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Symmetry operators of the two-component

Gross–Pitaevskii equation with a Manakov-type

nonlocal nonlinearity

A V Shapovalov1,2, A Yu Trifonov1,2, and A L Lisok2

1 Tomsk State University, Lenin ave., 36, Tomsk, Russia, 634050
2 Tomsk Polytechnic University, Lenin ave., 30, Tomsk, Russia, 634034

Abstract.

We consider an integro-differential 2-component multidimensional Gross–Pitaevskii equation
with a Manakov-type cubic nonlocal nonlinearity. In the framework of the WKB–Maslov
semiclassical formalism, we obtain a semiclassically reduced 2-component nonlocal Gross–
Pitaevskii equation determining the leading term of the semiclassical asymptotic solution.
For the reduced Gross–Pitaevskii equation we construct symmetry operators which transform
arbitrary solution of the equation into another solution. Constructing the symmetry operator
is based on the Cauchy problem solution technique and uses an intertwining operator which
connects two solutions of the reduced Gross–Pitaevskii equation. General structure of the
symmetry operator is illustrated with a 1D case for which a family of symmetry operators is
found explicitly and a set of exact solutions is generated.

1. Introduction

Symmetry properties of an equation are related to analytical methods of exact solution finding
to the equation under consideration. Symmetries are usually can be found explicitly for rather
narrow sets of equations. A way for extending classes of equations with symmetries is to use
methods of symmetry analysis along with approximate asymptotic methods. For instance,
in [1–3] a theory of approximate symmetries was developed for partial differential equations
(PDEs) in the framework of the perturbation theory where solutions of an equation and its
symmetries were presented as regular asymptotic power series in a formal small parameter.

Another way to relate ideas of symmetry and approximate methods was explored in [4, 5]
where WKB–Maslov semiclassical approximation method [6, 7] as well as symmetry properties
of nonlocal and nonlinear equations with partial derivatives were considered. Note that in
contrast to the perturbation method, the semiclassical asymptotics depends singularly on a
small asymptotic parameter.

To specify the problem statement, consider a nonlinear operator F̂ acting in a functional
space L, F̂ : L → L. By definition, an operator Â : L → L is a symmetry operator for F̂ if

F̂ (u) = 0 → F̂ (Â(u)) = 0, (1)

or
F̂ (Â(u)) = Φ̂(u, F̂ (u)), Φ̂(u, 0) = 0, ∀u ∈ L, (2)
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where Φ̂ is an operator Lagrangian multiplier.
Symmetry operators can be used directly, for example, for generation of exact solutions from

a known particular solution of the equation. Important application of symmetry operators is
related to the Lie groups. Let Â(α) be a Lie group of symmetry operators with a generator X̂

and a group parameter α, X̂ = dÂ(α)
dα |α=0. From (2) one can obtain

F̂ ′(u)X̂(u) = R̂(u)F̂ (u), ∀u ∈ L. (3)

Here, R̂(u) for a given u is a linear operator acting on F̂ (u), R̂ plays the role of an operator

Lagrangian multiplier, F̂ ′ is the derivative of F̂ .
Unlike (2), equation (3) is the linear operator equation determining an operator X̂. For

partial differential operators F̂ and X̂ the determining equation (3) can be solved effectively for

many important equations of mathematical physics. X̂ is called a symmetry for F̂ and X̂ is the
main object of study in the group analysis of PDEs [8–10].

Finding the symmetry operators Â for an operator F̂ of general form is ill-posed problem
on account of complexity of the determining equation (2). Therefore, symmetry operators for
nonlinear equations are explored a little. Nevertheless, the problem of symmetry operators
finding can be not unreasonable for nonlinear equations of a special form.

In the present work we consider a 2-component generalized multidimensional Gross–Pitaevskii
equation (GPE) with a Manakov-type nonlocal nonlinearity. The GPE is the basic model
equation in the theory of the Bose–Einstein condensates (see, e.g., the review paper [11]).
Nonlocal generalizations of the GPE are introduced to avoid the problem of the wave function
collapse and for some other problems [12,13].

Our results use as a main tool the WKB–Maslov formalism of semiclassical asymptotics
(e.g., [6]). In terms of this formalism the leading term of the semiclassical asymptotic solution
is determined by a reduced 2-component nonlocal GPE (R2GPE).

Here, we construct a class of symmetry operators for the R2GPE using the method developed
in [5] for solving the Cauchy problem for the 1-component nonlocal GPE.

This article is structured as follows. In Section 2, following [5], we briefly describe the
method of the Cauchy problem solution for the 2-component multidimensional GPE with a
Manakov-type nonlocal nonlinearity in the semiclassical approximation. In the framework
of the semiclassical approximation, we obtain the reduced 2-component nonlocal GPE which
determines the leading term of the semiclassical asymptotics. In Section 3, based on the results
of Section 2, we formulate a general structure describing a class of symmetry operators for
the R2GPE. The core of this structure is an intertwining operator that connects two linear
operators associated with the R2GPE in the framework of the semiclassical formalism. Section
4 contains an illustrative example where a set of symmetry operators is obtained in explicit form
for a particular case of 1D R2GPE. A family of exact solutions is generated with the symmetry
operators obtained. Concluding remarks are in Section 5.

