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Notation

Throughout the text we adopt the following notation:
Rn denotes the n -dimensional Euclidian space,
We use the summation convention with respect to the repeating indices i, j, l which, however, does
not apply to the index k = 1, . . . , n , which denotes single partial derivative with respect to xk ,
and to indices m, r = 1, . . . , N , which index incremental problems,
Mn×n

sym denotes the space of all n×n symmetric matrices, equipped with a Hilbert-Schmidt scalar
product σ : ξ = σijξij ,
1 denotes the n× n identity matrix,
I stands for the identity tensor, which is a linear operator from Mn×n

sym to itself, such that I(M) = M
for all M ∈Mn×n

sym ,
a ¯ b stands for the symmetrized tensor product of two vectors a, b ∈ Rn , given by the formula
(a¯ b)ij = 1

2 (aibj + ajbi),
Lp(Ω;Rm) is the Lebesgue space of functions from Ω into Rm , having the finite norm

‖f‖p;Ω :=
(∫

Ω

|f |p dx
)1/p

,

W l,p(Ω;Rm) is the Sobolev space of all functions from Ω into Rm with the norm

‖f‖l,p,Ω :=
( ∫

Ω

l∑
α=0

|∇αf |p
)1/p

,

Ln stands for the n-dimensional Lebesgue measure on Rn ,
Hn−1 is the (n− 1)-dimensional Hausdorff measure,
Mb(Ω;Rm) is the space of all bounded Radon measures on Ω with values in Rm ,
For a measure µ ∈ Mb(Ω;Rm), by µa and µs we denote its absolutely continuous and singular
parts with respect to a corresponding Lebesgue measure Ln ,
For µ ∈ Mb(Ω;Rm), by |µ| we denote its total variation, which is an element of Mb(Ω), and we
consider the norm ‖µ‖1;Ω := |µ|(Ω),
BV (Ω) is the space of all functions in L1(Ω;Rn) such that Du ∈ Mb(Ω;Mn×n

sym ), equipped with
the norm ‖u‖1,1;Ω = ‖u‖1;Ω + ‖Du‖1;Ω ,
BD(Ω) is the space of all functions in L1(Ω;Rn) such that ε(u) ∈ Mb(Ω;Mn×n

sym ), where ε(u)
is the symmetrized gradient of u , ε(u) = ∇u+∇uT

2 ; the norm in BD is defined as ‖u‖1,1;Ω =
‖u‖1;Ω + ‖ε(u)‖1;Ω ,

5
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For Ω ⊂ R2 we denote by BH(Ω) the space of all functions in L1(Ω) such that Du ∈ BV (Ω;R2),
equipped with the norm ‖u‖2,1;Ω = ‖u‖1,1;Ω + ‖D2u‖1;Ω ,
〈·|·〉 denotes the duality between two objects, where the duality relation depends upon the context.



Chapter 1

Introduction

In this work we develop a rigorous mathematical analysis of variational problems describing the
quasistatic evolutionary problems in plasticity. The common feature of the problems under con-
sideration is the variational energy formulation, where the mathematical difficulties arise due to
the presence of a term with a linear growth in the symmetric part of the gradient of the unknown
vector-valued functions in a volumetric case, or on the Hessian of the unknown scalar function in
two-dimensional problems for plates. In the applications these functions represent displacement
fields of a body.

The issue of the correct formulation of plasticity problems in the mechanics of the continuum
media from the mathematical viewpoint was addressed, for example, in [DL76, Joh76, Suq81,
Tem85]. The usual way to treat the problems of this kind is to understand the corresponding
physical background, to introduce a concept of an appropriate weak solution to the problem, and
to prove existence theorems in spaces of generalized functions.

Apart from the existence results for quasistatic problems in plasticity, for which, by now, have
been developed a number of quite standard approaches (see, for example [DL76, Suq81]), the most
interesting and difficult problem concerns the regularity properties of these weak solutions. There
are surprisingly few works concerning the higher differentiability of weak solutions to problems
in plasticity (see [BF93, BF96, FS00, Kne06, Ser93c, Ser94, Ser85, Ser87, Suq82] for the essential
contributions): due to the linear growth of objective functionals one is forced to use spaces like
BV and BH , where it is relatively easy to get the existence of weak solutions, but establishing
further differentiability turns out to be an extremely hard task.

In the present work we study the two aspects of mathematical formulation of evolutionary
problems in perfect plasticity: existence and smoothness of these generalized solutions.

Precisely, we focus on the following problems:

1. Existence of weak solutions to evolution problems for pressure-sensitive materials. Based on
the author’s work [DDD07] in collaboration with G. Dal Maso and A. DeSimone, we treat the
problem of existence of weak solutions to quasistatic evolution problems for pressure-sensitive
materials.

The class of materials under consideration includes concrete, granular media, metallic foams,
and porous metals. Following the energy formulation of quasistatic problems (see [Mie02] for
a general discussion of this approach), we prove the existence result under very mild technical
assumptions. We also obtain some fine pointwise properties of generalized solutions.

7
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2. Existence of weak solutions to evolution problems for elasto-plastic plates. Based on the
author’s work [Dem09], we present the existence result for quasistatic evolution problems for
clamped perfect elasto-plastic plates.

Following the general scheme for proving the existence of weak solutions of the continuous-
time energy formulation of rate-independent processes (see [Mie02]), we prove the existence
result and establish fine pointwise properties of solutions.

3. Differentiability properties of weak solutions in the Prandt-Reuss perfect plasticity. We
present the results of author’s work [Dem08b].

We study the smoothness of the stress tensor in the Prandtl-Reuss model of perfect plasticity.
We develop a general approach to proving the Sobolev differentiability of the stress tensor,
which can be applied to other models in plasticity as well (the author has used it to study
regularity of bending moments in an evolutionary problem for perfect elastoplastic plates,
see [Dem08a]). By using the regularity results of G. Seregin (see, for example, [Ser87, FS00,
Ser93c, Ser96]) and the approximation procedure of [DDM06] (which leads to an existence
result, according to the energy approach), we get the W 1,2

loc -regularity of the stress tensor.

We also discuss the issue of regularity for displacements, by giving the regularity counterex-
amples.

4. Differentiability properties of weak solutions to quasistatic evolution problems for clamped
perfect elasto-plastic plates. We develop on the differentiability results for bending moments
of the vertical displacement in evolutionary problems for perfect elasto-plastic plates, ob-
tained in [Dem08a].

Following the methodology, developed in [Dem08b] for the Prandtl-Reuss plasticity, we use
the regularity results of [Ser93a, Ser87] for the static case and estimates for approximate
solutions of [Dem09], to prove W 1,2

loc -smoothness of bending moments tensor.

We mention the author’s previous works, concerning the existence of solutions to phase tran-
sition problems of mechanics of two-phase elastic medium: necessary and sufficient conditions for
lower semicontinuity, leading to the existence of solutions, were established in [Dem04, Dem06],
while relaxation and Γ-convergence were studied in [Dem05].

1.1 Weak solutions and their further differential properties

As usual in the Calculus of Variations and the theory of Partial Differential Equations, the strategy
of solving a problem is the following.

1. First one introduces a notion of an appropriate generalized solution of the problem, which
on the one hand should be weak enough for one to be able to prove its existence, and on the
other hand, it should capture the essential features of the problem.

Thus, this step consists in identifying a space of generalized functions and formulating initial
problem in a weak form to obtain the following relations:

classical solution is a weak solution,

a sufficiently smooth weak solution is a classical solutuion. (1.1)
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2. Then, hopefully, one shows that the weak solution found possesses an additional regularity,
and thus, thanks to (1.1), it is actually a strong solution to the original problem. Therefore,
the problem of differentiability properties of weak solutions attracts a lot of interest.

The higher regularity of weak solutions is an important problem even if, in many cases, due
to considerable technical complexity caused by the nonlinearity, it is not always possible to
show that weak solutions possess sufficient differentiability to be strong ones.

1.2 Existence of weak solutions

As already mentioned, the first step in dealing with a problem is to introduce a suitable notion of
weak solution and prove its existence.

There are several equivalent ways of formulating an original problem in perfect plasticity in a
relaxed form, the most popular of them being:

• variational inequalities formulation in rate form, proposed in [Joh76] and [Suq81], where the
existence result is proved by a visco-plastic approximation;

• continuous-time energy formulation for rate-independent processes (see [Mie02] for a review
of the approach), where the existence is proved by time-discretization and piecewise approx-
imation by solutions of the corresponding incremental problems.

Below we adopt the second approach for proving the existence of weak solutions for evolutionary
problems for pressure sensitive materials (following [DDD07], see Chapter 2) and for evolutionary
problems for perfect elasto-plastic plates, proved in [Dem09] and presented in Chapter 3.

Both results are obtained by applying a standard machinery of rate-independent processes (in
a way, used in [DDM06] for the Prandtl-Reuss perfect plasticity) and defining appropriate dualities
between measures and weakly differentiable function, corresponding to the pairing between stress
and plastic part of the strain (in the case of perfect plasticity for pressure-sensitive materials) and
bending moments and plastic curvatures in the case of plates.

Concerning the history of the problem, the existence result for pressure-sensitive materials
[DDD07] is new, as well as the fine properties of the stress tensor.

The existence problem for plates was already studied by many authors (see, for example,
[BK00] for a similar problem with different boundary conditions, obtained by means of parabolic
regularization), but, to our best knowledge, it has never been studied under a quasistatic evolu-
tion framework and the fine pointwise properties of the solution (Theorem 1.2.8) were not known
previously. Moreover, the way we construct approximations with piecewise constant functions,
obtained by solving iteratively incremental problems (1.3) allows one to apply the methods of
[Dem08b] (see Chapter 4) for studying further differential properties of bending moments, as it was
done in [Dem08a] (see Chapter 5).

1.2.1 Quasistatic evolution for pressure-sensitive elastic materials

With reference to a domain Ω ⊂ Rn , the problem can be formulated as follows. The linearized
strain ε(u), defined as the symmetric part of the spatial gradient of the displacement u , is de-
composed as the sum ε(u) = e + p , where e and p are the elastic and plastic strains. The stress
σ is determined only by e , through the formula σ = Ce , where C is the elasticity tensor. It is
constrained to lie in a prescribed convex subset K of the space Mn×n

sym of n×n symmetric matrices,
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whose boundary ∂K is referred to as the yield surface. In this context, pressure sensitivity of the
yield criterion leads to the hypothesis that K is bounded.

The data of our problem are a time-dependent body force f(t, x), defined for t ∈ [0, T ] and
x ∈ Ω, a time-dependent surface force g(t, x) acting on a portion Γ1 of the boundary ∂Ω, and
a time-dependent displacement prescribed on the complementary porion Γ0 of ∂Ω. The classi-
cal formulation of the quasistatic evolution problem consists in finding functions u(t, x), e(t, x),
p(t, x), σ(t, x) satisfying the following conditions for every t ∈ [0, T ] and every x ∈ Ω:

1. additive decomposition: ε(u)(t, x) = e(t, x) + p(t, x),

2. constitutive equation: σ(t, x) = Ce(t, x),

3. equilibrium: −div σ(t, x) = f(t, x),

4. associative flow rule: ṗ(t, x) ∈ NK(σ(t, x))

where NK(ξ) is the normal cone to K at ξ . The problem is supplemented by initial conditions at
time t = 0, by displacement boundary conditions u(t, x) = w(t, x) for t ∈ [0, T ] and x ∈ Γ0 , and
traction boundary conditions σ(t, x)ν(x) = g(t, x) for t ∈ [0, T ] and x ∈ Γ1 , where ν(x) is the
outer unit normal to ∂Ω.

In recent work [DDM06], a similar problem was considered for the pressure-insensitive case
where K is a cylinder in Mn×n

sym containing all scalar multiples of the identity matrix. There, the
existence of a suitably defined weak solution was obtained by time-discretization. According to a
general energy approach, see e.g. [Mie02], the discrete time formulation consists in solving a chain
of incremental minimum problems which are quadratic in e and have linear growth in p .

Namely, the entire time interval [0, T ] is divided into N subintervals by means of points

0 = tN0 < tN1 < · · · < tNN−1 < tNN = T ,

and the approximate solution uN
i , eN

i , pN
i at time tNi is defined, inductively, as a minimizer of

the incremental problem

min
(u,e,p)∈A(w(tN

i ))

{
Q(e) +H(p− pN

i−1)−F [tNi ]u
}

, (1.2)

where for the moment A(w(t)) denotes the set of all triples (u, e, p), such that ε(u(x)) = e(x)+p(x)
for x ∈ Ω and u(x) = w(t, x) for x ∈ Γ0 , the quadratic form Q , corresponding to the stored elastic
energy, is defined by

Q(e) :=
1
2

∫

Ω

Ce : e dx,

the functional H is given by

H(p) :=
∫

Ω

H(p(x)) dx,

with H : Mn×n
sym → R being the support function to the set K , and the total load F [t] is defined

by

F [t]u =
∫

Ω

f(t) · u dx +
∫

Γ1

F (t) · u dHn−1.

Since H has linear growth, problem (1.3) has, in general, no solution in Sobolev spaces. Thus,
the direct methods of Calculus of Variations lead to a weak formulation, with a displacement u
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being an element of BD(Ω), the space of functions with bounded deformation, whose theory was
developed in [KT83, Tem85, TS80], the elastic strain e lying in L2(Ω;Mn×n

sym ), and the plastic
strain p belonging to Mb(Ω ∪ Γ0,Mn×n

sym ), the space of bounded Radon measures on Ω ∪ Γ0 with
values in Mn×n

sym .
According to the theory of convex functionals of measures (see [GS64] and [Tem85, Chapter

II]), define the functional H(p) : Mb(Ω ∪ Γ0,Mn×n
sym ) → R as

H(p) :=
∫

Ω∪Γ0

H(p/|p|) d|p|,

extending in an appropriate way the definition of the set of admissible triples A(w(t)) (see Section
2.2.2 for the details).

We define the piecewise constant interpolations

uN (t) := uN
i , eN (t) := eN

i , pN (t) := pN
i , σN (t) := σN

i ,

where i is the largest integer such that tNi ≤ t .
We introduce a definition of continuous-time quasistatic evolution in the functional framework

u ∈ BD(Ω), e ∈ L2(Ω;Mn×n
sym ), p ∈ Mb(Ω ∪ Γ0;Mn×n

sym ), σ ∈ L2(Ω;Mn×n
sym ), and prove that, up to

a subsequence, the discrete-time solutions uN (t), eN (t), pN (t), σN (t), obtained by solving the
weak formulations of problems (1.3), converge to a continuous-time solution u(t), e(t), p(t), σ(t),
provided maxi(tNi − tNi−1) → 0 as N →∞ .

For every time interval [s, t] ⊂ [0, T ] introduce the dissipation associated with H given by

DH(p; s, t) = sup
{ M∑

j=1

H(p(tj)− p(tj−1)) : s = t0 ≤ · · · ≤ tM = t, M ∈ N
}

.

A variational formulation of the quasistatic problem is expressed by the following definition.

Definition 1.2.1. A quasistatic evolution is a function

(u, e, p) : [0, T ] → BD(Ω)× L2(Ω;Mn×n
sym )×Mb(Ω ∪ Γ0;Mn×n

sym ),

which satisfies the following conditions

(qs1) (global stability): For every t ∈ [0, T ] the triple (u, e, p)(t) ∈ A(w(t)) and

Q(e(t))−F [t]u(t) ≤ Q(η) +H(q − p(t))−F [t]v

for every (v, η, q) ∈ A(w(t)),

(qs2) (energy balance): p : [0, T ] → Mb(Ω ∪ Γ0;Mn×n
sym ) has bounded variation and for every

t ∈ [0, T ]

Q(e(t)) +DH(p; 0, t)−F [t]u(t) =

= Q(e(0))−F [0]u(0) +
∫ t

0

[
〈σ(s), ε(ẇ(s))〉L2;L2 −F [s]ẇ(s)− Ḟ [s]u(s)

]
ds

where σ(t) = Ce(t).
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The existence and time-regularity result is summarized in the following theorem, which estab-
lishes the existence of a solution to the quasistatic problem in perfect plasticity, satisfying the
prescribed initial conditions, provided a uniform safe-load condition holds.

Theorem 1.2.2 (Theorems 2.4.3, 2.4.5 and 2.4.7). Let initial data (u0, e0, p0) ∈ A(w(0)) satisfy
the stability condition

Q(e0)−F [0]u0 ≤ Q(η) +H(q − p0)−F [0]v,

for every (v, η, q) ∈ A(w(0)) . Then there exists a quasistatic evolution

(u(t), e(t), p(t)),

such that
u(0) = u0, e(0) = e0, p(0) = p0.

Moreover, the elastic part of the symmetrized gradient t 7→ e(t) is unique and a quasistatic evolution
(u, e, p) as a function from [0, T ] to BD(Ω) × L2(Ω;Mn×n

sym ) × Mb(Ω ∪ Γ0;Mn×n
sym ) is absolutely

continuous in time.

To investigate the relation between a weak solution in the form of a quasistatic evolution and
a variational inequalities formulation in the rate form, we establish the following result.

Theorem 1.2.3 (Theorem 2.4.8). Let (u, e, p) : [0, T ] → BD(Ω)×L2(Ω;Mn×n
sym )×Mb(Ω∪Γ0;Mn×n

sym )
and let σ(t) = Ce(t) . Then the following conditions are equivalent:

(a) t 7→ (u(t), e(t), p(t)) is a quasistatic evolution;

(b) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(b1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)), σ(t) ∈ Σ(Ω)∩K(Ω) , −div σ(t) =
f(t) in Ω , and [σ(t) ν] = g(t) on Γ1 ,

(b2) for a.e. t ∈ [0, T ] we have
〈σ(t)− τ |ṗ(t)〉 ≥ 0

for every τ ∈ Σ(Ω) ∩ K(Ω) with [τ ν] = g(t) on Γ1 .

Here the pairing 〈·, ·〉 corresponds to the duality between stress and a plastic part of the strain,
defined in Section 2.3.2, and the set Σ(Ω) ∩ K(Ω) stands for the mechanically admissible stress
tensors.

As in [DDM06] one can investigate further properties of the quasistatic evolution and establish
the following pointwise version of a flow rule.

Theorem 1.2.4 (Theorems 2.4.10 and 2.4.11). Let (u, e, p) : [0, T ] → BD(Ω) × L2(Ω;Mn×n
sym ) ×

Mb(Ω ∪ Γ0;Mn×n
sym ), σ(t) = Ce(t) and let µ(t) = Ln + |ṗ(t)| . Then t 7→ (u(t), e(t), p(t)) is a

quasistatic evolution if and only if

(d) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(d1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)), σ(t) ∈ Σ(Ω)∪K(Ω) , −div σ(t) =
f(t) on Ω , and [σ(t)ν] = g(t) on Γ1 ,
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(d2) for a.e. t ∈ [0, T ] there exists σ̂(t) ∈ L∞µ(t)(Ω ∪ Γ0;Mn×n
sym ) such that

σ̂(t) = σ(t) Ln − a.e. on Ω,

[σ(t) : ṗ(t)] = σ̂(t) :
ṗ(t)
|ṗ(t)| |ṗ(t)| in Mb(Ω ∪ Γ0;Mn×n

sym ),

ṗ(t)
|ṗ(t)| (x) ∈ NK(σ̂(t, x)) for |ṗ(t)| − a.e. x ∈ Ω ∪ Γ0.

Moreover, if the set K is strictly convex, then we can refine the definition of σ̂ , by showing,
that it is a strong µ(t)-limit of the mean values of σ . Namely, the following holds:

σr(t, x) :=
1

Ln(B(x, r) ∩ Ω)

∫

B(x,r)∩Ω

σ(t, y) dy → σ̂(t, x) in L1
µ(t)(Ω;Mn×n

sym ),

for a.e. t ∈ [0, T ] .

1.2.2 Quasistatic evolution for elasto-plastic plates

Here the reference configuration is a bounded open set Ω ⊂ R2 with a Lipschitz boundary and
the elastic domain K is a bounded closed convex subset of M2×2

sym (the space of symmetric 2 × 2
matrices) with the nonempty interior, whose boundary ∂K plays the role of the yield surface.

Given a scalar valued function f(t, x) defined for t ∈ [0, T ] and x ∈ Ω, which represents
the transversal body force, the strong formulation of the evolution problem consists in finding a
scalar valued function u(t, x) (the vertical displacement) and three matrix-valued functions e(t, x),
p(t, x) and M(t, x) (the elastic and plastic curvatures and the bending moments) such that for
every t ∈ [0, T ] , for every x ∈ Ω the following conditions hold:

1. kinematic admissibility: D2u(t, x) = e(t, x) + p(t, x) in Ω,
u(t, x) = 0, ∂u

∂ν (t, x) = 0 on ∂Ω

2. constitutive equation: M(t, x) = C e(t, x),

3. equilibrium: div div M(t, x) = f(t, x) in Ω,

4. moment constraint: M(t, x) ∈ K ,

5. associative flow rule: ṗ(t, x) ∈ NK(M(t, x)),

where ν(x) is the outer unit normal to ∂Ω and C is the rigidity tensor. The symbol NK(ξ)
denotes the normal cone to the set K at the point ξ in the sense of convex analysis. The problem
is supplemented by initial conditions at time t = 0.

The boundary conditions u = 0 and ∂u
∂ν = 0 on ∂Ω reflect the mechanical assumption that the

plate is clamped.
Dealing with quasistatic evolution problems of the type considered above, we approximate them

numerically by solving a finite number of incremental variational problems. As discussed in the
previous section, the time interval [0, T ] is divided into N subintervals by means of points

0 = tN0 < tN1 < · · · < tNN−1 < tNN = T ,
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and to get the updated values uN
i , eN

i and pN
i , we solve the incremental problem

min
u,e,p

{
Q(e) +H(p− pN

i−1)−F [tNi ]u
}

, (1.3)

where the minimization is carried out over the set of all kinematically admissible triples (u, e, p),
such that D2u(x) = e(x) + p(x) for x ∈ Ω, u(x) = 0 and ∂u

∂ν for x ∈ Γ0 , the quadratic form Q ,
corresponding to the stored elastic energy, is defined by

Q(e) :=
1
2

∫

Ω

Ce : e dx,

the functional H is given by

H(p) :=
∫

Ω

H(p(x)) dx,

with H : M2×2
sym → R being the support function to the set K , and the total load F [t] is defined

by

F [t]u =
∫

Ω

f(t)u dx.

Due to the linear growth of H , one has to relax the problem to look for vertical displacements in the
space BH(Ω) of functions with bounded deformation (the reader is referred to [Tem85, Chapter III]
for the definition and basic properties of BH(Ω)), for elastic curvatures in the space L2(Ω;M2×2

sym)
and for plastic curvatures in the space Mb(Ω) of M2×2

sym -valued bounded Radon measures.
The relaxed version of H : Mb(Ω;M2×2

sym) → R takes the form

H(p) :=
∫

Ω

H(p/|p|)d|p|.

For t ∈ [0, T ] define piecewise constant interpolations

uN (t) := uN
i , eN (t) := eN

i , pN (t) := pN
i , σN (t) := σN

i ,

where i is the largest integer such that tNi ≤ t .
Working in the functional framework u ∈ BH(Ω), e ∈ L2(Ω;M2×2

sym), p ∈ Mb(Ω ∪ Γ0;M2×2
sym),

σ ∈ L2(Ω;M2×2
sym), we introduce a notion of continuous-time quasistatic evolution and prove that

the approximate solutions uN (t), eN (t), pN (t), σN (t) converge to a continuous-time solution
u(t), e(t), p(t), σ(t), provided maxi(tNi − tNi−1) → 0 as N →∞ .

For every interval [s, t] ⊂ [0, T ] the H variation of p on [s, t] is defined as

DH(p; s, t) = sup
{ N∑

i=1

H(p(ti)− p(ti−1)) : s = t0 < · · · < tN = t, N ∈ N
}

.

A weak solution to the problem is defined as the following quasistatic evolution. Note, that in
the definition below 〈·, ·〉 stands for the scalar product in L2(Ω.)

Definition 1.2.5. A quasistatic evolution is a function t 7→ (u(t), e(t), p(t)) from [0, T ] into
BH(Ω)× L2(Ω;Mn×n

sym )×Mb(Ω;Mn×n
sym ) which satisfies the following conditions
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(qs1) for every t ∈ [0, T ] the triple (u(t), e(t), p(t)) is kinematically admissible and

Q(e(t))− 〈f(t)|u(t)〉 ≤ Q(η) +H(q − p(t))− 〈f(t)|v〉 (1.4)

for every kinematically admissible (v, η, q);

(qs2) the function t 7→ p(t) from [0, T ] into Mb(Ω;Mn×n
sym ) has bounded variation and for every

t ∈ [0, T ]
Q(e(t)) +DH(p; 0, t)− 〈f(t)|u(t)〉 =

= Q(e(0))− 〈f(0)|u(0)〉 −
∫ t

0

〈ḟ(s)|u(s)〉 ds.
(1.5)

The following theorem states the main existence and time-regularity result for weak solutions
of the quasistatic problem for perfect elasto-plastic plates. Note, that it is implicitly assumed that
an appropriate safe-load condition is satisfied.

Theorem 1.2.6 (Theorems 3.4.3, 3.5.1, and 3.5.6). Let initial data (u0, e0, p0) be kinematically
admissible and satisfy the stability condition

Q(e0)− 〈f(0), u0〉 ≤ Q(η) +H(q − p0)− 〈f(0), v〉,

for every kinematically admissible triple (v, η, q) . Then there exists a quasistatic evolution

(u(t), e(t), p(t)),

such that
u(0) = u0, e(0) = e0, p(0) = p0.

Moreover, the elastic curvatures tensor t 7→ e(t) is unique and a quasistatic evolution (u, e, p) as
a function from [0, T ] to BH(Ω)×L2(Ω;M2×2

sym)×Mb(Ω;M2×2
sym) is absolutely continuous in time.

The following result relates the quasistatic evolution properties with the classical formulation
of the flow rule.

Theorem 1.2.7 (Theorem 3.6.1). Let t 7→ (u(t), e(t), p(t)) be a function from [0, T ] into BH(Ω)×
L2(Ω;M2×2

sym)×Mb(Ω;M2×2
sym) and let M(t) := Ce(t) . Then the following conditions are equivalent:

(a) t 7→ (u(t), e(t), p(t)) is a quasistatic evolution;

(b) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(b1) for every t ∈ [0, T ] the triple (u(t), e(t), p(t)) is kinematically admissible, M(t) ∈ S(Ω)∩
K(Ω) and div div M(t) = f(t) in Ω ,

(b2) for a.e. t ∈ [0, T ] we have
〈M(t)−m|ṗ(t)〉 ≥ 0

for every m ∈ S(Ω) ∩ K(Ω) .

Here the pairing 〈·, ·〉 corresponds to the duality between bending moments tensor and a plastic
curvatures, defined in Section 3.2.2, and the set S(Ω)∩K(Ω) stands for the mechanically admissible
bending moments tensors.
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As in [DDM06] and [DDD07], we can study the pointwise properties of a bending moments
tensor and formulate a pointwise version of a flow rule.

Theorem 1.2.8 (Theorem 3.6.3). Let t 7→ (u(t), e(t), p(t)) be a function from [0, T ] into BH(Ω)×
L2(Ω;M2×2

sym) × Mb(Ω;M2×2
sym) , let M(t) := Ce(t) , and let µ(t) := L2 + |ṗ(t)| . Then t 7→ (u(t) ,

e(t) , p(t)) is a quasistatic evolution if and only if

(e) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(e1) for every t ∈ [0, T ] the triple (u(t), e(t), p(t)) is kinematically admissible, M(t) ∈ S(Ω)∩
K(Ω) , and div div M(t) = f(t) in Ω ,

(e2) for a.e. t ∈ [0, T ] there exists M̂(t) ∈ L∞µ(t)(Ω;M2×2
sym) such that

M̂(t) = M(t) L2-a.e. on Ω,

[M(t) : ṗ(t)] =
(
M̂(t) :

ṗ(t)
|ṗ(t)|

)
|ṗ(t)| in Mb(Ω),

ṗ(t)
|ṗ(t)| (x) ∈ NK(M̂(t, x)) for |ṗ(t)|-a.e. x ∈ Ω.

Moreover, if the set K is strictly convex, then one can refine the definition of M̂ , by showing, that
it is a strong µ(t)-limit of the mean values of M . Namely, the following holds

Mr(t, x) :=
1

L2(B(x, r) ∩ Ω)

∫

B(x,r)∩Ω

M(t, y) dy → M̂(t, x) in L1
µ(t)(Ω;M2×2

sym),

for a.e. t ∈ [0, T ] .

1.3 Regularity of weak solutions

As already discussed above, the issue of regularity of solutions of (systems of) PDEs and variational
problems is very important and presents a considerable interest.

The question of regularity is already technically difficult, with many astonishing counterexam-
ples, even for quite simple systems of PDEs. In this particular situation of perfect plasticity, the
problem becomes even more complicated, due to the arising nonlinearities.

First let us discuss the static case of Hencky perfect plasticity. The main local regularity result
(see [Ser87, Ser93c, BF93]) is that the stress tensor, which is known to be an L2(Ω;Mn×n

sym ) function,
is actually W 1,2

loc (Ω;Mn×n
sym ). Further partial regularity results are due to G. Seregin, and we refer

the reader to [FS00, Ser87, Ser93c] for the details. The only global regularity result known to
the author is [Kne06], where it is shown that, under appropriate technical assumptions, the stress
tensor is in W 1/2−δ(Ω;Mn×n

sym ) for any δ > 0.
The main approaches to investigating the Sobolev differentiability of stresses in Hencky perfect

plasticity consist in approximating the original problem (P ) with a sequence of “more regular”
ones, (Pα) in a way, that

Solutions σα of (Pα) are W 1,2
loc (Ω;Mn×n

sym ); (1.6)
σα converge to the solution σ∗ of problem (P ) in some weak topology; (1.7)

supα ‖σα‖1,2;Ω′ ≤ C(Ω′) holds, for every Ω′ ⊂⊂ Ω. (1.8)
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If one constructs a sequence of problems (Pα), satisfying (1.6)-(1.8), then the solution σ∗ of
problem (P ) is also W 1,2

loc (Ω;Mn×n
sym ).

In [BF93] the authors used the Norton-Hoff regularization and a method of translations (as in
[Suq82]), while in [FS00, Ser87, Ser93c] the original minimum problem is approximated by adding
a “coercive” term, that guarantees the existence of a minimum in W 1,2

loc (Ω;Mn×n
sym ).

The main observation of G. Seregin is that working with a dual variational problem for the
stress tensor gives more information, needed for investigating differentiability properties.

This approach towards regularity is based on the idea that the stress tensor is the most im-
portant quantity from the physical viewpoint, since it determines the elastic and plastic zones
within the body. Therefore, the main object to study is the dual variational problem for the stress
tensor, which has a unique solution. The form of this problem differs from the standard problems
in calculus of variations: the functional does not involve any derivative of the unknown functions,
the yield condition acts as a pointwise constraint, and the equilibrium equations for the stresses
have to be incorporated in the class of admissible functions. Despite these difficulties one obtains
additional regularity for the stress tensor.

Afterwards, by using the duality relations, which can be regarded as a weak form of the con-
stitutive equations, one also establishes some regularity for the displacement field.

Recall, once again, that these results concern the static Hencky plasticity.
As for the quasistatic situation, for the Prandtl-Reuss case Norton-Hoff approximations were

used in [BF96] to establish that the stress tensor satisfies

σ ∈ L∞([0, T ]; W 1,2
loc (Ω;Mn×n

sym )).

In the sequel we present two regularity results: the smoothness of the stress tensor for the
Prandtl-Reuss perfect plasticity (following [Dem08b], see Chapter 4) and the differentiability of the
bending moments in quasistatic problems for perfect elasto-plastic plates (according to [Dem08a],
see Chapter 5). We use the ideas of [FS00, Ser87, Ser93c, Ser93a], developed for static problems
and the piecewise-constant approximations constructed in [DDM06, Dem09], that were briefly
described in Sections 1.2.1 and 1.2.2.

Shortly, for a solution (uN
i , eN

i , pN
i ) of each incremental problem of the type (1.2), (1.3) we

prove that
eN
i ∈ W 1,2

loc (Ω)

by an estimates, similar to that of [FS00, Ser93c, Ser93a]. Then we perform some analytical work
to make this estimate uniform in i and N . Namely, we obtain

sup
N∈N

max
i=0,...,N

‖eN
i ‖1,2;Ω′ ≤ C(Ω′), (1.9)

for any Ω′ ⊂⊂ Ω. This is done by using a Gronwall-type iterative estimate for eN
i , for i =

1, . . . , N . Finally, one uses (1.9) and pointwise convergence of the piecewise constant approxima-
tions (uN (t), eN (t), pN (t)) to the solutions of the original problem to get

sup
t∈[0,T ]

‖e(t)‖1,2;Ω′ ≤ C(Ω′)

for any Ω′ ⊂⊂ Ω.

Observe that, even though the Prandtl-Reuss case was already studied in [BF96], the method
proposed in [Dem08b] is of completely different nature, imposes different restrictions on the data of
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the problem, and, what is more important, provides a general methodology for proving regularity of
solutions to various problems in perfect plasticity. It has proved to be useful for establishing W 1,2

loc

regularity of bending moments in the case of clamped perfect elasto-plastic plates, see [Dem08a]
and Chapter 5, which is a new result.

1.3.1 Regularity of stresses in Prandtl-Reuss perfect plasticity

A strong formulation of the Prandtl-Reuss model of perfect plasticity is the following: given a
domain Ω ⊂ Rn ,

body force f(t, x) : [0, T ]× Ω → Rn,
boundary displacement w(t, x) : [0, T ]× Γ0 → Rn,
surface force F (t, x) : [0, T ]× Γ1 → Rn,

the problem is to find functions

u(t, x), e(t, x), p(t, x) and σ(t, x)

such that for every t ∈ [0, T ] , for every x ∈ Ω the following hold:

1. kinematic admissibility: ε(u)(t, x) = e(t, x) + p(t, x) in Ω, u(t, x) = w(t, x) on Γ0

2. constitutive equation: σ(t, x) = A−1 e(t, x),

3. equilibrium: div xσ(t, x) = −f(t, x) in Ω, σ(t, x) ν(x) = F (t, x) on Γ1 ,

4. stress constraint σ(t, x) ∈ K ,

5. associative flow rule: (ξ − σ(t, x)) : ṗ(t, x) ≤ 0 for every ξ ∈ K ,

where

ε(u) =
∇u +∇uT

2
,

K = {τ ∈Mn×n
sym : |τD| ≤

√
2k∗}

and A is the compliance tensor (the inverse of the elasticity tensor), which in the isotropic case
has the form

Aσ =
tr σ

n2 K0
1 +

1
2µ

σD, (1.10)

where nK0 is the first Lamé constant, and µ is the shear modulus. The problem is supplemented
by initial conditions at time t = 0.

Under some technical conditions on volume and surface forces and on the geometry of the
boundary ∂Ω, described in detail in Section 4.2, the regularity result is expressed by the following
Theorem.

Theorem 1.3.1 (Theorem 4.2.1). Suppose that n = 2, 3 , ∂Ω ∈ C2 , A has the form (1.10) and
the assumptions (4.3)-(4.5) are satisfied. Then for the solution (u, e, p) of the quasistatic problem,
see Definition 4.3.6, we have

σ ∈ L∞([0, T ];W 1,2
loc (Ω;Mn×n

sym )),

with σ(t, x) = A−1e(t, x) .
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We use the construction of piecewise constant approximations, obtained by discretizing the
time interval [0, T ] (as outlined in Sections 1.2.1 and 1.2.2). The details are presented in Sections
4.3.1 and 4.3.2.

To prove the regularity theorem, we should obtain estimate (1.9) for the solutions (uN
i , eN

i , pN
i ,

σN
i ) of the incremental problems of the form (1.2). Fixed N , for every i = 1, . . . , N we consider a

certain minimax program similar to that proposed in [FS00, Ser93c] for the Hencky plasticity (see
Section 4.5 for details). We define a Lagrangian L(· , ·), and consider the following problem

find a pair (δuN
i , σN

i ), such that
LN

i (δuN
i , τ) ≤ LN

i (δuN
i , σN

i ) ≤ LN
i (v, σN

i ) for all admissible (v, τ),

such that its saddle points (δuN
i , σN

i ) give rise to solutions of the corresponding incremental prob-
lems of type (1.2). Observe that, since we work in nonreflexive spaces, we actually consider a
relaxed version of this problem, working with an extended Lagrangian L̃N

i , rather than LN
i .

