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Abstract—A method for the reconstruction of 3D radio images of objects that are hidden behind a priori
known dielectrically inhomogeneous shields is based on the results of multiposition ultrabroadband radio
sounding. Direct and inverse problems are solved in the Kirchhoff approximation and the scalar approxima-
tion of single scattering. Numerical simulation and experimental study are performed at frequencies ranging
from 4 to 14 GHz. It is demonstrated that distortions of reconstructed images of hidden objects can be elim-
inated with allowance for the diffraction by dielectric shields.
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INTRODUCTION
3D radio tomography is employed in archaeology,

geology, and the problems of building of roads and
engineering objects. The highest spatial resolution of
reconstructed images can be obtained using the tech-
nologies of synthesized aperture [1–5] and ultra-
broadband signals. Several methods make it possible
to reconstruct 3D radio images using ultrabroadband
monostatic sounding in homogeneous media [3–5].
Note the solution for inhomogeneous media, in par-
ticular, sounding via a plane interface of media [6] and
plane-layered media [7]. Such methods employ the
location measurements of field on the surface above
the volume under study using the single-scattering
approximation and assumption on the homogeneity of
background medium. In practice, the background
medium is normally inhomogeneous with respect to
electric properties and electric inhomogeneities may
have arbitrary shapes. Background inhomogeneities
lead to the distortions of the wave propagation trajec-
tories that must be taken into account in the solution
of the inverse problem of reconstruction of images of
objects under study. For a plane-layered medium, the
transformations of fields in the layers can be taken into
account in the spectrum of plane waves using multipli-
cation by a phase factor [7]. When the sounding is per-
formed via an irregular interface of media, the bound-
ary effect can be taken into account in the phase-
screen approximation [8]. However, even the solution
of the direct problem of the wave propagation becomes
nontrivial and necessitates several approximations if
the background medium exhibits arbitrary shapes of
boundaries between regions with different electric
properties. The solution of the inverse problem is
impossible in the absence of the solution to the direct

problem. A few methods can be used to solve the direct
and inverse problems of wave propagation in gradually
inhomogeneous media [9, 10]. Note also solutions to
the problems of diffraction by objects with the simplest
geometrical configurations (e.g., sphere, wedge, cylin-
der [11], and cone) that can be used in practice in sev-
eral particular scenarios.

In this work, we propose a method for the recon-
struction of 3D images of scattering objects hidden in
an inhomogeneous background medium with arbi-
trary interfaces between regions with different electric
properties. We assume that the shapes of interfaces
and electric properties of the fractions of medium are
known.

1. MEASUREMENT SCHEME 
AND FORMULATION OF THE PROBLEM
We consider a scheme for the monostatic sounding

with the frequency scanning in a relatively wide band
(Fig. 1). The emitter and receiver that are close to each
other form a transceiver unit that is shifted along the
horizontal plane with a step that is less than one quar-
ter of a wavelength. Omnidirectional receiving and
transmitting antennas are employed. At each position
of the transceiver unit, monochromatic signals are
emitted and the field intensity in the receiving antenna
is measured. The waves emitted by the transmitting
antenna pass through a dielectrically inhomogeneous
medium with different refractive indices in which
refraction and diffraction take place. Then, the wave
field is incident on the object under study and scat-
tered. The field that is scattered by the object passes in
the backward direction through the inhomogeneous
medium and is incident on the receiving antenna. The
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interference of the field that is scattered by the inho-
mogeneities under study (object wave) and the field of
the forward (reference) wave occurs in the antenna,
and the intensity of the resulting field is measured. The
phase information for the object wave is measured
with an accuracy of ±π/2 owing to the interference [3].

2. SOLUTION OF THE DIRECT PROBLEM

We determine the field of the object wave in the
measurement region using the given distribution of the
scattering inhomogeneities. For this purpose, we con-
sider the propagation of radio waves through a dielec-
trically inhomogeneous medium at a single frequency.
We divide the dielectrically inhomogeneous medium
into thin horizontal layers with a thickness of Δz ≪ λ.
Using such layers, we approximate the shapes of
dielectric inhomogeneities with the aid of vertical
boundaries in each layer (Fig. 2). Thus, the dielectric
inhomogeneity in each layer depends only on horizon-
tal coordinates. We also assume that the set of the pos-
sible values of refractive index is countable and finite.

Figure 2 presents a system with only three values of
refractive index.

We perform the layer-by-layer calculation of the
field in the medium, so that field U(x, y, z + Δz) at the
lower boundary of the layer at a depth of z + Δz is cal-
culated using field U(x, y, z) at the upper boundary at
a depth of z. We employ M values of refractive index
and calculate the field at a depth of z + Δz for M dif-
ferent homogeneous layers at depth z.

