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In the frame of k · p method and variational approach for the effective energy functional of a contact between
a three-dimensional topological insulator (TI) and normal insulator (NI), we analytically describe the formation
of interfacial bound electron states of two types (ordinary and topological) having different spatial distributions
and energy spectra. We show that these states appear as a result of the interplay of two factors: hybridization and
band bending of the TI and NI electron states near the TI/NI boundary. These results are corroborated by the
density functional theory calculations for the exemplar Bi2Se3/ZnSe system.

DOI: 10.1103/PhysRevB.91.075307 PACS number(s): 74.25.Jb, 73.20.−r

I. INTRODUCTION

The physical origin, peculiarities and methods of descrip-
tion of bound electron states at the interface formed by a
three-dimensional (3D) topological insulator (TI) and normal
insulator (NI) are the subject of considerable interest (see,
for example, Refs. [1–3] and references therein). Such the
interest is due to predicted unusual properties of the TI/NI
heterostructures, but to utilize them in next-generation nano-
electronic devices, one should take an important step to drive
the characteristics of interfacial electron states in the design of
the TI/NI systems. In turn, these characteristics result from a
“twofold” nature of bound electron states at the TI/NI contact.

On the one hand, the appearance of the bound electron states
at the TI/NI contact is due to quantum proximity effect caused
by an effective interfacial potential at the boundary between
two insulators (semiconductors) with different crystal sym-
metries, lattice parameters, band gaps, and electron affinities.
This potential arises from the one-electron hybridization of
the TI and NI electron states, as well as redistribution of the
charge and spin densities on the both sides of the interface.
Hence, it defines the boundary conditions for the electron
wave functions (envelope functions in the k · p method) at
the interface, the form of the electron spectrum, spin texture,
and spatial localization of interfacial electron states [4]. But
for all that, both the strong spin-orbit coupling (SOC) and the
inverted gap of the spectrum, which are essential features of
the electron structure of the bulk TI, can play a significant
although not decisive role.

On the other hand, the existence of helical Dirac-like
interfacial electron states in TI/NI heterostructures is for-
mally provided by the bulk-boundary correspondence theorem
formulated in the topological band theory of solids [5,6].
For a layered system containing alternating slabs of TI
and NI materials with different topological invariants, this
theorem predicts an appearance of helical bound electron
states inside the energy gap in the electron spectrum. So,

the “quantum-mechanical” arguments based on the quantum
proximity effect driven by an effective interfacial potential, as
well as “topological” arguments based on the bulk-boundary
correspondence paradigm, predict an existence of interfacial
bound electron states in the TI/NI heterostructures.

Numerical calculations based on density functional theory
(DFT) methods have shown a very unusual picture of the space
and energy relocation of interfacial electron states in some
TI/NI heterostructures composed of the TI and NI slabs [7,8].
The principal effect in these systems is the formation of
interfacial bound electron states of two different types.
Recently, in Ref. [9], this phenomenon has been preliminarily
studied with an analytical approach. Within a quasiparticle
concept it was demonstrated that the spectrum of interfacial
bound electron states contains “ordinary” and “topological”
branches with different characteristic lengths, probability
maxima, and peaks of spectral weight in the energy scale. The
analytical description in Ref. [9] was based on the simplified
model of an effective short-range interface (pseudo)potential
provided by hybridization of the TI and NI electron states
at the TI/NI interface. It was predicted that, even within
this model, interfacial bound electron states exist near the
TI/NI boundary. However, in many real TI/NI heterostructures
the TI and NI components are, respectively, narrow-gap and
wide-gap semiconductors with different electron affinities.
It is evident that, in such systems, significant electrostatic
(Coulomb) potential is induced due to strong charge-density
redistribution between TI and NI materials near their contact.
Since this potential, which has been not considered until now,
contains the components of different spatial scales, it may
lead to a significant band-bending effect, which is particularly
important on the TI (narrow-gap) side of the contact.

Generally speaking, the TI boundary states have a rather
wide range of tunability of the electronic properties under
various perturbations, such as structural distortions [10,11]
and mechanical strains [12,13], adsorption of (magnetic and

1098-0121/2015/91(7)/075307(9) 075307-1 ©2015 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tomsk State University Repository

https://core.ac.uk/display/287416787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevB.91.075307


V. N. MEN’SHOV et al. PHYSICAL REVIEW B 91, 075307 (2015)

nonmagnetic) atoms and molecules on the surface [14–17], an
alternation of the surface termination [18,19], engineering via
capping layers and interfaces with other materials [20–23],
applying an external gate voltage [20,24,25], etc., some of
which are accompanied by electrostatic bending of actual
bands in TIs. We only briefly annotate the interesting con-
sequences of these perturbations for the states confined at the
TI boundary (of course, our literature survey is not exhaustive).
For instance, angle-resolved photoemission spectroscopy
(ARPES) measurements of the prototypical 3D TIs Bi2Se3

and Bi2Te3 have, upon exposure to various environments,
shown topological-order robustness [26]. Nevertheless, the
surface states were strongly modified due to an exposure to
N2 or air, moreover, the formation of two-dimensional (2D)
quantum well states near the exposed TI surface have been
observed. The spectral changes at the Bi2Se3(111) surface
similar to those reported in Ref. [26] were demonstrated in
connection with the adsorption of carbon monoxide CO or Fe
in Refs. [14,15], respectively. The Rashba-split quantum well
states of the conduction band were observed and interpreted as
additional surface states. In Refs. [27,28], in density functional
calculations (DFT), it was found that the K adatoms on
ultrathin films of Bi2Se3 induce downward band bending
within 2 to 3 nm from the surface, due to charge transfer
from the adatoms to the TI, which lead to a Dirac-cone
state, localized slightly deep into the TI. There are now
intensive experimental and theoretical efforts on studying the
interface states in various 3D TI-based heterostructures that
carry the signature of both topology and contact conditions [1–
3,20–23,29,30]. Below we throw light on the role of the
band-bending effect in the formation of the bound electron
states at the TI/NI interface.