As usual, saddle points (δuN
i , σN

i ) of L̃N
i solve the corresponding primal and dual problems,

respectively. The primal problem takes the form

find δuN
i , such that IN

i (δuN
i ) = inf

v
IN
i (v), with Ii(v) := sup

τ
L̃N

i (v, τ), (1.11)

while the dual one is

find σN
i , such that RN

i (σN
i ) = sup

τ
RN

i (τ), with RN
i (τ) := inf

v
L̃N

i (v, τ).

The main difficulty is that the functional IN
i in (1.11) has a linear growth with respect to ε(v),

and thus has a minimum in the space BD only. To attain a better regularity, for every α ∈ (0, 1)
we consider the regularized problem of the form

min
v

{α

2
‖ε(v)‖22 + IN

i (v)
}

,

which, due to the Korn inequality, has a solution uα
i in space W 1,2(Ω;Mn×n

sym ).
By introducing auxiliary functions σα

i , defined by adding correction terms to the functions

α ε(uα
i ) + ∂IN

i (uα
i ),

we write the Euler equation as
div (σα

i ) = fN
i . (1.12)

Then we establish the following convergence properties:

uα
i

∗
⇀ δuN

i weakly∗ in BD(Ω;Rn),
σα

i ⇀ σN
i weakly in L2(Ω;Mn×n

sym ), (1.13)

as α → 0.
By local regularity results we have that

uα
i ∈ W 2,2

loc (Ω;Mn×n
sym ),

that is
σα

i ∈ W 1,2
loc (Ω;Mn×n

sym ). (1.14)
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Using Euler equation (1.12) and (1.14) we then prove the estimate

sup
α∈(0,1)

‖σα
i ‖1,2;Ω′ ≤ C(i, N ; Ω′) (1.15)

for every subdomain Ω′ ⊂⊂ Ω. Thus, (1.15) and the convergence (1.14) immediately imply that

σα
i ⇀ σN

i as α → 0 weakly in W 1,2
loc (Ω;Mn×n

sym ), (1.16)

and
‖σN

i ‖1,2;Ω′ ≤ C(i,N ; Ω′).

It remains to make the last estimate uniform with respect to i and N . By using the improved
convergence (1.16) (instead of (1.13)) and some quite technical transformations, we get the uniform
estimate (1.9), which implies Theorem 1.3.1.

Thus, we have established the W 1,2 regularity of stresses σ(t). Another interesting problem
to investigate concerns possible regularity for displacements u(t), similar to the static case of the
Hencky plasticity (see [FS00] and [Ser85]). In Section 4.10 we present two counterexamples with
C∞ data, where the quasistatic evolution has a unique solution (u(t), e(t), p(t)). In the first one
the displacement u(t) develops a jump after a prescribed time t∗ . In the second one we fix a
singular diffuse measure µ and arrange the data such that εs(u(t∗)) = µ for some time t∗ . These
examples show that one cannot expect that u(t) ∈ W 1,2

loc (Ω;Rn) for every t , even with C∞ data.

1.3.2 Regularity of bending moments for quasistatic evolution problems
for perfect elasto-plastic plates

Given a scalar valued function f(t, x) defined for t ∈ [0, T ] and x ∈ Ω, which represents the
transversal body force, the strong formulation of the evolution problem consists in finding a scalar
valued function u(t, x) (the vertical displacement) and three matrix-valued functions e(t, x), p(t, x)
and M(t, x) (the elastic and plastic curvatures and the bending moments) such that for every
t ∈ [0, T ] , for every x ∈ Ω the following conditions hold:

1. kinematic admissibility: D2u(t, x) = e(t, x) + p(t, x) in Ω,
u(t, x) = 0, ∂u

∂ν (t, x) = 0 on ∂Ω

2. constitutive equation: M(t, x) = C e(t, x),

3. equilibrium: div div M(t, x) = f(t, x) in Ω,

4. moment constraint: M(t, x) ∈ K ,

5. associative flow rule: ṗ(t, x) ∈ NK(M(t, x)),

where ν(x) is the outer unit normal to ∂Ω and C is the rigidity tensor. The symbol NK(ξ)
denotes the normal cone to the set K at the point ξ in the sense of convex analysis. The problem
is supplemented by initial conditions at time t = 0.

The boundary conditions u = 0 and ∂u
∂ν = 0 on ∂Ω reflect the mechanical assumption that the

plate is clamped.
For the regularity we restrict ourselves to the isotropic case where K is a ball centered at the

origin, and A is the multiple of the identity tensor I , which can be reduced to considering

K = B1(0), C = I.
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Under some technical conditions on the volume force and the safe-load condition, described in
detail in Section 4.2, the regularity result is expressed by the following Theorem.

Theorem 1.3.2 (Theorem 5.2.2). Suppose that C is a multiple of the identity tensor, the set K is
a ball, centered at the origin, and the assumptions (5.3), (5.4) are satisfied. Then for the solution
(u, e, p) of the quasistatic problem (see Definition 5.3.4) we have

M ∈ L∞([0, T ];W 1,2
loc (Ω;M2×2

sym)),

with M(t, x) = C e(t, x) .

We use the construction of piecewise constant approximations, obtained by discretizing the
time interval [0, T ] (as outlined in Section 1.2.2). The details are presented in Section 5.3.

To prove the regularity Theorem, we should obtain uniform estimate (1.9) for the solutions
(uN

i , eN
i , pN

i , MN
i ) of the incremental problems (1.3). Fixed N , for every i = 1, . . . , N we consider

a certain minimax program similar to that, proposed in [Ser93a] for the static problem for perfect
elastoplastic plates (see Section 5.4 for details). We define a Lagrangian L(· , ·), and consider the
following problem

find a pair (δuN
i , MN

i ), such that
LN

i (δuN
i ,m) ≤ LN

i (δuN
i ,MN

i ) ≤ LN
i (v,MN

i ) for all admissible (v,m),

such that its saddle points (δuN
i ,MN

i ) give rise to solutions of the corresponding incremental
problems (1.3). Note that, since we work in nonreflexive spaces, we actually consider a relaxed
version of this problem, working with an extended Lagrangian L̃N

i , rather than LN
i .

As usual, saddle points (δuN
i ,MN

i ) of L̃N
i solve the corresponding primal and dual problems,

respectively. The primal problem takes the form

find δuN
i , such that IN

i (δuN
i ) = inf

v
IN
i (v), with IN

i (v) := sup
m

L̃N
i (v, m), (1.17)

while the dual one is

find MN
i , such that RN

i (MN
i ) = sup

τ
RN

i (m), with RN
i (m) := inf

v
L̃N

i (v, m).

The main difficulty is that the functional IN
i in (1.17) has a linear growth with respect to D2v ,

and thus has a minimum in the space BH only. To attain a better regularity, for every α ∈ (0, 1)
we consider the regularized problem of the form

min
v

{α

2
‖D2v‖22;Ω + IN

i (v)
}

,

which has a solution uα
i in space W 1,2(Ω).

By introducing auxiliary functions Mα
i , defined by adding some correction terms to the func-

tions
α D2uα

i + ∂IN
i (uα

i ),

we rewrite the Euler equation as
div div Mα

i = fN
i . (1.18)
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Then we establish the following convergence properties

uα
i

∗
⇀ δuN

i weakly∗ in BH(Ω),
Mα

i ⇀ MN
i weakly in L2(Ω;M2×2

sym), (1.19)

as α → 0.
By local regularity results we have that

uα
i ∈ W 3,2

loc (Ω),

that is
Mα

i ∈ W 1,2
loc (Ω;M2×2

sym). (1.20)

Using the Euler equation (1.18) and (1.20) we then prove the estimate

sup
α∈(0,1)

‖Mα
i ‖1,2;Ω′ ≤ C(i, N ; Ω′) (1.21)

for every subdomain Ω′ ⊂⊂ Ω. Thus, (1.21) and the convergence (1.20) immediately imply that

Mα
i ⇀ MN

i as α → 0 weakly in W 1,2
loc (Ω;M2×2

sym), (1.22)

and
‖MN

i ‖1,2;Ω′ ≤ C(i,N ; Ω′).

It remains to make the last estimate uniform with respect to i and N . By using the improved
convergence (1.22) (instead of (1.19)) and some quite technical transformations, we get the uniform
estimate (1.9), which implies Theorem 1.3.2.



Chapter 2

Quasistatic evolution problems for
pressure-sensitive plastic materials

2.1 Introduction

Several materials of interest for applications, such as concrete, granular media, metallic foams, and
porous metals, exhibit a pressure-sensitive yield behavior. There exists a large literature focusing on
yield criteria for these materials, which identify the onset of irreversible inelastic behavior with the
fact that a suitable measure of the state of internal stress reaches a threshold. Examples include
the Gurson criterion for porous ductile materials [Gur77], the criterion of Ottosen for concrete
[Ott77], the Desphande-Fleck criterion for metallic foams [DF00], and, for soils, Cam-Clay and the
many subsequent variants (see, e.g., [DT05] and the references quoted therein). These criteria and
several others are discussed in detail in [BP04].

Following the engineering literature, we work for simplicity in the framework of associative
elasto-plasticity. Moreover we limit our analysis to the case of no hardening (perfect plasticity).
With reference to a domain Ω ⊂ Rn , the problem can be formulated as follows. The linearized
strain Eu , defined as the symmetric part of the spatial gradient of the displacement u , is de-
composed as the sum Eu = e + p , where e and p are the elastic and plastic strains. The stress
σ is determined only by e , through the formula σ = Ce , where C is the elasticity tensor. It is
constrained to lie in a prescribed convex subset K of the space Mn×n

sym of n×n symmetric matrices,
whose boundary ∂K is referred to as the yield surface. In this context, pressure sensitivity of the
yield criterion leads to the hypothesis that K is bounded.

The data of our problem are a time-dependent body force f(t, x), defined for t ∈ [0, T ] and
x ∈ Ω, a time-dependent surface force g(t, x) acting on a portion Γ1 of the boundary ∂Ω, and
a time-dependent displacement prescribed on the complementary porion Γ0 of ∂Ω. The classi-
cal formulation of the quasistatic evolution problem consists in finding functions u(t, x), e(t, x),
p(t, x), σ(t, x) satisfying the following conditions for every t ∈ [0, T ] and every x ∈ Ω:

additive decomposition: Eu(t, x) = e(t, x) + p(t, x) ,
constitutive equation: σ(t, x) = Ce(t, x) ,

equilibrium: − div σ(t, x) = f(t, x) ,
associative flow rule: ṗ(t, x) ∈ NK(σ(t, x)) ,

(2.1)

where NK(ξ) is the normal cone to K at ξ . The problem is supplemented by initial conditions at

23
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time t = 0, by displacement boundary conditions u(t, x) = w(t, x) for t ∈ [0, T ] and x ∈ Γ0 , and
traction boundary conditions σ(t, x)ν(x) = g(t, x) for t ∈ [0, T ] and x ∈ Γ1 , where ν(x) is the
outer unit normal to ∂Ω.

In recent work [DDM06], a similar problem was considered for the pressure-insensitive case
where K is a cylinder in Mn×n

sym containing all scalar multiples of the identity matrix. There, the
existence of a suitably defined weak solution was obtained by time-discretization. According to a
general energy approach, see e.g. [Mie02], the discrete time formulation consists in solving a chain
of incremental minimum problems which are quadratic in e and have linear growth in p . Thus,
the direct methods of the calculus of variations lead to a weak formulation with u ∈ BD(Ω), the
space of functions with bounded deformation, e ∈ L2(Ω;Mn×n

sym ), and p ∈ Mb(Ω ∪ Γ0,Mn×n
sym ), the

space of bounded Radon measures on Ω ∪ Γ0 with values in Mn×n
sym .

Notice that allowing for measure-valued plastic strains is also natural from the point of view of
mechanics, see [Suq81]: indeed, localization of plastic deformation and formation of shear bands
are often observed experimentally in the materials to which the models we analyze should apply.

In this work, we extend this approach to the case where K is an arbitrary convex bounded
subset of Mn×n

sym with nonempty interior. To adapt the technique to the new situation, we have
to introduce a suitable duality product 〈σ, p〉 , between stress and plastic strain, defined for every
σ ∈ L∞(Ω;Mn×n

sym ) with div σ ∈ Ln(Ω;Rn) and for every p ∈ Mb(Ω ∪ Γ0,Mn×n
sym ) of the form

p = Eu−e with u ∈ BD(Ω) and e ∈ L2(Ω;Mn×n
sym ). This is done in Section 2.3, using results from

[KT83, Anz83].
After the properties of this duality have been established, we follow the lines of the proof of

[DDM06], and obtain, under suitable hypotheses on the data f , g , and w , an existence result (The-
orem 2.4.3) for a weak formulation (Definition 2.4.1) of problem (2.1), with u ∈ AC([0, T ]; BD(Ω)),
e ∈ AC([0, T ];L2(Ω;Mn×n

sym )), and p ∈ AC([0, T ];Mb(Ω ∪ Γ0,Mn×n
sym )). Moreover, we prove that e ,

and hence σ , are uniquely determined by the initial conditions.
We emphasize that our results are obtained under very general qualitative hypotheses on the

yield surfaces ∂K and on the elasticity tensor C . Namely, we just assume that K is a convex,
bounded set with nonempty interior, and that C , regarded as a linear operator acting on Mn×n

sym

is symmetric and positive definite. In particular no assumption of isotropy is required.

2.2 Preliminaries

2.2.1 Mathematical preliminaries

Given a locally compact subset X of Rn and a finite dimensional Hilbert space Ξ, the space of
bounded Ξ-valued Borel measures on X is denoted by Mb(X; Ξ) and is endowed with the norm
‖µ‖1 := |µ|(X), where |µ| ∈ Mb(X;R) is the variation of the measure µ . By Riesz representation
theorem (see, e.g., [Rud66, Theorem 6.19]) Mb(X; Ξ) can be identified with the dual of C0(X; Ξ),
the space of continuous functions ϕ : X → Ξ such that {|ϕ| ≥ ε} is compact for every ε > 0. This
defines the weak∗ topology in Mb(X; Ξ).

For every µ ∈ Mb(X; Ξ) we consider the Lebesgue decomposition µ = µa + µs , where µa

is absolutely continuous and µs is singular with respect to Lebesgue measure Ln . The space
L1(X; Ξ) of Ξ-valued Ln -integrable functions is regarded as a subspace of Mb(X; Ξ), with the
induced norm. When Ξ = R , the indication of the space Ξ is omitted.

The Lp norm, 1 ≤ p ≤ ∞ , is denoted by ‖ · ‖p . The brackets 〈·|·〉 denote the duality product
between conjugate Lp spaces, as well as between other pairs of spaces, according to the context.
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The space of symmetric n×n matrices is denoted by Mn×n
sym ; it is endowed with the euclidean

scalar product ξ : ζ := tr(ξζ) =
∑

ij ξijζij and with the corresponding euclidean norm |ξ| :=
(ξ : ξ)1/2 . The symmetrized tensor product a¯ b of two vectors a , b ∈ Rn is the symmetric matrix
with entries (aibj + ajbi)/2.

For every u ∈ L1(U ;Rn), with U open in Rn , let Eu be the Mn×n
sym -valued distribution on

U , whose components are defined by Eiju = 1
2 (Djui + Diuj). The space BD(U) of functions

with bounded deformation is the space of all u ∈ L1(U ;Rn) such that Eu ∈ Mb(U ;Mn×n
sym ). It is

easy to see that BD(U) is a Banach space with the norm ‖u‖1 + ‖Eu‖1 . It is possible to prove
that BD(U) is the dual of a normed space (see [MSE79] and [TS80]), and this defines the weak∗

topology of BD(U). A sequence uk converges to u weakly∗ in BD(U) if and only if uk ⇀ u

weakly in L1(U ;Rn) and Euk
∗
⇀ Eu weakly∗ in Mb(U ;Mn×n

sym ). For the general properties of
BD(U) we refer to [Tem85].

In our problem u ∈ BD(U) represents the displacement of an elasto-plastic body and Eu is
the corresponding linearized strain.

We recall that a function f from [0, T ] into a Banach space Y is said to be absolutely continuous
if for every ε > 0 there exists δ > 0 such that

∑
i ‖f(ti)− f(si)‖Y < ε, whenever

∑
i(ti − si) < δ

and 0 ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sk < tk ≤ T. The space of these functions is denoted by
AC([0, T ];Y ). For the general properties of absolutely continuous functions with values in reflexive
Banach spaces we refer to [Bre, Appendix]. When Y is the dual of a separable Banach space, one
can prove (see [DDM06, Theorem 7.1]) that for a.e. t ∈ [0, T ] there exists the weak∗ -limit

ḟ(t) := w∗- lim
s→t

f(s)− f(t)
s− t

.

Note that in this general situation it may happen that ḟ is not Bochner integrable.

2.2.2 Mechanical preliminaries

The reference configuration. Throughout the paper the reference configuration Ω is a bounded
connected open set in Rn , with Lipschitz boundary ∂Ω = Γ0 ∪Γ1 . We assume that Γ0 6= Ø, Γ1 is
closed, and Γ0 ∩ Γ1 = Ø.

The constraint and its support function. The constraint on the stress is given by a closed
convex set K ⊂ Mn×n

sym with nonempty interior. Its boundary ∂K plays the role of yield suface.
For the energy formulation of problem (2.1) it is convenient to introduce the support function
H :Mn×n

sym → R of K defined by
H(ξ) = sup

ζ∈K
ξ : ζ . (2.2)

H is convex and positively homogeneous of degree one.
For every µ ∈ Mb(Ω ∪ Γ0;Mn×n

sym ), let µ/|µ| be the Radon-Nikodym derivative of µ with
respect to its total variation |µ| . According to the general theory of convex functions of measures,
we introduce the nonnegative Radon measure H(µ) ∈ Mb(Ω ∪ Γ0) defined by

H(µ)(B) =
∫

B

H

(
µ

|µ|
)

d|µ| (2.3)

for every Borel set B ⊂ Ω ∪ Γ0 . Finally we consider the functional H : Mb(Ω ∪ Γ0;Mn×n
sym ) → R

defined by
H(µ) := H(µ)(Ω ∪ Γ0) . (2.4)
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We refer to [GS64] and [Tem85, Chapter II, Section 4] for the properties of H(µ) and H(µ).

The data of the problem. Let us fix a time interval [0, T ] . We assume that the body force f ,
the surface force g and the prescribed boundary displacement w satisfy the following assumptions:

f ∈ AC([0, T ];Ln(Ω;Rn)),
g ∈ AC([0, T ];L∞(Γ1;Rn)),
w ∈ AC([0, T ];H1(Ω;Rn)).

(2.5)

Stress and strain. For a given displacement u ∈ BD(Ω) and a boundary datum w ∈ H1(Ω;Rn),
the elastic and plastic strains e ∈ L2(Ω;Mn×n

sym ) and p ∈ Mb(Ω ∪ Γ0;Mn×n
sym ) satisfy the relation

Eu = e + p in Ω, (2.6)

p = (w − u)¯ νHn−1 on Γ0, (2.7)

so that e = Eau− pa a.e. on Ω and ps = Esu on Ω. The stress σ ∈ L2(Ω;Mn×n
sym ) is defined by

σ := Ce. (2.8)

The stored elastic energy Q : L2(Ω;Mn×n
sym ) → R is given by

Q(e) =
1
2

∫

Ω

Ce : e dx =
1
2

∫

Ω

σ : e dx.

For a w ∈ H1(Ω;Rn), the set of admissible displacements for the boundary datum w on Γ0 is
denoted by A(w) and it is defined as:

A(w) :=
{

(u, e, p) ∈ BD(Ω)×L2(Ω;Mn×n
sym )×Mb(Ω ∪ Γ0;Mn×n

sym ) : (2.6), (2.7) hold
}

. (2.9)

The space ΠΓ0(Ω) of admissible plastic strains is the set of all p ∈ Mb(Ω∪Γ0;Mn×n
sym ) for which

there exist u ∈ BD(Ω), w ∈ H1(Ω,Rn) and e ∈ L2(Ω;Mn×n
sym ), such that (u, e, p) ∈ A(w).

The following lemma, that can be proved as in [DDM06, Lemma 2.1] shows, that the multi-
valued map w 7→ A(w) is closed.

Lemma 2.2.1. Let wk ∈ H1(Ω;Rn) and let (uk, ek, pk) ∈ A(wk) . If

uk
∗
⇀ u∞ weakly∗ in BD(Ω), ek ⇀ e∞ weakly in L2(Ω;Mn×n

sym ),

pk
∗
⇀ p∞ weakly∗ in Mb(Ω ∪ Γ0;Mn×n

sym ), wk ⇀ w∞ weakly in H1(Rn;Rn),

then (u∞, e∞, p∞) ∈ A(w∞) .

The traces of the stress. If σ ∈ L∞(Ω;Mn×n
sym ) and div σ ∈ Ln(Ω;Rn), then one can define a

distribution [σν] on ∂Ω by

〈[σν]|ψ〉 =
∫

Ω

div σ · ψ dx +
∫

Ω

σ : Eψ dx (2.10)
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for ψ ∈ W 1,1(Ω;Rn). By Gagliardo’s extension result [Gag05, Theorem 1.II], it is easy to see that
[σν] ∈ L∞(∂Ω;Rn) and that

[σkν] ∗
⇀ [σν] weakly∗ in L∞(∂Ω;Rn), (2.11)

whenever σk
∗
⇀ σ weakly∗ in L∞(Ω;Mn×n

sym ) and div σk ⇀ div σ weakly in Ln(Ω;Rn).

Uniform safe-load condition. We assume that there exist a function % in the space AC([0, T ];
L∞(Ω;Mn×n

sym )) and a compact set K0 ⊂ intK , such that for every t ∈ [0, T ]

div %(t) = −f(t) in Ω, [%(t)ν] = g(t) on Γ1, %(t, x) ∈ K0 in Ω. (2.12)

2.3 Stress-strain duality

In this section we develop the notion of duality between the stress and the plastic part of the strain.
We begin with the definition and properties of the duality between stress and strain in the spirit
of [KT83], where only the deviatoric part of the stress is bounded, and [Anz83], where a similar
problem is studied in BV (Ω).

In the sequel we will make use of the following space

Σ(Ω) = {σ ∈ L∞(Ω;Mn×n
sym ) : div σ ∈ Ln(Ω;Rn)}.

2.3.1 Duality between stress and strain

For every u ∈ BD(Ω) and σ ∈ Σ(Ω) we can define a distribution [σ : Eu] on Ω by

〈[σ : Eu]|ϕ〉 = −
∫

Ω

ϕu · div σ dx−
∫

Ω

σ : (u¯∇ϕ) dx (2.13)

for every ϕ ∈ C∞c (Ω). Arguing as in [KT83, Theorem 3.2] one can prove that the distribution
[σ : Eu] is a bounded measure on Ω and its variation satisfies

|[σ : Eu]| ≤ ‖σ‖∞ |Eu| in Mb(Ω). (2.14)

Moreover [Anz84, Corollary 3.2], with obvious changes, implies that

[σ : Eu]a = σ : Eau a.e. in Ω. (2.15)

From the definition (2.13) it follows that

[ψ σ : Eu] = ψ[σ : Eu] in Mb(Ω) (2.16)

for every ψ ∈ C1(Ω).
We define the measure [σ : Esu] on Ω by putting

[σ : Esu] := [σ : Eu]s = [σ : Eu]− σ : Eau. (2.17)

Inequality (2.14) yields
|[σ : Esu]| ≤ ‖σ‖∞ |Esu| in Mb(Ω). (2.18)
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Remark 2.3.1. This inequality implies that [σ1 : Esu1] = [σ2 : Esu2] in Mb(Ω) whenever σ1 = σ2

a.e. in Ω and Esu1 = Esu2 .

As in [KT83, Theorem 3.2] one can prove the following stability property: if

σk
∗
⇀ σ weakly∗ in L∞(Ω;Mn×n

sym ),

div σk ⇀ div σ weakly in Ln(Ω;Rn),

then for every u ∈ BD(Ω)

[σk : Eu] ∗
⇀ [σ : Eu] and [σk : Esu] ∗

⇀ [σ : Esu] weakly∗ in (Cb(Ω))′

that is, for each bounded continuous function ϕ : Ω → R one has
∫

Ω

ϕd[σk : Eu] →
∫

Ω

ϕd[σ : Eu],
∫

Ω

ϕd[σk : Esu] →
∫

Ω

ϕd[σ : Esu]. (2.19)

2.3.2 Duality between stress and plastic strain

Given σ ∈ Σ(Ω) and p ∈ ΠΓ0(Ω), fix u ∈ BD(Ω), e ∈ L2(Ω;Mn×n
sym ) and w ∈ H1(Ω;Rn),

satisfying (2.6) and (2.7). Then we define a measure [σ : p] ∈ Mb(Ω ∪ Γ0) by setting

[σ : p] := σ : pa + [σ : Esu] = [σ : Eu]− σ : e on Ω,

[σ : p] := [σν] · (w − u)Hn−1 on Γ0,

so that
∫

Ω∪Γ0

ϕ d[σ : p] =
∫

Ω

ϕd[σ : Eu]−
∫

Ω

ϕσ : e dx +
∫

Γ0

ϕ [σν] · (w − u) dHn−1 (2.20)

for every ϕ ∈ Cb(Ω ∪ Γ0), the space of bounded continuous functions on Ω ∪ Γ0 . In this case
Remark 2.3.1 shows that the measure [σ : p] is well defined, that is, it does not depend upon the
particular choice of u, e and w .

It follows from the definition that

[σ : p]a = σ : pa a.e. on Ω, [σ : p]s = [σ : Esu] in Mb(Ω)

and

|[σ : p]| ≤ ‖σ‖∞|p| in Mb(Ω ∪ Γ0), |[σ : p]s| ≤ ‖σ‖∞|ps| in Mb(Ω ∪ Γ0). (2.21)

Moreover (2.16) implies that

[ψσ : p] = ψ[σ : p] in Mb(Ω ∪ Γ0)

for every ψ ∈ C1(Ω;Mn×n
sym ) and using the definitions one can deduce that

∫

Ω∪Γ0

ϕ d[σ : p] =
∫

Ω∪Γ0

ϕσ dp (2.22)
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for every σ ∈ C1(Ω;Mn×n
sym ) and every ϕ ∈ C1(Ω). By (2.21) we deduce, that (2.22) holds for all

σ ∈ C(Ω;Mn×n
sym ) and ϕ ∈ C(Ω). Therefore for every σ ∈ C(Ω;Mn×n

sym ) and p ∈ ΠΓ0(Ω) we have

[σ : p] = σ : p in Mb(Ω ∪ Γ0),

where the right-hand side denotes the measure defined by

(σ : p)(B) =
∫

B

σij dpij

for every Borel set B ⊂ Ω ∪ Γ0 .
Also it is easy to see that the relation

[σ : p] = (σ : p) · Ln in Mb(Ω)

holds in the case σ, p ∈ L2(Ω;Mn×n
sym ).

It follows from the definition and from (2.11) and (2.19) that

[σk : p] ∗
⇀ [σ : p] weakly∗ in (Cb(Ω ∪ Γ0))′ (2.23)

whenever σk
∗
⇀ σ weakly∗ in L∞(Ω;Mn×n

sym ) and div σk ⇀ div σ weakly in Ln(Ω;Rn).
Finally, for every σ ∈ Σ(Ω) and p ∈ ΠΓ0(Ω), we define

〈σ|p〉Σ,Π : = [σ : p](Ω ∪ Γ0) =

=
∫

Ω

σ : pa dx + [σ : Esu](Ω) +
∫

Γ0

[σν] · (w − u) dHn−1 =

= [σ : Eu](Ω)−
∫

Ω

σ : e dx +
∫

Γ0

[σν] · (w − u) dHn−1.

where u ∈ BD(Ω), e ∈ L2(Ω;Mn×n
sym ) and w ∈ H1(Ω;Rn) satisfy (2.6) and (2.7).

Let us now prove the integration by parts formula for stresses and displacements:

Proposition 2.3.2. Let σ ∈ Σ(Ω), w ∈ H1(Ω;Rn), f ∈ Ln(Ω;Rn), g ∈ L∞(Γ1;Rn) and let
(u, e, p) ∈ A(w) . Assume that −div σ = f in Ω and [σν] = g on Γ1 . Then

∫

Ω∪Γ0

ϕd[σ : p] +
∫

Ω

ϕσ : (e− Ew) dx+

+
∫

Ω

σ :
(
(u− w)¯∇ϕ

)
dx =

=
∫

Ω

ϕf · (u− w) dx +
∫

Γ1

ϕg · (u− w) dHn−1

(2.24)

for every ϕ ∈ C1(Ω) .

Proof: First, let us establish the following formula for σ ∈ Σ(Ω), v ∈ BD(Ω) and ϕ ∈ C1(Ω):
∫

∂Ω

ϕ [σν] · v dHn−1 =
∫

Ω

ϕdiv σ · v dx +
∫

Ω

σ : (v ¯∇ϕ) dx +
∫

Ω

ϕ d[σ : Ev]. (2.25)

Arguing as in [DDM06, Lemma 2.3] we can find a sequence σk in C∞(Ω), such that

σk → σ strongly in Lp(Ω;Mn×n
sym ), div σk → div σ strongly in Ln(Ω;Rn)
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for every 1 ≤ p < ∞ . By the integration by parts formula for BD(Ω), formula (2.25) holds for
every σk . The left-hand side converges to that of (2.25) by (2.11), while the convergence of the
right-hand side follows from (2.19). This proves (2.25).

By the assumptions of the theorem, for v = u− w ∈ BD(Ω) formula (2.25) takes the form:

−
∫

Ω

ϕf · (u− w) dx +
∫

Ω

σ :
(

(u− w)¯∇ϕ

)
dx +

∫

Ω

ϕd[σ : E(u− w)] =

=
∫

Γ0

ϕ [σν] · (u− w) dHn−1 +
∫

Γ1

ϕg · (u− w) dHn−1.
(2.26)

On the other hand, (2.20) gives
∫

Ω∪Γ0

ϕd[σ : p] +
∫

Ω

ϕσ : (e− Ew) dx +
∫

Ω

σ :
(

(u− w)¯∇ϕ

)
dx =

=
∫

Ω

ϕd[σ : E(u− w)] +
∫

Ω

σ :
(

(u− w)¯∇ϕ

)
dx−

∫

Γ0

ϕ [σν] · (u− w) dHn−1.

Thus, the last relation together with (2.26) yields (2.24). ¤
Let

K(Ω) := {σ ∈ L∞(Ω;Mn×n
sym ) : σ(x) ∈ K for a.e. x ∈ Ω}.

The following proposition can pe proved as in [DDM06, Proposition 2.2].

Proposition 2.3.3. Let p ∈ ΠΓ0(Ω) . Then

H(p) ≥ [σ : p] in Mb(Ω ∪ Γ0) (2.27)

for every σ ∈ Σ(Ω) ∩ K(Ω) , and

H(p) = sup{〈σ|p〉 : σ ∈ Σ(Ω) ∩ K(Ω)}. (2.28)

Moreover, if g ∈ L∞(Γ1;Rn) and there exists % ∈ Σ(Ω) ∩ K(Ω) such that [%ν] = g on Γ1 , then

H(p) = sup{〈σ|p〉 : σ ∈ Σ(Ω) ∩ K(Ω), [σν] = g on Γ1}. (2.29)

2.4 Quasistatic evolution

2.4.1 Definition and existence result

From assumptions (2.5) it follows, that for the functional F(t) ∈ BD(Ω)′ , defined by

〈F(t)|u〉 =
∫

Ω

f(t)u dx +
∫

Γ1

g(t)u, (2.30)

the weak∗ limit

Ḟ(t) = w∗- lim
s→t

F(s)−F(t)
s− t

exists in BD(Ω)′ for a.e. t ∈ [0, T ] , and that

〈Ḟ(t)|u〉 =
∫

Ω

ḟ(t)u dx +
∫

Γ1

ġ(t)u. (2.31)
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Therefore the function t 7→ 〈Ḟ(t)|u(t)〉 belongs to L1([0, T ]) whenever t 7→ u(t) is in L∞([0, T ];
BD(Ω)).

A function p : [0, T ] → Mb(Ω ∪ Γ0;Mn×n
sym ) will be regarded as a function defined on the time

interval [0, T ] with values in the dual of the separable Banach space C0(Ω∪Γ0;Mn×n
sym ). Its variation

V and H−variation DH are defined as

V(p; s, t) = sup
{ N∑

j=1

‖p(tj)− p(tj−1)‖1 : s = t0 ≤ · · · ≤ tN = t, N ∈ N
}

,

DH(p; s, t) = sup
{ N∑

j=1

H(p(tj)− p(tj−1)) : s = t0 ≤ · · · ≤ tN = t, N ∈ N
}

.

The notation DH for the H -variation is motivated by the more standard case in which the
set K of admissible stresses contains the origin in its interior. In this case, H is positive and the
H -variation of p has the physical interpretation of plastic dissipation in the time interval (s, t).

Next we give a variational formulation of the quasistatic problem.

Definition 2.4.1. A quasistatic evolution is a function t 7→ (u(t), e(t), p(t)) from [0, T ] into
BD(Ω)× L2(Ω;Mn×n

sym )×Mb(Ω ∪ Γ0;Mn×n
sym ) which satisfies the following conditions:

(qs1) global stability: for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)) and

Q(e(t))− 〈F(t)|u(t)〉 ≤ Q(η) +H(q − p(t))− 〈F(t)|v〉 (2.32)

for every (v, η, q) ∈ A(0).

(qs2) energy balance: the function t 7→ p(t) from [0, T ] into Mb(Ω ∪ Γ0;Mn×n
sym ) has bounded

variation and for every t ∈ [0, T ]

Q(e(t)) +DH(p; 0, t)− 〈F(t)|u(t)〉 = Q(e(0)) + 〈F(0)|u(0)〉+
+

∫ t

0

(
〈σ(s)|Eẇ(s)〉 − 〈F(s)|ẇ(s)〉 − 〈Ḟ(s)|u(s)〉

)
ds,

(2.33)

where σ(t) = Ce(t).

Remark 2.4.2. Since the function t 7→ p(t) from [0, T ] into Mb(Ω ∪ Γ0;Mn×n
sym ) has bounded

variation, it is bounded and the set of its discontinuity points (in the strong topology) is at most
countable. As the estimates of [DDM06, Theorem 3.8] are true also in this case, the same continuity
property holds for t 7→ e(t) and t 7→ σ(t) from [0, T ] into L2(Ω;Mn×n

sym ) and for t 7→ u(t) from
[0, T ] into BD(Ω). Therefore

e, σ ∈ L∞([0, T ]; L2(Ω;Mn×n
sym )) and u ∈ L∞([0, T ];BD(Ω)).

Finally, as ẇ ∈ L1([0, T ]; W 1,2(Ω;Rn)) and Ėw ∈ L1([0, T ]; L2(Ω;Mn×n
sym )), the integral in the

right-hand side of (2.33) is well-defined.

Theorem 2.4.3. Assume (2.5) and (2.12). If (u0, e0, p0) ∈ A(w(0)) satisfy the stability condition

Q(e(0))− 〈F(0)|u0〉 ≤ Q(e) +H(p− p0)− 〈F(0)|u〉
for every (u, e, p) ∈ A(w(0)) , then there exists a quasistatic evolution t 7→ (u(t), e(t), p(t)) such
that u(0) = u0, e(0) = e0, p(0) = p0 .
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Proof: The proof can be obtained by time discretization. For every k ∈ N we fix a subdivision
0 = t0k < t1k < · · · < tk−1

k < tkk = T, satisfying (4.11) of [DDM06]. At each time step we solve
the incremental minimum problem (4.12) of [DDM06], adopting the definitions of A(w) and H
of the present paper. Then we define the piecewise constant interpolations uk(t), ek(t), pk(t),
σk(t) as in (4.15) of [DDM06], and we prove that for every t ∈ [0, T ] uk(t) ∗

⇀ u(t) weakly∗ in
BD(Ω), ek(t) ⇀ e(t) weakly in L2(Ω;Mn×n

sym ) and pk(t) ∗
⇀ p(t) weakly∗ in Mb(Ω ∪ Γ0;Mn×n

D ),
where t 7→ (u(t), e(t), p(t)) is a quasistatic evolution.

The details can be recovered by repeating the arguments of [DDM06, Section 4], with obvious
modifications due to the new definitions introduced in Section 3 of the present paper. ¤

The next theorem shows, that the convergence of elastic strains and stresses takes place in the
strong topology of L2(Ω;Mn×n

sym ). See [DDM06, Theorem 4.8] for the proof.

