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Introduction

In this thesis, we will use some techniques developed in the frame of Optimal Control The-
ory and some tools of Hyperbolic Dynamics to investigate problems of Hamiltonian dynamics
and infinite horizon optimal control.

The intimate relation between Optimal Control Theory and Hamiltonian Dynamics be-
came clear after the publication of Pontryagin Maximum Principle (PMP) in the 50s ([24]):
this result in fact shows that the extremals of an optimal control problem have to be seeked
among the solutions of a certain Hamiltonian system associated to the problem.

More precisely, consider the control system on a smooth manifold M

q̇(t) = fu(q(t)), q ∈ M, u ∈ U ⊂ R
m,

where f is smooth with respect to q and continuous with respect to the pair (q, u).
Let ϕ : M ×U → R be a function with the same regularity as f , and consider the optimal

control problem with fixed terminal time T and fixed endpoints q0, qT

(I.1)

{
minu

∫ T
0 ϕ(q(t), u(t)) dt

q̇ = fu(q)

q(0) = q0

q(T ) = qT
q ∈ M, u ∈ U.

For any u ∈ U , associate to the problem a Hamiltonian function hν
u : T ∗M → R, ν ∈ R,

defined as

hν
u(λ) = 〈λ, fu(q)〉 + νϕ(q, u);

PMP states that a trajectory q̃(t) : [0, T ] → M and a control ũ ∈ L∞([0, T ], U) are respectively
an optimal trajectory and an optimal control of the problem (I.1) only if there exists a
nontrivial pair (ν, λ(t)) 6= 0 such that λ(t) ∈ T ∗

q̃(t)M , ν ≤ 0, and

λ̇(t) = ~hν
ũ(t)(λ(t))

hν
ũ(t)(λ(t)) = max

u∈U
hν

u(λ(t)) for a.e. t ∈ [0, T ]

(recall that ~hν
ũ(t) denotes the Hamiltonian vector field associated to hν

ũ(t) by dλhν
ũ(t) = σ(·,~hν

ũ(t))).

When we adopt this approach, we switch our description from the base manifold M , where
the extremals of the variational problem are described by a second order system of ODE’s
(the Euler-Lagrange equations), to the phase space T ∗M , where we describe our problem in
terms of a first order system of ODE’s (Hamilton equations), defined on a space with double
dimension with respect to M . The analogy with the Hamiltonian formulation of Classical
Mechanics is absolutely not occasional: PMP is actually a generalization of Least Action
Principle of Classical Mechanics.

A special case of an optimal control problem is the classical length minimization problem
on a Riemannian manifold (M, g): given two points q0, q1, one wants to determine the curve
from q0 to q1 which has the minimal length. It is well known that the geodesics are locally
minimizing curves, which means that they provide a local solution to the minimization length
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4 INTRODUCTION

problem, but that any geodesic is no more minimizing after a conjugate point (see for instance
[20]). The sectional curvature is a metric invariant of the manifold that gives a great advice
in solving this optimization problem: the Conjugate Point Comparison Theorem states in
fact that if all the sectional curvatures of the manifold are negative, than no point of the
manifold has conjugate points along the geodesics.

The idea of associating a curvature-type invariant to the extremals of a generic optimal
control problem is due to Agrachev and Gamkrelidze, who introduced the notion in [6].

The theory has been further developed by Agrachev, Zelenko and Chtcherbakova in [1],
[8], [9], [10], and is completely explained in the Lecture Notes [2]. In its final formulation,
the generalized curvature is actually an invariant associated to a pair (splitting of the tangent
bundle, vector field) on a smooth manifold M , not necessarily related to a particular optimal
control problem.

In this thesis we will focus on the Hamiltonian case, thus regarding the curvature as a
symplectic invariant of a pair (Lagrangian splitting of the tangent bundle, Hamiltonian vector
field) on a symplectic manifold M .

Let us now briefly recall the definition of the curvature. Let (M, σ) be a symplectic
manifold, and let Λ, Π be two Lagrangian distributions that define a splitting of the tangent

bundle, TM = Λ ⊕ Π. Let h : M → R be a smooth Hamiltonian function, and ~h is its

associated Hamiltonian vector field. The pairs (Λ,~h) and (Π,~h) define, for any fixed z ∈ M ,
two curves in the Lagrange Grassmannian of TzM , as in the following:

Λz(t) := e−t~h
∗Λzt , Πz(t) := e−t~h

∗Πzt , zt = et~h(z);

for any t, Λz(t) (Πz(t)) is a Lagrangian subspace of TzM ; then, the pair (Λ,~h) ((Π,~h)) actually
defines a one-parametric family of Lagrangian distributions on M .

For any z ∈ M and any t, the curvature associated to the pair (Λ ⊕ Π,~h) is a linear

operator RΛ,Π
z (t) : Λz(t) → Λz(t); it is defined as

RΛ,Π
z (t) := −Π̇z(t) ◦ Λ̇z(t),

where Λ̇z(t) : Λz(t) → Πz(t) is a linear operator intrinsically associated to the curve Λz(t),
and actually depends only on the derivative of the curve at the time t d

dτ Λz(τ)|τ=t. The same,

with the proper substitutions, about Π̇z(t).
Thus defined, the curvature measures the “relative velocity” of the two curves with respect

to each other.
Since the definition is intrinsic, it allows the following identity:

RΛ,Π
z (t) = e−t~h

∗R
Λ,Π
zt

(0)et~h
∗|Λz(t).

The relation above is of great importance: in fact, the knowledge of the curvature RΛ,Π
z0 (t)

at a fixed initial point z0 at any time is equivalent to the knowledge of RΛ,Π
zt (0) along the

Hamiltonian trajectory zt = et~h(z0) for fixed time. This means that the curvature is a local
invariant that carries information about the global extremal.

The definition is justified by optimal control theory; in [6], the authors associated to

any extremal of the optimal control problem a Lagrangian curve Jz(t) = e−t~h∗Tz(T
∗
π(z)M),

which is called Jacobi curve (in analogy with Jacobi field of Riemannian geometry). We say
that the parameter τ is conjugate to t if Jz(t) ∩ Jz(τ) 6= 0: the authors showed that an
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extremal cannot be a minimizer after the first conjugate parameter of its associated curve in
the Lagrange Grassmannian (in complete analogy with the Riemannian case).

Moreover, given a Lagrangian distribution Λ, there is an intrinsically defined distribution
Λ◦ such that Λ ⊕ Λ◦ is a Lagrangian splitting (called canonical splitting) and the curvature

RΛ,Λ◦

z satisfies an analogous result to Conjugate Point Comparison Theorem of Riemannian
Geometry. In fact, there exists a scalar product that makes the curvature operator self-
adjoint; hence its eigenvalues are real, and it is possible to talk about positive or negative
curvature. In particular, the generalized Conjugate Point Comparison Theorem states that
if the generalized curvature is negative, then there are no conjugate parameters along the
Hamiltonian extremals, while, if the curvature is positive and bounded from below, there are
estimates for the location of conjugate parameters along the extremals.

As mentioned before, it is possible to associate this curvature-type invariant to a generic
pair (Lagrangian splitting, Hamiltonian vector field), not necessarily arising from an Optimal
Control Problem. Actually, the curvature gives a lot of information about the behaviour of
the dynamical system: in [2] and [5] it is proved that the negativity of the curvature is a
symptom of a hyperbolic behaviour of the Hamiltonian dynamical system.

In this thesis we will also use some classical results of Hyperbolic theory. Hyperbolic
dynamical systems constitute a wide and important class of dynamical systems (or DS).
They possess many important properties; the most characterizing is the existence, for any
point of the state space, of a contraction and an expansion direction in the tangent space;
more precisely, if f : M → M is a diffeomorphism on a smooth manifold M , it is said to be
hyperbolic if there are two distributions E± = {E±

z }z∈M and two numbers 0 < λ < 1 < µ
such that for any z and n > 0

‖Dzf
nX‖ ≤ λn‖X‖ X ∈ E−

z

‖Dzf
−nX‖ ≤ µ−n‖X‖ X ∈ E+

z .

Such systems are characterized by sensitive dependence on initial conditions, which means
that nearly arising trajectories may diverge exponentially with time one from each other.
This behaviour is the typical behaviour of chaotic systems, and in fact hyperbolic systems
constitute a paradigmatic example of chaos.

To measure “chaoticity” of a dynamical system we have at our disposal many quantities; in
this thesis, we will use the Lyapunov exponents and the measure-theoretic (Kolmogorov-Sinai)
dynamical entropy.

We saw that a hyperbolic DS is characterized by the existence of directions of expansion
and contraction under the linearization of the flow; moreover, the growth of norms of the
vectors is controlled by coefficients which are uniform on the base space. Lyapunov exponents
are introduced to take account of cases in which these expansion and contraction directions
exist at almost any point of the base space (with respect to some measure), and the norms
are controlled by coefficients that possibly depend on the point.

The Lyapunov exponents are in fact the coefficients that control the asymptotic evolution
of the norm of the vectors, under the action of the linearization of the evolution f . Actually,
where defined they determine a splitting of the tangent space into three subspaces, that are a
kind of generalization of the stable, the unstable space and the central space of a hyperbolic
DS (along the central space there is no expansion neither contraction, and in fact the value
of the Lyapunov exponent is zero); for z ∈ M , these subspaces are denoted as E−

z , E+
z and

E0
z .



6 INTRODUCTION

The Kolmogorov-Sinai dynamical entropy measures the statistical behaviour of the orbits.
Let f be a diffeomorphism on a smooth manifold M , and µ an f -invariant probability

measure on M . For any measurable set U ⊂ M , µ(U) has the meaning of the probability
of the state of the system of belonging to U . Let P = {Pi}i be a (finite or countable)
measurable partition of M (which means that each Pi is measurable, µ(Pi ∩ Pj) = 0 if i 6= j,
and µ

(
M \ ∪iPi

)
= 0); the dynamical entropy associated to the partition P measures how

precisely the evolution of the system can be predicted, when the initial condition is known
only by means of the partition P. In other words, it is the average amount of information
about the system provided by the knowledge of the present state and an asymptotic future.
In particular, the entropy of well-predictable systems (such as periodic ones) is zero, while a
positive value of the dynamical entropy is a symptom of chaotic behaviour.

To get a partition-independent object, that shall depend only on the measure µ and the
dynamics f , the Kolmogorov-Sinai dynamical entropy of the system (M,µ, f) is defined as the
supremum of the KS dynamical entropies of the system associated to a particular partition.

In general, the existence of positive and negative Lyapunov exponents almost everywhere
on M is a stronger requirement than the positivity of the dynamical entropy; however, Pesin’s
Theorem states that under some regularity conditions the two facts are equivalent, and the
two quantities provide the same information. In fact, under these conditions we have that

hµ(f) =

∫

M
χ dµ(z),

where hµ(f) is the dynamical entropy associated to (M,µ, f) and χ(z) (where defined) is the
sum of the positive Lyapunov exponents, taken with multiplicity.

In this thesis we will apply the techniques exposed above in two different frames; the
first result gives an estimate for the entropy of Hamiltonian flows, and constitute one more
proof of the fact that the curvature operator proposed by Agrachev and Gamkrelidze is a
true generalization of the sectional curvature; in the second problem, we used the generalized
curvature and some facts of Hyperbolic Dynamics to state the existence of an optimal synthesis
for infinite horizon variational problems. Actually, this is the first result of a wide field of
research that brings a lot of interesting open questions.

The first result we will expone in this thesis is a generalization to Hamiltonian flows of
the Ballmann-Wojtkowski estimate for the dynamical entropy of the geodesic flow. In [15],
the authors proved the following relation

hµ ≥
∫

SM
tr

√
−K(v) dµ(v),

where hµ is the KS dynamical entropy of the geodesic flow on a compact Riemannian manifold
(M, g), SM is the spherical tangent bundle on M (i.e. the subbundle SM = {v ∈ TM :
g(v, v) = 1}, K(v) is defined as K(v) = R(·, v)v, where R denotes the Riemannian curvature,
and dµ is the Liouville measure on M . The result allows under the hypothesis of nonpositivity
of the curvature R.

In the case we consider, we deal with a smooth Hamiltonian function h : M → R, where
M is a smooth 2n-dimensional symplectic manifold. It is well known that the Hamiltonian
flow preserves the sublevels of the Hamiltonian functions: then, we have to restrict ourselves
to a regular level set of the function h.
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The pair (Λ ⊕ Λ◦,~h) possesses another symplectic invariant, the reduced curvature R̂h,h
z ,

that takes account of the reduction of the system to a sublevel of the Hamiltonian; this
operator was introduced by Agrachev, Zelenko and Chtcherbakova in [10].

Due to reduction on a sublevel of h, in this problem we deal with the reduced curvature.
We obtain the following result:

Theorem I.1. Let N be a compact regular level set of a smooth Hamiltonian function
h : M → R, where M is a 2n-dimensional symplectic manifold. Let Λ be a Lagrangian

distribution on TN/span{~h}, and assume that the Hamiltonian vector field ~h is monotone

with respect to Λ. Consider the Jacobi curve Λz0(t) = e−t~h∗Λzt and assume that the restricted

curvature R̂h,h
z is nonpositive.

Then the dynamical entropy hµ of the Hamiltonian flow on N with respect to the normal-
ized Liouville measure µ on N satisfies the following inequality:

(I.2) hµ ≥
∫

N
tr

√
−R̂h,h

z dµ.

The main argument we use in the proof is the Pesin Theorem, which permits us to estimate
the value of the dynamical entropy computing the Lyapunov exponents. In this way, we avoid
to deal with flow-invariant measures and partitions, and just have to compute the asymptotic
growth of the vectors under the action of the (linearized) flow. Actually, it can be shown that
the sum χ(z) of the positive Lyapunov exponents at z, if defined, is given by the formula

(I.3) χ(z) = lim
t→±∞

1

t
log |det(Dze

t~h)|Ez |,

where Ez is any subspace such that E+
z ⊂ Ez ⊂ E+

z ⊕ E0
z .

The first part of the proof is then devoted to the definition of a good candidate for such
a Ez, and to check that it satisfies the requirements. We will define the space Ez in terms of
the canonical splitting as the graph of a linear operator Uz : Λ◦

z → Λz; this operator (to be
precise, its representation in coordinates) is related to the generalized curvature by means of
a Riccati equation.

In the second part, we do the computations of the term (I.3), and then, using some basic
facts of ergodic theory, we arrive to the estimate for the dynamical entropy. In this part it is
crucial the nonpositivity of the reduced curvature. In fact, we obtain an expression for χ(z)
in terms of the representation in coordinates of Uz, which means in terms of the generalized
curvature. Its negativity permits us to do some computations to get a term that depends

only on R̂h,h
z . This leads us to the estimate (I.2).

These results have been published in [16].

The second topic we study deals with the existence of the optimal synthesis of infinite
horizon variational problems. Infinite horizon optimal control problems have nice applications
in mathematical economy, because they provide a good model for the dynamical economic
system. Of great importance is the optimal economic growth problem:

{
maxq(t)

∫ +∞
0 e−αtϕ(q(t), u(t), t) dt

q̇(t) = f(q(t), u(t))
α ≥ 0.

The functional to be maximized models the capital accumulation; there is also a formulation
of the same problem involving the minimization of the functional, which in this case represents
some cost to be minimized during a production process.
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The problem is very general and can be studied in very different settings; in this thesis,
we concentrated to the smooth case with continuous time. This means that, given a smooth
manifold M and a smooth Lagrangian ϕ : TM → R, we focus on the functional

(I.4) J(γ(·)) =

∫ ∞

0
ϕ(γ(t), γ̇(t)) dt

defined on the Lipschitzian curves γ : [0, +∞) → M along which the integral (I.4) converges.
More precisely, we assume the existence of an equilibrium point q∞ such that ϕ(q∞, 0) = 0

and ∂ϕ
∂q (q∞, 0) = 0, and, fixed some q0 ∈ M , we want to find the minimum of the functional

J in the class

Γ(q0) =
{

γ : [0, +∞) → M : γ is Lipschitzian and γ(0) = q0, lim
t→+∞

γ(t) = q∞
}

.

Our aim is to determine the class of Lagrangians ϕ such that the minimization problem
admits a smooth optimal synthesis, according to the following definition:

Definition. A smooth optimal synthesis is a smooth complete vector field X on M such
that the point q∞ is a stable equilibrium of the ordinary differential equation q̇ = X(q) and
for any q0 ∈ M :

J(γX) = min
γ∈Γ(q0)

J(γ),

where γ̇X(t) = X(γX(t)) and γX(0) = q0.

In order to do that, first we formulate the variational problem as an optimal control
problem:

(I.5) min
u

∫ ∞

0
ϕ(q(t), u(t)) dt : q̇ = u,

{
q(0) = q0

q(t) → q∞ as t → +∞ ;

then we associate to the problem a Hamiltonian function H on the cotangent bundle, defined
as H(λ) = maxu〈λ, u〉 − ϕ(q, u).

The main result we obtain is the following:

Theorem I.2. Let M be a complete Riemannian smooth manifold, and assume that it is
simply connected; let ϕ : TM → R be a smooth function such that

(H1) ϕ is bounded from below and is strongly convex with respect to the second variable;
moreover, we assume that ϕ grows superlinearly in the second variable with respect
to the given Riemannian metric, i.e. ϕ(q, u) + c > 0 for some constant c and

|u|
ϕ(q, u) + c

→ 0 as |u| → +∞;

(H2) there is a unique point q∞ such that

ϕ(q∞, 0) = 0 and
∂ϕ

∂q
(q∞, 0) = 0;

(H3) there exist constants a, b > 0 such that for any (q, u)

|∂qϕ(q, u)| ≤ a(ϕ(q, u) + |u|) + b,

where ∂q is the covariant derivative.
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Let {Λz}z = {Tz(T
∗
π(z)M)}z and {Πz}z, z ∈ T ∗M , be two Lagrangian distributions that

provide a splitting of T (T ∗M); assume that the generalized curvature of ~h with respect to the
splitting is negative definite for any z. Then the problem (I.5) with final point q∞ admits a
smooth optimal synthesis on M .

To prove the statement, we use a classical result of Optimal Control Theory, that provides
a sufficient condition for the existence of a solution to an optimal control problem. This
Theorem is stated in Section 3 of Chapter 1; its application to the case under consideration
states that a sufficient condition for the existence of an optimal synthesis is the existence of a
Lagrangian stable invariant (with respect to the Hamiltonian flow) submanifold of T ∗M that
projects diffeomorphically on the base space M .

The aim of the proof becomes then to find such a submanifold. The proof splits into
two main parts: in the first one, we look for those Lagrangians such that their associated
Hamiltonian possesses a hyperbolic fixed point z∞ ∈ T ∗M (this hyperbolic fixed point in fact
is a lift of the equilibrium q∞); this, for classical results in Hyperbolic Theory, guarantees the
existence of two smooth invariant submanifolds of T ∗M , called the stable and the unstable
manifolds. The former, denoted with W s(z∞), is a good candidate for the submanifold we
are looking for, and it can be defined by the characterization:

W s(z∞) = {z ∈ T ∗M : d(et ~H(z), z∞) → 0 as t → +∞}.
Then, in the last part of the proof we have to verify that in fact W s(z∞) has the required

properties, i.e. it is Lagrangian and projects diffeomorphically to M .
In the whole proof the hypothesis of negativity of the generalized curvature is crucial. In

particular we use this fact to establish the hyperbolicity of the equilibrium point of the Hamil-
tonian z∞; the negativity of the curvature implies also that any bounded (i.e. with compact
closure) Hamiltonian semitrajectory shall converge to the equilibrium with exponential rate;
in other words, the system has a saddle-like behaviour.

Moreover, we formulate the same problem (I.5) on the Euclidean space, and we see that the
hypotheses that ϕ shall satisfy are very natural: instead of the hypotheses on the curvature,
to guarantee the existence of the optimal synthesis we need assumptions (H1)–(H3) and the
hypotheses that ϕ is strictly convex (where with “strict convexity” we mean that the second
derivative is always positive definite).

The next natural question is to examine what happens in the case of positive general-
ized curvature. The generalized Conjugate Points Comparison Theorem (Theorem 2.1) says
that there cannot be optimal syntheses for the infinite horizon problem, due to presence of
conjugate points. Then, we introduce a discount or forgetting factor α > 0 and study the
minimization problem associated to the functional

(I.6) Jα(γ(·)) =

∫ ∞

0
e−αtϕ(γ(t), γ̇(t)) dt.

The following example helps us to formulate correctly and then solve the problem: we
consider the 1-dimensional case and the quadratic Lagrangian ϕ(q, q̇) = 1

2(q̇2 − rq2), where
r is a constant (and is also the generalized curvature). If r < 0, then the problem admits
an optimal synthesis for any value of α, also for α = 0 (in fact, we are in the hypotheses of
Theorem I.2).

If r > 0, it can be shown that the value of α is crucial for the existence of the optimal
synthesis; in particular, for α < 2

√
r, any the integral in (I.6) diverges along any Hamiltonian
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trajectory of the system, then there are no minimizing trajectories. Otherwise, if α > 2
√

r,

there are Hamiltonian trajectories that grow as e(α
2
−ε)t, for some ε ∈ (0, α

2 ). Along these
trajectories the integral converges, and it can be shown that actually they are minimizing
trajectories.

These example suggest us to look for minimizers belonging to the following class:{
γ : [0, +∞) → M : γ is locally Lipschitzian and γ(0) = q0, lim

t→+∞
e−αt|γ̇(t)|2 = 0

}
,

for some fixed initial point q0.
In this thesis it is contained the following result in this direction:

Theorem I.3. Let ϕ : R
n × R

n → R be smooth, and strictly convex with respect to the
second variable; assume that there is a compact set K ∈ R

2n such that the function ϕ is
quadratic in the pair (q, u) for any (q, u) ∈ R

2n \ K.

If the curvature R0
z of the Hamiltonian vector field ~H0 (i.e. associated to the system with

α = 0) with respect to the canonical splitting satisfies the inequalities 0 < R0
z ≤ C for some

constant C for any z ∈ R
2n, then the infinite horizon variational problem without discount does

not admit optimal trajectories, while the problem with discount admits an optimal synthesis
of class C1 if α > 2

√
C.

The generalization of this Theorem to a wider class of Hamiltonians is work in progress.

This dissertation is thus organized: Chapter 1 contains an introduction to the language
and the main results about Dynamical Systems Theory and Optimal Control Theory we will
use.

Chapter 2 is devoted to the definition of the generalized curvature and to its properties.
In particular, we will state the (generalized) Conjugate Point Comparison Theorem.

In Chapter 3 we will prove our results on the entropy of Hamiltonian flows.
In Chapter 4 we will introduce the infinite horizon variational problem we are studying,

and prove Theorem I.2. Then, in Section 4 we will restrict the problem to the Euclidean
case, and prove that the results allow also under the hypothesis of strict convexity of the
Lagrangian ϕ, without any assumptions on the generalized curvature. In Section 5 we will
analyze the 1-dimensional case.

Finally, Chapter 5 contains the results on the minimization problem in the presence of
discount.



CHAPTER 1

Preliminaries

In this chapter, we will introduce the classical mathematical results about optimal control
theory and dynamical systems used in this thesis.

