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neutron stars – The role of the neutron-finger instability for dynamo excitation,
2008, A&A, 479, 167 [arXiv:0711.1498 astro-ph]

• Chapter 4:

– Naso L. & Miller J. C., Stationary magnetic field configurations in accretion discs
around neutron stars – the role of velocity and diffusivity,
submitted [arXiv:0906.5082 astro-ph.SR]

– Naso L. & Miller J. C., Stationary magnetic field configurations in accretion discs
around neutron stars – II analysis of the toroidal component,
in preparation

• Chapter 5 and 6:

– Naso L, Bonanno A. & Elstner D., Magnetic field amplification in proto-neutron
stars – a non linear 2-dimensional model for the mean field dynamo,
in preparation

1



2 Contents



Chapter 1
General introduction

Themain characters of this thesis are the magnetic field, the plasma velocity field, the tur-
bulent magnetic resistivity and the numerical codes. They act on two different stages and
on two different levels and occasionaly there are other bit players, e.g. the α-effect, the
quenching, the differential rotation, themagnetic stream function, themagnetic Reynolds
number, the Interactive Data Language and even ZEUS. All of them are led by the same
invisible hand with the purpose of understanding better the intricate topic of the mag-
netic field - plasma relation.

The two stages of the scene could not be more different, in one case everything is done
in less than a minute inside a proto-neutron star soon after a supernova explosion, in the
other case there is no time evolution at all and an equilibrium configuration is looked for
inside a disc of matter spiraling around a neutron star. Nevertheless the same set of equa-
tions can describe the behaviour of the characters on both stages, this set is composed of
the equations of the electromagnetic field plus the fluid equations.

However knowing that the answers to all of your questions are written inside only
one book, does not mean that you are able to read that book ... It is at this moment that
the numerical codes come into the scene, offering you a way of translating the book in
a language that you know. Unfortunately they like playing tricks and you cannot trust
their translations unless you take many precautions every time.

Eventually, after the equations have been solved, comes the art of interpreting the re-
sults; a task that might seem quite simple in comparison with the difficulties overcome
on the path to get there, but that requires a deep knowledge of what has already been
done and a good intuition about what can possibly happen later on.

We do not presume to have made big leaps forward in the process of understanding
the behaviour of the magnetic field in the cases considered here, nonetheless thanks to
our simplified models we were able to grasp the fundamental aspects of the phenomena
being considered, to gain some insights and to propose new falsifiable ideas. At the
same time we have also developed new tools for making our models more elaborate and
realistic. Therefore we expect to find even more characters in the future Chapters of this
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4 Chapter 1. General introduction

analysis, but that is another story, and will be told another time.

1.1 Mean field dynamo

The first of the two stages where we see the magnetic field in action is inside proto-
neutron stars, in the ambit of the mean field dynamo theory.

Literally a dynamo is a generator of direct current, which exploits the mechanical mo-
tion of a conductor immersed in a magnetic field to generate an electric current via Fara-
day’s law of induction, according to which the induced electromotive force in any closed
circuit is equal to the time rate of change of the magnetic flux through the circuit.

In the astrophysical context one speaks of a dynamo if a magnetic field is generated
or maintained due to motions inside an electrically conducting fluid medium. Therefore
the dynamo is considered as a means of converting kinetic energy into magnetic energy,
and according to the kind of motions which are activating the dynamo one has laminar
or turbulent dynamos.

We shall consider here only turbulent dynamos, which we approach by direct numer-
ical simulations in the ambit of mean field theory. When a dynamo is active and the
magnetic field is growing, it inevitably continues to grow as long as the motions remain
unchanged. In reality however the motions are influenced by the Lorentz force which ap-
pears as a consequence of the magnetic field. As long as the magnetic field is sufficiently
weak this influence may be neglected. If the field becomes stronger this influence will be
of crucial importance. It prevents the incessant increase of the field and determines its
magnitude in the final state. In the kinematic dynamo model the motions are kept fixed,
therefore the back-reaction of themagnetic field on to themotions is neglected. Kinematic
models are usually appropriate for studying the onset of the dynamo, while they cannot
provide useful information about the final intensity of the magnetic field. However it
is possible to include a quenching function which has the scope of mimicking the satu-
ration effect which is naturally provided by the magnetic feedback on the fluid motion,
thus allowing for following the magnetic field evolution until it saturates. This is exactly
what is done here, in fact we are interested in knowing the magnetic field intensity at the
birth of the neutron star, and in order to estimate this we simulate a mean field dynamo
inside the star just before it becomes a neutron star, i.e. when it is a proto-neutron star.

A proto-neutron star is a transient phase that a star undergoes after it has been pro-
duced in a supernova explosion and before it becomes a stable neutron star. It is a very
swift transition lasting about a minute, during which the star cools very rapidly, mainly
radiating away neutrinos, and shrinks, reaching the final size of the neutron star (about
10 km radius). During this phase the inside of the star is thought to be subject to two hy-
drodynamical instabilities that can generate some turbulence, the convective instability
and the neutron finger instability. Therefore this environment is particularly suitable for
the onset of a dynamo action, which requires a conductive medium and an electromag-
netic field.

Thompson and Duncan (1993) studied the evolution of the magnetic field in the pres-
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ence of only the convective instability, and they found that a small scale dynamo is acti-
vated. Bonanno et al. (2003) considered instead the case of the neutron finger instability:
in this case a mean field dynamo can be excited and therefore a large scale field can
be produced. In essence the reason why one instability generates one kind of dynamo
and the other instability generates another type, is the time scale of the turbulent eddies.
When it is comparable to the spin period of the star then it is possible to have some kind
of interaction between the two different scales: the small one of the turbulence and the
large one of the rotating star. The main consequence of this interaction is that the turbu-
lence will lose mirror symmetry because of the Coriolis force, and produce the so-called
α-effect. In Chapter 2, Section 2.3, we write explicitly the equations that describe this
interaction.

Our interest is in continuing the analysis of the mean field dynamo generated in the
neutron finger unstable region. Our approach is to begin with a one dimensional model
and take advantage of this simplification in order to include some physical ingredients
previously neglected. We in fact include the treatment of the α- and η- quenching and we
also allow the neutron finger instability to vary its size with time.

In the next act of this analysis we use a two dimensional (axisymmetric) model. The
greater modification is in the numerical part of the work. In the first model, the one
presented here, we have used a code designed for solving the induction equation in one
dimension and in the kinematic approximation, while for the future we would like to
have something that allows us not only to use more dimensions and but also to solve
the fluid equations as well. In order to achieve this goal we have decided not to write a
brand new code, but to start from a publically available one and add to it the bits that
are necessary for our purposes. Our choice is to use the ZEUS-MP code, and modify it
in such a way that it can solve not only ideal magnetohydrodynamics (MHD), but also
resistive MHD in the mean field theory.

All of these steps and successive models have the same final aim, which is that of
understanding better the magnetic field that neutron stars have at birth. Although neu-
tron stars were originally discovered as pulsars (bright pulsating radio sources), isolated
neutron stars have now been observed across the entire electromagnetic spectrum, up
to high-energy gamma-rays. They exhibit a phenomenology so complex and diversi-
fied that there is a zoo of different classes: standard radio pulsars, rotating radio tran-
sients, soft gamma repeaters and anomalous X-ray pulsars (these two classes are the so-
called magnetars since they are supposed to host an hyper-magnetized neutron star),
central compact objects in supernova remnants (suggested to be antimagnetars, i.e. low-
magnetized neutron stars) and X-ray dim isolated neutron stars. It is presently unknown
whether the phenomenology we observe in these different sources and our classification
thereof, reflects differences in intrinsic properties (for example progenitors with differ-
ent masses, or different spin periods and/or magnetic field strengths at the NS birth) or
an evolutionary process. We aim at solving a part of this challenge, the one regarding
the magnetic field intensity and configuration, and we already have a suggestion that it
could be possible to reproduce all of the observed values for the intensity of the mag-
netic fields (from those of low magnetized to hyper magnetized neutron stars, i.e. from
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the anti-magnetars to magnetars) just by assuming a difference in the Reynolds dynamo
numbers during their formation. Can this really be a universal scenario? And can it ac-
count also for the magnetic field topology? This is the main legacy that this thesis work
is leaving us: more questions to be answered with more realistic models.

1.2 Accretion disc

The second scene of action is an accretion disc around a magnetised neutron star.

An accretion disc is nothing more than a collection of matter gravitationally bound
around a central object and, because of the large angular momentum, the matter takes
the disc-like form. In addition this matter is spiraling inwards, eventually accreting onto
the central object. Finally the matter can also have some velocity along the direction
perpendicular to the disc and if it leaves the disc it is said to form a wind.

Accretion discs are ubiquitous in the universe. They regulate the energy generation
and angular momentum transport in stellar and proto-stellar systems and in active galac-
tic nuclei. It is now generally accepted that magnetic fields play a pivotal role in the
accretion-disc physics. Microscopically, they generate turbulence via magneto-rotational
instability (MRI), and the turbulence in turn drives the accretion process. Macroscopi-
cally, theymay determine the flow dynamics, modify the accretion geometry and provide
a means to collimate the jet outflows. They also affect the radiative processes, leading to
a variety of observational phenomena, such as radiation collimation (pulsar lighthouse
effect) and spectral line production through cyclotron and synchrotron emission.

We shall consider here only accretion discs around neutron stars, which are taken to
have a dipolar magnetic field. In this case the matter in the disc is in the plasma state
and the magnetic field-plasma interaction can be described by the MHD equations. As
for the isolated neutron stars, there is a plethora of accreting neutron stars and we inves-
tigate the roles of magnetic fields in the accretion of X-ray pulsars and old neutron stars.
The primary objective is to resolve a long standing issue, that is, how are accreting neu-
tron stars spun up to become millisecond pulsars? In addition, I also aim to explain the
puzzling observation that no neutron star has been found to rotate with an spin-angular
velocity near the break-off limit. In both cases it is essential to know the magnetic field
configuration and the disc-geometry.

Shakura & Sunyaev developed in 1973 a model for non-magnetised accretion discs
which is now considered as a standard model, usually called the α disc model, because
the r φ component of the viscous tensor is taken to be proportional to the total pressure
with proportionality constant α. There is no standard model for magnetised accretion
discs, although the subject has been deeply studied since Ghosh & Lamb (1979). When
the magnetic field was at first included in the accretion disc models it was not even sure
whether it was able to penetrate the disc or not, because of the generation of screening
currents on the surface of the disc. Ghosh and Lamb (1979a) pointed out that there are at
least three physical processes preventing the magnetic field being completely shielded by
the accretion disc: magnetic reconnection, turbulent magnetic diffusion and the Kelvin–



1.2. Accretion disc 7

Helmholtz instability. Ghosh and Lamb divided the disc into two main subregions: an
interaction region, where the disc is threaded by the magnetic field, and an external re-
gion, which is instead completely shielded from the magnetic field. The interaction re-
gion is furthermore divided into two parts: a boundary layer at the inner edge of the
disc, where the magnetic field is overwhelming the viscous force and matter leaves the
disc vertically; and a broad transition zone, where, even if the magnetic field is present,
the accretion flow is similar to the standard α-disc.

In addition to considering the magnetic field configuration, Ghosh and Lamb also ad-
dressed the issue of the spin history of the central neutron star. In fact the magnetic
connection between the star and the disc in the interaction region generates a magnetic
torque acting on the star, that can be spun-up or even spun-down according to the po-
sition of the inner edge of the disc, the spin of the star and the intensity of the magnetic
field. The main uncertainty in the calculation for the magnetic torque is in the toroidal
component. Wang (1987) and Campbell (1987) added important pieces to the puzzle of
the magnetic field configuration inside the disc. They found an analytic expression for
the toroidal component of the magnetic field by using the induction equation. Because
of its simplicity and plausibility, this expression is still used nowadays, although it was
obtained in a very simplified case. Nevertheless it still remains the result of a toy-model
and we would like to improve this model in order to produce a more accurate expression
for all of the components of the magnetic field.

At the same time we want our model to remain simple enough to let us understand
the physics of this complex system. Including all of the ingredients, in fact, can indeed
produce a better phenomenological description of the particular setup under examina-
tion, but will make it very hard to understand the role played by the various physical
quantities and consequently will fail to predict what can happen for a setup different
from the one studied. In our model we assume that the neutron star magnetic field is
a simple dipole, whose axis is aligned with the rotation axis, and that the fluid flow is
steady and has axial symmetry everywhere. At the same time we also include a coro-
nal layer on the top and bottom surface of the disc, a non-zero radial velocity, a wind
starting from the surface of the disc and a non-constant turbulent magnetic diffusivity.
Within this two dimensional model the induction equation is solved without making any
vertical integration or leading order expansion.

The results of the numerical simulations indicate that the fields are increasingly dis-
torted and deviate away from a dipolar structure when the radial infall velocity increases.
The distortion is, however, suppressed if the turbulent magnetic diffusivity increases.
Generally, the field distortion may be characterized using the magnetic Reynolds num-
berRm, which specifies how far flux freezing is achieved and howmuch the field is being
dragged by the plasma motion. In accretion discs the radial motion is usually many or-
ders of magnitude smaller than the azimuthal motion, and for this reason two magnetic
Reynolds numbers should be used to better characterize the magnetic field–plasma in-
teraction in the two directions. Because of the complexities in the system and the large
dynamical ranges in the magnetic diffusivity and flow velocity through the accretion
disc, using a single value Rm is insufficient to describe the process even along the ra-



8 Chapter 1. General introduction

dial direction only. To overcome this, we introduce a magnetic distortion function Dm,
which is more general than the magnetic Reynolds number as it takes into account the
local properties of the system dynamics and kinematics. Field distortion is more severe
in regions where Dm ≪ 1, and vice versa.

In order to complete these analyses, the toroidal magnetic field has to be calculated.
With all of the components of the magnetic field determined, the magnetic energy, pres-
sure and torque, and hence the location of the inner edge of the accretion disc will be
calculated. In this way it will be possible to address the issue of the spin history of the
accreting neutron star.

Future analysis will be oriented to including within the model the magnetic feedback
on the velocity field. We plan to do this by coupling the numerical code used in these
analyses with a purely hydro code, properly modified with the inclusion of the Lorentz
force. We will employ an iterative approach. The modified hydro code will be used to
obtain a stationary accretion flow consistent with the Lorentz force term obtained in the
earlier stage of the magnetic-field structure analysis. The resulting new velocity field of
the flow will then be used to calculate again the magnetic field configuration and hence
the Lorentz force. The results will then be used as the inputs for the next iterative calcu-
lations.

All of this work is focused on obtaining self-consistent stationary solutions. As a suc-
cessive development, the stability of the field configuration can be investigated by means
of a time-dependent calculations using the ZEUS-MP code, which can also be used to
probe the outflow process in more detail.

1.3 Numerics

Both in the context of dynamos and of accretion discs the magnetic diffusivity cannot be
neglected and one has to abandon the ideal magneto-hydrodynamics (MHD) in favour
of the so called resistive MHD. In the kinematic approximation one does not need to
consider all of the MHD equations in order to describe the interaction of the magnetic
field with the plasma, but one considers only the induction equation, as obtained from
Maxwell’s equation and Ohm’s law, or the mean induction equation, which is used in the
mean field approach and contains the turbulent electromotive force and the turbulent
magnetic diffusivity.

It is now time to introduce the last of the main characters of this thesis: the numer-
ical codes. We have presented them as the translators at the beginning of the Chapter
and as a matter of fact we have used fortran90 to develop new, purpose-built codes, in
order to solve the equations we are interested in. This part of the work has been done
on a different level from the previous ones. For developing our codes in fact we have
abandoned the field of Physics in favour of the field of Numerics, where we do not try
to understand why an X-ray pulsar can be spun up and down, or why a neutron star can
have a magnetic field of a certain intensity and topology, but instead we focus on how
to discretize the equations, which time step to use, how to handle the data, how to im-
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plement the boundary conditions, how to increase the efficiency, how to reduce the wall
clock time, how to solve bug number 1, number 2, . . . number i, . . . , number N , which
program to use for visualizing the final solution, how to store the data for improving the
visualization process, . . . .
The induction equation consists of three (scalar) partial differential equations (pdes) of

second order and of mixed type. In order to solve these equations the numerical codes ex-
ploit a finite difference technique, approximating the operators by discretizing the func-
tions over a grid with the FTCS scheme (Forward-in-Time and Centered-in-Space) for
simulating the dynamo in PNSs and with the Gauss-Seidel relaxation method for the
case of accretion discs (in this case the equation to be solved is an elliptic pde). Both
codes have been carefully checked for stability, convergence and accuracy. Tests against
known results have also been performed whenever possible.
For studying more advanced models we have decided to use the publically available

ZEUS-MP code. This is the latest addition to the ZEUS line of community application
codes developed by the Laboratory for Computational Astrophysics (LCA) of the Na-
tional Center for Supercomputing Applications (NCSA) at the University of Illinois. The
MP suffix denotes the multi-physics, massively parallel, and message passing aspects
of the code. The physics suite in this release of ZEUS-MP includes gas hydrodynam-
ics, ideal MHD, flux-limited radiation diffusion, self gravity, and multispecies advection.
Since it cannot solve the resistive MHD equations, we have worked on an extension of
this code in order to include both the magnetic diffusivity and the mean electromotive
force. This has required, and still does require, careful work on some subroutines of the
ZEUS code, especially on that for the boundary conditions. In fact, boundary conditions
are not imposed on the magnetic fields but on the electric fields, which contain the new
terms that we want to include in the code (i.e. the α effect and the magnetic diffusivity).
Moreover, since we want the code to work also in spherical coordinates, we have to deal
with boundary conditions imposed on the rotation axis of the star as well.
At present themodified version of the code is able to solve properly themean induction

equation for PNSs in axisymmetric models. We aim to include also the third dimension
so that the axisymmetry assumption can be released, and a lot of other problems can be
addressed (e.g. the case of a magnetic dipole non-aligned with the rotation axis). And
successively we want to switch the fluid equations on, so as to release also the kinematic
approximation and avoid the use of quenching functions.
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Chapter 2
Magnetohydrodynamics equations

The word magnetohydrodynamics (MHD) is derived from “magneto” meaning mag-
netic field, “hydro” meaning water, but used to mean fluid in general, and “dynamics”
meaning movement. It refers to the academic discipline which studies the dynamics of
electrically conducting fluids. When such fluids are threaded by a magnetic field, an
additional force is present with respect to those considered in the ambit of hydrodynam-
ics: the Lorentz force. Because of this force, a magnetic pressure and a magnetic tension
appear in the Euler equation describing the motion of the fluid. Also, at the same time
the configuration of the magnetic field feels the presence of the fluid and is consequently
modified.

The full set of MHD equations consists of the fluid equations (equation of motion,
continuity equation and energy equation), the equations for the electromagnetic field
(Maxwell’s equations and Ohms’ law) and some closure equations (equation of state and
equation for the viscous stress tensor).

All of the analyses presented in this thesis have been made within the kinematic ap-
proximation, i.e. the velocity field is supposed not to change in time or in response to the
magnetic field and only the modifications induced by the fluid motion on the magnetic
field are considered. In the case of themean field dynamo in proto-neutron stars, we have
solved the induction equation (this equationwill be derived later in this Chapter) to study
the time evolution of an initial magnetic field when the star is differentially rotating; in
the case of accretion discs around magnetised neutron stars, the induction equation is
used to find a stationary configuration of the magnetic field for a given velocity profile of
the matter in the disc.

Our main interest is therefore in the induction equation and for this reason the major
part of this Chapter is devoted to this equation. However, for the sake of completeness,
in the last Section we give the full set of the MHD equations, including also the equations
that are not solved in the kinematic approximation.

13



14 Chapter 2. MHD equations

2.1 The MHD assumptions

In order for interaction between the electromagnetic field and the fluid to be relevant,
the fluid has to be an electrically conducting one. In many astrophysical environments
(including the ones which we are treating in this work) the matter is in the plasma state.
Plasma is the fourth state of matter. It is a partially ionized gas, in which a certain pro-
portion of electrons are free rather than being bound to an atom or molecule. The ability
of the positive and negative charges to move somewhat independently makes the plasma
electrically conductive so that it responds strongly to electromagnetic fields. A more rig-
orous definition can be given in terms of the following three criteria that characterize
matter in the plasma state:

1. Quasi neutrality: λD ≪ L
Even if electrons are free to move, the distance over which significant charge sepa-
ration can occur (the Debye screening length, λD) is much smaller than the physical
size of the plasma, L. This also means that interactions in the bulk of the plasma
are more important than those at its edges, where boundary effects may occur;

2. Collective interactions: Λ ≫ 1
Charged particlesmust be close enough so that each particle influencesmany nearby
charged particles, rather than just interacting with the closest particle. This condi-
tion is met when the number of charge carriers within the sphere of influence (i.e.
a sphere whose radius is the Debye screening length) is much larger than unity so
as to provide collective behaviour of the charged particles. The average number of
particles in the Debye sphere is given by the plasma parameter Λ;

3. Electromagnetic forces: σei ≫ σen

Free electrons in a plasma can interact both with ions and with neutral atoms. In
order for the charged particle dynamics to be governed by electromagnetic forces
rather than hydrodynamic ones, the rate of electron-ion collisions, with cross sec-
tion σei, has to be much larger than electron-neutral collisions, with cross section
σen.

To completely describe the state of a plasma, one would need to write down all of
the particle locations and velocities, and describe the electromagnetic field in the plasma
region. However, it is neither practical nor necessary (generally) to keep track of all of the
particles in a plasma, and two main approaches have been developed that do not require
this level of detail: the kinetic model and the fluid model.
Kinetic models describe the particle velocity distribution function at each point in the

plasma, and therefore do not need to assume any particular distribution, e.g Maxwell–
Boltzmann. A kinetic description is often necessary for collisionless plasmas. There are
two common approaches to the kinetic description of a plasma. One is based on rep-
resenting the smoothed distribution function on a grid in velocity and position space.
The other, known as the particle-in-cell (PIC) technique, includes kinetic information by
following the trajectories of a large number of individual particles. Kinetic models are
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generally more computationally intensive than fluid ones. The Vlasov equation may be
used to describe the dynamics of a system of charged particles interacting with an elec-
tromagnetic field.

Fluid models describe plasmas in terms of smoothed quantities like density and aver-
aged velocity around each position. MHD is a fluidmodel and treats the plasma as a fluid
governed by a combination of electromagnetic equations and modified fluid Navier–
Stokes’ equations. A more general description considers the plasma as being composed
of two fluids, where ions and electrons are described separately. Fluid models are accu-
rate when collisionality is sufficiently high to keep the plasma velocity distribution close
to a Maxwell-Boltzmann distribution, and when the mean free path of collisions is much
smaller than any characteristic length scale of the fluid (e.g. the Larmor radius).

In the remainder of this thesis we will always assume that the matter is in the plasma
state (both inside proto-neutron stars and in the accretion discs) and we will follow the
MHD fluid model to describe the interaction between the electromagnetic field and the
plasma.

2.2 The induction equation

The induction equation is a vector equation which relates the time evolution of the mag-
netic field with the properties of the fluid under consideration, in terms of velocity and
conductivity. It can easily be derived from Maxwell’s equations and Ohm’s law.

First of all, we consider Maxwell’s equations in their differential form (in SI units):

∇ · B = 0 (2.1)

∇ · E =
ρe

ǫ
(2.2)

∇× B = µJ + µǫ∂tE (2.3)

∇× E = −∂tB (2.4)

where B is the magnetic flux density (usually referred to simply as the magnetic field), E
is the electric field, J is the current density, µ is the permeability and ǫ is the permittivity.

We consider also the standard Omh’s law in a fixed frame of reference:

J = σ(E + v × B) (2.5)

where v is the fluid velocity field and σ is the electric conductivity.