Theorem 2.4.4. Assume that

pk(t) ∗
⇀ p(t) weakly∗ in Mb(Ω ∪ Γ0;Mn×n

sym ) (2.34)

for every t ∈ [0, T ] . Then ek(t) → e(t) and σk(t) → σ(t) strongly in L2(Ω;Mn×n
sym ) . Moreover,

lim
k

∑

0<tr
k≤t

{
H(pk(trk)− pk(tr−1

k ))− 〈%(trk)|pk(trk)− pk(tr−1
k )〉

}
=

= DH(p; 0, t)− 〈%(t)|p(t)〉+ 〈%(0)|p(0)〉+
∫ t

0

〈%̇(s)|p(s)〉 ds

for every t ∈ [0, T ] .

2.4.2 Regularity and uniqueness

The next statement shows that the quasistatic evolution is absolutely continuous with respect to
time. We refer to [DDM06, Theorem 5.2] for the proof.

Theorem 2.4.5. Let t 7→ (u(t), e(t), p(t)) be a quasistatic evolution. Then

e ∈ AC([0, T ];L2(Ω;Mn×n
sym )), p ∈ AC([0, T ];Mb(Ω ∪ Γ0;Mn×n

sym ), u ∈ AC([0, T ];BD(Ω)).

Moreover, for a.e. t ∈ [0, T ]

‖ė(t)‖2 ≤ C1(‖%̇(t)‖∞ + ‖Eẇ(t)‖2), (2.35)

‖ṗ(t)‖1 ≤ C2(‖%̇(t)‖∞ + ‖Eẇ(t)‖2), (2.36)

‖Eu̇(t)‖1 ≤ C1(‖%̇(t)‖∞ + ‖Eẇ(t)‖2), (2.37)

‖u̇(t)‖1 ≤ C1(‖%̇(t)‖∞ + ‖Eẇ(t)‖2 + ‖ẇ(t)‖2). (2.38)

Remark 2.4.6. Assume that u ∈ AC([0, T ];BD(Ω)), e ∈ AC([0, T ]; L2(ΩMn×n
sym )), and p ∈

AC([0, T ];Mb(Ω ∪ Γ0);Mn×n
sym ). Assume that (u(t), e(t), p(t)) ∈ A(w(t)) for every t ∈ [0, T ] . Then

(u̇(t), ė(t), ṗ(t)) ∈ A(ẇ(t)) for a.e. t ∈ [0, T ] . Indeed, it is enough to apply Lemma 2.2.1 to the
difference quotients.

As in [DDM06, Theorem 5.9] we can prove that t 7→ e(t) (and, consequently, t 7→ σ(t)) is
uniquely determined by its initial condition.

Theorem 2.4.7. Let t 7→ (u(t), e(t), p(t)) and t 7→ (v(t), η(t), q(t)) be two quasistatic evolutions
and let σ(t) := Ce(t) and τ(t) := Cη(t) . If e(0) = η(0) , then e(t) = η(t) for every t ∈ [0, T ] .
Equivalently, if σ(0) = τ(0) , then σ(t) = τ(t) for every t ∈ [0, T ] .



2.4. QUASISTATIC EVOLUTION 33

2.4.3 Equivalent formulations in rate form

Let t 7→ (u(t), e(t), p(t)) be a quasistatic evolution. Suppose for now that ṗ(t) ∈ L2(Ω;Mn×n
sym ).

In this section we want to prove that

ṗ(t, x) ∈ NK(σ(t, x)) for a.e.x ∈ Ω, (2.39)

which represents the classical formulation of the flow rule. By the definition of NK it is easy to
see that (2.39) is equivalent to saying that

〈σ(t)− τ(t)|ṗ(t)〉 ≥ 0 (2.40)

for every τ ∈ Σ(Ω) ∩ K(Ω) with [τ ν] = g(t) on Γ1 . Indeed, the implication (2.39)⇒(2.40) is
straightforward, while the converse one is obtained by considering the test functions of the form
τ = ϕξ + (1− ϕ)σ , with a cut-off ϕ ∈ C∞c (Ω), 0 ≤ ϕ ≤ 1 and arbitrary ξ ∈ K .

Note, that the variational inequality (2.40) makes sense even if one considers the duality between
Σ(Ω) and ΠΓ0(Ω), defined in Section 2.3, since ṗ(t) ∈ ΠΓ0(Ω) by Remark 2.4.6. We will regard
(2.40) as the weak formulation of the inclusion (2.39) when ṗ(t) ∈ Mb(Ω ∪ Γ0;Mn×n

sym ).
The following theorem collects three different sets of conditions, including (2.40) and expressed

in terms of the time derivatives ṗ(t), ė(t), and u̇(t), which are equivalent to the conditions con-
sidered in Definition 2.4.1. For its proof we refer to [DDM06, Theorem 6.1], with obvious modifi-
cations.

Theorem 2.4.8. Let (u, e, p) : [0, T ] → BD(Ω) × L2(Ω;Mn×n
sym ) × Mb(Ω ∪ Γ0;Mn×n

sym ) and let
σ(t) = Ce(t) . Then the following conditions are equivalent:

(a) t 7→ (u(t), e(t), p(t)) is a quasistatic evolution;

(b) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(b1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)), σ(t) ∈ Σ(Ω)∩K(Ω) , −div σ(t) =
f(t) in Ω , and [σ(t) ν] = g(t) on Γ1 ,

(b2) for a.e. t ∈ [0, T ] we have
〈σ(t)− τ |ṗ(t)〉 ≥ 0

for every τ ∈ Σ(Ω) ∩ K(Ω) with [τ ν] = g(t) on Γ1 ;

(c) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(c1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)), σ(t) ∈ Σ(Ω) ∩ K(Ω) ,
−div σ(t) = f(t) in Ω , and [σ(t) ν] = g(t) on Γ1 ,

(c2) for a.e. t ∈ [0, T ] we have

H(ṗ(t)) = 〈σ(t)|ṗ(t)〉;
Remark 2.4.9. By Proposition 2.3.3 the measure H(ṗ(t))− [σ(t) : ṗ(t)] is nonnegative on Ω∪Γ0 ,
so that (b2) implies that

H(ṗ(t)) = [σ(t) : ṗ(t)] on Ω ∪ Γ0. (2.41)

Let us return to the classical formulation of the flow rule, which makes sense for ṗ(t) ∈
L2(Ω;Mn×n

sym ). It can be written equivalently in the form

ṗ(t, x)
|ṗ(t, x)| ∈ NK(σ(t, x)) for Ln − a.e. x ∈ {|ṗ(t)| > 0}. (2.42)
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When ṗ(t) ∈ Mb(Ω∪ Γ0;Mn×n
sym ), we can consider the Radon-Nikodym derivative ṗ(t)/|ṗ(t)| of

ṗ(t) with respect to its variation |ṗ(t)| , which is a function defined |ṗ(t)|-a.e. on Ω ∪ Γ0 .
We notice that

ṗ(t)
|ṗ(t)| (x) =

ṗ(t, x)
|ṗ(t, x)| for Ln − a.e. x ∈ {|ṗ(t)| > 0}

when p ∈ L2(Ω;Mn×n
sym ). Unfortunately, when p ∈ Mb(Ω∪Γ0;Mn×n

sym ) one cannot prove the inclusion

ṗ(t)
|ṗ(t)| (x) ∈ NK(σ(t, x)), (2.43)

that is the natural generalization of (2.42), as a pointwise formulation of the flow rule, since its
left-hand side is defined |ṗ(t)| -a.e. on Ω ∪ Γ0 , while its right-hand side is defined only Ln -a.e. on
Ω. In the following Theorem this difficulty is overcome by introducing a representative σ̂(t) of
σ(t), which is defined ṗ(t)-a.e. on Ω ∪ Γ0 . For the proof see [DDM06, Theorem 6.4].

Theorem 2.4.10. Let (u, e, p) : [0, T ] → BD(Ω)×L2(Ω;Mn×n
sym )×Mb(Ω∪Γ0;Mn×n

sym ), σ(t) = Ce(t)
and let µ(t) = Ln + |ṗ(t)| . Then t 7→ (u(t), e(t), p(t)) is a quasistatic evolution if and only if

(d) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(d1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)), σ(t) ∈ Σ(Ω)∪K(Ω) , −div σ(t) =
f(t) on Ω , and [σ(t)ν] = g(t) on Γ1 ,

(d2) for a.e. t ∈ [0, T ] there exists σ̂(t) ∈ L∞µ(t)(Ω ∪ Γ0;Mn×n
sym ) such that

σ̂(t) = σ(t) Ln − a.e. on Ω, (2.44)

[σ(t) : ṗ(t)] = σ̂(t) :
ṗ(t)
|ṗ(t)| |ṗ(t)| in Mb(Ω ∪ Γ0;Mn×n

sym ), (2.45)

ṗ(t)
|ṗ(t)| (x) ∈ NK(σ̂(t, x)) for |ṗ(t)| − a.e. x ∈ Ω ∪ Γ0. (2.46)

For every r > 0 and every t ∈ [0, T ] we consider the function σr(t) ∈ C(Ω;Mn×n
sym ) defined by

σr(t, x) =
1

Ln(B(x, r) ∩ Ω)

∫

B(x,r)∩Ω

σ(t, y) dy. (2.47)

When K is strictly convex, the previous result can be improved by making the definition of σ̂
more precise. We refer to [DDM06, Theorem 6.6] for the proof.

Theorem 2.4.11. Assume that K is strictly convex. Let t 7→ (u(t), e(t), p(t)) be a quasistatic
evolution, let µ(t) = Ln + |ṗ(t)| , let σ(t) = Ce(t) , and let σr(t) be defined by (2.47) . Then
σr(t) → σ̂(t) strongly in L1

µ(t)(Ω;Mn×n
sym ) for a.e. t ∈ [0, T ] , where σ̂(t) satisfies (2.44)-(2.46).



Chapter 3

Quasistatic evolution in the theory
of perfectly elasto-plastic plates:
existence of a weak solution.

In this chapter we combine

3.1 Introduction

In this paper we study the quasistatic evolution of clamped perfectly elasto-plastic plates under
the action of a time-dependent transversal body force. The reference configuration is a bounded
open set Ω ⊂ R2 with Lipschitz boundary and the elastic domain K is a bounded closed convex
subset of M2×2

sym (the space of symmetric 2× 2 matrices) with nonempty interior, whose boundary
∂K plays the role of the yield surface.

Given a scalar valued function f(t, x) defined for t ∈ [0, T ] and x ∈ Ω, which represents
the transversal body force, the strong formulation of the evolution problem consists in finding a
scalar valued function u(t, x) (the vertical displacement) and three matrix-valued functions e(t, x),
p(t, x) and M(t, x) (the elastic and plastic curvatures and the bending moments) such that for
every t ∈ [0, T ] , for every x ∈ Ω the following conditions hold:

1. kinematic admissibility: D2u(t, x) = e(t, x) + p(t, x) in Ω,
u(t, x) = 0, ∂u

∂ν (t, x) = 0 on ∂Ω

2. constitutive equation: M(t, x) = C e(t, x),

3. equilibrium: div div M(t, x) = f(t, x) in Ω,

4. moment constraint: M(t, x) ∈ K ,

5. associative flow rule: ṗ(t, x) ∈ NK(M(t, x)),

where ν(x) is the outer unit normal to ∂Ω and C is the rigidity tensor. The symbol NK(ξ)
denotes the normal cone to the set K at the point ξ in the sense of convex analysis. The problem
is supplemented by initial conditions at time t = 0.

35
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The boundary conditions u = 0 and ∂u
∂ν = 0 on ∂Ω reflect the mechanical assumption the

plate is clamped.
The existence of weak solutions for variational problems in the theory of perfect plasticity was

extensively studied during last decades (see, for example, [Anz84], [AG82], [DDM06], [Dem89],
[FS00], [Ser94], [Suq81], [Tem85]). In this paper we develop an energy approach to the existence
of weak solutions of this problem (Definition (3.4.1) below), which turns out to be particularly
useful for studying their further differential properties (see Ref. [Dem08b]). The particular case
of perfectly elasto-plastic plates has been studied by many authors, subject to various boundary
conditions (see, for example, [BK00], [Dem83], [Tem85]). We examine here the quasistatic analogue
of static problem, studied in [Dem83], [Ser93a], [Tem85].

The aim of this paper is to develop a new approach to the existence of weak solution to problem
(1)-(5) (see Definition 3.4.1 below) in the spirit of the energy formulation of rate-independent
problems, studied in [Mie02]. The advantage of this general approach is twofold. On the one hand
it allows to obtain a weak formulation of the flow rule (5) in a measure-theoretic sense, on the
other hand it is crucial in the proof of further differentiability properties of M(t, x), that will be
obtained in [Dem08a].

As usually in the energy approach (see [DDD07], [DDM06]) we obtain the existence of solutions
by a time-discretization procedure: first, we consider a sequence of incremental minimum problems
and show that an appropriately constructed sequence of piecewise-constant approximations has a
bounded variation and satisfies the so-called discrete energy inequality. Then, by using a version of
Helly theorem, we extract a converging subsequence, whose limit satisfies (2)-(4), a relaxed form of
(1) and an an energy equality. These conditions are considered a weak formulation of the original
problem.

By construction this weak solution has bounded variation with respect to time. the energy
equality allows to prove that it is actually absolutely continuous.

At the end of the paper we follow the arguments of [DDM06] to investigate some fine pointwise
properties of the tensor of moments M and we prove a weak formulation of the flow rule (5).

This paper is the first step of a program of proving higher differentiability of the tensor of
moments M . In fact, the use of piecewise constant approximations constructed below will allow
us to use the results of [FS00], [Ser93a] for proving that we have not only the regularity with
respect to time (see Theorem (3.5.1) below)

M ∈ AC([0, T ]; L2(Ω;M2×2
sym)),

but actually we are able to say something about the spatial properties of M . Precisely, the
expected result is:

M ∈ L∞([0, T ];W 1,2
loc (Ω;M2×2

sym))

(see [Dem08b] for the analogous result in the case of Prandtl-Reuss perfect plasticity).
The paper is organized as follows: in Section 2 we state some preliminary notions and results.

Every single incremental problem is considered in details in Section 3. In Section 4 the definition
of a weak solution is given, and its existence is proved. Absolute continuity of weak solutions with
respect to time and the uniqueness of the tensor of moments are obtained in Section 5. Equivalent
definitions in rate form and some fine properties of the tensor of moments are discussed in Section
6.
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3.2 Preliminaries

The set of admissible moments

Let K be a closed convex set in M2×2
sym , such that BrK(0) ⊂ K ⊂ BRK(0) for some positive constants

rK and RK . The set K plays the role of a constraint on the tensor of bending moments. The
boundary ∂K is interpreted as the yield surface.
The set of admissible moments K(Ω) is defined as

K(Ω) =
{

M ∈ L2(Ω;M2×2
sym) : M(x) ∈ K for a.e. x ∈ Ω

}
.

The support function H :M2×2
sym → R of K is given by

H(m) := sup
M∈K

m : M

and satisfies
rk|ξ| ≤ H(ξ) ≤ RK|ξ|, for all ξ ∈M2×2

sym.

For every µ ∈ Mb(Ω;M2×2
sym) we introduce the nonnegative Radon measure H(µ) ∈ Mb(Ω)

defined by

H(µ)(B) :=
∫

B

H(µ/|µ|) d|µ| for every Borel set B ⊂ Ω .

We consider the convex functional H(µ) : Mb(Ω;M2×2
sym) → R defined by the formula

H(µ) := H(µ)(Ω) =
∫

Ω

H(µ/|µ|) d|µ|.

As well-known (see, for example, [Tem85], Chapter II), H is lower semicontinuous on Mb(Ω;M2×2
sym)

and the following holds

H(µ) = sup
{
〈m,µ〉 : m ∈ C(Ω;M2×2

sym) ∩ K(Ω)
}

. (3.1)

The rigidity tensor

C is the rigidity tensor, considered as a symmetric positive definite linear operator C : M2×2
sym →

M2×2
sym . We introduce the quadratic form Q :M2×2

sym → [0, +∞) of C by putting

Q(ξ) :=
1
2
Cξ : ξ.

Thus, there exist two constants αC and βC with 0 < αC ≤ βC < +∞ , such that

αC|ξ|2 ≤ Q(ξ) ≤ βC|ξ|2. (3.2)

The stored elastic energy functional Q : L2(Ω;M2×2
sym) → R is given by

Q(e) =
∫

Ω

Q(e) dx =
1
2

∫

Ω

Ce : e dx. (3.3)
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3.2.1 Transversal body force

Suppose, that a transversal body force f : [0, T ] → L2(Ω) is given, such that f is absolutely
continuous as a map from [0, T ] in L2(Ω).

We also assume the uniform safe-load condition: there exists a function m1 : [0, T ] → L2(Ω;
M2×2

sym) and a constant α > 0, such that for every t ∈ [0, T ]

div div m1(t, x) = f in Ω

and m1(t, x) + ξ ∈ K for a.e. x ∈ Ω and for every ξ ∈M2×2
sym with |ξ| < α .

Concerning the regularity of t 7→ m1(t), we assume it to be absolutely continuous as a map
from [0, T ] into L2(Ω;M2×2

sym).

Kinematic admissibility

Now we give a definition of a kinematically admissible triple. Remark, that the first condition
is responsible for an additive decomposition, the second one reflects the boundary conditions for
u , while the third one is the relaxed form of the boundary conditions, which are typical in the
variational theory of functionals with linear growth.

Definition 3.2.1. A triple (u, e, p) ∈ BH(Ω)×L2(Ω;M2×2
sym)×Mb(Ω;M2×2

sym) is called kinematically
admissible, if the following conditions hold

D2u = e + p in Ω,

u = 0 on ∂Ω,

p = −∇u¯ νHn−1 on ∂Ω.

Definition 3.2.2. The space Π(Ω) of admissible plastic curvatures is defined as the set of all
p ∈ Mb(Ω;M2×2

sym) for which there exist u ∈ BH(Ω) and e ∈ L2(Ω;M2×2
sym), such that the triple

(u, e, p) is kinematically admissible.

It is easy to see that the definition of a kinematically admissible triple is stable under weak
convergence in the appropriate topologies.

Lemma 3.2.3. Let a triple (uk, ek, pk) be kinematically admissible. Assume that uk
∗
⇀ u∞ in

BH(Ω) , ek ⇀ e∞ in L2(Ω;M2×2
sym) and pk

∗
⇀ p∞ in Mb(Ω;M2×2

sym) . Then (u∞, e∞, p∞) is also
kinematically admissible.

3.2.2 Moments and curvatures

Let us introduce the set:

S(Ω) =
{

M ∈ L2(Ω;M2×2
sym) : div div M ∈ L2(Ω)

}
. (3.4)

We note, that the following approximation result holds for the functions from S(Ω). Remark,
that the proof presented in [Tem85], Chapter III, contains an error. A correct proof was proposed
by G. Seregin ([Ser]), and we present it here for completeness.
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Lemma 3.2.4. Let Ω be a bounded Lipshitz domain in R2 and let M ∈ S(Ω)∩K(Ω) . Then there
exists a sequence Mk ∈ C∞(Ω;M2×2

sym) ∩ K(Ω) satisfying

Mk → M in Lp(Ω;M2×2
sym), for any p < ∞,

div div Mk → div div M in L2(Ω),
‖Mk‖L∞ ≤ C ‖M‖L∞ .

(3.5)

Proof: Denote the space L2(Ω;M2×2
sym×R) of vector-valued functions by L . Let D be a subspace

of L2(Ω) such that (m, div div m) ∈ L . Let D0 be the closure of C∞(Ω;M2×2
sym) in the norm of

the space L .
Assume that there exists an element (m∗, div div m∗) ∈ D \D0 . As D0 is closed and convex

in L , by Hahn-Banach theorem there exists a pair (u1, u) ∈ L2(Ω; M2×2
sym)× L2(Ω,R) (i.e., simply

from L) such that
∫

Ω

(m∗ : u1 + udiv div m∗) dx = 1

and ∫

Ω

(m : u1 + udiv div m) dx = 0

for any m ∈ D0 . The last identity shows that u1 = u. So, u ∈ W 2
2 (Ω) and u has usual traces on

∂Ω (u and ν · ∇u), where ν is the normal to ∂Ω. Those traces of u are zero that follows from
the second identity. So, if the domain Ω is not bad, for example Lipshitz, u belongs to the closure
of C∞0 (Ω) in W 2

2 (Ω) (see [Maz85]). This means that there exist function v ∈ C∞0 (Ω) such that
∫

Ω

(m∗ : ∇2v + v div div m∗) dx > 1/2

The left hand side vanishes by definition of div div , which leads to a contradiction. ¤

Traces of the bending moments

For M ∈ S(Ω) one can define distributions Mijνiνj and b0(M) being the elements of H−1/2(∂Ω)
and H−3/2(∂Ω) respectively as

〈b0(M), v〉H−3/2;H3/2 − 〈Mijνiνj ,
∂v

∂ν
〉H−1/2;H1/2 =

=
∫

Ω

v div div M dx−
∫

Ω

D2v : M dx

(3.6)

for v ∈ W 2,2(Ω). To see this it is enough to observe, that H3/2(∂Ω)×H1/2(∂Ω) is precisely the
space of traces and of normal derivatives of functions from W 2,2(Ω).

Remark 3.2.5. Arguing, as in [KT83], Lemma 2.4, one easily shows that Mijνiνj ∈ L∞(∂Ω)
whenever M ∈ S(Ω) ∩ L∞(Ω;M2×2

sym), and the estimate

‖Mijνiνj‖∞ ≤ C(Ω)‖M‖∞
holds.
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Moments-curvatures duality

Below we introduce an analogue of the duality between bending moments and plastic curvatures
(defined in (3.8)), following the scheme, proposed in [DDM06] for studying weak solutions of
quasistatic problems in perfect plasticity. As usually, the definition is constructed in a way to
provide immediately the integration by parts formula (Proposition 3.2.8).

First of all, we recall the following construction: for u ∈ BH(Ω) and M ∈ S(Ω) we define a
distribution [D2u : M ] by

〈[D2u : M ], ϕ〉 =
∫

Ω

u ϕ div div M dx− 2
∫

Ω

(∇u⊗∇ϕ) : M dx−
∫

Ω

u(D2ϕ : M) dx

for every ϕ ∈ C∞c (Ω). The next statement (see [Dem89, Proposition 2.3]) describes some of its
properties.

Proposition 3.2.6. Let M ∈ S(Ω)∩L∞(Ω;M2×2
sym), u ∈ BH(Ω) and [D2u : M ] be the distribution

defined above. Then [D2u : M ] can be extended to a bounded measure on Ω satisfying

|[D2u : M ]| ≤ |D2u| ‖M‖L∞ in Mb(Ω).

Moreover the following integration by parts formula holds
∫

Ω

ϕ d [D2u : M ] =

=
∫

Ω

uϕ div div M dx− 2
∫

Ω

(∇u⊗∇ϕ) : M dx−
∫

Ω

u(D2ϕ : M) dx+

+
∫

∂Ω

Mijνiνj

[
ϕ

∂u

∂ν
+ u

∂ϕ

∂ν

]
dHn−1 −

∫

∂Ω

b0(M)uϕdHn−1,

(3.7)

for every ϕ ∈ C2(Ω) .

Note, that
[ψM : D2u] = ψ[M : D2u]

for every ψ ∈ C2(Ω) and as in [Anz84], Corollary 3.2, one can show, that the following holds:

[D2u : M ]a = D2ua : M a.e. in Ω.

We define the measure [M : p] ∈ Mb(Ω) by putting

[M : p] = M : pa + [M : D2u]s = [M : D2u]−M : e on Ω,

[M : p] = −∂u

∂ν
Mijνiνj dHn−1 on ∂Ω.

(3.8)

Thus, the following duality between S(Ω) and Π(Ω) is well defined

〈M |p〉 := [M : p](Ω). (3.9)

Then we have
|[M : p]| ≤ C|p| in Mb(Ω),

which implies, that the definition of the duality does not depend on a particular choice of u and
e .
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Remark 3.2.7. Given M ∈ C2(Ω;M2×2
sym) and an admissible triple (u, e, p), the following holds

∫

Ω

ϕ d[M : p] =: 〈[M : p]|ϕ〉 = 〈ϕM |p〉 :=
∫

Ω

ϕMij dpij ,

for every ϕ ∈ C2(Ω), where in both sides we have a duality pairing between Mb(Ω;M2×2
sym) and

M ∈ C(Ω;M2×2
sym). By the definition of p and [M : p] we are left to verify the equality of boundary

integrals ∫

∂Ω

ϕM : (∇u¯ ν) dHn−1 =
∫

∂Ω

ϕ
∂u

∂ν
Mikνiνk dHn−1.

In the following calculations τ(x) stands for the tangential vector to ∂Ω at the point x ∈ ∂Ω
∫

∂Ω

ϕM : (∇u¯ ν) dHn−1 =
∫

∂Ω

ϕ(Mν) · ∇u dHn−1 =

=
∫

∂Ω

ϕ(Mikνiνk)νju,j dHn−1 +
∫

∂Ω

ϕ(Mikνiτk)τju,j dHn−1 =

=
∫

∂Ω

ϕ(Mikνiνk)νju,j dHn−1 −
∫

∂Ω

u
∂

∂τ
(ϕMikνiτk) dHn−1 =

∫

∂Ω

ϕ
∂u

∂ν
Mikνiνk dHn−1,

as u = 0 on ∂Ω.

From the very definition of measure [M : p] and Proposition 3.2.6 we deduce the integration
by parts formula for M ∈ S(Ω) and displacements u ∈ BH(Ω), involving the elastic and plastic
curvatures e and p .

Proposition 3.2.8. Let M ∈ S(Ω) ∩ L∞(Ω;M2×2
sym) , f ∈ L2(Ω) and let (u, e, p) be kinematically

admissible. Assume that div div M = f on Ω . Then
∫

Ω

ϕ d[M : p] =

=
∫

Ω

uϕ f dx−
∫

Ω

ϕ (M : e) dx−
∫

Ω

u (D2ϕ : M) dx− 2
∫

Ω

(∇u⊗∇ϕ) : M dx
(3.10)

for every ϕ ∈ C2(Ω) . In particular,

[M : p](Ω) =
∫

Ω

u f dx−
∫

Ω

(M : e) dx. (3.11)

The following proposition makes the representation formula (3.1) more precise, expressing it
by means of duality (3.9).

Proposition 3.2.9. Let p ∈ Π(Ω) . Then

H(p) ≥ [M : p] in Mb(Ω) (3.12)

for every M ∈ S(Ω) ∩ K(Ω) , and

H(p) = sup{〈M |p〉 : M ∈ S(Ω) ∩ K(Ω)}. (3.13)
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Proof: Let M ∈ S(Ω) ∩ K(Ω). First, we will show that

〈H(p)|ϕ〉 ≥ 〈[M : p]|ϕ〉 (3.14)

for every ϕ ∈ C(Ω) with ϕ ≥ 0 on Ω. By Lemma 3.2.4 there exists a sequence Mk ∈ C∞(Ω;M2×2
sym)

∩K(Ω) such that (3.5) holds. From the very definition of convex functional of a measure and be
Remark 3.2.7 we have that

〈H(p)|ϕ〉 ≥ 〈[Mk : p]|ϕ〉. (3.15)

The integration by parts formula (3.7) and the convergence (3.5) permits us to pass to the limit
in the right-hand side, so that (3.12) is proved.

We remark, that in (3.1) one can restrict the set of test functions to C∞(Ω;M2×2
sym), which

implies (3.13). ¤

3.3 The minimum problem

In this section we show that each incremental problem has a solution, study the necessary conditions
for minimality, which turn out to be also sufficient, due to convexity of the problem, and prove
continuity estimates for the solutions.

Given p0 , to get the updated values u , e and p of displacement, elastic and plastic curvatures
we will solve the minimum problem

min
(u,e,p)

{Q(e) +H(p− p0)− 〈f |u〉}, (3.16)

where the minimum is taken over all kinematically admissible triples (u, e, p). Note, that in the
sequel we often write this minimization problem without mentioning explicitly that only kinemat-
ically admissible triples participate.

For the existence result we will assume the safe-load condition: there exists m1 ∈ S(Ω) and
α > 0 such that

div div m1 = f on Ω,
m1(x) + ξ ∈ K for a.e. x ∈ Ω and for every ξ ∈M2×2

sym with |ξ| ≤ α.
(3.17)

3.3.1 Existence of a minimizer

Lemma 3.3.1. Let f ∈ L2(Ω) and assume (3.17). Then

〈f |u〉 = 〈m1|e〉+ 〈m1|p〉

for every admissible triple (u, e, p) .

Proof: Follows from the integration by parts formula (3.11). ¤

Lemma 3.3.2. Let f ∈ L2(Ω) , m1 ∈ S(Ω) and α > 0 . Assume that condition (3.17) holds. Then

H(p)− 〈m1|p〉 ≥ α‖p‖1

for every p ∈ Π(Ω) .
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Proof: By Proposition 3.2.9 we have

H(p)− 〈m1|p〉 = sup
{
〈M −m1|p〉 : M ∈ S(Ω) ∩ K(Ω)

}
≥

≥ sup
{
〈m|p〉 : m ∈ S(Ω), ‖m‖∞ ≤ α

}
≥ α‖p‖1.

¤

Theorem 3.3.3. Let p0 ∈ Π(Ω), f ∈ L2(Ω) and assume (3.17). Then minimum problem (3.16)
has a solution.

Proof: By Lemma 3.3.1 minimum problem (3.16) is equivalent to

min
(u,e,p)

{
Q(e)− 〈m1|e〉+H(p− p0)− 〈m1|p− p0〉

}
. (3.18)

Let (uk, ek, pk) be a minimizing sequence of kinematically admissible triples. By Lemma 3.3.2 we
have

H(p− p0)− 〈m1|p− p0〉 ≥ α‖pk − p0‖1,
and (3.2) implies, that

Q(ek)− 〈m1|ek〉 ≥ αC
2
‖ek‖22 −

1
2αC

‖m1‖22.

Therefore the sequences ek and pk are bounded in L2(Ω;M2×2
sym) and Mb(Ω;M2×2

sym) respectively.
As D2uk = ek + pk in Ω, it follows that D2uk is bounded in Mb(Ω;M2×2

sym). As uk = 0 on ∂Ω,
uk are bounded in BH(Ω). So we may assume that uk

∗
⇀ u in BH(Ω), ek ⇀ e in L2(Ω;M2×2

sym)
and pk

∗
⇀ p in Mb(Ω;M2×2

sym). By Lemma 3.2.3 we know that the limit (u, e, p) is kinematically
admissible. The lower semicontinuity of Q gives

Q(e)− 〈m1|e〉 ≤ lim inf
k→∞

{
Q(ek)− 〈m1|ek〉

}
, (3.19)

so it remains to show that

H(p− p0)− 〈m1|p− p0〉 ≤ lim inf
k

{
H(pk − p0)− 〈m1|pk − p0〉

}
. (3.20)

The integration by parts formula (3.10) implies

〈m1|pk − p0〉 = 〈f |uk〉 − 〈m1|ek〉 − 〈m1|p0〉.

Passing to the limit as k →∞ and using (3.10) again, we conclude that

lim
k→∞

〈m1|pk − p0〉 = 〈m1|p− p0〉.

So, the latter relation and lower semicontinuity of H yield

H(p− p0)− 〈m1|p− p0〉 ≤ lim inf
k

{H(pk − p0)− 〈m1|pk − p0〉}.

Now, as (u, e, p) is kinematically admissible, the inequalities (3.19) and (3.20) guarantee that
(u, e, p) is a minimizer of (3.18). ¤
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3.3.2 The Euler conditions

Below we derive the necessary and sufficient conditions for a triple (u, e, p) to be a solution to
problem (3.16) with p = p0 .

Theorem 3.3.4. Let f ∈ L2(Ω) , let (u, e, p) be kinematically admissible and let M := Ce . Then
the following conditions are equivalent:

(a) (u, e, p) is a solution of (3.16) with p = p0 ;

(b) −H(q) ≤ 〈M |η〉 − 〈f |v〉 ≤ H(−q) for every kinematically admissible (v, η, q) ;

(c) M ∈ S(Ω) ∩ K(Ω) and div div M = f .

Proof: First, let us prove the implication (a)⇒(b). Take a kinematically admissible triple
(v, η, q). As the triple (u + εv, e + εη, p + εq) is also kinematically admissible for every ε ∈ R , the
minimality condition yields

Q(e + εv) +H(εq)− ε〈f |v〉 ≥ Q(e) for every ε ∈ R .

Then, by the positive homogeneity of H

Q(e± εη) + ε(±q)∓ ε〈f |v〉 ≥ Q(e) for every ε > 0 .

Now, taking the derivative with respect to ε at ε = 0 we get (b).
The implication (b)⇒(a) holds true by convexity.
Let us prove (b)⇒(c) Assume (b) and let v ∈ C∞c (Ω;M2×2

sym). Since the triple (v,D2v, 0) is
kinematically admissible, we obtain

〈M |D2v〉 = 〈f |v〉, (3.21)

which implies that div div M = f .
Now let η ∈ L2(Ω;M2×2

sym). Then the triple (0, η,−η) is kinematically admissible, and (b) yields

−H(−η) ≤ 〈M |η〉 ≤ H(η).

Fix an arbitrary matrix ξ ∈ M2×2
sym , a Borel set B ⊂ Ω and take η(x) = 1B(x)ξ . Then the

latter relation yields
−H(−ξ) ≤ M(x) : ξ ≤ H(ξ) for a.e. x ∈ Ω.

Therefore M(x) ∈ ∂H(0) = K for a.e. x ∈ Ω. Thus, M ∈ S(Ω) ∩ K(Ω).
Now, let us show (c)⇒(b). Assume (b) and let (v, η, q) be kinematically admissible. By

Proposition 3.2.9 we have
−H(−q) ≤ 〈M |q〉 ≤ H(q). (3.22)

Using the integration by parts formula (3.11) we get

〈M |q〉 = 〈f |v〉 − 〈M |η〉,

and (b) follows from (3.22). ¤
By using Theorem 3.3.4 one can easily establish the stability property, expressed in Theorem

below.
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Theorem 3.3.5. Let (uk, ek, pk) be a sequence of kinematically admissible triples. Assume that
uk

∗
⇀ u∞ in BH(Ω) , ek ⇀ e∞ in L2(Ω;M2×2

sym) , pk
∗
⇀ p∞ in Mb(Ω;M2×2

sym) and fk ⇀ f∞ in
L2(Ω;M2×2

sym) .
If

Q(ek)− 〈fk|uk〉 ≤ Q(η) +H(q − pk)− 〈fk|v〉
for every k and for every kinematically admissible (v, η, q) , then (u∞, e∞, p∞) is also kinematically
admissible and

Q(e∞)− 〈f∞|u∞〉 ≤ Q(η) +H(q − p∞)− 〈f∞|v〉
for every kinematically admissible (v, η, q) .

3.3.3 Continuous dependence on the data

Next we will show that solutions (u, e) to minimum problem (3.16) depend continuously on f and
p .

Theorem 3.3.6. For i = 1, 2 , let fi ∈ L2(Ω) . Suppose, that (ui, ei, pi) is a solution of (3.16)
with p0 = pi . Then

‖e2 − e1‖2 + ‖D2u2 −D2u1‖1 + ‖u2 − u1‖1 ≤
≤ C

(
‖p2 − p1‖1 + ‖p2 − p1‖1/2

1 + ‖f2 − f1‖2
)
.

(3.23)

Proof: Let v = u2 − u1 , η = e2 − e1 and q = p2 − p1 . As (v, η, q) is kinematically admissible,
by Theorem 3.3.4 one has

−H(p2 − p1) ≤ 〈Ce1|η〉 − 〈f1|v〉
〈Ce2|η〉 − 〈f2|v〉 ≤ H(p1 − p2).

Adding these two inequalities we obtain

〈C(e2 − e1)|e2 − e1〉 ≤ 〈f2 − f1|v〉+ 2RK‖p2 − p1‖.

Therefore
2αC‖e2 − e1‖22 ≤ ‖f2 − f1‖2 ‖v‖2 + 2RK‖p2 − p1‖1.

As v = 0 on ∂Ω, we have

‖v‖2 ≤ C‖D2v‖1 ≤ C
(
‖e2 − e1‖2 + ‖p2 − p1‖1

)
. (3.24)

The last two inequalities imply

‖e2 − e1‖2 ≤ C
(
‖f2 − f1‖2 + ‖p2 − p1‖1 + ‖p2 − p1‖1/2

1

)
.