In the first section there is just a brief recall of the basic tools of symplectic geometry.
In the second section, we will present some general aspects about smooth dynamical

systems, with a special attention given to those which present hyperbolic behaviour.
The third section is devoted to the definition of optimal control problem and to the state-

ment of the Pontryagin Maximum Principle, which gives a necessary condition for optimality.
Then, it will stated also a sufficient condition.

1. Elements of Geometry

In this section we will just give an essential review of the basic facts on symplectic geometry
we are using in this thesis; the argument is widely treated in many textbooks: we will remand
to [12] and [13].

Let Σ be a 2n-dimensional linear space endowed with a symplectic structure σ; we re-
call that a subspace V ⊂ Σ is called isotropic if the symplectic form vanishes on it, i.e.
σ(X,Y ) = 0 for any X, Y ∈ V . An isotropic subspace is always contained in its skew-
orthogonal complement, that we will denote by V ∠ = {X ∈ Σ : σ(X, Y ) = 0 ∀ Y ∈ V }; a
Lagrangian subspace of Σ is an isotropic subspace that coincides with its skew-orthogonal
complement, which implies that it has the maximal dimension, i.e. n.

Let us moreover recall that if V is a Lagrangian subspace of Σ, the symplectic structure
induces an isomorphism between the dual of the space V ∗ and the quotient Σ/V ; indeed,
let, for any v ∈ Σ, [v] be its equivalence class in Σ/V ; then σ([v], ·) is a linear operator on
V and nondegeneracy of σ guarantees that the map [v] 7→ σ([v], ·) is injective. Moreover, to
any linear form ϕ ∈ V ∗ we can find a vector vϕ ∈ Σ such that ϕ(·) = σ(vϕ, ·); the proof is
completely analogous to the one in the case of a symmetric scalar product. By injectivity of
[v] 7→ σ([v], ·), there is a unique v ∈ Σ/V with this property.

Let Σ = Λ ⊕ Π be a Lagrangian splitting of Σ, namely Λ ∩ Π = 0 and both the spaces
are Lagrangian. The symplectic form identifies Π with Λ∗, and vice versa; then, the following
isomorphisms allow: Λ ≃ Σ/Π and Π ≃ Σ/Λ.

For any symplectic space Σ there exists a special basis {e1, . . . , en, f1, . . . , fn} such that

σ(ei, ej) = σ(fi, fj) = 0 for any i, j σ(ei, fj) = δij ,

where δij is the Kronecker-δ; such a basis is called a Darboux basis. This basis actually
identifies Σ with R

n∗ × R
n: in fact, let vi, i = 1, 2, be two vectors in Σ, and write them as

vi =
∑n

j=1 xj
iej + yj

i fj ; then we have that σ(v1, v2) =
∑n

j=1 xj
1y

j
2 − xj

2y
j
1 = 〈x1, y2〉 − 〈x2, y1〉,

where xi, yi ∈ R
n for i = 1, 2, and 〈·, ·〉 denotes the scalar product on R

n.

11
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Given a Lagrangian subspace V ⊂ Σ and a basis {e1, . . . , en} of V , we can always use
a modified version of the Gram-Schmidt algorithm to construct vectors {f1, . . . , fn} in Σ in
such a way that {e1, . . . , en, f1, . . . , fn} is a Darboux basis for Σ.

The Lagrange Grassmannian of Σ is the set of all the Lagrangian subspaces of Σ, and has
the structure of an n(n + 1)/2-dimensional smooth manifold; we denote it with Ln(Σ).

Any space ∆ ∈ Ln(Σ) gives a coordinate chart on the Lagrange Grassmannian; more
precisely, if ∆⋔ = {Λ ∈ Gn(Σ) : Λ ∩ ∆ = 0} denotes the set of n-dimensional subspaces of Σ
that are transversal to ∆ (here Gn(Σ) is the Grassmannian of n-dimensional subspaces of Σ),
∆ defines a coordinate chart on ∆⋔ ∩ Ln(Σ). To show this, let {e1, . . . , en, f1, . . . , fn} be a
Darboux basis of Σ such that ∆ = span{f1, . . . , fn}; ∆ is then identified with {(0, y) : y ∈ R

n}.
Then, for any Λ ∈ ∆⋔ there is an n × n matrix SΛ such that Λ can be parametrized as
Λ = {(x, SΛx) : x ∈ R

n}; Lagrangianity of the space implies that the matrix is symmetric. In
this way, ∆⋔∩Ln(Σ) is identified with the spaces of n×n symmetric matrices; then the pair
(∆⋔, Λ 7→ SΛ) gives a chart of Ln(Σ).

An even dimensional smooth manifold is called symplectic if its tangent space at any point
has a symplectic structure. A submanifold of a symplectic manifold is said to be Lagrangian
if its tangent space at any point is a Lagrangian subspace of the tangent space to the original
manifold (with respect to the same symplectic structure).

Let us now consider an n-dimensional smooth manifold M ; we recall that its cotangent
bundle

(1.1) T ∗M =
⋃

q∈M

T ∗
q M

has a natural symplectic structure; in fact, let us denote with π : T ∗M → M the canonical
projection, and let us define, for any λ ∈ T ∗M , the Liouville (or tautological) form

(1.2) ϑλ := λ ◦ π∗,

which is a one-form on T ∗M whose action is given by 〈ϑλ,x〉 = 〈λ, π∗(x)〉 for any x ∈
Tλ(T ∗M). The symplectic structure on T ∗M is given by the form

σ = dϑ,

which is in fact a closed nondegenerate skew-symmetric two-form.
If we choose a system of canonical coordinates (p, q) on T ∗M , the Liouville form reads as

ϑλ =
∑n

i=1 pidqi, and the canonical symplectic structure as σλ =
∑n

i=1 dpi ∧ dqi.
Let us recall moreover that to any smooth function h : T ∗M → R on the cotangent

bundle we can associate a Hamiltonian vector field ~h on the cotangent bundle according to
the relation

σλ(~h, ·) = −dλh.

Let us just say that in the following we will denote with et~h the flow generated by ~h on M ,
where defined; clearly, if the Hamiltonian vector field is autonomous, the flow is defined for
any t ∈ R.
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2. Elements of dynamical systems

In this section we will recall some fundamental results about dynamical systems, with a
special emphasis on the ones that show a hyperbolic behaviour. For a complete treatment,
we remand to the textbooks [18] and [19]; we also mention [21] for details on ergodic theory
and dynamical entropy. A good reference on partial hyperbolicity is given by [23].

2.1. Hyperbolic Theory. Let M be a smooth manifold and f : M → M a smooth
map. The pair (M, f) defines a smooth discrete-time dynamical system.

The class of dynamical systems we are mostly interested in is the one of hyperbolic
systems; these system provide a paradigmatic example of the behaviour of a chaotic system.

The most topical property of hyperbolic systems is the existence of a splitting of the
tangent space (to the state space) into two subspaces, called respectively the stable and the
unstable space, such that on the former the vectors contract under the action of the flow, and
on the latter they expand, with exponential rate.

Hyperbolic dynamical systems possess many other interesting properties, among which we
recall sensitive dependence on initial conditions and positive dynamical entropy. The latter
is studied in Subsection 2.4; the former is related to the “relative closeness” of the orbits. By
the continuity with respect of the initial conditions of ODE’s, we know that two solutions of
the same equation arising from sufficiently near initial conditions remain near for a certain
time interval; in hyperbolic dynamical system two nearly arising trajectories may diverge
exponentially with time one from each other.

The class of hyperbolic dynamical system include many different examples; among them,
we recall the geodesic flow on a compact Riemannian manifold of negative curvature (see the
introduction to Chapter 3), and the celebrated Hyperbolic Toral Automorphism, that we will
describe in the Example below.

Definition 1.1. Let q0 be a fixed point of the map f ; q0 is a hyperbolic fixed point for f
if the linear map Dq0f : Tq0M → Tq0M is a hyperbolic map, i.e. if it has no eigenvalues with
absolute value equal to 1.

If q0 is a hyperbolic fixed point for f , it means that there exist two constants 0 < λ <
1 < µ such that Sp(Dq0f) ∩ {z ∈ C : λ < |z| < µ} = ∅, where Sp(Dq0f) denotes the
spectrum of the map Dq0f ; this implies that Tq0M splits into two subspaces E+

q0
, E−

q0
such

that Dq0f(E+
q0

) ⊂ E+
q0

, Dq0f(E−
q0

) ⊂ E−
q0

, and we have that

‖Dq0fX‖ ≤ λ‖X‖ ∀X ∈ E−
q0

(1.3)

‖(Dq0f)−1X‖ ≤ µ−1‖X‖ ∀X ∈ E+
q0

.(1.4)

In this case, we say that Dq0f admits a (λ, µ)-splitting.

Example. Let us give a 2-dimensional example; the Hyperbolic Toral Automorphism is the
discrete-time dynamical system defined on the 2-dimensional torus T

2 as in the following:(
xn+1

yn+1

)
=

(
2 1
1 1

)(
xn

yn

)
mod 1,

where the vector (xn, yn)T ∈ T
2 denotes the state of the system at the time n. The matrix

possesses the eigenvalues µ± = 3±
√

5
2 , and its eigenvectors v± determine at any point (x, y) ∈

T
2 a contracting and an expanding direction: this means that the system admits at any point
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a (µ−, µ+)-splitting. The action of the matrix is depicted in Figure 1.1: notice that there are
visible the expanding and contracting directions.

This system is a paradigmatic example of Anosov system (i.e. a system that at any point
admits a splitting such as in equations (1.7)-(1.8)), and then of a chaotic system.

Figure 1.1

For maps with hyperbolic fixed points it allows the following result (see [18]), which gives
a great advice in order to study the local behaviour of the trajectories in a neighbourhood of
the fixed point:

Theorem 1.1 (Existence of stable and unstable manifolds). Let q0 be a hyperbolic point
of a local Cr diffeomorphism f : U → M , r ≥ 1. Then there exists two Cr embedded discs
W s

loc(q0), W u
loc(q0) ⊂ U such that Tq0(W

s
loc(q0)) = E−

q0
, Tq0(W

u
loc(q0)) = E+

q0
, f(W s

loc(q0)) ⊂
W s

loc(q0), f−1(W u
loc(q0)) ⊂ W u

loc(q0) and there exists C(δ) such that for any qs ∈ W s
loc(q0), qu ∈

W u
loc(q0), n ≥ 0,

d(fn(qs), q0) < C(δ)(λ + δ)nd(qs, q0)

d(f−n(qu), q0) < C(δ)(µ−1 + δ)nd(qu, q0).

Furthermore, there exist δ0 ≥ 0 such that

if d(fn(qs), q0) ≤ δ0 for n ≥ 0 then qs ∈ W s
loc(q0),

if d(fn(qu), q0) ≤ δ0 for n ≤ 0 then qu ∈ W s
loc(q0).

The manifolds W s
loc(q0) and W u

loc(q0) are respectively called the (local) stable and unstable
manifolds; they are not uniquely defined. However, if there are two submanifolds W s

loc(q0) and

W̃ s
loc(q0) that satisfy the theses of Theorem 1.1, their intersection contains a neighbourhood

of q0 in each of them. In other words, they are submanifolds of a larger submanifold we are
going to define. The same allows for W u

loc(q0).

Definition 1.2. The manifolds

(1.5) W s(q0) =
⋃

n≤0

fn(W s
loc(q0))

and

(1.6) W u(q0) =
⋃

n≥0

fn(W u
loc(q0))

are called respectively the (global) stable and unstable manifold of f at q0.
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We remark that they are injectively immersed submanifolds of U , and that they are uniquely
defined. They are also defined by the following topological characterization:

W s(q0) = {q ∈ U : d(fn(q), q0) → 0 as n → +∞},

W u(q0) = {q ∈ U : d(f−n(q), q0) → 0 as n → +∞}.
We just mention that Theorem 1.1 is a consequence of a more general result, the Hadamard-

Perron Theorem:

Theorem 1.2 (Hadamard-Perron). Let λ < µ, r ≥ 1, and for each m ∈ Z let fm : R
n →

R
n be a surjective Cr diffeomorphism such that for each (x, y) ∈ R

k ⊕ R
n−k

fm(x, y) = (Amx + αm(x, y), Bmy + βm(x, y))

for some linear maps Am : R
k → R

n−k and Bm : R
n−k ⊕ R

k with ‖Am‖ ≤ µ−1, ‖Bm‖ ≤ λ
and αm(0) = 0, βm(0) = 0.

Then there exists γ0 = γ0(λ, µ) such that for γ ∈ (0, γ0) there is a δ = δ(λ, µ, γ) with the
following property: if ‖αm‖C1 < δ and ‖βm‖C1 < δ for all m ∈ Z then there is

(1) a unique family {W+
m}m∈Z of k-dimensional C1 manifolds

W+
m = {(x, ϕ+

m(x)) : x ∈ R
k} = graphϕ+

m

and
(2) a unique family {W−

m}m∈Z of (n − k)-dimensional C1 manifolds

W−
m = {(ϕ−

m(y), y) : y ∈ R
n−k} = graphϕ−

m,

where ϕ+
m : R

k → R
n−k, ϕ−

m : R
n−k → R

k, supm∈Z ‖Dϕ±
m‖ < γ, and the following properties

hold:

• fm(W−
m) = W−

m+1, fm(W+
m) = W+

m+1.

• ‖fm(z)‖ < (1 + γ)(λ + δ(1 + γ))‖z‖ for z ∈ W−
m .

‖fm(z)‖ < ( µ
1+γ − δ)−1‖z‖ for z ∈ W+

m .

• Put λ′ := (1 + γ)(λ + δ(1 + γ)) and µ′ := ( µ
1+γ − δ), and let λ′ < ν < µ′. If

‖fm+L ◦ . . . ◦ fm(z)‖ < CνL‖z‖ for all L ≥ 0 and some C > 0, then z ∈ W−
m .

Similarly, if ‖fm−L ◦ . . . ◦ fm−1(z)‖ < Cν−L‖z‖ for all L ≥ 0 and some C > 0, then
z ∈ W+

m .

Finally, if λ < 1 < µ the families {W+
m}m∈Z and {W−

m}m∈Z consist of Cr manifolds.

Remark. Let us now consider a one parametric group of diffeomorphisms Φ : R × M → M ;
namely, Φ(t, q) = φt(q), where φt : M → M is a diffeomorphism for any t and it is satisfied
the group law φt ◦ φs = φt+s, t, s ∈ R. The pair (M,Φ) defines a smooth continuous-time
dynamical system. The theory of hyperbolic systems is well-developed also for this situation,
as we are going to briefly mention here.

Let us introduce the definition:

Definition 1.3. Let Λ ⊂ M be a compact φt-invariant set. Λ is a hyperbolic set for the
flow φt if there is a Riemannian metric defined on a neighbourhood U of Λ and two constants
0 < λ < 1 < µ such that for any q ∈ Λ the tangent space TqM is split into three subspaces

TqM = E0
q ⊕ E−

q ⊕ E+
q such that dim(E0

q ) = 1, d
dtφ

t|t=0 ∈ E0
q \ {0}, DφtE±

q = E±
q , and E−

q

satisfies (1.3) and E+
q satisfies (1.4).
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Let (M,Φ) be a continuous-time dynamical system such that Λ ⊂ M is a hyperbolic set of
the flow; then, using Hadamard-Perron Theorem, it can be proved a version of the Stable and
Unstable Manifold Theorem (Theorem 1.1); this is called the Stable and Unstable Manifold
Theorem for flows.

2.2. Partially hyperbolic dynamical systems. In this subsection we will just briefly
sketch some properties of a more general class of dynamical systems, that in fact includes the
class of hyperbolic systems.

They are defined as follows:

Definition 1.4. A diffeomorphism f : M → M , where M is a smooth manifold, is called
partially hyperbolic if there exists numbers 0 < λ < µ and c > 0, and two distributions
E = {Eq}q∈M , F = {Fq}q∈M , such that

(1) Eq and Fq form at each q ∈ M an invariant splitting of the tangent space TqM , i.e.

TqM = Eq ⊕ Fq and Dqf(Eq) = Ef(q), Dqf(Fq) = Ff(q);

(2) for n > 0

‖Dqf
nX‖ ≤ cλn‖X‖ X ∈ Eq(1.7)

‖Dqf
nX‖ ≥ c−1µn‖X‖ X ∈ Fq(1.8)

Remark. We have that either λ < 1 and/or µ > 1. If λ < 1, the subspace Eq is stable and,
analogously, if µ > 1, the subspace Fq is unstable. If it happens that λ < 1 < µ we are in the
usual hyperbolic situation.

For further purposes, we need a different definition of partial hyperbolicity, which is called
in literature partial hyperbolicity in the narrow sense. The definition is as follows:

Definition 1.5. A diffeomorphism f : M → M , where M is a smooth manifold, is called
partially hyperbolic in the narrow sense if there exists a Riemannian metric ‖ · ‖ on M ,
numbers c > 0 and

0 < λ1 ≤ µ1 < λ2 ≤ µ2 < λ3 ≤ µ3 µ1 < 1, λ3 > 1,

and and invariant splitting

TqM = Es
q ⊕ Ec

q ⊕ Eu
q

such that for any n > 0

c−1λ−n
1 ‖X‖ ≤ ‖Dqf

nX‖ ≤ cµn
1‖X‖ X ∈ Es

q(1.9)

c−1λ−n
2 ‖X‖ ≤ ‖Dqf

nX‖ ≤ cµn
2‖X‖ X ∈ Ec

q(1.10)

c−1λ−n
3 ‖X‖ ≤ ‖Dqf

nX‖ ≤ cµn
3‖X‖ X ∈ Eu

q(1.11)

Partially hyperbolic systems satisfy the hypotheses of Hadamard-Perron Theorem, but in
general the condition λ < 1 < µ is not satisfied; in this case, as can be seen from the statement
of Hadamard-Perron Theorem, the stable and the unstable distributions (respectively Es and
Eu) are integrable, but their integral manifolds are only C1 smooth, even if f possesses a Cr

smoothness with r > 1. We will denote with W s the integral foliation of the distribution Es,
and we call it stable foliation; analogously, W u is called unstable foliation and is the integral
foliation of the distribution Eu.

Otherwise, the central distribution Ec
q is in general not integrable. To have integrability

we need one more hypothesis we are going to explain below.
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Let F be a foliation of the manifold M ; we say that F is quasi-isometric if there are two
constants a > 0 and b > 0 such that for any x, y belonging to same leaf Fx we have

dF(x, y) ≤ ad(x, y) + b,

where dF denotes the distance along the leaf. Then we can state the result (see [23] for
references)

Theorem 1.3. Let M̃ denote the universal covering of M , and W̃ s and W̃ u the lifts to

M̃ of the manifolds W s and W u..

Assume that both W̃ s and W̃ u are quasi-isometric. Then the distribution Ec is integrable
and the integral foliation is unique.

2.3. Lyapunov exponents. We saw that a hyperbolic fixed point is characterized by
the existence of directions of expansion and contraction under the action of the linearization
of the flow; in hyperbolic sets, any point admits this contracting and expanding directions,
and, moreover, the coefficients that control the norms of the vectors are uniform on the set.

There exist also dynamical systems in which at almost any point (with respect a suitable
measure on M) there are these expanding and contracting directions, dominated by coeffi-
cients that possibly depend on the point. The dynamics of these systems in fact presents a
behaviour dominated by sensitive (i.e. exponential) dependence on initial condition, but in
general the system does not admit a (λ, µ)-splitting at any point.

In this subsection we will introduce the objects that take account of these properties of
such systems: the Lyapunov exponents.

Definition 1.6. Let f : M → M be a diffeomorphism on a manifold M endowed with a
Riemannian metric that induces the norm ‖ · ‖ on vectors on M . We say that q ∈ M is a
regular point of f if there exist numbers λ1(q) > λ2(q) > · · · > λm(q) and a decomposition
TqM = E1(q) ⊕ · · · ⊕ Em(q) such that

(1.12) lim
n→+∞

1

n
log ‖Dqf

nx‖ = λj(q) for every 0 6= x ∈ Ej(q), 1 ≤ j ≤ m.

We remark that for any regular point the numbers λj and the decomposition in subspaces
Ej are unique (see [21]).

Definition 1.7. The numbers λj(q) are called the Lyapunov exponents of the map f at
the regular point q.

It is easy to check the following properties:

λj(f(q)) = λj(q)

Dqf(Ej(q)) = Ej(f(q)).

Remark. If q is a regular point of f and x ∈ TqM , we have that

lim
k→+∞

1

k
log ‖Dqf

kx‖ = lim
k→−∞

1

k
log ‖Dqf

kx‖,

i.e. the limits in the future and in the past exist and coincide.

If q is regular, we put

λ(q,x) = lim
t→∞

1

n
log ‖Dqf

nx‖;
clearly, λ(q,x) = λj(q) for j such that x ∈ Ej(q).
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Let us denote with Mf (M) the set of all f -invariant Borel probability measures on M
(i.e. measures µ defined on the σ-algebra of Borel sets with µ(M) = 1).

Theorem 1.4 (Osedelec’s Multiplicative Ergodic Theorem). If M is compact, then the
set of regular points of a diffeomorphism f is a full-measure set with respect to any measure
µ ∈ Mf (M).

If q is a regular point, the spaces Ej(q) are asymptotically expanding or contracting
(depending on the sign of the associated Lyapunov exponent); then, in the case in which
some exponents are positive and some negative, the notion of regular point in some sense
generalizes the notion of hyperbolic point, taking account of the asymptotic behaviour of
the linearization of the dynamics. Osedelec’s Theorem says that, under some conditions, at
almost any point the dynamics has this behaviour.

Example. The Hyperbolic Automorphism of the Torus indeed possesses at any point a

positive and a negative Lyapunov exponent; they are λ+ = log µ+ = log
(

3+
√

5
2

)
and λ− =

log µ− = log
(

3−
√

5
2

)
.

The subspaces E±(x, y) relative to the Lyapunov exponents are in fact the subspaces

determined by the eigenvectors of the matrix

(
2 1
1 1

)
.

Remark. The Lyapunov exponents can also be defined for a smooth flow Φ : R × M → M :

(1.13) lim
t→+∞

1

t
log ‖Dqφ

tx‖ = λj(q) for every 0 6= x ∈ Ej(q), 1 ≤ j ≤ m;

all the results stated above allow also in this case.

2.4. The dynamical entropy. The Lyapunov exponents provide a measure of the in-
stability of a dynamical system. In this subsection we will expone another approach that
investigates it, focusing on the statistical behaviour of the orbits. To do that, we shall shift
to a probabilistic description of the dynamics.

Let µ be a measure on M ; we say that µ is an f -invariant probability measure on M if
µ(f−1(U)) = µ(U) for any measurable subset U ⊂ M , and µ(M) = 1. The triple (M, µ, f)
defines a (discrete-time) metric dynamical system.

Analogously, if Φ : R × M → M, Φ(t, ·) = φt(·), is a smooth flow on M such that the
measure µ on M is φt-invariant for any t ∈ R, then the triple (M, µ,Φ) defines a (continuous-
time) metric dynamical system.

Let us recall that the manifold M is the set of the states of system; the measure of a
measurable subset U of M denotes the probability of the state of the system of belonging to
U . Notice that the fact that f is measure-preserving takes account of the conservation of the
probability; in particular, Hamiltonian systems fit this rule with respect to Liouville measure
µ = σ, where σ is the symplectic form on the manifold.

