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Abstract

The present thesis is devoted to the study both of strictly hyperbolic operators with low regularity
coe�cients and of the density-dependent incompressible Euler system.

On the one hand, we show a priori estimates for a second order strictly hyperbolic operator
whose highest order coe�cients satisfy a log-Zygmund continuity condition in time and a log-
Lipschitz continuity condition with respect to space. Such an estimate involves a time increasing
loss of derivatives. Nevertheless, this is enough to recover well-posedness for the associated Cauchy
problem in the space H∞ (for suitably smooth second order coe�cients).

In a �rst time, we consider a complete operator in space dimension 1, whose �rst order
coe�cients were assumed Hölder continuous and that of order 0 only bounded. Then, we deal
with the general case of any space dimension, focusing on a homogeneous second order operator:
the step to higher dimension requires a really di�erent approach.

On the other hand, we consider the density-dependent incompressible Euler system.
We show its well-posedness in endpoint Besov spaces embedded in the class of globally Lip-

schitz functions, producing also lower bounds for the lifespan of the solution in terms of initial
data only.

This having been done, we prove persistence of geometric structures, such as striated and
conormal regularity, for solutions to this system.

In contrast with the classical case of constant density, even in dimension 2 the vorticity is not
transported by the velocity �eld. Hence, a priori one can expect to get only local in time results.
For the same reason, we also have to dismiss the vortex patch structure.

Littlewood-Paley theory and paradi�erential calculus allow us to handle these two di�erent
problems. A new version of paradi�erential calculus, depending on a paramter γ ≥ 1, is also
needed in dealing with hyperbolic operators with nonregular coe�cients.

The general framework is that of Besov spaces, which includes in particular Sobolev and Hölder
sets. Intermediate classes of functions, of logaritmic type, come into play as well.

Keywords

Littlewood-Paley theory, paradi�erential calculus with parameters, Besov spaces, strictly hyper-
bolic operator, log Zygmund continuity, log-Lipschitz continuity, loss of derivatives, logarithmic
Sobolev spaces, incompressible Euler system, variable density, lifespan, vortex patches, striated
and conormal regularity.
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Résumé

Cette thèse est consacrée à l'étude des opérateurs strictement hyperboliques à coe�cients peu
réguliers, aussi bien qu'à l'étude du système d'Euler incompressible à densité variable.

Dans la première partie, on montre des estimations a priori pour des opérateurs strictement
hyperboliques dont les coe�cients d'ordre le plus grand satisfont une condition de continuité
log-Zygmund par rapport au temps et une condition de continuité log-Lipschitz par rapport à la
variable d'espace. Ces estimations comportent une perte de dérivées qui croît en temps. Toutefois,
elles sont su�santes pour avoir encore le caractère bien posé du problème de Cauchy associé dans
l'espace H∞ (pour des coe�cients du deuxième ordre ayant assez de régularité).

Dans un premier temps, on considère un opérateur complet en dimension d'espace égale à 1,
dont les coe�cients du premier ordre sont supposés hölderiens et celui d'ordre 0 seulement borné.
Après, on traite le cas général en dimension d'espace quelconque, en se restreignant à un opérateur
de deuxième ordre homogène: le passage à la dimension plus grande exige une approche vraiment
di�érente.

Dans la deuxième partie de la thèse, on considère le système d'Euler incompressible à densité
variable.

On montre son caractère bien posé dans des espaces de Besov limites, qui s'injectent dans la
classe des fonctions globalement lipschitziennes, et on établit aussi des bornes inférieures pour le
temps de vie de la solution ne dépendant que des données initiales.

Cela fait, on prouve la persistance des structures géometriques, comme la régularité strati�ée
et conormale, pour les solutions de ce système.

À la di�érence du cas classique de densité constante, même en dimension 2 le tourbillon n'est
pas transporté par le champ de vitesses. Donc, a priori on peut s'attendre à obtenir seulement
des résultats locaux en temps. Pour la même raison, il faut aussi laisser tomber la structure des
poches de tourbillon.

La théorie de Littlewood-Paley et le calcul paradi�érentiel nous permettent d'aborder ces deux
di�érents problèmes. En plus, on a besoin aussi d'une nouvelle version du calcul paradi�érentiel,
qui dépend d'un paramètre γ ≥ 1, pour traiter les opérateurs à coe�cients peu réguliers.

Le cadre fonctionnel adopté est celui des espaces de Besov, qui comprend en particulier les
ensembles de Sobolev et de Hölder. Des classes intermédiaires de fonctions, de type logarithmique,
entrent, elles aussi, en jeu.

Mots clés

Théorie de Littlewood-Paley, calcul paradi�érentiel avec paramètres, espaces de Besov, opérateur
strictement hyperbolique, continuité log-Zygmund, continuité log-Lipschitz, perte de dérivées,
espaces de Sobolev logarithmiques, système d'Euler incompressible, densité variable, temps de
vie, poches de tourbillon, régularité strati�ée et conormale.
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Introduction

The present thesis is devoted to the analysis of some kinds of partial di�erential equations arising
from the study of physical models. In particular, it developed into two di�erent directions: the
study of strictly hyperbolic operators with low regularity coe�cients and that of the density-
dependent incompressible Euler system.

On the one hand, we studied the Cauchy problem for a general wave operator, whose second
order coe�cients were supposed to be non-Lipschitz. In contrast to the Lipschitz case, one can't
expect to get well-posedness in any Sobolev space Hs any more. Nevertheless, well-posedness in
the space H∞ still holds true, but with a �nite loss of derivatives, which is proved to be, in a
certain sense, necessary.

A wide number of works are devoted to this topic under di�erent hypothesis. The general idea
is to compensate the loss of regularity in time with suitable hypothesis with respect to the space
variable. So, the �rst situation to consider is when the coe�cients depend only on time: in this
case, one can prove energy estimates with (in general) a constant loss of derivatives.

When coe�cients depend also on x, instead, the loss is (in general) linearly increasing in time.
In particular this is also our case, in which we combined log-Zygmund and log-Lipschitz continuity
conditions: we imposed the coe�cients to satisfy the former one in time and the latter one in
space, uniformly with respect to the other variable.

On the other hand, we considered the density-dependent incompressible Euler system, which
describes the dynamics of a non-homogeneous inviscid incompressible �uid.

The classical case, in which the density is supposed to be constant, was deeply studied. Main
research interests were questions such as well-posedness in Besov spaces embedded in the class
C0,1 of globally Lipschitz functions, continuation criteria and global in time existence, propagation
of geometric structures. Our purpose was to extend (or invalidate) previous results to the more
realistic situation of variable density. In particular, in a �rst time we investigated well-posedness
in endpoint Besov spaces, and then we considered propagation of striated and conormal regularity.

The main di�erence with respect to the classical system is that, this time, even in the two-
dimensional case, one can expect to get only local in time existence results. As a matter of fact,
the vorticity is no more transported by the �ow associated to the velocity �eld (which was the
key to the proof of the global existence issue for homogeneous �uids), because of the presence of
a density term in its equation. The global in time existence issue is still an open problem.

The techniques we used to handle the two di�erent problems were mostly based on Fourier
Analysis. In particular, an extensive use of Littlewood-Paley theory and of paradi�erential calcu-
lus, as introduced by J.-M. Bony in the famous paper [8], was needed.

The main idea is to de�ne a dyadic partition of unity in the phase space, thanks to suitable
smooth, compactly supported functions:

χ(ξ) +
∑
j≥1

ϕj(ξ) ≡ 1 ∀ ξ ∈ RN ,

where χ and ϕj (for all j) belong to C∞0 (RNξ ), with

suppχ ⊂ {|ξ| ≤ 2} and suppϕj ⊂
{
C1 2j−1 ≤ |ξ| ≤ C2 2j+1

}
.

xi



xii Introduction

Now, given a u ∈ S ′, we can de�ne1 ∆0u := χ(D)u and ∆ju := ϕj(D)u for all j ≥ 1. We get,
in this way, the Littlewood-Paley decomposition of a tempered distribution u:

u =

+∞∑
j=0

∆ju in S ′ .

By Paley-Wiener theorem, each dyadic item ∆ju is a smooth function. Moreover, thanks to spec-
tral localization, integrability properties of ∆ju are strictly linked with those of their derivatives
Dα∆ju (see lemma 1.2 below). These facts are fundamental and widely used in the analysis of
partial di�erential equations.

Using Littlewood-Paley decomposition, one can de�ne what a Besov space is. For all s ∈ R
and all (p, r) ∈ [1,+∞]2, the non-homogeneous Besov space Bs

p,r is de�ned as the set of tempered
distributions u for which the quantity

(1) ‖u‖Bsp,r :=
∥∥∥(2js ‖∆ju‖Lp

)
j∈N

∥∥∥
`r
< +∞ .

These functional spaces extend Sobolev and Hölder classes: it turns out that Hs ≡ Bs
2,2 for all

s ∈ R and Cω ≡ Bω
∞,∞ for all ω ∈ ]0, 1[ .

Properties of Besov spaces were deeply studied (see e.g. [2] and [51]) and they are now a
classical topic. Nevertheless, in paper [23] the authors considered Sobolev spaces of logarithmic
type and gave a dyadic characterization of them. Inspired by this fact, we de�ned the class of
logarithmic Besov spaces, putting, in de�nition (1), the new weight 2js(1 + j)α (for some α ∈ R)
instead of the single exponential term. We also proved that they enjoy properties analogous to
the classical Besov spaces.

Using Littlewood-Paley decomposition again, one can write the Bony's decomposition (see
paper [8]) of the product of two tempered distributions:

(2) u v = Tuv + Tvu + R(u, v) ,

where we have de�ned the paraproduct and remainder operators respectively as

Tuv :=
∑
j

Sj−1u∆jv and R(u, v) :=
∑
j

∑
|k−j|≤1

∆ju∆kv .

These operators have nice continuity properties on the class of Besov spaces. Moreover, para-
product plays an important role also in nonlinear analysis (see for instance the paralinearization
theorem 1.33 below). We will make an extensive use of decomposition (2) throughout all this
manuscript. However, paraproduct is nothing else than an example of paradi�erential operator,
associated to a function which depends only on the space variable x.

More in general, we can associate a paradi�erential operator to every symbol a(x, ξ) which is
smooth with respect to ξ, only locally bounded in x and its ξ-derivatives satisfy particular growth
conditions (see e.g. [51]). First of all, �xed a suitable cut-o� function ψ, one can smooth out a
with respect to x, de�ning a classical symbol σa(x, ξ) strictly related to it. Then one can de�ne
the paradi�erential operator associated to a, still denoted by Ta, as the paradi�erential operator
associated to this classical symbol, i.e. σa(x,Dx). On the one hand, the whole construction is
independent of the cut-o� function ψ, up to lower order terms. On the other hand, one can make
it depend on a parameter γ ≥ 1, as done in e.g. [50] and [52]. This simple change came into play
in a crucial way in the study of strictly hyperbolic operators with low regularity coe�cients (see
chapter 3), because it allows a more re�ned analysis.

After this brief overview about the theoretical tools we needed in our analysis, let us explain
better the two di�erent guidelines of our research work.

1Throughout we agree that f(D) stands for the pseudo-di�erential operator u 7→ F−1(f Fu).



Introduction xiii

Strictly hyperbolic operators with low-regularity coe�cients

Consider a second order strictly hyperbolic operator L de�ned in a strip [0, T ] × RN , for some
T > 0 and any dimension N ≥ 1:

(3) Lu := ∂2
t u −

N∑
j,k=1

∂j (ajk(t, x) ∂ku)

and assume that there exist two constants 0 < λ0 ≤ Λ0 such that

λ0 |ξ|2 ≤
N∑

j,k=1

ajk(t, x) ξj ξk ≤ Λ0 |ξ|2

for all (t, x) ∈ [0, T ] × RN and all ξ ∈ RN . The inequality on the left is the condition of strict
hyperbolicity, while that on the right is a boundedness requirement on the coe�cients of our
operator.

It is well-known (see e.g. [42] or [53]) that, if coe�cients ajk are Lipschitz continuous with
respect to t and only measurable and bounded in x, then the Cauchy problem for L is well-posed
in H1×L2. Hence, if ajk are C∞ and bounded with all their derivatives with respect to the space
variable, one can recover well-posedness in Hs+1 ×Hs for all s ∈ R. Moreover, for all s ∈ R one
gets (for a constant Cs depending only on s) the energy estimate

sup
0≤t≤T

(
‖u(t, ·)‖Hs+1 + ‖∂tu(t, ·)‖Hs

)
≤(4)

≤ Cs

(
‖u(0, ·)‖Hs+1 + ‖∂tu(0, ·)‖Hs +

∫ T

0
‖Lu(t, ·)‖Hs dt

)
for all u ∈ C([0, T ];Hs+1(RN )) ∩ C1([0, T ];Hs(RN )) such that Lu ∈ L1([0, T ];Hs(RN )).

In particular, estimate (4) still holds for every u ∈ C2([0, T ];H∞(RN )), and this implies that
the Cauchy problem for L is well-posed in H∞ with no loss of derivatives.

If the Lipschitz continuity (in time) hypothesis is not ful�lled, then (4) is no more true.
Nevertheless, one can still recover H∞ well-posedness, but this time with a loss of derivatives in
the energy estimate. This loss can not be avoided, as shown in paper [16]. As a matter of fact,
the authors proved there that, if the regularity of the coe�cients is measured by a modulus of
continuity, then every modulus of continuity worse than the Lipschitz one always entails a loss of
derivatives.

The �rst case to consider is when the ajk's depend only on time: so, by Fourier transform
one can pass to the phase space, in which the problem becomes an ordinary di�erential equation.
In paper [18], Colombini, De Giorgi and Spagnolo assumed a log-Lipschitz integral continuity
condition, while Tarama (see [56]) considered the more general class of (integral) log-Zygmund
functions. In both the previous hypothesis, one can get an energy estimate with a constant loss
of derivatives: there exists a constant δ > 0 such that, for all s ∈ R, the inequality

sup
0≤t≤T

(
‖u(t, ·)‖Hs+1−δ + ‖∂tu(t, ·)‖Hs−δ

)
≤(5)

≤ Cs

(
‖u(0, ·)‖Hs+1 + ‖∂tu(0, ·)‖Hs +

∫ T

0
‖Lu(t, ·)‖Hs dt

)
holds true for all u ∈ C2([0, T ];H∞(RN )), for some constant Cs depending only on s. The original
idea of the work of Colombini, De Giorgi and Spagnolo was smoothing out coe�cients using a
convolution kernel, and then linking the approximation parameter (say) ε with the dual variable
ξ: they got, in this way, a di�erent approximation in di�erent zones of the phase space. The
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improvement of Tarama, instead, was obtained de�ning a new energy, which involves also �rst
derivatives of the smoothed coe�cients, in such a way to compensate lower regularity.

The case of dependence both in time and in space variables was considered by Colombini
and Lerner in paper [22]: they assumed the ajk's to satisfy a pointwise isotropic log-Lipschitz
condition. They studied the related Cauchy problem, and they found an energy estimate with a
loss of derivatives increasing in time: for all s ∈ ]0, 1/4], there exist positive constants β and Cs
and a time T ∗ ∈ ]0, T ] such that

sup
0≤t≤T ∗

(
‖u(t, ·)‖H−s+1−βt + ‖∂tu(t, ·)‖H−s−βt

)
≤(6)

≤ Cs

(
‖u(0, ·)‖H−s+1 + ‖∂tu(0, ·)‖H−s +

∫ T ∗

0
‖Lu(t, ·)‖H−s−βt dt

)

for all u ∈ C2([0, T ];H∞(RN )). Due to the dependence of the ajk's on x, it was no more possi-
ble to perform a Fourier transform to pass in the phase space. To overcome this problem, they
took advantage of the Littlewood-Paley decomposition: they de�ned a localized energy for each
localized component ∆νu of the solution u, and then they performed a weighed summation over
ν to de�ne a total energy. Again, they smoothed out coe�cients in time and they linked the ap-
proximation parameter to ν, which exactly corresponds to get di�erent approximation in di�erent
regions of the phase space: recall that |ξ| ∼ 2ν on the spectrum of ∆νu. A quite hard work was
required to control the operator norm (over L2) of commutator terms [∆ν , ajk], coming from the
equation for the localized part ∆νu.

More recently (see paper [19]), Colombini and Del Santo imposed a pointwise log-Zygmund
condition with respect to time and a pointwise log-Lipschitz condition with respect to space,
uniforlmy with respect to the other variable. These hypothesis read in the following way: there
exists a constant K0 such that, for all τ > 0 and all y ∈ RN \{0}, one has

sup
(t,x)
|ajk(t+ τ, x) + ajk(t− τ, x)− 2ajk(t, x)| ≤ K0 τ log

(
1 +

1

τ

)
(7)

sup
(t,x)
|ajk(t, x+ y)− ajk(t, x)| ≤ K0 |y| log

(
1 +

1

|y|

)
.(8)

Again, they decomposed the energy in localized parts, even if each of these items were de�ned
in a new way, following the original idea of Tarama to control the bad behaviour in time of the
coe�cients. Moreover, the regularization of the coe�cients by a convolution kernel was performed
with respect to both time and space. They obtained an energy estimate analogous to (6) (and so
a well-posedness issue in the space H∞ for coe�cients ajk smooth enough with respect to x), but
only in the case of one space dimension, i.e. N = 1: it wasn't so clear how to de�ne a Tarama-like
energy (which was somehow necessary) in higher dimensions.

In a �rst time, in paper [21] in collaboration with Colombini, we extended the result of [19] to
the Cauchy problem (again in dimension N = 1) for a complete second order strictly hyperbolic
operator

Pu := ∂2
t u − ∂x (a(t, x) ∂xu) + b0(t, x) ∂tu + b1(t, x) ∂xu + c(t, x)u ,

where, in addition to hypothesis (7) and (8), we assumed also b0 and b1 to belong to L∞([0, T ]; Cω)
(for some ω ∈ ]0, 1[ ) and c ∈ L∞([0, T ]× R).
We came back to the main ideas of the work of Colombini and Del Santo. In particular, the energy
associated to u was de�ned in the same way, and we handled highest order terms as they did.
Again, we obtained an energy estimate of the same kind of (6): as one can expect, the presence of
lower order terms involves no substantial problems in getting it. Nevertheless, Hölder regularity
of coe�cients of �rst order terms comes into play in the analysis of commutator terms [∆ν , bj ]
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(for j = 1 , 2), and it entails a constraint on the Sobolev index s for which inequality (6) holds
true (see theorem 2.1).

Recently, in [20] with Colombini, Del Santo and Métivier, we considered operator (3) under
hypothesis (7) and (8) in any space dimension N ≥ 1. Let us point out that we focused on a
homogeneous operator to make our computations not too complicated, but the same technique
actually works also for complete second order operators. We managed to get an energy estimate
analogous to (6) (this time for any s ∈ ]0, 1[ ), which entails the well-posedness issue in H∞ (for
ajk of class C∞b in space).
To get the improvement, we resorted to a new energy: as already pointed out, Tarama's energy
doesn't admit a straightforward generalization in higher space dimension. So, we came back to the
original de�nition of Colombini and Del Santo again, but this time we replaced multiplication by
functions a(t, x) with low regularity modulus of continuity, by action of paradi�erential operators
Ta associated to them (as brie�y explained above). Let us also point out that this construction
already involves a smoothing e�ect with respect to the space variables, so that it was enough to
perform a molli�cation of the coe�cients only in time.
Nevertheless, positivity hypothesis on a (required for de�ning a strictly hyperbolic problem)
doesn't translate, in general, to positivity of the corresponding operator, which is fundamental in
obtaining energy estimates. So, we had to take advantage of paradi�erential calculus depending
on a parameter γ ≥ 1, as developed by Métivier (see [50]) and by Métivier and Zumbrun (see
paper [52]). This tool allowed us to perform a more re�ned analysis: in particular, we could de�ne
a paraproduct operator starting from high enough frequencies, so that it is a positive operator, if
the corresponding symbol is.
We had also to deal with a di�erent class of Sobolev spaces, of logarithmic type, already considered
by Colombini and Métivier in [23]. This comes from the fact that the action of paradi�erential
operators associated to log-Lipschitz (in x) and log-Zygmund (in t) symbols, such those we con-
sidered in our strictly hyperoblic problem, involves a logarithmic loss of regularity.

Density-dependent incompressible Euler system

The density-dependent incompressible Euler system

(9)


∂tρ + u · ∇ρ = 0

ρ (∂tu + u · ∇u) + ∇Π = ρ f

div u = 0

describes the evolution of a non-homogeneous incompressible �uid under the action of a body force
f = f(t, x) ∈ RN . The function ρ(t, x) ∈ R+ represents the density of the �uid, u(t, x) ∈ RN
its velocity �eld and Π(t, x) ∈ R its pressure. The term ∇Π can be also seen as the Lagrangian
multiplier associated to the divergence-free constraint over the velocity.

We assume that the space variable x belongs to the whole RN , with N ≥ 2.
The case in which the �uid is supposed to be homogeneous, i.e. ρ ≡ ρ (strictly positive)

constant and the system reads

(10)

{
∂tu + u · ∇u + ∇Π = 0

div u = 0 ,

was deeply studied and there is a broad literature devoted to it.
In contrast, not so many work were devoted to the study of the non-homogeneous case. First

results for equations (9) in smooth bounded domains of R2 or R3 were obtained by Beirão da
Veiga and Valli for Hölder continuous initial data (see papers [5], [6] and [4]). The Sobolev spaces
framework was considered instead by Valli and Zaj�aczowski in [59], and by Itoh and Tani in [46]. In
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paper [45], Itoh studied instead the evolution in the whole R3 for initial data (∇ρ0, u0) ∈ H2×H3,
and Danchin (see [27]) extended the results to any dimension N ≥ 2 and to any Sobolev space
with high enough regularity index.

In the same paper [27], Danchin considered also the case of data in the endpoint Besov space

B
1+N/2
2,1 . Before, Zhou (see [63]) had proved well-posedness for system (9) in spaces B1+N/p

p,1 for
any 1 < p < +∞, but he had to assume the initial density ρ0 to be a small perturbation of a
constant state.

Let us note that, in the case of the whole RN , the hypothesis on the adopted framework almost
always entailed a L2 condition over the velocity �eld, and if not (as e.g. in the last mentioned
work of Zhou), additional smallness assumptions over the density term were required.

Let us also point out that all the well-posedness results stated for system (9) are only local in
time, even in the two-dimensional case. As a matter of fact, as already remarked, for N = 2 the
vorticity equation reads

(11) ∂tω + u · ∇ω + ∇
(

1

ρ

)
∧∇Π = 0 ,

and so one can't get conservation of Lebesgue norms, which was the key to the global in time
existence issue, due to the presence of the density term.

Recently (see paper [28]), Danchin was able to prove the well-posedness result for (9) in any
Besov space Bs

p,r, with 1 < p < +∞, embedded in the set C0,1 of the globally Lipschitz functions.
As a matter of fact, our system is essentially a coupling of two transport equations by the velocity
�eld u: so, no gain of smoothness may be expected during the time evolution, while preserving
regularity requires u to be at least locally Lipschitz with respect to the space variable. Hence,
Danchin proved that the functional framework suitable for (9) is the same as that for which
equations (10) are well-posed. Moreover, he obtained his results for any initial density state,
with no smallness, or closeness to a positive constant, requirements on it. However, he had to
assume the velocity �eld u to belong to L2 to handle the pressure term. As a matter of fact,
in the non-constant density case ∇Π satis�es an elliptic equation (in divergence form) with low
regularity coe�cients,

(12) −div (a∇Π) = divF ,

(here we set a := 1/ρ) and it can be solved independently of a only in the energy space L2. Let
us point out that the control on the L2 (or in general Lp) norm of ∇Π was needed also to bound
its Besov norm.

Requiring the initial velocity u0 ∈ L2, however, is somehow restrictive: in the two-dimensional
case this condition implies the vorticity to have average 0 over R2, and this fact precludes us
from considering, for instance, vortex patches structures. Therefore, Danchin also proved well-
posedness (in any dimension N ≥ 2) for data in the space Bs

p,r ↪→ C0,1, with 2 ≤ p ≤ 4. So,
no �nite energy hypothesis were formulated, even if the previous assumption allows us to recover
∇Π ∈ L2 again. In particular, this result applies (thanks to Biot-Savart law) to any suitably
smooth velocity �eld whose vorticity is compactly supported.

In the same paper, Danchin also proved a continuation criterion in the same spirit of the
well-known result by Beale, Kato and Majda (see the famous paper [3]). The condition to extend
solutions beyond T is ∫ T

0

(
‖∇u(t)‖L∞ + ‖∇Π(t)‖Bs−1

p,r

)
dt < +∞ ,

and, in the case s > 1 +N/p, it is possible to replace ∇u with the vorticity Ω.
Finally, Danchin also tackled the case of the spaces Bs

∞,r ↪→ C0,1, but requiring moreover u0

to belong to Lp (for some 1 < p < +∞) and ρ0 to be close (in Bs
∞,r norm) to a constant state
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ρ. Under these additional assumptions, the equation for the pressure term can be rewritten (as
already done by Zhou in paper [63]) in the form

− a∆Π = divF + div ((a− a)∇Π) ,

with a := 1/ρ. So, using standard Lp estimates for Laplace operator (which hold for all 1 < p <
+∞) and the smallness hypothesis on the density, one can absorb last term of the right-hand side
of the previous equation.

In paper [29] in collaboration with Danchin, we focused on this last case: we managed to
extend the well-posedness result in Bs

∞,r without assuming any smallness condition on the initial
density. Let us point out that this framework is quite interesting, as it includes also the particular
case of Hölder spaces of the type C1,α and the endpoint Besov space B1

∞,1, which is the largest
one embedded in C0,1, and so the largest one in which one can expect to recover well-posedness
for system (9). Of course, we still had to assume u0 to belong to the energy space L2, in order
to assure the existence of the solution ∇Π to (12): we recall again that this equation can be
solved independetely of a only in L2. Now, the improvement with respect to the previous result
was due to the di�erent method used to handle the pressure term, which actually works for all
p ∈ [1,+∞]. In particular, we separated ∇Π into low and high frequencies, using Littlewood-
Paley decomposition. Low frequencies could be controlled by the Lebesgue norm; high frequencies,
instead, could be controlled in terms of ∆Π, which satis�es the equation

−∆Π = ∇ (log a) · ∇Π +
1

a
div (f + u · ∇u) .

First term of the previous relation is of lower order: so, it can be absorbed interpolating between
the L2 estimate and the higher regularity estimates for the Laplace operator. We were also able
to state a continuation criterion analogous to that of Danchin for the case Bs

p,r , 1 < p < +∞.
Moreover, for the same reasons explained above, we considered also in�nite energy data: in this
case, vorticity (which was a fundamental quantity in the constant density case) comes into play
by Biot-Savart law. We still assumed integrability properties for u0 and its vorticity Ω0, in order
to assure the pressure term to belong to L2, a requirement we could not bypass. Also under
these hypothesis, we got well-posedness for equations (9). In particular, this result applies (as in
the analogous case considered by Danchin) to any velocity �eld with suitably smooth compactly
supported vorticity.
As already pointed out before, all the results we got were local in time. Nevertheless, in our paper
we were able to give an estimate on the lifespan of the solutions. We �rst showed that in any space
dimension, if the initial velocity is of order ε (with ε small enough), then the existence time is at
least of order ε−1. In this case, no restriction on the non-homogeneity are needed: the result is a
straightforward consequence of rescaling properties for equations (9). Next, taking advantage of
equality (11) and of more re�ned estimates for transport equation (established recently by Vishik
in [60] and then generalized by T. Hmidi and S. Keraani in [41]), we showed that the lifespan of
the solution tends to in�nity if ρ0 − 1 goes to 0. More precisely, if

‖ρ0 − 1‖B1
∞,1

= ε and ‖ω0‖B0
∞,1

+ ‖u0‖L2 = U0

with ε small enough, then the lifespan is at least of order U−1
0 log(log ε−1).

This having been done, in [35] we studied the problem of propagations of striated and conormal
regularity for solutions to (9), in any dimension N ≥ 2. We considered the initial velocity u0 and
the initial vorticity Ω0 to be in some Lebesgue spaces, in order to guarantee, once again, ∇Π ∈ L2.
We also supposed Ω0 to have regularity properties of geometric type. Moreover, we required the
initial density ρ0 to be bounded with its gradient and to satisfy geometric assumptions analogous
to those for Ω0. Under these hypothesis, we proved existence (obviously, local in time) and
uniqueness of a solution to (9), and propagation of these geometric structures. Let us point out
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that no explicit Lipschitz continuity hypothesis over the velocity �eld were formulated. This
property follows from striated regularity for the vorticity, and it works as in the homogeneous
case. As a matter of fact, proving it relies only on Biot-Savart law, hence nothing changes with
respect to the classical instance: in particular, no further hypothesis on the density term were
needed. Let us point out that we also obtained propagation of geometric structures to the velocity
�eld and to the pressure term.
Moreover, in the same work, we gave an estimate from below for the lifespan of the solution in
terms of inital data only, in any dimension N ≥ 2. Let us recall that, in the classical case of
constant density, it was given (up to a multiplicative constant) by

Tcl :=

(
‖Ω0‖Lq∩L∞ log

(
e+

‖Ω0‖CεX0

‖Ω0‖Lq∩L∞

))−1

(see paper [26]). For the non-homogeneous system, instead, we got that the lifespan is given by

Tnh :=
(
V ′(0) (1 + ‖∇ρ0‖L∞)3+δ

(
1 +R0 + Γ

7/3
0

))−1
,

where the exponent δ > 1 came out in the estimates for the pressure term, the quantities R0 and
Γ0 are related to the geometric properties of the initial data and we de�ned

V ′(0) := ‖u0‖Lp + ‖Ω0‖Lq∩L∞ + ‖Ω0‖CεX0
≥ c ‖Ω0‖Lq∩L∞ log

(
e+

‖Ω0‖CεX0

‖Ω0‖Lq∩L∞

)
.

Hence, up to multiplication by a constant, Tnh ≤ Tcl. Let us point out that we made the
logarithmic dependence disappear in estimating the Lipschitz norm of the velocity �eld, to simplify
our computations, but maybe this is a quite rough result.
Finally, in the physical case N = 2 or 3, we re�ned our result on conormal regularity: if the initial
hypersurface Σ0 is also connected, then it de�nes a bounded domain D0 ⊂ RN of which it is the
boundary, and this property propagates in time (as the �ow of the solution is a di�eomorphism).
By analogy with the structure of vortex patches, we wanted to investigate the dynamics into the
bounded domain. Obviously, even in dimension N = 2, even if the initial vorticity is a vortex
patch, we cannot expect to propagate this property, because of the presence of the density term in
equation (11). Nevertheless, we proved that, if initial density and vorticity are Hölder continuous
inside the domain D0 (in addition to satisfy global hyposthesis in order to assure persistence of
conormal properties), than their regularity is preserved in time evolution. The main di�culty
was to prove that Hölder continuity propagates also to the velocity �eld and the pressure term:
in last analysis, we had to prove these two quantities to be regular enough at the boundary of the
domain D0 transported by the �ow. Now, the required smoothness was ensured by the previously
proved conormal regularity.

The thesis is structured in the following way.
In the �rst part, we will present the Fourier Analysis tools we needed in our study. We

will expound, in a quite complete way, the classical Littlewood-Paley theory. We will recall the
de�nition and the basic properties of the classical non-homogeneous Besov spaces, and we will
quote also some fundamental results on paradi�erential calculus. For doing this, we will strictly
follow the presentation given in [2], and, as these results are classical, we will omit their proofs.

Then, we will pass to consider logarithmic Besov spaces, and we will show that previous
properties hold true (up to suitable slight modi�cations) also for this class. This time, we will
give here all the details.

In the last part of this chapter, we will explain also the main ideas of paradi�erential calculus
depending on parameters, mainly following the presentation of [52], and we will quote some results
we will need in the sequel.
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Then, we will consider the problem of second order strictly hyperbolic operators with low
regularity coe�cients.

In chapter 2 we will analyse the case of a complete operator in one space dimension. This
chapter contains the results proved in paper [21] in collaboration with Colombini.

In chapter 3, instead, we will present the issues got in [20] with Colombini, Del Santo and
Métivier. We will extend previous result in any space dimension, but only for a homogeneous
operator, i.e. without lower order terms.

In each of these sections, we will introduce also some additional tools. In particular, we will
analyse properties of functions with low regularity modulus of continuity and of the corresponding
paradi�erential operators.

Finally, the last part of the thesis is devoted to the study of the density-dependent incom-
pressible Euler equations. Chapter 4 is devoted to well-posedness issues in endpoint Besov spaces
embedded in the space of globally Lipschitz functions. We will provide also a continuation crite-
rion and a lower bound for the lifespan of the solutions. This chapter is based on paper [29] in
collaboration with Danchin.

Then, we will consider the problem of propagation of geometric structures for this system.
We will focus on striated and conormal regularity, and in propagation of Hölder continuity in the
iterior of a bounded domain of R2 or R3 (but still assuming global hypothesis, as brie�y explained
above). This will be the matter of chapter 5, and it contains the results proved in paper [35].
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Introduction

Cette thèse est consacrée à l'analyse de quelques modèles d'équations di�érentielles à dérivées
partielles qui naissent de l'étude des models physiques. En particulier, elle se développe dans
deux directions di�érentes: l'étude des opérateurs hyperboliques à coe�cients peu réguliers et
celle du système d'Euler incompressible à densité variable.

Dans la première partie, on a étudié le problème de Cauchy pour un opérateur des ondes
général, dont les coe�cients du deuxième ordre étaient supposés non-Lipschitz. Au contraire du
cas Lipschitz, on ne peut pas s'attendre à avoir encore le caractère bien posé dans n'importe quel
espace de Sobolev Hs. Toutefois, le caractère bien posé dans l'espace H∞ est encore vrai, mais
avec une perte de dérivées, qui a été prouvée d'être, dans un certain sense, nécessaire.

Beaucoup de travaux sont dédiés à ce sujet, sous de di�érentes hypothèses. L'idée générale est
celle de compenser la perte de régularité en temps avec des hypothèses convenables par rapport à la
variable d'espace. Donc,la première situation à cosindérer est quand les coe�cients ne dépendent
que du temps: dans ce cas, on peut prouver des estimations de l'énergie avec (en général) une
perte constante de dérivées.

Par contre, quand les coe�cients dépendent aussi de x, la perte est (en général) linéairement
croissante dans le temps. En particulier, c'est aussi notre cas, où nous avons mélangé les conditions
log-Zygmund et log-Lipschitz: nous avons imposé que les coe�cients satisfont la première en temps
et l'autre dans la variable d'espace, uniformément par rapport à l'autre variable.

Dans la deuxième partie de la thèse, on a considéré le système d'Euler incompressible à densité
variable, qui décrit la dynamique d'un �uide non-visqueux, incompressible et non-homogène.

Le cas classique, où la densité est supposée constante, a été étudié à fond. Parmi les ques-
tions principales d'intérêt, il y avait le caractère bien posé dans des espaces de Besov contenus
dans la classe C0,1 des fonctions globalement lipschitziennes, des critères de prolongement et
l'existence globale en temps, la propagation des structures géométriques. Notre but était d'élargir
(ou d'invalider) les résultats précédents au cas, bien plus réaliste, de densité variable. En par-
ticulier, dans un premier temps on a examiné le caractère bien posé dans des espaces de Besov
limites, et après on a considéré la propagation de la régularité strati�ée et conormale.

La di�érence principale avec le système classique est que, cette fois, même dans le cas de
dimension 2, on peut s'attendre seulement des résultats d'existence locale en temps. En fait, le
tourbillon n'est plus transporté par le �ot associé au champs de vitesses (qui était la clé pour
la preuve de l'existence globale pour des �uides homogènes), à cause de la présence d'un terme
dépendant de la densité dans son équation.

Les techniques utilisées pour traiter ces deux problèmes di�érents étaient essentiellement
basées sur l'Analyse de Fourier. En particulier, c'était nécessaire un vaste emploi de la théorie
de Littlewood-Paley et du calcul paradi�érentiel, comme présenté par J.-M. Bony dans le célèbre
article [8].

L'idée principale est de dé�nir une partition de l'unitée dyadique dans l'espace des phases,
grâce à des fonctions convenablement régulières et à support compact:

χ(ξ) +
∑
j≥1

ϕj(ξ) ≡ 1 ∀ ξ ∈ RN ,

où χ et ϕj (pour tout j) appartiennent à C∞0 (RNξ ), avec

suppχ ⊂ {|ξ| ≤ 2} et suppϕj ⊂
{
C1 2j−1 ≤ |ξ| ≤ C2 2j+1

}
.

Alors, donnée une u ∈ S ′, on peut dé�nir2 ∆0u := χ(D)u et ∆ju := ϕj(D)u pour tout j ≥ 1.

2Dans tout le manuscrit on convient que f(D) est l'opérateur pseudodi�érentiel u 7→ F−1(f Fu).
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De cette façon, on a la décomposition de Littlewood-Paley d'une distribution temperée u:

u =
+∞∑
j=0

∆ju dans S ′ .

Grâce au théorème de Paley-Wiener, chaque unité dyadique ∆ju est une fonction lisse. En plus,
grâce à la localisation spectrale, les propriétés d'integrabilité de ∆ju sont strictement liées avec
celles de leurs dérivées Dα∆ju (voir aussi le lemme 1.2 en dessous). Ces faits sont fondamentals
et largement utilisés dans l'analyse des équations di�érentielles à dérivées partielles.

En utilisant la décomposition de Littlewood-Paley, on peut dé�nir ce qu'un espace de Besov
est. Pour tout s ∈ R and tout (p, r) ∈ [1,+∞]2, l'espace de Besov non-homogène Bs

p,r est dé�ni
comme l'ensemble des distributions temperées u pour lesquelles la quantité

(13) ‖u‖Bsp,r :=
∥∥∥(2js ‖∆ju‖Lp

)
j∈N

∥∥∥
`r
< +∞ .

Ces espaces fonctionels agrandissent les classes de Sobolev et de Hölder: on a Hs ≡ Bs
2,2 pour

tout s ∈ R et Cω ≡ Bω
∞,∞ pour n'importe quel ω ∈ ]0, 1[ .

Les propriétés des espaces de Besov ont été étudiées à fond (voir par exemple [2] et [51]) et ils
sont maintenant un sujet classique. De toute façon, dans l'article [23] les auteurs ont considéré
des espaces de Sobolev de type logarithmique et ils ont donné une leur caractérisation dyadique.
Inspiré par ce fait, nous avons dé�ni la classe des espaces de Besov logarithmiques, en rempleçant
le terme exponentiel par le nouveau poids 2js(1 + j)α (pour quelque α ∈ R). Nous avons aussi
prouvé qu'ils jouissent des propriétés analogues à celles des espaces de Besov classiques.

En utlisant encore la décomposition de Littlewood-Paley, on peut écrire la décomposition de
Bony (voir l'article [8]) d'un produit de deux distributions temperées:

(14) u v = Tuv + Tvu + R(u, v) ,

où on a dé�ni les opérateurs de paraproduit et de reste respectivement comme

Tuv :=
∑
j

Sj−1u∆jv et R(u, v) :=
∑
j

∑
|k−j|≤1

∆ju∆kv .

Ces opérateurs ont d'agréables propriétés de continuité sur la classe des espaces de Besov. De
plus, le paraproduit joue un rôle important aussi dans l'analyse non-linéaire (voir par exemple le
théorème de paraliéairisation 1.33 en dessous). Nous allons faire un large emploi de la décomposi-
tion (14)dans tout le manuscrit. Cependant, le paraproduit n'est qu'un seul exemple d'opérateur
paradi�érentiel, associé à une fonction qui dépend seulement de la variable d'espace x.

Plus en général, on peut associer un opérateur paradi�érentiel à tout symbol a(x, ξ) lisse par
rapport à ξ, seulement localement borné en x et dont les dérivées en ξ satisfont de particulières
conditions de croissance (voir par exemple [51]). Avant tout, ayant �xé une convenable fonction
de coupage ψ, on peut régulariser a par rapport à la variable x: on obtient ainsi un symbole
classique σa(x, ξ) strictement relié à a. Après, on peut dé�nir l'opérateur paradi�érentiel associé
à a, indiqué par Ta, comme l'opérateur pseudodi�érentiel associé au symbol classique, c'est-à-
dire σa(x,Dx). D'un côté, la construction entière est indépendante de la fonction de coupure ψ, à
moin de termes d'ordre inférieur. De l'autre côté, on peut faire la dépendre d'un paramètre γ ≥ 1,
comme fait dans [50] et [52] par exemple. Ce très simple changement va entrer en jeu d'une façon
essentielle dans l'étude des opérateurs hyperboliques à coe�cients peu réguliers (voir le chapitre
3), parce qu'il permet une analyse plus ra�née.

Après cette brève présentation à l'égard des outils théoriques dont on aura besoin dans notre
analyse, on va expliquer plus en détail les deux di�érentes directions principales de notre travail
de recherche.
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Opérateurs strictement hyperboliques à coe�cients peu réguliers

On considère un opérateur strictement hyperbolique du deuxième ordre L sur une bande [0, T ]×
RN , pour quelque T > 0 et toute diménsion N ≥ 1:

(15) Lu := ∂2
t u −

N∑
j,k=1

∂j (ajk(t, x) ∂ku) ,

et on suppose qu'il y a deux constants 0 < λ0 ≤ Λ0 telles que

λ0 |ξ|2 ≤
N∑

j,k=1

ajk(t, x) ξj ξk ≤ Λ0 |ξ|2

pour n'importe quel (t, x) ∈ [0, T ]× RN et tout ξ ∈ RN . L'inégalité à gauche est la condition de
stricte hyperbolicité, tandis que celle à droite dit que les coe�cients de l'opérateur sont bornés.

C'est bien connu (voir par exemple [42] ou [53]) que, si les coe�cients ajk sont lipschitziens
par rapport à t et seulement mesurable et bornés en x, alors le problème de Cauchy pour L a un
caractère bien posé dans l'espace H1 × L2. Donc, si les ajk sont C∞ et bornés avec toutes leurs
dérivées par rapport à la variable d'espace, on peut retrouver le caractère bien posé en Hs+1×Hs

pour tout s ∈ R. De plus, pour n'importe quel s ∈ R on obtient (pour une certaine constante Cs
dépendent seulement de s) l'estimation de l'énergie

sup
0≤t≤T

(
‖u(t, ·)‖Hs+1 + ‖∂tu(t, ·)‖Hs

)
≤(16)

≤ Cs

(
‖u(0, ·)‖Hs+1 + ‖∂tu(0, ·)‖Hs +

∫ T

0
‖Lu(t, ·)‖Hs dt

)
pour toute u ∈ C([0, T ];Hs+1(RN )) ∩ C1([0, T ];Hs(RN )) telle que Lu ∈ L1([0, T ];Hs(RN )).

En particulier, l'estimation (16) est vraie pour toute u ∈ C2([0, T ];H∞(RN )), et ça implique
que le problème de Cauchy pour L est bien posé dans H∞ avec aucune perte de dérivées.

Si l'hypothèse de continuité Lipschitz (en temps) n'est pas satisfaite, alors (16) n'est plus vraie.
Cependant, on peut encore retrouver le caractère bien posé dans H∞, mais cette fois avec une
perte de dérivées dans l'estimation de l'énergie. Cette perte ne peut pas être évitée, comme il est
prouvé dans l'article [16]. En fait, les auteurs y prouvent que, si la régularité des coe�cients est
mesurée par un module de continuité, alors chaque module de continuité pire que le lipschitzien
comporte toujours une perte de dérivées.

Le premier cas à considérer est quand les ajk dépendent seulement du temps: alors, en utilisant
la transformée de Fourier, on peut passer à l'espace des phases, où le problème devient une
équation di�érentielle ordinaire. Dans l'article [18], Colombini, De Giorgi et Spagnolo ont supposé
une condition log-Lipschitz intégrale, tandis que Tarama (voir [56]) a considéré la classe plus
générale des fonctions log-Zygmund (intégrales). Sous toutes les deux hypothèses, on obtient une
estimation de l'énergie avec une perte constante de dérivées: il y a une constante δ > 0 telle que,
pour n'importe quel s ∈ R, on a l'inégalité

sup
0≤t≤T

(
‖u(t, ·)‖Hs+1−δ + ‖∂tu(t, ·)‖Hs−δ

)
≤(17)

≤ Cs

(
‖u(0, ·)‖Hs+1 + ‖∂tu(0, ·)‖Hs +

∫ T

0
‖Lu(t, ·)‖Hs dt

)
pour toute u ∈ C2([0, T ];H∞(RN )), pour une certaine constante Cs qui dépende seulement de
s. L'idée originelle de Colombini, De Giorgi et Spagnolo était de régulariser les coe�cients en
utilisant un noyau de convolution, et après de relier le paramètre d'approximation ε avec la
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variable duale ξ: ainsi, ils ont exécuté une di�érente approximation dans de di�érentes zones de
l'espace des phases. L'amélioration de Tarama, plutôt, a été obtenue en dé�nissant une nouvelle
énergie, qui concerne aussi les premières dérivées des coe�cients lissés, de façon de compenser la
pire régularité.

Le cas de dépendence en temps aussi bien qu'en espace a été considéré par Colombini et Lerner
dans l'article [22]: ils ont supposé que les ajk satisfaisaient une condition log-Lipschitz ponctuelle
dans toutes les variables. Ils ont donc étudié le problème de Cauchy connexe, et ils ont trouvé une
estimation de l'énergie avec une perte de dérivées qui croît en temps: pour chaque s ∈ ]0, 1/4], il
y a des constantes positives β et Cs et un temps T ∗ ∈ ]0, T ] tels que

sup
0≤t≤T ∗

(
‖u(t, ·)‖H−s+1−βt + ‖∂tu(t, ·)‖H−s−βt

)
≤(18)

≤ Cs

(
‖u(0, ·)‖H−s+1 + ‖∂tu(0, ·)‖H−s +

∫ T ∗

0
‖Lu(t, ·)‖H−s−βt dt

)

pour n'importe quelle u ∈ C2([0, T ];H∞(RN )). À cause de la dépendence des ajk de x, maintenant
ce n'était plus possible d'utiliser la transformée de Fourier pour passer à l'espace des phases. Pour
surmonter ce problème, ils ont pro�té de la décomposition de Littlewood-Paley: ils ont dé�ni une
énergie localisée pour chaque composante ∆νu de la solution u, et après ils ont exécuté une somme
pesée sur ν pour dé�nir l'énergie totale. Encore une fois, ils ont régularisé les co�cients en temps
et ils ont lié le paramètre d'approximation avec ν, fait qui correspond exactement à choisir une
di�érente approximation dans de di�érentes zones de l'espace des phases: il faut se rappeler que
|ξ| ∼ 2ν sur le spectre de ∆νu. Un travail assez dur était exigé pour contrôler la norm (sur l'espace
L2) des opérateurs de commutation [∆ν , ajk] venant de l'équation pour la partie localisée ∆νu.

Plus récemment (voir l'article [19]) Colombini et Del Santo ont imposé une condition log-
Zygmund ponctuelle par rapport au temps et une log-Lipschitz ponctuelle par rapport à l'espace,
uniformément par rapport à l'autre variable. Ces hypthèses se traduisent de la façon suivante: il
y a une constant K0 telle que, pour n'importe quel τ > 0 et quel y ∈ RN \{0}, on a

sup
(t,x)
|ajk(t+ τ, x) + ajk(t− τ, x)− 2ajk(t, x)| ≤ K0 τ log

(
1 +

1

τ

)
(19)

sup
(t,x)
|ajk(t, x+ y)− ajk(t, x)| ≤ K0 |y| log

(
1 +

1

|y|

)
.(20)

Dans ce cas aussi, ils ont décomposé l'énergie dans des parties localisées, même si chacune d'elles
était dé�nie d'une nouvelle façon, en suivant l'idée originelle de Tarama, pour contrôler le mauvais
comportement des coe�cients par rapport au temps. De plus, la régularisation des coe�cients
par un noyau de convolution était exécutée et en temps, et en espace. Ainsi, ils ont obtenu un
estimation de l'énergie analogue à (18) (et donc le caractère bien posé dans l'esapce H∞ pour des
co�cients ajk assez réguliers par rapport à x), mais seulement dans le cas de dimension d'espace
N = 1: en fait, ce n'était pas clair du tout comment dé�nir une énergie de type Tarama (qui
était, d'une certaine façon, nécessaire) en dimension plus grande.

Dans un premier temps, dans l'article [21] en collaboration avec Colombini, on a élargi le résul-
tat de [19] au problème de Cauchy (encore en dimension N = 1) pour un opérateur hyperbolique
du deuxième ordre complet

Pu := ∂2
t u − ∂x (a(t, x) ∂xu) + b0(t, x) ∂tu + b1(t, x) ∂xu + c(t, x)u ,

où, en plus des hypothèse (19) et (20), nous avons supposé aussi que b0 et b1 appartenaient à
L∞([0, T ]; Cω) (pour quelque ω ∈ ]0, 1[ ) et c ∈ L∞([0, T ]× R).
Nous avons recouru aux idées principales du travail de Colombini et Del Santo. En particulier,
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l'énergie associée à u était dé�nie de la même façon, et on a traité les termes d'ordre le plus grand
comme eux. Encore, on a trouvé une estimation de l'énergie du même type que (18): comme on
peut s'attendre, la présence des termes d'ordre inférieur n'entraîne pas de problèmes considérables
pour l'obtenir. Cependant, la régularité hölderienne des coe�cients des termes du premier ordre
entre en jeu dans l'analyse des commutateurs [∆ν , bj ] (pour j = 1 , 2), et elle comporte une
contrainte sur l'exposant de Sobolev s pour lequel (18) est vrai (voir aussi le théorème 2.1).

Dernièrement, dans [20] avec Colombini, Del Santo et Métivier, on a considéré l'opérateur (15)
sous les hypothèses (19) and (20) dans n'importe quelle diménsion N ≥ 1. On fait remarquer que
on s'est intéressé à un opérateur homogène pour n'alourdir pas trop nos calculs, mais la même
technique marche en fait pour un opérateur du deuxième ordre complet. Nous sommes arrivés à
trouver une estimation de l'énergie analogue à (18) (cette fois pour tout s ∈ ]0, 1[ ), et donc le
caractère bien posé dans H∞ (pour des ajk de classe C∞b dans l'espace).
Pour obtenir l'amélioration, nous sommes recourus à une nouvelle énergie: comme on vient de
remarquer, la dé�nition de Tarama n'admet pas une généralisation directe en diménsion plus
grande. Donc, on a fait appel encore à la dé�nition originelle de Colombini et Del Santo, mais en
remplaçant la multiplication par des fonctions a(t, x) avec un module de continuité peu régulier
par l'action des opérateurs paradi�érentiels Ta, à elles associés (comme on a brièvement expliqué
en dessus). On veut remarquer aussi que cette construction comporte déjà un e�et de régulari-
sation dans la variable d'espace, de façon que c'était su�sant d'exécuter la convolution avec un
noyau lisse seulement par rapport au temps.
Toutefois, l'hypothèse de positivité sur a (exigée pour dé�nir un problème strictement hyper-
bolique) ne se traduit pas, en général, dans la positivité de l'opérateur correspondant, qui est
fondamentale dans les estimations de l'énergie. Ainsi, nous avons dû pro�ter du calcul parad-
i�érentiel dépendant d'un paramètre γ ≥ 1, comme développé par Métivier (voir [50]) et par
Métivier et Zumbrun (voir l'article [52]). Cet outil nous permet d'exécuter une analyse plus �ne:
en particulier, on peut dé�nir un opérateur de paraproduit à partir des frequences assez grandes,
de façon qu'il soit un opérateur positif, si le symbole correspondant est positif.
On a dû aussi traiter avec de di�érentes classes d'espaces de Sobolev, de type logarithmique, déjà
considérés par Colombini et Métivier dans [23]. Cela vient du fait que l'action des opérateurs
paradi�érentiels associés aux symboles log-Lipschitz (en x) et log-Zygmund (en t), tels que ceux
qu'on considère dans notre problème strictement hyperbolique, comporte une perte de régularité
logarithmique.

Système d'Euler incompressible à densité variable

Le système d'Euler incompressible à densité variable

(21)


∂tρ + u · ∇ρ = 0

ρ (∂tu + u · ∇u) + ∇Π = ρ f

div u = 0

décrit l'évolution d'un �uide incompressible non-homogène et non-visqueux sous l'action d'une
force externe f = f(t, x) ∈ RN . La fonction ρ(t, x) ∈ R+ représente la densité du �uide, u(t, x) ∈
RN son champs de vitesses et Π(t, x) ∈ R sa pression. Le terme ∇Π peut être vu aussi comme le
multiplicateur de Lagrange associé à la contrainte de divergence nulle sur la vitesse.