Using the expansion in spectrum of plane waves,
we represent the field having passed through a homo-
geneous layer with refractive index nm as [12]

 (1)

where  is the z component of
the wave vector in the medium with refractive index
nm, m ranges from 1 to M,

is the spectrum of plane waves at the exit from the pre-
vious layer, and Um(x, y, z + Δz) is the field at the exit
of the current layer if the medium therein is homoge-
neous and has refractive index nm. 

Then, we join M solutions Um(x, y, z + Δz) with allow-
ance for the distribution of refractive index n(x, y, z). The
resulting field in the next layer is written as

 (2)

Using iterative procedure (2), we can calculate the
field in the entire medium. However, we assume that
the internal field of the layer does not propagate from
one medium into another along the horizontal direc-
tion. The thinner the layers, the more accurate such an
approximation. In addition, note that the above solu-
tion can be used for media with any countable number
of refractive indices but an increase in the number of
different refractive indices n(x, y, z) causes an increase
in the amount of computations. Note also that we dis-
regard single and multiple reflections from the transi-
tions between media of different types. Such reflec-
tions can be taken into account using reflection and
transmission coefficients of plane waves in the plane-
layered medium. Normally, the amplitudes of the
waves that result from single and multiple reflection
from dielectric inhomogeneities are less than the
amplitude of the forward wave, so that the reflected
waves can be disregarded. We consider variations in
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Fig. 1. Measurement scheme.
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phase rather than amplitude and, for simplicity, do not
take into account transmission coefficients in expres-
sion (2).

With the aid of formula (2), we numerically simu-
late the medium with three different refractive indices:
n1 = 1, n2 = 1.5, and n3 = 2. We consider objects that
are shown with contours in Fig. 3: the refractive indi-
ces of the background medium and elliptical and rect-
angular objects are 1, 1.5, and 2, respectively. In the
numerical model, we use a frequency of 10 GHz.
A source of spherical waves is located at an altitude of
50 cm above the system under study.

We observe refraction and diffraction and the gen-
eration of nonuniform waves in the presence of total
reflection. We also observe the focusing of the wave
field.

The field of the source having passed through
dielectric inhomogeneities is incident on the scatter-
ing objects in the medium. Then, the field of the wave
that propagates from the objects to the receiver
through the same dielectric inhomogeneities emerges.
The scattered waves that pass through the dielectric
inhomogeneities are taken into account using formu-
las similar to formula (2) with changing of the direc-
tion of the vertical axis. However, significant amounts
of computations are needed for the calculation of the
incident and scattered fields for each position of the
transceiver unit. To simplify the computations, we use
the reciprocity theorem in accordance with which the
field that passes from a single emitter to the scatterer
coincides with the field that passes in the opposite
direction. On the assumption that a source with the
same intensity is located at the point of scattering (i.e.,
for the monostatic measurement scheme in which the
emitter and receiver are located at the same point), we
may change the scatterer by an equivalent source that
emits at the doubled frequency. Such a substitution is
possible, since the phase shifts related to the propaga-
tion of waves to the scatterer and in the opposite direc-
tion are equal to the phase shifts at the doubled fre-
quency upon propagation from the scatterer to

receiver. Thus, the field in the measurement region
can be represented as the field of the in-phase sources
that are located at the points of scatterers and emit at
the doubled frequency.

3. SOLUTION OF THE INVERSE PROBLEM
To solve the inverse problem, we use the method of

the backward field propagation. The inverse problem
is solved in the inverse order with respect to the solu-
tion of the direct problem, so that the measured field
is used to reconstruct the field distribution in the
medium. Similarly to the solution of the direct prob-
lem, we consider the field in discrete layers with thick-
ness Δz.

The backward-propagating field having passed
through a homogeneous layer with refractive index nm
is represented using the expansion in the spectrum of
plane waves:

 (3)

where

is the spectrum of plane waves of the reconstructed
field at the exit from the previous layer,

 z-component of the wave
vector of the field of equivalent sources at the doubled
frequency in the medium with refractive index nm,
Wm(x, y, z + Δz) is the reconstructed field at the exit
from the current homogeneous layer with refractive
index nm, and W(x, y, z) is the reconstructed field of
the equivalent sources at the doubled frequency. Fac-

tor  in the integrand in expression (3)
makes it possible to take into account the backward
propagation of uniform waves but does not take into
account the backward propagation of nonuniform
waves to avoid the divergence of the solution in the
presence of the noise of the measured field.

Then, we join M solutions Wm(x, y, z + Δz) with
allowance for the distribution of refractive index n(x, y, z).
The resulting field in the next layer is represented
using the joining of solutions for different media:

 (4)
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Fig. 3. Result of the numerical simulation of the field in the
medium with three different refractive indices (the contour
shows the region of the dielectric inhomogeneity).
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Field W(x, y, z = 0) is the field in the measurement
region, which is used to reconstruct total distribution
W(x, y, z) with the aid of formulas (3) and (4). The
total distribution is generated by equivalent sources
with disregard of nonuniform waves.