Let P be a finite or countable measurable partition of M , i.e. P = {Pi}i where Pi is
µ-measurable for any i, µ(Pi ∩ Pj) = 0 for i 6= j and µ(M \ ∪iPi) = 0. The elements Pi are
called atoms of the partition.

The partition models the case in which the observer cannot know precisely the state
of the system at a certain time, but he can only know in which atom of the partition the
state is contained. Let us introduce the information function I : P → R defined as I(P ) =
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− log µ(P ), for P ∈ P: it measures the amount of information one gains about the system
when he knows that the state of the system is contained in P .

Then, let us give the following definition:

Definition 1.8. The entropy of the partition P is defined as

Hµ(P) = −
∑

i

µ(Pi) log µ(Pi),

where we put 0 log 0 := 0.

The entropy is then the average information that an observer can extract from the system
when he knows the present state of it, or, in other words, is the average ignorance of an
observer that can know the state of the system only by means of the partition P.

Let P, Q be two measurable partitions on M ; we define the refinement of P with Q as
the partition

P ∨ Q = {Pi ∩ Qj}Pi∈P, Qj∈Q.

We now define the joint partition Pn =
∨n

k=1 f−k(P), that is the refinement of P = {Pi}
with all the partitions Pk = f−k(P) given by Pk = {f−k(Pi)}.

The dynamical entropy associated to the metric dynamical system (M, f, µ) and the
partition P is defined as

(1.14) hµ(f, P) = lim
n→+∞

1

n
Hµ(Pn),

where Hµ(Pn) = −∑
i1,...,in

µ(Pi1 ∩ f−1(Pi2) ∩ · · · ∩ f−n+1(Pin)) log µ(Pi1 ∩ f−1(Pi2) ∩ · · · ∩
f−n+1(Pin)).

Proposition 1.1. The limit in (1.14) always exists (see [21]).

The entropy hµ(f, P) has the meaning of the average amount of information provided by
the knowledge of the present state and the asymptotic future. In other words, the value of the
dynamical entropy says how precisely the evolution of the system can be predicted when the
initial condition is known with the uncertainty given by the partition: if the system is well
predictable (for instance it is a periodic system), the dynamical entropy is zero; otherwise,
a positive value of the dynamical entropy says that the asymptotic evolution of the system
cannot be predicted.

Finally, we can define the measure-theoretic dynamical entropy:

Definition 1.9. The measure-theoretic (or Kolmogorov-Sinai) dynamical entropy of the
system (M, µ, f) is defined as

hµ(f) = sup
P

hµ(f, P),

where the sup is taken over all partitions of M that satisfies the properties above.

We just mention here that Kolmogorov-Sinai’s Theorem states that if a partition P

generates the topology of M then

hµ(f, P) = hµ(f).

This Theorem provides a valid tool to compute the dynamical entropy hµ(f) of a dynamical
system.
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Remark. If the dynamical system is given by a smooth flow Φ : R × M → M , where M
and µ are respectively a smooth manifold and a φt-invariant measure on M as above, the
dynamical entropy is defined by hµ(Φ) = hµ(φ1).

Let us now state a result that shows the close relation between the Lyapunov exponents
and the dynamical entropy of a dynamical system. First of all, define, for any regular point
q of f

(1.15) χ(q) =
∑

λj(q)≥0

λj(q) dimEj(q);

if all the Lyapunov exponents are negative at q, we put χ(q) = 0. Then, we have the following
result:

Theorem 1.5 (Pesin’s Formula). Let us recall that a function f is Hölder C1 if the
function itself and its first derivative are Hölder continuous. Assume then that f is Hölder
C1 and µ is an f -invariant probability measure on M which is absolutely continuous with
respect to the Lebesgue measure of M . Then

(1.16) hµ(f) =

∫

M
χ dµ.

We saw that when studying metric dynamical systems we deal with averages of functions
on the state space. The following theorem is a fundamental result that, under some conditions
on a function, guarantees the existence of its time average and relates its space and time
averages; we remark that it allows also for continuous-time dynamical systems:

Theorem 1.6 (Birkhoff’s Ergodic Theorem). Let (M, µ, f) be a metric dynamical system,
and g : M → M a function on M . We have the following facts:

• if g ∈ L1(M), the limit

lim
n→+∞

1

n

n−1∑

k=0

g(fk(q))

exists µ-a.e. on M ;
• if g ∈ Lp(M), 1 ≤ p < ∞, the function

g̃(q) = lim
n→+∞

1

n

n−1∑

k=0

g(fk(q))

is in Lp(M); 1
n

∑n−1
k=0 g ◦ fk converges in the Lp norm to g̃ and we have that g̃(q) =

g̃(f(q)) a.e. on M ; g̃ is the time average of g;
• for every g ∈ Lp(M) we have that

∫

M
g̃ dµ =

∫

M
g dµ;

∫
M g dµ is the space average of g over M .
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Remark. If f is invertible, then Birkhoff Ergodic Theorem applies to f−1 and implies that
the time-average in the past

g̃−(q) = lim
n→+∞

1

n

n−1∑

k=0

g(f−k(q))

exists µ-a.e. on M . Moreover, the time average in the future and in the past coincide:

(1.17) g̃−(q) = g̃(q) µ-a.e. on M.

3. Optimal Control Theory

Let M be a smooth manifold and U a set. A control system on M is a family of dynamical
systems

(1.18) q̇ = fu(q),

q ∈ M , parametrized by some parameter u ∈ U , where fu(q) is for any u a vector field on M .
The parameter u is called control parameter (or simply control), the set U set of admissible
controls.

To ensure the well-posedness of equation (1.18), we assume that fu(q) is continuous with
respect to the pair (q, u) and smooth with respect to q; moreover, we assume that in any local

coordinates the function (q, u) 7→ ∂fu(q)
∂q is continuous on M × U .

These assumptions assure the existence of a Carathéodory solution to (1.18); these solu-
tions are called trajectories of the system.

A control problem is given by a control system as (1.18) and a set U of admissible control,
where the value of u is changed in time in order to influence the evolution of the dynamical
system. We will take in consideration functions t 7→ u(t) ∈ U which are measurable and
locally bounded; such functions are called admissible controls. A pair (q(·), u(·)) such that
q(·) satisfies equation (1.18) is called admissible pair.

In the case of the so-called optimal control, we are given a smooth function ϕ : M×U → R

and our aim is to determine the admissible control ũ(·) such that the trajectory q̃(t) satisfies
equation (1.18) and the functional

(1.19) J t1
t0

[(q(·), u(·))] =

∫ t1

t0

ϕ(q(t), u(t)) dt,

attains at (q̃(·), ũ(·)) its minimum among all the admissible pairs (q(·), u(·)) that satisfy some
prescribed boundary conditions; usually they consist in fixing the endpoints of the trajectory:

(1.20) q(t0) = q0, q(t1) = q1,

q0, q1 ∈ M fixed.
The solution u of an optimal control problem is called optimal control, and the corre-

sponding trajectory optimal trajectory.
The Pontryagin Maximum Principle (PMP) provides a necessary condition for a trajectory

to be optimal, establishing a relation between the optimal trajectories and the solutions of a
certain Hamiltonian system defined on the cotangent bundle T ∗M .

In fact, to any optimal control problem we can associate a family of Hamiltonian functions

hν
u(λ) = 〈λ, fu(q)〉 + νϕ(q, u)

where λ ∈ T ∗M and ν is a real number.
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The Pontryagin Maximum Principle reads as follows:

Theorem 1.7 (PMP). Let (q̃(t), ũ(t)), t ∈ [t0, t1], be an admissible pair for the problem

(1.21) q̇ = fu(q), J t1
t0

→ min, q ∈ M, u ∈ U ;

then ũ(t) is an optimal control, and q̃(t) is an optimal trajectory, only if there exists a non-
trivial pair

(ν, λ(t)) 6= 0 λ(t) ∈ T ∗
q̃(t)M, ν ∈ R,

such that

λ̇(t) = ~hν
ũ(t)(λ(t))(1.22)

hν
ũ(t)(λ(t)) = max

u∈U
hν

u(λ(t)) for a.e. t ∈ [t0, t1](1.23)

ν ≤ 0.(1.24)

The Hamiltonian hν
u(λ(t)) is homogeneous in the pair (ν, λ(t)), that can be then normal-

ized; there are two distinct possibilities:

• if ν 6= 0, we put ν = −1; the curve λ(t) is called in this case normal extremal;
• if ν = 0, the curve λ(t) is called abnormal extremal.

The PMP states that a necessary condition for a trajectory q(t) to be optimal is to be
the projection of a solution of the Hamiltonian dynamical system (1.22); actually, PMP is
the generalization of the Least Action Principle of classical mechanics [13].

Let us now define (where possible) the maximized Hamiltonian of the optimal control
problem

(1.25) H(λ) = max
u∈U

hν
u(λ);

the following proposition relates the solutions of the dynamical system defined by the maxi-
mized Hamiltonian with the extremal of the optimal control problem (1.21): in fact, it asserts
that, under some regularity conditions on H, they coincide:

Proposition 1.2. Assume that the maximized Hamiltonian defined as (1.25) is defined
and C2 on T ∗M \ {λ = 0}.

If a pair (ũ(t), λ(t)) satisfies conditions (1.22)-(1.23), then

(1.26) λ̇(t) = ~H(λ(t));

conversely, if a Lipschitzian curve λ(t) 6= 0 is a solution of the Hamiltonian system (1.26),
then there exists an admissible control ũ(t) such that the pair (ũ(t), λ(t)) satisfies conditions
(1.22)-(1.23).

During this thesis, we are considering only normal extremals. For such extremals, we have
also this sufficient condition for optimality:

Theorem 1.8. Assume that the maximized Hamiltonian (1.25) is defined and smooth on

T ∗M , and that the Hamiltonian vector field ~H is complete.

Let L0 be a Lagrangian submanifold in T ∗M , and let Lt = et ~H(L0) be its image under the
Hamiltonian flow at time t.

Let π : T ∗M → M be the canonical projection, and assume that its restriction π|Lt
is a

diffeomorphism for any t ∈ [t0, t1]. Then for any λ0 ∈ L0 the normal extremal trajectory

q̃(t) = π ◦ et ~H(λ0), t ∈ [t0, t1],
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realizes a strict minimum of the cost functional (1.19) among all the admissible trajectories
q(t), t ∈ [t0, t1], of the system (1.18) with the same boundary conditions:

q(t0) = q̃(t0) q(t1) = q̃(t1).





CHAPTER 2

The generalized curvature

Let (M, g) be an n-dimensional Riemannian manifold, and let us consider the classical
length minimization problem on it: given two points q0, q1 ∈ M , we want to find the curve
γ(·) ∈ M with minimal length among all those that pass through both points q0 and q1.

This problem can be formulated as an optimal control problem in this way:

(2.1) min
γ

JT
0 (γ(·)) = min

γ

∫ T

0

( n∑

i=1

u2
i (t)

)1/2
dt

with

γ̇(t) =
n∑

i=1

ui(t)fi(q),

{
γ(0) = q0

γ(T ) = q1
,

where {fi(q)}n
i=1 is a smooth orthonormal frame in TqM .

It is well known that locally any geodesic is a minimizing curve, i.e. it provides a (local)
solution to problem (2.1), but that this optimality fails in presence of conjugate points: if γ
is a geodesic segment from q0 to q1 that has an interior conjugate point q̂, then γ is no more
minimizing after q̂. The sectional curvature is a metric invariant of the manifold (M, g) that
provides lots of information about the behaviour of the geodesics on it, and, in particular, on
the distribution of their conjugate points; we just recall that if all the sectional curvatures of a
manifold are negative, then no point of the manifold has conjugate points along the geodesics.

In [6], Agrachev and Gamkrelidze introduced the notion of a curvature tensor along the
extremals of an optimal control problem; this theory has been further developed by Agrachev,
Zelenko and Chtcherbakova in [8], [9], [2] and [10]. This tensor is called generalized curva-
ture and is a true generalization of the sectional curvature of Riemannian Geometry. It is
really remarkable that this invariant provides important information about the behaviour of
the extremals of an optimal control problem, without the necessity to solve any differential
equation; in particular, this curvature satisfies a generalized version of Conjugate Point Com-
parison Theorem; for the standard version of Conjugate Point Comparison Theorem see, for
instance, the textbook [20].

More generally, the generalized curvature is an invariant associated to a pair (splitting of
the tangent bundle, vector field) on a smooth manifold M . In this chapter we will introduce
this object within this frame, restricting ourself to the case (Lagrangian splitting, Hamiltonian
vector field).

First of all, in Section 1 we will introduce some basics facts about curves in the Lagrange
Grassmannian of the symplectic space Tz(T

∗M), z ∈ M .
The definition of the generalized curvature is the main topic of Section 2.
Section 3 is devoted to the description of two natural Lagrangian splittings of the cotan-

gent bundle. We will also give some examples of explicit computations of the generalized

25
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curvature for some basics systems, in order to highlight the connection between the gener-
alized curvature and the Riemannian curvature in a Riemannian frame, and between the
curvature and the Hamiltonian of the system in a Euclidean frame.

In Section 4 we will treat the case in which the Hamiltonian systems admits a first integral
of the motion. In this case, it is well known that the dynamics reduces on a sublevel of the
first integral: due to this fact, a new formulation for the generalized curvature is needed,
in order to take account of the reduction, to deal with an object that carries much more
information on the system than the non-reduced generalized curvature.

Finally, in Section 5 we will present the notion of canonical moving frame, which is a
family of Darboux bases of a symplectic space Σ that moves accordingly to a curve in the
Lagrange Grassmannian of Σ. We will underline the relation between these frames and the
generalized curvature.

1. Curves in the Lagrange Grassmannian

Let Σ be a symplectic space with symplectic form σ, and consider the curve t 7→ Λ(t) in
the Lagrange Grassmannian Ln(Σ). We recall form Section 1 of preceding Chapter thatany
∆ ∈ Ln(Σ) gives a coordinate chart in the Lagrange Grassmannian. We can then write Λ(t)
in coordinates in the following way: fix ∆ ∈ Ln(Σ) such that Λ(t) is transversal to ∆ for
any t (we will write Λ(t) ∈ ∆⋔ for any t), which means that the curve stays for any t in the
coordinate chart defined by ∆; choose a Darboux basis {e1, . . . , en, f1, . . . , fn} in Σ such that
∆ = span{f1, . . . , fn}: then there is a family of symmetric n × n matrices St such that we
can do the identification Λ(t) = {(x, Stx) : x ∈ R

n} for any t.
Let TΛ(0)(Ln(Σ)) denote the tangent space at the point Λ(0) to Ln(Σ); we can associate

in a true intrinsic way to the vector d
dtΛ(t)|t=0 ∈ TΛ(0)(Ln(Σ)) a quadratic form on Λ(0),

that we will denote with Λ̇0. The definition is as follows: for any x ∈ Λ(0), we put Λ̇0(x) =

σ(λ̇(0), λ(0)), where λ(t) is a curve in Σ with λ(t) ∈ Λ(t) for any t and λ(0) = x.

The quadratic form is well defined, i.e. Λ̇0(x) depends only on d
dtΛ(t)|t=0 and x; since

the definition of Λ̇0 is intrinsic, we will show this fact in coordinates. Let then Λ(t) =
{(x, Stx) : x ∈ R

n}, and x = (x, S0x), x ∈ R
n; consider a curve λ(t) = (x(t), Stx(t)), with

x(0) = x. Then σ(λ̇(0), λ(0)) = 〈ẋ(0), S0x(0)〉n − 〈Ṡ0x(0) + S0ẋ(0), x(0)〉n = −〈Ṡ0x,x〉n, by
symmetricity of St; here 〈·, ·〉n denotes the scalar product on R

n. Then actually the result
does not depend on the particular choice of the curve λ(t).

Definition 2.1. We say that a curve t 7→ Λ(t) in Ln(Σ) is regular at the point τ if the

quadratic form Λ̇τ is nondegenerate; we say that it is monotone increasing (decreasing) if the
associated quadratic form is positive (negative) definite.

Lemma 2.1. If the curve t 7→ Λ(t) is regular at the point τ , then Λ(t) ∈ Λ(τ)⋔ for any
t 6= τ close to τ .

Proof. We will prove it in coordinates. Λ(t) ∩ Λ(τ) 6= 0 only if det(St − Sτ ) = 0; since

det Ṡτ 6= 0, there is a small neighbourhood of τ such that the condition above allows. ¤

To any quadratic form on a vector space it is uniquely associated a self-adjoint linear
operator from the vector space to its dual; this means that there is a unique self-adjoint

linear operator Λ̇0 : Λ(0) → Λ(0)∗ such that for any x ∈ Λ(0) we have Λ̇0(x) = 〈Λ̇0x,x〉,
where 〈·, ·〉 denotes the dual action of Λ(0)∗ on Λ(0).
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In this thesis we are interested in studying the properties of Hamiltonian systems defined
on the cotangent bundle T ∗M of a smooth manifold M ; to such systems we can associate a
particular kind of curve in the Lagrange Grassmannian, that plays for Hamiltonian trajectories
the role played for geodesics by the Jacobi fields; such a curve is called a Jacobi curve, and
the definition is given below.

Let then M be a smooth manifold, let σ be the canonical symplectic structure on T ∗M ,
and h : T ∗M → R a smooth Hamiltonian function. Let Λ = {Λz}z∈M be a Lagrangian vector
distribution on M ; we define the following curve:

Definition 2.2. The curve in the Lagrange Grassmannian of Tz(T
∗M) defined by

(2.2) Λz(t) := e−t~h
∗Λet~h(z)

is called the Jacobi curve of the curve z 7→ et~h(z) attached at the point z ∈ T ∗M .

The Jacobi curve is defined by the push-forward (with negative time) of the vertical

distribution along the integral curves of ~h. Since the distribution is Lagrangian and the
vector field is Hamiltonian, the Jacobi curve lies in Ln(Tz(T

∗M)).
Directly from its definition it follows that

Λz(t) = e−t~h
∗Λet~h(z)

(0).

Remark. A natural choice for the Lagrangian distribution is the so-called vertical distri-
bution {Tz(T

∗
π(z)M)}z∈T ∗M ; notice that this distribution is integrable, the integral manifolds

being constitute by the vertical fibres T ∗
π(z)M, z ∈ T ∗M . This leaves actually foliate the

manifold T ∗M .

Remark. We will also use this alternative definition: we say that the Hamiltonian h is regular
(monotone) with respect to a distribution Λ if the Jacobi curve (2.2) is regular (monotone)
for any t.

The following proposition relates the properties of regularity of the Jacobi curve (con-
structed by means of the vertical distribution) with the characteristics of the Hamiltonian
h.

Proposition 2.1. Let Πh
z be the map Πh

z : T ∗
π(z)M → Tπ(z)M given by Πh

z (z′) = π∗(~h(z′));

then the Jacobi curve defined above is regular if and only if Πh
z is a submersion.

Proof. We will prove it in coordinates: let T ∗M = {z = (p, q) : p, q ∈ R
n}, with π : z =

(p, q) 7→ q; then, Tz(T
∗
π(z)M) = span{∂p1 , . . . , ∂pn}. Let ~h(p, q) =

∑n
i=1 ai∂pi

+ bi∂qi
.

In coordinates, the action of Πh
z is Πh

z (p′, q′) =
∑n

i=1 bi(p
′, q′)∂qi

, hence the map is a

submersion if and only if the matrix ( ∂bi

∂pj
)i,j is nondegenerate.

Then, for a vertical vector x =
∑n

i=1 xi∂pi
, we have that Λ̇z(0)(x) =

∑n
i,j=1 xixj

∂bi

∂pj
, hence

it is nondegenerate if and only if the matrix ( ∂bi

∂pj
)i,j is.

In fact, let us recall the basic formula

(2.3)
d

dt

(
e−t~h

∗ζ
)

= e−t~h
∗[~h, ζ]

for any vector field ζ on T ∗M .
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Then, if λ(t) is a curve in Jz(t) such that λ(0) = x, we have that λ̇(0) = [~h, λ(t)]|t=0 and

then Λ̇z(0)(x) =
∑n

i,j=1 xixj
∂bi

∂pj
. ¤

Remark. All the construction above can be developed also in a non-symplectic setting (see
[6]); in this case, we will consider an involutive distribution of rank n, namely a distribution
whose spaces are tangent to the leaves of a smooth foliation of rank n of the manifold M ,
and a smooth vector field ζ on M . The Jacobi curve is defined as

Jz(t) := e−tζ
∗E|zt , zt = etζ(z),

where E|z denotes the subspace of the distribution contained in TzM . We remark that all
the results stated above allow also in this non-symplectic case, except of course the results
concerning Lagrangianity of the Jacobi curve.

2. The generalized curvature

Let {Πz}z∈T ∗M be a Lagrangian distribution on T ∗M transversal to {Λz}z, namely Λz ∩
Πz = 0 for any z; then, the two distributions form a Lagrangian splitting of the tangent
bundle T (T ∗M) = Λ ⊕ Π. Let h be a Hamiltonian function on T ∗M .

Fix some z0 ∈ T ∗M and put zt = et~h(z0); call, for any z0 ∈ T ∗M , Λz0(t) and Πz0(t) the

two Jacobi curves defined by the distributions, Λz0(t) = e−t~h∗Λzt and Πz0(t) = e−t~h∗Πzt . We
assume that the curve Λz0(t) is regular.

Let us notice that the two curves are transversal at any time: Λz0(t)∩Πz0(t) = 0 for any
t and for any z0.

Due to the isomorphisms Λz0(t)
∗ ≃ Tz0(T

∗M)/Λz0(t) and Tz0(T
∗M)/Λz0(t) ≃ Πz0(t),

we can view the operator Λ̇z0(t) as a linear operator from Λz0(t) to Πz0(t) (and, conversely,

Π̇z0(t) as a linear operator from Πz0(t) to Λz0(t)). This fact permits us to endow T ∗M with
a Riemannian structure, as the following Proposition states:

Proposition 2.2. Let Tz(T
∗M) = Λz ⊕ Πz, z ∈ T ∗M be a Lagrangian splitting, and

assume that the Jacobi curve Λz(t) is monotone increasing. Then we can define a scalar
product on Tz(T

∗M); in particular, Λz and Πz are orthogonal with respect to this scalar
product.

Proof. We just define, for any x ∈ Λz and for any y ∈ Πz,

〈x,x〉Λ = |Λ̇z(0)(x)|, 〈y,y〉Λ = |Λ̇z(0)
(
(Λ̇z0(0))−1y

)
|, 〈x,y〉Λ = 0.

¤

We can now define the operator

Definition 2.3. The operator RΛ,Π
z0 (t) ∈ gl(Λz0(t)) defined as

(2.4) RΛ,Π
z0

(t) := −Π̇z0(t) ◦ Λ̇z0(t)

is called the generalized curvature associated to the curves Λz0(t) and Πz0(t) at the time t.

Since the definition is intrinsic, it allows that

RΛ,Π
z0

(t) = e−t~h
∗R

Λ,Π
zt

(0)et~h
∗|Λz0 (t).