On suppose que la variable d'espace x appartient à l'espace entier RN , avec N ≥ 2.
Le cas où le �uide est supposé homogène, c'est-à-dire ρ ≡ ρ constante (strictement positive)

et le système devient

(22)

{
∂tu + u · ∇u + ∇Π = 0

div u = 0 ,
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a été étudié à fond et il y a une vaste littérature à lui consacrée.
Au contraire, pas beaucoup de travaux ont été consacrés à l'étude du cas non-homogène. De

premiers résultats pour les équations (21) dans des domaines lisses de R2 ou R3 ont été obtenus
par Beirão da Veiga et Valli pour des données initiales hölderiennes (voir les articles [5], [6] et
[4]). Le cadre des espaces de Sobolev était considéré plutôt par Valli et Zaj�aczowski dans [59], et
par Itoh et Tani dans [46]. Dans l'article [45], Itoh a étudié l'évolution dans R3 entier, pour des
données initiales (∇ρ0, u0) ∈ H2 ×H3, et Danchin (voir [27]) a agrandi les résultats à n'importe
quelle dimension N ≥ 2 et à tout espace de Sobolev avec un exposant de régularité assez grand.

Dans le même article [27], Danchin a considéré aussi le cas de données dans l'espaces de Besov

limite B1+N/2
2,1 . Avant, Zhou (voir [63]) avait prouvé le caractère bien posé pour le système (21)

dans les espaces B1+N/p
p,1 pour tout 1 < p < +∞, mais en supposant aussi que la densité initiale

ρ0 était une petite perturbation d'un état constant.
Il faut noter que, dans le cas de RN entier, l'hypothèse sur le cadre adopté implique presque

toujours une condition L2 sur le champs de vitesses, et si ce n'est pas le cas (comme, par exemple,
dans le travail de Zhou qu'on vient de citer), des suppositions de petitesse sur la densité étaient
demandées.

Il faut aussi remarquer que tous les résultats sur le caractère bien posé énoncé pour le système
(21) sont seulement locaux en temps, même dans le cas deux-dimensionnel. En fait, comme on a
déjà dit, pour N = 2 l'équation du tourbillon devient

(23) ∂tω + u · ∇ω + ∇
(

1

ρ

)
∧∇Π = 0 ,

donc on ne peut pas s'attendre la conservation des normes de Lebesgue, fait qui était la clé pour
le résultat d'existence globale en temps, à cause du terme de densité.

Récemment (voir l'article [28]), Danchin a prouvé le résultat sur le caractère bien posé du
système (21) dans tout espace de Besov Bs

p,r, avec 1 < p < +∞, contenu dans l'ensemble C0,1

des fonctions globalement lipschitiziennes. En fait, notre système est essentiellement un couplage
de deux équations de transport par le champ de vitesses u: alors, aucun gain de régularité peut
être attendu, tandis que, si on veut la préserver, il faut demander que u soit au moins locale-
ment lipschitzienne par rapport à la variable d'espace. Donc, Danchin a demontré que le cadre
fonctionnel convenable pour l'étude de (21) est le même que pour les équations (22). De plus,
il est arrivé à obtenir son résultat pour n'importe quel état de densité initial, sans de conditions
addittionelles de petitesse. De toute façon, il a dû supposé que le champ de vitesses u appartenait
à L2 pour traiter le terme de pression. En fait, dans le cas de densité non constante, ∇Π satisfait
une équation elliptique (en forme de divergence) à coe�cients peu réguliers,

(24) −div (a∇Π) = divF

(ici on a posé a := 1/ρ), et elle peut être résolue de façon indépendente de a seulement dans
l'espace d'énergie L2. Le contrôle sur la norme L2 (ou, en général, Lp) de ∇Π était nécessaire
aussi pour borner sa norme de Besov.

Toutefois, la condition u0 ∈ L2 est, d'une certaine manière, assez restrictive: dans le cas
deux-dimensionnel, elle implique que le tourbillon doit avoir moyenne nulle sur R2, et ce fait nous
empêche de considérer, par exemple, des structures de type poches de tourbillon. Donc, Danchin
a prouvé aussi le caractère bien posé (dans n'importe quelle dimension N ≥ 2) pour des données
dans des espaces Bs

p,r ↪→ C0,1, avec 2 ≤ p ≤ 4. Aucune hypothèse d'énergie �nite était formulée,
même si la condition précédente nous permet de retrouver encore ∇Π ∈ L2. En particulier, ce
résultat s'applique (grâce à la loi de Biot-Savart) à tout champ de vitesses assez lisse dont le
tourbillon est à support compact.

Dans le même travail, Danchin a prouvé aussi un critère de continuation dans le même esprit
de celui, bien connu, de Bealo, Kato et Majda (voir l'article [3]). La condition qui permet de
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prolonger les solutions au-delà d'un certain temps T est∫ T

0

(
‖∇u(t)‖L∞ + ‖∇Π(t)‖Bs−1

p,r

)
dt < +∞ ,

et, dans le cas s > 1 +N/p, c'est possible de remplacer ∇u avec le tourbillon Ω.
Finalement, Danchin a attaqué aussi le cas des espaces Bs

∞,r ↪→ C0,1, mais en demandant en
plus que u0 appartenait à Lp (pour quelques 1 < p < +∞) et que ρ0 était proche (dans la norme
Bs
∞,r) à un état constant ρ. Sous ces hypothèses supplémentaires, l'équation pour le terme de

pression peut s'écrire (comme déjà fait dans l'article [63] de Zhou) dans la forme

− a∆Π = divF + div ((a− a)∇Π) ,

avec a := 1/ρ. Alors, en utilisant les estimations Lp habituelles pour l'opérateur de Laplace (qui
sont valables pour tout 1 < p < +∞) et l'hypothèse de petitesse sur la densité, on peut absorber
le dernier terme du membre de droite de l'équation précédente.

Dans l'article [29] en collaboration avec Danchin, on s'est concentré sur ce dernier cas: on est
arrivé à élargir le résultat sur le caractère bien posé dans Bs

∞,r sans supposer aucune condition de
petitesse sur la densité initiale. Il faut remarquer que ce cadre fonctionnel est assez intéressant,
car il comprend aussi les cas particuliers des espaces de Hölder du type C1,α et l'espaces de Besov
limite B1

∞,1, qui est le plus grand contenu dans C0,1, et donc le plus grand où on peut s'attendre
à retrouver le caractère bien posé pour le système (21). Bien sûr, on a dû supposer que u0 était
dans L2, pour avoir l'existence d'une solution ∇Π de (24). L'amélioration par rapport au résultat
précédent a été obtenue grâce à une di�érente méthode utilisée pour traiter le terme de pression,
qui en fait marche pour n'importe quel p ∈ [1,+∞]. En particulier, on a séparé∇Π dans les basses
et les hautes fréquences, en utilisant la décomposition de Littlewood-Paley. Les basses fréquences
pouvaient être contrôlées par la norme de Lebesgue, tandis que les hautes étaient bornées par la
norme de ∆Π, qui satisfait l'équation

−∆Π = ∇ (log a) · ∇Π +
1

a
div (f + u · ∇u) .

Le premier terme de la rélation précédente est d'ordre inférieur, et donc il peut être absorbé en
interpolant entre les estimations L2 et celles, d'ordre plus grand, pour l'opérateur de Laplace.
Nous étions aussi capables de formuler un critère de prolongement analogue à celui de Danchin
pour le cas Bs

p,r , 1 < p < +∞. De plus, pour les mêmes raisons qu'on a expliquées tout à l'heure,
on a considéré aussi des données ayant énergie in�nie: dans ce cas, le tourbillon (qui était une
quantité fondamentale dans le cas de densité constante) est entré en jeu via la loi de Biot-Savart.
On a encore supposé des propriétés d'intégrabilité pour u0 et son tourbillon Ω0, a�n d'assurer que
le terme de pression appartenait à L2, une condition qu'on n'est pas arrivé à éviter. Aussi sous ces
hypothèses, nous avons trouvé le caractère bien posé pour les équations (21). En particulier, ce
résultat s'applique (comme dans le cas analogue considéré par Danchin) à tout champ de vitesses
dont le tourbillon est assez lisse et à support compact.
Comme on a déjà remarqué, tous les résultats obtenus étaient seulement locaux en temps. Cepen-
dant, on était aussi capable de donner une estimation pour le temps de vie des solutions. Dans un
premier moment, on a montré que, dans n'importe quelle dimension d'espace, si la vitesse initiale
est d'ordre ε (avec ε assez petit), alors le temps d'existence est au moins d'ordre ε−1. Dans ce cas,
aucune limitation sur la non-homogénéité est demandée: le résultat est une conséquence directe
des propriétés de redimensionnement pour les équations (21). Après, grâce à l'égalité (23) et à
des estimations plus précises pour l'équation de transport (récemment établies par Vishik dans
[60] et généralisées par T. Hmidi et S. Keraani dans [41]), on a montré que le temps de vie de la
solution tend à l'in�ni si ρ0 − 1 devient proche de 0. Plus exactement, si

‖ρ0 − 1‖B1
∞,1

= ε et ‖ω0‖B0
∞,1

+ ‖u0‖L2 = U0
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avec ε assez petit, alors le temps de vie est au moins d'ordre U−1
0 log(log ε−1).

Cela fait, dans [35] on a étudié le problème de la propagation de la régularité strati�ée et
conormale pour les solutions de (21), dans toute dimension N ≥ 2. On a supposé que la vitesse
initiale u0 et son tourbillon Ω0 étaient dans quelques espaces de Lebesgue, a�n d'assurer, encore
une fois, ∇Π ∈ L2. On a supposé aussi des propriétés de type géometrique pour Ω0. De plus,
on a demandé que la densité initiale ρ0 était bornée avec son gradient et qu'elle satisfaisait des
conditions géomotriques analogues à celles pour Ω0. Sous ces hypothèses, on est arrivé à prouver
l'existence (bien sûr, localement en temps) et l'unicité des solutions de (21), et la persistance de
ces structures géometriques. Il faut remarquer qu'on n'a pas demandé expressément que le champ
de vitesses était lipschitizien. Cette propriété suit de la régularité strati�ée pour le tourbillon,
et elle est vraie comme dans le cas homogène. En fait, sa preuve repose seulement sur la loi de
Biot-Savart, et donc rien ne change par rapport au cas classique: en particulier, aucune condition
en plus était demandée. Il faut dire aussi que les structures géometriques se propagent au champ
de vitesses et au terme de pression.
Dans le même travail, on a donné une estimation du dessous pour le temps de vie de la solution
en termes seulement des données initiales, dans toute dimension N ≥ 2. Dans le cas de densité
constante, il faut se rappeler qu'il était donné (à moins de multiplication par des constantes) par

Tcl :=

(
‖Ω0‖Lq∩L∞ log

(
e+

‖Ω0‖CεX0

‖Ω0‖Lq∩L∞

))−1

(voir l'article [26]). Dans le cas non-homogène, au contraire, nous avons trouvé qu'il est borné
par

Tnh :=
(
V ′(0) (1 + ‖∇ρ0‖L∞)3+δ

(
1 +R0 + Γ

7/3
0

))−1
,

où l'exposant δ > 1 vient des estimations pour le terme de pression, les quantités R0 et Γ0 sont
liées aux propriétés géometriques des données initiales et on a dé�ni

V ′(0) := ‖u0‖Lp + ‖Ω0‖Lq∩L∞ + ‖Ω0‖CεX0
≥ c ‖Ω0‖Lq∩L∞ log

(
e+

‖Ω0‖CεX0

‖Ω0‖Lq∩L∞

)
.

Alors, à moins de multiplication par des constantes, Tnh ≤ Tcl. Nous voulons remarquer qu'on a
laissé tomber la dépendence logarithmique dans l'estimation de la norme Lipschitz du champ de
vitesses pour simpli�er les calculs, mais peut-être ce résultat est assez approximatif.
Finalement, dans les cas physiques N = 2 ou 3, on est arrivé à ra�ner notre résultat sur la
régularité conormale: si l'hypersurface initiale Σ0 est aussi connèxe, alors elle dé�nit un domaine
borné D0 ⊂ RN dont elle est le contour, et cette propriété se propage en temps (car le �ot de la
solution est un di�éomorphisme). Par analogie avec la structure des poches de tourbillon, nous
voulions étudier la dynamique dans le domaine borné. Évidemment, même en dimension N = 2,
même si la donnée initiale est un poche de tourbillon, on ne peut pas s'attendre à conserver cette
propriété, à cause de la presence du terme de densité dans l'équation (23). Cependant, nous
avons prouvé que, si la densité et le tourbillon initials sont hölderiens à l'intérieur du domaine D0

(et ils satisfont des hypothèses globales pour garantir la persistance des propriétés conormales),
alors leur régularité est préservée dans l'évolution temporelle. La di�culté la plus grande était
de prouver que la continuité hölderienne se propageait aussi au champ de vitesses et au terme de
pression: en�n, on devait prouver que ces deux quantités étaient assez régulières à la frontière du
domaine D0 transporté par le �ot. Maintenant, ça était garanti par la régularité conormale qu'on
venait de prouver.
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La thèse est structurée de la façon suivante.
Dans la première partie, on va présenter les outils de l'Analyse de Fourier dont on aura besoin

dans notre étude. On donne un cadre assez général de la théorie classique de Littlewood-Paley.
On va rappeler la de�nition et les propriétés principales des espaces de Besov non-homogènes,
et on va citer aussi quelques résultats fondamentaux à l'égard du calcul paradi�érentiel. Pour
faire ça, on va suivre �dèlement la préséntation donnée dans [2], et, comme ces résultats sont
classiques, on va omettre leurs preuves.

Après, on va considérer les espaces de Besov logarithmiques, et on va montrer que les propriétés
précédentes sont encore valables (à moins des changements appropriés) aussi pour cette classe.
Cette fois, on va donner tous les détails des preuves.

Dans la dernière partie de ce chapitre, on va expliquer les idées principales du calcul parad-
i�érentiel à paramètre, en suivant principalement la présentation de [52], et on va citer quelques
résultats dont on aura besoin dans la suite.

Après, on va considérer le problème des opérateurs du deuxième ordre strictement hyper-
boliques à coe�cients peu réguliers.

Dans le chapitre 2 on va analyser le cas d'un opérateur complet en dimension d'espace égale à
un. Ce chapitre contient les résultats prouvés dans l'article [21] en collaboration avec Colombini.

Dans le chapitre 3, plutôt, on va présenter les résultats obtenus dans [20] avec Colombini, Del
Santo et Métivier. On élargit le précédent au cas de n'importe quelle dimension d'espace, mais
(pour simpli�er les calculs) seulement pour un opérateur homogène, c'est-à-dire sans les termes
d'ordre inférieur.

Dans chaqu'une de ces sections, on va introduire aussi quelques outils en plus que ceux qu'on
a présentés dans le chapitre 1. En particulier, on va analyser les propriétés des fonctions ayant
un module de continuité peu régulier et celles des opérateurs paradi�érentiels correspodants.

Finalement, la dernière partie de la thése est dévouée à l'étude des équations d'Euler incom-
pressibles à densité variable. Le chapitre 4 est consacré à la preuve du caractère bien posé dans
des espaces de Besov limites, contenus dans l'espace des fonctions globalement lipschitziennes.
On va aussi donner un critère de prolongement et une borne du dessous pour le temps de vie des
solutions. Ce chapitre est basé sur l'article [29] en collaboration avec Danchin.

Après, on va considérer le problème de la propagation des structures géometriques pour ce
système. On va se concentrer sur la régularité strati�ée et celle conormale, et sur la propagation
de la continuité hölderienne à l'intérieur d'un domaine borné de R2 ou R3 (comme expliqué avant).
Ceci est le sujet du chapitre 5, et il contient les résultats prouvés dans l'article [35].
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Chapter 1

Littlewood-Paley Theory

This chapter is devoted to the presentation of the main tools, mostly based on Fourier Analysis,
we will need in the study of some partial di�erential equations.

The basic idea is to split a tempered distribution into a sum of smooth functions, whose
Fourier transform is compactly supported in a ball or an annulus and which have, due to this
spectral localization, very nice properties. This will be explained in the �rst section.
Then, taking advantage of the previous decomposition, we will introduce the class of (non-
homogeneous) Besov spaces and we will recall its main properties.
Next section will be devoted to the classical paradi�erential calculus. In particular, we will anal-
yse the product of two tempered distributions using the well-known paraproduct decomposition,
introduced �rst by J.-M. Bony in the paper [8]. Moreover, we will consider also composition of
Besov functions by a smooth one.

Unless otherwise speci�ed, one can �nd the proof of all the results quoted up to now in chapter
2 of [2] (see also [51], chapter 4).

In section 1.4, instead we will introduce a new class of Besov spaces, in a certain sense of
logarithmic type. We will see that most of the classical results holds true also in this new setting.
As this part is not classical, we will give also the details of the proofs.

Finally, last section of this chapter is devoted to paradi�erential calculus depending on a
parameter γ ≥ 1 and to more general classes of paradi�erential operators. These topics have
been already introduced in paper [52], appendix B (see also [50]): we will essentially follow it in
our presentation. However, we will allow symbols to have also a logarithmic growth, and we will
analyse their action on the class of logarithmic Besov spaces, introduced before.

1.1 Littlewood-Paley decomposition

Let us de�ne the so called Littlewood-Paley decomposition, based on a dyadic partition of unity
with respect to the Fourier variable.

So, �x a smooth radial function χ supported in (say) the ball B(0, 8/5), equal to 1 in a
neighborhood of B(0, 5/4) and such that r 7→ χ(r e) is nonincreasing over R+ for all unitary
vector e ∈ RN . Moreover, set ϕ (ξ) = χ (ξ) − χ (2ξ): obviously, its support is contained in the
annulus C =

{
ξ ∈ RN | 5/8 ≤ |ξ| ≤ 8/5

}
.

Now we quote some fundamental properties, which are easy to verify. First of all,

∀ ξ ∈ RN , χ(ξ) +
∑
j≥1

ϕ
(
2−jξ

)
= 1 and ∀ ξ ∈ RN \{0} ,

∑
j∈Z

ϕ
(
2−jξ

)
= 1 .

Moreover, if we de�ne the annulus C̃ = C + B(0, 2/5), we have 2j C̃ ∩ 2kC = ∅ for all |j − k| ≥ 3,

3



4 Chapter 1. Littlewood-Paley Theory

and we have also

|j − k| ≥ 2 =⇒ suppϕ
(
2−j ·

)
∩ suppϕ

(
2−k ·

)
= ∅

j ≥ 2 =⇒ suppχ ∩ suppϕ
(
2−j ·

)
= ∅ .

For convenience, set g = F−1χ and h = F−1ϕ. The dyadic blocks (∆j)j∈Z are de�ned by1

∆j := 0 if j ≤ −1, ∆0 := χ(D) = g ∗ · and ∆j := ϕ(2−jD) = 2jN h
(
2j ·
)
∗ · if j ≥ 0 ,

while the low frequency cut-o� operator is de�ned as

Sju := χ(2−j+1D) =
∑
k≤j−1

∆k = 2(j−1)N g
(
2j−1 ·

)
∗ · for j ≥ 1 .

The above de�ned operators map Lp into Lp (for all p ∈ [1,+∞]) continuously, with norms
independent of the indeces j and p. Moreover, formally we have the decomposition Id =

∑
j ∆j ,

which makes sense in S ′, as next result says.

Proposition 1.1. For any u ∈ S ′, one has u = limj→+∞ Sju in S ′.

For the sequel, it's important to understand properties of spectrally localized functions2:
hence, the following two lemmas will be fundamental. The former one describes, by the so
called Bernstein's inequalities, the way derivatives take e�ect on such a class of functions, while
the latter concerns the action of Fourier multipliers.

Lemma 1.2. Let 0 < r < R. A constant C exists so that, for any nonnegative integer k, any
couple (p, q) in [1,+∞]2 with p ≤ q and any function u ∈ Lp, we have, for all λ > 0,

supp û ⊂ B(0, λR) =⇒ ‖∇ku‖Lq ≤ Ck+1 λ
k+N

(
1
p
− 1
q

)
‖u‖Lp

supp û ⊂ {ξ ∈ RN | rλ ≤ |ξ| ≤ Rλ} =⇒ C−k−1 λk ‖u‖Lp ≤ ‖∇ku‖Lp ≤ Ck+1 λk ‖u‖Lp .

Lemma 1.3. Let C be an annulus, m ∈ R and σ be a smooth function on RN \{0} such that, for
any α ∈ NN , there exists a constant Cα for which

∀ ξ ∈ RN , |∂ασ(ξ)| ≤ Cα |ξ|m−|α| .

Then, there exists a constant C, depending only on the Cα for |α| ≤ N + 2, such that, for any
p ∈ [1,+∞], any λ > 0 and any function u ∈ Lp spectrally supported in λ C, we have

‖σ(D)u‖Lp ≤ C λm ‖u‖Lp .

1.2 Non-homogeneous Besov spaces

Using the Littlewood-Paley decomposition, one can de�ne what a Besov space Bs
p,r is.

De�nition 1.4. Let u be a tempered distribution, s a real number, and 1 ≤ p, r ≤ +∞. The
non-homogeneous Besov space Bs

p,r is de�ned as the subset of tempered distributions u for which

‖u‖Bsp,r :=
∥∥∥(2js ‖∆ju‖Lp

)
j∈N

∥∥∥
`r
< +∞ .

1 Throughout we agree that f(D) stands for the pseudo-di�erential operator u 7→ F−1(f Fu).
2 Recall that the spectrum of a tempered distribution is the support of its Fourier transform
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From the above de�nition, it is easy to show that for all s ∈ R, the Besov space Bs
2,2 coincides

with the non-homogeneous Sobolev space Hs, while for all s ∈ R+\N, the space Bs
∞,∞ is actually

the Hölder space Cs (see e.g. [51], chapter 4, for the proof of these two facts).
If s ∈ N, instead, we set Cs∗ := Bs

∞,∞, to distinguish it from the space Cs of the di�erentiable
functions with continuous partial derivatives up to the order s. Moreover, the strict inclusion
Csb ↪→ Cs∗ holds, where Csb denotes the subset of Cs functions bounded with all their derivatives
up to the order s.

If s < 0, we de�ne the �negative Hölder space� Cs as the Besov space Bs
∞,∞.

Finally, let us also point out that for any k ∈ N and p ∈ [1,+∞], we have the following chain
of continuous embeddings:

Bk
p,1 ↪→W k,p ↪→ Bk

p,∞ ,

where W k,p denotes the set of Lp functions with derivatives up to order k in Lp.

Besov spaces have many nice properties which will be recalled in a while. For the time being,
let us just mention that if the condition

(1.1) s > 1 +
N

p
or s = 1 +

N

p
and r = 1

holds true, then Bs
p,r is an algebra continuously embedded in the set C0,1 of bounded Lipschitz

functions, and that (by Bernstein's inequalities) the gradient operator maps Bs
p,r in B

s−1
p,r .

First of all, let us show that de�nition 1.4 is independent of the choice of the cut-o� functions
de�ning the Littlewood-Paley decomposition.

Lemma 1.5. Let C ⊂ RN be an annulus, s ∈ R and (p, r) ∈ [1,+∞]2. Let (uj)j∈N be a sequence
of smooth functions such that

supp ûj ⊂ 2j C and
∥∥∥(2js ‖uj‖Lp)j∈N∥∥∥`r < +∞ .

Then u :=
∑

j∈N uj belongs to B
s
p,r and

‖u‖Bsp,r ≤ Cs

∥∥∥(2js ‖uj‖Lp)j∈N∥∥∥`r .
Bernstein's inequalities immediately imply the following embedding result.

Proposition 1.6. The space Bs1
p1,r1 is continuously embedded in the space Bs2

p2,r2 for all indices
satisfying 1 ≤ p1 ≤ p2 ≤ +∞ and

s2 < s1 −N
(

1

p1
− 1

p2

)
or s2 = s1 −N

(
1

p1
− 1

p2

)
and 1 ≤ r1 ≤ r2 ≤ +∞ .

The following statement is of great importance for proving existence results for partial di�er-
ential equations in the Besov spaces framework.

Theorem 1.7. The set Bs
p,r is a Banach space.

Moreover, it satis�es the Fatou property: if (uj)j∈N is a bounded sequence of Bs
p,r, then there exist

an element u ∈ Bs
p,r and a subsequence

(
uψ(j)

)
j∈N such that

lim
j→+∞

uψ(j) = u in S ′ and ‖u‖Bsp,r ≤ C lim inf
j→+∞

∥∥uψ(j)

∥∥
Bsp,r

.

Let us also quote a density result.

Lemma 1.8. Let r < +∞. For all u ∈ Bs
p,r we have

lim
j→+∞

‖u − Sju‖Bsp,r = 0 .
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Proposition 1.9. Fix p and r �nite.
Then the space of test functions D(RN ) is densely embedded in Bs

p,r(RN ).

Remark 1.10. If r = +∞, instead, the closure of D(RN ) for the Bs
p,r norm is the subset of

tempered distributions u ∈ S ′ such that limj→+∞ 2js ‖∆ju‖Lp = 0.

We introduce now the following notation:

• for any index q ∈ [1,+∞], we denote with q′ its conjugate exponent, i.e. q′ ∈ [1,+∞] is
de�ned by the relation (1/q) + (1/q′) = 1;

• the symbol ( · , · )L2 will indicate the scalar product in L2.

Let us recall also some duality properties of Besov spaces.

Proposition 1.11. For all s ∈ R and (p, r) ∈ [1,+∞]2, the map

Bs
p,r × B−sp′,r′ −→ R

(u , φ) 7−→ 〈u, φ〉 :=
∑
|j−k|≤1

(∆ju,∆kφ)L2

de�nes a continuous bilinear functional on the space Bs
p,r ×B−sp′,r′ . Moreover, for all u ∈ S ′

‖u‖Bsp,r ≤ C sup
φ∈S,‖φ‖

B−s
p′,r′
≤1
〈u, φ〉 .

More generally, the space B−sp′,r′ can be identi�ed with the dual space of the completion of D
for the Bs

p,r norm.
Now let us consider the action of Fourier multipliers on non-homogeneous Besov spaces. First

of all, a de�nition is in order.

De�nition 1.12. A smooth function f : RN −→ R is said to be a Sm-multiplier if, for all
multi-index α ∈ NN , there exists a constant Cα such that

∀ ξ ∈ RN , |∂αf(ξ)| ≤ Cα (1 + |ξ|)m−|α| .

Proposition 1.13. Let m ∈ R and f be a Sm-multiplier.
Then for all s ∈ R and (p, r) ∈ [1,+∞]2 the operator f(D) maps Bs

p,r into B
s−m
p,r continuously.

Next statement considers instead the case of homogeneous (away from the origin) multipliers:
it will be useful in part III.

Proposition 1.14. Let F : RN → R be a smooth function. Let us suppose also that F is
homogeneous of degree m ∈ R away from a neighborhood of the origin: there exists a real number
% > 0 such that

∀ |ξ| ≥ % , ∀λ > 0 , F (λξ) = λm F (ξ) .

Then for all (p, r) ∈ [1,+∞]2 and all s ∈ R, the operator F (D) maps Bs
p,r in B

s−m
p,r .

Remark 1.15. Let P be the Leray projector over divergence free vector �elds and Q := Id−P.
Recall that, in Fourier variables, for all vector �elds u we have

Q̂u(ξ) =
ξ

|ξ|2
ξ · û(ξ) .

Therefore, both (Id − ∆0)P and (Id − ∆0)Q satisfy the assumptions of the above proposition
with m = 0, hence they are self-maps on Bs

p,r for any s ∈ R and 1 ≤ p, r ≤ +∞.
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Now, let us state a characterization of Besov spaces with negative index of regularity in terms
of the low frequencies cut-o� operators.

Proposition 1.16. There exists a constant C for which the following result holds. Let s < 0,
(p, r) ∈ [1,+∞]2 and u ∈ S ′.

Then u ∈ Bs
p,r if and only if the sequence

(
2js ‖Sju‖Lp

)
j∈N ∈ `r. Moreover,

C−|s|+1 ‖u‖Bsp,r ≤
∥∥∥(2js ‖Sju‖Lp)j∈N∥∥∥`r ≤ C

(
1 +

1

|s|

)
‖u‖Bsp,r .

Finally, let us conclude this section with a fundamental interpolation result.

Theorem 1.17. There exists a constant C such that, for any two real numbers s1 < s2, any
θ ∈ ]0, 1[ and any (p, r) ∈ [1,+∞]2, one has

‖u‖
B
θs1+(1−θ)s2
p,r

≤ ‖u‖θ
B
s1
p,r
‖u‖1−θ

B
s2
p,r

‖u‖
B
θs1+(1−θ)s2
p,1

≤ C

s2 − s1

(
1

θ
+

1

1− θ

)
‖u‖θ

B
s1
p,∞
‖u‖1−θ

B
s2
p,∞

.

1.2.1 Time-dependent Besov spaces

Littlewood-Paley decomposition plays a fundamental role in the analysis of partial di�erential
equations in the Besov spaces framework.

The standard procedure lies in writing the equation for each localized part of the solution,
then estimating it in some space L%([0, T ];Lp) using classical results for smooth solutions and
�nally performing a weighted `r summation.
In this way, however, one doesn't get estimates in the space L%([0, T ];Bs

p,r), because the time
integration comes before the summation. So, the following de�nition gains relevance.

De�nition 1.18. Given a T > 0, s ∈ R and (p, r) ∈ [1,+∞]2, we de�ne the space L̃%T (Bs
p,r) as

the subset of tempered distributions u over ]0, T [×RN such that

‖u‖
L̃%T (Bsp,r)

:=

∥∥∥∥(2js ‖∆ju‖L%T (Lp)

)
j∈N

∥∥∥∥
`r
< +∞ .

The previous de�nition was introduced �rst in paper [15] in the Sobolev spaces framework,
and then in [14] for the general Besov classe.

The relation between this space and the classical L%T (Bs
p,r) := L%([0, T ];Bs

p,r) can be easily got
by Minkowski's inequality: one has{

‖u‖
L̃%T (Bsp,r)

≤ ‖u‖L%T (Bsp,r)
if % ≤ r

‖u‖
L̃%T (Bsp,r)

≥ ‖u‖L%T (Bsp,r)
if % ≥ r .

Paradi�erential calculus results, such as (for instance) continuity of composition and of para-
product and remainder operators, hold true also for this class of Besov spaces. One has to pay
attention only to the time exponent %, which follows the rules of Hölder inequality. For instance,
as we will see, we have

‖u v‖
L̃%T (Bsp,r)

≤ C
(
‖u‖L%1T (L∞) ‖v‖L̃%2T (Bsp,r)

+ ‖u‖
L̃
%3
T (Bsp,r)

‖v‖L%4T (L∞)

)
,

with 1/% = 1/%1 + 1/%2 = 1/%3 + 1/%4.
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1.2.2 Homogeneous Besov spaces

For completeness, let us spend a few words on homogeneous Besov spaces. First of all, let us
de�ne a subclass of the space S ′(RN ).

De�nition 1.19. We de�ne S ′h(RN ) to be the space of tempered distributions u such that, for
all θ ∈ D(RN ), one has

(1.2) lim
λ→+∞

‖θ (λD)u‖L∞ = 0 .

This requirement is actually a condition on low frequencies only: as a matter of fact, the
following proposition holds true.

Proposition 1.20. u ∈ S ′h if and only if there exists θ ∈ D(RN ) which satis�es relation (1.2)
and moreover θ(0) 6= 0.

For instance, it's easy to verify the following claims.

• Let u ∈ S ′; if û is locally integrable near 0, then u ∈ S ′h.
In particular, one has the inclusion E ′(RN ) ⊂ S ′h(RN ).

• Let u be a tempered distribution such that θ(D)u ∈ Lp, for some p ∈ [1,+∞[ and some
function θ ∈ D with θ(0) 6= 0. Then u ∈ S ′h.

• Let P be a nonzero polynomial. Then P 6∈ S ′h, but ei(·,η)P ∈ S ′h for all η ∈ RN \{0}.
In particular, S ′h is not a closed subset of S ′ for the weak-∗ topology.

Now, keeping in mind that
∑

j∈Z ϕ
(
2−jξ

)
≡ 1 for all ξ ∈ RN \{0}, we de�ne, for all j ∈ Z, the

homogeneous dyadic blocks

∆̇ju := ϕ
(
2−j D

)
u = 2jN h

(
2j ·
)
∗ u ,

and the homogeneous low frequencies cut-o� operators

Ṡju =
∑
k≤j−1

∆̇k .

So, formally, one can write Id =
∑

j∈Z ∆̇j .

Now, we are ready to de�ne the homogeneous Besov space Ḃs
p,r.

De�nition 1.21. Let s ∈ R and (p, r) ∈ [1,+∞]2. The space Ḃs
p,r is de�ned as the subset of

distributions u ∈ S ′h such that

‖u‖Ḃsp,r :=

∥∥∥∥(2js
∥∥∥∆̇ju

∥∥∥
Lp

)
j∈Z

∥∥∥∥
`r
< +∞ .

The space Ḃs
p,r, endowed with ‖ · ‖Ḃsp,r , is a normed space, but it is not complete, in general.

Theorem 1.22. Let s ∈ R and (p, r) ∈ [1,+∞]2 such that

s <
N

p
or s =

N

p
and r = 1 .

Then the space Ḃs
p,r, endowed with the norm ‖ · ‖Ḃsp,r , is complete.

Moreover, in the case s < N/p it satis�es also the Fatou's property.
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Note that if the condition on indices in previous theorem is not veri�ed, Ḃs
p,r is no longer a

Banach space: the problem lies in convergence for low frequencies. Let us spend a few words
about that.

We start from the remark that ∆̇jf = 0 for all j ∈ Z if and only if f is a polynomial. As a
matter of fact, thanks to Fourier transform it's quite easy to see that the condition ∆̇jf = 0 for
all j ∈ Z is equivalent to require suppf̂ ⊂ {0}.

Now, as for all k ∈ Z the identity Id = Sk +
∑

j≥k ∆̇j holds (note that Sk is the non-
homogeneous low frequencies cut-o� operator), we have

f =
∑
j∈Z

∆̇jf in S ′ ⇐⇒ lim
k→−∞

Skf = 0 in S ′ .

Next lemma explains us the meaning to give to condition on the right-hand side.

Lemma 1.23. For all tempered distribution f ∈ S ′(RN ), there exist an integer n ∈ N and a
family of polynomials (Pk(f))k∈Z , of degrees dk ≤ n, such that

lim
k→−∞

(
Skf − Pk(f)

)
= 0

uniformly on all compact subsets of RN and in the S ′ topology.

Therefore, the equality f =
∑

j∈Z ∆̇jf means that

lim
k→−∞

∑
j≥k

∆̇jf − Pk(f)

 = f in L∞loc(RN ) ∩ S ′(RN ) .

See also [9] and the references therein for a more complete treatment of this construction.
However, previous arguments lead to another de�nition of the homogeneous Besov spaces, modulo
polynomials, in such a way to get a Banach space independentely of the regularity indices. It
turns out that the two de�nitions coincide in the case s < N/p or s = N/p and r = 1.

Let us �nally remark that most of the results stated for the non-homogenous framework are
still true also in this case. Moreover, one can characterize homogeneous Besov spaces in terms of
the heat �ow or of �nite di�erences. We refer to [2] for the details of these and other properties
of spaces Ḃs

p,r.

1.3 Non-homogeneous paradi�erential calculus

This section is devoted to the study of the action of some operators on non-homogeneous Besov
spaces. In particular, we are going to focus on the product of two tempered distributions and on
left and right composition of a smooth function with a Besov one. In section 1.5, instead, we will
introduce more general paradi�erential operators.

For the proofs of all the results quoted here, we refer again to [2], chapter 2.

1.3.1 Bony's paraproduct decomposition

Given two tempered distributions u and v, formally one has u v =
∑

j,k ∆ju∆kv. Now, due to
the spectral localization of cut-o� operators, we can write the following Bony's decomposition:

(1.3) u v = Tuv + Tvu + R(u, v) ,

where we have de�ned

Tuv :=
∑
j

Sj−1u∆jv and R(u, v) :=
∑
j

∑
|k−j|≤1

∆ju∆kv .
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The above operator T is called �paraproduct�, whereas R is called �remainder�.
Sometimes we will also write

u v = Tuv + T ′vu with T ′vu :=
∑
j

Sj+2v∆ju .

Let us immediately note that the generic term Sj−1u ∆jv is spectrally supported in the dyadic
annulus 2j C̃, while ∆ju∆kv is spectrally localized in a ball of radius proportional to 2j .

Let us now recall some continuity properties of paraproduct and remainder operators on non-
homogeneous Besov spaces.

Theorem 1.24. (i) For any (s, p, r) ∈ R × [1,+∞]2 and t > 0, the paraproduct operator T
maps L∞ × Bs

p,r in Bs
p,r, and B

−t
∞,r1 × B

s
p,r2 in Bs−t

p,q , with 1/q := min {1 , 1/r1 + 1/r2}.
Moreover, the following estimates hold true:

‖Tuv‖Bsp,r ≤ C ‖u‖L∞‖∇v‖Bs−1
p,r

and ‖Tuv‖Bs−tp,q
≤ C ‖u‖B−t∞,r1‖∇v‖Bs−1

p,r2
.

(ii) For any (s1, p1, r1) and (s2, p2, r2) in R×[1,∞]2 such that s1+s2 ≥ 0, 1/p := 1/p1+1/p2 ≤ 1
and 1/r := 1/r1 + 1/r2 ≤ 1 the remainder operator R maps Bs1

p1,r1 × B
s2
p2,r2 in Bs1+s2

p,r , and
one has:

‖R(u, v)‖
B
s1+s2
p,r

≤ Cs1+s2+1

s1 + s2
‖u‖Bs1p1,r1 ‖v‖B

s2
p2,r2

if s1 + s2 > 0

‖R(u, v)‖B0
p,∞
≤ Cs1+s2+1 ‖u‖Bs1p1,r1 ‖v‖B

s2
p2,r2

if s1 + s2 = 0 , r = 1 .

Remark 1.25. Actually, under the assumptions of the above proposition, one can prove more
accurate estimates for the paraproduct operator: for all k ∈ N,

‖Tuv‖Bsp,r ≤ C ‖u‖L∞‖∇kv‖Bs−kp,r
and ‖Tuv‖Bs−tp,q

≤ C ‖u‖B−t∞,r1‖∇
kv‖Bs−kp,r2

.

Let us also quote a lemma, which continuity properties for the remainder operator are based
on, and which will turn out to be useful in the applications.

Lemma 1.26. Let B be a ball of RN , s > 0 and (p, r) ∈ [1,+∞]2. Let (uj)j∈N be a sequence of
smooth functions such that

supp ûj ⊂ 2j B and
∥∥∥(2js ‖uj‖Lp)j∈N∥∥∥`r < +∞ .

Then u :=
∑

j∈N uj belongs to B
s
p,r and

‖u‖Bsp,r ≤ Cs

∥∥∥(2js ‖uj‖Lp)j∈N∥∥∥`r .
Combining the theorem 1.24 with Bony's decomposition (1.3), we easily get the following

�tame estimate�:

Corollary 1.27. Let a be a bounded function such that ∇a ∈ Bs−1
p,r for some s > 0 and (p, r) ∈

[1,+∞]2. Then for any b ∈ Bs
p,r ∩ L∞ we have ab ∈ Bs

p,r ∩ L∞ and there exists a constant C,
depending only on N, p and s, such that

‖ab‖Bsp,r ≤ C
(
‖a‖L∞‖b‖Bsp,r + ‖b‖L∞‖∇a‖Bs−1

p,r

)
.

In applications, we will often have to handle compositions between a paraproduct operator and
a Fourier multiplier. We already know how each of them acts on the Besov class; now, we want
to focus on their commutator operator. Before doing this, however, let us quote a preliminary
result.
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Lemma 1.28. Let θ ∈ C1(RN ) such that the function (1 + | · |) θ̂ ∈ L1.
Then there exists a constant C such that, for any Lipschitz function f and any u ∈ Lp with

p ∈ [1,+∞], for all λ > 0 one has∥∥[θ(λ−1D) , f
]
u
∥∥
Lp
≤ C λ−1 ‖∇f‖L∞ ‖u‖Lp .

In particular, if we take θ = ϕ and λ = 2j , this lemma may be interpreted as a gain of
one derivative by commutation between the localization operator ∆j and the multiplication by a
Lipschitz function. It will be interesting to compare this result with what we will get in chapter
2, where we will assume f to be non-Lipschitz (see lemma 2.3).

Now let us state commutator estimates between a paraproduct operator and a Fourier multi-
plier, as announced.

Lemma 1.29. Let m ∈ R, R > 0 and f ∈ C∞(RN ) be a homogeneous smooth function of degree
m out of the ball B(0, R).
Moreover, let σ ∈ [0, 1[ , s ∈ R and (p, r) ∈ [1,+∞]2.

Then, there exists a constant C (depending only on R, σ and N) such that

(1.4)
∥∥[Tu, f(D)] v

∥∥
Bs−m+σ
p,r

≤ C ‖∇u‖Bσ−1
∞,∞
‖v‖Bsp,r .

In the limit case σ = 1, the previous estimate is still true with ‖∇u‖L∞ in the place of ‖∇u‖Bσ−1
∞,∞

.

1.3.2 The paralinearization theorem

In this paragraph, we want to investigate the e�ect of composition by smooth functions on Besov
spaces. We will focus on left composition, while we refer to chapter 5 for some properties of right
composition. Let us state a �rst fundamental result (whose proof can be found e.g. in [2]) for the
general situation.

Theorem 1.30. Let f ∈ C∞(R) such that f(0) = 0, s > 0 and (p, r) ∈ [1,+∞]2.
If u ∈ L∞ ∩Bs

p,r, then so does f ◦ u and moreover

‖f ◦ u‖Bsp,r ≤ C ‖u‖Bsp,r ,

for a constant C depending only on s, f ′ and ‖u‖L∞ .

We can state another result (see [28], section 2, for its proof), which is strictly related to the
previous one.

Proposition 1.31. Let I ⊂ R be an open interval and f : I −→ R be a smooth function.
Then, for all compact subset J ⊂ I, s > 0 and (p, r) ∈ [1,+∞]2, there exists a constant

C such that, for all functions u valued in J and with gradient ∇u ∈ Bs−1
p,r , we have that also

∇(f ◦ u) ∈ Bs−1
p,r and

‖∇ (f ◦ u)‖Bs−1
p,r
≤ C ‖∇u‖Bs−1

p,r
.

In the case f ∈ C∞b (R), theorem 1.30 can be a little bit improved (see again [2] for te proof).

Theorem 1.32. Let f ∈ C∞b (R) such that f(0) = 0, s > 0 and (p, r) ∈ [1,+∞]2. Let us take a
u ∈ Bs

p,r such that ∇u ∈ B−1
∞,∞.

Then also f ◦ u ∈ Bs
p,r and there exists a constant C, depending only on s, f and ‖∇u‖B−1

∞,∞
,

for which
‖f ◦ u‖Bsp,r ≤ C ‖u‖Bsp,r .

If u is more regular, one can expect to get more informations on f ◦ u. The paralinearization
theorem says that, up to a remainder term which turns out to be more regular than u, one can
write the composition f ◦ u as a paraproduct involving f ′ ◦ u and u. See also chapter 2 of [2] for
more details.
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Theorem 1.33. Let s, % > 0, with % 6∈ N. Let also p ∈ [1,+∞], 1 ≤ r1 ≤ r2 ≤ +∞ and set
1/r := min {1 , 1/r1 + 1/r2}. Finally, let f ∈ C∞(R).

Then, for any function u ∈ Bs
p,r1 ∩B

%
∞,r2 there exists a constant C, which depends only on f ′′

and ‖u‖L∞ , such that ∥∥f ◦ u − Tf ′◦uu
∥∥
Bs+%p,r

≤ C ‖u‖B%∞,r2 ‖u‖Bsp,r1 .

1.4 Logarithmic Besov spaces

As pointed out at the beginning of section 1.2, classical Sobolev spaces can be characterized via
dyadic decomposition: for all s ∈ R there exists a constant Cs > 0 such that

(1.5)
1

Cs

+∞∑
ν=0

22νs ‖∆νu‖2L2 ≤ ‖u‖2Hs ≤ Cs

+∞∑
ν=0

22νs ‖∆νu‖2L2 .

In other words, the Hs norm of a tempered distribution u is equivalent to the `2 norm of the
sequence (2sν ‖∆νu‖L2)ν∈N. Now, one may ask what we get if, in the sequence, we put weights dif-
ferent to the exponential term 2sν . Before answering this question, we introduce some de�nitions.
For the details of the presentation, we refer also to [23], section 3.

Let us set Π(D) := log(2 + |D|), i.e. its symbol is π(ξ) := log(2 + |ξ|).

De�nition 1.34. For all α ∈ R, we de�ne the space Hs+α log as the space Π−αHs, i.e.

f ∈ Hs+α log ⇐⇒ Παf ∈ Hs ⇐⇒ πα(ξ)
(
1 + |ξ|2

)s/2
f̂(ξ) ∈ L2 .

From the de�nition, it's obvious that the following inclusions hold for s1 > s2, α1 > α2 > 0:

(1.6) Hs1+α1 log ↪→ Hs1+α2 log ↪→ Hs1 ↪→ Hs1−α2 log ↪→ Hs1−α1 log ↪→ Hs2 .

We have the following dyadic characterization of these spaces (see [51], proposition 4.1.11).

Proposition 1.35. Let s, α ∈ R. A tempered distribution u belongs to the space Hs+α log if and
only if:

(i) for all k ≥ 0, ∆ku ∈ L2(RN );

(ii) set δk := 2ks (1 + k)α ‖∆ku‖L2 for all k ∈ N, the sequence (δk)k belongs to `2(N).

Moreover, ‖u‖Hs+α log ∼ ‖(δk)k‖`2.

Hence, this proposition generalizes property (1.5).
This new class of Sobolev spaces, which are in a certain sense of logarithmic type, will come

into play in analysis of strictly hyperbolic operators with low regularity coe�cients. However,
inspired by their dyadic characterization, we want to de�ne the more general class of �logarithmic
Besov spaces�.

De�nition 1.36. Let s and α be real numbers, and 1 ≤ p, r ≤ +∞. The non-homogeneous
logarithmic Besov space Bs+α log

p,r is de�ned as the subset of tempered distributions u for which

‖u‖
Bs+α log
p,r

:=
∥∥∥(2js (1 + j)α ‖∆ju‖Lp

)
j∈N

∥∥∥
`r
< +∞ .

Now, we want to investigate some basic properties of this new class of functions. We will see
that most of the results stated in the classical case hold also for them. The proofs can be obtained
from the previous ones with little modi�cations; anyway, we want to give here the most of the
details.
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1.4.1 General properties

First of all, let us show that de�nition 1.36 is independent of the choice of the cut-o� functions
de�ning the Littlewood-Paley decomposition.

Lemma 1.37. Let C ⊂ RN be a ring, (s, α) ∈ R2 and (p, r) ∈ [1,+∞]2. Let (uj)j∈N be a sequence
of smooth functions such that

supp ûj ⊂ 2j C and
∥∥∥(2js (1 + j)α ‖uj‖Lp

)
j∈N

∥∥∥
`r
< +∞ .

Then u :=
∑

j∈N uj belongs to B
s+α log
p,r and

‖u‖
Bs+α log
p,r

≤ Cs,α

∥∥∥(2js (1 + j)α ‖uj‖Lp
)
j∈N

∥∥∥
`r
.

Proof. By spectral localization, we gather that there exists a n0 ∈ N such that ∆kuj = 0 for all
|k − j| > n0. Therefore

‖∆ku‖Lp ≤
∑

|j−k|≤n0

‖∆kuj‖Lp ≤ C
∑

|j−k|≤n0

‖uj‖Lp .

From these relations it immediately follows that

2ks (1 + k)α ‖∆ku‖Lp ≤ C
∑

|j−k|≤n0

2(k−j)s (1 + k)α

(1 + j)α
2js (1 + j)α ‖uj‖Lp .

Now, as very often in the sequel, we use the fact that (1 + k)/(1 + j) ≤ 1 + |k − j|. Hence,

2ks (1 + k)α ‖∆ku‖Lp ≤ C (θ ∗ δ)k ,

where we have set (here IA denote the characteristic function of the set A)

θh := 2hs (1 + h)α I[0,n0](h) and δj := 2js (1 + j)α ‖uj‖Lp .

Passing to the `r norm and applying Young's inequality for convolutions complete the proof.

Logarithmic Besov spaces are intermediate classes of functions between the classical ones. As
a matter of facts, a chain of embeddings analogous to (1.6) still holds. Let us recall that, in the
classical case, a loss of regularity is needed to lower the summation index: Bs

p,∞ ↪→ Bs−ε
p,1 for all

ε > 0. It's very easy to see that, in fact, only a logarithmic loss is required:

Bs
p,∞ ↪→ Bs−α log

p,1 ∀ α > 1 .

Therefore, proposition 1.6 admits the following generalization:

Proposition 1.38. The space Bs1+α1 log
p1,r1 is continuously embedded in the space Bs2+α2 log

p2,r2 when-
ever 1 ≤ p1 ≤ p2 ≤ +∞ and one of the following conditions holds true:

• s2 < s1 − N (1/p1 − 1/p2)

• s2 = s1 − N (1/p1 − 1/p2) and α1 − α2 > 1

• s2 = s1 − N (1/p1 − 1/p2) , α2 ≤ α1 and 1 ≤ r1 ≤ r2 ≤ +∞ .

Let us now state a simple lemma, which turns out to be important in the sequel.

Lemma 1.39. Let 1 ≤ r < +∞. For all u ∈ Bs+α log
p,r , we have

lim
j→+∞

‖u − Sju‖Bs+α log
p,r

= 0 .
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Proof. Let us take a u ∈ Bs+α log
p,r , with r < +∞. Obviously, we have that

lim
j→+∞

∑
k≥j

2ksr (1 + k)rα ‖∆ku‖Lp = 0 .

Then, the thesis follows observing that u− Sju =
∑

k≥j ∆ku.

As one can expect, Fatou's property holds true also for the new class of Besov spaces.

Theorem 1.40. Let (s, α) ∈ R2 and (p, r) ∈ [1,+∞]2.
The set Bs+α log

p,r satis�es the Fatou property: if (uj)j∈N is a bounded sequence in Bs+α log
p,r , then

there exist an element u ∈ Bs+α log
p,r and a subsequence

(
uψ(j)

)
j∈N such that

lim
j→+∞

uψ(j) = u in S ′ and ‖u‖
Bs+α log
p,r

≤ C lim inf
j→+∞

∥∥uψ(j)

∥∥
Bs+α log
p,r

.

Proof. By Bernstein inequalities, for all n ∈ N, the sequence (∆nuj)j∈N is bounded in Lp ∩
L∞. Therefore, Cantor's diagonal process assures that there exist a subsequence

(
uψ(j)

)
j
and a

sequence (ũn)n of C∞ functions whose Fourier transform is supported in the ring 2nC, such that,
for all j ∈ N and all f ∈ S, one has

lim
j→+∞

〈∆nuψ(j), f〉 = 〈ũn, f〉 and ‖ũn‖Lp ≤ lim inf
j→+∞

∥∥∆nuψ(j)

∥∥
Lp

.

Now, let us consider the sequence((
2ns (1 + n)α

∥∥∆nuψ(j)

∥∥
Lp

)
n

)
j∈N

:

it is obviously bounded in `r (because (uj)j ⊂ Bs+α log
p,r is bounded). Hence, there exists a

(cn)n ∈ `r which (up to an extraction) it converges to in `r for the weak-∗ topology: for all
(δn)n ⊂ R+ such that δn 6= 0 only for a �nite number of indices, one has

lim
j→+∞

∑
n∈N

2ns (1 + n)α
∥∥∆nuψ(j)

∥∥
Lp

δn =
∑
n∈N

cn δn .

Moreover, we have that
‖(cn)n‖`r ≤ lim inf

j→+∞

∥∥uψ(j)

∥∥
Bs+α log
p,r

.

Passing to the limit, we get that the sequence (2ns (1 + n)α ‖ũn‖)n ∈ `r. Therefore, lemma 1.37
guarantees that u :=

∑
n ũn ∈ Bs+α log

p,r . By spectral localization, we obtain also that there exists
a n0 ∈ N such that, for all n < n0 and all f ∈ S,

〈
n0∑
m=n

∆mu , f〉S′×S = 〈
n0∑
m=n

∑
|m−h|≤1

∆mũh , f〉S′×S .

Then, due to the de�nition of ũh, we have

n0∑
m=n

∆mu = lim
j→+∞

n0∑
m=n

∆muψ(j) in S ′ .

We apply previous equality for n = 0. Moreover, lemma 1.39 implies (Id − Sk)uψ(j) −→k→+∞ 0

in Bs+α log
p,r (or in Bs−1

p,∞ if r = +∞) uniformly with respect to j. From these facts we gather

u = lim
k→+∞

k∑
m=0

∆mu ≡ lim
j→+∞

uψ(j) in S ′ ,

and this completes the proof of the theorem.
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Theorem 1.41. The set
(
Bs+α log
p,r , ‖ · ‖

Bs+α log
p,r

)
is a Banach space.