2. Solution of the Cauchy problem

Consider the generalized 2-component Gross–Pitaevskii equation with the nonlocal Manakov-
type interaction term:

F̂ (Ψ)(~x, t) = {−i~∂tI+ Ĥ0(t)I+ ~(~σ, ~H(t)) + κIV̂ (Ψ)(t)}Ψ(~x, t) = 0, (4)

V̂ (Ψ)(t) = V (Ψ)(ẑ, t) =

∫

Rn

d~yΨ+(~y, t)V (ẑ, ŵ, t)Ψ(~y, t), (5)

where ∂t = ∂/∂t, Ψ(~x, t) = (Ψ1(~x, t),Ψ2(~x, t))
⊺, Ψ+(~x, t) = (Ψ∗

1(~x, t),Ψ
∗

2(~x, t)). Here Ψ1(~x, t)
and Ψ2(~x, t) are smooth complex scalar functions which belong to a complex Schwartz space
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S in the space variable ~x ∈ R
n at each time t, Ψ∗

1 and Ψ∗

2 denote the complex conjugate to
Ψ1 and Ψ2, respectively, Ψ

⊺ denotes the transpose of Ψ; I = I2×2 is an 2 × 2 identity matrix;
~H(t) = (H1(t),H2(t),H3(t))

⊺ is a vector function where Hk(t), k = 1, 2, 3, are smooth real
functions of t, and ~σ = (σ1, σ2, σ3)

⊺ is the column vector where σk are the Pauli matrices;

(~σ, ~H(t)) = σ1H1(t) + σ2H2(t) + σ3H3(t). We call V̂ (Ψ)(t) in (5) the nonlocal Manakov-type

nonlinear term. The linear operators Ĥ0(t) = H0(ẑ, t) and V (ẑ, ŵ, t) in (4) and (5) are Hermitian
Weyl-ordered functions [14] of time t and of noncommuting operators

ẑ = (~̂p, ~x) = (−i~∂/∂~x, ~x), ŵ = (−i~∂/∂~y, ~y), ~x, ~y ∈ R
n, (6)

with commutators [ẑk, ẑj ]− = [ŵk, ŵj ]− = i~Jkj , [ẑk, ŵj ]− = 0, k, j = 1, 2n, where [Â, B̂]− =

ÂB̂− B̂Â, J = ‖Jkj‖2n×2n is a unit symplectic matrix: J =

(
0 −I

I 0

)

2n×2n

, and I = In×n is an

n × n identity matrix. The space S is used to provide for existence of the moments of Ψ(~x, t)
and convergence of the integral in (5). In what follows, we use the norm ‖Ψ‖, Ψ ∈ S(Rnx,C

2),

of the space L2(R
n
x,C

2), i.e., ‖Ψ‖ =
√

(Ψ,Ψ), (Φ,Ψ) =

∫

Rn

d~xΦ+(~x)Ψ(~x) denotes the Hermitian

inner product of the functions Φ,Ψ ∈ S(Rnx,C
2).

From equation (4) it follows that the squared norm of a solution Ψ(~x, t) is conserved,
‖Ψ(t)‖2 = ‖Ψ(0)‖2 = const.

Equation (4) with variable coefficients of general form cannot be integrated exactly by known
methods. Therefore, analytical solutions to this equation we will construct approximately
using the method of semiclassical asymptotics as ~ → 0. The semiclassical solutions of the
2-component nonlocal GPE (4) can be constructed using an appropriate complex WKB–Maslov
ansatz [6, 7].

Following [5], we introduce a class Kt
~
of two-component functions

Kt
~ =

{
Φ : Φ(~x, t, ~) =

∞∑

k=0

~
k/2u(k)(t)Φ̃(k)(~x, t, ~)

]}
, (7)

where u(k)(t) is a two-component vector-function smoothly dependent on t; Φ̃(k)(~x, t, ~) ∈ Ct
~
, k =

1,∞. Here

Ct~ =
{
Φ : Φ(~x, t) = ϕ

(∆~x√
~
, t
)
R
(
S(t, ~), ~P (t, ~),∆~x

)}
, R

(
S, ~ξ, ~ζ

)
= exp

[ i
~
(S + 〈~ξ, ~ζ〉)

]
,

where ~ξ, ~ζ ∈ R
n, the angle brackets 〈., .〉 denote the Euclidean inner product of vectors:

〈~ξ, ~ζ〉 =
n∑
j=1

ξjζj; the function ϕ(~ξ, t, ~) belongs to the Schwarz space S in the variable ~ξ and

smoothly depends on t. Here ∆~x = ~x − ~X(t, ~), and the real function S(t, ~) and the 2n-

dimensional vector function Z(t, ~) = (~P (t, ~), ~X(t, ~)), which characterize the class Ct
~
, regularly

depend on
√
~ in the neighborhood of ~ = 0 and are to be determined. Note that Ct

~
⊂ S.

