-onsistent ondition for the magnetization in the unfrustrated model, found via the repliaor the avity alulation, through the mapping1� z =) p0 ; (2.202)where we reall p0 to be the fration of verties whose spins feel e�etive �eld equal to zero.Writing (2.201) in terms of the link probability distributions (1.6), we an resale the generatingfuntions as link(x) = 0(x)0(1)vlink(x) = v0(x)v0(1)



82 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELso that to obtain: 1� z� = link h1� vlink(z�)i : (2.203)Armed with the results of the previous setions, we'll all d the graph density at the partiularz�d the point where (2.201) is satis�ed together with its z-derivative�link h1� vlink(z)i�z jz� + 1 = 0 (2.204)This orresponds to the �rst time a non trivial solution appear. Beyond that point, formthe leaf removal proess point of view, we are presribed to take as the valid z� the largestsolution of (2.201), as the point where the algorithm halts. to z� will orrespond a halting timet� = (1 � (z�)). In the partiular ase of Poissonian p-spin, the solutions of (2.201) an bereast in the partiular form�(t) = p h( � t)p�1i 1p ; (2.205)1(t) = �(t) 24e��(t) � 1 +  �(t)p ! 1p�135 ; (2.206)0(t) = 1� 1Xk=1 k(t) : (2.207)where �(t) =< k >t �1(t) + �(t)e��(t) is the mean degree of all the verties of k � 2 at timet. As in the general ase, the leaf removal algorithm stops when there are no more verties ofdegree 1, so one an predit the resulting ore by �xing �(t) = ��, where �� is the largest zeroof the equation 1(t�) = 0 or equivalentlye��� � 1 +  ��p! 1p�1 = 0 : (2.208)As before, notie that one we de�ne z� = [��=(p)℄1=(p�1), eq. (2.208) an be rewritten as1� z� = exp ��p(z�)p�1� ; (2.209)eq. (2.203) (or its partiular ase (2.209)) oinides with (2.89) and (2.182), the equation for thebakbone size in any 1RSB luster, the fration of variables (z�)2 = (1� t) with a non trivialdistribution of avity u or h-�elds. Inidentally, we observe here that eq. (2.203) is the sameequation appearing in parity hek diluted error orreting odes theory as the onvergenethreshold for sum-produt or belief propagation (BP) algorithms in the orrupted messagereonstrution proess. This oinidene is not surprising from a statistial physis point ofview: indeed, we will see in hapter 5 how the mapping between spin systems on diluted hyper-graphs and and suh kind of odes interprets the low performane of BP-like algorithms interms of a dynamial phase transition. At t�, z� gives us the size of the ore. In the l = 2 asethe leaf removal algorithm is able to delete all the edges only for tree-like graphs. As soon asthere are loops in the graph, a ore ontaining these loops arises (see �g. 2.26). In a randomgraph the leaf removal transition oinides with the perolation one at per = 1=2. The shapeof the funtion 1(�) is shown in �g. 2.24 for Poissonian graphs and is similar in the general ase:For  � per, there is only one zero in �� = z� = 0; While, for  > per, �� > 0 ; z� > 0 and
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Figure 2.24: The funtion 1(�)=� for l = 2.
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Figure 2.25: The funtion 1(�)=� for l = 3. Inset: funtion ��() for l = 3.a ore arises, whose size grows as ( � per)2 near the ritial point. For l > 2 the perolationtransition, taking plae for example at per = 1l(l�1) for �xed rank, does not a�et at all theleaf removal algorithm whih is able to delete all the hyper-edges, even those forming loops(but not hyper-loops), far beyond per (see �g. 2.27). The shape of the funtion 1(�) for l = 3and Poissonian graphs is shown in �g. 2.25. It is lear (see inset of �g.( 2.25)) that when ��()beomes di�erent from zero it diretly jumps to a �nite value: ��(d) = 1:25643 for l = 3. Theore transition is therefore disontinuous unless it is driven by simple 2-loops perolation.2.7.3 The ore and the alulation of the  thresholdIn the ore, the number of verties N and the number of hyper-edges M an be expressed asa funtion of the distributions v and ,  and z� asM = N( � t�) = Nv(z�)N = N(1� (0; z�)) (2.210)(0; z�) =  1� v0(z�)v0(1) !+ (1� z�)v0(z�)The �rst equation states that the number of hyper-edges left is the initial one minus thenumber of step the leaf removal algorithm has been run (during eah step only one hyper-edgeis deleted). The lower urves in �g. 2.28 show the normalized number of verties N=N andnumber of interations M=N in the ore as a funtion of , for l = 3 and Poissonian degrees.It is natural now to study the residual problem on the ore, Â ~x = ~y mod[2℄, where Â is theM�N sparse random matrix obtained from Â deleting all the rows orresponding to removedinterations and all empty olumns. In the rest of the subsetion we will derive a general result
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Figure 2.27: Core on hyper-graphs.that, when applied to the problem on the ore, gives a neessary and suÆient ondition forthe existene of solutions to the ore linear system. Then we will show that, from a solution inthe ore, a solution for the original system an always be onstruted.Let us all NJ;N;M the number of GS for a given disorder realization J (i.e. a given hyper-graph and ouplings realization onsistent with distribution �(J)):NJ;N;M =X~� MYm=1 Æ(�im1 : : : �imp = Jm) : (2.211)
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Figure 2.28: From bottom to top (on the left): For l = 3, normalized number of hyper-edgesand verties in the ore, and fration of frozen sites, i.e. magnetization (or bakbone) in a state.In [26℄ the authors show that, in the large N limit, if the hyper-graph does not ontain anyvertex of degree less than 2, NJ;N;M is a self averaging quantity, that is it does not utuatehanging J. In order to show self-averageness they proved that, on hyper-graphs (p > 2) withminimum degree at least 2, the following equalities holdNJ;N;M = 2N�M ; limN!1 N 2J;N;M � � NJ;N;M �2� NJ;N;M �2 = 0 ; (2.212)where the over-line stands for the average over the disorder ensemble, that is over the ways ofhoosing M hyper-edges among �Np� and the ways of giving them a sign Jm = �1. The aboveequalities state that the probability distribution of NJ;N;M over the disorder ensemble is a deltafuntion, and thus the quenhed average equals the annealed onelogNJ;N;M = logNJ;N;M = log(2) (N �M) : (2.213)For the interested reader that survived the alulations of the previous setions, alulating themomenta of NJ;N;M following [26℄ should be simple. We only state the results in the generaldistributed hyper-graphs ase: The seond moment is given byN 2J;N;M = 2N�MX~� MYm=1 Æ(�im1 : : : �imp = 1)! 2N�Me�NPk k log(xk++xk�) ; (2.214)in the thermodynami limit, where x+; x� solve the following equationsx+ + x� = 1< l >Xl lvl "Xk kkhki xk�1+ + xk�1�xk+ + xk� #l�1 ; (2.215)x+ � x� = 1< l >Xl lvl "Xk kkhki xk�1+ � xk�1�xk+ + xk� #l�1 : (2.216)This is simply the output of the annealed alulation of the p-spin model, where the funtionalorder parameter are replaed by salars x�. The annealed alulations do not make use of



86 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELreplias and are therefore rigorous. The value of x+ (resp. x�) is proportional to the frationof variables taking values 1 (resp. -1) in the set of on�gurations whih maximize the lastsum in eq. (2.214). Then the typial magnetization of this model is given by m = x+�x�x++x� .Solutions to eqs.(2.215,2.216) an be lassi�ed depending on the value of magnetization m. Infull generality there are 3 solutions: a �rst symmetri one (x+ = x�) with m = 0, a seond onewith large magnetization and a third one with an intermediate value of m. For some hoiesof P (k) (e.g. a Poissonian) solutions with m > 0 may exist only for MN large enough. Thesolution with intermediate magnetization always orresponds to a minimum of FN;M and anbe in general negleted. The symmetri solution x+ = x� = 2�1=l always exists and givesFN;M = log(2) (1� MN ). For l > 2 and P (0) = P (1) = 0, i.e. for hyper-graphs with minimumdegree 2, the solution with large magnetization also exist for any  value and has x+ = 1,x� = 0 and FN;M = 0. As expeted, the intermediate solution, when it exists, has negativeentropy and therefore is not the physial one. Then, for l > 2 and P (0) = P (1) = 0, we anonlude that Pk k log �xk+ + xk�� = 0, equalities in eq. (2.212) hold, and the number of GS isa self-averaging quantity. Sine the ore generated by the leaf removal algorithm has minimumdegree 2, we may apply the above result, and �nd that the SAT/UNSAT threshold is given bythe ondition N() =M() : (2.217)For the Poissonian 3-spin this last ondition gives preisely the ferromagneti and the 1RSBspin-glass threshold  = 0:917935.For more ompliated rank distributions, however, another (x� 6= 2�1=l) solution an appearand give a value for the entropy higher than zero. When it is the ase, this solution is always theone orresponding to the ontinuous phase transition of the rank 2 sub-graph. The onditionfor the existene of a triritial rossover point is given by the simultaneous satisfation of(2.203), (2.204), (2.217) and v2 = 1=2, that redue to:triritial = < k >22v2 < k(k � 1) > = 3 < k(k � 1) >2< k >< k(k � 1)(k � 2) > : (2.218)In the Poissonian degrees ase this redues to v2 = 3v3 = 1=2triritial. The presene of thisontinuous transition was related in previous work - in models as the 2+p-SAT - to a rossoverbetween problems with typial40 P to typial NP omplexity [11℄. A simpler model that an bestudied in full detail and shows this kind of rossover behavior is the �+ p-XOR-SAT. Resultsare reported in the next hapter. It will be interesting to see (hapter 5) that a large fauna ofmodels exists, due to the freedom in degree and rank distributions hoies in the generalized p-spin model (and in priniple for a wider lass of Hamiltonians treatable with similar means). Insome ases it is easy to see that no rossover triritial point exists, but a general ore developsat d, followed by 2-loops perolation in the subgraphs before ondition (2.217) is ful�lled onthe embedding hyper-graph.2.7.4 Ground States ClusteringBefore the SAT/UNSAT threshold ( � ) the system is not frustrated and then a gaugetransformation setting all oupling signs to 1 an always be found: Given an unfrustrated GS40Notie that the notion of typial omputational omplexity is however not well de�ned and some very reentresults [30, 58℄ seem to show no onept of NP omplexity in the typial ase, even though the role and natureof the phase transitions enountered are still ruial in the heuristi understanding of the hardness onset andon the lever algorithm design.



2.7. AN EXACT ALTERNATIVE SOLUTION OF THE P -SPIN MODEL AT T = 0 87~�0 a possible gauge transformation is �0i = �i�0i and J 0m = Jm�0im1 : : : �0imp = 1. It is then possibleto onsider only the ferromagneti system (Jm = 1 8m), whih orresponds to the linear systemÂ ~x = ~0 mod[2℄. This is also what it will be done in a more omplete study of the omputationalost and memory transition of sparse systems solving algorithms in hapter 5. The solutionsto the linear system we are studying form a group: The sum of 2 solutions is still a solutionand the null element is the solution ~x = ~0. Therefore, if one looks at the on�gurational spaesitting on a referene GS, the set of GS will look the same, whatever the referene GS is. Animmediate onsequene of this symmetry is that, if GS form lusters, these lusters must be allof the same size.For  � , hyper-loops are absent and the total number of GS (or solutions) is alwaysgiven by 2N�M , i.e. their entropy is S() = log(2) (1� ). From the previous alulations it ispossible to divide the N variables in 2 sets: ~x represents the N variables in the ore, and ~xnthe N � N variables in the non-ore part of the hyper-graph, that is variables orrespondingto verties remained isolated at the end of the leaf removal proess. Thus also the entropy anbe divided in 2 parts. One part is given by the solutions in the ore, that is by the possibleassignments of ~x, S() = log(2)N()�M()N ; (2.219)whih is non-negative for d �  � . The other part is given by the possible multipleassignments of ~xn during the reonstrution proessSn() = S()� S() : (2.220)�g. (2.29) is a pitorial representation of the N -dimensional hyperube (represented as a spher-ial surfae for onveniene) of variables assignments binary vetors ~x = (x1; ::::; x2). Theonjeture, supported by numeris, is that solutions are onentrated in lusters, eah one ofthem around a referene one whih is one of the solutions of the ore-redued system. By def-
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Figure 2.29: Pitorial representation of lustering of solutions in the dynamial region [d; ℄.inition, a luster is a set of solutions with �nite Hamming distane d suh that d=N ! 0 asN ! 1. In virtue of the group symmetry property property, all the lusters have the samesize. We all their number is eN�(), where �() is indeed the omplexity Of the system. If the



88 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELonjeture represented in �g. (2.29) is true, the number of lusters must equal the number ofsolutions in the ore, that is �() = S() : (2.221)The intra-luster entropy, i.e. the normalized logarithm of the luster size, is then given bythe non-ore entropy Sn() = S() � S() = S() � �(). In order to prove the validity of(2.221) the authors of [26℄ were able to show that:� all the solution assignments of the ore variables ~x are \well separated", that is thedistane among any pair of them is extensive. This is what gives rise to the lustering,with a number of lusters whih is at least as large as the number of ore solutions(� � S).� then, for any �xed ~x, all possible assignments of non-ore variables ~xn belong to thesame luster, and so � = S.The �rst step is aomplished by alulating the probability distribution of the distane amongany two solutions in the ore. Thanks to the group property, one an restrit the alulation�xing one solution to the null vetor ~0, working again with the ferromagneti model. Forsimpliity the authors have performed an annealed average, but this does not invalidate theexatness of the results beause in an be proved via the Jensen inequality that the annealedaverage gives a lower bound on the ore solutions distanes, whih is enough for the validityof the proof. These last two steps of the alulations are idential in the general and in thePoissonian 3-spin ase, so we refer bak to the original paper [26℄ where they are explained indetails. As far as the omplexity remains positive, the ore system has an exponential number ofsolutions and it is therefore solvable (SAT). It is then always possible to assign values to the nonore variables so that the original system is also always solvable. Sine the omplexity goes tozero at , beyond that threshold the ore linear system only have exponentially rare solutions inN . We are therefore in the USAT region. Changing the values of the non ore variables does notallow to �nd a ore solution di�erent form the starting one (absent in this ase), so we annotsolve the original system if we annot start from a ore solution as a starting point: the largersystem is not solvable if a ore subsystem of it leads to ontradition. Having proved identity(2.221), eq. (2.217) therefore provides the exat threshold for random XOR-SAT satis�ability.We stress one more that these results oinide with the general 1RSB/avity solution and withthe heuristi derivation of the omplexity urve via the study of the metastable states of theferromagneti model via the fatorized Ansatz.



Chapter 3Some partiular ases of interest
3.1 The 2+p-XOR-SAT model: role of phase oexis-tene and �nite-size salingThe statistial mehanis study of random K-SAT have provided some geometrial understand-ing of the onset of omplexity at the phase transition through the introdution of a funtionalorder parameter whih desribes the geometrial struture of the spae of solutions. The na-ture of the SAT/UNSAT transition for the di�erent values of K appears to be a partiularlyrelevant predition [31℄. The SAT/UNSAT transition is aompanied by a smooth (respetivelyabrupt) hange in the struture of the solutions of the 2-SAT (resp. 3-SAT) problem. Morespei�ally, at the phase boundary a �nite fration of the variables beome fully onstrainedwhile the entropy density remains �nite. Suh a fration of frozen variables (i.e. those variableswhih take the same value in all solutions) may undergo a ontinuous (2-SAT) or disontinu-ous (3-SAT) growth at the ritial point. This disrepany is responsible for the di�erene oftypial omplexities of both models reently observed in numerial studies. The typial solv-ing time of searh algorithms displays an easy-hard pattern as a funtion of  with a peak ofomplexity lose to the threshold. The peak in searh ost seems to sale polynomially withN for the 2-SAT problem and exponentially with N in the 3-SAT ase. From an intuitivepoint of view, the searh for solutions ought to be more time-onsuming in presene of a �-nite fration of fully quenhed variables sine the exat determination of the latter requires analmost exhaustive enumeration of their on�gurations. To test this onjeture, a mixed 2 + p-model has been proposed, inluding a fration p (resp. 1 � p) of lauses of length two (resp.three) and thus interpolating between the 2-SAT (p = 0) and 3-SAT (p = 1) problems. Thestatistial mehanis analysis predits that the SAT/UNSAT transition beomes abrupt whenp > p0 ' 0:4 [31, 13, 11, 14℄. Preise numerial simulations support the onjeture that thepolynomial/exponential rossover ours at the same ritial p0. Though the problem is bothritial ( = 1=(1� p) for p < p0) and NP-omplete for any p > 0, it is only when the phasetransition beomes of the same type of the 3-SAT ase that hardness shows up. An additionalargument in favor of this onlusion is given by the analysis of the �nite-size e�ets on PN(;K)and the emergene of some universality for p < p0. A detailed aount of these �ndings maybe found in [31, 13, 11, 14, 9℄. For p < p0 the exponent �, whih desribes the shrinking of theritial window where the transition takes plae, is observed to remain onstant and lose tothe value expeted for 2-SAT. The ritial behavior is the same of the perolation transition inrandom graphs (see also ref. [53℄). For p > p0 the size of the window shrinks following some89



90 CHAPTER 3. SOME PARTICULAR CASES OF INTERESTp-dependent exponents toward its statistial lower bound [119℄ but numerial data did not allowfor any preise estimate. In this setion, we study an exatly solvable version of the random2+p SAT model whih displays new features and allows us to settle the issue of universality ofthe ritial exponents. The threshold of the model an be omputed exatly as a funtion ofthe mixing parameter p in the whole range p 2 [0; 1℄. Rare events are found to be dominantalso in the low  phase, where a oexistene of satis�able and unsatis�able instanes is found.A detailed analysis for the p = 1 ase an be found in ref. [19℄. The existene of a global{ polynomial time { algorithm for determining satis�ability allows us to perform a �nite sizesaling analysis around the exatly known ritial points over huge samples and to show thatindeed the exponent ontrolling the size of the ritial window eases to maintain its onstantvalue � = 3 and beomes dependent on p as soon as the phase transition beomes disontin-uous, i.e. for p > p0 = :25. Above p0 and below p1 � 0:5, the exponent � takes intermediatevalues between 3 and 2. Finally, above p1 the ritial window is determined by the statistialutuations of the quenhed disorder [119℄ and so � = 2.3.1.1 Model de�nition and outline of some resultsThe model we study an be viewed as the mixed 2+ p extension of the 3-XOR-SAT (or hSAT)model disussed in [19℄, as muh as the 2 + p-SAT [31℄ is an extension of the usual K-SATmodel. In omputer siene literature and its ritial behavior was still reently onsidered anopen issue [82℄. We an write an instane of our model as a mixture of 2 and 4-lauses setsde�ned in hapter 1 (with 50% satisfying assignments). A ompat de�nition an be ahievedby the use of the exlusive OR operator �, e.g. C(ijkj+1) = xi� xj � xk. Then, we randomlyhoose two independent sets E3 and E2 of pM triples fi; j; kg and (1 � p)M ouples fi; jgamong the N possible variable indies (see setion 2.1 for de�nitions) and respetively pM and(1� p)M assoiated unbiased and independent random variables Tijk = �1 and Jij = �1, andwe onstrut a Boolean expression in Conjuntive Normal Form (CNF) asF = ^fi;j;kg2E3C(ijkjTijk) ^fi;jg2E2C(ijjJij) : (3.1)As in [19℄, we an build a satis�able version of the model hoosing lauses only of the C(ijj+1)and C(ijkj + 1) type. For p < p0 the problem is easily solved by loal and global algorithms,whereas interesting behaviors are found for p > p0, where the loal algorithms fail. Theabove ombinatorial de�nition an be reast in a simpler form as a minimization problem of aost-energy funtion on a topologial struture whih is a mixture of a random graph (2-spinedges) and hyper-graph (3-spin hyper-edges). We end up with a diluted spin model where theHamiltonian reads HJ [S℄ =M � Xfi;j;kg2E3 Tijk SiSjSk � Xfi;jg2E2 Jij SiSj ; (3.2)where the Si are binary spin variables and the the random ouplings an be either �1 atrandom. The satis�able version is nothing but the ferromagneti model: Tijk = 1 and Jij = 1for any edge. As the average onnetivity  of the underlying mixed graph grows beyond aritial value (p), the frustrated model undergoes a phase transition from a mixed phase inwhih satis�able instanes and unsatis�able ones oexist to a phase in whih all instanes areunsatis�able. At the same (p) the assoiated spin glass system, undergoes a zero temperatureglass transition where frustration beomes e�etive and the ground state energy is no longer



3.1. THE 2+P-XOR-SATMODEL: ROLE OF PHASE COEXISTENCE AND FINITE-SIZE SCALING91the lowest one (i.e. that with all the interations satis�ed). At the same ritial point theunfrustrated, i.e. ferromagneti, version undergoes a para{ferro transition, beause the sametopologial onstraints that drive the glass (mixed SAT/UNSAT to UNSAT) transition inthe frustrated model are shown to be the ones responsible for the appearane of a nonzerovalue of the magnetization in the unfrustrated one [19℄. We shall take advantage of suhoinidene of ritial lines by making the analytial alulation for the simpler ferromagnetimodel. Moreover, the nature of the phase transition hanges from seond to random �rst order,when p rosses the ritial value p0 = 1=4. For p > p0 the ritial point (p) is preeded by adynamial glass transition at d(p) where ergodiity breaks down and loal algorithms get stuk(loal algorithms are proedures whih update the system on�guration only by hanging a �nitenumber of variable at the same time, e.g. all single or multi spin ip dynamis, together withusual omputer sientists heuristi algorithms). The dynamial glass transition exist for bothversions of the model [20℄ and orresponds to the formation of a loally stable ferromagnetisolution in the unfrustrated model [22℄ (the loal stability is intimately related to the ergodiitybreaking). Speializing to the present ase the general results of the �rst hapter, we an lookfor a self onsistent Ansatz for the zero temperature e�etive �elds distribution P (h) in thesatis�able ase., whih turns out to have the following simple formP (h) =Xl�0 rlÆ(h� l) ; (3.3)with a self-onsisteny equation for r0:r0 = e�3p(1�r0)2�2(1�p)(1�r0) = 1X1=0 1X2=0 e�3pe�2(1�p) (3p)11! (2(1� p))22! (1�(1�r0)2)1(r0)2 :(3.4)The equations for the frequeny weights rl with l > 0 follow from the one for r0 and readrl = [3p(1� r0)2 + 2(1� p)(1� r0)℄ll! : (3.5)The previous self onsisteny equations for r0 (or for the magnetization m = 1� r0) an easilybe derived by the same probabilisti argument used in [19℄, due to the fat that the lauseindependene allows to treat the graph and the hyper-graph part separately. Note that in thesimple limit p = 0 we retrieve the equation for the perolation threshold in a random graph ofonnetivity  [61, 62, 67℄. The ground state entropy an be written in the SAT phase as:S() = log(2)[r0(1� log(r0))� (1� p)(1� (1� r0)2)� p(1� (1� r0)3)℄ (3.6)To �nd the value of the paramagneti entropy we put ourself in the phase where all sets of 4-and 2-lauses at independently, eah therefore dividing the number of allowed variables hoieby two: the number of ground states will be Ngs = 2N�pN�(1�p)N = 2N(1�). The resultingvalue of Spara = (1� ) log(2) oinides with the one found setting r0 = 1 in eq.(3.6). Solvingthe saddle point equation for r0, we �nd that a paramagneti solution with r0 = 1 always exists,while at a value of  = d(p) there appears a ferromagneti solution in the satis�able model.For p = 0, the ritial value oinides as expeted with the perolation threshold d(0) = 1=2.As long as the model remains like 2-SAT, up to p < p0 = 0:25, the threshold is the pointwhere the ferromagneti solution appears and also where its entropy exeeds the paramagnetione. The ritial magnetization is zero and the transition is ontinuous. For larger values
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Figure 3.1: Critial lines (the upper is the stati and lower the dynami) in the (; p) plane.Triritial point point (0:25; 0:667) separates ontinuous transitions from disontinuous ones(where d < ).Figure 3.2: Critial magnetizations at d(p) and (p) versus p.of the ontrol parameter p the transition beomes disontinuous. There appears a dynamialtransition at  = d(p) where loally stable solutions appear. At  = (p) > d(p), the nontrivial r0 6= 1 solution aquires an entropy larger than the paramagneti one and beomesglobally stable. The shape of  = d(p) and  = (p) as funtions of p are shown in �g. 3.1.The inset piture shows the magnetization of the model at the points where the dynamial andthe stati transitions take plae.3.1.2 Numerial simulationsThe model an be eÆiently solved by a polynomial algorithm based on a representation modulotwo (i.e. in Galois �eld GF[2℄). The same tehniques will be exploited in hapter four, where wewill stress the physial impliation of suh a mapping for the memory and CPU ost transitionsmet by algorithms trying to solve linear systems modulo two built in order to orrespond tothe spin model in the dynamial region. If a formula an be satis�ed, then a solution to thefollowing set of M equations in N variables exists( SiSjSk = Tijk 8fi; j; kg 2 E3SiSj = Jij 8fi; jg 2 E2 (3.7)Through the mapping Si = (�1)�i, Jij = (�1)�ij and Tijk = (�1)�ijk , with �i; �ijk; �ijk 2 f0; 1g,eq.(3.7) an be rewritten as a set of binary linear equations( (�i + �j + �k) mod 2 = �ijk 8fi; j; kg 2 E3(�i + �j) mod 2 = �ij 8fi; jg 2 E2 (3.8)For any given set of ouplings f�ij; �ijkg, the solutions to these equations an be easily foundin polynomial time by e.g. Gaussian substitution. The solution to the M linear equations in Nvariables an be summarized as follows: a number Ndep of variables is ompletely determinedby the values of the oupling f�ij; �ijkg and by the values of the Nfree = N �Ndep independentvariables. The number of solutions is 2Nfree and the entropy S() = log(2)Nfree=N = log(2)(1�Ndep()=N). As long as Ndep = M we have the paramagneti entropy Spara = log(2)(1 � ).However Ndep may be less than M when the interations are suh that one an generate linearombinations of equations where no �'s appear, like 0 = f(f�ij; �ijkg). This kind of equations
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Figure 3.3: SAT probabilities PSAT (; p) for p = 0 and p = 0:5. Data has been averaged over104 di�erent random hyper-graphs. Vertial straight lines are analytial preditions for ritialpoints: (p = 0) = 0:5 and (p = 0:5) = 0:810343. Bold urves for  <  are analytialpreditions for the SAT probability in the large N limit.orrespond to the presene of loops (resp. hyper-loops [19℄) in the underlying graph (resp.hyper-graph). A hyper-loops (generalization of a loop on a hyper-graph) is de�ned as a set Sof hyper-edges suh that every spin (i.e. node) is \touhed" by an even number of hyper-edgesbelonging to S (see �g. 3.4). Here we are interested in the fration of satis�able instanesPSAT (; p), averaged over the random ouplings distribution. One an show that, for anyrandom hyper-graph, PSAT is given by 2�Nhl , where Nhl is the number of independent hyper-loops [19℄. In �g. 3.3 we show the fration of satis�able instanes as a funtion of  forp = 0 and p = 0:5. The vertial lines report the analytial preditions for the ritial points,(p = 0) = 0:5 and (p = 0:5) = 0:810343. In the limit of large N and for p = 0:5 thefration of SAT instanes sharply vanishes at the ritial point in a disontinuous way, that islim!� PSAT () > 0 while lim!+ PSAT () = 0. This is the usual behavior already measuredin 3-SAT [31, 13℄ and 3-hyper-SAT [19℄, with the SAT probabilities measured on �nite systemsrossing at  and beoming sharper and sharper as N inreases. On the ontrary for p = 0and large N the probability of being SAT beomes zero at  in a ontinuous way. The mainonsequene is that �nite size orretions make PSAT () larger than its thermodynamial limitboth before and after the ritial point and thus the data rossing is ompletely missing. Notealso that for p < 1 the fration of SAT instanes for  < (p) is �nite and less than 1 evenin the thermodynamial limit, implying a mixed phase of SAT and UNSAT instanes. This isdue to the presene in the random hyper-graph of loops made only by 2-spin edges (indeed themixed phase is absent for p = 1 when only 3-spin interations are allowed [19℄). The expressionfor the SAT probability in the thermodynamial limit (bold urves in �g. 3.3, the lower mostfor p = 0 and the uppermost for p = 0:5) an be alulated analytially and the �nal result hasbeen obtained in [21℄ and readsPSAT (; p) = e 12 (1�p)[1+(1�p)℄ [1� 2(1� p)℄1=4 for  � (p) : (3.9)We have numerially alulated the SAT probabilities for many p and N values, �nding atransition from a mixed to a ompletely UNSAT phase at the (p) analytially alulated in
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Figure 3.4: Typial loop and hyper-loop. Lines are 2-spin edges, while triangles are 3-spinedges. Note that every vertex has an even degree.
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3.1. THE 2+P-XOR-SATMODEL: ROLE OF PHASE COEXISTENCE AND FINITE-SIZE SCALING95right value for p = 0. Thus we onlude that for p < 1=4 the exponents are those of the p = 0�xed point. For 0:25 < p � 0:5 we �nd that the � exponent takes non-trivial values between2 and 3. Then one of the following two onlusions may hold. Either the transition for p > p0is driven by the p = 1 �xed point and the � exponent is not universal, or more probably anydi�erent p value de�nes a new universality lass. This result is very surprising and interestingfor the possibility that di�erent universality lasses are simply the onsequene of the randomhyper-graph topology. More ompliated is the �tting proedure for p > 0:5. In a reentpaper [119℄ Wilson has shown that in SAT problems there are intrinsi statistial utuationsdue to the way one onstrut the formula. This white noise indues utuations of order N�1=2in the SAT probability. If ritial utuations deay faster than statistial ones (i.e. � < 2),in the limit of large N the latter will dominate and the resulting exponent saturates to � = 2.Data for p = 0:75 and p = 1 shown in �g. 3.5 have a lear upwards bending, whih we interpretas a rossover from ritial (with � < 2) to statistial (� = 2) utuations. Then we have �ttedthese two data sets with a sum of two power laws, w(N) = AN�1=� +BN�1=2. The goodness ofthe �ts (shown with lines in �g. 3.5) on�rm the dominane of statistial utuations for largeN . Moreover we have been able to extrat also a very rough estimate of the ritial exponent� from the subleading term. In �g. 3.6 we show with �lled squares these values, whih turn outto be more or less in agreement with a simple extrapolation from p � 0:5 results.3.1.3 ConlusionsThe exat analysis of a solvable model for the generation of random ombinatorial problems hasallowed us to show that ombinatorial phase diagrams an be a�eted by rare events leading toa mixed SAT/UNSAT phase. The energy di�erene between suh SAT and UNSAT instanes isnon extensive and therefore non detetable by the usual � !1 statistial mehanis studies.However, a simple probabilisti argument is suÆient to reover the orret proportion ofinstanes. Moreover, through the exat loation of phase boundaries together with the use ofa polynomial global algorithm for determining the existene of solutions we have been able togive a preise haraterization of the ritial exponents � depending on the mixing parameterp. The p-dependent behavior onjetured in ref. [31℄ for the random 2+p SAT ase �nds here aquantitative on�rmation. The mixing parameter dependeny also shows that the value of thesaling exponents is not ompletely determined by the nature of the phase transition and thatthe universality lass the transtion belongs to is very probably determined by the topology ofthe random hyper-graph. The model we study has also a physial interpretation as a dilutedspin glass system. It would be interesting to know whether the parameter-dependent behaviorof ritial exponent plays any role in some physially aessible systems. A generalization ofthe present model to a mixture of di�erent rank hyper-graphs will be presented in hapter fourin a omputer siene ontext . In the general ase we will see that, depending on the frationsof hyper-graphs involved, phase diagrams still more omplex with, for example, a ontinuosphase transition preeded by a dynamial one.