The first step in the derivation is to show that for non relativistic flows the Faraday
displacement current in equation (2.3) can be neglected. For doing this we note that the
interaction between the electromagnetic field and the fluid velocity field is important
only when the ratio between the characteristic length scale of the electromagnetic field,
L, and its characteristic time of variation, τ , is comparable to the characteristic velocity of
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a generic fluid element, v, i.e. when:

L

τ
∼ v (2.6)

From equation (2.4) it follows that:

E

L
∼ B

τ
(2.7)

and so the above condition gives:

E

B
∼ v (2.8)

Consider now equation (2.3) and take the ratio between the left- hand side and the
second term on the right-hand side:

∇× B

ǫµ∂tE
∼ B/L

E/c2τ
∼ B

E

τ

L
c2 (2.9)

which inserting (2.6) and (2.8) gives:

∇× B

ǫµ∂tE
∼ c2

v2
(2.10)

Therefore in the non-relativistic regime (v ≪ c) the Faraday displacement current al-
ways gives a negligible contribution and equation (2.3) can be replaced by the following
one:

∇× B = µJ (2.11)

The same result can also be obtained in another way. Consider equation (2.3) and
eliminate J by using Ohm’s law (2.5):

∇× B = µσE + µσ(v × B) +
1

c2
∂tE (2.12)

Re-arranging then gives

E +
1

µσ

1

c2
∂tE =

1

µσ
∇× B − v × B (2.13)

and

E +
η

c2
∂tE = η∇× B − v × B (2.14)

where we have introduced the magnetic diffusivity η ≡ 1/µσ in the last line. The time
derivative term on the left-hand side of equation (2.14) can be neglected when the Fara-
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day time, τFar ≡ η/c2, is smaller than the characteristic time for the electromagnetic field
variation τ . For the cases considered in this thesis, η ranges between 1011 cm2/s and 1014

cm2/s, and so τFar ∼ 10−11 − 10−7 s, while τ is of the order of a second for the mean
field dynamo in proto-neutron star and can be as small as 10−3 s for accretion flows onto
compact objects. Therefore the condition τFar/τ ≪ 1 is always satisfied.

In order to proceed further and to express the time evolution of the magnetic field
in terms of the fluid properties we combine equations (2.4), (2.5) and (2.11). We first
substitute J in equation (2.11) with the expression given in equation (2.5) to obtain:

∇× B = µσ(E + v × B) (2.15)

Re-arranging then gives:

E =
1

µσ
∇× B − v × B (2.16)

and then we put this expression for E into equation (2.4) to get the induction equation:

∂tB = ∇× (v × B) −∇× (η∇× B) (2.17)

With this equation it is possible to calculate the time evolution of an initial magnetic
field B, which is threading a fluid characterized by a velocity field v and a magnetic
diffusivity η.

There are two main evolutionary scenarios, according to which term predominates on
the right-hand side of equation (2.17). The ratio of these two terms defines the magnetic
Reynolds number:

Rm ≡ ∇× (v × B)

∇× (η∇× B)
=
v0 · l0
η0

(2.18)

where v0, l0 and η0 are respectively a characteristic velocity, length and diffusivity of the
system under consideration.

When Rm ≫ 1 the induction equation reduces to:

∂tB ≈ ∇× (v × B) (2.19)

and under these circumstances, i.e. vanishing resistivity (this regime is called idealMHD),
the magnetic flux through a surface moving with the fluid remains constant (Alfven
frozen-flux theorem). This means that the magnetic field lines are frozen into the fluid,
in the sense that any motion orthogonal to the field lines is prohibited. This is the reason
why the connection between magnetic field lines and the fluid in ideal MHD fixes the
topology of the magnetic field in the fluid.
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In the opposite regime, Rm ≪ 1, the induction equation reduces to:

∂tB ≈ −∇× (η∇× B) (2.20)

= η∇2(B) (2.21)

where to go from equation (2.20) to (2.21) we have assumed η to be constant in space and
we have used the vectorial identity: ∇× (∇× C) = −∇2

C + ∇(∇ · C), which holds for
any vector C. In this regime the time evolution of the magnetic field is just a diffusion
with diffusion coefficient η.

2.3 Mean field induction equation

When the fluid is characterized by a turbulent motion then the fields considered up to
now will vary irregularly in space and time. One of the possible ways to treat this sit-
uation is to use mean field theory. Within this theory a generic fluctuating field F, con-
sidered as a random function, has a corresponding mean field, F, that is defined as the
expectation value of F in an ensemble of identical systems, and F

′

is used to denote the
difference between the fluctuating field and its mean component. The following relations,
the Reynolds relations, hold:

F = F + F
′

, F = F, F
′ = 0, (2.22)

F + G = F + G, FG = FG, FG
′ = 0 (2.23)

where G is another fluctuating field. The averaging operator commutes with the differ-
entiation and integration operators in both space an time, i.e. for the differentiation:

∂tF = ∂tF, ∂xiF = ∂xiF. (2.24)

Instead of averaging over an ensemble, we may also define mean values by integration
over space or time. Some of the Reynolds relations are then only approximate, although
they will be the more accurate the less the means vary over the considered integration
range.

In the derivation of the mean field induction equation we shall not need to refer to the
nature of the averaging operation, but only to the properties (2.22)-(2.23) and to the com-
mutation rules just mentioned. Firstly we have to use these relations to write Maxwell’s
equations and Ohm’s law for the mean fields. For Maxwell’s equations, we find that they
have the same form as for the total fields, and one just has to substitute the fields with
their mean components. For Ohm’s law instead we obtain an additional term:

J = σ(E + v × B + v
′ × B

′) (2.25)

The additional term:
E ≡ v

′ × B
′ (2.26)
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is the mean (or turbulent) electromotive force. Once Maxwell’s equations and Ohm’s law
for mean fields are at hand, one can proceed as done in the previous section and derive
the induction equation for mean fields:

∂tB = ∇×
(
v × B

)
+ ∇×

(
E
)
−∇×

(
η∇× B

)
(2.27)

Finding an expression for E in terms of the mean fields is a standard closure problem
which is at the heart of mean field theory. One generally assumes that E can be expanded
in powers of the gradients of the mean magnetic field. This suggests the rather general
expression:

E i = αij(. . . )Bj + ηijk(. . . )∂xk
Bj + . . . (2.28)

where the tensor components αij and ηijk are referred to as turbulent transport coef-
ficients. They depend on the stratification, angular velocity, and mean magnetic field
strength. They may also depend on correlators involving the small scale magnetic field,
for example the current helicity of the small scale field.

The simplest way of calculating the turbulent transport coefficients is the first order
smoothing approximation (FOSA), which consists of linearizing the equations for the
fluctuating quantities and ignoring quadratic terms that would lead to triple correlations
in the expressions for the quadratic correlations.

In the FOSA one considers the induction equation for the fluctuating part of the mag-
netic field, which is obtained by taking the difference between the induction equation
for the total fields (2.17) and the one for the average fields (2.27). Successively this equa-
tion is linearized and some additional terms are neglected by assuming that the magnetic
Reynolds number is small or that the correlation time τcor of the turbulence is small with
respect to that associated to the total random field v. Then this simplified equation is
integrated to get B

′

, and the average of the cross product with v
′

is calculated to get
E , following equation (2.29). If one finally assumes that the turbulence is isotropic and
not mirrorsymmetric1, and that B is a slowly varying function of time, one eventually
obtains:

E = αB − ηt∇× B (2.29)

where the pseudo-scalar α and the scalar ηt are given by:

α = −1

3

∫ t

0
v

′(t) · ω′(t′)dt
′ ≈ −1

3
τcorv

′ · ω′ (2.30)

ηt =
1

3

∫ t

0
v

′(t) · v′(t′)dt
′ ≈ 1

3
τcorv

′2 (2.31)

where ω
′ ≡ ∇× v

′

is the helicity of the velocity fluctuations.

1A turbulent field is said to be mirror-symmetric if the mean quantities derived from it are invariant if the
field is reflected in an arbitrary plane.
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The mean field induction equation can then be written as:

∂tB = ∇×
(
v × B

)
+ ∇×

(
αB
)
−∇×

(
ηT∇× B

)
(2.32)

where ηT = η + ηt. Generally the turbulent magnetic diffusivity is much larger than the
standard diffusivity and ηT ≈ ηt.

In comparison with the standard induction equation (2.17), the one for mean fields
(2.32) has a new term: ∇ ×

(
αB
)
. In the derivation of this term the assumption of

non-mirrorsymmetry is crucial. In fact, suppose that the velocity field is mirrorsym-
metric, and carry out a reflection of the entire system. On the one hand α and ηt cannot
change because the system is unchanged (given that it is mirrorsymmetric), on the other
hand however αmust change because it is a pseudo-scalar. Therefore, for homogeneous,
isotropic and mirror-symmetric turbulence, α is zero.

If we substitute equation (2.29) into equation (2.25) and use equation (2.3) we obtain:

J = σt(E + v × B + αB) (2.33)

where σt = σ/(1 + ηt/η). Therefore in the non-mirrorsymmetric case an electromotive
force αB appears in Ohm’s law for the mean fields, which is parallel or antiparallel to the
mean magnetic field, according to the sign of α. This new effect, called α-effect, is due to
the turbulent motion and is of great importance in dynamo theory.

2.4 The full set of MHD equations

In the previous Sections we have considered the equations for the electromagnetic field,
and have derived the induction equation. This is all that we are going to need in our
calculations, since we are working in the kinematic approximation, where the velocity
field is taken as fixed. However for the sake of completeness we here report all of the
remaining equations from the full set of MHD equations, i.e. the equation of motion, the
continuity equation, the energy equation and the equation of state.

• Equation of motion:

ρDtv = −ρ∇ψ −∇
(
p+

B2

2µ

)
+

1

µ
(B · ∇)B + ∇ · τ (2.34)

where Dt ≡ ∂t + v · ∇ is the Lagrangian, or convective, derivative and ∂t is the
Eulerian derivative; ψ is the gravitational potential; ρ is the mass density; p is the
pressure of the fluid; and τ is the viscous stress tensor.

Note that in comparison with the standard Navier-Stokes equation, equation (2.34)
contains an additional term: the Lorentz force J × B, which has been decomposed

into the magnetic pressure and tension: B2

2µ and 1
µ(B · ∇)B respectively.
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• mass conservation equation or continuity equation:

Dtρ+ ρ∇ · v = 0 (2.35)

• energy equation:

ρTDts = ρDtu+ p∇ · v (= −L) (2.36)

where u is the specific internal energy; s is the specific entropy; and L is the rate of
energy loss per unit volume

• equation of state:

p = p(ρ, T, . . . ) (2.37)

the precise expression for this depends on the nature of the matter in the system
under consideration. The equation of state gives the pressure in terms of other
quantities characterizing the fluid, which could include density, entropy, chemical
composition, ...

Finally an equation for the viscous force (∇ · τ ) is needed in order to close the system,
which in total is composed of 18 equations – the induction equation, two Maxwell equa-
tions, the equation for the viscous force, the equation of motion, the continuity equation,
the energy equation and the equation of state – for 18 unknowns – velocity, electromag-
netic field, viscous force, pressure, mass density, temperature, specific internal energy,
specific entropy and charge density.
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Chapter 3
Dynamos in proto-neutron stars

In this Chapter we begin our journey through the magnetic field–plasma interaction. The
stage here is the inside of a proto-neutron star (PNS), where we think that, because of the
neutron finger instability, a large scale dynamo is active. We explore this dynamo within
the mean field theory and the kinematic approximation, including quenching functions
for both the mean electromotive force and the turbulent magnetic diffusivity.
We begin with a general introduction, afterwards we formulate the simplified model

that we adopt to describe the PNS and derive the system of partial differential equations
(PDEs) which apply to our specific case. Subsequently the numerical code used to solve
these equations is briefly described. At this point we can delineate in detail the methodol-
ogy used in our analysis and present the results. We use six different PNS configurations
in order to grasp the effect of the parameters on the magnetic field evolution and final
intensity. At the end we summarize our results.

3.1 Introduction

The present understanding of the processes that produce the largemagnetic field strengths
observed in neutron stars (NSs) is still far from being complete. Most of the information
about their magnetic fields is in fact derived either from their X-ray spectra, or from their
spin-down when these NSs are seen as pulsars. While the former reflects a measure of
the local surface field Bsurf , the latter provides information on the global dipolar mag-
netic field Bd, if the spin-down is assumed to be solely due to dipolar electromagnetic
emission. These two measures are not always in agreement, showing that the measured
magnetic fields may have very different length-scales and intensities. In particular, they
seem to suggest the presence of more intense and small-scale surface magnetic fields, to-
gether with less strong globally dipolar ones. For the pulsar 1E 1207.4-5209, for instance,
the dipolar magnetic field estimated from the spin-down rate is Bd ∼ 2 − 4 × 1012 G
(Pavlov et al. [20]), while the surface field estimated from the absorption features in its
spectrum is Bsurf ∼ 1.5 × 1014 G (Sanwal et al. [26]). Similarly, observations of the pulsar

25
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RBS B1821-24 (Becker et al. [1]) indicate that Bd ∼ 109 G, while Bsurf ∼ 1011 G.

The existence of magnetic fields with different strengths and distributed on different
length-scales can be explained in terms of a dynamo mechanism driven by the simul-
taneous presence of rotation and turbulent motions. During the first ∼ 40 s after their
birth, PNSs are expected to develop hydrodynamical instabilities (Epstein [13]; Livio et
al. [15]; Burrows & Lattimer [10]), which can excite a turbulent dynamo. Such instabil-
ities could be essentially of two types. The first one, driven by the entropy gradient, is
a Rayleigh-type convective instability (CI) that operates in the inner regions of the star.
The second one is a double diffusive instability, driven by both the entropy and leptonic
gradients. This is usually referred to as the neutron-finger instability (NFI); it operates
in the outer regions of the PNS (Miralles et al. [17], [18]) and is expected to evolve by
creating finger-like downflows when the neutrinos are still confined (Mezzacappa et al.
[16]).

The principle that generates the NFI is of the same sort as that causing salt fingers in
the ocean, and is related to having two physical quantities diffusing with different time
scales. In the case of the salt fingers, the two quantities are temperature and salinity.
Ocean water is stratified in such a way that deep water is colder and purer than surface
water. If one perturbs downwards a surface fluid element, with temperature Ts and salin-
ity Ys, this will be immersed in an anvironment characterized by a temperature T < Ts

and a salinity Y < Ys. Given that heat diffuses faster than salt (the difference being about
two orders of magnitude), the perturbed fluid element will adjust its temperature to the
ambient one without changing its salinity, and consequently it will be heavier than the
environment and will continue to go downwards (see figure 3.1). This is a typical exam-
ple of double diffusive instability. Similarly in PNSs when the energy diffusion time is
shorter than the lepton one, the NFI can be generated. In order to study the inside of a
PNS and to understand whether a region can be neutron-finger unstable, convectively
unstable or stable Miralles et al. [17] included within the standard Ledoux criterion1 dis-
sipative processes such as neutrino transport and viscosity. Doing this they shown that
initially only a small region below the crust is unstable, but after about 10 s more than 90
per cent of the star is unstable, with the CI involving mainly the central part of the star
and the NFI all the rest. The unstable regions then begin to shrink again and after about
40 s the star is completely stable (see figure 1 in [17]). Therefore if any dynamo action
is activated by this kind of instability it can operate only for a maximum of 40 s. After
that the star is stable, therefore in this picture the magnetic field that a neutron star has at
birth is the one that a PNS has when the instabilities disappear.

Although some authors have recently raised doubts about the existence of the NFI
(Buras et al. [9], Dessart et al. [12], Bruenn et al. [8]), no firm conclusion has yet been

1According to this criterion the unstable regions are those for which:

„

∆(∇T )

T

«

z

−
δ

β

dY

dz
> 0 ,

where Y is the lepton to baryon ratio and δ and β are the coefficients of the chemical and thermal expan-
sion.
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Figure 3.1: Schematic diagram for salt finger formation in the ocean.

reached, leaving the debate open. Here, we do not attempt to enter this debate but rather,
because of the interesting astrophysical implications that it may have, we will consider
the NFI as taking place and having the dynamical properties as described by Miralles et
al. [17], [18].

We note that the co-existence of the two instability mechanisms produces both a local
dynamo process (Thompson & Duncan [27]; Xu & Busse [29]) and a mean-field one (Bo-
nanno et al. [4]). As shown inMiralles et al. [17], [18], the growth-times of the instabilities
in the two regions differ by 2 or 3 orders of magnitude, being τCI ∼ 0.1 ms in the zone of
the CI and τNFI ∼ 30 − 100 ms in the zone of the NFI. Since the typical spin period of a
PNS is P ∼ 100 ms, the turbulent eddies created by the CI are not influenced by the ro-
tation and therefore they can only excite a local dynamo. On the other hand, the Rossby
number in the zone of the NFI, defined as Ro ≃ P/τNFI, is about unity and the turbulent
motions can therefore be influenced significantly by the rotation, favouring the excitation
of a global mean-field dynamo. Because of the large difference in the growth-rates of the
two instabilities, the two processes, i.e. the local dynamo and the global mean-field one,
are essentially decoupled.

Here, we focus our attention on the turbulent mean-field dynamo action that may be
excited by the NFI. More specifically, we exploit a simple one-dimensional toy model that
aims at capturing, at least qualitatively, the features of the dynamo action. The model,
which includes the nonlinearities introduced by the feedback processes, which in turn
tend to saturate the growth of the magnetic field, i.e. α-quenching (Bonanno et al. [5],
[6]; Rüdiger & Arlt [23]), and suppress its turbulent diffusion, i.e. η-quenching (Rüdiger
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& Arlt [23]), is evolved numerically with a very large variety of initial conditions. These
include varying the spin period of the PNS, the strength of the differential rotation be-
tween the core and the surface, the intensity of the primordial (seed) magnetic field, and
the extent of the zone of the NFI.
Overall, we find that increasing the extent of zone of the neutron-finger instability

favours the dynamo excitation, and that the combined action of differential rotation and
diffusion can produce an increase in the strength of the generated toroidal field by several
orders of magnitude. We also confirm the existence of a critical spin-period below which
the dynamo is always excited independently of the differential rotation strength, and
whose value is related only to the size of the neutron-finger instability zone.

3.2 The model

In Chapter 2, Section 2.3, we have derived the induction equation for mean fields (see
equation (2.32)), which we report here again:

∂tB = ∇× (v × B + αB) −∇× (η∇× B) (3.1)

where B is the mean magnetic field, v the mean velocity field, η the turbulent magnetic
diffusivity, and α a pseudo-scalar measuring the efficiency of the dynamo α-effect (this is
usually referred to as the α-parameter), which is responsible for regenerating a poloidal
field from the toroidal field (see figure 3.2).
Our simplified model is inspired to Brandenburg et al. [7], Rüdiger et al. [25], and

Rüdiger & Arlt [23]. It uses orthogonal Cartesian coordinates and the PNS is modeled as
a cylinder with the z-axis being the axis of rotation. The cylinder has an infinite radial
extension and is restricted by boundaries in the z direction, the semi-height H being the
radius of the PNS. We assume that the magnetic field components depend on z only.
Clearly, this simplified model has the advantage of leading to a very simple expression

for the induction equation (3.1) which, after making a suitable choice for the velocity and
magnetic fields, can be recast into a system of two coupled PDEs that are of first order in
time. This reduces the computational costs enormously and allows a parametric investi-
gation to be performed, which would be impossible if it involved fully 3D simulations.
Yet, despite the considerable simplifications, this simple geometry has been shown to
yield instructive results that have opened the way for modern, realistic 3Dmodels (Weiss
et al. [28]). Our simplified model of the PNS is shown in figure 3.2, where we highlight
the CI and NFI zones that are separated by a thin interface of thickness d, which is not
shown in the figure. Note that despite the cylindrical appearance of the star, the system
does not have a cylindrical symmetry but rather a planar one across the (x, y) plane.
As we have already mentioned we are under the kinematic dynamo approximation, in

which the solution of the induction equation (3.1) is assumed to be decoupled from the
Euler equations (i.e. the PNS is assumed to be in hydrostatic equilibrium at all times),
and no feedback from the magnetic field is taken into account in the conservation of
momentum and energy. As a result, the velocity field is taken as pre-assigned and time-
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Figure 3.2: Schematic diagram of our model of the PNS.

independent. This approximation works quite well as long as the magnetic field strength
is small (i.e. as long as the magnetic pressure and tension are negligible in the Euler equa-
tions), but has the drawback that nothing prevents the indefinite growth of the magnetic
field once a dynamo action is present. In real systems, the velocity profile will adjust itself
in such a way as to reduce the efficiency of the dynamo and here, as a way of mimick-
ing this feedback, we introduce two quenching functions (described later in more detail)
that suppress the amplification as the total field increases above a certain threshold, thus
leading the system towards saturation even in the absence of a consistent feedback.

Our model for the kinematic dynamo follows the one proposed by Rüdiger et al. [25]
and Blackman & Brandenburg [3] in that we use a linear shear for the velocity field:

v = (0, kx, 0) (3.2)

and consequently the mean field, which we take to be co-planar with the velocity, is one
dimensional:

B = (Bx(z), By(z), 0) (3.3)

The α-parameter and the magnetic diffusivity η are both expressed as the product of
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three terms

α = α0 α
′(z, t)ψα(B) (3.4)

η = η0 η
′(z, t) ψη(B) (3.5)

where α0 and η0 measure the strength of the α-effect and turbulent diffusion respectively,
while α′(z, t) and η′(z, t) represent the profiles of α and η in the two instability regions.
More specifically, α′ is chosen to be antisymmetric across the equatorial plane and differ-
ent from zero only in the zone of the NFI , where the mean-field dynamo is at work. The
turbulent diffusivity η′, on the other hand, is set to be of the order of unity in the zone
of the NFI and about an order of magnitude larger in the turbulent zone of the CI. We
implement these prescriptions by making use of the error function as

α′(z, t) ≡





1
2 [1 + erf (−(z + λ)/d)] z ∈ [−H, 0]

−1
2 [1 + erf ((z − λ)/d)] z ∈ [0, H]

(3.6)

η′(z, t) ≡ 1

10

{
10 − 9

2

[
1 + erf [(z − λ)/d]

]}
×

{
10 − 9

2

[
1 + erf [−(z + λ)/d]

]}
(3.7)

where λ ≡ z1 +V t, with z1 being the coordinate of the boundary between the CI and NFI
zones and V the expansion velocity of the boundary layer. The quantity d represents the
thickness of the interface between the two zones and is used to obtain a smooth change
of the error function, with smaller values leading to sharper changes; for the results re-
ported here we have chosen d/H = 0.04. The profiles of α′ and η′, as given by equations
(3.6) and (3.7), are shown in figure 3.3, with the solid and dashed lines indicating the ini-
tial conditions and the final conditions after 40 s, respectively. Finally, ψα(B) and ψη(B)
appearing in equations (3.4) and (3.5) represent the quenching functions for the α-effect
and turbulent diffusion η, respectively. These terms are used to limit the otherwise un-
limited growth of the magnetic field (α-quenching) and suppress its turbulent diffusion
(η-quenching). In general they are expected to have a different dependence on the mag-
netic field strength, but we here consider a single expression for the two functions in
terms of the equipartition magnetic field Beq = 〈u〉√4πρ, where 〈u〉 is the mean velocity
of turbulent eddies and ρ the mass-density (for typical values of PNSs Beq ≈ 1013 G, as
will be shown at the end of this Section):

ψα,η(B) ≡
[
1 +

∫ H

−H

(
B

Beq

)2

dz

]−1

(3.8)

Making use of these definitions, equation (3.1) can be split into the following two coupled
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Figure 3.3: Top panel: profiles of the normalized function α′ at the beginning of the nu-
merical simulation for t = 0 (solid line) and at the end of the numerical simu-
lation for t = 40 τD (dashed line); bottom panel: the same as in the top panel
but for η′.

scalar PDEs:

∂tBx = −∂z(αBy) + ∂z (η∂zBx) (3.9)

∂tBy = ∂z(αBx) +Bx∂xvy + ∂z (η∂zBy) (3.10)

which can also be written in a dimensionless form by scaling lengths in units of the semi-
height of the cylinder H , times in units of the diffusion time τ

D
= H2/η0, and magnetic

fields in units of Beq. We also find it useful to introduce the dimensionless parameters

Cα ≡ α0
H

η0
, and CΩ ≡ ∂xvy

(
H2

η0

)
= k

(
H2

η0

)
(3.11)

which represent the Reynolds numbers for the α-effect and the differential rotation, re-
spectively. Furthermore, by introducing the standard vector potentialA = [Ax(z), Ay(z), 0],
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so that the poloidal component of the magnetic field is Bp ≡ Bx = −∂zAy, we obtain the
following dimensionless equations for the vector potentialA = Ay and the toroidal com-
ponent of the magnetic field Bt ≡ By:

∂tA = Cαα(z, t)ψα(Btot)Bt + η(z, t)ψη(Btot)∂
2
zA (3.12)

∂tBt = −Cα∂z [α(z, t)ψα(Btot)∂zA] − CΩ∂zA +

+ ∂z [η(z, t)ψη(Btot)∂zBt] (3.13)

where Btot ≡ [B2
t + (∂zA)2]1/2. Once the initial conditions Bt(z, 0) and A(z, 0) are given,

together with the parameters, Cα, CΩ, α, η, ψα, ψη, and suitable boundary conditions at
the stellar edges, it is possible to solve equations (3.12) and (3.13) to describe the time
evolution of the magnetic field. Our choice for the boundary conditions reflects the fact
that we are interested in an adiabatic evolution of the magnetic field in the stellar interior,
thus neglecting the energy losses related to a Poynting flux. Because of this, we simply
set the magnetic fields at these locations to zero.