In accordance with [5], we call the functions of the class Kt
~
two-component trajectory-

concentrated functions. The functions belonging to the class Ct
~
at any fixed time t ∈ R1 are

concentrated, as ~ → 0, in the neighborhood of a point lying on the phase curve z = Z(t, 0),
t ∈ R

1 [15]. This property motivates the term “trajectory-concentrated functions”.
In the next section 3 we construct symmetry operators using the complex WKB–Maslov

asymptotic solutions of the Cauchy problem to equation (4) with the initial condition:

Ψ(~x, t)
∣∣
t=s

= ψ(~x) = u0 · φ(~x), φ(~x) ∈ C0
~ , (8)
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where u0 = (u10, u
2
0)

⊺ is a constant 2-component vector and φ(~x) is a scalar complex function,

C0
~ =

{
φ : φ(~x, ~) = ϕ

(∆~x√
~

)
R
(
S0(~), ~P0(~),∆~x0

)}
, ∆~x0 = ~x− ~X0(~).

Let us use Ô(~ν) to designate an operator F̂ such that for any function Φ ∈ Kt
~
the following

asymptotic estimate is valid:
‖F̂Φ‖
‖Φ‖ = O(~ν), ~ → 0. (9)

In accordance with (9), it may be shown (see [15,16]) that

∆ẑ = ẑ − Z(t, ~) = Ô(~1/2), ~ → 0. (10)

Let us expand the operators Ĥ0(t) = H0(ẑ, t) and V (ẑ, ŵ, t) in (4) and (5) as Taylor series
in the operators ∆ẑ = ẑ − Z(t, ~) and ∆ŵ = ŵ − Z(t, ~), respectively, and restrict ourselves
to quadratic terms. Then, in view of (10), the solution of the Cauchy problem (4) and (8)
asymptotic in a formal small parameter ~ (~ → 0) can be constructed accurate to O(~3/2)
(see [5,16]). The leading-order term of the asymptotics can be found by reducing the generalized
GPE (4) to an equation with a quadratic nonlocal operator.

The higher-order corrections to the leading-order term can be found using perturbation
theory [16]. Thus the study of GPEs with a quadratic nonlocal operator is crucial for the
construction of semiclassical asymptotics for the GPE of the form (4) in the class of trajectory
concentrated functions (7). Without loss of generality, we consider a reduced 2-component
nonlocal GPE of the form

{
−i~∂tI+Hqu(ẑ, t)I+ ~(~σ, ~H(t)) + κI

∫

Rn

d~yΨ+(~y, t)Vqu(ẑ, ŵ, t)Ψ(~y, t)

}
Ψ(~x, t) = 0, (11)

where the linear operators Hqu(ẑ, t) and Vqu(ẑ, ŵ, t) are Hermitian and quadratic in ẑ, ŵ,
respectively:

Hqu(ẑ, t) =
1

2
〈ẑ,Hzz(t)ẑ〉+ 〈Hz(t), ẑ〉, (12)

Vqu(ẑ, ŵ, t) =
1

2
〈ẑ,Wzz(t)ẑ〉+ 〈ẑ,Wzw(t)ŵ〉+

1

2
〈ŵ,Www(t)ŵ〉. (13)

Here, Hzz(t), Wzz(t), Wzw(t), and Www(t) are 2n × 2n matrices; Hz(t) is a 2n vector; 〈z, w〉 =
2n∑
j=1

zjwj ; z, w ∈ R
2n.

We call equation (11) with the linear operators Hqu and Vqu given by (12) and (13),
respectively, a reduced 2-component nonlocal Gross–Pitaevskii equation (R2GPE).

The R2GPE can be integrated explicitly similar to [5] and its symmetries are of interest in
the symmetry analysis of integro-differential equations (IDEs).

In study of symmetries of nonlocal equations the problem arises how to choose a structure
of symmetries for non-differential equations. The R2GPE provides an example of IDE, when
symmetry operators can be found explicitly.

Let us consider briefly a method for solving the Cauchy problem (8) for the R2GPE (11),
following the scheme described elsewhere [5, 16].
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We denote the Weyl-ordered symbol of an operator Â(t) = A(ẑ, t) by A(z, t) and define the

expectation value for Â(t) over the state Ψ(~x, t) as

AΨ(t) =
1

‖Ψ‖2 (Ψ, Â(t)Ψ) =
1

‖Ψ‖2
∫

Rn

d~xΨ+(~x, t)Â(t)Ψ(~x, t).

As ‖Ψ‖2 does not depend on time, we have from (11),(12), and (13)

ȦΨ(t) =
1

‖Ψ‖2
∫

Rn

d~xΨ+(~x, t)
{∂Â(t)

∂t
+
i

~
[IHqu(ẑ, t), Â(t)]− + i[(~σ, ~H(t)), Â(t)]−+

+
iκ̃

~

∫

Rn

d~yΨ+(~y, t)[IVqu(ẑ, ŵ, t), Â(t)]−Ψ(~y, t)
}
Ψ(~x, t), (14)

where ȦΨ(t) = dAΨ(t)/dt and κ̃ = κ‖Ψ‖2 = κ‖ψ‖2.
Let zΨ(t) =

(
zΨ l(t)

)
, ~ηΨ(t) and ∆

(2)
Ψ (t) =

(
∆

(2)
Ψ kl(t)

)
denote the expectation values over

Ψ(~x, t) for the operators

ẑlI, ~σ, ∆̂
(2)
kl I =

1

2

(
I∆ẑk∆ẑl + I∆ẑl∆ẑk,

)
, k, l = 1, 2n,

respectively. Here, ∆ẑl = ẑl − (zΨ)l(t), ẑl are given in (6), and we set Z(t, ~) = (zΨ)(t). We call

zΨ(t) the first moments and ∆
(2)
Ψ (t) do the second centered moments of Ψ(~x, t).