96 CHAPTER 3. SOME PARTICULAR CASES OF INTEREST3.2 Ferromagneti ordering on random graphsThe results of this setion are the output of a joint work with Alexei Vazquez, Riardo Zehinaand Alessandro Vespignani [98℄.3.2.1 IntrodutionThe inreasing evidene that many physial, biologial and soial networks exhibit a high degreeof wiring entanglement has led to the investigation of graph models with omplex topologialproperties[99℄. In partiular, the possibility that some speial nodes of the luster (hubs) possesa larger probability to develop onnetions pointing to other nodes has been reently identi�ed insale-free networks [100, 101℄. These networks exhibit a power law degree distribution pk � k� ,where the exponent  is usually larger than 2. This kind of degree distribution implies thateah node has a statistially signi�ant probability of having a large number of onnetionsompared to the average degree of the network. Examples of suh properties an be foundin ommuniation and soial webs, along with many biologial networks, and have led to thedeveloping of several dynamial models aimed to the desription and haraterization of sale-free networks[100, 101, 102℄.Power law degree distributions are the signature of degree utuations that may alter thephase diagram of physial proesses as in the ase of random perolation [105, 106℄ and spreadingproesses [107℄ that do not exhibit a phase transition if the degree exponent is  � 3. In thisperspetive, it is interesting to study the ordering dynamis of the Ising model in sale-freenetworks. The Ising model is, indeed, the prototypial model for the study of phase transitionsand omplex phenomena and it is often the starting point for the developing of models aimed atthe haraterization of ordering phenomena. For this reason, the Ising model and its variationsare used to mimi a wide range of phenomena not pertaining to physis, suh as the forming andspreading of opinions in soieties and ompanies or the evolution and ompetition of speies.Sine soial and biologial networks are often haraterized by sale-free properties, the studyof the ferromagneti phase transition in graphs with arbitrary degree distribution an �nduseful appliation in the study of several omplex interating systems and it has been reentlypursued in Ref. [108℄. The numerial simulations reported in Ref [108℄ show that in the ase of adegree distribution with  = 3 the Ising model has a ritial temperature T, haraterizing thetransition to an ordered phase, whih sales logarithmially with the network size. Therefore,there is no ferromagneti transition in the thermodynami limit.In this setion we present a detailed analytial study of the Ising model in graphs witharbitrary degree distribution that heavily relies on the general results of the �rst hapter. Byrelaxing the degree homogeneity in the usual mean �eld (MF) approah to the Ising model, it ispossible to show that the existene of a disordered phase is related to the ratio of the �rst twomoments of the degree distribution. Motivated by this �nding, we apply the replia alulationmethod in order to �nd an exat haraterization of the transition to the ordered state andits assoiated ritial behavior. We �nd that a disordered phase is allowed only if the seondmoment of the degree distribution is �nite. In the opposite ase, the strong degree of the hubspresent in the network prevails on the thermal utuations, imposing a long-range magnetiorder for any �nite value of the temperature. Corretions to this piture are found when theminimal allowed degree is m = 1. The value of the ritial temperature and exponents is foundfor any degree exponent  > 3 and a transition to the usual in�nite dimensional MF behavior isreovered at  = 5. Moreover, in the range 3 <  � 5 non trivial saling exponents are obtained.



3.2. FERROMAGNETIC ORDERING ON RANDOM GRAPHS 97During the ompletion of the present work we beome aware that Dorogovtsev, Goltsev andMendes [109℄ have obtained with a di�erent approah results whih partially overlap with thosereported in this setion.Let us onsider a network with arbitrary degree distribution k. Then onsider the Isingmodel with a ferromagneti oupling onstant on top of this network. The Hamiltonian of thissystem is given by H =M � NXi>j=1Jijsisj +H0Xi �isi; (3.12)whereM = hkiN=2, Jij = 1(0) if there is (there is not) a edge onneting node i and j, si = �1are the spin variables, and N is the network size. H0�i is a general external random �eld with�i following the a priori general probability distribution �(�i). As one an easily see, this isa partiularly simple ase of the models introdued in the �rst hapter. A simple mean �eldapproah is already able to predit the onditions for the existene of a transition temperatureas a funtion of the harateristi moments of the degree distribution and to give a rather goodestimate of its numerial value as: T = ��1 = hk2ihki : (3.13)Hene, when hk2i = hki is �nite there is a �nite ritial temperature as an evidene of thetransition from the para-magneti to a ferro-magneti state. However, if hk2i is not �nitethe system is always in the ferromagneti state. Nevertheless, the following result is onlyapproximate, it does not take into aount the full probability distribution of the e�etive�elds in the system but it relies only on the value of the mean magnetization, whih we willsee not to be enough to properly desribe the ritial behavior of the model.3.2.2 The replia approah on general random graphsIn the present setion we will re�ne the mean �eld piture via a the replia alulation Wewill show how this method allows to alulate values of and onditions for the existene of aritial temperature of the model that we believe to be exat. Moreover, these results ontainthe lassial mean �eld theory predition in the limits where the latter is appliable. Beingthe system a diluted ferromagnet with only a limited number of ground states and absene offrustration we believe the replia symmetri Ansatz to be suÆient to �nd the orret solutionof the problem. The details of the alulation of the replia free energy an be followed fromthe formulas of the �rst hapter keeping k general and V (l̂) = Æ(l̂� 2). We only rewrite belowthe saddle point equations and the orresponding free energy expression for this partiular ase,in order to make the setion more readable:P (h) = 1< k >Xk kpk Z k�1Yt=1 dutQ(ut)Æ  h�Xt ut �H0! (3.14)Q(u) = Z dhP (h)Æ "u� 1� tanh�1(tanh(�) tanh(�h))# (3.15)where P (h) is the average probability distribution of e�etive (or avity) �elds ating on thesites and Q(u) is that of the avity �elds due to the ontribution of a single neighbor. We wouldlike to stress the importane of the fat that the strong inhomogeneities present in the graph
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Figure 3.7: pitorial representation of the e�etive �elds ating on site S1 one its onnetionJ12 with S2 (and therefore with the left part of the graph with probability 1 in the N ! 1limit) has been removed.are orretly taken into aount and handled via the omputation of the whole probabilitydistributions. In the Ising ase we an easily work only with the u-�elds, whose self onsistentequation for the Q(u) reads:Q(u) = 1< k >Xk kpk Z k�1Yt=1 dutQ(ut)Æ "u� 1� tanh�1 "tanh(�) tanh � k�1Xt ut + �H0!##(3.16)This is an integral equation that an be solved at every value of � using a population dynamisalgorithm suh as the RS simple version of that proposed in [23℄. We hose to work in termsof the u-�elds beause they are onneted to the loal magnetization, whose mean value is themain quantity we are interested in studying around ritiality. The equation for the physialmagnetization probability distribution will indeed be:�(s) =Xk pk Z kYt=1 dutQ(ut)Æ "s� tanh �Xt ut + �H0!# (3.17)The equations for < u > and < s > follow:< u >= Z uQ(u)du = 1< k >Xk kpk Z k�1Yt=1 dutQ(ut) 1� tanh�1 "tanh(�) tanh � k�1Xt ut + �H0!#(3.18)< s >= Z s�(s)ds =Xk pk Z kYt=1 dutQ(ut) tanh � kXt ut + �H0! (3.19)The free energy reads�F = < k > � Z Z dhduP (h)Q(u) log(1 + tanh(�h) tanh(�u))�



3.2. FERROMAGNETIC ORDERING ON RANDOM GRAPHS 9912 Z 2Yt=1 dhtP (ht) log(1 + tanh(�) 2Yt=1 tanh(�ht))��Xk pk Z kYt=1 dutQ(ut) log 2 osh(�Pkt=1 ut + �H0)Qkt=1 2 osh(�ut) !�< k > �log(2) + 12(� � log(osh(�)))� (3.20)At the saddle point the expression further simpli�es. The internal energy and the spei� heatat the saddle point an be alulated from eq.(3.20) through relations < E >= � ��F�� andC = d < E > =dT and further exploiting (3.14) and (3.15):< E >= < k >2 � < k >2 Z dh1dh2P (h1)P (h2) tanh(�) + tanh(�h1) tanh(�h2)1 + tanh(�) tanh(�h1) tanh(�h2)! (3.21)C = �2 < k >2(osh(�))2 Z dh1dh2P (h1)P (h2) 1 + (tanh(�h1) tanh(�h2))2(1 + tanh(�) tanh(�h1) tanh(�h2))2! (3.22)The term < k� > =2 gauges the value of the energy to zero at T = 0 and no external �eld.3.2.3 Ferromagneti phase transitionAt T = 0 and in the limit of non vanishing �elds (u and h � O(1)) it is straightforward to seethat the avity �elds an take only 0 or 1 values. The equation (3.16) an be solved exatlywith the Ansatz Q(u) = q0Æ(u)+(1� q0)Æ(u�1). Plugging this Ansatz into eqs. (3.16), (3.18),and (3.19) one obtains: hui = 1� q0; (3.23)hsi = 1�G0(q0); (3.24)q0 = G1 (q0) ; (3.25)where G0(x) =Xk k pk xk; G1(x) = 1< k >Xk k pk xk�1; (3.26)are the generating funtions of the degree distributions of a vertex hosen at random and avertex arrived following an edge hosen at random [69℄, respetively. We point out that theseequations orretly oinides with that obtained in the problem of perolation in a randomgraph with an arbitrary degree distribution [112, 69℄, where the average magnetization hsi isjust the size of the giant omponent. Moreover, these expressions an be easily generalized tohigher order hyper-graphs as it has been done in [19, 21℄. From eq. (3.24) it follows that thereis a �nite magnetization whenever the solution q0 of eq. (3.25) is less than 1. This happenswhenever hk2ihki � 2; (3.27)that is just the ondition for perolation in a random graph [112, 69℄. On the ontrary, forhk2i = hki < 2 the magnetization (the size of giant omponent) is 0, i.e. the system is in aparamagneti state.



100 CHAPTER 3. SOME PARTICULAR CASES OF INTERESTFor random graphs satisfying the perolation ondition in eq. (3.27) we are now interestedin �nding the value of � for the ferromagneti transition. There are few equivalent ways to doso. In the general ase we an derive both sides of eq.(3.18) in u = 0 self onsistently, obtaining1T = � = �12 log 1� 2 hkihk2i! : (3.28)In the limit hk2i � 2 hki we an expand the logarithm getting the �rst order ondition T =hk2i = hki whih is the value found in the naive mean �eld approximation (3.13). Hene, theMF approah in developed in the previous setion is valid for hk2i � 2 hki and, in this ase, itgives the same results as those obtained using the replia approah.3.2.4 Critial behavior around �The ritial behavior of the thermodynamial quantities < s >, �, ÆC, and < s >H0� H1=Æ0lose to � an be alulated without having to expliitly solve the self onsistent equations forthe whole probability distributions Q(u) and �(s). SuÆiently lose to the ritial point wean assume Q(u) � Æ(u� < u >) being < u > in�nitesimal. In fat this Ansatz is inorret if� > �, beause it orretly takes into aount the degree distribution but disregards the nontrivial struture of the Q(u) , whih does not merely translate from the ritial form Æ(u) at �,but immediately develops a ontinuum struture. In the zero temperature limit the ontinuumshape will again ollapse in a distribution of delta peaks disussed above. Nevertheless, suÆ-iently lose to the transition we an expet only the �rst momenta of the Q(u) to be relevant.For distributions with < k4 > �nite one is left with a losed system of equations for the �rstthree momenta all ontributing to the same leading order. De�ning �n =< k(k� 1):::(k�n) >and A = ((tanh(�))2�2)=(�2 < k > �(tanh(�))2�1)< u > = tanh(�)tanh(�) < u > ��2 tanh(�)[1� (tanh(�)℄23 < k > �h�1 < u3 > +3�2 < u >< u2 > +�3 < u >3i< u2 > = A < u >2 (3.29)< u3 > =  (tanh(�))3A�2 + �3�3 < k > �(tanh(�))3 < �1! < u >3The expliit alulations are show in appendix D as a title of example. Exatly analogousalulations an be done for the the free energy, the energy and the spei� heat Proportionalityis found also for < k4 >=1, where the alulation is a bit more involved beause the leadingmomenta are to be found via an analyti ontinuation in the values of their order. Corretlytaking into onsideration the values of the leading momenta is important in ase one is interestednot only on alulating ritial exponents, but also the amplitudes, beause in general moreterms at the same leading order are present, as we see in eq.(3.29). However, the exponents aredetermined by the lowest non trivial last analyti value of the momenta of the distribution pk,and do not hange in the general ase beause all relevant momenta of the Q(u) give the samedivergene in the momenta of the pk. One example again is given in eq.(3.29). Sine we arenot interested in the alulation of amplitudes we an therefore resort to the variational AnsatzQ(u) � Æ(u� < u >) in the proximity of the transition. However we would like to stress that



3.2. FERROMAGNETIC ORDERING ON RANDOM GRAPHS 101alulations an be done also in the general ase. eqs.(3.18), (3.19) then beome< u > � 1< k >Xk kpk 1� tanh�1(tanh(�) tanh(�(k � 1) < u > +�H0)) (3.30)< s > � Xk pk tanh(�k < u > +�H0) (3.31)The orresponding expressions for the free energy, the energy and the spei� heat an beretrieved in the same way and will not be written here for the sake of spae. If < k4 > is �nitethe �rst non trivial term of the power series expansion of eq.(3.30) that still gives an analytiontribution is simply < u >3. One �nds< u > �  3 < k >�2 (tanh �) < k(k � 1)3 >!12 � 12 (3.32)< s > � < u >; � � ��1; < s >� H1=30 (3.33)where � = 1� T=T as usually de�ned. All exponents are the usual mean �eld ones. However,one �nds a �nite jump in the spei� heat. The transition is therefore �rst order in thetraditional sense. If we keep all the relevant momenta in our alulation, we �nd the expetedorretion to the amplitudes. For example we �nd< u >� p3((� tanh(�) < k >)((�1 + 3�2)A+ �3 >))� 12 � 12 : (3.34)This equation redues to (3.32) if we disregard higher momenta.3.2.5 Power law distributed graphsIn the following we are mostly interested in the ase of a power law distribution of the typepk =  k�; m � k <1; (3.35)where  is a normalization onstant and m is the lowest degree. Note that in the ase of apower law distribution< k2 >=  kmaxXk=m k2� >  m kmaxXk=m k1� = m < k > : (3.36)Hene, we have that for m � 2 the graph is always perolating for all  independently on theuto� kmax. Then form � 2 the ritial temperature is always given by eq. (3.28). In partiularfor m > 2 and  � 1 the ritial temperature approahes the limit T lim = �2= log(1 � 2=m)while for m = 2 the ritial temperature tends to zero in the large  limit. However, for m = 1there is a ritial value ? beyond whih the graph is no longer perolating [111℄. ? is the valueof  at whih hk2i = 2 hki, resulting �(?�2)�(?�1) = 2 that have the solution ? = 3:47875:::. If  � ?the system is always paramagneti while for  < ? there is a transition to a ferromagnetistate at a temperature given by eq. (3.28). In �g. 3.8 we show the phase diagram together withthe ritial lines for m = 1, 2 and 3.
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Figure 3.8: The phase diagram of the Ising model on sale-free graphs with a power law degreedistribution pk = k� , m � k < 1. The ferromagneti transition lines depends on the valueof m, with m = 1 irles, 2 squares, and 3 diamonds.3.2.6 2 <  � 3For 2 <  � 3 the seond moment of the degree distribution diverges and, therefore, as disussedin previous setions, the system is always in a ferromagneti state. In this ase it is importantto investigate the behavior of hui and hsi when � ! 0. This omputation an be done usingeither the mean-�eld or the replia approah obtaining the same results. In fat, in this asewe have lim�!0Q(u) = Æ(u) and putting this limit distribution into the self onsistent equationfor < u > and < s > we reover the mean �eld asymptoti behavior. For 2 <  � 3 the sumsin eq.(3.30) are dominated by the large k region. In this ase these sums an be approximatedby integrals resulting hui � ( � 2)(m� hui)�2 Z 1m�hui dxx1� tanhx; (3.37)while the magnetization, hsi = Pk pk tanh (�k hui), is simply given byhsi �  � 1 � 2m� hui : (3.38)The above integral annot be analytially alulated but its asymptoti behaviors for � ! 0an be obtained. For  = 3 the integral in the rhs of eq. (3.37) is dominated by the small xbehavior. Thus, approximating the tanh x by x and omputing hui we obtainhui � exp(�1=m�)m� ;  = 3: (3.39)On the other hand, for  < 3 the integral in the rhs of eq. (3.37) is �nite for any value ofm� hui and, therefore, for m� hui � 1 it follows thathui � [( � 2)I℄ 13� (m�) �23� ;  < 3; (3.40)where I = R10 dxx1� tanh x. Finally, substituting eqs. (3.39) and (3.40) on eq. (3.38) we gethsi � exp(�1=m�);  = 3; (3.41)



3.2. FERROMAGNETIC ORDERING ON RANDOM GRAPHS 103hsi � (m�) 13� ; 2 <  < 3: (3.42)With the same tehnique one an study the behavior of the other physially relevant quantities.Extrating the leading asymptoti terms from the expressions for the energy and the spei�heat T =1, we �nd an in�nite order phase transition withÆC � e�2=m��2 ;  = 3;ÆC � �(�1)(3�); 2 <  < 3: (3.43)Extrating from eq.(3.18) the leading behavior of �u � � < u > =�H0 at H0 = 0 and pluggingthe result together with eqs.(3.39), (3.40), (3.41) and (3.42) into � � � < m > =�H0 oneobtains: � � 1m2� (3.44)The limiting ase  = 3 orresponds with the Barabasi-Albert model studied in [108℄ bymeans of numerial simulations. The magnetization exhibits an exponential deay in agreementwith our alulation in eq. (3.41). Moreover, the ritial temperature was observed to inreaselogarithmially with the network size N . Computing T in eq. (3.13) for  = 3 we obtainT � (m=2) lnN , whih is in very good agreement with their numerial results. It is worthremarking that similar exponential and logarithmi dependenies have been observed for theorder and ontrol parameter in some non-equilibrium transitions [107, 110℄.3.2.7 3 <  � 5In this ase hk2i is �nite and, therefore, there is a ferromagneti transition temperature given byeq. (3.28). However, hk4i is not �nite and the derivation of the MF ritial exponents performedin Se. 3.2.4 is not valid. In order to �nd the ritial exponents we an write the funtionsinside the degrees sums as power series in < u >. The oeÆients of the two series will howeverdepend on the higher momenta of the degrees distribution and will be in�nite beyond a ertainpower of < u >. This is diret onsequene of the fat that the power expansion of the tanh(y)around 0 is onvergent as long as the y < �=2, while for any < u > in our ases there will existan k? suh that < u > lays outside the onvergene radius. Nevertheless, the funtion is wellapproximated by the expansion when one trunates it up to the maximum analytial value ofthe exponent suh that all momenta of the power law distribution taken into onsideration are�nite.For 3 <  < 5 the highest analytial exponent of the expansion of eq.(3.30) in powers of< u > is nmax =  � 2, where the integer value has been analytially ontinued and so shouldbe done with the orresponding series oeÆient. In this range of values of s nmax is lower than3 so is to be taken as the orret value instead of n = 3 that leads to non analiities. Withanalogous alulations we are able to �nd all other ritial exponents:< u > � < s >� � 1�3ÆC � � (5�)=(�3)� � ��1; < s >� H�=(1+�)0 � H1=(�2)0 (3.45)As an example of this kind of alulation, the ritial exponent governing the behavior of< u > an be found in the appendix D, where a value for the non universal amplitude in the



104 CHAPTER 3. SOME PARTICULAR CASES OF INTERESTQ(u) � Æ(u� < u >) is also omputed. On the other hand, for  = 5 one an �nd a logarithmiorretion to the previous values expanding the inverse hyperboli tangent in eq.(3.30) to thethird order in the tails of the degrees distribution. The results are:< u > � < s >� � 1=2=(� log(�))1=2ÆC � 1=(� log(�))� � ��1; < s >� H1=30 =(� log(H0))1=3 (3.46)The spei� heat is ontinuous at � for  2 (3; 5℄, indiating a phase transition of order > 1.A part from the logarithmi orretions in the  = 5 ase, the universality relations betweenthe exponents are satis�ed.This treatment parallels the T = 0 alulations done in [113℄ for the ase of perolationritial exponents in a power law graph in presene of further dilution. If we introdue a uto�into the degrees distribution the ritial exponent very lose to the transition point is alwaysthe mean �eld one, due to the fat that the sum over the degrees is always �nite and thereis no non analytiity in < u >= 0 for any . However the inuene of non trivial terms isvery strong (dereasing if we inrease ). eq.(3.32) is always valid but only in a very narrowregion around �. The numerial values of T and of the amplitudes in the ritial behaviorof the magnetization are also strongly a�eted being a funtion of the moments of the degreesdistribution. In the in�nite uto� limit the mean �eld window shrinks to zero and one reoversthe non trivial behavior. Indeed, if we work with large enough a uto� at  2 (3; 5) andalulate the average magnetization in regions where �(k � 1) < u > (�) � �=2, limit of theradius of onvergene of the series expansions of tanh�1(tanh(�) tanh(�(k� 1) < u >)), we seea ontribution in the magnetization urves that goes as (� � �)1=(�3). This region beomesdominant for large values of the uto�. In summary, we have obtained the phase diagram of theIsing model on a random graph with an arbitrary degree distribution. Three di�erent regimesare observed depending on the moments hk2i and hk4i of the distribution. For hk4i �nite theritial exponents of the ferromagneti phase transition oinides with those obtained from thesimple MF theory. On the ontrary, for hk4i not �nite but hk2i �nite we found non-trivialexponents that depend on the power law exponent of the degree distribution . On the otherhand, for hk2i not �nite the system is always in a ferromagneti state. Moreover, at T = 0 wereover the results obtained by the generating funtion formalism for the perolation problemon random graphs with an arbitrary degree distribution.



Chapter 4Two examples of NP optimizationproblems
4.1 The Hyper-Graph Bioloring ProblemThe Bioloring problem of a uniform rank 3 hyper-graph is de�ned as follows: you want to olor(with 2 olors, say red and blue) the hyper-graph verties in suh a way that no hyper-edgehas got all verties of the same olor an example for a small fration of a sample hyper-graphis shown in �g. (4.1). Again, the problem ould be immediately generalized to hyper-graphs ofgeneri degree and distribution, along the same lines of the p-spin. In the following, however,we will show only the alulation in the Poissonian random graph ase and �xed rank 3. The�rst hoie is justi�ed by the searh of the behavior of the problem in the average ase (itis proved to be NP in the worst one), and the will of testing the auray of the variational1RSB fatorized Ansatz for a problem in the same hardness lass of the K-SAT. Indeed wefound out that the behaviors of both models seem very similar, with some signi�ant di�erenefrom the generalized p-spin. As in the K-SAT, the present model will undergo a sat/unsatphase transition at T = 0 as a funtion of mean degree. The seond (�xed degree) hoie wasperformed to show another ase admitting an exatly fatorized 1RSB solution and how thissolution seems however to be here less relevant for the understanding of the general behavior.The model Hamiltonian is nothing but the ost funtion of the assoiated ombinatoriproblem and readsH = Xi1<i2<i3 Ji1i2i3Æs1;s2Æs1;s3 = 14 Xi1<i2<i3 Ji1i2i3(1 + s1s2 + s2s3 + s1s3) (4.1)The resulting model is an anti-ferromagnet with a peuliar type of three body interation term,with spins onneted via the following distribution of ouplingsYi1<i2<i3 P (Ji1i2i3) = Yi1<i2<i3  (1� 3!N2 )Æ(Ji1i2i3) + 3!N2 Æ(Ji1i2i3 � 1)! (4.2)Frustration is given by the anti-ferromagneti ouplings. Exploiting the usual replia trik onegets < Zn >J�Xsai e�N+ N2 Pi1<i2<i3 e��4 Pna=1(1+sai1 sai2+sai2sai3+sai1 sai3 ) (4.3)105
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and, with the usual multilevel gas piture (�(~�) = 1N PNi=1 Æ(~�;~si))< Zn >� Z Y~� d�(~�)e�n�NF [�(~�)℄ (4.4)n�F [�(~�)℄ =  +X~� �(~�) log(�(~�))�  X~�1;~�2;~�3 �(~�1)�(~�2)�(~�3)e��4 Pna=1(1+�a1�a2+�a2�a3+�a1�a3 ) (4.5)In the large N limit we are left with the ontribution at the saddle point�(~�) = e�3+3P~�1;~�2 �(~�1)�(~�2)e��4 Pna=1(1+�a1�a2+�a2�a3+�a1�a3 ) (4.6)4.1.1 The RS resultsPlugging the RS Ansatz into (4.6) one gets after some manipulation. A small tehnial di�erenefrom the p-spin is that here, as it will be in the K-SAT ase, �elds are originally at half integervalues. They an be resaled on integers thanks to a resaling of � ! 2�, that does notinuene the zero temperature properties. The �nal result reads:Z 1�1 P (h)ex�h = e�3e3 R1�1 R1�1 dh1dh2P (h1)P (h2)ex�u(h1;h2) (4.7)with u(h1; h2) = 1� log(��=�+) (4.8)�� = 2 osh(�(h1 � h2)) + 2 osh(�(h1 + h2))e�� (4.9)or P (h) = e�3Xt (3)tt! Z 1�1 Z 1�1 tYi=1 dhi1dhi2P (hi1)P (hi2)Æ(h� tXi=1 u(hi1; hi2)) (4.10)



4.1. THE HYPER-GRAPH BICOLORING PROBLEM 107where x = Pa �a. The funtion u(h; g) takes the values of the avity biases introdued inhapter 2. An analogous equation for the free energy an be found generalizing the p-spinmodel approah from the usual Hamiltonian term �Pa(�a1 :::�ak � 1) to any J�(�a1 ; :::; �ak) In theBioloring ase J�(�a1 ; :::; �ak) = J�(�a1 ; �2; �a3) = ��=4Pa(�a1�a2 + �a1�a2 + �a1�a2 + 1). However,we are here interested in the ombinatorial problem itself, and therefore in taking the zerotemperature limit.The trivial paramagneti solution P (h) = Æ(h) and Spara = log(2) �  log(4=3) is alwayspresent in the SAT zero energy phase. This is in ontrast with the 3-SAT ase and similarto the paramagneti phase of the p-spin. Moreover in the RS framework, the only saddlepoint solution in the zero energy SAT phase is the previous one. The absene of loal �elds,as in the p-spin models, drives out the appearane of a non trivial form for the P (h) at lowbut non zero values of , di�erently to what happens in the 3-SAT ase. Indeed, in the USase we an distinguish two di�erent regimes of e�etive �elds saling as O(T ) or tending to a�xed value in the zero temperature limit. In the �rst regime one an write integro-di�erentialequations for the probability distribution of magnetizations and the ground state entropy (inthe sat phase), as in 3-SAT or in the p-spin models. One an then solve them perturbatively,writing a series expansion in the average degree (or in ) along the same lines of [9℄. It is foundthat the total paramagneti solution is stable for all  and the expansion ollapses bak to theannealed expression to all orders. However it is to be noted that this does not rule out thepossibility of an intermediate ross-over region of mixed saling of the order parameter, wherereplia symmetry would have to be broken in a non trivial manner. Indeed, the behavior of theBioloring model in degree seems to share intermediate properties between the p-spin modelsand the 3-SAT.In the seond regime the saddle point equations (4.7) redue toZ +1�1 dhP (h)e�hx = exp��32 + 3 Z +10 Z +10 dh1dh2P (h1)P (h2)ex�min(1;h1;h2)+3  Z 0�1 Z 0�1 dh1dh2P (h1)P (h2)e�x�min(1;jh1j;jh2j)� (4.11)Looking again for a symmetri integer �elds solution of the type we getp0 = e� 32 (1�p0)2I0(32 (1� p0)2) (4.12)pk>0 = pk<0 = e� 32 (1�p0)2Ik(32 (1� p0)2) (4.13)In the RS framework , the only saddle point solution in the zero energy SAT phase is theperfet paramagneti one P (h) = Æ(h). The absene of loal �elds, as in the p-spin models,drives out the appearane of a non trivial form for the paramagneti P (h) at low values of, di�erently to what happens in the 3-SAT ase. No other stable integer �elds solution isfound to exist. A p0 6= 0 spin glass metastable solution appears for  = 2:3335, that howeverinitially orresponds to a non physial negative energy value. As in [9℄, the RS estimate for is therefore given by the point where the energyEGS = 2 �1� p02 �3 � 34 (1� p0)2r1 (4.14)



108 CHAPTER 4. TWO EXAMPLES OF NP OPTIMIZATION PROBLEMSturns positive1. This gives a rough upper bound of 2.45, that an be traked down to2.35 by the introdution of rational �elds, following again the presription of [9℄. After a longmanipulation one �nds the following saddle point equations, losed in the �rst r weights:p0 = e� 3(1�p0)22 Z 2�0 d�2�ePrj=1 �j os(j�) (4.15)pk = e� 3(1�p0)22 Z 2�0 d�2� os(k�)ePrj=1 �j os(j�) (4.16)with �j<r = 6pj(1� 2 jXl=0 pl + pj) (4.17)�r = 32 (1� 2 r�1Xj=0 pj)2 (4.18)EGS = 2r 0�(1� p02 )3 + r�1Xj=1(1� p02 � jXl=1 pl)31A�1r 0� rXj=1 j�j(p0 + pj2 + j�1Xl=1 pl)1A+ p02r rXj=1 j�j � 1r rXj=1�j j�1Xl=1(l � j)pl (4.19)One would however like to go beyond sheme whih is RS and furthermore does not reetthe physial phenomena taking plae in the model. Indeed, There are no reasons for loal �eldsat T = 0 not to have support on integer values. Even though the last solution is a legitimatevariational one2, it is believed [24, 30, 29℄ that in fat signals the presene of non trivial RSBphenomena.4.1.2 The RSB CalulationsIn order to improve the previous results we used the same RSB fatorized Ansatz that was quitesuessful in the p-spin and that seems to provide a nearly exat solution for any model de�nedon �xed degree graphs, independently of the spei� form of the Hamiltonian. We won't showall the alulations, exhaustively done for the p-spin ase and essentially idential in this ase.Let us speialize initially to �xed degree k-hyper-graphs The �nal self onsistent equation readsP (h) = (2 osh �h)mAl�1 Z k�1Yi=1 DhiDgiW (hi; gi)m(4 osh(�hi) osh(�gi))m � Æ h� k�1Xi=1 u(hi; gi)! ; (4.20)1Notie the lose similarity with the RS expressions for the 3-spin written in hapter 3 and the ones for the3-SAT in [9℄ and easily retrievable form the 1RSB equations of the next setion. In fat, the only di�ereneseen by the RS treatment seems to be a resaling of the hyper-graph diluteness parameter 3�spin ! Bi=2!3�SAT =4, that reets the size of the elementary lause in the ombinatorial problem (3-spin interationsorrespond to 4 3-SAT like lauses, for instane). It is lear that from the RS point of view all these modelsare equivalent and their di�erene, whih is well seen theoretially experimentally, needs a broader piture,that ould explain for instane why in the dynamial region 3-XOR-SAT is still Polynomial thanks to a globalsolution proedure, while 3-SAT in NP-omplete.2This an be rigorously proven as an additional speial ase of the general alulations of hapter 6.