This implies that the knowledge of RΛ,Π
z (0) for any z along a certain trajectory is equivalent

to the knowledge of RΛ,Π
z0 (t) for any t. Then we will do the following definition:
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Definition 2.4. The operator Rh
z ∈ gl(Λz(0)) defined as

(2.5) Rh
z := RΛ,Π

z (0)

is called the generalized curvature of the Hamiltonian vector field ~h associated to the splitting
Λ ⊕ Π.

The following proposition is a valid tool to make computations:

Proposition 2.3. Let X be a section of Λ. For any z ∈ T ∗M we have

Rh
zX(z) = −[~h, [~h,X]Π]Λ(z),

where for any vector field Y on T ∗M we have Y = YΛ + YΠ, where YΛ is a section of Λ and
YΠ is a section of Π.

Proof. Let us recall that by definition for any x ∈ Λz0

Λ̇z0(0)(x) = 〈Λ̇z0(0)x,x〉
= σ(λ̇(0), λ(0)),

where λ(t) is defined as in Section 1. Then we can conclude that Λ̇z0(0)(x) = σ(λ̇(0), ·), and

hence Λ̇z0(0)(x) can be identified with [λ̇(0)] (where [·] denotes the equivalence class of vectors

of Tz0(T
∗M) in Tz0(T

∗M)/Λz0); we will chose the representative of [λ̇(0)] that lies in Πz0 .
Then we can put

Λ̇z0(0)(x) = [~h, λ(t)]Πz0
|t=0.

The same argument implies that

Π̇z0(0) ◦ Λ̇z0(0) = [~h, [~h, λ(t)]Πz0
]Λz0

|t=0

and hence the thesis. ¤

We can conclude with the following property:

Proposition 2.4. The generalized curvature Rh
z is a self-adjoint operator with respect to

the scalar product 〈·, ·〉Λ̇
3. Particular splittings

There are many different choices for the splitting Λ ⊕ Π; in this section, we assume
that a distribution Λ ⊂ T (T ∗M) is given, and we describe two quite natural choices for the

complement Π: the first one depends on the Hamiltonian field ~h, the second one is defined
by a symmetric linear connection on the the manifold M .

3.1. The canonical splitting. Let Λz(t) be the Jacobi curve associated with the dis-
tribution Λ. Let ∆ be a Lagrangian subspace of Tz(T

∗M) transversal to Λz(0), and denote
with Λz(0)⋔ the set of subspaces of Tz(T

∗M) transversal to Λz(0); call π∆Λz(0) the projector
of Tz(T

∗M) onto Λz(0) and parallel to ∆; then it allows that

π∆Λz(0)|Λz(0) = id π∆Λz(0)|∆ = 0.

Let us now notice that the set {π∆Λz(0) : ∆ ∈ Λz(0)⋔} has the structure of an affine sub-

space of gl(Tz(T
∗M)); to prove this, notice that, for ∆1, ∆2 ∈ Λz(0)⋔, the linear combination

απ∆1Λz(0) + (1 − α)π∆2Λz(0) α ∈ R
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equals the identity on Λ(0) and vanishes on its kernel; then, if we put ∆3 := ker(απ∆1Λz(0) +

(1−α)π∆2Λz(0)), we have that ∆3 ∈ Λz(0)⋔, and then απ∆1Λz(0) +(1−α)π∆2Λz(0) = π∆3Λz(0).
Let us now recall that an affine space A over a linear space V is a set endowed with a

subtraction operation (u, v) ∈ A × A 7→ u − v ∈ V that satisfies the following axioms:

(1) For any u, v, w ∈ A we have that (u − w) + (w − v) = u − v ∈ V ;
(2) For any v ∈ A and for any x ∈ L there exists a unique u ∈ A such that u − v = x.

Then, in the space {π∆Λz(0) : ∆ ∈ Λz(0)⋔} it is defined a subtraction that gives values in

gl(Tz(T
∗M). In fact, for any ∆1, ∆2 ∈ Λz(0)⋔ and for any x ∈ Λz(0), we have that

π∆1Λz(0)(x) − π∆2Λz(0)(x) = 0;

this means that actually {π∆Λz(0) : ∆ ∈ Λz(0)⋔} is constructed over the subspace N(Λz(0)) =
{O : Tz(T

∗M) → Λz(0) : O|Λz(0) = 0} of gl(Tz(T
∗M) of the linear operators from Tz(T

∗M))
to Λz(0) vanishing on Λz(0).

Let us now fix some τ and consider the curve Λz(·); by regularity of the curve, Λz(t) is
transversal to Λz(τ) for t in a punctured neighbourhood of τ . Let us consider the operator-
valued function t 7→ πΛz(t)Λz(τ), and let us say that it has a pole at t = τ if the function

t 7→ πΛz(t)Λz(τ) − π∆Λz(τ) has a pole, as a function in N(Λz(0)), for some ∆ ∈ Λz(τ)⋔.

Let us compute the Laurent expansion πΛz(t)Λz(τ) = π0(τ) +
∑

i6=0 πi(τ)(t− τ)i; it is easy

to see that actually πi(τ) ∈ N(Λz(τ)) for any i 6= 0, and then π0(τ) shall necessarily belong

to the affine space. Then, there exists a unique ∆ ∈ Λz(0)⋔ such that π0(τ) = π∆Λz(τ); we
will denote this space by Λ◦

z(τ) and we will call it the derivative element to Λz(τ). By the
axioms of the affine spaces, this elements is uniquely defined.

We can repeat this procedure for any τ , and then define the derivative curve t 7→ Λ◦
z(t).

Since the definition of this curve is intrinsic, it allows:

(2.6) Λ◦
z(t) = e−t~h

∗Λ
◦
et~h(z)

(0).

Easy computations (see [2]) show that, if we put local coordinates on Tz(T
∗M) in such a

way that Λz(t) = {(x, Stx) : x ∈ R
n} with S0 = 0, then in coordinates the derivative curve

reads Λ◦
z(t) = {(Aty, y + StAty) : y ∈ R

n}, where At = −1
2 Ṡ−1

t S̈tṠ
−1
t . This implies that if the

Jacobi curve is regular its derivative curve is smooth.
Moreover, it is easy to prove that the space {π∆Λz(0) : ∆ ∈ Λz(0)⋔ ∩Ln(Tz(T

∗M))} is an

affine subspace of {π∆Λz(0) : ∆ ∈ Λz(0)⋔} characterized by the relation

∆ ∈ Λz(0)⋔ ∩ Ln(Tz(T
∗M)) ⇔ σ(π∆Λz(0), ·) + σ(·, π∆Λz(0)) = σ(·, ·);

then, since πΛz(t)Λz(τ) belongs to this last subspace, also does π0(τ), and this implies that
Λ◦

z(τ) is Lagrangian.

Definition 2.5. The splitting Tz(T
∗M) = Λz(0) ⊕ Λ◦

z(0) given by a curve and its deriv-
ative curve is called the canonical splitting.

We remark here that, in these local coordinates such that Λz(t) = {(x, Stx) : x ∈ R
n}

and Λ◦
z(t) = {(Aty, y + StAty) : y ∈ R

n}, with At as above, the generalized curvature has the
following coordinate expression:

R(t) =
1

2
Ṡ−1

t

...
S t −

3

4
(Ṡ−1

t S̈t)
2.
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Notice that the formula above is the matrix version of the Schwartzian derivative, whose
1-dimensional formulation is the following:

S(St) =
1

2
Ṡ−1

t

...
S t −

3

4
(Ṡ−1

t S̈t)
2.

Remark. The sectional curvature in Riemannian geometry satisfies a result called Conju-
gate Point Comparison Theorem (see [20]), that relates the value of the curvature with the
existence and the position of conjugate points of the Jacobi fields. Here we remark that the
generalized curvature satisfies an analogous statement, that we report without proof (it can
be found in [6], [2]).

Let us say that the numbers t0, t1 are conjugate parameters for the curve Λz(·) if Λz(t0)∩
Λz(t1) 6= 0. Then we have the following result:

Theorem 2.1. Let z ∈ T ∗M and let Λz(t) be a curve in Ln(Tz(T
∗M)), monotone increas-

ing for any t > 0; let RΛ,Λ◦

z (t) be the curvature operator associated to the canonical splitting
Λ ⊕ Λ◦. Then:

• If RΛ,Λ◦

z (t) ≤ C id for some constant C > 0, for any pair of conjugate parameter
t0, t1 we have that |t0 − t1| ≥ π√

C
. In particular, if the curvature is negative definite

for any t, Λz(·) does not possess conjugate parameters.

• If tr(RΛ,Λ◦

z (t)) ≥ nC for some C > 0, for any arbitrary t0 ≤ t the interval [t, t+ π√
C

]

contains a point conjugate to t0.

3.2. The splitting associated to a linear connection. A linear connection on M
defines a parallel transport of vectors on M along curves in M and, by duality, it defines
also a parallel transport of covectors of on M . This parallel transport defines then a lift to
T (T ∗M) of vectors on M . This lifts build a vector distribution on T ∗M which is at any point
transversal to the vertical distribution Tz(T

∗
π(z)M) (where π denotes the canonical projection

of T ∗M on the base manifold); the two distribution constitute a splitting of T (T ∗M). Let
us mention moreover that this distribution is Lagrangian if and only if the connection is
torsion-free.

Examples. Let us now consider the Levi-Civita connection on a Riemannian manifold (M, g)
(g is the metric tensor); then, the adjoint connection to the Levi-Civita connection defines
a Lagrangian splitting on T (T ∗M). Actually, this Lagrangian splitting coincides with the
canonical splitting defined by the Hamiltonians of natural mechanical systems on the manifold
(M, g), namely Hamiltonians of the form

(2.7) h(z) =
1

2
〈z, g−1(π(z))z〉 + U(π(z)),

where U is a smooth function on M , and corresponds to the potential energy of a mechanical
system. In this case, the generalized curvature is given by

Rh
zx = R(z,x)z + Dx(∇U),

where z ∈ TM is the dual to z via the metric g, R denotes the Riemannian curvature, and
Dx is the covariant derivative along x.

In the Euclidean case, M = R
n with the flat metric, we obtain:

h(p, q) =
1

2
|p|2 + U(q), Rh

(p,q) =
∂2U

∂q2
.
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4. Reduction by a first integral

Let us now assume that the dynamical systems defined by the Hamiltonian ~h admits a
first integral, i.e. that there is a smooth function g : T ∗M → R such that {h, g} = 0, where

{·, ·} denotes the Poisson brackets, defined by {h, g} = σ(~h,~g). In this case, it is well known

that ~g is invariant with respect to the flow et~h∗ (and vice versa), and that the flow generated

by ~h preserves the sublevels of the function g; this implies that any trajectory{et~h(z) : t ∈ R}
belong to a certain sublevel g−1(c) for any t.

Then, in presence of a first integral it is useful to restrict the analysis of the motion on
its sublevels g−1(c); let us notice that, if z ∈ g−1(c), then Tz(g

−1(c)) = ker(dzg). It is easy
to see that the symplectic form restricted to the tangent space to g−1(c) vanishes identically
when applied to ~g; then, ker(dzg)/~g(z) is a symplectic space with respect to the symplectic
form σ|ker(dzg)/~g(z).

Let us remark that any Hamiltonian system admits at least one first integral, which is
the Hamiltonian h.

Let now Λ be a Lagrangian distribution on M such that the curve Λz(t) defined as in
(2.2) is regular and that ~g(z) /∈ Λz for any z. The curve defined as

(2.8) Jg
z (t) := e−t~h

∗(Λzt ∩ ker(dztg) + span{~g(zt)})
is a curve in Ln(Tz(T

∗M)) and is called the g-reduction of the curve Jz(t). Since it contains
~g(z) at any time, it is not regular, hence we cannot define the curvature associated to it.
Then, we define the curve

(2.9) Jg
z (t) := Jg

z (t)/span{~g(z)},
which is a Lagrangian curve in the (n − 1)-dimensional space ker(dztg)/span{~g(zt)}. If this
Jacobi curve is regular, then the curvature operator R

Jg
z
(t) of the curve (2.9) with respect to

the canonical splitting is well defined on Jg
z (t).

Let ψz : Tz(T
∗M) → Tz(T

∗M)/~g(z) denote the projection onto the factor space. Then
we give the following definition:

Definition 2.6. The operator R̂Jg
z
(t) on Jg

z (t) defined as

(2.10) R̂Jg
z
(t) := (ψ|Jz(t)∩ker(dzg))

−1 ◦ R
Jg

z
(t) ◦ ψ

is called the curvature operator of the g-reduction Jg
z at time t.

The operator R̂h,g
z on Jg

z (0) defined as

R̂h,g
z := R̂Jg

z
(0)

is called the reduced curvature of the Hamiltonian vector field ~h at the point z ∈ T ∗M .

Examples. Let (M, g) be a Riemannian manifold, and let us consider the Hamiltonian (2.7)
of a mechanical system on M ; the generalized curvature of the h-reduction is

R̂h,h
z (t)x = Rh

zx +
3〈∇π(z)U,x〉h

2(h(z) − U(π(z)))
(∇π(z)U, 0)T ;

notice that in absence of a “potential energy” the reduction by h has no effect on the gener-
alized curvature.
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In the Euclidean case, we have

R̂h,h
(p,q) =

∂2U

∂q2
+

3

|p|2 (∇qU, 0) ⊗ (∇qU, 0)T .

5. The canonical moving frame

Let Σ be a symplectic space; an assignment t 7→ {ε1(t), . . . , ε2n(t)} for any t of a basis
of Σ is called a moving frame; if Λ(·) is a curve in Σ, it would be useful to find a particular
choice for the family {ε1(t), . . . , ε2n(t)} such that for any t Λ(t) = span{ε1(t), . . . , εn(t)}; the
possibility of this choice and some related properties are the topic of this last section.

We will restrict to the case of Jacobi curves on a smooth manifold. The first Lemma deals
with a generic pair of transversal Lagrangian curves.

Lemma 2.2. Let Λz(·) and Πz(·) be two transversal Lagrangian curves in Tz(T
∗M), and

assume that Λz(·) is regular; let {ε1, . . . , εn} be a basis of Λz(0). Then there exists a unique
way to choose a family {e1(t), . . . , en(t), f1(t), . . . , fn(t)} of Darboux bases of Tz(T

∗M) such
that ei(0) = εi, i = 1, . . . , n, {e1(t), . . . , en(t)} is a basis for Λz(t) for any t and ėi(t) ∈
Πz(t), i = 1, . . . , n, for any t.

Sketch of the proof. Let {ẽ1(t), . . . , ẽn(t)} be a basis of Λz(t) such that ẽi(0) = εi for

any i = 1, . . . , n; we can find for any t a complement {f̃ i(t)}n
i=1 of it in such a way that

{ẽi(t), f̃ i(t)}n
i=1 is a Darboux basis of Tz(T

∗M).

Then, we apply a symplectic transformation {ẽi(t), f̃ i(t)}n
i=1 7→ {ei(t), f i(t)}n

i=1; a proper
choice of this map realizes the thesis of the lemma. ¤

In the case in which the complement Πz(·) is the derivative curve of Λz(·), we have the
following result:

Proposition 2.5. Under the hypotheses of Lemma 2.2, let Πz(·) = Λ◦
z(·). Then there

exist two symmetric n × n matrices ρ and r(t) such that

(2.11) ėi(t) =

n∑

j=1

ρijfj(t), ḟ i(t) =

n∑

j=1

rij(t)ej(t), i = 1, . . . , n.

Notice that the matrix ρ is constant.

The proof is straightforward and consists in straight computations. We do not write it here.

Remark. Let R(t) = {Rij(t)}n
i,j=1 denote the representation of the curvature RΛ,Λ◦

z (t) with

respect to the basis {e1(t), . . . , en(t)}. Then, by straightforward application of the definition
it can be proved that

R(t) = −ρr(t).

Moreover, it can be chosen ρ = id. With this choice, we have that R(t) = −r(t) and that
ėi(t) = f i(t), i = 1, . . . , n for any t, and the vectors ei(t) satisfy the following equation:

(2.12) ëi(t) +

n∑

j=1

Rij(t)e
j(t) = 0, i = 1, . . . , n.





CHAPTER 3

Dynamical entropy of Hamiltonian flows

Riemannian manifolds of negative curvature have been widely studied for their interesting
features: in particular, one of the most evident is the exponential divergence of geodesics. It
is then natural to focus the attention on the properties of these curves, studying the geodesic
flow and the Jacobi fields.

If (M, g) is a Riemannian manifold, the geodesic flow can be synthetically defined as the
flow in the unit tangent bundle SM = {v ∈ TM : ‖v‖ = 1} generated by the Lagrangian

L(q, v) =
1

2
gq(v, v), q ∈ M, v ∈ SqM,

or, more intuitively, given a vector v ∈ SqM , the geodesic flow is the flow that for any t ∈ R

maps

v 7→ γ̇v(t),

where γv(·) is the geodesic with γv(0) = q, γ̇v(0) = v.
It is well known (see for instance [11]) that the geodesic flow on closed Riemannian

manifolds of negative curvature exhibits a hyperbolic behaviour; moreover, geodesic flows
on compact manifolds of negative sectional curvature are Anosov flows (that is, the whole
manifold is a hyperbolic set) (see [13], [18]).

Such dynamical systems have indeed positive definite dynamical entropies; an interesting
problem is then to find an estimate for its value, knowing the curvature of the system. Osser-
mann and Sarnak did this in [22], and the result has been further generalized by Ballmann
and Wojtkowski in [15]:

Theorem 3.1 (Ballmann-Wojtkowski). Let M be a compact Riemannian manifold with
nonpositive sectional curvature, and denote with R the curvature tensor on M . Then for any
q ∈ M and all unit vectors v ∈ TqM , K(v) := R(·, v)v is a nonpositive symmetric operator
on TqM . Then

(3.1) hµ ≥
∫

SM
tr

√
−K(v) dµ(v),

where hµ is the measure-theoretic entropy of the geodesic flow on M , SM the unit tangent
bundle on M and µ denotes the normalized Liouville measure on SM .

Agrachev and Chtcherbakova ([2], [5]) proved that Hamiltonian systems of negative gen-
eralized curvature exhibit hyperbolic behaviour too (for details, we remand to references); we
notice moreover that the elements of the canonical moving frame satisfy an equation (2.12)
analogous to the one satisfied by Jacobi fields in a Riemannian frame:

Ÿ (t) + K(v)Y (t) = 0;

this equation is a crucial element used in proof of Theorem 3.1.

35
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It is then natural to ask whether an analogous result to Theorem 3.1 allows also in a
Hamiltonian context. To prove this generalization is the main topic of this chapter.

In Section 1 we will describe more properties of the canonical moving frame already intro-
duced in Section 5 of Chapter 2; in particular, we will see that we can recover the properties
of the Hamiltonian flow along a trajectory just studying the evolution of the canonical moving
frame at a certain point of that trajectory.

In Section 2 we will formulate and then prove the result; in particular, the proof is split
into two parts, each of them constituting the core of a subsection.

1. More properties of the canonical moving frame

Let h be a Hamiltonian defined on a smooth symplectic manifold M of dimension 2n,
and let Λ be a Lagrangian distribution on M such that the Jacobi curve Λz(t) is monotone
for any z ∈ M ; let Λ◦

z(t) denote its derivative curve. We recall from Section 5 of Chapter
2 that to any z ∈ M we can attach a moving frame {ei

z(t), f
i
z(t)}n

i=1 such that Λz(t) =
span{e1

z(t), . . . , e
n
z (t)} and Λ◦

z(t) = span{f1
z (t), . . . , fn

z (t)}. By definition of Jacobi curve, we
can choose {e1

z(0), . . . , en
z (0)} at any z in such a way that

(3.2) ei
z0

(t) = e−t~h
∗e

i
zt

(0), f i
z0

(t) = e−t~h
∗f

i
zt

(0), i = 1, . . . , n, zt = et~h(z0).

Moreover, let us notice that these vectors are orthogonal with respect to the scalar product
defined by Proposition 2.2.

Let us now define, for any z ∈ M , the basis {εi
z}2n

i=1 as εi
z = ei

z(0), εi+n
z = f i

z(0) for any
i = 1, . . . , n; this is indeed and orthonormal basis.

Fix some z and consider a vector x ∈ TzM , and write its representation with respect to
the latter basis and the canonical moving frame:

(3.3) x =

2n∑

i=1

xiε
i
z =

n∑

i=1

ηi(t)e
i
z(t) + ξi(t)f i

z(t);

clearly, (η(0), ξ(0)) = (x1, . . . , x2n). Recall that the vectors {ei
z(t), f

i
z(t)}n

i=1 satisfy the equa-
tions (2.11). Then,

ẋ = 0

=
n∑

i=1

(
η̇i(t) −

n∑

j=1

(Rz(t))ijξ
j(t)

)
ei
z(t) +

(
ηi(t) + ξ̇i(t)

)
f i

z(t),

where we recall that Rz(t) is the representation of the curvature operator RΛ,Λ◦

z with respect
to the basis {ei

z(t), f
i
z(t)}n

i=1. From equation (3.4) we conclude that the coefficients (η(t), ξ(t))
satisfy the following system:

(3.4)

{
ξ̇(t) = −η(t)
η̇(t) = Rz(t)ξ(t)

.

In particular, the vector ξ(t) satisfy the Riccati equation

(3.5) ξ̈(t) + Rz(t)ξ(t) = 0.

Due to the definition of the basis {εi
z}2n

i=1 we have the following result:
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Proposition 3.1. For any z0 ∈ T ∗M , the components of a vector x ∈ Tz0(T
∗M) with

respect to the canonical moving frame {ei
z0

(t), f i
z0

(t)}n
i=1 are equal to the components of the

vector et~h∗x with respect to the basis {εi
zt
}2n

i=1, for any t.

Proof. It is just an application of equations (3.2); let x =
∑n

i=1 ηi(t)ei
z(t) + ξi(t)ėi

z(t): then

et~h
∗x =

2n∑

i=1

xiεi
zt

=
n∑

i=1

ηi(t)(et~h
∗e

i
z0

(t)) + ξi(t)(et~h
∗f

i
z0

(t)) =

=
n∑

i=1

ηi(t)ei
zt

(0) + ξi(t)f i
zt

(0) =

=
n∑

i=1

ηi(t)εi
zt

+ ξi(t)εi+n
zt

,

hence the thesis. ¤

2. Entropy of Hamiltonian flows

In this section we will prove a generalization to Hamiltonian flows of Theorem 3.1; then, let
us define the frame of the problem. Let M be a smooth 2n-dimensional symplectic manifold,
and h : M → R a smooth Hamiltonian function on it.

Since the Hamiltonian flow preserves the sublevels of h, we will restrict our problem
to a compact regular level set of the Hamiltonian, which we will call N . Let us notice

that for any z ∈ N TzN = ker(dzh); as seen, σ|TzN (~h, ·) vanishes identically, and then the

space ker(dzh)/span{~h(z)} is a symplectic space (with respect to the restricted symplectic
form σ|

ker(dzh)/span{~h(z)}) for any z ∈ N . Since the action of the Hamiltonian flow preserves

the Hamiltonian vector field, we can restrict our analysis to the symplectic space Σz :=

ker(dzh)/span{~h(z)}, z ∈ N . Let us notice that the space Σ is left invariant by the action of

the Hamiltonian flow, i.e. et~h∗(Σz0) = Σzt , where zt = et~h(z0).
Let us now define the (normalized) Liouville measure on N in this way:

(3.6) dµ :=
1

N
σ ∧ · · · ∧ σ︸ ︷︷ ︸

n−1

∧ιXσ,

where X is a vector field defined on a neighbourhood of N such that 〈dh,X〉 = 1, and
N :=

∫
N σ ∧ · · · ∧ σ ∧ ιXσ; ιXσ = σ(X, ·) is the evaluation of σ over X.