A dynamo described by equations (3.12)–(3.13) is said to be an α2Ω dynamo, because in
the governing equations there two terms representing the α-effect (the terms in Cα) and
one term for the Ω-effect (the one in CΩ). When in equation (3.13) the α term is negligible
with the Ω term (i.e. the differential rotation is very large), then the dynamo is said αΩ.
Finally when there is no differential rotation, one has the α2 dynamo. The consequences
of the α-effect are made clear by these two equations, in fact when α = 0 from equation
(3.12) one obtains that the poloidal component of the magnetic field is ruled by a diffu-
sion equation (when η is constant in space) and is therefore doomed to decay to zero.
Consequently, with α and the poloidal component being both zero, equation (3.13) also
reduces to a diffusion equation and the toroidal component of the magnetic field decays
as well. Similarly, the role of the Ω-effect can be grasped be looking at equation (3.13). In
fact, should the α-term be negligible in this equation, it is the presence of the CΩ term to
ensure that a toroidal magnetic field is generated by the poloidal component. Therefore
we can conclude that with a succession of α-effects only, or of α-effects and Ω-effects, one
could be able to maintain a magnetic field via a dynamo action:

· · · Bp
Ω α−−−→ Bt

α−−−→ Bp · · · (3.14)

It is important to note that the parameters Cα and CΩ are not linearly independent
but can be related in terms of the strength of the differential rotation, the pressure scale-
height and the radius of the PNS. To deduce this relation we recall that the αΩ-dynamo
assumes that α0 ∼ ΩLp, where Ω is the angular velocity and Lp the pressure scale-height,
so that

P ∼ ξ

Cα
=

2πLpH

Cαη0
(3.15)

where ξ ≡ 2πLpH/η0. For a typical PNS with mass ∼ 1M⊙, H ∼ 15 km and Lp ∼ 3 km
(Bonanno et al. [4]), η0 ∼ L2

p/τNFI ranges from 9 × 1011 cm2s−1 for NFI eddy turnover
times of 100 ms, up to 3 × 1012 cm2s−1 for NFI eddy turnover times of 30 ms. Such values
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of η0 yield typical diffusion timescales τ
D
ranging from 0.75 s to 2.5 s, respectively. As a

result, the parameter ξ is expected to be roughly in the range 1 s ≤ ξ ≤ 3 s for all of the
relevant parameter space considered here.

In a similar way, since ∂xvy = k = v/x ∼ ∆Ω, and defining the relative differential
rotation strength as q ≡ ∆Ω/Ω ≃ (Ωs−Ωc)/Ωs, where Ωs and Ωc are the angular velocities
of the surface and the core respectively, it is possible to conclude that

q ∼ ζ
CΩ

Cα
(3.16)

where ζ ≡ Lp/H ≃ 1/5. Here we use ∆Ω as a global measure of the rotational stress in-
stead of using a necessarily arbitrary function that describes the behaviour of Ω(z) in the
region between Ωc and Ωs. On the other hand we are severely limited by our ignorance
of the detailed processes leading to the appearance of differential rotation in the zone of
the NFI of PNSs.

For all of the calculations reported here we assume that the angular velocity of the core
is larger than that of the surface, so that q < 0 and, conservatively, we limit our analysis to
values of |q| not exceeding 102, i.e. a core rotating 102 times faster than surface. Finally, by
assuming a mass-density in the zone of the NFI of ρ ∼ 1013 g cm−3 and eddy convective
velocities 〈u〉 ≃ Lp/τNFI ∼ 3 × 106 cm s−1, it follows that Beq is of the order of 1013 G. The
parameters defined in equations (3.15) and (3.16) essentially determine the parameter
space for the solutions of equations (3.12) and (3.13).

3.3 Numerical method and tests

In order to solve the mixed parabolic-hyperbolic system of PDEs (3.12) and (3.13), we
discretize the continuum space-time by replacing it with a two dimensional grid, where
the two dimensions represent the space and the time variables, z and t, respectively.
We use constant spacing in both directions, with a typical grid of 50 zones. Tests were
performed with a larger number of gridpoints (100, 200 and 400) and have revealed that
a minimum of 50 gridpoints was sufficient to give convergence with errors of no more
than a few percent.

The evolution algorithm chosen is the FTCS scheme (Forward-in-Time, Centered-in-
Space), which gives a first-order approximation for the time derivatives and a second-
order approximation for the space derivatives. Furthermore, stability requires the time-
step to be ∆t = O(∆z2) (we typically use ∆t = 10−2∆z2), thus making the whole algo-
rithm second-order both in space and in time. According to this scheme the derivatives
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are discretized in the following way:

∂tF
n =

Fn+1 − Fn

∆t
(3.17)

∂zFi =
Fi+1 − Fi−1

2∆i
(3.18)

∂2
zFi =

Fi+1 − 2Fi + Fi−1

∆i2
(3.19)

The discretized version of equations (3.12)–(3.13) is then:

An+1
i = An

i + ∆t dn
i Bn

i +

+ k1 a
n
i

(
An

i+1 − 2An
i + An

i−1

)
(3.20)

Bn+1
i = Bn

i + k2 c
(
χn

i+1 − χn
i−1

)
+

+ k2 b
(
An

i+1 −An
i−1

)
+

+ k1 a
n
i

(
Bn

i+1 − 2Bn
i + Bn

i−1

)
+

+ k2 f
n
i

(
Bn

i+1 − Bn
i−1

)
(3.21)

where

χn
i = eni

An
i+1 −An

i−1

2∆z
(3.22)

and

k1 =
∆t

∆z2
, k2 =

∆t

2 ∆z
(3.23)

an
i = ηn

i ψ
n
η , b = −CΩ, c = −Cα (3.24)

dn
i = Cα α

n
i ψ

n
α, eni = αn

i ψ
n
α, fn

i =
ηn

i+1 − ηn
i−1

2∆z
(3.25)

For the implementation of the boundary conditions we use the system of having ghost
zones at the edges of the domain.

As a test of the code we have considered the equations when Cα = CΩ = 0, ψη = 1
and η(z, t) = 5 · 10−2 so as to have two decoupled purely parabolic equations, for which
an analytic solution can be calculated, and compared the numerical solution with the
analytic one. The result of the comparison is that the maximum error is of the order of 2
per cent.

We have also checked the convergence of the method by comparing the numerical so-
lutions obtained with different spatial grids at a given time. The same continuum func-
tion u(z, t) is approximated in a different way according to the space-time discretization:
u(z, t) = un

i (h) + ǫh, where h is the chosen space-interval and ǫh is the truncation error.
If we suppose that this error depends on h only, we can write: ǫh = k hp, with p being
the order of convergence. It is then possible to deduce the following relation among the
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values of different discretized functions calculated at the same grid location i:

un
i (h) − un

i (h/2)

un
i (h/2) − un

i (h/4)
= 2p (3.26)

The value of p obtained as averaged over the spatial domain is 2.00 ± 0.01, thus demon-
strating a second-order convergence.

3.4 Analysis and results

While this analysis aims at a better understanding of the behaviour of the dynamos op-
erating in the first stages of the life of a PNS, it is a long way from reproducing realis-
tic conditions. This is partly due to the simplicity of the model employed, and partly
to the still poorly constrained physical conditions of a newly born PNS. We recall that,
according to Miralles et al. [17], [18], the NFI is expected to last only about 40 s, dur-
ing which the zone of the NFI goes from occupying a large fraction of the envelope, to
being confined to a small layer and then disappearing completely. We model this by as-
suming that the initial position of the NFI-CI boundary layer is at zi

1 = 0.3H and the

final one, after 40 s, is at zf
1 = 0.8H (cf. figure 3.2), with an average expansion veloc-

ity of the layer that is V = (zf
1 − zi

1)/t = 188 m s−1 for H = 15 km. In this case we
also find it convenient to express all variables in terms of dimenionsless quantities af-
ter introducing z′ ≡ z/H , t′ ≡ t/τD, and V ′ ≡ V τD/H . As a result, the coordinate
position of the CI-NFI border appearing in equations (3.6) and (3.7) can be written as
λ/H = z′1+V

′t′ = 0.3+0.0125 (s−1) t (s), where−1 ≤ z′ ≤ 1, and 0 ≤ t ≤ 40 s, correspond-
ing to a number of diffusion times ranging from 16 to 53, depending on the turnover time
of the eddies of the NFI.

3.4.1 Initial models

As a representative sample of initial data we have considered six different models, four
of which have the size of the zone of the NFI being constant in time, with either z′1 = 0.3
(large instability zone) or z′1 = 0.8 (small instability zone), and are therefore referred to as
static. For each of the two values of z′1 we have examined the behaviour with andwithout
η-quenching. Besides the static configurations, which are useful for studying the extreme
cases of thick and thin NFI zones respectively, we have also considered two cases, which
are referred to as dynamical, in which the NFI zone is allowed to shrink in time from
the initial value of z′1 = 0.3 to the final one of z′1 = 0.8, over the 40 s during which the
instability is expected to be active. For these dynamical models we have also studied the
effect of activating or not activating the η-quenching.
The static models are indicated as A, B, Aq and Bq, while the dynamical ones are in-

dicated as AB and ABq; in all cases, the letter “q” is used to indicate whether or not
η-quenching is taken into account. For all of these models we have carried out a large
number of simulations by varying the seed magnetic field Bs, as well as the spin period
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Table 3.1: The parameters z′1 (initial position of the boundary layer), V ′ (mean velocity
of the boundary layer), and η-q (η-quenching activated or not) that define the
configurations analyzed, and the ranges of values of Bs, Cα and |q| used for
the simulations. As regards Cα, we mainly used values between 5 and 200,
since for smaller values the dynamo is not excited and for larger values the
spin period would be too short.

z′1 V ′ η-q Bs/Beq Cα |q|
A 0.3 0.0 no 10−7 − 10−1 ≤ 103 10−8 − 102

B 0.8 0.0 no 10−7 − 10−1 ≤ 103 10−8 − 102

Aq 0.3 0.0 yes 10−7 − 10−1 ≤ 103 10−8 − 102

Bq 0.8 0.0 yes 10−7 − 10−1 ≤ 103 10−8 − 102

AB 0.3 0.0125 no 10−7 ≤ 103 10−8 − 102

ABq 0.3 0.0125 yes 10−7 ≤ 103 10−8 − 102

P and the strength of the differential rotation |q|; all of the models have been evolved for
40 diffusion times (i.e. between 30 s and 100 s). A summary of the properties of the dif-
ferent initial models and of the parameters used in the simulations is presented in Table
3.1.

3.4.2 Time evolution and critical period

The time evolutions of the average toroidal field Bt and poloidal field Bp (calculated in
terms of their 2-norms) are shown in figure 3.4 for the configuration Aq, with |q| = 2 and
Cα = 4 (0.25 s ≤ P ≤ 0.75 s), and for different values of the seed magnetic field Bs in the
range 10−7Beq ≤ Bs ≤ 10−1Beq.
For all of the configurations examined, the evolution of the magnetic field is rather sim-

ilar and can be separated into two main stages: the first one is a transient phase during
which the dynamo action amplifies the seed magnetic field exponentially; in the sec-
ond phase the magnetic field instead reaches saturation around the equipartition value
through the back reaction of the α-quenching. In general, the field reaches saturation
within the 40 s lifetime of the zone of the NFI, except when the seed magnetic field is
lower than 10−7Beq and |q| ≤ 2. Nevertheless, in these cases the final magnetic value is
of the order of 10−2Beq, thus corresponding to 1011 G.
The two stages can easily be distinguished in figure 3.4, which shows the time-evolution

of the average of the toroidal and poloidal magnetic fields. The secular slope of the curves
in the exponential-amplification phase is clearly independent of Bs and constant in time,
with B = Bs e t/τamp and τamp ∼ 0.6 τD, where τD ≃ 25 τNFI is the diffusion timescale.
The growth-time however depends on |q| and Cα, thus suggesting that the seed mag-
netic field determines only the time interval necessary to achieve the saturation, but not
the final strength of the magnetic field. Clearly, if the initial field is too small, the dy-
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namo cannot reach the saturation phase within 40 s. Other values of the growth times
are τamp ∼ 0.98 τD for configuration ABq (with Cα = 4 and |q| = 3) and τamp ∼ 2.19 τD
for configuration B (with Cα = 29 and |q| = 4). Therefore the amplification rate (1/τD)
grows with the size of the zone of the NFI (this is largest in configuration A, smallest in
configuration B, and in between in configuration ABq). This aspect is considered in more
detail in Section 3.4.3.

Figure 3.4: Behaviour of the 2-norm of the magnetic field (Bt left panel, Bp right panel)
as a function of the number of diffusion times (t/τD) for the Aq configuration,
|q| = 2, Cα = 4 (250 ms ≤ P ≤ 750 ms), and for different seed magnetic field
strengths, Bs. The growth-rate of the magnetic field during its amplification
phase, before reaching the saturation, is almost independent of the seed mag-
netic field.

It is possible that the combination of the rotation rate and differential rotation is not
adequate to excite the dynamo. In this case the magnetic field is not amplified but rather
decays with time. For each value of |q| it is possible to find a threshold value of Cα such
that for higher rotation rates (shorter periods) the dynamo is excited, while for lower

rotation rates (longer periods) it is not. This value of Cα defines a critical period P̃c =
Pc(|q|) through ξ (see equation (3.15)).
The presence of a critical period within the space of parameters is shown in figure 3.5

for the configuration A. The behaviour of the dynamo solutions is plotted as a function
of the PNS spin period P and differential rotation strength |q| for three different values
of ξ (corresponding to different turnover times of the convective eddies in the zone of
the NFI : ξ = 1, τNFI ≃ 30 ms; ξ = 2, τNFI ≃ 65 ms and ξ = 3, τNFI ≃ 100 ms). The three
curves represent the thresholds between the regions in which the solutions of the dynamo
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equations grow in time (regions below the curves), thus allowing dynamo excitation, and
the regions in which the solutions decay, thus preventing dynamo excitation. The lines in
figure 3.5 define therefore the critical dynamo period as a function of |q|, and it is evident
that the critical spin velocity above which the dynamo operates decreases with increasing
differential rotation. The behaviour of these curves suggests that is possible to define a

global critical period Pc as the minimum of P̃c, so that if a PNS is rotating with a period
shorter than Pc then for that PNS the dynamo will be excited independently of the kind
of rotation.

Figure 3.5: Behaviour of the dynamo solutions as a function of the PNS spin period P and
of the differential rotation strength |q| for three different values of ξ, related to
the turnover time of the convective eddies in the zone of the NFI. The dynamo
is activated when the point identified by the values of P and q is below the
curve.

The values of the global critical period obtained for the four static configurations are
summarized in Table 3.2. Note that for a fixed value of ξ these periods depend only on the
thickness of the zone of the NFI and are thus independent of the presence of η-quenching.
As a result, in PNSs with larger NFI zones, the dynamo action will be excited more easily,
and thus at lower rotation rates, than for PNSs having smaller NFI zones.
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Table 3.2: For each static configuration the critical value ofCα (CC
α ) and the corresponding

global critical period of the PNS, Pc = ξ/CC
α ms, for ξ ∈ [1, 3] are reported.

CC
α Pc [ms]

A 5 200 − 600
B 30 33 − 99
Aq 5 200 − 600
Bq 30 33 − 99

3.4.3 The role of thickness of the NFI zone

Since the zone of the NFI is the region where the mean field dynamo is at work, it is
natural to expect that by increasing the size of this part of the star the efficiency of the
dynamo will also increase. To quantify this improved efficiency we can compare the
results obtained for two configurations: one in which the zone of the NFI occupies 70
per cent of the star (configuration A) and another one in which it covers 20 per cent
(configuration B). Reducing the extent of the active part of the star has two main effects:
reducing the critical period and reducing the intensity of the final magnetic field.

The first of these effects has already been discussed in the previous section, and from
Table 3.2 it is possible to note that reducing the size of the zone of the NFI by a factor of
3.5 decreases the critical period by a factor of 6. To quantify the second effect we consider
the ratio between the final strength of the magnetic field in configurations A and B, as
a function of the differential rotation parameter |q| and of Cα. As expected, the total
magnetic field for the configuration A is larger than that for configuration B, regardless of
any other parameter. However if one considers the toroidal and the poloidal components
separately, one notices that while the former is amplified by a factor 7 − 13, the latter is
instead reduced, but by a smaller factor (. 3). See Table 3.3.

Table 3.3: Ratio of the final intensity of the magnetic field in configurations A and B.
The values in the table are calculated for |q| > 10. For |q| < 10 we still have
Bfin

t (A)/Bfin
t (B) > 1 and Bfin

p (A)/Bfin
p (B) < 1, but the exact value depends on

the differential rotation.

Cα

50 100 200

Bfin
t (A)/Bfin

t (B) 13.4 6.6 13.0
Bfin

p (A)/Bfin
p (B) 0.38 0.37 0.37
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3.4.4 Asymptotic states of the static configurations

The values of the magnetic field after 40 τD for some representative cases of the static
configurations are shown in figure 3.6, which reports the final intensities of the toroidal
and poloidal components as functions of |q| and for different values of Cα.
Figure 3.6 refers to configurations without η-quenching and shows that the qualitative

evolution of the field is independent of the rotation rate of the star. Furthermore, for
small values of the differential rotation, i.e., for |q| . |q∗| (where |q∗| is a representative
threshold value) both the toroidal Bt and poloidal Bp components of the magnetic field
are constant with |q|; while for |q| & |q∗|, Bt begins to increase and Bp to decrease, follow-
ing power-laws with exponents of the same magnitude but opposite signs (see Table 3.4).
Note that the value of |q∗| is smaller for high spin rates since the dynamo is more easily
excited when the star is rapidly rotating.

Figure 3.6: Intensity of the magnetic field (Bt left panel, Bp right panel) in units of Beq, at
the end of the evolution, as a function of the differential rotation parameter |q|
for different values of Cα. The simulation refers to the configuration A, thus
without η-quenching.

Figure 3.7, on the other hand, shows the influence of η-quenching on the mean-field
dynamo by comparing the final intensities of the magnetic fields for configurations for
which the quenching is either active or not, i.e., configurations Aq and A, respectively. It
is quite evident that the main consequence of η-quenching is to increase the amplification
factor of the dynamo by several orders of magnitude, leaving the qualitative behaviour
of the magnetic field unchanged, but for a significantly smaller value of |q∗|.
A way of interpreting these results is to recall that the inclusion of η-quenching en-
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Figure 3.7: Intensity of the magnetic field (Bt left panel, Bp right panel) in units of Beq,
at the end of the evolution, plotted as a function of the differential rotation
parameter |q| for Cα = 6 (167 ms < P < 500 ms), and an initial seed magnetic
field of 10−7Beq. The simulation shows the comparison between a configura-
tion with η-quenching (Aq) and without η-quenching (A).

hances the transformation of the poloidal magnetic field into a toroidal one (i.e., Ω-effect)
and therefore enhances the importance of differential rotation. In addition, by reducing
the magnetic diffusion, η-quenching effectively favours the amplification of the magnetic
field (which becomes essentially frozen with the fluid), increasing the duration of the
exponential growth phase. In the case shown in figure 3.8 this phase lasts 4 more diffu-
sion times and the growth-rate in this last bit of amplification is even larger than before
(τamp ∼ 0.8 τD vs τamp ∼ 0.6 τD).

A typical example of the spatial distribution of the magnetic field is shown in figure
3.9, where we show the behaviour of the toroidal field as a function of the z coordinate
at different time steps for the configuration Aq. As expected, the field is mainly localized
in the NFI regions (where α 6= 0).

Two remarks are worth making at this point. Firstly, while the figures in this section
refer only to the configurations A and Aq, the same behaviour has also been found for the
configurations B and Bq, thus indicating that the results presented here are independent
of the extent of the zone of the NFI. Secondly, the extreme magnetic-field amplifications
obtained are a direct consequence of the idealized setup used in our modeling of the
PNS. We expect that a more realistic description of the geometry of the star and a consis-
tent treatment of the feedback of the magnetic field on the dynamics of the plasma will
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Figure 3.8: Behaviour of the 2-norm of Bp as a function of the number of diffusion times
(t/τ ) for the A and Aq configurations, |q| = 2, Cα = 4 (250 ms ≤ P ≤ 750 ms),
and for seed magnetic field strengths of Bs = 10−4Beq. The growth-rate of
the magnetic field during the initial amplification phase is the same for both
configurations; at t ∼ 12τD the A configuration saturates, while the Aq one
continues to grow until t ∼ 16τD, and then is driven to saturation by the α-
quenching .

lower these estimates, giving magnetic fields which are less strong but larger than the
equipartition value or comparable to it.

3.4.5 Asymptotic states of the dynamical configurations

Although still idealized, the two dynamical configurations AB and ABq are expected to
provide a better modeling of the first 40 s of life of the PNS, during which the thickness
of the NFI region is assumed to vary from about 70 per cent of the PNS radius, down
to about to 20 per cent of it (cf. the profiles of α and η in figure 3.3). However, besides
the fact that for these configurations it is not possible to define a unique critical period,
since it depends on the thickness of the NFI zone (cf. Sect. 3.4.2), we have found that the
qualitative behaviour of the magnetic field for dynamical configurations is very similar
to that discussed in the previous section for the static configurations.
More specifically the most salient difference is that, because of the shrinking of the in-
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Figure 3.9: Spatial distribution of the toroidal component of the magnetic field at differ-
ent time steps, for configuration Aq, with Cα = 10 and |q| = 0.1. For this
configuration α is different from zero only in regions with |z| > 0.3.

stability zone, the overall amplification is reduced with respect to the A configurations
and increased with respect to the B configurations. Indeed, at the beginning of the evo-
lution the zone of the NFI is as large as that of the A configurations, and at the end it is
as small as that of the B configurations. Nevertheless, if one considers a spin rate and a
differential rotation strength high enough to have the dynamo mechanism active during
all of the instability period (i.e. Cα and |q| larger than the critical values of the B config-
urations), then the final field is comparable to, or even larger than, that in the static A
configurations.