Now, as D2ui = ei + pi , we get

‖D2u2 −D2u1‖1 ≤ C
(
‖f2 − f1‖2 + ‖p2 − p1‖1 + ‖p2 − p1‖1/2

1

)
.

Finally, as
‖v‖1 ≤ C‖D2v‖,

the latter inequality guarantees (3.23). ¤
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3.4 Quasistatic evolution

In this section we define a concept of quasistatic evolution - a weak solution to our initial problem,
formulated in Section 1. As usually in the calculus of variations, strong solution is a weak solution,
and vice versa, a sufficiently regular weak solution is a classical one.

3.4.1 Definition of quasistatic evolution

Below, we will apply the results of [DDM06, Section 7], with X = Mb(Ω;M2×2
sym), Y = C0(Ω;M2×2

sym)
and B = K(Ω) ∩ C0(Ω;M2×2

sym). For a function p : [0, T ] → Mb(Ω,M2×2
sym) with values in the dual

of a separable Banach space C0(Ω;M2×2
sym), for every s, t ∈ [0, T ] with s < t , the total variation of

p on [s, t] is defined as

V(p; s, t) = sup
{ N∑

i=1

‖p(ti)− p(ti−1)‖Mb(Ω) : s = t0 < · · · < tN = t, N ∈ N
}

.

The H variation of p is defined as

VH(p; s, t) = sup
{ N∑

i=1

H(p(ti)− p(ti−1)) : s = t0 < · · · < tN = t, N ∈ N
}

Definition 3.4.1. A quasistatic evolution is a function t 7→ (u(t), e(t), p(t)) from [0, T ] into
BH(Ω)× L2(Ω;M2×2

sym)×Mb(Ω;M2×2
sym) which satisfies the following conditions

(qs1) for every t ∈ [0, T ] the triple (u(t), e(t), p(t)) is kinematically admissible and

Q(e(t))− 〈f(t)|u(t)〉 ≤ Q(η) +H(q − p(t))− 〈f(t)|v〉 (3.25)

for every kinematically admissible (v, η, q);

(qs2) the function t 7→ p(t) from [0, T ] into Mb(Ω;M2×2
sym) has bounded variation and for every

t ∈ [0, T ]
Q(e(t)) +DH(p; 0, t)− 〈f(t)|u(t)〉 =

= Q(e(0))− 〈f(0)|u(0)〉 −
∫ t

0

〈ḟ(s)|u(s)〉 ds.
(3.26)

The following theorem uses the integration by parts formula (3.11) to express conditions (qs1)
and (qs2) in an equivalent form, involving the safe-load condition t 7→ m1(t).

Theorem 3.4.2. A function t 7→ (u(t), e(t), p(t)) from [0, T ] into BH(Ω) × L2(Ω;M2×2
sym) ×

Mb(Ω;M2×2
sym) is a quasistatic evolution if and only if it satisfies the following conditions:

(qs1’) for every t ∈ [0, T ] the triple (u(t), e(t), p(t)) is kinematically admissible and

Q(e(t))− 〈m1(t)|e(t)〉 ≤ Q(η)− 〈m1(t)|η〉+H(q − p(t))− 〈m1(t)|q − p(t)〉 (3.27)

for every kinematically admissible (v, η, q) .
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(qs2’) the function t 7→ p(t) from [0, T ] into Mb(Ω;M2×2
sym) has bounded variation and for every

t ∈ [0, T ]

Q(e(t)) +DH(p; 0, t)− 〈m1(t)|e(t)〉 − 〈m1(t)|p(t)〉 =

= Q(e(0))− 〈m1(0)|e(0)〉 − 〈m1(0)|p(0)〉 −
∫ t

0

[
〈ṁ1(s)|e(s)〉+ 〈ṁ1(s)|p(s)〉

]
ds.

(3.28)

Proof: The equivalence of (qs1) and (qs1’) follows from Lemma 3.3.1.
By Lemma 3.3.1 we have

〈f(t)|v〉 = 〈m1(t)|η〉+ 〈m1(t)|q〉 (3.29)

for every t ∈ [0, T ] and every kinematically admissible triple (v, η, q). Hence

〈ḟ(t)|v〉 = 〈ṁ1(t)|η〉+ 〈ṁ1(t)|q〉

for a.e. t ∈ [0, T ] and every kinematically admissible (v, η, q).
If conditions (qs1) or (qs1’) hold, then

(u, e, p) ∈ L∞([0, T ];BH(Ω)× L2(Ω;M2×2
sym)×Mb(Ω;M2×2

sym)).

As (u(t), e(t), p(t)) is kinematically admissible for every t ∈ [0, T ] , we have

〈ḟ(t)|u(t)〉 = 〈ṁ1(t)|e(t)〉+ 〈ṁ1(t)|p(t)〉.

Thus ∫ t

0

〈ḟ(s)|u(s)〉 ds =
∫ t

0

[
〈ṁ1(s)|e(s)〉+ 〈ṁ1(s)|p(s)〉

]
ds. (3.30)

Now the relations (3.29) and (3.30) imply the equivalence of (qs2) and (qs2’). ¤

3.4.2 The existence result

The following theorem states the existence of a weak solution.

Theorem 3.4.3. Let (u0, e0, p0) be kinematically admissible and satisfy the stability condition

Q(e0)− 〈f(0)|u0〉 ≤ Q(e) +H(p− p0)− 〈f(0)|u〉 (3.31)

for every kinematically admissible (u, e, p) . Then there exists a quasistatic evolution t 7→ (u(t),
e(t), p(t)) such that u(0) = u0 , e(0) = e0 and p(0) = p0 .

We prove Theorem 3.4.3 by a time discretization process. Fix a sequence of subdivisions
(tik)0≤i≤k of the interval [0, T ] , with

0 = t0k < t1k < · · · < tk−1
k < tkk = T, (3.32)

lim
k→∞

max
1≤i≤k

(tik − ti−1
k ) = 0. (3.33)

For i = 0, . . . , k we set f i
k := f(tik) and (m1)i

k := m1(tik).
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For every k we define ui
k, ei

k and pi
k by induction. We set (u0

k, e0
k, p0

k) := (u0, e0, p0), which,
by assumption, is kinematically admissible, and for i = 1, . . . , k we define (ui

k, ei
k, pi

k) as a solution
to the incremental problem

min
(u,e,p)

{
Q(e) +H(p− pi−1

k )− 〈f i
k|u〉

}
, (3.34)

where minimum is sought among all kinematically admissible triples (u, e, p).
The existence of a solution to this problem is established in Theorem 3.3.3. By Lemma 3.3.1

the minimum problem (3.34) is equivalent to

min
(u,e,p)

{
Q(e)− 〈(m1)i

k|e〉+H(p− pi−1
k )− 〈(m1)i

k|p− pi−1
k 〉

}
. (3.35)

Moreover, by the triangle inequality the triple (uk, ek, pk) is also a solution of the problem

min
(u,e,p)

{
Q(e) +H(p− pi

k)− 〈f i
k|u〉

}
. (3.36)

For i = 0, . . . , k we set M i
k := Cei

k and for every t ∈ [0, T ] we define the piecewise constant
interpolations

uk(t) := ui
k, ek(t) := ei

k, pk(t) := pi
k, Mk(t) := M i

k,
fk(t) := f i

k, m1
k(t) = (m1)i

k,
(3.37)

where i is the largest integer such that tik ≤ t . By definition (uk(t), ek(t), pk(t)) is kinematically
admissible and by (3.36) we have

Q(ek(t))− 〈fk(t)|uk(t)〉 ≤ Q(η) +H(q − pk(t))− 〈fk(t)|v〉 (3.38)

for every admissible triple (v, η, q).

3.4.3 The discrete energy inequality

Now we derive an energy estimates for solutions of the incremental problems which is an essential
ingredient of the proof of Theorem 3.4.3.

Lemma 3.4.4. For every k and every t ∈ [0, T ] the following holds true

Q(ek(t))− 〈m1
k(t)|ek(t)〉+

∑

0<tr
k≤t

{
H(pr

k − pr−1
k )− 〈m1(trk)|pr

k − pr−1
k 〉

}
≤

≤ Q(e0)− 〈m1(0)|e0〉 −
∫ ti

k

0

〈ṁ1(s)|ek(s)〉 ds,

(3.39)

where i is the largest integer such that tik ≤ t .

Proof: We have to prove that It is enough to adapt the proof of [DDM06, Lemma 4.6]. ¤
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3.4.4 Proof of the existence theorem

Having Lemma 3.4.4 we now prove Theorem 3.4.3.
Proof of Theorem 3.4.3: Let us prove the following estimates

sup
t∈[0,T ]

‖ek(t)‖2 ≤ C and Var(pk; 0, T ) ≤ C (3.40)

for every k , where the constant C depends only on the constants αC , βC and α , and on the
functions e0 and t 7→ m1(t).

From (3.39) we deduce

αC‖ek(t)‖22 + α
∑

0<tr
k≤t

‖pr
k − pr−1

k ‖1 ≤

≤ βC‖e0‖22 + ‖m1(0)‖2 ‖e0‖2+
+ sup

t∈[0,T ]

‖ek(t)‖2
(

sup
t∈[0,T ]

‖m1(t)‖2 +
∫ T

0

‖ṁ1(s)‖2 ds
) (3.41)

for every k and every t ∈ [0, T ] .
Now we deduce the former estimate in (3.40) by using Cauchy inequality. As for the latter, by

(3.41) and the first estimate in (3.40) we conclude that
∑

0<tr
k≤t

‖pr
k − pr−1

k ‖1 ≤ C

for every k and every t ∈ [0, T ] . Thus, as t 7→ pk(t) is constant on the intervals [tr−1
k , trk), we

deduce the second inequality in (3.40).
By the generalized version of the classical Helly Theorem (see [DDM06, Lemma 7.2]), there

exists a subsequence, still denoted by pk , and a function p : [0, T ] → Mb(Ω;M2×2
sym) with bounded

variation on [0, T ] , such that pk(t) ∗
⇀ p(t) in Mb(Ω;M2×2

sym) for every t ∈ [0, T ] .
From (3.40) it follows that ‖uk(t)‖BH(Ω) ≤ C uniformly with respect to k and t . Let us fix

t ∈ [0, T ] . There exists a subsequence kj , depending on t , and two functions u(t) ∈ BH(Ω) and
e(t) ∈ L2(Ω;M2×2

sym) such that ukj (t)
∗
⇀ u(t) in BH(Ω) and ekj (t) ⇀ e(t) weakly in L2(Ω;M2×2

sym).
By (3.38) we can apply Theorem 3.3.5 to get that (u(t), e(t), p(t)) is a solution of the minimum

problem
min

(v,η,q)

{
Q(η) +H(q − p(t))− 〈f(t)|v〉

}
. (3.42)

Theorem 3.3.6 implies that there exists the unique (u, e) ∈ BH(Ω) × L2(Ω;M2×2
sym) such that

(u, e, p(t)) is a solution to (3.42). Therefore, the convergence holds for the whole sequence, that is
uk(t) ∗

⇀ u in BH(Ω) and ek(t) ⇀ e(t) in L2(Ω;M2×2
sym).

Let us show that the function t 7→ (u(t), e(t), p(t)) is a quasistatic evolution satisfying (u(0),
e(0), p(0)) = (u0, e0, p0). The initial condition is fulfilled. We observe, that the condition (3.25)
is fulfilled by (3.42).

To prove the energy balance (3.26), or, equivalently (3.28), by Theorem 3.4.5 below, it is enough
to prove the energy inequality

Q(e(t)) +DH(p; 0, t)− 〈m1(t)|e(t)〉 − 〈m1(t)|p(t)〉 ≤
≤ Q(e(0))− 〈m1(0)|e(0)〉 − 〈m1(0)|p(0)〉 −

∫ t

0

[
〈ṁ1(s)|e(s)〉+ 〈ṁ1(s)|p(s)〉

]
ds.

(3.43)
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Let us fix t ∈ [0, T ] . Since t 7→ pk(t) is constant on the intervals [tr−1
k , trk), we have

DH(pk; 0, t) =
∑

0<tr
k≤t

H(pr
k − pr−1

k ),

so by the lower semicontinuity of the dissipation one obtains

DH(p; 0, t) ≤ lim inf
k→∞

∑

0<tr
k≤t

H(pr
k − pr−1

k ). (3.44)

Let us write
i∑

r=1

〈m1(trk)|pr
k − pr−1

k 〉 = −
i∑

r=1

〈m1(trk)−m1(tr−1
k )|pr−1

k 〉+

+〈m1(tik)|pi
k〉 − 〈m1(0)|p0〉.

(3.45)

Since t 7→ m1(t) and t 7→ f(t) are absolutely continuous from [0, T ] into L2(Ω;M2×2
sym) and

L2(Ω) respectively, by (3.11) we have that
i∑

r=1

〈(m1(trk)−m1(tr−1
k )|pr−1

k 〉 =
∫ ti

k

0

〈ḟ(s)|uk(s)〉 −
∫ ti

0

〈ṁ1(s)|ek(s)〉 ds.

Passing to the limit as k →∞ and using (3.10) again we obtain

lim
k→∞

i∑
r=1

〈m1(trk)−m1(tr−1
k )|pr−1

k 〉 =
∫ t

0

〈ṁ1(s)|p(s)〉 ds. (3.46)

Analogously we can show that

lim
k→∞

〈m1(tik)|pi
k〉 = 〈m1(t)|p(t)〉. (3.47)

Combining together (3.44)-(3.47) we obtain that

DH(p; 0, t)− 〈m1(t)|p(t)〉+ 〈m1(0)|p(0)〉+
∫ t

0

〈ṁ1(s)|p(s)〉 ds ≤

≤ lim inf
k→∞

i∑
r=1

{
H(pr

k − pr−1
k )− 〈m1(trk)|pr

k − pr−1
k 〉

}
.

(3.48)

Finally (3.43) follows from the last inequality, the weak convergence ek(s) ⇀ e(s) for every
s ∈ [0, T ] and the lower semicontinuity of Q . ¤

As usually in the energy approach to rate-independent processes the inequality, opposite to
(3.43) is obtained automatically by the construction of approximate solutions.

Theorem 3.4.5. Let t 7→ (u(t), e(t), p(t)) be a function from [0, T ] into BH(Ω)×L2(Ω;M2×2
sym)×

Mb(Ω;M2×2
sym) which satisfies the stability condition (3.27) in Theorem 3.4.2. Assume that t 7→ p(t)

from [0, T ] into Mb(Ω;M2×2
sym) has bounded variation. Then for every t ∈ [0, T ] we have

Q(e(t)) +DH(p; 0, t)− 〈m1(t)|e(t)〉 − 〈m1(t)|p(t)〉 ≥
≥ Q(e(0))− 〈m1(0)|e(0)〉 − 〈m1(0)|p(0)〉 −

∫ t

0

[
〈ṁ1(s)|e(s)〉+ 〈ṁ1(s)|p(s)〉

]
ds.

(3.49)

If, in addition, (3.43) is satisfied, then the exact energy balance (3.28) holds.

Proof: It is enough to adapt the proof of [DDM06, Theorem 4.7]. ¤
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3.4.5 Convergence of the approximate solutions

The next theorem states that, chosen a sequence of approximate solutions, such that pk(t) ∗
⇀ p(t)

for every t ∈ [0, T ] , the curvatures ek(t) converge to e(t) strongly in L2(Ω;M2×2
sym).

Theorem 3.4.6. Assume that the plastic curvatures of the approximate solutions satisfy

pk(t) ∗
⇀ p(t) weakly∗ in Mb(Ω;M2×2

sym) .

Then ek(t) → e(t) and Mk(t) → M(t) in L2(Ω;M2×2
sym) . Moreover,

lim
k→∞

∑

0<tr
k≤t

{
H(pr

k − pr−1
k )− 〈m1(trk)|pr

k − pr−1
k 〉

}
=

= DH(p; 0, t)− 〈m1(t)|p(t)〉+ 〈m1(0)|p(0)〉+
∫ t

0

〈ṁ1(s)|p(s)〉 ds

(3.50)

for every t ∈ [0, T ] .

Proof: By the discrete energy inequality (3.39) for every t ∈ [0, T ] we have

Q(ek(t)) +
∑

0<tr
k≤t

{
H(pr

k − pr−1
k )− 〈m1(trk)|pr

k − pr−1
k 〉

}
≤

≤ Q(e0)− 〈m1(0)|e0〉+ 〈m1
k(t)|ek(t)〉 −

∫ ti
k

0

〈ṁ1(s)|ek(s)〉 ds,

(3.51)

where i is the largest integer, such that tik ≤ t . By the energy balance (3.28) we have also

Q(e(t)) +DH(p; 0, t)− 〈m1(t)|p(t)〉+ 〈m1(0)|p(0)〉+
∫ t

0

〈ṁ1(s)|p(s)〉 ds =

= Q(e0)− 〈m1(0)|e0〉+ 〈m1(t)|e(t)〉 −
∫ t

0

〈ṁ1(s)|e(s)〉 ds.

(3.52)

As the right-hand side of (3.51) converges to that of (3.52),

lim sup
{
Q(ek(t)) +

∑

0<tr
k≤t

{
H(pr

k − pr−1
k )− 〈m1(trk)|pr

k − pr−1
k 〉

}}
≤

≤ Q(e(t)) +DH(p; 0, t)− 〈m1(t)|p(t)〉+ 〈m1(0)|p(0)〉+
∫ t

0

〈ṁ1(s)|p(s)〉 ds.

By the lower semicontinuity of Q and by (3.48) we obtain that

Q(ek(t)) → Q(e(t)),

which gives strong convergence of ek(t). ¤

3.5 Regularity with respect to time and uniqueness result

In this section we prove that every quasistatic evolution t 7→ (u(t), e(t), p(t)) is absolutely contin-
uous with respect to time, and that the functions t 7→ e(t) and t 7→ M(t) are uniquely determined
by their initial conditions.
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3.5.1 Regularity with respect to time

In the following proposition we establish the absolute continuity of the quasistatic evolution.

Theorem 3.5.1. Let t 7→ (u(t), e(t), p(t)) be a quasistatic evolution. Then the functions t 7→
e(t), t 7→ p(t) and t 7→ u(t) are absolutely continuous from [0, T ] into L2(Ω;M2×2

sym), Mb(Ω;M2×2
sym)

and BH(Ω) respectively. Moreover, for a.e. t ∈ [0, T ] we have

‖ė(t)‖2 + ‖ṗ(t)‖1 + ‖D2u̇(t)‖1 + ‖u̇(t)‖1 ≤ C‖ṁ1(t)‖∞. (3.53)

Proof: Since H(p(t2) − p(t1)) ≤ DH(p; t1, t2) by the energy equality (3.28) we obtain, after
integration by parts,

1
2 〈M(t2)|e(t2)〉 − 1

2 〈M(t1)|e(t1)〉+H(p(t2)− p(t1)) ≤
≤ 〈m1(t2)|e(t2)〉 − 〈m1(t1)|e(t1)〉+ 〈m1(t2)|p(t2)〉 − 〈m1(t1)|p(t1)〉−

−
∫ t2

t1

{
〈ṁ1(s)|e(s)〉+ 〈ṁ1(s)|p(s)〉

}
ds

(3.54)

for every t1, t2 ∈ [0, T ] with t1 < t2 . Consider now the functions v := u(t2) − u(t1), η :=
e(t2) − e(t1), and the measure q := p(t2) − p(t1). As (v, η, q) is kinematically admissible and
(u(t1), e(t1), p(t1)) is a solution of the minimum problem (3.16) with p0 = p(t1) and f = f(t1),
by Theorem 3.3.4 and Lemma 3.3.1 we obtain

−〈M(t1)|e(t2)− e(t1)〉+ 〈m1(t1)|e(t2)− e(t1)〉+ 〈m1(t1)|p(t2)− p(t1)〉+
≤ H(p(t2)− p(t1)),

so that (3.54) implies

1
2 〈M(t2)|e(t2)〉 − 1

2 〈M(t1)|e(t1)〉 − 〈M(t1)|e(t2)− e(t1)〉 ≤ 〈m1(t2)−m1(t1)|e(t2)〉+

〈m1(t2)−m1(t1)|p(t2)〉 −
∫ t2

t1

{
〈ṁ1(s)|e(s)〉 − 〈ṁ1(s)|p(s)〉

}
ds.

Therefore,
1
2
〈C(e(t2)− e(t1))|e(t2)− e(t1)〉 ≤

≤
∫ t2

t1

{
〈ṁ1(s)|e(t2)− e(s)〉+ 〈ṁ1(s)|p(t2)− p(s)〉

}
ds.

Thus,
αC‖e(t2)− e(t1)‖22 ≤

≤
∫ t2

t1

‖ṁ1(s)‖2‖e(t2)− e(s)‖2 ds +
∫ t2

t1

‖ṁ1(s)‖∞‖p(t2)− p(t1)‖1 ds.
(3.55)

By Lemma 3.2 we have that for every t1 ≤ s ≤ t2

α‖p(t2)− p(s)‖1 ≤ H(p(t2)− p(s))− 〈m1(t2)|p(t2)− p(s)〉,
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therefore (3.54) with t1 = s implies

α‖p(t2)− p(s)‖1 ≤ 1
2 〈M(s)|e(s)〉 − 1

2 〈M(t2)|p(t2)〉+
+〈m1(t2)|e(t2)− e(s)〉+ 〈m1(t2)−m1(s)|e(s)〉+ 〈m1(t2)−m1(s)|p(s)〉−

−
∫ t2

s

{
〈ṁ1(t)|e(t)〉+ 〈ṁ1(t)|p(t)〉

}
dt.

Observe that supt ‖m1(t)‖∞ , supt ‖e(t)‖2 and supt ‖p(t)‖1 are finite. The previous inequality
implies that

‖p(t2)− p(t1)‖1 ≤ C
(
‖e(t2)− e(s)‖2 + ‖m1(t2)−m1(s)‖∞

)
+ C

∫ t2

s

‖ṁ1(t)‖∞ dt.

Therefore, for every t1 ≤ s ≤ t2

‖p(t2)− p(s)‖1 ≤ C ‖e(t2)− e(s)‖2 + C

∫ t2

t1

‖ṁ1(t)‖∞ dt. (3.56)

By (3.55) and (3.56) and the triangle inequality ‖e(t2)− e(t1)‖2 ≤ ‖e(t2)− e(t1)‖2 + ‖e(s)− e(t1)‖
we deduce that

‖e(t2)− e(t1)‖22 ≤ C‖e(t2)− e(t1)‖2
∫ t2

t1

‖ṁ1(s)‖∞ ds+

+C

∫ t2

t1

‖ṁ1(s)‖∞‖e(s)− e(t1)‖2 ds + C
( ∫ t2

t1

‖ṁ1(s)‖∞ ds
)2

,

that is

‖e(t2)− e(t1)‖22 ≤
∫ t2

t1

ψ(s)‖e(s)− e(t1)‖2 ds +
(∫ t2

t1

ψ(s) ds
)2

,

where
ψ(s) := C‖ṁ1(s)‖∞.

By a version of Gronwall lemma, stated in Lemma 3.5.2 we have

‖e(t2)− e(t1)‖2 ≤ 3
2

∫ t2

t1

ψ(s) ds ≤ C

∫ t2

t1

‖ṁ1(s)‖∞ ds (3.57)

Thus, t 7→ e(t) is absolutely continuous from [0, T ] into L2(Ω;M2×2
sym) and

‖ė(t)‖2 ≤ C‖ṁ1(t)‖∞. (3.58)

So, (3.56) implies the absolute continuity of t 7→ p(t) and the estimate

‖ṗ(t)‖1 ≤ C‖ṁ1(t)‖∞. (3.59)

Now, the additive decomposition D2u(t) = e(t) + p(t) yields that t 7→ D2u(t) is absolutely
continuous from [0, T ] into Mb(Ω;M2×2

sym) and D2u̇(t) = ė(t) + ṗ(t) for a.e. t ∈ [0, T ] . Finally, as
u = 0 on ∂Ω, we have that

‖u(t2)− u(t1)‖BH ≤ C‖D2u(t2)−D2u(t1)‖1,
so t 7→ u(t) is absolutely continuous from [0, T ] into BH(Ω) and (3.53) holds. ¤
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Lemma 3.5.2. ([DDM06, Lemma 5.3]) Let φ : [0, T ] → [0, +∞) be a bounded domain and let
ψ : [0, T ] → [0,+∞) be an integrable function. Suppose that

φ(t)2 ≤
∫ t

0

φ(s)ψ(s) ds +
( ∫ t

0

ψ(s) ds
)2

for every t ∈ [0, T ] . Then

φ(t) ≤ 3
2

∫ t

0

ψ(s) ds

for every t ∈ [0, T ] .

Lemma 3.5.3. Let t 7→ u(t) , t 7→ e(t) , t 7→ p(t) be absolutely continuous function from [0, T ] to
BH(Ω) , L2(Ω;M2×2

sym) and Mb(Ω;M2×2
sym) , respectively. Assume that (u(t), e(t), p(t)) is kinemati-

cally admissible for every t ∈ [0, T ] . Then (u̇(t), ė(t), ṗ(t)) is also kinematically admissible for a.e.
t ∈ [0, T ] .

Proof: The proof follows from Lemma 3.5, applied to difference quotients. ¤

Proposition 3.5.4. Let t 7→ (u(t), e(t), p(t)) be an absolutely continuous function from [0, T ] into
BH(Ω)× L2(Ω;M2×2

sym)×Mb(Ω;M2×2
sym) and let M(t) := Ce(t) . Then the following conditions are

equivalent:

(a) for every t ∈ [0, T ]

Q(e(t)) +DH(p; 0, t)− 〈f(t)|u(t)〉 = Q(e(0))− 〈f(0)|u(0)〉+
∫ t

0

〈ḟ(s)|u(s)〉 ds;

(b) for a.e. t ∈ [0, T ]
〈M(t)|ė(t)〉+H(ṗ(t)) = 〈f(t)|u̇(t)〉

(c) for a.e. t ∈ [0, T ]
〈M(t)−m1(t)|ė(t)〉+H(ṗ(t)) = 〈m1(t)|ṗ(t)〉

(d) for every t ∈ [0, T ]

Q(e(t)) +
∫ t

0

{
H(ṗ(s))− 〈m1(s)|ṗ(s)〉

}
ds =

= Q(e(0)) +
∫ t

0

〈m1(s)|ė(s)〉 ds.

Proof: It is a matter of differentiation and integration by parts, as in Lemma 3.3.1. ¤

Proposition 3.5.5. Let t 7→ (u(t), e(t), p(t)) be a quasistatic evolution. Then

sup
t∈[0,T ]

‖e(t)‖2 ≤ C
{
‖e(0)‖2 + sup

t∈[0,T ]

‖m1(t)‖2 +
∫ T

0

‖ṁ1(t)‖2 dt
}

, (3.60)

and

sup
t∈[0,T ]

‖p(t)‖1 ≤ ‖p(0)‖1 + C
{
‖e(0)‖22 + sup

t∈[0,T ]

‖m1(t)‖2 +
( ∫ T

0

‖ṁ1(t)‖2 dt
)2

}
. (3.61)
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Proof: By Theorem 3.5.1 the function t 7→ (u(t), e(t), p(t)) is absolutely continuous from [0, T ]
into BH(Ω) × L2(Ω;M2×2

sym) ×Mb(Ω;M2×2
sym). As t 7→ (u(t), e(t), p(t)) satisfies (qs2) in Definition

3.4.1, it satisfies conditions (a) and (d) of Proposition 3.5.4. After an integration by parts, we
obtain from (d)

Q(e(t)) +
∫ t

0

{
H(ṗ(s))− 〈m1(s)|ṗ(s)〉

}
ds− 〈m1(t)|e(t)〉 =

= Q(e(0))−
∫ t

0

〈ṁ1(s)|e(s)〉 ds− 〈m1(0)|e(0)〉.

Thus, for every t ∈ [0, T ] we have

αC‖e(t)‖22 + α

∫ t

0

‖ṁ1(s)‖1 ds ≤ βC‖e(0)‖22+

+2 sup
t∈[0,T ]

‖m1(t)‖2 sup
t∈[0,T ]

‖e(t)‖2 + sup ‖e(t)‖2
∫ T

0

‖ṁ1(s)‖2 ds,

(3.62)

which yields (3.60) and (3.61). ¤

3.5.2 Uniqueness of bending moments and elastic curvatures

Our next aim is to prove that t 7→ e(t) and t 7→ M(t) are uniquely determined by their initial
conditions.

Theorem 3.5.6. Let t 7→ (u(t), e(t), p(t)) and t 7→ (v(t), η(t), q(t)) be two quasistatic evolutions
and let M(t) := Ce(t) and m(t) := Cη(t) . If e(0) = η(0) , then e(t) = η(t) for every t ∈ [0, T ] .

Proof: By Theorem 3.5.1 a quasistatic evolution is absolutely continuous with respect to time.
By condition (c) of Proposition 3.5.4 we have

〈M(t)−m1(t)|ė(t)〉+H(ṗ(t)) = 〈m1(t)|ṗ(t)〉, (3.63)
〈m(t)−m1(t)|η̇(t)〉+H(q̇(t)) = 〈m1(t)|q̇(t)〉. (3.64)

By the global stability condition (3.25) and Theorem 3.3.4 for every t ∈ [0, T ] we have that
m(t) ∈ S(Ω) ∩ K(Ω) and div div m(t) = f(t) in Ω. Lemma 3.5.3 implies that (u̇(t), ė(t), ṗ(t))
is kinematically admissible for a.e. t ∈ [0, T ] . Therefore Proposition 3.2.9 gives H(ṗ(t)) ≥
〈m(t)|ṗ(t)〉 . By (3.63) this implies

〈M(t)−m1(t)|ė(t)〉+ 〈m(t)−m1(t)|ṗ(t)〉 ≤ 0.

As div div (m(t)−m1(t)) = 0, by using the integration by parts formula (3.11) we deduce

〈M(t)−m(t)|ė(t)〉 ≤ 0.

Analogously, from (3.64) we obtain

〈m(t)−M(t)|η̇(t)〉 ≤ 0.

Thus, summing these two inequalities one concludes that

〈C(e(t)− η(t))|ė(t)− η̇(t)〉 ≤ 0,

hence
d

dt
〈C(e(t)− η(t))|e(t)− η(t)〉 ≤ 0.

As e(0) = η(0) by the assumption, the theorem is proved. ¤
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3.6 Equivalent formulations in rate form

Recall the classical formulation of the flow rule:

ṗ(t, x) ∈ NK(M(t, x)) for a.e. x ∈ Ω . (3.65)

Unfortunately, this condition makes no sense whenever ṗ is a bounded Radon measure, and M ∈
L2(Ω;M2×2

sym). However, instead of (3.65) we can consider the inequality

〈M(t)−m|ṗ(t)〉 ≥ 0 (3.66)

valid for every m ∈ S(Ω) ∩ K(Ω).
For ṗ sufficiently regular ( ṗ ∈ L2(Ω;M2×2

sym)) conditions (3.65) and (3.66) are equivalent, while
(3.66) has an advantage of being defined also for ṗ ∈ Mb(Ω;M2×2

sym) by means of duality (3.9).
Thus, (3.66) is considered the weak form of (3.65) when ṗ ∈ Mb(Ω;M2×2

sym)

3.6.1 Weak formulation

Theorem 3.6.1. Let t 7→ (u(t), e(t), p(t)) be a function from [0, T ] into BH(Ω)×L2(Ω;M2×2
sym)×

Mb(Ω;M2×2
sym) and let M(t) := Ce(t) . Then the following conditions are equivalent:

(a) t 7→ (u(t), e(t), p(t)) is a quasistatic evolution;

(b) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(b1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) is kinematically admissible, M(t) ∈ S(Ω)∩
K(Ω) and div div M(t) = f(t) in Ω ,

(b2) for a.e. t ∈ [0, T ] we have
〈M(t)−m|ṗ(t)〉 ≥ 0

for every m ∈ S(Ω) ∩ K(Ω) .

(c) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(c1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) is kinematically admissible, M(t) ∈ S(Ω)∩
K(Ω) and div div M(t) = f(t) in Ω ,

(c2) for a.e. t ∈ [0, T ] we have
H(ṗ(t)) = 〈M(t)|ṗ(t)〉;

Proof: Let us first establish the equivalence (a)⇔(c). By Theorem 3.5.1 a quasistatic evo-
lution is absolutely continuous. Theorem 3.3.4 guarantees, that (c1) is equivalent to the global
stability. By Proposition 3.5.4 it is enough to prove, that for an absolutely continuous function
t 7→ (u(t), e(t), p(t)), satisfying either (c1) or (qs1), condition (c2) is equivalent to the balance of
powers

〈M(t)|ė(t)〉+H(ṗ(t)) = 〈f(t)|u̇(t)〉 (3.67)

for a.e. t ∈ [0, T ] . As (u̇(t), ė(t), ṗ(t)) is kinematically admissible for a.e. t ∈ [0, T ] by Lemma
3.5.3, condition (c2) is equivalent to (3.67) in view of the integration by parts formula (3.11).

To prove (b)⇔(c) it is enough to show that, if (c1) is satisfied, then (b2)⇔(c2). Condition
(b2) is equivalent to

〈M(t)|ṗ(t)〉 = sup
{
〈m|ṗ(t) : m ∈ S(Ω) ∩ K(Ω)〉

}
,
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which is equivalent to (c2) by Proposition 3.2.9. ¤

Remark 3.6.2. As the measure H(ṗ(t))− [M(t) : ṗ(t)] is nonnegative on Ω, the condition (b2)
implies that

H(ṗ(t)) = [M(t) : ṗ(t)] in Mb(Ω) . (3.68)

3.6.2 Strong formulation and precise definition of the bending moments

Below (Theorem 3.6.3) a precise representative M̂(t, x) of M(t, x) is defined almost everywhere
with respect to the measure µ(t) = L2 + |ṗ(t)| . Theorem 3.6.5 states, that if K is strictly convex,
this representative is unique and can be obtained as limit of the averages of M .

Theorem 3.6.3. Let t 7→ (u(t), e(t), p(t)) be a function from [0, T ] into BH(Ω)×L2(Ω;M2×2
sym)×

Mb(Ω;M2×2
sym) , let M(t) := Ce(t) , and let µ(t) := L2 + |ṗ(t)| . Then t 7→ (u(t), e(t), p(t)) is a

quasistatic evolution if and only if

(e) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(e1) for every t ∈ [0, T ] we have that (u(t), e(t), p(t)) is kinematically admissible, M(t) ∈
S(Ω) ∩ K(Ω) , and div div M(t) = f(t) in Ω ,

(e2) for a.e. t ∈ [0, T ] there exists M̂(t) ∈ L∞µ(t)(Ω;M2×2
sym) such that

M̂(t) = M(t) L2-a.e. on Ω, (3.69)

[M(t) : ṗ(t)] =
(
M̂(t) :

ṗ(t)
|ṗ(t)|

)
|ṗ(t)| in Mb(Ω), (3.70)

ṗ(t)
|ṗ(t)| (x) ∈ NK(M̂(t, x)) for |ṗ(t)|-a.e. x ∈ Ω. (3.71)

Remark 3.6.4. Assume that t 7→ (u(t), e(t), p(t)) is absolutely continuous. If (e1) holds, then from
(3.10) it follows, that condition (3.70) of Theorem 3.6.3 is equivalent to the following integration
by parts formula: for every ϕ ∈ C2(Ω) we have

∫

Ω

ϕ
(
M̂ :

ṗ(t)
|ṗ(t)|

)
d|ṗ(t)| = 〈ϕM̂(t)|ṗ(t)〉 = −〈M(t)|ϕ ė(t)〉 − 〈u̇D2ϕ|M(t)〉−

−2〈M(t)|∇u̇(t)⊗∇ϕ〉 − 〈f(t)|ϕu̇(t)〉 = 〈[M : ṗ]|ϕ〉,
(3.72)

where in the left-hand side we have the duality between the measure ṗ(t) and a bounded measurable
(with respect to this measure) function ϕM̂(t).