From (11), (12), (13), and (14) we immediately obtain a dynamical system in matrix notation:





żΨ = J{Hz(t) + [Hzz(t) + κ̃(Wzz(t) +Wzw(t))]zΨ},

∆̇
(2)
Ψ = J [Hzz(t) + κ̃Wzz(t)]∆

(2)
Ψ −∆

(2)
Ψ [Hzz(t) + κ̃Wzz(t)]J,

~̇ηΨ(t) = 2 ~H(t)× ~ηΨ(t).

(15)

Following [5], we call (15) the Hamilton–Ehrenfest system (HES) of the second order for the
R2GPE (11).

The HES is of the second order, as equations (15) contain the first and second moments. For
brevity, we use a shorthand notation for the total set of the first and second moments of Ψ(~x, t):

gΨ(t) =
(
zΨ(t), ~ηΨ(t),∆

(2)
Ψ (t)

)
. (16)

Then the R2GPE (11) can be written equivalently as

L̂(t, gΨ(t))Ψ(~x, t) =
{
− i~∂tI+ Ĥq(t, gΨ(t))I + ~(~σ, ~H(t))

}
Ψ(~x, t) = 0, (17)

Ĥq(t, gΨ(t)) =
1

2
〈ẑ,Hzz(t)ẑ〉+ 〈Hz(t), ẑ〉+

κ̃

2
〈ẑ,Wzz(t)ẑ〉+

+
κ̃

2
〈zΨ(t),Www(t)zΨ(t)〉+ κ̃〈ẑ,Wzw(t)zΨ(t)〉+

κ̃

2
Sp

[
Www(t)∆

(2)
Ψ (t)

]
. (18)

The Cauchy problem (17) and (8) for the R2GPE gives the Cauchy problem for the HES (15)
which can be written in a concise form as

ġΨ(t) = Γ(t, gΨ(t)), (19)
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gΨ(t)
∣∣∣
t=s

= gψ, (20)

where Γ
(
t, gΨ(t)

)
designates the rhs of (15).

The system (17), (19) allows us to reduce the Cauchy problem for the R2GPE (17) to the
Cauchy problem for a linear PDE because the Cauchy problem (20) for HES (19) can be solved
independently of equation (17).

Let
g(t,C) =

(
Z(t,C), ~η(t,C),∆(2)(t,C)

)
(21)

be the general solution of the HES (19) and C = (C1, C2, . . . , CN ) denote the set of integration
constants.

Consider a linear PDE with coefficients depending on the parameters C:

L̂(t,C)Φ(~x, t,C) =
{
− i~∂tI+ Ĥq(t,C)I+ ~(~σ, ~H(t))

}
Φ(~x, t,C) = 0, (22)

where

Ĥq(t,C) =
1

2
〈ẑ,Hzz(t)ẑ〉+ 〈Hz(t), ẑ〉+

κ̃

2
〈ẑ,Wzz(t)ẑ〉+ κ̃〈ẑ,Wzw(t)Z(t,C)〉+

+
κ̃

2
〈Z(t,C),Www(t)Z(t,C)〉+ κ̃

2
Sp

[
Www(t)∆

(2)(t,C)
]
. (23)

The operator Ĥq(t,C) (23) of (22) is obtained from (18) where the general solution g(t,C) of
the HES (19) stands for the moments gΨ(t). We call (22) the associated linear equation (ALE)
for the R2GPE (17).

A solution of the ALE (22) can be found in the form

Φ(~x, t,C) = φ(~x, t,C) · v(t,C), (24)

where a scalar complex function φ(~x, t,C) and a 2-component complex function v(t,C) satisfy
the equations

{
− i~∂t + Ĥq(t,C)

}
φ(~x, t,C) = 0, (25)

{
− iI

d

dt
+ (~σ, ~H(t))

}
v(t,C) = 0. (26)

Let Φ(~x, t,C[ψ]) denote the solution of the Cauchy problem for the ALE (22) with the initial
condition (8):

Φ(~x, t,C[ψ])
∣∣∣
t=s

= ψ(~x) = u0φ(~x). (27)

Then for (24), (25), and (26) we have, respectively,

φ(~x, t,C[ψ])
∣∣∣
t=s

= φ(~x), v(t,C[ψ])
∣∣∣
t=s

= u0. (28)

Here, the integration constants C in (25) and (26) have been replaced by the functionals
C = C[ψ] determined from the algebraic conditions

g(t,C)
∣∣∣
t=s

= gψ. (29)