Proof. It is quite easy to see that
(
Bs+α log
p,r , ‖ · ‖

Bs+α log
p,r

)
is a normed space. Let us show that

it is also complete.
So, take a Cauchy sequence (un)n∈N ⊂ Bs+α log

p,r . In particular, it is bounded: hence, by

theorem 1.40 there exist a u ∈ Bs+α log
p,r and a subsequence

(
uψ(n)

)
n∈N which converges to u in

S ′. Obviously, also
(
uψ(n)

)
n∈N is a Cauchy sequence: for any ε > 0, there exists an index nε such

that, for all m ≥ n ≥ nε, we have∥∥uψ(m) − uψ(n)

∥∥
Bs+α log
p,r

< ε .

In particular, we infer that
(
uψ(m) − uψ(n)

)
m

is bounded in Bs+α log
p,r . Then, thanks to the Fatou

property (note that this time it's not necessary to pass to another extraction: the whole
(
uψ(m)

)
m

converges to u in S ′), we have∥∥uψ(n) − u
∥∥
Bs+α log
p,r

≤ C lim inf
m→+∞

∥∥uψ(n) − uψ(m)

∥∥
Bs+α log
p,r

≤ C ε ,

i.e.
(
uψ(n)

)
n∈N converges to u also in Bs+α log

p,r .

Now, the whole (un)n must have limit u in Bs+α log
p,r , because it is a Cauchy sequence in this

space. The theorem is proved.

Let us quote a density result, analogous to proposition 1.9.

Proposition 1.42. Fix p and r �nite.
Then the space of test functions D(RN ) is densely embedded in Bs+α log

p,r (RN ).

Proof. Let us �x a ε > 0. By lemma 1.39, there exists a k > 0 such that

‖u − Sku‖Bs+α log
p,r

< ε .

Now, let us take a cut-o� function θ ∈ D supported in the ball B(0, 2), such that 0 ≤ θ ≤ 1 and
equal to 1 on the ball B(0, 1). For all R > 0, we de�ne θR(·) := θ(·/R).

If we set h = max{0, [s] + 2} (where [s] denotes the biggest integer smaller than or equal to
s), for all j ≥ 1 Bernstein's inequalities give us

2js (1 + j)α ‖∆j (θRSku − Sku)‖Lp ≤ C 2−j (1 + j)α
∥∥∥Dh (θRSku − Sku)

∥∥∥
Lp

.

Therefore, taking the `r norm we gather

‖θRSku − Sku‖Bs+α log
p,r

≤ C
(∥∥∥Dh (θRSku − Sku)

∥∥∥
Lp

+ ‖θRSku − Sku‖Lp
)
.

Now, as p < +∞, Leibniz rule and Lebesgue's dominated convergence theorem ensure us that

‖θRSku − Sku‖Bs+α log
p,r

< ε

for some R > 0 big enough. As Sku ∈ C∞, this concludes the proof.
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1.4.2 Duality, multipliers, interpolation

Let us now investigate duality properties of logarithmic Besov spaces. Also in this case, it's not
hard to generalize the corresponding classical result.

Proposition 1.43. For all s, α ∈ R and (p, r) ∈ [1,+∞]2, the map

Bs+α log
p,r × B−s−α log

p′,r′ −→ R
(u, φ) 7−→ 〈u, φ〉 :=

∑
|j−k|≤1

(∆ju,∆kφ)L2

de�nes a continuous bilinear functional on the space Bs+α log
p,r ×B−s−α log

p′,r′ .

Moreover, let us denote with S−s,−αp′,r′ the set of φ ∈ S such that ‖φ‖
B−s−α log

p′,r′
≤ 1. Then, for all

u ∈ S ′, one has
‖u‖Bs+αp,r

≤ C sup
φ∈S−s,−α

p′,r′

〈u, φ〉 .

Proof. For |j − k| ≤ 1, we have

|〈∆ju,∆kφ〉| ≤ ‖∆ju‖Lp ‖∆kφ‖Lp′ 2(j−k)s (1 + j)α

(1 + k)α
ωk,j ,

where we have de�ned

ωk,j := 2(k−j)s (1 + k)α

(1 + j)α
.

As done in the end of the proof to lemma 1.37, it's easy to see that ωk,j can be bounded in terms
of the di�erence |k − j| only; hence |ωk,j | ≤ C. Therefore, by Hölder inequality we get

|〈u, φ〉| ≤ C ‖u‖
Bs+α log
p,r

‖φ‖
B−s−α log

p′,r′
.

Now, let us call `r
′
n the set of sequences (bj)j such that bj = 0 for all j > n and

∥∥∥(bj)j

∥∥∥
`r′
≤ 1.

Then we have

‖u‖
Bs+α log
p,r

= sup
n∈N

∥∥∥(I[0,n](j) 2js (1 + j)α ‖∆ju‖Lp
)
j∈N

∥∥∥
`r

= sup
n∈N

sup
(bj)j∈`r

′
n

∑
j≤n

bj 2js (1 + j)α ‖∆ju‖Lp .

By duality for Lebesgue spaces and density of S ⊂ Lp
′
, we know that for any �xed ε > 0, for all

j ≥ 0 there exists a function φj ∈ S, ‖φj‖Lp′ ≤ 1, for which

‖∆ju‖Lp ≤
∫
RN

∆ju(x)φj(x) dx + ε
2−js (1 + j)−α

(1 + |bj |) (1 + j2)
.

We have to notice that∫
RN

∆ju(x)φj(x) dx = F (∆ju φj)|ξ=0 =

∫
RNη

ϕ(2−jη) û(η) φ̂j(η) dη ;

so it's enough to consider the frequencies of φj �caught� by operator ∆j :∫
RN

∆ju(x)φj(x) dx =

∫
RN

∆ju(x) (∆j−1 + ∆j + ∆j+1)φj(x) dx .
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Let us now de�ne
Φn :=

∑
j≤n

bj 2js (1 + j)α ∆jφj .

It's quite obvious that Φn ∈ S−s,−αp′,r′ for all n, and (by lemma 1.37) that ‖Φn‖B−s−α log

p′,r′
≤ C

independentely of n. Then we have∥∥∥(I[0,n](j) 2js (1 + j)α ‖∆ju‖Lp
)
j∈N

∥∥∥
`r
≤ 〈u,Φn〉 + ε

for all n ∈ N, from which we infer the result.

Now we want to consider the action of Fourier multipliers on non-homogeneous logarithmic
Besov spaces. First of all, we have to give a more general de�nition of symbols.

De�nition 1.44. A smooth function f : RN −→ R is said to be a Sm+δ log-multiplier if, for all
multi-index ν ∈ NN , there exists a constant Cν such that

∀ ξ ∈ RN , |∂νf(ξ)| ≤ Cν (1 + |ξ|)m−|ν| logδ (1 + |ξ|) .

Proposition 1.45. Let m, δ ∈ R and f be a Sm+δ log-multiplier.
Then for all real numbers s and α and all (p, r) ∈ [1,+∞]2, the operator f(D) maps Bs+α log

p,r

into B(s−m)+(α−δ) log
p,r continuously.

Proof. According to lemma 1.37, it's enough to prove that, for all j ≥ 0,

2(s−m)j (1 + j)α−δ ‖f(D) ∆ju‖Lp ≤ C 2js (1 + j)α ‖∆ju‖Lp .

Let us consider �rst low frequencies. Let us take a θ ∈ D(RN ) such that θ ≡ 1 in a neighbor-
hood of suppχ: passing to the phase space, it's easy to see that f(D) ∆0u = (θf)(D)∆0u. As
F−1(θf) ∈ L1, Young's inequality for convolutions gives us the desired estimate for j = 0.

Now, let us focus on high frequencies: for all j ≥ 1 we can write

f(D) ∆ju = Fj ∗ u , with Fj = F−1
(
f(ξ)ϕ(2−jξ)

)
.

For all M ∈ N, we have:

(1 + |x|2)M Fj(x) =
1

(2π)N

∫
RNξ

eix·ξ (Id −∆ξ)
M f(ξ)ϕ(2−jξ) dξ

=
∑

|β|+|γ|≤2M

Cβ,γ
(2π)N

2−j|γ|
∫
RNξ

eix·ξ ∂βf(ξ) ∂γϕ(2−jξ) dξ .

In fact, the integration is not performed on the whole RN , but only on the support of ϕ(2−j ·),
where we have ∣∣∣∂βf(ξ) ∂γϕ(2−jξ)

∣∣∣ ≤ Cβ,γ (1 + |ξ|)m−|β| logδ(1 + |ξ|)
∣∣
|ξ|∼2j

≤ Cβ,γ 2j(m−|β|) (1 + j)δ .

Therefore, one gathers
(1 + |x|2)M |Fj(x)| ≤ CM 2jm (1 + j)δ ,

which implies that, for M big enough, Fj ∈ L1(RNx ) and ‖Fj‖L1 ≤ C 2mj (1 + j)δ. Young's
inequality for convolution leads to the thesis.

Let us now state two simple interpolation inequalities.
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Theorem 1.46. Take real numbers s1 ≤ s ≤ s2 and α1 ≤ α ≤ α2, and (p, r) ∈ [1,+∞]2. Let
θ ∈ ]0, 1[ be such that

s = θs1 + (1− θ)s2 and α = θα1 + (1− θ)α2 .

Then there exists a constant C, depending only on s1, s2 and θ, such that the following
inequalities hold:

‖u‖
Bs+α log
p,r

≤ ‖u‖θ
B
s1+α1 log
p,r

‖u‖1−θ
B
s2+α2 log
p,r

‖u‖
Bs+α log
p,1

≤ C ‖u‖θ
B
s1+α1 log
p,∞

‖u‖1−θ
B
s2+α2 log
p,∞

.

Proof. The former estimate immediately follows from Hölder inequality.
Let us focus on the proof of the latter one. Keeping in mind the de�nition of Besov norms,

for all j ≥ 0 we can write:

2js (1 + j)α ‖∆ju‖Lp ≤

{
2j(1−θ)(s2−s1) (1 + j)(1−θ)(α2−α1) ‖u‖

B
s1+α1 log
p,∞

2−jθ(s2−s1) (1 + j)−θ(α2−α1) ‖u‖
B
s2+α2 log
p,∞

.

Therefore, for all k ∈ N we get

‖u‖
Bs+α log
p,1

≤ ‖u‖
B
s1+α1 log
p,∞

∑
j≤k

2j(1−θ)(s2−s1) (1 + j)(1−θ)(α2−α1) +(1.7)

+ ‖u‖
B
s2+α2 log
p,∞

∑
j>k

2−jθ(s2−s1) (1 + j)−θ(α2−α1) .

Obviously, we have

∑
j>k

2−jθ(s2−s1) (1 + j)−θ(α2−α1) ≤
∑
j>k

2−jθ(s2−s1) =
2−kθ(s2−s1)

1− 2−θ(s2−s1)
,

while for all ε > 0 we can write

∑
j≤k

2j(1−θ)(s2−s1) (1 + j)(1−θ)(α2−α1) ≤
∑
j≤k

2j(1−θ)(s2−s1+ε) =
2k(1−θ)(s2−s1+ε)

2(1−θ)(s2−s1+ε) − 1
.

So, (1.7) becomes

‖u‖
Bs+α log
p,1

≤ ‖u‖
B
s1+α1 log
p,∞

2k(1−θ)(s2−s1+ε)

2(1−θ)(s2−s1+ε) − 1
+ ‖u‖

B
s2+α2 log
p,∞

2−kθ(s2−s1)

1− 2−θ(s2−s1)
.

Now, taking k ≥ 1 large enough such that

2(k−1)(s2−s1) ≤
‖u‖

B
s2+α2 log
p,∞

‖u‖
B
s1+α1 log
p,∞

≤ 2k(s2−s1)

and ε = k−2, for instance, completes the proof.

Remark 1.47. Let us remark that a wider set of results of this kind can be easily proved,
slightly modifying the previous argument. For instance, one may allow the interpolation parameter
pertaining to α to be di�erent from that pertaining to s.
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1.4.3 Paraproducts

Let us end this section generalizing theorem 1.24 to logarithmic Besov spaces framework. First
of all, let us state a characterization of logarithmic Besov spaces in terms of the low frequencies
cut-o� operators.

Proposition 1.48. Let s < 0 and α ∈ R, or s = 0 and α < −1. Let also (p, r) ∈ [1,+∞]2.
Finally, let u ∈ S ′ given.

Then u ∈ Bs+α log
p,r if and only if the sequence

(
2js (1 + j)α ‖Sju‖Lp

)
j∈N ∈ `r. Moreover,

C ‖u‖Bsp,r ≤
∥∥∥(2js (1 + j)α ‖Sju‖Lp

)
j∈N

∥∥∥
`r
≤ C̃ ‖u‖Bsp,r

for some constants C, C̃ depending only on s and α.

Proof. From the de�nitions, we have ∆j = Sj+1 − Sj . So we can write:

2js (1 + j)α ‖∆ju‖Lp ≤ 2js (1 + j)α
(
‖Sj+1u‖Lp + ‖Sju‖Lp

)
≤ 2(j+1)s (2 + j)α ‖Sj+1u‖Lp

(1 + j)α

(2 + j)α
2−s + 2js (1 + j)α ‖Sju‖Lp .

By Minowski's inequality, we get the �rst part of the thesis.
On the other hand, using the de�nition of the operator Sj , we have

2js (1 + j)α ‖Sju‖Lp ≤ 2js (1 + j)α
∑
k≤j−1

‖∆ku‖Lp

≤
∑
k≤j−1

2(j−k)s (1 + j)α

(1 + k)α
2ks (1 + k)α ‖∆ku‖Lp

≤ C (θ ∗ δ)j ,

where we have argued as in proving lemma 1.37, setting

θh := 2hs (1 + h)α and δk := 2ks (1 + k)α ‖∆ku‖Lp .

By the made hypothesis on s and α, the sequence (θh)h ∈ `1; hence, Young's inequality for
convolution allows us to conclude.

Let us now analyse the action of paraproduct operator.

Theorem 1.49. Let s and α ∈ R; let also t > 0 and β ∈ R, or t = 0 and β < −1. Finally, let
(p, r, r1, r2) belong to [1,+∞]4.

The paraproduct operator T maps L∞ × Bs+α log
p,r in Bs+α log

p,r , and B−t+β log
∞,r2 × Bs+α log

p,r1 in

B
(s−t)+(α+β) log
p,q , with 1/q := min {1 , 1/r1 + 1/r2}. Moreover, the following estimates hold:

‖Tuv‖Bs+α log
p,r

≤ C ‖u‖L∞ ‖∇v‖B(s−1)+α log
p,r

‖Tuv‖B(s−t)+(α+β) log
p,q

≤ C ‖u‖
B−t+β log
∞,r2

‖∇v‖
B

(s−1)+α log
p,r1

.

Proof. As already remarked before theorem 1.24, the generic term Sj−1u∆jv is spectrally sup-
ported in the ring 2j C̃. Hence, thanks to lemma 1.37, it's enough to estimate its Lp norm. Then,
applying proposition 1.48 gives us the thesis.

Before going on, let us prove the analogous of lemma 1.26.
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Lemma 1.50. Let B be a ball of RN , the couple (p, r) belong to [1,+∞]2. Let s > 0 and α ∈ R,
or s = 0 and α < −1. Let (uj)j∈N be a sequence of smooth functions such that

supp ûj ⊂ 2jB and
(
2js (1 + j)α ‖uj‖Lp

)
j∈N ∈ `r .

Then the function u :=
∑

j∈N uj belongs to the space Bs+α log
p,r . Moreover, there exists a

constant C, depending only on s and α, such that

‖u‖
Bs+α log
p,r

≤ C
∥∥∥(2js (1 + j)α ‖uj‖Lp

)
j∈N

∥∥∥
`r
.

Proof. We have to estimate ‖∆ku‖Lp ≤
∑

j ‖∆kuj‖Lp .
From our hypothesis on the support of each ûj , we infer that there exists an index n0 ∈ N

such that ∆kuj ≡ 0 for all k > j + n0. Therefore, arguing as already done in previous proofs,

2ks (1 + k)α ‖∆ku‖Lp ≤
∑

j≥k−n0

2(k−j)s (1 + k)α

(1 + j)α
(1 + j)α ‖uj‖Lp

≤
∑

j≥k−n0

2(k−j)s (1 + |k − j|)α (1 + j)α ‖uj‖Lp .

So we can conclude thanks to Young's inequality for convolutions (recall hypothesis over the
indices s and α).

Now we are ready to prove continuity properties of the remainder operator.

Theorem 1.51. Let (s, t, α, β) ∈ R4 and (p1, p2, r1, r2) ∈ [1,+∞]4 be such that

1

p
:=

1

p1
+

1

p2
≤ 1 and

1

r
:=

1

r1
+

1

r2
≤ 1 .

(i) If s+ t > 0, or s+ t = 0 and α+ β < −1, for any (u, v) ∈ Bs+α log
p1,r1 ×Bt+β log

p2,r2 we have

‖R(u, v)‖
B

(s+t)+(α+β) log
p,r

≤ C ‖u‖
Bs+α log
p1,r1

‖v‖
Bt+β log
p2,r2

.

(ii) If s+ t = 0, α+ β ≥ −1 and r = 1, for any (u, v) ∈ Bs+α log
p1,r1 ×Bt+β log

p2,r2 we have

‖R(u, v)‖
B

(α+β) log
p,∞

≤ C ‖u‖
Bs+α log
p1,r1

‖v‖
Bt+β log
p2,r2

.

Proof. (i) We can write R(u, v) =
∑

j Rj , where we have set

Rj :=
∑
|h−j|≤1

∆ju∆hv .

As already pointed out before theorem 1.24, each Rj is spectrally localized on a ball of
radius proportional to 2j . Hence, from lemma 1.50 and Hölder's inequality we immediately
infer �rst estimate.

(ii) In the second case, lemma 1.50 doesn't apply; nevertheless, we can control the norm of the
remainder term if the index of summation is +∞. As a matter of facts, we use the following
inequality, which holds true for all k ≥ 0:

(1 + k)α+β ‖∆kR(u, v)‖Lp ≤ C
∑

j≥k−n0

(1 + j)α ‖∆ju‖Lp1 (1 + j)β ‖∆jv‖Lp2 ,

where, for simplicity, instead of the full Rj , we have considered only the term ∆ju∆jv, the
other ones being similar to it.
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1.5 Paradi�erential calculus with parameters

Paraproduct operator is the simplest example of paradi�erential operator. The aim of this section
is to introduce a more general paradi�erential calculus (see e.g. [51], chapters 5 and 6). For
convenience, we allow it to depend on some parameter γ ≥ 1: this apparently harmless fact will
come into play in a crucial way in chapter 3.

Here we will give only the main de�nitions and the basic properties: we refer to paper [50]
and, in particular, to paper [52], appendix B, for a complete and detailed presentation of this
topic. Moreover, in chapter 3 we will analyse in detail the action of paradi�erential operators
associated to low regularity symbols on the class of logarithmic Sobolev spaces.

1.5.1 New classes of symbols

Fix a parameter γ ≥ 1 and take a cut-o� function ψ ∈ C∞(RN ×RN ) which veri�es the following
properties:

• there exist 0 < ε1 < ε2 < 1 such that

ψ(η, ξ) =

{
1 for |η| ≤ ε1 (γ + |ξ|)
0 for |η| ≥ ε2 (γ + |ξ|) ;

• for all (β, α) ∈ NN × NN , there exists a constant Cβ,α such that∣∣∣∂βη ∂αξ ψ(η, ξ)
∣∣∣ ≤ Cβ,α (γ + |ξ|)−|α|−|β| .

We will call such a function an �admissible cut-o��.
For example, if γ = 1, one can take

ψ(η, ξ) ≡ ψ0(η, ξ) :=
+∞∑
k=1

χk−1(η)ϕk(ξ) ,

where χ and ϕ are the localization (in phase space) functions associated to a Littlewood-Paley
decomposition: see e.g. ex. 5.1.5 of [51]. Similarly, if γ > 1 it is possible to �nd a suitable integer
µ ≥ 0 such that

(1.8) ψµ(η, ξ) := χµ(η)χµ(ξ) +
+∞∑

k=µ+1

χk−1(η)ϕk(ξ)

is an admissible cut-o� function.

Remark 1.52. Let us immediately point out that we can also de�ne a dyadic decomposition
depending on the parameter γ. First of all, we set

Λ(ξ, γ) :=
(
γ2 + |ξ|2

)1/2
.

Then, taken the usual smooth function χ associated to a Littlewood-Paley decomposition, we
de�ne

χν(ξ, γ) := χ
(
2−νΛ(ξ, γ)

)
, Sγν := χν(Dx, γ) , ∆γ

ν := Sγν+1 − S
γ
ν .

The usual properties of the support of the localization functions still hold, and for all �xed γ ≥ 1
and all tempered distributions u, we have

u =

+∞∑
ν=0

∆γ
ν u in S ′ .
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Moreover, we can introduce logarithmic Besov spaces using the new localization operators Sγν , ∆γ
ν .

For the details see section B.1 of [52]. What is important to retain is that, once we �x γ ≥ 1, the
previous construction is equivalent to the classical one, and one can still recover previous results.
For instance, if we de�ne the space Hs+α log

γ as the set of tempered distributions for which

(1.9) ‖u‖2
Hs+α log
γ

:=

∫
RNξ

Λ2s(ξ, γ) log2α(1 + γ + |ξ|) |û(ξ)|2 dξ < +∞ ,

for every �xed γ ≥ 1 it coincides with Hs+α log, the respective norms are equivalent and the
characterization given by proposition 1.35 still holds true.

Let us come back to the cut-o� function ψ introduced above. Thanks to it, we can de�ne more
general paradi�erential operators, associated to low regularity functions: let us explain how.

De�ne the function Gψ as the inverse Fourier transform of ψ with respect to the variable η:

Gψ(x, ξ) :=
(
F−1
η ψ

)
(x, ξ) .

The following properties hold true (see lemma 5.1.7 of [51] for the proof).

Lemma 1.53. For all (β, α) ∈ NN × NN ,∥∥∥∂βx∂αξ Gψ(·, ξ)
∥∥∥
L1(RNx )

≤ Cβ,α (γ + |ξ|)−|α|+|β| ,(1.10)∥∥∥∥| · | log

(
2 +

1

| · |

)
∂βx∂

α
ξ G

ψ(·, ξ)
∥∥∥∥
L1(RNx )

≤ Cβ,α (γ + |ξ|)−|α|+|β|−1 log(1 + γ + |ξ|).(1.11)

Thanks to G, we can smooth out a symbol a in the x variable and then de�ne the parad-
i�erential operator associated to a as the classical pseudodi�erential operator associated to this
smooth function.

First of all, let us de�ne the new calss of symbols we are dealing with, which actually includes
the space of Fourier multipliers Sm+δ log introduced in de�nition 1.44. In what follows, we take
a subspace X of L∞. This is convenient for our analysis, but de�nitions and some other basic
properties actually make sense also for a general X ⊂ S ′.

De�nition 1.54. Let X ⊂ L∞ be a Banach space, and m and δ be two given real numbers.

(i) We denote with Γm+δ log(X ) the space of functions a(x, ξ, γ) which are locally bounded over
RN × RN × [1,+∞[ and of class C∞ with respect to ξ, and which satisfy the following
property: for all α ∈ NN , there exists a Cα > 0 such that, for all (ξ, γ),

(1.12)
∥∥∂αξ a(·, ξ, γ)

∥∥
X ≤ Cα (γ + |ξ|)m−|α| logδ(1 + γ + |ξ|) .

In a quite natural way, we can equip Γm+δ log(X ) with the seminorms

(1.13) ‖a‖(m,δ,k) := sup
|α|≤k

sup
RNξ ×[1,+∞[

(
(γ + |ξ|)−m+|α| log−δ(1 + γ + |ξ|)

∥∥∂αξ a(·, ξ, γ)
∥∥
X

)
.

(ii) Σm+δ log(X ) is the space of symbols σ ∈ Γm+δ log(X ) for which there exists a 0 < ε < 1
such that, for all (ξ, γ), the spectrum of the function x 7→ σ(x, ξ, γ) is contained in the ball
{|η| ≤ ε (γ + |ξ|)}.

By spectral localization and Paley-Wiener theorem, a symbol σ ∈ Σm+δ log(X ) is smooth also
in the x variable. So, we can de�ne the subspaces Σm+δ log

µ+% log (X ) (for µ and % ∈ R) of symbols σ
which verify (1.12) and also, for all β > 0,

(1.14)
∥∥∥∂βx∂αξ σ(·, ξ, γ)

∥∥∥
X
≤ Cβ,α (γ + |ξ|)m−|α|+|β|+µ logδ+%(1 + γ + |ξ|) .
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Now, given a symbol a ∈ Γm+δ log(X ), we can de�ne

(1.15) σψa (x, ξ, γ) := (ψ(Dx, ξ) a ) (x, ξ, γ) =
(
Gψ(·, ξ) ∗x a(·, ξ, γ)

)
(x) .

Proposition 1.55. (i) For all m, δ ∈ R, the smoothing operator

R : a(x, ξ, γ) 7→ σψa (x, ξ, γ)

is bounded from Γm+δ log(X ) to Σm+δ log(X ).

(ii) If a is also di�erentiable with respect to x, with ∇xa ∈ X , then a − σψa ∈ Γ(m−1)+δ log(X ).

(iii) In particular, if ψ1 and ψ2 are two admissible cut-o� functions, then the di�erence of the
two smoothed symbols, σψ1

a − σψ2
a , belongs to the space Σ(m−1)+δ log(X ). Moreover, for all

k ∈ N one has ∥∥∥σψ1
a − σψ2

a

∥∥∥
(m−1,δ,k)

≤ Ck ‖∇xa‖(m,δ,k) .

Remark 1.56. As we will see in a while, part (ii) of previous proposition says that the di�erence
between the original symbol and the classical one associated to it is more regular. Part (iii),
instead, infers that the whole construction is independent of the cut-o� function �xed at the
beginning. Nevertheless, we have to require at least X ⊂W 1,∞.
Repeating the same steps of the proof (see e.g. proposition B.7 of [52]), it's easy to see that
it's enough to consider symbols a which are L∞(RNx ) and admitting a (even rough) modulus of
continuity. Also under this assumption there is a gain of regularity (obviously no more of order
1, as in proposition 1.55, but logarithmic, for instance), which will allows us to recover previous
properties. This will be always our case in chapter 3.

1.5.2 General paradi�erential operators

As already mentioned, we can now de�ne the paradi�erential operator associated to a using the
classical symbol corresponding to it:

(1.16) Tψa u(x) :=
(
σψa ( · , Dx, γ)u

)
(x) =

1

(2π)N

∫
RNξ

eix·ξ σψa (x, ξ, γ) û(ξ) dξ .

For instance, if a = a(x) ∈ L∞ and if we take the cut-o� function ψ0, then Tψa is actually
the usual paraproduct operator. If we take ψµ as de�ned in (1.8), instead, we get a paraproduct
operator which starts from high enough frequencies, which will be indicated with Tµa (see section
3.3 of [23]).

For convenience, we �x the regularity with respect to x: from now on, we will always work
with X = L∞. Therefore, we will miss it out in the notation.

Sometimes, additional regularity in x will be required. Following the presentation of [52], we
will suppose a(x, ξ, γ) to be W 1,∞ with respect to the �rst variable. However, we always have
to keep in mind remark 1.56. We refer to chapter 3 for the analysis of some particular classes of
symbols.

Let us now study the action of general paradi�erential operators on the class of logarithmic
Besov spaces. First of all, a de�nition is in order.

De�nition 1.57. We say that an operator P is of order m + δ log if, for every (s, α) ∈ R2 and

every (p, r) ∈ [1,+∞]2, P maps Bs+α log
p,r into B(s−m)+(α−δ) log

p,r continuously.

The next fundamental result generalizes proposition B.9 of [52], which is stated for the Sobolev
class. For simplicity, we temporarily drop out the dependence of symbols on γ in the notations.
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Lemma 1.58. For all σ ∈ Σm+δ log, the corresponding operator σ( · , Dx) is of order m+ δ log.

Proof. Let us take a u ∈ Bs+α log
p,r . We can write

σ( · , Dx)u =
∑
j≥0

σ( · , Dx) ∆ju ,

where each item σ( · , Dx)∆ju is supported in a dyadic ring proportional to 2j . As a matter of
fact, on the phase space we have

Fx (σ( · , Dx)∆ju) (ξ) =
1

(2π)N

∫
RNζ

(Fxσ) (ξ − ζ, ζ) ϕ(2−jζ) û(ζ) dζ .

On the one hand, localization properties of Fxσ implies (1− ε)|ζ| − εγ ≤ |ξ| ≤ (1 + ε)|ζ|+ εγ. On
the other hand, we have |ζ| ∼ 2j , and this proves our claim.

Therefore, thanks to lemma 1.37, it's enough to prove that there exists a constant C > 0 for
which, for all j ≥ 0,

2j(s−m) (1 + j)α−δ ‖σ( · , Dx)∆ju‖Lp ≤ C 2js (1 + j)α ‖∆ju‖Lp .

For all j ≥ 0 we can write:

σ(x,Dx)∆ju(x) =

∫
RNy

Kj(x, x− y)u(y) dy ,

where we have de�ned the kernel

Kj(x, z) :=
1

(2π)N

∫
RNξ

eiz·ξ σ(x, ξ)ϕ(2−jξ) dξ = F−1
ξ

(
σ(x, · )ϕ(2−j · )

)
(z)

Now, arguing as in proposition 1.45 completes the proof.

Lemma 1.58 immediately implies the following theorem, which describes the action of the new
class of paradi�erential operators.

Theorem 1.59. Given a symbol a ∈ Γm+δ log, for any admissible cut-o� function ψ, the operator
Tψa is of order m+ δ log.

As already remarked, the construction does not depends on the cut-o� function ψ used at the
beginning. Next result says that main features of a paradi�erential operator depend only on its
symbol, if it is regular enough.

Proposition 1.60. If ψ1 and ψ2 are two admissible cut-o� functions and a ∈ Γm+δ log(W 1,∞),
then the di�erence Tψ1

a − Tψ2
a is of order (m− 1) + δ log.

Therefore, changing the cut-o� function ψ doesn't change the paradi�erential operator asso-
ciated to a, up to lower order terms. So, in what follows we will miss out the dependence of σa
and Ta on ψ.

1.5.3 Symbolic calculus

Symbolic calculus still holds true also for general paradi�erential operators. For convenience, we
restrict ourselves to logarithmic Sobolev spaces framework (i.e. Hs+α log ≡ Bs+α log

2,2 ).
First of all, let us quote two fundamental results (as usual, see e.g. [52], appendix B, for their

proofs) about composition and adjoint operators.
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Theorem 1.61. Let a ∈ Γm+δ log(W 1,∞) and b ∈ Γµ+% log(W 1,∞).
Then a b ∈ Γ(m+µ)+(δ+%) log(W 1,∞). Moreover, the di�erence Ta ◦ Tb − Tab is an operator of

order (m+ µ− 1) + (δ + %) log.
If b is independent of x, then Ta ◦ Tb ≡ Tab.

Theorem 1.62. Let a ∈ Γm+δ log(W 1,∞). Let us denote with a∗ the complex conjugate of the
symbol a, and with (Ta)

∗ the adjoint operator (over L2) of Ta.
Then the di�erence (Ta)

∗ − Ta∗ is an operator of order (m− 1) + δ log.

The two previous theorems obviously extend to matrix valued symbols and operators.
Let us now state an estimate, which immediately follows from theorem 1.62 and from theorem

B.19 of [52]. It will be of great importance in chapter 3.

Theorem 1.63. Let a ∈ Γ2m+2δ log(W 1,∞) and suppose there exists a constant λ > 0 such that,
for all (x, ξ), one has

Re a(x, ξ, γ) ≥ λ (γ + |ξ|)2m+2δ log .

Then there exist a constant C > 0 and an index k ∈ N such that, for all u ∈ Hm+δ log
γ , the

following estimate holds true:

(1.17)
λ

2
‖u‖2

Hm+δ log
γ

≤ Re (Tau, u)L2 + C ‖∇xa‖2(m,k) ‖u‖
2

H
(m−1)+δ log
γ

.

The constant C is uniformly bounded for symbols varying in a bounded set.

Here, ( · , · )L2 denotes the scalar product in L2, which extends by duality to the coupling
Hs+α log ×H−s−α log.
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Chapter 2

Non-Lipschitz coe�cients: the

one-dimensional case

In this chapter we obtain an energy estimate for a complete strictly hyperbolic operator over
Rt × Rx, whose second order coe�cient satis�es a log-Zygmund continuity condition in the t
variable, uniformly with respect to x, and a log-Lipschitz continuity condition in x, uniformly
with respect to t. Moreover, we will suppose the coe�cients of the �rst order part to be Hölder
continuous and the coe�cient of the 0-th order term to be only bounded.

Such a energy estimate allows to get the well-posedness of the Cauchy problem in the space
H∞ in the case the coe�cients of the operator are smooth enough with respect to x.

In the next chapter, we will tackle the same problem, but in the more general case of several
space variables. The reason why we decided to separate these two instances is that they require
two really di�erent approaches.

As explained below, in the one-dimensional case the Tarama's energy (introduced in [56] for
coe�cients depending only on time) admits a straightforward generalization. Combining it with
the main ideas of paper [22] by Colombini and Lerner is enough to get energy estimates (see also
paper [19], which deal with homogeneous operators).

Dealing with x ∈ RN , N ≥ 2, instead, requires to pass from multiplication by functions to
action by paradi�erential operators associated to particular classes of symbols. So, the involved
techniques are quite di�erent to the preivous ones, even if the leading ideas are the same. Obvi-
ously, the same machinery works also for N = 1. Nevertheless, we decided to present these two
cases separately: we think that, being simpler, the one-dimensional instance is a good introduction
to the problem, and that in this way technical di�culties are better pointed out.

2.1 Introduction

Let us consider the second order operator

(2.1) P = ∂2
t −

N∑
i,j=1

∂xi(aij(t)∂xj )

and suppose that P is strictly hyperbolic with bounded coe�cients, i.e. there exist two positive
real numbers λ0 ≤ Λ0 such that

(2.2) λ0 |ξ|2 ≤
N∑

i,j=1

aij(t) ξiξj ≤ Λ0 |ξ|2

for all t ∈ R and all ξ ∈ RN .

29
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It is well-known (see e.g. [42] and [58]) that, if the coe�cients aij are Lipschitz-continuous,
then the following energy estimate holds for the operator P : for all s ∈ R, there exists a constant
Cs > 0 such that

sup
t∈[0,T ]

(‖u(t, ·)‖Hs+1 + ‖∂tu(t, ·)‖Hs) ≤(2.3)

≤ Cs

(
‖u(0, ·)‖Hs+1 + ‖∂tu(0, ·)‖Hs +

∫ T

0
‖Pu(t, ·)‖Hs dt

)
for every function u ∈ C2([0, T ];H∞(RN )).
In particular, the previous energy estimate implies that the Cauchy problem for (2.1) is well-posed
in the space H∞, with no loss of derivatives.

On the contrary, if the coe�cients aij are not Lipschitz-continuous, then (2.3) is no more
true in general, as it is shown by an example given by Colombini, De Giorgi and Spagnolo in
paper [18]. Nevertheless, under suitable weaker regularity assumptions on the coe�cients, one
can recover the H∞-well-posedness again, but this time from an energy estimate which involves
a loss of derivatives.

A �rst result of this type was obtained in the quoted paper [18]. The authors supposed that
a constant C > 0 exists such that, for all ε ∈]0, T ],

(2.4)
∫ T−ε

0
|aij(t+ ε)− aij(t)| dt ≤ C ε log

(
1 +

1

ε

)
.

The Fourier trasform with respect to x of the equation, together with the new �approximate
energy technique� (i.e. the approximation of the coe�cients is di�erent in di�erent zones of the
phase space), enabled them to obtain the following energy estimate: there exist strictly positive
constants K (independent of s) and Cs such that

sup
t∈[0,T ]

(‖u(t, ·)‖Hs+1−K + ‖∂tu(t, ·)‖Hs−K ) ≤(2.5)

≤ Cs

(
‖u(0, ·)‖Hs+1 + ‖∂tu(0, ·)‖Hs +

∫ T

0
‖Pu(t, ·)‖Hs dt

)
for all u ∈ C2([0, T ];H∞(Rn)).

Considering again the case in which the coe�cients of P depend only on the time variable, in
the recent paper [56] (see also [62]) Tarama weakened the regularity hypothesis further, supposing
a log-Zygmund type integral condition, i.e. that there exists a constant C > 0 such that, for all
ε ∈]0, T/2],

(2.6)
∫ T−ε

ε
|aij(t+ ε) + aij(t− ε)− 2aij(t)| dt ≤ C ε log

(
1 +

1

ε

)
.

Nevertheless, he was still able to prove the well-posedness to the Cauchy problem for (2.1) in
the space H∞: the improvement with respect to [18] was obtained introducing a new type of
approximate energy, which involves the second derivatives of the approximating coe�cients.

Much more di�culties arise if the operator P has coe�cients depending both on the time
variable t and on the space variables x. This case was considered by Colombini and Lerner in
paper [22]. They supposed a pointwise isotropic log-Lipschitz regularity condition, i.e. that there
exists C > 0 such that, for all ε ∈]0, T ],

(2.7) sup
y,z∈[0,T ]×RN

|z|=ε

|aij(y + z)− aij(y)| ≤ C ε log

(
1 +

1

ε

)
.
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Because the coe�cients of the operator P depend also on the space variables, here the Littlewood-
Paley dyadic decomposition with respect to x takes the place of the Fourier trasform. Moreover
it turns out to be, together with the approximate energy technique, the key tool to obtain the
energy estimate: for all �xed θ ∈]0, 1/4], there exist β, C > 0 and T ∗ ∈ ]0, T ] such that

sup
t∈[0,T ∗]

(‖u(t, ·)‖H−θ+1−βt + ‖∂tu(t, ·)‖H−θ−βt) ≤(2.8)

≤ C

(
‖u(0, ·)‖H−θ+1 + ‖∂tu(0, ·)‖H−θ +

∫ T

0
‖Pu(t, ·)‖H−θ−βt dt

)
for all u ∈ C2([0, T ∗];H∞(RN )).
In this case, the loss of derivatives gets worse with the increasing of time.

In the recent paper [19], Colombini and Del Santo considered the case of one space variable
(i.e. N = 1) and studied again the case of the coe�cient a depending both on t and x, but under
a special regularity condition: they mixed condition (2.6) together with (2.7). In particular, they
supposed a to be log-Zygmund continuous with respect to t, uniformly with respect to x, and
log-Lipschitz continuous with respect to x, uniformly with respect to t. The dyadic decomposition
technique and the Tarama's approximate energy enabled them to obtain an estimate similar to
(2.8).

The reason why they focused on the special instance N = 1 is that the case of several space
variables needs some di�erent and new ideas in the de�nition of the microlocal energy. In partic-
ular, to handle the problem one has to appeal to paradi�erential calculus with parameters. We
refer to the next chapter for the complete treatement of the more general case.

In the present chapter, instead, we are considering the case of the non-homogeneous operator

(2.9) Lu = ∂2
t u − ∂x(a(t, x)∂xu) + b0(t, x)∂tu + b1(t, x)∂xu + c(t, x)u

in dimension N = 1. Here we assume the coe�cient a to satisfy the same regularity assumptions
as in [19] (see conditions (2.10) to (2.12) below). We will also suppose b0, b1 ∈ L∞(Rt; Cω(Rx))
for some ω > 0, where we have set Cω to be the space of ω-Hölder continuous functions, and c to
be bounded on the whole Rt × Rx. We will apply the Littlewood-Paley decomposition and the
Tarama's approximate energy again to obtain an energy estimate with a loss of derivatives that
depends on t, as in (2.8). As one can expect, the presence of lower order terms doesn't change
the essence of the result.

One can �nd the estimate of the second order coe�cient a in paper [19], however, for reader's
convenience, we will give here all the details.

2.2 Main result

Let a : R2 → R be a function such that, for positive constants λ0 ≤ Λ0,

(2.10) λ0 ≤ a(t, x) ≤ Λ0 .

These inequalities mean that operator L, as we will de�ne in (2.15), is strictly hyperbolic with
bounded coe�cients. Let us assume also that a is log-Zygmund continuous with respect to t and
log-Lipschitz continuous with respect to x, uniformly with respect to the other variable:

sup
(t,x)
|a(t+ τ, x) + a(t− τ, x) − 2 a(t, x)| ≤ C0 τ log

(
1

τ
+ 1

)
(2.11)

sup
(t,x)
|a(t, x+ y) − a(t, x)| ≤ C0 y log

(
1

y
+ 1

)
.(2.12)
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Moreover, let

(2.13) b0 , b1 ∈ L∞(Rt; Cω(Rx)) ,

for some real number ω > 0, and

(2.14) c ∈ L∞(Rt × Rx) .

Theorem 2.1. Let us consider, on the whole space R2, the complete second order operator

(2.15) Lu = ∂2
t u − ∂x(a(t, x)∂xu) + b0(t, x)∂tu + b1(t, x)∂xu + c(t, x)u ,

whose coe�cients a, b0, b1 and c satisfy hypothesis (2.10)-(2.14).
Then, for all �xed

θ ∈
]
0,min

{
1

2
,

ω

1 + log 2

}[
,

there exist β∗ > 0, T ∈ R and C > 0 such that

sup
t∈[0,T ]

(‖u(t, ·)‖H1−θ−β∗t + ‖∂tu(t, ·)‖H−θ−β∗t) ≤(2.16)

≤ C

(
‖u(0, ·)‖H−θ+1 + ‖∂tu(0, ·)‖H−θ +

∫ T

0
‖Lu(t, ·)‖H−θ−β∗tdt

)
for all u ∈ C2([0, T ];H∞(Rx)).

2.3 Proof

Let us tackle the proof of theorem 2.1. Following the main ideas of [19], we will smooth out the
coe�cient of the second order part both with respect to t and x; in the same time, we will perform
a dyadic decomposition of the function u with respect to the space variable. Then we will link
the approximation parameter with the dual variable, in order to obtain di�erent approximations
in di�erent zones of the phase space.

2.3.1 Approximation of the coe�cient a(t, x)

Let ρ ∈ C∞0 (R) be an even function, supported on the interval [−1, 1], such that 0 ≤ ρ ≤ 1 and∫
ρ(s)ds = 1. Moreover, let us suppose also that |ρ′(s)| ≤ 2.
For all 0 < ε ≤ 1, we set ρε(s) = (1/ε) ρ(s/ε), and then we de�ne

(2.17) aε(t, x) :=

∫
Rt×Rx

ρε(t− s) ρε(x− y) a(s, y) ds dy .

Let us state some properties of the approximate coe�cients.

Lemma 2.2. The following facts hold true for every ε ∈ ]0, 1].

1. For all (t, x) ∈ R2, one has

(2.18) λ0 ≤ aε(t, x) ≤ Λ0 .

Moreover,

(2.19) sup
(t,x)
|aε(t, x)− a(t, x)| ≤ 3

2
C0 ε log

(
1

ε
+ 1

)
.
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2. For all σ ∈ ]0, 1[ , a constant Cσ > 0 (independent of ε) exists such that

(2.20) sup
(t,x)
|∂taε(t, x)| ≤ Cσ (Λ0 + C0) εσ−1 .

3. Finally, the derivatives of aε satisfy:

sup
(t,x)
|∂xaε(t, x)| ≤ C0 ‖ρ′‖L1 log

(
1

ε
+ 1

)
(2.21)

sup
(t,x)

∣∣∂2
t aε(t, x)

∣∣ ≤ C0

2
‖ρ′′‖L1

1

ε
log

(
1

ε
+ 1

)
(2.22)

sup
(t,x)
|∂t∂xaε(t, x)| ≤ C0 ‖ρ′‖2L1

1

ε
log

(
1

ε
+ 1

)
.(2.23)

Proof. Inequalities in (2.18) immediately follow from the fact that |ρ| ≤ 1.
Relation (2.19), instead, follows from (2.11), after one has observed that

aε(t, x)− a(t, x) =
1

2

∫
Rt
ρε(s)

∫
Ry
ρε(x− y)(a(t+ s, y) + a(t− s, y)− 2a(t, y)) dy ds ,

where we have used the fact that ρ is an even function.
Moreover, one has

∂2
t aε(t, x) =

1

2

∫
ρ′′ε(s)

∫
ρε(x− y)(a(t+ s, y) + a(t− s, y)− 2a(t, y)) dy ds ,

from which one can deduce (2.22).
Inequalities (2.21) and (2.23) derive from (2.12) in a very similar way.
Finally, (2.10) and (2.11) imply that for all σ ∈ ]0, 1[ , a constant cσ > 0 exists such that, for

all τ > 0, one has

(2.24) sup
(t,x)
|a(t+ τ, x)− a(t, x)| ≤ cσ (Λ0 + C0) τσ .

Starting from this relation, it's easy to prove (2.20).

2.3.2 Approximate and total energy

Let T0 > 0 and u ∈ C2([0, T0];H∞(Rx)). Let us perform a Littlewood-Paley decomposition of u
with respect to the space variable, setting u0(t, x) = χ(Dx)u(t, x) and, for all ν ≥ 1, uν(t, x) =
ϕν(Dx)u(t, x). So, each uν is an entire analytic function belonging to L2. Moreover, keep in mind
that Hs ≡ Bs

2,2 for all s ∈ R and so these spaces enjoy the general properties of Besov spaces
stated in chapter 1. In particular, let us recall that for all s ∈ R there exists a constant Cs > 0
such that

(2.25)
1

Cs

+∞∑
ν=0

22νs ‖uν‖2L2 ≤ ‖u‖2Hs ≤ Cs

+∞∑
ν=0

22νs ‖uν‖2L2

and that Bernstein's inequalities hold:

‖∂xuν‖L2 ≤ C 2ν ‖uν‖L2 for all ν ≥ 0(2.26)

‖uν‖L2 ≤ C 2−ν ‖∂xuν‖L2 for all ν ≥ 1 .(2.27)

Moreover, let us quote a result on commutation between localization in phase space operators
and multiplication by a log-Lipschitz or a Hölder function (recall also lemma 1.29). Here we
denote with L(L2) the space of bounded linear operators from L2 to L2.
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Lemma 2.3. 1. There exist C > 0 and ν0 ∈ N such that, for all a ∈ L∞(R) satisfying, for all
y > 0,

sup
x∈R
|a(x+ y)− a(x)| ≤ C0 y log

(
1 +

1

y

)
,

one has, for all ν ≥ ν0,

(2.28) ‖ [∆ν , a(x)] ‖L(L2) ≤ C (‖a‖L∞ + C0) 2−ν ν .

2. There exist Cω > 0 (depending only on the �xed Hölder index ω) and ν0 ∈ N such that, for
all b ∈ Cω(R) and all ν ≥ ν0, one has

(2.29) ‖ [∆ν , b(x)] ‖L(L2) ≤ Cω ‖b‖Cω 2−ων .

Proof. Former part of previous lemma is proved in [22]. The latter one, instead, easily follows
observing that the kernel of operator [∆ν , b] is

κ(x, y) = ϕ̂(2ν(x− y)) 2ν (b(t, x)− b(t, y)) ,

and then applying the Schur's criterion (see also lemma 2.6).

Let us localize equation (2.15) applying operator ∆ν : we gather that uν satis�es

(Lu)ν = ∂2
t uν − ∂x(a(t, x)∂xuν) − ∂x([ϕν(Dx), a]∂xu) +(2.30)

+ b0(t, x)∂tuν + [ϕν(Dx), b0]∂tu + b1(t, x)∂xuν + [ϕν(Dx), b1]∂xu +

+ c(t, x)uν + [ϕν(Dx), c]u .

Now we introduce the approximate energy of uν (see [19] and [56]), setting

(2.31) eν,ε(t) :=

∫
R

(
1
√
aε

∣∣∣∣∂tuν +
∂t
√
aε

2
√
aε
uν

∣∣∣∣2 +
√
aε |∂xuν |2 + |uν |2

)
dx .

This particular quantity will turn out to be suitable for our computations. On the one hand, it
is strictly related to the Sobolev norm of u (see also remark 2.4). On the other hand, its time
derivative will produce fundamental cancellations which allow us to get rid of the bad behaviour
of the coe�cient a.

Now, taken θ as in the hypothesis of theorem 2.1, we de�ne the total energy of u:

(2.32) E(t) :=
+∞∑
ν=−1

e−2β(ν+1)t 2−2νθ eν,2−ν (t) ,

where the index β > 0 will be �xed later on.

Remark 2.4. From (2.25) and Bernstein's inequalities (2.26)-(2.27), it's easy to see that there
exist two positive constants Cθ and C ′θ such that

E(0) ≤ Cθ (‖∂tu(0, ·)‖H−θ + ‖u(0, ·)‖H1−θ)

E(t) ≥ C ′θ (‖∂tu(t, ·)‖H−θ−β∗t + ‖u(t, ·)‖H1−θ−β∗t)

where we have set β∗ = β(log 2)−1.
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Before going on with computing the time derivative of eν,ε, let us note that, as L is a linear
operator with real valued coe�cients, one has L(v + iw) = Lv + iLw. So, without loss of
generality, we can assume u to be real valued, too.

Moreover, for notation convenience, we de�ne

vν,ε := ∂tuν +
∂t
√
aε

2
√
aε

uν and Rεf := ∂t

(
∂t
√
aε

2
√
aε

)
f −

(
∂t
√
aε

2
√
aε

)2

f.

Now, let us we di�erentiate eν,ε, de�ned by (2.31), with respect to t, and we obtain

d

dt
eν,ε(t) =

∫
2
√
aε
∂2
t uν vν,ε dx +

∫
2
√
aε
Rεuν vν,ε dx +

+

∫
∂t
√
aε |∂xuν |2 dx +

∫
2uν ∂tuν dx +

+

∫
2
√
aε ∂xuν ∂x∂tuν dx .

Now, we can put in the previous relation the value of ∂2
t uν , given by (2.30). Integrating by

parts and taking advantage of the spectral localisation of uν , we have∫
2
√
aε
∂x(a∂xuν) vν,ε dx =

∫
2
∂x
√
aε

aε
a ∂xuν vν,ε dx −

∫
∂t
√
aε

aε
a |∂xuν |2 dx −

−
∫

2
a
√
aε
∂xuν ∂x∂tuν dx −

−
∫

a
√
aε
∂x

(
∂t
√
aε√
aε

)
∂xuν uν dx .

Finally we obtain the complete expression for the time derivative of the approximate energy:

d

dt
eν,ε(t) =

∫
2
√
aε

(Lu)ν vν,ε dx +

∫
2
√
aε
Rεuν vν,ε dx +(2.33)

+

∫
∂t
√
aε

(
1− a

aε

)
|∂xuν |2dx +

∫
2

(
√
aε −

a
√
aε

)
∂xuν ∂x∂tuνdx+

+

∫
2
∂x
√
aε

aε
a ∂xuν vν,ε dx −

∫
a
√
aε

∂x

(
∂t
√
aε√
aε

)
∂xuν uν dx +

+

∫
2uν ∂tuν dx +

∫
2
√
aε

(∂x([ϕν(Dx), a]∂xu)) vν,ε dx −

−
∫

2
√
aε
b0(t, x) ∂tuν vν,ε dx −

∫
2
√
aε

([ϕν(Dx), b0]∂tu) vν,ε dx −

−
∫

2
√
aε
b1(t, x) ∂xuν vν,ε dx −

∫
2
√
aε

([ϕν(Dx), b1]∂xu) vν,ε dx −

−
∫

2
√
aε
c(t, x)uν vν,ε dx −

∫
2
√
aε

([ϕν(Dx), c]u) vν,ε dx .

2.3.3 Estimate for the approximate energy

We want to obtain an estimate for the time derivative of the energy (2.32); so, let us start to
control each term of (2.33).

Throughout the rest of the proof, we will denote with C, C ′, C ′′ and Ĉ constants depending
only on λ0, Λ0, C0, de�ned by conditions (2.10)-(2.12), and on the norms of b0, b1 and c in their
respective functional spaces. These constants are allowed to vary from line to line.
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Terms with a and aε

Thanks to relations (2.10), (2.20) with σ = 1/2, (2.22) and Bernstein's inequalities, we deduce
that there exists C > 0, depending only on λ0, Λ0 and C0, such that, for all ν ≥ 0,∣∣∣∣∫ 2

√
aε
Rεuν vν,ε dx

∣∣∣∣ ≤ C
1

ε
log

(
1

ε
+ 1

)
2−ν eν,ε(t) .