The paper is organized as follows: In Sec. II, we briefly
discuss the genesis of bound electron states within a variational
approach for the energy functional based on the concept of
effective interfacial potential at the TI/NI contact. In Sec. III,
we canvass evolution of interfacial bound electron states under
the band-bending effect. In Sec. IV, we outline the results of ab
initio DFT calculations for the Bi2Se3/ZnSe system. In Sec. V,
we compare the numerical and analytical results, establish a
correspondence between parameters used in both approaches,
and thus interpret the DFT calculation results in terms of the
proposed analytical approach. In Sec. VI, we summarize the
results obtained.

II. GENESIS OF INTERFACIAL BOUND ELECTRON
STATES IN A VARIATIONAL APPROACH

First, let us make a brief reminder on an analytical descrip-
tion of the bound electron states at the 3D TI/NI interface
which was suggested in Refs. [9,31]. The relevant theoretical
model is based on the four-band k · p Hamiltonian with strong
SOC proposed in Ref. [32] to describe the low-energy and
long-wavelength bulk electron states near the � point of the
Brillouin zone in the narrow-gap semiconductor Bi2Se3 as
a prototypical 3D TI. We make use the simplified isotropic
version of the Hamiltonian in the form

HT (k) = �(k)τz ⊗ σ0 + Aτx ⊗ (k · σ ), (1)

where �(k) = � − Bk2, k is the wave vector, k = |k|, and
σα and τα (α = 0,x,y,z) denote the Pauli matrices in the
spin and orbital space, respectively. The Hamiltonian (1) is
written in the basis u = {|+,↑〉,|−,↑〉,|+,↓〉,|−,↓〉} of the
four states at the � point with k = 0. The superscripts ±
denote the even- and odd-parity states and the arrows ↑,↓
indicate the spin projections onto the z quantization axis. In
the Bi2Se3-type materials, these four states originate from
the bonding combinations of pz orbitals of bismuth and
antibonding combinations of pz orbitals of selenium [32]. The
parameters �, B, and A are connected with matrix elements
of momentum [32]. The simple model in Eq. (1) captures
the remarkable feature of the band structure consisting in
the inverted order of the energy terms around the � point
(as compared with the large k) under the condition �,B >

0, which correctly characterizes the topologically nontrivial
nature of the TI side of the system due to strong SOC.

One assumes that constituents of the TI/NI heterostructure
are joined at a perfectly flat interface located at z = 0 so
that 3D TI occupies the right half space, z > 0, while the
NI occupies the left one, z < 0. The full electron energy of the
TI/NI heterostructure is

� = �T + �N + �I , (2)

�T =
∫

z>0
dr�†(r)[HT (−i∇) + ϕ(r)I]�(r), (3)

�N =
∫

z<0
dr
†

N (r)HN (−i∇)
N (r), (4)

�I =
∫

dr[�†(r)VN (r)
N (r) + 

†
N (r)V†

N (r)�(r)]. (5)

On the TI side, in Eq. (3), the operator HT (−i∇) (momentum
k is replaced by operator −i∇) determined in Eq. (1)
acts in the space of the spinor envelope functions �(r) =
(θ1(r),θ2(r),θ3(r),θ4(r))tr that are represented in the basis u.
In Eq. (4) the Hamiltonian HN (−i∇) with a band index
N specifies the bulk electron states of NI, the two-spinor

N (r) = (φ↑

N (r),φ↓
N (r))tr is represented in the Bloch basis

functions wN = {|N,↑〉,|N,↓〉}. We regard NI as a wide-gap
semiconductor without SOC and presume that the TI bulk
gap 2� lies entirely inside the NI bulk gap on the energy
scale. The spinor components θj (r) (the subscript j numbers
the corresponding component; j = 1,2,3,4) and φ

↑↓
N (r) are

treated as envelope functions in the frame of k · p method, i.e.,
they are smooth and continuous functions in the corresponding
half spaces.

It was remarked above, that 3D TI and NI forming real
TI/NI heterostructure are narrow-gap and wide-gap semicon-
ductors, respectively, which posses different electron affinities.
Therefore, drastic charge redistribution are thought to entail
important electrostatic effects [7,31]. The presence of screen-
ing carriers, which can originate from the bound interfacial
states (within our model, bulk-carrier-related screening can be
readily ruled out), gives rise to a significant redistribution of
the carrier density n(r) within the subinterfacial region on the
narrow-gap TI side. As a result, the band bending, which is
proportional to a long-range part of the Coulomb potential in
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Eq. (3), ϕ(r) = ∫
dr′V(r − r′)n(r′) [where V(r) is electron-

electron interaction in the TI material, I is an unit 4 × 4
matrix], can remarkably contribute to the low-energy physics
of the TI/NI heterostructures. It is obvious that significant
charge redistribution takes place mostly on the narrow-gap
TI side of the interface. While this effect, being weak on the
wide-gap NI side, is neglected in Eq. (4).