As the matrix ṗ(t)/|ṗ(t)| has the unit norm |ṗ(t)|-a.e. on Ω and NK(ξ) = 0 if ξ is in the
interior of K , we deduce from (3.71) that for a.e. t ∈ [0, T ]

M̂(t, x) ∈ ∂K for |ṗ(t)|-a.e. x ∈ Ω. (3.73)

By the formulas from the convex analysis we can prove that condition (3.71) is equivalent to

M̂(t, x) ∈ ∂H
( ṗ(t)
|ṗ(t)| (x)

)
for |ṗ(t)|-a.e. x ∈ Ω . (3.74)
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Since ∂H is positively homogeneous of degree 0, this is equivalent to the fact, that both of the
following two inclusions are satisfied:

M̂(t, x) ∈ ∂H(ṗa(t)(x)) for L2-a.e. x ∈ {|ṗa(t)| > 0}, (3.75)

M̂(t, x) ∈ ∂H
( ṗ(t)
|ṗ(t)| (x)

)
for |ṗs(t)|-a.e. x ∈ Ω. (3.76)

Proof: We adopt the proof of [DDM06, Theorem 6.5]. ¤

For every r > 0 and every t ∈ [0, T ] we consider the function Mr(t) ∈ C(Ω;M2×2
sym) defined by

Mr(t, x) :=
1

L2(B(x, r) ∩ Ω)

∫

B(x,r)∩Ω

M(t, y) dy. (3.77)

As K is convex, it follows that Mr(t, x) ∈ K for every x ∈ Ω.
If K is strictly convex, then H is differentiable at all points ξ 6= 0. Thus, for a.e. t ∈ [0, T ]

the function M̂(t) is uniqiely determined µ(t)-a.e. on Ω ∪ Γ0 by (3.69) and (3.70)

M̂(t) = M(t) L2 -a.e. on Ω , (3.78)

M̂(t) = ∂H

(
ṗ(t)
|ṗ(t)|

)
(3.79)

The following theorem states, that M̂(t, x) can be obtained in Ω as the limit of Mr(t) as
r → 0. It reflects the intrinsic character of the precise representative introduced in Theorem 3.6.3.

Theorem 3.6.5. Assume that K is strictly convex. Let t 7→ (u(t), e(t), p(t)) be a quasistatic
evolution, let µ(t) = L2 + |ṗ(t)| , let M(t) = Ce(t) and let Mr(t) and M̂(t) be defined by (3.77)
and (3.78)-(3.79). Then Mr(t) → M̂(t) strongly in L1

µ(t)(Ω;M2×2
sym) for a.e. t ∈ [0, T ] .

Proof: We refer to [DDM06, Theorem 6.6], for the proof. ¤



Chapter 4

Regularity of stresses in
Prandtl-Reuss perfect plasticity

An application of the main result

4.1 Introduction

A strong formulation of the Prandtl-Reuss model of perfect plasticity is the following: given a
domain Ω ⊂ Rn ,

body force f(t, x) : [0, T ]× Ω → Rn,
boundary displacement w(t, x) : [0, T ]× Γ0 → Rn,
surface force F (t, x) : [0, T ]× Γ1 → Rn,

the problem is to find functions

u(t, x), e(t, x), p(t, x) and σ(t, x)

such that for every t ∈ [0, T ] , for every x ∈ Ω the following hold:

1. kinematic admissibility: ε(u)(t, x) = e(t, x) + p(t, x) in Ω, u(t, x) = w(t, x) on Γ0

2. constitutive equation: σ(t, x) = A−1 e(t, x),

3. equilibrium: div xσ(t, x) = −f(t, x) in Ω, σ(t, x) ν(x) = F (t, x) on Γ1 ,

4. stress constraint σ(t, x) ∈ K ,

5. associative flow rule: (ξ − σ(t, x)) : ṗ(t, x) ≤ 0 for every ξ ∈ K ,

where

ε(u) =
∇u +∇uT

2
,

K = {τ ∈Mn×n
sym : |τD| ≤

√
2k∗}

59
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and A is the compliance tensor (the inverse of the elasticity tensor), which in the isotropic case
has the form

Aσ =
tr σ

n2 K0
1 +

1
2µ

σD, (4.1)

where nK0 is the first Lamé constant, and µ is the shear modulus. The problem is supplemented
by initial conditions at time t = 0.

During the last decades there was an extensive study of this problem in its weak formulation
(see e.g. [DDD07, DDM06, Joh76, Suq81]). Due to the linear growth of the functional with respect
to ε(u), arising in this problem, one looks for displacements u in the space BD(Ω) and for stresses
σ in the space L2(Ω;Mn×n

sym ). However, one can expect a better regularity of the stress tensor σ .
Namely, as it was shown in [Ser87, Ser96, Ser93c, Ser93a, Ser93b], in some static situations the
stress belongs to the space W 1,2

loc (Ω;Rn).
In this paper we address the issue of a higher regularity of the stress tensor σ(t) with respect

to spatial variables. The main result (see Theorem 4.2.1 below) states that for the Prandtl-Reuss
model one has

σ ∈ L∞([0, T ]; W 1,2
loc (Ω;Mn×n

sym ))

for n = 2, 3.
A similar result was obtained in [BF96] for arbitrary n , using Norton-Hoff approximations

and the dual theory of elliptic equations. However, our proof is based on a completely different
approach, developed by G. Seregin for proving regularity of stresses in the case of Hencky perfect
plasticity (see [Ser87, FS00, Ser96, Ser94]). Observe that, due to this fact, our assumptions on the
data of the problem are different from those of [BF96].

The method proposed in this paper will be used for proving the differentiability of stresses for
other models occurring in plasticity (see [Dem09, Dem08a]).

Shortly, the strategy for proving Theorem 4.2.1 consists in refining the proof of the existence
of a solution to the quasistatic problem, carried out in [DDM06], by generalizing the estimates
obtained in [FS00] for proving the regularity of stresses in the case of Hencky perfect plasticity.

More precisely, we follow the general scheme for proving the existence of weak solutions of
the continuous-time energy formulation of rate-independent processes (see e.g. [Mie02] and the
references contained therein). Our arguments are similar to the ones used in [Ser94] for the case of
plasticity with hardening. Note, that in [Joh76, Suq81] the existence was proved by visco-plastic
approximations, while in order to use the methods of [FS00] one needs to have some analogue of
the static problem. This is why we follow the proof of the existence given in [DDM06], where
a quasistatic problem in perfect plasticity was solved by time discretization. In this case the
incremental problems one has to solve to get the updated values of solutions, play the role of the
static problem, where one can use the machinery of [Ser87, FS00].

We perform the standard time-discretization procedure, and for suitably defined approximate
solutions (uN (t), eN (t), pN (t), σN (t)), converging to a weak solution of the quasistatic problem, we
obtain the estimate

sup
N∈N

sup
t∈[0,T ]

‖σN (t)‖W 1,2
loc (Ω;Mn×n

sym ) ≤ C, (4.2)

which yields Theorem 4.2.1.
To get (4.2), one looks for solutions of the incremental problems, regarded as saddle points of

some minimax problem, similar to the one considered in [FS00, Ser96] for the static case of Hencky
perfect plasticity. The main difference is the presence of a term which takes into account the
preceding history of plastic deformation. Then we approximate every incremental problem with
a sequence of regularized problems and show, that their solutions σα

m , with α ∈ (0, 1) converge
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to σN
m , a solution to the corresponding incremental problem, weakly in L2(Ω;Mn×n

sym ), as α → 0.
Then we show, that for every incremental problem the bound

sup
α>0

‖σα
m‖W 1,2(Ω′;Mn×n

sym ) ≤ Cm

holds for any domain Ω′ ⊂⊂ Ω, where the constant Cm depends on the discretization step and
on Ω′ . This guarantees us, that σN

m is itself in W 1,2
loc (Ω;Mn×n

sym ), and that the convergence of σα
m

to σN
m is actually better, and depends on the critical Sobolev exponent. Afterwards, we manage

to make this estimate uniform, to get (4.2).
Let us note that Theorem 4.2.1 does not give any information about the behavior of the stress

tensor near the boundary. As it was observed in [Ser99], the method we use is not suitable for the
investigation of regularity up to the boundary, at least in the case of a nonconvex domain Ω. The
issue of boundary regularity was discussed also in [FM99].

To our best knowledge, the only global regularity result for the stress in the case of Hencky
perfect plasticity is contained in [Kne06], where under appropriate assumptions it is proved that
σ ∈ W 1/2−δ,2(Ω) for every δ > 0.

The paper is organized as follows: in Section 4.2 we introduce the definitions and state the
main result. In Section 4.3 we present a weak formulation of the quasistatic problem, outline the
proof of existence of the quasistatic evolution and obtain some time-continuity estimates for the
approximate solutions. In Section 4.4 an abstract scheme of relaxation of convex functionals in
non reflexive spaces is described. A minimax formulation of the incremental problems is given in
Section 4.5. In Section 4.6 we formulate the regularized problems, which are used for obtaining
the differentiability of stresses, and show the convergence properties of their solutions. Section
4.7 contains the estimates of the W 1,2

loc norms of the solutions to the regularized problems, which
imply that for every approximate solution we actually have

sup
t∈[0,T ]

‖σN‖W 1,2
loc (Ω;Mn×n

sym ) ≤ C(N),

however, without any uniformity with respect to N . The uniform estimates (4.2) and the proof
of Theorem 4.2.1 are contained in Section 4.9. In Section 4.10 we consider the examples which
show that there is no analogue of regularity theorem, as in [Ser87, FS00, Ser96, Ser93c], for the
displacement u and the plastic strain p .

4.2 Preliminary definitions and the main result

We use the following notation:
Rn denotes the n -dimensional Euclidian space,
Mn×n

sym denotes the space of all n×n symmetric matrices, equipped with a Hilbert-Schmidt scalar
product σ : ξ =

∑
i,j σijξij ,

1 stands for the identity matrix, and we consider the orthogonal decomposition Mn×n
sym =Mn×n

D ⊕
R1 of the space Mn×n

sym into the subspace of trace-free matrices Mn×n
D and of the multiples of

identity R1 ,
a ¯ b stands for the symmetrized tensor product of two vectors a, b ∈ Rn , given by the formula
(a¯ b)ij = 1

2 (aibj + ajbi),
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Lp(Ω;Rm) is the Lebesgue space of all functions from Ω into Rm , having the finite norm

(
∫

Ω

|f |p dx)1/p,

W l,p(Ω;Rm) is the Sobolev space of all functions from Ω into Rm with the norm

‖f‖l,p,Ω :=
( ∫

Ω

l∑
α=0

|∇αf |r
)1/r

,

Mb(Ω;Rm) is the space of all bounded Radon measures on Ω with values in Rm ,
BD(Ω) is the space of all functions in L1(Ω;Rn) such that ε(u) ∈ Mb(Ω;Mn×n

sym ),
Ln stands for the Lebesgue measure on Rn ,
Hn−1 is the (n− 1)-dimensional Hausdorf meausure.

In the sequel we will make use of the spaces

D2,1(Ω) =
{

v ∈ L1(Ω;Rn) : ‖v‖2,1 = ‖div v‖L2(Ω) + ‖v‖L1(Ω) + ‖εD(v)‖L1(Ω) < +∞
}

,

D2,1
Γ0

(Ω) =
{

v ∈ D2,1(Ω) : v = 0 on Γ0

}
,

which are well-known spaces of weakly differentiable vector-valued functions. For their properties
we refer to [FS00, Appendix A.2]. Let us introduce the notation

Σ =
{

σ ∈ L2(Ω;Mn×n
sym ) : div σ ∈ Ln(Ω;Rn), σD ∈ L∞(Ω;Mn×n

D )
}

,

K =
{

σ ∈ L2(Ω;Mn×n
sym ) : σ(x) ∈ K for a.e. x ∈ Ω

}
.

4.2.1 The main result

We impose the following assumptions on the data of the problem

f ∈ AC([0, T ];Ln(Ω;Rn)) ∩ L∞([0, T ];C1
loc(Ω;Rn))

F ∈ AC([0, T ];L∞(Γ1))
w ∈ AC([0, T ];W 1,2(Ω;Rn)).

(4.3)

We also assume the so-called uniform safe-load condition:

there exists a function % ∈ AC([0, T ]; L2(Ω;Mn×n
sym )), such that

div x%(t) = −f(t) in Ω and [%ν] = F (t) on Γ1 for every t ∈ [0, T ],

|%D(t, x)| ≤ (1− λ)
√

2k∗ for some 0 < λ < 1, a.e. x ∈ Ω, for every t ∈ [0, T ],
and %D ∈ AC([0, T ];L∞(Ω;Mn×n

D )).

(4.4)

Suppose that ∂Ω ∈ C2 is partitioned into two disjoint open sets Γ0 , Γ1 and their common
interface γ = ∂Γ0 = ∂Γ1 :

∂Ω = Γ0 ∪ γ ∪ Γ1.
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Further, assume that

for each x ∈ γ, there exists a C2 diffeomorphism defined in a
neighbourhood of x which maps ∂Ω to an (n− 1)−dimensional
hyperplane, and γ to an (n− 2)-dimensional plane.

(4.5)

Finally, following [FS00] we require the following condition on the domain Ω and the partition-
ing Γ0 , Γ1 that guarantees the density of smooth functions in anisotropic spaces:

D2,1
Γ0

(Ω) ∩ C∞(Ω;Rn) is dense in D2,1
Γ0

(Ω). (4.6)

Remark, that there are number of cases, which satisfy this condition, among them pure Dirich-
let (Γ0 = ∂Ω) and Neumann (Γ1 = ∂Ω) cases, as well as numerous cases of mixed boundary
conditions. We refer to [FS00, Appendix A.2] for some examples.

The main result of this paper is the following theorem.

Theorem 4.2.1. Suppose that n = 2, 3 , ∂Ω ∈ C2 , A has the form (4.1) and the assumptions

(4.3)-(4.6) are satisfied. Then for the solution (u, e, p) of the quasistatic problem, see Definition

4.3.6, we have

σ ∈ L∞([0, T ]; W 1,2
loc (Ω;Mn×n

sym )),

with σ(t, x) = A−1e(t, x) .

4.3 Weak formulation of the quasistatic problem

There are several equivalent ways to state the original problem in a weak form. In this section
we present a formulation, expressed in terms of energy balance and energy dissipation, presented
in [DDM06]. Then we state the existence and regularity results for this quasistatic problem and
briefly discuss the method of the proof, which consists in time-discretization procedure. Finally,
in the end of the section, we obtain a discrete version of the absolute continuity with respect to
time, which holds also at the level of incremental problems.

4.3.1 Weak formulation: quasistatic evolution

The variational formulation of rate-independent processes expresses the evolution in terms of energy
balance and dissipation. In the rest of this section we follow the exposition of [DDM06]. First, we
recall two definitions, which are needed to deal with boundary conditions in a relaxed form and
to have the duality between the plastic part of the strain and functions from the set Σ, defined
above. We note that the latter definition generalizes the well-known stress-strain duality, studied
in [KT83].

Definition 4.3.1. A triple (u, e, p) ∈ BD(Ω) × L2(Ω;Mn×n
sym ) ×Mb(Ω ∪ Γ0;Mn×n

D ) is said to be

admissible for a given boundary data w ∈ W 1,2(Ω;Rn), if
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1. ε(u) = e + p in Ω,

2. p = (w − u)¯ νHn−1 on Γ0 .

The set of all admissible triples for a given w is denoted by A(w).

Remark 4.3.2. We point out that the first part of this definition is responsible for the additive

decomposition, while the second condition reflects the weak form of the boundary conditions, which

are typical in the variational theory of functionals with linear growth.

Definition 4.3.3. For w ∈ W 1,2(Ω;Mn×n
sym ), an admissible triple (u, e, p) ∈ A(w) and σ ∈ Σ we

define a measure [σD : p] ∈ Mb(Ω ∪ Γ0) by

∫

Ω∪Γ0

ϕd[σD : p] =
∫

Ω

ϕd[σD : εD(u)]−
∫

Ω

ϕσD : eD dx +
∫

Γ0

ϕ(w − u) · [σν]⊥ dHn−1,

for every ϕ ∈ C(Ω ∪ Γ0). Thus, the following duality is well-defined:

〈σD : p〉Σ,Π = [σD : p](Ω ∪ Γ0).

Remark 4.3.4. Here [σD : εD(u)] is the measure, defined in [KT83]. As in the case of stress-

strain duality, here the difficulty is due to the fact, that σD is an L∞ function, while p is just a

bounded Radon measure.

One can show, that for the duality defined in this way, the usual integration by parts formula
holds:

Proposition 4.3.5. Let σ ∈ Σ, f ∈ Ln(Ω;Rn), F ∈ L∞(Γ1;Rn) and let (u, e, p) ∈ A(w) with

w ∈ H1(Ω;Rn) . Assume that div σ = −f a.e. in Ω and [σν] = F on Γ1 . Then

〈σD, p〉Σ;Π +
∫

Ω

σ : (e− ε(w)) dx =
∫

Ω

f · (u− w) dx +
∫

Γ1

F · (u− w) dHn−1. (4.7)

Now let us define the functionals which appear in the energy formulation of the problem. We
start by defining the quadratic form Q : L2(Ω;Mn×n

sym ) → R , corresponding to the stored elastic
energy, by

Q(e) =
1
2

∫

Ω

A−1e : e dx.

Denoting by H : Mn×n
D → R the support function to the sections of K , which in the case of

Prandtl-Reuss perfect plasticity has a very simple form, we introduce in the usual way the convex
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functional of measures H : Mb(Ω ∪ Γ0;Mn×n
D ) → R . Then the dissipation associated with H in

any time interval [s, t] ⊂ [0, T ] is given by

DH(p; s, t) = sup
{ M∑

j=1

H(p(tj)− p(tj−1)) : s = t0 ≤ · · · ≤ tM = t, M ∈ N
}

.

Finally, we define the total load F : [0, T ] → BD(Ω)′ by

F [t]u =
∫

Ω

f(t) · u dx +
∫

Γ1

F (t) · u dHn−1. (4.8)

Now we are in a position to give a variational formulation of the quasistatic problem.

Definition 4.3.6. A quasistatic evolution is a function

(u, e, p) : [0, T ] → BD(Ω)× L2(Ω;Mn×n
sym )×Mb(Ω ∪ Γ0;Mn×n

D ),

which satisfies the following conditions

(qs1) (global stability): For every t ∈ [0, T ] the triple (u, e, p)(t) ∈ A(w(t)) and

Q(e(t))−F [t]u(t) ≤ Q(η) +H(q − p(t))−F [t]v

for every (v, η, q) ∈ A(w(t)),

(qs2) (energy balance): p : [0, T ] → Mb(Ω ∪ Γ0;Mn×n
D ) has bounded variation and for every

t ∈ [0, T ]

Q(e(t)) +DH(p; 0, t)−F [t]u(t) =

= Q(e(0))−F [0]u(0) +
∫ t

0

[
〈σ(s), ε(ẇ(s))〉L2;L2 −F [s]ẇ(s)− Ṁ [s]u(s)

]
ds

where σ(t) = A−1e(t).

4.3.2 Existence result and time-discretization

The following theorem establishes the existence of a solution to the quasistatic problem in perfect
plasticity.

Theorem 4.3.7. Let (u0, e0, p0) ∈ A(w(0)) satisfy the stability condition

Q(e0)−F [0]u0 ≤ Q(η) +H(q − p0)−F [0]v,
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for every (v, η, q) ∈ A(w(0)) . Then there exists a quasistatic evolution

(u(t), e(t), p(t)),

such that

u(0) = u0, e(0) = e0, p(0) = p0.

Moreover, the elastic part of the symmetrized gradient t 7→ e(t) is unique and a quasistatic evolution

(u, e, p) as a function from [0, T ] to BD(Ω) × L2(Ω;Mn×n
sym ) × Mb(Ω ∪ Γ0;Mn×n

D ) is absolutely

continuous in time.

In [DDM06] this theorem is proved by a discretization of time. We divide the interval [0, T ]
into N equal parts of length T/N by points (tNm)m=0,...,N . For m = 0, . . . , N we set

wN
m = w(tNm), fm

N = f(tNm), Fm
N = F (tNm), FN

m = F [tNm], and %N
m = %(tNm). (4.9)

For every N we define uN
m, eN

m and pN
m by induction. We set

(uN
0 , eN

0 , pN
0 ) = (u0, e0, p0) ∈ A(w(0)),

while for every m = 1, . . . , N we define (uN
m, eN

m, pN
m) as a solution to the incremental problem

min
(u,e,p)∈A(wN

m)

{
Q(e) +H(p− pN

m−1)−FN
m (u)

}
. (4.10)

Remark 4.3.8. We note, that (u, e, p) is a solution to (4.10) if and only if one of the following

conditions holds for σ := A−1 e :

1. −H(q) ≤ 〈σ|η〉L2;L2 − 〈fN
m |v〉Ln;Ln′ ≤ H(−q) for every (v, η, q) ∈ A(0).

2. σ ∈ Σ ∩ K with div σ = −fN
m and [σν] = Fm

N .

For m = 0, . . . , N we set σN
m = A−1eN

m and for every t ∈ [0, T ] we define piecewise constant
interpolations

uN (t) = uN
m, eN (t) = eN

m, pN (t) = pN
m, σN (t) = σN

m ,

wN (t) = wN
m, fN (t) = fN

m , FN (t) = Fm
N , FN (t) = FN

m , %N (t) = %N
m,

where m is the largest integer such that tNm ≤ t . By definition (uN (t), eN (t), pN (t)) ∈ A(wN (t)).
In the proof of the existence, it was shown that for approximate solutions one has the estimate

sup
t∈[0,T ]

‖eN (t)‖L2 + Var(pN ; 0, T ) + sup
t∈[0,T ]

‖uN‖BD ≤ C, (4.11)

which is uniform with respect to N , and it was established that these functions converge pointwise
(with respect to t) to a solution of the quasistatic evolution problem.
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4.3.3 Continuity estimates of solutions of the incremental problems

In [DDM06] it was established that the quasistatic evolution is absolutely continuous in time.
However, as we will deal precisely with the solutions of the time-discretized problems, we would
need the continuity estimates of solutions at the level of incremental problems.

The following notation will be often used below: given a function h : [0, T ] → X ,

δhN
m := h(tNm)− h(tNm−1). (4.12)

We also consider the increment of the data of the problem, defined by

DN
m := ‖δ%N

m‖L2 + ‖δ%ND
m ‖L∞ + ‖δwN

m‖W 1,2 + ‖δfN
m ‖Ln + ‖δFN

m ‖L∞ . (4.13)

We note, that by (4.3), we may assume the data of the problem to be Lipschitz with re-
spect to time. Indeed, every absolutely continuous functions can be made Lipschitz just by time
reparametrization, which leads to a corresponding reparametrization of the solutions, the problem
being rate-independent. In other words, we may suppose, that

DN
m ≤ C

N
. (4.14)

Theorem 4.3.9. For solutions of the incremental problems (uN
m, eN

m, pN
m) the following inequality

holds:

‖δeN
m‖L2 + ‖δpN

m‖Mb
+ ‖ε(δuN

m)‖Mb
+ ‖δuN

m‖L1 ≤ DN
m, (4.15)

where δhN
m in understood as in (4.12) and DN

m denotes the increment of the data of the problem,

defined by (4.13).

Proof: As the triple

(uN
m−1 + wm

N − wN
m−1, e

N
m−1 + ε(wN

m)− ε(wN
m−1), p

N
m−1) ∈ A(wN

m),

the minimality condition (4.10) and the integration by parts formula (4.7) imply

Q(eN
m)−

∫

Ω

%N
m : eN

m dx +H(pN
m − pN

m−1)− 〈%N
m, pN

m − pN
m−1〉Σ;Π ≤

≤ Q(eN
m−1 + ε(wN

m)− ε(wN
m−1))−

∫

Ω

%N
m : (eN

m−1 + ε(wN
m)− ε(wN

m−1)) dx

Developing the quadratic form in the right-hand side we arrive at:

1
2

∫

Ω

σN
m : eN

m dx− 1
2

∫

Ω

σN
m−1 : eN

m−1 dx +H(pN
m − pN

m−1) ≤

≤ Q(ε(wN
m)− ε(wN

m−1)) +
∫

Ω

σN
m−1 : (ε(wN

m)− ε(wN
m−1)) dx+

+〈%N
m, pN

m − pN
m−1〉Σ;Π −

∫

Ω

%N
m : (eN

m−1 + ε(wN
m)− ε(wN

m−1)) dx +
∫

Ω

%N
m : eN

m dx.

(4.16)

Now consider the functions

v = uN
m − uN

m−1 − (wN
m − wN

m−1), η = eN
m − eN

m−1 − (ε(wN
m)− ε(wN

m−1)),

q = pN
m − pN

m−1.
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Since (v, η, q) ∈ A(0) and (uN
m−1, e

N
m−1, p

N
m−1) is a solution of the corresponding minimum problem

at the previous step, we obtain, by means of Remark 4.3.8 and the integration by parts formula
(4.7)

−
∫

Ω

σN
m−1 : (eN

m − eN
m−1) dx +

∫

Ω

%N
m−1 : (eN

m − eN
m−1) dx+

〈%N D
m−1, p

N
m − pN

m−1〉Σ;Π +
∫

Ω

(σN
m−1 − %N

m−1) : (ε(wN
m)− ε(wN

m−1)) ≤
≤ H(pN

m − pN
m−1).

(4.17)

By combining (4.16) and (4.17) we get the following

Q(eN
m − eN

m−1) =
1
2

∫

Ω

σN
m : eN

m dx− 1
2

∫

Ω

σN
m−1 : eN

m−1 dx−

−
∫

Ω

σN
m−1 : (eN

m − eN
m−1) dx ≤ Q(ε(wN

m)− ε(wN
m−1)) +

∫

Ω

σN
m−1 : (ε(wN

m)−
ε(wN

m−1)) dx + 〈%N
m, pN

m − pN
m−1〉Σ;Π−

−
∫

Ω

%N
m : (eN

m−1 + ε(wN
m)− ε(wN

m−1)) dx +
∫

Ω

%N
m : eN

m dx−

−
∫

Ω

%N
m−1 : (eN

m − eN
m−1) dx−

−〈%ND
m−1, p

N
m − pN

m−1〉Σ;Π −
∫

Ω

(σN
m−1 − %N

m−1) : (ε(wN
m)− ε(wN

m−1)).

(4.18)

Let us apply the integration by parts formula (4.7) to compute 〈%N
m, pN

m − pN
m−1〉Σ;Π :

〈%N
m, pN

m − pN
m−1〉Σ;Π = −

∫

Ω

%N
m : (eN

m − ε(wN
m)− eN

m−1 + ε(wN
m−1)) dx+

+
∫

Ω

fN
m · (uN

m − wN
m − uN

m−1 + wN
m−1) dx+

+
∫

Γ1

FN
m · (uN

m − wN
m − uN

m−1 + wN
m−1) dHn−1,

(4.19)

with the analogous expression for 〈%N
m−1, p

N
m − pN

m−1〉Σ;Π .
Putting the identity (4.19) into the inequality (4.18) we end up with the estimate

Q(eN
m − eN

m−1) ≤ Q(ε(wN
m)− ε(wN

m−1))+

+
∫

Ω

(fN
m − fN

m−1) · (uN
m − uN

m−1 − (wN
m − wN

m−1)) dx+

+
∫

Γ1

(FN
m − FN

m−1) · (uN
m − uN

m−1 − (wN
m − wN

m−1)) dHn−1 ≤
≤ C ‖ε(wN

m)− ε(wN
m−1)‖2L2+

+
(
‖fN

m − fN
m−1‖Ln + ‖FN

m − FN
m−1‖L∞

)
‖uN

m − wN
m − (uN

m−1 − wN
m−1)‖BD.

(4.20)

Now let us estimate ‖pN
m − pN

m−1‖1 in terms of the data of the problem. First of all, the safe
load condition yields

α‖pN
m − pN

m−1‖1 ≤ H(pN
m − pN

m−1)− 〈%N D
m , pN

m − pN
m−1〉.

Now, the relation (4.16) and the boundedness of ‖%N
m‖L2 , ‖%N D

m ‖L∞ , ‖eN
m‖L2 and ‖pN

m‖1 imply

‖pN
m − pN

m−1‖1 ≤ C(‖eN
m − eN

m−1‖L2 + DN
m) (4.21)
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Taking into account the inequality

‖uN
m − wN

m − (uN
m−1 − wN

m−1)‖BD ≤ C(‖eN
m − eN

m−1‖L2 + ‖pN
m − pN

m−1‖1 + ‖ε(wN
m)− ε(wN

m−1)‖L2),

proved in [DDM06, relations (3.24) and (3.25) in Theorem 3.8], the estimate

‖pN
m − pN

m−1‖Mb
+ ‖eN

m − eN
m−1‖L2 ≤ CDN

m (4.22)

follows now from (4.20), (4.21) and the application of the Cauchy inequality.
To prove

‖ε(uN
m)− ε(uN

m−1)‖Mb
≤ CDN

m, (4.23)

we recall the additive decomposition ε(u) = e + p and make use of (4.22).
Finally to show the validity of (4.15), it remains to estimate ‖uN

m− uN
m−1‖L1 . By the Poincare

inequality for BD it suffices to estimate ‖uN
m − uN

m−1‖L1(Γ0) :

‖uN
m − uN

m−1‖L1(Γ0) ≤
√

2‖pN
m − pN

m−1‖1 + C‖wN
m − wN

m−1‖W 1,2 ,

so the result follows from (4.14), (4.22), (4.23) and the latter inequality. ¤

4.4 Relaxation of convex variational problems in non-refle-

xive spaces

For the reader’s convenience, here we state the general construction of the relaxed convex varia-
tional problems in non-reflexive spaces, which is well-suited for studying the problems in plasticity
theory. For the details, we refer to [FS00, Chapter 1]. We remark that, by abuse of notations, in
this section the symbol u0 stands for the boundary data of a saddle-point problem, which corre-
sponds to wN

m , the boundary data of the incremental problems, and has nothing to do with the
initial data u0 of the quasistatic problem.

Let V,U and P be Banach spaces, V ⊂ U , and let V0 be a subspace of V . Let A : V → P
denote a linear bounded operator, and suppose that G : P → R and M̂ : U → R are convex,
proper, lower semicontinuous functionals. We denote the dual spaces to P and U by P ∗ and U∗ ,
and the duality relations between the corresponding spaces by 〈·, ·〉P,P∗ and 〈·, ·〉U,U∗ .

By G∗ we denote the conjugate functional to G , i.e. G∗(p∗) = sup{〈p∗, p〉P,P∗−G(p) : p ∈ P},
for p∗ ∈ P ∗ . Let us consider the variational problem

find u ∈ u0 + V0 such that I(u) = inf{I(v) : v ∈ u0 + V0}, (4.24)

where u0 ∈ V is fixed, and
I(v) = G(Av) + M̂(v).

Let us intoduce the Lagrangian ` by letting

`(v, q∗) = 〈q∗, Av〉P∗,P −G∗(q∗) + M̂(v). (4.25)

The dual problem thus takes the form

find p∗ ∈ P ∗ such that R(p∗) = sup{R(q∗) : q∗ ∈ P ∗}, (4.26)

where R(q∗) = inf{`(v, q∗) : v ∈ u0 + V0} . The following theorem (see [FS00, Chapter 1]) states
that the problem (4.26) has a solution.
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Theorem 4.4.1. Suppose that the following two conditions hold:

Ĉ := inf{I(v) : v ∈ u0 + V0} ∈ R; (4.27)





there exists u1 ∈ u0 + V0 such that G(Au1) < +∞, M̂(u1) < +∞

and the function p 7→ G(Au1 + p) is continuous at zero.

(4.28)

Then problem (4.26) has at least one solution and the identity

Ĉ = sup{R(q∗) : q∗ ∈ P ∗} (4.29)

is valid.

Together with problems (4.24) and (4.26) let us consider the following minimax problem
{

find a pair (u, p∗) ∈ (u0 + V0)× P ∗ such that
`(u, q∗) ≤ `(u, p∗) ≤ `(v, p∗), for all v ∈ u0 + V0, q∗ ∈ P ∗.

(4.30)

Since G : P → R is a proper, convex, l.s.c. functional, then G = G∗∗ , and therefore

I(v) = sup{`(v, q∗) : q∗ ∈ P ∗}. (4.31)

Thus under conditions (4.27) and (4.28) we have the identity

inf
v∈u0+V0

sup
q∗∈P∗

`(v, q∗) = Ĉ = sup
q∗∈P∗

inf
v∈u0+V0

`(v, q∗) (4.32)

and the general duality theory provides the following statement:




a pair (u, p∗) ∈ (u0 + V0)× P ∗

is a saddle point of the minimax problem (4.30) if and only if
u ∈ u0 + V0 is a minimizer of problem (4.24) and
p∗ ∈ P ∗ is a maximizer of problem (4.26).

(4.33)

So by Theorem 4.4.1 and (4.33), the solvability of problem (4.24) is equivalent to the solvability
of the minimax problem (4.30).

Let us assume the following additional properties:




the embedding V ↪→ U is continuous;
V0 is dense in U ;
U is a reflexive space;

(4.34)

{
there exists u2 ∈ u0 + V0, such that u2 ∈ int dom M̂,

where dom M̂ = {u ∈ U : M̂(u) < +∞}. (4.35)

I(v) → +∞ if ‖v‖V → +∞ and v ∈ u0 + V0. (4.36)

If the space V is nonreflexive, in general, problems (4.24) and (4.30) have no solutions. Thus, we
need to relax our problem, and the desired relaxation should satisfy the following two requirements:
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1. conservation of the greatest lower bound for problem (4.24),

2. conservation of the dual problem.

Remark 4.4.2. The first requirement needs no explanations: speaking about relaxation, we should

not change the infimum of the problem. While the second point is due to the fact, that in many

physical applications the solution of the dual problem is unique and has a clear geometrical or

mechanical interpretation, so there is no necessity to change the dual problem. In the case of

perfect plasticity the stress tensor is responsible for the distribution of elastic and plastic zones.

In order to extend the domain of definition of the functional G , we should construct a suitable
extension of the operator A . We begin by introducing an auxiliary operator A∗ with a domain
D(A∗) defined as

{
D(A∗) = {p∗ ∈ P ∗ : there exists u∗ ∈ U∗, such that
〈p∗, Au〉P∗;P = 〈u∗, u〉U∗;U for all u ∈ V0}.

(4.37)

The density condition (4.34) implies that for each p∗ ∈ D(A∗) there exists only one element
u∗ ∈ U∗ satisfying the identity 〈p∗, Au〉P∗;P = 〈u∗, u〉U∗;U on V0 . Thus we can define the linear
operator A∗ : D(A∗) → U∗ through the relation

〈p∗, Au〉P∗;P = 〈A∗p∗, u〉U∗;U for every p∗ ∈ D(A∗), u ∈ V0.

If u0 is a fixed element from V , then we have the identity

〈p∗, Au〉P∗;P = E(u0, p
∗) + 〈A∗p∗, u〉U∗;U , for all u ∈ u0 + V0, p∗ ∈ D(A∗), (4.38)

where
E(u0, p

∗) = 〈p∗, Au0〉P∗;P − 〈A∗p∗, u0〉U∗;U .

We enlarge the set u0 + V0 by letting

V+ =
{

u ∈ U : sup
p∗∈D(A∗), ‖p∗‖P∗≤1

|E(u0, p
∗) + 〈A∗p∗, u〉U∗;U | < +∞

}
, (4.39)

and introduce a relaxation Φ of the functional I by means of the Lagrangian L :




L(v, q∗) = E(u0, q
∗) + 〈A∗q∗, v〉U∗;U −G∗(q∗) + M̂(v)

q∗ ∈ D(A∗), v ∈ V+;
Φ(v) = sup

q∗∈D(A∗)
L(v, q∗), Φ : V+ → R.

(4.40)

Let us collect some consequences of these definitions.

Remark 4.4.3. The following relations hold:

u0 + V0 ⊂ V+, (4.41)

Φ(v) ≤ I(v), for all v ∈ u0 + V0. (4.42)
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Moreover, under certain hypotheses the equality holds in (4.42).

Remark 4.4.4. Suppose that for any p∗ ∈ dom G∗ there exists a sequence p∗m ∈ D(A∗) such that




p∗m
∗
⇀ p∗ in P ∗,

G∗(p∗m) → G∗(p∗).
(4.43)

Then the identity

Φ(v) = I(v) for all v ∈ u0 + V0 (4.44)

is valid.

The following remark clarifies the meaning of the relaxation considered:

Remark 4.4.5. Consider a sequence um ∈ u0 + V0 , bounded in the norm of the space V and

converging to u weakly in U . Then

u ∈ V+,

lim inf
m→+∞

I(um) ≥ Φ(u).

Now we consider the minimax problem
{

find a pair (u∗, p) ∈ V+ ×D(A∗) such that
L(u, q∗) ≤ L(u, p∗) ≤ L(v, p∗), for all v ∈ V+, q∗ ∈ D(A∗).