Now we state the result; we remark that in the following with σz we will denote the

restriction σ|Σz , and that et~h will denote the restriction of the Hamiltonian flow to N .

Theorem 3.2. Let N be a compact regular level set of a smooth Hamiltonian function
h : M → R, where M is a 2n-dimensional symplectic manifold. Let Λ be a Lagrangian

distribution on TN/span{~h}, and assume that the Hamiltonian vector field ~h is monotone

with respect to Λ. Consider the Jacobi curve Λz0(t) = e−t~h∗Λzt and assume that the restricted

curvature R̂h,h
z is nonpositive.
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Then the dynamical entropy hµ of the Hamiltonian flow on N with respect to the normal-
ized Liouville measure µ on N (3.6) satisfies the following inequality:

(3.7) hµ ≥
∫

N
tr

√
−R̂h,h

z dµ.

Proof. Our main tool to estimate hµ is represented by Pesin’s formula; then, the aim will
become to compute the sum of the positive Lyapunov exponents (1.15).

By Osedelec Theorem, there is a full-measure Borel set X ⊂ N such that every z ∈ X
is a regular point for the Hamiltonian flow, that is for any z ∈ X there is a unique splitting
TzN = Eu

z ⊕ Es
z ⊕ E0

z such that

lim
t→±∞

1

t
log ‖Dze

t~hx‖ > 0 x ∈ Eu
z

lim
t→±∞

1

t
log ‖Dze

t~hx‖ < 0 x ∈ Es
z

lim
t→±∞

1

t
log ‖Dze

t~hx‖ = 0 x ∈ E0
z .

Moreover, the limit

(3.8) lim
t→±∞

1

t
log |det(Dze

t~h)|Ez |

exists for any z ∈ X and is independent on Ez for any subspace Ez such that Eu
z ⊂ Ez ⊂

Eu
z ⊕ E0

z . Further, we have that

(3.9) χ(z) :=
∑

λj(q)≥0

λj(q) dimEj(q) = lim
t→±∞

1

t
log |det(Dze

t~h)|Ez |.

Since N is compact, the value of the Lyapunov exponents is independent on the choice
of the norm on Σz; in particular, we choose the scalar product 〈·, ·〉Λ̇ on Σz associated to the
curve Λz(·) according to Proposition 2.2.

Then, the proof of the theorem is split into two steps: in the first one, we will look for
a good candidate for the space Ez; in the second part, we will evaluate the limit (3.8) and
complete the proof.

2.1. The space Hz. Let us introduce for any z ∈ N the set Hz ∈ Σz defined as

(3.10) Hz := {x ∈ Σz :
d

dt
‖πΛzt (0)Λ◦

zt
(0)(e

t~h
∗x)‖ ≥ 0 ∀ t},

where zt = et~h(z) and πΛzt (0)Λ◦

zt
(0) denotes, as usual, the projector of Σz onto Λ◦

zt
(0) and

parallel to Λzt(0). Clearly, Hz is intrinsically defined and it is invariant along the trajectory

et~h(z).
Let {ei

z(t), ė
i
z(t)}n−1

i=1 be the canonical moving frame in Σz, with Λz(t) = span{e1
z(t), . . . , e

n−1
z (t)}

and Λ◦
z(t) = span{ė1

z(t), . . . , ė
n−1
z (t)}, and define the basis {εi

z}n−1
i=1 as in Section 1: εi

z = ei
z(0)

and εi+n−1
z = ėi

z(0) for i = 1, . . . , n − 1. Then, due to Proposition 3.1, we have for any

x ∈ Σz, x =
∑n−1

i=1 ηi(t)ei
z(t) + ξi(t)ėi

z(t), that

‖πΛzt (0)Λ◦

zt
(0)(e

t~h
∗x)‖ = |ξ(t)| ‖πΛ◦

zt
(0)Λzt (0)(e

t~h
∗x)‖ = |ηi(t)| = |ξ̇i(t)|.
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Let us now investigate the properties of the set Hz. To simplify the notation, in the

following we will put vt = Λzt(0), v◦t = Λ◦
zt

(0), and φt = et~h.

Lemma 3.1. Hz is a vector subspace of Σz.

Proof. Notice that the function ‖πvtv◦

t
(φt

∗x)‖2 = |ξ(t)|2 is convex; in fact, (3.5) implies that

(3.11)
d2

dt2
|ξ(t)|2 = 2[〈ξ̇(t), ξ̇(t)〉 − 〈Rz(t)ξ(t), ξ(t)〉] ≥ 0;

then a vector x ∈ Σz belongs to Hz if and only if ‖πvtv◦

t
(φt

∗x)‖ is bounded for negative times.
Linear combinations of vectors satisfying this property still satisfy it. ¤

Lemma 3.2. Hz is transversal to Λz for any z.

Proof. A vector x ∈ Hz belongs to Λz if πv0v◦0
(x) = 0, i.e. if ξ(0) = 0; for such a (nonzero)

vector, inequality (3.11) is strict at the time t = 0, which implies that t = 0 is a strong
minimum for |ξ(t)|. This is in contradiction with the definition of Hz. ¤

Lemma 3.3. Hz is a Lagrangian space.

Proof. Put, for any τ ∈ R, Hτ = {x ∈ Σz : d
dt‖πvtv◦t

(φt
∗x)‖ ≥ 0 ∀ t ≥ τ}; clearly, Hτ1 ⊆ Hτ2

if τ1 ≤ τ2 and Hz = ∩τHτ .
Hτ contains at least one Lagrangian subspace for any τ . Indeed, fix τ and consider

Vτ = {x ∈ Σz : πvτ v◦

τ
(φτ

∗x) = 0}; actually, φτ
∗(Vτ ) = Λφτ (z)(0), then Vτ is Lagrangian. We

shall prove that it is contained in Hτ ; since both sets are intrinsically defined, we can prove
it in coordinates. Let then x =

∑n−1
i=1 −ξ̇(t)ei

z(t) + ξ(t)ėi
z(t) ∈ Vτ ; since

d

dt
|ξ(t)|2|t=τ = 0 and

d2

dt2
|ξ(t)|2 ≥ 0 ∀ t,

then d
dt‖πvtv◦

0
(φt

∗x)‖ = d
dt |ξ(t)| ≥ 0 for any t ≥ τ , and Vτ ⊂ Hτ .

Hz contains a Lagrangian subspace too. Indeed, define for any τ Ĥτ = {V ∈ Ln−1(Σz) :
V ⊂ Hτ} = Ln−1(Σz) ∩ Hτ , which is a compact nonempty subset of Ln−1(Σz); moreover,

since Ĥτ1 ⊆ Ĥτ2 if τ1 ≤ τ2, their intersection is nonempty: ∩τ Ĥτ 6= ∅. Since Ĥτ ⊂ Hτ for any

τ , we can conclude that ∅ 6= ∩τ Ĥτ ⊂ Hz, that means that Hz contains at least a Lagrangian
subspace.

From Lemma 3.2 we know that dimHz ≤ n−1; then we conclude that Hz is a Lagrangian
subspace. ¤

Since Hz is transversal to Λz(0) and is Lagrangian, there shall exist a symmetric linear
operator Uz : Λ◦

z(0) → Λz(0) such that Hz is the graph of this operator, i.e. any vector x ∈ Hz

can be written as x = w + Uzw, w ∈ Λ◦
z(0).

Shifting to coordinate representation, there exists a linear operator Vz : R
n−1 → R

n−1

such that for any vector in Hz with the coordinate representation given by Equation (3.3),

we have that η(0) = −Vzξ(0); from (3.4) we get that ξ̇(0) = Vzξ(0), and (3.5) implies that
the linear operator Vz satisfies the equation

(3.12) V̇φt(z) + V 2
φt(z) + Rz(t) = 0,

where we recall that here Rz(t) is the representation of the operator R̂h,h
z with respect to the

canonical moving frame. By definition of Hz, the operator Vz is nonnegative definite for any
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z. In fact, for any x ∈ R
n−1, we have that

〈x, Vzx〉 = 〈ξ(0), ξ̇(0)〉 =
1

2

d

dt
|ξ(t)|2|t=0 ≥ 0,

where x =
∑n−1

i=1 −ξ̇(t)ei
z(t) + ξ(t)ėi

z(t) is a vector in Hz.

Lemma 3.4. Eu
z ⊂ Hz ⊂ Eu

z ⊕ E0
z .

Proof. First, we show that Eu
z and Eu

z ⊕ E0
z are the skew-orthogonal (with respect to the

symplectic form) complement to each other. Let then x ∈ Eu
z and y ∈ Eu

z ⊕ E0
z ;

lim
t→−∞

1

|t| log |σ(φt
∗x, φt

∗y)| ≤ lim
t→−∞

[ 1

|t| log ‖σ‖ +
1

|t| log ‖φt
∗x‖ +

1

|t| log ‖φt
∗y‖

]
=

= −λ(z,x) − λ(z,y) < 0,

which means that σ(φt
∗x, φt

∗y) → 0 as t → −∞. Since the Hamiltonian flow preserves the
symplectic form, we get that σ(x,y) = 0, i.e. Eu

z and Eu
z ⊕ E0

z are skew-orthogonal. This
implies that dimEu(z)+dim(Eu(z)⊕E0(z)) ≤ 2n−2; recall that dim(Eu(z)⊕E0(z)⊕Es(z)) =
2n − 2. Then, by subadditivity of the dimension of vector spaces,

4n − 4 = 2dim(Eu(z) ⊕ Es(z) ⊕ E0(z)) ≤
≤ dimEu(z) + dim(Es(z) ⊕ E0(z)) + dimEs(z) + dim(E0(z) ⊕ Eu(z)) ≤ 4n − 4;

then, in the relation above it allows the equality, and dimEu(z)+dim(Eu(z)⊕E0(z)) = 2n−2,
which implies that they are the skew-orthogonal complement to each other.

Let now x ∈ Eu
z , i.e. limt→−∞ 1

|t| log ‖φt
∗x‖ < 0; this means that ‖φt

∗x‖ is bounded

for nonpositive times, and, consequently, also πvtv◦

t
(φt

∗x) is: this implies, by definition, that

φt
∗x ∈ Hφt(z), and, by invariance of Hz along Hamiltonian trajectories, that x ∈ Hz. Then

Eu
z ⊂ Hz.

Since Hz is Lagrangian, it also allows Hz ⊂ Eu
z ⊕ E0

z . ¤

Lemma 3.5. For any x ∈ Hz, πv0v◦

0
(x) ∈ kerUz if and only if ‖πv◦

t vt
(φt

∗x)‖ = 0 for any
t ≤ 0.

Proof. Let us prove it in coordinates; let x ∈ Hz have the coordinate expression (3.3), and

assume that ξ(0) ∈ kerVz, i.e. η(0) = 0; since d2

dt2
|ξ(t)|2 ≥ 0 and d

dt |ξ(t)|2t=0 = 0, |ξ(t)|2 shall

remain constant for any t ≤ 0. This implies that |ξ̇(t)| = 0 for any nonpositive t. Then
‖πv◦

t vt
(φt

∗x)‖ = 0 for any t ≤ 0.

Conversely, if ξ̇(t) = 0 for any t ≤ 0, in particular we get that ξ̇(0) = −η(0) = 0, and then
ξ(0) ∈ kerVz. ¤

The space Hz is indeed a good candidate for the subspace Ez in (3.9); however, for further
computation we will need the operator Vz to be strictly positive definite; this condition will
be satisfied if we will restrict to a proper subspace of Hz, that is H0

z , defined as the graph of
the restriction of Uz to the orthogonal complement in Λ◦

z(0) to kerUz. We have

Lemma 3.6. H0
z is invariant with respect to the Hamiltonian flow, i.e. φt

∗(H
0
z ) = H0

φt(z).

Proof. If πv0v◦

0
(x) ∈ kerUz, Lemma (3.5) implies that ‖πv◦

t vt
(φt

∗x)‖ = 0 for any t ≤ 0,

or, equivalently, that πvtv◦

t
(φt

∗x) ∈ kerUφt(z) for any t ≤ 0. Then, for t ≥ 0 kerUφt(z) ⊂
φt

∗(kerUz), and hence φt
∗(H

0
z ) ⊂ (H0

φt(z)).
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In particular, dimH0
z is nondecreasing along the orbits of the Hamiltonian flow. Mea-

surable functions which are nondecreasing along the orbits of a measurable flow that pre-
serves a probability measure are equal, on a full-measure set, to a constant function. Then,
φt

∗(H
0
z ) = (H0

φt(z)). ¤

To restrict φt
∗ to H0

z we need to prove that the space satisfies Lemma 3.4; we will call U0
z

the restriction of Uz to the orthogonal complement to kerUz in Λ◦
z(0) (in particular, notice

that H0
z is the graph of U0

z ), and respectively V 0
z and R0

z(t) the restrictions of Vz and Rz(t)
to the orthogonal complement of kerVz in R

n−1.

Lemma 3.7. Rz(t) vanishes on kerVφtz and both Rz(t) and Vφtz preserve the orthogonal

complement in R
n−1 to kerVφtz.

Proof. Call ∆z(t) the orthogonal complement in R
n−1 to kerVφt(z). Let x ∈ Hz and write it

in coordinates (−ξ̇(t), ξ(t)); assume that ξ(t) ∈ kerVφtz; then, by previous lemma, ξ̇(τ) = 0
for τ ≤ t, which implies the vanishing of the second derivative too, i.e. Rz(t)ξ(t) = 0.
Let now v ∈ kerVφtz, v

′ ∈ ∆z(t); since 〈v, Rz(t)v
′〉 = 〈Rz(t)v, v′〉 = 0, we conclude that

Rz(t)[∆z(t)] ⊆ ∆z(t). In the same way we can show that Vφt(z)[∆z(t)] ⊆ ∆z(t). ¤

Lemma 3.8. Eu
z ⊂ H0

z ⊂ Eu
z ⊕ E0

z .

Proof. Consider x ∈ Hz \ H0
z ; then, by Lemma 3.5, φt

∗x is constant in norm for any t ≤ 0.
Hence λ(z,x) = 0, which implies that x /∈ Eu

z ; then, Eu
z ⊂ H0

z .
The fact that H0

z ⊂ Eu
z ⊕ E0

z is obvious, since H0
z ⊂ Hz. ¤

Let us finally mention that the coefficients of vectors in H0
z with respect to the canonical

moving frame still satisfy the relation (3.5). In fact, consider x = x(1) + x(2) ∈ Hz, with

x(1) ∈ Hz \ H0
z and x(2) ∈ H0

z ; let (−ξ̇(i)(t), ξ(i)(t)) be their components with respect to the

canonical moving frame. Then, by Lemma 3.5 we get that ξ̇(1)(t) = 0 for any t ≤ 0, and hence

ξ̈(1)(t) = 0; by Lemma 3.7, Rz(t)ξ
(1)(t) = 0. Then, both the components satisfy equation

(3.5).

2.2. Computation of the entropy. Since H0
z is the graph of U0

z , we can express the
scalar product on it in terms of the canonical scalar product 〈·, ·〉n−1 on R

n−1, putting

〈x,y〉Λ̇ = 〈ξx(0), Az(0)ξy(0)〉n−1, Az(t) = id + V 0
φt(z)

2
.

Call az(t) = |detφt
∗|H0

z
| the determinant of φt

∗|H0
z

with respect to the scalar product
〈·, ·〉Λ̇; we have that

az(t) =
√

detAz(t)|detφt
∗|H0

z
|n−1 =

√
detAz(t)|det e

R t
0 Vφs(z) ds|H0

z
|n−1.

Define

rz(t) :=
d

dt
log az(t) =

1

2
trȦz(t)A

−1
z (t) + trV 0

φt(z);

applying (3.12), we get by computations that rz(t) = tr[(V 0
φtz − R0

z(t)V
0
φtz)(id + V 0

φtz
2
)−1].

Since

χ(z) = lim
t→∞

1

t
log |det(φt

∗|H0
z
)| = lim

t→∞
1

t
log az(t) = lim

t→∞
1

t

∫ t

0
rz(s) ds,
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by Birkhoff Ergodic Theorem (Theorem 1.6) we get that, provided that rz is an integrable
function on N ,

hµ(φ) =

∫

N
χ(z) dµ(z) =

∫

N
rz(0) dµ.

Now we are going to compute dynamical entropy using a different scalar product on H0
z ,

after showing that we will get the same value. Call A′
z(t) = V 0

φt(z), and define the scalar

product 〈x,y〉′ = 〈ξx(0), A′
z(0)ξy(0)〉n−1; we then get that r′z(t) = 1

2tr[V 0
φt(z) − R0

z(t)V
0
z
−1

].

The volume element on N with respect the scalar product given by A′ is related to the

standard volume element in this way: dµ′ =
√

det A′

det A dµ. If we call c(t) = dµ
dµ′ =

√
det A(t)
det A′(t) > 1,

we find that 0 < a′(t) < a(t)c(0). We have that:

lim sup
t→∞

1

t

∫ t

0
r′z(s) ds = lim sup

t→∞

1

t
log a′z(t) ≤ lim

t→∞
1

t
log az(t) = χ(z)

lim inf
t→−∞

1

|t|

∫ 0

t
r′z(s) ds = − lim sup

t→−∞

1

|t| log a′z(t) ≥ − lim
t→−∞

1

|t| log az(t) = χ(z),

hence

lim sup
t→∞

1

t

∫ t

0
r′z(s) ds ≤ χ(z) ≤ lim inf

t→−∞
1

|t|

∫ 0

t
r′z(s) ds.

r′z is measurable on N, since continuous. Applying the following Lemma we can prove it is
also integrable on N (for its proof, see [15]):

Lemma 3.9. Let φt be a measure preserving flow on a probability space (X, µ) and f : X →
R a measurable nonnegative function; if for almost every x ∈ X lim supT→+∞

1
T

∫ T
0 f(φtx)dt ≤

k(x), where k : X → R is a measurable function, then
∫

X
f(x) dµ(x) ≤

∫

X
k(x) dµ(x).

Hence, we get by Ergodic Theorem and equality of time averages in the future and in the
past (equation (1.17)) that

∫

N
rz(0)′dµ =

∫

N
χ(z) dµ(z) = hµ(φ).

Finally, we use the following result (for the proof, see again [15]):

Lemma 3.10. Given three symmetric linear operators U,M, N on a Euclidean space such
that M and N are nonnegative definite and U is strictly positive definite, we get that tr[MU +

NU−1] ≥ 2tr
√

M
√

N, where equality holds iff
√

MU =
√

N.

Since we have that r′z(t) = 1
2tr[V 0

φt(z)−R0
z(t)V

0
φt(z)

−1
], where V 0

φt(z) is (strictly) positive definite

and −R0
z(t) is nonnegative definite, we can apply previous lemma with U = V 0

φt(z), M = id

and N = −R0
z(t), obtaining 1

2tr[V 0
φt(z) − R0

z(t)V
0
φt(z)

−1
] ≥ tr

√
−R0

z(t), and hence

hµ(φ) ≥
∫

N
tr

√
−R0

z(0) dµ =

∫

N
tr

√
−Rz(0) dµ.

¤
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Remark. The estimate is sharp (i.e. we have the equality) if and only if V 0
φt(z) =

√
−R0

z(t)

for almost all z ∈ N, which implies that V 2
φt(z) = −Rz(t) almost everywhere on N , and hence,

by continuity, for every z ∈ N ; this means that V̇φt(z) = 0 on N , i.e. all Jacobi curves are
symmetric [2].





CHAPTER 4

Optimal synthesis for infinite horizon variational problems

Infinite horizon optimal control problem are of great interest in mathematical economy,
since they provide a good model for dynamical economic systems. In particular, an important
problem of this class is the optimal economic growth problem:

(4.1)

{
maxq(t)

∫ +∞
0 e−αt ϕ(q(t), u(t), t) dt

q̇(t) = f(q(t), u(t))
α ≥ 0.

Here the functional to be maximized is the capital accumulation, seen as the sum of utilities
over a long time interval; clearly, we can also study the analogous minimization problem, in
which we look for minq(t)

∫ +∞
0 e−αt ϕ(q(t), u(t), t) dt: in this case the functional represents

some cost to be minimized during a production process (see [14] for references).
The problem is very general and can be studied in many different settings, then it inspired

lots of threads; we are not mentioning them here, for the largeness of the topic.
The setting we are interested in is the one of smooth costs with continuous time; this

means that we will study the functional

(4.2) J(γ(·)) =

∫ ∞

0
ϕ(γ(t), γ̇(t)) dt,

where M is a smooth n-dimensional manifold, ϕ : TM → R a smooth function, and the
functional J(γ(·)) is defined on the Lipschitzian curves γ : [0, +∞) → M such that the
integral in (4.2) converges.

More precisely, we assume the existence of an equilibrium point q∞ for ϕ such that

ϕ(q∞, 0) = 0,
∂ϕ

∂q
(q∞, 0) = 0,

and we try to find the cost

(4.3) c(q0) = min
{∫ ∞

0
ϕ(γ(t), γ̇(t)) dt : γ(0) = q0, lim

t→∞
γ(t) = q∞

}
.

Our aim is to characterize the class of Lagrangians ϕ such that the minimization problem
admits a smooth optimal synthesis, according to the following definition:

Definition 4.1. A smooth optimal synthesis is a smooth complete vector field X on M
such that q∞ is a globally stable equilibrium of the ordinary differential equation q̇ = X(q)
and

c(q0) =

∫ ∞

0
ϕ(γq(t), γ̇q(t) dt, q ∈ M,

where γ̇q(t) = X(γq(t)) and γq(0) = q.

45
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Any segment of a minimizing path γ(t), t ≥ 0, is automatically a minimizer for the
corresponding finite horizon functional. Finite horizon extremals satisfy the Euler-Lagrange
equation associated to the functional, or the first-order Hamiltonian equation associated to the
functional by PMP. To find the minimizers we are using this second approach; hence, we will
formulate the variational problem as an optimal control problem. Our goal then becomes to
find the conditions on the Lagrangian ϕ that guarantee the existence of the optimal synthesis
focusing on the properties of the associated Hamiltonian system.

In Section 1, we will explain some properties of Hamiltonian system with negative curva-
ture that will be used in the following.

In Section 2 we will state the variational problem we are studying and we will briefly
explain our strategy to prove the result we are using. This strategy is suggested by some
simple examples we are recalling in this section.

The result with its proof is the topic of Section 3; the proof is split into three steps, each
of them is the content of a subsection. In a Euclidean frame the same results can be obtained
under hypotheses of strict convexity of the Lagrangian ϕ with respect to the pair (q, u); this
is proved treating this result as a special case. We will do it in Section 4.

Finally, Section 5 contains a generic classification for 1-dimensional problems.

Remark. In the following, with strict convexity of a function with respect to some variable
we will mean the positive definiteness of the Hessian of the function with respect to the same
variable.