4.1. THE HYPER-GRAPH BICOLORING PROBLEM 109k+1 egs y�1{6 0 17 0.003711 1.966118 0.027383 1.171189 0.058131 0.9288710 0.093181 0.7874611 0.131392 0.6931512 0.172118 0.55338Table 4.1: Energy densities at the optimal value y� of the saling parameter for the Bioloringmodel on �xed degree K 3-hyper-graphs.where W (h; g) = p���+ is the re-weighting funtion that in the exat 1RSB has been on-neted to LGS level rossing [23, 24℄. The RS (resp. paramagneti) equation is reovered form = n! 0 (resp. P (h) = Æ(h)). Ak�1 is a normalization fator. At T = 0:p0 = 1g(k; y) [(k�1)=2℄Xt=0 (k � 1)!(k � 1� 2t)!(2t)!Ak�1�2tB[y℄2t22t (4.21)F = �1y  (1� 2k3 ) log(g(k; y)) + 2k3 log(g(k � 1; y))! (4.22)with: A = 1� (1� p0)22B[y℄ = (1� p0)22 e�yg(k; y) = [(k�1)=2℄Xt=0 (k � 1)!(k � 1� 2t)!(2t)!Ak�1�2tB[y℄2t22t +2 kXr=0 eyr [(k�1)=2℄Xt=0 k!Ak�r�2tB[y℄r+2t(k � r � 2t)!t!(r + t)!2(r + 2t)Table 4.1 shows the GS energy densities egs at the optimal y� for some hoies of l.The same Ansatz plugged into the variational free energy for poissonian degree distributiongives, after alulations similar to the p-spin,P (h) = (2 osh �h)mXl=1 e�3(3)k�1Ak�1(k � 1)!  Z k�1Yi=1 DhiDgiW (hi; gi)m(4 osh(�hi) osh(�gi))m Æ h� k�1Xi=1 u(hi; gi)!! ;(4.23)and, in the T = 0 limit, p0 = I0(z1)I0(z1) + 2Pk>0 Ik(z1)e yk2 (4.24)pl = = p�l = Il(z1)e yl2I0(z1) + 2Pk>0 Ik(z1)e yk2 (4.25)



110 CHAPTER 4. TWO EXAMPLES OF NP OPTIMIZATION PROBLEMSz1 = 34
(1� p0)2e� y2 (4.26)
 = 1 + (1� p0)34 (e�y � 1) (4.27)for the saddle point equations andF (y) = �1y ( log
� log �� z1 osh(y)� z1 sinh(y)p0) (4.28)� = 1I0(z1) + 2Pk>0 Ik(z1)e yk2 (4.29)for the potential. Again, as we expeted, no found RSB solution has support on non integer�elds. Optimizing over y, we �nd an upper bound for the ritial value of  of 2:145, verylose to the numerial exat estimate [117℄. This value is found maximizing the free-energy andtuning  and y to the point where this maximum rosses to positive values for the �rst time,indiating the onset of positive energy density global ground states.Complexity results of the Bioloring modelUsing eq. (2.133) it is also possible to write a variational expression for the omplexity. Obvi-ously, the number of LGS will be overestimated beause orrelations between LGS, that hereare negleted, an and indeed do redue the number of states at Hamming distane of orderN . The notion of LGS is however a subtle one, and urrently under debate. For some lateinsights see for example [24℄. The dynamial threshold for the Bioloring model is then de�nedas the point where the omplexity attains for the �rst time a non zero value. This orrespondsto the point where LGS with highest energy density �rst appear. The fatorized Ansatz givesthe estimate d � 1:881. The point where the number of LGS eases to be extensive in expNoinides with the previously alulated one at  � 2:145.We also tried to obtain an exat value for the true zero temperature omplexity, as done inthe p-spin ase thanks to the aidental equivalene with the its ferromagneti version before thestati transition. The reason for that possibility lied in the fat that in that partiular ase theLGS turned out to be orthogonal and unorrelated, so that one ould look at the on�gurationalspae sitting on a referene GS hosen at will. In the dynamial region lusters of solutions allof the same size and equivalent to the ferromagneti luster formed. Indeed, the omplexityalulated as in eq. (2.187) was seen to be idential to that of the number of metastable statesinto the ferromagneti model. Can this be done in the Bioloring ase too? No apparent gaugeluster symmetry of this kind seem to be present in this ase (as well as in the K-SAT, graph-oloring or other models), so we expet the answer to be negative. Nevertheless, we tried toretrieve the solution of the fatorized symmetri saddle point equations in the m = 1 ase.This an be done along the same lines of the p-spin, leading however to the negative expetedresult: the m = 1 saddle point equationsp0 = e�(1�p0)2 (4.30)pl = p�l = p02 l(1� p0)2ll! (4.31)give no non trivial solution before � = 2:454, whih is well above the transition point ofthe model. Therefore at the beginning of this work the exat value for the omplexity was



4.2. RESULTS OF THE VARIATIONAL RSB CALCULATIONS FOR THE RANDOM 3-SAT111erroneously thought to be zero anywhere before the stati transition. Inidentally, (4.30) and(4.31) turn out to be the symmetrized version of the solutions of a ferromagneti spin versionof the Bioloring model, built with the hamiltonianH = 14 Xi1<i2<i3 Ji1i2i3(1 + si1si2 � si2si3 � si1si3) (4.32)Contrary to the p-spin model, there is no orrespondene between the saddle point equations inthe frustrated and the ferromagneti models, beause the two are not related by any symmetrytransformation. Consequently, ounting the metastable states in the ferromagneti model doesnot orrespond to ounting the Bioloring LGS. Moreover, the ferromagneti model showsan intermediate ontinuously magnetized phase between the paramagneti and the bakboneferromagneti ones. Models showing this behavior are interesting for their own sake and havebeen investigated in [55℄. We argue that this intermediate transition reets in the spin-glassas an indiator that also Biolorig, as 3-SAT (see also [30℄), admits a rossover region where asimple 1RSB fatorized Ansatz is not suÆient. In fat, due the absene of luster symmetrythe LGS annot be gauged to the same ferromagneti one. A non trivial 1RSB solution anbe found with the general tehnique reently put forward in [29, 30, 24℄. In working with thefatorized Ansatz approximation, an upper bound for the omplexity is alulated, where thenumber of LGS is overestimated beause orrelations that an derease the number of atuallydisonneted3 lusters are not taken into aount. The general solution an be expliitly foundwith the same tehniques reviewed in hapter 2, even though the saddle point equations areslightly more ompliated [114℄. This solutions shows a narrower but still non zero dynamialregion of positive omplexity. Thresholds alulable in this way are onjetured to be exatfor the Bioloring problem. A similar piture applies to the K-SAT ase. Moreover in theBioloring T = 0 saddle point equations, the absene of non trivial vanishing �elds (as it beseen via series expansion around the perfet paramagneti solution as well as via numerialexperiments) lead us to believe the last solution to be exat for any value of  in the phasediagram of the model, even when models as K-SAT seem to show an 1-RSB transition. Thisproperty an be traed bak, in our opinion, to the absene in the model Hamiltonian to singlespin-ip asymmetri terms, present for instane in the SAT models. This terms an give rise toloal utuations that vanish only at zero temperature but an give rise to further symmetrybreaking in the phase spae. The same is not true in the K-SAT ase [30, 89, 90℄, as willbe disussed in the following setion. In this sense the Bioloring model lies in a somehowintermediate position between the p-spin and the random K-SAT model. Eventually, we wouldlike to notie that, ontrary to the K-SAT ase we will mention in the following setion, thefatorized Ansatz gives upper bounds whose value nearly overlaps the latest estimated numerialthresholds [117℄.4.2 Results of the variational RSB alulations for therandom 3-SATK-SAT is a entral problem in theoretial omputer siene [34℄. A throughout study of randomversion model has been arried out by the physis ommunity in [9, 14, 30, 12℄ and referenes3Separated by a Hamming distane of order N .



112 CHAPTER 4. TWO EXAMPLES OF NP OPTIMIZATION PROBLEMStherein , where the reader is referred to for the de�nition of the problem, the mapping on spin-glass like model and for various analytial and numerial approahes to its solution. Rigorousapproahes an be read for example in [177, 115℄.In this short setion we simply want to state the results for the RSB variational alulationsexploiting the fatorized Ansatz, and disussing some more reent results announed in [29℄ andobtained in [30℄. We worked diretly at zero temperature. Through a omputation analogousto the ones for the p-spin and the Bioloring model we found, for the speial 3-SAT ase,p0 = I0(z1)I0(z1) + 2Pk>0 Ik(z1)e yk2 (4.33)pl = = p�l = Il(z1)e yl2I0(z1) + 2Pk>0 Ik(z1)e yk2 (4.34)z1 = 34
(1� p0)2e� y2 (4.35)
 = 1 + (1� p0)38 (e�y � 1) (4.36)for the saddle point equations andF (y) = �1y ( log
� log �� z1 osh(y)� z1 sinh(y)p0) (4.37)� = 1I0(z1) + 2Pk>0 Ik(z1)e yk2 (4.38)for the potential. Notie that for y = 0, re-summing the Bessel funtions one immediatelyretrieves the RS integer �elds solution of [9℄:p0 = e� 34 (1�p0)2I0(34 (1� p0)2) : (4.39)Again, losed frational �elds equations an be written as in the RS and in the p-spin andBioloring ases, but no solutions have support on non integer values. The variational expressionfor the omplexity (2.133) leads to the presene of a dynamial region in the range of values 2 [d; ℄ = [3:94; 4:39℄. However, as in the Bioloring model, LGS are not unorrelated asexpliitly stated in the fatorized Ansatz piture. A more general solution found in [30℄ withthe T = 0 avity method [24℄ with a dynamial region [d; ℄ = [3:921; 4:256℄.The di�erene between the previous variational results and the zero temperature general1RSB avity result is both quantitative and qualitative: in ref. [14℄ the predited nature of theintermediate phase is di�erent with respet to the one predited by the non-vanishing �eldsomplete 1RSB solution, while in ref. [22℄ the struture of the order parameter is oversimpli�ed.(as well as in [22℄) the authors work diretly at zero temperature (T = 0), whih has theadvantage that they do not need to study the subtle question of the limit T ! 0. The reasonwhy this limit is subtle is due to the fat that some of the loal �elds, at low temperatures, vanishlinearly in T , and thus ontribute to the loal magnetization m = tanh(�H) (the vanishing�elds!). The loal magnetization at T = 0 is zero for a zero �eld, it is equal to 1 for a �nite �eld,and it takes an intermediate value m 2℄� 1; 1[ for a vanishing �eld. The variational approahof [14℄ fouses onto vanishing �elds, and �nds a ontinuous phase transition at s ' 3:96 wherethe vanishing �elds in di�erent states start to luster. However as these are all vanishing �elds,



4.2. RESULTS OF THE VARIATIONAL RSB CALCULATIONS FOR THE RANDOM 3-SAT113this means that the orresponding loal magnetizations, in a given state, are not frozen to �1but take some intermediate value, even in the T ! 0 limit. In the T = 0 avity approah(as well as in [22℄), the HSP orresponds to a disontinuous transition at zero temperature,involving �elds whih are not vanishing, but are of order one. This means that, in a givenstate, a �nite number of loal �elds are non-zero integers, giving rise to magnetizations �1, asone ould expet at zero temperature. This phenomenology annot be found by onsideringvanishing �elds. Its study with replias would require using a more ompliated Ansatz.Note that this approah working diretly at T = 0 also has its limitations, for instanewe are unable to determine preisely the self overlap (or the typial radius) of a state, or itsinternal entropy, preisely beause we do not ontrol the vanishing �elds.Moreover the 1RSB piture does not take into aount the possible arising of non trivialorrelations among LGS at higher values of . This ould lead to higher RSB phenomena, asevidene is taken in [89, 90℄. However, this seems not to be the ase in the dynamial regionand immediately beyond the stati transition, where the only known phenomenon that ouldgive rise to suh further symmetry breaking is indeed the presene of vanishing �elds at �nitetemperature. A population dynamis study of this region with the 1RSB �nite temperatureAnsatz of [23℄ shows that the distribution of loal �elds tend to peak on integers when thetemperature goes to zero in the dynamial phase, and this is a strong argument in favor ofthe exatness of the 1RSB solution. Very reently [58℄ a solution of the long standing graph-oloring problem on random graphs has been proposed whih does not su�er from the need ofintroduing pathologial frational �elds and works at the omplete 1RSB level. Similarly tothe p-spin, Hyper-graphs Bioloring and the K-SAT ase, the presene of a dynamial region ofmetastable states is found and the authors laim the obtained dynamial and stati thresholdsto be exat. Notie that the alulations of hapter 6 ould be in priniple extended to thegraph-oloring, proving results in [58℄ to be rigorous upper bounds.
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Chapter 5Phase and omputational omplexitytransitions
5.1 Global algorithms transitions in linear systems over�nite �elds5.1.1 IntrodutionThe methods and onepts of statistial physis of disordered systems onstitute a very usefultool for the understanding of the onset of omputational omplexity in randomly generatedhard ombinatorial problems. One the optimization problems are translated into zero tem-perature spin glass problems, one may study the geometrial hanges in the spae of solutionsas symmetry breaking phenomena. In this ontext one may view the exponential regimes ofrandomized searh algorithms as out-of-equilibrium phases of stohasti proesses. However,ombinatorial problems are not always exponentially hard: Problems that an be solved inpolynomial time, even in their worst-ase realizations ompose the so alled Polynomial (P)lass [34℄. Suh problems are often of great pratial relevane and are takled using large saleomputations. Examples an be found in all disiplines: In physis, just to make one exam-ple, one may study ground states of 2D spin glass like Hamiltonians resorting to a polynomialmax-ut algorithm [121℄. The major appliation are obviously found in engineering: Examplesare design problems (�nite elements methods), ontrol theory (onvex optimization), odingtheory (parity hek equations) and ryptography (integer fatorization). Due to the pratialrelevane of the problems and to the typially large number of variables used for their enoding,that is the size of the problems, it is of basi interest to look at the �ne struture of the lass Pin order to onretely optimize the omputational strategies. For instane, in error orretingodes it is ruial to have algorithms that onverge in linear time with respet to the numberof enoded bits, any power larger than one being onsidered of no pratial interest. Quite ingeneral, the trade-o� between time and memory resoures is the guiding riterion whih seletsthe algorithms used in real-world appliations. Roughly speaking polynomial algorithms anbe divided in di�erent groups depending on the solving strategy they implement. The maingroups are loal algorithms (e.g. greedy/gradient methods), global algorithms (e.g. Gaussianelimination or Fourier transforms methods), iterative algorithms (e.g. Lanzos method) andparallel algorithms. See Ref. [122℄ for a basi introdution to the subjet. In what follows weshall study a prototype problem of the P lass, that is the problem of solving large and random115



116 CHAPTER 5. PHASE AND COMPUTATIONAL COMPLEXITY TRANSITIONSsparse systems in some Galois �eld GF(q). Working in GF(q) is ompletely equivalent to per-form any operation modulo q. Firstly, we give a preise analysis of the omputational featuresfor non-trivial ensembles of random instanes. By a statistial mehanis study, we look intothe { symmetry breaking { geometrial struture of the spae of solution thereby providingan explanation for the hanges in the power law behavior observed in di�erent algorithms.Moreover, we are able to predit and explain in terms of lustering of solutions, the memoryatastrophe found in global algorithms suh as Gaussian elimination. Suh an e�et seriouslyhampers appliation of this sort of global algorithms in many irumstanes, one example beingsymboli manipulations. This memory atastrophe indue in turn an even more dramati in-rease in CPU time, whih make large problems una�ordable above the dynamial threshold d(see below for its de�nition). Seondly, we onsider a spei� \real-world" appliation, namelythe Integer Fatorization problem used in RSA publi key ryptography [123℄. By a non-trivialmapping of the fatoring problem on a sparse linear system modulo 2, endowed with a quitepeuliar statistial distribution of matrix elements, we analyze whih are the harateristi ge-ometrial properties of solutions that are responsible for the usage of spei� algorithms andonstitute the possible bottlenek for the near future. Interestingly enough, the hanges in bothtime or memory requirements during the solution proess of sparse systems an be interpretedin physial terms as a dynamial transition at whih the phase spae of the assoiated physialsystems beomes split into an exponential number of ergodi omponents. While it is to beexpeted that loal algorithms get stuk by loal minima at suh phase boundary, it is lessobvious to predit whih is the ounterpart of the dynamial transition in global algorithms,for whih polynomial time onvergene is guaranteed even for the hardest instanes. Indeed thedynamial transition manifests itself as a phase transition in the omputational requirementswhih in turn leads to a slowing down phenomenon that saturates the upper bound for theonvergene time. Suh a hange of sale in memory requirements onstitute a serious problemfor hardware implementations of large sale simulations.5.1.2 Random Linear systems in GF(2): rigorous results and statis-tial mehanis analysisAs is well known in the ontext of error orreting odes [124℄, solving a sparse linear systemmodulo 2 is equivalent to �nding the zero temperature ground states of a lass of multipledegree interations p-spin models on diluted random graphs. Let us onsider a random linearsystem in GF(2) in the form Â~x = ~y mod[2℄, where Â is a 0-1 matrix of dimensionM�N . Foreah of its spei� hoies Â an be interpreted as the ontat matrix of a partiular randomhyper-graph belonging to a spei� ensemble. The lass of random matries we shall deal withare de�ned by the fration of rows vl with l non zero elements. The latter are plaed uniformlyat random within eah row. The notation has been hosen to be onsistent with the one ofthe previous hapters. We fous on matries that lead to graphs with an average rank valuehli = Pl lvl �nite and muh less than both M and N . We are interested to the limit of verylarge matries, where we an assume N;M ! 1 with a �nite ratio  � M=N . This is theregime in whih a study of the omputational ost is important in that it applies diretly tolarge sale omputations. In the limit N;M !1 average quantities haraterizing the system(e.g. the average fration of violated equations) are known to be equal to the most probablevalues (i.e. their probability distribution is strongly peaked [125℄) and therefore single randomlarge systems behave as the average over the ensemble. We will always assume v1 = 0 at thebeginning, sine rows with a single one orresponds to trivial equations whih an be removed



5.1. GLOBAL ALGORITHMS TRANSITIONS IN LINEAR SYSTEMS OVER FINITE FIELDS117a priori from the set. The equivalene between linear systems and spin models is a quitestraightforward generalization of the mapping used in the 2+p-XORSAT model (whih by theway an in turn be seen as a partiular ase of the present model, where only two and threevariables equations are present.). We start from a set of linear equations in GF(2), Â~x = ~y, andwe build up a spin Hamiltonian whose ground state energy Egs ounts the minimal number ofunsatis�ed equations. In the ase where Egs = 0, ground state on�gurations will orrespondto solutions of the original set of linear equations and the zero-temperature entropy will ountthe number of suh solutions. The onstrution is done as follows: For every equation, labelledby i 2 [1 : : :M ℄, let us de�ne the set of variables ~x entering equation i asv(i) � fj 2 [1 : : :N ℄ : Aij = 1g : (5.1)With the transformation sj = (�1)xj and Ji = (�1)yi, we have that every equation an beonverted in a term of the Hamiltonian throughNXj=1Aijxj = yi , Xj2v(i) xj = yi , Yj2v(i) sj = Ji ; (5.2)where the multi-spin interation ontain at least 2 spins sine we set v1 = 0. Then the Hamil-tonian H = 12 24M � MXi=1 Ji Yj2v(i) sj35 ; (5.3)�ts the above requirements and an be used in the analytial treatment. A better form for theabove Hamiltonian an be obtained grouping together l-spin terms with the same l, that isH = 12 24M �Xk Xi1<i2<:::<ik Ji1i2:::iksi1 : : : sik35 ; (5.4)where si = �1 are Ising spins and the ouplings Ji1i2:::ik are i.i.d. quenhed random variablestaking values in f0;�1g. The total number of interations, that is of terms with J 6= 0, isM, and the energy is zero if and only if all the interations are satis�ed. For eah unsatis�edinteration the energy inreases by 1. The fration of interations of l-spin kind is vl and thusthe probability of having Ji1i2:::il 6= 0 equals alM=�Nl � ' vll!=N l�1, while the sign of Ji1i2:::ildepends on the probability distribution of the omponents of ~y,P (Ji1i2:::il) = "1� vll!N l�1 # Æ(Ji1i2:::il) + vll!N l�1 hp Æ(Ji1i2:::il � 1) + (1� p) Æ(Ji1i2:::il + 1)i ; (5.5)where p 2 [0; 1℄ ontrols the fration of zeros in ~y. As long as the system admits at least onesolution, it an always be brought by a gauge transformation in the form with p = 1, ~y = ~0.This orresponds to have positive or null ouplings only, like in a diluted ferromagneti model.The lieity of the gauge transformation is a peuliarity of generalized p-spin models of this kind,as stated in the �rst hapter. In order to make a onnetion between the behavior of solvingalgorithms and the struture of the matrix Â, we study the geometrial properties of the spaeof solution, i.e. ground states of (5.4), as a funtion of  for non-trivial hoies of fvlg. We mayhave aess to the struture of suh a spae by just performing the T = 0 statistial mehanisanalysis of the spin glass model, with ontrol parameter . For  large enough, at say ,



118 CHAPTER 5. PHASE AND COMPUTATIONAL COMPLEXITY TRANSITIONSthe system of equations beomes over-determined and some of the equations an no longer besatis�ed. This fat is reeted in the ground state energy of the assoiated spin glass modelbeoming positive. The interesting aspet of the problem is that, under proper onditions,there appears a lustering phenomenon with marosopi algorithmi onsequenes at someintermediate value 0 <  = d < . We will fous our attention on the latter transition, thusassuming a priori that at least one solution always exist. This allow us to �x ~y � ~0 hereafter.The omplete piture of the typial struture of the solution spae an be obtained through theRS replia alulations of hapter 1 speialized to the ase of Poissonian degree hyper-graphwith a priori general hoie of v(x). Due to the zero energy ondition (Egs = 0 for  < ), thedominane of thermodynamial states is purely to be determined in entropi terms. De�ningS0() as the logarithm of the number of solutions to Â~x = ~0 divided by N , we have thatS0() = S(m; ) = log(2) 24(1�m)[1� log(1�m)℄� Xl�2 vl(1�ml)35 ; (5.6)where m solves G(m) = 1�m� e�Pl�2 lvlml�1 = 0 : (5.7)When more than one solution to eq.(5.7) exist, the one maximizing S(m; ) must be hosen.At �xed fvlg, one an study the phase diagram as a funtion of . At low enough , eq. (5.7)has only the trivial solution m = 0 and the system is paramagneti with entropy S(0; ) =log(2) (1�). As long as v2 > 0, the ondition for the ontinuous phase transition of two-loopsperolation in the rank 2 sub-graph is given by the instability ondition:�G(m)�m �����m=0 = 0G(m = 0) = 0 ; (5.8)that redues to1 ̂ = 12v2 (5.9)Typially a non trivial magnetized solution for the order parameter, m� > 0, appears at a valued suh that G(m�) = 0 and �G(m)�m �����m=m� = 0 : (5.10)This ondition gives a threshold for the onset of the dynamial region atd = 1(1�m�)Pl�2 l(l � 1)vl(m�)(l�2) (5.11)and ontains the ondition for ̂ as a partiular ase. This last solution beomes entropiallyfavored at a value  found solving S(0; ) = S(m�; ) : (5.12)As in the ase of the 2+p-XOR-SAT model of hapter 2, we an look for the presene of atriritial point where ̂ = d = . This is given by the instability onditionG(m� = 0) = 0 G0(m� = 0) = 0 and G00(m� = 0) = 0 (5.13)1 = 1=2 for v2 = 1.