To reconstruct the image of the object with the
depth resolution, we need ultrabroadband measure-
ments of the scattered field. Function W(x, y, z, ω) is
the reconstructed field distribution at frequency ω that
is calculated using formulas (3) and (4). This function
is different at different frequencies but its phase at the
position of the scattering object must be zero, since
the object is considered as an equivalent in-phase
source. Thus, the summation of functions W(x, y, z, ω) at
different frequencies is the in-phase summation at the
positions of scattering objects. At the remaining
points, the summation is performed with arbitrary
phases, so that the maximum is reached at the position
of scatterer:

 (5)

Here, P(x, y, z) is the reconstructed image of the scat-
tering objects, ωmin is the minimum frequency of the
sounding signal, and ωmax is the maximum frequency
of the sounding signal.

Figure 4 presents the result of the numerical simu-
lation for the reconstruction of image of a test object
that represents two segments with lengths of 12 and
8 cm for the measurements in a frequency band of 5–
20 GHz. The measurement region (aperture) is 1 m,
and the field is measured at an altitude of z = 0.

The reconstructed image contains artifacts, since
the reconstruction of the distribution of nonuniform
waves is not performed in formula (3). The resulting
resolution with respect to distance (2 cm) corresponds
to the theoretical estimation for the ultrabroadband
sounding c/Δf, where c is the speed of light in the
medium and Δf = 15 GHz is the bandwidth.

4. EXPERIMENTAL STUDY
Figure 5 shows the experimental setup that is used

for the experimental study of the proposed method.
A Micran R2M18/2 scalar circuit analyzer is
employed to generate and measure signals. The device
makes it possible to measure signal amplitudes at fre-
quencies of up to 20 GHz. The transmitting and
receiving antennas are placed in the transceiver unit
that provides the forward (reference) signal from the
transmitter to receiver. The signal of the transmitting
antenna is incident on the scattering objects in the
medium. The scattered signal is detected by the receiv-
ing antenna as an object signal, and the interference of
the object and reference signals takes place. The inter-
ference makes it possible to reconstruct the cosine
quadrature of the object signal. The frequency scan-
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Fig. 4. Reconstructed image of scattering inhomogeneities
upon monostatic sounding in a frequency band of 5–20 GHz.
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Fig. 5. Photograph of the experimental setup.

Fig. 6. Result of measurements at a frequency of 8 GHz.

0

10

20

−20

−20

−10

−10 0
x, cm

y,
 c

m

10 20



TECHNICAL PHYSICS  Vol. 60  No. 10  2015

3D RADIO TOMOGRAPHY OF OBJECTS HIDDEN 1533

ning allows the ultrabroadband measurements. The
sounding is performed in a frequency interval of 4–
14 GHz. A gypsum convex lens with a diameter of
33.5 cm and an altitude of 6 cm serves as a dielectric
shield in the experiments. The lens is placed at a dis-
tance of 12.5 cm from the sounding system. A step-
shaped object with sizes of 15 × 15 cm and a step size
of 5 cm is placed behind the lens at a distance of 8 cm.
The transceiver unit moves along a region with sizes of
50 × 50 cm with a step of 5 mm.

The experiments yield a 3D data array of the
quadratures of the object signal for each position of the
transceiver unit at 512 frequencies ranging from 4 to
14 GHz. Figure 6 shows the result of the amplitude
measurements for the interference of the fields of the
reference and object signals at a frequency of 8 GHz.

The dominant signal is ref lected from the lens. The
signal of the object under study is almost undistin-
guishable, so that the processing is needed for the
detection. The processing of the measured data is per-
formed using the method of spatially matched filtering
with disregard of the dielectric shield. Figure 7 pres-
ents the reconstructed image of the object. The image
is distorted and seems to be magnified. The lens causes
magnification of the image, since the object size in the
image is about 20 cm whereas the real size is 15 cm.

Using formulas (3) and (5), which take into
account the shape of the dielectric shield (gypsum
lens) with a refractive index of 1.5, we reconstruct the
image of the test object (Fig. 8). It is seen that the dis-
tortions are eliminated and the sizes correspond to the
real sizes.

Note an increase in the signal-to-noise ratio due to
the concentration of the energy of the desired signal in
a single plane at the points where the object is located.
The proposed processing makes it possible to identify
the shape of the object.

CONCLUSIONS

We have proposed a method for the visualization of
scattering inhomogeneities that are hidden behind
dielectric shields with unknown shapes using the
monostatic ultrabroadband multiposition sounding.
For the experimental verification of the method, we
have visualized objects hidden behind a gypsum lens.
The proposed approaches can be employed in the
problems of subsurface radars related to the detection
and visualization of hidden objects, in particular,
problems of archaeology and building of various struc-
tures, roads, and infrastructure.
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