Then the solution of the Cauchy problem (8) and (17), (18) for the R2GPE (see [5, 16] for
details) is

Ψ(~x, t) = Φ(~x, t,C[ψ]) = ϕ(~x, t) · u(t), (30)
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where ϕ(~x, t) = φ(~x, t,C[ψ]) is the scalar complex function and u(t) = v(t,C[ψ]).
Define C[Ψ](t) by the algebraic condition

g(t,C[Ψ](t)) = gΨ(t). (31)

From the uniqueness of the solution of the Cauchy problem for the HES (20) it follows that

g(t,C[Ψ](t)) = g(t,C[ψ])

and, hence,
C[Ψ](t) = C[ψ],

i.e., the functionals C[Ψ](t) are the integrals of (4).
Also, we have

g(t,C[ψ]) = gψ(t), (32)

where gψ(t) is the solution of the HES (19) with the initial condition (29).
Let us now turn to the construction of symmetry operators for the R2GPE (11). To do this,

we use an operator intertwining a pair of ALEs of the form (22).

3. Symmetry operators

In this section, we apply the approach developed in [5] for the 1-component nonlocal GPE to
find symmetry operators for the reduced 2-component nonlocal Gross–Pitaevskii equation (11)
or, equivalently, (17).

According to definition (1), the nonlinear symmetry operator Â(t) maps any solution Ψ(~x, t)
of equation (17) into its another solution:

ΨA(~x, t) = (Â(t)Ψ)(~x, t). (33)

The main idea of the symmetry operator construction is as follows. Let us take an operator â
acting on the initial function ψ(~x) of the Cauchy problem (8) and set

ψa(~x) = âψ(~x) = ΨA(t)
∣∣
t=s
, Â(t)

∣∣
t=s

= â. (34)

Define the functions Ψ(~x, t) and ΨA(~x, t) of the form (30) in (33) as two solutions of the
Cauchy problem for the R2GPE (11) with two initial functions ψ(~x) and ψa(~x), respectively.

Then the desired symmetry operator Â(t) should relate Ψ(~x, t) and ΨA(~x, t).
Introduce the notation gψa

for the first and second moments of ψa(~x) similar to (16). From

the solution of the Cauchy problem for the HES (20) with the initial condition gΨ(t)
∣∣∣
t=s

= gψa
,

by analogy with (32), we have

g(t,C[ψa]) = gψa
(t). (35)

According to (30), the solutions Ψ(~x, t) and ΨA(~x, t) of the R2GPE (17) are found as

Ψ(~x, t) = Φ(~x, t,C)
∣∣
C=C[ψ]

(36)

and
ΨA(~x, t) = Φ(~x, t,C′)

∣∣
C′=C′[ψa]

, (37)

where Φ(~x, t,C) and Φ(~x, t,C′) are the solutions of two ALEs of the form (22) with two different
sets of integration constants C and C′, respectively, and the corresponding linear operators
L̂(t,C) and L̂(t,C′).
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The essential point in the construction of the symmetry operator Â(t) in (33) is a linear

operator M̂(t, s,C′,C) intertwining the operators L̂(t,C′) and L̂(t,C):

L̂(t,C′)M̂(t, s,C′,C) = R̂(t, s,C′,C)L̂(t,C). (38)

Here, the linear operator R̂(t, s,C′,C) is a Lagrangian multiplier, and the initial condition is

M̂(t, s,C′,C)|t=s = â.

From (38) we have that Φ(~x, t,C′) = M̂(t, s,C′,C)Φ(~x, t,C) for two arbitrary sets of
constants C′ and C, and this is especially true for Φ(~x, t,C′[ψa]) and Φ(~x, t,C[ψ]) with the
constants C′[ψa] and C[ψ].

The intertwining operator M̂(t, s,C′,C) relates the functions Φ(~x, t,C′[ψa]) and Φ(~x, t,C[ψ])
that in turn relates ΨA(~x, t) and Ψ(~x, t) according to (37) and (36).

To find the operator M̂(t, s,C′,C), we consider a linear intertwining operator D̂(t, s,C′,C)

for L̂(t,C′) and L̂(t,C) satisfying the conditions

L̂(t,C′)D̂(t, s,C′,C) = D̂(t, s,C′,C)L̂(t,C), (39)

D̂(t, s,C′,C)
∣∣∣
t=s

= Î, (40)

where Î is an identity operator. We call D̂(t, s,C′,C) the fundamental intertwining operator for

L̂(t,C′) and L̂(t,C).

With the use of D̂(t, s,C′,C), the operator M̂(t, s,C′,C) entering into (38) can be presented
as

M̂(t, s,C′,C) = D̂(t, s,C′,C)B̂(t,C).

Here, B̂(t,C) ∈ B is the linear symmetry operator of ALE (22) satisfying the conditions

[L̂(t,C), B̂(t,C)]− = 0, B̂(t,C)|t=s = â, (41)

and B is the family of linear symmetry operators of the ALE (41).