5.1. GLOBAL ALGORITHMS TRANSITIONS IN LINEAR SYSTEMS OVER FINITE FIELDS119that redues to v2 = 3v3 = 12triritial : (5.14)Notie that the value of the triritial point, if it exists, does not depend on other than thefration of two variables over three variables equations. There are obviously ases 2 where atriritial point does not exist. In those situation the shift from a ontinuous to a disontinuoustransition is sharp. A part of these last examples, the 2+p model retains a great deal ofgenerality, and indeed this partiular ase treated in hapter 2 and in [21℄ retains many ofthe qualitative features of this more general analysis. 3. The ruial observation is now thefollowing. At d, together with the magnetized solution, there appear other spin glass solutionsto the saddle-point equation. In partiular, it an be shown [26℄ that the di�erene betweenthe paramagneti and the ferromagneti entropies,�() = S(0; )� S(m�; ) ; (5.15)gives the on�gurational entropy of the problem, that is the number of lusters of solutions 4.There exist exp[�()N ℄ well separated lusters [Hamming distanes � O(N )℄, eah one on-taining a number exp[S(m�; )N ℄ of losed solutions [Hamming distanes � O(1)℄. Thislusterizations has two main onsequenes. Loal algorithms for �nding solutions running inlinear time in N stop onverging [19℄: this is the typial situation for greedy algorithm whihget stuk in one of the most numerous loal minima at a positive energy. Global algorithms,whih are guaranteed to onverge in polynomial time, need to keep trak along omputationof this omplex struture of solutions and a memory linear in N turns out to be insuÆient,as we will show below. For a general hoie of fvlg, the on�gurational entropy reads, fromeq. (2.185), �() = log(2) 241� (1�m)[1� log(1�m)℄ + Xl�2 vlml35 ; (5.16)where m is the largest solution to eq. (5.7). As disussed in Ref. [21, 26℄, the values of d and are found as the points where �() �rst appears with a non zero value and where it reaheszero again. We remind the reader that the orret expression for the omplexity an be foundvia eq. (2.185) only due to the partiular symmetry of this family of models. Moreover, evenin this simple ase we will see at the end of this setion that there are hoies of the generatingfuntion v(x) for whih this omplexity piture is not physial, being ruled out by a previouslyourring ontinuous transition. The algorithmi onsequenes of having �() > 0 have beenalready exposed in Refs. [19, 22℄: For  > d a glassy state with positive energy arises, whihtraps any loal dynamis, preventing it to onverge towards the ground state of zero energy.We onjeture the ounterpart on global algorithms, suh as Gaussian elimination, to be thatthe resolution time inreases with N faster than linear. In the next setion we will hek theabove onjeture with two di�erent Gaussian elimination algorithms, none of whih is able tosolve the system in linear time for  > d.2think for example to a 2+4 model where only v2 and v4 are di�erent from 0.3We will see in the following that there are however ases where no triritial point is present, beauseondition (5.14) annot be ful�lled by the parameters of the hyper-graph degree distribution.4Two solutions belong to the same luster (resp. to di�erent lusters) if their Hamming distane is O(1)[resp. O(N )℄.
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Figure 5.1: Typial shape of the Ât matrix after tN steps of Gaussian elimination.
t = 0.0 t = 0.3 t = 0.7Figure 5.2: The evolution of the Ât matrix for a spei� 1024 � 1024 random system. Everydot orresponds to a 1 entry.5.1.3 Algorithms behaviorIn this setion we analyze the performanes of a ouple of di�erent `Gaussian elimination'algorithms, their di�erene being in the order equations are solved. We will measure thenumber of operations and the size of the memory required for the solution of a set of linearequations, that is the omplexity for �nding all solutions to Â~x = ~y. We will see that, for ageneri ensemble of random problems, any algorithm undergoes an easy/hard transition at aertain  value, whih an not be pushed beyond the dynamial transition threshold d. Inthis ontext we all easy suh problems whih are solvable with a CPU-time and memory oforder N , and hard those requiring resoures saling with N�, where � > 1. Given a set of Mlinear equations in N variables, Gaussian elimination proeeds as follows [for onreteness wewill always work in GF(2)℄: At eah step, it takes an equation, e.g. x1 + x2 + x3 = y1, solves itwith respet to a variable, e.g. x1 = x2 + x3 + y1, and then it substitutes variable x1 with theexpression x2+x3+y1 in all the equations still unsolved. This proedure gives all the solutionsto any set of linear equations in, at most, O(N 3) steps and using O(N 2) memory. Neverthelessthis bounds only holds in the worst ase, namely when the matrix Â is dense. Very often, inatual appliations, the matrix is sparse and the algorithm is faster. We de�ne sparse a matrixwith O(N ) ones and dense that with O(N 2) ones. In order to analyze the omputationalomplexity of this problem, and its onnetions to phase transitions, we fous on a spei�ensemble of random problems, generalizations to other ensembles being straightforward. Wehoose sets of M = N linear equations, eah one ontaining exatly k = 3 of the N variables,taking values in GF(2). Thus the degree of a variable, de�ned as the number of equations thisvariable enters in, takes values from a Poissonian distribution of mean 3. For very large N ,that is in the thermodynamial limit, we are interested in how the omplexity hanges with .Moreover, for a �xed  suh that the problem is hard, we would like to know when (in terms ofthe running-time t) and why the algorithm beomes slower and slower. The running-time t is



5.1. GLOBAL ALGORITHMS TRANSITIONS IN LINEAR SYSTEMS OVER FINITE FIELDS121measured as the number of equations already solved, normalized by N , and thus takes valuesin [0; ℄. Ât is the matrix representing the set of equations after tN steps, and it has the formshown in �g. 5.1. See �g. 5.2 for the atual shape of Ât in a spei� ase with 1024 equationsin 1024 variables. For ease of simpliity, we have reordered the variables and the equations ofthe system, suh that, at the i-th step, we solve the i-th equation with respet to xi. With thishoie the left part of the matrix Ât has ones on the diagonal and zeros below. The right partan be naturally divided in an upper part U and a lower one L. The density of ones in the Lmatrix | let us all it �(t; ) | is uniform and depends on the initial , the time t and thealgorithm used for solving the linear system. The density of ones in the U part is not uniformand varies from row to row, as shown in �g. 5.1 with gray tones. For ontinuity reasons thedensity at the m-th row of U is exatly �(m=N ; ). Then U is sparse or dense depending onwhether L is. De�ning l(t; ) = �(t; )N(1 � t) the average number of ones per row in L, wehave that a sparse (resp. dense) matrix orresponds to having a �nite l (resp. �). At eah timestep, the number of operations required are diretly related to the density of the matrix Ât andthus to that of L. More spei�ally, solving with respet to the variable in the upper left ornerof L, the number of operations is proportional to the number of ones in the �rst row of L, i.e.k(t; ), times the number of rows of L having a one in the �rst olumn, i.e. �(t; )N(� t), andthus equals l(t; )�(t; )N( � t) = l2 � t1� t = N2�2( � t)(1� t) : (5.17)Then, if the matrix L is sparse a �nite number of operations per step is enough, while O(N 2)operations are required when L is dense. Integrating over time t 2 [0; ℄, we have that the totalomplexity is given byN Z 0  � t1� t l2(t; )dt = N3 Z 0 ( � t)(1� t)�2(t; )dt : (5.18)Sine the funtion �(t; ) is ontinuous in t, we onlude that�(t; ) / 1=Nk(t; ) finite 8 t 2 [0; ℄) , �max() = 0, ( CPU time / NMemory / N (5.19)�(t; ) finitek(t; ) / N 9 t 2 [0; ℄) , �max() > 0, ( CPU time / N3Memory / N2 (5.20)where �max() = limN!1 maxt2[0;℄ �(t; ) (5.21)is the order parameter signaling the onset of the hard regime. Having found the relation betweenthe density of ones in L and the omputational omplexity we are interested in, we an nowrun the algorithms and measure the density �(t; ). The easy/hard transition should manifestitself with �max() beoming di�erent from zero.Simplest Gaussian eliminationLet us start with the simplest algorithm, whih solves the equations in the same (random) orderthey appear in the set and with respet to a randomly hosen variable. In this very simplease, one an easily show that the omplexity for solving a set of linear equations with initialparameter  = 0 is exatly the same as for solving a larger system with  > 0 up to timet = 0. For this reason, in this ase the funtion �(t; ) does not depend on  and an be
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Figure 5.3: Density of ones in the L matrix during the solving proess with the simplestGaussian elimination algorithm. The vertial bar marks the analytial ritial point  = 0:918.alulated one for all the relevant  values. Moreover, it is known [19℄ that this algorithm,in the limit of very large N , keeps the matrix sparse for all  < 2=3. In �g. 5.3 we show thefuntion �(t) for many large N values. The dotted-dashed line is a guide to the eyes and itshould not be too muh di�erent from the thermodynamial limit: It goes through the twopoints ( = 2=3 and  = 0:918) where �(t) must vanish and oinide with numerial data inthe region, where data for di�erent sizes seem to be quite lose to the asymptoti shape. Inthe thermodynamial limit, the algorithm keeps the matrix sparse for times t � 2=3 and soit undergoes an easy/hard transition at  = 2=3: As long as  � 2=3, �max() = 0, while�max() > 0 for  > 2=3. As we will see below the loation of the transition depends onthe algorithm used and, in this ase, does not orrespond to any underlying thermodynamialtransition. We note en passant that the  value where the L matrix beomes sparse againseems to orrespond to the ritial point  = 0:918 [19, 26, 94℄ (marked with a vertial linein �g. 5.3). An explanation to this observation will be given in a forthoming publiation. Itimplies that the value of the ritial point , whih is relevant e.g. in the XOR-SAT model[82℄ in theoretial omputer siene, ould be obtained also by solving di�erential equations for�(t).Smart Gaussian eliminationNow we turn to a more lever Gaussian elimination algorithm, whih works as follows: At eahtime step, it hooses the variable x having the smallest degree in L, i.e. that orresponding tothe less dense olumn of L, and solves with respet to x any of the equations where x entersin. Clearly, in this ase, the dynamis and thus the density of ones in L depend on the initial value: A smaller  implies that for a longer time we an hoose variables of degree 1, whihdo not inrease the average number of ones per row in L. It an be rigorously shown [26℄using, the leaf removal proedure desribed in the �rst hapter, that this proedure keeps thedensity of the L matrix onstant, �(t; ) = �(0; ), for times smaller than t� = (1 � m3),where m is the largest solution to 1�m = exp(�3m2). The last equation is exatly eq. (5.7)with fv3 = 1; vk 6=3 = 0g. Running the algorithm for di�erent  values we obtain the densitiesreported in the main panel of �g. 5.4. For  < d = 0:818 the density remains O(1=N ) allalong the run, while for  > d there is a time when the density beomes �nite and the problem
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Figure 5.4: Density of ones in the L matrix during the solving proess with a smart Gaussianelimination algorithm (N = 8192). Inset: Zoom on the low-density part (with a di�erentnormalization).hard to handle. In order to better show what happens around t�, we have plotted in the inset of�g. 5.4 the mean number of ones per row, k(t). It is lear that for  < d this number remainsonstant, sine one an solve the system hoosing only variables of degree 1, not altering the Lmatrix. On the ontrary, for  � d there is a time t�() when variables of degree 1 terminate,and the algorithm has to start making substitutions in L, thus inreasing the density of ones.Then d marks the onset of omputational hardness, both in memory and CPU time. One mayobjet that also this value for the easy/hard transition may depend on the partiular algorithm.Note, however, that a ompletely di�erent linear algorithm desribed in Ref. [19℄ (whih �rstlyworks with high-degree variables) seems to work up to d. Moreover, as seen in the previoussetion, we have analytially found that at d a transition takes plae, whih drastially hangesthe struture of the solutions spae, and so we argue that any algorithm running in linear timean onverge only up to d. Indeed is shown in [26℄ that solutions spontaneously form lustersfor  > d and this partiular struture requires a larger memory to be stored.5.1.4 The RSA ryptosystem and fatorizationIn this setion we shall validate the above senario on a onrete appliation, namely integerfatorization problems arising in the RSA ryptosystem. Suh problems allow for a non-trivialmapping onto huge linear systems in GF(2) with a rather peuliar struture of the underlyingontat matrix. In order to be as self-ontained as possible, we �rstly give a short review of theproblem and the methodology (a detailed desription of the RSA ryptosystem an be found in[123℄). The only known method for breaking RSA implies fatorization of the private key, whihonsists in a natural number whih is the produt of two big prime numbers, n = p � q, with pand q approximately of the same size ' pn. Keys urrently used in appliations are numbers nranging from 1024 bits (309 deimal digits) to 2048 bits (617 digits) length. The �rst attempt ata massive parallel fatorization was the RSA129 (129 digits, 428 bits) hallenge, solved in 1994with the quadrati sieve (QS) algorithm. More reently, in August, 1999 the RSA155 hallengedwas solved using the general number �eld sieve (GNFS ) algorithm. This has fored to abandonthe 512-bit (155 digits) length for sensitive information seurity. There are now several sub-exponential algorithms for solving the fatorization problem, the faster of whih is GNFS. QS



124 CHAPTER 5. PHASE AND COMPUTATIONAL COMPLEXITY TRANSITIONSand GNFS share the same struture, onsisting of two phases: a �rst one in whih a big (thesize depending mostly on the size of n) linear system in GF(2) is produed, and a seond one inwhih this system is solved. Although the �rst phase is de�nitely more ostly, the solving phase(whih a�et this setion) takes a respetable part of the total time and memory requirement.Espeially as numbers get bigger this beomes a limitation, beause the fastest solving methodsused employ a sole workstation, with the onsequent memory restrition. Moreover, in reentfatorizations a new �ltering phase has been plaed between the previous two, in whih pieesof the system (spei�ally olumns of the f0; 1g�matrix) get disarded in order to simplify thesolving phase, e�etively transferring part of the total time from the seond phase to the �rstone.The QS algorithmFor a nie desription of the QS algorithm see [126℄. Synthetially, QS works at follows. Itbuilds a list of integer numbers fyigi2I suh that:� yi � x2i mod[n℄ for some xi and yi 6= xi;� yi is ompletely fatorizable in a given (relatively small) subset of B primes alled thefator-base.This is alled the sieving phase. The algorithm then searhes a subset J � I of elements ofthe list suh that Qi2J yi = z2 is a square (solving phase). One found, z2 � x2 mod[n℄ (herex = Qi2J xi) and this implies that n divides (x + z)(x � z) and then gd(x � z; n) will likely(further trials will inrease the probability) be a non-trivial fator of n. In order to �nd elementpairs xi,yi suh that yi � x2i mod[n℄ we an use the polynomial y = f(x) = x2�n and evaluateit at di�erent values of x, keeping only values of y whih ompletely fatorize between the �rstB primes (the fator-base). The sieving will allow us to do this eÆiently. The idea is that,given p, it is easy to �nd whih are the values of f(x) whih are divisible by p, beause p dividesf(x) if and only if f(x) = x2� n � 0 mod[n℄ and this is a quadrati equation in GF(p), havingat most 2 solutions. These solutions are nothing but the square roots of n modulo p (if theyexist). This has a �rst onsequene, i.e. that a prime p will not divide f(x) if n is not a squaremod[p℄ independently of the value of x. So if we an detet these primes, we an eliminate themdiretly from our set of primes. Deteting them is very easy: Using Fermat's little theorem, weknow that np�1 � 1 mod[p℄ ; (5.22)assuming that p do not divide n (whih is trivially a reasonable assumption, anyway, beausewe are searhing a divisor of n). If p is an odd prime, i.e. not 2 (all n are a squares mod[2℄),then alling m = n p�12 we have that m2 � 1 mod[p℄, so m � �1 mod[p℄. This m will proveto be handy. If n � s2 mod[p℄ then m � sp�1 � 1 mod[p℄. Conversely, if m � 1 then n isa square modulo p (not proven here). The number m is alled the Lagrange symbol and anbe omputed eÆiently in one of the �rsts stages of the algorithm. Useful primes (those withm = 1) are roughly a random half of all the �rst B primes. So now we will keep only this halfand rede�ne \the �rst B primes" as \the �rst B primes with m = 1". Computing the squareroot modulo p is a bit more diÆult than knowing that it exists, but an also be done eÆiently.For instane, the easiest ase is when p+14 is an integer, then �n p+14 �2 = n p+12 � mn mod[p℄. Asm = 1 (or else there is no solution) then �n p+14 mod[p℄ are the required square roots. One we



5.1. GLOBAL ALGORITHMS TRANSITIONS IN LINEAR SYSTEMS OVER FINITE FIELDS125have omputed the two solutions f(x1;2p ) � 0 mod[p℄, then adding p; 2p; 3p; : : : to them we willobtain all x suh that f(x) is divisible by p. The sieve idea is to initialize an array with valuesof f(x) for onseutive x 2 [[pn℄; [pn℄ +M ℄ indexed by x, and then for eah p in our fatorbase to divide the orresponding arithmeti progression of ff(x1;2p + kp); k = 1; : : :g by p. Atthe end those values whih are ompletely fatored between the primes in the fator base willbeome 1 (Well, not exatly. Some of them an have multiple times the same prime fator.But we an set up a threshold instead of 1 below whih we onsider the number ompletelyfatored. We an rehek afterwards). We take those values and put their fatorization in anarray f(x1) � � � f(xm)p1...pB 2664 �(1)1 � � � �(m)1... . . . ...�(1)B � � � �(m)B 3775 mod[2℄The solving phase is oneptually simple: A solution of the homogeneous linear system Âv = 0is a f0; 1gvetor v whih represent orretly the subset J , in the sense that vi = 1if and only ifi 2 J .The matrix ensembleCorrelationsWe have implemented the simplest QS desribed in [126℄ in order to analyze the outputmatrix ensemble. We attempted to look for orrelations in the presene/absene of di�erentprimes in the set of divisors of the variables yi. Spei�ally we heked that there is virtually noorrelation between rows of the matrix: We have taken one suh output matrix (resulting fromthe fatorization of a produt of two 20 digits primes) and omputed the ovariane between theorresponding spin variables s1; s2 of two rows r1; r2, the averages being taken along di�erentolumns, hs1s2i � hs1ihs2i :One repeated for all r1 < r2, we found that all pairs have orrelations in the interval 0� 0:06,a proportion of 0:9999 pairs having orrelations in 0� 0:02.Dependene on \fatorization hardness"We then examined dependene of the resulting distributions of ones per row on the \fator-ization hardness" of the number n. Typially (depending on the algorithm) the omplexity offatorization depends on the size of the smallest prime divisor of n 5: For instane, trial divisionends in exatly this amount of steps. It was onjetured that this would be reeted in thestruture of the output matrix. We have onstruted 25 numbers n with di�erent fator sizes(from now on, fator type 10+10+10 will mean a 30 digit number onstruted as a produt oftree 10-digit primes) organized as follows:� 5 of type 20+20� 5 of type 10+305This is why in RSA we hoose n = p � q with p; q ' pn.
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Figure 5.6: Phase diagram (a, ) for a typial hoie of s = 2:2 and lmax = 200. The bold line1=(2a) represents the ontinuous transition, while d(a) and (a) orresponds respetively tothe spinodal and the ritial lines of a �rst order transition. The dot marks the origin of theselines.what was done in the solving phase of RSA129. Another option is to use in one of the stagesan iterative algorithms, like the disrete Lanzos. The Lanzos method has the advantage ofhaving a stable O(N 2) total time for a sparse matrix, but �nds only one solution (or a pre�xedquantity in the blok-Lanzos variant) instead of all of them. For fatorization this is not aproblem, beause we need only a few solutions to have a reasonable hane. This is the methodthat was used in the solving phase of RSA155.Power law distributed fvlg: Phase diagram and omparison with real appliationdataThe previous analysis leads to the onstrution of matries whose density of non zero entriesfollows quite well a power law distribution with light deviations due to rows with a small numberof ones and a uto�, lmax, of some hundreds. Then we use the following distribution in theanalytial treatment: v2 = a ; (5.23)vk = � l�s for 3 � l � lmax ; (5.24)where � is a normalizing fator equal to (1� a)=Plmaxl=3 l�s. The fatorized integers onsideredin the previous setion lead to an exponent s ' 2:2 and to a non zero support up to lmax � 200.The hoie of keeping v2, and only v2, as an independent parameter is ditated by the verydi�erene in the physial behavior of 2-spin terms and l-spin terms with l > 2. The study of thephase diagram in the ontrol parameter  for hoies of a, s and lmax retrieved from real datareveals a non trivial behavior. In �g. 5.6 we show the phase diagram for s = 2:2 and lmax = 200.Only part of the entire phase diagram (a 2 [0; 1℄,  2 [0; 1℄) is shown for larity. The linesfurther go on smoothly outside the drawn portion. If a is high enough, we are in the rightmostregion I of the phase diagram, where algorithms smoothly �nd solutions to the system and donot undergo any ritial slowing down. Indeed, rossing the bold hyperbole  = 1=(2a) given by
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5.1. GLOBAL ALGORITHMS TRANSITIONS IN LINEAR SYSTEMS OVER FINITE FIELDS129the ondition �G(m)=�mjm=0 = 0, the system undergoes a ontinuous transition in the orderparameter m, representing the fration of variables taking the same value in all the solutions.The problem of �nding solutions is always easy, as for the ase fa = 1; vk 6=2 = 0g. Dereasing awe meet a �rst intermediate region II, where the birth of a meta-stable non-trivial saddle-pointsolution at  = d(a) is given by the solution of eq. (5.10). However, algorithms should not bemuh a�eted by this meta-stable state, beause the system starts magnetizing ontinuouslybefore, rossing the bold line. Inreasing  up to the ritial value (a) one meets a �rst ordertransition, where the magnetization, that was already non-zero, undergoes a further jump. Theseond entral region III shows an inversion between d(a) and the bold line 1=(2a). These twointermediate regions have not been exhaustively studied yet, beause real data all fall in theleftmost one. The shape of the entral part of the phase diagram is very sensitive to the hoieof the ontrol parameters s and kmax, as shown in �g. (5.7). The (a) urve in the seond andthird regions is found solving S(m�; ) = S(m�; ) ; (5.25)where m� is the smallest positive solution to G(m) = 0, whih orresponds to the magnetizationof the ferromagneti state arisen from the seond order transition (bold line). The points ofrossing showing the onset of di�erent regions, from right to left, are found respetively as:�G(m)�m = 0 & S(m�; ) = S(m�; ), �G(m)�m = 0 &  = 12a and S(m�; ) = S(0; ) &  = 12a .The leftmost part IV shows the typial behavior desribed in [19℄. Inreasing  the systemnever reahes the ontinuous transition on the bold line, but it undergoes a �rst dynamialtransition at d(a) and seond thermodynamial one at (a), found via eq. (5.25) with m� = 0sine we are still below the seond order transition line. Con�gurational entropy is non-zerobetween d(a) and (a), and solving algorithms are a�eted by it. There are typially otherspinodal lines in the phase diagram, but they always orrespond to sub-optimal solutions, andwere, therefore, not shown in the piture. The orresponding behavior of the magnetization inregions I, II, III and IV as well as at the boundaries are shown in �g.( 5.8). There, the lowerurve represents the ontinuous phase transitions typial of loops perolation in rank 2 graphs.Indeed, if the fration v2 is high enough, all the previous luster separation and orthogonalityarguments do not hold, beause in region II, prior to lustering, the rank 2 sub-graph onebig enough to form an extensive onneted omponent where usual perolation is attained.In region III lustering appears before, but that the rank 2 subgraph perolates for a valueof  where the omplexity of metastable states is still extensive. Therefore, In region II thedynamial phese transition is shielded by the ontinuos one, while in III a �rst dynamialtransition is present, but the stati one is again due to simple 2 loops perolation phenomenon.In real data the fration of 2-variables equations is typially of the order of 0.2 and  ' 1. So wealways work deep into phase IV where, during the solving proedure, the system undergoes a�rst dynamial transition, that orresponds to a slowing down of the solving algorithms, before�nding solutions. Notie that whenever the �rst physial stati transition is the ontinuous one,the value of the omplexity drops to zero. The typial urves for the omplexity of the highestenergy density metastable states as a funtion of  is exempli�ed if �g. (5.9) for regions III andIV. For the partiular form of the v(x) studied in this setion and for the limit lmax !1, itis easy to see that ondition (2.218) reads:v2 = 31�s�(s)� 2�s � 1 + 31�s (5.26)The full phase diagram of the model studied in this setion an be also retrieved in two di�erentways: The �rst one [26℄ uses the leaf removal equation for the general p-spin model introdued
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5.1. GLOBAL ALGORITHMS TRANSITIONS IN LINEAR SYSTEMS OVER FINITE FIELDS131in the �rst hapter. Speializing the form of the generating funtion v(x) to the present asewe immediately �nd the equivalene between eq.(2.203) and the self onsistent ondition (5.7)for the magnetization of the ferromagneti model, as it was already noted in hapter 1. Theinstability ondition for  analogously follows from eq.(2.204). Moreover, it an be shownthat ondition (2.217) is equivalent to the vanishing ferromagneti omplexity threshold usedin this setion. The same is obviously true for the ontinuous threshold ̂ and for triritial,when present. The seond alternative way to solve this model with statistial physis toolsis the general 1RSB-like solution via the avity method at T = 0. Its general strategy waspresented in [23℄ and [24℄, applied to the partiular ase of the p-spin model on uniform rankPoissonian degree hyper-graphs in [26℄ and straightforwardly extended in the multiple rank asein hapter 1. The method has been shown to be equivalent to the replia method on averagesamples. Although it is not proven to be exat yet, it an be proven along the same lines of thealulations presented in hapter 5 to give rigorous upper bounds to the thresholds. Sine thesevalues oinide with the exat ones found via the generalized leaf-removal method, and sinethe lustering property of the p-spin in the dynamial region implies the physial exatness ofa 1RSB piture without further symmetry breaking phenomena, we are very on�dent in theresults.Overall, we have analyzed the behavior of di�erent type of polynomial algorithms in thesolutions of large-sale linear systems over �nite �elds. The onnetion between memory re-quirements and lustering phase transitions as been made lear on both arti�ially generatedproblem as well as on a \real-world" appliations. While the role of the dynamial glass tran-sition in loal searh algorithm was already well known (trapping in loal minima), we haveprovided a lear example of the role of suh type of glass transition in global dynamial pro-esses whih are guaranteed to onverge to the global optimum in some polynomial time. Thememory atastrophe found is suh ases onstitutes a onrete limitation for the performaneof single-mahine programs.



132 CHAPTER 5. PHASE AND COMPUTATIONAL COMPLEXITY TRANSITIONS5.2 The dynami phase transition for deoding algorithmsThe ontent of this setion is the output of a ollaboration with Andrea Montanari, Silvio Franzand Federio Rii-Tersenghi [127℄.5.2.1 IntrodutionReently there has been some interest in studying \omplexity phase transitions", i.e. abrupthanges in the omputational omplexity of hard ombinatorial problems as some ontrol pa-rameter is varied [128℄. These phenomena are thought to be somehow related to the physisof glassy systems, where the physial dynamis experienes a dramati slowing down as thetemperature is lowered [129℄.Complexity is a entral issue also in oding theory [130, 131℄. Coding theory [132, 134, 133℄deals with the problem of ommuniating information reliably through an unreliable hannelof ommuniation. This task is aomplished by making use of error orreting odes. In 1948Shannon [135℄ proved that almost any error orreting ode allows to ommuniate withouterrors, as long as the rate of transmitted information is kept below the apaity of the hannel.However deoding is an intratable problem for almost any ode. Coding theory is therefore arih soure of interesting omputational problems.On the other hand it is known that error orreting odes an be mapped onto disorderedspin models [38, 136, 137, 138, 139℄. Remarkably there has reently been a revolution inoding theory whih has brought to the invention of new and very powerful odes based onrandom onstrutions: turbo odes [140℄, low density parity hek odes (LDPCC) [141, 142℄,repetition aumulated odes [143℄, et. As a matter of fat the equivalent spin models havebeen intensively studied in the last few years. These are diluted spin glasses, i.e. spin glasseson random hyper-graphs [12, 23, 22, 20℄.The new odes are deoded by using approximate iterative algorithms, whih are loselyrelated to the TAP-avity approah to mean �eld spin glasses [144, 145℄. We think thereforethat a lose investigation of these systems from a statistial physis point of view, having inmind omplexity (i.e. dynamial) issues, an be of great theoretial interest6.Let us briey reall the general setting of oding theory [132℄ in order to �x a few notations(f. �g. 5.10 for a pitorial desription). A soure of information produes a stream of symbols.6The reader is invited to onsult Refs. [146, 147, 148, 149, 150, 151, 152, 153, 154, 155℄ for a statistialmehanis analysis of the optimal deoding (i.e. of stati issues).
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5.2. THE DYNAMIC PHASE TRANSITION FOR DECODING ALGORITHMS 133Let us assume, for instane, that the soure produes unbiased random bits. The stream ispartitioned into bloks of length Nblok. Eah of the possible 2Nblok bloks is mapped to aodeword (i.e. a sequene of bits) of length N > Nblok by the enoder and transmitted throughthe hannel. An error orreting ode is therefore de�ned either as a mapping f0; 1gNblok !f0; 1gN , or as a list of 2Nblok odewords. The rate of the ode is de�ned as R = Nblok=N .Let us denote7 the transmitted odeword by xin = [xin1 ; : : : ; xinN ℄T. Due to the noise, a di�erentsequene of symbols xout = [xout1 ; : : : ; xoutN ℄T is reeived. The deoding problem is to infer xingiven xout, the de�nition of the ode, and the properties of the noisy hannel.It is useful to summarize the general piture whih emerges from our work. We shall fouson Gallager odes (both regular and irregular). The optimal deoding strategy (maximum-likelihood deoding) is able to reover the transmitted message below some noise threshold:p < p. Iterative, linear time, algorithms get stuk (in general) at a lower noise level, andare suessful only for p < pd(alg:), with pd(alg:) � p. In general the \dynamial" thresholdpd(alg:) depends upon the details of the algorithm. However, it seems to be always smallerthan some universal (although ode-dependent) value pd. Moreover, some \optimal" linear-timealgorithms are suessful up to pd (i.e. pd(alg:) = pd). The universal threshold pd oinideswith the dynamial transition [129℄ of the orresponding spin model.The plan of the setion is the following. In Subsetion 5.2.2 we introdue low density parityhek odes (LDPCC), fousing on Gallager's ensembles, and we desribe message passingdeoding algorithms. We briey reall the onnetion between this algorithms and the TAP-avity equations for mean-�eld spin glasses. In Subse. 5.2.3 we de�ne a spin model whihdesribes the deoding problem, and introdue the replia formalism. In Subse. 5.2.4 weanalyze this model for a partiular hoie of the noisy hannel (the binary erasure hannel).In this ase alulations an be fully expliit and the results are partiularly lear. Then, inSubse. 5.2.5, we address the general ase. The Appendies of [127℄ ollet some details of ouromputations that we have not inluded here not to overload this thesis8.
5.2.2 Error orreting odes, deoding algorithms and the avityequationsThis Subsetion introdues the reader to some basi terminology in oding theory. In the �rstpart we de�ne some ensembles of odes, namely regular and irregular LDPCC. In the seondone we desribe a lass of iterative deoding algorithms. These algorithms have a very learphysial interpretation, whih we briey reall. Finally we explain how these algorithms areanalyzed in the oding theory ommunity. This Setion does not ontain any original result.The interested reader may onsult Refs. [156, 141, 134, 145℄ for further details.7We shall denote transmitted and reeived symbols by typographi haraters, with the exeption of sym-bols in f+1;�1g. In this ase use the physiists notation and denote suh symbols by �. When onsideringbinary symbols we will often pass from the x notation to the � notation, the orrespondene � = (�1)x beingunderstood. Finally vetors of length N will be always denoted by underlined haraters: e.g. x or �.8The reader should notie that in [127℄ the notations for the hyper-graph rank and degree probabilitydistribution and generating funtions are reversed.
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Figure 5.13: A graphi representation of the operations exeuted in a message passing algorithm.At the variable node i (on the left): x(t+1)i!1 = F (y(t)2!i; y(t)3!i; hi). At the hek node � (on theright): y(t+1)�!1 = G(x(t)2!�; x(t)3!�; x(t)4!�).thought to travel along the edges and omputations to be exeuted at the nodes. A nodeomputes the message to be sent along eah one of the edges, using the messages reeivedfrom the other (!) edges at the previous iteration (the variable nodes make also use of thelog-likelihoods h(xouti )), f. �g. 5.13. At some point the iteration is stopped (there exists nogeneral stopping riterion), and a hoie for the bit �i is taken using all the inoming messages(plus the log-likelihood h(xouti )).The funtions whih de�ne the \new" messages in terms of the \old" ones, an be hosento optimize the deoder performanes. A partiularly interesting family is the following:x(t+1)i!� = hi + X�03i:�0 6=� y(t)�0!i (5.31)y(t+1)�!i = 1� artanh 24 Yj2�: j 6=i tanh �x(t)j!�35 ; (5.32)where we used the notation i 2 � whenever the bit i belongs to the parity hek �. The messagesfx(�)i!�g and fy(�)�!ig an be resaled in suh a way to eliminate the parameter � everywhere exeptin front of hi. Therefore � allows to tune the importane given to the information ontained inthe reeived message.After the onvergene of the above iteration one omputes the a posteriori log-likelihoodsas follows: Hi = hi +X�3i y(1)�!i : (5.33)The meaning of the fHig is analogous to the one of the fhig (but for the fat that the Hiinorporate the information oming from the struture of the ode): the best guess for the biti is �i = +1 or �i = �1 depending whether Hi > 0 or Hi < 0.The most popular hoie for the free parameter � is � = 1: this algorithm has been inventedseparately by R. G. Gallager [141℄ in the oding theory ontext (and named the sum-produtalgorithm) and by D. Pearl [160℄ in the arti�ial intelligene ontext (and named the beliefpropagation algorithm). Also � =1 is sometimes used (the max-produt algorithm).The alerted reader will notie that the eqs. (5.31)-(5.32) are nothing but the avity equationsat inverse temperature � for a properly onstruted spin model. This remark is the objet ofRefs. [161, 144℄.In the analysis of the above algorithm it is onvenient to assume that �ini = +1 for i =1; : : : ; N . This assumption an be made without loss of generality if the hannel is symmetri