In the same way, from (2.10), (2.19) and (2.20), we have∣∣∣∣∫ ∂t
√
aε

(
1− a

aε

)
|∂xuν |2 dx

∣∣∣∣ ≤ C log

(
1

ε
+ 1

)
eν,ε(t) ,

for a constant C depending again only on λ0, Λ0 and C0.
Moreover, keeping in mind (2.10), (2.19) and Bernstein's inequalities, we obtain∣∣∣∣∫ 2

(
√
aε −

a
√
aε

)
∂xuν ∂x∂tuν dx

∣∣∣∣ ≤ C ε log

(
1

ε
+ 1

)
‖∂xuν‖L2 ‖∂x∂tuν‖L2

≤ C ε log

(
1

ε
+ 1

)
2ν ‖∂xuν‖L2 ‖∂tuν‖L2 .

Now we can estimate ∂tuν writing

‖∂tuν‖L2 ≤
∥∥∥∥∂tuν +

∂t
√
aε

2
√
aε
uν

∥∥∥∥
L2

+

∥∥∥∥∂t√aε2
√
aε
uν

∥∥∥∥
L2

.

The former term is actually the energy (up to multiplication by a constant); the latter one can
be brought to it thanks to followig relations:∥∥∥∥∂t√aε2

√
aε
u0

∥∥∥∥
L2

≤ C ε−1/2‖u0‖L2 and ∀ ν ≥ 1 ,

∥∥∥∥∂t√aε2
√
aε
uν

∥∥∥∥
L2

≤ C ε−1/2 2−ν ‖∂xuν‖L2 .

Hence, we gather the bound

(2.34) ‖∂tuν‖L2 ≤ C
(

1 + ε−1/2 2−ν
)

(eν,ε)
1/2 ;

therefore, we �nally arrive to∣∣∣∣∫ 2

(
√
aε −

a
√
aε

)
∂xuν ∂x∂tuνdx

∣∣∣∣ ≤ C (ε 2ν + 1) log

(
1

ε
+ 1

)
eν,ε(t) .

In a very similar way, from (2.21) one has∣∣∣∣∫ 2
∂x
√
aε

aε
a ∂xuν vν,εdx

∣∣∣∣ ≤ C log

(
1

ε
+ 1

)
eν,ε(t) ,

while, from (2.20) with σ = 1/2, (2.21) and (2.23) we deduce∣∣∣∣∫ a
√
aε

∂x

(
∂t
√
aε√
aε

)
∂xuν uν dx

∣∣∣∣ ≤ C
1

ε
log

(
1

ε
+ 1

)
2−ν eν,ε(t) .

Finally, arguing as done before, we have∣∣∣∣∫ 2uν ∂tuν dx

∣∣∣∣ ≤ C ε−1/2 2−ν eν,ε(t) .
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Terms with b0, b1 and c

Thanks to the hypothesis (2.13)-(2.14), one has that there exist suitable constants, depending
only on λ0, Λ0, C0, on the norms of b0 and b1 in the space L∞(Rt; Cω(Rx)) and on that of c in
L∞(Rt × Rx), such that∣∣∣∣∫ 2

√
aε
b0(t, x) ∂tuν vν,ε dx

∣∣∣∣ ≤ C ‖∂tuν‖L2 ‖vν,ε‖L2

≤ (C + C ′ 2−νε−1/2) eν,ε(t) ;∣∣∣∣∫ 2
√
aε
b1(t, x) ∂xuν vν,ε dx

∣∣∣∣ ≤ C

∫
4
√
aε |∂xuν |

1
4
√
aε
|vν,ε| dx

≤ C

∫ √
aε |∂xuν |2 +

1
√
aε
|vν,ε|2 dx ≤ C eν,ε(t) ;∣∣∣∣∫ 2

√
aε
c(t, x)uν vν,ε dx

∣∣∣∣ ≤ C

∫
|uν |

1
4
√
aε
|vν,ε| dx ≤ C eν,ε(t) ,

where we delt with ‖∂tuν‖L2 as before.

Now, we join the approximation parameter ε with the dual variable ξ, following the original
idea of Colombini, De Giorgi and Spagnolo in paper [18]. As |ξ| ∼ 2ν on the support of ûν , we set

ε = 2−ν .

Therefore, from (2.33) and the previous inequalities, we obtain

d

dt
eν,2−ν (t) ≤ C̃ (ν + 1) eν,2−ν +

∫
2

√
a2−ν

(Lu)ν vν,2−ν dx +(2.35)

+

∫
2

√
a2−ν

(∂x([∆ν , a]∂xu)) vν,2−ν dx −

−
∫

2
√
a2−ν

([∆ν , b0]∂tu) vν,2−ν dx −

−
∫

2
√
a2−ν

([∆ν , b1]∂xu) vν,2−ν dx −

−
∫

2
√
a2−ν

([∆ν , c]u) vν,2−ν dx ,

for a suitable constant C̃, which depends only on λ0, Λ0, C0 and on the norms of the coe�cients
of the operator L in their respective functional spaces.

2.3.4 Estimates for commutator terms

Now, we have to deal with commutator terms. As we will see, it's useful to consider immediately
the sum over ν ≥ 0.

First of all, we report an elementary lemma (see also [19]), which we will use very often in
next computations.

Lemma 2.5. There exist two continuous, decreasing functions α1, α2 : ]0, 1[→ ]0,+∞[ such that
limδ→0+ αj(δ) = +∞ for j = 1 , 2 and such that, for all δ ∈]0, 1] and all n ≥ 1, the following
inequalities hold:

n∑
j=1

eδj j−1/2 ≤ α1(δ) eδn n−1/2 ,
+∞∑
j=n

e−δj j1/2 ≤ α2(δ) e−δn n1/2 .
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Following what done in [22] and [19], in the present subsection we will often use the next
result, sometimes referred in literature as �Schur's Lemma�, see e.g. [43]. Here we quote a general
version, more suitable for our purposes, whose proof can be found in [57], paragraph 0.5.

Lemma 2.6. Let (X,µ) be a measure space. Suppose that k(x, y) is a measurable function on
X ×X such that

sup
y∈X

∫
X
|k(x, y)| dµ(x) ≤ C1 and sup

x∈X

∫
X
|k(x, y)| dµ(y) ≤ C2 .

Then for all p ∈ [1,+∞], the operator T , de�ned by

Tu(x) =

∫
X
k(x, y)u(y) dµ(y)

maps continuously Lp(X,µ) into itself. Moreover we have

‖Tu‖Lp ≤ C
1/p
1 C

1/p′

2 ‖u‖Lp ,

where p′ ∈ [1,+∞] is such that (1/p) + (1/p′) = 1.

Before going on, we �x β > 0 and T ∈]0, T0] such that

(2.36) β T =
θ

2
log 2 .

Remark 2.7. Notice that, thanks to the hypothesis of theorem 2.1, this condition implies

β T ≤ ω − θ
2

.

Moreover, for all t ∈ [0, T ], we have:

0 < θ
2 log 2 ≤ β t + θ

2 log 2 ≤ θ log 2 < 1

0 <
(
1− 3

2θ
)

log 2 ≤ (1− θ) log 2 − β t ≤ (1− θ) log 2 < 1 .

Finally, we set (with the same notations used in chapter 1)

ψµ = ϕµ−1 + ϕµ + ϕµ+1 (ϕ−1 ≡ 0) .

As ψµ ≡ 1 on the support of ϕµ, we can write

∂xuµ = ∆µ∂xu = Ψµ(∆µ∂xu) = Ψµ∂xuµ ,

where we have de�ned Ψµ := ψµ(Dx). So, given a generic function f(t, x), one has

(2.37) [∆ν , f ]∂xu = [∆ν , f ]

∑
µ≥0

∂xuµ

 =
∑
µ≥0

([∆ν , f ]Ψµ) ∂xuµ .

After these preliminary remarks, we can go on with commutators' estimates.
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Term with [∆ν , a]

Due to Bernstein's inequalities, we have

∥∥∂x (vν,2−ν)∥∥L2 ≤ C 2ν
(
eν,2−ν (t)

)1/2
.

So, using (2.37) and the fact that aε is real-valued, one has∣∣∣∣∫ 2
√
a2−ν

∂x([∆ν , a]∂xu) vν,2−ν dx

∣∣∣∣ ≤
≤ C

∑
µ

‖([∆ν , a]Ψµ)∂xuµ‖L2 2ν
(
eν,2−ν (t)

)1/2
≤ C

∑
µ

‖[∆ν , a]Ψµ‖L(L2)

(
eµ,2−µ(t)

)1/2
2ν
(
eν,2−ν (t)

)1/2
,

with the constant C depending only on λ0, Λ0 and C0. Hence,∣∣∣∣∣∣
∑
ν≥0

e−2β(ν+1)t2−2νθ

∫
2

√
a2−ν

∂x([∆ν , a]∂xu) vν,2−νdx

∣∣∣∣∣∣ ≤
≤ C

∑
ν,µ

kνµ (ν + 1)1/2e−β(ν+1)t2−νθ
(
eν,2−ν

)1/2
(µ+ 1)1/2e−β(µ+1)t2−µθ

(
eµ,2−µ

)1/2
,

where we have set

(2.38) kνµ = e−(ν−µ)βt 2−(ν−µ)θ 2ν (ν + 1)−1/2 (µ+ 1)−1/2 ‖[∆ν , a]Ψµ‖L(L2) .

Observe that, if |ν − µ| ≥ 3, then ϕνψµ ≡ 0, so [∆ν , a]Ψµ = ∆ν [a,Ψµ]. Therefore, from lemma
2.3, in particular from (2.28), we deduce that

‖[∆ν , a(t, x)]Ψµ‖L(L2) ≤


C 2−ν(ν + 1) if |ν − µ| ≤ 2 ,

C 2−max{ν,µ}(max{ν, µ}+ 1) if |ν − µ| ≥ 3 ,

where the constant C depends only on Λ0 and C0.
Now our aim is to apply Schur's lemma 2.6, so to estimate the quantity

(2.39) sup
µ

∑
ν

|kνµ| + sup
ν

∑
µ

|kνµ| .

To do this, we will use lemma 2.5 and the inequalities stated in remark 2.7.

1. Fix µ ≤ 2. We have∑
ν≥0

|kνµ| ≤ C e(µ+1)βt 2(µ+1)θ (µ+ 1)−
1
2

∑
ν

e−(ν+1)βt 2−(ν+1)θ (ν + 1)
1
2

= C e(µ+1)βt 2(µ+1)θ (µ+ 1)−
1
2

∑
ν

e−(ν+1)(βt+θ log 2) (ν + 1)
1
2

≤ C e3βt 23θ α2(βt+ θ log 2) ≤ C 2
9
2
θ α2(θ log 2) .
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2. Now, take µ ≥ 3 and consider �rst

µ−3∑
ν=0

|kνµ| ≤ C e(µ+1)βt 2−(µ+1)(1−θ) (µ+ 1)
1
2

µ−3∑
ν=0

e−(ν+1)βt 2(ν+1)(1−θ) (ν + 1)−
1
2

≤ C e(µ+1)βt 2−(µ+1)(1−θ) (µ+ 1)
1
2

µ−3∑
ν=0

e(ν+1)(−βt+(1−θ) log 2) (ν + 1)−
1
2

≤ C e(µ+1)βt 2−(µ+1)(1−θ) (µ+ 1)
1
2 α1(−βt+ (1− θ) log 2) ·

· e(−βt+(1−θ) log 2)(µ−2) (µ− 2)−
1
2

≤ C 2
9
2
θ α1

((
1− 3

2
θ

)
log 2

)
.

For the second part of the sum, one has

+∞∑
ν=µ−2

|kνµ| ≤ C e(µ+1)βt 2(µ+1)θ (µ+ 1)−1/2
+∞∑

ν=µ−2

e−(ν+1)βt 2−(ν+1)θ (ν + 1)1/2

≤ C e(µ+1)βt 2(µ+1)θ (µ+ 1)−1/2α2(βt+ θ log 2) ·
· e−(βt+θ log 2)(µ−1) (µ− 1)1/2

≤ C 2
7
2
θ α2(θ log 2) .

3. Fix now ν ≥ 0; we have

ν+2∑
µ=0

|kνµ| ≤ C e−(ν+1)βt 2−(ν+1)θ (ν + 1)1/2
ν+2∑
µ=0

e(µ+1)βt 2(µ+1)θ (µ+ 1)−1/2

≤ C e−(ν+1)βt 2−(ν+1)θ (ν + 1)1/2 α1(βt+ θ log 2) ·
· e(βt+θ log 2)(ν+3) (ν + 3)−1/2

≤ C 2
7
2
θ α1(θ log 2) .

For the second part of the series, the following inequality holds:

+∞∑
µ=ν+3

|kνµ| ≤ C e−(ν+1)βt 2(ν+1)(1−θ) (ν + 1)−
1
2

+∞∑
µ=ν+3

e(µ+1)βt 2−(µ+1)(1−θ) (µ+ 1)
1
2

≤ C e−(ν+1)βt 2(ν+1)(1−θ) (ν + 1)−
1
2 α2(−βt+ (1− θ) log 2) ·

· e(−βt+(1−θ) log 2)(ν+4) (ν + 4)
1
2

≤ C 2
9
2
θ α2

((
1− 3

2
θ

)
log 2

)
.

In conclusion, there exists a positive function Π, with limθ→0+ Π(θ) = +∞, such that

sup
µ

∑
ν

|kνµ| + sup
ν

∑
µ

|kνµ| ≤ C Π(θ) ;

then, by Schur's lemma we gather∣∣∣∣∣∣
∑
ν≥0

e−2β(ν+1)t 2−2νθ

∫
2

√
a2−ν

∂x([∆ν , a]∂xu) vν,2−ν dx

∣∣∣∣∣∣ ≤
≤ C Π(θ)

+∞∑
ν=0

(ν + 1) e−2β(ν+1)t 2−2νθ eν,2−ν (t) .
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Terms with [∆ν , b0] and [∆ν , b1]

Now, let us consider commutator terms involving �rst order coe�cients of operator L. The
analysis is essentially the same carried out in the previous paragraph, nevertheless we will give
here all the details.

Let us start with considering the term∣∣∣∣∫ 2
√
a2−ν

[∆ν , b0(t, x)]∂tu vν,2−ν dx

∣∣∣∣ ≤ 2 ‖[∆ν , b0(t, x)]∂tu‖L2

∥∥∥∥ 1
√
a2−ν

∣∣vν,2−ν ∣∣ ∥∥∥∥
L2

≤ 2 ‖[∆ν , b0(t, x)]∂tu‖L2 (eν,2−ν (t))1/2 .

Thanks to relation (2.37), we have

‖[∆ν , b0(t, x)]∂tu‖L2 =

∥∥∥∥∥∥[∆ν , b0(t, x)]
∑
µ≥0

Ψµ∂tuµ

∥∥∥∥∥∥
L2

≤
∑
µ≥0

‖[∆ν , b0(t, x)]Ψµ‖L(L2)‖∂tuµ‖L2 .

On the one hand, estimate (2.34) with ε = 2−ν gives us

‖∂tuµ‖L2 ≤ C
(
eµ,2−µ

)1/2
.

on the other hand, from lemma 2.3 we get

‖[∆ν , b0(t, x)]Ψµ‖L(L2) ≤


C 2−νω if |ν − µ| ≤ 2

C 2−max{µ,ν}ω if |ν − µ| ≥ 3

where C is a constant depending only on ‖b0‖L∞(Rt; Cω(Rx)).
Therefore,∣∣∣∣∣∣
∑
ν≥0

e−2βt(ν+1)2−2νθ

∫
2

√
a2−ν

[∆ν , b0]∂tu vν,2−ν dx

∣∣∣∣∣∣ ≤
≤
∑
ν,µ≥0

e−βt(ν+1) 2−νθ
(
eν,2−ν

)1/2
e−βt(µ+1) 2−µθ

(
eµ,2−µ

)1/2
lνµ ,

where we have de�ned

(2.40) lνµ := e−(ν−µ)βt 2−(ν−µ)θ ‖[∆ν , b0(t, x)]Ψµ‖L(L2) .

As made before, we are going to estimate lνµ applying Schur's lemma.

1. Let us �x µ ≤ 2. Then∑
ν≥0

|lνµ| ≤ C e(µ+1)βt 2(µ+1)θ
∑
ν≥0

e−(ν+1)βt 2−(ν+1)θ 2−νω

≤ C e3βt 23θ
∑
ν≥0

e−(ν+1)(βt+θ log 2) (ν + 1)1/2

≤ C e3βt 23θ α2(βt+ θ log 2) ≤ C 2
9
2
θ α2(θ log 2) .
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2. Now, take µ ≥ 3 and consider �rst

µ−3∑
ν=0

|lνµ| ≤ C eµβt 2µθ 2−µω
µ−3∑
ν=0

e−νβt 2−νθ

≤ C eµ(βt−(ω−θ) log 2) (µ− 2)

≤ C e−µ(ω− θ
2

) log 2 (µ− 2) ≤ CM(ω, θ) ,

where M(ω, θ) is the maximum of the function z 7→ e−γz (z − 2), with γ =
(
ω − θ

2

)
log 2.

For the second part of the sum, we have instead

+∞∑
ν=µ−2

|lνµ| ≤ C e(µ+1)βt 2(µ+1)θ
+∞∑

ν=µ−2

e−(ν+1)βt 2−(ν+1)θ 2−νω
(ν + 1)1/2

(ν + 1)1/2

≤ C e(µ+1)βt 2(µ+1)θ (µ− 1)−1/2 α2(βt+ θ log 2) ·
· e−(µ−1)βt 2−(µ−1)θ (µ− 1)1/2

≤ C e2(βt+θ log 2) α2(θ log 2) ≤ C 2
9
2
θ α2(θ log 2) .

3. Fix now ν. Initially, we have

ν+2∑
µ=0

|lνµ| ≤ C e−(ν+1)βt 2−(ν+1)θ 2−νω
ν+2∑
µ=0

e(µ+1)(βt+θ log 2) (µ+ 1)1/2

(µ+ 1)1/2

≤ C e−(ν+1)βt 2−(ν+1)θ 2−νω (ν + 3)1/2 α1(βt+ θ log 2) ·
· e(ν+3)βt 2(ν+3)θ (ν + 3)−1/2

≤ C e2(βt+θ log 2) α1(θ log 2) ≤ C 23θ α1(θ log 2) .

Moreover, we have

+∞∑
µ=ν+3

|lνµ| ≤ C e−νβt 2−νθ
+∞∑

µ=ν+3

e−µ(−βt+(ω−θ) log 2) µ
1/2

µ1/2

≤ C e−νβt 2−νθ (ν + 3)−1/2 α2((ω − θ) log 2− βt) ·
· e(ν+3)βt 2−(ν+3)(ω−θ) (ν + 3)1/2

≤ C e3βt 23θ 2−(ν+3)ω α2

((
ω − 3

2
θ

)
log 2

)
≤ C 2

9
2
θ α2

((
ω − 3

2
θ

)
log 2

)
.

From all these inequalities, thanks to Schur's lemma, one has that there exists a constant
M̃(ω, θ), depending only on ‖b0‖L∞(Rt; Cω(Rx)) and on the �xed parameter θ, such that

sup
µ

∑
ν

|lνµ| + sup
ν

∑
µ

|lνµ| ≤ C M̃(ω, θ) ;

from this relation, we �nally get∣∣∣∣∣∣
∑
ν≥0

e−2βt(ν+1)2−2νθ

∫
2

√
a2−ν

[∆ν , b0]∂tu vν,2−ν dx

∣∣∣∣∣∣ ≤
≤ C M̃(ω, θ)

+∞∑
ν=0

(ν + 1) e−2β(ν+1)t 2−2νθ eν,2−ν (t) .
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The term with the commutator [∆ν , b1(t, x)] is analogous. Arguing as before, we discover that∣∣∣∣∫ 2
√
a2−ν

[∆ν , b1]∂xu vν,2−ν dx

∣∣∣∣ ≤
≤ C

∑
µ≥0

‖[∆ν , b1]Ψµ‖L(L2) ‖ 4
√
a2−ν ∂xuµ‖L2

∥∥∥∥ 1
4
√
a2−ν

(
vν,2−ν

)∥∥∥∥
L2

≤ C
∑
µ≥0

‖[∆ν , b1]Ψµ‖L(L2)

(
eν,2−ν

)1/2 (
eµ,2−µ

)1/2
.

Therefore, we get∣∣∣∣∣∣
∑
ν≥0

e−2βt(ν+1) 2−2νθ

∫
2

√
a2−ν

[∆ν , b1]∂xu vν,2−ν dx

∣∣∣∣∣∣ ≤
≤ C

∑
ν,µ≥0

e−β(ν+1)t 2−νθ
(
eν,2−ν

)1/2
e−β(µ+1)t 2−µθ

(
eµ,2−µ

)1/2
l′νµ ,

where we have set again

l′νµ = e−(ν−µ)βt 2−(ν−µ)θ ‖[∆ν , b1]Ψµ‖L(L2) .

As b0 and b1 satisfy to the same hypothesis, the commutator [∆ν , b1] veri�es the same inequalities
as [∆ν , b0]; so, if we repeat the same computations, we obtain∣∣∣∣∣∣

∑
ν≥0

e−2βt(ν+1) 2−2νθ

∫
2

√
a2−ν

[∆ν , b1]∂xu vν,2−νdx

∣∣∣∣∣∣ ≤
≤ C M̃(ω, θ)

+∞∑
ν=0

(ν + 1) e−2β(ν+1)t 2−2νθ eν,2−ν (t) .

Term with [∆ν , c]

Finally, we have to deal with the commutator [∆ν , c(t, x)].
First of all, observe that there exist constants such that∣∣∣∣∫ 2
√
a2−ν

[∆ν , c]∂xu vν,2−ν dx

∣∣∣∣ ≤ C ‖[∆ν , c]u‖L2

∥∥∥∥ 1
4
√
a2−ν

(
vν,2−ν

)∥∥∥∥
L2

≤ C
∑
µ≥0

‖[∆ν , c]Ψµ‖L(L2) ‖uµ‖L2

(
eν,2−ν (t)

)1/2
≤ 2C

∑
µ≥0

‖[∆ν , c]Ψµ‖L(L2) 2−µ ‖∂xuµ‖L2

(
eν,2−ν (t)

)1/2
≤ 2C

∑
µ≥0

‖[∆ν , c]Ψµ‖L(L2) 2−µ
(
eµ,2−µ(t)

)1/2 (
eν,2−ν (t)

)1/2
.

Thereby, we get the estimate∣∣∣∣∣∣
∑
ν≥0

e−2βt(ν+1) 2−2νθ

∫
2

√
a2−ν

[∆ν , c]∂xu vν,2−ν dx

∣∣∣∣∣∣ ≤
≤ 2C

∑
ν,µ≥0

e−βt(ν+1) 2−νθ
(
eν,2−ν (t)

)1/2
e−βt(µ+1) 2−µθ

(
eµ,2−µ(t)

)1/2
mνµ ,
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where we have de�ned, as usual,

mνµ = e−(ν−µ)βt 2−(ν−µ)θ 2−µ ‖[∆ν , c]Ψµ‖L(L2) .

Now, the kernel of the operator [∆ν , c] is

h(x, y) = ψ̂(2ν(x− y)) 2ν (c(t, y)− c(t, x)) ;

so, remembering that c is bounded over R× R, from Schur's lemma one gets

‖[∆ν , c]‖L(L2) ≤ C ∀ ν ≥ 0 ,

where the constant C depends only on ‖c‖L∞(Rt×Rx).

Again, we are going to estimate the kernel mνµ to apply Schur's lemma.

1. First, we take µ ≤ 2 and we have∑
ν≥0

|mνµ| ≤ C e(µ+1)βt 2(µ+1)θ 2−µ
∑
ν≥0

e−(ν+1)βt 2−(ν+1)θ

≤ C e3βt 23θ
∑
ν≥0

e−(ν+1)(βt+θ log 2) (ν + 1)1/2

≤ C e3βt 23θ α2(βt+ θ log 2) ≤ C 2
9
2
θ α2(θ log 2) .

2. Now, we �x µ ≥ 3 and we consider the �rst part of the series:

µ−3∑
ν=0

|mνµ| ≤ C e(µ+1)βt 2−(µ+1)(1−θ) 2−µ
µ−3∑
ν=0

e−(ν+1)βt 2(ν+1)(1−θ) 2µ−ν
(ν + 1)1/2

(ν + 1)1/2

≤ C e(µ+1)βt 2−(µ+1)(1−θ) (µ− 2)1/2
µ−3∑
ν=0

e(ν+1)((1−θ) log 2−βt) (ν + 1)−1/2

≤ C e(µ+1)βt 2−(µ+1)(1−θ) (µ− 2)1/2 α1((1− θ) log 2− βt) ·
· e−(µ−2)βt 2(µ−2)(1−θ) (µ− 2)−1/2

≤ C e3βt 23θ α1

((
1− 3

2
θ

)
log 2

)
≤ C 2

9
2
θ α1

((
1− 3

2
θ

)
log 2

)
.

For the second part, one has:

+∞∑
ν=µ−2

|mνµ| ≤ C e(µ+1)βt 2(µ+1)θ 2−µ
+∞∑

ν=µ−2

e−(ν+1)βt 2−(ν+1)θ (ν + 1)1/2

(ν + 1)1/2

≤ C e(µ+1)βt 2(µ+1)θ 2−µ α2(βt+ θ log 2) e−(µ−1)βt 2−(µ−1)θ

≤ C 23θ α2(θ log 2) .

3. Now, we �x ν ≥ 0. Initially, we consider

ν+2∑
µ=0

|mνµ| ≤ C e−(ν+1)βt 2−(ν+1)θ
ν+2∑
µ=0

e(µ+1)(βt+θ log 2) 2−µ
(µ+ 1)1/2

(µ+ 1)1/2

≤ C e−(ν+1)βt 2−(ν+1)θ (ν + 3)1/2 α1(βt+ θ log 2) ·
· e(ν+3)βt 2(ν+3)θ (ν + 3)−1/2

≤ C e2(βt+θ log 2) α1(θ log 2) ≤ C 23θ α1(θ log 2) .
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The second part of the series, instead, can be treated as follow:

+∞∑
µ=ν+3

|mνµ| ≤ C e−(ν+1)βt 2(ν+1)(1−θ)
+∞∑

µ=ν+3

e(µ+1)βt 2−µ 2−(µ+1)(1−θ) 2µ−ν
(µ+ 1)

1
2

(µ+ 1)
1
2

≤ C e−(ν+1)βt 2(ν+1)(1−θ) (ν + 4)−
1
2

+∞∑
µ=ν+3

e−(µ+1)((1−θ) log 2−βt) (µ+ 1)
1
2

≤ C e−(ν+1)βt 2(ν+1)(1−θ) α2((1− θ) log 2− βt) e(ν+4)βt 2−(ν+4)(1−θ)

≤ C 2
9
2
θ α2

((
1− 3

2
θ

)
log 2

)
.

Finally, we obtain:∣∣∣∣∣∣
∑
ν≥0

e−2βt(ν+1) 2−2νθ

∫
2

√
a2−ν

[∆ν , c]∂xu vν,2−νdx

∣∣∣∣∣∣ ≤
≤ C Π(θ)

+∞∑
ν=0

(ν + 1) e−2β(ν+1)t 2−2νθ eν,2−ν (t) ,

where the function Π is the same used in the estimate of the term [∆ν , a].

2.3.5 End of the proof of theorem 2.1

Now we are able to complete the proof of theorem 2.1.
First of all, remembering the de�nition of the total energy given by (2.32), we gather that

there exists a constant C > 0, depending only on θ, such that∣∣∣∣∣
+∞∑
ν=0

e−β(ν+1)t 2−2νθ

∫
2
√
aε

(Lu)ν · vν,2−ν dx

∣∣∣∣∣ ≤ C (E(t))1/2 ‖Lu‖H−θ−β∗t .

Now, we put estimates just proved in paragraph 2.3.4 into relation (2.35). Therefore, if we set
Π̃(ω, θ) = max{M̃(ω, θ), Π(θ)}, we have that, for suitable constants, depending only on λ0, Λ0,
C0 and on the norms of the coe�cients of operator L in their respective functional spaces, the
following inequality holds true for all t ∈ [0, T ]:

d

dt
E(t) ≤

(
C + C ′ Π̃(ω, θ)− 2β

) +∞∑
ν=0

(ν + 1) e−2β(ν+1)t 2−2νθ eν,2−ν (t) +

+ C ′′ (E(t))1/2 ‖Lu‖H−θ−β∗t .

Now, let us �x β large enough, such that C + C ′ Π̃(ω, θ) − 2β ≤ 0. We can always do this, on
condition that we take T small enough: recall that, by (2.36), only the product βT has been �xed
untill now. With this choice, we have

d

dt
E(t) ≤ C ′′ (E(t))1/2 ‖Lu‖H−θ−β∗t ;

and the conclusion of the theorem follows from Gronwall's lemma, keeping in mind remark 2.4.





Chapter 3

Non-Lipschitz coe�cients: the general

N-dimensional case

In this chapter we will keep studying the Cauchy problem for strictly hyperbolic operators with
low regularity coe�cients. As in previous chapter, we will suppose the coe�cients to be log-
Zygmund continuous in time and log-Lipschitz continuous in space, but we will tackle the case of
any space dimension N ≥ 1. Again, we will �nd an energy estimate with a time-dependent loss of
derivatives, which allows to get the well-posedness issue in the space H∞ for the related Cauchy
problem (if the coe�cients are smooth enough with respect to x).

Paradi�erential calculus with parameters will be the main tool to handle the problem and get
the improvement with respect to the previous chapter. Let us note that, thanks to it, it will be
needed to perform a molli�cation of the coe�cients only in the time variable.

Let us point out that here, for simplicity, we will focus only on a homogeneous second order
hyperbolic operator, but the same techniques work also for dealing with lower order terms.

3.1 Introduction

This chapter is devoted to the study of the Cauchy problem for a second order strictly hyperbolic
operator de�ned in a strip [0, T ] × RN , for some T > 0 and N ≥ 1. Consider a second order
operator of the form

(3.1) Lu := ∂2
t u −

N∑
j,k=1

∂j (ajk(t, x) ∂ku)

and assume that L is strictly hyperbolic with bounded coe�cients, i.e. there exist two constants
0 < λ0 ≤ Λ0 such that

λ0 |ξ|2 ≤
N∑

j,k=1

ajk(t, x) ξj ξk ≤ Λ0 |ξ|2

for all (t, x) ∈ [0, T ]× RN and all ξ ∈ RN .
It is well-known (see e.g. [42] or [53]) that, if the coe�cients ajk are Lipschitz continuous

with respect to t and even only measurable in x, then the Cauchy problem for L is well-posed
in H1�L2. If the ajk's are Lipschitz continuous with respect to t and C∞b (i.e. C∞ and bounded
with all their derivatives) with respect to the space variables, one can recover the well-posedness
in Hs+1�Hs for all s ∈ R. Moreover, in the latter case, one gets, for all s ∈ R and for a constant

47
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Cs depending only on it, the following energy estimate:

sup
0≤t≤T

(
‖u(t, ·)‖Hs+1 + ‖∂tu(t, ·)‖Hs

)
≤(3.2)

≤ Cs

(
‖u(0, ·)‖Hs+1 + ‖∂tu(0, ·)‖Hs +

∫ T

0
‖Lu(t, ·)‖Hs dt

)
for all u ∈ C([0, T ];Hs+1(RN )) ∩ C1([0, T ];Hs(RN )) such that Lu ∈ L1([0, T ];Hs(RN )). Let us
explicitly remark that previous inequality involves no loss of regularity for the function u: it holds
true for every u ∈ C2([0, T ];H∞(RN )) and the Cauchy problem for L is well-posed in H∞ with
no loss of derivatives.

If the Lipschitz continuity (in time) hypothesis is not ful�lled, then (3.2) is no more true.
Nevertheless, one can still try to recover H∞-well-posedness, with a loss of derivatives in the
energy estimate.

The �rst case to consider is when the coe�cients ajk depend only on t:

Lu = ∂2
t u −

N∑
j,k=1

ajk(t) ∂j∂ku .

In [18], Colombini, De Giorgi and Spagnolo assumed the coe�cients to satisfy an integral log-
Lipschitz condition:

(3.3)
∫ T−ε

0
|ajk(t+ ε) − ajk(t)| dt ≤ C ε log

(
1 +

1

ε

)
,

for some constant C > 0 and all ε ∈ ]0, T ]. To get the energy estimate, they �rst smoothed out
coe�cients using a molli�er kernel (ρε). Then, by Fourier transform, they de�ned an approxi-
mated energy Eε(ξ, t) in phase space, where the problem becomes a family of ordinary di�erential
equations. At that point, the key idea was to perform a di�erent approximation of the coe�cients
in di�erent zones of the phase space: in particular, they set ε = |ξ|−1. Finally, they obtained an
energy estimate with a �xed loss of derivatives: there exists a constant δ > 0 such that, for all
s ∈ R, the inequality

sup
0≤t≤T

(
‖u(t, ·)‖Hs+1−δ + ‖∂tu(t, ·)‖Hs−δ

)
≤(3.4)

≤ Cs

(
‖u(0, ·)‖Hs+1 + ‖∂tu(0, ·)‖Hs +

∫ T

0
‖Lu(t, ·)‖Hs dt

)
holds true for all u ∈ C2([0, T ];H∞(RN )), for some constant Cs depending only on s. Let us
remark that if the coe�cients ajk are not Lipschitz continuous, then a loss of regularity cannot
be avoided, as shown by Cicognani and Colombini in [16]. Besides, in this paper the authors
prove that, if the regularity of the coe�cients ajk is measured by a modulus of continuity, any
intermediate modulus of continuity between the Lipschitz and the log-Lipschitz ones necessarily
entails a loss of regularity, which, however, can be made arbitrarily small.

Recently Tarama (see paper [56]) analysed the problem when coe�cients satisfy an integral
log-Zygmund condition: there exists a constant C > 0 such that, for all j, k and all ε ∈ ]0, T/2[,
one has

(3.5)
∫ T−ε

ε
|ajk(t+ ε) + ajk(t− ε) − 2 ajk(t)| dt ≤ C ε log

(
1 +

1

ε

)
.

On the one hand, this assumption is somehow related to the pointwise condition (for a function
a ∈ C2([0, T ]) ) |a(t)|+ |t a′(t)|+ |t2 a′′(t)| ≤ C, considered by Yamazaki in [62], and hence it is a
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requirement on the growth of the second derivative of a. On the other hand, it's obvious that, if the
ajk's satisfy (3.3), then they satisfy also (3.5): so, a more general class of functions is considered.
Again, Fourier transform, smoothing out the co�cients and linking the approximation parameter
with the dual variable were fundamental tools in the analysis of Tarama. The improvement with
respect to paper [18], however, was obtained de�ning a new energy, which involved (by derivation
in time) second derivatives of the approximated coe�cients. Finally, he got an estimate analogous
to (3.4), which implies, in particular, well-posedness in the space H∞.

In paper [22], Colombini and Lerner considered instead the case in which coe�cients ajk
depend both on time and on space variables. In particular, they assumed an isotropic pointwise
log-Lipschitz condition, i.e. there exists a constant C > 0 such that, for all ζ = (τ, ξ) ∈ R× RN ,
one has

sup
z=(t,x)∈R×RN

|ajk(z + ζ) − ajk(z)| ≤ C |ζ| log

(
1 +

1

|ζ|

)
.

Once again, smoothing out coe�cients with respect to the time variable is required; on the con-
trary, one cannot use the Fourier transform, due to the dependence of ajk on x. The authors
bypassed this problem appealing to the Littlewood-Paley decomposition and paradi�erential cal-
culus. They de�ned an energy concerning each localized part ∆νu of the solution u, and then they
performed a weighed summation to put all these pieces together. Also in this case, they had to
consider a di�erent approximation of the coe�cients in di�erent zones of the phase space, which
was obtained setting ε = 2−ν (recall that 2ν is the �size� of the frequencies in the ν-th ring, see
chapter 1). In the end, they got the following statement: for all s ∈ ]0, 1/4], there exist positive
constants β and Cs and a time T ∗ ∈ ]0, T ] such that

sup
0≤t≤T ∗

(
‖u(t, ·)‖H−s+1−βt + ‖∂tu(t, ·)‖H−s−βt

)
≤(3.6)

≤ Cs

(
‖u(0, ·)‖H−s+1 + ‖∂tu(0, ·)‖H−s +

∫ T ∗

0
‖Lu(t, ·)‖H−s−βt dt

)

for all u ∈ C2([0, T ];H∞(RN )). Let us point out that the bound on s was due to this reason: the
product by a log-Lipschitz function is well-de�ned in Hs if and only if |s| < 1. Note also that this
fact gives us a bound on the lifespan of the solution: the regularity index −s + 1 − βT ∗ has to
be strictly positive, so one can expect only local in time existence of a solution. Moreover in the
case the coe�cients ajk are C∞b in space, the authors proved inequality (3.6) for all s: so, they
still got well-posedness in H∞, but with a loss of derivatives increasing in time.

The case of a complete strictly hyperbolic second order operator,

Lu =
N∑

j,k=0

∂yj (ajk ∂yku) +
N∑
j=0

(
bj ∂yju + ∂yj (cj u)

)
+ d u

(here we set y = (t, x) ∈ Rt×RNx ), was tackled by Colombini and Métivier in [23]. They assumed
the same isotropic log-Lipschitz condition of [22] on the coe�cients of the second order part of
L, while bj and cj were supposed to be α-Hölder continuous (for some α ∈ ]1/2, 1[ ) and d to be
only bounded. The authors considered questions such as local existence and uniqueness, and also
�nite propagation speed for local solutions.

Recently, Colombini and Del Santo, in [19] (for a �rst approach to the problem see also [31],
where smoothness in space were required), came back to the Cauchy problem for the operator
(3.1), mixing up a Tarama-like hypothesis (concerning the dependence on the time variable) with
the one of Colombini and Lerner (with respect to x). More precisely, they assumed a pointwise
log-Zygmund condition in time and a pointwise log-Lipschitz condition in space, uniformly with
respect to the other variable (see conditions (3.9) and (3.10) below). However, they had to restrict
themselves to the case of space dimension N = 1: as a matter of fact, a Tarama-type energy was
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somehow necessary to compensate the bad behaviour of the coe�cients with respect to t, but
it was not clear how to de�ne it in higher space dimensions. Again, localizing energy by use of
Littlewood-Paley decomposition and linking approximation parameter and dual variable together
lead to an estimate analogous to (3.6).

The aim of the present chapter is to extend the result of Colombini and Del Santo to any
dimension N ≥ 1. As just pointed out, the main di�culty was to de�ne a suitable energy related
to the solution. So, the �rst step is to pass from functions a(t, x) with low regularity modulus of
continuity, to more general symbols σa(t, x, ξ) (obviously related to the initial function a) satisfying
the same hypothesis in t and x, and then to consider paradi�erential operators associated to these
symbols. Nevertheless, positivity hypothesis on a (required for de�ning a strictly hyperbolic
problem) does not translate, in general, to positivity of the corresponding operator, which is
fundamental in obtaining energy estimates. At this point, paradi�erential calculus depending
on a parameter γ ≥ 1, as presented in chapter 1, comes into play and allows us to recover
positivity of the (new) paradi�erential operator associated to a. De�ning a localized energy
and an approximation of the coe�cients depending on the dual variable are, once again, basic
ingredients in closing estimates. Hence, in the end we will get an inequality similar to (3.6), for
any s ∈ ]0, 1[ .

The chapter is organized as follows.
First of all, we will present the work hypothesis for our strictly hyperbolic problem, and we

will state our main results.
A complete treatement about functions with low regularity modulus of continuity follows.

In particular, we will focus on log-Zymgund and log-Lipschitz conditions: by a broad use of
paradi�erential calculus, we will state properties of functions satisfying such hypothesis and of
the relative smoothed-in-time (by a convolution kernel) ones. Hence, we will pass to consider
more general symbols and the associated paradi�erential operators, for which we will develop also
a symbolic calculus and we will state a fundamental positivity estimate. This section is deeply
based on the theory developed in chapter 1

This having been done, we will be then ready to tackle the proof of our main result: we will
go back to the main ideas of paper [19]. First of all, taking advantage of a convolution kernel,
we will smooth out the coe�cients, but with respect to the time variable only. As a matter of
fact, low regularity in x will be compensated by considering paradi�erential operators associated
to our coe�cients. Then, we will decompose the solution u to the Cauchy problem for (3.1) into
dyadic blocks ∆νu, for which we will de�ne an approximate localized energy eν : the dependence
on the approximation parameter ε will be linked to the phase space localization, setting ε = 2−ν .
The piece of energy eν will be of Tarama type, but this time multiplication by functions will be
replaced by action of paradi�erential operators associated to them. A weighted summation of
these pieces will de�ne the total energy E(t) associated to u. The rest of the proof is classical:
we will di�erentiate E with respect to time and, using Gronwall's lemma, we will get a control
for it in terms of initial energy E(0) and external force Lu only.

3.2 Basic de�nitions and main result

This section is devoted to the presentation of our work setting and of our main result.
Let us consider the operator over [0, T0]× RN (for some T0 > 0 and N ≥ 1)

(3.7) Lu = ∂2
t u −

N∑
i,j=1

∂i (aij(t, x) ∂ju) ,

and let us suppose L to be strictly hyperbolic with bounded coe�cients, i.e. there exist two
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positive constants 0 < λ0 ≤ Λ0 such that, for all (t, x) ∈ Rt × RNx and all ξ ∈ RN , one has

(3.8) λ0 |ξ|2 ≤
N∑

i,j=1

aij(t, x) ξi ξj ≤ Λ0 |ξ|2 .

Moreover, let us suppose the coe�cients to be log-Zygmund-continuous in the time variable t,
uniformly with respect to x, and log-Lipschitz-continuous in the space variables, uniformly with
respect to t. This hypothesis reads as follow: there exists a constant K0 such that, for all τ > 0
and all y ∈ RN \ {0}, one has

sup
(t,x)
|aij(t+ τ, x) + aij(t− τ, x)− 2aij(t, x)| ≤ K0 τ log

(
1 +

1

τ

)
(3.9)

sup
(t,x)
|aij(t, x+ y)− aij(t, x)| ≤ K0 |y| log

(
1 +

1

|y|

)
.(3.10)

Now, let us state our main result, i.e. an energy estimate for the operator (3.7).

Theorem 3.1. Let us consider the operator L de�ned in (3.7), and let us suppose L to be strictly
hyperbolic with bounded coe�cients, i.e. relation (3.8) holds true. Moreover, let us suppose that
the aij's satisfy also conditions (3.9) and (3.10).

Then, for all �xed θ ∈ ]0, 1[ , there exist some β∗ > 0, some time T > 0 and some constant
C > 0 such that the following estimate,

sup
0≤t≤T

(
‖u(t, ·)‖H−θ+1−β∗t + ‖∂tu(t, ·)‖H−θ−β∗t

)
≤(3.11)

≤ C

(
‖u(0, ·)‖H−θ+1 + ‖∂tu(0, ·)‖H−θ +

∫ T

0
‖Lu(t, ·)‖H−θ−β∗t dt

)
,

holds true for all u ∈ C2([0, T ];H∞(RN )).

So, it's possible to control the Sobolev norms of solutions to (3.7) in terms of those of initial
data and of the external force only: the price to pay is a loss of derivatives, increasing (linearly)
in time.

3.3 Tools

The main tools we need to prove our statement all come from Fourier Analysis. We will broadly
make use of the methods developed in chapter 1: in particular, Littlewood-Paley decomposition,
logarithmic Sobolev spaces and paradi�erential calculus depending on parameters.

In this section we use the just mentioned techniques to study functions having low regularity
modulus of continuity. In particular, we will focus on log-Zygmund and log-Lipschitz functions:
dyadic decomposition allows us to get some of their properties. Moreover, we will analyse also
the convolution of a log-Zygmund function by a smoothing kernel.
Finally, taking advantage of paradi�erential calculus with parameters, we will consider general
symbols having such a low regularity in time and space variables. Under suitable hypothesis on
such a symbol, we will also get positivity estimates for the associated paradi�erential operator.

3.3.1 On log-Lipschitz and log-Zygmund functions

Let us now give the rigorous de�nitions of the modulus of continuity of funtions we are dealing
with, and state some of their properties.
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De�nition 3.2. A function f ∈ L∞(RN ) is said to be log-Lipschitz, and we write f ∈ LL(RN ),
if the quantity

|f |LL := sup
x∈RN

sup
0<|y|<1

 |f(x+ y) − f(x)|

|y| log
(

1 + 1
|y|

)
 < +∞ .

We de�ne ‖f‖LL := ‖f‖L∞ + |f |LL.

Let us de�ne also the space of log-Zygmund functions. We will give the general de�nition in
RN , even if one dimensional case will be the only relevant one for our purposes.

De�nition 3.3. A function g ∈ L∞(RN ) is said to be log-Zygmund, and we write g ∈ LZ(RN ),
if the quantity

|g|LZ := sup
x∈RN

sup
0<|y|<1

 |g(x+ y) + g(x− y) − 2 g(x)|

|y| log
(

1 + 1
|y|

)
 < +∞ .

We de�ne ‖g‖LZ := ‖g‖L∞ + |g|LZ .

Remark 3.4. Let us immediately point out that, by monotonicity of logarithmic function, we
can replace the factor log (1 + 1/|y|) in previous de�nitions with log (1 + γ + 1/|y|), for all pa-
rameters γ ≥ 1. As paradi�erential calculus with parameters will play a fundamental role in our
computations, it's convenient to perform such a change, and so does also in hypothesis (3.9) and
(3.10) of section 3.2.

Let us give a characterization of the space LZ. Recall that the space of Zygmund functions is
actually B1

∞,∞: following the same proof of this case (see e.g. [13]) one can prove next proposition.

Proposition 3.5. The space LZ(RN ) coincides with the logarithmic Besov space B1−log
∞,∞ , i.e. the

space of tempered distributions u such that

(3.12) sup
k≥0

(
2k (1 + k)−1 ‖∆ku‖L∞

)
< +∞ .

Proof. (i) Let us �rst consider a u ∈ B1−log
∞,∞ and take x and y ∈ RN , with |y| < 1. For all �xed

n ∈ N we can write:

u(x+ y) + u(x− y)− 2u(x) =
∑
k<n

(∆ku(x+ y) + ∆ku(x− y)− 2∆ku(x)) +

+
∑
k≥n

(∆ku(x+ y) + ∆ku(x− y)− 2∆ku(x)) .

First, we take advantage of the Taylor's formula up to second order to handle the former
terms; then, we use property (3.12). Hence we get

|u(x+ y) + u(x− y)− 2u(x)| ≤ C |y|2
∑
k<n

∥∥∇2∆ku
∥∥
L∞

+ 4
∑
k≥n
‖∆ku‖L∞

≤ C

|y|2∑
k<n

2k (k + 1) +
∑
k≥n

2−k(k + 1)


≤ C (n+ 1)

(
|y|2 2n + 2−n

)
.

Now, as |y| < 1, the choice n = 1 + [log2 (1/|y|)] (where with [%] we mean the greatest
positive integer less than or equal to %) completes the proof of the �rst part.
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(ii) Now, given a log-Zygmund function u, we want to estimate the L∞ norm of its localized
part ∆ku.

Let us recall that applying the operator ∆k is the same of the convolution with the inverse
Fourier transform of the function ϕ(2−k·), which we call hk. Now, hk(x) = 2kNh(2kx),
where we set h = F−1

ξ (ϕ). As ϕ is an even function, so does h; moreover we have∫
h(z) dz =

∫
F−1
ξ (ϕ)(z) dz = ϕ(ξ)|ξ=0 = 0 .

Therefore, we can write:

∆ku(x) = 2kN−1

∫
h(2ky) (u(x+ y) + u(x− y)− 2u(x)) dy ,

and noting that % 7→ % log (1 + γ + 1/%) is increasing over ]0,+∞[ completes the proof to
the second part of the proposition.

From de�nitions 3.2 and 3.3, it's obvious that LL(RN ) ↪→ LZ(RN ): proposition 3.3 of [22]
explains this property in terms of dyadic decomposition. We quote here its statement.

Proposition 3.6. There exists a constant C such that, for all a ∈ LL(RN ) and all integers k > 0,
we have

(3.13) ‖∆ka‖L∞ ≤ C (k + 1) 2−k ‖a‖LL .

Moreover, for all k ∈ N we have

‖a − Ska‖L∞ ≤ C (k + 1) 2−k ‖a‖LL(3.14)

‖Ska‖C0,1 ≤ C (k + 1) ‖a‖LL .(3.15)

Remark 3.7. Note that, again from proposition 3.3 of [22], property (3.15) is a characterization
of the space LL(RN ).

Using dyadic characterization of the space LZ and following the same ideas as those of the
proof of proposition 3.5, we can prove the following property. This time we consider a log-Zygmund
function a depending only on the time variable t, which is enough for our purposes, but the same
reasoning holds true also in higher dimensions.

Lemma 3.8. For all a ∈ LZ(R), there exists a constant C, depending only on the LZ norm of
a, such that, for all γ ≥ 1 and all 0 < |τ | < 1 one has

(3.16) sup
t∈R
|a(t+ τ)− a(t)| ≤ C |τ | log2

(
1 + γ +

1

|τ |

)
.

Proof. As done in proving proposition 3.5, for all n ∈ N we can write

a(t+ τ)− a(t) =
∑
k<n

(∆ka(t+ τ)−∆ka(t)) +
∑
k≥n

(∆ka(t+ τ)−∆ka(t)) ,

where, obviously, the localization in frequencies is performed in one dimension (with respect to
the time variable). For the former terms we use the mean value theorem, while for the latter ones
we use characterization (3.13); hence, we get

|a(t+ τ)− a(t)| ≤
∑
k<n

∥∥∥∥ ddt∆ka

∥∥∥∥
L∞
|τ | + 2

∑
k≥n
‖∆ka‖L∞

≤ C

n2 |τ | +
∑
k≥n

2−kk

 .
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The series in the right-hand side of the previous inequality can be bounded, up to a multiplicative
constant, by 2−nn; therefore

|a(t+ τ)− a(t)| ≤ C n
(
n |τ | + 2−n

)
,

and the choice n = 1 + [log2(1/|τ |)] completes the proof.

Now, given a log-Zygmund function a(t), we can regularize it by convolution. So, take an even
function ρ ∈ C∞0 (Rt), 0 ≤ ρ ≤ 1, whose support is contained in the interval [−1, 1] and such that∫
ρ(t)dt = 1. De�ne then the molli�er kernel

ρε(t) :=
1

ε
ρ

(
t

ε

)
∀ ε ∈ ]0, 1] .

We smooth out the function a setting, for all ε ∈ ]0, 1],

(3.17) aε(t) := (ρε ∗ a) (t) =

∫
Rs
ρε(t− s) a(s) ds .

The following proposition holds true.

Proposition 3.9. Let a be a log-Zygmund function. For all γ ≥ 1, there exist constants Cγ such
that

|aε(t)− a(t)| ≤ Cγ ‖a‖LZ ε log

(
1 + γ +

1

ε

)
(3.18)

|∂taε(t)| ≤ Cγ ‖a‖LZ log2

(
1 + γ +

1

ε

)
(3.19)

∣∣∂2
t aε(t)

∣∣ ≤ Cγ ‖a‖LZ
1

ε
log

(
1 + γ +

1

ε

)
.(3.20)

Proof. For �rst and third inequalities, the proof is the same as in [19]. We have to pay attention
only to (3.19). As ρ′ has null integral, the relation

∂taε(t) =
1

ε2

∫
|s|≤ε

ρ′
(s
ε

)
(a(t− s)− a(t)) ds

holds, and hence, taking advantage of (3.16), it implies

|∂taε(t)| ≤
C

ε2

∫
|s|≤ε

∣∣∣ρ′ (s
ε

)∣∣∣ |s| log2

(
1 + γ +

1

|s|

)
ds .

Observing that the function ν 7→ ν log2(1 + γ + 1/ν) is increasing in the interval [0, 1], and so
does in [0, ε], allows us to complete the proof.

3.3.2 Low regularity symbols and calculus

For the analysis of our strictly hyperbolic problem, it's important to pass from LZt−LLx functions
to more general symbols in variables (t, x, ξ) which have this same regularity in t and x.

We want to investigate properties of such symbols and of the associated operators. For rea-
sons which will appear clear in the sequel, we will have to take advantage not of the classical
paradi�erential calculus, but of the calculus with parameters. Therefore, we will allow also the
symbols to depend on a parameter γ ≥ 1.

So, let us take a symbol a(t, x, ξ, γ) of order m ≥ 0, such that a is log-Zygmund in t and
log-Lipschitz in x, uniformly with respect to the other variables. Then we smooth out a with
respect to time, as done in (3.17). As a matter of fact, paradi�erential calculus already implies
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a regularization of symbols with respect to x, so that we don't need to apply convolution also in
the space variable (as done, for instance, in chapter 2).

Next lemma provides us some estimates on classical symbols associated to aε (recall formula
(1.15)) and its time derivatives. For notation convenience, in what follows we drop out the
dependence of the construction on the admissible cut-o� function ψ (recall also remark 1.56).