For concrete TI/NI heterostructures, the self-consistent
calculations of the potential ϕ(r) [as well as the interaction
V(r)] and the carrier density n(r) may be carried out within
the numerical (ab initio) approaches. To estimate the role
of this potential analytically, one has to make some rough
assumptions. First, the interaction V(r) is supposed to be
independent of the orbital indices. Second, one averages the
charge redistribution n(r) over the (x,y) plane remaining
one-dimensional profile n(z). This means that, on the TI side,
electrons are implied to be subjected to the one-dimensional
potential field ϕ(z) smoothly varying (on the atomic scale) in
the z direction and homogeneous in the interface plane. Third,
the scale of spatial variation of ϕ(z) denoted as l exceeds or is
of the order of the Debye screening length in the bulk of the TI
material. In the TI/NI heterostructures under consideration, the
Coulomb effects are not small, so the magnitude of the poten-
tial ϕ(z) may turn out to be larger than the TI bulk gap. Thus,
the band bending could be large enough to modify remarkably
the electron characteristics of the TI near the interface.

The k · p method cannot provide information on the
wave-function behavior in the vicinity of the atomically
sharp interface, where large momenta are highly important.
So, the use of an envelope function method formally falls
down in such the situation. To overcome this serious and
well-known drawback (see discussion of a similar problem
for a contact of two normal semiconductors in Ref. [4]),
one should introduce the boundary conditions at the interface
matching the envelope functions and their derivatives on the
TI and NI sides. Following Ref. [33], one can formally write
the boundary conditions in the matrix form with any model
parameters. Unfortunately, it is not clear what set of parameters
is more appropriate to describe the system under consideration,
since the bulk wave functions of the TI and NI materials are
classified according to different irreducible representations
of different crystalline symmetry groups. So, one has no
special receipt to minimize the number of components of the
boundary-conditions matrix.

Below, according to Ref. [9], we use a simple variational
approach and formally introduce an effective intermixing of
electron states of the contacting TI and NI materials at the
interface. The intermixing is simulated by an effective potential
of hybridizationVN (r) between the states | ± ,↑↓〉 and |N,↑↓〉
specified by the eigen Bloch functions of the TI bulk and NI
bulk, respectively, which are declared to be associated with
different crystal symmetries. Really, the hybridization VN (r)
is nonzero in a small region d (of the order a lattice parameter)
around the geometrical boundary between the 3D TI and
NI materials, where the applicability of the k · p scheme is
violated. The length d may be treated as an effective scale of the
interface region. Introduction of the phenomenological term
of the interface energy �I enables us to correctly reconcile
the long-range variations of the electron density on both
sides of the interface at |z| > d in the terms of the boundary

conditions for the envelope functions �(r) and 
N (r). As
long as the spatial variations of the sought interfacial states are
sufficiently slow, one can adopt a local approximation for the
interfacial potential; namely, VN (r) = dVNδ(z), where δ(z) is
the δ function.

Because, in a plane geometry, the wave vector κ = (kx,ky)
is a good quantum number, one can deal with κ harmonics of
the envelope functions, �(κ,z) and 
(κ,z), where �(r) =∑

κ �(κ,z) exp(iκρ), 
N (r) = ∑
κ 
N (κ,z) exp(iκρ), ρ =

(x,y). Following the method described in Ref. [9] the equations
for the envelope function on the TI side can be expressed in
compact form as

[HT (κ, − i∂) + ϕ(z)I − EI]�(N)(κ,z) = 0, (6)

[�(κ, − i∂) − 2dU(N)(κ,E)]�(N)(κ,z)|z=0 = 0. (7)

Here E is the energy, �(κ,kz) = i∂HT (k)/∂kz is the “current”
density operator. We search for the solutions of Eqs. (6) and (7)
that satisfy the condition �(N)(κ,z → ∞) → 0 when moving
from the interface into the bulk. The localized states at the
interface can appear only within the energy gap common
for both the materials so that |E(κ)| < � < |EN |, where EN

is the edge of the N th band. The superscript (N ) indicates
that the bound state with the envelope function �(N)(κ,z)
originates from the intermixing of the TI band state with
the N th state of the NI band. For a simplicity, in our
model the direct tunneling of quantum states of the same
symmetry from the one side of the interface to the other
one is forbidden, while the tunneling (i.e., the hybridization
VN ) between states having different symmetries is permitted.
Therefore, the boundary conditions of Eq. (7) involve an
effective local pseudopotentialU(N)(κ,E) seen by electrons on
the TI side. The magnitude of the 4 × 4 pseudopotential matrix
elements can be written as U

(N)
jj ′ (κ,E) = dVjNV ∗

Nj ′/hN (κ,E),
where VjN is the component of the matrix VN specifying the
intermixing between the j th state of TI and the N th state of
NI, hN (κ,E) is defined by the parameters of the N th bulk band
of NI and its position with respect to the TI bulk bands [9].
The parameters U

(N)
jj ′ characterize contributions of different

chemical bonds to the TI/NI hybridization at the interface.
For concreteness, we choose the situation corresponding to
the plausible assumption that the Bi orbitals of the topmost
quintuple layer (QL) of the Bi2Se3(111) dominantly contribute
to the chemical bond with the NI orbitals at the interface. In
such the case the effective pseudopotential has four nonzero
matrix elements: U (N)

11 = U
(N)
33 and U

(N)
13 = [U (N)

31 ]∗. It is worth
noting that off-diagonal elements appear solely thanks to the
spin-flip hybridization processes, which below are presumed
to be negligible. We also omit the dependence of the interface
potential on both κ and E, which is quite correct upon
condition that the ratio |EN |/� is well larger than unity. Note,
if |EN | � �, the estimation hN ∼ √|EN |/mN is valid, where
mN is an effective mass of the N th band.