5.2. THE DYNAMIC PHASE TRANSITION FOR DECODING ALGORITHMS 137(i.e. if Q(xj+ 1) = Q(�xj � 1)). With this assumption the hi are i.i.d. random variables withdensity p(h) � Q(x(h)j+ 1)jx0(h)j ; (5.34)where x(h) is the funtion whih inverts eq. (5.30). In the following we shall onsider twopartiular examples of noisy hannels, the generalization being straightforward:� The binary erasure hannel (BEC). In this ase a bit an either be reeived orretlyor erased10. There are therefore three possible outputs: f+1;�1; 0g. The transitionprobability is:Q(xoutj+ 1) = 8><>: (1� p) if xout = +1 ;p if xout = 0 ;0 if xout = �1 ; Q(xoutj � 1) = 8><>: 0 if xout = +1 ;p if xout = 0 ;(1� p) if xout = �1 :(5.35)We get therefore the following distribution for the log-likelihoods: p(h) = (1� p) Æ1(h)+p Æ(h) (where Æ1 is a Dira delta funtion entered at +1). Let us reall that the apaityof the BEC is given by CBEC = 1� p: this means that a rate-R ode annot assure errororretion if p > 1� R.� The binary symmetri hannel (BSC). The hannel ips eah bit independently withprobability p. NamelyQ(xoutj+ 1) = ( (1� p) if xout = +1 ;p if xout = �1 ; Q(xoutj � 1) = ( p if xout = +1 ;(1� p) if xout = �1 :(5.36)The orresponding log-likelihood distribution is p(h) = (1 � p) Æ(h � h0) + p Æ(h + h0),with h0 = artanh(1� 2p). The apaity of the BSC is11 CBSC = 1� h(p): a rate-R odeannot orret errors if p > ÆGV (R).It is quite easy [162, 156℄ to write a reursive equations for the probability distributions ofthe messages �t(x) and b�t(y):�t+1(x) = 1k 1Xk=2 kk Z k�1Yi=1 dyi b�t(yi) Z dh p(h) Æ  x� h� k�1Xi=1 yi! ; (5.37)b�t+1(y) = 1l 1Xl=3 vll Z l�1Yi=1 dxi �t(xi) Æ  y � 1� artanh "l�1Yi=1 tanh �xi#! : (5.38)These equations (usually alled the density evolution equations) are orret for times t� logNdue to the fat that the Tanner graph is loally tree-like. They allow therefore to preditwhether, for a given ensemble of odes and noise level (reall that the noise level is hidden inp(h)) the algorithm is able to reover the transmitted odeword (for large N). If this is the ase,the distributions �t(x) and b�t(y) will onentrate on x = y = +1 as t ! 1. In the oppositease the above iteration will onverge to some distribution supported on �nite values of x andy. In Tab. 5.1 we report the threshold noise levels for several regular odes, obtained using the10This is what happens, for instane, to pakets in the Internet traÆ.11We denote by h(p) the binary entropy funtion h(p) = �p log2 p� (1�p) log2(1�p). It is useful to de�ne itsinverse: we denote by ÆGV (R) (the so-alled Gilbert-Varshamov distane) the smallest solution of h(Æ) = 1�R.



138 CHAPTER 5. PHASE AND COMPUTATIONAL COMPLEXITY TRANSITIONSBEC BSC(l; k) p pd p pd(� = 1) pd(� = 2) pd(� =1)(6; 3) 0:4882 0:4294 0:100 0:084 0:078 0:072(10; 5) 0:4995 0:3416 0:109 0:070 0:056 0:046(14; 7) 0:5000 0:2798 0:109 0:056 0:039 0:029(6; 5) 0:8333 0:5510 0:264 0:139 0:102 0:078Table 5.1: The stati and dynamial points for several regular odes and deoding algorithms,f. eqs. (5.31), (5.32).density evolution method, together with the thresholds for the optimal deoding strategy, seeRef. [154℄.Finally let us notie that the �xed point of the iteration (5.37)-(5.38) is the replia symmetriorder parameter for the equivalent spin model.5.2.3 Statistial mehanis formulation and the replia approahWe want to de�ne a statistial mehanis model whih desribes the deoding problem. Theprobability distribution for the input odeword to be � = (�1; : : : ; �N) onditional to thereeived message, takes the formP (�) = 1Z ÆĤ [�℄ exp( NXi=1 hi�i) ; (5.39)where ÆĤ [�℄ = 1 if � satis�es the parity heks enoded by the matrix Ĥ, f. eq. (5.27), andÆĤ [�℄ = 0 otherwise. Sine we assume the input odeword to be �in = (+1;+1; : : : ;+1), the hiare i.i.d. with distribution p(h).We modify the probability distribution (5.39) in two ways:1. We multiply the �elds hi by a weight �̂. This allows us to tune the importane of thereeived message, analogously to eqs. (5.31) and (5.32). This modi�ation was alreadyonsidered in Ref. [154℄. Partiularly important ases are �̂ = 1 and �̂ = 0.2. We relax the onstraints implied by the harateristi funtion ÆĤ [�℄. More preisely,let us denote eah parity hek by the un-ordered set of bits positions (i1; : : : ; ik) whihappears in it. For instane the three parity heks in the Hamming ode H2(3), f. eq.(5.28), are (1; 4; 5; 7), (2; 4; 6; 7), (3; 5; 6; 7). Moreover let 
k be the set of all parity heksinvolving k bits (in the irregular ensemble the size of 
k is Nk). We an write expliitlythe harateristi funtion ÆĤ [�℄ as follows:ÆĤ [�℄ = 1Yl=3 Y(i1:::il)2
l Æ(�i1 � � ��il;+1) ; (5.40)where Æ(�; �) is the Kroneker delta funtion. Now it is very simple to relax the onstraintsby making the substitution Æ(�i1 � � ��il ;+1)! expf�[�i1 � � ��il � 1℄g.Summarizing the above onsiderations, we shall onsider the statistial mehanis model de�nedby the HamiltonianH(�) = � 1Xl=3 X(i1:::il)2
l(�i1 � � ��il � 1) � �̂� NXi=1 hi�i ; (5.41)



5.2. THE DYNAMIC PHASE TRANSITION FOR DECODING ALGORITHMS 139at inverse temperature �.We address this problem by the replia approah [163℄ The repliated partition funtionreads hZni � Z Y~� d�(~�)db�(~�) e�NS[�;b�℄ ; (5.42)with the ationS[�; b�℄ = kX~� �(~�)b�(~�)� kl 1Xl=3 vl X~�1:::~�l J�(~�1; : : : ; ~�l)�(~�1) � � ��(~�l)� (5.43)� 1Xk=2 k log "X~� b�(~�)kH(~�)#� k + kl ;where J�(~�1; : : : ; ~�k) � e�Pa(�1 :::�k�1) ; H(~�) = he�̂hPa �aih ; (5.44)h�ih being the average over p(h). The order parameters �(~�) and b�(~�) are losely related, atleast in the replia symmetri approximation, to the distribution of messages in the deodingalgorithm [154℄, f. eqs. (5.37), (5.38).In the ase of the BEC an irrelevant in�nite onstant must be subtrated from the ation(5.43) in order to get �nite results. This orresponds to takingHBEC(~�) � p+ (1� p)Æ~�;~�0 ; (5.45)where ~�0 = (+1; : : : ;+1).5.2.4 Binary erasure hannel: analytial and numerial resultsThe binary erasure hannel is simpler than the general ase. Intuitively this happens beauseone annot reeive misleading indiations onerning a bit. Nonetheless it is an important aseboth from the pratial [164℄ and from the theoretial point of view [165, 156, 158℄.The deoding algorithmIterative deoding algorithms for irregular odes were �rst introdued and analyzed withinthis ontext [158℄. Belief propagation beomes partiularly simple. Sine the knowledge abouta reeived bit is ompletely sure, the log-likelihoods fhig, f. eq. (5.30), take the valueshi = +1 (when the bit has been reeived12) or hi = 0 (when it has been erased). Analogouslythe messages fx(t)i!�g and fy(t)�!ig must assume the same two values. The rules (5.31), (5.32)beomex(t+1)i!� = ( +1 if either hi = +1 or y(t)�0!i = +1 for some �0 3 i (with �0 6= �);0 otherwise, (5.46)y(t+1)�!i = ( +1 if x(t)j!� = +1 for all the j 2 � (with j 6= i);0 otherwise. (5.47)12Reall that we are assuming the hannel input to be �ini = +1 for i = 1; : : : ; N .



140 CHAPTER 5. PHASE AND COMPUTATIONAL COMPLEXITY TRANSITIONSThere exists an alternative formulation [158℄ of the same algorithm. Consider the systemof M linear equations (5.27) and eliminate from eah equation the reeived variables (whihare known for sure to be 0). You will obtain a new linear system. In some ases you mayhave eliminated all the variables of one equation, the equation is satis�ed and an thereforebe eliminated. For some of the other equations you may have eliminated all the variables butone. The remaining variable an be unambiguously �xed using this equation (sine the reeivedmessage is not misleading, this hoie is surely orret). This allows to eliminate the variablefrom the entire linear system. This simple proedure is repeated until either all the variableshave been �xed, or one gets stuk on a linear system suh that all the remaining equationsinvolve at least two variables (this is alled a stopping set [165℄).Let us for instane onsider the linear system de�ned by the parity hek matrix (5.28).Suppose, in a �rst ase, that the reeived message was (0; �; 0; �; 0; �; 0) (meaning that the bitsof positions 2, 4, 6 were erased). The deoding algorithm proeeds as follows:8<: x1 + x4 + x5 + x7 = 0x2 + x4 + x6 + x7 = 0x3 + x5 + x6 + x7 = 0 ) 8<: x4 = 0x2 + x4 + x6 = 0x6 = 0 ) 8<: 0 = 0x2 = 00 = 0 : (5.48)In this ase the algorithm sueeded in solving the deoding problem. Let us now see whathappens if the reeived message is (�; 0; �; 0; �; 0; �):8<: x1 + x4 + x5 + x7 = 0x2 + x4 + x6 + x7 = 0x3 + x5 + x6 + x7 = 0 ) 8<: x1 + x5 + x7 = 0x7 = 0x3 + x5 + x7 = 0 ) 8<: x1 + x5 = 00 = 0x3 + x5 = 0 : (5.49)The algorithm found a stopping set. Notie that the resulting linear system may well have aunique solution (although this is not the ase in our example), whih an be found by means ofsimple polynomial algorithms [166℄. Simply the iterative algorithm is unable to further redueit. The analysis of this algorithm [156℄ uses the density evolution equations (5.37), (5.38) andis greatly simpli�ed beause the messages fx(t)i!�g and fy(t)�!ig take only two values. Theirdistributions have the form:�t(x) = �t Æ(x) + (1� �t) Æ1(x) ; b�t(x) = �̂t Æ(y) + (1� �̂t) Æ1(y) ; (5.50)where Æ1(�) is a delta funtion entered at +1. The parameters � and �̂ give the fration ofzero messages, respetively from variables to heks and from heks to variables. Using eqs.(5.37) and (5.38), we get:�t+1 = p 0(�̂t)0(1) ; �̂t+1 = 1� v0(1� �t)v0(1) : (5.51)The initial ondition �0 = �̂0 = 1 onverges to the perfet reovery �xed point � = �̂ = 0 ifp < pd. This orresponds to perfet deoding. For p > pd the algorithm gets stuk on a non-trivial linear system: �t ! ��, �̂t ! �̂�, with 0 < ��; �̂� < 1. The two regimes are illustrated in�g. 5.14.Stati transitionIn the spin model orresponding to the situation desribed above, we have two types of spins:the ones orresponding to orretly reeived bits, whih are �xed by an in�nite magneti �eldhi = +1; and the ones orresponding to erased bits, on whih no magneti �eld ats: hi = 0.
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Figure 5.14: The evolution of the iterative deoding algorithm on the BEC, f. eqs. (5.51).Here we onsider the (6; 5) ode: �t+1 = p[1� (1� �t)5℄4. On the left p = 0:5 < pd, on the rightp = 0:6 > pd.We an therefore onsider an e�etive model for the erased bits one the reeived ones are �xedto +1. This orrespond somehow to what is done by the deoding algorithm: the reeived bitsare set to their values in the very �rst step of the algorithm and remain unhanged thereafter.Let us onsider the zero temperature limit. If the system is in equilibrium, its probabilitydistribution will onentrate on zero energy on�gurations: the odewords. We will have typ-ially Nwords(p) � 2Nswords(p) odewords ompatible with the reeived message. Their entropyswords(p) an be omputed within the replia formalism as it was expliitly done in [127℄. Theresult is swords(�; �̂; p) = k�(1� �̂) + kl (1� �) + p v(�̂)� kl ; (5.52)whih has to be maximized with respet to the order parameters � and �̂. The saddle pointequations have exatly the same form as the �xed point equations orresponding to the dy-namis (5.51), namely � = p0(�̂)=0(1) and �̂ = 1� v0(1� �)=v0(1)The saddle point equations have two stable solutions, i.e. loal maxima of the entropy(5.52): (i) a ompletely ordered solution � = �̂ = 0, with entropy swords(0; 0) = 0 (in some asesthis solution beomes loally unstable above some noise plo); (ii) (for suÆiently high noiselevel) a paramagneti solution ��; �̂� > 0. The paramagneti solution appears at the same valuepd of the noise above whih the deoding algorithm gets stuk.The �xed point to whih the dynamis (5.51) onverges oinides with the statistial me-hanis result for ��; �̂�. However the entropy of the paramagneti solution swords(��; �̂�) isnegative at pd and beomes positive only above a ertain ritial noise p. This means that thelinear system produed by the algorithm ontinues to have a unique solution below p, althoughour linear time algorithm is unable �nd suh a solution.The \dynamial" ritial noise pd is the solution of the following equationp00(�̂�)v00(1� ��)v0(1)0(1) = �1 ; (5.53)where �� and �̂� solve the saddle point equations. The stati noise an be obtained setting
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Figure 5.15: The phase diagram of the family of odes with generating polynomials v(x) =�x4 + (1 � �)x6, (x) = �x2 + (1 � �)x3. The dashed line gives the loal stability thresholdfor the ompletely ordered ferromagneti phase. The ontinuous and dot-dashed lines refer(respetively) to the stati and dynami ritial points p(�) and pd(�).swords(��; �̂�) = 0. Finally the ompletely ordered solution beomes loally unstable forplo = 0(1)v0(1)00(0)v00(1) : (5.54)As an example let us onsider the one-parameter family of R = 1=2 odes spei�ed by thefollowing generating polynomials: v(x) = �x4 + (1 � �)x6, (x) = �x2 + (1 � �)x3. This isan irregular ode whih smoothly interpolates between the regular (6; 3) and (4; 2) odes. Theloal stability threshold is given byplo(�) = (3� �)26�(5� 3�) : (5.55)The dynamial and ritial urves pd(�) and p(�) are reported in �g. 5.15. Notie that the� value where pd(�) reahes its maximum, orresponding to the best ode in this family, isneither 0 nor 1. This is a simple example showing that irregular odes (0 < � < 1) aregenerally superior to regular ones (� = 0 or � = 1 in this example). Notie also that abovethe triritial point �t � 0:79301412, pt � 0:39057724 the three urves plo(�), p(�) and pd(�)oinide. In the following we shall study in some detail the � = 0 ase, whih orresponds to aregular (6; 3) ode, the orresponding ritial and dynamial points p and pd are given in Tab.5.1.Dynamial transitionThe dynamial transition is not properly desribed within the replia symmetri treatmentgiven above. Indeed, the paramagneti solution annot be onsidered, between pd and p,as a metastable state beause it has negative entropy. One annot therefore give a sensibleinterpretation of the oinidene between the ritial noise for the deoding algorithm, and theappearane of the paramagneti solution.



5.2. THE DYNAMIC PHASE TRANSITION FOR DECODING ALGORITHMS 143Before embarking in the one step replia symmetry-breaking (1RSB) alulation, let usreview some important onepts on on�gurational omplexuty [7, 167℄ already introdued andexploited in the seond hapter. Let us all m�(�;m) the free energy of m weakly oupled\real" replias times beta. This quantity an be omputed in 1RSB alulation. In the limit� ! 1, with m� = y �xed, we have m�(�;m) ! ��(y). The number of metastable stateswith a given energy density � is NMS(�) � eN�(�) ; (5.56)where the omplexity �(�) is the Legendre transform of the m replias free energy:�(�) = ��� ��(y)j�=�[y�(y)℄ : (5.57)The (zero temperature) dynami energy �d and the stati energy �s are13, respetively, themaximum and the minimum energy suh that �(�) � 0.The stati energy is obtained by solving the following equations:( �s = �(y) ;��(y) = 0 ; (5.58)whih orresponds to the usual presription of maximizing the free energy over the repliasymmetry breaking parameter m [163℄. The dynami energy is given by( �d = �[y�(y)℄ ;�2[y�(y)℄ = 0 : (5.59)Finally, if �s = 0 the omplexity of the ground state is �(0) = � limy!1 y�(y).At the time the alulation were done we weren't able to exatly ompute the 1RSB freeenergy �(y). After results of [24, 30, 26℄, exat 1RSB alulations ould be redone. Howeverexellent results an be obtained within an \almost fatorized" variational Ansatz, f. [127℄.The piture whih emerges is essentially not hanged by the exat 1RSB solution , as we haveheked numerially, and is the following:� In the low noise region (p < pd), no metastable states exist. Loal searh algorithmsshould therefore be able to reover the erased bits.� In the intermediate noise region (pd < p < p) an exponentially large number of metastablestates appears. They have energy densities � in the range �s < � < �d, with �s > 0.Therefore the transmitted odeword is still the only one ompatible with the reeivedmessage. Nonetheless a large number of extremely stable pseudo-odewords stop loalalgorithms. The number of violated parity heks in these odewords annot be reduedby means of loal moves.� Above p we have �s = 0: a fration of the metastable states is made of odewords. More-over �(0) (whih gives the number of suh odewords) oinides with the paramagnetientropy swords(��; �̂�) omputed in the previous Setion.As an illustration, let us onsider the (6; 3) regular ode. In �g. 5.16 we plot the resultingomplexity urves �(�) for three di�erent values of the erasure probability p. In �g. 5.17, left13Notie that one an give (at least) three possible de�nitions of the dynami energy: (i) from the solutionof the non-equilibrium dynamis: �(d)d ; (ii) imposing the replion eigenvalue to vanish: �(r)d ; (iii) using, as inthe text, the omplexity �(�): �()d . The three results oinide in the p-spin spherial fully onneted model,however their equality in the present ase is, at most, a onjeture.
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Figure 5.16: The omplexity �(�) for (from top to bottom) p = 0:45 (below p), p = 0:5, andp = 0:55 (above p).
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Figure 5.18: Energy relaxation for the Hamiltonian of the (6,3) regular ode during the simu-lated annealing with � MCS per temperature and 1000 equidistant temperatures in [0; 1℄frame, we report the stati and dynami energies �s and �d as funtions of p. In the right framewe present the total omplexity �tot � max��(�) = �(�d), and the zero energy omplexity�(0).Numerial resultsIn order to hek analytial preditions and to better illustrate the role of metastable states,we have run a set of Monte Carlo simulations, with Metropolis dynamis, on the Hamiltonian(5.41) of the (6,3) regular ode for the BEC. Notie that loal searh algorithms for the deodingproblem have been already onsidered by the oding theory ommunity [168℄.We studied quite large odes (N = 104 bits), and tried to deode it (i.e. to �nd a groundstate of the orresponding spin model) with the help of simulated annealing tehniques [169℄.For eah value of p, we start the simulation �xing a fration (1� p) of spins to �i = +1 (thispart will be kept �xed all along the run). The remaining pN spins are the dynamial variableswe hange during the annealing in order to try to satisfy all the parity heks. The energy ofthe system ounts the number of unsatis�ed parity heks.The ooling shedule has been hosen in the following way: � Monte Carlo sweeps (MCS) 14at eah of the 1000 equidistant temperatures between T = 1 and T = 0. The highest tem-perature is suh that the system very rapidly equilibrates on the paramagneti energy �P (T ).Typial values for � are from 1 to 103.Notie that, for any �xed ooling shedule, the omputational omplexity of the simulatedannealing method is linear inN . Then we expet it to be a�eted by metastable states of energy�d, whih are present for p > pd: the energy relaxation should be strongly redued around �dand eventually be ompletely bloked.In order to illustrate how the system relaxes during the simulated annealing we show in�g. 5.18 the energy density as a funtion of the temperature for p = 0:4 (left) and p = 0:6(right) and various ooling rates, � = 10; 102; 103 (eah data set is the average over manydi�erent samples).14Eah Monte Carlo sweep onsists in N proposed spin ips. Eah proposed spin ip is aepted or notaordingly to a standard Metropolis test.
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Figure 5.19: Lowest energies reahed by the simulated annealing. Errors are sample to sampleutuations.For p = 0:4 < pd the �nal energy strongly depends on the ooling rate and the slowestooling proedure is always able to bring the system on the ground state, orresponding to thetransmitted odeword. Deoding by simulated annealing is therefore suessful.For p = 0:6 > pd the situation drastially hanges. Below a temperature Td (marked byan arrow in �g. 5.18, right frame) there is an almost omplete stop of the energy relaxation.Td marks the dynamial transition and the orresponding energy �d(Td) = �P (Td) is alled thethreshold energy. The energy of threshold states still varies a little bit with temperature, �d(T ),and the �nal value reahed by the simulated annealing algorithm is its zero-temperature limit�d(0) = �d. Remember that, by onstrution, ground states of zero energy are present for anyp value, but they beome unreahable for p > pd, beause they beome shielded by metastablestates of higher energy.We show in �g. 5.19 the lowest energy reahed by the simulated annealing proedure fordi�erent p and � values. While for p < pd all parity heks an be satis�ed and the energyrelaxes to zero in the limit of a very slow ooling, for p � pd the simulation get stuk in ametastable state of �nite energy, that is with a number of unsatis�ed parity heks of order N .The agreement with the analyti predition (dotted line) is quite good everywhere, but verylose to pd.Disrepanies between analytial preditions and numerial results may be very well dueto �nite-size e�ets in the latter. One possible explanation for large �nite-size e�ets near thedynami ritial point pd is the following. Metastable states of energy �d are stable under anyloal dynami, whih may ip simultaneously only a �nite number of spins, and under globaldynamis ipping no more than !N spins simultaneously. Physial intuition (threshold statesbeome more robust inreasing p) imply that the funtion !(p) must monotonously inreasefor p 2 [pd; 1℄. Moreover, ontinuity reasons tell us that !(pd) = 0. The fat that !(p) isvery small lose to pd, together with the fat that in numerial simulations we are restrited to�nite values of N , allow the loal Monte Carlo dynami to relax below the analytial predited



5.2. THE DYNAMIC PHASE TRANSITION FOR DECODING ALGORITHMS 147threshold energy. A more detailed haraterization of this e�et is presently under study andwill be presented in a forthoming publiation.5.2.5 The general hannel: analytial and numerial resultsWe onsidered the ase of a general noisy hannel using two di�erent approahes: a �nite-temperature and a zero-temperature approah. While the �rst one o�ers a lear onnetionwith the dynamis of deoding-by-annealing algorithm, the seond one gives a nie geometrialpiture of the situation.Finite temperatureSuppose you reeived some message enoded using a Gallager ode and you want to deode it,but no one explained to you the belief propagation algorithm, f. eqs. (5.31), (5.32).A physiist idea would be the following. Write the orresponding Hamiltonian H(�), seeeq. (5.41), and run a Monte Carlo algorithm at inverse temperature �. If you wait enoughtime, you will be able to sample the on�guration � aording to the Boltzmann distributionP�(�) / e��H(�). Then ool down the system adiabatially: i.e. hange the temperatureaording to some shedule f�1; �2; : : : ; g with �k " 1, waiting enough time at eah temperaturefor the system to equilibrate.As � !1 the Boltzmann measure of the Hamiltonian (5.40) onentrates on the odewords(for whih the exhange term in eq. (5.40) is equal to zero). Moreover eah odeword is givena weight whih depends on its likelihood. In formulae:lim�!1P�(�) = 1Z�̂ P (�jxout)�̂ ; (5.60)where P (�jxout) is the probability for � to be the transmitted odeword, onditional to thereeived message xout, and Z�̂ is a normalization onstant. Therefore when � � 1, our algorithmwill sample a odeword with probability proportional to P (�jxout)�̂. For good odes below theritial noise threshold p, the likelihood P (�jxout) is strongly onentrated15 on the orretinput odeword. Therefore the system will spend most of its time on the orret odeword assoon as � � 1 and �̂ � 1 (for �̂ < 1, p has a non-trivial dependene on �̂, f. Ref. [154℄).This algorithm will sueed as long as we are able to keep the system in equilibrium at alltemperatures down to zero. If some form of ergodiity breaking is present this may take anexponentially (in the size N) long time. Let us suppose to spend an O(N) omputational timeat eah temperature �i of the annealing shedule (this is what happens in Nature). We expetto be able to equilibrate the system only at low enough noise (let us say for p < pd(�̂)), whenthe magneti �eld in eq. (5.41) is strong enough for single out a unique ergodi omponent.The random linear ode limitSome intuition on the stati phase diagram an be gained by looking at the k; l ! 1 limitwith rate R = 1 � k=l �xed, f [127℄. Unhappily, in this limit the dynami phase transitiondisappears: the deoding algorithm is always unsuessful, as an be understood by lookingat eqs. (5.31)-(5.32). This phenomenon is analogous to what happens in the random energy15Namely we have P (�injxout) = 1 � O(e��N ). This happens beause there is a minimum O(N) Hammingdistane between distint odewords [141℄.