(4.45)

This minimax problem generates two variational problems being in duality:
{

find u ∈ V+ such that
Φ(u) = inf{Φ(v) : v ∈ V+},

(4.46)

where Φ(v) = sup{L(v, q∗) : q∗ ∈ D(A∗)} , and
{

find p∗ ∈ D(A∗) such that
R̃(p∗) = sup{R̃(q∗) : q∗ ∈ D(A∗)}), (4.47)

with R̃(q∗) = inf{L(v, q∗) : v ∈ V+}.

Remark 4.4.6. Lemma 4.4.5 shows that there is a hope to apply the direct methods: the coercivity

implies the boundedness of a minimizing sequence of the problem (4.24) in U and the potential

minimizer of (4.46) will be a weak cluster point of this sequence, which belongs to the set V+ and

such that the lim inf inequality is satisfied.
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Indeed, this remark leads us to the following conclusion, that we state without proof:

Theorem 4.4.7. Suppose that conditions (4.27), (4.28) and (4.34)-(4.36) hold. Then:

1. Problems (4.46) and (4.47) are solvable. Moreover, if u ∈ V+ is a solution to problem (4.46)

and p∗ ∈ D(A∗) is a solution to problem (4.47), then the identity

Φ(u) = Ĉ = R̃(p∗) (4.48)

holds true.

2. Problems (4.26) and (4.47) are equivalent, i.e. they have the same set of solutions.

3. A pair (u, p∗) ∈ V+ ×D(A∗) is a saddle point of the minimax problem (4.45) if and only if

u ∈ V+ is a minimizer of problem (4.46) and p∗ ∈ D(A∗) is a maximizer of problem (4.47).

4. Any minimizing sequence of problem (4.24) contains a subsequence converging to some solu-

tion of problem (4.46) weakly in U .

4.5 Minimax formulation of the incremental problem

Recall that, during the proof of existence of a weak solution to the quasistatic evolution problem of
perfect plasticity, the time-discretization procedure leads one to solving the following incremental
problem at every step (see (4.10)):

min
(u,e,p)∈A(wN

m)
{Q(e) +H(p− pN

m−1)−FN
m (u)}, (4.49)

with pN
m−1 be a solution of the corresponding incremental problem, obtained at the previous step.

In the rest of this section, to simplify the notations, we will omit writing the indices m
and N when dealing with some functionals and spaces. So, in what follows the functionals
G, M̂, F , `, L, I, R, Φ and the space V+ should be understood as GN

m, M̂N
m , FN

m , `N
m, LN

m,
IN
m , RN

m, ΦN
m and (V+)N

m , written, however, without an explicit dependence on tNm .
We state the minimax formulation of the incremental problem and briefly sketch the ideas,

leading to the notion of a weak solution. More precisely we define a Lagrangian such that the saddle
points of the corresponding relaxed problem are given by (δuN

m, σN
m), where δuN

m = uN
m − uN

m−1 ,
σN

m = A−1eN
m and the triple (uN

m, eN
m, pN

m) is a suitable solution of (4.49) (see Theorem 4.5.5).
Note that this is a generalization of the functional formulation of the classical boundary value

problem describing the equilibrium of a perfect elastoplastic body (see [FS00, Ser96, Ser93c, Ser93a,
Ser93b, Ser94]).

First (Subsection 4.5.1) we introduce the functional spaces and define the functionals of the
minimax problem. Then (Subsection 4.5.2) we define the Lagrangian and state the primal and
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dual problems. In Subsection 4.5.3 we check conditions (4.27), (4.28) and (4.34)-(4.36), that allow
us to apply the abstract theory from Section 4.4. The relaxed problem and the properties of its
solutions are presented in the same subsection. In subsection 4.5.4 we show, that every saddle
point of the relaxed minimax problem generates a solution to the incremental problem (4.49).

4.5.1 Functional formulation

In order to handle this problem using the abstract relaxation scheme described in Section 4.4 we
set

V = D2,1(Ω), V0 = D2,1
Γ0

(Ω), U = Ln/(n−1)(Ω;Rn),
{

P = {p = {τ, a} ∈ L1(Ω;Mn×n
sym )× L1(Γ1;Rn) :

‖p‖2P = ‖τD‖2L1(Ω) + 1
n‖tr τ‖2L2(Ω) + ‖a‖2L1(Γ1)

< +∞}. (4.50)

Then
{

P ∗ = {p∗ = {σ, b} : σD ∈ L∞(Ω;Mn×n
sym ), trσ ∈ L2(Ω),

b ∈ L∞(Γ1;Rn)} (4.51)

Next, let us introduce the functionals G : P → R and M̂ : U → R

G(p) =
∫

Ω

g(τ + eN
m−1) +

∫

Γ1

FN
m · a dHn−1, p = {τ, a} ∈ P,

M̂(v) = −
∫

Ω

fN
m · v dx, v ∈ U,

(4.52)

where g :Mn×n
sym → R is defined by (4.54) below.

Then it is easy to see, that for p∗ = {σ, b} ∈ P ∗ its Legendre transform G∗ takes the form

G∗(p∗) =





∫

Ω

(
g∗(σ)− σ : eN

m−1

)
dx, if b ≡ FN

m

+∞, otherwise.
(4.53)

Here
g∗(σ) =

1
2n2K0

tr 2τ + g∗0(|σD|) = sup
κ∈Mn×n

sym

{
σ : κ − g(κ)

}

is the Legendre transform of

g :Mn×n
sym → R, g(κ) =

1
2
K0tr 2κ + g0(|κD|), κ ∈Mn×n

sym . (4.54)

In the case of Hencky and Prandtl-Reuss models of plasticity g0 : R→ R has the form:

g0(t) =

{
µt2, |t| ≤ t0 = k∗√

2µ
,

k∗(
√

2|t| − k∗
2µ ), |t| > t0,

(4.55)

while its Legendre transform g∗0 : R→ R is given by

g∗0(s) =

{
s2

4µ , |s| ≤ √
2k∗,

+∞, |s| > √
2k∗,
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4.5.2 Lagrangian and a saddle-point problem

The linear operator A : V → P is introduced as follows:

Av = {ε(v), −v|Γ1}, v ∈ V,

and in view of the estimate

‖Av‖P =
(

1
n
‖div v‖2L2(Ω) + ‖εD(v)‖2L1(Ω) + ‖v‖2L1(Γ1)

)1/2

≤ c(Ω, n)‖v‖2,1,

one concludes that A is continuous.
Following the ideas outlined in Section 4.4 (see (4.30)), the minimax problem is

{
find a pair (u, σ) ∈ (δwN

m + V0)×K, such that
`(u, τ) ≤ `(u, σ) ≤ `(v, σ), for all v ∈ δwN

m + V0, τ ∈ K,
(4.56)

where the Lagrangian, according to (4.25), is given by

`(v, τ) =
∫

Ω

(
ε(v) : τ + τ : eN

m−1

)
dx−

∫

Ω

g∗(τ) dx−
∫

Γ1

FN
m · v dHn−1 −

∫

Ω

fN
m · v dx,

and δwN
m is defined according to (4.12). The functional I takes the form

I(v) = G(Av) + M̂(v) =
∫

Ω

g(ε(v) + eN
m−1)−

∫

Γ1

FN
m · v dHn−1 −

∫

Ω

fN
m · v dx.

Recall that the functions fN
m , FN

m and δwN
m satisfy the following conditions:

fN
m ∈ Ln(Ω;Rn), FN

m ∈ L∞(Γ1;Rn), δwN
m ∈ W 1,2(Ω;Rn). (4.57)

The minimax problem (4.56) generates two dual variational problems:
{

find u ∈ δwN
m + V0 such that

I(u) = inf{I(v) : v ∈ δwN
m + V0},

(4.58)

and {
find σN

m ∈ QfN
m
∩ K such that

R(σ) = sup{R(τ) : τ ∈ QfN
m
∩ K, } (4.59)

where

R(τ) =

{
`(δwN

m, τ), τ ∈ QfN
m
∩ K

−∞, τ /∈ QfN
m
∩ K for τ ∈ K,

with QfN
m

defined as

QfN
m

=
{

τ ∈ Σ :
∫

Ω

τ : ε(v) dx = FN
m (v), for all v ∈ V0

}
,

where we refer to (4.8) and (4.9) for the definition of FN
m . We note that

τ ∈ QfN
m
⇔ div τ = −fN

m in Ω, [τν] = FN
m on Γ1.
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4.5.3 The relaxed problem

Let us check conditions (4.27), (4.28) and (4.34)-(4.36). Since the functional G is convex and finite,
that is dom G = P , the function p 7→ G(Au1 + p) is continuous at zero for any u1 ∈ δwN

m + V0 .
By the finiteness of the functional M , condition (4.28) is fulfilled. Conditions (4.34) and (4.35)
are obviously satisfied.

The conditions (4.27) and (4.36) are guaranteed by the safe-load condition (4.4):

I(v) =
K0

2

∫

Ω

|div v + tr eN
m−1|2 dx+

+ sup
σ∈K

{ ∫

Ω

σD : (εD(v) + eND
m−1)− g∗(σD) dx

}
−

−
∫

Ω

%N
m : (ε(v)− ε(δwN

m)) dx + M(δwN
m) ≥ K0

2

∫

Ω

|div v + tr eN
m−1|2 dx+

+ sup
σ∈K

{ ∫

Ω

(σD − %ND
m ) : (εD(v) + eND

m−1)− g∗(σD) dx

}
−

−C

∫

Ω

tr %N
m div v dx +

∫

Ω

%ND
m : eN

m−1 dx+

+
∫

Ω

%N
m : ε(δwN

m) dx + M(δwN
m) ≥ C1

∫

Ω

(|div v|2 + |εD(v)|) dx− C →∞

(4.60)

whenever ‖v‖V →∞, v ∈ δwN
m +V0 . So the coercivity is established. Finally, the condition (4.27)

is provided by the estimate

Ĉ = inf{I(v) : v ∈ δwN
m + V0} ≥ R(%N

m) > −∞.

Thus, according to Theorem 4.4.1 we can state that problem (4.59) has at least one solution
σ ∈ QfN

m
∩K , that identity (4.32) holds and the statement (4.33) is valid. Due to the non-reflexivity

of V the variational problem (4.58) in general has no solutions. We construct relaxations of these
variational problems following the scheme described above.

Define the operator A∗ : D(A∗) → U∗ . As in (4.37), a pair p∗ = {σ, b} ∈ D(A∗) if and only if
there exists u∗ ∈ U∗ = Ln(Ω;Rn), such that

∫

Ω

u∗ · v dx =
∫

Ω

σ : ε(v) dx−
∫

Γ1

b · v dHn−1 for all v ∈ V0,

that is A∗p∗ := u∗ = −div σ ∈ Ln(Ω;Rn). Therefore

D(A∗) =
{

p∗ = {σ, b} ∈ P ∗ : div σ ∈ Ln(Ω;Rn),∫

Γ1

b · v dHn−1 =
∫

Ω

(σ : ε(v) + v · div σ) dx, for all v ∈ V0

}
.

According to (4.39) the extension V+ of the set δwN
m + V0 is

V+ =
{

v ∈ L
n

n−1 (Ω;Rn) :

sup
‖p∗‖P∗≤1, p∗={σ,b}∈D(A∗)

〈
−

∫

Γ1

b ·δwN
m dHn−1+

∫

Ω

(σ : ε(δwN
m)+(δwN

m−v) ·div σ) dx

〉
< +∞

}
.
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The important properties of this space are summarized below. In particular, the following propo-
sition shows that a triple (u, e, p), constructed from a solution (δum, σm) of a relaxed minimax
problem in an obvious way (see Theorem 4.5.5 below), is kinematically admissible for the boundary
data δwN

m .

Proposition 4.5.1. The following relations hold:

V+ ⊂ BD(Ω), (4.61)

and for every v ∈ V+

div v ∈ L2(Ω), (4.62)

(v − δwm
N ) · ν = 0 on Γ0. (4.63)

Proof: The definition of V+ implies that

sup
σ∈C∞0 (Ω∪Γ0)

〈 ∫

Ω

(σ : ε(δwN
m) + (δwN

m − v) · div σ) dx

〉
≤ C(‖tr σ‖L2(Ω) + ‖σD‖L∞(Ω)). (4.64)

This estimate and the fact that δwN
m ∈ W 1,2(Ω;Rn) ensures the estimate

sup
σ∈C∞c (Ω;Mn×n

sym )

∫

Ω

v · div σ dx ≤ C‖σ‖L∞(Ω;Mn×n
sym ).

So the claim (4.61) is established.
By taking the test vector fields in (4.64) with σD = 0 we conclude that div v ∈ L2(Ω), thus

(4.62) is proved.
As for the last claim, by taking arbitrary ϕ ∈ C∞c (Ω ∪ Γ0) and taking σ = ϕ I we get by the

integration by parts formula the following inequality:
∫

Γ0

ϕ(δwN
m − v) · ν dHn−1 =

∫

∂Ω

(δwN
m − v) · [σν] dHn−1 =

=
∫

Ω

(δwN
m − v) · div σ dx +

∫

Ω

trσ div (δwN
m − v) dx ≤ C‖ϕ‖L2(Ω).

This estimate, in its turn, implies that (δwN
m − v) · ν = 0 on Γ0 . ¤

By the properties of g∗0 and by (4.53) we have that G∗(p∗) = G∗({τ, b}) = +∞ if b 6= F on
Γ1 or τ /∈ K . Introduce the relaxed Lagrangian, as in (4.40):

L(v, q∗) = E(δwN
m, q∗) + 〈A∗q∗, v〉 −G∗(q∗) + M̂(v) =

= −
∫

Γ1

FN
m · δwN

m dHn−1+

+
∫

Ω

[
ε(δwN

m) : τ + (δwN
m − v) · div τ − g∗(τ)− fN

m · v + τ : eN
m−1

]
dx

for all v ∈ V+ and q∗ = {τ, FN
m } ∈ D(A∗), such that τ ∈ K . Now we introduce the set

Q = {τ ∈ Σ : {τ, FN
m } ∈ D(A∗)} (4.65)
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and a new Lagrangian on V+ × (Q ∩ K) defined as

L̃(v, τ) = L(v, q∗) (4.66)

where
q∗ = {τ, FN

m } ∈ D(A∗), τ ∈ K.

Now, instead of the minimax problem (4.56) we consider its relaxation
{

find a pair (u, σ) ∈ V+ × (Q ∩ K) such that
L̃(u, τ) ≤ L̃(u, σ) ≤ L̃(v, σ), for all v ∈ V+, τ ∈ Q ∩ K.

(4.67)

For the functional Φ : V+ → R we have the formula

Φ(v) = sup
q∗∈D(A∗)

L(v, q∗) = sup
q∗={τ,F N

m }∈D(A∗), τ∈K
L(v, q∗) = sup

τ∈Q∩K
L̃(v, τ), (4.68)

and the relaxation of the variational problem (4.58) takes the form

find u ∈ V+ such that Φ(u) = inf
v∈V+

Φ(v) (4.69)

As in [FS00, Lemma 1.3.1] one can show, that (4.43) holds, and thus Lemma 4.4.4 reads as
follows.

Lemma 4.5.2. We have

Φ(v) = I(v), for all v ∈ δwN
m + V0.

Lemma 4.5.3. For u ∈ V+ we have

Φ(u) =
∫

Ω

g(ε(u) + eN
m−1)−

∫

Ω

fN
m · v dx−

∫

Γ1

FN
m · u dHn−1 =

= K0
2

∫

Ω

|div u + tr eN
m−1|+

∫

Ω

g0(|εD(u) + eND
m−1|)−

∫

Ω

fN
m · v dx−

∫

Γ1

FN
m · u dHn−1,

where the corresponding integrals are understood as functionals of measures.

Proof: According to (4.68)

Φ(u) = sup
τ∈Q∩K

{
−

∫

Γ1

FN
m · δwN

m dHn−1 −
∫

Ω

fN
m · u dx+

+
∫

Ω

((
ε(δwN

m) + eN
m−1

)
: τ + (δwN

m − u) · div τ − g∗(τ)
)

dx

}
.

(4.70)

First, apply [KT83, relations (3.8) and (3.16)]:
∫

Ω

ε(δwN
m) : τ dx +

∫

Ω

δwN
m · div τ dx =

∫

∂Ω

[τν] · δwN
m dHn−1 =

=
∫

Γ1

FN
m · δwN

m dHn−1 +
∫

Γ0

[τν] · δwN
m dHn−1.

(4.71)
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On the other hand, by [KT83, relations (3.8), (3.16) and (3.23)]

−
∫

Ω

u · div τ dx =
∫

Ω

d[τD : εD(u)] + 1
n

∫

Ω

div u tr τ dx−

−
∫

Γ0

[τν]ν · (δwN
m)ν dHn−1 −

∫

Γ0

[τν]⊥ν · (δwN
m)⊥ν dHn−1 −

∫

Γ1

FN
m · u dHn−1

(4.72)

Using (4.71), (4.72) transform (4.70) as follows:

Φ(u) = −
∫

Γ1

FN
m · u dHn−1 −

∫

Ω

fN
m · u dx+

+ sup
τ∈Q∩K

{∫

Ω

d[εD(u) : τD] +
∫

Ω

1
ndiv u tr τ dx +

∫

Ω

(
eN
m−1 : τ − g∗(τ)

)
dx

}
.

Remark, that, approximating arbitrary τ ∈ Q ∩ K with τk ∈ C∞(Ω) ∩ K (see, e.g. [DDM06,
Lemma 2.3] and [KT83, Theorem 3.2]), the former equality becomes

Φ(u) = −
∫

Γ1

FN
m · u dHn−1 −

∫

Ω

fN
m · u dx+

+ sup
τ∈C∞(Ω)∩K

{ ∫

Ω

((
ε(u) + eN

m−1

)
: τ − g∗(τ)

)
dx

}
=

= −
∫

Γ1

FN
m · u dHn−1 −

∫

Ω

fN
m · u dx +

∫

Ω

g
(
ε(u) + eN

m−1

)
.

The statement is proved. ¤
Finally, we can state Theorem 4.4.7, which in this case takes the following form.

Theorem 4.5.4. Suppose that conditions (4.4) and (4.57) hold. Then there exists at least a

solution (δum, σm) of the minimax problem (4.67) in V+ × (Q ∩K) . Moreover, σm is the unique

solution to the dual variational problem (4.59), δum is a solution of the relaxed variational problem

(4.69) and the identity

Φ(δum) = inf{I(v) : v ∈ δwN
m + V0} = L̃(δuN

m, σN
m) = R(σN

m)

holds.

Furthermore,

Φ(v) = I(v) for all v ∈ δwN
m + V0.

Finally, any minimizing sequence of problem (4.58) converges strongly in L1(Ω;Rn) and weakly

in L
n

n−1 (Ω;Rn) to some solution of problem (4.69).
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4.5.4 Saddle points generate solutions to the incremental problem

Let us show, that if we interpret a saddle point (δuN
m, σN

m) of (4.67) as the increment of u and the
updated value of σ , then we get a solution to the incremental problem (4.49).

Theorem 4.5.5. Let (δuN
m, σN

m) ∈ V+ × (Q ∩ K) be a saddle point for the relaxed Lagrangian L̃ .

Then the triple (uN
m, eN

m, pN
M ) , constructed as

uN
m = uN

m−1 + δuN
m,

eN
m = AσN

m ,

pN
m = ε(uN

m)− eN
m in Ω,

pN
m = (wN

m − uN
m)¯ νHn−1 on Γ0,

is admissible for the boundary data wN
m , in the sense of Definition 4.3.1 and is a solution to the

incremental problem (4.49).

Proof: Let (δuN
m, σN

m) ∈ V+ × (Q ∩ K) be a saddle point of L̃ :

L̃(δuN
m, τ) ≤ L̃(δuN

m, σN
m) ≤ L̃(v, σN

m) for all v ∈ V+, τ ∈ Q ∩ K. (4.73)

As σN
m ∈ Q ∩ K , we have that σN

m ∈ K and [σN
mν] = F on Γ1 . Moreover, by (4.73),

∫

Ω

(v − δuN
m) · div σN

m dx ≤ −
∫

Ω

fN
m · (v − δuN

m) dx,

which is in fact an equality, valid for all v ∈ V+ . Hence,

div σN
m = −fN

m ∈ Ln. (4.74)

The first inequality in (4.73) yields
∫

Ω

[
ε(δwN

m) : σN
m + (δwN

m − δuN
m) · div σN

m − g∗(σN
m) + σN

m : eN
m−1

]
dx ≥

≥
∫

Ω

[
ε(δwN

m) : τ + (δwN
m − δuN

m) · div τ − g∗(τ) + τ : eN
m−1

]
dx

(4.75)

On the other hand, by the integration by parts formula (see [KT83, Theorem 3.2]) for δuN
m ∈

BD(Ω) and σN
m ∈ Σ with −div σN

m = fN
m and [σN

mν] = FN
m on Γ1 :

∫

Ω

(δwN
m − δuN

m) div σN
m dx = −〈εD(δwN

m − δuN
m), σND

m 〉−

− 1
n

∫

Ω

div (δwN
m − δuN

m)tr σN
m dx +

∫

∂Ω

[σN
mν] · (δwN

m − δuN
m).

(4.76)

We note that, strictly speaking, in the boundary term the integrand is just a distribution, an
element of (C1(∂Ω))′ . However, as (δwN

m − δuN
m) · ν = 0 on Γ0 and [σN

mν] = FN
m ∈ L∞(Γ1) by
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[KT83, Proposition 3.4] one has
∫

∂Ω

[σN
mν] · (δwN

m − δuN
m) =

∫

Γ1

(δwN
m − δuN

m) · FN
m dHn−1 +

∫

Γ0

(δwN
m − δuN

m)τ · [σN
mν]τ dHn−1.

This relation together with (4.75) and (4.76) implies

〈εD(δuN
m), τD − σND

m 〉 −
∫

Ω

1
2
(Aτ, τ) dx+

+
∫

Ω

1
2
(AσN

m , σN
m) dx +

1
n

∫

Ω

div δuN
m tr (τ − σN

m) dx+

+
∫

Ω

(τ − σN
m) : eN

m−1 dx +
∫

Γ0

(δwN
m − δuN

m)τ · [τ − σN
m ]τ dHn−1 ≤ 0,

and hence

〈εD(δuN
m), τD − σND

m 〉+
∫

Ω

(τ − σN
m) : eN

m−1 dx−
∫

Ω

AσN
m : (τ − σN

m) dx+

+
1
n

∫

Ω

div δuN
m tr (τ − σN

m) dx+

+
∫

Γ0

(δwN
m−1 − δuN

m)τ · [τ − σN
m ]τ dHn−1 −

∫

Ω

1
2
A(σN

m − τ) : (σN
m − τ) dx ≤ 0.

Now, taking τ̃ = σN
m + α(τ − σN

m) ∈ K and letting α → 0 one gets

〈εD(δuN
m), τD − σND

m +〉+
∫

Ω

(τ − σN
m) : eN

m−1 dx +
1
n

∫

Ω

div δuN
m tr (τ − σN

m) dx−

−
∫

Ω

AσN
m : (τ − σN

m) dx +
∫

Γ0

(δwN
m − δuN

m)τ · [τ − σN
m ]τ dHn−1 =

= 〈εD(δuN
m), τD − σND

m 〉+
∫

Ω

(τD − σND
m ) : (eN

m−1D − eND
m ) dx+

+
1
n

∫

Ω

(div δuN
m − tr δeN

m) tr (τ − σN
m) dx +

∫

Γ0

(δwN
m − δuN

m)τ · [τ − σN
m ]τ dHn−1 ≤ 0.

for all τ ∈ Q ∪ K . Taking τ ∈ C∞c (Ω;Mn×n
sym ) with τD = 0 we conclude that

tr (ε(δuN
m)− δeN

m) = div δuN
m − tr δeN

m = 0 a.e. in Ω ,

and the induction hypothesis tr (ε(uN
m−1)− eN

m−1) = 0 a.e. in Ω implies that tr (ε(uN
m)− eN

m) = 0
a.e. in Ω, and thus

pN
m ∈ Mb(Ω ∪ Γ0;Mn×n

D ).

Therefore we have the following inequality

〈pN
m − pN

m−1, τ − σ〉 ≤ 0

for all τ ∈ Q ∩ K .
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The last relation, in its turn, implies that

H(pN
m − pN

m−1) = 〈pN
m − pN

m−1, σ〉,
which yields the following

H(εq + pN
m − pN

m−1)−H(pN
m − pN )− 〈εq, σ〉 ≥

≥ 〈εq + pN
m − pN

m−1, σ〉 − 〈pN
m − pN

m−1, σ〉 − 〈εq, σ〉 ≥ 0,

for every triple (v, η, q) ∈ A(0).
The latter inequality and (4.74) imply that (uN

m, eN
m, pN

m) ∈ A(wN
m) is a solution to problem

(4.49). ¤

4.6 Approximations

In this section we will show that some solutions of the relaxed minimax problem (4.67) possess an
important property of being approximated by more regular functions in a way that allows us to
get the higher regularity of stresses for our evolutionary problem.

Now we consider a family of regularized problems and show that their solutions converge to a
saddle point of (4.67) in a suitable weak sense.

4.6.1 Regularized problems

We consider a family of variational problems depending on a parameter α ∈ (0, 1)
{

find uα
m ∈ V∗

Iα(uα
m) = inf{Iα(v) : v ∈ δwN

m + V∗},
(4.77)

where

V∗ = V0 ∩W 1,2(Ω;Rn),

Iα(v) =
α

2

∫

Ω

|εD(v) + eND
m−1|2 dx + I(v) =

α

2

∫

Ω

|εD(v) + eND
m−1|2 dx +

∫

Ω

g(ε(v) + eN
m−1) dx−

∫

Ω

fN
m · v dx−

∫

Γ1

FN
m · v dHn−1.

As it is easy to see, for each α > 0, the coercivity estimate (4.60) and Korn inequality guarantee
that the functional Iα is coercive on V∗ , so that problem (4.77) has a unique minimizer uα

m ∈ V∗
which satisfies a nonlinear system of PDE’s of elliptic type:

∫

Ω

σα
m : ε(v) dx = FN

m (v) ≡
∫

Ω

fN
m · v dx +

∫

Γ1

FN
m · v dHn−1 for all v ∈ V∗ , (4.78)

where
σα

m = α(εD(uα
m) + eND

m−1) +
∂g

∂κ
(ε(uα

m) + eN
m−1) =

= α(εD(uα
m) + eND

m−1) + K0(div uα
m + tr eN

m−1)1+

+g′0(|εD(uα
m) + eND

m−1|)
εD(uα

m) + eND
m−1

|εD(uα
m) + eND

m−1|
.

(4.79)
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Therefore,

div σα
m + fN

m = 0 in Ω. (4.80)

Remark 4.6.1. We note, that the functional Iα(v) is of the form I(v) + α
2 ‖εD(v)‖2L2 , where the

second summand is added to make it coercive in W 1,2 .

Lemma 4.6.2. For any α ∈ (0, 1) the following estimate is true

√
α‖εD(uα

m) + eND
m−1‖L2(Ω) + ‖div uα

m‖L2(Ω) + ‖εD(uα
m)‖L1(Ω) + ‖uα

m‖L
n

n−1 (Ω)
≤ C, (4.81)

where C = C(‖fN
m ‖Ln(Ω), ‖FN

m ‖L∞(Γ1), ‖δwN
m‖W 1,2(Ω;Rn), ‖eN

m−1‖L2) .

Moreover for a subsequence the following hold:

uα
m ⇀ δuN

m in L
n

n−1 (Ω;Rn), (4.82)

uα
m → δuN

m in Lr(Ω;Rn) for r ∈ [1, n/(n− 1)), (4.83)
∫

Ω

τ : ε(uα
m) dx →

∫

Ω

τ : ε(δuN
m) dx for every τ ∈ C∞c (Ω;Mn×n

sym ), (4.84)

div uα
m ⇀ div δuN

m in L2(Ω;Rn), (4.85)

α

∫

Ω

|εD(uα
m) + eND

m−1|2 dx → 0, (4.86)

σα
m ⇀ σN

m in L2(Ω;Mn×n
sym ), (4.87)

σαD
m − α(εD(uα

m) + eND
m−1)

∗
⇀ σND

m in L∞(Ω;Mn×n
sym ), (4.88)

where δuN
m is a solution to problem (4.69) and σN

m is the unique solution to problem (4.59).

Proof: From the coercivity estimate (4.60) one immediately obtains (4.81).
It follows from (4.79) that the sequences {σα

m} and {σαD
m − α(εD(uα

m) + eND
m−1)} are bounded

in L2(Ω;Mn×n
sym ) and L∞(Ω;Mn×n

D ) respectively.
So we get the convergences (4.82)-(4.85), (4.87) and (4.88). It remains to show that u and σ

are solutions of (4.69) and (4.59) and that (4.86) holds.
As κα := σα

m − α(εD(uα
m) + eND

m−1) ∈ K , and since K is weakly closed in L2(Ω;Mn×n
sym ), it

follows that σ ∈ K . Now passing to the limit in (4.78) and using the condition (4.6) we can extend
(4.78) to V0 and thus σN

m ∈ QfN
m

.
On the other hand, the duality relations imply that

κα : (ε(uα
m) + eN

m−1)− g(ε(uα
m) + eN

m−1)− g∗(τα) = 0 a.e. in Ω.
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But then, by (4.78) and (4.79) one gets

Iα(uα
m) =

α

2

∫

Ω

|εD(uα
m) + eND

m−1|2 dx+

+
∫

Ω

[
τα : (ε(uα

m) + eN
m−1)− g∗(κα)

]
dx−FN

m (uα
m) =

= −α

2

∫

Ω

|εD(uα
m) + eND

m−1|2 dx +
∫

Ω

[
σα

m : (ε(uα
m) + eN

m−1)− g∗(κα)
]
dx−FN

m (uα
m).

By Theorem 4.4.1, applied to problems (4.58) and (4.59), we get

sup{R(τ) : τ ∈ QfN
m
∩ K} = inf{I(v) : v ∈ δwN

m + V0} ≤ I(uα
m) ≤ Iα(uα

m) =

= −α

2

∫

Ω

|εD(uα
m) + eND

m−1|2 dx−
∫

Ω

g∗(κα) dx +
∫

Ω

σα
m : (ε(uα

m) + eN
m−1) dx−

−FN
m (uα

m) = −α

2

∫

Ω

|εD(uα
m) + eND

m−1|2 dx−
∫

Ω

g∗(κα) dx+

+
∫

Ω

σα
m : (ε(δwN

m) + eN
m−1) dx−FN

m (δwN
m),

(4.89)

where the Euler equation (4.78) was used.
Since

−
∫

Ω

g∗(σN
m) dx +

∫

Ω

σ : (ε(δwN
m) + eN

m−1) dx−FN
m (δwN

m) = R(σN
m),

by exploiting the convergences (4.87) and (4.88) we obtain from (4.89):

lim
α→0

Iα(uα
m) ≤ R(σN

m)− lim sup
α→0

α

2

∫

Ω

|εD(uα
m) + eND

m−1|2 dx.

Thus, proceeding with (4.89) we obtain

R(σN
m) ≤ sup{R(τ) : τ ∈ QfN

m
∩ K} = inf{I(v) : v ∈ u0 + V0} ≤

≤ lim inf
α→0

I(uα
m) ≤ lim sup

α→0
I(uα

m) ≤ lim
α→0

Iα(uα
m) ≤

≤ R(σN
m)− lim sup

α→0

α

2

∫

Ω

|εD(uα
m) + eND

m−1|2 dx ≤ R(σN
m),

which gives (4.86) and ensures that σN
m is a solution to problem (4.59).

Moreover one has the identity

lim
α→0

I(uα
m) = inf{I(v) : v ∈ δwN

m + V0}, (4.90)

which implies that uα
m is a minimizing sequence for the problem (4.58), and therefore it converges

weakly in L
n

n−1 (Ω;Rn) to a solution of problem (4.69). ¤

4.6.2 Convergence of variations

Let us show, that the approximating sequence enjoys better convergence properties, than those
stated in Lemma 4.6.2. Namely, the following result holds.
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Lemma 4.6.3. We have

|εD(uα
m) + eND

m−1| ∗⇀ |εD(δuN
m) + eND

m−1| in Mb(Ω) . (4.91)

Proof: By Lemma 4.6.2, Theorem 4.5.4 and (4.90)

lim
α→0

Φ(uα
m) = lim

α→0
I(uα

m) = inf
v∈δwN

m+V0

I(v) = inf
v∈V+

Φ(v) = Φ(δuN
m),

that is,

lim
α→0

∫

Ω

g(ε(uα
m) + eN

m−1) dx =
∫

Ω

g(ε(δuN
m) + eN

m−1). (4.92)

Properties (4.84) and (4.85) imply that

lim
α→0

∫

Ω

g0(|εD(uα
m) + eND

m−1|) dx ≥
∫

Ω

g0(|εD(δuN
m) + eND

m−1|),

and
lim
α→0

∫

Ω

|div uα
m + tr eND

m−1|2 dx ≥
∫

Ω

|div δuN
m + tr eND

m−1|2 dx.

Combined with (4.92), the latter inequalities give

lim
α→0

∫

Ω

g0(|εD(uα
m) + eND

m−1|) =
∫

Ω

g0(|εD(δuN
m) + eND

m−1|). (4.93)

To show the validity of (4.91) we argue in the following way: the sequence |εD(uα
m) + eND

m−1| is
bounded in Mb(Ω), hence there exists a nonnegative measure λ ∈ Mb(Ω), such that

|εD(uα
m) + eND

m−1| ∗⇀ λ in Mb(Ω), as α → 0. (4.94)

Thus, λ ≥ |εD(δuN
m) + eND

m−1| in Mb(Ω), and, in particular, the inequality holds also for Ln -
absolutely continuous and singular parts:

λa ≥ |εD(δuN
m) + eND

m−1|a,

λs ≥ |εD(δuN
m) + eND

m−1|s.
(4.95)

By the weak∗ lower-semicontinuity of convex functionals of measures and since for g0 as in
(4.55) the recession function of g is of the form g∞0 (t) = k∗

√
2 t ,

lim
α→0

∫

Ω

g0(|εD(uα) + eND
m−1|) dx ≥

∫

Ω

g0(λ) =
∫

Ω

g0(λa) dx + k∗
√

2 λs(Ω). (4.96)

We have ∫

Ω

g0(|εD(δuN
m) + eND

m−1|) =

=
∫

Ω

g0(|εD(δuN
m) + eND

m−1|a) dx + k∗
√

2 |εD(δuN
m) + eND

m−1|s(Ω).
(4.97)

As the function g0 is strictly monotone increasing, from (4.93)-(4.97) it follows that

λ = |εD(δuN
m) + eND

m−1|.
Now (4.91) is a consequence of (4.94). ¤
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4.6.3 Technical lemmas

Note, that the definition (4.79) of σα implies, that

σα
m = α(εD(uα

m) + eND
m−1) + K0(div uα

m + tr eN
m−1)1+

+





2µ(εD(uα
m) + eND

m−1), if |εD(uα
m) + eND

m−1| ≤ k∗√
2µ

k∗
√

2 εD(uα
m)+eND

m−1

|εD(uα
m)+eND

m−1|
, if |εD(uα

m) + eND
m−1| > k∗√

2µ
.

(4.98)

According to the chain rule of [MT03] we have the following expression for the derivatives of
σα

m :

σα
m,k = α(εD(uα

m,k) + eND
m−1,k) +

∂2g

∂κ2
(ε(uα

m) + eN
m−1)(ε

D(uα
m,k) + eND

m−1,k). (4.99)

Here and henceforth the subscript ,k denotes the partial derivative with respect to xk .

In the sequel we will use the notation

τα
m := ε(uα

m) + eN
m−1. (4.100)

Put g0(κ) = g0(|κD|). Let us introduce two bilinear forms, that depend on α and implicitly on
the point x ∈ Ω:

Eα
1 (ε,κ) =

(
∂2g0

∂τ2
(τα

m) ε

)
: κ =

=
g′0(|ταD

m |)
|ταD

m | ε : κ +
(

g′′0 (|ταD
m |)− g′0(|ταD

m |)
|ταD

m |
)

ταD
m : ε

|ταD
m |

ταD
m : κ
|ταD

m |

(4.101)

and
Eα

2 (ε,κ) = α εD : κD + K0 tr ε trκ + Eα
1 (εD,κD). (4.102)

Below we list some relations which will be extensively used in the remaining part of the paper.