III. MODIFICATION OF INTERFACIAL BOUND
ELECTRON STATES UNDER BAND-BENDING EFFECT

In the considered TI/NI heterostructure, the charge re-
distribution leads to arising of complicated and strongly
inhomogeneous electrostatic field near the TI/NI boundary.
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Indeed, the positively (negatively) charged region of the
thickness ∼d, in which chemical bonds between atomic layers
adjacent to the TI/NI interface are rearranged, is screened
by the electrons (holes) residing in the interfacial bound
states and/or the band-bending-induced states of conduction
(valence) bands. The spatial variation of the electrostatic
potential ϕ(z) is defined by the effective screening length
l � d. Strictly speaking, the system of equations (6) and (7) for
the envelope functions and the Poisson equation for ϕ(z) have
to be solved self-consistently, but it is evident that no exact
analytical solution for such the task is available. Therefore, to
capture the principal features of the band-bending effect on
the evolution of interfacial electron states we shall use two
distinct approximations, in which the ϕ(z) is described either
by a narrow-peak, when l � ζ , or by a rectangular potential,
when l � ζ , where ζ is the envelope function scale.

In the case of a relatively long-range electrostatic potential,
the condition l � ζ provides a possibility of the rather simple
estimation for the band-bending effect on the spectrum of
interfacial electron states by a simple shift of the energy scale
in the TI part of the model Hamiltonian. Presuming that the
probability density of the studied states is localized for the
most part inside of the band-bending region, one can regard
the electrostatic potential quasiclassically and approximate it
roughly as the step function, ϕ(z) = ϕ0 when 0 < z < l and
ϕ(z) = 0 when z > l. Thus, in the near-interface region, the
bound electron states are described by the equation [HT (κ, −
i∂) − EI]�(N)(κ,z) = 0 under the boundary condition (7),
in which the energy is measured from the quantity ϕ0, i.e.,
E → E = E − ϕ0. This energy shift may be significant and
even exceed half of the TI bulk gap, |ϕ0| � �. Nevertheless,
the quasiclassical approximation formally used here does not
violate the applicability of the k · p method. Therefore, we
can merely borrow the results of the work [9] taking into
account the above-said energy shift E → E = E − ϕ0 for the
Dirac-like spectrum and characteristic lengths of the envelope
functions. Strictly speaking, renormalized in this manner
the interfacial bound states with a spectrum shifted by the
band-bending effect may evolve to the quasiresonances due to
their overlapping with the bulk states. Omitting a thorough
discussion on the interfacial state features, it is worthy to
emphasize that these features depend strongly on the effective
pseudopotential U(N)(κ,E) caused by the mixing between the
TI and NI orbitals at the interface.

Now let us presume that a scale of change of ϕ(z) is small as
compared with the penetration depth of the interfacial electron
bound state into the 3D TI bulk, i.e., l � ζ . So, supposing that
the relevant envelope function is situated principally outside of
the band-bending region, to leading order in l/ζ we accept the
utterly short-range form for the electrostatic potential, ϕ(z) =
lϕ0δ(z). Under this circumstance one can displace the potential
ϕ(z) from Eq. (6) into the boundary condition (7). Then the task
on the interfacial bound states is reduced to the analytically
solvable equation [HT (κ, − i∂) − EI]�(N)(κ,z) = 0 with the
local interface potential renormalized as

dU(N) → dW(N) = dU(N) + lϕ0I. (8)

The effective interfacial potential in Eq. (8) is a 4 × 4 diagonal
matrix W(N) = diag{W (N)

1 ,W
(N)
2 ,W

(N)
3 ,W

(N)
4 } with the fol-

lowing components: W
(N)
2 = W

(N)
4 = W2 = W4 = lϕ0/d and

W
(N)
1 = W

(N)
3 = W2 + U

(N)
11 . A comparison of these com-

ponents allows us to discern two groups of states, whose
behaviors clearly differ near the interface. The trial solution
for each component of the envelope function spinor obeying
the condition θ

(N)
j (κ,z → ∞) → 0 can be represented as

θ
(N)
j (κ,z) = α

(N)
j (κ,E) exp[−q1(κ,E)z]

+β
(N)
j (κ,E) exp[−q2(κ,E)z], (9)

where the characteristic momenta

q1,2(κ,E) =
√

q2
1,2(E) + κ2, (10)

q2
1,2(E) = A2 − 2B� ± √

A4 − 4B�A2 + 4B2E2

2B2
(11)

are the roots of the corresponding secular equation
det[HT (κ,iq) − EI] = 0, κ = |κ |, q1,2(E) > 0. The coef-
ficients α

(N)
j (κ,E) and β

(N)
j (κ,E) are determined by the

boundary conditions at the interface.
After some algebra one can obtain the relations between

the energy and the in-plane momentum for the bound states at
the interface, E(κ). In a nearest vicinity of the κ = 0 point, the
expression for the dispersion is described by the Dirac-cone-
like law E(κ) = E(0) ± vκ , where E(0) and v are the node
point position and the group velocity, respectively, which are
functions of the interfacial potential W(N) (8). The dependence
of the Dirac point E(0) on the interfacial potential components
W