Hence, given the operator D̂(t, s,C′,C) of (39) and the family B of linear symmetry operators
of the ALE (41), we can construct the family of nonlinear symmetry operators for the GPE (4)
as follows:

Let D̂(t, s,C′,C) be the fundamental intertwining operator (39) for L̂(t,C′) and L̂(t,C) and

let B̂(t,C) be the linear symmetry operator of the ALE (22) satisfying the conditions (41), then

(Â(t)Ψ)(~x, t) = D̂(t, s,C′[âψ],C[Ψ](t))B̂(t,C[Ψ](t))Ψ(~x, t) (42)

defines the family of nonlinear symmetry operators for the GPE (11).

Here, C′[âψ] and C[Ψ](= C[ψ]) can be found from (32) and (31), respectively, and B̂ ∈ B.
Note that the symmetry operator Â(t) from (42) is nonlinear, as the operators D̂ and B̂

depend on the parameters C being functionals of the function Ψ.

4. Symmetry operators in the 1D case

As an illustration of the general formula (42), we will explicitly construct here the symmetry
operators for the 1D R2GPE (11) of the form

F̂ (Ψ)(x, t) = {−i~∂tI+Hqu(p̂, x)I+ ~(~σ, ~B) + κIV̂qu(Ψ)}Ψ(x, t) = 0, (43)

where Hqu(p̂, x) =
1

2

(
µp̂2 + ρ(xp̂+ p̂x) + ωx2

)
, V̂qu(Ψ) =

1

2

+∞∫
−∞

dy
(
ax2 + 2bxy + cy2

)
|Ψ(y)|2,

p̂ = −i~∂/∂x; a, b, and c are the real parameters of the nonlocal operator V̂qu(Ψ); µ, ω, and ρ
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are the parameters of the linear operator Hqu(p̂, x); x, y ∈ R
1, ~B is a real constant vector. The

initial condition (8) is written as

Ψ(x, t)
∣∣
t=0

= ψ(x) = φ(x) · u0, (44)

where φ(x) is a scalar function and u0 = (u10, u
2
0)

⊺ is a constant 2-component vector.
The Hamilton–Ehrenfest system (19) for the first-order moments becomes

{
ṗ = −ρp− ω0x,

ẋ = µp+ ρx,
(45)

for the vector ~η(t) = 〈Ψ|~σ|Ψ〉 we similarly obtain

~̇η(t) = 2~B × ~η(t), ~η2(t) = 1, (46)

and for the second-order moments with ∆
(2)
21 = ∆

(2)
12 we have





∆̇
(2)
11 = −2ρ∆

(2)
11 − 2ω̃∆

(2)
21 ,

∆̇
(2)
21 = µ∆

(2)
11 − ω̃∆

(2)
22 ,

∆̇
(2)
22 = 2µ∆

(2)
21 + 2ρ∆

(2)
22 ,

(47)

where ω0 = ω + κ̃(a + b), ω̃ = ω + κ̃a. We assume that Ω̄2 = ω0µ − ρ2 > 0, Ω2 = ω̃µ − ρ2 > 0
and introduce the notations

Ω̄ =
√
ω0µ− ρ2, Ω =

√
ω̃µ− ρ2. (48)

Then the general solution of system (45) is

X(t,C) = C1 sin Ω̄t+ C2 cos Ω̄t,

P (t,C) =
1

µ
(Ω̄C1 − ρC2) cos Ω̄t−

1

µ
(Ω̄C2 + ρC1) sin Ω̄t,

(49)

and for system (47) we have

∆
(2)
22 (t,C) = C3 sin 2Ωt+C4 cos 2Ωt+ C5,

∆
(2)
21 (t,C) =

1

µ
(ΩC3 − ρC4) cos 2Ωt−

1

µ
(ΩC4 + ρC3) sin 2Ωt−

ρ

µ
C5,

∆
(2)
11 (t,C) =

1

µ2
(
(ρ2 − Ω2)C3 + 2ρΩC4

)
sin 2Ωt+

+
1

µ2
(
(ρ2 − Ω2)C4 − 2ρΩC3

)
cos 2Ωt+

ω̃

µ
C5.

(50)

Note that all solutions of system (49) and (47) are localized. Similarly, solution of system (46)
subject to the normalization condition ~η2(t) = 1 reads

~η(t,C) = ~n cosC6 + ~eθ sinC6 cos(2Bt+C7) + ~eϕ sinC6 sin(2Bt+ C7). (51)

Here, we use the notations: C = (C1, . . . , C7) are arbitrary integration constants, B = | ~B|, and

~n =
~B
B = (sin θ cosϕ, sin θ sinϕ, cos θ),

~eθ = (cos θ cosϕ, cos θ sinϕ, − sin θ),

~eϕ = (sinϕ, − cosϕ, 0),

~n× ~eθ = −~eϕ, ~n× ~eϕ = ~eθ, ~eϕ × ~eθ = ~n.

(52)
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The 1D associated linear equation (22) for the 1D R2GPE (43) takes the form

L̂(t,C)Φ(~x, t,C) =
{
− i~∂tI+ Ĥq(t,C)I+ ~(~σ, ~B)

}
Φ(~x, t,C) = 0, (53)

Ĥq(t,C) =
µp̂2

2
+
ω̃x2

2
+
ρ(xp̂+ p̂x)

2
+ κ̃bxX(t,C) + κ̃

c

2

[
X2(t,C) + ∆

(2)
22 (t,C)

]
.