Lemma 4.6.4. The following relations hold true:

σα
m,k : κ = Eα

2 (τα
m,k,κ), (4.103)

Eα
2 (κD,κD) ≤ α|κD|2 +





2µ |κD|2, if |ταD
m | ≤ k∗√

2µ

k∗
√

2 |κ
D|2

|ταD
m | , if |ταD

m | > k∗√
2µ

(4.104)

for any κ ∈Mn×n
sym . Moreover

Eα
2 (Aσα

m,k,Aσα
m,k) ≤ 1

n trAσα
m,ktrσα

m,k + α
2µAσαD

m,k : σαD
m,k+

+





AσαD
m,k : σαD

m,k, if |ταD
m | ≤ k∗√

2µ

k∗√
2µ|ταD|AσαD

m,k : σαD
m,k, if |ταD

m | > k∗√
2µ

(4.105)
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Proof: Identity (4.103) and inequality (4.104) follows from (4.98), (4.99), the definitions (4.101),
(4.102) and the expression for g0 , as in (4.55).

To prove (4.105) we first use the definition (4.102) of Eα
2 and (4.1) of A , obtaining

Eα
2 (Aσα

m,k,Aσα
m,k) = α

2µ AσαD
m,k : σαD

m,k +
(tr σα

m,k)2

n2 K0
+ 1

4µ2 Eα
1 (σαD

m,k, σαD
m,k). (4.106)

Now let us study the last summand. Taking (4.104) into account we have the following

1
4µ2

Eα
1 (σαD

m,k, σαD
m,k) ≤ 1

4µ2





2µσαD
m,k : σαD

m,k, if |ταD
m | ≤ k∗√

2µ
√

2k∗
|ταD|σ

αD
m,k : σαD

m,k, if |ταD
m | > k∗√

2µ

≤

≤ 1
2µ





σαD
m,k : σαD

m,k, if |ταD
m | ≤ k∗√

2µ

k∗√
2µ|ταD|σ

αD
m,k : σαD

m,k, if |ταD
m | > k∗√

2µ

=




AσαD

m,k : σαD
m,k, if |ταD

m | ≤ k∗√
2µ

k∗√
2µ|ταD|AσαD

m,k : σαD
m,k, if |ταD

m | > k∗√
2µ

Thus, (4.105) follows now from (4.106). ¤

Corollary 4.6.5. As a consequence of (4.105), we have the following estimate:

Eα
2 (Aσα

m,k,Aσα
m,k) ≤

(
1 + α

2µ

)
Aσα

m,k : σα
m,k. (4.107)

Lemma 4.6.6. We have

−Eα
2 (ταD

m,k; ταD
m,k) = −σαD

m,k : ταD
m,k ≤

≤





−AσαD
m,k : σαD

m,k + α
2µ Eα

2 [ταD
m,k; ταD

m,k], if |ταD
m | ≤ k∗√

2µ

−
√

2µ
k∗
|ταD|AσαD

m,k : σαD
m,k + α

k∗
√

2
|ταD

m |Eα
2 [ταD

m,k; ταD
m,k], if |ταD

m | > k∗√
2µ

.

(4.108)

Proof: Suppose, |ταD
m | ≤ k∗√

2µ
. Then σαD

m = αταD
m + 2µταD

m , and

−σαD
m,k : ταD

m,k = −σαD
m,k :

(
ταD
m,k + 1

2µα ταD
m,k) + 1

2µα σαD
m,k : ταD

m,k =

= −AσαD
m,k : σαD

m,k + 1
2µα Eα

2 [ταD
m,k; ταD

m,k].

Now let |ταD
m | > k∗√

2µ
. In this case σαD

m = αταD
m + k∗

√
2 ταD

m

|ταD
m | , that is

σαD
m,k = αταD

m,k + k∗
√

2
[

ταD
m

|ταD
m |

]

,k

, (4.109)

thus

ταD
m,k =

|ταD
m |

k∗
√

2

(
σαD

m,k − αταD
m,k

)
+ ταD

m

ταD
m : ταD

m,k

|ταD
m |2 ,
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and
−σαD

m,k : ταD
m,k = −

√
2µ

k∗
|ταD

m |AσαD
m,k : σαD

m,k + α
k∗
√

2
|ταD

m |σαD
m,k : ταD

m,k+

−ταD
m : ταD

m,k

|ταD
m |2 σαD

m,k : ταD
m ≤

−
√

2µ

k∗
|ταD

m |AσαD
m,k : σαD

m,k + α
k∗
√

2
|ταD

m |σαD
m,k : ταD

m,k,

where we have used (4.109) and the orthogonality of
[ ταD

m

|ταD
m |

]
,k

and ταD
m to show that

−ταD
m : ταD

m,k

|ταD
m |2 σαD

m,k : ταD
m = −α

(
ταD
m : ταD

m,k

|ταD
m |

)2

≤ 0.

The claim is proved. ¤

4.7 W 1,2
loc -estimates of stresses in the incremental problems

In this section we deduce the iterative estimate of L2 -norms of gradients of functions σα , defined
by means of (4.79) via the solutions of regularized problems (4.77), and we show, that for every
given m and N we have σN

m ∈ W 1,2
loc (Ω;Mn×n

sym ). We note, however, that in this section we are
concerned only with the problem of regularity of each σN

m , that is, we do not care about the
uniformity of estimates with respect to m and N . Having these estimates in hand, we conclude
that the convergence of approximate solutions σα to σN

m , which was known to take place in the
weak topology of L2(Ω;Mn×n

sym ) (see (4.87)), is actually better, and is determined by the critical
exponent of the Sobolev embedding.

We note that, to underline the dependence of σα and uα on m , we sometimes write them as
σα

m and uα
m . Remark, that in what follows Cm will denote a constant independent of α , which

may change from line to line. This constant might depend on m, N , and, in case of local estimates,
on a domain Ω′ ⊂⊂ Ω. We will use the notation C only when this constant does not depend on
m and N .

Thus, our objective now is the following estimate
∫

Ω′
Aσα

m,k : σα
m,k dx ≤ C(m,N, Ω′), (4.110)

valid for any Ω′ ⊂⊂ Ω.
Suppose, by induction, that we have already proved that σN

m−1 ∈ W 1,2
loc (Ω;Mn×n

sym ). To simplify
the notation, in this section we will omit writing the index N for the solutions of the incremental
problem (4.49). Let us turn to the regularized problem (4.77). Since uα

m is a solution of the
nonlinear elliptic system (4.80) with fm ∈ Ln(Ω;Rn) and eN

m−1 ∈ W 1,2
loc (Ω;Mn×n

sym ), one can show,
by considering the difference quotients, that

uα
m ∈ W 2,2

loc (Ω;Rn), ε(uα
m), σα

m ∈ W 1,2
loc (Ω;Mn×n

sym ). (4.111)

In the rest of the paper we adopt the summation convention over repeated indices (excluding
m, k and α). As

(σα
m)ij,j = −(fm)i a.e. in Ω, (4.112)
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one has

∫

Ω

σα
m,k : ε(v) dx = −

∫

Ω

fm · v,k dx for all v ∈ C∞0 (Ω;Rn), k = 1, . . . , n. (4.113)

By using formula (4.103), estimate (4.107) and the definition (4.100) of τα
m we obtain:

Aσα
m,k : σα

m,k = Eα
2 (τα

m,k,Aσα
m,k) ≤

≤ [
Eα

2 (τα
m,k, τα

m,k)
]1/2[

Eα
2 (Aσα

m,k,Aσα
m,k)

]1/2 ≤
≤ 1

2Eα
2 (τα

m,k, τα
m,k) + 1

2Eα
2 (Aσα

m,k,Aσα
m,k) ≤

≤ 1
2σα

m,k : τα
m,k +

(
1
2 + α

4µ

)
Aσα

m,k : σα
m,k ≤

≤ 1
2σα

m,k : ε(uα
m,k) + 1

2σα
m,k : AσN

m−1,k +
(

1
2 + α

4µ

)
Aσα

m,k : σα
m,k

(4.114)

By applying Cauchy inequality to Aσα
m,k : σN

m−1,k , we get

(
1− α

µ

)
Aσα

m,k : σα
m,k ≤ AσN

m−1,k : σN
m−1,k + 2σα

m,k : ε(uα
m,k). (4.115)

Thus, it remains to prove the boundedness in L1
loc(Ω) of the second summand of (4.115).

Let us introduce the notation

σα := σα
m, f := fm, uα := uα

m,

omitting also the index m for further convenience. Let ϕ ∈ C3
0 (Ω) be a arbitrary cut-off function,

such that ϕ ≡ 1 on Ω′ and supp ϕ ⊂ Ω′′ ⊂⊂ Ω. By (4.111) we can put the function

v = ϕ6uα
,k

into the identity (4.113).
To avoid parentheses, we agree that expressions like ϕ6

,i always mean (ϕ6),i . We start by

∫

Ω

σα
,k : ε(ϕ6uα

,k) dx = −
∫

Ω

f · (ϕ6uα
,k),k dx =

= −
∫

Ω

f · ϕ6∆uα dx−
∫

Ω

f · ϕ6
,kuα

,k dx.

(4.116)

As

1
2
∆uα = div ε(uα)− 1

2
∇div uα,
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we go on

−
∫

Ω

f · ϕ6∆uα dx−
∫

Ω

f · ϕ6
,kuα

,k dx = −2
∫

Ω

f · ϕ6div ε(uα) dx+

+
∫

Ω

f · ϕ6∇div uα dx−
∫

Ω

f · ϕ6
,kuα

,k dx = 2
∫

Ω

ε(f) : ϕ6ε(uα) dx+

+2
∫

Ω

(f ¯∇ϕ6) : ε(uα) dx +
∫

Ω

ϕ6 f · ∇div uα dx−
∫

Ω

f · ϕ6
,kuα

,k dx =

= 2
∫

Ω

ϕ6ε(f) : ε(uα) dx +
∫

Ω

ϕ6 f · ∇div uα dx +
∫

Ω

fi ϕ6
,ju

α
j,i dx =

= 2
∫

Ω

ϕ6ε(f) : ε(uα) dx+

+
∫

Ω

ϕ6 f · ∇div uα dx−
∫

Ω

∇ϕ6 · uα div f dx−
∫

Ω

(f ¯ uα) : ∇2ϕ6 dx.

(4.117)

Thus (4.116) and (4.117) yield

Jα
m :=

∫

Ω

ϕ6σα
,k : ε(uα

,k) dx = J1 + J2 + J3, (4.118)

where

J1 := −2
∫

Ω

σα
ij,kϕ6

,iεkj(uα) dx, (4.119)

J2 :=
∫

Ω

σα
ij,kϕ6

,iu
α
k,j dx, (4.120)

J3 :=
∫

Ω

[
2ϕ6ε(f) : ε(uα) + ϕ6 f · ∇div uα dx− (4.121)

∇ϕ6 · uα div f − (f ¯ uα) : ∇2ϕ6

]
dx.

Now, by using the orthogonal decomposition of Mn×n
sym =MD + R1 :

ε(uα) = εD(uα) +
1
n

div uα1, σα = σαD +
1
n

trσα1

and the Euler equation (4.112), one gets
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J1 = −2
∫

Ω

σα
ij,kϕ6

,iε
D
jk(uα) dx− 2

n

∫

Ω

σα
ij,jϕ

6
,idiv uα dx =

− 2
n

∫

Ω

trσα
,kϕ6

,iε
D
ik(uα) dx− 2

∫

Ω

σαD
ij,kϕ6

,iε
D
jk(uα) dx+

+
2
n

∫

Ω

f · ∇ϕ6div uα dx = 2
∫

Ω

(fk + σαD
ks,s)ϕ

6
,iε

D
ik(uα) dx−

−2
∫

Ω

σαD
ij,kϕ6

,iε
D
jk(uα) dx +

2
n

∫

Ω

f · ∇ϕ6div uα dx =

= 2
∫

Ω

(f ¯∇ϕ6) : εD(uα) dx +
2
n

∫

Ω

f · ∇ϕ6div uα dx+

+12
∫

Ω

ϕ5σαD
ij,k

(
− ϕ,iε

D
jk(uα) + δikϕ,sε

D
js(u

α)
)

dx =

= 2
∫

Ω

(f ¯∇ϕ6) : εD(uα) dx + 12
∫

Ω

ϕ5σαD
,k : S(k) dx +

2
n

∫

Ω

f · ∇ϕ6div uα dx.

(4.122)

where the matrices S(k) are defined by

S
(k)
ij :=

(
δikϕ,sε

D
js(u

α)− ϕ,iε
D
jk(uα)

)
. (4.123)

It follows immediately from the definition that

tr (S(k)) = δikϕ,sε
D
is(u

α)− ϕ,iε
D
ik(uα) = 0. (4.124)

Now let us turn to J2 . Integrating by parts and using (4.112) we get

J2 = −
∫

Ω

[
σα

ijϕ
6
,ikuα

k,j + σα
ijϕ

6
,idiv uα

,j

]
=

=
∫

Ω

σα
ij,jϕ

6
,ikuα

k dx +
∫

Ω

σα
ijϕ

6
,ijkuα

k dx +
∫

Ω

σα
ij,jϕ

6
,idiv uα dx+

+
∫

Ω

σα
ijϕ

6
,ijdiv uα dx = −

∫

Ω

(f ¯ uα) : ∇2ϕ6 dx−

−
∫

Ω

f · ∇ϕ6div uα dx +
∫

Ω

σα
ijϕ

6
,ijkuα

k dx +
∫

Ω

σα : ∇2ϕ6div uα dx.

The latter equality and (4.118)-(4.122) give the estimate:

Jα
m ≤ Iα

0 + Iα
1 + Iα

2 + Iα
3 (4.125)
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with
Iα
0 := 2

∫

Ω

[
(f ¯∇ϕ6) : εD(uα) + ϕ6ε(f) : ε(uα)−

−(f ¯ uα) : ∇2ϕ6
]
dx +

(
2
n − 1

) ∫

Ω

f · ∇ϕ6div uα dx

−
∫

Ω

(
ϕ6div f div uα +∇ϕ6 · uαdiv f

)
dx,

Iα
1 := 12

∫

Ω

ϕ5σαD
,k : S(k) dx, Iα

2 :=
∫

Ω

σα
ijϕ

6
,ijkuα

k dx,

Iα
3 :=

∫

Ω

σα : ∇2ϕ6div uα dx.

(4.126)

Estimate of Iα
0 . By using the convergence uα

m
∗
⇀ δuN

m in BD(Ω) (Theorem 4.5.5 and Lemma
4.6.2), Iα

0 can be estimated as

|Iα
0 | ≤ C(‖fm‖C1(Ω′), ‖ϕ‖C1(Ω)) sup

α
‖uα

m‖BD ≤ C(m,N,Ω′). (4.127)

Estimate of Iα
1 . As σN

m−1 ∈ K , its deviator σND
m−1 is bounded, and so is eND

m−1 . We conclude,
that ∫

|εD(uα
m)+eND

m−1|≤ k∗√
2µ

|εD(uα
m)|2 dx+

+
∫

|εD(uα
m)+eND

m−1|> k∗√
2µ

|εD(uα
m)|2

|εD(uα
m) + eND

m−1|
dx ≤ Cm‖εD(uα

m)‖1 + Cm,

(4.128)

which is uniformly bounded with respect to α by Lemma 4.6.2.
Using (4.124), (4.103), (4.100), (4.86), (4.104) and (4.128) we obtain

|Iα
1 | ≤ Cm

∫

Ω

ϕ5Eα
2 (τα

,k, S(k)) dx ≤

≤ 1
100

∫

Ω

ϕ6Eα
2 (τα

m,k, τα
m,k) dx + Cm

∫

Ω

ϕ4Eα
2 (S(k), S(k)) dx ≤

≤ 1
100

∫

Ω

ϕ6 σα
m,k : τα

m,k dx + Cm α

∫

Ω

ϕ4|S(k)|2 dx+

+Cm

∫

|ταD
m |≤ k∗√

2µ

ϕ4|S(k)|2 dx + Cm

∫

|ταD
m |> k∗√

2µ

ϕ4|S(k)|2
|ταD

m | dx ≤

≤ 1
100

(
Jα

m +
∫

Ω

ϕ6Aσα
m,k : σα

m,k dx +
∫

Ω

ϕ6Aσm−1,k : σm−1,k dx

)
+

+Cm

∫

|ταD
m |≤ k∗√

2µ

|εD(uα
m)|2 dx + Cm

∫

|ταD
m |> k∗√

2µ

|εD(uα
m)|2

|ταD
m | dx + Cm α‖εD(uα

m)‖22 ≤

≤ 1
100

(
Jα

m +
∫

Ω

ϕ6Aσα
m,k : σα

m,k dx +
∫

Ω

ϕ6Aσm−1,k : σm−1,k dx

)
+

+Cm

∫

Ω

|εD(uα
m)| dx + Cm.

(4.129)
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Estimate of Iα
2 . As to the second summand, Lemma 4.6.2 and the embedding W 1,2

0 (Ω;Mn×n
sym )

↪→ Ln(Ω;Mn×n
sym ) for n = 2, 3 allows one to make the following estimates

|Iα
2 | ≤ Cm‖ϕ3σα

m‖n;Ω ‖uα
m‖ n

n−1 ;Ω ≤ Cm‖∇(ϕ3 σα
m)‖2‖uα

m‖ n
n−1

≤

≤ Cm

[ ∫

Ω

ϕ6Aσα
m,l : σα

m,l dx +
∫

Ω

ϕ4|∇ϕ|2|σα
m|2 dx

]1/2

≤

≤ 1
100

∫

Ω

ϕ6Aσα
m,l : σα

m,l dx + Cm.

(4.130)

Estimate of Iα
3 . As

div uα
m =

1
nK0

tr σα
m − tr eN

m−1,

we can bound Iα
3 as

|Iα
3 | ≤ Cm(‖σα

m‖22 + ‖σN
m−1‖22) (4.131)

So, (4.118), (4.125), (4.127)-(4.131) and the regularity of σN
m−1 , proved at the previous step,

imply that

Jα
m ≤ Cm + 1

100Jα
m + 2

100

∫

Ω

ϕ6Aσα
m,l : σα

m,l dx.

Therefore (4.115) allow us to conclude that (4.110) holds, and thus

lim sup
α→0

‖∇σα
m‖L2(Ω′) ≤ C(m,N, Ω′), (4.132)

where this constant depends on the domain Ω′ , the step m , and the data of the problem.

Remark 4.7.1. Inequality (4.132) and the convergence σα
m ⇀ σN

m in L2(Ω;Mn×n
sym ), see (4.87),

imply that

σN
m ∈ W 1,2

loc (Ω;Mn×n
sym ),

σα
m ⇀ σN

m in W 1,2
loc (Ω),

and σα → σN
m in Ln

loc(Ω;Mn×n
sym ),

(4.133)

where the strong convergence in Ln
loc(Ω;Mn×n

sym ) is guaranteed by the Sobolev embedding for n =

2, 3.

4.8 Auxiliary estimates

In this section we prove a fine convergence estimate for the approximate solutions of regularized
problems (Lemma 4.8.1) and get some analytical estimates, which are the core of the proof of the
uniform boundedness of σm

N in W 1,2
loc (Ω;Mn×n

sym ) (Lemmas 4.8.2, 4.8.3 and Corollary 4.8.4).
In these estimates it is crucial that constants C does not depend on m and N , although they

may depend on ϕ .
In the rest of the paper ωm(α) will denote a generic function converging to 0 as α → 0, which

may change from line to line and depend upon m and N .
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4.8.1 Fine properties of approximating sequence

Lemma 4.8.1. For any non-negative function ϕ ∈ C0(Ω) we have

∫

|ταD
m |>(1+ 1

N ) k∗√
2µ

ϕ4

(
|εD(uα

m) + eND
m−1| − |eND

m−1|
)

dx ≤ C

N
+ ωm(α). (4.134)

Proof: As |eND
m−1| = |AσND

m−1| = 1
2µ |σND

m−1| ≤ k∗√
2µ

, we have

∫

(1+ 1
N ) k∗√

2µ
≤|ταD

m |
ϕ4

(
|εD(uα

m) + eND
m−1| − |eND

m−1|
)

dx ≤

≤
∫

k∗√
2µ
≤|ταD

m |
ϕ4

(
|εD(uα

m) + eND
m−1| − |eND

m−1|
)

dx =

=
∫

Ω

ϕ4

(
|εD(uα

m) + eND
m−1| − |eND

m−1|
)

dx−

−
∫

|ταD
m |< k∗√

2µ

ϕ4

(
|εD(uα

m) + eND
m−1| − |eND

m−1|
)

dx.

(4.135)

On the set {|ταD
m | < k∗√

2µ
} one has σαD

m = αταD
m + 2µταD

m by (4.98). From (4.133) and (4.15) it
follows, that

−
∫

|ταD
m |< k∗√

2µ

ϕ4

(
|εD(uα

m) + eND
m−1| − |eND

m−1|
)

dx ≤

≤ 1
2µ

∫

|ταD
m |< k∗√

2µ

ϕ4
(|σαD

m − σND
m−1|+ α|ταD

m |) dx ≤

≤ 1
2µ

∫

Ω

ϕ4|σαD
m − σND

m−1| dx + Cα ≤

≤ 1
2µ

∫

Ω

ϕ4|σND
m − σND

m−1| dx + 1
2µ

∫

Ω

ϕ4|σN
m − σα

m| dx + Cα ≤ C

N
+ ωm(α).

On the other hand, by (4.91) and (4.15)

lim
α→0

∫

Ω

ϕ4

(
|εD(uα

m) + eND
m−1| − |eND

m−1|
)

dx =

= 〈ϕ4, |εD(δuN
m) + eND

m−1| − |eND
m−1| · Ln〉 ≤ |εD(δuN

m)|(Ω) ≤ C

N
.

The result now follows from (4.135) and the last two inequalities. ¤

4.8.2 Analytic estimates

Lemma 4.8.2. The following inequality holds for Jα
m defined in (4.118):
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Jα
m ≤ C

N
+

1
N

∫

Ω

ϕ6AσN
m,l : σN

m,l dx + 12
∫

Ω

ϕ5σαD
m : S(k) dx + ωm(α) (4.136)

Proof: Recalling (4.125) we have Jα
m ≤ Iα

0 + Iα
1 + Iα

2 + Iα
3 with Iα

i , i = 0, . . . , 3 defined in
(4.126). We will show, that the sum Iα

0 + Iα
2 + Iα

3 is of order 1
N when α → 0.

Estimates of Iα
0 : Since fm ∈ C1

loc(Ω;Rn), one can employ (4.82)-(4.85) to pass to the limit in
(4.126), and use estimates (4.15) of ‖δum‖BD;Ω to get

|Iα
0 | ≤ C(‖f‖L∞([0,T ];C1(Ω′;Rn)), ‖ϕ‖C2(Ω))

1
N

+ ωm(α), (4.137)

where suppϕ ⊂ Ω′′ ⊂⊂ Ω.
Estimates of Iα

2 : To pass to the limit in Iα
2 , we exploit (4.82) and (4.133):

lim
α→0

Iα
2 = lim

α→0

∫

Ω

σα
ijϕ

6
,ijkuα

k dx =
∫

Ω

(σN
m)ij ϕ6

,ijk(δuN
m)k dx =: I2.

Now let us use the embedding W 1,2
0 (Ω;Mn×n

sym ) ↪→ Ln(Ω;Mn×n
sym ) for n = 2, 3, (4.11) and (4.15)

|I2| ≤ C‖ϕ3σN
m‖n;Ω ‖δuN

m‖ n
n−1 ;Ω ≤

≤ C

( ∫

Ω

ϕ6σN
m,l : σN

m,l dx + ‖σN
m‖22;Ω

)1/2

‖δuN
m‖ n

n−1 ;Ω ≤

≤ 1
N

∫

Ω

ϕ6AσN
m,l : σN

m,l dx +
C

N
.

(4.138)

Estimates of Iα
3 : The relations (4.85) and (4.133) allow one to pass to the limit in Iα

3 :

lim
α→0

Iα
3 = lim

α→0

∫

Ω

σα
m : ∇2ϕ6div uα

m dx =
∫

Ω

σN
m : ∇2ϕ6div δuN

m dx =: I3,

so in view of the equality div δuN
m = tr δeN

m , by (4.11) and (4.15) we conclude that

|I3| ≤ C‖σN
m‖2;Ω ‖tr δeN

m‖2;Ω ≤
C

N
. (4.139)

Thus, (4.137)-(4.139) imply (4.136). ¤

Lemma 4.8.3. The following “iterative” estimate holds true:
∫

Ω

ϕ6Eα
2 (τα

m,k, τα
m,k) dx ≤ 100

99

∫

Ω

ϕ6Aσα
m,k : σN

m−1,k dx+

+
9N−1∑
s=1

1
s + 10

∫

Fs

ϕ6AσαD
m,k : σαD

m,k dx−

− 1
99

∫

|ταD|≤10 k∗√
2µ

ϕ6 Eα
2 (ταD

m,k, ταD
m,k) dx− 1

99

∫

Ω

ϕ6 1
n trAσα

m,k trσα
m,k dx+

+
C

N

∫

Ω

ϕ6Aσα
m,k : σα

m,k dx +
C

N

∫

Ω

ϕ6AσN
m,l : σN

m,l dx +
C

N
+ ωm(α),

(4.140)

where Fs , s = 1, . . . , 9N − 1 is defined by Fs = { k∗√
2µ

(1 + 9
s+1 ) < |ταD| ≤ k∗√

2µ
(1 + 9

s )}
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Proof: By (4.103), (4.100), (4.118) and (4.136)
∫

Ω

ϕ6Eα
2 (τα

m,k, τα
m,k) dx ≤ 12

∫

Ω

ϕ5σα
m,k : S(k) dx+

+
∫

Ω

ϕ6Aσα
m,k : σN

m−1,k + 1
N

∫

Ω

ϕ6AσN
m,l : σN

m,l dx +
C

N
+ ωm(α) =

= Bα
1 + Bα

2 + Bα
3 + Bα

4 +
∫

Ω

ϕ6Aσα
m,k : σN

m−1,k+

+ 1
N

∫

Ω

ϕ6AσN
m,l : σN

m,l dx +
C

N
+ ωm(α),

(4.141)

where
Bα

i :=
∫

Ωi

ϕ5 σα
m,k : S(k) dx, i = 1, . . . , 4,

and
Ω1 =

{
|ταD

m | ≤ k∗√
2µ

}
, Ω2 =

{
k∗√
2µ

< |ταD
m | ≤ (1 + 1

N ) k∗√
2µ

}
,

Ω3 =
{

(1 + 1
N ) k∗√

2µ
< |ταD

m | ≤ 10 k∗√
2µ

}
, Ω4 =

{
10 k∗√

2µ
< |ταD

m |
}

.
(4.142)

Estimate of Bα
1 : According to (4.98) and (4.100), in the region Ω1 the following identity holds:

2µ εD(uα
m) = σαD

m − σND
m−1 − αταD

m .

Hence, by (4.123)

|S(k)|2 ≤ C|εD(uα
m)|2 ≤ C

(|σαD
m − σND

m−1|2 + α2|ταD
m |2),

and we have ∫

Ω1

ϕ4|S(k)|2 dx ≤ C α2 + C‖σαD
m − σND

m−1‖22,Ω′′ .

Thus, the convergence (4.133) and the increment estimate (4.15), it follows

Bα
1 ≤

1
N

∫

Ω1

ϕ6Aσα
m,k : σα

m,k dx+

+CN

∫

Ω1

ϕ4|S(k)|2 dx ≤

≤ 1
N

∫

Ω1

ϕ6Aσα
m,k : σα

m,k dx +
C

N
+ ωm(α).

(4.143)

Estimate of Bα
2 : Let us note that (4.98) and (4.100) yield that for |ταD

m | ≥ k∗√
2µ

one has

k∗
√

2εD(uα
m) = σαD

m

(|ταD
m | − k∗√

2µ

)− k∗√
2µ

(σND
m−1 − σαD

m )− αταD
m |ταD

m |, (4.144)

so that in the region Ω2 we have

|εD(uα
m)|2 ≤ C

N2
|σαD

m |2 + C|σαD
m − σND

m−1|2 + α2|ταD
m |4.
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From the inequality |S(k)| ≤ C|εD(uα
m)|

ϕ5σα
m,k : S(k) ≤ 1

N
ϕ6 Aσα

m,k : σα
m,k + CN ϕ4|εD(uα

m)|2,

so that by the former estimate, the boundedness of ταD
m and σαD

m on Ω2 (see (4.98)), (4.133) and
(4.15) we have

Bα
2 ≤

1
N

∫

Ω2

ϕ6Aσα
m,k : σα

m,k dx +
C

N
+ ωm(α). (4.145)

Estimate of Bα
3 : Using the notation Fs = { k∗√

2µ
(1 + 9

s+1 ) < |ταD
m | ≤ k∗√

2µ
(1 + 9

s )} we write

Bα
3 = 12

9N−1∑
s=1

∫

Fs

ϕ5σα
m,k : S(k) dx ≤

≤
9N−1∑
s=1

[
1

2(s + 10)

∫

Fs

ϕ6AσαD
m,k : σαD

m,k dx + C(s + 10)
∫

Fs

ϕ4|εD(uα
m)|2 dx

]
.

(4.146)

Now we show, that the last sum can be bounded by C
N + ωm(α).

Thanks to (4.144) on Fs we have

|εD(uα
m)|2 ≤ 9

s

1
2 k2∗

|σαD
m |2

(
|ταD

m | − k∗√
2µ

)
+ C|σαD

m − σND
m−1|2 + α2|ταD

m |4,

so that by (4.133), (4.11), (4.15) and the boundedness of σαD
m and ταD

m on Fs (see (4.98)) we have

9N−1∑
s=1

(s + 10)
∫

Fs

ϕ4|εD(uα
m)|2 dx ≤

9N−1∑
s=1

∫

Fs

ϕ4

(
9 (s+10)

s
1

2 k2∗
|σαD

m |2
(
|ταD

m | − k∗√
2µ

)
+ CN |σαD

m − σND
m−1|2 + CNα2

)
dx

≤ C

∫

Ω3

|σαD
m |

(
|ταD

m | − k∗√
2µ

)
dx+

+CN‖σαD
m − σND

m−1‖22;Ω′′ + CN α2

(4.147)

Since by (4.98) and (4.100)

|σαD
m ||ταD

m | ≤ α|ταD
m |2 + k∗

√
2|εD(uα

m) + eND
m−1|,

and as the triangle inequality |σαD
m | ≥ |σND

m−1| − |σND
m−1 − σαD

m | implies

−|σαD
m | k∗√

2µ
≤ −k∗

√
2|eND

m−1|+ k∗√
2µ
|σND

m−1 − σαD
m |.

Therefore we can bound the right-hand side of (4.147) by

C

∫

Ω3

ϕ4

(
|εD(uα

m) + eND
m−1| − |eND

m−1|
)

dx +
C

N
+ ωm(α).
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Thus, by (4.134) we conclude, that

Bα
3 ≤

9N−1∑
s=1

1
2(s + 10)

∫

Fs

ϕ6AσαD
m,k : σαD

m,k dx +
C

N
+ oα(N). (4.148)

Estimate of Bα
4 : By applying the Cauchy inequality

ϕ5 Eα
2 [ταD

m,k; S(k)] ≤ 1
100ϕ6 Eα

2 [ταD
m,k; ταD

m,k] + C ϕ4 Eα
2 [S(k); S(k)],

and using (4.103), (4.104), (4.123) and (4.86) we conlcude that

Bα
4 =

∫

Ω4

ϕ5E2
α[ταD

m,k; S(k)] dx ≤

≤ 1
100

∫

Ω4

ϕ6Eα
2 [ταD

m,k; ταD
m,k] dx + C

∫

Ω4

ϕ4 |εD(uα
m)|2

|ταD
m | + oα(1).

(4.149)

To show that the last summand is of order 1
N , we first note that on the set Ω4 the inequality

|εD(uα
m)|2

|ταD
m | < 10(|εD(uα

m) + eND
m−1| − |eND

m−1|) (4.150)

is valid. To see this, we multiply both sides by |ταD
m | = |εD(uα

m) + eND
m−1| . Using the inequality

|eND
m−1| ≤ k∗√

2µ
, which follows from σN

m−1 ∈ K , the right-hand side of (4.150) can be estimated as

10
(|εD(uα)m|2 + 2εD(uα

m) : eND
m−1 + |eND

m−1|2 − |eND
m−1| · |εD(uα

m) + eND
m−1|

) ≥
≥ 10

(|εD(uα
m)|2 − 3|eND

m−1| · |εD(uα
m)|) ≥ 10|εD(uα

m)|2 − 30 k∗√
2µ
|εD(uα

m)|.

Using again |eND
m−1| ≤ k∗√

2µ
, in the region Ω4 we obtain |εD(uα

m)| > 9 k∗√
2µ

, which yields that

10|εD(uα)|2 − 30 k∗√
2µ
|εD(uα)| > |εD(uα

m)|2 + 51 k∗√
2µ
|εD(uα)| > |εD(uα

m)|2,

and (4.150) is proved.
From (4.149), (4.150) and (4.134) we have

Bα
4 ≤

1
100

∫

Ω4

ϕ6Eα
2 [ταD

m,k; ταD
m,k] dx +

C

N
+ ωm(α). (4.151)

Collecting (4.141)-(4.145), (4.148) and (4.151) we obtain
∫

Ω

ϕ6Eα
2 (τα

m,k, τα
m,k) dx ≤

∫

Ω

ϕ6Aσα
m,k : σN

m−1,k dx+

+
9N−1∑
s=1

1
2(s + 10)

∫

Fs

ϕ6AσαD
m,k : σαD

m,k dx +
1

100

∫

Ω4

ϕ6Eα
2 [ταD

m,k; ταD
m,k] dx+

+ C
N + C

N

∫

Ω

ϕ6Aσα
m,k : σα

m,k dx + 1
N

∫

Ω

ϕ6AσN
m,l : σN

m,l dx + ωm(α),
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or, by obvious transformations, using definition (4.102) of the quadratic form Eα
2

99
100

∫

Ω

ϕ6Eα
2 (τα

m,k, τα
m,k) dx ≤

∫

Ω

ϕ6Aσα
m,k : σN

m−1,k dx+

+
9N−1∑
s=1

1
2(s + 10)

∫

Fs

ϕ6AσαD
m,k : σαD

m,k dx+

+ C
N

∫

Ω

ϕ6 Aσα
m,k : σα

m,k dx + C
N

∫

Ω

ϕ6 AσN
m,l : σN

m,l dx−

− 1
100

∫

Ω1∪Ω2∪Ω3

Eα
2 (ταD

m,k, ταD
m,k) dx− 1

100

∫

Ω

ϕ6 1
n trAσα

m,ktrσα
m,k dx +

C

N
+ ωm(α),

so the claim (4.140) follows by multiplying the latter inequality by 100
99 . ¤

By using Lemmas 4.6.4 and 4.6.6 we can express (4.140) in a different form, which is more
suitable for our uniform estimates of σα

m,k .

Corollary 4.8.4. The following estimate is valid

1
2

∫

Ω

ϕ6Eα
2 (τα

m,k, τα
m,k) dx + 1

2

∫

Ω

ϕ6Eα
2 (Aσα

m,k,Aσα
m,k) dx ≤

≤ (
1
4 · 296

99 + C
N + ωm(α)

) ∫

Ω

ϕ6Aσα
m,k : σα

m,k dx+

+ 1
4 · 100

99

∫

Ω

ϕ6AσN
m−1,k : σN

m−1,k dx + C
N

∫

Ω

ϕ6AσN
m,l : σN

m,l dx +
C

N
+ ωm(α).

(4.152)

Proof: We consider the situation in each of the following domains Ωi , defined in (4.142). First,
remark that from (4.108) we obtain

−Eα
2 (ταD

m,k, ταD
m,k) ≤ −(1 + ωm(α))AσαD

m,k : σαD
m,k (4.153)

on Ω1 ∪Ω2 ∪Ω3 . We will apply (4.140), and divide the integral over Ω in three integrals over the
domains just defined.