Lemma 3.10. The classical symbols associated to aε and its time derivatives satisfy:∣∣∂αξ σaε∣∣ ≤ Cα (γ + |ξ|)m−|α|∣∣∣∂βx∂αξ σaε∣∣∣ ≤ Cβ,α (γ + |ξ|)m−|α|+|β|−1 log (1 + γ + |ξ|)∣∣∂αξ σ∂taε∣∣ ≤ Cα (γ + |ξ|)m−|α| log2

(
1 + γ +

1

ε

)
∣∣∣∂βx∂αξ σ∂taε∣∣∣ ≤ Cβ,α (γ + |ξ|)m−|α|+|β|−1 log (1 + γ + |ξ|) 1

ε∣∣∣∂αξ σ∂2t aε∣∣∣ ≤ Cα (γ + |ξ|)m−|α| log

(
1 + γ +

1

ε

)
1

ε∣∣∣∂βx∂αξ σ∂2t aε∣∣∣ ≤ Cβ,α (γ + |ξ|)m−|α|+|β|−1 log (1 + γ + |ξ|) 1

ε2
.

Proof. The �rst inequality is a quite easy computation.
For the second one, we have to observe that∫

∂iG(x− y, ξ)dx =

∫
∂iG(z, ξ)dz =

∫
F−1
η (ηi ψ(η, ξ)) dz = (ηi ψ(η, ξ))|η=0 = 0 .

So, we have

∂iσaε =

∫
∂iG(y, ξ) (aε(t, x− y, ξ, γ)− aε(t, x, ξ, γ)) dy ,

and from this, remembering lemma 1.53, we get the �nal control.
The third estimate immediately follows from the hypothesis on a and from (3.19).
Moreover, in the case of space derivatives, we can take advantage once again of the fact that

∂iG has null integral:

∂iσ∂taε =

∫
∂iG(x− y, ξ) ∂taε(t, y, ξ, γ) dy

=

∫
Rs

1

ε2
ρ′
(
t− s
ε

)(∫
RNy

∂iG(y, ξ) (a(s, x− y, ξ, γ)− a(s, x, ξ, γ)) dy

)
ds .

Hence, the estimate follows from the log-Lipschitz continuity hypothesis and from inequality (1.11)
about G.

Now we handle the ∂2
t aε term. The �rst estimate comes from (3.20), while for the second one

we argue as before:

∂iσ∂2t aε =

∫
∂iG(x− y, ξ) ∂2

t aε(t, y, ξ, γ) dy

=

∫
RNy

∂iG(x− y, ξ) 1

ε3

(∫
Rs
ρ′′
(
t− s
ε

)
(a(s, y, ξ, γ)− a(s, x, ξ, γ)) ds

)
dy

=
1

ε3

∫
Rs
ρ′′
(
t− s
ε

)(∫
RNy

∂iG(y, ξ) (a(s, x− y, ξ, γ)− a(s, x, ξ, γ)) dy

)
ds ,

and the thesis follows again from log-Lipschitz continuity condition and from (1.11).
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Note that �rst and second inequalities are ful�lled also by the symbol a (not smoothed with
respect to the time variable).

Now let us quote some basic facts on symbolic calculus, which follow from previous lemma
and the general theory developed in section 1.5 (recall in particular theorems 1.61 and 1.62).

Proposition 3.11. (i) Let a be a symbol of order m which is LL in the x variable. Then Ta
maps Hs+α log

γ into Hs−m+α log
γ .

(ii) Let us take two symbols a, b of order m and m′ respectively. Suppose that a, b are LL in the
x variable. The composition of the associated operators can be approximated by the symbol
associated to the product a b, up to a remainder term:

Ta ◦ Tb = Tab + R .

The remainder operator R maps Hs+α log
γ into Hs−m−m′+1+(α+1) log

γ (recall de�nition (1.9)).

(iii) Let a be a symbol of order m which is LL in the x variable. The adjoint (over L2) operator
of Ta is, up to a remainder operator, Ta. The remainder operator maps Hs+α log

γ into

H
s−m+1+(α+1) log
γ .

Let us end this subsection stating a basic positivity estimate. In this situation, paradi�erential
calculus with parameters comes into play.

Proposition 3.12. Let a(t, x, ξ, γ) be a symbol of order 2m, which is log-Lipschitz continuous in
the x variable and such that

Re (a(t, x, ξ, γ)) ≥ λ0 (γ + |ξ|)2m .

Then, there exists a constant λ1, depending only on |a|LLx and on λ0 (so, not on γ), such
that, for γ large enough, one has

Re (Tau, u)L2 ≥ λ1 ‖u‖2Hm
γ
.

Proof. Going along the lines of the proof to theorem 1.63 (see [52]) and keeping in mind lemma
3.10, we arrive to the following estimate, analogous to (1.17):

λ0

2
‖u‖2Hm

γ
≤ Re (Tau, u)L2 + C ‖u‖2

H
(m−1)+(δ+1) log
γ

,

where the constant C depends only on |a|LLx . Now, as

lim
γ→+∞

log2(δ+1) (1 + γ + |ξ|)
(γ2 + |ξ|2)

= 0 ,

for γ ≥ 1 large enough we can absorb the last term of the right-hand side into the left-hand side
of the previous relation.

Remark 3.13. Let us note the following fact, which comes again from theorem 1.63. If the
positive symbol a has low regularity in time and we smooth it by convolution with respect to
this variable, we obtain a family (aε)ε of positive symbols, with same constant λ0. Now, all the
paradi�erential operators associated to these symbols will be positive operators, uniformly in ε:
i.e. the constant λ1 of previous inequality can be choosen independently of ε.

Let us observe that previous proposition generalizes corollary 3.12 of [23] (stated for the
paraproduct by a positive LL function) to the more general case of a paradi�erential operator
with a strictly positive symbol of order m.

Finally, thanks to proposition 3.11 about the remainder operator for the adjoint, we have the
following corollary, which turns out to be fundamental in our energy estimates.
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Corollary 3.14. Let a be a positive symbol of order 1 and suppose that a is LL in the x variable.
Then there exists γ ≥ 1, depending only on the symbol a, such that

‖Tau‖L2 ∼ ‖∇u‖L2

for all u ∈ H1(RN ).

Proof. Obviously, ‖Tau‖L2 ≤ ‖∇u‖L2 , because a is of order 1.
In order to prove the opposite inequality, we use proposition 3.11 and we write

‖Tau‖L2 = ((Ta)
∗Tau, u)L2 = (Ta2u, u) + (Ru, u) ,

where R is a remainder operator with symbol equal to ∂x∂ξa, and so it has order m − 1 + log.
Hence, applying proposition 3.12 allows us to conclude the proof.

3.4 Proof of the energy estimate for L

Finally, we are able to tackle the proof of theorem 3.1. We argue in a stadard way: �rst of all,
we de�ne an energy associated to a solution of equation (3.7), and then we prove estimates on
its time derivative in terms of the energy itself. In the end, we will close the estimates thanks to
Gronwall's lemma.

The key idea to the proof is to split the total energy into localized components eν , each one
of them associated to the dyadic block ∆νu, and then to put all these pieces together (see also
[22] and [19]). Let us see the proof into details.

3.4.1 Approximate and total energy

Let us �rst regularize coe�cients aij in the time variable by convolution, as done in (3.17): as
already pointed out, due to the use of paradi�erential calculus, we don't need to perform a
regularization of our coe�cients also in space.

Then, inspired by Tarama's energy (see [56]), let us de�ne the 0-th order symbol

αε(t, x, ξ) :=
(
γ2 + |ξ|2

)−1/2

γ2 +
∑
i,j

aij,ε(t, x) ξi ξj

1/2

.

We take ε = 2−ν (see also [22] and [19]), and (for notation convenience) we will miss out the ε.
Before going on, let us �x a real number γ ≥ 1, which will depend only on λ0 and on the

supi,j ‖aij‖LLx , such that (see corollary 3.14)

(3.21) ‖Tα−1/2 w‖L2 ≥
λ0

2
‖w‖L2 and

∥∥∥Tα1/2(γ2+|ξ|2)1/2 w
∥∥∥
L2
≥ λ0

2
‖∇w‖L2

for all w ∈ H∞. Let us remark that the choice of γ is equivalent to the choice of the parameter
µ in (1.8) and from now on, we will consider paraproducts starting from this µ, according to
de�nition (1.8), even if we will omit it in the notations.

Consider in (3.7) a function u ∈ C2([0, T0];H∞). We want to get energy estimate for u. We
rewrite the equation using paraproduct operators by the coe�cients aij :

∂2
t u =

∑
i,j

∂i (aij ∂ju) + Lu =
∑
i,j

∂i
(
Taij∂ju

)
+ L̃u,

where L̃u = Lu+
∑

i,j ∂i
(
(aij − Taij )∂ju

)
. Let us apply operator ∆ν : we get

(3.22) ∂2
t uν =

∑
i,j

∂i
(
Taij ∂juν

)
+
∑
i,j

∂i
([

∆ν , Taij
]
∂ju
)

+ (L̃u)ν ,



58 Chapter 3. Non-Lipschitz coe�cients: N -D case

where uν = ∆νu, (L̃u)ν = ∆ν(L̃u) and
[
∆ν , Taij

]
is the commutator between ∆ν and the para-

multiplication by aij .
Now, following again the original idea of Tarama in [56], but replacing product with symbols

by action of paradi�erential operators, we set

vν(t, x) := Tα−1/2 ∂tuν − T∂t(α−1/2) uν

wν(t, x) := Tα1/2(γ2+|ξ|2)1/2 uν

zν(t, x) := uν .

These functions are relevant in our analysis, because on the one hand they are strictly related to
the Sobolev norms of ∂tu and u (see also inequalities (3.25) and (3.26) below), and on the other
hand the presence of the weights (depending on α) will produce fundamental cancellations in our
computations.

Now we can de�ne the approximate energy associated to the ν-th component of u (as already
done in [19]):

(3.23) eν(t) := ‖vν(t)‖2L2 + ‖wν(t)‖2L2 + ‖zν(t)‖2L2 .

Remark 3.15. Let us note that, thanks to hypothesis (3.8) and our choice of the frequence µ
from which de�ning the paraproduct, we have that ‖wν(t)‖2L2 ∼ ‖∇uν‖2L2 ∼ 22ν ‖uν‖2L2 .

Now, we �x a θ ∈ ]0, 1[ , as required in hypothesis, and we take a β > 0 to be chosen later; we
can de�ne the total energy associated to the solution u to be the quantity

(3.24) E(t) :=
∑
ν≥0

e−2β(ν+1)t 2−2νθ eν(t) .

It's not di�cult to prove (see also inequality (3.28) below) that there exist constants Cθ and
C ′θ, depending only on the �xed θ, for which one has:

(E(0))1/2 ≤ Cθ (‖∂tu(0)‖H−θ + ‖u(0)‖H−θ+1)(3.25)

(E(t))1/2 ≥ C ′θ (‖∂tu(t)‖H−θ−β∗t + ‖u(t)‖H−θ+1−β∗t) ,(3.26)

where we have set β∗ = β (log 2)−1.

3.4.2 Time derivative of the approximate energy

We want to �nd an estimate on time derivative of the energy in order to get a control on it by
Gronwall's lemma. Let us start analysing each term of (3.23).

zν term

For the third term we have:

(3.27)
d

dt
‖zν(t)‖2L2 = 2 Re (uν , ∂tuν)L2 .

Now, we have to control the term ∂tuν : using positivity of operator Tα−1/2 , we have

(3.28) ‖∂tuν‖L2 ≤ C ‖Tα−1/2∂tuν‖L2 ≤ C
(
‖vν‖L2 +

∥∥∥T∂t(α−1/2)uν

∥∥∥
L2

)
≤ C (eν)1/2 .

So, we get the estimate:

(3.29)
d

dt
‖zν(t)‖2L2 ≤ C eν(t) .
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vν term

Straightforward computations show that

∂tvν(t, x) = Tα−1/2∂2
t uν − T∂2t (α−1/2)uν .

Therefore, putting relation (3.22) in the previous one, we easily get:

d

dt
‖vν(t)‖2L2 = − 2 Re

(
vν , T∂2t (α−1/2)uν

)
L2

+(3.30)

+ 2
∑
i,j

Re
(
vν , Tα−1/2∂i

(
Taij ∂juν

))
L2 +

+ 2
∑
i,j

Re
(
vν , Tα−1/2∂i

[
∆ν , Taij

]
∂ju
)
L2 +

+2 Re
(
vν , Tα−1/2

(
L̃u
)
ν

)
L2
.

Obviously, we have

(3.31)
∣∣∣2 Re

(
vν , Tα−1/2

(
L̃u
)
ν

)
L2

∣∣∣ ≤ C (eν)1/2
∥∥∥(L̃u)

ν

∥∥∥
L2
,

while from lemma 3.10 we immediately get∣∣∣2 Re
(
vν , T∂2t (α−1/2)uν

)
L2

∣∣∣ ≤ C ‖vν‖L2 log

(
1 + γ +

1

ε

)
1

ε
‖uν‖L2(3.32)

≤ C (ν + 1) eν ,

where we have used the fact that ε = 2−ν . The other two terms of (3.30) will be treated later.

wν term

We now derive wν with respect to the time variable: thanks to a broad use of symbolic calculus,
we get the following sequence of equalities:

d

dt
‖wν‖2L2 = 2Re

(
T∂t(α1/2)(γ2+|ξ|2)1/2uν , wν

)
L2

+ 2Re
(
Tα1/2(γ2+|ξ|2)1/2∂tuν , wν

)
L2

(3.33)

= 2 Re
(
Tα(γ2+|ξ|2)1/2T−∂t(α−1/2)uν , wν

)
L2

+ 2 Re (R1uν , wν)L2 +

+ 2 Re
(
Tα(γ2+|ξ|2)1/2Tα−1/2∂tuν , wν

)
L2

+ 2 Re (R2∂tuν , wν)L2

= 2 Re
(
vν , Tα(γ2+|ξ|2)1/2wν

)
L2

+ 2 Re (vν , R3wν)L2 +

+ 2 Re (R1uν , wν)L2 + 2 Re (R2∂tuν , wν)L2

= 2 Re
(
vν , Tα−1/2Tα3/2(γ2+|ξ|2)1/2wν

)
L2

+ 2 Re (vν , R4wν)L2 +

+ 2 Re (vν , R3wν)L2 + 2 Re (R1uν , wν)L2 + 2 Re (R2∂tuν , wν)L2

= 2 Re
(
vν , Tα−1/2Tα2(γ2+|ξ|2)uν

)
L2 +

+ 2 Re (vν , Tα−1/2R5uν)L2 + 2 Re (vν , R4wν)L2 +

+ 2 Re (vν , R3wν)L2 + 2 Re (R1uν , wν)L2 + 2 Re (R2∂tuν , wν)L2 .

The important fact is that remainder terms are not bad and can be controlled in terms of
approximate energy. As a matter of facts, taking advantage of proposition 3.11 and lemma 3.10,
we get the following estimates.
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• R1 has principal symbol equal to ∂ξ
(
α(γ2 + |ξ|2)1/2

)
∂x∂t(α

−1/2), so

|2 Re (R1uν , wν)L2 | ≤ C (ν + 1) eν .(3.34)

• The principal symbol of R2 is instead ∂ξ
(
α(γ2 + |ξ|2)1/2

)
∂x(α−1/2), so, remembering also

the control on ‖∂tuν‖L2 , we have:

(3.35) |2 Re (R2∂tuν , wν)L2 | ≤ C ν (eν)1/2 ‖wν‖L2 ≤ C (ν + 1) eν .

• Symbolic calculus tells us that the principal part of R3 is given by ∂ξ∂x
(
α(γ2 + |ξ|2)1/2

)
,

therefore

(3.36) |2 Re (vν , R3wν)L2 | ≤ C ‖vν‖L2 ν ‖wν‖L2 ≤ C (ν + 1) eν .

• Now, R4 has ∂ξ
(
α−1/2

)
∂x
(
α3/2(γ2 + |ξ|2)1/2

)
as principal symbol, so

(3.37) |2 Re (vν , R4wν)L2 | ≤ C ‖vν‖L2 ν ‖wν‖L2 ≤ C (ν + 1) eν .

• Finally, R5 is given, at the higher order, by the product of symbols ∂ξ
(
α3/2(γ2 + |ξ|2)1/2

)
and ∂x

(
α1/2(γ2 + |ξ|2)1/2

)
, and so we get

(3.38)
∣∣2 Re (vν , Tα−1/2R5uν)L2

∣∣ ≤ C ‖vν‖L2 2ν ν ‖uν‖L2 ≤ C (ν + 1) eν .

Principal part of the operator L

Now, thanks to previous computations, it's natural to pair up the second term of (3.30) with the
�rst one of the last equality of (3.33). As α is a symbol of order 0, we have∣∣∣∣∣∣2 Re

vν , Tα−1/2

∑
i,j

∂i
(
Taij∂juν

)
L2

+ 2 Re
(
vν , Tα−1/2Tα2(γ2+|ξ|2)uν

)
L2

∣∣∣∣∣∣ ≤ C ‖vν‖L2 ‖ζν‖L2 ,

where we have set

(3.39) ζν := Tα2(γ2+|ξ|2)uν +
∑
i,j

∂i
(
Taij ∂juν

)
=
∑
ij

Taij,εξiξj+γ2uν + ∂i
(
Taij ∂juν

)
.

We remark that
∂i
(
Taij ∂juν

)
= T∂iaij∂juν − Taijξiξjuν ,

where, with a little abuse of notations, we have written the derivative ∂iaij meaning that we are
taking the derivative of the classical symbol associated to aij .

First of all, we have that∥∥T∂iaij∂juν∥∥L2 ≤ ‖Sµ ∂iaij‖L∞ ‖Sµ∂juν‖L2 +
∑

k≥µ+1

‖∇Sk−1aij‖L∞ ‖∆k∇uν‖L2(3.40)

≤ C (µ+ 1)

(
sup
i,j
‖aij‖LLx

)
‖∇uν‖L2 +

+
∑

k≥µ+1 , k∼ν
(k + 1)

(
sup
i,j
‖aij‖LLx

)
‖∇∆kuν‖L2

≤ Cµ (ν + 1)

(
sup
i,j
‖aij‖LLx

)
(eν)1/2 ,
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where µ is the parameter �xed in (1.8) and we have also used (3.15). Next, we have to control
the term

Taij,εξiξj+γ2uν − Taijξiξjuν = T(aij,ε−aij)ξiξjuν + Tγ2uν .

It's easy to see that ∥∥∥T(aij,ε−aij)ξiξjuν

∥∥∥
L2
≤ C ε log

(
1 +

1

ε

)
2ν ‖∇uν‖L2 ,

and so, keeping in mind that ε = 2−ν ,

(3.41)
∥∥∥T(aij,ε−aij)ξiξj+γ2uν

∥∥∥
L2
≤ Cγ (ν + 1) (eν)1/2 .

Therefore, from (3.40) and (3.41) we �nally get

(3.42)

∣∣∣∣∣∣2Re

vν , Tα−1/2

∑
i,j

∂i
(
Taij∂juν

)
L2

+ 2Re
(
vν , Tα−1/2Tα2(γ2+|ξ|2)uν

)
L2

∣∣∣∣∣∣ ≤ C(ν + 1)eν ,

where the constant C depends on the log-Lipschitz norm of coe�cients aij of the operator L and
on the �xed parameters µ and γ.

To sum up, from inequalities (3.29), (3.31), (3.32) and (3.42) and from estimates of remainder
terms (3.34)-(3.38), we can conclude that

d

dt
eν(t) ≤ C1 (ν + 1) eν(t) + C2 (eν(t))1/2

∥∥∥(L̃u)
ν

(t)
∥∥∥
L2

+(3.43)

+

∣∣∣∣∣∣2
∑
i,j

Re
(
vν , Tα−1/2∂i

[
∆ν , Taij

]
∂ju
)
L2

∣∣∣∣∣∣ .
3.4.3 Commutator term

We want to estimate the quantity∣∣∣∣∣∣
∑
i,j

Re
(
vν , Tα−1/2∂i

[
∆ν , Taij

]
∂ju
)
L2

∣∣∣∣∣∣ .
We start by remarking that

[∆ν , Taij ]w = [∆ν , Sµa]Sµw +
+∞∑

k=µ+1

[∆ν , Sk−1aij ] ∆kw,

where µ is �xed, as usual. In fact ∆ν and ∆k commute so that

∆ν(SµaijSµw)− Sµaij(Sµ∆νw) = ∆ν(SµaijSµw)− Sµaij∆ν(Sµw),

and similarly

∆ν(Sk−1aij∆kw)− Sk−1aij∆k(∆νw) = ∆ν(Sk−1aij∆kw)− Sk−1aij∆ν(∆kw).

Consequently, taking into account also that Sk and ∆k commute with ∂j , we have

∂i
(
[∆ν , Taij ] ∂ju

)
= ∂i ([∆ν , Sµaij ] ∂j(Sµu)) + ∂i

 +∞∑
k=µ+1

[∆ν , Sk−1aij ] ∂j(∆ku)

 .
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Let's consider �rst the term
∂i ([∆ν , Sµaij ] ∂j(Sµu)) .

Looking at the support of the Fourier transform of [∆ν , Sµaij ] ∂j(Sµu), we have that it is contained
in {|ξ| ≤ 2µ+2} and moreover [∆ν , Sµaij ] ∂j(Sµu) is identically 0 if ν ≥ µ + 3. From Bernstein's
inequality and theorem 35 of [17] we have that

‖∂i ([∆ν , Sµaij ] ∂j(Sµu))‖L2 ≤ Cµ

(
sup
i,j
‖aij‖LLx

)
‖Sµu‖L2 ,

hence, putting all these facts together, we have∣∣∣∣∣∣
+∞∑
ν=0

e−2β(ν+1)t 2−2νθ
∑
ij

2 Re

(
vν , Tα−1/2 ∂i ([∆ν , Sµaij ]∂j(Sµu) )

)
L2

∣∣∣∣∣∣ ≤(3.44)

≤ Cµ

(
sup
i,j
‖aij‖LLx

)
µ+2∑
ν=0

e−2β(ν+1)t 2−2νθ‖vν‖L2

(
µ∑
h=0

‖uh‖L2

)

≤ Cµ

(
sup
i,j
‖aij‖LLx

)
eβ(µ+3)T 2(µ+2)θ

µ+2∑
ν=0

e−β(ν+1)t 2−νθ‖vν‖L2 ·

·
µ+2∑
h=0

e−β(h+1)t 2−hθ‖uh‖L2

≤ Cµ

(
sup
i,j
‖aij‖LLx

)
eβ(µ+3)T 2(µ+2)θ

µ+2∑
ν=0

e−2β(ν+1)t 2−2νθeν(t) .

Next, let's consider

∂i

 +∞∑
k=µ+1

[∆ν , Sk−1aij ] ∂j(∆ku)

 .

Looking at the support of the Fourier transform, it is possible to see that

[∆ν , Sk−1aij ] ∂j(∆ku)

is identically 0 if |k − ν| ≥ 3. Consequently the sum over k is reduced to at most 5 terms:
∂i([∆ν , Sν−3aij ] ∂j(∆ν−2u)) + · · · + ∂i([∆ν , Sν+1aij ] ∂j(∆ν+2u)), each of them having the sup-
port of the Fourier transform contained in {|ξ| ≤ 2ν+1}. Let's consider one of these terms,
e.g. ∂i([∆ν , Sν−1aij ] ∂j(∆νu)), the computation for the other ones being similar. We have, from
Bernstein's inequality,

‖∂i ([∆ν , Sν−1aij ] ∂j(∆νu))‖L2 ≤ C 2ν ‖[∆ν , Sν−1aij ] ∂j(∆νu)‖L2 .

On the other hand, using theorem 35 of [17] again, we have:

‖[∆ν , Sν−1aij ]∂j(∆νu)‖L2 ≤ C ‖∇Sν−1aij‖L∞ ‖∆νu‖L2 ,

where C does not depend on ν. Consequently, using also (3.15), we deduce

‖∂i ([∆ν , Sν−1aij ] ∂j(∆νu))‖L2 ≤ C 2ν (ν + 1)

(
sup
i,j
‖aij‖LLx

)
‖∆νu‖L2 .

From this last inequality and similar ones for the other terms, it is easy to obtain that∣∣∣∣∣∣
∑
i,j

Re

vν , Tα−1/2∂i

 +∞∑
k=µ+1

[∆ν , Sk−1aij ] ∂j(∆ku)


L2

∣∣∣∣∣∣ ≤ C

(
sup
i,j
‖aij‖LLx

)
(ν + 1) eν(t)
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and then∣∣∣∣∣∣
+∞∑
ν=0

e−2β(ν+1)t 2−2νθ
∑
ij

2 Re

vν , Tα−1/2∂i

 +∞∑
k=µ+1

[∆ν , Sk−1aij ] ∂j(∆ku)


L2

∣∣∣∣∣∣ ≤(3.45)

≤ C

(
sup
i,j
‖aij‖LLx

)
+∞∑
ν=0

(ν + 1) e−2β(ν+1)t 2−2νθ eν(t) .

Collecting the informations from (3.44) and (3.45), we obtain∣∣∣∣∣∣
+∞∑
ν=0

e−2β(ν+1)t 2−2νθ
∑
ij

2 Re
(
vν , Tα−1/2∂i

[
∆ν , Taij

]
∂ju
)
L2

∣∣∣∣∣∣ ≤(3.46)

≤ C3

+∞∑
ν=0

(ν + 1) e−2β(ν+1)t 2−2νθ eν(t) ,

where C3 depends on µ, supi,j ‖aij‖LLx , on θ and on the product β T .

3.4.4 Final estimate

From (3.43) and (3.46) we get

d

dt
E(t) ≤ (C1 + C3 − 2β)

+∞∑
ν=0

(ν + 1) e−2β(ν+1)t 2−2νθ eν(t) +

+C2

+∞∑
ν=0

e−2β(ν+1)t 2−2νθ (eν(t))1/2
∥∥∥(L̃u(t)

)
ν

∥∥∥
L2

≤ (C1 + C3 − 2β)

+∞∑
ν=0

(ν + 1) e−2β(ν+1)t 2−2νθ eν(t) +

+C2

+∞∑
ν=0

e−2β(ν+1)t 2−2νθ (eν(t))1/2

∥∥∥∥∥∥
∑

i,j

∂i
(
(aij − Taij )∂ju

)
ν

∥∥∥∥∥∥
L2

+

+C2

+∞∑
ν=0

e−2β(ν+1)t 2−2νθ (eν(t))1/2 ‖(Lu(t))ν‖L2 .

Now, applying Hölder inequality for series implies

+∞∑
ν=0

e−2β(ν+1)t 2−2νθ (eν(t))1/2

∥∥∥∥∥∥
∑

i,j

∂i
(
(aij − Taij )∂ju

)
ν

∥∥∥∥∥∥
L2

≤

≤

(
+∞∑
ν=0

(ν + 1) e−2β(ν+1)t 2−2νθ eν(t)

)1/2

·

·

+∞∑
ν=0

e−2β(ν+1)t 2−2νθ (ν + 1)−1

∥∥∥∥∥∥
∑

i,j

∂i
(
(aij − Taij )∂ju

)
ν

∥∥∥∥∥∥
2

L2

1/2

,
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and, by de�nition, one has+∞∑
ν=0

e−2β(ν+1)t 2−2νθ (ν + 1)−1

∥∥∥∥∥∥
∑

i,j

∂i
(
(aij − Taij )∂ju

)
ν

∥∥∥∥∥∥
2

L2

1/2

=

=

∥∥∥∥∥∥
∑
i,j

∂i
(
(aij − Taij )∂ju

)∥∥∥∥∥∥
H−θ−β

∗t− 1
2 log

.

From proposition 3.4 of [23] we have that

(3.47)

∥∥∥∥∥∥
∑
i,j

∂i
(
(aij − Taij )∂ju

)∥∥∥∥∥∥
H−s−

1
2 log

≤ C

(
sup
i,j
‖aij‖LLx

)
‖u‖

H1−s+1
2 log ,

with C uniformly bounded for s in a compact set of ]0, 1[ . Consequently,+∞∑
ν=0

e−2β(ν+1)t 2−2νθ (ν + 1)−1

∥∥∥∥∥∥
∑

i,j

∂i
(
(aij − Taij )∂ju

)
ν

∥∥∥∥∥∥
2

L2

1/2

≤

≤ C

(
sup
i,j
‖aij‖LLx

)
‖u‖

H1−θ−β∗t+1
2 log

≤ C

(
+∞∑
ν=0

(ν + 1) e−2β(ν+1)t 2−2νθ eν(t)

)1/2

,

and �nally

+∞∑
ν=0

e−2β(ν+1)t 2−2νθ (eν(t))1/2

∥∥∥∥∥∥
∑

i,j

∂i
(
(aij − Taij )∂ju

)
ν

∥∥∥∥∥∥
L2

≤

≤ C4

+∞∑
ν=0

(ν + 1)e−2β(ν+1)t 2−2νθ eν(t) ,

with C4 uniformly bounded for β∗t + θ in a compact set of ]0, 1[ . So, if we take β > 0 and
T ∈ ]0, T0] such that (recall that β∗ = β(log 2)−1)

(3.48) β∗ T = δ < 1− θ ,

we have 0 < θ ≤ θ + β∗t ≤ θ + δ < 1. Therefore we obtain

d

dt
E(t) ≤ (C1 + C4C2 + C3 − 2β)

+∞∑
ν=0

(ν + 1) e−2β(ν+1)t 2−2νθ eν(t) +

+C2

+∞∑
ν=0

e−2β(ν+1)t 2−2νθ (eν(t))1/2 ‖(Lu(t))ν‖L2 .

Now, taking β large enough such that C1 + C4C2 + C3 − 2β ≤ 0, which corresponds to take
T > 0 small enough, we �nally arrive to the estimate

d

dt
E(t) ≤ C2 (E(t))1/2 ‖Lu(t)‖H−θ−β∗t ;

applying Gronwall's lemma and keeping in mind (3.25) and (3.26) give us estimate (3.11).
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Remark 3.16. Let us point out that condition (3.48) gives us a condition on the lifespan T of
a solution to the Cauchy problem for (3.7). It depends on θ ∈ ]0, 1[ and on β∗ > 0, hence on
constants C1 . . . C4. Going after the guideline of the proof, one can see that, in the end, the time
T depends only on the index θ, on the parameter µ de�ned by conditions (3.21), on the constants
λ0 and Λ0 de�ned by (3.8) and on the quantities supi,j ‖aij‖LZt and supi,j ‖aij‖LLx .
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Chapter 4

The well-posedness issue in endpoint

Besov spaces

In the recent paper [28], Danchin proved well-posedness for the density-dependent incompressible
Euler system in Besov spaces Bs

p,r embedded in the set of globally Lipschitz continuous functions,
for all p ∈ ]1,+∞[ .

In this chapter we will focus on the limit case Bs
∞,r for which condition (1.1) still holds. This

functional framework contains also the particular cases of Hölder spaces C1,α and of the endpoint
Besov space B1

∞,1.
In this setting and under non-vacuum assumption, we will establish the local well-posedness

and a continuation criterion in the spirit of that of Beale, Kato and Majda (see also [3]). Moreover,
in the last part of the chapter we will give lower bounds for the lifespan of a solution, pointing
out that, in dimension two, it tends to in�nity when the initial density tends to be a constant.

4.1 Introduction and main results

This chapter is, in a certain sense, the continuation of the recent paper [28] by Danchin, devoted
to the density-dependent incompressible Euler equations:

(4.1)


∂tρ + u · ∇ρ = 0

ρ (∂tu + u · ∇u) + ∇Π = ρ f

div u = 0 .

Recall that the above equations describe the evolution of the density ρ = ρ(t, x) ∈ R+ and of
the velocity �eld u = u(t, x) ∈ RN of a non-homogeneous inviscid incompressible �uid. The time
dependent vector-�eld f stands for a given body force and the gradient of the pressure ∇Π is the
Lagrangian multiplier associated to the divergence free constraint over the velocity. We assume
that the space variable x belongs to the whole RN with N ≥ 2.

There is an important literature devoted to the standard incompressible Euler equations, that
is to the case where the initial density is a positive constant, an assumption which is preserved
during the evolution. In contrast, not so many works have been devoted to the study of (4.1) in
the nonconstant density case. In the situation where the equations are considered in a suitably
smooth bounded domain of R2 or R3, the local well-posedness issue has been investigated by H.
Beirão da Veiga and A. Valli in [5], [6], [4] for data with high enough Hölder regularity. In [27]
Danchin proved well-posedness in Hs with s > 1 + N/2 and studied the inviscid limit in this

framework. Data in the limit Besov space B
N
2

+1

2,1 were also considered.
As for the standard incompressible Euler equations, any functional space embedded in the set

C0,1 of bounded globally Lipschitz functions is a candidate for the study of the well-posedness
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issue. This stems from the fact that system (4.1) is a coupling between transport equations.
Hence preserving the initial regularity requires the velocity �eld to be at least locally Lipschitz
with respect to the space variable. As a matter of fact, the classical Euler equations have been
shown to be well posed in any Besov space Bs

p,r embedded in C0,1 (see [2], [13], [54], [63] and
the references therein), a property which holds if and only if indices s ∈ R and (p, r) ∈ [1,+∞]2

satisfy condition (1.1), which we recall here:

s > 1 +
N

p
or s = 1 +

N

p
and r = 1 .

In [28], Danchin extended the results of the homogeneous case to (4.1) (see also [34] for a
similar study in the periodic framework). Under condition (1.1) with 1 < p < +∞ he established
the local well-posedness for any data (ρ0, u0) in Bs

p,r such that ρ0 is bounded away from zero.
However, he didn't treat the limit case p = +∞ unless supposing the initial density to be a small
perturbation of a constant density state, a technical artifact due to the method he used to handle
the pressure term.

In fact, in contrast to the classical Euler equations, computing the gradient of the pressure
involves an elliptic equation with nonconstant coe�cients, namely

(4.2) div (a∇Π) = divF , with F := f − u · ∇u and a := 1/ρ .

Getting appropriate a priori estimates given that we expect the function ρ to have exactly the
same regularity as ∇Π is the main di�culty. In the L2 framework and, more generally, in the
Sobolev framework Hs, this may be achieved by means of a classical energy method. This is also
quite straightforward in the Bs

p,r framework if a is a small perturbation of some positive constant
function a, as the above equation may be rewritten

a∆Π = divF + div ( (a− a)∇Π ) .

Now, if a − a is small enough, then one may take advantage of regularity results for the
Laplace operator in order to �absorb� the last term.

If 1 < p < +∞ and a is bounded away from zero, then it turns out that combining energy
arguments similar to those of the Hs case and a harmonic analysis lemma allows to handle the
elliptic equation (4.2). This is the approach Danchin used in [28], but it fails for the limit cases
p = 1 and p = +∞.

In this chapter, we propose another method for proving a priori estimates for (4.2). In addition
to being simpler, this will enable us to treat all the cases p ∈ [1,+∞] indistinctly whenever the
density is bounded away from zero. Our approach relies on the fact that the pressure Π satis�es
(here we take f ≡ 0 to simplify)

(4.3) ∆Π = − ρdiv (u · ∇u) + ∇ (log ρ) · ∇Π .

Obviously, the last term is of lower order. In addition, the classical L2 theory ensures that, if
there exists some positive constant m such that a(t, x) ≥ m for all (t, x) ∈ [0, T ]× RN , then

m ‖∇Π(t, ·)‖L2(RN ) ≤ ‖(u · ∇u)(t, ·)‖L2(RN ) for all t ∈ [0, T ] .

Therefore interpolating between the high regularity estimates for the Laplace operator and the
L2 estimate allows to absorb the last term in the right-hand side of (4.3).

In the rest of the chapter, we focus on the case p = +∞ as it is the only de�nitely new one
and as it covers both Hölder spaces with exponent greater than 1 and the limit space B1

∞,1, which
is the largest one in which one may expect to get well-posedness.
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Before going further into the description of our results, let us introduce a few notation.

• Throughout the chapter, C stands for a harmless �constant� the meaning of which depends
on the context.

• If a = (a1, a2) and b = (b1, b2), then we denote a ∧ b := a1b2 − a2b1 .

• The vorticity Ω associated to a vector-�eld u over RN is the matrix valued function with
entries

Ωij := ∂ju
i − ∂iu

j .

If N = 2 then the vorticity may be identi�ed with the scalar function ω := ∂1u
2− ∂2u

1 and
if N = 3 with the vector �eld ∇× u.

• For all Banach space X and interval I of R, we denote by C(I;X) (resp. Cb(I;X)) the set of
continuous (resp. continuous bounded) functions on I with values in X. If X has predual
X∗, then we denote by Cw(I;X) the set of bounded measurable functions f : I → X such
that for any φ ∈ X∗, the function t 7→ 〈f(t), φ〉X×X∗ is continuous over I.

• For p ∈ [1,+∞], the notation Lp(I;X) stands for the set of measurable functions on I with
values in X such that t 7→ ‖f(t)‖X belongs to Lp(I). In the case I = [0, T ] we alternately
use the notation LpT (X).

• We denote by Lploc(I;X) the set of those functions de�ned on I and valued in X which,
restricted to any compact subset J of I, are in Lp(J ;X).

• Finally, for any real valued function a over RN , we denote

a∗ := inf
x∈RN

a(x) and a∗ := sup
x∈RN

a(x) .

Let us now state our main well-posedness result in the case of a �nite energy initial velocity
�eld.

Theorem 4.1. Let r be in [1,+∞] and s ∈ R satisfy s > 1 if r 6= 1 and s ≥ 1 if r = 1.
Let ρ0 be a positive function in Bs

∞,r bounded away from 0, and u0 be a divergence-free vector
�eld with coe�cients in Bs

∞,r ∩ L2. Finally, suppose that the external force f has coe�cients in
L1([−T0, T0];Bs

∞,r) ∩ C([−T0, T0];L2) for some positive time T0.
Then there exists a time T ∈ ]0, T0] such that system (4.1) with initial data (ρ0, u0) has a

unique solution (ρ, u,∇Π) on [−T, T ]× RN , with:

• ρ in C([−T, T ];Bs
∞,r) and bounded away from 0,

• u in C([−T, T ];Bs
∞,r) ∩ C1([−T, T ];L2) and

• ∇Π in L1([−T, T ];Bs
∞,r) ∩ C([−T, T ];L2).

If r = +∞ then one has only weak continuity in time with values in the Besov space Bs
∞,∞.

In the above functional framework, one may state a continuation criterion for the solution to
(4.1) similar to that of theorem 2 of [28].

Theorem 4.2. Let (ρ, u,∇Π) be a solution to system (4.1) on [0, T ∗[×RN , with the properties
described in theorem 4.1 for all T < T ∗. Suppose also that we have

(4.4)
∫ T ∗

0

(
‖∇u‖L∞ + ‖∇Π‖Bs−1

∞,r

)
dt < +∞ .

If T ∗ is �nite, then (ρ, u,∇Π) can be continued beyond T ∗ into a solution of (4.1) with the
same regularity. Moreover, if s > 1 then one may replace in (4.4) the term ‖∇u‖L∞ with ‖Ω‖L∞ .

A similar result holds true also for negative times.
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From this result, as our assumption on (r, s) implies that Bs−1
∞,r ↪→ B0

∞,1 ↪→ L∞, we immedi-
ately get the following corollary.

Corollary 4.3. The lifespan of a solution in Bs
∞,r with s > 1 is the same as the lifespan in B1

∞,1.
In particular, condition (4.4) holds true with ‖∇Π‖B0

∞,1
.

As pointed out in [28], hypothesis u0 ∈ L2 is somewhat restrictive in dimensionN = 2 as if, say,
the initial vorticity ω0 is in L1, then ω0 is forced to have average 0 over R2. In particular, assuming
u0 ∈ L2(R2) precludes our considering general data with compactly supported nonnegative initial
vorticity (e.g. vortex patches as in [13]; see also next chapter).

The following statement aims at considering initial data with in�nite energy. For simplicity,
we suppose the external force to be 0.

Theorem 4.4. Let (s, r) be as in theorem 4.1. Let ρ0 ∈ Bs
∞,r be bounded away from 0 and

u0 ∈ Bs
∞,r ∩W 1,4.

Then there exist a positive time T and a unique solution (ρ, u,∇Π) on [−T, T ]×RN of system
(4.1) with external force f ≡ 0, satisfying the following properties:

• ρ ∈ C([−T, T ];Bs
∞,r) bounded away from 0,

• u ∈ C([−T, T ];Bs
∞,r ∩W 1,4) and ∂tu ∈ C([−T, T ];L2),

• ∇Π ∈ L1([−T, T ];Bs
∞,r) ∩ C([−T, T ];L2).

As above, the continuity in time with values in Bs
∞,r is only weak if r = +∞.

Remark 4.5. Under the above hypothesis, a continuation criterion in the spirit of theorem 4.2
may be proved. The details are left to the reader.

Remark 4.6. Let us also point out that in dimension N ≥ 2, any velocity �eld with suitably
smooth compactly supported vorticity is in W 1,4. Furthermore, there is some freedom over the
W 1,4 assumption (see remark 4.14 below).

On the one hand, the existence results we stated so far are local in time even in the two-
dimensional case. On the other hand, it is well known that the classical two-dimensional incom-
pressible Euler equations are globally well-posed, a result that goes back to the pioneering work
by V. Wolibner in [61] (see also [47], [40], [60] for global results in the case of less regular data). In
the homogeneous case, the global existence stems from the fact that the vorticity ω is transported
by the �ow associated to the solution: we have

∂tω + u · ∇ω = 0 .

In the non-homogeneous context, we have instead the following more complicated identity:

(4.5) ∂tω + u · ∇ω + ∇
(

1

ρ

)
∧∇Π = 0 .

If the classical homogeneous case has been deeply studied, to our knowledge there is no
literature about the time of existence of solutions for the density-dependent incompressible Euler
system. In the last section of this paper, we establish lower bounds for the lifespan of a solution
to (4.1).

We �rst show that in any space dimension, if the initial velocity is of order ε (ε small enough),
without any restriction on the non-homogeneity, then the lifespan is at least of order ε−1 (see the
exact statement in theorem 4.15).

Next, taking advantage of equality (4.5) and of an estimate for the transport equation that
has been established recently by M. Vishik in [60] (and generalized by T. Hmidi and S. Keraani in
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[41]), we show that the lifespan of the solution tends to in�nity if ρ0−1 goes to 0. More precisely,
theorem 4.16 states that if

‖ρ0 − 1‖B1
∞,1

= ε and ‖ω0‖B0
∞,1

+ ‖u0‖L2 = U0

with ε small enough, then the lifespan is at least of order U−1
0 log(log ε−1).

The chapter is organized as follows. In the next section, we introduce the tools (in addition to
those presented in chapter 1) needed for proving our results: some classical results about transport
equations in the Bs

p,r framework and about elliptic equations in divergence form with non-constant
coe�cients. Sections 4.3 and 4.4 are devoted to the proof of our local existence statements �rst
in the �nite energy case and next if the initial velocity is in W 1,4. Finally, in the last section we
state and prove results about the lifespan of a solution to our system, focusing on the particular
case of space dimension N = 2.

4.2 Tools

Our results concerning equations (4.1) rely strongly on a priori estimates in Besov spaces for the
transport equation

(T )

{
∂ta + v · ∇a = f

a|t=0 = a0 .

Therefore we shall often use the following result, the proof of which may be found e.g. in chapter
3 of [2].

Proposition 4.7. Let 1 ≤ r ≤ +∞ and σ > 0 (σ > −1 if div v = 0). Let a0 ∈ Bσ
∞,r,

f ∈ L1([0, T ];Bσ
∞,r) and v be a time dependent vector �eld in Cb([0, T ]× RN ) such that

∇v ∈ L1([0, T ];L∞) if σ < 1,

∇v ∈ L1([0, T ];Bσ−1
∞,r ) if σ > 1, or σ = r = 1.

Then equation (T ) has a unique solution a in:

• the space C([0, T ];Bσ
∞,r) if r <∞,

• the space
(⋂

σ′<σ C([0, T ];Bσ′
∞,∞)

)⋂
Cw([0, T ];Bσ

∞,∞) if r = +∞.

Moreover, for all t ∈ [0, T ], we have

(4.6) e−CV (t)‖a(t)‖Bσ∞,r ≤ ‖a0‖Bσ∞,r +

∫ t

0
e−CV (τ)‖f(τ)‖Bσ∞,r dτ

with V ′(t) :=

{ ‖∇v(t)‖L∞ if σ < 1,

‖∇v(t)‖Bσ−1
∞,r

if σ > 1, or σ = r = 1.

If v ≡ a then, for all σ > 0 (σ > −1 if div v = 0), estimate (4.6) holds with V ′(t) := ‖∇a(t)‖L∞ .

Finally, we shall make an extensive use of energy estimates for the following elliptic equation:

(4.7) −div (a∇Π) = divF in RN ,

where a = a(x) is a measurable bounded function satisfying

(4.8) a∗ := inf
x∈RN

a(x) > 0 .

The following result based on Lax-Milgram's theorem (see section 3 of [28] for the proof), will be
of great importance for us.
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Lemma 4.8. For all vector �eld F with coe�cients in L2, there exists a tempered distribution Π,
unique up to constant functions, such that ∇Π ∈ L2 and equation (4.7) is satis�ed. In addition,
we have

(4.9) a∗ ‖∇Π‖L2 ≤ ‖F‖L2 .

4.3 Proof of the main well-posedness result

Obviously, one may extend the force term for any time so that it is not restrictive to assume that
T0 = +∞. Owing to time reversibility of system (4.1), we can consider the problem of evolution
for positive times only. For convenience we will assume r < +∞; for treating the case r = +∞, it
is enough to replace the strong topology by the weak topology, whenever regularity up to index
s is involved.

We will not work on system (4.1) directly, but rather on

(4.10)


∂ta + u · ∇a = 0

∂tu + u · ∇u + a∇Π = f

−div (a∇Π) = div (u · ∇Pu − f) ,

where we have set a := 1/ρ.

The equivalence between (4.1) and (4.10) is given in the following statement (see again [28],
section 4 for its proof).

Lemma 4.9. Let u be a vector �eld with coe�cients in C1([0, T ] × RN ) and such that Qu ∈
C1([0, T ];L2). Suppose also that ∇Π ∈ C([0, T ];L2). Finally, let ρ be a continuous function on
[0, T ]× RN such that

(4.11) 0 < ρ∗ ≤ ρ ≤ ρ∗ ,

and de�ne a := 1/ρ.
If div u(0, ·) ≡ 0 in RN , then (ρ, u,∇Π) is a solution to (4.1) if and only if (a, u,∇Π) is a

solution to (4.10).

This section unfolds as follows. First, we shall prove a priori estimates for suitably smooth
solutions of (4.1) or (4.10). They will be most helpful to get the existence. As a matter of fact,
the construction of solutions which will be proposed in the next subsection amounts to solving
inductively a sequence of linear equations. The estimates for those approximate solutions turn out
to be the same as those for the true solutions. In the last two subsections, we shall concentrate
on the proof of the uniqueness part of theorem 4.1 and of the continuation criterion stated in
theorem 4.2 (up to the endpoint case s = r = 1 which will be studied in the next section).

4.3.1 A priori estimates

Let (a, u,∇Π) be a smooth solution of system (4.10) with the properties described in the statement
of theorem 4.1. In this subsection, we show that on a suitably small time interval (the length of
which depends only on the norms of the data), the norm of (a, u,∇Π) may be bounded in terms
of the data.

Recall that, according to proposition 1.31, the quantities ‖a‖Bs∞,r and ‖ρ‖Bs∞,r are equivalent
under hypothesis (4.11). This fact will be used repeatedly in what follows.
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Estimates for the density and the velocity �eld

Let us assume for a while that div u = 0. Then (ρ, u,∇Π) satis�es system (4.1) and the following
energy equality holds true:

(4.12)
∥∥∥√ρ(t)u(t)

∥∥∥2

L2
= ‖√ρ0 u0‖2L2 + 2

∫ t

0

(∫
RN

ρ f · u dx
)
dτ .

Moreover, from the equation satis�ed by the density, we have that ρ(t, x) = ρ0

(
ψ−1
t (x)

)
,

where ψ is the �ow associated with u; so, ρ satis�es (4.11). Hence, from relation (4.12), we obtain
the control of the L2 norm of the velocity �eld: for all t ∈ [0, T0], we have, for some constant C
depending only on ρ∗ and ρ∗,

(4.13) ‖u(t)‖L2 ≤ C

(
‖u0‖L2 +

∫ t

0
‖f(τ)‖L2 dτ

)
.

Next, in the general case where div u need not be 0, applying proposition 4.7 yields the
following estimates:

‖a(t)‖Bs∞,r ≤ ‖a0‖Bs∞,r exp

(
C

∫ t

0
‖u‖Bs∞,r dτ

)
(4.14)

‖u(t)‖Bs∞,r ≤ exp

(
C

∫ t

0
‖u‖Bs∞,r dτ

)
·
(
‖u0‖Bs∞,r +(4.15)

+

∫ t

0
e
−C

∫ τ
0 ‖u‖Bs∞,r dτ

′ (
‖f‖Bs∞,r + ‖a‖Bs∞,r‖∇Π‖Bs∞,r

)
dτ

)
,

where, in the last line, we have used the fact that Bs
∞,r, under our hypothesis, is an algebra.

Remark 4.10. Of course, as ρ and a verify the same equations, they satisfy the same estimates.

Estimates for the pressure term

Let us use the low frequency localization operator ∆−1 to separate ∇Π into low and high frequen-
cies. We get

‖∇Π‖Bs∞,r ≤ ‖∆−1∇Π‖Bs∞,r + ‖(Id−∆−1)∇Π‖Bs∞,r .

Observe that (Id−∆−1)∇Π may be computed from ∆Π by means of a homogeneous multiplier
of degree −1 in the sense of proposition 1.14. Hence

(4.16) ‖(Id−∆−1)∇Π‖Bs∞,r ≤ C ‖∆Π‖Bs−1
∞,r

.

For the low frequencies term, however, the above inequality fails. Now, remembering the
de�nition of ‖ · ‖Bs∞,r and the spectral properties of operator ∆−1, one has that

‖∆−1∇Π‖Bs∞,r ≤ C ‖∆−1∇Π‖L∞ ≤ C ‖∇Π‖L2 ,

where we used also Bernstein's inequality in writing last relation.
So putting together (4.16) and the above inequality, we �nally obtain

(4.17) ‖∇Π‖Bs∞,r ≤ C
(
‖∇Π‖L2 + ‖∆Π‖Bs−1

∞,r

)
.

First of all, let us see how to control ‖∆Π‖Bs−1
∞,r

. Recall the third equation of (4.10):

div (a∇Π) = F with F := div (f − u · ∇Pu).
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Developing the left-hand side of this equation, we obtain

(4.18) ∆Π = −∇(log a) · ∇Π +
F

a
·

Let us consider the �rst term of the right-hand side of the previous equation.
If s > 1 then one may use that Bs−1

∞,r is an algebra and bound ‖∇(log a)‖Bs−1
∞,r

with ‖∇a‖Bs−1
∞,r

according to proposition 1.31. So we get

‖∇(log a) · ∇Π‖Bs−1
∞,r
≤ C ‖∇a‖Bs−1

∞,r
‖∇Π‖Bs−1

∞,r
.

Now, as L2 ↪→ B
−N

2∞,∞ (see proposition 1.6) and Bs−1
∞,r is an intermediate space between B

−N
2∞,∞ and

Bs
∞,r, standard interpolation inequalities (see theorem 1.17) ensure that

(4.19) ‖∇Π‖Bs−1
∞,r
≤ C ‖∇Π‖θL2 ‖∇Π‖1−θBs∞,r

for some θ ∈]0, 1[ .

Plugging this relation in (4.17) and applying Young's inequality, we �nally obtain

(4.20) ‖∇Π‖Bs∞,r ≤ C

((
1 + ‖∇a‖γ

Bs−1
∞,r

)
‖∇Π‖L2 +

∥∥∥∥Fa
∥∥∥∥
Bs−1
∞,r

)
,

where the exponent γ depends only on the space dimension N and on s.

In the limit case s = r = 1, the space B0
∞,1 is no more an algebra and we have to modify the

above argument: we use the Bony decomposition (1.3) to write

∇(log a) · ∇Π = T∇(log a)∇Π + T∇Π∇(log a) + R(∇(log a),∇Π) .

To estimate �rst and second term, we can apply theorem 1.24 and proposition 1.31: we get

‖T∇(log a)∇Π‖B0
∞,1

≤ C ‖∇(log a)‖L∞ ‖∇Π‖B0
∞,1

(4.21)

≤ C ‖∇a‖L∞‖∇Π‖B0
∞,1

,

‖T∇Π∇(log a)‖B0
∞,1

≤ C ‖∇Π‖L∞ ‖∇(log a)‖B0
∞,1

(4.22)

≤ C ‖∇Π‖L∞ ‖∇a‖B0
∞,1

.