3.4.6 The effect of Lorentz force backreaction on different ial rotation

Several authors (e.g., Weiss et al. [28]; Belvedere et al. [2]; Roald & Thomas [22]; Moss
& Brooke [19]; Gilman & Rempel [14]; Covas et al. [11]; Rempel [21]) investigated the
effect of the backreaction generated by the Lorentz-force on the plasma motion; this is
sometimes referred to as the Malkus-Proctor effect. These investigations indicate that
the dynamo-intensified toroidal field interacts, via the Lorentz force, with the zonal flow
(which is predominantly azimuthal), thus limiting the growth of differential rotation and
reducing its strength. An obvious consequence of this effect is that the amplification of
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the toroidal field itself is also diminished. All of the abovementioned studies, whichwere
mainly devoted to the analysis of the Sun or solar-type stars, made use of an additional
term in the Euler equation in order to include the Lorentz force consistently.

This is different from what is done in our simple, idealized model case, where we use
the induction equation only, and assume that the rotational stress ∆Ω remains constant
in time for each configuration. As a result, any phenomenological, parameterized effect
of the magnetic field on the already fixed ∆Ω would not be consistent with our basic
assumptions.

Nevertheless we performed some runs with a phenomenological quenching function
applied to CΩ (Ω-quenching), of the same type as those applied to α and η. The results of
these runs show a moderate reduction of the final strength of the toroidal field for all of
the examined cases.

A rough estimate of the importance of magnetic field backreaction on differential rota-
tion can be made in terms of the Elsasser number Λe = B2/8π̺Ων (Rüdiger & Hollerbach
[24]), namely the ratio of magnetic to zonal flow energy. If Λe ≪ 1 the backreaction effect
is negligible, while for Λe ≫ 1 it is of overwhelming importance, and should produce a
strong reduction of differential rotation. If we define an equipartition Λeq = B2

eq/8π̺Ων
and assume that the turbulent viscosity ν is of the same order of turbulent magnetic dif-
fusion η0 (i.e., both momentum and magnetic field are transported by the same eddies),
we have Λe = h2Λeq, where h = Bt/Beq. For the typical values of our PNSs given in
Sect. 3.2, Λe ≃ 0.05 at equipartition, while for magnetic field strengths exceeding the
equipartition value by two or three orders of magnitude, the effect of the Lorentz force
on differential rotation cannot be neglected.

Our simplified model does not allow us to predict the intensity of this effect, even
though we expect that the final magnetic field will be comparable to or slightly larger
than the equipartion one. It is also worth pointing out that a reduction or suppression
of differential rotation does not necessarily imply a suppression of the dynamo, since the
α2Ω dynamo can shift to a pure α2 one. Furthermore we also cannot predict whether
the strong toroidal fields generated are stable against the magneto-rotational or Tayler
instabilities, whichwould require an analysis beyond the scope of the present exploratory
study.

3.4.7 A general expression for the final magnetic field

From the discussion about the time evolution of the magnetic fields (cf. Sect. 3.4.2) and
about their asymptotic states (cf. Sect. 3.4.4 and 3.4.5), it is apparent that the configura-
tions considered in this work have common features that we believe reflect a fundamental
behaviour of the mean field dynamo process. Thus we expect these features to be present
also when the toy model considered here is replaced by a more realistic one. In what fol-
lows we discuss how to summarize these analogies by presenting a general expression
for the final magnetic field.

Using figure 3.6 as a guide, it is easy to recognize the existence of a transition value
|q∗| such that for |q| . |q∗| the final magnetic field does not depend on the degree of



3.4. Analysis and results 45

differential rotation, while for |q| & |q∗| it changes as a power-law. We therefore express
this increase with a phenomenological relation of the type

Bfin
t = Kt (Cα)δt |q|γt (3.27)

Bfin
p = Kp (Cα)δp |q|γp (3.28)

where the indices t and p refer to the toroidal and poloidal components, respectively.
Note that the threshold value |q∗| may well be different in (3.27) and (3.28), and that the
constants Kt,p depend on the particular configuration, i.e. on the profile of α and η and
on η-quenching.

Table 3.4: Indices of the power-law behaviour found in the dependence of Bfin on the
degree of differential rotation |q| and the spin rate Cα. The errors, not reported
in the table, are only of a few percent.

γt γp δt δp
A 0.53 −0.48 1.00 0.03
B 0.51 −0.49 1.00 0.00
AB 0.49 −0.48 0.94 0.09

Aq 0.77 −0.37 1.10 0.06
Bq 0.54 −0.48 1.09 0.07
ABq 0.56 −0.46 1.13 0.12

Using a power-law fit, we have calculated the values for the exponents in the phe-
nomenological expressions (3.27) and (3.28) and collected them in Table 3.4 for both the
static and the dynamical models, with and without η-quenching. The reported values of
γt,p have been computed using several configurations having differentCα (between 6 and
200), while those for δt,p have been derived from configurations differing in the amount of
differential rotation (|q| in the range 10−1 − 102). For all of the configurations considered,
the variance around the reported values is very small and of only a few percent.
Overall, the data in Table 3.4 show that δt ≈ 1, δp ≈ 0 and that both γt and γp are

usually very close to either 1/2 or −1/2 respectively. We can then rewrite expressions
(3.27)–(3.28) simply as

Bfin
t ≃ Kt Cα|q|1/2 (3.29)

Bfin
p ≃ Kp |q|−1/2 (3.30)

However there is a clear exception to this. For the configuration Aq, the γs are quite far
from the common values obtained with all of the other configurations (while for the δs
there are no significant differences). In particular we obtain a larger γt and a smaller γp,
meaning that the Ω-effect is somehowmore effective than in the other cases in producing
toroidal field. This could be due to the η-quenching, in fact in Section 3.4.4 we have
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already pointed out how this process has the main consequence of enhancing the Ω-
effect, and we think that this effect is the strongest in configuration Aq, because this is
the one with the largest NFI zone. Support for this picture is also given by the fact that all
of the configurations with η-quenching have a value of γt slightly larger than the average.

The behaviour of the final toroidal and poloidal fields in the super-critical dynamo
regime, as given by equations (3.29) and (3.30), can be understood in terms of the char-
acteristic dynamo parameters, Cα and CΩ. The first parameter represents the dynamo’s
ability to regenerate the poloidal field from the toroidal one (i.e. the α-effect), while the
second parameter represents the dynamo’s ability to regenerate the toroidal magnetic
field from its parent poloidal field, via the action of differential rotation (i.e. the Ω-effect).
Both parameters are important as they define the dynamo number, given byNαΩ ≡ CαCΩ

for an αΩ dynamo, and Nα2Ω = C2
αCΩ for an α2Ω dynamo. In essence, below a certain

critical number Nc, which depends on the specific model considered, no dynamo action
is possible, while the dynamo becomes increasingly efficient as N increases.

The relationships described by equations (3.29) and (3.30) have been derived in the
super-critical regime region, where the mean field dynamo behaves as an αΩ dynamo,
and can be rewritten in terms of the dynamo number N = NαΩ as:

Bfin
t ≃ Kt

√
N (3.31)

Bfin
p ≃ Kp

Cα√
N

= Kp

√
N

CΩ
(3.32)

If one considers both panels of figure 3.6 for log |q| > 0, Bt substantially increases and Bp

decreases with increasing |q| for each fixed Cα value (i.e. wth increasing CΩ). Therefore,
it is not surprising that Bt ∝ N1/2, namely that the toroidal field increases with dynamo
efficiency. On the other hand, the poloidal field Bp will necessarily decrease with increas-
ing dynamo efficiency, since the increase of N is only due to the increase of CΩ (Cα is
kept fixed for each simulation) and the Ω-effect reduces the poloidal component of the
field. This is consistent with the fact that, at high differential rotation rates, the zonal flow
dominates with respect to the vertical motions (which are predominantly radial) thus re-
ducing the strength of convection and therefore the efficiency of the α-effect, namely the
regeneration of the poloidal field.

We expect that more sophisticated calculations will produce changes in the values re-
ported in equations (3.29) and (3.30), especially in the transition between the α2Ω and the
αΩ dynamos, when the Lorentz-force feedback is properly taken into account. However,
we expect that the overall behaviour of the magnetic field as given by these equations
will remain unaltered.

3.5 Conclusions

In this Chapter we have presented a toy model to describe the amplification of the mag-
netic field inside a proto-neutron star (PNS) via a turbulent dynamo action. The model
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assumes that a neutron-finger instability (NFI) develops in the outer regions of a PNS
during the early stages of its life as discussed by Miralles et al. [17], [18], and that the
conditions for the generation of a mean-field dynamo process are met. Although highly
simplified because of being only one-dimensional and because of adopting the kinematic
approximation, our model aims to capture the qualitative features of the dynamo ac-
tion by including a moving boundary of the instability zone and the nonlinearities in-
troduced by the feedback processes, which saturate the growth of the magnetic field (i.e.
α-quenching) and suppress its turbulent diffusion (i.e. η-quenching).

In essence, the amplification of the magnetic field is described in terms of a system
of coupled partial differential equations of mixed hyperbolic-parabolic type, which have
been solved numerically for a very large range of initial conditions. These include vary-
ing the spin period of the PNS, the strength of the differential rotation between the core
and the surface, the intensity of the primordial (seed) magnetic field, and the extent of
the NFI zone.

Overall, we have found that, independently of whether the size of the NFI zone varies
in time or not, the magnetic field undergoes a first exponential increase with a growth-
time that is the same for both the toroidal and the poloidal components of the magnetic
field. The exact value of the growth-time depends on several parameters and is roughly
in the range τamp ∼ [0.5 − 2.5] τD, with τD being the diffusion timescale. The exponen-
tial growth then stops because of the back reaction given by the α-quenching and the
magnetic field reaches saturation. The final magnetic field produced at the end of the
evolution does not depend sensitively on the initial magnetic field, but it does depend on
whether the η-quenching is active or not, becoming 2-3 orders of magnitude larger if the
η-quenching is active.

Despite its simplicity, our model is also able to capture another important feature of the
dynamomechanism, namely the existence of a critical rotation period Pc, above which no
dynamo action is possible and the magnetic field simply decays (Bonanno et al. [4]). For
periods near to the critical one, on the other hand, the dynamo is just able to sustain the
magnetic field close to its initial value, thus avoiding its decay. However, as the spin rate
(or the degree of differential rotation) is increased, the dynamo becomes progressively
more efficient, amplifying the magnetic field up to values several orders of magnitude
larger than the equipartion magnetic field. These very high intensities (1018G for the
toroidal component and 1014G for the poloidal one) may seem unphysical at first sight;
however, here we are considering magnetic fields still inside the neutron star and only
the poloidal component is thought to emerge afterwards. Determining the critical period
accurately is important for constraining the fraction of neutron stars that may undergo
this magnetic-field amplification at birth, and we have found that Pc is in the range 33 −
600 ms forCΩ = 0, becoming larger as the degree of differential rotation (CΩ) is increased.
As a result, as long as we have no general constraints on the strength of the differential
rotation, a lower limit of P ≃ 30 ms can be taken as the generic threshold below which a
mean-field dynamo may be active in a newly born PNS.

Another interesting result of this investigation is that, despite the large parameter space
considered, the final value of the magnetic field seems to follow a surprisingly robust
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dependence on the spin period and the degree of differential rotation, both of which can
be summarized in a phenomenological expression of the type

Bfin ∝ (Cα)δ|q|γ (3.33)

which holds only for |q| larger than a transition level of differential rotation |q∗|, whose
exact value depends on the configuration and on the other parameters (overall it is in the
range 10−2−101). The exponents δ, γ are different for the toroidal and poloidal magnetic
field components and depend only very weakly on all of the parameters varied in this
analysis. In particular, for the toroidal magnetic field component we have found δ ∼ 1
and γ ∼ 1/2, while for the poloidal one δ ∼ 0 and γ ∼ −1/2. The exact values of these
exponents are likely to be modified by more realistic and multidimensional calculations,
but we also expect that the scaling in expression (3.33) will persist in further refinements
of this treatment.
The work presented here could be improved in a number of different ways. A first

way is to give a more realistic description of the geometry of the problem, with a two or
three-dimensional description of the PNS. A second way is to improve the treatment of
the nonlinear feedback of the magnetic field on the dynamics of the matter. This could
be done still by using the same geometry as adopted here, but coupling the mean field
induction equation (3.1) with the solution of the MHD equations for the conservation of
energy and momentum.
One could be tempted to take this last option, because it is computationally less expen-

sive and even if it involves solving a number of additional equations, these would still
be written in the ambit of a 1D model. However our ultimate aim is to model the mag-
netic field evolution self-consistently in a 3 dimensional model, thus solving the full set
of the MHD equations. In order to do this we have decided to use the publically available
ZEUS-MP code, and we considered it best to move on to this code as soon as possible.
The next steps are then within the context of parallel computation and so the work takes
on a different character. Before moving on to that, we will discuss in the next Chapter our
work on accretion flows which follows more closely our approach in the present chapter.
We will then return in Chapter 5 to discussing our modification of the ZEUS-MP code to
include the additional terms necessary for our further studies. The modified code is then
being used for studying the turbulent mean field dynamo in an axisymmetric model of a
PNS, a model where we can use more realistic profiles for the differential rotation of the
star, still retaining the kinematic approximation. The present status of these calculations
is described in Chapter 6.



Bibliography

[1] Becker W., Swartz D., Pavlov W. et al. 2003, ApJ 594, 798

[2] Belvedere G., Pidatella R. M. & Proctor M. R.E. 1990, GAFD 51, 263

[3] Blackman E. G. & Brandenburg A. 2002, ApJ 579, 359

[4] Bonanno A., Rezzolla L. & Urpin V. 2003, A&A 410, L33

[5] Bonanno A., Urpin V. & Belvedere G. 2005, A&A 440, 199

[6] Bonanno A., Urpin V. & Belvedere G. 2006, A&A 451, 1049

[7] Brandenburg A., Krause F., Meinel R., Moss D. & Tuominen I. 1989, A&A 213, 411

[8] Bruenn S. W., Raley E. A. & Mezzacappa A. 2007, astro-ph/0404099

[9] Buras R., Janka H.-Th., Rampp M. & Kifonidis K. 2006, A&A 457, 281

[10] Burrows A. & Lattimer J. 1986, ApJ 307, 178

[11] Covas E., Moss D. & Tavakol R. 2005, A&A 429, 657

[12] Dessart L., Burrows A., Livne E. & Ott C. D. 2006, ApJ 645, 534

[13] Epstein R. 1979, MNRAS 188, 305

[14] Gilman P. A., & Rempel M. 2005, ApJ 630, 615

[15] Livio M., Buchler J. & Colgate S. 1980, ApJ 238, L139

[16] Mezzacappa A., Calder A.C., Bruenn S.W., Blondin J.M., Guidry M.W., Strayer M.R.
& Umar A.S. 1998, ApJ 495, 911

[17] Miralles J., Pons J. & Urpin V. 2000, ApJ 543, 1001

[18] Miralles J., Pons J. & Urpin V. 2002, ApJ 574, 356

49



50 Bibliography

[19] Moss D. & Brooke J. 2000, MNRAS 315, 521

[20] Pavlov G., Zavlin V., Sanwal D. & Truemper J. 2002, ApJ 569, L95

[21] Rempel M. 2006, ApJ 647, 675

[22] Roald C. B. & Thomas J. H. 1997, MNRAS 288, 551
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Chapter 4
Accretion discs around magnetised
neutron stars

The second stage of the magnetic field–plasma interaction considered here is an accretion
disc around a magnetised neutron star. We concentrate on finding a stationary magnetic
configuration inside the disc, given the neutron star magnetic field, the disc plasma ve-
locity field and the turbulent magnetic diffusivity. Knowing the magnetic field profile
is of great importance since magnetic fields play a pivotal role in accretion physics and
most of the current models still assume the poloidal component to be dipolar and for the
toroidal component analytic models constructed in the mid-80s are still used.

The most relevant literature about the topic that we are interested in is briefly reviewed
in Section 4.1. In Section 4.2 we then describe our initial model. We propose a step by
step approach, in which we begin by studying the system using a simplified model and
we then progressively make it more elaborate. Our aim is to achieve a better understand-
ing of the interplay between the physical quantities involved and for this reason we do
not straight away solve the full set of the MHD equations. As for the dynamo in PNSs
we work using the kinematic approximation, because as a first step we want to under-
stand the effects of the plasma motion and magnetic diffusivity on the magnetic field
configuration. In the subsequent model we will include the magnetic back reaction on
the flow.

Even though we are interested in solving the same equation here as in the previous
stage (i.e. the induction equation), in this case it is reduced to an elliptic partial differen-
tial equation (whereas in the previous case it gave a system ofmixed hyperbolic-parabolic
type), and therefore we need a different numerical algorithm to obtain the solution. This
is described here in detail and afterwards we present and discuss the solutions that we
obtain.
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4.1 Introduction

Magnetic fields play a fundamental role in the physics of accretion discs. First of all they
are thought to be the origin of the turbulence which makes the accretion itself possible:
this turbulence is usually thought to be caused by the magneto-rotational instability MRI
(Velikov 1959 [32], Chandrasekar 1960 [9], Balbus & Hawley 1991 [3]) although recently
other important instabilities have been suggested that can operate evenwhenMRI cannot
(sheer-driven instability, Bonanno & Urpin 2006 [5], 2007 [6]; current-driven Tayler insta-
bility, Tayler 1973 [30], Rüdiger et al. 2007 [25]). Secondly they can also determine the
geometric and kinetic structure of the disc. In addition, magnetic fields are invoked to
explain several characteristic features of accreting systems, such as particle collimation
(jets), radiation collimation (pulsar lighthouse effect) and spectral line production (cy-
clotron and synchrotron emission). There are hints that magnetic fields are active even
in the dead zones of protoplanetary discs1 where they transfer angular momentum out-
wards (Turner & Sano 2008 [31]). Overall, it seems that regardless of the particular kind
of accreting system, from ones around supermassive black holes in the centres of galax-
ies to ones around protostars in star-forming regions, magnetic fields are almost always
present and playing some role.
We focus here on studying the properties of accretion discs aroundmagnetised neutron

stars. In particular, we are interested in two kinds of system: X-ray pulsars and old
neutron stars in the process of being spun-up (recycled) to become millisecond pulsars
(MSPs).
X-ray pulsars are members of binary systems which accrete matter from their compan-

ion either via stellar winds or via accretion discs with the accretion being funnelled onto
the magnetic poles, giving rise to the X-ray pulsing mechanism if the magnetic axis is
misaligned with the rotational one. This kind of pulsar is very different from the stan-
dard radio pulsars, which radiate away their rotational energy in the form of relativistic
particles and magnetic dipole radiation. In X-ray pulsars the accreted matter transfers
angular momentum to or from the neutron star causing the spin frequency to increase
or decrease at rates that are often hundreds of times faster than the typical spin-down
rate in radio pulsars. Some of them are observed to be continuously speeding up or
slowing down (with occasional reversals in these trends) while others show either little
change in period or display erratic spin-down and spin-up behaviour (see, for example,
the review by Bildsten et al. 1997 [4]). Exactly why the X-ray pulsars show such varied
spin behaviour is still not clearly understood, but the magnetic field is probably playing
an important role in this. X-ray pulsars typically have magnetic fields of ∼ 1012 G and
rotation periods in the range 102 − 103 s.
Old pulsars in the process of being “recycled” have lower magnetic fields (typically

∼ 108 G) and are being spun up to millisecond periods by means of accretion from their
binary companion via an accretion disc. These are basically radio pulsars but they may

1In protoplanetary discs it is thought that MRI drives turbulence only in active layers near the top and
bottom surfaces of the disc, where stellar X-rays produce sufficient ionization for good coupling of the
gas to magnetic fields. Much of the disc interior remains laminar and is a so-called “dead zone”.
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also be visible in X-rays during the spin-up. Their relatively weak magnetic fields allow
the inner edge of the disc to be close to the surface of the star and this permits a large
transfer of angular momentum from the disc to the central object. Once they become
MSPs they continue to show some changes in period: timing analysis of MSPs shows that
they can either spin-up or spin-down (Di Salvo et al. 2007 [11]) and an explanation for
this can again be given in terms of magnetic torques. There has been recent evidence that
the standard evolutionary model cannot explain the evolution of all MSPs, especially the
young ones with relatively high magnetic fields, e.g. PSR B1937+21. Kiziltan & Thorsett
(2009 [17]) showed that different MSPs must form by at least two distinct processes. But
the nature of the other process remains a mystery.

In this work we focus mostly on these recycled pulsars, for which the distortions of
the magnetic field are larger and at smaller distances from the central object, making the
effects easier to see. The behaviour for the X-ray pulsars is expected to be mainly similar,
although one must then scale quantities because of the larger inner radius of the disc and
intensity of the magnetic field.

Historically our knowledge about systems of accretion discs around magnetized neu-
tron stars took a big leap forward with the observations made by the Uhuru satellite
(1970). This was the first satellite launched specifically for the purpose of X-ray astron-
omy and it performed the first comprehensive survey of the entire sky for X-ray sources.
After Uhuru more than 40 satellites that could observe X-rays were launched, among the
most important being ANS, Copernicus, SAS-3, Ariel V, OSO 8, HEAO-1 and HEAO-2,
ROSAT, ASCA, RXTE, Chandra and XMM.

One of the first important theoretical studies of accretion ontomagnetised neutron stars
was made by Ghosh, Lamb & Pethick (1977 [13]) who investigated the flow of accreting
matter and the magnetic field configuration in the region inside the Alfven surface (taken
to roughly coincide with the magnetospheric boundary). They assumed that the disc is
completely screened from the field except in a very small transition region, where matter
begins to leave the disc and follow the magnetic field lines. Inside the Alfven surface,
the matter moves along field lines in the frame corotating with the star. By using the
mass conservation equation, the induction equation and the momentum conservation
equation, they were able to express the angular velocity Ω and the toroidal magnetic
field strength Bφ as functions of the ratio between the poloidal velocity and the magnetic
field strength vp/Bp for the case of a steady axisymmetric flow with infinite conductivity.
In doing this, they assumed that Bp is very close to being a dipolar field and that vp can
be approximated with the free-fall velocity. The transition zone was then used to match
this flow solution with the Keplerian flow further out; they could then calculate the rate
of change of the rotational energy and angular momentum of the star, and estimate the
total torque (spin-up or spin-down) exerted on it.

Applying this model to the case of Her X-1, however, gave a discrepancy, with the
theoretically estimated spin-up torque being about 40 times larger than the observed one.
This discrepancy can be overcome if the transition region is not thin, and in a subsequent
paper Ghosh & Lamb (1979 [14]) noted that there are some mechanisms (Kelvin-Helmotz



54 Chapter 4. Accretion discs around magnetised neutron stars

instability, turbulent diffusion and magnetic field reconnection) that allow the magnetic
field to thread the disc across a very large region. With respect to the previous model, the
transition zone is here much wider and they divided it into two sub-regions: the inner
boundary layer, where the magnetic stresses are dominant over the viscous ones and
the matter begins to leave the disc vertically, and the broad outer transition zone, where
the magnetic field is present but does not greatly influence the flow. They numerically
solved the mass conservation equation, the momentum conservation equation, Ampere’s
law andOhm’s law, making a vertical average. Assuming that the disc is thin and that the
system is axisymmetric, they looked for a steady solution using an ad hoc prescription for
the azimuthal pitch angle (γφ ≡ Bφ/Bz). In particular, in the boundary layer they took
Bφ ∼ Bz , while in the outer transition zone γφ was obtained by balancing the growth
and decay terms for the toroidal magnetic field. They found that most of the screening
of the magnetic field occurs in the boundary layer and then B remains almost dipolar
throughout the transition region, at the end of which it is put to zero. In this region they
found that the differences with respect to a standard α-disc are within factors of 0.5 to 3.