148 CHAPTER 5. PHASE AND COMPUTATIONAL COMPLEXITY TRANSITIONS

0 0.1 0.2 0.3 0.4
p

0

0.1

0.2

0.3

0.4

0.5

e−
2β

PARA

FERRO

pc

0 0.1 0.2 0.3 0.4
p

0

0.1

0.2

0.3

0.4

0.5

e−
2β

FERRO

PARA

SG−>

pcFigure 5.20: The phase diagram for the model (5.40) in the limit k; l ! 1 with R = 1� k=l�xed. Here we onsider R = 1=6 and �̂ = 1 (on the left) and 1:5 (on the right). The rightmost(i.e. noisier) point for whih the ferromagneti phase is globally stable is always at � = 1,p = ÆGV (R) � 0:264. Along the dashed line the entropy of the paramagneti phase vanishes.model (REM) [170℄: the dynami transition is usually said to our at in�nite temperature.We refer to Se. 5.2.5 for further lari�ations of this point.There exist a paramagneti and a ferromagneti phases, with free energy densitiesfP = � 1� hlog(2 osh �̂h)ih + 1� R� log(1 + tanh �) ; (5.61)fF = � �̂� hhih : (5.62)One must be areful in omputing the entropy beause of the expliit dependene of the Hamil-tonian (5.40) upon the temperature. The result is that the ferromagneti phase has zero entropysF = 0, while the entropy of the paramagneti phase issP = hlog(2 osh �̂h)ih � h�̂h tanh �̂hih � (5.63)�(1� R) log(1 + tanh �) + (1� R)�(1� tanh �) :In the low-temperature, low-noise region the paramagneti entropy sP beomes negative. Thissignals a REM-like glassy transition [170℄. The spin glass free energy is obtained by maximizingover the RSB parameter m (with 0 � m � 1) the following expressionfSG(m) = �(1� R)�m log(1 + e�2�m)� 1mhlog(2 oshm�̂h)ih : (5.64)The generi phase diagram is reported in �g. 5.20. At high temperature, as the noise levelis lowered the system undergoes a paramagneti-ferromagneti transition and onentrates onthe orret odeword. At low temperature an intermediate glassy phase may be present (for�̂ > 1): the system onentrates on a few inorret on�gurations.
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152 CHAPTER 5. PHASE AND COMPUTATIONAL COMPLEXITY TRANSITIONSThe random linear ode limitIt is quite easy to ompute the omplexity �p(�; q) in the limit k; l !1 with rate R = 1� k=l�xed. In partiular, the zeroth order term in a large k; l expansion an be derived by elementarymethods.In this limit we expet the regular (l; k) ensemble to beome idential to the random linearode (RLC) ensemble. The RLC ensemble is de�ned by taking eah element of the parity hekmatrix Ĥ, f. eq. (5.27) to be 0 or 1 with equal probability. Distint elements are onsideredto be statistially independent.Let us ompute the number of on�gurations � having a given energy and overlap with thereeived message �out. Given a bit sequene x 6= 0, the probability that L out of M equationsĤx = 0 are violated is PL;x =  ML ! 2�M : (5.67)Therefore the expeted number of on�gurations x whih violate L heks and have Hammingdistane W from the reeived message xout isNW;L = ÆW;Wxout ÆL;0[1� 2�M ℄ +  NW ! ML ! 2�M ; (5.68)where Wxout is the weight of xout, i.e. its Hamming distane from 0. Notie that, up toexponentially small orretions, the above expression does not depend on xout.Introduing the overlap q = 1� 2W=N and the exhange energy density � = 2L=N , we getNW;L � 2N ~�(�;q) with~�(�; q) = h[(1� q)=2℄ + (1� R) h[�=2(1�R)℄� (1� R) : (5.69)The typial number N typW;L of suh on�gurations an be obtained through the usual REMonstrution: N typW;L � 2N ~�(�;q) when ~�(�; q) � 0 and N typW;L = 0 otherwise.Now we are interested in piking, among all the on�gurations having a given energy density� and overlap q, the metastable states. In analogy with the REM, this an be done by elimi-nating all the on�gurations suh that �� ~�(�; q) < 0. In other words, the number of metastablestates is NMS(�; q) � 2N�(�;q) with �(�; q) = ~�(�; q) when ~�(�; q); ��~�(�; q) > 0, �(�; q) = �1otherwise.In �g. 5.24 we plot the region of the (�; q) plane for whih �(�; q) > 0, for R = 1=2 odes.Notie that, in this limit �(�; q) does not depend on the reeived message �out (and, therefore,is independent of p). As expeted we get p = ÆGV (R) and pd = 0.In order to get the �rst non-trivial estimate for the dynamial point pd, we must onsiderthe next term in the above expansion. This orretion an be obtained within the repliaformalism, see [127℄. In �g. 5.25 we reprodue ontour of the region f(�; q) : �p(�; q) > 0g fora few regular odes of rate R = 1=2: (l; k) = (6; 3),(10; 5),(14; 7). The main di�erene betweenthese urves and the exat results, f. Se. 5.2.5, is the onvexity of the upper boundary of the�p(�; q) > 0 region (dashed lines in �gs. 5.24 and 5.25).The orresponding estimates for p and pd are reported in Tab. 5.2.
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5.2. THE DYNAMIC PHASE TRANSITION FOR DECODING ALGORITHMS 155thresholds are obtained, respetively, within a replia symmetri, fr. eqs. (5.37), (5.38),and a one-step replia symmetry breaking alulations.� We onsidered message-passing and simulated annealing algorithms. Extend the aboveanalysis to other lasses of algorithm (and, eventually, to any linear time algorithm).� Message passing deoding algorithms get stuk beause they are unable to deode somefration of the reeived message, the \hard" bits, while they have been able to deode theother ones, the \easy" bits. A loser look at this heterogeneous behavior would be veryfruitful.
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Chapter 6Determining bounds
6.1 Variational bounds for optimization problems andspin systemsIn this �nal hapter we generalize to the ase of diluted spin models and random ombinatorialoptimization problems a tehnique reently introdued by Guerra (ond-mat/0205123) to provethat the replia method generates variational bounds for disordered systems. We analyzea family of models that inludes the Viana-Bray model, the diluted p-spin model or randomXOR-SAT problem, and the randomK-SAT problem, showing that the replia method providesan improvable sheme to obtain lower bounds of the free-energy at all temperatures and ofthe ground state energy. In the ase of K-SAT the replia method thus gives upper boundsof the satis�ability threshold. The replia method [176, 2℄, originally devised as a trik toompute thermodynamial quantities of physial systems in presene of quenhed disorder, hasfound appliations in the analysis of systems of very di�erent nature, as Neural Networks,Combinatorial optimization problems [2, 35, 27℄, Error Corretion Codes [27℄ et. Althoughmany physiists believe that the method, within the Replia Symmetry Breaking sheme ofParisi [2℄, is able to potentially give the exat solution of any problem treatable as a mean �eldtheory, the neessary mathematial foundation of the theory is still laking, after more then 20years from its introdution in theoretial physis. The last times have seen a growing interestof the mathematial ommunity in the method, leading to important but still partial results,on�rming in ertain ases the replia analysis, with more onventional and well establishedtehniques [177℄. Apart the remarkable exeption of the analysis of the fully onneted p-spinmodel in ref. [178℄ and the rigorous analysis of Random Energy Models [179℄, the analysis ofthe mathematiians has been, as far as we know, restrited to the high temperature regionsand/or to problem of replia symmetri nature. Very welomed have been the tehniquesreently introdued by Guerra and Toninelli [60℄ whih allow rigorous analysis not relyingon the assumption of high temperature, and valid even in problems with replia symmetrybreaking. Along these lines, an important step towards the rigorous omprehension of thereplia method, has been undertaken in [60℄, where it has been shown how in the ase of theSherrington-Kirkpatrik model, and its p-spin generalizations, the replia free-energies witharbitrary number of replia symmetry breaking steps onstitute variational lower bounds tothe true free-energy of the model. As stated in that paper, the analysis is restrited to fully-onneted models, whose replia mean �eld theory an be formulated in terms of a singlen� n matrix. However, in reent times, many of the more interesting problems analyzed with157



158 CHAPTER 6. DETERMINING BOUNDSreplia theory pertain to the so alled \diluted models" where eah degree of freedom interatswith a �nite number of neighbors. The introdution of a \population dynamis algorithm"[23℄ has allowed to treat in full generality -within statistial preision- ompliated sets ofprobabilisti funtional equations appearing in the one step symmetry broken framework ofdiluted models. The same algorithm has been used as a starting point of a generalized \beliefpropagation" algorithm for optimization problems [145, 30℄. Furthermore, at the analyti level,simpli�ations due to graph homogeneities in some ases [22℄, and to the vanishing temperaturelimit in some other ases [9℄ have led to supposedly exat solutions of the ground state propertiesof diluted models, ulminated in the resolution of the random XOR-SAT on uniform graphsin [22℄ and the random K-SAT problem in [30℄ within the framework of \one-step repliasymmetry breaking" (1RSB). The aim of this hapter, is to show that the replia analysis ofdiluted models provides lower bounds for the exat free-energy density, and ground state energydensity. We analyze in detail the ases of the diluted p-spin model on the Poissonian degreehyper-graphs also known as random XOR-SAT problem and the random K-SAT problems. Weexpet that along similar lines free-energy lower bounds an be found for many other dilutedases. The Guerra method we use sheds some light on the meaning of the replia mean �eldtheory. The physial idea behind the method is that within mean �eld theory one an modifythe original Hamiltonian weakening the strength of the interation ouplings or removing thempartially or totally, and ompensate this removal by some auxiliary external �elds. In disorderedsystems these �elds should be random �elds, taken from appropriate probability distributionsand possibly orrelated with the original values of the quenhed variables eliminated from thesystems. One is then led to onsider Hamiltonians interpolating between the original modeland a pure paramagnet in a random �eld, and by means of these models ahieving free-energylower bounds. We will see that the RS ase orresponds to assuming independene between therandom �elds and the quenhed disorder. The Parisi RSB sheme, assumes at eah breakinglevel a peuliar kind of orrelations, and gives free-energy bounds improving the RS one. Thehapter is organized in this way: in setion 6.1.1 we introdue some notations that will beextensively used in the following setions. In setion 6.1.2 we introdue the general strategyto get the replia bounds We then speialize to the replia symmetri and the one step repliasymmetry broken bounds, giving the results in the p-spin and the K-SAT ases. Conlusionsare drawn in setion 6.1.5. In the appendies some details of the alulations in both the p-spinand the K-SAT ases are shown. Our results will be issue of expliit alulations. Although atthe end we will get bounds, formalizable as mathematial theorems, the style and most of thenotations of the hapter will be the ones of theoretial physis.6.1.1 NotationsSine the aim of this hapter is to obtain rigorous results, it is neessary to review and extendhere some notations already introdued at beginning. The spin models we will onsider in thiswork are de�ned by a olletion of N Ising �1 spins S = fS1; :::; SNg, interating throughHamiltonians of the kind H(�)(S;J) = MX�=1HJ(�)(Si�1 ; :::; Si�p ) (6.1)where the indies i�l are i.i.d. quenhed random variables hosen uniformly in f1; :::; Ng. Wewill all eah term HJ(�) a lause. The subsript J (�) in the lauses indiates the dependeneon a single or a set of quenhed random variables, as it will be soon lear. The number of



6.1. VARIATIONAL BOUNDS FOROPTIMIZATION PROBLEMS AND SPIN SYSTEMS159lauses M will be taken to be proportional to N . For onveniene we will hoose it to be foreah sample a Poissonian number with distribution �(M;�N) = e��N (�N)MM ! . The utuationsof M will not a�et the free-energy in the thermodynami limit, and this hoie, whih slightlysimplify the analysis, will be equivalent to hoosing a �xed value ofM equal to �N . The lausesthemselves will be random. The p-spin model[19℄ has lauses of the formHJ(�)(Si�1 ; :::; Si�p ) = J�Si�1 � ::: � Si�p : (6.2)This form redues to HJ(�)(Si�1 ; Si�2 ) = J�Si�1Si�2 in the ase of the Viana-Bray spin glass p = 2.In both ases the J� will be taken as i.i.d. random variable with regular symmetri distribution�(J) = �(�J). Notie that for �(J) = 1=2[Æ(J+1)+Æ(J�1)℄ the model redues to the randomXOR-SAT problem [82℄ of omputer siene. The random K-SAT lauses have the form [9℄HJ(�)(Si�1 ; :::; Si�p ) = pYl=1 1 + J�i�l Si�l2 ; (6.3)where the J�i�l = �1 are i.i.d. with symmetri probability. (The number p of spin appearing ina lause is usually alled K in the K-SAT problem, for uniformity of notation we will deviatefrom this onvention). Notie that in all ases, on average eah spin partiipate to � = MNlauses, and that the set of spins and interations de�nes a random diluted hyper-graph ofuniform rank p and random loal degree with Poissonian statistis in the thermodynami limit.At high enough temperature, the existene of the free-energy in the thermodynami limit formodels of this kind has been proved in by Talagrand in [180℄, together with the validity of theRS solution. A proof valid at all temperature based on the ideas presented in this hapter, anbe obtained for even p in analogy of the analysis in [60℄ for long range models. We sketh it inappendix C in the ase of the p-spin model.In establishing the free-energy bounds we will need several kind of averages:� The Boltzmann-Gibbs average for �xed quenhed disorder: given an observable A(S)!(A) = PSA(S) exp(��H(S;J))Z (6.4)where Z = PS exp(��H(S;J)) and � is the inverse temperature. Obviously, !(A), aswell as Z will be funtions of the quenhed variables, the size of the system and thetemperature. This dependene will be made expliit only when needed.� The disorder average: given an observable quantity B dependent on the quenhed vari-ables appearing in the Hamiltonian, we will denote as E(B) its average. This will inludethe average with respet to the J variables and the hoie of the random indies in thelauses as well as with respet to other quenhed variables to be introdued later.� We will need in several oasion the \replia measure"
(A1; :::; An) = E(!(A1):::!(An)) (6.5)and some generalizations that we will speify later.� We will oasionally use other kinds of averages, as well as other notations, for whihwe will use an angular braket notation, with a subsript indiating the variable(s) over



160 CHAPTER 6. DETERMINING BOUNDSwhih the average is performed. e.g. an average over a random variable u with probabilitydistribution Q(u) will be denoted equivalently as R duQ(u)(�) � R dQ(u)(�) � h�iu. Anal-ogously, averages over distribution families of Q(u) will be denoted as R dQQ(Q)(�) �R DQ(Q)(�) � h�iQ. Subsripts will be omitted whenever onfusion is not possible.� Another notation we will have the oasion to use in the one for the overlaps among lspin on�gurations fSa1i ; :::; Sali g, out of a population of n fS1i ; :::; Sni g:q(a1;:::;al) = 1N NXi=1 Sa1i � ::: � Sali (1 � ar � n 8r); (6.6)and in partiular q(n) = q(1;:::;n) = 1N NXi=1 S1i � ::: � Sni ; (6.7)This notation will be extended to multi-overlaps in the 1RSB ase, as we will speify insetion 6.1.4.In the following we will need to onsider averages where some of the variables are exluded,e.g. the averages when a variable ukii is erased. These average will be denoted with a subsript�ukii e.g. if an ! average is onerned the notation will be !(�)�ukii . Other notations will bede�ned later in the text whenever needed.Our interest will be on�ned to bounds to the free-energy density FN = � 1�NE logZ andthe ground state energy density UGS = limN!1 1=NE [min (UN )℄ valid in the thermodynamilimit, so that O(1=N) will be often impliitly negleted in our alulations.6.1.2 The general strategyThe strategy to get the replia bound is a generalization of the one introdued by Guerra inthe ase of fully onneted models [60℄. We will onsider models whih will interpolate betweenthe original ones we want to analyze and pure paramagnet in random �elds with suitablyhosen distribution. The underlying idea is that, given the mean �eld nature of the modelsinvolved, if one was able to reonstrut the real loal �elds ating on a given spin variable viaa given hyper-edge, and to introdue auxiliary �elds ating on that variable in suh a way toenergetially balane the deletion of the hyper-edge, then it would be possible to have an exatexpression for the free-energy in terms of suh auxiliary �elds even when the whole edge set wasemptied. A single step in the iteration proedure is exempli�ed in �g (6.1), where the deletionof a lause parallels the insertion of a spin variable in the original formulation of the avitymethod. Indeed, the two proedures an be seen to be equivalent on average on poissonianhyper-graphs, as the results of this hapter will on�rm. However, if the replaement is donewith some approximate form of the auxiliary �elds distribution funtion, the real free-energywill be the one alulated using the approximate �elds plus an exess term at every step ofthe graph deletion proess. The proof of the de�nite sign of this exess term gives a way todetermine bounds for the thermodynami quantities. We will prove the existene of replialower bounds to the free-energy density of the p-spin model and the random K-SAT problem.In this last ase our result proves that the reent replia solution of [30℄ gives a lower boundto the ground state energy and therefore an upper bound for the satis�ability threshold. Theproofs will stritly hold in the N ! 1 limit, due to the presene of orretions of order 1=N
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Figure 6.1: Erasure of a lause and orresponding injetion of balaning �elds for the partiularase of funtion nodes of degree three.in the alulated expressions for any �nite size graph. Moreover, our proofs will be restritedto the p-spin model the the K-SAT with even p. In the ases of odd p the same bound wouldhold if one ould rely on some physially reasonable assumptions on the overlap distribution(see below). Our analysis will start from the TAP (Cavity) equations for the models [181, 23℄,and their probabilisti solutions implied by the avity, or equivalently the replia method atvarious degrees of approximation. We will onsider in partiular the replia symmetri (RS)and one step replia symmetry broken solutions, but it should be lear from our analysis howto generalize to more steps of replia symmetry breaking. In the TAP/avity equations onesingles out the ontribution of the lauses and the sites to the free-energy and de�nes avity�elds h(�)i and u(i)� respetively as the loal �eld ating on the spin i in absene of the lause �and the loal �eld ating on i due to the presene of the lause � only. If we de�ne ZN [Si℄ as thepartition funtion of a given sample with N spins where all but the spin i are integrated, FN;�ithe free-energy of the orresponding systems where the spin Si and all the lauses it belongs toare removed, we an write,ZN [Si℄ = e��FN;�i Y�2Ti XSi�2 ;:::;Si�p e��HJ(�) (Si� ;Si�2 ;:::;Si�p )+Ppl=2 h(�)i�l Si�l= e��FN;�i Y�2TiB(i)� e�u(i)� Si (6.8)where Ti is the set of lauses ontaining the spin i, and the onstant B(i)� = e���F (i)� an beinterpreted as suitable shifts in the free-energy due to the ontribution of the lause � for �xedvalue of the spin i. We notie that denoting J� as J , and renaming the �elds in (6.8) intoh1; :::; hp�1, eq. (6.8) de�nes funtionsuJ(h1; :::; hp�1) and BJ(h1; :::; hp�1) : (6.9)
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Figure 6.2: Diagrammati representation of the relations for g, u and h �elds ating on spin S.The avity solution loses under the ondition g ! h. The hyper-edge interation is drawn inthe fator-graph notation.The equation are losed by the self-onsistent ondition:h(�)i = X�2fTi��g u(i)� (6.10)These equations are at the basis of iterative algorithms suh as the \belief propagation" or \sum-produt" know for a long time in statistial inferene [160℄ and oding theory [141℄ and the morereently proposed algorithm of \survey propagation"[30℄. Conditions (6.8) and (6.10) an bediagrammatially represented as in �g.(6.2). The avity �elds solutions of (6.8,6.10) are randomvariables whih utuate for two reasons [2, 23, 24℄. First, they di�er from sample to sample.Seond, within the same sample the equations an have several solutions whih an level-ross.The avity/replia method provides under ertain assumption probabilisti solutions. In theRS approximation, one just supposes a single solution to give the relevant ontribution in agiven sample. The sample to sample utuation indue probability distributions P (h) and Q(u)whose relations implied by (6.8,6.10) are:P (h) = Xk e��p (�p)kk! Z du1 Q(u1):::duk Q(uk)Æ(h� kXi=1 uk) (6.11)Q(u) = Z dh1 P (h1):::dhp�1 P (hp�1)hÆ(u� uJ(h1; :::; hp�1))iJ (6.12)where h�iJ denotes the average over the random variables appearing in a lause. In additionto sample to sample utuations, the 1RSB solution assumes utuations of the �elds fromsolution to solution of the equations, so that the funtions P (h) and Q(u) will be themselvesrandomly distributed aording to some funtional probability distributions P(P ) and Q(Q)related by the self-onsisteny equations [12℄Q(Q) = Z DP1P(P1):::DPp�1P(Pp�1)hÆ(Q(�)�Q(�jP1; :::; Pp�1; J))iJ (6.13)



6.1. VARIATIONAL BOUNDS FOROPTIMIZATION PROBLEMS AND SPIN SYSTEMS163P(P ) = 1Xk=0 e��p (�p)kk! Z kYl=1DQlQ(Ql)Æ(P (�)� P (�jQ1; :::; Qk)) (6.14)where:Q(ujP1; :::; Pp�1; H) = NP [P1; :::; Pp�1℄ Z dh1 P1(h1):::dhp�1 P1(hp�1)BJ(h1; :::; hp�1)m �Æ(u� uJ(h1; :::; hp�1)) (6.15)P (hjQ1; :::; Qk) = NQ;k[Q1; :::; Qk℄ (2 osh(�h))m Z kYl=1 dul Ql(ul)(2 osh(�ul))m �Æ(h� kXl=1 ul) (6.16)where NQ;k[Q1; :::; Qk℄ and NG[G1; :::; Gp�1℄ insure normalization and BJ(g1; :::; gp�1) is a resal-ing term of the form (6.9) that an be re-absorbed in the normalization in the ase of the p-spinmodel. Its form for the K-SAT ase is given in the appendix. m is a number in the interval(0; 1℄, whih within the formalism selets families of solutions at di�erent free-energy levels.The physial free-energy is estimated maximizing over m.The interpretation of these equations has been disussed many times in the literature [2,23, 24℄. We will show here, that suh hoies in the �eld distributions result in lower boundsfor the free-energy analogous to the ones �rst proved by Guerra in fully onneted models. Inorder to prove these bounds, we will have to onsider auxiliary models where the number oflauses �N will be redued to �tN (0 � t � 1), while this redution will be ompensated inaverage by some external �eld terms of the kind:H(t)ext =Xi kiXli=1 ulii Si (6.17)where the numbers ki will be i.i.d. Poissonian variables with average �p(1� t). The diagram-mati piture is similar to the avity one, as seen inAs the notation suggests, the �elds uli will play the role of the avity �elds u(i)� of the TAPapproah, and they will be i.i.d. random variables with suitable distribution. Indeed, for eah�eld ulii we will hose in an independent way p � 1 primary �elds gli;ni (n = 1; :::; p � 1) andlause variables J li;ni suh that the relationulii = uJli;ni (gli;1i :::gli;p�1i ) (6.18)is veri�ed. Notie that the ompound HamiltonianH(t)tot[S℄ = H(�t)[S℄ +H(t)ext[S℄ (6.19)will onstitute a sample with the original distribution for t = 1, while it will onsist in a systemof non interating spins for t = 0. The key step of the proedure, onsists in the hoie of thedistribution of the primary �elds glii . We will also �nd useful to de�ne �elds hi verifyinghi = kiXl=1 uli: (6.20)The �eld u are related to the g's by a relation similar to (6.8), while the h's are related tothe u's by a relation similar to (6.10). Of ourse, the statistis of the �elds h and the g's



164 CHAPTER 6. DETERMINING BOUNDSdo oinide in the TAP approah. It is interesting to note that the bounds we will get, areoptimized preisely when their statistial ensemble oinide. As we mentioned, various Repliabounds are obtained assuming for the �elds glii the type of statistis implied by the di�erentreplia solution. So, the Replia Symmetri bound is got just supposing the �eld as quenhedvariables ompletely independent of the quenhed disorder and with distribution G(g). For theone-step RSB bound on the other hand the distribution G will itself be onsidered as random,subjet to a funtional probability distribution G[G℄. More ompliated RSB estimates, notonsidered in this hapter, an be obtained along the same lines. The ase of the fully onnetedmodels onsidered by Guerra an be formalized in this way where the various �eld distributionsinvolved are Gaussian.6.1.3 The RS boundWe onsider in this ase i.i.d. �elds u and h distributed aording probabilities Q(u) and P (h)verifying the following relation with the distribution Q(g) of the primary �elds.Q(u) = Z dg1 G(g1):::dgp�1 G(gp�1)hÆ(u� uJ(g1; :::; gp�1))iJ (6.21)P (h) = P (hjk)�(k; �p(1� t)) (6.22)P (hjk) = Z du1 Q(u1):::duk Q(uk)Æ(h� kXi=1 uk) (6.23)The distribution G(g) will be hosen to be symmetri under hange of sign of g, and regularenough for all the expression below to make sense. The RS bound an now be obtained followinga proedure to the one of Guerra for the SK model, and onsidering the t dependent free-energy;with obvious notation: F (t) = limN!1FN(t) = limN!1� 1�N E logZN(t) (6.24)where E represents the average over all the quenhed variables, the one de�ning the lausesand the external �elds. We then onsider the t derivative of FNddtFN(t) = � 1N� ddtE(logZN): (6.25)As in [60℄ we will then write F (1) = F (0) + Z 10 dt ddtF (t) (6.26)and show, by an expliit omputation, that, up to O(1=N) terms that will be systematiallynegleted, the expression oinides with the variational RS free-energy plus a remainder. Infortunate ases this term will have negative sign and negleting it will immediately result ina lower bound for the free-energy. This happens in the Viana-Bray model, the p-spin and theK-SAT for even p. In the ases of odd p we were not able to prove the sign de�niteness of theremainder, although as we will disuss we believe this to be the ase on a physial basis.The time derivative of F take ontributions from the derivative of the distribution of thenumber of lauses M d�(M;�tN)dt = �N�(�(M;�tN)� �(M � 1; �tN)) (6.27)



6.1. VARIATIONAL BOUNDS FOROPTIMIZATION PROBLEMS AND SPIN SYSTEMS165and the distribution of the number of u �elds on eah sited�(ki; �p(1� t))dt = �p(�(ki; �p(1� t))� �(ki � 1; �p(1� t))) (6.28)so that:ddtE logZ(t) = �N�XM (�(M;�tN)� �(M � 1; �tN))E 0 logZ(t)+�pXi Xki (�(ki; �p(1� t))� �(ki � 1; �p(1� t)))E 00i logZ(t) (6.29)where we have denoted as E 0 the average with respet to all the quenhed variables exept Mand with E 00i the average with respet to all the quenhed variables exept ki, and simply Z(t)the partition funtion of the N spin system ZN(t).In the �rst term of (6.29) we an single out the M -th lause, and writeZ(t) = Z�M(t)!(e��HM (SiM1 ;:::;SiMp )�M ; (6.30)where by Z�M(t) we denote the partition funtion of the system in absene of the M -th lause,and !(�)�M is the anonial average in absene of the M -th lause. In the following termswe single out the ki-th �eld u term, Z(t) = Z�ukii (t)!(e�ukii Si)�ukii , where Z�ukii (t) is the par-tition funtion in absene of the �eld �ukii and analogously for the average !(�)�ukii . Finally,rearranging all terms we �ndddtE logZ(t) = N�XM (�(M � 1; �tN))E 0 log[!(e��HJ(M)(SiM1 ;:::;SiMp ))�M)℄�p�Xi Xki �(ki � 1; �p(1� t))E 00i log[!(e�ukii Si)�ukii ℄: (6.31)where we have used PM �(M � 1; �tN)E 0 logZ�M = Pki �(ki � 1; �p(1 � t))E 00i logZ�ukii =E logZ. We notie at this point that the statistial ensemble de�ned by �(M � 1; �tN))E 0 anbe substituted with the original one E and the average of the variables appearing in the lause wehave singled out. To be more preise, we remark that the average !(�) depends on the quenhedvariables D = fJ;ug appearing in the Hamiltonian. Writing expliitly this dependene as!(�jD), and denoting as D�M all the quenhed variables exept the ones appearing in theM -thlause, our statement is that thanks to the Poissonian distribution ofM and the uniform hoieof the indies of eah lause,XM (�(M � 1; �tN))E 0 log[!(e��HJ(M)(SiM1 ;:::;SiMp )jD�M)℄ = (6.32)E 0� 1Np Xi1;:::;iphlog[!(e��HJ (Si1 ;:::;Sip)jD)℄iJ1A :where by h�iJ we denote the average with respet to the random variables appearing in thelause. This is a ruial step in our analysis, in fat, similar onsiderations apply to the termin the seond line of (6.31), whih an be written asXki �(ki � 1; �p(1� t))E 00i log[!(e�ukii Si)�ukii ℄ = E Dlog! �e�uSi�Eu : (6.33)



166 CHAPTER 6. DETERMINING BOUNDSThe same kind of averages E and ! appear in the two terms whih an be therefore diretlyompared as we will do in the next setion. This property, linked to the Poissonian haraterof the graph de�ned by the model would not hold for other ensembles of random graphs andthe analysis would be tehnially more involved. Substituting in (6.31) we �nd:1N ddtE logZ(t) = �E 24 1Np Xi1;:::;iphlog[!(e��H(Si1 ;:::;Sip))℄iH � pN Xi hlog!(e�uSi)iu35 (6.34)Rearranging terms and using (6.26) we �nally �nd that the free-energy FN an be written asFN = Fvar[G℄ + Z 10 dt RRS [G; t℄ +O(1=N) (6.35)where Fvar[G℄ oinides the expression of the variational free-energy in the replia treatmentunder ondition G[h℄ = P [h℄ 8 h at t = 0 and R 10 dt RRS[G; t℄ is a remainder term. Insteadof writing the formulae for general lauses, in order to keep the notations within reasonablesimpliity, we speialize now to the spei� ases of the p-spin model and the K-SAT. Notiethat in all models F [0℄ = � 1� hlog(2 osh(�h))ihjt=0 (6.36)p-spinIn the ase of the p-spinHJ(Si1 ; :::; Sip) = J Si1 �:::�Sip. Substituting in eq.(6.34) and rearrangingterms one immediately �nds:F p�spinvar [G℄ = 1� [� (p hlog(osh �u)iu � hlog(osh �J)iJ)� hlog(2 osh �h)ih+�(p� 1)*log 1 + tanh(�J) pYt=1 tanh(�gt)!+fgtg;J35 (6.37)while the remainder is the t integral ofRp�spinRS [G; t℄ = ��� 24 1Np Xi1;:::;ipE Dlog(1 + tanh(�J)!(Si1:::Sip))EJ �pE hlog(1 + tanh(�u)!(Si))iu +(p� 1)E *log(1 + tanh(�J) pYt=1 tanh(�gp))+fgtg;J35 : (6.38)The expression for F p�spinvar [G℄ oinides with the RS free energy one extremized over thevariational spae of probability distributions, as proven in the appendix. Terms have beenproperly added and subtrated in order to get a remainder whih equal to zero if maximizationover G is taken, and the temperature is high enough for replia symmetry to be exat [180℄. Aswe will see, the remainder turns out to be positive. F p�spinvar [G℄ is therefore, for all G for whihits expression makes sense, a lower bound to the free-energy. At saturation the onditionG[h℄ = P [h℄jt=0 8 h (6.39)should hold, whih is simply the self-onsisteny RS equation.