A similar inequality is no more true for the remainder term, though. However, one may use
that ∇Π is in fact more regular: it belongs to B1/2

∞,1 for instance. Hence, using the embedding

B
1/2
∞,1 ↪→ B0

∞,1 and theorem 1.24, we can write

‖R(∇(log a),∇Π)‖B0
∞,1

≤ C ‖∇(log a)‖L∞ ‖∇Π‖
B

1/2
∞,1

,

≤ C ‖∇a‖L∞ ‖∇Π‖
B

1/2
∞,1

.

Putting the above inequality together with (4.21) and (4.22), and using that B0
∞,1 ↪→ L∞, we

conclude that
‖∇(log a) · ∇Π‖B0

∞,1
≤ C‖∇a‖B0

∞,1
‖∇Π‖

B
1/2
∞,1

.

Now, using interpolation between Besov spaces, as done for proving (4.19), we get for some
suitable θ ∈]0, 1[,

‖∇(log a) · ∇Π‖B0
∞,1
≤ C ‖∇a‖B0

∞,1
‖∇Π‖1−θ

B1
∞,1
‖∇Π‖θL2 .

Hence ‖∇Π‖B1
∞,1

still satis�es Inequality (4.20) for some convenient γ > 0.
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Next, let us bound the last term of (4.18). By virtue of Bony's decomposition (1.3), we have

F/a = ρF = TρF + TFρ + R(ρ, F ) ;

from theorem 1.24 we infer that:

• ‖TρF‖Bs−1
∞,r
≤ C ρ∗ ‖F‖Bs−1

∞,r
,

• ‖TFρ‖Bs−1
∞,r
≤ C ‖F‖B−1

∞,∞
‖ρ‖Bs∞,r ≤ C ‖F‖Bs−1

∞,r
‖ρ‖Bs∞,r ,

• ‖R(ρ, F )‖Bs−1
∞,r
≤ ‖R(ρ, F )‖Bs∞,r ≤ C ‖ρ‖B1

∞,∞
‖F‖Bs−1

∞,r
≤ C ‖ρ‖Bs∞,r‖F‖Bs−1

∞,r
.

Now the problem is to bound the Besov norm of F = div (f −u ·∇u). It is clear that ‖div f‖Bs−1
∞,r

can be bounded by ‖f‖Bs∞,r . For the second term of F we have to take advantage, once again, of
Bony's decomposition (1.3) as follows:

div (u · ∇Pu) =
∑
i,j

∂iu
j ∂j (Pu)i =

∑
i,j

(
T∂iuj∂jPu

i + T∂jPui∂iu
j + ∂iR(uj , ∂jPui)

)
,

where we have used also the fact that divPu = 0. Now, for all i and j we have:∥∥T∂iuj∂jPui∥∥Bs−1
∞,r

≤ C ‖∇u‖L∞ ‖∇Pu‖Bs−1
∞,r∥∥∥T∂jPui∂iuj∥∥∥Bs−1

∞,r
≤ C ‖∇Pu‖L∞ ‖∇u‖Bs−1

∞,r∥∥∂iR(uj , ∂jPui)
∥∥
Bs−1
∞,r

≤
∥∥R(uj , ∂jPui)

∥∥
Bs∞,r

≤ C ‖u‖Bs∞,r ‖∇Pu‖Bs−1
∞,r

.

Because, by embedding, ‖∇Pu‖L∞ ≤ C ‖∇Pu‖Bs−1
∞,r

, we have

‖div (u · ∇Pu)‖Bs−1
∞,r
≤ C ‖u‖Bs∞,r ‖∇Pu‖Bs−1

∞,r
.

In order to bound Pu, let us decompose it into low and high frequencies as follows:

Pu = ∆−1Pu+ (Id −∆−1)Pu.

On the one hand, combining Bernstein's inequality and the fact that P is an orthogonal projector
over L2 yields

‖∆−1∇Pu‖L∞ ≤ C ‖u‖L2 .

On the other hand, according to remark 1.15, one may write that

‖(Id −∆−1)Pu‖Bs∞,r ≤ C‖u‖Bs∞,r .

Therefore we get

(4.23) ‖∇Pu‖Bs−1
∞,r
≤ C ‖u‖Bs∞,r∩L2 ,

from which it follows that

(4.24)

∥∥∥∥Fa
∥∥∥∥
Bs−1
∞,r

≤ C ‖a‖Bs∞,r
(
‖f‖Bs∞,r + ‖u‖2Bs∞,r∩L2

)
.

It remains us to control ‖∇Π‖L2 . Keeping in mind lemma 4.8, from the third equation of
system (4.10) and inequality (4.23), we immediately get

a∗ ‖∇Π‖L2 ≤ ‖f‖L2 + ‖u · ∇Pu‖L2

≤ ‖f‖L2 + ‖u‖L2 ‖∇Pu‖L∞
≤ ‖f‖L2 + C‖u‖2Bs∞,r∩L2 .
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Putting all these inequalities together, we �nally obtain

‖∇Π‖L1
t (L

2) ≤ C

(
‖f‖L1

t (L
2) +

∫ t

0
‖u‖2Bs∞,r∩L2 dτ

)
(4.25)

‖∇Π‖L1
t (B

s
∞,r)

≤ C
((

1 + ‖∇a‖γ
L∞t (Bs−1

∞,r)

)
‖∇Π‖L1

t (L
2) +(4.26)

+ ‖a‖L∞t (Bs∞,r)

(
‖f‖L1

t (B
s
∞,r)

+

∫ t

0
‖u‖2Bs∞,r∩L2dτ

))
.

Final estimate

First of all, let us �x T > 0 so small as to satisfy

(4.27) exp

(
C

∫ T

0
‖u‖Bs∞,r dt

)
≤ 2 ,

which is always possible because of the boundedness of u with respect to the time variable.

Then, setting

U(t) := ‖u(t)‖L2∩Bs∞,r = ‖u(t)‖L2 + ‖u(t)‖Bs∞,r

U0(t) := ‖u0‖L2∩Bs∞,r +

∫ t

0
‖f‖L2∩Bs∞,r dτ

and combining estimates (4.13), (4.14), (4.15), (4.25) and (4.26), we get

(4.28) U(t) ≤ C

(
U0(t) +

∫ t

0
U2(τ) dτ

)
for all t ∈ [0, T ],

where the constant C depends only on s, N, ‖a0‖Bs∞,r , a∗ and a
∗.

So, taking T small enough and changing once more the multiplying constant C if needed, a
standard bootstrap argument allows to show that

U(t) ≤ C U0(t) for all t ∈ [0, T ] .

4.3.2 Existence of a solution to density-dependent Euler system

We proceed in two steps: �rst we construct inductively a sequence of smooth global approximate
solutions, de�ned as solutions of linear equations, and then we prove the convergence of this
sequence to a solution of the nonlinear system (4.10) with the required properties. Recall that
to simplify the presentation we have assumed T0 = +∞ and that we focus on the evolution for
positive times only.

Construction of the sequence of approximate solutions

First, we smooth out the data (by convolution for instance) so as to get a sequence (an0 , u
n
0 , f

n)n∈N
such that un0 ∈ H∞, fn ∈ C(R+;H∞), an0 and its derivatives at any order are bounded and

(4.29) a∗ ≤ an0 ≤ a∗ ,

with in addition

• an0 → a0 in Bs
∞,r,

• un0 → u0 in L2 ∩Bs
∞,r,

• fn → f in C(R+;L2) ∩ L1(R+;Bs
∞,r).
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In order to construct a sequence of smooth approximate solutions, we argue by induction. We
�rst set a0 = a0

0, u
0 = u0

0 and ∇Π0 = 0.
Now, suppose we have already built a smooth approximate solution (an, un,∇Πn) over R+×RN

with an satisfying (4.11). In order to construct the (n+1)-th term of the sequence, we �rst de�ne
an+1 to be the solution of the linear transport equation

∂ta
n+1 + un · ∇an+1 = 0

with initial datum an+1|t=0 = an+1
0 .

Given that un is Lipschitz continuous in the space varaible (in fact, it belongs to Bs
∞,r by a

priori estimates), its �ow ψn is smooth too. In particular, ψnt is, at every �xed time t, a C1 di�eo-
morphism on the whole RN (see also proposition 3.10 of [2]). Hence an+1(t, x) = an+1

0

(
(ψnt )−1(x)

)
is smooth and satis�es (4.11). Furthermore, by virtue of proposition 4.7,

(4.30) ‖an+1(t)‖Bs∞,r ≤ ‖a
n+1
0 ‖Bs∞,r exp

(
C

∫ t

0
‖un‖Bs∞,r dτ

)
.

Note that the reciprocal function ρn+1 of an+1 satis�es ρn+1(t, x) = ρn+1
0

(
(ψnt )−1 (x)

)
, to-

gether with (4.11) and the equation

(4.31) ∂tρ
n+1 + un · ∇ρn+1 = 0 .

Hence it also ful�lls inequality (4.30) up to a change of an+1
0 in ρn+1

0 .

At this point, we de�ne un+1 as the unique smooth solution of the linear transport equation{
∂tu

n+1 + un · ∇un+1 = fn+1 − an+1∇Πn

un+1|t=0 = un+1
0 .

Since the right-hand side belongs to L1
loc(R+;L2), from classical results for transport equation

we get that un+1 ∈ C(R+;L2). Besides, as ρn = (an)−1 for all n, if we di�erentiate ‖
√
ρn+1un+1‖2L2

with respect to time and use the equations for ρn+1 and un+1, we obtain

1

2

d

dt

∥∥∥√ρn+1un+1
∥∥∥2

L2
=

1

2

∫
ρn+1|un+1|2 div un dx +

∫
ρn+1un+1 · fn+1 dx −

∫
∇Πn · un+1 dx.

Observe that un and un+1 need not to be divergence free; nevertheless, applying Gronwall's
lemma, it is easy to see that∥∥∥√ρn+1(t)un+1(t)

∥∥∥
L2
≤

(∥∥∥∥√ρn+1
0 un+1

0

∥∥∥∥
L2

+ C

∫ t

0

(
‖fn+1‖L2 + ‖∇Πn‖L2

)
dτ

)
×(4.32)

× exp

(
1

2

∫ t

0
‖div un‖L∞ dτ

)
.

Finally, we have to de�ne the approximate pressure Πn+1. We have already proved that an+1

satis�es the ellipticity condition (4.11); so we can consider the elliptic equation

div
(
an+1∇Πn+1

)
= div

(
fn+1 − un+1 · ∇Pun+1

)
.

As fn+1 and un+1 are in C(R+;H∞), the classical theory for elliptic equations ensures that the
above equation has a unique solution ∇Πn+1 in C(R+;H∞). In addition, going along the lines of
the proof of (4.25), we get

(4.33)
∥∥∇Πn+1

∥∥
L1
t (L

2)
≤ C

(
‖fn+1‖L1

t (L
2) +

∫ t

0
‖un+1‖2Bs∞,r∩L2 dτ

)
.
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Of course, by embedding, we have∇Πn+1 ∈ C(R+;Bs
∞,r). Hence, arguing as for proving (4.26),

we gather∥∥∇Πn+1
∥∥
L1
t (B

s
∞,r)

≤ C‖an+1‖L∞t (Bs∞,r)

(
‖fn+1‖L1

t (B
s
∞,r)

+

∫ t

0
‖un+1‖2Bs∞,r∩L2dτ

)
+(4.34)

+C
(

1 + ‖∇an+1‖γ
L∞t (Bs−1

∞,r)

)
‖∇Πn+1‖L1

t (L
2).

Note also that the norms of the approximate data that we use in (4.30), (4.32), (4.33) and
(4.34) may be bounded independently of n. Therefore, repeating the arguments leading to (4.28)
and to theorem 1 of [28], one may �nd some positive time T , which may depend on ‖ρ0‖Bs∞,r ,
‖u0‖Bs∞,r∩L2 and ‖f‖L1([0,T ];Bs∞,r∩L2) but is independent of n, such that

• (an)n∈N is bounded in L∞([0, T ];Bs
∞,r),

• (un)n∈N is bounded in L∞([0, T ];Bs
∞,r ∩ L2),

• (∇Πn)n∈N is bounded in L1([0, T ];Bs
∞,r) ∩ L∞([0, T ];L2).

Convergence of the sequence

Let us observe that the function ãn : = an − an0 satis�es{
∂tã

n = −un−1 · ∇an

ãn|t=0 = 0 .

Because un−1 ∈ C([0, T ];L2) and ∇an ∈ Cb([0, T ] × RN ), it immediately follows that ãn ∈
C1([0, T ];L2). Now we want to prove that the sequence (ãn, un,∇Πn)n∈N, built in this way, is
a Cauchy sequence in C([0, T ];L2). So let us de�ne for n ∈ N and p ∈ N∗,

δanp := an+p − an ,

δ̃anp := ãn+p − ãn = δanp − δanp (0) ,

δρnp := ρn+p − ρn ,

δunp := un+p − un ,

δΠn
p := Πn+p − Πn ,

δfnp := fn+p − fn .

Let us emphasize that, by assumption and embedding, we have

(4.35) an0 → a0 in C0,1, un0 → u0 in L2, fn → f in C([0, T ];L2).

This will be the key to our proof of convergence.

Let us �rst focus on ãn. By construction, δ̃anp belongs to C1([0, T ];L2) and satis�es the equation

∂tδ̃a
n
p = −un+p−1 · ∇δ̃anp − δun−1

p · ∇an − un+p−1 · ∇δanp (0)

from which, taking the scalar product in L2 with δ̃an, we obtain

1

2

d

dt

∥∥δ̃anp∥∥2

L2 =
1

2

∫ (
δ̃anp
)2

div un+p−1 dx −
∫
δun−1
p · ∇an δ̃anp dx−

∫
un+p−1 · ∇δanp (0) δ̃anp dx .

So, keeping in mind that δ̃anp (0) = 0 and integrating with respect to the time variable one has∥∥δ̃anp (t)
∥∥
L2 ≤

∫ t

0

(
1

2

∥∥div un+p−1
∥∥
L∞

∥∥δ̃anp∥∥L2 +(4.36)

+ ‖∇an‖L∞‖δun−1
p ‖L2 + ‖un+p−1‖L2‖∇δanp (0)‖L∞

)
dτ .
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Equally easily, one can see that the following equality holds true:

ρn+p
(
∂tδu

n
p + un+p−1 · ∇δunp

)
+ ∇δΠn−1

p = ρn+p
(
δfnp − δun−1

p · ∇un − δanp ∇Πn−1
)

;

taking the scalar product in L2 with δunp , integrating by parts and remembering equation (4.31)
at (n+ p)-th step, we �nally get∥∥∥√ρn+p(t)δunp (t)

∥∥∥
L2
≤
∫ t

0

∥∥div un+p−1
∥∥
L∞

∥∥∥√ρn+pδunp

∥∥∥
L2
dτ

+

∫ t

0

(
‖∇un‖L∞

∥∥∥√ρn+pδun−1
p

∥∥∥
L2

+
∥∥∥√ρn+p∇Πn−1

∥∥∥
L∞

∥∥δ̃anp∥∥L2

+
∥∥∥√ρn+p∇Πn−1

∥∥∥
L2

∥∥δanp (0)
∥∥
L∞

+

∥∥∥∥∥∇δΠn−1
p√

ρn+p

∥∥∥∥∥
L2

+
√
ρ∗‖δfnp ‖L2

)
dτ .

From (4.36), Gronwall's Lemma and (4.29), we thus get, for some constant C depending only on
a∗ and a∗,∥∥(δ̃anp , δu

n
p )(t)

∥∥
L2 ≤ C

(
eA

n
p (t)‖δunp (0)‖L2 +

∫ t

0
eA

n
p (t)−Anp (τ)

(
‖(∇an,∇un)‖L∞

∥∥δun−1
p

∥∥
L2

+
∥∥∇δΠn−1

p

∥∥
L2 +

∥∥∇Πn−1
∥∥
L2

∥∥δanp (0)
∥∥
L∞

+ ‖un+p−1‖L2‖∇δanp (0)‖L∞ + ‖δfnp ‖L2

)
dτ

)
,

where we have set

Anp (t) :=

∫ t

0

(∥∥div un+p−1
∥∥
L∞

+
∥∥∥√ρn+p∇Πn−1

∥∥∥
L∞

)
dτ .

Of course, the uniform a priori estimates of the previous step allow us to control the exponential
term for all t ∈ [0, T ] by some constant CT .

Next, we have to deal with the term ∇δΠn−1
p . We notice that it satis�es the elliptic equation

−div
(
an−1∇δΠn−1

p

)
= div

(
−δan−1

p ∇Πn−1+p − un−1 · ∇Pδun−1
p − δun−1

p · ∇Pun+p−1 + δfn−1
p

)
.

Now we apply the following algebraic identity,

div (v · ∇w) = div (w · ∇v) + div (v divw) − div (w div v) ,

to v = un−1 and w = Pδun−1
p . Remembering that divPδun−1

p = 0, from the previous relation we
infer

div
(
an−1∇δΠn−1

p

)
= div

(
Pδun−1

p div un−1 − Pδun−1
p · ∇un−1 −

− δun−1
p · ∇Pun+p−1 − δan−1

p ∇Πn−1+p + δfn−1
p

)
.

Then, from lemma 4.8 and the fact that ‖P‖L(L2;L2) = 1, one immediately has the following
inequality:

a∗
∥∥∇δΠn−1

p

∥∥
L2 ≤

∥∥δ̃an−1
p

∥∥
L2 ‖∇Πn‖L∞ +

∥∥δan−1
p (0)

∥∥
L∞
‖∇Πn‖L2 + ‖δfn−1

p ‖L2(4.37)

+
∥∥δun−1

p

∥∥
L2

(∥∥div un−1
∥∥
L∞

+
∥∥∇un−1

∥∥
L∞

+
∥∥∇Pun+p−1

∥∥
L∞

)
.

Due to a priori estimates, we �nally obtain, for all t ∈ [0, T ],∥∥(δ̃anp , δu
n
p )(t)

∥∥
L2 ≤ CT

(
‖δunp (0)‖L2 +

∫ t

0

(∥∥(δan−1
p , δun−1

p )
∥∥
L2 +

+
∥∥∇δΠn−1

p

∥∥
L2 + ‖δanp (0)‖C0,1 + ‖δfnp ‖L2

)
dτ

)
∥∥∇δΠn−1

p

∥∥
L2 ≤ CT

(∥∥δ̃an−1
p

∥∥
L2 +

∥∥δun−1
p

∥∥
L2 + ‖δan−1

p (0)‖L∞ + ‖δfn−1
p ‖L2

)
.
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Therefore, plugging the second inequality in the �rst one, we �nd out that, for all t ∈ [0, T ] and
all integers p ≥ 1 and n ≥ 1,

(4.38)
∥∥(δ̃anp , δu

n
p )(t)

∥∥
L2 ≤ εn + CT

∫ t

0

∥∥(δ̃an−1
p , δun−1

p )
∥∥
L2 dτ

where we have de�ned

εn := CT sup
p≥1

(
‖δunp (0)‖L2 +

∫ T

0

(
‖δfn−1

p ‖L2 + ‖δfnp ‖L2 + ‖δan−1
p (0)‖C0,1 + ‖δanp (0)‖C0,1

)
dt

)
.

Now, bearing (4.35) in mind, we have

lim
n→+∞

εn = 0 .

Hence, one may conclude that

lim
n→+∞

sup
p≥1

sup
t∈[0,T ]

(
‖δ̃anp (t)‖L2 + ‖δunp (t)‖L2

)
= 0 .

In other words, (ãn)n∈N and (un)n∈N are Cauchy sequences in C([0, T ];L2); therefore they converge
to some functions ã, u ∈ C([0, T ];L2). In the same token, it is clear that (∇Πn)n∈N converges to
some ∇Π ∈ C([0, T ];L2).

De�ning a := ã+ a0, it remains to show that a, u and ∇Π are indeed solutions of the initial
system (4.10). We already know that a, u and ∇Π ∈ C([0, T ];L2). In addition,

• thanks to the Fatou's property for Besov spaces, as (an)n∈N is bounded in L∞([0, T ];Bs
∞,r),

we obtain that a ∈ L∞([0, T ];Bs
∞,r) and satis�es (4.29);

• in the same way, u ∈ L∞([0, T ];Bs
∞,r) because also (un)n∈N is bounded in the same space;

• �nally, ∇Π ∈ L1([0, T ];Bs
∞,r) because the sequence (∇Πn)n∈N is bounded in the same

functional space.

By interpolation we get that the sequences converge strongly to the solutions in every interme-
diate space between C([0, T ];L2) and C([0, T ];Bs

∞,r), which is enough to pass to the limit in the
equations satis�ed by (an, un,∇Πn). So, (a, u,∇Π) veri�es system (4.10).

Finally, continuity properties of the solutions with respect to the time variable can be recovered
from the equations ful�lled by them, using proposition 4.7.

4.3.3 Uniqueness of the solution

Uniqueness of the solution to system (4.1) is a straightforward consequence of the following sta-
bility result, the proof of which can be found in [28], section 4.

Proposition 4.11. Let (ρ1, u1,∇Π1) and (ρ2, u2,∇Π2) satisfy System (4.1) with external forces
f1 and f2, respectively. Suppose that ρ1 and ρ2 both satisfy (4.11). Assume also that:

• δρ := ρ2 − ρ1 and δu := u2 − u1 both belong to C1([0, T ];L2),

• δf := f2 − f1 ∈ C([0, T ];L2),

• ∇ρ1, ∇u1 and ∇Π1 belong to L1([0, T ];L∞).
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Then for all t ∈ [0, T ] we have

e−A(t)
(
‖δρ(t)‖L2 + ‖(√ρ2δu) (t)‖L2

)
≤ ‖δρ(0)‖L2 + ‖(√ρ2δu) (0)‖L2 +

∫ t

0
e−A(τ) ‖(√ρ2δf)‖L2 dτ ,

where we have de�ned

A(t) :=

∫ t

0

(∥∥∥∥∇ρ1√
ρ2

∥∥∥∥
L∞

+

∥∥∥∥ ∇Π1

ρ1
√
ρ2

∥∥∥∥
L∞

+ ‖∇u1‖L∞
)
dτ .

Proof of uniqueness in theorem 4.1. Let us suppose that there exist two solutions (ρ1, u1,∇Π1)
and (ρ2, u2,∇Π2) to system (4.1) corresponding to the same data and satisfying the hypotheses of
theorem 4.1. Then, as one can easily verify, these solutions satisfy the assumptions of proposition
4.11. For instance, that δρ ∈ C1([0, T ];L2) is an immediate consequence of the fact that, for i =
1, 2, the velocity �eld ui is in C([0, T ];L2) and ∇ρi is in C([0, T ];L∞), so that ∂tρi ∈ C([0, T ];L2).

So, proposition 4.11 implies that (ρ1, u1,∇Π1) ≡ (ρ2, u2,∇Π2).

4.4 The vorticity equation and applications

This section is devoted to the proof of the blow-up criterion and of theorem 4.4. Both results
rely on the vorticity equation associated to system (4.1). As done in section 4.3, we shall restrict
ourselves to the evolution for positive times and make the usual convention as regards time
continuity, if r < +∞.

4.4.1 On the vorticity

As in all this section the vorticity will play a fundamental role, let us spend some words about it.
Given a vector-�eld u, we set ∇u its Jacobian matrix and t∇u the transposed matrix of ∇u. We
de�ne the vorticity associated to u by

Ω := ∇u − t∇u.

Recall that, in dimensionN = 2, Ω can be identi�ed with the scalar function ω = ∂1u
2 − ∂2u

1,
while for N = 3 with the vector-�eld ω = ∇× u.

It is obvious that, for all q ∈ [1,+∞], if ∇u ∈ Lq, then also Ω ∈ Lq. Conversely, if u is
divergence-free, then for all 1 ≤ i ≤ N we have ∆ui =

∑N
j=1 ∂jΩij , and so, formally,

∇ui = −∇ (−∆)−1
N∑
j=1

∂j Ωij .

As the symbol of the operator −∂i (−∆)−1 ∂j is σ(ξ) = ξiξj/|ξ|2, the classical Calderon-Zygmund
theorem ensures that1 for all q ∈ ]1,+∞[ if Ω ∈ Lq, then ∇u ∈ Lq and

(4.39) ‖∇u‖Lq ≤ C‖Ω‖Lq .

The above relation also implies that

u = ∆−1u− (Id −∆−1)(−∆)−1
∑
j

∂jΩij .

Hence combining Bernstein's inequality and proposition 1.14, we gather that

(4.40) ‖u‖Bs∞,r ≤ C
(
‖u‖Lp + ‖Ω‖Bs−1

∞,r

)
for all p ∈ [1,+∞].

1this time the extreme values of q are not included.



84 Chapter 4. Well-posedness in endpoint Besov spaces

From now on, let us assume that Ω is the vorticity associated to some solution (ρ, u,∇Π) of
(4.1), de�ned on [0, T ]×RN . From the velocity equation, we gather that Ω satis�es the following
transport-like equation:

(4.41) ∂tΩ + u · ∇Ω + Ω · ∇u + t∇u · Ω + ∇
(

1

ρ

)
∧∇Π = F

where Fij := ∂jf
i − ∂if j and, for two vector �elds v and w, we have set v ∧ w to be the skew-

symmetric matrix with components

(v ∧ w)ij = vjwi − viwj .

Using classical Lq estimates for transport equations and taking advantage of Gronwall's lemma,
from (4.41) we immediately get

‖Ω(t)‖Lq ≤ exp

(
2

∫ t

0
‖∇u‖L∞dτ

)
(4.42)

×
(
‖Ω(0)‖Lq +

∫ t

0
e−2

∫ τ
0 ‖∇u‖L∞dτ

′
(
‖F‖Lq +

∥∥∥∥ 1

ρ2
∇ρ ∧∇Π

∥∥∥∥
Lq

)
dτ

)
.

Let us notice that, in the case of space dimension N = 2, equation (4.41) becomes

∂tω + u · ∇ω + ∇
(

1

ρ

)
∧∇Π = F ,

so that one obtains the same estimate as before, but without the exponential growth:

‖ω(t)‖Lq ≤ ‖ω(0)‖Lq +

∫ t

0

(
‖F‖Lq +

∥∥∥∥ 1

ρ2
∇ρ ∧∇Π

∥∥∥∥
Lq

)
dτ .

Therefore, the two-dimensional case is in a certain sense better. We shall take advantage of that
in section 4.5. As concerns the results of this section, the proof will not depend on the dimension.
So for the time being we assume that the dimension N is any integer greater than or equal to 2.

4.4.2 Proof of the continuation criterion

Now, we want to prove the continuation criterion for the solution to (4.1). As usual, we will
suppose condition (1.1) to be satis�ed with p = +∞.

We proceed in two steps. The �rst one is given by the following lemma.

Lemma 4.12. Let (ρ, u,∇Π) be a solution of system (4.1) on [0, T ∗[×RN such that2

• u ∈ C([0, T ∗[ ;Bs
∞,r) ∩ C1([0, T ∗[ ;L2),

• ρ ∈ C([0, T ∗[ ;Bs
∞,r) and satis�es (4.11).

Suppose also that condition (4.4) holds and that T ∗ is �nite. Then

sup
t∈[0,T ∗[

(
‖u(t)‖Bs∞,r∩L2 + ‖ρ(t)‖Bs∞,r

)
< +∞ .

Proof of lemma 4.12. It is only a matter of repeating a priori estimates of the previous section,
but in a more accurate way. Note that a := 1/ρ satis�es the same hypothesis as ρ, so we will

2with the usual convention that continuity in time is weak if r = +∞.
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work without distinction with these two quantities, according to which is more convenient for us.
Hence, set q = ρ or a: recall that it satis�es

∂tq + u · ∇q = 0 .

Hence, applying operator ∆j yields

∂t∆jq + u · ∇∆jq = [u · ∇,∆j ]q ,

whence, for all t ∈ [0, T ∗[ ,

(4.43) 2js‖∆jq(t)‖L∞ ≤ 2js‖∆jq0‖L∞ +

∫ t

0
2js‖[u · ∇,∆j ]q‖L∞ dτ.

Now, lemma 2.100 in [2] ensures that∥∥∥(2js‖[u · ∇,∆j ]q‖L∞
)
j

∥∥∥
`r
≤ C

(
‖∇u‖L∞‖q‖Bs∞,r + ‖∇q‖L∞‖∇u‖Bs−1

∞,r

)
.

Hence, performing an `r summation in (4.43), we get

(4.44) ‖q(t)‖Bs∞,r ≤ ‖q0‖Bs∞,r + C

∫ t

0

(
‖∇u‖L∞‖q‖Bs∞,r + ‖∇q‖L∞‖u‖Bs∞,r

)
dτ.

As regards to the velocity �eld, according to (4.13) we have

(4.45) ‖u(t)‖L2 ≤ C
(
‖u0‖L2 +

∫ t

0
‖f‖L2 dτ

)
,

while, we use (4.40) with p = 2 to bound its Besov norm. So, the problem is now to control the
vorticity in Bs−1

∞,r . From equation (4.41) and proposition 4.7 (recall that div u = 0), we readily get

‖Ω(t)‖Bs−1
∞,r

≤ exp

(
C

∫ t

0
‖∇u‖L∞ dτ

)(
‖Ω0‖Bs−1

∞,r
+

∫ t

0
‖F‖Bs−1

∞,r
dτ +(4.46)

+

∫ t

0

(
‖∇a ∧∇Π‖Bs−1

∞,r
+ ‖Ω · ∇u+ t∇u · Ω‖Bs−1

∞,r

)
dτ

)
.

The following inequalities hold true:

‖∇a ∧∇Π‖Bs−1
∞,r

≤ C
(
‖∇a‖L∞‖∇Π‖Bs−1

∞,r
+ ‖∇Π‖L∞‖∇a‖Bs−1

∞,r

)
,(4.47)

‖Ω · ∇u+ t∇u · Ω‖Bs−1
∞,r

≤ C‖∇u‖L∞‖∇u‖Bs−1
∞,r

.(4.48)

In the case s > 1, they immediately come from theorem 1.24. We claim that they are still
true in the limit case s = r = 1: the proof relies on Bony's decomposition (1.3) and algebraic
cancellations. Indeed, we observe that

∂ia ∂jΠ− ∂ja ∂iΠ = T∂ia∂jΠ− T∂ja∂iΠ + T∂jΠ∂ia− T∂iΠ∂ja+

+∂iR(a−∆−1a, ∂jΠ)− ∂jR(a−∆−1a, ∂iΠ) +R(∂i∆−1a, ∂jΠ) +R(∂j∆−1a, ∂iΠ).

Applying theorem 1.24 thus yields (4.47).

Next, we notice that, as div u = 0, then(
Ω · ∇u+ t∇u · Ω

)
ij

=
∑
k

(
∂iu

k∂ku
j − ∂juk∂kui

)
,

=
∑
k

(
∂k
(
uj∂iu

k
)
− ∂k

(
ui∂ju

k
))
.
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Therefore,(
Ω · ∇u+ t∇u · Ω

)
ij

=
∑
k

(
T∂iuk∂ku

j − T∂juk∂ku
i + T∂kuj∂iu

k − T∂kui∂ju
k+

+∂kR(uj −∆−1u
j , ∂iu

k)− ∂kR(ui −∆−1u
i, ∂ju

k) +R(∆−1∂ku
j , ∂iu

k) +R(∆−1∂ku
i, ∂ju

k)

)
.

Hence theorem 1.24 again implies (4.48).

Plugging (4.47) and (4.48) in (4.46), using the energy inequality (4.45) and inequality (4.40)
with p = 2, we easily get

‖u(t)‖Bs∞,r∩L2 ≤ C exp

(
C

∫
‖∇u‖L∞ dτ

)(
‖u0‖Bs∞,r∩L2 +

∫ t

0
‖f‖Bs∞,r∩L2 dτ +

+

∫ t

0

(
‖∇a‖L∞ ‖∇Π‖Bs−1

∞,r
+ ‖∇Π‖L∞ ‖a‖Bs∞,r

)
dτ

)
.

Hence, denoting X(t) := ‖a(t)‖Bs∞,r + ‖u(t)‖Bs∞,r∩L2 , adding up inequality (4.44) and using
Gronwall's inequality, we end up with

X(t) ≤ C exp

(
C

∫ t

0
‖(∇u,∇a,∇Π)‖L∞ dτ

)(
X(0) +

∫ t

0

(
‖f‖Bs∞,r∩L2 + ‖∇a‖L∞‖∇Π‖Bs−1

∞,r

)
dτ

)
.

Now, the equation for ∇a and Gronwall's inequality immediately ensure that

(4.49) ‖∇a(t)‖L∞ ≤ ‖∇a0‖L∞ exp

(∫ t

0
‖∇u‖L∞ dτ

)
,

which implies, thanks to hypothesis (4.4), that ∇a is bounded in time with values in L∞. More-
over, by hypothesis ∇Π ∈ L1([0, T ∗[ ;Bs−1

∞,r) and ∇u ∈ L1([0, T ∗[ ;L∞). At this point, keeping in
mind the embedding Bs−1

∞,r ↪→ L∞, previous inequality gives us the thesis of the lemma.

The second result, which will enable us to complete the proof of theorem 4.2, reads in the
following way.

Lemma 4.13. Let (ρ, u,∇Π) be the solution of system (4.1) such that3

• ρ ∈ C([0, T ∗[ ;Bs
∞,r) and (4.11);

• u ∈ C([0, T ∗[ ;Bs
∞,r) ∩ C1([0, T ∗[ ;L2);

• ∇Π ∈ C([0, T ∗[ ;L2) ∩ L1([0, T ∗[ ;Bs
∞,r).

Moreover, suppose that

‖u‖L∞
T∗ (Bs∞,r∩L2) + ‖∇a‖L∞

T∗ (Bs−1
∞,r) < +∞ .

Then (ρ, u,∇Π) can be continued beyond the time T ∗ into a solution of (4.1) with the same
regularity.

Proof of lemma 4.13. From the proof of theorem 4.1 we know that there exists a time ε, depending
only on ρ∗, N, s, ‖u‖L∞

T∗ (Bs∞,r∩L2), ‖∇a‖L∞
T∗ (Bs−1

∞,r) and on the norm of the data, such that, for all

T̃ < T ∗, Euler system with data (ρ(T̃ ), u(T̃ ), f(T̃ + ·)) has a unique solution until time ε.
Now, taking for example T̃ = T ∗ − ε/2, we thus obtain a solution, which is (by uniqueness)

the continuation of the initial one, (ρ, u,∇Π), until time T + ε/2.

3with the usual convention that continuity in time is weak if r = +∞.
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Let us complete the proof of theorem 4.2. The �rst part is a straightforward consequence
of these two lemmas. Indeed: lemma 4.12 ensures that ‖u‖L∞

T∗ (Bs∞,r∩L2) and ‖∇a‖L∞
T∗ (Bs−1

∞,r) are

�nite. As for the last claim (the Beale-Kato-Majda type continuation criterion), it is a classical
consequence of the well-known logarithmic interpolation inequality (see e.g. [2])

‖∇u‖L∞ ≤ C

(
‖u‖L2 + ‖Ω‖L∞ log

(
e+
‖Ω‖Bs−1

∞,r

‖Ω‖L∞

))
.

4.4.3 Proof of theorem 4.4

We �rst prove a priori estimates, and then we will get from them existence and uniqueness of the
solution. In fact, it will turn out to be possible to apply theorem 4.1 after performing a suitable
cut-o� on the initial velocity �eld and thus to work directly on system (4.1), without passing
through the equivalence with (4.10) or with a sequence of approximate linear systems.

A priori estimates

As in the previous section, remembering also remark 4.10, the following estimates hold true:

‖∇ρ(t)‖Bs−1
∞,r

≤ ‖∇ρ0‖Bs−1
∞,r

exp

(
C

∫ t

0
‖u‖Bs∞,r dτ

)
(4.50)

‖u(t)‖Bs∞,r ≤ exp

(
C

∫ t

0
‖u‖Bs∞,r dτ

)
×(4.51)

×
(
‖u0‖Bs∞,r +

∫ t

0
e
−C

∫ τ
0 ‖u‖Bs∞,r dτ

′
‖ρ‖Bs∞,r‖∇Π‖Bs∞,r dτ

)
.

Moreover, from the transport equation satis�ed by the velocity �eld, we easily gather that

‖u(t)‖L4 ≤ ‖u0‖L4 +

∫ t

0

∥∥∥∥∇Π

ρ

∥∥∥∥
L4

dτ.

Therefore, using interpolation in Lebesgue spaces and embedding (see proposition 1.6),

‖u(t)‖L4 ≤ ‖u0‖L4 +
1

ρ∗

∫ t

0
‖∇Π‖

1
2
L∞ ‖∇Π‖

1
2

L2 dτ(4.52)

≤ ‖u0‖L4 +
C

ρ∗

∫ t

0
‖∇Π‖Bs∞,r∩L2 dτ.

In order to bound the vorticity in L4, one may use the fact that∥∥∥∥ 1

ρ2
∇ρ ∧∇Π

∥∥∥∥
L4

≤ 1

(ρ∗)2
‖∇ρ ∧∇Π‖L4 ≤

1

(ρ∗)2
‖∇ρ‖L∞ ‖∇Π‖L4

≤ C

(ρ∗)2
‖∇ρ‖Bs−1

∞,r
‖∇Π‖Bs∞,r∩L2 .

From this and (4.42), we thus get

‖Ω(t)‖L4 ≤ exp

(∫ t

0
‖∇u‖Bs−1

∞,r
dτ

)(
‖Ω0‖L4 +(4.53)

+
C

(ρ∗)2

∫ t

0
e
−
∫ τ
0 ‖∇u‖Bs−1

∞,r
dτ ′

‖∇ρ‖Bs−1
∞,r
‖∇Π‖Bs∞,r∩L2 dτ

)
.

Now, in order to close the estimates, we need to control the pressure term. Its Besov norm
can be bounded as in section 4.3, up to a change of ‖u‖L2 into ‖u‖L4 ; indeed it is clear that
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in inequality (4.23) the L2 norm of u may be replaced by any Lp norm with p < +∞. As a
consequence, combining the (modi�ed) inequality (4.24) and (4.20) yields

(4.54) ‖∇Π‖L1
t (B

s
∞,r)
≤ C

((
1 + ‖∇a‖γ

L∞t (Bs−1
∞,r)

)
‖∇Π‖L1

t (L
2) + ‖ρ‖L∞t (Bs∞,r)

∫ t

0
‖u‖2Bs∞,r∩L4dτ

)
.

In order to bound the L2 norm of ∇Π, we take the divergence of the second equation of system
(4.1). We obtain

−div

(
∇Π

ρ

)
= div (u · ∇u) ,

from which, applying elliptic estimates of lemma 4.8 and

(4.55) ‖∇u‖L4 ≤ C ‖Ω‖L4 ,

we get

(4.56)
1

ρ∗
‖∇Π‖L2 ≤ ‖u · ∇u‖L2 ≤ ‖u‖L4 ‖∇u‖L4 ≤ C‖u‖L4 ‖Ω‖L4 .

Putting together inequalities (4.50), (4.51), (4.52), (4.55), (4.54), (4.53) and (4.56) enables us
to close the estimates on some nontrivial time interval [0, T ] depending only on the norm of the
data. In e�ect, assuming that T has been chosen so that Inequality (4.27) is satis�ed, we get from
the above inequalities

‖u(t)‖Bs∞,r ≤ 2‖u0‖Bs∞,r + C0‖∇Π‖L1
t (B

s
∞,r)

,

‖∇Π‖L1
t (B

s
∞,r)

≤ C0

∫ t

0

(
‖u‖L4‖Ω‖L4 + ‖u‖2Bs∞,r∩L4

)
dτ,

‖u(t)‖L4 ≤ ‖u0‖L4 + C0‖∇Π‖L1
t (B

s
∞,r)

+ C0

∫ t

0
‖u‖L4‖Ω‖L4 dτ,

‖Ω(t)‖L4 ≤ 2‖Ω0‖L4 + C0‖∇Π‖L1
t (B

s
∞,r)

,

where the constant C0 depends on s, ρ∗, ρ∗, N and ‖ρ0‖Bs∞,r .
Therefore, applying Gronwall Lemma and assuming that T has been chosen so that (in addition

to (4.27)) we have ∫ T

0
‖u‖W 1,4 dτ ≤ c

where c is a small enough constant depending only on C0, it is easy to close the estimates.

Remark 4.14. Exhibiting an L2 estimate for ∇Π even though u is not in L2 is the key to the
proof. This has been obtained in (4.56). Note however that we have some freedom there: one may
rather assume that u0 ∈ Lp and ∇u0 ∈ Lq, with p and q in [2,+∞] such that 1/p + 1/q ≥ 1/2,
and get a statement similar to that of theorem 4.4 under these two assumptions. The details are
left to the reader.

Existence of a solution

We want to take advantage of the existence theory provided by theorem 4.1. However, under
the assumptions of theorem 4.4, the initial velocity does not belong to L2. To overcome this, we
shall introduce a sequence of truncated initial velocities. Then theorem 4.1 will enable us to solve
system (4.1) with these modi�ed data and the previous part will provide uniform estimates in
the right functional spaces on a small enough (�xed) time interval. Finally, convergence will be
proved by an energy method similar to that we used for theorem 4.1.
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First step: construction of the sequence of approximate solutions
Take any Φ ∈ C∞0 (RNx ) with Φ ≡ 1 on a neighborhood of the origin, and set Φn(x) = Φ(x/n).

Then let us de�ne un0 := Φn u0 for all n ∈ N. Note that this ensures that un0 → u0 in the
distribution meaning.

Given that un0 is continuous and compactly supported, it obviously belongs to L2. Of course, we
still have un0 ∈ Bs

∞,r∩W 1,4∩L2, so we fall back into hypothesis of theorem 4.1. From it, we get the
existence of some time Tn and of a solution (ρn, un,∇Πn) to (4.1) with data (ρ0, u

n
0 ) such that ρn ∈

C([0, Tn];Bs
∞,r), u

n ∈ C1([0, Tn];L2)∩C([0, Tn];Bs
∞,r) and ∇Πn ∈ C([0, Tn];L2)∩L1([0, Tn];Bs

∞,r).
From (4.55), the vorticity equation and the velocity equation, it is easy to see that, in addition,
un ∈ C([0, Tn];W 1,4).

Finally, as the norm of un0 in W 1,4 ∩ Bs
∞,r may be bounded independently of n, the a priori

estimates that have been performed in the previous paragraph ensure that one may �nd some
positive lower bound T for Tn such that (ρn, un,∇Πn) satis�es estimates independent of n on
[0, T ] in the desired functional spaces.

Second step: convergence of the sequence
As done in the previous section, we de�ne ρ̃n = ρn − ρ0, and then

δρn := ρ̃n+1 − ρ̃n ,

δun := un+1 − un ,

δΠn := Πn+1 − Πn .

Resorting to the same type of computations as in the previous section (it is actually easier
as, now, div un = 0 for all n), we can prove that (ρ̃n, un,∇Πn)n∈N is a Cauchy sequence in
C([0, T ];L2). Hence it converges to some (ρ̃, u,∇Π) which belongs to the same space.

Now, de�ning ρ := ρ0 + ρ̃, bearing in mind the uniform estimates of the previous step and
using the Fatou property, we easily conclude that

• ρ ∈ L∞([0, T ];Bs
∞,r) and ρ∗ ≤ ρ ≤ ρ∗;

• u ∈ L∞([0, T ];Bs
∞,r) ∩ L∞([0, T ];W 1,4);

• ∇Π ∈ L1([0, T ];Bs
∞,r) ∩ L∞([0, T ];L2).

Finally, by interpolation we can pass to the limit in the equations at step n, so we get that
(ρ, u,∇Π) satis�es (4.1), while continuity in time follows from proposition 4.7.

4.5 Remarks on the lifespan of the solution

In this section, we exhibit lower bounds for the lifespan of the solution to the density-dependent
incompressible Euler equations. We �rst establish that, like in the homogeneous case, in any
dimension, if the initial velocity is of order ε then the lifespan is at least of order ε−1 even in the
fully nonhomogeneous case. Next we focus on the two-dimensional case: in the second part of this
section, we show that for small perturbations of a constant density state, the lifespan tends to be
very large. Therefore, for nonhomogeneous incompressible �uids too, the two-dimensional case is
somewhat nicer than the general situation.

4.5.1 The general case

Let ρ0, u0 and f satisfy the assumptions of theorem 4.1 or 4.4. Denote

ũ0(x) := ε u0(x) and f̃(t, x) := ε2 f(ε t, x) .
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It is clear that if we set (
ρ̃ , ũ , ∇Π̃

)
(t, x) :=

(
ρ , ε u , ε2∇Π

)
(ε t , x) ,

then (ρ̃, ũ,∇Π̃) is a solution to (4.1) on [ε−1 T∗, ε
−1 T ∗] with data (ρ0, ũ0, f̃) if and only if (ρ, u,∇Π)

is a solution to (4.1) on [T∗, T
∗] with data (ρ0, u0, f).

Hence, putting together the results of the previous section, we can conclude to the following
statement.

Theorem 4.15. Let (ρ0, u0) satisfy the assumptions of theorem 4.1 or 4.4, and f ≡ 0. There
exists a positive time T ∗ depending only on s, N, ρ∗, ‖ρ0‖B1

∞,1
and ‖u0‖B1

∞,1
such that, for any

ε > 0, the upper bound T ∗ε of the maximal interval of existence for the solution to (4.1) with initial
data (ρ0, ε u0) satis�es

T ∗ε ≥ ε−1 T ∗ .

A similar result holds for the lower bound of the maximal interval of existence.

4.5.2 The two-dimensional case

Recall that for the homogeneous equations, any solution corresponding to suitably smooth data
is global, a fact which relies on the conservation of the vorticity by the �ow. Now, in our case,
the vorticity equation reads (if f ≡ 0)

(4.57) ∂tω + u · ∇ω +∇a ∧∇Π = 0 with ∇a ∧∇Π := ∂1a ∂2Π− ∂2a ∂1Π.

Owing to the new term involving the pressure and the nonhomogeneity, it is not clear at all that
global existence still holds. Nevertheless, we are going to prove that the lifespan may be very
large if the nonhomogeneity is small.

To simplify the presentation, we focus on the case where ρ0 ∈ B1
∞,1(R2) and u0 ∈ B1

∞,1(R2)
(note that corollary 4.3 ensures that this is not restrictive) and assume, in addition, that u0 ∈
L2(R2) (this lower order assumption may be somewhat relaxed too). We aim at proving the
following result.

Theorem 4.16. Under the above assumptions, there exists a constant c, depending only on ρ∗ and
ρ∗, such that the lifespan of the solution to the two-dimensional density-dependent incompressible
Euler equations with initial data (ρ0, u0) and no source term is bounded from below by

c

‖u0‖L2∩B1
∞,1

log

(
1 + c log

1

‖∇a0‖B0
∞,1

)
.

Proof. Let ]T∗, T
∗[ denote the maximal interval of existence of the solution (ρ, u,∇Π) correspond-

ing to (ρ0, u0). To simplify the presentation, we focus on the evolution for positive times.
The key to the proof relies on the fact that in the two-dimensional case, the vorticity equation

satis�es (4.57). Now, it turns out that, as discovered by M. Vishik in [60] and by T. Hmidi and
S. Keraani in [41], the norms in Besov spaces with null regularity index of solutions to transport
equations satisfy better estimates, namely in our case

‖ω(t)‖B0
∞,1
≤ C

(
‖ω0‖B0

∞,1
+

∫ t

0
‖∇a ∧∇Π‖B0

∞,1
dτ

)(
1 +

∫ t

0
‖∇u‖L∞ dτ

)

whereas, according to proposition 4.7, the last term has to be replaced with exp
(∫ t

0
‖∇u‖L∞ dτ

)
for nonzero regularity exponents.



4.5. Remarks on the lifespan of the solution 91

Therefore, using inequality (4.47), we get

(4.58) ‖ω(t)‖B0
∞,1
≤ C

(
‖ω0‖B0

∞,1
+

∫ t

0
‖∇a‖B0

∞,1
‖∇Π‖B0

∞,1
dτ

)(
1 +

∫ t

0
‖∇u‖L∞ dτ

)
.

Bearing in mind inequality (4.40) and the energy inequality for u, we thus get

(4.59) X(t) ≤ C
(
X0 +

∫ t

0
A(τ) ‖∇Π(τ)‖B0

∞,1
dτ

)(
1 +

∫ t

0
X dτ

)
,

where we have de�ned

X(t) := ‖u(t)‖L2∩B1
∞,1

and A(t) := ‖∇a(t)‖B0
∞,1

.

Bounding A is easy, given that

∂t∂ia+ u · ∇∂ia = −∂iu · ∇a for i = 1, 2 .

Indeed, combining inequality (4.6) and paraproduct estimates ensures that

‖∇a(t)‖B0
∞,1
≤ ‖∇a0‖B0

∞,1
exp

(
C

∫ t

0
‖∇u‖B0

∞,1
dτ

)
.

Therefore,

(4.60) A(t) ≤ A0 exp

(
C

∫ t

0
X dτ

)
.

Bounding the pressure term in B0
∞,1 is our next task. In fact, we shall rather bound its B1

∞,1
norm4. Recall that, according to inequality (4.20), there exists some exponent γ ≥ 1 so that

(4.61) ‖∇Π‖B1
∞,1
≤ C

((
1 + ‖∇a‖γ

B0
∞,1

)
‖∇Π‖L2 + ‖ρdiv (u · ∇u)‖B0

∞,1

)
.

Combining Bony's decomposition with the fact that div (u · ∇u) = ∇u : ∇u, we get

‖div (u · ∇u)‖B0
∞,1
≤ ‖u‖2B1

∞,1
.

From the de�nition of B1
∞,1 and proposition 1.31, it is also clear that

‖ρ‖B1
∞,1
≤ C

(
ρ∗ + ‖∇a‖B0

∞,1

)
.

Finally, given that
−div (a∇Π) = div (u · ∇u) ,

lemma 4.8 guarantees that

(4.62) a∗‖∇Π‖L2 ≤ ‖u‖L2 ‖∇u‖L∞ .

So plugging the above inequalities in (4.61), one may conclude that

(4.63) ‖∇Π‖B1
∞,1
≤ C (1 +Aγ)X2 ,

for some constant C depending only on a∗ and a∗.

4We do not know how to take advantage of the fact that only the B0
∞,1 norm is needed.
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It is now time to insert inequalities (4.60) and (4.63) in (4.59); setting β = γ + 1, we get

(4.64) X(t) ≤ C

(
X0 +

(
A0 +Aβ0

)∫ t

0
eC
∫ τ
0 X dτ ′ X2 dτ

)(
1 +

∫ t

0
X dτ

)
.

Let T0 denote the supremum of times t ∈ [0, T ∗[ so that

(4.65)
(
A0 +Aβ0

) ∫ t

0
eC
∫ τ
0 X dτ ′ X2 dτ ≤ X0 .

From (4.64) and Gronwall's Lemma, we gather that

X(t) ≤ 2C X0 e
2C tX0 for all t ∈ [0, T0[ .

Note that this inequality implies that for all t ∈ [0, T0[ , we have∫ t

0
eC
∫ τ
0 X dτ ′ X2 dτ ≤ C X0

(
e4C tX0 − 1

)
exp

(
C

(
e2C tX0 − 1

))
.

Therefore, using (4.65) and a bootstrap argument (based on the continuation theorems that we
proved in the previous sections), it is easy to show that T0 is greater than any time t such that(

A0 +Aβ0

) (
e4C tX0 − 1

)
exp

(
C

(
e2C tX0 − 1

))
≤ 1 .

Taking the logarithm and using that log y ≤ y − 1 for y > 0, we see that the above inequality is
satis�ed whenever

e2C tX0 ≤ 1 +
1

2C
log

(
1

A0 +Aβ0

)
.

This completes the proof of the lower bound for T ∗.

Remark 4.17. If ω0 has more regularity (say ω0 ∈ Cr for some r ∈ ]0, 1[ ), then one may �rst write
an estimate for ‖ω‖L∞ and next use the classical logarithmic inequality for bounding ‖∇u‖L∞ in
terms of ‖ω‖L∞ and ‖ω‖Cr . The proof is longer, requires more regularity and, at the same time,
the lower bound for the lifespan does not improve.



Chapter 5

Propagation of geometric structures

In this chapter we obtain a result about propagation of geometric properties for solutions of non-
homogeneous incompressible Euler system in any dimension N ≥ 2. In particular, we investigate
conservation of striated and conormal regularity, which is a natural way of generalising the 2-D
structure of vortex patches. The results we get are only local in time, even in the dimension
N = 2: in contrast with the homogeneous case, the global existence issue is still an open problem,
because the vorticity is not preserved during the time evolution. Moreover we will be able to
give an explicit lower bound for the lifespan of the solution, in terms of the norms of initial data
only. In the case of physical dimension N = 2 or 3, we will investigate also propagation of Hölder
regularity in the interior of a bounded domain.