1. Hyperbolic fixed points of Hamiltonian flows

Let M be a smooth 2n-dimensional symplectic manifold, and h : M → R be a smooth

Hamiltonian function. Denote with φt the flow generated by the vector field ~h. We give the
following definition:

Definition 4.2. A point z ∈ M is a hyperbolic fixed point of the flow φt if it is a fixed

point of the flow (i.e. ~h(z) = 0) and if there exists a φt-invariant splitting of the tangent
space TzM = E+

z ⊕ E−
z and two positive constants γ and c such that

(4.4) ‖Dzφ
∓tx‖ ≤ ce−γt‖x‖ for x ∈ E±

z and t ≥ 0.

We now recall a result that relates the behaviour of the trajectories of a Hamiltonian flow
with its generalized curvature; the result is proved in [2]:

Theorem 4.1. Let Λz be a Lagrangian distribution on M , and let Λz(t) be the associated
Jacobi curve; assume that Λz(t) is regular and monotone. Let W be a compact invariant set

of the flow φt. If the curvature RΛ,Λ◦

z is negative definite at any point of W , then W is a

finite set and each point of W is a hyperbolic equilibrium of the field ~h.

Sketch of the proof. We are not going to give the proof of the Theorem here: it can be
found in literature. But since in the following we are going to generalize this result, we just
recall here the main steps of the proof.

The core of the proof is to find a special metric ‖ · ‖ on TM (which actually is the metric

defined by Λ̇z, see Proposition 2.2) and a family of invariant expanding and contracting cones
C±

z ⊂ TzM such that

(4.5) ‖Dzφ
∓tx‖ ≤ ce−γt‖x‖ for x ∈ C±

z and t ≥ 0,
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for some positive constants γ and c.
Once found such cones, define for any z the sets

(4.6) Ĉ+
z =

⋂

t≥0

φt
∗(Cφ−t(z)), Ĉ−

z =
⋂

t≤0

φt
∗(Cφ−t(z));

finally, prove that actually Ĉ+
z satisfies the conditions for E+

z and Ĉ−
z satisfies the conditions

for E−
z .

The crucial part is then the definition of the cones C±
z ; to do this, in [2] there were used

the properties of the canonical moving frame. ¤

We say that a (semi)trajectory is bounded if it has compact closure; the following Corol-
lary of Theorem 4.1 relates the boundedness of the semitrajectories of the Hamiltonian system

ż = ~h(z) with the sign of the generalized curvature (see [2]):

Corollary 4.1. Assume that Λz(t) is regular and monotone and that ~h has everywhere
negative curvature with respect to the canonical splitting. Then any bounded semitrajectory

of the system ż = ~h(z) converges to an equilibrium with exponential rate, while another
semitrajectory of the same trajectory must be unbounded.

Again, this result is proved using the cones characterized by equation (4.5).

The results can be generalized using the technique that Wojtkowski proposed in [26]; in
fact, in the cited paper it is proved the following Theorem:

Theorem 4.2. Le M be a smooth manifold, X a smooth vector field on it, and denote
with φt the flow generated by X. Assume that there is a continuous nondegenerate quadratic
form Q : TM/span{X} → R such that its Lie derivative with respect to the vector field X,
denoted with LXQ := d

dtQ(DetX)|t=0, is positive definite. Then for any z ∈ M there exists
two cones C±

z ⊂ TM/span{X} with the property exposed in equation (4.5).
In particular, the whole M is a hyperbolic set for the flow φt, and then the flow is an

Anosov flow.

Remark. For the proof, we remand to the paper [26]; for completeness’ sake, we just recall
the definition of the cones C±

z :

C+
z := {y ∈ TzM/span{X(z)} : Q(y) ≥ 0}, C−

z := {y ∈ TzM/span{X(z)} : Q(y) ≤ 0};
the invariant cones are defined as in (4.6), and satisfy the required properties.

If we do not take any quotient of the tangent space, we still obtain the existence of
the expanding and contracting cones, but we lead to a different result; this is actually the
generalization of Theorem 4.1:

Theorem 4.3. Let M be a smooth 2n-dimensional symplectic manifold, and h : M → R

be a smooth Hamiltonian function; denote with φt the flow generated by ~h. Assume that
there exists a compact invariant set W of the flow φt , and that there exists a quadratic form
Q : TM → R such that L~h

Q > 0.

Then W is a finite set and each point of W is a hyperbolic equilibrium of the field ~h.

Of course, we can generalize Corollary 4.1 in the same way:
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Corollary 4.2. Assume that there exists a compact invariant set W of the flow φt , and
that there exists a quadratic form Q : TM → R such that L~h

Q > 0.

Then any bounded semitrajectory of the system ż = ~h(z) converges to an equilibrium with
exponential rate, while another semitrajectory of the same trajectory must be unbounded.

Remark. As a consequence of Theorem 4.3, we get the existence of the stable and unstable
manifolds W s(z), W u(z), for any z ∈ W . This is due to Hadamard-Perron Theorem.

2. Statement of the problem

Let M be a complete Riemannian n-dimensional manifold, ϕ : TM → R a smooth
function, and let us consider the problem (4.2); let us formulate it as an optimal control
problem:

(4.7) min
q(t)

∫ ∞

0
ϕ(q(t), u(t)) dt,

with

(4.8) q̇ = u
q(0) = q0

q(t) → q∞ as t → +∞ q ∈ M, u ∈ TqM.

We make the following assumptions:

(H1) ϕ is bounded from below and is strongly convex with respect to the second variable;
moreover, we assume that ϕ grows superlinearly in the second variable with respect
to the given Riemannian metric, i.e. ϕ(q, u) + c > 0 for some constant c and

|u|
ϕ(q, u) + c

→ 0 as |u| → +∞;

(H2) there is a unique point q∞ such that

ϕ(q∞, 0) = 0 and
∂ϕ

∂q
(q∞, 0) = 0;

(H3) there exist constants a, b > 0 such that for any (q, u)

|∂qϕ(q, u)| ≤ a(ϕ(q, u) + |u|) + b,

where ∂q is the covariant derivative.

Let now H : T ∗M → R be the maximized Hamiltonian associated to problem (4.7)-(4.8)
by equation (1.25):

H(λ) = max
u∈TqM

(〈λ, u〉 − ϕ(q, u));

assumptions (H1)-(H3) imply that the Hamiltonian H is smooth and the Hamiltonian field
~H is complete; the first result is a consequence of strict convexity of ϕ with respect to u;
completeness of the vector field is a consequence of the growth assumptions.

Moreover, assumption (H2) implies that the Hamiltonian vector field ~H possesses a unique
fixed point z∞, with π(z∞) = q∞.

Since H is smooth, by Proposition 1.2 we know that any extremal of problem (4.7)-(4.8)
shall be a solution to the Hamiltonian system

(4.9) λ̇(t) = ~H(λ(t)),

and, conversely, any solution to (4.9) satisfies PMP.
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As anticipated in the introduction to this chapter, our strategy is to focus on the properties
of the Hamiltonian system written above to establish the existence of the optimal synthesis
for the problem (4.7)-(4.8); to get an idea about the direction to explore, we look at the
examples explained in the following subsection.

2.1. Elementary examples. A suggestion about the direction to look forward is given
by the classical quadratic Hamiltonian

H(p, q) =
1

2
p2 + rq2, p, q ∈ R,

originated by the Lagrangian ϕ(q, q̇) = 1
2 q̇2−rq2; for r > 0 the dynamical system is a harmonic

oscillator, and the phase trajectories are ellipses centred in (0, 0): the corresponding optimal
control problem has no optimal trajectories, since there is no trajectories reaching the origin
in an infinite time.

Otherwise, for r < 0 the phase trajectories are hyperbolas and the semitrajectories whose
initial condition lie in the bisectrix of the II and IV quadrant (except the origin) reach the
origin with exponential rate; since the projection of the bisectrix is a bijection, we can guess
that for any initial q0 there is a Hamiltonian trajectory, with initial condition (p0, q0), that
reaches the origin in an infinite time. It is easy to show that actually the integral (4.2)
converges along these trajectories and then the problem admits a smooth optimal synthesis.
This situation is depicted in Figure 4.1.

Actually, this is the 1-dimensional version of the case of quadratic Lagrangians such as

(4.10) ϕ(q, q̇) = 〈Rq̇, q̇〉 + 〈Sq, q〉, q ∈ R
n, q∞ = 0;

it is known that if the matrices R and S determine positive definite quadratic forms, the
problem admits a smooth optimal synthesis. Otherwise, if one of these quadratic forms is
sign-indefinite, then the cost c(q) is simply not defined for almost all q ∈ R

n.
Let us finally consider the Hamiltonian of the pendulum

H(p, q) =
1

2
p2 − 1 + cos(q);
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in this case, we distinguish three different possibilities. The Hamiltonian trajectories lying
on energy levels with H > 0 are all unstable; for H < 0 the trajectories are closed and do
no reach the origin; but for any initial q0 ∈ (−2π, 2π) there is a trajectory that lies on the
level H = 0 and reaches the origin in an infinite time, and is an optimal trajectory for the
problem under investigation. If |q0| > 2π, the trajectories on the zero level arising from q0 do
not reach the origin, but go to another fixed point of the system, and then cannot be optimal.
This case is shown in Figure 4.2.

These examples suggest us that the existence of a smooth optimal synthesis shall corre-
spond to the existence of an n-dimensional stable invariant submanifold of the Hamiltonian
system. The problem is then to determine the conditions on H that guarantee the existence
of such a submanifold. If we pay attention to the properties of ϕ, we guess that the sign of
its Hessian matrix in a neighbourhood of the equilibrium point determines the existence of
local minimizers; moreover, equation (4.10) shows that if the Lagrangian is strictly convex,
the problem admits an optimal synthesis.

Since we are dealing with smooth manifolds, we need to find intrinsic conditions on ϕ
that generalize the convexity condition just stated; to this purpose, we are going to use the
generalized curvature of the associated Hamiltonian system.

2.2. The sufficient condition. The previous examples suggest that the minimizing
trajectories of the variational problem have to be seeked among the stable trajectories of the
dynamical system (4.9). Actually this intuition is supported and improved by the following
Theorem, which is the infinite horizon version of Theorem 1.8:

Theorem 4.4. Assume that the maximized Hamiltonian (1.25) is defined and smooth on

T ∗M , and that the Hamiltonian vector field ~H is complete.

Let L0 be a Lagrangian submanifold in T ∗M , and let Lt = et ~H(L0) be its image under the
Hamiltonian flow at time t.

Let π : T ∗M → M be the canonical projection, and assume that its restriction π|Lt
is a

diffeomorphism for any t ∈ [t0, +∞). Let λ0 ∈ L0 and consider the normal extremal trajectory

q̃(t) = π ◦ et ~H(λ0), t ∈ [t0, +∞);

then, for any λ0 such that the integral
∫ ∞
0 ϕ(q̃(t), ũ(t)) dt converges, the trajectory q̃(t) realizes

a strict minimum of the cost functional (1.19) among all the admissible trajectories q(t),
t ∈ [t0, +∞), of the system (1.18) with the same boundary conditions:

q(t0) = q̃(t0) lim
t→+∞

q(t) = q̃∞,

where q̃∞ = limt→+∞ q̃(t).

The proof is a straightforward adaptation of the proof of Theorem 1.8, that can be found
in [7].

3. The results

This section is devoted to the statement of the main result of this chapter; then, we will
also give a summary of the proof, which will be developed in the following subsections.

Theorem 4.5. Let M be a simply connected smooth manifold, and let ϕ : TM → R

be a smooth function that satisfies hypotheses (H1)–(H3). Let {Λz}z = {Tz(T
∗
π(z)M)}z and
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{Πz}z, z ∈ T ∗M , be two Lagrangian distributions that provide a splitting of T (T ∗M); assume

that the generalized curvature of ~h with respect to the splitting is negative definite for any z.
Then the problem (4.7)-(4.8) with final point q∞ admits a smooth optimal synthesis on M .

Proof. We divide the proof into three steps: in the first part, we use a result due to P.
Przytycki to prove the existence of the continuous nondegenerate quadratic form needed in
Wojtkowski’s argument: then, by Hadamard-Perron Theorem (1.2), we get the existence of the
stable manifold W s(z∞); notice that it is by definition invariant with respect the Hamiltonian
flow. In the last two steps, we are going now to apply Theorem 4.4 to W s(z∞), thus proving
that all the optimal trajectories for our problem are projections of stable solutions of (4.9). In
particular, in the second part we prove that the stable manifold is a Lagrangian submanifold
of T ∗M and it is diffeomorphically projected onto its image on M ; the third step is devoted
to the proof of the surjectivity of the projection of the stable manifold onto M , that implies
the existence of the optimal synthesis.

Once shown this, the optimal synthesis is thus constructed: we put for any q ∈ M

(4.11) X(q) := π∗( ~H(λ)),

with λ ∈ W s(z∞) and π(λ) = q, where π : T ∗M → M is the canonical projection. This vector
is smooth, because the Hamiltonian is smooth and W s(z∞) projects diffeomorphically on M ;

since the optimal trajectories are projections of the integral curves of ~H, they are actually
integral curves of X.

3.1. Hyperbolicity of the flow. We prove the following result:

Lemma 4.1 (P. Przytycki). Let Λ ⊕Π be a Lagrangian splitting of T (T ∗M) such that the
curves Λz(t) and Πz(t) are regular, and Λz(t) is monotone. Assume that the curvature RH

z of

the vector field ~H with respect to this splitting is negative definite for any z. Then there exists
a continuous nondegenerate quadratic form Q : TM → R such that L ~HQ is positive definite.

Proof. First of all, note that asking the curvature RH
z to be negative definite is equivalent

to saying that the quadratic forms associated to Λ̇z(t) and Π̇z(t) are both regular and have
opposite sign (see [2]); for simplicity, assume that Λz(t) is monotone increasing.

Let us write any vector X on T ∗M as X = XΛ + XΠ, where, as before, XΛ is a section of
Λ and XΠ a section of Π; define the following quadratic form on TM :

Qt(X) = σ((Dzφ
tX)Λ, (Dzφ

tX)Π);

we have that

L ~HQ(X) = −σ([ ~H, X]Λ, XΠ) − σ(XΛ, [ ~H, X]Π) =

= σ([ ~H, XΛ],XΛ) + σ([ ~H, XΠ],XΛ) +

+ σ(XΠ, [ ~H, XΛ]) + σ(XΠ, [ ~H, XΠ]) =

= σ([ ~H, XΛ],XΛ) + σ(XΠ, [ ~H, XΠ]) =

= Λ̇z(t)(XΛ) − Π̇z(t)(XΠ) > 0,

¤

Thanks to the Lemma above, we can apply Theorem 4.3 to the fixed point z∞. Then we
get that this point is a hyperbolic fixed point, and that there are defined the global stable
and unstable manifolds. We will concentrate on the global stable manifold W s(z∞).
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3.2. Regularity of the projection.

Lemma 4.2. W s(z∞) is a Lagrangian submanifold of T ∗M

Proof: Let x,y ∈ TzW
s(z∞), z ∈ W s(z∞); then, since the Hamiltonian flow preserves the

symplectic form, for any t

σ(X, Y ) = σ(Dze
t ~Hx,Dze

t ~Hy) → 0 as t → +∞.

¤

Lemma 4.3. The restriction of the projection π|W s(z∞) is a covering of its image.

Proof: π|W s(z∞) is clearly smooth map, since the stable manifold is smooth.
π|W s(z∞) is also an immersion, and, in particular, a local diffeomorphism; in fact, let

us assume that there is a vector x ∈ kerπ∗ ∩ TzW
s(z∞); we get that Q0(x) = 0, since the

projection of x on the horizontal space vanishes. Since Qt(x) → 0 as t → +∞ and L ~HQ is

positive definite, we have that Qt(x) = 0 for any t ≥ 0, which implies that Dzφ
tx is vertical

(i.e. (Dzφ
tx)Π = 0) for nonnegative t; since [ ~H(φt(z)),Dzφ

tx] /∈ Tφt(z)(T
∗
π(φt(z))M), we get a

contradiction.
Let us now prove that π|W s(z∞) is a proper mapping: first of all, let d(·, ·) be the distance

induced on T ∗M by the scalar product given by the quadratic form Λ̇z, and let Br(z) denote
the ball of radius r centered at z, for some r > 0, z ∈ T ∗M . Let K be a compact set in
π(W s(z∞)), and {zi}i a sequence in π|−1

W s(z∞)(K). The sequence is bounded: in fact, let

us write the zi’s in coordinates, zi = (pi, qi) for any i; qi ∈ K for any i, and hence they are
bounded; the pi shall be bounded as well, because the stable manifold lies in the level H−1(0),
and the Hamiltonian grows to +∞ when |p| → +∞. Then the sequence {zi}i converges, up
to a subsequence, to some z̄ ∈ π−1(K); let us assume that z̄ /∈ W s(z∞). Let us consider the
Hamiltonian trajectories whose initial conditions are given by these zik ’s: by continuity, for
any small ε > 0 and any T > 0 we can find k̄ such that φt(zik) ∈ φt(Bε(z̄)) for k ≥ k̄ and for
any 0 ≤ t ≤ T .

Since we assumed that z̄ /∈ W s(z∞), φt(z̄) shall go to infinity (see Corollary 4.2), which

means that for any ρ > 0 we can always find a t′ ≥ T such that φt′(z̄) /∈ B2ρ(z∞).
Now recall that zik ∈ W s(z∞), which means that φt(zik) reaches z∞ with exponential

rate, that is there are two positive constants c, γ such that ‖ ~H(φt(zik))‖ ≤ ce−γt‖ ~H(zik)‖. So
we have that

∫ +∞

t
‖ ~H(φτ (zik))‖ dτ ≤ c ‖ ~H(zik)‖

∫ +∞

t
e−γτ dτ = c ‖ ~H(zik)‖e−γt

γ

We can chose ε so small and ρ, T so large that c ‖ ~H(zik)‖ e−γT

γ < ρ, which means that the

trajectory φt(zik) cannot reach z∞. This is a contradiction; hence z̄ belongs to the stable

manifold, and then π|−1
W s(z∞)(K) is compact.

Since π|W s(z∞) is a proper local diffeomorphism, it is also a smooth covering (of its image);
if its image is simply connected, we can conclude that the map π|W s(z∞) is also a global
diffeomorphism (onto its image). ¤

3.3. Existence of the optimal synthesis. In this subsection we are proving that the
restriction π|W s(z∞) is a surjective map onto M , in order to apply Theorem 4.4 to get the
existence of the optimal synthesis. Surjectivity of this map means that for any q ∈ M we can
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find a point z ∈ T ∗
q M such that the semitrajectory φt(z) is stable, i.e. it reaches z∞ with

exponential rate. Since our problem satisfies the hypotheses of Corollary 4.2, it is sufficient to
prove that for any q ∈ M there is a z ∈ T ∗

q M such that the Hamiltonian trajectory emanating
from it is bounded.

To do that, we will use the fact that any segment of a minimizing trajectory is minimizing
between its endpoints (for the corresponding finite horizon problem); then, we shall prove the
solutions to the finite horizon problems are equibounded with respect to the final time.

Consider the finite-horizon problem

(4.12) JT = min
q(t)

∫ T

0
ϕ(q(t), q̇(t)) dt

q(0) = q0,
q(T ) = q∞

T > 0;

to establish the existence of this minimum in the class of Lipschitzian functions we use an
approach due to Sarychev and Torres ([25]) and Gamkrelidze ([17]). Since to apply this result
the function ϕ is needed to be strictly positive, in the following we will make the substitution
ϕ 7→ ϕ + α, in such a way that ϕ + α > 0; it is known that, since we are consider a finite-
horizon problem, this substitution does not change the minimizers. Let us define a new time
variable

τ(t) =

∫ t

0
ϕ(q(θ), u(θ)) + α dθ, t ∈ [0, T ],

which is a strictly monotone (smooth) function of t, with τ(0) = 0 and τ(T ) = τ1; since

dτ(t)

dt
= ϕ(q(t), u(t)) + α > 0,

τ(t) is invertible and its inverse t(τ) is monotone on [0, τ1].
Let us now transform the original problem (4.12) into a new one, in which τ is the

new time variable, t(τ) and z(τ) = q(t(τ)) the components of the state trajectory, and
v(τ) = u(t(τ)) ∈ TM the new control, with

{
ṫ(τ) = 1

ϕ(z(τ),v(τ))+α

ż(τ) = v(τ)
ϕ(z(τ),v(τ))+α

.

For any t and z, the set of all velocities
{( 1

ϕ(z(τ), v(τ)) + α

)
,
( v(τ)

ϕ(z(τ), v(τ)) + α

)}

becomes compact if we add to it the point {(0, 0)} ∈ R× TzM ; this point corresponds to the
case v → ∞. Then, we compactify each fibre TzM adding the point at infinity: we define
the fibre bundle N on M with fibre given by the n-dimensional sphere Sn, we fix for any z
a “north pole” ŵ ∈ Nz (Nz fibre through z), and we define the map π : N → TM such that
π|Nz : Nz \ ŵ → TzM is the stereographic projection.

The maps

θ(z, w) =

{ 1
ϕ(z,π(w))+α if w 6= ŵ

0 if w = ŵ

and

ζ(z, w) =

{
π(w)

ϕ(z,π(w))+α if w 6= ŵ

0 if w = ŵ

are well-defined and continuous on N . We can then define time-optimal control problem:
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(4.13)

{
ṫ(τ) = θ(z(τ), w(τ))
ż(τ) = ζ(z(τ), w(τ))

w ∈ Nz
t(0) = 0, t(τ1) = T
z(0) = q0, z(τ1) = q∞

τ1 → min .

This problem is equivalent to problem (4.12): in fact, to every admissible pair (q(·), q̇(·))
of (4.12) there corresponds an admissible triple (t(·), z(·), w(·)) of (4.13) such that w(·) takes
values different from ŵ almost everywhere, and the time τ1 for this latter solution is equal to
the value of the functional evaluated on (q(·), q̇(·)) (see [25]). Sarychev and Torres showed
that under the hypotheses (H1) and (H3) the time-optimal control problem (4.13) has solution
with bounded optimal control, and we denote the corresponding solution to (4.12) with qT (t);
denote with λT (·) the solution of the Hamiltonian system (4.9) such that π(λT (t)) = qT (t).
Let T ′ > T and put

q̂T (t) =

{
qT (t) t ∈ [0, T ]
qT (T ) = q∞ t ∈ [T, T ′]

;

we get that
∫ T ′

0
ϕ(q̂T (t), ˙̂qT (t)) + α dt =

∫ T

0
ϕ(qT (t), q̇T (t)) + α dt +

∫ T ′

T
ϕ(q∞, 0) + α dt = JT + αT ′,

since ϕ(q∞, 0) = 0. Then we can argue that

JT ′ = min
q(t)

∫ T ′

0
ϕ(q(t), q̇(t)) + α dt ≤ JT + αT ′,

i.e. there exists a fixed constant C > 0 such that JT ≤ CT for any T (at least for any T
greater than some t̄).

Lemma 4.4. The optimal extremals λT (·) are uniformly bounded with respect to T .