In a subsequent paper Ghosh & Lamb (1979 [15]) used these results to calculate the
torque exerted on the neutron star by the accreting plasma. Here they wrote the total
torque as the sum of three contributions, coming from the material, magnetic and viscous
stresses. They then calculated the torques in the inner and outer transition regions (Nin

and Nout respectively), finding that Nin is always positive, while Nout can have either
sign, depending on the value of the fastness parameter2 ωs. The faster the star, the smaller
is the corotation radius rc and the smaller is Nout. This is because the part of the outer
transition region which contributes positively to the torque is being reduced in size with
increasing ωs. In some cases Nout becomes negative and can even exceed Nin so that the
spin of the neutron star is slowed down, even with continuing accretion.

Another possible explanation for having a small total torque or even spin-down comes
from the propeller model, where some of the matter is ejected from the disc (Davidson &
Ostriker 1973 [10]; Illarionov & Sunyaev [16] 1975; Shakura 1975 [27]). Another possible
mechanism for angular momentum loss is via gravitational wave emission, which would
occur if the pulsar has some mass (or mass-current) asymmetry around its rotation axis
(see Abbott et al. [1]). Searching for the gravitational waves coming from this is currently
the subject of an extensive international collaborative effort.

The Bφ generation mechanism and the magnetic torque were re-considered by Wang
(1987 [33]) and Campbell (1987 [7], 1992 [8]). Wang showed that the particular pitch angle
distribution used by Ghosh & Lamb [14] is not consistent, since the resulting magnetic
pressure would disrupt the disc beyond the corotation point. In the Wang and Campbell
models, the induction equation was solved in order to find a steady solution for the mag-
netic field. The poloidal field was taken to be dipolar and the toroidal field was calculated
assuming axisymmetry. The induction equation was greatly simplified by restricting the
analysis to a region near the equatorial plane (where Br and vr can be neglected with

2The fastness parameter is defined as ωs ≡ Ωs/ΩK(r0), where Ωs is the angular velocity of the star and r0

is radius of the boundary between the inner and outer transition zones, where the Keplerian flow ends.
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respect to the other components) and by supposing that the disc is Keplerian3 and that
the vertical flow is negligible. As a result, the generation of toroidal field is then only due
to the vertical gradient of the azimuthal velocity vφ. Within these models, the magneto-
sphere above the disc is taken to corotate with the neutron star. The small region where
the transition from corotation (outside the disc) to Keplerian rotation (inside the disc) oc-
curs is where the toroidal field is generated. The magnetic torque is then calculated and,
depending on the radii of the inner edge of the disc and of the corotation point rc, can
either spin-up or spin-down the neutron star.

Miller & Stone (1997 [22]) performed 2D numerical simulations with the resistiveMHD
equations in order to study the evolution of the interaction region between the inner edge
of the disc and themagnetospherewhichwas assumed to be initially in equilibrium, coro-
tating with the neutron star, and threaded by one of three different initial magnetic field
topologies. They found that regardless of the initial topology there is a rapid evolution
of the disc, driven by the angular momentum transport. In most cases, equatorial ac-
cretion results, either because accumulation of matter makes the gas pressure exceed the
magnetic pressure or because the magnetic field geometry is such that polar accretion
is inhibited. Polar accretion only occurs when a strong global vertical magnetic field is
included. Their simulations also confirmed the failure of total screening of the magnetic
field from the accretion disc. In fact one of their initial magnetic field topologies was a
dipole which was completely excluded from the disc by surface currents. In this case the
disc would be pushed outward radially by the magnetic tension if the diffusivity were
zero. However, if the disc is resistive, the field will diffuse into it before it is swept off,
both relieving the tension force, and producing angular momentum transport in the disc.
In this simulation the field penetration into the disc was solely due to magnetic diffu-
sion, since the Kelvin-Helmotz instability excites non-axisymmetric modes and therefore
cannot be modelled in a 2D simulation.

Many investigators after Miller & Stone have simulated the magnetosphere–disc inter-
action, solving the full set of the MHD equations (see e.g. Romanova et al 2002 [24] and
Kulkarni & Romanova 2008 [20]). The work that we are carrying out here should not be
seen as being in competition with these analyses, but rather as being complementary to
them. As we mentioned in Chapter 1, Section 1.2, our approach here is to use a succes-
sion of simplified models, becoming progressively more sophisticated, and to proceed
step by step so as to fully understand the effect of each successive additional feature as
it is introduced. In large-scale numerical work, one sees the results of an interacting set
of inputs within the scope of the adopted model assumptions and numerical techniques.
Deconstructing this, so as to have a clear conceptual understanding of the role of each of
the different components, remains a valuable thing to do and an approach which needs
to be carried on alongside the large-scale simulations. The conceptual papers from the
1970s and 1980s, mentioned above, continue to be widely quoted and used as the basis
for new research (see, for example, Kluzniak & Rappaport 2007 [18]) and our work here
stands in the tradition of refining these approaches.

3Campbell also considered non-Keplerian discs.
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Following a somewhat similar strategy to ours, Agapitou& Papaloizou (2000 [2]) looked
for steady-state axisymmetric configurations of a force-free magnetosphere by means of
simplified numerical calculations. They considered all of the region from the rotation axis
to the equator, for several values of the radius of the outer edge of the disc and ignored
the internal dynamics of the disc. In their model the disc is assumed to have only an az-
imuthal velocity; it is taken to be thin and therefore radial derivatives are neglected with
respect to vertical ones. They found that the poloidal field can differ significantly from
the dipole field of the central star. Within the corotation radius the differences are negli-
gible, but immediately outside this, the poloidal field becomes smaller than the dipolar
one, and then, at a larger radius (whose exact value depends on the position of the outer
edge of the disc), it eventually becomes larger than the dipolar one. As regards the mag-
netic torque, they found that it can be much smaller than that estimated by assuming
Bz ∼ Bdip. They also considered two different configurations for the magnetosphere, ob-
tained with two different outer boundary conditions: in one case the field was tangential
to the outer boundary (which is at a radius equal to the outer edge of the disc) while in
the other case it was normal to the boundary. They showed that in cases favouring large
field line inflation and open field lines (the ones with the normal field) the spin-down
magnetic torque becomes very small.

Elstner & Rüdiger (2000 [12]) addressed the problem from a complementary viewpoint,
considering the influence of a given stellar magnetic field on the structure of the accretion
disc in terms of height and surface density. They also considered the back reaction on the
magnetic field, solving both the induction equation and the disc-diffusion equation (us-
ing different time steps). The calculations were performed in 2D for the induction equa-
tion and in the 1+1D approximation for the disc equation. They fixed the disc rotation to
be Keplerian and took zero-velocity in the corona (above and below the disc) while for
the diffusivity they used the same value in the disc and in the corona. With this model,
they showed that the expression obtained by Wang (1987 [33]) and Campbell (1987 [7])
for the toroidal magnetic field is still valid to within a factor of 0.5 − 1.5 on average; this
factor changes with radius and can be as small as 0.2 for large radii. They found that the
outer disc is hotter, thicker and more massive than in the corresponding non-magnetic
solutions, because of the magnetically-driven angular momentum flow from the central
object to the outer disc. Their numerical calculations focussed on accretion in classical
T-Tauri systems.

Shalybkov & Rüdiger (2000 [29]) and Rüdiger & Shalybkov (2002 [26]) studied the ver-
tical structure of thin accretion discs by solving the momentum equation, the induction
equation and the energy equation, which they expanded to lowest order in H/r. They
gave results for the magnetic field strength, rotation speed, radial velocity and density
as functions of z for an arbitrary value of the radius (in cylindrical coordinates). They
saw no large departure of the angular velocity away from Keplerian, but found that the
radial velocity could increase drastically in some specific configurations. Their main re-
sult concerned the inclination angle of the magnetic field lines to the rotation axis. They
found that, when the radial infall velocity is large, a small magnetic Prandtl number can
already produce inclinations exceeding the critical value of 30◦, required for launching
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cold jets.

Our aim in the present work is to find a stationary configuration of the magnetic field
inside the disc and the surrounding corona (taken as a layer above and below the disc),
without making any leading order expansion or vertical integration, i.e. using a fully
2D model. We want to study the effects of the important physical quantities (the radial,
vertical and angular velocities, the diffusivity, the accretion rate, etc.) on the structure of
the magnetic field, and in turn on the magnetic torque, in order to give an estimate for
the field in the disc which is more realistic than the analytical ones developed by Wang
and Campbell. As mentioned earlier, in our initial model presented in this Chapter we
make use of the kinematic approximation and solve only for the induction equation, from
which one can analyse how the plasma velocity and the turbulent diffusivity affect the
magnetic field. As we will show later, since the system is taken to be axisymmetric and
in a stationary state, the induction equation can be split into two parts, one in which only
the poloidal component of the magnetic field appears and the other containing all of the
components. Here we present results only for the poloidal field. The toroidal component
will be calculated subsequently. Once the analyses with the initial model are complete
we intend to improve the model by including the back reaction of the magnetic field on
the plasma motion, thus solving for the Euler equation as well.

4.2 Our Model

In this study we consider disc accretion by a neutron star having a dipolar magnetic field
with magnetic moment µ. We assume that the star is rotating around its magnetic axis,
and that this axis is perpendicular to the disc plane; also, we assume that the fluid flow
is steady and has axial symmetry everywhere. Of course, all pulsars must be oblique
rotators in order to be observed as such, and so the system would not then be axisym-
metric as a matter of principle. The inclination of the magnetic axis with respect to the
rotation axis can have various consequences, e.g. the shape of the impact region on the
stellar surface would be changed, the magnetic force would become time dependent, and
the accretion torque could drive a precession of the star. However we are not concerned
here with studying these aspects of accreting systems and moreover the principles of the
interaction between the magnetic field and the plasma in the disc are not affected by the
inclination. We therefore feel that retaining the assumption of the magnetic axis being
perpendicular to the disc is satisfactory for our purposes. For our calculations, we use
spherical coordinates (r, θ, φ), with the origin being at the centre of the neutron star.

The general flavour of our model is similar to that of Ghosh & Lamb (1979 [14], here-
after GL). We suppose that at large radii the magnetic pressure is negligible with respect
to the gas pressure and the disc can be described as a standard α-disc. As one moves
inwards however the magnetic field becomes progressively stronger, eventually domi-
nating over the gas pressure so that most of the matter leaves the disc following magnetic
field lines and the disc is disrupted. We note that some equatorial accretion continue to
be possible even with a rather high stellar magnetic field, as shown by Miller & Stone
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[22].

There are some differences between ourmodel and that of GL.We are not assuming the
existence of a wide transition zone where the field is progressively screened, eventually
disappearing at the outer boundary of the zone. Also, we do not force the field to be zero
at the outer boundary; we instead take it to be dipolar there and we do the same at all of
the remaining boundaries too. We put the radial outer boundary very far away so that
the solutions in the zone of interest, which goes from the inner edge of the disc out to the
light cylinder, will not be very sensitive to the conditions at the outer edge. We note here
that, if we take the innermost part of the disc to have very high diffusivity, we naturally
find a narrow inner region followed by a broad outer one, however the behaviour of the
field in these regions is quite different from that in the GL model. In their model the field
is reduced by screening currents by a factor of about 80 per cent in the boundary layer
and then decreases as a dipole field in the first third of the outer zone, after which it is
forced by the boundary conditions to go to zero. In our model, instead, the field is almost
dipolar in the region nearest to the star (which we define as the inner region), is amplified
by a factor ∼ 3 where the diffusivity changes value (we call this the transition region),
then decreases to a value lower than the dipole one and finally decays almost as a dipolar
field (we call this the main region).

As regards the inner edge of the disc, its precise location is still an open issue and
several prescriptions have been suggested4, however none of them differs very much
from the Alfven radius calculated using a dipolar magnetic field (i.e. the radius where the
dipolar magnetic field pressure equals the gas pressure). For our present model we adopt
this as being the inner edge of the disc; for subsequent models, a possible improvement
will be to calculate the Alfven radius using the stationary magnetic field obtained in this
work instead of the dipolar one.

We suppose that all around the pulsar there is vacuum, except for where we have the
disc and the corona (taken to be a layer above and below the disc), and that the field
remains dipolar from the surface of the star until it reaches the matter in the corona. In
reality, taking vacuum is not completely correct, both because the density in the magne-
tosphere is not zero and because between the star and the disc there is the matter which
is accreting onto the neutron star. For the latter, we suppose that the flow of this material
is perfectly aligned with field lines and that it has very low density, so that we can ne-
glect its influence on the magnetic field structure. Furthermore we are introducing a low
density corona in order to have a transition zone between the disc and the vacuum. We
also allow the velocity and the diffusivity to have a different value in the corona (we will
comment on this later in the present Section).

Summarizing, we model the system as being composed of 4 regions (see figure 4.1):
(1) a central object, surrounded by (2) an accretion disc, on top of which there is (3) a
corona; all of the rest is taken to be (4) vacuum. Each physical quantity is allowed to have
different values in each of the regions. Our numerical domain covers regions (2) and

4The different suggestions can be divided into three types according to whether they assume that the inner
radius is determined by energy, stress or pressure balance.
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Figure 4.1: Geometrical representation of our model (the drawing is not exactly to scale).
The radius values which we use are: Rin ∼ 10 rg, Rtr ∼ 22 rg and Rlc ∼ 115 rg
and the opening angles are about 8◦ for the disc alone and 10◦ for disc plus
corona. The numerical outer boundary is much further out than the region of
interest shown here; the grid continues until r ∼ 750 rg (this is the reason for
the dashed lines).

(3). Since these two regions are surrounded by vacuum and the stellar field is dipolar,
we impose dipole boundary conditions at all of the boundaries. We are aware that in
real astrophysical systems this dipole condition at the boundaries can be rather drastic
since the region outside the neutron star is not vacuum and the field is distorted well
before reaching the disc. However at our level of analysis the results are not thought
to be very sensitively dependent on the precise profile chosen for the magnetic field at
the boundaries, and we are here focusing on studying the influence on the magnetic
configuration of the velocity field and diffusivity. That this is reasonable is confirmed by
the fact that the magnetic configuration that we obtain is rather similar to that obtained
by the numerical simulations of other authors [22] which had a different treatment of
the boundary conditions. However this will be the subject of further investigation in an
ongoing work. We take the ratio H/r to be constant (where H is the semi-thickness of
the disc), and so the entire upper surface of the disc is located at a single value of the
colatitude θ (as also is the case for the corona). In particular, we take an opening angle
of 8◦ for the disc (measuring from the equatorial plane to the top of the disc), implying
H/r ∼ 0.14, and of 10◦ for the disc plus the corona.

As will be described in Section 4.3, we here consider only the poloidal component of
the induction equation. Once the magnetic diffusivity η and the poloidal velocity vp

are specified, this can be solved to obtain the configuration of the poloidal field with-
out entering into details of the toroidal component. As regards the turbulent magnetic
diffusivity, we take this to have a constant value η0 in the main disc region and to be
ηc = 100 · η0 in the corona and in the inner part of the disc (we join the different parts
smoothly, using error functions). We take higher values there because these regions are
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less dense and therefore we expect the effects of turbulence to be enhanced there. How-
ever as we move away from the corona into the vacuum the density drops to zero and
turbulence eventually disappears5.

As regards the velocity: for vr we use the expression given for the middle region of α-
discs6 by Shakura & Sunyaev (1973 [28]); while we put vθ to zero inside the disc, although
allowing it to be non-zero in the corona as necessary in order to be consistent with the
dipole boundary conditions. In Section 4.3.2, we find that whenever a dipole field is a
solution of the induction equation, a precise relationship must hold between vr and vθ,
subject to certain reasonable conditions. We use this relation to calculate vθ in the corona.

Figure 4.1 shows a schematic representation of the geometry of our model, the corona
and the two parts of the disc being shown (the transition region is thin and around r =
Rtr). The dashed lines indicate that in solving the induction equation we use a much
larger numerical domain, so that in the zone of interest the solution is almost independent
of the location of the outer boundary.

4.3 The Equations

As for the PNS case we are interested in solving the induction equation when there is
a large magnetic diffusion due to turbulent motions. This equation has been derived in
Chapter 2, Section 2.3, and but we report it again here:

∂tB = ∇× (v × B + E − ηOhm∇× B) (4.1)

where ηOhm = c2/4πσ is the Ohmic diffusivity and E is the turbulent electromotive force,
that in the first-order smoothing approximation is written as E = αB − ηT∇ × B. In
the present model we are not considering any dynamo action, therefore we neglect the α
term, which can however be included in a more elaborate subsequent model. This is in
line with our approach, which is aiming at understanding, one at a time, the effects of the
various elements which characterize the system of an accretion disc around a magnetised
neutron star.

The induction equation then reduces to:

∂tB = ∇× (v × B − η∇× B) (4.2)

where η = ηOhm +ηT ∼ ηT, because the turbulent diffusivity is much larger than the Ohmic
one in the disc and in the corona.

Since we are interested in stationary solutions, we put the time derivatives to zero, as

5It is only the turbulent diffusivity ηT which disappears, the Ohmic one ηOhm will always be present, there-
fore in vacuum η = ηOhm ≪ ηT.

6In the α-disc model for accretion onto black holes, three regions are present: inner, middle and outer. Only
the middle region is used in our case. For the parameter values which we are using, the magnetic field
disrupts the disc within the boundary between the inner and middle regions, while the outer boundary

of the middle region is much further out than our region of interest, at about 6.08 102 ·
`

ṁ
0.03

´2/3
.
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we do also for the φ derivatives since we are assuming axisymmetry. Then in spherical
coordinates the three components of equation (4.2) are:

0 = ∂θ

{
sin θ

[
vrBθ − vθBr −

η

r
[∂r(rBθ) − ∂θBr]

]}
(4.3)

0 = ∂r

{
r

[
vrBθ − vθBr −

η

r
[∂r(rBθ) − ∂θBr]

]}
(4.4)

0 = ∂r

{
r
[
vφBr − vrBφ +

η

r
∂r(rBφ)

]}
−

∂θ

{
vθBφ − vφBθ −

η

r sin θ
∂θ(Bφ sin θ)

}
(4.5)

The first two of these equations have the same expression inside the large square brackets
and we call thisF . We can then reduce these two equations to a single equation andwrite
the entire system as:

F =
k

r sin θ
(4.6)

0 = ∂r

{
r
[
vφBr − vrBφ +

η

r
∂r(rBφ)

]}
−

∂θ

{
vθBφ − vφBθ −

η

r sin θ
∂θ(Bφ sin θ)

}
(4.7)

where k is a generic constant.

We notice that F depends only on the turbulent magnetic diffusivity η and on the
poloidal components of the velocity field and the magnetic field. It is clear therefore that
equation (4.6) alone governs the poloidal part of the magnetic field and is independent
of any azimuthal quantity, while to obtain the toroidal component of the magnetic field
one has to solve the further equation (4.7).

In this thesis we concentrate only on solving equation (4.6). Subsequently we will use
the results obtained here to solve equation (4.7) and calculate the toroidal field compo-
nent.

In order to guarantee that the condition∇·B = 0 is satisfied and to be able to calculate
the magnetic field lines easily, we write the magnetic field components in terms of the
magnetic stream function S, which is implicitely defined by the following two equations:

Br =
1

r2 sin θ
∂θS(r, θ) (4.8)

Bθ = − 1

r sin θ
∂rS(r, θ) (4.9)

With this definition, the axisymmetric field B is always solenoidal and isolines of S rep-
resent magnetic field lines. Substituting these expressions into eq. (4.6), we obtain an
elliptic partial differential equation (PDE) for S in terms of r and θ:

∂2
rS +

1

r2
∂2

θS −
(

cot θ

r2
+
vθ

r η

)
∂θS − vr

η
∂rS =

k

η
(4.10)
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where k is the constant introduced above in equation (4.6) and vr, vθ and η are non-
constant coefficients. This equation can be solved once boundary conditions and values
for the coefficients have been specified.

4.3.1 Velocity field and turbulent diffusivity

In Section 4.2 we qualitatively described the profiles of velocity and diffusivity that we
are using. Here we give the precise expressions.

For the velocity, we use the expression given by Shakura & Sunyaev (1973 [28]) for
their region b:

vr(r) = 2 106 · α4/5 · ṁ2/5 ·m−1/5 · (3/r)2/5
[
1 − (3/r)0.5

]−3/5
cm s−1 (4.11)

where the radius r is expressed in units of the Schwarzschild radius, m is given in solar
mass units, ṁ is in units of the critical Eddington rate and α is the standard Shakura-
Sunyaev viscosity coefficient. Using typical values (α = 0.1, ṁ = 0.03 and m = 1.4) one
obtains:

vr(r) ≈ 7.3 104 · (3/r)2/5
[
1 − (3/r)0.5

]−3/5
cm s−1 (4.12)

For the other component of the poloidal velocity, vθ, we set this to zero in the disc and
use a non-zero profile in the corona. The formula for this is calculated in Subsection 4.3.2;
we anticipate here the result:

vθ =

{
0 in the disc
1
2 vr tan θ in the corona

(4.13)

For the diffusivity, we first construct two auxiliary functions, ηθ and ηr, giving the
profiles along the θ and r directions respectively:

ηθ =

[
1 + erf

(−θ + θc
dθ

)]
(4.14)

ηr =

[
1 + erf

(−r + rη in

dr

)]
+

[
1 + erf

(
r − rη out

dr

)]
(4.15)

where θc is the colatitude of the upper surface of the disc, rη in is the radius of the bound-
ary between the inner region and the main disc region7 and dθ and dr are the widths of
the error functions used for the angular and radial profiles respectively. We then combine
equations (4.14) and (4.15) to get the global η:

η(r, θ) = η0 ·
[
1 +

1

2
· (ηθ + ηr) ·

(
ηc

η0
− 1

)]
(4.16)

7rη out appearing in the expression for ηr is located shortly before rout and far away from the zone of
interest.
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where η0 and ηc are dimensional quantities (with units of cm2 s−1), the former giving
the value of the diffusivity in the main disc region and the latter giving the value in the
corona and the inner disc region.

4.3.2 Dipolar solution, an analytic constraint

In order to obtain a profile for vθ, we consider the situation when the stationary magnetic
field is dipolar in some part of the disc. More precisely, we suppose that from the top
surface of the corona, where θ = θsurf , down to some θ = θ̃ we have B = Bdip, i.e.

(Br, Bθ, Bφ) =
(

2µ cos θ
r3 , µ sin θ

r3 , 0
)
where µ is the magnetic dipole moment.

A magnetic dipole field is current-free (i.e. J = ∇× B = 0), therefore when B = Bdip

is a stationary solution of the induction equation, equation (4.2) becomes:

∇× (v × B) = 0 (4.17)

Following a procedure similar to that used for obtaining equations (4.6) and (4.7), we go
to spherical coordinates, write out the three component equations and group the poloidal
terms. This gives:

vr Bθ − vθ Br =
k̃

r sin θ
(4.18)

∂r(r vφBr) = −∂θ(vφBθ) (4.19)

Since k̃ is a constant we can calculate it at any convenient location. We consider a path
with constant θ, e.g. θ = θ∗ ∈ [θsurf , θ̃]; along this path equation (4.18) gives:

vr

(
µ sin θ∗

2

)
− vθ (µ cos θ∗) = r2

(
k̃

sin θ∗

)
(4.20)

where all of the terms in the brackets are constant. To investigate further the properties
of this equation, consider the situation if vθ = 0. Equation (4.20) would then imply that
either vr ∝ r2 (which is not reasonable for an accretion flow) or vr = 0, i.e. k̃ = 0, so that
there is no accretion at all. This implies that if we have an accreting flow in a region with
a dipole magnetic field then vθ must be non zero. We do not know the exact profiles of
vr and vθ, but it is not plausible that the left hand side increases as r2 and so we need to
choose k̃ = 0. Therefore from the last equation we get:

vr
sin θ

2
= vθ cos θ → vθ =

1

2
tan θ vr (4.21)

Equation (4.21) implies not only that if there is a non-zero radial velocity then there must
be a non-zero vertical velocity as well, but also that the vertical velocity is larger than the
radial one (at θ = 81 ◦ one has vθ ∼ 13 vr).