5.1 Introduction

In this chapter we are interested in studying conservation of geometric properties for solutions of
the density-dependent incompressible Euler system

(5.1)


∂tρ + u · ∇ρ = 0

ρ (∂tu + u · ∇u) + ∇Π = 0

div u = 0 ,

which describes the evolution of a non-homogeneous inviscid �uid with no body force acting on
it, an assumption we will make throughout all this chapter to simplify the presentation. Here,
ρ(t, x) ∈ R+ represents the density of the �uid, u(t, x) ∈ RN its velocity �eld and Π(t, x) ∈ R
its pressure. The term ∇Π can be also seen as the Lagrangian multiplier associated to the
divergence-free constraint over the velocity.

We will always suppose that the variable x belongs to the whole space RN .

The problem of preserving geometric structures came out already in the homogeneous case,
for which ρ ≡ 1 and system (5.1) becomes

(E)

{
∂tu + u · ∇u + ∇Π = 0

div u = 0 ,

in studying 2-dimensional vortex patches, that is to say the initial vorticity Ω0 is the characteristic
function of a bounded domainD0. As we will explain below, in the case of higher dimension N ≥ 3
this notion was generalized by the properties of striated and conormal regularity.

We recall here that the vorticity of the �uid is de�ned as the skew-symmetric matrix

(5.2) Ω := ∇u − t∇u

93
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and in the homogenous case it satis�es the equation

∂tΩ + u · ∇Ω + Ω · ∇u + t∇u · Ω = 0 .

In dimension N = 2 it can be identi�ed with the scalar function ω = ∂1u
2 − ∂2u

1, while for
N = 3 with the vector-�eld ω = ∇ × u. Let us recall also that in the bidimensional case this
quantity is transported by the velocity �eld: it ful�lls

∂tω + u · ∇ω = 0 .

The notion of vortex patches was introduced in [47] and gained new interest after the survey
paper [49] of Majda. In the case N = 2 Yudovich's theorem ensures the existence of a unique
global solution of the homogeneous Euler system, which preserves the geometric structure: the
vorticity remains the characteristic function of the evolution (by the �ow associated to this solu-
tion) of the domain D0. Vortex patches in bounded domains of R2 were also studied by Depauw
(see [32]), while Dutrifoy in [33] focused on the case of domains in R3. Moreover, in [11] Chemin
proved that, if the initial domain has boundary ∂D0 of class C1+ε for some ε > 0, then this
regularity is preserved during the evolution for small times; in [12] he also showed a global in time
persistence issue. In [24] Danchin considered instead the case in which initial data of the Euler
system are vortex patches with singular boundary: he proved that if ∂D0 is regular apart from a
closed subset, then it remains regular for all times, apart from the closed subset transported by
the �ow associated to the solution.

In the case N ≥ 3 one can't expect to have global results anymore, nor to preserve the initial
vortex patch structure, because of the presence of the stretching term in the vorticity equation.
Nevertheless, it's possible to introduce the de�nition of striated regularity, which generalizes in a
quite natural way the previous one of vortex patch: it means that the vorticity is more regular
along some �xed directions, given by a nondegenerate family of vector-�elds (see de�nition 5.1
below). This notion was introduced �rst by Bony in [7] in studying hyperbolic equations, and then
adapted by Alinhac (see [1]) and Chemin (see [10]) for nonlinear partial di�erential equations.

In [36], Gamblin and Saint-Raymond proved that striated regularity is preserved during the
evolution in any dimension N ≥ 3, but, as already remarked, only locally in time (see also [55]).
They also obtained global results if initial data have other nice properties (e.g., if the initial
velocity is axisymmetric).

As Euler system is, in a certain sense, a limit case of the Navier-Stokes system as the viscosity of
the �uid goes to 0, it's interesting to study if there is also �convergence� of the geometric properties
of the solutions. Recently Danchin proved results on striated regularity for the solutions of the
Navier-Stokes system

(NSν)

{
∂tu + u · ∇u − ν∆u + ∇Π = 0

div u = 0 ,

in [25] for the 2-dimensional case, in [26] for the general one. Already in the former paper, he
had to dismiss the vortex patch structure �stricto sensu� due to the presence of the viscous term,
which comes out also in the vorticity equation and has a smoothing e�ect; however, he still got
global in time results. Moreover, in both his works he had to handle with spaces of type B1+ε

p,∞
(with p ∈ ]2,+∞[ and ε ∈ ]2/p, 1[ ) due to technical reasons which come out with a viscous �uid.
Let us immediately clarify that these problems have been recently solved by Hmidi in [39] (see
also [2]), and this fact allows us to consider again the Hölder spaces framework. In the above
mentioned works Danchin proved also a priori estimates for solutions of (NSν) independent of the
viscosity ν, therefore preservation of the geometric structures in passing from solutions of (NSν)
to solutions of (E) in the limit ν → 0.

In this chapter we will come back to the inviscid case and we will study the non-homogeneous
incompressible Euler system (5.1). We want to investigate if preservation of geometric properties
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of initial data, such as striated and conormal regularity, still holds in this setting, as in the classical
(homogeneous) one. Let us note that in the 2-dimensional case the equation for the vorticity reads

∂tω + u · ∇ω + ∇
(

1

ρ

)
∧∇Π = 0 ,

so it's not better than in higher dimension due to the presence of the density term, which doesn't
allow us to get conservation of Lebesgue norms. This is also the reason why it's not clear if
Yudovich's theorem still holds true for non-homogeneous �uids: having ω0 ∈ Lq ∩ L∞, combined
with suitable hypothesis on ρ0, doesn't give rise to a local solution.
So, we will immediately focus on the general case N ≥ 2. We will assume the initial velocity u0

and the initial vorticity Ω0 to be in some Lebesgue spaces, in order to assure the pressure term
to belong to L2, a requirement we could not bypass. As a matter of fact, ∇Π satis�es an elliptic
equation with low regularity coe�cient,

−div (a∇Π) = divF ,

and it can be solved independently of a only in the energy space L2. Moreover, we will suppose Ω0

to have regularity properties of geometric type. Obviously, we will require some natural but quite
general hypothesis also on the initial density ρ0 of the �uid: we suppose ρ0 to be strictly positive
and bounded with its gradient and that it satis�es geometric assumptions analogous to those for
Ω0. Let us point out that proving the velocity �eld to be Lipschitz, which was the key part in
the homogeneous case, works as in this setting: it relies only on Biot-Savart law and it requires
no further hypothesis on the density term. Let us also remark that no smallness conditions over
the density are needed. Of course, we will get only local in time results. Moreover, we will see
that geometric structures propagate also to the velocity �eld and to the pressure term.

The present chapter is organized in the following way.
In the �rst part, we will recall basic facts about Euler system: some properties of the vorticity

and how to associate a �ow to the velocity �eld. In this section we will also give the de�nition of
the geometric properties we are studying and we will state the main results we got about striated
and conormal regularity.

The mathematical techniques we need to prove our claims are mostly those introduced in
chapter 1, even if in the particular case of spaces Cs ≡ Bs

∞,∞. Hence, we don't recall them.
Nevertheless, we need to introduce the notion of paravector-�eld, as de�ned in [26]: it will play
a fundamental role in our analysis, because it is, in a certain sense, the principal part of the
derivation operator along a �xed vector-�eld. Moreover, we need also to analyse right composition
of a Cs function with a smooth one. Section 5.3 is devoted to the presentation of these additional
tools.

This having been done, we will �nally be able to tackle the proof of our result about striated
regularity. First of all, we will state a priori estimates for suitable smooth solutions of the Euler
system (5.1). Then from them we will get, in a quite classical way, the existence of a solution
with the required properties: we will construct a sequence of regular solutions of system (5.1)
with approximated data, and, using a compactness argument, we will show the convergence of
this sequence to a �real� solution. Proving preservation of the geometric structure requires instead
strong convergence in rough spaces of type C−α (for some α > 0). Uniqueness of the solution
will follow from a stability result for our equations. In the following section, we will also give an
estimate from below for the lifespan of the solution.

Finally, we will spend a few words about conormal regularity: proving its propagation from
the previous result is standard and can be done as in the homogenous setting. As a consequence,
inspired by what done in Huang's paper [44], in the physical case of space dimension N = 2 or 3
we can improve our result: we will also show that, if the initial data are Hölder continuous in the
interior of a suitably smooth bounded domain, the solution conserves this property during the
time evolution, i.e. it is still Hölder continuous in the interior of the domain transported by the
�ow.



96 Chapter 5. Propagation of geometric structures

5.2 Basic de�nitions and main results

Let (ρ, u,∇Π) be a solution of the density-dependent incompressible Euler system (5.1) over
[0, T ]× RN and let us denote the vorticity of the �uid by Ω. As in the homogeneous case, it will
play a fundamental role throughout all this chapter, so let us spend a few words about it.

From the de�nition (5.2), it is obvious that, for all q ∈ [1,+∞], if ∇u ∈ Lq, then also
Ω ∈ Lq. Conversely, if u is a divergence-free vector-�eld, then for all 1 ≤ i ≤ N we have
∆ui =

∑N
j=1 ∂jΩij , and so, formally,

(5.3) ui = − (−∆)−1
N∑
j=1

∂jΩij .

This is the Biot-Savart law, and it says that a divergence free vector-�eld u is completely deter-
mined by its vorticity. From (5.3) we immediately get

(5.4) ∇ui = −∇ (−∆)−1
N∑
j=1

∂jΩij .

Now, as the symbol of the operator −∂i (−∆)−1 ∂j is σ(ξ) = ξiξj/|ξ|2, the classical Calderon-
Zygmund theorem ensures that1 for all q ∈ ]1,+∞[ , if Ω ∈ Lq then ∇u ∈ Lq and

(5.5) ‖∇u‖Lq ≤ C
q2

q − 1
‖Ω‖Lq .

In dimension N = 2 the vorticity equation is simpler than in the general case due to the
absence of the stretching term. Nevertheless, as remarked above, the exterior product involving
density and pressure terms makes it impossible to get conservation of Lebesgue norms, which was
the basic point to get global existence for the classical system (E). So, we immediately focus on
the case N ≥ 2 whatever, in which the vorticity equation reads

(5.6) ∂tΩ + u · ∇Ω + Ω · ∇u + t∇u · Ω + ∇
(

1

ρ

)
∧∇Π = 0 ,

where, for two vector-�elds v and w, we have set v ∧ w to be the skew-symmetric matrix with
components

(v ∧ w)ij = vjwi − viwj .

Finally, recall that we can associate a �ow ψ to the velocity �eld u of the �uid: it is de�ned
by the relation

ψ(t, x) ≡ ψt(x) := x +

∫ t

0
u(τ, ψτ (x)) dτ

for all (t, x) ∈ [0, T ]×RN and it is, for all �xed t ∈ [0, T ], a di�eomorphism over RN , if ∇u ∈ L∞.
Let us remark that the �ow is still well-de�ned (in a generalized sense) even if u is only log-
Lipschitz continuous, but it is no more a di�eomorphism (see e.g. chapter 3 of [2], or [13], for
more details).

Let us now introduce the geometric properties we are handling throughout this chapter. The
�rst notion we are interested in is the striated regularity, that is to say initial the data are more
regular along some given directions.

So, let us take a family X = (Xλ)1≤λ≤m of m vector-�elds with components and divergence
of class Cε for some �xed ε ∈ ]0, 1[. We also suppose this family to be non-degenerate, i.e.

I(X) := inf
x∈RN

sup
Λ∈ΛmN−1

∣∣∣∣N−1
∧ XΛ(x)

∣∣∣∣ 1
N−1

> 0 .

1This time the extreme values of q are not included.
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Here Λ ∈ ΛmN−1 means that Λ = (λ1, . . . , λN−1), with each λi ∈ {1, . . . ,m} and λi < λj for i < j,

while the symbol
N−1
∧ XΛ stands for the element of RN such that

∀ Y ∈ RN ,
(
N−1
∧ XΛ

)
· Y = det

(
Xλ1 . . . XλN−1

, Y
)
.

For each vector-�eld of this family we put

‖̃Xλ‖Cε := ‖Xλ‖Cε + ‖divXλ‖Cε ,

while we will use the symbol ||| · ||| in considering the supremum over all indices λ ∈ Λm1 =
{1 . . .m}.

De�nition 5.1. Take a vector-�eld Y with components and divergence in Cε and �x a η ∈
[ε, 1 + ε]. A function f ∈ L∞ is said to be of class Cη along Y , and we write f ∈ CηY , if
div (f Y ) ∈ Cη−1

(
RN
)
.

If X = (Xλ)1≤λ≤m is a non-degenerate family of vector-�elds as above, we de�ne

CηX :=
⋂

1≤λ≤m
CηXλ and ‖f‖CηX :=

1

I(X)

(
‖f‖L∞ |̃||X|||Cε + |||div (f X) |||Cη−1

)
.

Remark 5.2. Our aim is to investigate Hölder regularity of the derivation of f along the �xed
vector-�eld (say) Y , i.e. the quantity

∂Y f :=

N∑
i=1

Y i ∂if .

If f is only bounded, however, this expression has no meaning: this is why we decided to focus on
div (f Y ), as done in the literature about this topic (see also [26], section 1). Lemma 5.14 below
will clarify the relation between these two quantities.

Now, let us take a vector-�eld X0 and de�ne its time evolution X(t):

(5.7) X(t, x) ≡ Xt(x) := ∂X0(x)ψt
(
ψ−1
t (x)

)
,

that is X(t) is the vector-�eld X0 transported by the �ow associated to u. From this de�nition,
it immediately follows that [∂X , ∂t + u · ∇] = 0, i.e. X(t) satis�es the following system:

(5.8)

{
(∂t + u · ∇)X = ∂Xu

X|t=0 = X0 .

We are now ready for stating our �rst result, on striated regularity.

Theorem 5.3. Fix ε ∈ ]0, 1[ and take a non-degenerate family of vector-�elds X0 = (X0,λ)1≤λ≤m
over RN , whose components and divergence are in Cε.
Let the initial velocity �eld u0 ∈ Lp, with p ∈ ]2,+∞], and its vorticity Ω0 ∈ L∞ ∩ Lq, with
q ∈ [2,+∞[ such that 1/p + 1/q ≥ 1/2. Let us suppose Ω0 ∈ CεX0

.
Finally, let the initial density ρ0 ∈W 1,∞ be such that 0 < ρ∗ ≤ ρ0 ≤ ρ∗ and ∇ρ0 ∈ CεX0

.
Then there exist a time T > 0 and a unique solution (ρ, u,∇Π) of system (5.1), such that:

• ρ ∈ L∞([0, T ];W 1,∞) ∩ Cb([0, T ]× RN ), such that 0 < ρ∗ ≤ ρ ≤ ρ∗ at every time;

• u ∈ C([0, T ];Lp)∩L∞([0, T ]; C0,1), with ∂tu ∈ C([0, T ];L2) and vorticity Ω ∈ C([0, T ];Lq);

• ∇Π ∈ C([0, T ];L2), with ∇2Π ∈ L∞([0, T ];L∞).
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Moreover, the family of vector-�elds transported by the �ow still remains, at every time, non-
degenerate and with components and divergence in Cε, and striated regularity is preserved: at
every time t ∈ [0, T ], one has

• ∇ρ(t) and Ω(t) ∈ CεX(t) ,

• u(t) and ∇Π(t) ∈ C1+ε
X(t)

uniformly on [0, T ].

Another interesting notion, strictly related to the previous one, is that of conormal regularity.
First of all, we have to recall a de�nition (see again section 1 of [26]).

De�nition 5.4. Let Σ ⊂ RN be a compact hypersurface of class C1+ε. Let us denote by T εΣ
the set of all vector-�elds X with components and divergence in Cε, which are tangent to Σ, i.e.
∂XH |Σ ≡ 0 for all local equations H of Σ.

Given a η ∈ [ε, 1 + ε], we say that a function f ∈ L∞ belongs to the space CηΣ if

∀X ∈ T εΣ , f ∈ CηX , i.e. div (f X) ∈ Cη−1 .

Similarly to what happens for striated regularity, also conormal structure propagates during
the time evolution.

Theorem 5.5. Fix ε ∈ ]0, 1[ and take a compact hypersurface Σ0 ⊂ RN of class C1+ε.
Let us suppose the initial velocity �eld u0 ∈ Lp, with p ∈ ]2,+∞], and its vorticity Ω0 ∈ L∞ ∩Lq,
with q ∈ [2,+∞[ such that 1/p + 1/q ≥ 1/2. Moreover, let us suppose Ω0 ∈ CεΣ0

.
Finally, let the initial density ρ0 ∈W 1,∞ be such that 0 < ρ∗ ≤ ρ0 ≤ ρ∗ and ∇ρ0 ∈ CεΣ0

.
Then there exist a time T > 0 and a unique solution (ρ, u,∇Π) of system (5.1), which veri�es

the same properties of theorem 5.3.
Moreover, if we de�ne

Σ(t) := ψt (Σ0) ,

Σ(t) is, at every time t ∈ [0, T ], a hypersurface of class C1+ε of RN , and conormal regularity is
preserved: at every time t ∈ [0, T ], one has

• ∇ρ(t) and Ω(t) ∈ CεΣ(t) ,

• u(t) and ∇Π(t) ∈ C1+ε
Σ(t)

uniformly on [0, T ].

5.3 More on paradi�erential calculus

The proof to our results is essentially based on the Fourier Analysis methods presented in chapter
1. In this section we will introduce some additional tools we need. As we are interested in the
class of Hölder spaces, we will focus only on this case.

First of all, let us quote a result (see [25] for the proof) pertaining to the right composition
of functions in Besov spaces, which will be of great importance in the sequel. For the sake of
completnees, let us also state what proposition 1.31 becomes in the particular case of Hölder
continuous functions.

Proposition 5.6. (i) Let I be an open interval of R and F : I → R a smooth function.

Then for all compact subset J ⊂ I and all s > 0, there exists a constant C such that, for all
function u valued in J and with gradient in Cs−1, we have ∇(F ◦ u) ∈ Cs−1 and

‖∇(F ◦ u)‖Cs−1 ≤ C ‖∇u‖Cs−1 .
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(ii) Let s > 0 and m ∈ N be such that m > s. Let u ∈ Cs and ψ ∈ Cmb such that the Jacobian of
ψ−1 is bounded.

Then u ◦ ψ ∈ Cs. Moreover, if s ∈ ]0, 1[ the following estimate holds:

‖u ◦ ψ‖Cs ≤ C (1 + ‖∇ψ‖L∞) ‖u‖Cs .

Now, let us introduce the notion of paravector-�eld, which we will broadly use in our compu-
tations.

De�nition 5.7. Let X be a vector-�eld with components in S ′. We can formally de�ne the
paravector-�eld operator TX in the following way: for all u ∈ S ′,

TXu :=
N∑
i=1

TXi∂iu .

The following result (see section 2 of [26] for the proof) says that the paravector-�eld operator
is, in a certain sense, the principal part of the derivation ∂X : the derivative along X is more
regular if and only if the �paraderivation� along X is.

Lemma 5.8. For all vector �eld X ∈ Cs and all u ∈ Ct, we have:

• if t < 1 and s+ t > 1, then

‖∂Xu − TXu‖Cs+t−1 ≤
C

(1− t) (s+ t− 1)
‖X‖Cs ‖∇u‖Ct−1 ;

• if t < 0, s < 1 and s+ t > 0, then

‖TXu − div (uX)‖Cs+t−1 ≤
C

t (s+ t) (s− 1)
‖X‖Cs ‖u‖Ct ;

• if t < 1 and s+ t > 0, then

‖∂Xu − TXu‖Cs+t−1 ≤
C

(s+ t) (1− t)
‖̃X‖Cs ‖∇u‖Ct−1 .

Moreover, �rst and last inequalities are still true even in the case t = 1, provided that one replaces
‖∇u‖C0∗ with ‖∇u‖L∞ , while the second is still true even if t = 0, with ‖u‖L∞ instead of ‖u‖C0∗ .

We will heavily use also the following statement about composition of paravector-�eld and
paraproduct operators (see the appendix in [26] for its proof).

Lemma 5.9. Fix s ∈ ]0, 1[. There exist constants C, depending only on s, such that, for all t1 < 0
and t2 ∈ R,

‖TX Tu v‖Cs−1+t1+t2 ≤ C (‖X‖Cs ‖u‖Ct1 ‖v‖Ct2 +

+ ‖v‖Ct2 ‖TXu‖Cs−1+t1 + ‖u‖Ct1 ‖TXv‖Cs−1+t2 ) ,

and this is still true in the case t1 = 0 with ‖u‖L∞ instead of ‖u‖C0∗ .
Moreover, if s− 1 + t1 + t2 > 0, then we have also

‖TX R(u, v)‖Cs−1+t1+t2 ≤ C (‖X‖Cs ‖u‖Ct1 ‖v‖Ct2 +

+ ‖v‖Ct2 ‖TXu‖Cs−1+t1 + ‖u‖Ct1 ‖TXv‖Cs−1+t2 ) .
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5.4 Propagation of striated regularity

Now we are ready to tackle the proof of theorem 5.3. We will carry out it in a standard way:
�rst of all we will prove a priori estimates for solutions of the non-homogeneous Euler equations.
Then, we will construct a sequence of regular approximated solutions. Finally, thanks to upper
bounds proved in the �rst part, we will get convergence of this sequence to a solution of our initial
system, with the required properties.

5.4.1 A priori estimates

First of all, we will prove a priori estimates for a smooth solution (ρ, u,∇Π) of system (5.1).

Estimates for density and velocity �eld

From �rst equation of (5.1), it follows that

ρ(t, x) = ρ0

(
ψ−1
t (x)

)
,

so, as the �ow ψt is a di�eomorphism over RN at all �xed time, we have that

(5.9) 0 < ρ∗ ≤ ρ(t) ≤ ρ∗ .

Applying the operator ∂i to the same equation, using classical Lp estimates for the transport
equation and Gronwall's lemma, we get

(5.10) ‖∇ρ(t)‖L∞ ≤ ‖∇ρ0‖L∞ exp

(
C

∫ t

0
‖∇u‖L∞ dτ

)
.

From the equation for the velocity, instead, we get, in a classical way,

‖u(t)‖Lp ≤ ‖u0‖Lp +

∫ t

0

∥∥∥∥∇Π

ρ

∥∥∥∥
Lp

dτ ;

so, using (5.9) and Hölder inequalities, for a certain θ ∈ ]0, 1[ , the following estimate holds:

(5.11) ‖u(t)‖Lp ≤ ‖u0‖Lp +
C

ρ∗

∫ t

0
‖∇Π‖θL2 ‖∇Π‖1−θL∞ dτ .

Remark 5.10. Let us observe that, as regularity of the pressure goes like that of the velocity
�eld, one can try to estimate directly the Lp norm of the pressure term. Unfortunately, we can't
solve its (elliptic) equation in this space without assuming a smallness condition on the density
or its gradient. So, we will prove that ∇Π is in L2 ∩L∞, which is actually stronger than previous
property and requires no further hypothesis on ρ.

Already from (5.10) it's clear that we need an estimate for the L∞ norm of the gradient of the
velocity. As remarked before, we can't expect to get it from the hypothesis Ω ∈ L∞; the key will
be the further assumption, i.e. the hypothesis of more regularity of the vorticity along the �xed
directions given by the family X0.
Here we quote also a fundamental lemma, whose proof can be found in [2] (chapter 7) for the
2-dimensional case, in [26] (section 3) and [36] (again section 3) for the general one. It is the main
point to get the velocity �eld to be Lipschitz and it turns out to be immediately useful in the
sequel.

Lemma 5.11. Fix ε ∈ ]0, 1[ and an integer m ≥ N − 1, and take a non-degenerate family Y =
(Yλ)1≤λ≤m of Cε vector-�elds over RN such that also their divergences are in Cε.
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Then, for all indices 1 ≤ i, j ≤ N , there exist Cε functions aij, bkλij (with 1 ≤ k ≤ N ,
1 ≤ λ ≤ m) such that, for all (x, ξ) ∈ RN × RN , the following equality holds:

ξi ξj = aij(x)|ξ|2 +
∑
k,λ

bkλij (x) (Yλ(x) · ξ) ξk .

Moreover, the functions in the previous relation could be chosen such that

‖aij‖L∞ ≤ 1∥∥∥bkλij ∥∥∥Cε ≤ C
m2N−2

I(Y )
|||Y ||| 9N−10

Cε .

Now, we can state the stationary estimate which says that the velocity �eld u is Lipschitz.
This can be done as in the classical case, because it's based only on the Biot-Savart law, or better
on it's gradient version (5.4).

Proposition 5.12. Fix ε ∈ ]0, 1[ and q ∈ ]1,+∞[ ; moreover, take a non-degenerate family Y =
(Yλ)1≤λ≤m of Cε vector-�elds over RN such that also their divergences are of class Cε.

Then there exists a constant C, depending only on the space dimension N and on the number
of vector-�elds m, such that, for all skew-symmetric matrices Ω with coe�cients in Lq ∩ CεY , the
corresponding divergence-free vector-�eld u, given by (5.3), satis�es

(5.12) ‖∇u‖L∞ ≤ C

(
q2

q − 1
‖Ω‖Lq +

1

ε (1− ε)
‖Ω‖L∞ log

(
e +

‖Ω‖CεY
‖Ω‖L∞

))
.

Estimates for the vorticity

Using the well-known Lq estimates for transport equation and taking advantage of Gronwall's
lemma and Hölder inequality in Lebesgue spaces, from (5.6) we obtain

‖Ω(t)‖Lq ≤ C exp

(∫ t

0
‖∇u‖L∞dτ

)
×(5.13)

×
(
‖Ω0‖Lq +

1

(ρ∗)
2

∫ t

0
e−
∫ τ
0 ‖∇u‖L∞dτ

′ ‖∇ρ‖L∞ ‖∇Π‖γ
L2 ‖∇Π‖1−γL∞ dτ

)
,

for a certain γ ∈ ]0, 1[ .
Of course an analogue estimate holds true also for the L∞ norm:

‖Ω(t)‖L∞ ≤ C exp

(∫ t

0
‖∇u‖L∞dτ

)
×(5.14)

×
(
‖Ω0‖L∞ +

1

(ρ∗)
2

∫ t

0
e−
∫ τ
0 ‖∇u‖L∞dτ

′ ‖∇ρ‖L∞ ‖∇Π‖L∞ dτ

)
.

Remark 5.13. Let us �x the index p pertaining to u and let us call q the real number in [2,+∞[
such that 1/p + 1/q = 1/2. From our hypothesis, it's clear that q ≤ q; therefore, thanks to
Hölder and Young inequalities, we have

‖Ω‖Lq ≤ ‖Ω‖
η
Lq ‖Ω‖

1−η
L∞ ≤ ‖Ω‖Lq∩L∞ .
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Estimates for the pressure term

Now, let us focus on the pressure term: taking the divergence of the second equation of system
(5.1), we discover that it solves the elliptic equation

(5.15) −div

(
∇Π

ρ

)
= div (u · ∇u) .

From this, remembering our hypothesis and remark 5.13, estimate (5.5) and lemma 4.8, the control
of the L2 norm immediately follows:

(5.16)
1

ρ∗
‖∇Π‖L2 ≤ C ‖u‖Lp ‖Ω‖Lq∩L∞ .

Moreover, we have that ∇Π belongs also to L∞, and so, by interpolation, ∇Π ∈ Lb for all
b ∈ [2,+∞]. As a matter of fact, now we are going to show a stronger claim, that is to say
∇Π ∈ C1

∗ . Cutting in low and high frequencies, we have that

‖∇Π‖C1∗ ≤ ‖∆−1∇Π‖C1∗ + ‖(Id −∆−1)∇Π‖C1∗ ≤ C
(
‖∇Π‖L2 + ‖∆Π‖C0∗

)
.

Now, from (5.15) we get

(5.17) −∆Π = ∇ (log ρ) · ∇Π + ρ div (u · ∇u) .

From this last relation, from the fact that div (u · ∇u) = ∇u : ∇u and the immersion L∞ ↪→ C0
∗ ,

we obtain

‖∆Π‖C0∗ ≤ ‖∆Π‖L∞ ≤ ‖∇ (log ρ) · ∇Π‖L∞ + ‖ρ div (u · ∇u)‖L∞

≤ C
(
‖∇ρ‖L∞ ‖∇Π‖L∞ + ρ∗ ‖∇u‖2L∞

)
.

Now, C1
∗ ↪→ Cη ↪→ L∞ for all η ∈ ]0, 1[ ; taking for instance η = 1/2 and using interpolation

inequalities between Besov spaces, we thus have, for a certain β ∈ ]0, 1[ ,

‖∇Π‖L∞ ≤ ‖∇Π‖C1/2 ≤ C ‖∇Π‖βC−N/2 ‖∇Π‖1−βC1∗ ≤ C ‖∇Π‖β
L2 ‖∇Π‖1−βC1∗ .

Thanks to Young's inequality, from this relation and (5.16) one �nally gets

(5.18) ‖∇Π‖C1∗ ≤ C
((

1 + ‖∇ρ‖δL∞
)
‖u‖Lp ‖Ω‖Lq∩L∞ + ρ∗ ‖∇u‖2L∞

)
,

for some δ depending only on the space dimension N . So we have proved our claim, i.e. ∇Π ∈ C1
∗ ,

and so it belongs also to L∞.
Finally, we want to prove boundedness of second derivatives of the pressure term. This

property is a consequence of striated regularity for ∇Π we will show in next section: for the
time being, let us admit this fact. So, passing in Fourier variables and using lemma 5.11, for all
1 ≤ i , j ≤ N we can write

ξi ξj Π̂(ξ) = aij(x)|ξ|2 Π̂(ξ) +
∑
k,λ

bkλij (x) (Xλ(x) · ξ) ξk Π̂(ξ) .

Applying the inverse Fourier transform F−1
ξ and passing to L∞ norms, we get∥∥∇2Π

∥∥
L∞
≤ C (‖∆Π‖L∞ + ‖∂X∇Π‖L∞) .

Proposition 2.104 of [2] tells us that

‖∂X∇Π‖L∞ ≤
C

ε
‖∂X∇Π‖C0∗ log

(
e +

‖∂X∇Π‖Cε
‖∂X∇Π‖C0∗

)
.
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Using Bony's paraproduct decomposition to handle the norm in C0
∗ and noticing that the function

ζ 7→ ζ log(e+ k/ζ) is nondecreasing, we �nally get

∥∥∇2Π
∥∥
L∞
≤ C

(
‖∇ρ‖L∞ ‖∇Π‖C1∗ + ρ∗ ‖∇u‖2L∞ +(5.19)

+ ‖̃X‖Cε ‖∇Π‖C1∗ log

(
e+

‖∂X∇Π‖Cε
‖̃X‖Cε‖∇Π‖C1∗

))
.

5.4.2 A priori estimates for striated regularity

After having established the �classical� estimates, let us now focus on the conservation of striated
regularity. The most important step lies in �nding a priori estimates for the derivations along the
vector-�eld X. So, let us now state a lemma which explains the relation between the operators
∂X and div ( ·X) (see also remark 5.2).

Lemma 5.14. For every vector-�eld X with components and divergence in Cε, and every function
f ∈ Cη for some η ∈ ]0, 1], we have

‖div (f X) − ∂Xf‖Cmin{ε,η} ≤ C ‖̃X‖Cε ‖f‖Cη .

Moreover, the previous inequality is still true in the limit case η = 0, with ‖f‖L∞ instead of ‖f‖C0∗ .

Proof. The thesis immediately follows from the identity div (f X) − ∂Xf = f divX and from
Bony's paraproduct decomposition.

So, it's enough for us to focus on the operator ∂X .

The evolution of the family of vector-�elds

First of all, we want to prove that the family of vector-�elds X(t) = (Xλ(t))1≤λ≤m, where each
Xλ(t) is de�ned by (5.7), still remains non-degenerate for all t, and that each Xλ(t) still has
components and divergence in Cε. Throughout this paragraph we will denote by Y (t) a generic
element of the family X(t).

Applying the divergence operator to (5.8), an easy computation shows us that div Y satis�es

(∂t + u · ∇) div Y = 0 ,

which immediately implies div Y (t) ∈ Cε for all t and

(5.20) ‖div Y (t)‖Cε ≤ C ‖div Y0‖Cε exp

(
c

∫ t

0
‖∇u‖L∞ dτ

)
.

Moreover, starting again from (5.8), we get (for the details, see proposition 4.1 of [26])

(∂t + u · ∇)

(
N−1
∧ Xλ

)
= t∇u ·

(
N−1
∧ Xλ

)
,

from which it follows(
N−1
∧ Xλ

)
(t, x) =

(
N−1
∧ Xλ

)
(0, ψ−1

t (x)) −
∫ t

0

t∇u ·
(
N−1
∧ Xλ

)
(τ, ψ−1

t (ψτ (x))) dτ .

This relation gives us∣∣∣∣(N−1
∧ Xλ

)
(0, ψ−1

t (x))

∣∣∣∣ ≤ ∣∣∣∣(N−1
∧ Xλ

)
(t, x)

∣∣∣∣ +

+

∫ t

0
‖∇u(t− τ)‖L∞

∣∣∣∣(N−1
∧ Xλ

)
(t− τ, ψ−1

τ (x))

∣∣∣∣ dτ ,
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and by Gronwall's lemma one gets∣∣∣∣(N−1
∧ Xλ

)
(t, x)

∣∣∣∣ ≥ ∣∣∣∣(N−1
∧ X0,λ

)
(ψ−1

t (x))

∣∣∣∣ e−c ∫ t0 ‖∇u‖L∞ dτ .

From this inequality we immediately gather that the family X(t) still remains non-degenerate at
every time t:

(5.21) I(X(t)) ≥ I(X0) exp

(
− c
∫ t

0
‖∇u‖L∞ dτ

)
.

Finally, again from the evolution equation (5.8), it's clear that, to prove that Y (t) is of class
Cε, we need a control on the norm in this space of the term ∂Y u. To get this, we use, as very
often in the sequel, the following decomposition:

∂Y u = TY u + (∂Y − TY )u ,

with (by lemma 5.8)
‖(∂Y − TY )u‖Cε ≤ C ‖̃Y ‖Cε ‖∇u‖L∞ .

Moreover, for all 1 ≤ i ≤ N thanks to (5.3) we can write

TY u
i = −

∑
k,j

(
∂k (−∆)−1 TY j∂jΩik −

[
∂k (−∆)−1 , TY j∂j

]
Ωik

)
.

Obviously, from lemma 5.8 we have∥∥∥∥∥∥∂k (−∆)−1
∑
j

TY j∂jΩik

∥∥∥∥∥∥
Cε

≤ ‖TY Ω‖Cε−1 ≤ ‖∂Y Ω‖Cε−1 + C ‖̃Y ‖Cε ‖Ω‖L∞ ,

while for the commutator term we use lemma 1.29, which gives us the following control:∥∥∥[∂k (−∆)−1 , TY j∂j

]
Ωik

∥∥∥
Cε
≤ C ‖Y ‖Cε ‖Ω‖L∞ .

So, in the end, from the hypothesis of striated regularity for the vorticity we get that also the
velocity �eld u is more regular along the �xed directions and

(5.22) ‖∂Y u‖Cε ≤ C
(
‖∂Y Ω‖Cε−1 + ‖̃Y ‖Cε ‖∇u‖L∞

)
.

Moreover, applying proposition 4.7 to (5.8) and using (5.22), (5.20) and Gronwall's inequality
�nally give us

(5.23) ‖̃Y (t)‖Cε ≤ C exp

(
c

∫ t

0
‖∇u‖L∞ dτ

)(
‖̃Y0‖Cε +

∫ t

0
e− c

∫ τ
0 ‖∇u‖L∞ dτ ′ ‖∂Y Ω‖Cε−1 dτ

)
.

These estimates having being established, from now on for simplicity we will consider the case
of a single vector-�eld X(t): the generalization to the case of a �nite family is quite obvious, and
where the di�erence is substantial, we will suggest references for the details.

Striated regularity for the density

Now, we want to investigate propagation of striated regularity for the density. First of all, let us
state a stationary lemma.

Lemma 5.15. Let f be a function in C1
∗ .
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(i) If ∂Xf ∈ Cε and ∇f ∈ L∞, then one has ∂X∇f ∈ Cε−1 and the following inequality holds:

(5.24) ‖∂X∇f‖Cε−1 ≤ C
(
‖∂Xf‖Cε + ‖̃X‖Cε

(
‖f‖C1∗ + ‖∇f‖L∞

))
.

(ii) Conversely, if ∂X∇f ∈ Cε−1, then ∂Xf ∈ Cε and one has

(5.25) ‖∂Xf‖Cε ≤ C
(
‖̃X‖Cε

(
‖f‖C1∗ + ‖∇f‖L∞

)
+ ‖∂X∇f‖Cε−1

)
.

Proof. (i) Using the paravector-�eld operator (remember de�nition 5.7), we can write:

∂X ∇f = (∂X − TX)∇f + TX ∇f .

From lemma 5.8, we have that the �rst term of the previous equality is in Cε−1 and

(5.26) ‖(∂X − TX)∇f‖Cε−1 ≤ C ‖̃X‖Cε ‖∇f‖L∞ .

Now, we have to estimate the paravector-�eld term: note that

TX ∇f = ∇ (TXf) + [TX ,∇] f .

From hypothesis of the lemma, it's obvious that ∇ (TXf) ∈ Cε−1. For the last term,
remembering that ∇ and TX are operators of order 1, we can use lemma 1.29 and get

(5.27) ‖[TX ,∇] f‖Cε−1 ≤ C ‖X‖Cε ‖f‖C1∗ .

Putting together (5.26), (5.27) and the control for ‖∇ (TXf)‖Cε−1 gives us the �rst part of
the lemma.

(ii) For the second part, we write again

∂Xf = TXf + (∂X − TX) f .

By de�nition of the space CεX , we know that ∇f is bounded: so, second term can be easily
controlled in Cε thanks to lemma 5.8. Now let us de�ne the operator Ψ such that, in Fourier
variables, for all vector-�elds v we have

Fx (Ψv) (ξ) = − i 1

|ξ|2
ξ · v̂(ξ) .

So, noting that the paravector term involves only high frequencies of f , we can write

TXf = TX (Ψ∇f) = ΨTX∇f + [TX ,Ψ]∇f .

Now, applying lemmas 5.8 and 1.29 completes the proof.

Remark 5.16. Let us note that, if f ∈ Lb (for some b ∈ [1,+∞]) is such that ∇f ∈ L∞, then
f ∈ C1

∗ (indeed f ∈ C0,1) and (separating low and high frequencies)

‖f‖C1∗ ≤ C (‖f‖Lb + ‖∇f‖L∞) .

Both u and ρ satisfy such an estimate, respectively with b = p and b = +∞.
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Thanks to lemma 5.15, we can equally deal with ρ or ∇ρ: as the equation for ρ is very simple,
we choose to work with it. Keeping in mind that [X(t) , ∂t + u · ∇] = 0, we have

∂t (∂Xρ) + u · ∇ (∂Xρ) = 0 ,

from which (remember also (5.25)) it immediately follows that

(5.28)
∥∥∂X(t)ρ(t)

∥∥
Cε ≤ C

(
‖̃X0‖Cε (ρ∗ + ‖∇ρ0‖L∞) + ‖∂X0∇ρ0‖Cε−1

)
exp

(
c

∫ t

0
‖∇u‖L∞ dτ

)
.

Therefore, one gets also∥∥∂X(t)∇ρ(t)
∥∥
Cε−1 ≤ C exp

(
c

∫ t

0
‖∇u‖L∞ dτ

)
×(5.29)

×
(

(ρ∗ + ‖∇ρ0‖L∞) ‖̃X0‖Cε + ‖∂X0∇ρ0‖Cε−1 +

+

∫ t

0
e−
∫ τ
0 ‖∇u‖L∞dτ

′ ‖∂XΩ‖Cε−1 dτ

)
.

Striated regularity for the pressure term

In this paragraph we want to show that geometric properties propagates also to the pressure term,
i.e. we want to prove ∂X∇Π ∈ Cε.

Again, we use the decomposition ∂X∇Π = TX (∇Π) + (∂X − TX)∇Π.
As usual, lemma 5.8 gives us

‖(∂X − TX)∇Π‖Cε ≤ C ‖̃X‖Cε
∥∥∇2Π

∥∥
L∞

.

Now we use estimate (5.19), the fact that log(e+ ζ) ≤ e+ ζ1/2 and Young's inequality to isolate
the term ‖∂X∇Π‖Cε . As 2z ≤ 1 + z2, we have

‖̃X‖2Cε ‖∇Π‖C1∗ ≤ C
(
‖̃X‖Cε ‖∇Π‖C1∗ + ‖̃X‖3Cε ‖∇Π‖C1∗

)
,

and �nally we can control ‖(∂X − TX)∇Π‖Cε by the quantity

(5.30) C
(
‖ρ‖W 1,∞ ‖̃X‖Cε ‖∇Π‖C1∗ + ‖̃X‖Cε ‖∇u‖2L∞ + ‖̃X‖3Cε ‖∇Π‖C1∗

)
+

1

2
‖∂X∇Π‖Cε .

To deal with the paravector term, we keep in mind that ∇Π = ∇ (−∆)−1 (g1 + g2), where
we have set

g1 = −∇ (log ρ) · ∇Π and g2 = ρ div (u · ∇u) .

So it's enough to prove that both TX∇ (−∆)−1 g1 and TX∇ (−∆)−1 g2 belong to Cε.
Let us consider �rst the term

(5.31) TX∇ (−∆)−1 g2 = ∇ (−∆)−1 TXg2 +
[
TX ,∇ (−∆)−1

]
g2 .

From lemma 1.29 one immediately gets that

(5.32)
∥∥∥[TX ,∇ (−∆)−1

]
g2

∥∥∥
Cε
≤ C ‖̃X‖Cε ‖g2‖C0∗ ≤ C ρ∗ ‖̃X‖Cε ‖∇u‖2L∞ ,

while it's obvious that ∥∥∥∇ (−∆)−1 TXg2

∥∥∥
Cε
≤ C ‖TXg2‖Cε−1 .

Now we use Bony's paraproduct decomposition and write

TXg2 = TXTρdiv (u · ∇u) + TXTdiv (u·∇u)ρ + TXR (ρ, div (u · ∇u)) .
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From theorem 1.24 and the equality div (u · ∇u) = ∇u : ∇u, it follows that

(5.33)
∥∥TXTdiv (u·∇u)ρ

∥∥
Cε−1 ≤ C ‖X‖L∞

∥∥Tdiv (u·∇u)ρ
∥∥
Cε ≤ C ‖̃X‖Cε ‖ρ‖C1∗ ‖∇u‖

2
L∞ ,

and the same estimate holds true for the remainder term TXR (ρ,div (u · ∇u)). Lemma 5.9,
instead, provides a control for ‖TXTρdiv (u · ∇u)‖Cε−1 by (up to multiplication by a constant)

‖X‖Cε ‖ρ‖C1∗ ‖∇u‖
2
L∞ + ‖∇u‖2L∞ ‖TXρ‖Cε−1 + ‖ρ‖C1∗ ‖TXdiv (u · ∇u)‖Cε−1 ,

where ‖TXρ‖Cε−1 ≤ C‖X‖Cε ‖ρ‖C1∗ by theorem 1.24. Now the problem is the control of the Cε−1

norm of TXdiv (u · ∇u). Writing

TXdiv (u · ∇u) =
∑
i,j

2TXT∂iuj∂ju
i + TX∂iR(uj , ∂ju

i)

=
∑
i,j,k

2TXk∂kT∂iuj∂ju
i + ∂iTXk∂kR(uj , ∂ju

i) − T∂iXk∂kR(uj , ∂ju
i) ,

by use of lemma 5.9 we can easily see that it's bounded by

‖̃X‖Cε ‖u‖C1∗ ‖∇u‖L∞ + ‖u‖C1∗ ‖TX∇u‖Cε−1 + ‖∇u‖L∞ ‖TXu‖Cε .

Hence, keeping in mind lemmas 5.8 and 5.15, we discover

‖TXdiv (u · ∇u)‖Cε−1 ≤ C
(
‖̃X‖Cε ‖u‖2C1∗ + ‖∂Xu‖Cε ‖u‖C1∗

)
,

and therefore

(5.34) ‖TXTρdiv (u · ∇u)‖Cε−1 ≤ C
(
‖̃X‖Cε ‖ρ‖C1∗ ‖u‖

2
C1∗ + ‖ρ‖C1∗ ‖u‖C1∗ ‖∂Xu‖Cε

)
.

Putting inequalities (5.32), (5.33) and (5.34) all together, we �nally get

(5.35)
∥∥∥TX∇ (−∆)−1 g2

∥∥∥
Cε
≤ C

(
‖̃X‖Cε ‖ρ‖C1∗ ‖u‖

2
C1∗ + ‖ρ‖C1∗ ‖u‖C1∗ ‖∂Xu‖Cε

)
,

for some constant C which depends also on ρ∗ and ρ∗.
Before going on, let us state a simple lemma.

Lemma 5.17. Fix a ε ∈ ]0, 1[ and an open interval I ⊂ R.
Let X be a Cε vector-�eld with divergence in Cε, and F : I → R be a smooth function.

Then for all compact set J ⊂ I and all ρ ∈ W 1,∞ valued in J and such that ∂Xρ ∈ Cε, one
has that ∂X(F ◦ ρ) ∈ Cε and ∂X∇(F ◦ ρ) ∈ Cε−1. Moreover, the following estimates hold true:

‖∂X(F ◦ ρ)‖Cε ≤ C ‖ρ‖W 1,∞ ‖∂Xρ‖Cε

‖∂X∇(F ◦ ρ)‖Cε−1 ≤ C ‖ρ‖W 1,∞

(
‖∂Xρ‖Cε + ‖̃X‖Cε ‖ρ‖W 1,∞

)
,

for a constant C depending only on F and on the �xed subset J .

Proof. The �rst inequality is immediate, keeping in mind identity ∂X(F ◦ ρ) = F ′(ρ) ∂Xρ and
estimate ∥∥F ′(ρ)

∥∥
Cε ≤ C

∥∥F ′′∥∥
L∞(J)

‖ρ‖Cε ≤ C
∥∥F ′′∥∥

L∞(J)
‖ρ‖W 1,∞ .

For the second one, we write:

∂X∇(F ◦ ρ) = ∂X
(
F ′(ρ)∇ρ

)
= F ′(ρ) ∂X∇ρ + F ′′(ρ) ∂Xρ ∇ρ .

Let us observe that the �rst term is well-de�ned in Cε−1, and using decomposition in paraproducts
and remainder operators, we have∥∥F ′(ρ) ∂X∇ρ

∥∥
Cε−1 ≤ C

∥∥F ′(ρ)
∥∥
W 1,∞ ‖∂X∇ρ‖Cε−1 .

Now, the conclusion immediately follows from lemma 5.15.
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Let us come back to g1: using the same trick as in (5.31), it's enough to estimate

‖TXg1‖Cε−1 and
∥∥∥[TX ,∇ (−∆)−1

]
g1

∥∥∥
Cε
.

Again, the control of the commutator term follows from lemma 1.29:

(5.36)
∥∥∥[TX ,∇ (−∆)−1

]
g1

∥∥∥
Cε
≤ C ‖̃X‖Cε ‖g1‖C0∗ ≤

C

ρ∗
‖̃X‖Cε ‖∇ρ‖L∞ ‖∇Π‖C1∗ .

For the other term, we use again Bony's paraproduct decomposition:

TXg1 = TXT∇(log ρ)∇Π + TXT∇Π∇(log ρ) + TXR(∇(log ρ),∇Π) .

Thanks to theorem 1.24 we immediately �nd

(5.37)
∥∥TXT∇(log ρ)∇Π

∥∥
Cε−1 ≤ C ‖̃X‖Cε ‖∇ρ‖L∞ ‖∇Π‖C1∗ ,

and the same control holds true also for the remainder. Moreover, a direct application of lemma
5.9 implies

(5.38)
∥∥TXT∇(log ρ)∇Π

∥∥
Cε−1 ≤ C

(
‖̃X‖Cε ‖∇ρ‖L∞ ‖∇Π‖C1∗ + ‖∇Π‖C1∗ ‖TX∇(log ρ)‖Cε−1

)
,

Now, from lemmas 5.8 and 5.17 we easily get

‖TX∇(log ρ)‖Cε−1 ≤ C
(
‖∂Xρ‖Cε ‖ρ‖W 1,∞ + ‖̃X‖Cε ‖ρ‖2W 1,∞

)
.

Putting this last relation into (5.38) and keeping in mind inequalities (5.36) and (5.37), we �nd

(5.39)
∥∥∥TX∇ (−∆)−1 g1

∥∥∥
Cε
≤ C

(
‖∂Xρ‖Cε ‖ρ‖W 1,∞ ‖∇Π‖C1∗ + ‖̃X‖Cε ‖ρ‖2W 1,∞ ‖∇Π‖C1∗

)
,

where, as before, C may depend also on ρ∗ and ρ∗.
Therefore, putting (5.30), (5.35) and (5.39) together, we �nally get

‖∂X∇Π‖Cε ≤ C

(
‖ρ‖W 1,∞ ‖∂Xρ‖Cε ‖∇Π‖C1∗ + ‖∇Π‖C1∗ ‖̃X‖Cε‖ρ‖

2
W 1,∞ +(5.40)

+ ‖̃X‖3Cε‖∇Π‖C1∗ + ‖ρ‖W 1,∞ ‖̃X‖Cε‖u‖2C1∗ + ‖ρ‖C1∗‖u‖C1∗ ‖∂Xu‖Cε
)
.

Striated regularity for the vorticity

Let us now establish a control on the regularity of Ω along the vector-�elds (Xλ)1≤λ≤m. Applying
the operator ∂X to (5.6), we obtain the evolution equation for ∂XΩ:

(5.41) ∂t (∂XΩ) + u · ∇ (∂XΩ) = ∂X

(
1

ρ2
∇ρ ∧∇Π

)
− ∂X (Ω · ∇u) − ∂X

(
t∇u · Ω

)
.

Second and third terms of the right-hand side of (5.41) can be treated taking advantage once
again of the following decomposition:

∂X
(
Ω · ∇u + t∇u · Ω

)
= (∂X − TX)

(
Ω · ∇u + t∇u · Ω

)
+ TX

(
Ω · ∇u + t∇u · Ω

)
.

Lemma 5.8 says that the operator ∂X − TX maps C0
∗ in Cε−1 continuously: as L∞ ↪→ C0

∗ , one has∥∥(∂X − TX)
(
Ω · ∇u + t∇u · Ω

)∥∥
Cε−1 ≤ C ‖̃X‖Cε ‖Ω‖L∞ ‖∇u‖L∞ ≤ C ‖̃X‖Cε ‖∇u‖2L∞ .
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To handle the paravector term, we proceed in the following way. First of all, we note that, as
div u = 0, we can write(

Ω · ∇u + t∇u · Ω
)
ij

=
∑
k

(
∂iu

k ∂ku
j − ∂ju

k ∂ku
i
)

=
∑
k

(
∂k

(
uj ∂iu

k
)
− ∂k

(
ui ∂ju

k
))

.

So, we have to estimate the Cε−1 norm of terms of the type TXT∇u∇u and TX∇R(u,∇u) . Using
the same trick as in (5.31) for the remainder terms and applying lemmas 5.9 and 1.29 give us the
control of TX

(
Ω · ∇u + t∇u · Ω

)
in Cε−1 by the quantity

‖X‖Cε (‖u‖Lp + ‖∇u‖L∞)2 + (‖u‖Lp + ‖∇u‖L∞) ‖TX∇u‖Cε−1 + ‖∇u‖L∞ ‖TXu‖Cε .

So, from lemmas 5.8 and 5.15 it easily follows∥∥∂X (Ω · ∇u + t∇u · Ω
)∥∥
Cε−1 ≤ C

(
‖̃X‖Cε (‖u‖Lp + ‖∇u‖L∞)2 +(5.42)

+ ‖∂Xu‖Cε (‖u‖Lp + ‖∇u‖L∞)

)
.

Now, let us analyse the �rst term of (5.41). It can be written as the sum of three items:

∂X

(
1

ρ2
∇ρ ∧∇Π

)
= − 2

ρ3
(∂Xρ) (∇ρ ∧∇Π) +

1

ρ2
(∂X∇ρ) ∧∇Π +

1

ρ2
∇ρ ∧ (∂X∇Π) .

So, let us consider each one separately and prove that it belongs to the space Cε−1.
Obviously, from previous estimates we have that �rst and third terms are actually in L∞,

which is embedded in Cε−1, and satisfy∥∥∥∥ 1

ρ3
(∂Xρ) (∇ρ ∧∇Π)

∥∥∥∥
Cε−1

≤ C

(ρ∗)
3 ‖∂Xρ‖Cε ‖∇ρ‖L∞ ‖∇Π‖C1∗∥∥∥∥ 1

ρ2
∇ρ ∧ (∂X∇Π)

∥∥∥∥
Cε−1

≤ C

(ρ∗)
2 ‖∇ρ‖L∞ ‖∂X∇Π‖Cε .