Proof. The maximized Hamiltonian associated to the time-optimal problem (4.13) is

(4.14) H̃(p0, λ, t, z) = max
w∈Sn

p0θ(z, w) + 〈λ, ζ(z, w)〉;

since the Hamiltonian is homogeneous with respect to (p0, λ) and p0 is constant along Hamil-
tonian trajectories, we can normalize the pair (p0, λ); we have two possible cases:

• p0 6= 0: then we put p0 = −1; let us notice that H̃ = 0 if λ = 0, and H̃ > 0 for
nonzero values of λ;

• p0 = 0: then we normalize |λ| = 1; notice that H̃ > 0 for any value of λ .

Let us notice that the Hamiltonian reaches the value H̃ = 0 only when the maximum in (4.14)
is realized at w = ŵ; since the Hamiltonian is conserved along trajectories, for a trajectory

lying on the zero sublevel of H̃ the value of the control is constantly w = ŵ.
If the Hamiltonian assumes a small positive value, by continuity w shall live in a small

neighbourhood of the point ŵ, which is equivalent to say that ‖v‖ is very large (where v = π(w)

for w 6= ŵ). In fact, in the case in which p0 = −1, if H̃ is small and positive then also |λ| is
small and then, since the numerator 〈λ, vmax〉 − 1 is positive, ‖vmax‖ shall be large (vmax is

the value of the control that maximixes the Hamiltonian); in the case in which p0 = 0, H̃ is
small only if ‖vmax‖ is large.
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Then, we claim that for any δ > 0 there exists a neighbourhood Oδ of the point ŵ such
that

ż(τ) ∈ Oδ ⇒ dt

dτ
= θ(z(τ), w(τ)) < δ;

in fact, if ż(τ) ∈ Oδ, then the Hamiltonian is small and positive, and hence ż(τ) ∈ Oδ for any
τ .

This implies that τ1 ≥ T
δ , and, since this allows for any δ, we can choose it in such a way

that T
δ > CT, obtaining a contradiction. Then, there shall exist a fixed δ > 0 such that for

any T żT (τ) /∈ Oδ for any τ , where zT (τ) = qT (t(τ)).
Hence we get that the derivatives q̇T (t) of the solutions to problem (4.12) are uniformly

bounded with respect to T ; this implies the uniform boundedness with respect to T of λT (t).
In fact, the maximum relation (1.23) implies that ∂

∂q̇

(
〈λT , q̇〉 − ϕ(q, q̇)

)
|(q,q̇)=(q0,q̇(0)) = 0,

and hence λT (0) shall be equibounded with respect to T . Since the Hamiltonian is constant
along the Hamiltonian trajectories, H(λT (·)) shall also be equibounded.

Since λT (·) is optimal,

JT =

∫ T

0
〈λT (t), q̇T (t)〉 − H(λT (t)) dt = JT = −H(λT )T +

∫ T

0
〈λT (t), q̇T (t)〉;

if λT (·) grew with respect to T , the second term would grow more than linearly with respect
to T , in contradiction with the estimate JT ≤ CT . ¤

Let now {tk}k be a monotone increasing sequence of real numbers that tends to infinity,
and let us consider the problem (4.12) with final time tk; let us consider also the sequence
{λtk(0)}, with π(λtk(0)) = q0 for any k, of initial points of the normal extremals for the
problem with finite time tk; since the sequence is bounded, it converges (up to a subsequence)
as k goes to the infinity to a point λ̄, π(λ̄) = q0; by continuity with respect to the initial
condition, also the trajectories λtk(·) converge to the Hamiltonian trajectory λ̄(·) arising from
λ̄.

This trajectory is bounded; in fact, let us assume the contrary, i.e. that, for any compact
set K with λ̄ ∈ K, there exists some t̄ such that λ̄(t) /∈ K for any t > t̄; then, for any k
greater that some k̄, we would also have that λtk(t) /∈ K. Choosing some k > k̄ such that
tk > t̄ we would get a contradiction with the fact that λtk(t) is the optimal extremal for the
problem with finite time tk. Hence λ̄(t) shall be bounded.

Now we apply Corollary 4.2: since the only equilibrium point is actually z∞, this means
that λ̄(t) is a stable trajectory, i.e. λ̄ ∈ π(W s(z∞)). Hence the projection π|W s(z∞) is onto. ¤

Remark. It is crucial to assume that the function u 7→ ϕ(q, u) has superlinear growth. In
fact, assume by contradiction that there exists a direction uj on which the function ϕ has
linear growth for large ‖u‖, which implies that ∂uj

ϕ tends to a constant as ‖u‖ goes to infinity.
Then there exists an M > 0 such that supu〈λ, u〉 − ϕ(q, u) = +∞ if the j-th component of
λ exceeds M . If the maximized Hamiltonian is not defined, the flow itself is not globally
defined.

4. The Euclidean case.

Theorem 4.6. Consider the problem

(4.15) min
q(t)

∫ ∞

0
ϕ(q(t), u(t)) dt,
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with

(4.16) q̇ = u
q(0) = q0

q(t) → q∞ as t → +∞ q ∈ R
n,

where ϕ is smooth and strongly convex in the pair (q, u) and the function u 7→ ϕ(q, u) has

superlinear growth for any q, and there is a point q∞ such that ϕ(q∞, 0) = 0 and ∂ϕ
∂q (q∞, 0) = 0.

Then there exists a hyperbolic fixed point z∞ with π(z∞) = q∞ of the Hamiltonian system
associated to (4.15), and the problem (4.15) with final point q∞ = π(z∞) admits a smooth
optimal synthesis on R

n.

Proof: As above, PMP let us associate to problem (4.15) a Hamiltonian hu(p, q) = 〈p, q〉 −
ϕ(p, q), and its maximized H(p, q) = maxu hu(p, q).

The hypotheses on ϕ imply that the maximized Hamiltonian H(p, q) is smooth and that
assumption (H3) is satisfied.

For any (p, q), choose Λ(p,q) = span{∂p1 , . . . , ∂pn}(p, q) and Π(p,q) = span{∂q1 , . . . , ∂qn}(p, q).

We have that Λ̇(p,q) > 0 and Π̇(p,q) < 0; in fact, let x =
∑n

i=1 xi∂pi
∈ Λ(p,q) and y =∑n

i=1 yi∂qi
∈ Π(p,q); then

Λ̇(p,q)(x) = σ([ ~H,x],x) =

n∑

i=1

xixj
∂2H

∂pi∂pj
,

Π̇(p,q)(y) = σ([ ~H,y],y) =
n∑

i=1

yiyj
∂2H

∂qi∂qj
.

For fixed (p, q), denote with ū the value of the control that realizes the maximum of hu(p, q);
by direct computation, we get that

∂2H

∂pi∂pj
=

∑

l,m

∂ūl

∂pi

∂2ϕ

∂ul∂um
|u=ū

∂ūm

∂pj
,

which is positive definite. On the other hand,

∂2H

∂qi∂qj
=

∂2hu

∂qi∂qj
−

∑

l,m

∂ūl

∂qi

∂2hu

∂ul∂um
|u=ū

∂ūm

∂qj

= − ∂2ϕ

∂qi∂qj
+

∑

l,m

∂2ϕ

∂qj∂ul

(
∂2ϕ

∂ul∂um

)−1
∂ϕ

∂qi∂um
, ;(4.17)

in fact, let us define the function F : R
3n → R by F (p, q, u) = p− ∂ϕ

∂u (q, u); since rk(JuF ) = n,
we can apply the Implicit Function Theorem and express locally the function ū such that
∂ϕ
∂u |u=ū = 0 as a function of p and q, and moreover we have that

Jū = −(JuF )−1(J(p,q)F ) =
(∂2ϕ

∂u2

)−1(
I,− ∂2ϕ

∂q∂u

)
.

Let us perform a change of variable and assume that, in the point where we are computing
the derivatives, the Hessian of ϕ with respect to u is the unit matrix, thus reducing (4.17) to

∂2H

∂q2
i

= −∂2ϕ

∂q2
i

+
n∑

l=1

(
∂ul

∂qi

)2

= −Hess(ϕ|Q=const),
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with Q = (q1, . . . , q̂i, . . . , qn) (i.e. we are neglecting qi); hence ∂2H
∂q2

i

< 0. Since we can perform

any linear change of variable in the space of the q’s obtaining the same expression (4.17),
we can conclude that the second derivative of H with respect to any direction in the space
of coordinates is negative, i.e. H is strictly concave with respect to q, hence Hessq(H) is a
negative-definite matrix.

This fact implies that the generalized curvature with respect to this splitting is negative
definite; then we are under assumptions of Theorem 4.5. ¤

Remark. The following example shows that the convexity of ϕ(q, u) is not sufficient to assure
that the generalized curvature with respect to the canonical splitting is negative definite.

In fact, let

ϕ(q, u) = f(u) + U(q), q, u ∈ R,

with f ′′(u) > 0 and U ′′(q) > 0.
The generalized curvature is

RH(p, q) =
1

2

(
∂2H

∂p2

)−1 (
∂H

∂q

)2 ∂4H

∂p4
− 1

2

(
∂2H

∂p2

)−1
∂2H

∂q2

∂3H

∂p3

∂H

∂p
+

+
∂2H

∂p2

∂2H

∂q2
− 3

4

(
∂2H

∂p2

)−2 (
∂H

∂q

)2 (
∂3H

∂p3

)
=

=
1

4f ′′(ū)4

(
3U ′(q)2f (3)(ū)2 − 4f ′′(ū)3U ′′(q) − 2ūf ′′(ū)2U ′′(q)f (3)(ū) +

− 2U ′(q)2f (4)(ū)f ′′(ū))
)
;

choosing ϕ(q, u) = u4 + u2 + q2, we get

R(ū, q) =
−(1 + 6ū2)2(1 + 12ū2) + q2(72ū2 − 6)

(1 + 6ū2)4
,

which is not a negative function.

5. The 1-dimensional case.

Let us now consider the optimal problem (4.15)-(4.16) with q ∈ R; we will investigate
whether the problem admits an optimal synthesis only looking at the phase portrait of the
dynamical system generated by the maximized Hamiltonian H(p, q).

We assume that ϕ is smooth and strongly convex in the second variable, and that the max-
imized Hamiltonian H(p, q) = maxq̇ pq̇−ϕ(q, q̇) is well defined for any (p, q); these hypotheses
imply that H(p, q) is a smooth function strongly convex in p.

At a first moment, we do the following assumption:

(A1) for any q ∈ R the function p 7→ H(p, q) has a (unique, by convexity) minimum;

this implies that there is a smooth curve γ that divides R
2 into two disjoint regions Γ+ and

Γ− such that ∂H
∂p > 0 for any (p, q) ∈ Γ+, ∂H

∂p < 0 for any (p, q) ∈ Γ−, and ∂H
∂p = 0 if (p, q) ∈ γ;

(A1) implies that γ is projected surjectively onto the horizontal axis. By strict convexity of
H with respect to p, γ is never tangent to vertical lines.

We remark that hypothesis (A1) is automatically satisfied if we require ϕ to have super-
linear growth with respect to u.
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All equilibrium points of ~H belong to γ and, if we denote by ~Hhor the component of ~H

along the horizontal direction, ~Hhor points in the positive directions for (p, q) ∈ Γ+, in the
negative direction if (p, q) ∈ Γ−, and it vanishes on γ.

Let us now classify the possible phase portraits of such a Hamiltonian. We always assume
that the equilibrium points are nondegenerate; if they are isolated degenerate, then we can
always put things in general position provoking local differences in the phase diagram, while
the global behaviour does not change much.

1 equilibrium point. Since the Hamiltonian flow preserves volumes, the equilibrium
point can only be a centre or a saddle; sinks, sources, stable and unstable nodes, stable and
unstable foci cannot arise.

If the equilibrium point is a centre, then there is no orbit reaching it in an infinite time,
hence the problem (4.15) has never solution.

Let us now suppose that the equilibrium point is a saddle. First of all, we notice that,
since the function p 7→ H(p, q) is strongly convex for any q, for any fixed q there are at
most two distinct values p1, p2 such that (pi, q) belongs to the same level of H for i = 1, 2.
This implies that the semi-trajectories belonging to the stable and the unstable manifolds are
unbounded: in fact, by Poincaré-Bendixon Theorem, if a semitrajectory is bounded, either
it arises from another critical point, either its α-limit set is a periodic trajectory. Neither
of these cases can occur; the first one because by hypothesis there is no other equilibrium
points; the second one cannot occur since, by convexity of H with respect to p, each stable
semi-trajectory cannot wind around the equilibrium point, otherwise we would have more
than two points with the same horizontal coordinate belonging to the same level of H.

We can also prove that the stable and the unstable semi-trajectories are projected bijec-
tively onto the horizontal axis. If the projection of a semi-trajectory that belongs to the stable
or the unstable manifold is bounded, then the horizontal velocity along it vanishes while the
trajectory goes to infinity, that contradicts convexity of H with respect to p; this implies
surjectivity. Injectivity is a consequence of the fact that there can exist at most two points
with the same horizontal coordinate that belong to the same sublevel of the Hamiltonian, and
that both the stable and the unstable trajectory are projected onto the horizontal axis.

Then, the infinite-horizon problem admits a solution for any initial point q0.

2 equilibrium points. As we saw, equilibrium points for this Hamiltonian can only
assume the shape of saddles and centres, so phase portraits for two equilibria can be obtained
combining these possibilities. Call the two points z1 and z2, with π(z1) < π(z2).

Figure 4.3 Figure 4.4
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Figure 4.5

h

Figure 4.6

2 saddles. This combination is forbidden due to convexity of H w.r.t p, for this implies

the non-existence of vertical trajectories and because of the fact that ~Hhor has positive verse
on Γ+ and negative verse on Γ−. As shown in Fig. 4.3-4.4, this gives rise to trajectories
that intersect each other (in particular, in Fig. 4.3 it is shown the situation in which the two
equilibria belong to the same sublevel, in Fig. 4.4 the one in which they belong to different
sublevels). In Fig. 4.5 it is illustrated that, if we try to avoid these intersections, we would
get trajectories whose horizontal velocity has wrong verse.

2 centres. This combination is again forbidden; in fact, by the structure of the Hamil-
tonian, the closed trajectories around each of the equilibria are covered in the same verse
(clockwise). This fact leads up to a contradiction; if, as in Fig. 4.6, the closed orbits get
nearer, then there shall be a line (called h in Fig. 4.6) that separates the region of orbits

around z1 from the region of orbits around z2 and, on this line, the component of ~H parallel
to it shall vanish; but since this line shall cross γ and it’s transversal to it, then there shall

be a point on which ~H vanishes, which is in contradiction with the fact that H has only two
critical points.

Otherwise, if there is family of closed trajectories that surround both critical points, then,
getting nearer z1 and z2, there shall be at least another (or a continuum of) equilibrium point,
as it is shown in Fig. 4.9.

1 centre and 1 saddle. In this case, there can be two kind of phase diagram; let z1 be
the saddle point and z2 the centre. In both cases, we will consider only the infinite horizon
problem with final point q∞ = π(z1) (i.e. the saddle), since we know that there is no solutions
if the final point is the projection of a centre.

In the first case, shown in Fig. 4.7, one unstable semitrajectory and one stable semi-
trajectory of z1 act together as a separatrix between the closed orbits around z2 and the
unbounded orbits of the other part of the plane. Repeating previous arguments, we see that
these trajectories are diffeomorphically projected onto the horizontal line, and then we get
the existence of minima of problem (4.15) with q∞ = π(z1) for any q0 ∈ R

n.
A sample Hamiltonian with this behaviour is the function H(p, q) = 1

2p2 + U(q), where

U(q) behaves as −q2 for q < π(z1) and in a neighbourhood of π(z1), has a local minimum in
π(z2), and then grows monotonically and assumes values strictly less than U(π(z1)).

In the second case, illustrated in Fig. 4.8, a stable and an unstable semitrajectory of z1

join together in a closed separatrix σ; in the closed region surrounded by σ there are the
closed orbits around z2, in the outer there are open orbits. In this case, there is a q̂ such that
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the infinite-horizon problem has solution only for initial point q0 ≤ q̂ if π(z2) > π(z1), and
for q0 ≥ q̂ if π(z2) < π(z1).

A sample Hamiltonian in this case is the function H(p, q) = 1
2p2 + q3 − αq, α > 0.

3 equilibrium points. As noticed all critical points lie on γ, and, moreover, we know
from previous arguments that some configurations (two saddles or two centres side by side)
are forbidden; hence, we can only find two situations: saddle-centre-saddle and centre-saddle-
centre. Let us call z1, z2 and z3 the equilibria in such a way that π(z1) < π(z2) < π(z3)
.
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Figure 4.9

centre-saddle-centre. Let z1 and z3 be the two centres. There is a closed trajectory σ
that surrounds both the centres and that passes through the saddle point that is a separatrix
between the closed orbits around z1 or z3 and the outer orbits (that, depending on the
problem, can be open or closed). In this case, the infinite-horizon problem with final point
π(z2) has solution only for q0 ∈ π(σ), while there is no Hamiltonian trajectories which reach
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a point z such that π(z) = q1 or π(z) = q3 in an infinite time, thus the infinite-time problem
with these conditions has no solution.

This behaviour can be generated by a Hamiltonian like H(p, q) = 1
2p2+q4+αq3−βq2, β >

0.
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Figure 4.10
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saddle-centre-saddle. We have to distinguish two cases: in the first one, shown in Fig.
4.10, the two saddle points (z1 and z3) belong to the same sublevel of H; in the other one,
shown in Fig. 4.11, they belong to different sublevels.

Let us consider the former case; we notice that one stable semitrajectory arising from z1

joins with one unstable semitrajectory of z2, and vice-versa; these two trajectories form a
separatrix between the closed orbits around the centre and the unbounded orbits. Obviously,
there is no solution for the infinite-horizon problem with final point π(z2). Let us consider
the problem with final point π(z1): for initial time q0 ≤ π(z1) the infinite-horizon solution
always exists, since the unstable manifold is diffeomorphically projected onto the half-line
{q ≤ π(z1)}; for π(z1) ≤ q0 < π(z2), the problem has again solution, since a point on
the separatrix reaches π(z1) in an infinite time; for q0 ≥ π(z2), there are no Hamiltonian
trajectories reaching a point z ∈ R

2 such that π(z) = π(z1) in infinite time, hence there is no
solution. We can repeat the same argument to say that the infinite-horizon problem for final
point π(z2) admits solution for q0 ≥ π(z2) and for π(z1) < q0 ≤ π(z2) (on the separatrix).

A sample Hamiltonian that has this phase diagram is H(p, q) = 1
2p2 − q4 + βq2, β > 0.

Let us now focus on the second case; about the problem with final state π(z3), we can
repeat the same arguments used in the situation depicted in Fig. 4.7 : there is a q̂ such
that the infinite-horizon problem admits solution if and only if q ≥ q̂; otherwise, problem
(4.15) with final state π(z1) has a solution for any q0 ∈ R; as seen, there is no solution for
q∞ = π(z2).

This phase diagram can arise with a sample Hamiltonian as H(p, q) = 1
2p2 − q4 − αq3 +

βq2, α 6= 0, β > 0.

More than 3 equilibrium points. We get from previous arguments that all the equi-
librium points lie on γ and they can only be aligned alternating saddle points and centres.
Then all the possible configurations can be deduced by previous results.
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Let us now see what happens if we remove hypothesis (A1). Since we ask that ~H has at
least one equilibrium point, there shall exist at least one q̄ for which the function p 7→ H(p, q̄)
has a minimum; then, there exists a curve γ that divides R

2 into two regions as above, and
such that γ passes through the minimum of H(·, q̄). What we cannot say is that γ is projected
onto the horizontal axis: it can happen that its projection is bounded. This implies that we
cannot guarantee that the stable manifold is projected onto the horizontal line, hence losing
the existence of the optimal synthesis (but we still have local existence of minimizers).

Figure 4.12

Moreover, we notice that there can be cases in which there exist two (or more) disjoint
curves γi that divides the regions where ∂H

∂p > 0 from the ones where ∂H
∂p < 0; in such cases,

it remains true that on the same curve there cannot lie two saddle points or two centres side
by side, but we can have situations such as the one depicted in Fig. 4.12 in which the two
critical points are saddle points.

For such cases, we just repeat that our analysis is only local and permits to prove the
existence of minimizers only for some initial points q0.



CHAPTER 5

Non-autonomous infinite horizon variational problems

Let us now consider a more general version of the optimal economic growth problem; deal-
ing again with smooth integrands and continuous-time problems, here we study Lagrangians
that depend explicitly on time: in particular, we study the functional

(5.1) Jα(γ) =

∫ ∞

0
e−αtϕ(γ(t), γ̇(t)) dt,

where ϕ : R
n ×R

n → R is a smooth function. The term α > 0 is called discount or forgetting
factor.

Our goal is to determine the trajectories that minimize the functional Jα that belong to
a suitable class of admissible trajectories. In this section, we will only give some preliminary
results that allow for a special class of Lagrangians ϕ, namely they have to be strictly con-
vex with respect to the second variable and quadratic out of a compact set ; moreover, we
are interested in the case in which the Hamiltonian associated to the problem has positive
curvature. The generalization of this results to an ampler class of Lagrangians is still work in
progress.

Remark. Let us remark that, as in the preceding chapter, with strict convexity of a function
with respect to some variable we will mean the positive definiteness of the Hessian of the
function with respect to the given variable.

1. Introduction to the problem

We consider the functional Jα defined in (5.1), and we try to find the curve q(·) that
minimizes it in a suitable class of trajectories to be specified later. As already done in the
preceding chapter, we formulate this problem as an optimal control problem, and we associate
to this problem a maximized Hamiltonian function

(5.2) H(p, q) = max
u

〈p, u〉 − e−αtϕ(q, u).

The dynamical system generated by H is of course Hamiltonian, though it is non-autonomous.

As usual, we will denote the flow et ~H also with φt. To state the problem with more precision,
we first examine the following example:

Example. Let us recall the case studied in Subsection 2.1 of preceding chapter: we had
ϕ(q, q̇) = 1

2(q̇2 − rq2), q ∈ R, and H(p, q) = 1
2(p2 + rq2), where r is a constant. We saw that

the sign of r is crucial for the existence of the optimal synthesis.
Here we consider the problem with the same quadratic Lagrangian multiplied by the

discount term e−αt, α > 0; the associated non-autonomous Hamiltonian is H(p, q) = 1
2(eαtp2+

63
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e−αtrq2); we make the following substitutions:

(5.3) ζ := eαtp Hα := eαtH =
1

2
(ζ2 + rq2);

the equation of motion for the variables (ζ, q) is

(5.4)

(
ζ̇
q̇

)
=

(
α −r
1 0

)(
ζ
q

)

or, more synthetically, (ζ̇, q̇) = ~Hα, where ~Hα = ~H+αζ ∂
∂ζ . Notice that this is an autonomous

dynamical system, but it is not Hamiltonian.
Since the dynamical system is linear, the trajectories are completely determined by the

eigenvalues of the evolution matrix, which are λ± = α
2 ±

√
α2

4 − r.

If r < 0, then both the eigenvalues are real, with λ− negative and λ+ positive, and the
origin is a saddle point and there are defined a stable and an unstable manifold. If we want
to study a variational problem such as (4.7)-(4.8), we can repeat all the arguments previously
used for the case without discount factor, and prove the existence of the optimal synthesis.