(N)
1,2 is given by the equation

0 = A2q1(E)q2(E) − [
Bq2

1 (E) + � − E
]

× [
Bq2

2 (E) + � − E
] + 2

{
q1(E)q2(E) − � − E

B

}

×
{

B2q1(E)q2(E) − dW2dW
(N)
1 − A2

4

}

− 2[q1(E) + q2(E)]
[
dW

(N)
1 (� − E)

+ dW2Bq1(E)q2(E)
]
. (12)

The results of numerical investigation of Eq. (12) are plotted
in Figs. 1 and 2. The shaded areas in Fig. 1 denote the
realm of existence of the interfacial bound states, that are
the regions on the (U (N)

11 ,W2) plane where |E(0)| < �. In
Fig. 2, the energy E(0) is plotted with respect to W2 for several
values of U

(N)
11 . We see rather the nonmonotonic behavior of

the Dirac node point position vs the electrostatic potential,
which in addition depends sensitively on the value and sign of
the interface hybridization. With increasing the electrostatic
potential amplitude, the node point evolves almost linearly
from the origin, where E(0) = 0 and W2 = −U

(N)
11 /2, until it

merges into the continuum of the conduction (valence) bulk
band, then it splits from the valence (conduction) bulk band and
eventually approaches asymptotically the middle of the bulk
gap, E(0) = 0 → ±0 when W2 → ∓∞. Looking at this plot,
it is clear that the Dirac point position depends parametrically
on the interface hybridization strength. In other words, given
the embedded electrostatic potential, for N labeling the NI
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FIG. 1. (Color online) Realm of the interfacial bound state as a
function of the embedded electrostatic potential W̃2 and the interfacial
hybridization Ũ

(N)
11 . In the dashed areas on the (Ũ (N)

11 ,W̃2) plane, the
Dirac point lives inside the bulk band gap, |Ẽ(0)| < 1. The thick
curves edging (bordering) the areas are defined by Eq. (12) under
Ẽ(0) = ±1, while the thin line is defined by Eq. (12) under Ẽ(0) =
0. The dimensionless units are used: Ũ

(N)
11 = dU

(N)
11 /

√
B�, W̃2 =

dW2/
√

B�, Ẽ(0) = E(0)/�.
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FIG. 2. (Color online) Position of the node point Ẽ(0) versus
the electrostatic potential W̃2 for several values of the interface
hybridization, Ũ

(N)
11 : Ũ

(N)
11 = −6 (blue), Ũ

(N)
11 = −4 (green), Ũ

(N)
11 =

−2 (red), Ũ
(N)
11 = 0 (black), Ũ

(N)
11 = 2 (gray), Ũ

(N)
11 = 4 (yellow),

Ũ
(N)
11 = 6 (brown). The corresponding dependencies are plotted from

left to right. Dimensionless units are used: Ũ
(N)
11 = dU

(N)
11 /

√
B�,

W̃2 = dW2/
√

B�, λ = A2/4B� = 1.5, Ẽ(0) = E(0)/�.

bulk band hybridized with the TI bulk bands (1), there exists
the eigen bound state with the energy E(N)(0) lying inside
the gap. Thereby, several hybridized states can appear at the
interface. However, it is worth noting that sometime the energy
level E(N)(0) can leave the gap merging into the bulk band
continuum.

A more thorough picture of the envelope function evolution
with potential strength is represented in Ref. [29].

One can describe analytically two extreme limits. Under
the weak interface potential, |W (N)

1,2 | � √
B�, the Dirac point

shifts with respect to the middle of the gap, up or down
depending on the sign of W2 + |W (N)

1 |:

E(N)(κ) = ±|A|κ + 4|A|�(κ)

A2 + 4B�(κ)

(
2dW2 + dU

(N)
11

)
, (13)

where �(κ) = � − Bκ2. Note that the group velocity near
the node point does not change with W

(N)
1,2 , but the spectrum

deviates slightly from the linear dependence. In the limit
|W (N)

1,2 | → 0, the coordinate dependence of the envelope
function is described as a sum of two exponents,

θ
(N)
j (κ,z) ∼ exp[−q1(κ)z] + exp[−q2(κ)z], (14)

where the characteristic momenta are

q0
1,2(κ) = q1,2(κ,|E| = |A|κ) = |A| ±

√
A2 − 4B�(κ)

2B
.

(15)

So, the probability density of the interfacial electron states is
peaked on the boundary z = 0 and its tail penetrates into the
TI bulk with the decay length (q0

2 )−1.
One can also describe analytically the opposite limit,

|W (N)
1,2 | � Bq0

1 � |A|, when a very strong electrostatic poten-
tial provides the “hard-wall” boundary conditions at z = 0.
For N = 1 labeling the corresponding interfacial bound state,
the dispersion approaches the linear law as

E(1)(κ) = ±|A|κ − |A|�(κ)

(
1

dW2
+ 1

dW2 + U
(1)
11

)
. (16)

So, the spectrum of bound electron states acquires the node-
point shift and curvature; however, the effective velocity |A|
near the node point does not change since the amendment
does not contain a term linear in the momentum κ . In the
limit |W (1)

1,2| → ∞, the coordinate dependence of the envelope
function is described as a difference of the exponents,

θ
(1)
j (κ,z) ∼ exp[−q1(κ)z] − exp[−q2(κ)z], (17)

where the characteristic momenta are given by Eq. (15). The
maximum of the electron density, |θ (1)

j (z)|2, occurs near the
point z0 = ln(q0

1/q0
2 )/(q0

1 − q0
2 ) <

√
B/� < (q0

2 )−1, which is
distant from the interface.