From equation (4.19) one can obtain information about vφ. As expected vφ = 0 is a pos-
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sible solution but vφ = vKep is not, meaning that having a dipolar field is not consistent
with having a Keplerian angular velocity profile, whereas it is consistent with having no
rotation. It is interesting to notice that there are also some non trivial profiles which are
solutions. For example vφ ∝ r−α · sin3+2δ θ, where δ is a positive integer, gives a set of
possible solutions8. Therefore if one supposes that vφ decreases with r as a power law,
then it must have also a dependence on θ in order for the magnetic field to be dipolar. We
recall that in the works of Campbell and Wang it is precisely the vertical gradient of the
angular velocity that produces the toroidal field. Here we have shown that it is possible
to have a non-zero vertical gradient of the angular velocity and still have a zero toroidal
magnetic field. However, we stress that we are not giving physical explanations for hav-
ing these kinds of velocity profile.

Summarizing: a dipolar magnetic field can be a stationary solution of the induction
equation provided that the velocity satisfies equations (4.18) and (4.19), which then im-
plies that, unless the plasma in the disc has zero radial velocity (i.e. is not accreting), an
outflow away from the disc is unavoidable. Also, having the rotation velocity depending
on r and θ is, in principle, allowed.

We should note here that equation (4.17) has been solved in the context of stellar winds
by Mestel (1961 [21]); his result was that the poloidal magnetic field and velocity field
need to be parallel. Our result that vr/Br = vθ/Bθ (from equation (4.18) with k̃ = 0) is in
agreement with his.

4.4 The Code

In the previous Section we have seen how finding the configuration of the magnetic field
reduces to solving an elliptic PDE for the stream function S (equation (4.10)), whose non-
constant coefficients are now all known. As regards the quantity k on the right hand side
of the equation: at the boundary, where the magnetic field is dipolar9, this must be zero.
Then, since it is a constant, it must be zero everywhere. In this Section we first put the
equation in a dimensionless form, then we describe the algorithm that we use to solve it,
and finally we discuss some of the tests that we have performed on the code.

4.4.1 Dimensionless equation

In order to write equation (4.10) in a dimensionless form, we scale the quantities in the
following way:

r = r̂ rg θ = θ̂ S = Ŝ S0 (4.22)

8This can be seen by writing vφ as the product of a function of r and a function of θ and carrying out some
simple algebra.

9Boundary conditions are imposed on the magnetic stream function: Ŝ = Ŝdip = r0 sin2 y/x.
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where the hat quantities are dimensionless, rg is the Schwarzschild radius, η0 is the value
of the diffusivity in the main disc region and S0 is a reference value for the stream func-
tion, calculated as the value for a dipolar field on the equator of the neutron star. Substi-
tuting into equation (4.10) we get:

S0

r2g
∂2

r̂ Ŝ +
S0

r2g r̂
2
∂2

θ̂
Ŝ −

(
cot θ̂

r2g r̂
2

+
vθ

rgr̂ η

)
S0∂θ̂Ŝ − vr

η

S0

rg
∂r̂Ŝ = 0 (4.23)

∂2
r̂ Ŝ +

1

r̂2
∂2

θ̂
Ŝ −

(
cot θ̂

r̂2
+
vθ rg
r̂ η

)
∂θ̂Ŝ − vrrg

η
∂r̂Ŝ = 0 (4.24)

where we go from (4.23) to (4.24) by dividing both sides by S0/r
2
g. We rename the vari-

ables (x = r̂ and y = θ̂) and obtain the following dimensionless form for the equation:

∂2
xŜ +

1

x2
∂2

y Ŝ −
(

cot y

x2
+
vθ rg
x η

)
∂yŜ − vr rg

η
∂xŜ = 0 (4.25)

where [vr] = [vθ] = cm s−1, [rg] = cm, [η] = cm2 s−1, so that vr rg/η and vθ rg/η are
dimensionless coefficients.

As mentioned above, the reference value for the stream function is taken to be its
value at the equator of the neutron star. If we call the star’s radius r̂0 rg then S0 ≡
Sdip(r̂0 rg, π/2) = µ (r̂0 rg)

−1. The solution of equation (4.25) gives the dimensionless
stream function Ŝ. In order to calculate the magnetic field, we first calculate B̂pol using
the dimensionless versions of equations (4.8) and (4.9), and then multiply by B0 to go to

physical units, where B0 ≡ Bdip
θ (r = r̂0 rg, θ = π/2).

4.4.2 Description of the code

In order to solve the 2D elliptic PDE (4.25) we use the Gauss-Seidel relaxation method.
If we call the elliptic operator L and the right hand side b, then the original equation
becomes: L[S] = b. We turn this elliptic equation into a hyperbolic one by adding a
pseudo time derivative; we can then consider the iterative procedure as a time evolution

and write: ∂tS = L[S] − b. In our case L = ∂2
x + 1

x2∂
2
y −

(
cot y
x2 +

vθ rg

x η

)
∂y − vr rg

η ∂x and

b = 0.

As in the PNS case. we use a finite difference technique, approximating the operators
by discretizing the functions over a grid. The scheme that we use for discretizing the
derivatives is as follows:

∂θS|i,j =
Si,j+1 − Si,j−1

2∆j
and ∂2

θS|i,j =
Si,j+1 − 2Si,j + Si,j−1

∆j2
(4.26)

∂rS|i,j =
Si+1,j − Si−1,j

2∆i
and ∂2

rS|i,j =
Si+1,j − 2Si,j + Si−1,j

∆i2
(4.27)
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∂tS =
St+1 − St

∆t
(4.28)

We use these expressions to discretize equation (4.25) and then, isolating the term St+1
i,j ,

we get the iterative algorithm that we use in our code:

St+1
i,j = St

i,j + ∆t

[
St

i+1,j − 2St
i,j + St+1

i−1,j

∆i2
+

1

x2
i

St
i,j+1 − 2St

i,j + St+1
i,j−1

∆j2
+

−
(

cot yj

x2
i

+
vθ rg
xi η

) St
i,j+1 − St+1

i,j−1

2∆j
− vr rg

η

St
i+1,j − St+1

i−1,j

2∆i

]
(4.29)

We solve this proceeding outwards from i = 1, j = 1; on the right hand side the terms
that have already been calculated (i.e. the terms at positions i = i − 1 and j = j − 1)
are taken at the current iteration t + 1, as usual in the Gauss-Seidel method. We provide
an initial estimate for S at iteration zero and the code then modifies this by relaxing the
solution using the chosen profiles of vr(r, θ), vθ(r, θ) and η(r, θ).

The magnitude of the central dipole field and the accretion rate do not enter this equa-
tion directly, but they are used to calculate the inner edge of the disc rin. We recall that we
have a radial numerical domain going from rin to rout, and a physical domain of interest
which begins at the same radius but stops earlier, at the light cylinder radius rlc. Along
the θ direction the two domains coincide and go from θtop, which is the top surface of the
corona, to θeq, which is the equatorial plane (because of the symmetry of the system with
respect to the equatorial plane, the solution below the equator will be the same as above
it).

For the mass and radius of the neutron star, we use the canonical values, 1.4M⊙ and
10 km respectively. We fix the accretion rate as ṁ = 0.03 (in units of ṀEdd), giving a
magnetospheric radius of about 10 rg when B0 ∼ 3 108 G, as typical for a millisecond
pulsar.

4.4.3 Testing of the code

In this subsection we describe some of the tests that we have performed with the code,
before applying it to the cases of physical interest. These tests are needed in order to check
the code for stability and convergence, to estimate errors and to optimize the iteration
procedure by choosing an appropriate iteration step.

During this test phase we used the following values for the parameters:

• magnetic field at the stellar surface: B0 = 3 108 G;

• size of the domain: rin = 10 rg, rout = 750 rg, θtop = 80◦, θeq = 90◦ and θc = 82◦;

• radial inward velocity at inner edge: vr(rin) = v0 = 105 cm s−1, which is the value
obtained from equation (4.11) when (α, ṁ) is equal to (0.15, 0.03) or to (0.1, 0.07);
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• diffusivity: rη in = rin, rη out = rout, η0 = 1010 cm2 s−1 and ηc = 1012 cm2 s−1;

• initial estimate for the magnetic stream function: S = r0 · sin θ/r0.5 (for a dipolar
field Sdip = r0 sin2 θ/r);

• iteration step: ∆t = 3 10−2 · ∆x · ∆y.

The tests can be divided into two main groups: with and without a known analytic
solution. For the latter, we can estimate errors by calculating the residuals and by com-
paring the solutions obtainedwith different grid resolutions, while for the former we also
have the analytic error.

Test with an analytic solution

There are two cases for which we can obtain an analytic solution. The first has dipolar
boundary conditions and no poloidal motion (vr = vθ = 0); in this case the poloidal
component of the fieldmust be dipolar everywhere (we refer to this test as D, for dipolar).
In the previous section we showed that, in order to have a dipolar field as a stationary
solution of the induction equation, the poloidal velocity has to fulfill the relation given
by equation (4.21) and using vr = vθ = 0 is consistent with that condition. Our second
analytic test case has the boundary conditions for S set to zero. In this case, regardless
of the profile used for the velocity, S(r, θ) = 0 is a solution in all of the domain (we call
this test Z, for zero). Even if at first glance a test with an identically zero solution may
seem to be of little importance, we think that it is useful, because in this way we can test
the code by including all of the terms that will be present when solving for the cases of
interest (i.e. including vr, vθ and η).
In both cases, we test two different configurations by changing the velocity profile. In

test D we consider a case with zero velocity (test D1) and another one where vθ is given
by equation (4.21) and vr is given by equation (4.11) in the corona and is zero in the disc
(test D2). In test Z we consider the same velocity profile as the one that we will use for
our cases of interest, given by equations (4.11) and (4.21) (test Z1), and a velocity profile
which is the same as that used in test D2 (test Z2).
In all of these tests we follow the same procedure, we verify the stability of the code, we

estimate the error and see if it scales correctly, checking the convergence of the solution.
We do this by studying how the numerical solution changes when varying the number
of grid points (Ni and Nj) and the number of iterations.
We use five grids in total. When testing the dependence on Nj we use: 200 × 20,

200 × 40 and 200 × 80; while when testing the dependence on Ni we use: 100 × 20,
200×20 and 400×20. For each of these grids we calculate: (i) the absolute difference and
(ii) the relative difference, between the numerical solution and the analytic one at each
point of the grid; and (iii) the root mean square (rms) of the numerical solution S at each
iteration step. The results obtained are very similar for all of the five grids and for each
of the four tests and can be summarized with the following four statements: (1) both the
absolute error and the relative error have a maximum near to the inner edge rin which
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Figure 4.2: Both panels refer to the D2 test case. Left panel: relative error at each grid
point of the region of interest with a 400 × 20 grid. For the other grids (and
tests) the results have exactly the same qualitative behaviour, but the precise
value of the error is different and increases when the number of grid-points
decreases. For the 100 × 20 grid, the maximum relative error is ∼ 15 per cent,
while for the 200 × 20 grid it is about 0.8 per cent and finally for the 400 × 20
grid (shown in figure) it is 0.15 per cent. Right panel: maximum analytic error
for with three grids, which differ only in Ni. Increasing Nj from 20 to 80
produces a very small decrease in the error (∼ 7 per cent).

then decreases quite rapidly. With the 400× 20 grid, the maximum relative error is about
0.1 per cent (see figure4.2 left panel); (2) changingNj does not produce any visible effect:
while increasing Nj by a factor of 4 (from 20 to 80) decreases the maximum relative error
only slightly (by ∼ 7 per cent), changing Ni from 100 to 400 has a much greater effect,
giving a decrease in the error of two orders of magnitude; (3) the reduction in the rms and
of the maximum error becomes progressively smaller with increasing Ni, thus showing
that we have convergence of the numerical solution; (4) using a sparser grid gives smaller
errors at the beginning and during the relaxation process, however if one keeps iterating
until the saturation level is reached, then the error with sparser grids is larger than with
denser grids (suggesting that this problem could be suited for a multigrid approach).
Regarding statements (2), (3) and (4), see figure 4.2 right panel.

Test with an unknown solution

We use now a configuration with dipolar boundary conditions and a velocity field given
by equations (4.11) and (4.21). This is very similar to test D2, but in this configuration vr
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Figure 4.3: The rms of the numerical solution for different values of η after 224 iterations.
When η → ∞, the rms should reach the value for a dipole, which is plotted
with a dotted line for both grids.

is not taken to be zero in the disc. Even if we do not know the solution for this setup, we
know from equation (4.10) that it has to approach a dipolar field when the coefficients vθ

r η
and vr

r η both go to zero. In order to test this we have considered five configurations, each

with a different value of η0 ranging between 1011 and 1015 cm2 s−1 (ηc is always taken to
be two orders of magnitude larger than η0). Figure 4.3 shows clearly that for increasing η,
the rms of the numerical solution is approaching that for a dipole calculated on the same
grid.
For these five configurations we also performed the tests previously described, i.e. the

ones regarding changing the grid and comparing the errors and the rms. The results are
again similar and confirm the four statements made earlier.

Other tests

We next use the configuration of test D2 for checking three more aspects: determining
the importance of the initial estimate for S and investigating which values to choose for
the location of the outer radial boundary and for the iteration step.
The kind of algorithm which we are using to solve equation (4.10) needs an initial

estimate for the solution. According to how good or bad this estimate is with respect to
the correct solution, one needs a smaller or greater number of iterations for completing
the process. In order to show this and also to demonstrate that the final solution does
not depend on the initial profile, we used four initial estimates for the magnetic stream
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function S: (1) a constant value, (2) a Gaussian profile (centred on r = 100 rg and with a
width of 20 rg), (3) a profile increasing with r3 (this gives Br and Bθ increasing linearly
with r) and (4) the profile which gives a dipolar magnetic field (the analytic solution for
this configuration is S = r0 · sin θ/r0.5). In all of the cases the final solution is the same,
even for configuration (3), but the number of iterations required to reach it changes and
goes from 0 for case (4) to 220 for cases (1) and (2) and to 226 for case (3).

As we mentioned previously (in Sections 4.2 and 4.4.2), our region of physical interest
goes from the inner edge of the disc rin out to the light cylinder rlc. Since we do not want
the solution in this region to be influenced by the outer boundary condition, we ran some
tests using different values for the radius of the outer edge rout and then compared the
numerical solutions in the region of interest. We used the same setup that we wanted
to consider for our physical analysis, i.e. with dipolar boundary conditions, the velocity
field given by equations (4.11) and (4.21) and the diffusivity given by equation (4.16).
We used six values of rout (150 rg, 200 rg, 250 rg, 300 rg, 500 rg and 750 rg) and we found
that the difference within the region of interest between the numerical solutions obtained
using two subsequent values of rout became progressively smaller, until one could barely
distinguish the different solutions. We decided to put the outer boundary at 750 rg for the
physical analysis; this gives results differing from those with rout = 500 rg by less than
about 5 per cent.

Finally we considered varying the iteration step size, i.e. the ∆t in equation (4.29), that
is written as c · ∆r · ∆θ. There is no simple argument of principle that can be used to
determine the best value for c, therefore we determined it experimentally. We considered
the same configuration as in test D2 and ran it several times varying only the value of
c, going from 0.025 upwards. We found that the final error was the same, but that the
number of iterations required to relax to the final solution was changing, decreasing as c
increased. However there is an upper limit: when c > cmax = 1.25 the solution diverges.
Transferring this condition to ∆t, we obtain ∆tMax = 8.5 10−3. We can then change the
way in which the iteration step size is calculated in the code and write: ∆t = n · ∆tMax,
with n always smaller than 1. We find that using the value n = 0.95 is a good compromise
in minimizing the number of iterations and preserving the code stability.

All of the results presented in the next Section have been obtained using a 1000 × 20
grid and with 224 ∼ 1.7 · 107 total iterations, which were always enough to get residuals
of the order of, or less than, 10−14.

4.5 Results

From equation (4.25), we see that in order to calculate the stream function S, and hence
the poloidal magnetic field, we have to specify the following three functions: vr(r, θ),
vθ(r, θ) and η(r, θ). For the vertical velocity we follow the prescription given by equation
(4.21), therefore we are left with needing to specify the other two functions. The profiles
that we use for them have been described previously (see equation (4.11) for vr and Sec-
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tion 4.2 for η). Here we describe how the magnetic field configuration depends on these
two functions.

In figures 4.4 and 4.5 we show the magnetic field lines calculated with four values of
v0, i.e. with different accretion rates10. For facilitating the comparison we show also a
dipolar magnetic field (dashed). The field lines are labelled with the radial coordinate
where the dipolar field imposed at the top boundary would cross the equatorial plane
if not distorted. In this way the amount of distortion can be seen just by comparing the
label of a given field line and the radius where it, in fact, reaches the equatorial plane.
We can see that if vr were zero, the field would not be distorted at all from the dipolar
configuration and increasing the velocity then creates progressively more distortion. In
the inner part of the disc, where the field is strongest, it is most able to resist distortion;
further out, the field is weaker and it becomes progressivelymore distorted. For example,
if one focusses on line 45, one can see that when v0 = 104 this line crosses the equatorial
plane at r = 40 rg: we then say that this line has a distortion on the equatorial plane
of 5 rg; when v0 = 105, the distortion is 17 rg; and when v0 = 106, it is about 20.5 rg.
The degree of distortion depends on the location in the disc; from the figure we can see
that it increases with distance. For example if one considers only the configuration with
v0 = 104, then one sees that the distortion on the equatorial plane at r = 15 rg is roughly
zero, at r = 25 rg it is slightly larger than 1 rg and at r = 45 rg it is about 5 rg.

According to the behaviour of the magnetic field lines, we can divide the disc into three
regions: (1) an inner region, where the lines are not distorted very much away from the
dipole; (2) a main region, where the distortion is very large and (3) the region in-between
the two, which we call a transition region, where there is an accumulation of field lines.
This means that in the transition region there is a magnification of the magnetic field (see
figure 4.6).

In addition to varying the radial velocity, we also consider the role of the diffusivity.
The results show that when we change η0, we get the opposite behaviour to that seen
when varying the velocity, i.e. a larger η0 gives a smaller distortion. Moreover, when we
use v0 = 105 cm s−1 and η0 = 1011 cm2 s−1 we obtain exactly the same result as when
we use v0 = 104 cm s−1 and η0 = 1010 cm2 s−1 (the differences are of the order of 10−14).
Similarly using v0 = 106 cm s−1 and η0 = 1011 cm2 s−1 gives the same result as using v0 =
105 cm s−1 and η0 = 1010 cm2 s−1, and v0 = 107 cm s−1 and η0 = 1011 cm2 s−1 gives the
same as v0 = 106 cm s−1 and η0 = 1010 cm2 s−1. This is telling us that what really matters
is not the velocity or the diffusivity alone but their ratio. This is not surprising since in the
equation which we are solving (equation (4.25)) the quantities only appear in this ratio
(bearing in mind that vθ is taken to be either zero or proportional to vr). In fact, in Section
2.2 we have already seen that there is an important dimensionless number, the magnetic
Reynolds number Rm, which describes the general solution of the induction equation
(4.2) and which is built from them. This is defined as: Rm ≡ l0 · v0/η0, where l0, v0 and η0

are respectively a characteristic length, velocity and diffusivity. Here we recall that this

10According to the solution for the Shakura-Sunyaevmodel, for fixedmass of the central object and viscosity
α, the radial velocity is proportional to ṁ2/5.
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Figure 4.4: Magnetic field lines from the numerical solution (solid lines) and those for
a dipole (dotted lines) for comparison. The left panel refers to a case with
no accretion, where the field remains exactly dipolar, while in the right panel
v0 = 104 cm s−1, and the field is distorted. The diffusivity η0 has the same
value in both panels (1010 cm2 s−1). If we use η0 = 1011 cm2 s−1 and v0 = 105

cm s−1, we obtain the same result as shown in the right panel (Rm = 4 for
both).

Figure 4.5: The same as in figure 4.4, but with different values of v0. The left panel is for
a case with v0 = 105 cm s−1 while the right one is for v0 = 106 cm s−1. If we
use η0 = 109 cm2 s−1 and v0 = 105 cm s−1, we obtain the same as in the right
panel (Rm = 400 for both).
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parameter gives the relative importance of the two terms on the right-hand side of the
induction equation. For large Rm, we are in the regime of ideal MHD with the magnetic
field and plasma being frozen together, for low Rm, instead, the field and plasma are
almost decoupled and the field simply diffuses11. The value of Rm reported in figures
4.4 and 4.5 is calculated taking the characteristic velocity to be the radial velocity, since
vθ = 0 in the disc and proportional to vr in the corona, while vφ does not appear in the
equation that we are solving now. The panels in these figures are clearly showing that the
distortion of the field is proportional to the magnetic Reynolds number calculated in this
way. This happens because with increasing Rm the freezing condition gets progressively
stronger so that any fluid motion perpendicular to the magnetic field lines encounters
more and more resistance. Therefore, since the velocity field is fixed, the magnetic field
has to change. Figures 4.4 and 4.5 not only show that modifications in the magnetic field
lines increase with Rm, but also that their shape is consistent with that expected from
considering the flux freezing condition in the case of a conical flow (which is what we
have in the disc).

However the actual value of the magnetic Reynolds number is somewhat arbitrary,
because in general there is no unambiguous way of defining the characteristic length,
velocity and diffusivity of a given system. In our case we choose l0 to be the radius of the
inner edge of the disc, v0 to be the radial velocity at the inner edge of the disc and η0 to
be the value of the diffusivity in the main disc region. We then obtain the values 0, 4, 40
and 400 for the panels of figures 4.4 and 4.5. One could also make a different choice for
the characteristic length l0, such as taking this to be the radius of the star or the average
height of the disc; the trend of having larger distortions for larger values of Rm would of
course be seen in all cases, but the switching on of the distortions would occur at different
threshold values of Rm.

We have already noted that the distortion varies with position, and so it is clear that a
single global parameter cannot give a sufficiently detailed description in all parts of the
system. It is therefore convenient to introduce a new quantity which we call the “mag-
netic distortion function” Dm. We define this in the same way as the magnetic Reynolds
number but, instead of taking characteristic values for the velocity and diffusivity, instead
take the local values:

Dm(r, θ) =
l0 · |v(r, θ)|
η(r, θ)

(4.30)

This function gives the relative importance of the two terms on the right-hand side of the
induction equation at every point of the disc, rather than giving just a global measure as
with the standard magnetic Reynolds number. We then expect the advection term (∇ ×
(v×B)) to dominate in the regions whereDm > 1 and the diffusion term (∇× (η∇×B))
to dominate when Dm < 1. This then explains why we find three regions inside the disc:
the inner region corresponds to the zone whereDm ≪ 1, the main region toDm ≫ 1, and
the transition region to intermediate values of Dm. This correspondence is made clear in

11This does not mean that the field disappears, this is the case only when one uses zero field boundary
conditions.
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figure 4.6, where we show the θ component of the magnetic field, the dipolar profile and
the magnetic distortion function. We recall that the jump in Dm follows from the profile
chosen for η, i.e. we use a larger value of the diffusivity in the inner part of the disc,
where we expect the density to be smaller, than in the main part of the disc.