Denote by D̂(t,C′,C) the fundamental intertwining operator in (39), (40) as s = 0. To find the

operator D̂(t,C′,C), we introduce a function Υ(~x, t,C) by the conditions

Φ(x, t,C) = K̂(x, t,C)Υ(~x, t,C), (54)

K̂(x, t,C) = K̂(x, t,C)G(t,C),

K̂(x, t,C) = exp[−X(t,C)∂x] exp
{ i
~
[S(t,C) + P (t,C)x]

}
, (55)

where

S(t,C) =

t∫

0

{
P (t,C)Ẋ(t)−Hκ(t,C)

}
dt, (56)

Hκ(t,C) =
µ

2
P 2(t,C) +

1

2
X2(t,C)

[
ω0 + κ̃(b+ c)

]
+ ρP (t,C)X(t,C) + κ̃

c

2
∆

(2)
22 (t,C),

and G(t) is the Cauchy matrix of the system

{
−iI d

dt
+ (~σ, ~B)

}
G = 0, G

∣∣
t=0

= I. (57)

From (57) we have

G(t) = exp[−i(~σ, ~B)t] = I cos
(
Bt

)
− i

B
(
~σ, ~B

)
sin

(
Bt

)
, (58)

where B = | ~B|. In the issue relation (58) can be written as

G(t) = 1

B

(
B cosBt− iB3 sinBt −(iB1 + B2) sinBt
−(iB1 − B2) sinBt B cosBt+ iB3 sinBt

)
. (59)

For Υ(x, t,C) we have from (22) and (54)

L̂0(x, t)IΥ = 0, Υ(~x, t,C) = φ(x, t,C)u0, (60)

L̂0(x, t)I = K̂−1(x, t,C)L̂(x, t,C)K̂(x, t,C) =

=
(
− i~∂t +

µp̂2

2
+
ω̃x2

2
+
ρ(xp̂+ p̂x)

2

)
I, (61)

L̂0(x, t)φ(x, t,C) = 0. (62)

For the associated linear equation (62) we can construct the following set of symmetry
operators linear in x and p̂:

â(t,C) =
1√
2~

[
C(t)p̂−B(t)x

]
, (63)

â+(t,C) =
1√
2~

[
C∗(t)p̂−B∗(t)x

]
. (64)
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Here the functions B(t) and C(t) are solutions of the linear Hamiltonian system

{
Ḃ = −ρB − ω̃C,

Ċ = µB + ρC.
(65)

The Cauchy matrix X (t) for system (65) can easily be found as

X (t) =


cos Ωt− ρ

Ω
sinΩt − ω̃

Ω
sinΩt

µ

Ω
sinΩt cos Ωt+

ρ

Ω
sinΩt


 , X (t)

∣∣∣
t=0

= I2×2. (66)

The set of solutions normalized by the condition [6]

B(t)C∗(t)− C(t)B∗(t) = 2i (67)

can be written as

B(t) = eiΩt
(−ρ+ iΩ)√

Ωµ
, C(t) = eiΩt

√
µ

Ω
.

Equation (67) results in the following commutation relations for the symmetry operators (63)
and (64): [

â(t,C), â+(t,C)
]
−
= 1.

Then the symmetry operator Â(t) in (42) for equation (43) with the initial condition (44)
can be presented as

(Â(t)Ψ)(x, t) = D̂(t,C[âψ],C[Ψ](t))B̂(t,C[Ψ](t))Ψ(x, t). (68)

Here, B̂(t,C) is the symmetry operator of the associated linear equation (53), B̂(t,C)|t=0 = â ,

and the fundamental intertwining operator D̂(t,C′,C) reads

D̂(t,C′,C) = exp
{
i
C ′

2 −C2

2~µ

(
Ω̄(C ′

1 − C1)− ρ(C ′

2 − C2)
)}

×

×K̂−1(x, t,C′) exp
{ i
~
b̂(t,C′,C)

}
K̂(x, t,C), (69)

where
b̂(t,C′,C) = bx(t,C

′,C)p̂− bp(t,C
′,C)x = 〈b(t,C′,C), Jẑ〉,

and

b(t,C′,C) =

(
bp(t,C

′,C)
bx(t,C

′,C)

)
=

1

µ
X (t)

(
Ω̄(C ′

1 − C1)− ρ(C ′

2 − C2)
µ(C ′

2 − C2)

)
.

The matrix X (t) is given by (66).

The symmetry operator Â(t) in (68) for the 1D R2GPE (43) has the structure of a linear
pseudodifferential operator whose parameters are functionals of the function Ψ(x, t) on which

the operator acts. Therefore, the operator Â(t) is nonlinear.
Note that for some values of the parameters the pseudodifferential operator can become a

differential one.
The symmetry operator Â(t) depends on the symmetry operator B̂(t,C) of the associated

linear equation (53). Consider

B̂(t,C) = B̂ν(t,C) =
1√
ν!