Thus, we argue that, at d < l � ζ � (q0
2 )−1, under the

large value of an embedded electrostatic field, |lϕ0| � Bq0
1 ,

the TI/NI interface hosts the Dirac-like gapless state with
the node point near the middle of the bulk gap, E(1)(κ =
0) ∼ |W (1)

1,2|−1 → 0, which displays low amplitude at the

interface, θ
(1)
j (z = 0) ∼ |W (1)

1,2|−2 → 0. Note the envelope
function associated with the NI bulk band labeled as N = 1 is
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negligibly small in the entire half space z < 0, 
1(z) ∼ �(1)

(z = 0) exp(
√

2m1|E1|z) [31], due to the strong band bending
such that |lϕ0| � Bq0

1 and despite the finite intermixing at the
interface. When lϕ0 � dU

(1)
11 , the latter inequality could be

met thanks to the fact that the relevant NI band with N = 1 is
sufficiently distant from the TI bulk bands.

If the band-bending energy is not large, |lϕ0| � Bq0
1 , the

Dirac-like gapless state appears with the node point distant
from the middle of the bulk gap, E(2)(κ = 0) � �. The
envelope function of this bound state indicated by N = 2 has
a finite amplitude on either the TI or NI side of the interface,
at that 
2(z = 0) ∼ �(2)(z = 0).

IV. NUMERICAL CALCULATION RESULTS

By means of relativistic DFT calculations we studied the
electronic band structure of Bi2Se3 film on ZnSe substrate.

For calculations we use the Vienna Ab Initio Simulation
Package (VASP) [34,35] with the generalized gradient approxi-
mation (GGA) [36] to the exchange correlation potential. The
interaction between the ion cores and valence electrons was de-
scribed by the projector augmented-wave method [37,38]. Rel-
ativistic effects, including SOC, were taken into account. The
kinetic cutoff energy for the plane-wave basis set was 350 eV,
and a 9 × 9 × 1k-point mesh was used to sample the 2D
Brillouin zone (BZ). To simulate the (111) interfaces between
Bi2Se3 film and zincblende ZnSe the lattice constants of the
substrate in hexagonal (111) plane were fixed to that of Bi2Se3.
The (111) hexagonal parameter of cubic ZnSe is ≈2% smaller
then Bi2Se3 parameter. The optimization of the structure of
ZnSe with the fixed parameter in (111) plane results in small
(<4%) contraction of interlayer spacings in the [111] direction.
The Bi2Se3 film was taken of five-QL thickness. The ZnSe
substrate was modeled by a slab consisting of nine bilayers that
is over 20 Å in thickness. The most stable interfaces between
Bi2Se3 film and the ZnSe were found for in-plane matching
where the interface Se atom belongs to both Bi2Se3 and sub-
strate sublattices [see Fig. 3(a)]. The atomic positions within
the four near-interface atomic layers of Bi2Se3 thin film and the
substrate were optimized. The geometry optimization is per-
formed until the residual forces were smaller than 10 meV/Å.
A vacuum spacer of ∼20 Å was included to ensure negligible
interaction between opposite sides of the structure. The free
surface of the ZnSe slab was passivated by hydrogen atoms.

The crystal structure of the zincblende ZnSe semiconductor
can be described as the alternating sequence of anion and
cation (111) layers (our calculation gives Zn+0.77 and Se−0.77).
A direct consequence of this geometry is that the surface of
substrate carries a finite charge. In the case of Zn-terminated
substrate considered here the charge is positive. As far as the
Bi2Se3 is a covalent material and has no surface charge, the
net charge at the interface should be positive, leading to a band
bending at the interface.

We estimated the band-bending effect by calculating the
difference between total electrostatic potential of Bi2Se3/ZnSe
heterostructure and potentials of separated ZnSe and Bi2Se3

slabs. The resulting potential differences �V averaged over
xy planes for ZnSe (z < 0) and Bi2Se3 (z > 0) subsystems are
shown in Fig. 3(b). As one can see, the moderate positive shift

FIG. 3. (Color online) (a) Crystal structure of five-QL films of
Bi2Se3 on the ZnSe substrate; maroon, yellow, and pink balls denote
Bi, Se, and Zn atoms, respectively; horizontal line marks position
of the interface plane. (b) Potential difference �V between total
electrostatic potential of Bi2Se3/ZnSe heterostructure and potentials
of ZnSe (orange line) and Bi2Se3 (violet line) slabs; vertical lines
mark positions of the atomic layers; layers at negative z are substrate
layers; layers at positive z are layers of Bi2Se3 film; z = 0 correspond
to interface plane; yellow rectangle marks first (interfacial) QL of
Bi2Se3 film. (c) Electronic structure of Bi2Se3/ZnSe; size of green
circles corresponds to the weight of the states in the five atomic layers
of Bi2Se3 closest to the interface; blue circles denote weight of the
states in the next five layers of Bi2Se3; red circles are states localized
at free surface of Bi2Se3 film; light steel blue and brown areas denote
projections of the Bi2Se3 and ZnSe bulk states, respectively. (d) Spin
polarization of the topological surface state (TSS) and topological
interfacial state (TIS) where filled circles represent the value of the
in-plane spin component (red and blue colors denote positive and
negative values of spin, respectively). (e) Spatial localization of the
ordinary interfacial state (OIS) (green line), TIS (blue line), and TSS
(red line) in Bi2Se3/ZnSe.

of the potential occurs in the ZnSe part of the heterostructure
while the sizable negative potential difference was found
within the interfacial (first) QL of the Bi2Se3 film [yellow
stripe in Fig. 3(b)]. This potential bending should result in
trapping of the electrons localized in the first QL and its shift
to lower energies.