Another important aspect of the magnetic distortion function is that the degree of ar-
bitrariness in its definition is smaller than for the standard magnetic Reynolds number,
since it is defined using only one characteristic value, l0, while the actual profiles are used
for the velocity and diffusivity12. In addition there is a quite natural way for choosing l0.
By looking at equation (4.25) one can see that, if l0 = rg, the magnetic distortion function
is already there in the equation (it is the coefficient of the partial derivative of S with
respect to x). The value rg is coming from the way in which we are scaling the lengths. If
we had chosen a different unit for the lengths, say r̃, then we would have had to choose
l0 = r̃ if we wanted Dm to appear directly in equation (4.25). We can then think of l0 as
a quantity needed to make the ratio v/η dimensionless, and the most natural choice for
this is the characteristic scale being used as the unit length.

Summarizing, we can describe the magnetic field configuration in the accretion disc
by saying that magnetic field lines that enter the disc in the main region (Dm ≫ 1) are
pushed towards the central object as soon as they enter the disc, whereas those which
enter the disc in the inner region (Dm ≪ 1) are almost unmodified. The result is that
in between these two regions there is an accumulation of field lines, and so there is a
magnification of the magnetic field there, as can be seen in figure 4.6.

In order to understand better the influence of the magnetic distortion function on the
magnetic field structure, we varied Dm and saw how the field changed. We used three
new profiles for Dm different from the previous one which we then considered as a ref-
erence. In the first profile we increased the value of Dm in the inner part of the disc and
left the rest unmodified, in the second one instead we lowered Dm in the main region of
the disc and did not change the inner part, and in the last one we just changed the width
of the transition between the low and high values ofDm. We then calculated the poloidal
magnetic field and the results are presented in figure 4.7, where the left panel shows the
different profiles of the magnetic distortion function and the bottom one shows the θ
component of the magnetic field, referring to the equatorial plane in both cases.

Considering this figure, we can summarize the influence of the magnetic distortion
function with four comments: (1) changing the value of Dm in the inner part by a factor
of 5 leaves the magnetic field almost unchanged, (2) on the other hand, the magnetic field
is very sensitive to the width of the transition in Dm and to its value in the main region,
in particular (3) the position of the peak in Bθ is related to the width of the transition and
(4) the deviations away from the dipolar field are mainly governed by the value of Dm

in the main region. We can go further and consider the radial derivative of Dm, which
is shown in figure 4.8 for all of the profiles used. From this we can see that the position
of the peak of Bθ is strongly connected with the position of the minimum in ∂r Dm, and
that the maximum amount of magnetic distortion is related to the depth of the dip in the

12For the velocity we use |v| = |vr|, following the earlier discussion
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Figure 4.6: The Magnetic fieldBθ as obtained from the numerical simulations for the con-
figuration with Rm = 40 (dotted) compared with those for a perfect dipolar
field (dashed) at the equatorial plane. The solid line is the magnetic distortion
function. The scale for Dm is shown on the right vertical axis. The magnetic
field is measured in units of the stellar field, B0 = 3 · 108 G, as shown on the
left vertical axis.

derivative of Dm.

Finally we comment on the behaviour of the magnetic stream function in the equatorial
plane. In order for the magnetic field to have a local minimum or maximum, its first
radial derivative must, of course, be zero. This condition can be written in terms of S as:

∂2
rS − 1

r
∂rS = 0 (4.31)

For a dipolar field, S ∝ 1/r which is a decreasing function of r with positive concavity
(for positive r). In our case, we see that in the numerical simulations S is always decreas-
ing, also whenBθ increases. Therefore the only way to get a local minimum or maximum
is for S to go through a region where its concavity is reversed and becomes negative. An
example of this is shown in figure 4.9, where we plot the stream function for the reference
case. We can see that for r < 16 rg and r > 22.5 rg S has a positive concavity, while be-
tween these two values it is negative. The dotted lines in the figure delimit the regions of
positive and negative concavity, while the open circles are drawn at the locations where
Bθ has a minimum or a maximum. As expected these points are in the region of negative
concavity.
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Figure 4.7: Left panel: magnetic distortion function in the equatorial plane. Right panel:
θ component of the magnetic field in the equatorial plane. For both panels:
the solid line shows results from the previous analysis (in the right panel the
dipolar field is shown with a thick solid line); the dotted lines refer to profile
1 (larger value of Dm in the inner region only); the dashed lines refer to pro-
file 2 (lower value of Dm in the main region only); the dot-dashed lines refer
to profile 3 (same values of Dm in inner and main region, but the transition
region is wider).

Figure 4.8: Radial derivative of the magnetic distortion function in the equatorial plane.
The profiles refer to the same case as in figure 4.7. Comparing with the right
panel of figure 4.7 one can see that the peaks in the magnetic field Bθ occur
at almost the same locations as where ∂r Dm has a minimum, and that the
amplitudes of the distortions are proportional to the absolute values of the
minimum of ∂r Dm.
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Figure 4.9: The magnetic stream function S for the reference profile. The dotted lines are
drawn where S changes concavity, while the open circles mark the locations
where Bθ has a minimum or a maximum, i.e. at r ∼ 18 rg and r ∼ 22 rg;
they are in the region where the concavity of the magnetic stream function is
negative.

4.6 Conclusions

In this Chapter we have presented the beginning of a systematic study of the magnetic
field configuration inside accretion discs around magnetised neutron stars. We have as-
sumed that the star itself has a dipolar magnetic field, that it is rotating around its mag-
netic axis and that this axis is perpendicular to the disc plane. We have also assumed
that the flow is steady and has axial symmetry everywhere. Our strategy was to start
the analysis with a very simple model, where we made the kinematic approximation and
solved the induction equation numerically in full 2D, without making any leading order
expansion. This initial model will subsequently be improved by including the magnetic
backreaction on the fluid flow.

We have shown that it is possible to separate the calculation for the configuration of
the poloidal magnetic field from any azimuthal quantities. We have here considered only
the poloidal component; the toroidal one will be addressed in a subsequent work. In
particular, we have studied here how the magnetic field is influenced by the turbulent
diffusivity and the velocity field, including discussion of an outflow starting at the top
and bottom surfaces of the disc.

We have modelled the system as being composed of four regions (see figure 4.1): the
central neutron star, the disc, the corona (taken to be a layer above and below the disc)
and all of the rest is taken to be vacuum. We suppose that the stellar magnetic field
remains dipolar until it reaches the corona. At that point it begins to feel the presence of
the fluid flow and the magnetic field lines are pushed inwards, thus creating distortions
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away from the purely dipolar field.
We have studied the response of the magnetic field to changes in the velocity and the

diffusivity, finding distortions away from dipolar increasingwith the radial infall velocity
and decreasing with increasing diffusivity. The underlying behaviour is that the distor-
tions increase together with the magnetic Reynolds number Rm (which governs the flux
freezing condition) where the ratio v0/η0 appears.
However a single value of Rm cannot take into account any large changes in the mag-

nitudes of the velocity and the diffusivity through the disc, since it is defined using single
characteristic values. Therefore in order to have a sufficiently detailed description of the

system, we have introduced a magnetic distortion functionDm = l0·|v(r,θ)|
η(r,θ) , based on local

values of the quantities concerned, so that in the regions where Dm ≫ 1 or Dm ≪ 1 one
should expect to have large or small distortions respectively. We expect the turbulence to
be enhanced in the regions of lower density (the corona and the inner part of the disc),
therefore in our model we use a larger value of η in these regions, giving a smaller value
forDm. As clearly shown in the panels of figures 4.4 and 4.5, the disc can be divided into
three parts: (1) an inner region, where Dm ≪ 1 and the distortions are negligible; (2) a
transition region, where Dm is rapidly increasing and magnetic field lines accumulate;
(3) a main region, where Dm ≫ 1 and the the distortions are very large.
Comparing our results with previous literature, we can confirm the idea of dividing the

disc into two principle regions: a narrow inner part, where themagnetic field is strongest,
and a broad outer part, where the magnetic field is smaller and gently decaying. How-
ever the behaviour that we find for the field in these regions is very different from that of
the Ghosh & Lambmodel (1979 [14]) and we find it convenient to include a third zone, to
be considered as a transition between the two principle ones (see figure 4.6). In the inner
boundary layer of the GL model, the magnetic field is reduced by screening currents by
a factor of 80 per cent, while in our case the field is barely modified in the first region,
and then is amplified in the transition region. The behaviour in the outer zone is instead
quite similar, and the field there is always smaller than the dipole one.
As regards the magnetic field geometry, our results resemble verymuch those obtained

by Miller & Stone [22] (compare our figure 4.5 with their figure 2 top panel), despite the
fact that they solved the full set of MHD equations whereas we have solved just the
induction equation and with different boundary conditions.
The immediate next step will be that of calculating the toroidal magnetic field compo-

nent, by solving equation (4.7), and consequently the magnetic torque. After that we will
move to the next model, by releasing the kinematic approximation and solving the Euler
equation as well as the induction equation. By comparing the results of that calculation
with the ones presented here we will be able to understand the effects of the magnetic
backreaction.
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Chapter 5
The ZEUS code

As we have mentioned in the General Introduction (Chapter 1) there are two working
levels in this thesis. On the one hand there is the Physics level and on the other the Nu-
merics one. Up to now we have mainly described the topics within the ambit of Physics,
with the exception of two Sections (3.3 and 4.4) where we have described the numerical
codes used to study the problem of the mean field dynamos in proto-neutron stars and
the problem of the magnetic field configuration in accretion discs around magnetised
neutron stars.

In Section 3.5 we have also mentioned that in order to continue our analysis of the
dynamos in PNSs, we want to use a suitably modified version of the ZEUS-MP code. In
this Chapter, we first describe the history of the code, outlining the developments made
from the first version up to the current one, and then explain the newmodificationswhich
we have now made.

5.1 History

ZEUS is a family of codes for astrophysical fluid dynamics simulations developed at the
Laboratory for Computational Astrophysics (LCA) of the National Center for Supercom-
puting Applications (NCSA) at the University of Illinois. ZEUS has its roots in a 2D
Eulerian hydro code developed by M. Norman for simulations of rotating protostellar
collapse (Norman, Wilson & Barton 1980 [15]) while he was a student at the Lawrence
Livermore National Laboratory. The hydrodynamics algorithm, which has changed lit-
tle in subsequent versions, is based on a simple staggered-grid finite-difference scheme
(Norman 1980 [12]; Norman & Winkler 1986 [16]). Shock waves were captured within
a few cells with a von Neumann-Richtmyer type of artificial viscosity. A powerful and
essential feature of the code, which has been retained in subsequent versions, was that
the equations for self-gravitating hydrodynamics were solved on a moving Eulerian grid
permitting accurate simulation over a range of scales.

81



82 Chapter 5. The ZEUS code

A significant improvement to the hydrodynamics algorithm came with the incorpora-
tion of the second order-accurate, monotonic advection scheme (van Leer 1977 [20]). This
code version was vectorized for the Cray-1 supercomputer at the Max-Planck-Institut für
Astrophysik in Munich, and extensively applied to the simulation of extragalactic radio
jets (Norman et al. 1982 [14]).

The first code actually called ZEUS was developed by David Clarke as a part of his
Ph.D. thesis on MHD simulations of radio jets (Clarke 1988 [2]; Clarke, Norman, & Burns
1986 [3]) under Norman’s supervision. One of the principal challenges in numerical
MHD simulations is satisfying the zero-divergence constraint on B. In axisymmetric sim-
ulations, this was ensured by evolving the toroidal component of the magnetic vector
potential from which divergence-free poloidal field components can be derived, as well
as evolving the toroidal magnetic field component directly. Third order-accurate mono-
tonic advection was used for evolving Aφ in order to improve the quality of the derived
current densities.

The next development was a major rewrite and significant extension of ZEUS by James
Stone as a part of his Ph.D. thesis at the University of Illinois. The resulting code, named
ZEUS-2D, solves the equations of self-gravitating radiation magnetohydrodynamics in
two or 2.5 dimensions (2.5D denotes a problem computed in 2 spatial dimensions in-
volving the 3-component of a vector quantity, such as velocity, that is invariant along
the third axis but variable along the 1- and 2-axes). Many new algorithms were devel-
oped and incorporated into ZEUS-2D including: (1) a covariant formulation, allowing
simulations in various coordinate geometries; (2) a tensor artificial viscosity; (3) a new,
more accurate MHD algorithm (MOC-CT) combining the Constrained Transport algo-
rithm (Evans & Hawley 1988 [4]) with a Method Of Characteristics treatment for Alfven
waves; and (4) a variable tensor Eddington factor solution for the equations of radiation
hydrodynamics. ZEUS-2D’s algorithms and tests are described in detail in an often-cited
series of three papers (Stone & Norman 1992a [18]; Stone & Norman 1992b [19]; Stone,
Mihalas & Norman 1992 [17]).

The MOC-CT algorithm for numerical MHD was specifically designed to be extend-
able to 3D, and work on a 3D version of ZEUS began in 1989 when David Clarke went to
Illinois as Norman’s postdoc. Written for the Cray-2 supercomputer, ZEUS-3D physics
options included hydrodynamics, MHD, self-gravity, and optically thin radiative cool-
ing. This version of the code was the first of the ZEUS family with parallel capability,
accomplished using Cray Autotasking compiler directives. Novel features of the code in-
cluded the use of a custom source code pre-processor which handled a variety of source
code transformations. Another useful feature of ZEUS-3D was an extensive set of inline
graphics and diagnostic routines, as well as the ability to run in 1D and 2D modes. The
ZEUS-3D MHD module differed from that used in ZEUS-2D with regard to both dimen-
sionality and method: the MOC treatment of Alfven waves was modified to incorporate
the improvements introduced by John Hawley and James Stone (Hawley & Stone 1995
[7]) for enhanced stability in weakly magnetized, strongly sheared flows. This modified
HS-MOC-CT method is the basis for the MHD module adopted in ZEUS-MP.

Work was begun on ZEUS-MP in the fall of 1996 by Robert Fiedler and subsequently
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by John Hayes and James Bordner with support from the US Department of Energy to
explore algorithms for parallel radiation hydrodynamics simulations in 3D.

5.2 Zeus-MP

ZEUS-MP is a portable, parallel rewrite of ZEUS-3D. MP stands for: Multi Physics, Mas-
sively Parallel, and Message -Passing. 3D simulations are by their nature memory– and
compute– intensive. The most powerful computers available today are parallel com-
puters with hundreds to thousands of processors connected into a cluster. While some
systems offer a shared memory view to the applications programmer, others, such as Be-
owulf clusters, do not. Thus, for the sake of portability, developers have assumed “shared
nothing” and implemented ZEUS-MP as a SPMD (Single Program, Multiple Data) paral-
lel code using the MPI message-passing library to effect interprocessor communication.
The first public release of ZEUS-MP included HD,MHD and self-gravity, but was writ-

ten exclusively for 3D simulations. The new version of the code1, which is the one we
are using here, offers a substantially extended menu of physics, algorithm and dimen-
sionality options. There are four main physics modules: HD, MHD, radiation transport,
and self-gravity, and they accommodate solutions in 1, 1.5, 2, 2.5 and 3 dimensions. The
hydro and MHD modules are time-explicit, and thus require no linear algebra libraries
for their solution. The hydro algorithm is a straightforward 3D extension of the algo-
rithm described in (Stone & Norman 1992a [18]). The MHD algorithm is the HSMOC-CT
algorithm as mentioned in the previous section. Arbitrary equations of state are sup-
ported, though only gamma-law and isothermal equations of state are provided. The ra-
diation transport implements a time-implicit flux-limited diffusion algorithm developed
by Stone. The radiation and gas energy equations are solved as a coupled, implicit sys-
tem, resulting in a large, sparse, banded system of linear equations which must be solved
within an outer nonlinear Newton iteration. Two linear system solvers are built into
ZEUS-MP: a conjugate gradient solver (CG/BiCG) with diagonal preconditioning, and a
multigrid solver (MGMPI). Self-gravity is included in several ways: spherical gravity is
adopted for one-dimensional problems and can be used also in two dimensions; two par-
allel Poisson solvers are included for problems with Neumann and Dirichlet boundary
conditions; and a fast Fourier Transform package is provided for problems with triply-
periodic boundaries. In addition to self-gravity, a simple point-mass external potential
may be imposed in spherical geometry.
As in earlier versions of ZEUS, the equations solved by ZEUS-MP are formulated on

a covariant, moving Eulerian grid. Problems in Cartesian, cylindrical, and spherical po-
lar coordinates can be run with a variety of boundary conditions and types (periodic,
Dirichlet, Neumann). The linear system solvers are designed to handle all cases.
ZEUS-MP utilizes domain decomposition for parallelization, wherein the computa-

tional domain is subdivided into a number of equally-sized regions, each of which is
assigned to a different processor for execution. Depending on the problem size and

1ZEUS-MP2 can be downloaded from http://lca.ucsd.edu/portal/software/zeus-mp2.
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the number of processors targeted, the user can specify a 1D “slab”, 2D ”pencil”, or
3D “block” decomposition. A region is represented in processor memory as arrays of
data storing the solution vector for a specific subdomain. The arrays are dimensioned
so as to include two layers of buffer zones on each face of the block for the purpose of
transferring boundary conditions from neighbouring processors. Data transfer between
neighbouring blocks, as well as collective operations and global reductions are handled
via MPI function calls.

5.3 Modification strategy

Our object here is to include in the induction equation solved by the ZEUS code both the
resistivity term, η∇×B, and the αB term, i.e. we want to use ZEUS for solving the mean
field induction equation:

∂tB = ∇×
(
v × B + αB − η∇× B

)
(5.1)

where barred vectors are used to indicate that we are considering only the mean compo-
nents. If one groups all of the terms inside the parentheses on the right hand side as an
electromagnetic force E (EMF)2, then this equation has the same form as in ideal MHD,
the difference being in the expression for the EMF. In fact for the ideal MHD induction
equation:

E = v × B (5.2)

while for the mean field case:

E = v × B + αB − η∇× B (5.3)

Our strategy is to modify the way in which ZEUS calculates the EMFs, which are funda-
mental quantities in this code. As mentioned in the previous Section, the magnetic field
is calculated using the CT alogorithm, which guarantees that any initial divergence free
magnetic field remains solenoidal at all times, provided that no magnetic monopoles are
introduced through the boundaries. Therefore the magnetic field at the new time step is
calculated using the magnetic flux. This is done in the ct subroutine. The magnetic flux
is in turn calculated from the EMFs, which are obtained with the HS-MOCmethod in the
hsmoc subroutine, therefore globally the magnetic field is updated in terms of the EMFs.
Here is an extract of the code from the ct subroutine, where Bφ is updated:

b3(i,j,k) = ( b3(i,j,k) * qty1(i) * dx2a(j)
+ dt * ( emf2(i+1,j ,k) - emf2(i,j,k)

- emf1(i ,j+1,k) + emf1(i,j,k) ) )

2We note here the rather incorrect use of the term ”electromagnetic force“. The quantity in parentheses is
in fact an electric field and, in order to obtain the EMF, one should then integrate E over a closed circuit.
However we follow this convention of calling E the electromagnetic force, because it is the standard
approach used in the papers describing the ZEUS codes.
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* qty1ni(i) * dx2ai

where the ”qty“ terms include some metric and differential factors. We have created a
new subroutine (current) where we calculate the two additional terms to be included in
the EMFs. This subroutine is called in hsmoc after that the v×B term has been calculated
and the boundary conditions (BCs) have been called; afterwards the complete EMFs are
computed.

Given that the BCs are not applied to the magnetic field directly, but instead to the
EMFs, we have to modify them as well. In the original subroutine for setting the BCs
(bvalemf), only the v × B part of the EMF is considered. We have decided to create a
new subroutine (jbvalemf) which contains all of the original one plus the conditions
for the additional terms. Whenever a call to the BCs is made we substitute the call to the
original subroutine with a call to the new one.

In doing all of the modifications outlined here we have always taken great care to in-
clude the correct metric factors, in order to obtain a code that can be used also with other
coordinate systems. So far we have performed tests only in spherical coordinates, but we
plan to make tests also in oter coordinate system.

5.3.1 The two meshes

The ZEUS codes use a system of two staggered meshes, which we call the a-mesh and
the b-mesh, and we refer to the points of the a-mesh as x1a, x2a, x3a and to the points of
the b-mesh as x1b, x2b, x3b.

One can first think of the entire discretised volume as being covered by just one grid,
the a-grid. The mesh of grid lines defines a system of zones in between them and the cen-
tres of these zones are taken as the gridpoints of the b-grid. In this picture the positions
of the zone boundaries in each direction are specified by the a-mesh, while zone centers
are specified by the b-mesh. Consequently all along the boundaries of the entire domain
there are only a-mesh points, this will obviously have consequences for the implemen-
tation of the boundary conditions (see Section 5.3.2). Grid spacing in each direction is
arbitrary and independent and the coordiante mesh can be moved with respect to a sta-
tionary background using grid velocities, although we have never used this option.

Finite differencing the evolution equations near to the boundaries of the grid requires
values for the dependent variables to be specified outside the computational domain and,
at each boundary, we have two rows of ”ghost zones“. Values for the dependent variables
in the ghost zones are specified using boundary conditions (see Section 5.3.2) appropriate
for the physics of the problem being solved. The evolution equations are not solved for
the ghost zones. The presence of two additional rows of zones at each boundary implies
that the number of a- and b-mesh points is increased by 4 along each direction.

In general, scalars and the diagonal components of tensors of even rank are defined at
zone centres, while the components of tensors of odd rank are defined at the appropriate
zone interfaces. The off-diagonal components of tensors of even rank are defined at zone
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corners and the magnetic field components are then defined as follows:

B1 = B1(x1a, x2b, x3b) (5.4)

B2 = B1(x1b, x2a, x3b) (5.5)

B3 = B1(x1b, x2b, x3a) (5.6)

Velocities are defined it the same points as the magnetic field, while the EMFs are the
opposite of this (as for the vector potential):

E1 = E1(x1b, x2a, x3a) (5.7)

E2 = E2(x1a, x2b, x3a) (5.8)

E3 = E3(x1a, x2a, x3b) (5.9)

When one is taking a derivative along a certain direction for a quantity defined e.g. on the
a-mesh, the result will be located on the b-mesh, along the same direction. Consider, for
example, the first component of the magnetic field calculated using the vector potential
in spherical coordinates:

Br =
1

r2 sin θ
[∂θ (r sin θ Aφ) − ∂φ (r Aφ)] (5.10)

=

{
∂θ (sin θ Aφ)

r
− ∂φ (Aφ)

r

}
1

sin θ
(5.11)

If one considers the ∂θ(· · ·Aφ) term, then the quantity in the paretheses has to be defined
on the a-mesh, so that the derivative is defined on the b-mesh, i.e. at the same place as
Br. Here we write the code instruction related to (5.11):

b1(i,j,k) = ( ( g32a(j+1)*A3(i,j+1,k) - g32a(j)*A3(i,j,k) )

* dx2ai(j) * g2ai(i)
- ( A2(i,j,kp1) - A2(i,j,k) )

* dx3ai(k) * g31ai(i) ) * g32bi(j)

where the g-terms account for the coordinate dependent coefficients which appear when
one takes a derivative in a curvilinear coordinate system3. These terms are in fact all 1 for
a Cartesian coordiante system, while in a spherical coordinate system, which is the one
in which equation 5.11 is written, g2 = g31 = r and g32 = sin θ. These factors are related
to the specific metric tensor used. Since we are interested only in orthogonal coordinate
systems the metric tensor is diagonal:

mij =



h2

1 0 0
0 h2

2 0
0 0 h2

3




3In writing the code we followed the convection of adding an ”i“ at the end of variable name, to indicate
the inverse of that quantity. Therefore for example g2ai is equal to 1/g2a.
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and the h are in general functions of the coordiantes, hi = hi(x1, x2, x3), however for
Cartesian, cylindrical and spherical coordinate system, which are the ones we are in-
trested in, this dependence is very simplified, and the ”g“ factors are introduced:

h1 = h1(x1) = g1(x1) (5.12)

h2 = h2(x1) = g2(x1) (5.13)

h3 = h3(x1, x2) = g31(x1) · g32(x2) (5.14)

Here are the values for the three systems:

1. Carteisan coordiantes (x1, x2, x3) = (x, y, z)
in this case all of the ”g“ and ”h“ factors are 1;

2. Cylindrical coordiantes (x1, x2, x3) = (z, r, φ)
(h1, h2, h3) = (1, 1, r), with g31 = 1;

3. Spherical coordiantes (x1, x2, x3) = (r, θ, φ)
(h1, h2, h3) = (1, r, r sin θ), where g2 = g31 = r and g32 = sin θ.

Calculating the full EMFs requires introducing quantities which are not present in the
original ZEUS code: the coefficient of the α-effect and the magnetic diffusivty η. The
former has to be defined in the same place as the magnetic field, while the second has
to be placed at the same location as ∇ × B (see the induction equation). The αB term
requires further manipulation, because being part of the EMF it has to be defined on the
same mesh, while at the moment it is defined in the same place as the magnetic field is.
For doing this we perform an average over neighbouring points.