[
â+(t,C)

]ν
I, ν ∈ Z+, (70)
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where the operators â+(t,C) are defined in (64).
Substituting (70) and (69) in (68), we obtain the symmetry operator for the 1D R2GPE (43),

which we denote by Âν(t).
Following calculations given in section 4 of Ref. [5], we can generate a countable family of

exact solutions for the 1D R2GPE (43) with the use of the family of the symmetry operators

Âν(t), ν ∈ Z+ and a starting solution Ψ0(x, t) of equation (43). Since the construction of these
solutions for the 1D R2GPE (43) is similar to the same problem for the reduced one-component
GPE [5], we present here only the solutions themselves without detail calculations.

We find the starting solution Ψ0(x, t) using a stationary solution of the of the Hamilton–
Ehrenfest system (45), (47) that can be obtained from the general solution (49), (50) if we take
integration constants as C = C0 = (C0

1 , . . . , C
0
7 ), where we set C0

1 = C0
2 = C0

3 = C0
4 = C0

7 = 0,
sinC0

6 = 0, and C0
5 is an arbitrary real constant. The stationary solution is

X(t,C) = P (t,C) = 0,

∆
(2)
22 (t,C) = C0

5 , ∆
(2)
21 (t,C) = − ρ

µ
C0
5 , ∆

(2)
11 (t,C) =

ω̃

µ
C0
5 , (71)

~η(t,C) = ζ~n, ζ = ±1.

The function

Φ0(x, t,C
0) =

( Ω

π~µ

)1/4
exp

{
− i

2~

ρ

µ
x2 − 1

2~

Ω

µ
x2

}
exp

{
− i

2
Ωt− i

2~
κ̃cC0

5 t
}
vζ(t) (72)

is a particular solution of the corresponding associated linear equation (53). Here, vζ(t) =
exp

(
− iζBt

)
fζ , and fζ is given by the system

(~σ, ~B)fζ = ζBfζ (73)

and has the form

fζ =
eiα√
2

(
ζ
√
1 + ζ cos θ exp(−iϕ/2)√
1− ζ cos θ exp(iϕ/2)

)
, α = const, ζ = ±1. (74)

Taking C0
5 = (~µ/2Ω) in (72), we find the desired starting solution Ψ0(x, t) of the 1D R2GPE

(43):

Ψ0(x, t) = Φ0(x, t,C
0)

∣∣∣∣
C0

5
=(~µ/2Ω)

=
( Ω

π~µ

)1/4
exp

{
− i

2~

ρ

µ
x2 − 1

2~

Ω

µ
x2

}
×

× exp
{
− i

2
Ωt− iµ

4Ω
κ̃ct

}
vζ(t). (75)

Then the symmetry operator Âν(t) determined by (68) transforms the solution Ψ0(x, t) of
(75) into a solution Ψν(x, t) of the 1D R2GPE (43) according to the following relation:

Ψν(x, t) = (Âν(t)Ψ0)(x, t) =
( Ω

π~µ

)1/4( 1√
2

)ν
exp

{
− i

2~

ρ

µ
x2 − 1

2~

Ω

µ
x2

}
×

×Hν

(√
Ω

~µ
x

)
exp

{
− i

(
ν +

1

2

)(
κ̃cµ

2Ω
+ Ω

)
t
}
vζ(t), (76)

where Hν(ζ) are the Hermite polynomials [17] The functions (76) constitute a countable set
of particular solutions to equation (43) which are generated from Ψ0(x, t) by the nonlinear

symmetry operator Âν(t).
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5. Concluding remarks

In this paper, which is a sequel to [4] and [5], we continued our study of symmetry properties
of nonlinear integro-differential equations using WKB-Maslov semiclassical approximation.

In [5] we considered the 1-component multidimensional Gross–Pitaevskii equation with
nonlocal nonlinear term and developed an approach to construct a class of symmetry operators
for the semiclassically reduced Gross–Pitaevskii equation. The approach is based on our method
proposed to construct the semiclassical asymptotic solution of the Cauchy problem to the
nonlocal GPE.

In this work we apply the approach of Ref. [5] to the 2-component Gross–Pitaevskii equation
with the nonlocal Manakov-type nonlinear interaction term (4), (5). In the semiclassical
approximation the leading term of the asymptotic expansion is determined by the R2GPE (11)
(or (17)) which contains nonlocal terms as a finite number of moments of the unknown function
Ψ(~x, t). We assign the R2GPE to the class of nearly linear equations according to the definition
of Ref. [4] similar to the semiclassically reduced GPE considered in [5].

The general expression for the symmetry operator (42) is similar to the one obtained in [5] for
the scalar (1-component) nonlocal GPE. To explore how the symmetry operators for a system
(multi-component equation) transform as compared to a scalar equation, we have considered

here the simplest case of the 2-component nonlocal GPE when the vector ~H(t) in (4) depends
on t and does not depend on ~x. For this case solution (8) can be presented as the product of
a 2-component vector u(t) and a scalar function ϕ(~x, t) that leads to slight modification of the
symmetry operator. Finding such symmetry operators in explicit form and generating exact
solutions are illustrated with an example of 1D R2GPE considered in section 4.
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