The electronic band structure of the Bi2Se3/ZnSe het-
erostructure is shown in Fig. 3(c). The spectrum demonstrates
existence of two Dirac cones at the BZ center as well as the
presence of ordinary bound states at large κ in the same energy
interval within the energy gap. The Dirac states presented in
the supercell are the topological states resided at outer (free)
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and interfacial sides of the Bi2Se3 film. The Dirac point of
the topological interfacial state (TIS) lies ∼70 meV above the
Dirac point of the vacuum-side topological surface state (TSS).
At the same time, these states have opposite spin helicities
[Fig. 3(d)] like in TSSs localized on the top and bottom surfaces
of the free-standing TI slab. Note that both TSS and TIS have
a tiny gap of ∼10−5 eV at the �̄ point that is below the energy
resolution of DFT. These Dirac gaps are substantially smaller
than DFT calculated gap (a few meV) in the Dirac state of the
free-standing inversion-symmetric slab of five-QL thickness,
where the Dirac topological states are coupled through the slab.
The breaking of inversion symmetry in Bi2Se3 film owing to
interface formation results in decoupling of the topological
states and consequently leads to considerable decrease in the
Dirac gap. The switch off the SOC in the calculation results in
disappearing both �̄ Dirac-like states whereas ordinary states
at large κ expanded within the band gap and trapped in the
vicinity of the interface remain intact.

The spatial localization of the state resided on the vacuum-
side surface of Bi2Se3 in the heterostructure [Fig. 3(e), red
line] is the same as compared with that in the free-standing
Bi2Se3 slab [39]. In contrast, spatial localization of the state
resided on the opposite side of the Bi2Se3 film, adjacent to
ZnSe substrate, is modified [Fig. 3(e), blue line]. This state is
relocated deep into the TI film, i.e., away from the interface
plane, so that its probability maximum lies in the second QL.
Thus, the TIS leaves the band-bending region. The similar
behavior was found for the interfacial topological Dirac state
in Bi2Se3/MnSe heterostructure [7]. The ordinary bound state
in the Bi2Se3/ZnSe heterostructure [Fig. 3(e), green line] is
mostly located within interfacial QL of Bi2Se3 with only a
small tail extending within ZnSe bilayer, closest to the interface
plane and thus differs from the spatial localization of the
ordinary bound state found in Bi2Se3/MnSe heterostructure,
where it propagates deep into the substrate layers. This
difference is due to different atomic structure of the zincblende
ZnSe(111) substrate having bilayer geometry.

V. COMPARISON OF ANALYTICAL AND NUMERICAL
RESULTS

From the DFT calculations it is seen that two types of
interfacial bound electron states coexist in the Bi2Se3/ZnSe
system. The natural question arises of how this coexistence
may be interpreted within the analytical model discussed in
Secs. II and III. It is evident that this simple k · p scheme
is unable to substitute for the numerical methods of Sec. IV,
but the analytical approach provides a qualitative picture of the
electronic band structure. The problem, however, is to correctly
apply used approximations to the concrete situation.

It has been demonstrated [9] that parameters of interfacial
bound electron states strongly depend on the effective local
pseudopotential at the interface. Since this pseudopotential
depends on the energy, it should be also redefined to take
the band-bending effect into account following the approx-
imations discussed in Secs. II and III. So the system of
equations (6) and (7) for the envelope functions on the TI side
of the interface may have not a unique solution, but rather
several solutions corresponding to different self-consistent
pseudopotentials, energy spectra, and parameters of interfacial

electron bound states. To proceed with a comparison of the
DFT numerical and k · p analytic results, we have to make
some preliminary comments. First, from Sec. IV we see that
electrostatic potential in the form of two asymmetric triangular
teeth of the quantum-well or quantum-barrier type really
appears at the Bi2Se3/ZnSe interface. On the ZnSe (NI) side,
the barrier is relatively low (0.5 eV) compared to the NI bulk
band gap (1.2 eV), while on the Bi2Se3 (TI) side, the well depth
(2 eV) significantly exceeds the TI bulk band gap (0.3 eV).
The barrier and well widths are 20 and 10 Å, respectively.
In the model of Secs. II and III, we neglected for simplicity
the bend bending on the NI side of the structure, due to a
presumed large Debye screening length in the NI material
as compared to the one in the TI material, which seems to
be a good approximation. Thus, for Bi2Se3/ZnSe interface
we can estimate the parameters of the electrostatic potential
ϕ(z) in Secs. II and III to be l ≈ 10 Å, ϕ0 ≈ 2 eV. Second,
let us define the term “envelope-function scale” as applied
to the situation under discussion. In Fig. 3(e), the density of
probability function |�(z)|2 for either ordinary or topological
interfacial state on the TI side has the form of the peak with
the maximum at z = Zp and width ξ . It is natural to define the
envelope-function scale as ζ = max{Zp,ξ} to characterize the
approximation used for the band-bending effect.