Much more interesting is the case r > 0; for fixed r > 0, the phase portrait is determined
by the value of α. In fact, for α < 2

√
r, both λ± are complex with positive real part, and

then the origin is an unstable focus; in this situation, the integrand e−αtϕ(q, q̇) tends to a
nonzero constant for t → +∞ along any trajectory of the dynamical system, and then the
integral in (5.1) does never converge.

Otherwise, for α > 2
√

r both eigenvalues are real and positive, then the point (0, 0) is an
unstable node, but we have λ− < α/2; this implies that there is a direction (the direction
determined by the eigenvector relative to the eigenvalue λ−) along which |(ζ, q)| grows with

exponential rate less than e
α
2

t. Since the Lagrangian is quadratic in (q, q̇), the integrand
converges exponentially to zero along this direction, and then the integral (5.1) converges.
Along all the other trajectories the integral does not converge. Then, by PMP, the projections
on R of these trajectories along the eigenspace relative to λ− are the optimal trajectories of
the infinite horizon problem with discount factor α. In particular, it can be shown that the
problem admits an optimal synthesis.

The example is enlightening because it shows that in presence of a suitable discount factor
even cases with positive r may admit an optimal solution for an infinite horizon problem (or
even an optimal synthesis). We stress that in the case without discount this is forbidden, due
to Theorem 2.1.

In this treatment, we will focus our attention to functions ϕ which are strictly convex
with respect to the second variable and quadratic out of a compact in the pair of variables.
For such functions we use the following definition of optimality:

Definition 5.1. We say that a locally Lipschitzian curve γ̃ : [0, +∞) → R
n is an optimal

trajectory for the infinite horizon problem with discount factor α if

(5.5) Jα(γ̃) = min
{

Jα(γ) : γ(0) = γ̃(0), lim
t→+∞

e−αt|γ̇(t)|2 = 0
}

.

Notice that in this case we do not give condition on the final endpoint; in particular, in
the case above shown with r > 0 and α > 2

√
r, the trajectories satisfying Definition 5.1 are

unbounded. Due to this fact, we slightly modify the definition of optimal synthesis we gave
in the introduction to Chapter 4:
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Definition 5.2. A smooth optimal synthesis is a smooth complete vector field X on R
n

such that all the solutions of the equation q̇ = X(q) are optimal trajectories (according to
Definition 5.1) of the infinite variational problem under consideration.

2. Computation of the curvature

Our aim is to determine whether the problem of minimization of the functional Jα admits
a smooth optimal synthesis, according to Definition 5.2. As done in the case without discount,
and as suggested by the example just given (where r was in fact the generalized curvature
of the system, computed with respect to the canonical splitting associated to the vertical
distribution), we need to compute the generalized curvature of the system.

We perform the non-autonomous change of variables ζ := eαtp, Hα = eαtH (5.3), and the
new dynamical system on R

2n is given by

(5.6)

{
ζ̇ = αζ − ∂Hα

∂q

q̇ = ∂Hα

∂ζ

; ,

where we put ~Hα = ~H + αζ ∂
∂ζ . We notice that this new dynamical system is autonomous,

but not Hamiltonian. In fact, the flow does not preserve the symplectic form:

(5.7)
(
et ~Hα)∗

σ = eαtσ.

To prove this, let us recall that for any vector field X and any differential form ω, LXω =
ιXdω + d(ιXω), where d denotes the exterior differential. We have

L ~Hασ =
d

dt

(
et ~Hα)∗

σ

= ι ~Hα(dσ) + d(ι ~Hασ) =

=

n∑

i,k=1

− ∂2H

∂qk∂pi
dpi ∧ dqk + αdpi ∧ dqk +

∂2H

∂qi∂pk
dpk ∧ dqi = ασ,

hence the thesis. However, by equation (5.7) we get that the flow preserves the Lagrangian
subspaces.

Remark. In the following, we will deal with two functions – H and Hα – and their associated

vector fields, respectively ~H and ~Hα. We notice that the former function is defined on the
space {(p, q)} ∈ R

n∗ × R
n, while the second one lives on the space {(ζ, q)} ∈ R

2n. Actually,
they define the same dynamical system, but described in different coordinate systems; in par-
ticular, as we saw H defines a Hamiltonian non-autonomous system, Hα a non-Hamiltonian
autonomous dynamical system. In the following, we will use H when working with coordinates
(p, q), and Hα when using the coordinates (ζ, q).

To avoid confusion, when we will need to recall the case without discount, we will denote

the Hamiltonian with H0, and the vector field with ~H0.

Fix z = (p, q) ∈ R
2n and consider the vertical distribution Λz = R

n × {q}; we define

the Jacobi curve Λα
z (t) = e−t ~Hα

∗Λzt , zt = et ~Hα
(z), and we need to compute its derivative

curve. Due to intrinsic definition of the derivative curve (equation (2.6)), we just need to
determine the “derivative distribution” {Λα◦

z }z∈R2n . To do that, we follow the construction
below exposed.
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Let for the moment α = 0, and consider the canonical moving frame {ei(t), f i(t)}n
i=1 at

z associated to H0, where span{e1(0), . . . , en(0)} = R
n × {q}; we already saw that these

vectors satisfy the system ėi(t) = f i(t), ḟ i(t) = −R(t)ei(t), where R is the representation

with respect to this basis of the curvature operator associated to ~H0.
For α > 0, the frame {ei(t), f i(t)}n

i=1 satisfies the following system:

(5.8)

{
ėi(t) = f i(t) − αei(t)

ḟ i(t) = −R(t)ei(t)
.

A moving frame {ẽi(t), ˙̃ei(t)}n
i=1 is the canonical moving frame associated to the canonical

splitting Λα ⊕ Λα◦ if and only if

(5.9) ¨̃ei(t) ∈ Λα
z (t) for any t, i = 1, . . . , n.

To determine such vectors {ẽi(t)}, we introduce a (invertible) linear transformation

X(t) : Λα
z (t) → Λα

z (t), X(0) = id

that defines a new basis ẽi(t) = X(t)e(t)i, and we require condition (5.9) to be satisfied. Let
us compute ¨̃ei(t):

d2

dt2
(X(t)ei(t)) = Ẍ(t)ei(t) + Ẋ(t)f i(t) − αẊ(t)ei(t) + Ẋ(t)f i(t) +

− X(t)R(t)ei(t) − αẊ(t)ei(t) − αX(t)f i(t) + α2X(t)ei(t) =

= (Ẍ(t) − 2αẊ(t) − X(t)R(t) + α2X(t))ei(t) + (2Ẋ(t) − αX(t))f i(t).

This implies that equation (5.9) is satisfied if and only if Ẋ(t) = α
2 X(t). The new canonical

moving frame satisfies the system

(5.10)

{
˙̃ei(t) = d

dt(Xei)(t) = f̃ i(t) − α
2 ẽi(t)

¨̃ei(t) = d2

dt2
(Xei)(t) = −Rα(t)ẽi(t)

,

where f̃ i(t) = X(t)f i(t); then we get

Λα◦
z = span{f̃1 − α

2
ẽ1, . . . , f̃n − α

2
ẽn}

and

Rα(t) = X(t)R(t)X(t)−1 − α

4

2
id

We then conclude that Rα(t) is the representation with respect to the basis {ẽi(t), ˙̃ei(t)}n
i=1

of the curvature operator RΛα,Λα◦

z (notice that in the computations we omitted the dependence
on z).

Notice that if R(t) is positive and bounded from above by a constant C, for α > 2
√

C we
get that Rα(t) < 0.

3. Preliminary results

In the following we will denote with R0
z the curvature operator of H0 (case without

discount factor) with respect to the canonical splitting. The curvature operator RHα

z will be
denoted with Rα

z .



3. PRELIMINARY RESULTS 67

Theorem 5.1. Let ϕ : R
n ×R

n → R be smooth, and strictly convex with respect to second
variable, and assume that there is a compact set K ∈ R

2n such that the function ϕ is quadratic
in the pair (q, u) for any (q, u) ∈ R

2n \ K.

If the curvature R0
z of the Hamiltonian vector field ~H0 with respect to the canonical splitting

satisfies the inequalities 0 < R0
z ≤ C for some constant C for any z ∈ R

2n, then the infinite
horizon variational problem without discount does not admit optimal trajectories, while the
problem with discount admits an optimal synthesis of class C1 if α > 2

√
C.

Proof. The proof of this Theorem is analogous to the proof of Theorem 4.5: we want to
find a Lagrangian invariant submanifold of R

2n such that the Hamiltonian trajectories living
on it satisfy the growth assumptions in (5.5), and then we want to show that it projects
diffeomorphically onto the state space R

n. This guarantees the existence of the optimal
synthesis, provided that we generalize the sufficient condition for optimality (Theorem 1.8)
to this case with the discount factor.

Then the proof of the Theorem is thus organized: in Subsection 3.1 we prove the existence

of a et ~Hα
-invariant distribution on R

2n; we use Wojtkowski’s criterion to prove that the vectors
on it satisfy some particular growth assumptions. In Subsection 3.2, we use Hadamard-Perron
Theorem and some results on Partially Hyperbolic Theory to show that this distribution is
in fact tangent to a C1 smooth submanifold W c; then, we prove that W c is diffeomorphically
projected onto the base space R

n. Finally, Subsection 3.3 contains a proof of the generalization
of Theorem 1.8 to the case under investigation.

3.1. The limit distribution. We construct two Lagrangian distributions through the
following Lemma:

Lemma 5.1. If Rα
z < 0 for any z = (ζ, q) ∈ R

2n, then there exist the limits limt→±∞ Λα
z (t) =

Λα±
z .

Proof. Fix z, and choose coordinates (x, y) on Tz(R
2n) such that Λα

z (t) = {(x, S(t)x) : x ∈
R

n} and Λα◦
z (t) = {(x, S◦(t)x) : x ∈ R

n}, with S◦(0) − S(0) > 0. Since the two curves are
transversal at any time, we always have S◦(t) − S(t) > 0.

By computations, we can show that the curve Λα
z (·) is monotone increasing, and hence,

since the curvature is negative, the derivative curve is monotone decreasing. This implies the
existence of the limit limt→+∞ Λα

z (t) = Λα+
z . If we choose another coordinate chart such that

S◦(0)−S(0) < 0, with the same argument we can prove the existence of limt→−∞ Λα
z (t) = Λα−

z .
¤

Remark. Since Λα
z (·) is Lagrangian, also its limit distributions are. Moreover, it is easy to

show that by construction the distributions are invariant with respect to the flow φt = et ~Hα
,

i.e.

φt
∗Λ

α±
z = Λα±

zt
, zt = φt(z).

Since the curves Λα
z (·) is monotone, we also have that the limit distributions Λα±

z are always
transversal to Λα

z (0), i.e.

Λα+
z ∩ Λα

z (0) = Λα−
z ∩ Λα

z (0) = 0

for any z.

For these distributions the estimates written below allow:
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Lemma 5.2. There is a norm ‖ · ‖ on R
2n and constants ρ > 0, ε ∈ (0, α

4 ) such that if

R0
z > 0 and Rα

z < 0 for any z ∈ R
2n, then:

1

ρ
eεt‖x−‖ ≤ ‖et ~Hα

∗x−‖zt ≤ ρe(α
2
−ε)t‖x−‖z(5.11)

‖et ~Hα

∗x+‖zt ≥ ρe(α
2
+ε)t‖x+‖z,(5.12)

for any x± ∈ Λα±
z and for zt = et ~Hα

(z).

Proof. Consider the dynamical system for the canonical moving frame (5.8); let us then
write it as

(
−α 1

−R(t) 0

)
=

(
−α

2 1
−R(t) α

2

)
− α

2

(
1 0
0 1

)

= H − α

2
id2n,(5.13)

where above with “1” we mean the n × n identity matrix.

Let us notice that the matrix H is Hamiltonian (that means, for a block-matrix

(
A B
C D

)
,

that A + DT = 0 and that B and C are symmetric matrices), while the second term is just
the identity matrix on R

2n multiplied by a scalar factor.
Since this second term commutes with any other matrix, its contribution to the evolution

of the vectors consists in multiplying them by the exponential factor e−
α
2

t; then we can for
the moment leave it out, and focus on the action H: we see that it defines a quadratic form
Q that satisfies Wojtkowski’s criterion and Lemma 4.1.

In fact, let E = (e1(0), . . . , en(0))T and F = (f1(0), . . . , fn(0))T , and call Γ = (f1(0) −
γe1(0), . . . , fn(0) − γen(0))T ; put

(5.14) Qt(x) = σ((Φt
H
x)Γ, (Φt

H
x)E)

where Φt
H

is the flow on R
2n generated by the equation

d

dt

[
Φt

H

(
E
F

) ]
= H

(
E
F

)
,

and XE and XΓ denote, as usual, the sections of the vector field X such that XE ∈ span{e1(0), . . . , en(0)},
XΓ ∈ span{f1(0) − γe1(0), . . . , fn(0) − γen(0)}, and X = XE + XΓ. By computations, we
have that

d

dt
Q(Φt

Hx)|t=0 = σ((xΓ)·,xΓ) − σ((xE)·,xE),

where here (xE)· denotes d
dtΦ

t
H
(xE)|t=0 (same for (xΓ)·).

By computations, for γ ∈
(

α
2 −

√
α
4

2 − C, α
2 −

√
α
4

2 + C
)

we have that σ((xΓ)·,xΓ) is

positive definite; σ((xE)·,xE) negative definite.
Then we can apply Lemma 4.1 and get the existence of the expanding and contracting

cones C±
z ; this proves the existence of the splitting Ĉ+

z ⊕ Ĉ−
z (defined as in equation (4.6))

such that

‖Φt
H
x‖ ≤ e−µt‖x‖ ∀ X ∈ Ĉ−

z(5.15)

‖Φt
H
x‖ ≥ eµt‖x‖ ∀ X ∈ Ĉ+

z ,(5.16)
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where µ = mini{
√

α
4

2 − ri : ri eigenvalue of R}.
If we consider the original flow φt = et ~Hα

, we shall take account of the contribution of the
matrix −α

2 id2n.

Notice finally that the system (5.8) describes the evolution of the vectors {ei
z0

(t), f i
z0

(t)} =

{φ−t
∗e

i
zt

(0), φ−t
∗f

i
zt

(0)}, i.e. the evolution for negative times.
Then, equations (5.15)-(5.16) reads

‖φ−t
∗x‖ ≤ e−(µ+α

2
)t‖x‖ ∀ x ∈ Ĉ−

z(5.17)

‖φ−t
∗x‖ ≥ e(µ−α

2
)t‖x‖ ∀ x ∈ Ĉ+

z , .(5.18)

Then we shall change the sign of time in equations (5.17)-(5.18), and also to invert the

names of Ĉ+ and Ĉ−, putting C̃+ = Ĉ− and C̃− = Ĉ+; for C̃±, we obtain the estimates
(5.11)-(5.11).

The final step is to show that actually C̃±
z = Λα±

z . Since C̃+
z ⊕ C̃−

z is a splitting, we can

write any x as x = x+ + x−, where obviously x± ∈ C̃±
z .

For any x ∈ Tz(R
2n), we have that ‖Dzφ

tx−‖ → 0 as t → +∞, and then that Dzφ
tx →

Dzφ
tx+ as t → +∞; take x ∈ Λα

z : by definition of Λα
z , we have that limt→+∞ Dzφ

tx ∈ Λα+
z .

Since x+ 6= 0, limt→+∞ Dzφ
tx ∈ C̃+

z .

This, plus some dimensional considerations, implies that C̃+
z = Λα+

z . The same for Λα−
z .

Then, we get that the estimates (5.15)-(5.15) allow also for Λα+
z and Λα−

z . ¤

This Lemma has an immediate Corollary:

Corollary 5.1. Under the hypothesis of Lemma 5.2, we have that

‖ ~Hα(zt)‖zt → ∞ as t → +∞
with exponential rate for any z ∈ R

2n. Moreover, if ~Hα ∈ Λα−
z , then

e−
α
2

t‖ ~Hα(zt)‖zt → 0 as t → +∞
with exponential rate; otherwise,

e−
α
2

t‖ ~Hα(zt)‖zt → ∞ as t → +∞
with exponential rate

3.2. Existence of the optimal synthesis. Lemma 5.2 shows that the dynamical sys-
tem (5.6) is partially hyperbolic in the narrow sense, according to Definition 1.5. In this
particular case, the distribution Λα− is the central distribution of the system, while the Λα+

is the unstable distribution.
Our aim is then to establish the integrability of the central distribution; in fact, if it existed

an integral manifold of Λα−, any trajectory lying on it would satisfy the growth assumptions
required in (5.5), while all the other Hamiltonian trajectories would grow too fast with respect
to time.

Lemma 5.3. The central distribution is integrable with integral manifold W c.

Proof. Thanks to Theorem 1.3, to prove the integrability of Λα− we need to prove that the
lift of the integral manifold of Λα+ is quasi-isometric in the universal cover to R

2n.
We choose R

2n itself to be the universal covering. Call W+ the integral manifold of the
unstable distribution. Since ϕ is quadratic out of the compact K, there exists a compact
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K̂ ⊂ R
2n = {(ζ, q)} such that Hα is quadratic on R

2n \ K̂; on R
2n \ K̂, the unstable manifold

is a linear subspace of R
2n; this implies that dW+ = dR2n .

Inside K̂, by compactness of the set, there exist two constants a, b > 0 such that dW+(z1, z2) ≤
adR2n(z1, z2) + b.

Then W+ is quasi-isometric, and hence we get the existence of W c.
By Hadamard-Perron Theorem, W c is C1 smooth. ¤

Notice that W c is Lagrangian, due to Lagrangianity of the central distribution Λα−.
Since the central distribution Λα− is always transversal to the vertical distribution, we

get that W c is projected injectively on R
n. For the same reason (transversality of Λα− to

the vertical distribution), the projection π|W c is proper, and then a diffeomorphism onto the
image.

Surjectivity is a consequence of linearity of the flow out of K̂.

3.3. The sufficient condition. In this subsection we state and prove the generalization
to our case of the sufficient condition for optimality stated in Chapter 1 (Theorem 1.8).

Theorem 5.2. Let W c be the less unstable manifold defined in previous subsection; let π :
R

2n → R be the canonical projection, and assume that its restriction π|W c is a diffeomorphism.
Then for any λ0 ∈ W c the normal extremal trajectory

q̃(t) = π ◦ et ~H(λ0), t ∈ [0, +∞),

realized a strict minimum of the cost functional (5.1) among all the locally Lipschitzian curves
q(t), t ∈ [0,+∞), such that

(5.19) q(0) = q̃(0) and lim
t→+∞

e−αt|q̇(t)|2 = 0.

Proof. The proof is just an adaptation of the proof on Theorem 1.8, that can be found in
[7]. Here we briefly expone the modifications to be done.

Define the set

W := {(λ, t) : λ ∈ W c, 0 ≤ t < +∞} ⊂ R
2n × R,

which is a smooth (n + 1)-dimensional submanifold of R
2n × R, and consider the 1-form

ϑ − H dt,

where we recall that ϑ is the tautological 1-form on R
2n (see Section 1 of Chapter 1), and H

is defined by (5.2).
It is straightforward to prove that ϑ−H dt is exact on W (see the analogous proof in [7],

Section 17.1.1).
Then, consider a point q0 ∈ R

n and its lift λ0 ∈ W c. Put q̃(t) = π(φt(λ0)), and let q(·)
be a curve such that q(0) = q0 and limt→+∞ e−αt|q̇(t)|2 = 0. Since W c is diffeomorphically
projected onto R

n, there is a unique lift λ(·) of the curve q(·) to the less unstable manifold
W c.
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Fix some T > 0; then
∫ T

0
e−αtϕ(q(t), q̇(t)) dt =

∫ T

0
〈λ(t), q̇(t)〉 − h(λ(t)) dt ≥

≥
∫ T

0
〈λ(t), q̇(t)〉 − H(λ(t)) dt =

=

∫ T

0
〈ϑλ(t), λ̇(t)〉 − H(λ(t)) dt =

=

∫

γ
ϑ − H dt,

where we recall that h(λ(t)) = 〈λ(t), q̇(t)〉 − e−αtϕ(q(t), q̇(t)), and γ is a curve in W defined
by

γ : t 7→ (λ(t), t) ∈ W, t ∈ [0, T ].

Since the form ϑ − H dt is exact, its integral along a curve in W depends only on the
endpoints. Then we define the two curves

γ̃ : t 7→ (φt(λ0), t) ∈ W, t ∈ [0, T ]

and

γT : τ 7→ (ηT (τ), T ), τ ∈ [τ0, τf ]

such that ηT is a curve in W c with ηT (τ0) = λ(T ) and ηT (τf ) = eT ~H(λ0); the choice of ηT

will be specified below. We have that

(5.20)

∫

γ
ϑ − H dt +

∫

γT

ϑ − H dt =

∫

γ̃
ϑ − H dt.

Since t is constant along γT , we have that
∫

γT

ϑ − H dt =

∫

γT

ϑ =

∫

ηT

p dq =

∫ τf

τ0

p(τ)q̇(τ) dτ ;

by the growth conditions (5.19), we have that there exists some ε > 0 such that for T ≫ 0

|q(T )|, |q̃(T )| ≤ |q0|e(α/2−ε)T . Then we define a curve q̂(·) ∈ R
n with q̂(τ0) = q(T ), q̂(τf ) =

q̃(T ), and |q̂(τ)| ≤ |q0|e(α/2−ε)T for any τ ∈ [τ0, τf ]; the curve ηT is then chosen to be the lift
of q̂(·) to W c. We can choose a parametrization of the curve ηT such that |q̇(τ)| is constant for
any τ . In fact, the integral

∫ τf

τ0
|q̇(τ)| dτ equals the length of the curve q̂(·), and this implies

that the length of the interval (τf − τ0) and the value of |q̇(τ)| are not independent. We then

fix q̇(τ) = ρ for any τ , and (τf − τ0)ρ ∼ Ce(α/2−ε)T , for some constant C.
Since the function ϕ is quadratic out of K, out of this compact the dynamics is linear

in the variables (ζ, q), and the space W c is a linear space; this means that there is a linear
operator A such that we can write

W c \ (W c ∩ K̂) = {(ζ, q) ∈ R
2n \ K̂ : ζ = Aq}.

We can then deduce that, if T is sufficiently large, for any (ζ, q) ∈ ηT we have |ζ| ≤
‖A‖|q0|e(α/2−ε)T = C ′e(α/2−ε)T , for some constant C ′. This implies that for any (p, q) ∈ ηT

we have

|p| ≤ e−αT C ′e(α/2−ε)T = C ′e(−α/2−ε)T ;
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then ∫

ηT

p dq ≤
∫ τf

τ0

|p(τ)||q̇(τ)| dτ ≤ C ′e(−α/2−ε)T

∫ τf

τ0

ρ dτ = C ′′e−2εT .

Since equation (5.20) allows for any T and
∫
ηT

p dq → 0 as T → +∞, we can conclude that

∫ ∞

0
e−αtϕ(q(t), q̇(t)) dt ≥

∫ ∞

0
e−αtϕ(q̃(t), ˙̃q(t)) dt;

the proof that the inequality is strict is completely analogous to the one in [7]. ¤
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