5.3.2 Boundary conditions

As we have described in the previous Section, the computational domain used in ZEUS
can be divided into two parts: the active zones, where the evolution equations are solved,
and the ghost zones, where boundary conditions (BCs) are used. These BCs are explicit
relationswhich give the values of the dependent variables in the ghost zones as a function
of the values in the active zones of the grid. There are four types of BCs built into the
ZEUS code:

1. Reflecting BC:
Perfect conductor – The normal components of velocity and magnetic field are re-
flected, while the tangential components are taken to be continuous. This implies
that the EMFs in the ghost zones are equal to the negative of the EMFs in the equiv-
alent active zones;
Pseudo vacuum – As for the perfect condutor but with reflection of the tangential
components of themagntic field, instead of the normal component, which is instead
continuous;
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2. Inflow BC:
The EMFs in the ghost zones are set to some predetermined value, which may be
allowed to vary in time;

3. Outflow BC:
The EMFs in each ghost zone are set equal to the EMF in the first active zone;

4. Periodic BC:
The EMFs in the ghost zones are set equal to the EMFs in the corresponding active
zones on the opposite side of the grid.

These BCs can be applied independentely for each ghost zone in the mesh. We do not
need to introduce new BCs for our modified version, but we do have to implement the
existing ones also for the additional terms that we have added into the EMFs. For the
set-up which we are intrested in, the θ boundaries coincide with the axis, i.e. θin = 0
and θout = π; for the φ boundaries we use φin = 0 and φout = 2π, while for the radial
direction we only require rin 6= 0 to avoid singularities at the centre of the coordinate
system. For the axis we use the reflecting perfect conductor condition with inversion
of the 3-component; for the φ boundaries we use, of course, periodic BCs; while for the
radial boundaries we use both of the two reflecting conditions.
All of the BCs that we are interested in are implemented by using two different con-

ditions: symmetric and antisymmetric. Here is an example of the symmetric condition
for a quantity defined on the a-mesh (e.g. the θ component of the additional EMF at the
inner radial boundary):

jalp(is ,j,k) = jalp(is+1,j,k) * g2a(is+1) * g2ai(is)
jalp(is-1,j,k) = jalp(is+1,j,k) * g2a(is+1) * g2ai(is-1)
jalp(is-2,j,k) = jalp(is+2,j,k) * g2a(is+2) * g2ai(is-2)

where the g-factors have to be included because the EMFs are multiplied by these factors
(in hsmoc) before being used for updating the magnetic field (in ct). Here, instead, is an
example of the antisymmetric condition for a quantity defined on the b-mesh (e.g. the r
component of the additional EMF at the outer radial boundary):

jalp(ie+1,j,k) = - jalp(ie ,j,k)
jalp(ie+2,j,k) = - jalp(ie-1,j,k)

In order to have working BCs on the axis, we set the angular velocity to be zero there; for
the additional terms in the radial component of the EMF, we compute a φ average for the
mesh-points which are exactly on the axis, while the other ghost zones are updated with
a symmetric relation. At this point we should stress that because of the presence of the
staggered meshes, not all of the quantities are defined on the axis. In fact only the a-mesh
points lies on the axis, for the b-mesh instead the first active grid-point is the centre of
the first zone and so is 0.5 ∆θ away from the axis, where ∆θ is the angular resolution in
θ. For example E1 and E3 are defined on the axis, while E2 is not.
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We now want to describe in some more detail the two reflecting BCs and we consider
the case of the radial boundaries. For both of them the condition on the velocity is the
same, i.e. the normal component is zero, while the other components are symmetric:

vr = 0 and ∂rvθ = ∂rvφ = 0 (5.15)

There is a difference, however, for the electromagnetic field:

• Perfect conductor – The perfect conductor boundary can be imagined as a conduct-
ing metal plate and so the tangential component of the electric field (Eθ, Eφ) and the
normal component of the magnetic field (Br) are required to vanish at the bound-
aries, while the normal component of the electric field is symmetric. Consequently,
the tangential component of the magnetic field also has to be symmetric. Summa-
rizing:

∂rEr = Eθ = Eφ = 0 (5.16)

Br = ∂rBθ = ∂rBφ = 0 (5.17)

• Pseudo vacuum – In this case the normal component of the electric field (Er) and the
tangential components of themagnetic field (Bθ,Bφ) all vanish, while the tangential
components of the electric field are symmetric:

Er = ∂rEθ = ∂rEφ = 0 (5.18)

∂rBr = Bθ = Bφ = 0 (5.19)

In order to conserve magnetic flux across a boundary, the Poynting vector normal to
the boundary has to vanish. For example for the radial boundaries one has:

Sr = E ×B|r = EθBφ − EφBθ (5.20)

This component is zero with both of the two BCs just described, with the difference that
with the pseudo vacuum condition the normal magnetic field is allowed to extend out-
side the domain, while with the perfect conductor it is not.

5.3.3 Visualisation

For visualising the solutions we have mainly used the IDL routines develped by Detlef
Elstner at AIP-Potsdam, Germany. With these tools we are able to visualise all of the
magnetic field components in different ways. We can take a slice of the 3D domain by
fixing one of the three coordinates and then making a surface plot with respect to the
other two (see figure 5.1 for an example), or we can fix two of the three coordinates and
then plot the magnetic field components with respect to the free one (see figure 5.2). The
same can be done for the velocity components.
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These plots can be produced at any timestep of the simulations and can also be seen
in sequence as an animation. The frequency of the dumping of data during a simulation
can be chosen from the input file, and therefore changes do not require recompilation of
the code. We found it very useful to be able to make contour plots also of the toroidal
magnetic field and we have therefore added this option to the routines, this is shown in
figure 5.3 for the same field as that in the figures 5.1 and 5.2. Finally, we can also plot the
energy of the system, including magnetic, kinetic and gravitational energy.

Figure 5.1: Surface plot of the magnetic field. In this case we are plotting the Br compo-
nent for a fixed value of φ with respect to r (x1 in the figure) and θ (x2 in the
figure). Note that along the axes the number of grid point are shown.

5.4 Tests of the modified ZEUS-MP code

The first thing that we tested for with the modified vesion of the ZEUS-MP code was
that the divergence of the magnetic field was really remaining zero at all times. By doing
this we have assured that (1) the calculation of the initial magnetic field is correct (we
calculate B by taking the curl of the vector potential) and that (2) the modifications to the
boundary conditions are not introducing any magnetic monopoles.

All of the other main tests aimed at reproducing the results of some particular stellar
dynamos. We started with the α2 dynamo, putting the velocity field to zero. In this
case we tried to obtain the critical value of the Cα dynamo number for symmetric and
antisymmetric initial magnetic field configurations, and we compared our result with
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Figure 5.2: One dimensional plot of all of the magnetic field components (Br is the dot-
dashed line, Bθ the dashed line and Bφ the dotted one) with respect to θ for
fixed value of r and φ. On the axis the gridpoint number along the θ direction
is shown. The field is the same as the one shown in figure 5.1

those obtained with a pseudospectral eigenvalue code, the CTDYN (Catania Dynamo)
code. This family of tests was performed in 3D, even if the problem has axial symmetry.
As regards the BCs, we tested both of the two reflecting conditions. For the pseudo
vacuum case we had to resort to a particular stratagem in order to impose the condition
Bφ = 0. We increased the computational domain to include also a shell beyond the
surface of the star, and in this shell we put the α term to zero, and the diffusivity to a large
value, usually between 10 and 100 times that inside the star. In this way we inhibited the
dynamo action in the shell where instead the field decays. The overall results are very
satisfying, not only because they differ from the reference ones by only about 2 per cent,
but also because they showed that exciting the antisymmetric mode is easier than exciting
the symmetric one, i.e. the critical Cα value for the A-mode is smaller than that for the
S-mode.

After this we have introduced an angular valocity depending only on the spherical
distance r: we took the profile used by Bonanno et al. 2003 [1]: Ω = Ω0 + Ω1 · r2, and
varied CΩ in the range [0, 103] in order to be in the regime of both the α2 dynamo (when
CΩ is zero) and the α2Ω dynamo. In this case we mainly concentrated on the magnetic
field evolution. For the α2Ω dynamo, we in fact expect to have an oscillating magnetic
field because of the combined action of the α- and Ω-effect. This is indeed what we
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Figure 5.3: Contour plots of all of the three components of the magnetic field. Each panel
refers to a different component: from left to right they are Br, Bθ and Bφ.
Dotted lines are used when the components become negative, i.e. pointing in
the opposite direction of the versor relative to that component. The thick lines
are the boundary of the numerical domain, the dashed lines represent internal
structure of the model.

have obtained and we have also seen a migration of the magnetic field maximum from
the poles to the equator, for negative Ω1, and from the equator to the poles, for postive
Ω1. Finally we have considered the change in the critical Cα as a function of CΩ and have
obtained the same behaviour as that found by Bonanno et al., i.e. Cα has a local minimum
for CΩ ∼ 50 and then increases as CΩ increases, reaches a maximum at about CΩ ∼ 150
and then decreases again, the Cα curve being symmetric with respect to CΩ ∼ 50.

We then tested a completely different setup, considering the solar dynamo studied in
the benchmark work by Jouve et al. 2008 [1]. The parameter range in this case is such
that the dynamo is of the αΩ type, with CΩ being as large as 105, moreover the rotational
profile now depends also on the colatitude, as it should do for the Sun. We considered
case A of Jouve et al., i.e. with constant η. In this case we compared the critical value
of Cα and the frequency of the magnetic field oscillations. In the Jouve et al work these
are 0.387 ± 0.002 and 158.1 ± 1.5 respectively. At this point it is worth describing the
procedure which we follow to calculate the critical value of Cα. We fix a value of CΩ,
run a simulation with some initial value of Cα and then plot the magnetic energy. If we
see that it is following an increasing trend, then we consider that particular value of Cα

as overcritical, and redo the calculation with a smaller value. If instead the energy is
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following a decreasing trend, then we consider that value of Cα as subcritical and redo
the calculation with a larger value. Unfortunately as one gets progressively nearer to the
critical value, it is necessary to make longer and longer simulations, to see whether the
stationary state has been reached or not. All of this is done for each value of CΩ. Our final
results for these tests are that the critical Cα value is 0.375 ± 0.25, and for the frequency
we obtain 155 ± 4, both of which are in agreement with the values obtained by Jouve et
al. [1].
At this point we terminated the testing phase and started preparing the set-up to use

for our first application of the modified version of the code, i.e. simulating the mean field
dynamo in an axisymmetric model of proto-neutron stars.
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Chapter 6
Dynamos in axisymmetric
proto-neutron stars

At the end of Chapter 3, Section 3.5, we have mentioned our strategy to use the publically
available ZEUS code to improve our one dimensional model for studying mean field
dynamos in proto-neutron stars (PNSs). However before applying the code to our case
of interest we had to modify it, in order to include the α term and the resistivity term
in the induction equation. The modification process has been described in the previous
Chapter and now we use the modified version of the code to simulate the magnetic field
evolution in the case of an axisymmetric PNS.

This analysis is still ongoing and in this Chapter we are mainly introducing the model,
desribing our strategy and presenting some preliminary results.

6.1 The model

The Physics behind mean field dynamos in PNSs and our approach for studying them
have already been described in Chapter 3, Sections 3.1 and 3.2. We are now modelling
the PNS as being a sphere where the border between the regions of the two instabilities,
i.e. the convective instability (CI) and the neutron finger instability (NFI), is a spherical
surface placed at r = Rinst. The CI zone is at r < Rinst, while the NFI zone is at r > Rinst.

As regards the velocity field, we suppose that the star is differentially rotating with an
angular velocity that depends both on radius r and colatitude θ. We consider the profile
introduced by Komatsu et al. in 1989 [2] and then used in many studies of PNSs (see e.g.
Miralles et al. 2004 [3] and Villain et al. 2004 [5]):

Ω(r, θ) = Ω0 ·
R2

1/2

R2
1/2 + (r sin θ)2

(6.1)

where Ω0 is the limit of the angular velocity on the axis and R1/2 is used as a free pa-
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Figure 6.1: The angular velocity Ω
′

(left panel) and α term (right panel) used in the simu-
lations. These functions are plotted against the spherical coordinates r and θ,
so that the lines parallel to the θ axis represent spherical surfaces (i.e. constant
r), while lines parallel to the r axis represent cuts of the sphere by a surface at
constant θ. In particular the lines at θ = 0 and π represent the rotation axis.

rameter, it represents the radius at which, on the equatorial plane, the angular velocity is
reduced by a factor 2 with respect to Ω0. We note that this particular Ω profile is depend-
ing on the square of the cylindrical distance ̟ = r · sin θ.
Following the Raedler approach [4] we have rewritten the fluid velocity in a frame of

reference which is comoving with the equator of the PNS, whose own velocity in the
original static frame is Ω̃ = Ωeq

surf = Ω(1, π/2), where we have used 1 for the radius of the
star because we use the stellar radius as the unit of length. The fluid velocity in the new
frame is then Ω

′

= Ω − Ω̃. Finally, we have modified this profile by adding a region of
rigid rotation near to the inner radial boundary (this region was introduced mainly for
numerical reasons). The profile used is shown in the left panel of figure 6.1.

As regards the α term we use an angular profile proportional to cos θ, which ensures
the change of sign between the northern and southern hemisphere and at the same time
has a non zero value on the axis, as happens instead in the solar dynamo model, where
α is taken to be proportional to cos θ · sin2 θ (see e.g. Jouve et al. [1]). For the radial
dependence of the α term we use a simple combination of error functions in order to
have a non zero α only in the NFI zone. The profile that we use for α is shown in the
right panel of figure 6.1.

Finally we have to specify the diffusivity in order to complete the model. For η we use
a profile which does not depend on θ, while along the radius we three different zones,
using one value of η for the CI zone, another value for the NFI zone, and third one for
the additional shell that we put outside the stellar surface (see the discussion at the end
of the previous Chapter, in Section 5.4).
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6.2 The strategy

Once the set-up is ready we plan to run several simulations, exploring the two dimen-
sional phase space (Cα, CΩ) in order to find what is the minimum threshold value of Cα

for dynamo excitation, which are the zones where the dynamo gives a constant magnetic
field or an oscillating one, what is the final intensity of the magnetic field outside the star,
what is the ratio between the toroidal and poloidal components and how does this vary
in space and time. We also want to analyse the difference between using local and global
quenching for the α-effect.

Some of these things have already been analysed in our one dimensional model (see
Chapter 3) and therefore for these we will also make a comparison between the twomod-
els, paying attention to comparing similar set-ups. In fact in this version of the axisym-
metric PNS calculation we are not using the η-quenching and we are not considering a
moving boundary between the two instability zones, therefore we should compare only
with configuration A and B of the one dimensional model (see table 3.1 in Section 3.4.1).

6.3 Preliminary results

Asmentioned previously, this analysis is still ongoing and no definitive results have been
obtained yet, nevertheless wewant to present here some preliminary results, even if these
only concern one configuration.

In this configuration the boundary between the CI zone and the NFI zone is placed at
Rinst = 0.8; the diffusivity has the same value in these two zones: ηCI = ηNFI = 1.0, while
η = 10.0 in the outer shell; with α being non zero only in the NFI zone. As regards the
Ω profile we choose R1/2 = 0.7 and we place the central rigid rotation zone at r ≤ 0.6.
Therefore there are four regions in total along the radial direction. The inner edge is
placed at r = 0.4 and from there until r = 0.6 there is rigid rotation, zero α and η = 1;
then from r = 0.6 to r = 0.8 the star begins to rotate differentially, this is the CI zone still
with α = 0 and η = 1; from r = 0.8 to r = 1.0 there is the NFI zone where α = 1 and
η = 1; finally in the range r ∈ [1, 1.05] there is the additional shell where α = 0, η = 10
and Ω is frozen to its value at the surface of the star.

We ran the simulation with Cα = 13 and CΩ = 103. For these values of the parameters
the dynamo is excited and in fact in figure 6.2 we can see that the total magnetic energy
is increasing. Moreover we can see that the dynamo produced is an oscillating one. In
figure 6.3 we show the evolution of the maximum of the magnetic field for each of the
three components and it can be seen that all of the components are being amplified, the
amplification factor however is quite modest and the final maximum field is 3 orders of
magnitude smaller than the equipartition value. However we should remark here that
the amplification process has not finished by the end of the run, in fact the simulation
ends at 0.8 τD, where τD is the diffusion time, whose value is in the range 0.75 − 2.5 s
for typical PNSs (see Chapter 3, Section 3.2). Therefore the magnetic field evolution is
followed for about 0.6− 2.0 s, while the instabilities should only disappear after 40 s and
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Figure 6.2: Time evolution of the total magnetic energy. The dynamo is excited immedi-
ately after the beginning of the simulations; the magnetic field is oscillating
but secularly increasing.

so we expect to have a larger amplification factor if we run a longer simulation, although
with this configuration the growth remains slow.
In figures 6.4–6.7 we show contour plots of each of the magnetic field components at

different times. In the figures we also show the boundary between the two instability
zones (with a dashed line) and the stellar surface (with a long dashed line); the two thick
solid lines show the edges of the computaional domain. We can see that during each cy-
cle, the magnetic field maxima move from the pole towards the equator. In particular for
the r component they remain inside the NFI zone, for the θ component they are located
along the boundary between the two zones and for Bφ they appear in the NFI zone at
high latitudes, and then as time passes, they move towards smaller latitudes and radii,
eventually overshooting into the CI zone.
This analysis will continue as outlined in the previous Section, firstly by repeating these

calculations for other values of Cα and CΩ and subsequently by studying the magnetic
field topology and intensity, in order to confirm or refute the idea that the observed range
in neutron star magnetic field intensity is due to different dynamo actions during the PNS
phase.
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Figure 6.3: Maximum of the magnetic field for each of the three components: Br, Bθ and
Bφ, from top to bottom. As for the total magnetic energy, the oscillations are
superimposed on an increasing trend which has a much longer timescale.
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Figure 6.4: Contour plots of the magnetic field at succesive times (0.430 τD for the top
panel and 0.454τD for the bottom one). Dotted lines represent vectors pointing
in the negative direction, while continuous lines represent vectors pointing in
the positive direction. E.g. a dotted line for Br means that at that location Br

is directed inwards, while a continuous line for Bθ means that at that location
Bθ is directed downwards.
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Figure 6.5: Continuation of figure 6.4 for time 0.466 τD (top panel) and 0.478 τD (bottom
panel).
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Figure 6.6: Further continuation of figure 6.4 for time 0.512 τD (top panel) and 0.576 τD
(bottom panel).
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Figure 6.7: Further continuation of figure 6.4 for time 0.560 τD (top panel) and 0.580 τD
(bottom panel).
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Chapter 7
Conclusions

In this thesis we have treated the problem of magnetic field–plasma interaction applied
to two different astrophysical systems: proto-neutron stars (Chapter 3) and accretion
discs around magnetised neutron stars (Chapter 4). In both cases we have considered
the plasma to be collisional and we have described the interaction in the context of the
MHD single fluidmodel (hapter 2). The equations have then been simplified according to
the way in which we have decided to describe these systems and have then been solved
bymeans of numerical simulations. In particular the main approximation which we have
made in both of the two cases is the kinematic approximation, in which the plasma mo-
tions are not evolved in time and the effect of the Lorentz force on the fluid is neglected.
However we plan to remove this approximation for the next steps of our analysis. We are
planning to continue the studies described in this thesis with more elaborate models. As
part of this project we have modified a sophisticated parallel code, ZEUS-MP (Chapter
5), which we plan to use for analysing mean field dynamos in proto-neutron stars and
we have already started this new study (Chapter 6).

The results obtained in the two stages of this work have already been described in
Section 3.5, for the mean field dynamos in proto-neutron stars (PNSs), and in Section 4.6,
for accretion discs around magnetised neutron stars. Here we just want to highlight the
most important points.

Dynamos in PNSs

The mean field dynamos in PNSs have been studied in a one dimensional model. Using
such a simplified model has the advantage of leading to a very simple expression for
the induction equation, allowing us to include the non-linearities related to α- and η-
quenching and a moving boundary for the instability which is generating the dynamo,
as well as performing a parametric investigation which would have been impossible if it
involved fully 3D simulations.

We have found that the dynamo is active whenever the Cα dynamo number is larger
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than a certain threshold value or, in terms of the spin period of the PNS in our model,
when P > Pc = 0.6 s, with the critical period being decreased for increasing differential
rotation. When the dynamo is active, the magnetic field is initially exponentially ampli-
fied and then subsequently saturates to a constant value, or oscillates in the case of an
oscillating dynamo. We have found that the final intensity of the magnetic field can be
written in terms of the dynamo numbers, one related to the spin period and the other to
the differential rotation, and in all of the cases considered here the functional form of this
dependence was a power law. Furthermore the coefficients of this power law were the
same for all but one of the analysed configurations. These results suggest to us the idea
that the different magnetic fields observed at the birth of neutron stars can be explained
in terms of basic quantities like the rotation period and the differential rotation and are
therefore promising for building up a piece of the puzzle in the unification of different
classes of neutron stars.

Accretion discs

Nowadays there are spectacular three dimensional simulations of the full MHD equa-
tions describing the accretion process. However in this kind of analysis the output of
the simulations is the result many complex and interacting mechanisms. Our kind of
work aims at providing conceptual tools for decomposing such complex results. For
doing this we follow the approach of using a succession of simplified models, becom-
ing progessively more elaborate, introducing at every step a new feature. Here we have
presented our first model where we have studied the influence of the velocity field and
the magnetic diffusivity on the poloidal component of the magnetic field, by solving the
induction equation in order to find a stationary solution.
With our two dimensional numerical calculations we have found that the poloidal

component of the magnetic field is very different from a pure dipole field, being dragged
inwards by the plasma motion. By extending the concept of the magnetic Reynolds num-
ber, we have introduced amagnetic distortion function, whichmeasures the local amount
of distortion of the magnetic field away from dipolar. We have further found that when
the magnetic distortion function has a jump through the disc, because of a large change
in the velocity or in the diffusivity, we observe a completely new feature, i.e. at the same
location the magnetic field is amplified. We are now aiming at solving also the equation
for the toroidal field and when all of the magnetic field components will be at hand it will
be possibile to calculate important quantities like the location of the inner edge of the disc
and the total magnetic torque. This in turn will help in getting a better understanding of
such intricated topics as the spin history of millisecond pulsars and X-ray pulsars.
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