In the model of Secs. II and III applied to the Bi2Se3/ZnSe
system, the ordinary branch of the envelope function may
be associated with the interfacial state, which is confined
inside the well and pinned on the interface [green line in
Fig. 3(e)]. This branch is described within the approximation
of a large electrostatic potential shaped like a rectangle
well of deepness ϕ0 � � and width l � ζ . On the other
hand, the topological branch of the envelope function is
related to the interfacial state, which lies outside the well
and is significantly relocated from the Bi2Se3/ZnSe interface
[blue line in Fig. 3(e)]. This branch is described within the
approximation of a large (ϕ0 � �) and narrow-peak (l � ζ )
electrostatic potential. The approximation of a large potential
is perfect for both states since ϕ0 ≈ 2 eV, � ≈ 0.15 eV.
Unfortunately, as far as the shape and scale of the potential
ϕ(z) are concerned, the situation is not as good. Indeed, from
Fig. 3(e) one can estimate the envelope-function scales of the
ordinary and topological interfacial states as ζ ≈ ξ ≈ 8 Å and
ζ ≈ Zp ≈ 11 Å, respectively. It is understood that, although
the potential scale of l ≈ 10 Å falls into the actual interval
Zp > l > ζ , both the long-range approximation l � ζ and the
short-range approximation l � Zp are rough enough, so our
analytical description of the ordinary and topological branches
has only qualitative meaning.

Nevertheless, even within such the simple envelope-
function formalism one can capture the specific fingerprint of
topology in the interface states. As we argued above, in Fig. 2,
when the interface perturbation can be regarded as a delta
peak, l � ζ , the Dirac-point energy of the in-gap bound state
evolves continuously as a function of the potential strength,
W2 < 0, until it merges with the continuum of the bulk
valence band in order to appear then again being split off the
conduction band and approach the zero level when |W̃2| → ∞.
Strictly speaking, the binding energy and envelope-function
profile are related to the details of the pseudopotential
matrix U(N)(E). Furthermore, the interface induced charge
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redistribution generates electrostatic potential that varies dras-
tically on nanometer scale in the vicinity of the TI/NI interface.
The band-bending effect is analytically tractable within the
rectangular-quantum-well approximation based on a small
penetration depth of the bound state into TI as compared with
the scale of changes of the electrostatic potential long-range
component, l � ζ . These assumptions allow us to predict that
the TI/NI interface can host two interface states which behave
differently near the interface (they have different exponents
and scaling functions). In general, the band bending should
be treated in a self-consistent manner. This task is completed
via numerical calculations based on the DFT method. For the
Bi2Se3/ZnSe heterostructure, we have found two interfacial
states, OIS and TIS, which is in agreement with the analytical
results.

VI. CONCLUSION

In summary, basing on the results obtained, we describe
the evolution of the interfacial bound electron states under
the influence of charge redistribution and the corresponding
band-bending effect near the TI/NI interface.

In the absence of both the interfacial potential and band
bending, the bound state exists at the TI/NI interface due
the bulk-boundary correspondence rule and its Dirac-like
spectrum lies inside the bulk TI energy gap. The short-range
interfacial potential shifts this spectrum to the top (bottom)
of the gap, deforms the wave function of the interfacial
bound state and can even transform it into the quasiresonance.
However, it is impossible to distinctly determine the type of
the interfacial state (“topological” or “ordinary”) in this case.

If the band bending near the TI/NI interface is sufficiently
small compared with the bulk TI energy gap, the situation does
not drastically change irrespective of whether the electrostatic
potential is a relatively long-range or a relatively short-range
type on the scale of the interfacial bound-state localization.
If the band bending exceeds the bulk TI energy gap, but the
electrostatic potential has relatively long-range character, we
also do not predict serious modifications in the character of the
interfacial bound state. However, if the band bending exceeds

the bulk TI energy gap and electrostatic potential has relatively
short-range component, two bound states appear at the TI/NI
interface.

In brief, in this work for a rather simple model of the TI/NI
interface within the k · p scheme we analytically describe
the spectrum of interfacial bound electron states. At certain
conditions the spectrum has two branches: topological and
ordinary which differ in the energy and spatial distribution. We
have proved the existence of such states in the Bi2Se3/ZnSe
system by means of DFT calculations.

Angle-resolved photoelectron spectroscopy (ARPES) and
conductivity measurements in the Bi2Te3 thin films deposited
on Si(111) [40,41], InP [42], GaAs [43], and Al2O3 [44] sub-
strates, where good TI/NI interfaces are possible to fabricate,
should be of great interest. The recent ARPES investigations
of the Bi2Se3 thin films and Bi2Te3/Bi2Se3 heterostructures
grown on a Si(111) substrate [23] clearly demonstrated that
the band bending appearing in the TI film leads to substantial
separation of the probability maxima and energy spectra of the
surface (TSS) and interfacial (TIS and/or OIS) quasiparticles.
Unfortunately, detailed study of the interfacial electron states
in this system, which requires separation of TIS and OIS
contributions, has not been performed yet. We believe that the
unusual states considered above exist in different magnetic and
nonmagnetic TI/NI heterostructures and can initiate intriguing
physical phenomena.
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