6.1. VARIATIONAL BOUNDS FOROPTIMIZATION PROBLEMS AND SPIN SYSTEMS167By using equationE hlog(1 + tanh(�u)!(Si))iu = E *log(1 + tanh(�J) p�1Yt=1 tanh(�gr)!(Si))+fgtg;J (6.40)we an establish that the remainder is positive for even p. We expand the logarithm of thethree terms in (absolutely onverging) series of tanh(�J), and notie that thanks to the parityof the J and the g distributions, they will just involve negative terms. We an then take theexpeted value of eah terms and writeRp�spinRS [G; t℄ = 1� 1Xn=0htanh2n �JiJ 1n
 h(q(2n))p � pq(2n)htanh2n �gip�1g + (p� 1)htanh2n �gipgi(6.41)where we have introdued the overlap q(l) and the replia measure 
 de�ned in setion 2. Theseries in (6.41) is an average of positive terms in the ase of the Viana-Bray model p = 2,where we get perfet squares, and more in general for all even p, as we an easily, starting fromthe observation that in this ase xp � pxyp�1 + (p � 1)yp is positive or zero for all x = q(2n),y = htanh2n �JiJ real.In the ase of p odd, the same term is positive only if x is itself positive or zero. Thebound of the free-energy would therefore be established if we were able to prove that theprobability distributions of the q(2n) has support on the positives.1 This property, whih tellsthat anti-orrelated states are not possible, is physially very sound whenever the Hamiltonianis not symmetri under hange of sign of all spins. In fat, one expets the probability ofnegative values of the overlaps to be exponentially small in the size of the system for large N .Unfortunately however we have not been able to prove this property in full generality. Notiethat upon maximization on G, the results of [180℄ imply that the remainder is exatly equal tozero if the temperature is high enough for replia symmetry to hold.K-SATIn the ase of the K-SAT, using def.(6.3) for the lause H, we �nd relation:uJ(h1; :::; hp�1) � uJ(fJtg; fhtg) = J� tanh�1 24 �2 Qp�1t=1 �1+Jt tanh(�ht)2 �1 + �2 Qp�1t=1 �1+Jt tanh(�ht)2 �35 ; (6.42)where � � e��� 1 < 0. Via diret inspetion, the variational free-energy oinides with the RSexpression [9℄FK�SATvar [G℄ = 1� 24�(p� 1)*log 1 + (e�� � 1) pYt=1 1 + tanh(�gt)2 !!+fgtg;fJtg�hlog(2 osh(�h))ih + �phlog(2 osh(�u))iu ��p*log0�1 + (e�� � 1)2 p�1Yt=1  1 + tanh(�gt)2 !1A+fgtg;fJtg375 (6.43)1A di�erent suÆient ondition for the series to have positive terms is that jq(2n)j � htanh(�g)2nig , but it isnot lear its physial meaning.



168 CHAPTER 6. DETERMINING BOUNDSwhile the remainder is the t integral ofRK�SATRS [G; t℄ = ���E 24 1Np Xi1;:::;ip*log 1 + (e�� � 1)!( pYt=1 1 + JtSit2 )!+fJtg�pN Xi *log0�1 + �!0�1 + JSi2 p�1Yt=1 1 + Jt tanh(�gt)2 1A1A+fgtg;J;fJtg +(p� 1)*log 1 + � pYt=1 1 + Jr tanh(�gt)2 !+fgtg;fJtg35 : (6.44)Considerations analogous to the ase of the p-spin, have led us to add and subtrat termsfrom eq.(6.34) to single out the proper remainder term. Expanding in series the logarithms,exploiting the symmetry of the probabilities distribution funtions and taking the expetationof eah term of the absolutely onvergent series we �nally obtain:RK�SATRS [G; t℄ = �� Xn�1 (�1)nn (��)n
 h ~R(Qn; p)i (6.45)with~R(Qn; p) = (1+Qn)p� p(1+Qn)h(1+J tanh(�g))nip�1J;g +(p� 1)h(1+J tanh(�g))nipJ;g (6.46)where we have de�ned �� � �=(2p) < 0 and Qn � Pnl=1hJ liJP1;na1<:::<al qa1:::al. Detailed alula-tions are given in the appendix. As in the p-spin ase, the previous sum is obviously positive forp even. For p odd we should again rely on the physial wisdom that all q(a1;:::;al) have positivesupport and so have the funtions 1+Qn � 0. Again, the variational free-energy oinides withthe RS expression one extremized over G at the ondition P = G at t = 0.6.1.4 The 1RSB BoundWe establish here a more omplex estimate, in a larger variational spae of funtional probabilitydistributions. The general strategy will be here to onsider the same form for the auxiliaryHamiltonian, but now with a more involved hoie for the �elds distribution. The �elds ondi�erent sites or di�erent index li will be still independent, but eah site �eld distributionGlii (glii ) will be itself random i.i.d., hosen with a probability density funtional G[G℄, withsupport on symmetri distributions G(�g) = G(g). It will be assumed that G is suh that allthe expressions below make sense. In this ase, the variational approximation for the free-energywill be obtained from an estimate of��FN [m; t℄ = 1mNE1 logE2(Zm(t)) (6.47)where we have denoted with:� E2 the average w.r.t. gli;ni for �xed distributions Gli;ni aording to the measureC NYi=1 kiYli=1 p�1Yn=1 dgli;ni Gli;ni (gli;ni )0B� BJli;ni (gli;1i :::gli;p�1i )2 osh(�uJli;ni (gli;1i :::gli;p�1i ))1CAm (6.48)where C ensures the normalization.



6.1. VARIATIONAL BOUNDS FOROPTIMIZATION PROBLEMS AND SPIN SYSTEMS169� E1 the average with respet to the quenhed lause variable, distributions the Glii 's andthe Poissonian variables ki's, whih will be i.i.d. with probabilities �(J), G(Glii ) and�(ki; (1� t)�) respetively.The number m is real in the interval (0,1℄. The statistial ensemble of the auxiliary �elds uand h will be now related to the one of the g by:Q(Q) = Z DG1G(G1):::DGp�1G(Gp�1)hÆ(Q(�)�Q(�jG1; :::; Gp�1; J))iJ (6.49)P(P ) = 1Xk=0 e��p(1�t) (�p(1� t))kk! Z kYl=1DQlQ(Ql)Æ(P (�)� P (�jQ1; :::; Qk)) (6.50)where:Q(ujG1; :::; Gp�1; J) = NG[G1; :::; Gp�1℄ Z dg1 G1(g1):::dgp�1 G1(gp�1)BJ(g1; :::; gp�1)m �Æ(u� uJ(g1; :::; gp�1)) (6.51)G(gjQ1; :::; Qk) = NQ;k[Q1; :::; Qk℄ (2 osh(�g))m Z kYl=1 dul Ql(ul)(2 osh(�ul))mÆ(g � kXl=1 ul) (6.52)where NQ;k[Q1; :::; Qk℄, NG[G1; :::; Gp�1℄ and BJ(g1; :::; gp�1) have been previously de�ned. Withnotations similar to the ones of the RS ase, we an writeddt(��FN [m; t℄) = ��XM (�(M;�tN)� �(M � 1; �tN))E 01 1Nm logE2Z(t)m+ (6.53)�pN Xi Xki (�(ki; �p(1� t))� �(ki � 1; �p(1� t)))E 001;i 1Nm logE2Z(t)mwhih, extrating expliitly the ontribution from theM -th lose in the �rst term and the ki-th�eld u in the seond, following onsiderations similar to the RS ase we �nd:ddt(��FN [m; t℄) = �XM (�(M � 1; �tN)) 1mE 01 log 24E2Zm�M!(e��HJ(�)(SiM1 ;:::;SiMp ))m�ME2Zm�M 35�p�N Xi Xki �(ki � 1; �p(1� t)) 1mE 001;i log 2664E2Zm�ukii !(e�ukii Si)m�ukiiE2Zm�ukii 3775 : (6.54)Again it an be reognized that the primed averages oinide with the averages over the originalensembles plus the averages on the variables appearing in the terms we extrated. Finally weget: ddt(��FN [m; t℄) = �mE1 24 1Np Xi1;:::;ip*log E2Zm!(e��HJ (Si1 ;:::;Sip))mE2Zm !+J� pN Xi *log E2Zmh!(e�uSi)miuE2Zm !+Q35 : (6.55)



170 CHAPTER 6. DETERMINING BOUNDSRearranging all terms one �nds the estimate:FN = Fvar[G℄ + Z 10 dt R1RSB [G; t℄ +O(1=N) (6.56)where this time Fvar[G℄ oinides with F1RSB[G℄, the expression of the variational free-energy inthe 1RSB treatment at the saddle point G = P at t = 0, and R 10 dt R1RSB [G; t℄ is the remainder.Notie that the derivation immediately suggests how to generalize the analysis to more stepsof replia symmetry breaking. Let us now speialize the formulae for the p-spin model and theK-SAT. Again, in this ase we will need the expression for F [0℄:F [0℄ = 1�m "*log* 12 osh(�h)!m+h+P#jt=0 : (6.57)p-spinIn this ase, plugging def.(6.2) in eq.(6.55) rearranging, adding and subtrating terms one �nds:F p�spinvar [G℄ = 1�m "*log* 12 osh(�h)!m+h+P ��m hlog(2 osh(�J))iJ �p*log* 12 osh(�u)!m+u+Q + (6.58)�(p� 1) Dlog h(1 + tanh(�J) tanh(�g1)::: tanh(�gp))mig1;:::;gpEG1;:::;Gp;J�while the remainder is the t integral ofRp�spin1RSB [G; t℄ = � ��mE1 24 1Np Xi1;:::;ip*log E2Zm(1 + !(Si1:::Sip) tanh(�J))mE2Zm !+J �pN Xi *log E2Zm h(1 + !(Si) tanh(�u))miuE2Zm !+Q + (6.59)(p� 1) Dlog h(1 + tanh(�J) tanh(�g1)::: tanh(�gp))mig1;:::;gpEG1;:::;Gp;J�The expression for F p�spinvar [G℄ oinides with the 1RSB free-energy, as proven in the appendix.one maximized over the variational spae of probability distribution funtionals G. The max-imization ondition reads: G[P ℄ = P[P ℄ jt=0 8 P ; (6.60)whih is simply the self onsisteny 1RSB ondition. For even p (and in partiular for p = 2that orresponds to the Viana-Bray ase), one an hek that the remainder is positive justexpanding the logarithm in series and exploiting the parity of the J and the g distributions.As this is onsiderably more involved then in the RS ase, we relegate this hek to appendixA.K-SATIn the K-SAT ase the expression for funtion BJ(h1; :::; hp�1) reads:BJ(h1; :::; hp�1) � B(fJtg; fhtg) = 1 + �2 p�1Yt=1  1 + Jt tanh(�ht)2 ! ; (6.61)



6.1. VARIATIONAL BOUNDS FOROPTIMIZATION PROBLEMS AND SPIN SYSTEMS171while the orresponding one for uJ(h1; :::; hp�1) is the same as in the RS ase. The orrespondingreplia free-energy and remainder readFK�SATvar [G℄ = 1m� 264�(p� 1)*log* 1 + � pYt=1 1 + Jt tanh(�gt)2 !!m+fgtg+fGtg;fJtg ��p*log* B(fJtg; fgtg)2 osh(�uJ(fJtg; fgtg))!m+fgtg+fGtg;fJtg;J +*log* 12 osh(�h)!m+h+P# (6.62)The remainder is the t integral ofRK�SAT1RSB [G; t℄ = � ��mE1 264 1Np Xi1;:::;ip*log0�E2Zm �1 + �! �Qpt=1 1+JtSit2 ��mE2Zm 1A+fJtg �pN Xi *log0B�E2Zm D�1 + � 1+J!(Si)2 Qp�1t=1 1+Jt tanh(�gt)2 �mEfgtgE2Zm 1CA+fGtg;fJtg;J +(p� 1)*log* 1 + � pYt=1 1 + Jt tanh(�gt)2 !!m+fgtg+fGtg;fJtg375 (6.63)The expression for FK�SATvar [G℄ oinides with the 1RSB free energy one extremized underondition (6.60), with the orresponding K-SAT probability distribution funtionals. Notiethat The proof of the positivity of (6.63) for even p is again dove via series expansion, all thedetail are explained in Appendix B.At this point we an take the zero temperature limit, �nding that the resulting expressiongives us a lower bound for the ground-state energy of the system, i.e. the minimal number ofunsatis�ed lauses. Notie that the T ! 0 limit of the replia free-energy is not trivial. Theneessary assumptions on the �eld distributions to get it orret are well known in the physialliterature, and have been reently reviewed in [24℄. Reently M�ezard, Parisi and Zehina [30℄have worked out the K-SAT 1RSB solution for p = 3 prediting a non zero ground-state energyfor values of � above a satis�ability threshold of � = 4:256, very well in agreement with thenumerial simulations. Our results, together with the additional hypothesis of positivity of thesupport of the overlap funtions imply that this value is an upper bound to the true threshold.6.1.5 Summary and onlusionsIn this hapter we have established that the free-energy of some families of diluted randomspin models an be written as the sum of a term idential to the ones got in the avity/repliaplus an error term. Both the replia term and the remainder are di�erent in di�erent repliasheme, orresponding to the hoie of statistial ensemble of the avity �elds. We believe thatthe sign of the remainder is in general negative in the model we have onsidered, although wehave been able to prove that only in the ase of even p. For odd p our belief is supported bythe physial wisdom that the overlap distributions are supported on the positives in the largeN limit.



172 CHAPTER 6. DETERMINING BOUNDSWe have onsidered the ases of replia symmetry and one step of replia symmetry breaking.It is lear that the analysis ould be extended to further levels of replia symmetry breaking,although the omplexity of the analysis would greatly inrease. The 1RSB level is thought togive the exat sheme to treat the p spin model and the K-SAT problem for p � 3. For theViana-Bray model on the other hand it is believed that no �nite RSB sheme furnish the exatsolution, and one needs to onsider the limit of in�nite number of replia symmetry breaking.It is not lear to us how to generalize the analysis to this ase.Our analysis of the diluted models underlines a strong link between the Guerra method andthe avity method whih remained rather hidden in the fully onneted ase. In the avityapproah one onsiders inomplete graphs in whih either sites or lauses are removed from theomplete graph. Then, with the aid of preise physial hypothesis, onsisteny equations arewritten that allow to ompute the free-energy from the omparison between the site and lauseontributions. In the approah presented in this hapter the removal of lauses is ompensatedin average by the addition of some external �elds whih have preisely the statistis whihis assumed with avity. The novelty of the approah is that it gives some ontrol on theapproximation involved, and proves the variational nature of the replia free-energies. Of oursea omplete ontrol on the remainder in various situations would result in rigorous solutions.Although we have mainly worked at �nite temperature, the zero temperature limit an beonsidered without harm. This is partiularly relevant in random satis�ability problem, whereit is typially found a SAT-UNSAT transition where the ground state energy passes from zeroto non zero values.



Conlusions and perspetivesIn this thesis a quite extensive exploration of replia methods for the study of statistial prop-erties of spin systems on diluted random hyper-graphs was performed. We hope to have beenable to show a relevant number of examples, that have been under our diret investigation,where this method turns out to be very powerful.The starting body of the alulations was shown quite in details at least for some partiularlasses of models, so that the interested reader should be able to retrieve the expressions shownin the text quite easily, at least for the replia symmetri and the 1RSB variational fatorizedase.We also hope to have given at least a avour of the equivalene between the avity and thereplia tehniques, even though the avity formulation was only skethed.It was stressed along the whole thesis that the replia/avity method main assumption isthat of absene of non trivial orrelations between the spin variables, one the system is studiedin a partiular thermodynami state. This property applies to mean �eld-like systems as theone studied, where the method is in still in priniple non exat, but an be shown to lead atleast to a rigorous variational approah. Moreover, this variational approah is systemati andan be applied to a wide lass of problems of interest not only in modern statistial physis, butalso in ombinatorial optimization theory, information theory and theoretial omputer siene.A proof of the well founded variational nature of the avity/replia method was ahieved in thelast part of this work, even though more work is needed to formulate it in full generality.For disordered systems rigorous alulations that do not make use of the avity/repliamethod are usually very hard. In the luky simple ases where rigorous treatment is possi-ble, as for example the XOR-SAT ase, the equivalene between the rigorous results and thereplia/avity ones was stressed, as well as the physial interpretation of the suh results interms of geometrial hanges in the spae of solutions of the models studied.The deeper understanding of the replia/avity method has led to the possibility of extend-ing in algorithmi terms to single problem instanes. This opens the road to appliations toreal natural systems, as for instanes a novel interpretation of message ow and organizationin realisti diluted neural networks. One of our future aims is to work in that diretion.Very reently, a full study of the 1RSB solution of the random 3-SAT, p-XOR-SAT andgraph q-oloring problems have been ahieved. This results are very promising, and one furtherstep that is urrently under study is to investigate the possibility of extending it to systems inpresene of more omplex geometrial struture and non trivial orrelations between the hyper-graph verties. Indeed, the replia/avity method orresponds to the Bethe approximation inthe ase of disordered systems. Sine this Ansatz an be seen as a �rst order expansion of amore systemati variational approah to the study of non pure mean �eld statistial systemsthat goes under the name of Cluster Variation Method (CVM), a formulation of the CVM fordisordered systems seems to be neessary. 173



174 CHAPTER 6. DETERMINING BOUNDSWe would like to onlude this thesis with a onsideration: reent numerial results on theperformane of the Survey Propagation algorithm deep in the random 3-SAT dynamial region,the so alled hard/sat phase, seem to on�rm2 that the omplexity of the algorithm sales asO(N logN) all the way up to the SAT/UNSAT threshold. The early study of the arising ofomplexity in the typial ase were motivated in the past by the onvition of the existene ofa deep link between the onset of phase transitions in the random version of omputationallyhard problems and the NP omplexity in the worst ase. If on�rmed, this last results seemto open a path in a di�erent diretion, and typial ase omplexity may turn out to have littleto say in the long standing P versus NP debate. Worst ase instanes of an NP ompleteproblem ould eventually form an elusive set of highly non-typial ases, most probably verydependent on the partiular ad ho algorithm built for their solution. Nevertheless, for a widelass of omputational problems spontaneously emerging in Nature, the study of typial aseomplexity will probably still be a very relevant issue.

2Alfredo Braunstein and Riardo Zehina, private ommuniation.



Appendix AFator graphsThe duality property in hyper-graphs is made evident when working in the fator-graphformalism (see for instane [65, 66, 64℄), where eah hyper-edge is substituted by a funtionnode (otherwised alled hek node or lause node, depending on the ontext), whose inideneedges onnet it to the variable nodes that belong to the original hyper-edge, as in �g. (A.1).This formalism is partiularly handy when one is interested in message passing proedureson the hyper-graphs, and more in general whenever one is interested in omputing physialquantities referring to the hyper-edges as a whole and not to single verties. This formalismis expliitly used in hapters 5 and 6 and is impliit throughout the whole work. Notie thatthe rank distribution of the diret hyper-graph is the funtion node degree distribution of thefator graph.

Variable node Function nodeFigure A.1: From the hyper-graph to the fator graph piture.175
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Appendix BNormalization fator �[P (k)℄The alulation is equivalent to that of the numerator in the alulation of the averages. Wean rewrite eq. (2.23) in the form�[P (k)℄ = Z Yi (d i2� ) exp(�iXi  iki) Z Yl Yi1<:::<il " 1� l!lN l�1! Æ(Ji1;:::;il)+ (B.1)l!lN l�1�(jsign(Ji1;:::;il)j)# exp(iXl Xi1<:::<il( lXj=1 ij )Ji1;:::;il)= Z Yi (d i2� ) exp(�iXi  iki) Z Yl Yi1<:::<il 241� l!lN l�1 + l!lN l�1 exp(i lXj=1 ij )35�N!1 Z Yi (d i2� ) exp(�iXi  iki) exp 24�NXl l0�1� 1N l Xi1;:::;il e i1+:::+ il1A35= Z Yi (d i2� ) exp(�iXi  iki) exp 24�N< k >< l > +NXl l  1N Xi e i!l35plus terms of order O(1=N). De�ning � � 1N Xi e i (B.2)and again expressing the onstraint on � in integral form we getZ d�d�̂2�N Z Yi (d i2� ) exp "�N  ��̂ + iPi  ikiN + < k >< l > � < k >< l > Xl vl�l � �̂N Xi ei i!#= 1Xt=0 Z d�d�̂2�N e�N��̂ Z Yi (d i2� ) exp "�iXi  iki �N< k >< l > +N< k >< l > Xl vl�l# �̂tt! eit i= Z d�d�̂2�N exp "�N��̂�N< k >< l > +N< k >< l > Xl vl�l +NXk k log �̂kk!!# (B.3)we an evaluate this expression at the saddle point, getting��̂ = < k > (B.4)Pl lvl�l< l > = 1 (B.5)177



178 APPENDIX B. NORMALIZATION FACTOR �[P (K)℄For the ase of hyper-graphs of uniform rank l, eq.(B.5) implies that we must have � = 1. Thisis not automatially true for multiple rank hyper-graphs. However, the assumption � = 1 isself onsistent also in the general ase, leading to the �nal expression�[P (k)℄ � e�N�<k>�Pk klog�<k>kk! �� (B.6)In assuming � = 1 we make the same normalization error we make in the omputation of thenumerator, assuming the funtional order parameter �(~�) to be normalized to one. As we seein the text, this error is at most )(1) in the free energy potential in the physially relevant limitn! 0. If we redo the previous alulation taking into expliit aount the onstraints over therank distribution, expression (B.3) beomes:Z d�d�̂2�N exp "�N��̂ �N< k >< l > +N< k >< l > Xl vl log �ll! !+NXk k log �̂kk!!# � (B.7)exp "�N  < k > +< k >< l >+ < k > log(< k >) + < k >< l > Xl vl log(l!) +Xk k log(k!)!#where � and �̂ anel out automatially. The same holds for the numerator, where the funtionalorder parameters an be taken as normalized due to the homogeneity of the free energy.



Appendix COn the hoie of the funtional orderparameterIn hoosing the funtional order parameter we an adopt two variations on the same analytialformalism. Either one an be used, depending on the way we hoose to look at the hyper-graph.A �rst way is that of treating every �xed degree sub-hyper-graph independently, assigning toeah of them its own degree distribution. Let's all this hoie (�). Under (�), all sub-strutures will be merged assigning to eah of them a given fration of all interations. Sub-hyper-graphs are independent, and any one is allowed a generi degree distribution. The overalldegree distribution is the onvolution of all distributions of sub-graphs. An alternative way ofproeeding ((�)) onsiders the hyper-graph as a whole and works diretly with the overalldegree distribution. The two routes are equivalent, but they an lead to easier or more diÆultrelative notations depending on the kind of graph we work with. In partiular, (�) leads (seefor instane appendies C.1 and C.2) to the introdution of a whole set of order parameters, onefor eah degree, and allows to easily write a speial exat one replia symmetry broken solutionin the ase of uniform rank and onstant degree, as well as in mixtures of single degree andrank sub-graphs, as the one shown in �gure (C.1). In the ase of hyper-graphs of the type of�g. (C.1), fatorization is still possible beause all sites keep being equivalent, even though theelementary \plaquette" an now be seen as a more omplex entity made of regular groups ofhyper-edges of di�erent ranks. Moreover, given a ertain hyper-graph struture, we reall thatit is possible to build its dual ounterpart in the following way: to every interation plaquettethere orresponds a site on the dual hyper-graph. Every two new sites are onneted if theirorresponding plaquettes of the diret hyper-graph have a ommon spin. The dual of a givenhyper-graph is therefore a struture where the rank and the degree interation distributions areexhanged. This leads to the possibility of �nding a fatorized exat solution also for �xed rankhyper-graphs with a non trivial albeit very peuliar degree distribution. The dual of �g. (C.1),for instane is a uniform rank 3 hyper-graph with bimodal 2 and 3 degrees, but struturedin suh a way that again it an be seen as a more omplex struture where the fundamentalbuilding blos are triplets of triplets, as shown in �g. (C.2).A spin model on this graph ould be solved through duality. Moreover, duality an behelpful any time alulating some properties of the studied model is hard in terms of degreedistribution, but easy in terms of the rank distribution of the dual (The two interhange throughduality). An example ould be the alulation of metastable states omplexity in the spinmodels assoiated to Binary Channel in Error Correting Codes, even though that quantityhas been found by di�erent means in hapter 5. On the other hand, if one is interested only in179
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Figure C.1: mixed 2 and 3-hyper-graph with onstant 2 and 1 sub-degrees.

Figure C.2: Superimposed dual of the previous hyper-graph. Note that it an be seen as adeorated hype-graph of �xed degree, where deorated plaquettes are the irled ones.



C.1. THE DEGREE SUB-DISTRIBUTIONS: AN ALTERNATIVE CALCULATION 181�xing the overall ranks and degrees, formalism (�) is more ompat and appropriate. In �xedrank and degree random graphs (�) and (�) are equivalent. However, we will work with theformalism (�), unless otherwise stated.C.1 The degree sub-distributions: an alternative alu-lationThe onstraint on the whole hyper-graph degree distribution is now substituted with a on-straint on the degrees of eah single rank l sub-hyper-graph we an divide the struture into:Yi Yk Æ( X<i2;:::;ik>i Jii2:::ik � lki ) (C.1)All oupling onstants probabilities are still treated as independent. This will lead to theintrodution of a set of auxiliary variables  ki and eventually to a whole set of funtional orderparameters in f�k(~�) = 1N Pi Æ(~� � ~si)ei ki ; �̂k(~�)g8k. Caulations are then formally equivalentto those in the text.C.1.1 RS resultsThe resulting set of replia symmetri saddle point equations reads�l(~�) = 1Nl X~k P (~k)klQl0 6=l �̂l0(~�)kl0 �̂l(~�)kl�1P~�Ql �̂l(~�)kl (C.2)Nl = X~� �l(~�) (C.3)�̂l(~�) = 1< l >lvl X~�1;:::;~�l�1 �l(~�1):::�l(~�l�1)e�Pna=1 �a�a1 :::�al�1 (C.4)P (~k) �= P (k1; :::; klmax) (C.5)and the free energy�n�F = �Xl < kl >X~� �l(~�)�̂l(~�) +X~k P (~k) log(X~� Yl �l(~�)kl) +1< l >Xl < kl > vl X~�1;:::; ~�l �l( ~�1):::�l(~�l)e�Pna=1 �a1 :::�al (C.6)< kl > �= Z d~kP (~k)kl (C.7)C.1.2 Fatorized 1RSB results: 1The similar alulations in the 1RSB ase fatorized Ansatz lead to�l(~�) = 1Nl X~k P (~k)klQl0 6=l �̂l0(~�)kl0 �̂l(~�)kl�1P~�Ql �̂l(~�)kl (C.8)



182 APPENDIX C. ON THE CHOICE OF THE FUNCTIONAL ORDER PARAMETERNl = X~� �l(~�) (C.9)�̂l(~�) = 1̂Nl 1< l >lvlP~�1;:::;~�l�1 �l(~�1):::�l(~�l�1)e�Pma=1 �a�a1 :::�al�1P ~�1;:::; ~�l �l(~�1):::�l(~�l)e�Pma=1 �a1 :::�al (C.10)N̂l = X~� ~�l(~�) (C.11)where the funtional parameter is taken within a replia group, and�m�F (m; �) = �Xl < kl > log(X~� �l(~�)�̂l(~�))�mXl < kl >X~k P (~k) log(X~� Yl �l(~�)kl)+1< l >Xl < kl > vl log( X~�1;:::; ~�l �l( ~�1):::�l(~�l)e�Pma=1 �a1 :::�al ) + mPl vl < kl >< l > (C.12)From this point on, one ould proeed again with the formalism in the main text, keepingin mind that the overall graph will be the interonnetions of the l-substrutures, and theoverall degree distribution the onvolution of the partial ones. This will reet also on di�erentdistributions on the magneti �elds ating on spins.C.2 Fatorized 1RSB results: 2The fatorized Ansatz formulas are valid in the slightly more general ase of a mixture ofhyper-graphs of �xed sub-degree, as for instane the example of In that ase, with the sameformalism of appendix C.1 we obtain self onsistent replia equations:�(~�) = Bkl�1l (~�)Ql0 6=lBkl0l0 (~�)P~� Bkl�1l (~�)Ql0 6=lBkl0l0 (~�) (C.13)Bl(~�) = X~�1;:::;~�l�1 �(~�1):::�(~�l�1)e�Pma=1 �a�a1 :::�al�1 (C.14)reast in a familiar form:�m�F (m; �) =  1�Xl kl(l � 1)l ! log(X~� Yl Bkll (~�))+Xl kl(l � 1)l log(Bkl�1l (~�)X~� Yl0 6=lBkl0l0 (~�))(C.15)If kl = k 8l, we obtain �(~�) = Bk�1l (~�)Ql0 6=lBkl0(~�)P~� Bk�1l (~�)Ql0 6=lBkl0(~�) (C.16)and �m�F (m; �) =  1� kXl (l � 1)l ! log(X~� Yl Bkl (~�)) +kXl (l � 1)l log(Bk�1l (~�)X~� Yl0 6=lBkl0(~�)) (C.17)that redue to the equations in the text (with B(~�) = �̂(~�)).