Now, let us �nd a Cε−1 control for the second term. Note that it is well-de�ned, due to the
fact that both ρ and ∇Π are in C1

∗ (the product of a Cσ function, σ < 0, with a L∞ one is not
even well-de�ned). With a little abuse of notation (in the end, we have to deal with the sum of
products of components of the two vector-�elds), we write

(∂X∇ρ)∇Π = T(∂X∇ρ)∇Π + T∇Π (∂X∇ρ) + R (∂X∇ρ,∇Π) ;

remembering theorem 1.24 and the embeddings C1
∗ ↪→ L∞ ↪→ C0

∗ , we get

‖(∂X∇ρ) ∧∇Π‖Cε−1 ≤ C ‖∂X∇ρ‖Cε−1 ‖∇Π‖C1∗ .

In the same way, as
∥∥1/ρ2

∥∥
C1∗
≤
∥∥1/ρ2

∥∥
W 1,∞ , we get∥∥∥∥ 1

ρ2
(∂X∇ρ) ∧∇Π

∥∥∥∥
Cε−1

≤ C

(ρ∗)
2

(
1 +
‖∇ρ‖L∞

ρ∗

)
‖∂X∇ρ‖Cε−1 ‖∇Π‖C1∗ .

So, using also lemma 5.15, we �nally obtain, for a constant C depending also on ρ∗ and ρ∗,∥∥∥∥∂X ( 1

ρ2
∇ρ ∧∇Π

)∥∥∥∥
Cε−1

≤ C
(
‖̃X‖Cε ‖ρ‖2W 1,∞ ‖∇Π‖C1∗ + ‖∇ρ‖L∞ ‖∂X∇Π‖Cε +(5.43)

+ ‖ρ‖W 1,∞ ‖∂X∇ρ‖Cε−1 ‖∇Π‖C1∗
)
.
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Therefore, from equation (5.41), classical estimates for transport equation in Hölder spaces
and inequalities (5.42) and (5.43), we obtain

‖∂XΩ(t)‖Cε−1 ≤ C exp

(
c

∫ t

0
‖∇u‖L∞ dτ

)
×(5.44)

×

(
‖∂X0Ω0‖Cε−1 +

∫ t

0
e−
∫ t
0 ‖∇u‖L∞dτ

′
Υ(τ) dτ

)
,

where we have de�ned

Υ(t) := ‖̃X‖Cε‖u‖2Lp,∞ + ‖∂Xu‖Cε‖u‖Lp,∞ + ‖∇ρ‖L∞ ‖∂X∇Π‖Cε +(5.45)

+‖̃X‖Cε‖ρ‖2W 1,∞ ‖∇Π‖C1∗ + ‖ρ‖W 1,∞ ‖∇Π‖C1∗ ‖∂X∇ρ‖Cε−1 .

5.4.3 Final estimates

First of all, thanks to Young's inequality and estimates (4.56) and (5.18), for all η ∈ [0, 1] we
have

(5.46) ‖∇Π‖η
L2 ‖∇Π‖1−ηL∞ ≤ ‖∇Π‖L2∩C1∗ ≤ C

((
1 + ‖∇ρ‖δL∞

)
‖u‖Lp‖Ω‖Lq∩L∞ + ρ∗‖∇u‖2L∞

)
.

So, setting
L(t) := ‖u(t)‖Lp + ‖Ω(t)‖Lq∩L∞ ,

putting (5.10) and (5.46) into (5.11), (5.13) and (5.14), for all �xed T > 0 we obtain, in the time
interval [0, T ], an inequality of the form

L(t) ≤ C exp

(
c

∫ t

0
‖∇u‖L∞dτ

)(
L(0) +

∫ t

0
‖∇u‖2L∞ dτ +

∫ t

0
L2(τ) dτ

)
,

with constants C, c depending only on N , ε, ρ∗ and ρ∗. Now, if we de�ne

(5.47) T := sup

{
t > 0

∣∣∣∣ ∫ t

0

(
e−
∫ τ
0 L(τ ′)dτ ′L(τ) + ‖∇u(τ)‖2L∞

)
dτ ≤ 2L(0)

}
,

from previous inequality and Gronwall's lemma and applying a standard bootstrap procedure, we
manage to estimate the norms of the solution on [0, T ] in terms of initial data only:

L(t) ≤ C L(0) and ‖ρ(t)‖W 1,∞ ≤ C ‖ρ0‖W 1,∞ .

From this, keeping in mind (5.46) and (5.47), we also have

‖∇Π‖L∞t (L2)∩L1
t (C1∗) ≤ C

(
1 + ‖∇ρ0‖δL∞

)
L2(0) .

Now, let us focus on estimates about striated regularity. First of all, from (5.21) we get that
the family X(t) remains non-degenerate: I(X(t)) ≥ C I(X0).

Now, for notation convenience, let us come back to the case of only one vector-�eld, which
we keep to call X, and set S(t) :=

∥∥∂X(t)Ω(t)
∥∥
Cε−1 . Let us note that the constants C which will

occur in our estimates depend on the functional norms of the initial data, but also on the time T .
From (5.23) and (5.22) we �nd

‖̃X(t)‖Cε ≤ C

(
‖̃X0‖Cε +

∫ t

0
S(τ) dτ

)
∥∥∂X(t)u(t)

∥∥
Cε ≤ C

(
S(t) + ‖̃X(t)‖Cε ‖∇u(t)‖L∞

)
,
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while (5.28) and (5.29) give us

‖∂Xρ‖Cε ≤ C and
∥∥∂X(t)∇ρ(t)

∥∥
Cε−1 ≤ C

(
1 +

∫ t

0
S(τ) dτ

)
.

Before going on, let us notice the following fact, which is a direct consequence of the integral
condition in (5.47): for m = 1, 2 we have

(5.48)
∫ t

0

(∫ τ

0
S(τ ′)dτ ′

)
‖∇u(τ)‖mL∞ dτ ≤ C

∫ t

0
S(τ) dτ .

We will repeatedly use it in what follows.
Now, let us focus on ∂X∇Π: for convenience, we want to estimate its L1

t (Cε) norm, starting
from the bound (5.40) and the ones we have just found.
First of all, we have∫ t

0
‖ρ‖W 1,∞ ‖∂Xρ‖Cε ‖∇Π‖C1∗ dτ ≤ C∫ t

0
‖∇Π‖C1∗ ‖̃X‖Cε‖ρ‖

2
W 1,∞ dτ ≤ ‖∇Π‖L1

t (C1∗)‖̃X‖L∞t (Cε) ≤ C

(
1 +

∫ t

0
S(τ)dτ

)
.

Exactly in the same way, using also Jensen's inequality, we get∫ t

0
‖̃X‖3Cε‖∇Π‖C1∗ dτ ≤ C‖∇Π‖L1

t (C1∗)‖̃X‖
3
L∞t (Cε) ≤ C

(
1 +

∫ t

0
S3(τ) dτ

)
,

while, keeping in mind the de�nition of the Lp,∞ norm (see remark 5.16) and inequality (5.48),
we easily �nd∫ t

0
‖ρ‖W 1,∞ ‖̃X‖Cε‖u‖2Lp,∞ dτ ≤ C

(
1 +

∫ t

0
S(τ) dτ

)
∫ t

0
‖ρ‖W 1,∞‖u‖Lp,∞ ‖∂Xu‖Cε dτ ≤ C

(
1 +

∫ t

0
S(τ) dτ +

∫ t

0
‖∇u‖L∞ S(τ) dτ

)
.

Therefore, in the end we get

‖∂X∇Π‖L1
t (Cε)

≤ C

(
1 +

∫ t

0
(1 + ‖∇u‖L∞)S(τ) dτ +

∫ t

0
S3(τ) dτ

)
.

Finally, let us handle the term S(t): from (5.44), we see that we have to control the L1
t norm

of ι, de�ned by (5.45). First of all, we have∫ t

0
‖̃X‖Cε‖u‖2Lp,∞ dτ ,

∫ t

0
‖u‖Lp,∞ ‖∂Xu‖Cε dτ ≤ C

(
1 +

∫ t

0
S(τ) dτ

)
:

we have just analysed the same items multiplied by ‖ρ‖W 1,∞ , which we controlled by a constant.
Moreover, one immediately �nd∫ t

0
‖∇ρ‖L∞ ‖∂X∇Π‖Cε dτ ≤ C ‖∂X∇Π‖L1

t (Cε)
,

while the term ‖̃X‖Cε‖ρ‖2W 1,∞ ‖∇Π‖C1∗ already occurred in considering ∂X∇Π, and so it can be
absorbed in the previous inequality. Finally, we have∫ t

0
‖ρ‖W 1,∞ ‖∇Π‖C1∗ ‖∂X∇ρ‖Cε−1 dτ ≤ C

(
1 +

∫ t

0
S(τ) dτ

)
.
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Putting all these inequalitites together, in the end we �nd the control for S(t) on [0, T ]:

S(t) ≤ C

(
S(0) +

∫ t

0
(1 + ‖∇u‖L∞)S(τ)dτ +

∫ t

0
S3(τ)dτ

)
.

Now, suppose that T was chosen so small that, in addition to (5.47), for all t ∈ [0, T ] one has also

(5.49)
∫ t

0
S3(τ) dτ ≤ 2S(0) .

Then Gronwall's lemma allows us to get the bound∥∥∂X(t)Ω(t)
∥∥
Cε−1 ≤ C S(0) ∀ t ∈ [0, T ] ,

for a constant C depending only on T , N , p, q, ε, ρ∗ and ρ∗ and on the norms of initial data in
the relative functional spaces.

Let us note that this inequality allows us to recover a uniform bound, on [0, T ], for ‖∇u‖L∞
and ‖∇Π‖C1∗ , which we previously controlled only in L1

t .

Remark 5.18. The lifespan T of the solution is essentially determined by conditions (5.47) and
(5.49). In section 4.5 we will establish an explicit lower bound for T in terms of the norms of
initial data only and we will compare it with the classical result in the case of constant density.

5.4.4 Proof of the existence of a solution

After establishing a priori estimates, we want to give the proof of the existence of a solution for
system (5.1) under our assumptions.

We will get it in a classical way: �rst of all, we will construct a sequence of approximate
solutions to our problem, for which a priori estimates of the previous section hold uniformly, and
then we will show the convergence of such a sequence to a solution of (5.1).

Now, we will work only for positive times, but it goes without saying that the same argument
holds true also for negative times evolution.

Construction of a sequence of approximate solutions

For each n ∈ N, let us de�ne un0 := Snu0; obviously un0 ∈ Lp, and an easy computation shows
that it belongs also to the space Bσ

p,r for all σ ∈ R and all r ∈ [1,+∞]. Let us notice that⋂
σB

σ
p,r ⊂ C∞b , so in particular we have that un0 ∈ Lp∩Bs

∞,r, for some �xed s > 1 and r ∈ [1,+∞]
such that Bs

∞,r ↪→ C0,1.
Keeping in mind that [Sn,∇] = 0, we have that Ωn

0 = SnΩ0 ∈ Lq ∩Bs−1
∞,r ; in particular, from

(5.5) we get ∇un0 ∈ Lq.
Now let us take an even radial function θ ∈ C∞0 (RN ), supported in the unitary ball, such that

0 ≤ θ ≤ 1 and
∫
RN θ(x) dx = 1, and set θn(x) = nN θ(nx) for all n ∈ N. We de�ne ρn0 := θn ∗ ρ0:

it belongs to Bs
∞,r and it satis�es the bounds 0 < ρ∗ ≤ ρn0 ≤ ρ∗.

Moreover, by properties of localisation operators Sn and of θn, we also have:

• ρn0 ⇀ ρ0 in W 1,∞ and ‖∇ρn0‖L∞ ≤ c ‖∇ρ0‖L∞ ;

• un0 → u0 in the space Lp and ‖un0‖Lp ≤ c ‖u0‖Lp ;

• Ωn
0 → Ω0 in Lq and ‖Ωn

0‖Lq ≤ c ‖Ω0‖Lq , ‖Ωn
0‖L∞ ≤ c ‖Ω0‖L∞ .

So, for each n, theorem 3 and remark 4 of [29] give us a unique solution of (5.1) such that:

(i) ρn ∈ C([0, Tn];Bs
∞,r), with 0 < ρ∗ ≤ ρn ≤ ρ∗;
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(ii) un ∈ C([0, Tn];Lp ∩Bs
∞,r), with Ωn ∈ C([0, Tn];Lq ∩Bs−1

∞,r);

(iii) ∇Πn ∈ C([0, Tn];L2) ∩ L1([0, Tn];Bs
∞,r).

For such a solution, a priori estimates of the previous section hold at every step n. Moreover,
remembering previous properties about approximated initial data and that the function y 7→
y log

(
e+ c

y

)
is nondecreasing, we can �nd a control independent of n ∈ N. So, we can �nd a

positive time T ≤ Tn for all n ∈ N, such that in [0, T ] approximate solutions are all de�ned for
every n and satisfy uniform bounds.

Convergence of the sequence of approximate solutions

To prove convergence of the obtained sequence, we appeal to a compactness argument. Actually,
we weren't able to apply the classical method used for the homogeneous case, i.e. proving estimates
in rough spaces as C−α (α > 0): we couldn't solve the elliptic equation for the pressure term in
this framework.

We know that (ρn)n∈N ⊂ L∞([0, T ];W 1,∞), (un)n∈N ⊂ L∞([0, T ];Lp) and (∇Πn)n∈N ⊂
L∞([0, T ];L2) and, thanks to a priori estimates, all these sequences are bounded in the respective
functional spaces.

Due to the re�exivity of L2 and Lp and seeing L∞ as the dual of L1, we obtain the existence
of functions ρ, u and ∇Π such that (up to a subsequence)

• ρn ∗
⇀ ρ in the space L∞([0, T ];W 1,∞),

• un ⇀ u in L∞([0, T ];Lp) and

• ∇Πn ⇀ ∇Π in L∞([0, T ];L2).

Nevertheless, we are not able to prove that (ρ, u,∇Π) is indeed a solution of system (5.1):
passing to the limit in nonlinear terms requires strong convergence in (even rough) suitable func-
tional spaces. So let us argue in a di�erent way and establish strong convergence properties, which
will be useful also to prove preservation of striated regularity.

First of all, let us recall that, by construction, un0 → u0 in Lp and Ωn
0 → Ω0 in Lq, and (ρn0 )n

is bounded in W 1,∞. So, for α > 0 big enough (for instance, take α = max {N/p ,N/q}), we have
that (ρn0 )n, (un0 )n, (Ωn

0 )n are all bounded in the space C−α.

Remark 5.19. It goes without saying that the sequences (un0 )n and (Ωn
0 )n still converge in C−α;

moreover, also ρn0 → ρ0 in this space. Remember that ρ0 belongs to the space C1
∗ , which coincides

(see [13] for the proof) with the Zygmund class, i.e. the set of bounded functions f for which
there exists a constant Zf such that

|f(x+ y) + f(x− y) − 2 f(x)| ≤ Zf |y|

for all x, y ∈ RN . So, using the symmetry of θ, we can write

ρn0 (x) − ρ0(x) =
1

2
nN
∫
RN

θ(ny) (ρ0(x+ y) + ρ0(x− y) − 2 ρ0(x)) dy ;

from this identity we get that ρn0 → ρ0 in L∞, and hence also in C−α.

Now, let us consider the equation for ρn:

∂tρ
n = −un · ∇ρn .

From a priori estimates we get that (un)n is bounded in L∞([0, T ]; C1
∗) and (∇ρn)n is bounded

in the space L∞([0, T ];L∞); so, from the properties of paraproduct and remainder operators,
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one has that the sequence (∂tρ
n)n is bounded in L∞([0, T ]; C−α). Therefore (ρn)n is bounded in

C0,1([0, T ]; C−α), and in particular uniformly equicontinuous in the time variable.
Now, up to multiply by a ϕ ∈ D(RN ) (recall theorem 2.94 of [2]) and extract a subse-

quence, Ascoli-Arzelà theorem and Cantor diagonal process ensure us that ρn → ρ in the space
C([0, T ]; C−αloc ).

Exactly in the same way, one can show that (ρn)n is bounded in Cb([0, T ]×RN ) and it converges
to ρ in this space.

Finally, remember that ρ ∈ L∞([0, T ];W 1,∞), by compacteness of bounded sets of this
space for the weak-∗ topology. Therefore, by interpolation one can recover convergence also
in L∞([0, T ]; C1−η

loc ) for all η > 0.

We repeat the same argument for the velocity �eld. For all n, we have

∂tu
n = −un · ∇un − an∇Πn ,

where we have set an := (ρn)−1. Let us notice that, as ρ0, a0 := (ρ0)−1 satisfy the same
hypothesis and an, ρn satisfy the same equations, they enjoy also the same properties.

Keeping this fact in mind, let us consider each term separately.

• Thanks to what we have just said, (an)n is a bounded sequence in Cb([0, T ] × RN ) ∩
L∞([0, T ]; C1

∗). Moreover, from a priori estimates, we see that also (∇Πn)n is bounded
in the space L∞([0, T ]; C1

∗). Therefore, it follows that the sequence (an∇Πn)n is bounded
in L∞([0, T ]; C−α).

• In the same way, as (un)n ⊂ L∞([0, T ]; C1
∗) and (∇un)n ⊂ L∞([0, T ];L∞) are both bounded

sequences, one has that the sequence (un · ∇un)n is bounded in L∞([0, T ]; C−α).

Therefore, exactly as done for the density, we get that (un)n is bounded in C0,1([0, T ]; C−α), so
uniformly equicontinuous in the time variable. This fact implies that un → u in C([0, T ]; C−αloc ).

Finally, thanks to uniform bounds and Fatou's property of Besov spaces, we have that u ∈
L∞([0, T ]; C1

∗) and, by interpolation, that un → u in C([0, T ]; C1−η
loc ) for all η > 0.

So, thanks to strong convergence properties, if we test the equations on a ϕ ∈ C1([0, T ];S(RN ))
(here we have set S to be the Schwartz class), we can pass to the limit and get that (ρ, u,∇Π) is
indeed a solution to the Euler system (5.1).

Before going on with the striated regularity, let us establish continuity properties of the solu-
tions with respect to the time variable.

First of all, from
∂tρ = −u · ∇ρ ,

as u ∈ C([0, T ];L∞) (from the properties of convergence stated before) and ∇ρ ∈ L∞([0, T ];L∞),
we obtain that ρ ∈ C0,1([0, T ];L∞), and the same holds for a := ρ−1.

Remember that u ∈ L∞([0, T ];Lp), ∇u and a ∈ L∞([0, T ];L∞). Moreover, as ∇Π ∈
L∞([0, T ];L2) ∩ L∞([0, T ];L∞), it belongs also to L∞([0, T ];Lp). So, from the equation

∂tu = −u · ∇u − a∇Π ,

we get that ∂tu ∈ L∞([0, T ];Lp), which implies u ∈ C0,1([0, T ];Lp).
In the same way, from (5.6) we get that Ω ∈ C([0, T ];Lq), and therefore the same holds true

also for ∇u.
Now, using elliptic equation (5.15) and keeping in mind the properties just proved for ρ and

a, one can see that ∇Π ∈ C([0, T ];L2). So, coming back to the previous equation, we discover
that also ∂tu belongs to the same space.
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Final checking about striated regularity

It remains us to prove that also properties of striated regularity are preserved in passing to the
limit. For doing this, we will follow the outline of the proof in [25].

1. Convergence of the �ow

Let ψn and ψ be the �ows associated respectively to un and u; for all �xed ϕ ∈ D(RN ), by
de�nition we have:

|ϕ(x) (ψn(t, x)− ψ(t, x))| ≤
∫ t

0
|ϕ(x) (un(τ, ψn(τ, x))− u(τ, ψ(τ, x)))| dτ

≤
∫ t

0
|ϕ(x) (un − u) (τ, ψn(τ, x))| +

+ |ϕ(x)un(τ, ψn(τ, x))− ϕ(x)un(τ, ψ(τ, x))| dτ

≤
∫ t

0
‖∇un‖L∞ |ϕ(x) (ψn − ψ) (τ, x)| dτ +

+

∫ t

0
‖ϕun − ϕu‖L∞ dτ .

So, from convergence properties stated in previous part, we have that ψn → ψ in the space
L∞([0, T ]; Id+ L∞loc). Moreover, it's easy to see that

‖∇ψn(t)‖L∞ ≤ C exp

(∫ t

0
‖∇un‖L∞ dτ

)
,

which tells us that the sequence (ψn)n is bounded in L∞([0, T ]; Id + C0,1). Hence, �nally
we discover that ψn → ψ also in the spaces L∞([0, T ]; Id+ C1−η

loc ) for all η > 0.

2. Regularity of ∂X0ψ

First of all, let us notice that, by de�nition,

∂X0(x)ψ
n(t, x) = Xn

t (ψn(t, x)) ;

applying proposition 5.6, we get

(5.50) ‖∂X0ψ
n
t ‖Cε = ‖Xn

t ◦ ψnt ‖Cε ≤ c ‖∇ψnt ‖L∞ ‖X
n
t ‖Cε ,

which implies that (∂X0ψ
n)n is bounded in the space L∞([0, T ]; Cε). Now we note that, for

every �xed ϕ ∈ D(RN ), we have

ϕ∂X0ψ
n − ϕ∂X0ψ = ∂X0(ϕψn − ϕψ) − (∂X0ϕ) (ψn − ψ) ;

the second term is compactly supported, hence it converges in L∞ because of what we have
already proved. So let us focus on the �rst one and consider the di�erence

∂X0 (ϕψn)− ∂X0 (ϕψ) = div (X0 ⊗ ϕ(ψn − ψ)) − ϕ(ψn − ψ) divX0 ;

decomposing both terms in paraproduct and remainder and remembering hypothesis over
X0, it's easy to see that

‖∂X0 (ϕψn)− ∂X0 (ϕψ)‖Cε−1 ≤ c ‖ϕψn − ϕψ‖Cε ‖̃X0‖Cε .

Therefore, from what we have just proved, ∂X0ψ
n → ∂X0ψ in L∞([0, T ]; Cε−1

loc ); moreover,
by Fatou's property, one gets that ∂X0ψ ∈ L∞([0, T ]; Cε) and it veri�es estimate (5.50). So,
by interpolation, convergence occurs also in L∞([0, T ]; Cε−ηloc ) for all η > 0.
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3. Regularity of Xt

Remembering the de�nitions

Xt(x) :=
(
∂X0(x)ψ

)
(t, ψ−1

t (x))

divXt = divX0 ◦ ψ−1
t ,

from proposition 5.6 it immediately follows that Xt and divXt both belong to Cε. Moreover,
the same proposition implies that Xn → X in the space L∞([0, T ]; Cε−ηloc ) for all η > 0, and
the same holds for the divergence. In particular, we have convergence also in L∞([0, T ];L∞loc),
which �nally tells us that Xt remains non-degenerate for all t ∈ [0, T ], i.e. I(Xt) ≥ c I(X0).

4. Striated regularity for the density and the vorticity

Let us �rst prove that regularity of the density with respect to the vector �eldXt is preserved
during the time evolution. To simplify the presentation, we will omit the localisation by
ϕ ∈ D(RN ): formally, we should repeat the same reasoning applied to prove regularity of
∂X0ψ. So, let us consider

∂Xnρn − ∂Xρ = div (ρn (Xn −X)) − ρn div (Xn−X) + div ((ρn − ρ)X) − (ρn−ρ) divX

and prove the convergence in L∞([0, T ]; C−1
loc ). Using Bony's paraproduct decomposition,

it's not di�cult to see that �rst and third terms can be bounded by ‖ρn‖L∞ ‖Xn−X‖L∞ +
‖ρn − ρ‖L∞ ‖X‖L∞ , while second and last terms can be controlled by ‖ρn‖L∞ ‖div (Xn −
X)‖Cε/2 + ‖ρn−ρ‖L∞ ‖divX‖Cε/2 , for instance. So, from the convergence properties stated
for (ρn)n and (Xn)n, we get that ∂Xnρn → ∂Xρ in the space L∞([0, T ]; C−1

loc ), as claimed.
Moreover, from a priori bounds and Fatou's property of Besov spaces, we have that ∂Xρ ∈
L∞([0, T ]; Cε) and so, by interpolation, convergence occurs also in L∞([0, T ]; Cε−ηloc ) for all
η > 0.

Now we consider the vorticity term (again, we omit the multiplication by a D(RN ) function):

∂XnΩn − ∂XΩ = div ((Xn −X)⊗ Ωn) − Ωn div (Xn −X) +

+ div (X ⊗ (Ωn − Ω)) − (Ωn − Ω) divX .

From the convergence properties of (un)n, we get that Ωn → Ω in L∞([0, T ]; C−ηloc ) for all η >
0, so for instance also for η = ε/2. From this, using again paraproduct decomposition as done

before, one can prove that ∂XnΩn → ∂XΩ in L∞([0, T ]; C−1−ε/2
loc ). Therefore, as usual from a

priori estimates and Fatou's property of Besov spaces, we have that ∂XΩ ∈ L∞([0, T ]; Cε−1),
and moreover convergence remains true (by interpolation) in spaces L∞([0, T ]; Cε−1−η

loc ) for
all η > 0.

So, all the properties linked to striated regularity are now veri�ed, and this concludes the
proof of the existence part of theorem 5.3.

5.4.5 Uniqueness

Let us spend a few words on proof of uniqueness: it is an immediate consequence of the following
stability result.

Proposition 5.20. Let
(
ρ1, u1,∇Π1

)
and

(
ρ2, u2,∇Π2

)
be solutions of system (5.1) with

0 < ρ∗ ≤ ρ1 , ρ2 ≤ ρ∗ .

Let us suppose that δρ := ρ1 − ρ2 ∈ C([0, T ];L2) and that δu := u1 − u2 ∈ C1([0, T ];L2).
Finally, assume that ∇ρ2, ∇u1, ∇u2 and ∇Π2 all belong to L1([0, T ];L∞).
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Then, for all t ∈ [0, T ], we have the following estimate:

‖δρ(t)‖L2 + ‖δu(t)‖L2 ≤ C ec I(t) (‖δρ(0)‖L2 + ‖δu(0)‖L2) ,

where we have de�ned

I(t) :=

∫ t

0

(∥∥∇ρ2
∥∥
L∞

+
∥∥∇u1

∥∥
L∞

+
∥∥∇u2

∥∥
L∞

+
∥∥∇Π2

∥∥
L∞

)
dτ .

Proof. From ∂tδρ + u1 · ∇δρ = − δu · ∇ρ2, we immediately get

‖δρ(t)‖L2 ≤ ‖δρ(0)‖L2 +

∫ t

0
‖δu‖L2

∥∥∇ρ2
∥∥
L∞

dτ .

Moreover, the equation for δu reads as follows:

∂tδu + u1 · ∇δu = − δu · ∇u2 − ∇δΠ
ρ1

+
∇Π2

ρ1 ρ2
δρ ,

where we have set δΠ = Π1 − Π2. So, from standard Lp estimates for transport equations, one
infers that

‖δu(t)‖L2 ≤ ‖δu(0)‖L2 + C

∫ t

0

(
‖δu‖L2

∥∥∇u2
∥∥
L∞

+ ‖∇δΠ‖L2 +
∥∥∇Π2

∥∥
L∞
‖δρ‖L2

)
dτ .

Now, in order to get bounds for ∇δΠ, we analyse its equation:

−div

(
∇δΠ
ρ1

)
= div

(
− ∇Π2

ρ1 ρ2
δρ + u1 · ∇δu + δu · ∇u2

)
= div

(
− ∇Π2

ρ1 ρ2
δρ + δu · (∇u1 +∇u2)

)
,

where, to get the second equality, we have used the algebraic identity

div (v · ∇w) = div (w · ∇v) + div (v divw) − div (w div v) .

So, from lemma 4.8 we obtain

‖∇δΠ‖L2 ≤ C
(∥∥∇Π2

∥∥
L∞
‖δρ‖L2 + ‖δu‖L2

(∥∥∇u1
∥∥
L∞

+
∥∥∇u2

∥∥
L∞

))
,

and Gronwall's inequality completes the proof of the proposition.

Now, let us prove uniqueness: let
(
ρ1, u1,∇Π1

)
and

(
ρ2, u2,∇Π2

)
satisfy system (5.1) with

same initial data (ρ0, u0), under hypothesis of theorem 5.3.
As δu(0) = 0 and u ∈ C([0, T ];Lp), ∇u ∈ C([0, T ];Lq), one easily gets that δu ∈ C1([0, T ];L2).

Moreover, from this fact, observing that also δρ(0) = 0, the equation for δρ tells us that δρ ∈
C([0, T ];L2). Hence proposition 5.20 can be applied and uniqueness immediately follows.

5.5 On the lifespan of the solution

The aim of this section is to establish, in the most accurate way, an explicit lower bound for the
lifespan of the solution of system (4.1) in terms of initial data only.

For notation convenience, let us de�ne

L0 := ‖u0‖Lp + ‖Ω0‖Lq∩L∞ and A0 := ‖∇ρ0‖L∞ .
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Theorem 5.21. Under the hypothesis of theorem 5.3, the lifespan T of a solution to system (4.1)
with initial data (ρ0, u0) is bounded from below, up to multiplication by a constant (depending only
on the space dimension N , ε, p, q, ρ∗ and ρ∗), by the quantity

(5.51)
min

{
L0, ‖Ω0‖CεX0

}
×
(
L0 log

(
e+

‖Ω0‖Cε
X0

L0

))−1

(
1 + L0 + ‖Ω0‖CεX0

)2 (
1 +Aδ+3

0

)(
1 + |̃||X0|||3Cε + ‖∂X∇ρ0‖CεX0

) ,
where δ > 1 is the exponent which occurs in (5.18).

Proof. Our starting point is subsection 5.4.3. With the same notations, let us also de�ne the
following quantities:

Θ(t) := L(t) log

(
e+

S(t)

L(t)

)
, U(t) :=

∫ t

0
‖∇u(τ)‖L∞ dτ ,

A(t) := ‖∇ρ(t)‖L∞ , Γ(t) := ‖̃X(t)‖Cε , R(t) :=
∥∥∂X(t)∇ρ(t)

∥∥
Cε−1 .

It's only matter of repeating previous computations in a more accurate way.
Let us notice that, from inequality (5.12), for all time t one has

(5.52) L(t) , U ′(t) = ‖∇u(t)‖L∞ ≤ C Θ(t) :

we will make a broad use of these facts.
Now, let us de�ne the time T1 := sup {t > 0 |U(t) ≤ log 2}. Then, on [0, T1] we have (from

(5.9) and (5.10))

A(t) ≤ C A0 and ‖ρ(t)‖W 1,∞ ≤ C ‖ρ0‖W 1,∞ ,

and so, keeping in mind (5.11), (5.13), (5.14) and (5.46), we get also

L(t) ≤ C

(
L(0) +

(
1 +Aδ+1

0

)∫ t

0
Θ2(τ) dτ

)
(5.53)

‖∇Π‖L2∩C1∗ ≤ C
(

1 +Aδ+1
0

)
Θ2(t) .

In addition, (5.21) implies I(X(t)) ≥ CI(X0), while from (5.23) and (5.22) it follows

Γ(t) ≤ C

(
Γ0 +

∫ t

0
S(τ)dτ

)
and ‖∂Xu(t)‖Cε ≤ C

(
S(t) + Γ(t) Θ(t)

)
.

Finally, (5.28) and (5.29) together entail

‖∂Xρ‖Cε ≤ C
((

1 +A0

)
Γ0 +R0

)
‖∂X∇ρ‖Cε−1 ≤ C

((
1 +A0

)
Γ0 +R0 +

∫ t

0
S(τ)dτ

)
.

From the inequalities we've just established, the control of the striated norm of ∇Π immedi-
ately follows.

Let us proceed carefully, as done in subsection 5.4.3. After some simply (even if rough)
manipulations, we get (up to multiplication by constant terms)

‖ρ‖W 1,∞ ‖∂Xρ‖Cε ‖∇Π‖C1∗ ≤
(

1 +Aδ+2
0

)
(Γ0 +R0) Θ2(t)

‖∇Π‖C1∗ ‖̃X‖Cε‖ρ‖
2
W 1,∞ ≤

(
1 +Aδ+2

0

)(
Γ0 +

∫ t

0
S(τ)dτ

)
Θ2(t) .
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Now, thanks to (a+ b)3 ≤ C(a3 + b3) and Jensen's inequality we infer

‖̃X‖3Cε‖∇Π‖C1∗ ≤
(

Γ0 +

∫ t

0
S3(τ)dτ

)(
1 +Aδ0

)
Θ2(t) .

Finally, the fact that ‖u(t)‖Lp,∞ ≤ Θ(t) implies

‖ρ‖W 1,∞ ‖̃X‖Cε‖u‖2Lp,∞ ≤ (1 +A0)

(
Γ0 +

∫ t

0
S(τ)dτ

)
Θ2(t)

‖ρ‖W 1,∞‖u‖Lp,∞ ‖∂Xu‖Cε ≤ (1 +A0) Θ(t)

(
S(t) +

(
Γ0 +

∫ t

0
S(τ) dτ

)
Θ(t)

)
≤ (1 +A0)(1 + Γ0)

(
S(t) + Θ(t)

)
Θ(t) + (1 +A0)Θ2(t)

∫ t

0
S(τ)dτ .

Let us de�ne
M0 :=

(
1 + Aδ+2

0

) (
1 + Γ3

0 + R0

)
;

as
∫
S ≤ 1 +

∫
S3, in the end we get

(5.54)
∥∥∂X(t)∇Π(t)

∥∥
Cε ≤ CM0

(
Θ2(t)

(
1 +

∫ t

0
S3(τ)dτ

)
+ Θ(t)S(t)

)
.

Now let us focus on the striated norm of the vorticity, estimated in (5.44). Analysing each
term which occurs in the de�nition (5.45) of Υ, we see that �rst, second and fourth items can
be bounded by

∥∥∂X(t)∇Π(t)
∥∥
Cε , and the third one is controlled as in (5.54), up to replace M0 by

M̃0 := (1 +A0)M0. Finally,

‖ρ‖W 1,∞ ‖∇Π‖C1∗ ‖∂X∇ρ‖Cε−1 ≤

≤ (1 +A0)
(

1 +Aδ0

)
Θ2(t)

(
(1 +A0)Γ0 +R0 +

∫ t

0
S(τ)dτ

)
≤
(

1 +Aδ+2
0

)
(1 + Γ0 +R0) Θ2(t)

(
1 +

∫ t

0
S(τ)dτ

)
.

So, putting all these inequalitites together, we discover that, in [0, T1],

S(t) ≤ C

(
S0 + M̃0

∫ t

0

(
Θ2(τ)

(
1 +

∫ τ

0
S3(τ ′)dτ ′

)
+ Θ(τ)S(τ)

)
dτ

)
,

and, in the end, by use of Gronwall's lemma this implies

S(t) ≤ C ec
∫ t
0 Θ(τ)dτ

(
S0 + M̃0

∫ t

0
Θ2(τ)

(
1 +

∫ τ

0
S3(τ ′)dτ ′

)
dτ

)
.

De�ne T2 as the supremum of the times t > 0 for which both the relations

M̃0

∫ t

0
Θ2(τ)dτ ≤ 2L0 and M̃0

∫ t

0
Θ2(τ)

(
1 +

∫ τ

0
S3(τ ′)dτ ′

)
dτ ≤ 2S0

are ful�lled. Note that, by Cauchy-Schwarz inequality, this implies in particular
∫ t

0 Θ(τ)dτ ≤ C:
so, thanks to (5.52), we can suppose T2 ≤ T1. Hence, keeping in mind (5.53), in [0, T2] one has

S(t) ≤ C1 S0 , L(t) ≤ C2 L0 and Θ(t) ≤ C3 Θ0 ,

because the function (λ, σ) 7→ λ log(e+ σ/λ) is increasing both in λ and σ.
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Let us put these bounds in the integral conditions de�ning T2: we discover that T2 is greater
than or equal to every time t for which

(5.55) M̃0 Θ2
0 t ≤

2L0

C2
3

and M̃0 Θ2
0 t + M̃0 Θ2

0 S
3
0

t2

2
≤ 2S0

C2
3 (1 + C3

1 )
.

Therefore, if we de�ne

(5.56) T := K
min{L0, S0}

M̃0 (1 + L0 + S0)2
Θ−1

0 ,

where K > 0 is a constant, then both the inequalities in (5.55) are veri�ed, for some suitable
value of K. Hence, T ≤ T2, and the theorem is now proved.

Remark 5.22. Let us notice that, in the classical case (constant density), the lifespan of a
solution was controlled from below by

Tcl := C

(
‖Ω0‖Lq∩L∞ log

(
e+

‖Ω0‖CεX0

‖Ω0‖Lq∩L∞

))−1

(see also [26]). We have just proved that in our case the lifespan is given by (5.51), instead. The
two lower bounds are quite similar, even if in our case also the initial density comes into play,
and there are some additional items, basically due to the more complicate analysis of the pressure
term.

Remark 5.23. Note also that, in the two dimensional case, the stretching term in the vorticity
equation disappears. This fact translates, at the level of a priori estimates, into the absence of
the �rst two items in the right-hand side of (5.45). Nevertheless, as we have seen, the analysis of
∇Π produces terms of this kind: for this reason, in dimension N = 2 we weren't able to improve
the lower bound (5.51).

5.6 Hölder continuous vortex patches

First of all, let us prove conservation of conormal regularity.
Given a compact hypersurface Σ ⊂ RN of class C1+ε, we can always �nd, in a canonical way,

a family X of m = N(N + 1)/2 vector-�elds such that the inclusion CηΣ ⊂ C
η
X holds for all

η ∈ [ε, 1 + ε]. For completeness, let us recall the result (see proposition 5.1 of [26]), which turns
out to be important in the sequel.

Proposition 5.24. Let Σ be a compact hypersurface of class C1+ε.
Then there exists a non-degenerate family of m = N(N + 1)/2 vector-�elds X ⊂ T εΣ such that

CηΣ ⊂ C
η
X for all η ∈ [ε, 1 + ε].

Hence, thanks to theorem 5.3 we propagate striated regularity with respect to this family.
Finally, in a classical way, from this fact one can recover conormal properties of the solution, and
so get the thesis of theorem 5.5 (see e.g. [36], sections 5 and 6, and [26], section 5, for the details).

Actually, in the case of space dimension N = 2 , 3 (�nally, the only relevant ones from the
physical point of view) one can improve the statement of theorem 5.5. To avoid traps coming
from di�erential geometry, let us clarify our work setting.

In considering a submanifold Σ ⊂ RN of dimension k and of class C1+ε (for some ε > 0), we
mean that Σ is a manifold of dimension k endowed with the di�erential structure inherited from
its inclusion in RN , and the transition maps are of class C1+ε.
In particular, for all x ∈ Σ there is an open ball B ⊂ RN containing x, and a C1+ε local
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parametrization ϕ : Rk → B ∩ Σ with inverse of class C1+ε. This is equivalent to require lo-
cal equations H : B → Rk of class C1+ε such that H|B∩Σ ≡ 0.

Let us explicitly point out that, when we speak about generic submanifolds, we always mean
submanifolds without boundary, while, in the other case, we have clearly to specify the property
�with boundary�.

Given a local parametrization ϕ on U := Σ∩B, its di�erential ϕ∗ : TRk → TU ∼= TΣ induces,
in each point x ∈ Rk, a linear isomorphism between the tangent spaces, ϕ∗,x : TxRk → Tϕ(x)Σ.
Moreover, the dependence of this map on the point x ∈ Rk is of class Cε: in coordinates, ϕ∗ is
given by the Jacobian matrix ∇ϕ.

Finally, we say that a function f de�ned on Σ is (locally) of class Cα (for α > 0) if the
composition f ◦ ϕ : Rk → R is α-Hölder continuous for any local parametrization ϕ.

Before stating our claim, some preliminary results are in order. Let us start with a very simple
lemma.

Lemma 5.25. Let f ∈ L∞(RN ) such that its gradient is α-Hölder continuous for some α > 0.
Then f ∈ C1+α(RN ).

Proof. It's obvious using dyadic characterization of Hölder spaces and Bernstein's inequalities.

Now, by analogy, one may ask if this property still holds true for a function de�ned on
a submanifold, with Hölder continuous tangential derivatives. In fact, with some additional
hypothesis on the submanifold, one can prove that also in this case there is a gain of regularity.

Proposition 5.26. Let Σ ⊂ RN be a submanifold of dimension k and of class C1+ε, for some
ε > 0. Moreover, let us suppose Σ to be compact.
Let us consider a function f : Σ→ R, bounded on Σ and such that ∂Xf ∈ Cε(Σ) for all vector-�elds
X of class Cε tangent to Σ.

Then f ∈ C1+ε(Σ).

Proof. Let us �x a coordinate set U := B ∩ Σ (for some open ball B ⊂ RN ) with its C1+ε local
parametrization ϕ : Rk → U , and let us de�ne g := f ◦ ϕ : Rk → R.

Obviously, g ∈ L∞(Rk), because f ∈ L∞(RN ).
Moreover, for all 1 ≤ i ≤ k let us set ϕ∗(∂i) = Xi : then, Xi is obviously of class Cε. Hence

we have ∂ig(x) = Xi(f)(ϕ(x)), i.e. ∂ig in a point x is the derivation Xi applied to the function
f , and evaluated in the point ϕ(x). In our notations, we get ∂ig = (∂Xif) ◦ ϕ.

Therefore, from our hypothesis it follows that ∇g ∈ Cε, and so, by lemma 5.25, g ∈ C1+ε(Rk).
In conclusion, we have proved that f composed with any local parametrization ϕ is of class C1+ε

on Rk. Therefore f ∈ C1,ε(Σ), and, as Σ is compact, we can bound its Hölder norm globally.

Remark 5.27. Let us note that the operator ∂X depends linearly on the vector-�eld X. Hence,
in the hypothesis of previous lemma it's enough to assume that one can �nd, locally on Σ, a
family {X1, . . . , Xk} of linearly independent vector-�elds of class Cε such that ∂Xif ∈ Cε(Σ) for
all 1 ≤ i ≤ k.

Corollary 5.28. Let Σ ⊂ RN be a compact hypersurface of class C1+ε, and let f ∈ C1
∗(RN ).

If f ∈ C1+ε
Σ , then f|Σ ∈ C1+ε(Σ).

Proof. By proposition 5.24 and non-degeneracy condition, we can �nd, locally on Σ, N−1 linearly
independent vector-�leds X1 . . . XN−1, de�ned on the whole RN and of class Cε, which are tangent
to Σ and such that div (f Xi) ∈ Cε(RN ) for all 1 ≤ i ≤ N − 1.

Moreover, also the divergence of these vector-�elds is ε-Hölder continuous; therefore, using
once again Bony's paraproduct decomposition, we gather that

∂Xif = div (f Xi) − f divXi ∈ Cε(RN ) ∀ 1 ≤ i ≤ N − 1 ,
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and hence this regularity is preserved if we restrict ∂Xif only to Σ.
So, proposition 5.26 and remark 5.27 both imply that f|Σ ∈ C1+ε(Σ).

Now, let us come back to the situation of theorem 5.5. Moreover, let us suppose that the
hypersurface Σ0 is also connected: then it separates the whole space RN into two connected
components, the �rst one bounded and the other one unbounded, and whose boundary is exactly
Σ0. In dimension 2, this is nothing but the Jordan curve theorem, while in the general case N ≥ 3
it's a consequence of the Alexander duality theorem (see e.g. [38], theorem 3.44). For the sake
of completeness, we will quote the exact statement and its proof, actually due to A. Lerario, in
section 5.7.

So, let us set D0 to be the bounded domain of RN whose boundary is ∂D0 = Σ0 and let us
de�ne D(t) = ψt(D0). As the �ow ψt is a di�eomorphism for every �xed time t, we have that
∂D(t) = Σ(t) and also the complementary region is transported by ψ: D(t)c = ψt(D

c
0).

Let us denote by χA the characteristic function of a set A.

Theorem 5.29. Under hypothesis of theorem 5.5, suppose also that the initial data can be de-
composed in the following way:

ρ0(x) = ρi0(x)χD0(x) + ρe0(x)χDc0(x) and Ω0(x) = Ωi
0(x)χD0(x) + Ωe

0(x)χDc0(x) ,

with ρi0 ∈ C1+ε(D0) and Ωi
0 ∈ Cε(D0).

Then, the previous decomposition still holds for the solution at every time t ∈ [0, T ]:

ρ(t, x) = ρi(t, x)χD(t)(x) + ρe(t, x)χD(t)c(x)(5.57)

Ω(t, x) = Ωi(t, x)χD(t)(x) + Ωe(t, x)χD(t)c(x) .(5.58)

Moreover, Hölder continuity in the interior of the domain D(t) is preserved, uniformly on [0, T ]:
at every time t, we have

ρi(t) ∈ C1+ε(D(t)) and Ωi(t) ∈ Cε(D(t)) .

In addition, regularity on D(t) propagates also for the velocity �eld and the pressure term: u(t)
and ∇Π(t) both belong to C1+ε(D(t)).

Proof. First of all, let us recall that, by theorem 5.5, on [0, T ] we have

(5.59)
∫ T

0
‖∇u(t)‖L∞ dt ≤ C .

Thanks to the �rst equation of (5.1), relation (5.57) obviously holds, with

ρi,e(t, x) = ρi,e0

(
ψ−1
t (x)

)
.

So, we immediately get that ρi(t) belongs to the space C1+ε(D(t)). Let us observe also that a
decomposition analogous to (5.57) holds also for a = 1/ρ, and its components ai,e have the same
properties of the corresponding ones of ρ.

Now let us handle the vorticity term. We can always decompose the solution in a component
localized on D(t) and the other one supported on the complementary set, de�ning

Ωi(t, x) := Ω(t, x)χD(t)(x) , Ωe(t, x) := Ω(t, x)χD(t)c(x) ,

and therefore obtain relation (5.58). By virtue of this fact, equation (5.6) restricted on the domain
D(t) reads as follows:

∂tΩ
i + u · ∇Ωi = −

(
Ωi · ∇u + t∇u · Ωi + ∇ai ∧∇Π

)
,
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which gives us the estimate (keep in mind also (5.59))

∥∥Ωi(t)
∥∥
Cε ≤ C

(∥∥Ωi
0

∥∥
Cε +

∫ t

0

(∥∥Ωi · ∇u+ t∇u · Ωi
∥∥
Cε +

∥∥∇ai ∧∇Π
∥∥
Cε
)
dτ

)
.

We claim that the �rst term under the integral can be controlled in Cε. As a matter of facts, by
(5.3) we know that the velocity �eld satis�es the elliptic equation

−∆uk =

N∑
j=1

∂jΩ
i
kj

in D(t), with the boundary condition (by theorem 5.5 and corollary 5.28) u|∂D(t) ∈ C1+ε(∂D(t)).
So (see theorem 8.33 of [37]) we have that u ∈ C1+ε(D(t)) and the following inequality holds:

‖u‖C1+ε(D(t)) ≤ C
(
‖u(t)‖L∞(D(t)) +

∥∥u|∂D(t)

∥∥
C1+ε(∂D(t))

+
∥∥Ωi

∥∥
Cε(D(t))

)
.

Let us note that, as pointed out in [37], a priori the constant C depends on ∂D(t) through the C1+ε

norms of its local parametrizations, so �nally on exp
(∫ t

0 ‖∇u‖L∞dτ
)
. However relation (5.59)

allows us to control it uniformy on [0, T ]. Therefore, in D(t) one gets the following inequality:∥∥Ωi · ∇u+ t∇u · Ωi
∥∥
Cε(D(t))

≤ C

(
‖∇u‖L∞

∥∥Ωi
∥∥
Cε(D(t))

+ ‖Ω‖L∞ ‖u‖C1+ε(D(t))

)
,

which proves our claim.
Finally, let us handle the pressure term. From what we have proved, ∇ai is in Cε; so∥∥∇ai ∧∇Π

∥∥
Cε ≤ C

∥∥∇ai∥∥Cε ‖∇Π‖C1∗(RN ) .

However, we want to prove that an improvement of regularity in the interior of D(t) occurs also
for ∇Π. In fact, keeping in mind (5.17), Π satis�es the elliptic equation

−∆Π = ∇(log ρi) · ∇Π + ρi∇u : ∇u

in the bounded domain D(t). Now, from what we have proved, the right-hand side obviously be-
longs to Cε(D(t)). Moreover, by theorem 5.5 and corollary 5.28, we have ∇Π|∂D(t) ∈ C1+ε(∂D(t)):
in particular, as Σ(t) is compact, Π|∂D(t) is continuous and bounded. Finally, as D(t) is of class
C1+ε, it satis�es the exterior cone condition (see [30], page 340). So, theorem 6.13 of [37] ap-
plies: from it, we gather Π(t) ∈ C2+ε(D(t)). Therefore, ∇Π(t)|D(t) ∈ C1+ε(D(t)) and its norm is
bounded by∥∥∇Π|∂D(t)

∥∥
C1+ε(∂D(t))

+
∥∥∇ai∥∥Cε(D(t))

‖∇Π‖C1∗(RN ) +
∥∥ρi∥∥C1+ε(D(t))

‖∇u‖2Cε(D(t)) .

Putting all these inequalities together and applying Gronwall's lemma, we �nally get a control
for the Cε norm of Ωi in the interior of D(t), and this completes the proof of the theorem.

5.7 Complements from Algebraic Topology

Here we want to prove the following theorem, which we used in last section of the present chapter.
For the technical de�nitions, notions and results, we refer to [38].

Theorem 5.30. For any dimension N ≥ 2, let Σ ⊂ RN be a compact, connected hypersurface
without boundary.

Then RN \Σ has two connected components (say) B and U , one bounded and the other one
unbounded, whose boundary is just Σ.
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The previous result implies in particular that Σ is orientable (see theorem 5.31).
Let us note that, if we already assumed this (redundant) hypothesis in theorem 5.30, then the
proof would be easier (see e.g. [48]).

The proof we quote here is actually due to A. Lerario.

Proof. With standard notations, for a submanifoldM⊂ RN and an abelian group G, we denote
with

H̃k(M;G) and H̃k(M;G)

the k-th reduced homology and cohomology groups ofM with coe�cients in G.

Let us compactify RN by adding the point at in�nity: in this way, we reconduct ourselves to
work with the N -dimensional sphere SN = RN ∪ {∞}.
Obviously, RN \Σ and SN \Σ have the same number of connected components.

By Alexander duality theorem (see theorem 3.44 of [38]) with coe�cients in Z2, we have

H̃k(S
N \Σ;Z2) ' H̃N−k−1(Σ;Z2) ∀ k ≥ 0 .

In particular, this is true for k = 0:

H̃0(SN \Σ;Z2) ' H̃N−1(Σ;Z2) .

Now, as Σ is compact, connected and without boundary, theorem 3.26 of [38] applies, and
gives us

H̃N−1(Σ;Z2) ' Z2

(independentely whether Σ is orientable or not). In particular, also H̃0(SN \Σ;Z2) is isomorphic
to the same group, and this implies that the homology group (not reduced!)

(5.60) H0(SN \Σ;Z2) ' H̃0(SN \Σ;Z2) ⊕ Z2

has rank equal to 2. But the rank of H0(M;G) is always the number of the connected components
ofM. Hence, SN \Σ has two connected components, A and B.

Let us suppose that ∞ ∈ A; then

SN \Σ = A ∪ B =⇒ RN \Σ = (A\{∞}) ∪ B .

Now, as N ≥ 2, U := A\{∞} is still connected.
Hence, U and B are the two connected components of RN \Σ.

Moreover, it's easy to see (for instance, by stereographic projection with respect to the point ∞)
that U is unbounded, while B is bounded.
Finally, obviously ∂B ≡ ∂U ≡ Σ.

As already pointed out, theorem 5.30 entails the following fundamental result. Even if it lies
outside of the topics of the present manuscript, we decided to quote it to give a more complete
and detailed picture of the framework we adopted in section 5.6.

Again, the proof is due to A. Lerario.

Theorem 5.31. Let Σ ⊂ RN (for some N ≥ 2) be a compact, connected hypersurface without
boundary.

Then Σ is orientable.

Proof. The starting point is relation (5.60) in the previous proof. Actually, it holds true for any
submanifoldM and any abelian group G:

(5.61) H0(M;G) ' H̃0(M;G) ⊕ G .



5.7. Complements from Algebraic Topology 125

Moreover, it is always true that H0(M;G) is isomorphic to the direct product of n copies of G,
where n is the number of connected components ofM:

(5.62) H0(M;G) ' G⊕n

(see [38] for the proof of these facts).
In the previous proof, we established that the rank of H0(SN\Σ;Z2) is 2. Then, by (5.62) we

have that it is still 2 if we consider the homology with coe�cients in Z:

rk
(
H0(SN \Σ;Z)

)
= 2 .

Therefore, keeping in mind (5.61) and the Alexander duality theorem, we gather

H̃0(SN \Σ;Z) ' Z =⇒ H̃N−1(Σ;Z) ' Z .

Now, by theorem 3.26 of [38], this last condition is equivalent to the fact that Σ is orientable.
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