Appendix DCritial exponents and non universalamplitudes
D.1 Case < k4 > �niteIn this appendix we show the expliit alulations leading to eq. (3.34) in the text. Using eq.(3.19) for the ase H0 = 0 and assuming all u's to utuate around the zero value we an write:< u > = 1� < k >Xk kk Z k�1Yt=1 dutQ(ut) tanh�1  tanh(�) tanh(� k�1Xt=1 ut)!� 1< k >Xk kk Z k�1Yt=1 dutQ(ut) "tanh(�) k�1Xt=1 ut!��23 tanh(�)(1� tanh2(�)) k�1Xt=1 ut!335 +O(< u >5)= 1< k >Xk kk [tanh(�)(k � 1) < u >��23 tanh(�)(1� tanh2(�)) Z k�1Yt=1 dutQ(ut) k�1Xt=1 ut!335= 1< k >Xk kk [tanh(�)(k � 1) < u >��23 tanh(�)(1� tanh2(�))(k � 1) < u3 > +3(k � 1)(k � 2) < u2 >< u >+(k � 1)(k � 2)(k � 3) < u >3i= tanh(�)tanh(�) < u > ��23 tanh(�)(1� tanh2(�))< k > h< k(k � 1) >< u3 >+3 < k(k � 1)(k � 2) >< u >< u2 >+ < k(k � 1)(k � 2)(k � 3) >< u >3i (D.1)where we have exploited the seond of the identities:Z k�1Yt=1 dutQ(ut) k�1Xt=1 ut!2 = (k � 1) < u2 > +(k � 1)(k � 2) < u >2 (D.2)183



184 APPENDIX D. CRITICAL EXPONENTS AND NON UNIVERSAL AMPLITUDESZ k�1Yt=1 dutQ(ut) k�1Xt=1 ut!3 = (k � 1) < u3 > +3(k � 1)(k � 2) < u2 >< u >+(k � 1)(k � 2)(k � 3) < u >3 (D.3)We assume now that < u2 > � < u >2< u3 > � < u >3 (D.4)We will see this Ansatz to be self onsistent in the following. Indeed, the seond and thirdmomenta an be written as< u2 > = 1< k > �2 Xk kk Z k�1Yt=1 dutQ(ut) tanh�1(tanh(�) tanh(� k�1Xt=1 ut))!2� " tanh2(�) < k(k � 1)(k � 2) >�2 < k > � tanh2(�) < k(k � 1) ># < u >2 (D.5)< u3 >= 1< k > �3 Xk kk k�1Yt=1 dutQ(ut) tanh�1(tanh(�) tanh(� k�1Xt=1 ut))!3 �264tanh3(�) � tanh2(�)<k(k�1)(k�2)>2�2<k>� tanh2(�)<k(k�1)>�+ < k(k � 1)(k � 2)(k � 3) >�3 < k > � tanh3(�) < k(k � 1) > 375 < u >3where we have made use of Ansatz (D.4) and identities (D.3) and rearranged the terms. Puttingall together we �nd eq.(3.34). As one an see, the ritial exponent is the usual mean �eldone (1/3) and its value does not depend on taking into onsideration higher momenta of thedistribution Q(u).D.2 Sale free networks: ase 3 <  < 5We show here the expliit alulations leading to the non trivial mean �eld ritial exponent� = 1=( � 3) in absene of a uto� on high degrees of the distribution, together with anapproximate expression for the non universal amplitude. Under the approximation Q(u) =Æ(u� < u >) we an still expandF�(< u >) � � < k >Xk k1� tanh�1 (tanh(�) tanh(�(k � 1) < u >)) (D.6)where  is the probability degree distribution normalization onstant, but sine the onvergeneradius of the hyperboli tangent is �=2 the series will onverge as long as �(k� 1) < u >� �=2only. For any value of the temperature and the avity magnetization it is then possible to �nda k suh that the argument of the tangent lies outside of the onvergene radius. Nevertheless,the funtion F�(< u >) is still asymptoti approximable by a polynomial whose maximumdegree will be a funtion of the exponent . If we all S(n)� (k;< u >) the nth degree trunationof the series expansion of the kth term of F�(< u >), we an write�����F�(< u >)� � < k >Xk k1�S(n̂)� (k;< u >)����� ����F�(< u >)� P(n̂)� (< u >)��� � O(< u >2n̂+3) (D.7)



D.2. SCALE FREE NETWORKS: CASE 3 <  < 5 185where n̂ is the maximum degree s.t. the oeÆients of P(n̂)� (< u >) are �nite and the polynomialhas degree 2n̂+1 due to the antisymmetry of the hyperboli tangent. The onvergene onditionsumming over k for the polynomial oeÆient of maximum degree translates in the one for theonvergene of the new power series:(1� ) + 2n̂+ 1 < �1 (D.8)so that one �nds n̂ <  � 32 (D.9)For  > 5 the �rst non trivial term of the series expansion of < u > is therefore simplyn̂ = 1, and one retrieves the simple mean �eld result. But for the range of the exponent we areinterested in in this appendix the �rst non trivial term will indeed be the analytial ontinuation(D.9). It is immediate to see how the desired exponent value is retrieved. The alulation ofthe amplitude proeeds in a similar way. We an write again from the power expansion of theself-onsistent expression for < u > up to the highest onverging term< u >� C(�; ) < u >�2= C(�; ) < u >2n̂+1 (D.10)where C(�; ) is the analyti ontinuation of tanh(�)< k > Xk k1�(k � 1) 1Xt=0 (�1)t(1� tanh2(�))t22t � 2tXr=0C2tr (�1)r 22n̂+1((t� r)(k � 1)�)2n̂+1(2n̂+ 1)! (D.11)The series in k has, as a dominant term:(�1)2n̂+1(2n̂+ 1)!Xk k(2�)+(2n̂+1) � �(3� ) (D.12)as one an easily see from the series expansion of the integral representation of the Gammafuntion. Putting all together one �ndsC(�; ) �  tanh(�)(�2�)�3 �(3� )< k > 1Xt=0 (�1)t(1� tanh2(�))t22t 2tXr=0C2tr (t� r)s�3< u > �  1� tanh2(�)jC(�; )j tanh(�)! 1s�3 j� � �j 1s�3 (D.13)In fat, in order to �nd the exat value of the non universal amplitudes we would need to extendthe alulation of the previous paragraph. The mean value of the avity magnetization an bewritten as< u > = 1< k > �Xk kk Z k�1Yt=1 dutQ(ut)Xn an tanhn(�) tanh(�Xt ut)!n= 1< k > �Xk kk Z k�1Yt=1 dutQ(ut)Xn an tanhn(�)Xm 0�Xm Xl1;:::;ln nYt=1 bltÆ  m;Xt lt!1A�m  k�1Xt=1 ut!m (D.14)



186 APPENDIX D. CRITICAL EXPONENTS AND NON UNIVERSAL AMPLITUDESwhere an and blt are numerial oeÆients of the Taylor expansions of the inverse hyperbolitangent and the hyperboli tangent respetively and* k�1Xt=1 ut!m+ = n1+::::+nk�1=mXn1;:::;nk�1 m!n1!::::nk�1! < un1 > :::: < unk�1 > (D.15)The proess is now a little more involved sine it is neessary to �nd a lose form for the analytiontinuation of the momenta of the distribution Q(u), where m takes real values m(). UsingNewton's expansion for real exponents eq.(D.15) beomes:* k�1Xt=1 ut!m+ = 1Xn1;:::;nk�2=0 n1+:::nk�2Yt=1 (m� t)n1!::::nk�2! k�2Ys=1 < uns >< um�Ps ns > (D.16)Consequently, it an still be immediately seen that for any value of m the proportionalityrelation * k�1Xt=1 ut!m+ /< u >m (D.17)still holds under the assumption < ur >/< u >r 8 r 2 R, and one is left this time with anin�nite system of equations for the non integer moments that an be iteratively solved andgive the desired orretion to expression for the non universal amplitude. Moreover, the valueof ritial exponent is not hanged. Similar expansions an be done for all other physialquantities.



Appendix EE.C.Codes: BSC, A T=0 variationalalulationThe zero temperature equations simplify in the limit y ! 1, orresponding to vanishingexhange energy. In that ase, a �nite value of q is obtained if the magneti �eld h0 is kept�nite, and it an be proved that the relation q = tanh(h0) holds. In this limit, a diret inspetionof the saddle point equations reveals that only the values �(l � 1) are possible for the avity�elds x, and the values �1 for the y's. More expliitly, the order parameters Q[�℄ and bQ[�̂℄ aresupported on distributions of the form�(x) = �+Æ(x� l + 1) + ��Æ(x+ l � 1) ; �̂(z) = �̂+Æ(z � 1) + �̂�Æ(z � 1) : (E.1)The funtional order parameter bQ[�̂℄, redues to the probability distributions of a single number�̂+ representing the probability of z = +1.A simple approximation is obtained by using (E.1) and negleting the utuations of �̂+, inthe spirit of the fatorized Ansatz. This is exat 1 for h0 = 0, where our model redues to theone analyzed in [22℄. It an be proved that, for y = 1 and h0 6= 0, this approximation givesthe same result as the k; l !1 limit, f. Se. 5.2.5. For instane in the ase of (k; l) = (6; 5)we get pvar = 0:264 whih oinides with the exat result.1This assertion is true only for even values of l, but atually it is a very good approximation for any valueof l.
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Figure E.1: The region of metastability as predited by the approximated Ansatz (E.1) for the(6,5) ode. 187



188 APPENDIX E. E.C.CODES: BSC, A T=0 VARIATIONAL CALCULATIONThe same form for the funtional order parameter an also be used as a variational approx-imation for y �nite, although in this ase it is not justi�ed to assume z = �1. In Fig. E.1, weindiate the region of the (p; �) plane suh that �p(�; 1� 2p) > 0, as obtained from this simpleapproah.



Appendix FDetails of the alulations of Chapter 6
F.1 p-spinF.1.1 Chek of the positive sign of Rp�spin1RSBIn this appendix we will expliitly show that expression (6.59) has positive de�nite sign. Thenotations will be those of the general p-spin ase. Spei� results in the Viana-Bray aseare immediately retrieved if one assigns p = 2. We proeed expanding in series eah of thethree sub-terms and showing that every element of the sum of the resulting series is positivesemide�nite.The �rst term writes: E1 Dlog E2Zm(1+tanh(�J)!(Si1 :::Sip))mE2Zm EJ =Pl�1 (�1)l+1l P1;1k1;:::;klQlu=1 �m(�1)ku�1ku! Qku�1ru=1(r1 �m)� �(tanh(�J)Pls=1 ks�J �E1 �Qls=1 E2(Zm!(Si1 :::Sip)ks )E2(Zm) � (F.1)where the term E1( � ) in the last line of eq.(F.1) an be written as
(l) h(q(k1;:::;kl))pi � (F.2)E10�E(1)2 :::E(l)2 Zm(1):::Zm(l)!(1)(S1;1i1 :::S1;1ip :::Sk1;1i1 :::Sk1;1ip ):::!(l)(S1;li1 :::S1;lip :::Skl;li1 :::Skl;lip )(E2Zm)l 1A :where eah !(s) (s = 1; :::; l) is a produt of ks Gibbs measure with independent �elds (variablesappearing in the E(s)2 averages), and same �elds distributions and quenhed disorder (variablesappearing in E1). The quantities q(k1;:::;kl) have been de�ned as:q(k1;:::;kl) = 1N Xi S1;1i � ::: � Sk1;1i � ::: � S1;li � ::: � Skl;li (F.3)and in this ase the averages are performed using a a generalized replia measure, de�ned as:
(l)[(q(k1;:::;kl))n℄ = E1 24Qls=1E(s)2 Zm(s)!(s)(Si1 :::Sin)ks(E2Zm)l 35 (F.4)189



190 APPENDIX F. DETAILS OF THE CALCULATIONS OF CHAPTER 6for any integer n. The average over J selets the terms with even Pls=1 kl in (F.1) so that we�nally �nd�Xl�1 mll 1;1Xk1;:::;klPls=1 kseven lYs=1 Qks�1rs=1(rs �m)ks! !�(tanh(�J))Pls=1 ks�J 
(l) h(q(k1;:::;kl))pi (F.5)notie that (rs � m) � 0 8 integer rs > 0 only in the urrent hypothesis that m 2 [0; 1℄.Analogously, the term E1 *log E2Zm h(1 + tanh(�u)!(Si))miuE2Zm +Q (F.6)writes�Xl�1 mll 1;1Xk1;:::;klPls=1 kseven lYs=1 Qks�1r=1 (r �m)ks! !* lYs=1 Dtanh(�u)ksEu+Q 
(l) h(q(k1;:::;kl))i (F.7)or, making use of the de�nition of G(g),�Xl�1 1l 1;1Xk1;:::;klPls=1 kseven lYs=1 Qks�1r=1 (r �m)ks! !* lYs=1 D(tanh(�g))ksEg+p�1G � (F.8)�(tanh(�J))Pls=1 ks�J 
(l) h(q(k1;:::;kl))iEventually, following analogous manipulations, the last term*log* 1 + tanh(�J) pYt=1 tanh(�gt)!m+fgtg+J;fGtg (F.9)an be written as�Xl�1 mll 1;1Xk1;:::;klPls=1 kseven lYs=1 Qks�1r=1 (r �m)ks! !* lYs=1 D(tanh(�g))ksEg+pG �(tanh(�J))Pls=1 ks�J :(F.10)Invoking (6.49) and olleting allRp�spin1RSB [G; t℄ = ��mXl�1 mll 1;1Xk1;:::;klPls=1 kseven lYs=1 Qks�1r=1 (r �m)ks! !�(tanh(�J))Pls=1 ks�J �
(l) h(q(k1;:::;kl))p � pA(k1; :::; kl)p�1(q(k1;:::;kl)) + (p� 1)A(k1; :::; kl)lpi (F.11)where we have de�ned: A(k1; :::; kl) � * lYs=1 D(tanh(�g))ksEg+G (F.12)



F.1. P -SPIN 191Eah inner term of the series (F.11)
(l) h(q(k1;:::;kl))p � pA(k1; :::; kl)p�1(q(k1;:::;kl)) + (p� 1)A(k1; :::; kl)pi (F.13)is always positive semide�nite for p even while we need the ondition onditions q(k1;:::;kl) � 0for p odd. For p = 2 one retrieves the Viana-Bray result where (F.13) is a perfet square. Asin the RS ase, one an now integrate eq.(F.11) and reognize that one more the total truefree-energy an be written as variational term plus a positive extra one. The variational termoinides with the 1RSB free-energy at stationarity and under onditionG(P ) = P(P )jt=0 8 P : (F.14)F.1.2 Chek of F p�spinvar [P ℄ = F p�spin1RSB [P ℄In this appendix we want to show expliitly thatF p�spin1RSB [P℄ = � hlog(osh(�J))+i 1�m 24�p*log* 2 osh(�(h+ u))2 osh(�h)2 osh(�u)!m+u;h+Q;P �� Z dJ�(J)*log*(1 + tanh(�J) pYt=1 tanh(�ht))m+h1;:::;hp+P1;:::;Pp �Xk e��p (�p)kk! *log* 2 osh(�Pkl=1 ul)Qkt=1 2 osh(�ut)!m+u1;:::;uk+Q1;:::;Qk35 (F.15)oinides with the variational expressionF p�spinvar [G℄ = 1�mh *log* 12 osh(�h)!m+h+P � �m hlog(2 osh(�J))iJ ��p*log* 12 osh(�u)!m+u+Q + (F.16)�(p� 1) Dlog h(1 + tanh(�J) tanh(�g1)::: tanh(�gp))mig1;:::;gpEG1;:::;Gp;J ifound in setion 6.1.4, one this last expression is extremized with respet to G. For a derivationof (F.15) in the replia formalism see the �rst hapter. Substituting in (F.17) the 1RSB selfonsistent onditions for uJ(h1; :::; hp�1) and G[P ℄ = P[P ℄ 8P , we an write:*log* 2 osh(�(h+ u))2 osh(�h)2 osh(�u)!m+u;h+Q;P = (F.17)��p log 2 + �p*log* 1 + tanh(�J) pYt=1 tanh(�ht)!m+fhtg+fPtg;JTo ondense the expressions we an de�nepk = e��p (�p)kk! (F.18)



192 APPENDIX F. DETAILS OF THE CALCULATIONS OF CHAPTER 6Using the trivial identity�p*log* 12 osh(�u)!m+u+Q = Xk pk *log* 1Qkt=1 2 osh(�ut)!m+futg+fQtg (F.19)and the relation*log* 12 osh(�h)!m+h+P = Xk pk *log* 2 osh(�Pkl=1 ul)Qkt=1 2 osh(�ut)!m+u1;:::;uk+Q1;:::;Qk +Xk pk *log* 1Qkt=1 2 osh(�ut)!m+futg+fQtg (F.20)given by eqs. (6.50) and (6.52) and putting all piees together we �nally �ndF p�spinvar [P℄ = F p�spin1RSB [P℄ (F.21)at the 1RSB saddle point. The equivalene of the orresponding RS expressions is even simplerat it is done along the same lines of alulation, exploiting the RS self onsisteny onditionG(h) = P (h) 8h.F.2 K-SATF.2.1 Chek of the positive sign of RK�SATRS ...The aim of this appendix is to show that the expression for the remainder RRS[G; t℄ in (6.35)for the K-SAT model ase as positive sign. For the K-SAT RRS[G; t℄ speializes to:1RK�SATRS [G; t℄ = ���E �Dlog �! �exp��Qpr=1 1+JrSr2 ��EfJtg�p hlog (1 + !(S) tanh(�u))iu �p*log0�1 + �2 p�1Yt=1  1 + Jt tanh(�gt)2 !1A+fgtg;fJtg +(p� 1)*log 1 + � pYt=1 1 + Jr tanh(�gt)2 !+fgtg;fJtg35 (F.22)whih thanks to the relation between Q(u) and G(g), rewrites asRK�SATRS [G; t℄ = ���E 24*log 1 + (e�� � 1)!( pYt=1 1 + JtSt2 )!+fJtg�p*log0�1 + �!0�1 + JS2 p�1Yt=1 1 + Jt tanh(�gt)2 1A1A+fgtg;J;fJtg +(p� 1)*log 1 + � pYt=1 1 + Jr tanh(�gt)2 !+fgtg;fJtg35 (F.23)1The sum of the site indies has been eliminated by symmetry.



F.2. K-SAT 193The last term has been added and subtrated from eq.(6.35) in order to extrat a remainderthat would vanish if replia symmetry holds, and maximization is performed on G(g). As inthe p-spin ase, we will proeed in a Taylor expansion of expression (F.23) in powers of �, andrely on absolute onvergene to average eah term of the series.Expanding the �rst term in (F.23) we an writeE 24*log 1 + �!( pYt=1 1 + JtSt2 )!+fJtg35 =Xn�1 (�1)n+1n (��)nE 24*!  pYt=1(1 + JtSt)!n+fJtg35 =Xn�1 (�1)n+1n (��)n
 24 pYt=10�1 + nXl=1 DJ ltEJt 1;nXa1<:::<al Sa1t :::Salt 1A35 =Xn�1 (�1)n+1n (��)n
 24 pYt=10�1 + nXl=1 DJ ltEJt 1;nXa1<:::<al qa1:::al1A35 =Xn�1 (�1)n+1n (��)n
[(1 +Qn)p℄ (F.24)where we have de�ned �� � (e�� � 1)=(2p) and Pnl=1 DJ lEJP1;na1<:::<al qa1:::al � Qn. Notie thatdue to the negative sign of ��, the oeÆients (�1)n+1(��)n are all negative.The analogous expansion of the seond term is:E 264*log0�1 + �!0�1 + JS2 p�1Yt=1 1 + Jt tanh(�gt)2 1A1A+fJtg;J;fgtg375 =Xn�1 (�1)n+1n (��)n
 240�1 + nXl=1hJ liJ 1;nXa1<:::<al qa1:::al1A*p�1Yt=1 nYl=1 (1 + Jt tanh(�gt))+fJtg;fgtg35 =Xn�1 (�1)n+1n (��)n
 h(1 +Qn) h(1 + J tanh(�g))nip�1J;g i (F.25)Finally, the third terms in eq.(F.23) immediately reads*log 1 + � pYt=1 1 + Jt tanh(�gt)2 !+fJtg;fgtg = Xn�1 (�1)n+1n (��)nh(1 + J tanh(�g))nipJ;g (F.26)The sum of the three piees in eq.(F.23) gives:RK�SATRS [G; t℄ = �� Xn�1 (�1)nn (��)n
 h ~R(Qn; p)i (F.27)with~R(Qn; p) = (1+Qn)p� p(1+Qn)h(1+J tanh(�g))nip�1J;g +(p� 1)h(1+J tanh(�g))nipJ;g (F.28)The previous sum is always positive semide�nite for p even while we need 1+Qn � 0 for p odd.



194 APPENDIX F. DETAILS OF THE CALCULATIONS OF CHAPTER 6F.2.2 ...and of RK�SAT1RSBWe proeed in the same way as in the p-spin ase. The algebra is elementary but more tediousand involved, therefore we will only list the �nal results of the alulation. Starting fromeq.(6.63), we again expand in series the �rst term, getting, with a treatment similar to the RSase: RK�SAT1RSB [G; t℄ =Xl�1 mll 1;1Xk1;:::;kl(���)Pls=1 ks lYs=1 Qks�1r=1 (r �m)ks! !
(l) [(1 +Q(k1; :::; kl))p℄(F.29)where we have de�ned:Q(k1; :::; kl) � lXs=1 k1;:::;ksXr1;:::;rs DJ (r1+:::+rs)EJ sYt=1 k1;:::;ksXa1<:::<art=1 q(ar1 ;:::;ars) (F.30)Analogous steps give for the seond term in eq.(6.63)Xl�1 mll 1;1Xk1;:::;kl(���)Pls=1 ks lYs=1 Qks�1r=1 (r �m)ks! !
(l) [1 +Q(k1; :::; kl)℄* lYs=1 D(1 + J tanh(�g))klEg+p�1G;J (F.31)and for the third termXl�1 mll 1;1Xk1;:::;kl(���)Pls=1 ks lYs=1 Qks�1r=1 (r �m)ks! !* lYs=1 D(1 + J tanh(�g))klEg+pG;J ;(F.32)where in the last two terms we an further expand* lYs=1 D(1 + J tanh(�g))klEg+nG;J = 0� k1;:::;klXr1;:::;rl=1 lYs=1 ksrs!DJ (r1+:::+rl)EJ * lYs=1 h(tanh(�g))rsig+nG1Awith n equal to p� 1 and p respetively. Sine �� < 0 it is easy to see how only positive termsof the series survive.Colleting all, we eventually �nd the omplete power expansion for RK�SAT1RSB :��mXl�1 mll 1;1Xk1;:::;kl(���)Pls=1 ks lYs=1 Qks�1r=1 (r �m)ks! ! � (F.33)
(l) h(1 +Q(k1; :::; kl))p � p(1 +Q(k1; :::; kl))A(k1; :::; kl)p�1 + (p� 1)A(k1; :::; kl)piwhere we have de�ned A(k1; :::; kl) � * lYs=1 D(1 + J tanh(�g))klEg+G (F.34)Again, every term of the expansion is positive for even p and for p odd under ondition 1 +Q(k1; :::; kl) � 0.



F.2. K-SAT 195F.2.3 Chek of FK�SATvar [P ℄ = FK�SAT1RSB [P ℄As in the ase of the p-spin, we an show the equivalene of FK�SAT1RSB [P℄ and FK�SATvar [P℄ at the1RSB saddle point. We reall that K ! p and � � e�� � 1 < 0 in our notation. In the K-SATase we obtain the spei� relations:BH(h1; :::; hp�1) � B(fJtg; fhtg) = 1 + �2 p�1Yt=1  1 + Jt tanh(�ht)2 ! (F.35)uH(h1; :::; hp�1) � uJ(fJtg; fhtg) = J� tanh�1 24 �2 Qp�1t=1 �1+Jt tanh(�ht)2 �1 + �2 Qp�1t=1 �1+Jt tanh(�ht)2 �35 (F.36)to plug in in eq.(6.52) Along the same line of the general 1RSB omputation of hapter 1 wean write the 1RSB free energy asFK�SAT1RSB [P℄ = 1m� 264��*log* 1 + � pYt=1 1 + tanh(�ht)2 !!m+h1;:::;hp+P1;:::;Pp +�p Dlog h(1 + tanh(�h) tanh(�u))miu;hEQ;P ��Xk pk *log* 2 osh(�Pkl=1 ul)Qkt=1 2 osh(�ut)!m+u1;:::;uk+Q1;:::;Qk35 (F.37)where pk is de�ned by eq.(F.18), and we already performed the average over the quenheddisorder J exploiting the symmetry of the probability distributions. On the other handFK�SATvar [G℄ = 1m� 264�(p� 1)*log* 1 + � pYt=1 1 + Jt tanh(�gt)2 !!m+fgtg+fGtg;fJtg ��p*log* B(fJtg; fgtg)2 osh(�uJ(fJtg; fgtg))!m+fgtg+fGtg;fJtg;J +*log* 12 osh(�h)!m+h+P# (F.38)Under the symmetri 1RSB saddle point onditions we an average out the quenhed disorder,as before. Thanks to eqs.(6.52), (F.36) and the ondition G = P we observe that*log* B(g1; :::; gp�1)2 osh(�u(g1; :::; gp�1))!m+fgtg+fGtg = Dlog h(1 + tanh(�h) tanh(�u))miu;hEQ;P +Dlog hB(h1; :::; hp�1)mifhtgEfPtg (F.39)Moreover, we an exploit the relations (valid at the saddle point)*log* 12 osh(�u)!m+u+Q = *log* B(g1; :::; gp�1)2 osh(�u(g1; :::; gp�1))!m+fgtg+fGtg �Dlog hB(h1; :::; hp�1)mifhtgEfPtg (F.40)



196 APPENDIX F. DETAILS OF THE CALCULATIONS OF CHAPTER 6and *log* 12 osh(�h)!m+h+P = Xk pk *log* 2 osh(�Pkl=1 ul)Qkt=1 2 osh(�ut)!m+u1;:::;uk+Q1;:::;Qk ��p*log* 12 osh(�u)!m+u+Q (F.41)The proper resaling with m of the probability distributions (6.52) is ruial in the alulation.Using the last expressions and rearranging terms we eventually �ndFK�SATvar [P℄ = FK�SAT1RSB [P℄ (F.42)at the 1RSB saddle point. Again, the orresponding RS hek is even simpler and an beperformed along the same lines.F.2.4 Existene of the free-energy of the p-spin modelLet us briey sketh the proof of the existene of the thermodynami limit of free-energy of thep-spin model for p even. Let us de�ne a model whih interpolates between two non interatingsystems with N1 and N2 spins respetively, and a system of N = N1 + N2 spins. Eah lause� = 1; :::;M will belong to the total system with probability t, to the �rst subsystem withprobability N1=N(1� t) and to the seond subsystem with probability N2=N(1� t). We hosethe indies i�1 ; :::; i�p in the following way: for eah lause the indies will be i.i.d. with probabilityt, the indies will be hosen uniformly in the set f1; :::; Ng, with probability (1� t)N1=N theindies will be hosen in f1; :::; N1g and with probability (1� t)N2=N in the set fN1+1; :::; Ng.Let us onsider the free-energy FN(t) = �1N� logZ(t). A diret alulation of its t-derivativedFN(t)dt = � 1� 24 1Np 1;NXi1;:::;1p+N1N 1Np1 1;N1Xi1;:::;1p+N2N 1Np2 N1+1;NXi1;:::;1p 35Ehlog(1 + tanh(�J)!(Si1:::Sip))iJ :(F.43)Expanding the logarithm in series, observing that thanks to the symmetry of the J distributionthe odd term vanish, introduing the replia measure and using the onvexity of the funtionxp for even p one proves that dFN (t)dt � 0 whih implies sub-additivity FN � N1N FN1+ N2N FN2 ; thisis in turn is a suÆient ondition to the existene of the free-energy density. The same proveapplies to the even p random K-SAT model. For odd p we fae a diÆulty similar to the onein the replia bounds. We an not prove sub-additivity due to the need to onsider negativevalues of the overlaps, and non onvexity of xp for negative x.
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