1
2

∫

Ω

ϕ6Eα
2 (τα

m,k, τα
m,k) dx + 1

2

∫

Ω

ϕ6Eα
2 (Aσα

m,k,Aσα
m,k) dx ≤

≤ 1
2

∫

Ω

ϕ6Eα
2 (Aσα

m,k,Aσα
m,k) dx + 1

4 · 100
99

∫

Ω

ϕ6Aσα
m,k : σα

m,k dx−

− 1
2 · 1

99

∫

Ω

ϕ6
trAσα

m,k · trσα
m,k

n
dx− 1

2 · 1
99

∫

Ω1∪Ω2∪Ω3

ϕ6Eα
2 (ταD

m,k, ταD
m,k) dx+

+ 1
2

9N−1∑
s=1

1
s + 10

∫

Fs

ϕ6AσαD
m,k : σαD

m,k dx + 1
4 · 100

99

∫

Ω

ϕ6AσN
m−1,k : σN

m−1,k dx+

+ C
N

∫

Ω

ϕ6Aσα
m,k : σα

m,k dx + C
N

∫

Ω

ϕ6AσN
m,l : σN

m,l dx + C
N + ωm(α)

(4.154)
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Estimates over Ω1∪Ω2 : By (4.105) and (4.153) the sum of the integrals on Ω1∪Ω2 corresponding
to the first four terms in (4.154) is bounded by

(
1
4 · 100

99 + 1
2 − 1

2 · 1
99 + ωm(α)

) ∫

Ω1∪Ω2

ϕ6Aσα
m,k : σα

m,k dx ≤

≤ (
1
4 · 296

99 + ωm(α)
) ∫

Ω1∪Ω2

ϕ6Aσα
m,k : σα

m,k dx

(4.155)

Estimates over Ω3 : The integral on Ω3 is estimated by considering the integrals on the sets Fs,
defined in (4.140). Using (4.105), (4.153) and the bounds

k∗√
2µ
· s+10

s+1 < |ταD
m | ≤ k∗√

2µ
· s+9

s

on each of Fs , the sum of the integrals on Fs corresponding to the first five terms in (4.154) is
bounded by

9N−1∑
s=1

[ (
1
4 · 100

99 + 1
2 · s+1

s+10 + 1
2 · 1

s+10 − 1
2 · 1

99 · s+10
s+1 + ωm(α)

)
·

·
∫

Fs

ϕ6AσαD
m,k : σαD

m,k dx+

+
(

1
4 · 100

99 + 1
2 − 1

2 · 1
99

) ∫

Fs

ϕ6
trAσα

m,k · tr σα
m,k

n
dx

]
≤

≤ (
1
4 · 296

99 + ωm(α)
) ∫

Ω3

ϕ6Aσα
m,k : σα

m,k dx.

(4.156)

Estimates over Ω4 : By (4.105) and the lower bound |ταD
m | > 10 k∗√

2µ
, the sum of the integrals

on Ω1 ∪ Ω2 corresponding to the first three terms in (4.154) is bounded by

(
1
4 · 100

99 + 1
20 + ωm(α)

) ∫

Ω4

ϕ6AσαD
m,k : σαD

m,k dx+

+
(

1
4 · 100

99 + 1
2 − 1

2 · 1
99

) ∫

Ω4

ϕ6
trAσα

m,k · trσα
m,k

n
dx+

≤ (
1
4 · 296

99 + ωm(α)
) ∫

Ω4

ϕ6Aσα
m,k : σα

m,k dx.

(4.157)

The claim now follows from (4.154)-(4.157). ¤

4.9 Uniform W 1,2
loc -estimates of stresses

To carry out the proof of the uniform boundedness of ‖σN‖L∞((0,T );W 1,2
loc (Ω;Mn×n

sym )) we will make use
of the refined version of iterative estimate (4.115), deduced in the previous section, which results
in a discrete analogue of Gronwall inequality. To this aim, we need to have the estimate of the last
term of (4.115). To make the estimates uniform, we will use the convergence of uα

m to δum as in
(4.82)-(4.86), and the convergence of σα

m to σm as in (4.133).
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So, the goal of this section is to prove the following inequality first

(
1− C

N

) ∫

Ω

ϕ6AσN
m,l : σN

m,l dx ≤ (
1 + C

N

) ∫

Ω

ϕ6AσN
m−1,l : σN

m−1,l dx +
C

N
, (4.158)

with C independent of N , and then to deduce Theorem 4.2.1.

We begin as in (4.114), using (4.103) and (4.100):
∫

Ω

ϕ6Aσα
m,k : σα

m,k dx ≤ 1
2

∫

Ω

ϕ6Eα
2 (τα

m,k, τα
m,k) dx + 1

2

∫

Ω

ϕ6Eα
2 (Aσα

m,k,Aσα
m,k) dx.

Thus, (4.152) yields

(
1
4 · 100

96 + ωm(α)
) ∫

Ω

ϕ6Aσα
m,k : σα

m,k dx ≤

≤ 1
4 · 100

96

∫

Ω

ϕ6AσN
m−1,k : σN

m−1,k dx+

+ C
N

∫

Ω

ϕ6AσN
m,l : σN

m,l dx + C
N + ωm(α).

(4.159)

Now, to deduce (4.158) it remains to pass to the limit with respect to α in (4.159), to use (4.133)
and the lower semicontinuity of the norm, and to sum the resulting expressions with respect to k .

Proof of Theorem 4.2.1:
Iterating (4.158) we get the following for every m = 1, . . . , N

∫

Ω

ϕ6AσN
m,l : σN

m,l dx ≤
(
1 + C

N

)N

(
1− C

N

)N

∫

Ω

ϕ6Aσ0,l : σ0,l dx + 2C
N

N∑

i=1

(
1 + C

N

)i−1

(
1− C

N

)i
≤

≤ e2C

∫

Ω

ϕ6Aσ0,l : σ0,l dx + 2C e2C .

(4.160)

Thus, we obtain
sup
N∈N

sup
t∈[0,T ]

‖σN (t)‖W 1,2(Ω′;Mn×n
sym ) ≤ C(Ω′),

and the conclusion follows from convergence of σN (t) ⇀ σ(t) in L2(Ω;Mn×n
sym ) for every t ∈ [0, T ] .

¤

4.10 Examples

We conclude the paper by presenting two examples which show that we cannot expect any kind
of spatial regularity for u(t) and p(t). Classical example of quasistatic evolutions, where u(t)
develops a jump, or p(t) is singular, can be found in [Ser85, Suq88].

However, these examples are based on non-uniqueness, and besides the irregular solution
(u(t), e(t), p(t)) there exists also a regular solution (ũ(t), ẽ(t), p̃(t)) with ẽ(t) ≡ e(t).

The main feature of the examples presented here is that the data is smooth, the solution
(u(t), e(t), p(t)) corresponding to this data is unique, but u(t) and p(t) are irregular.
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We consider two particular cases of the periodic problem in dimension two, where not only the
stress tensor σ(t) is unique, but so are the displacement u(t) and a plastic part of the strain p(t).
In this case the problem is reduced to a one-dimensional one.

In the first example we show that there are smooth data for which the displacement u(t, ·),
corresponding to the unique solution (u(t), e(t), p(t)), develops a space discontinuity along a hy-
perplane at a given time t∗ .

In the second example we determine a wide class of (possibly singluar) measures, such that for
every µ in this class there exist smooth data for which the quasistatic evolution (u(t), e(t), p(t))
is unique and p(t∗) = µ at a prescribed time t∗ .

We consider the case of simple shear for the Dirichlet-periodic problem in dimension n = 2.
Similar examples can be easily constructed also in higher dimensions. We consider the unit cube
Ω = (0, 1)× (0, 1) and x1 -periodic solutions with boundary data of the form

u(t, x1, 0) = (0, 0),
u(t, x1, 1) = (

√
2ϕ(t), 0),

u(t, 0, x2) = u(t, 1, x2).
(4.161)

Let us introduce a linear isometry M : R→M2×2
sym as

M(α) =

(
0 α√

2
α√
2

0

)
. (4.162)

Assume, that the volume force has the form

f(t, x) =
1√
2
(fR(t, x2), 0), (4.163)

where we require the safe-load assumption to hold, and the initial conditions (u0, e0, 0) are

u0(x1, x2) =
( √

2uR
0 (x2)
0

)
and e0(x1, x2) = M(eR

0 (x2)), (4.164)

for some functions uR
0 , eR

0 .
First, we will show, that in this particular situation all solutions of the quasistatic problem can

be obtained from the solutions of a suitable one-dimensional problem. The definition of quasistatic
evolution in dimension one can be obtained from Definitions 4.3.1 and 4.3.6 by replacing the spaces
Mn×n

sym and Mn×n
D by R , the compliance tensor A by 1

2µ , and the set K by KR = [−√2k∗,
√

2k∗] .
Let W ⊂M2×2

sym be defined as follows

W =
{ (

0 a
a 0

)
: a ∈ R

}
.

Given pR ∈ Mb([0, 1]), the measure M(pR) ∈ Mb([0, 1]× [0, 1];M2×2
sym) is defined by

M(pR)(A×B) = M(pR(B))L1(A)
for every pair of Borel sets A,B ⊂ [0, 1], that is

〈M(pR), ψ〉 =
√

2
∫ 1

0

〈pR, ψ12(x1, ·)〉 dx1

for every ψ ∈ C0([0, 1]× [0, 1];M2×2
sym).

(4.165)
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Theorem 4.10.1. Suppose that the boundary condition is given as in (4.161) and the load as

in (4.163) with fR ∈ AC([0, T ];L2(0, 1)) . Suppose, that the triple (u0, e0, 0) is kinematically

admissible and satisfies the stability condition of Theorem (4.3.7). Then (u, e, p) is a solution of

the quasistatic problem with initial conditions (4.164) if and only if it has the form:

u(t, x1, x2) =



√

2uR(t, x2)

0


 , e(t, x1, x2) = M(eR(t, x2)), p(t) = M(pR(t)) (4.166)

with M(pR(t)) defined in (4.165), where (uR(t), eR(t), pR(t)) is a solution of the one-dimensional

quasistatic problem on ΩR = (0, 1) , with initial data (uR
0 , eR

0 , 0) , Dirichlet boundary conditions

uR(t, 0) = 0 , uR(t, 1) = ϕ(t) , and load fR(t, y) .

Proof: Consider the quasistatic problem with initial data (uR
0 , eR

0 , 0) in dimension one with
domain ΩR = (0, 1), the compliance tensor AR = 1

2µ , volume force fR(t, y) and the Dirichlet
boundary data uR(t, 0) = 0, uR(t, 1) = ϕ(t). Let (uR(t, y), eR(t, y), pR(t, y)) be a solution to this
problem.

Now we show that the function (u, e, p) defined as follows

u(t, x1, x2) = (
√

2uR(t, x2), 0), e(t, x1, x2) = M(eR(t, x2)), p(t) = M(pR(t)), (4.167)

with M defined in (4.162) and (4.165), is a quasistatic evolution in dimension two.
To this aim, let us check conditions (qs1) and (qs2) of Definition 4.3.6 with w(t, x1, x2) =

(
√

2ϕ(t)x2 ,0).
(qs1): The kinematic admissibility condition for (u, e, p) in dimension two (see Definition 4.3.1)
follows from the corresponding condition for (uR, eR, pR) in dimension one. As the minimality
condition in (qs1) is equivalent to −div σ = f and σ ∈ K , and these properties follow form the
properties of σR .
(qs2): Since M is an isometry, the energy balance for (u, e, p) follows from the analogous property
of (uR, eR, pR).

Thus the function (u(t), e(t), p(t)) defined in (4.167) is a quasistatic evolution in dimension
two.

By the uniqueness of the strain σ we know, that for any quasistatic evolution in dimension
two, the stress field σ(t) is given by

σ(t, x1, x2) =
(

0 σ12(t, x2)
σ12(t, x2) 0

)
. (4.168)

By the pointwise formulation of the flow rule, proved in [DDM06, Theorem 6.4], and taking into
account the fact, that σ(t) is continuous, we have that for a.e. t ∈ [0, T ]

g(x) :=
dṗ(t)
d|ṗ(t)| ∈ W for |ṗ(t)|-a.e. x ∈ [0, 1]× [0, 1] .

As ṗ(t) = g(x) |ṗ(t)| for a.e. t ∈ [0, T ] , it follows that

ṗ(t) ∈ Mb([0, 1]× [0, 1];W ).
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Thus, as

〈p(t), ϕ〉 =
∫ t

0

〈ṗ(s), ϕ〉 ds,

for every ϕ ∈ C([0, T ] × [0, T ];Mn×n
sym ), we conclude that p(t) ∈ Mb([0, 1] × [0, 1];W ) for a.e.

t ∈ [0, T ] .
So, from (4.168) and the last relation we deduce by the additive decomposition, that

ε(u) ∈ Mb(Ω; W ).

In particular, it implies, that

u1,1(t, x) = 0, and u2,2(t, x) = 0,

that is,
u1(t, x) = u1(t, x2) and u2(t, x) = u2(t, x1).

However, from the relaxed form of boundary conditions (4.161), which take the form

u2(t, x1, x2) = u2(t, x1, 0) = (−u(t, x1, 0)¯ ν(x1))22 = 0,

we have that u2(t, x1, x2) ≡ 0.
Thus, u(t, x1, x2) = (u1(t, x2), 0). Defining uR(t, x2) = 1√

2
u1(t, x2), we see that (4.166) holds

for suitable eR(t) and pR(t). It is then easy to see, that the triple (uR(t), eR(t), pR(t)) is a
solutuion to the one-dimensional quasistatic problem. ¤

4.10.1 Example 1

In this situation the data of the problem are the following: the domain ΩR is (0, 1), the time
interval is [0, T ] = [0, 3

2 ] , the constraint set KR = [−1, 1] and the elasticity tensor AR is the
identity. Taking the initial data to be (u0, e0, p0) = (0, 0, 0) we show that there exists a unique
quasistatic evolution in dimension one, and that the displacement u of the solution has a jump at
a point x = 1

2 after time t∗ = 1.
We choose a function G ∈ C∞0 (0, 1) such that

∫ 1

0

G(y) dy = 0,

G(1/2) = 1, G(y) < 1 for y 6= 1
2 ,

G(y) > − 1
10

for y ∈ [0, 1],

and denote its derivative by g(y).
So, we consider the one-dimensional quasistatic problem with the following C∞ data:

(uR
0 , eR

0 , pR
0 ) = (0, 0, 0),

uR(t, 0) = uR(t, 1) = 0,

fR(t, y) = −t g(y).
(4.169)
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According to Theorem 4.10.1 all solutions of the corresponding two-dimensional Dirichlet-periodic
problem are generated by the solutions of one-dimensional problem (4.169).

Consider the functions (uR(t), eR(t), pR(t)) as follows:

uR(t, y) =





t

∫ y

0

G(z) dz, for t ≤ 1;

(1− t)y + (t− 1)χ( 1
2 ,1)(y) + t

∫ y

0

G(z) dz, for 1 < t ≤ 3
2 ;

eR(t, y) = σR(t, y) =
{

tG(y), for t ≤ 1;
tG(y) + 1− t, for 1 < t ≤ 3

2 ;

pR(t) =
{

0, for t ≤ 1;
(t− 1)δ1/2, for 1 < t ≤ 3

2 .

It is easy to see, that this triple satisfies

(uR(t), eR(t), pR(t)) ∈ AR(0) for all t ∈ [0, T ] .

In view of Remark 4.3.8 the global minimality condition is ensured by the fact that |σR(t, y)| ≤ 1
and σR

y (t, y) = tg(y) = −fR(t, y).
By [DDM06, Theorem 6.4] the energy balance is equivalent to the pointwise formulation of the

flow rule. Since ṗR(t) = δ 1
2

for t > 1 and as σR(t, 1
2 ) = 1, and |σR(t, y)| < 1 for y 6= 1

2 or t < 1
we have that

1 =
dṗR(t)
d|ṗR(t)| (y) ∈ NKR(σR(t, y)) for |ṗR(t)| -a.e. y ∈ [−1, 1],

which is precisely the pointwise expression of the flow rule. Thus, (uR, eR, pR) constructed above
is a quasistatic evolution in dimension one.

Now we show that the solution constructed is the unique one. Let us suppose, that there exists
another quasistatic evolution (vR(t), ηR(t), qR(t)). By the uniqueness of the stress, ηR ≡ eR . Now
let us show that qR ≡ pR . As the energy balance (qs2) is satisfied for (vR, ηR, qR), the pointwise
formulation of the flow rule yields

dq̇R(t)
d|q̇R(t)| ∈ NKR(σR(t, y)) for |q̇R(t)| -a.e. y ∈ [−1, 1].

By the properties of σR(t) it follows, that supp q̇R(t) ⊂ { 1
2} for a.e. t ∈ [1, 3

2 ] , while q̇R(t) = 0
for a.e. t ∈ [0, 1].

Thus the formula

〈qR(t), ϕ〉Mb;C0 =
∫ t

0

〈q̇R(s), ϕ〉Mb;C0 ds for any ϕ ∈ C0(0, 1) ,

yields that qR(t) = β(t)δ 1
2

with β ≥ 0, and the boundary conditions (4.169) imply that β(t) =
t − 1, that is qR ≡ pR . This yields also that vR(t) = uR(t), and we obtain the uniqueness of
uR(t).
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4.10.2 Example 2

We are given the domain ΩR = (0, 1), the time interval [0, 1], the constraint set KR = [−1, 1]
and the elasticity tensor AR = 1. Let µR ∈ M+

b (0, 1) be a diffuse measure, that is µR({x}) = 0.
Suppose, that µR([0, 1]) = 1.

We will choose the C∞ data of the problem so that the quasistatic evolution is unique and
satisfies pR(t, ·) = µR for t = 1.

Let us take the continuous nondecreasing function Φ(s) = µR([0, s]) . We consider the left-
continuous inverse

X(t) := sup{s : Φ(s) < t},
so that Φ(X(t)) ≡ t . Let us take the set {(t, X(t)) : t ∈ [0, 1]} and denote its closure by E :

E := cl {(t, X(t)) : t ∈ [0, 1]} =
⋃

t∈[0,1]

{(t,X(t)), (t,X(t + 0))}.

Then there exists a function φ(t, y), such that

φ ∈ C∞0 (R2), 0 < φ ≤ 1,

φ−1({1}) = E.

The data of the one-dimensional problem we would like to solve are the following:

uR
0 (y) =

∫ y

0

φ(0, z) dz, eR
0 (y) = φ(0, y), pR

0 = 0,

uR(t, 0) = 0, uR(t, 1) =
∫ 1

0

φ(t, y) dy + t,

fR(t, y) = −φy(t, y).

(4.170)

Now consider a function µR : [0, T ] → M+
b ([0, 1]), defined as

µR(t)(B) = µR(B ∩ [0, X(t)])

for every Borel set B ⊂ [0, 1]. The estimate

‖µR(t)− µR(s)‖1 = µR((x(s), x(t)]) = Φ(X(t))− Φ(X(s)) = t− s,

shows that µR ∈ AC([0, T ]; M+
b ([0, 1])). Moreover, the very definition of X(t) yields

µ̇R(t) = δX(t).

Consider the following functions:

uR(t, y) =
∫ y

0

φ(t, z) dz + µR(t)(0, y),

eR(t, y) = σR(t, y) = φ(t, y),

pR(t) = µR(t),

(4.171)

and let us show that (uR, eR, pR) defined in this way is the unique solution of the quasistatic
problem (4.170).
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First of all, it is obvious that the initial conditions are satisfied and the triple (uR
0 , eR

0 , pR
0 )

satisfies the stability condition. Let us check the conditions (qs1) and (qs2) as in the Definition
4.3.6.
(qs1): As

(µR(t)(0, y))y = µR(t) in D′(0, 1) ,

the kinematic admissibility condition in (0, 1) is trivially satisfied by (4.171). As the boundary
conditions hold in the strong sense and p = 0 on ∂Ω, we have that the triple (u(t), e(t), p(t)) is
kinematically admissible for its boundary data.

What about the global stability, it follows from the equivalent condition (see Remark 4.3.8)

−σR
y (t, y) = fR(t, y) and |σR(t, y)| ≤ 1.

(qs2): As σR(t,X(t)) = σR(t,X(t + 0)) = 1 and |σR(t, y)| < 1 otherwise, the pointwise formula-
tion of the flow rule, which is equivalent to the energy balance, is satisfied:

ṗR(t) = δX(t−0), 1 =
dṗR(t)
d|ṗR(t)| (y) ∈ NKR(σR(t, y)), for |ṗR(t)|-a.e. y ∈ (0, 1) .

So, (4.171) is a solution to (4.170).
Now let us take any solution (vR(t), ηR(t), qR(t)) to quasistatic problem (4.170). As the stress

is unique, we have ηR(t) ≡ eR(t). Now, the pointwise formulation of the flow rule implies

dq̇R(t)
d|q̇R(t)| (y) ∈ NKR(σR(t, y)), for |q̇R(t)|-a.e. y ∈ (0, 1) ,

that is supp q̇R(t) ⊂ {X(t), X(t + 0)} . As X(t) is a monotone function, it has at most countable
number of discontinuities, that is for a.e. t ∈ [0, 1] we have

supp q̇R(t) ⊂ {X(t)}. (4.172)

The boundary conditions for vR(t) yield:

vR(t, 1) =
∫ 1

0

φ(t, y) dy + qR(t)(0, 1) =
∫ 1

0

φ(t, y) dy + t,

which in its turn implies that qR(t)(0, 1) = t, and from (4.172) it follows, that

q̇R(t) = δX(t).

That is, qR(t) ≡ pR(t) and (4.171) is the unique solution corresponding to the data (4.170).
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Chapter 5

Regularity of bending moments
for perfect elasto-plastic plates

5.1 Introduction

In this paper we study the regularity of the bending moments of the quasistatic evolution of clamped
perfectly elasto-plastic plates under the action of a time-dependent transversal body force. Before
introducing the regularity result, we describe the mechanical model. The reference configuration
is a bounded open set Ω ⊂ R2 with Lipschitz boundary and the elastic domain K is a bounded
closed convex subset of M2×2

sym (the space of symmetric 2 × 2 matrices) with nonempty interior,
whose boundary ∂K plays the role of the yield surface.

Given a scalar valued function f(t, x) defined for t ∈ [0, T ] and x ∈ Ω, which represents
the transversal body force, the strong formulation of the evolution problem consists in finding a
scalar valued function u(t, x) (the vertical displacement) and three matrix-valued functions e(t, x),
p(t, x) and M(t, x) (the elastic and plastic curvatures and the bending moments) such that for
every t ∈ [0, T ] , for every x ∈ Ω the following conditions hold:

1. kinematic admissibility: D2u(t, x) = e(t, x) + p(t, x) in Ω,
u(t, x) = 0, ∂u

∂ν (t, x) = 0 on ∂Ω

2. constitutive equation: M(t, x) = C e(t, x),

3. equilibrium: div div M(t, x) = f(t, x) in Ω,

4. moment constraint: M(t, x) ∈ K ,

5. associative flow rule: ṗ(t, x) ∈ NK(M(t, x)),

where ν(x) is the outer unit normal to ∂Ω and C is the rigidity tensor. The symbol NK(ξ)
denotes the normal cone to the set K at the point ξ in the sense of convex analysis. The problem
is supplemented by initial conditions at time t = 0.

The boundary conditions u = 0 and ∂u
∂ν = 0 on ∂Ω reflect the mechanical assumption the

plate is clamped.

109
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For the regularity we restrict ourselves to the isotropic case where K is a ball, centered at the
origin, and C is a multiple of identity tensor I , which can be reduced to considering

K = B1(0), C = I.

Existence of weak solutions to problems in perfect plasticity has been extensively studied dur-
ing last decades (see, for example, [Anz84, DDD07, DDM06, Dem89, FS00, Tem85]). Since the
variational formulation of the problem used in the definition of weak solutions involves an integral
with linear growth in D2u , the natural functional spaces for the problem are BH(Ω) of functions
with bounded Hessian for the vertical displacements u , and L2(Ω;M2×2

sym) for the bending moments
M .

However, in a similar problem for Prandtl-Reuss perfect plasticity it was shown in [BF96,
Dem08b] that the stress (which is the counterpart of the bending moments) belongs to W 1,2

loc (Ω;
M2×2

sym) (see also [FS00, Ser87, Ser96, Ser94, Ser94, Ser93b, Ser94] for similar results for some static
models).

In the present paper we study the spatial regularity of the bending moments M(t, ·) for the
quasistatic problem for prefect elastoplastic plates. The main result obtained (see Theorem 5.2.2
below) for the model under consideration is

M ∈ L∞([0, T ];W 1,2
loc (Ω;M2×2

sym)). (5.1)

As in [Dem08b], our strategy for an evolutionary quasistatic problem relies on a regularity
result for an analogous static problem, obtained in [Ser94], where it was shown that in a static
situation the bending moments enjoy the following differentiability condition:

M ∈ W 1,2
loc (Ω;M2×2

sym).

We discretize time by points (tNr )N
r=1

0 = tN0 < tN1 < · · · < TN
N = T

and we approximate the original quasistatic problem by a sequence of incremental “static” prob-
lems, finding for each r = 1, . . . , N the updated values of (uN

r , eN
r , pN

r ,MN
r ), provided that (uN

r−1 ,
eN
r−1 , pN

r−1 , MN
r−1) is already found. Shortly, the main idea is to generalize the estimates of [Ser94]

in order to take into account the influence of the previous steps.
To be more precise, following [Dem09], we apply the standard method of constructing piecewise

constant approximations

(uN (t), eN (t), pN (t),MN (t)) = (uN
r , eN

r , pN
r ,MN

r ) for tNr ≤ t < tNr+1,

with 0 ≤ r < N , of the continuous-time energy formulation of rate-independent processes (see
[Mie02] for the survey of this approach). Our aim is to get a uniform estimate of the form

sup
N∈N

sup
t∈[0,T ]

‖MN (t)‖W 1,2
loc (Ω;M2×2

sym) ≤ C, (5.2)

which clearly implies (5.1).
To get (5.2) we consider the updated values of (uN

r , eN
r , pN

r ,MN
r ) as saddle points of some

minimax problem, similar to the one considered in [FS00, Ser87, Ser94] for static cases in perfect
plasticity. The main difference from the purely static problem is the presence of a term which takes
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into account the outcome of the preceding step. Approximating each incremental problem with a
sequence of regularized problems, depending on a real parameter α ∈ (0, 1), we obtain that their
solutions Mα

r converge to MN
r , a solution to the corresponding incremental problem, weakly in

L2(Ω;M2×2
sym), as α → 0. Then one can show, that for every incremental problem the bound

sup
α>0

‖Mα
r ‖W 1,2(Ω′;M2×2

sym) ≤ Cr

holds for any domain Ω′ ⊂⊂ Ω, where the constant Cr depends on the discretization step and on
Ω′ . Thus, MN

r is itself in W 1,2
loc (Ω;M2×2

sym), and the compactness of Sobolev embedding improves
the convergence of Mα

r to MN
r . Then we do some analytical work to make the last estimate

uniform in r and N , and we obtain (5.2).
Notice that all the arguments used below are purely local, and cannot be used for studying the

behavior of bending moments up to the boundary ∂Ω (see [Ser99] for the discussion of the global
regularity issues in an analogous case of Hencky perfect plasticity). As far as we know, the only
global regularity result in perfect plasticity was obtained in [Kne06] for Hencky perfect plasticity.

The paper is organized as follows: in Section 5.2 we introduce the notation and state the
main result. We present a weak formulation of the problem and prove a time-continuity result in
Section 5.3. A minimax formulation of incremental problems in spirit of [FS00, Ser87, Ser94] is
presented in Section 5.4. In Section 5.5 we introduce some regularized problems, depending on a
real parameter α ∈ (0, 1), whose solutions are smooth and “approximate”, as α → 0, a solution
(uN

r , eN
r , pN

r , MN
r ) of the corresponding incremental problem. We obtain W 1,2

loc estimates of the
solutions of regularized problems in Section 5.6, and conclude that

sup
t∈[0,T ]

‖MN (t)‖W 1,2(Ω′;M2×2
sym) ≤ C(N, Ω′)

for each Ω′ ⊂⊂ Ω and N ∈ N . Section 5.7 contains some analytical estimates, that will be used for
making W 1,2

loc estimates uniform with respect to N . Finally, in Section 5.8 we apply the results of
Section 5.7 to obtain the uniform estimates of Sobolev norms and to conclude the proof of Theorem
5.2.2.

5.2 Preliminaries

5.2.1 Notation and definitions

We adopt the following notation:
Rn denotes the n -dimensional Euclidian space,
M2×2

sym denotes the space of all 2×2 symmetric matrices, equipped with the Hilbert-Schmidt scalar
product σ : ξ = σijξij ,
a ¯ b stands for the symmetrized tensor product of two vectors a, b ∈ Rn , given by the formula
(a¯ b)ij = 1

2 (aibj + ajbi),

Lp(Ω;Rm) is the Lebesgue space of functions from Ω into Rm , having finite norm (
∫
Ω
|f |p dx)1/p ,

W l,p(Ω;Rm) is the Sobolev space of all functions from Ω into Rm with the norm

‖f‖l,p;Ω :=
( ∫

Ω

l∑
α=0

|∇αf |p
)1/p

,
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L2 stands for the Lebesgue measure on R2 ,
H1 is the one-dimensional Hausdorf measure,
Mb(Ω;Rm) is the space of all bounded Radon measures on Ω with values in Rm ,
For µ ∈ Mb(Ω;Rm), we denote its total variation by |µ| , which is an element of Mb(Ω), with
‖µ‖1;Ω = |µ|(Ω), while by µa and µs we denote its absolutely continuous and singular part with
respect to Ln ,
BH(Ω) is the space of all functions in L1(Ω) such that Du ∈ BV (Ω;R2), with norm ‖u‖2,1;Ω :=
‖u‖1,1;Ω + ‖D2u‖1;Ω ,
〈·|·〉 denotes a duality product depending upon the context.

Remark 5.2.1. We refer to [Tem85, Chapter III] for the main properties of BH(Ω) and for the

definition of weak∗ convergence in BH(Ω). Remark, that for u ∈ BH(Ω) we have the following

embedding:

u ∈ C(Ω), ∇u ∈ L2(Ω;R2).

Let us introduce the notation

S(Ω) =
{

M ∈ L2(Ω;M2×2
sym) : div div M ∈ L2(Ω)

}
,

K(Ω) =
{

m ∈ L2(Ω;M2×2
sym) : m(x) ∈ K for a.e. x ∈ Ω

}
.

5.2.2 The main result

We impose the following assumption on the data of the problem:

f ∈ AC([0, T ];L2(Ω)) ∩ L∞([0, T ];W 1,2
loc (Ω)). (5.3)

We also assume the so-called uniform safe-load condition:

there exists a function m1 ∈ AC([0, T ];L2(Ω;M2×2
sym)), such that

div div m(t) = f(t) in Ω for every t ∈ [0, T ], and
|m1(t, x)| ≤ (1− λ) for some 0 < λ < 1, a.e. x ∈ Ω, for every t ∈ [0, T ].

(5.4)

Here and in the rest of the paper div always denotes the divergence with respect to space variables.
The main result of the paper is the following regularity theorem.

Theorem 5.2.2. Suppose that the set K is a ball, centered at the origin, and C is a multiple of

the identity, and that assumptions (5.3), (5.4) are satisfied. Then for the solution (u, e, p) of the

quasistatic problem, see Definition 5.3.4 below, we have

M ∈ L∞([0, T ];W 1,2
loc (Ω;M2×2

sym)),

with M(t, x) = Ce(t, x) .
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Remark 5.2.3. As already mentioned, we consider the case K = B1(0) and C = I . It means,

that M ≡ e , and we will be using both notations M and e for the same object.

5.3 Weak formulation of the quasistatic problem

Below we give the possible definition of weak solution to the quasistatic problem. The formulation
we use (see [Dem09]) is expressed in terms of energy balance and energy dissipation.

5.3.1 Weak formulation: quasistatic evolution

Now we give the definition of a kinematically admissible triple. The first condition describes the
additive decomposition, the second one gives the boundary conditions for u , while the third one
reflects the boundary conditions for Du in a relaxed form, which is typical in the variational theory
of functionals with linear growth.

Definition 5.3.1. A triple (u, e, p) ∈ BH(Ω)×L2(Ω;M2×2
sym)×Mb(Ω;M2×2

sym) is called kinematically

admissible, if the following conditions hold

D2u = e + p in Ω,

u = 0 on ∂Ω,

p = −∇u¯ νH1 on ∂Ω.

Definition 5.3.2. For a kinematically admissible triple (u, e, p) and M ∈ S(Ω) we define a

measure [M : p] ∈ Mb(Ω) by putting

[M : p] = M : pa + [M : D2u]s = [M : D2u]−M : e in Ω,

[M : p] = −∂u

∂ν
Mijνiνj dH1 on ∂Ω,

(5.5)

where the measure [M : D2u] is defined in [Dem89].

Thus, a duality pairing between S(Ω) and Π(Ω) is defined by

〈M |p〉 := [M : p](Ω). (5.6)

One can prove the following integration by parts formula (see [Dem09, Proposition 2.8]).

Proposition 5.3.3. For a kinematically admissible triple (u, e, p) and M ∈ S(Ω) with div div M

= f ∈ L2(Ω) we have

[M : p](Ω) =
∫

Ω

u f dx−
∫

Ω

(M : e) dx. (5.7)
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Let us define the functionals which appear in the energy formulation of the problem. The
quadratic form Q : L2(Ω;M2×2

sym) → R , corresponding to the stored elastic energy, is defined by

Q(e) =
1
2

∫

Ω

e : e dx.

Since in our case the function H considered in [Dem09, Section 2.1] reduces to the norm in
M2×2

sym , the dissipation in any time interval [s, t] ⊂ [0, T ] is defined by

D(p; s, t) = sup
{ M∑

j=1

‖p(tj)− p(tj−1)‖1;Ω : s = t0 ≤ · · · ≤ tM = t, M ∈ N
}

.

Now we are in a position to give a variational formulation of the quasistatic problem. In the
following definition 〈·, ·〉 denotes the scalar product in L2(Ω).

Definition 5.3.4. A quasistatic evolution is a function t 7→ (u(t), e(t), p(t)) from [0, T ] into

BH(Ω)× L2(Ω;M2×2
sym)×Mb(Ω;M2×2

sym) which satisfies the following conditions:

(qs1) for every t ∈ [0, T ] the triple (u(t), e(t), p(t)) is kinematically admissible and

Q(e(t))− 〈f(t), u(t)〉 ≤ Q(η) + ‖q − p(t)‖1;Ω − 〈f(t), v〉 (5.8)

for every kinematically admissible triple (v, η, q);

(qs2) the function t 7→ p(t) from [0, T ] into Mb(Ω;M2×2
sym) has bounded variation and for every

t ∈ [0, T ]

Q(e(t)) +D(p; 0, t)− 〈f(t), u(t)〉 =

= Q(e(0))− 〈f(0), u(0)〉 −
∫ t

0

〈ḟ(s), u(s)〉 ds.
(5.9)

5.3.2 Existence result and time-discretization

The following theorem establishes the existence of a solution to the quasistatic problem in perfect
plasticity.

Theorem 5.3.5. Let a kinematically admissible triple (u0, e0, p0) satisfy the stability condition

Q(e0)− 〈f(0), u0〉 ≤ Q(η) + ‖q − p0‖1;Ω − 〈f(0), v〉,

for every kinematically admissible triple (v, η, q) . Then there exists a quasistatic evolution

(u(t), e(t), p(t)),
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such that

u(0) = u0, e(0) = e0, p(0) = p0.

Moreover, the elastic part t 7→ e(t) of D2u(t) is unique and a quasistatic evolution (u, e, p) as a

function from [0, T ] to BH(Ω)× L2(Ω;M2×2
sym)×Mb(Ω;M2×2

sym) is absolutely continuous in time.

In [Dem09] this theorem is proved by a discretization of time. We divide the interval [0, T ] into
N equal parts of length T/N by points (tNr )r=0,...,N . For r = 0, . . . , N we set

fr
N = f(tNr ) and (m1)N

r = m1(tNr ). (5.10)

For every N we define uN
r , eN

r and pN
r by induction. We set

(uN
0 , eN

0 , pN
0 ) = (u0, e0, p0),

while for every r = 1, . . . , N we define (uN
r , eN

r , pN
r ) as a solution to the incremental problem

min
(u,e,p)

{
Q(e) + ‖p− pN

r−1‖1;Ω −
∫

Ω

fN
r u dx

}
, (5.11)

where the minimisation is carried out over all kinematically admissible triples (see Definition 5.3.1).

Remark 5.3.6. We note, that (u, e, p) is a solution to (5.11) if and only if one of the following

conditions holds:

1. for every kinematically admissible triple (v, η, q) one has

−‖q‖1;Ω ≤ 〈e, η〉 − 〈fN
r , v〉 ≤ ‖q‖1;Ω

2. e ∈ S(Ω) ∩ K with div div e = −fN
r .

For r = 0, . . . , N we set MN
r = eN

r and for every t ∈ [0, T ] we define piecewise constant
interpolations

uN (t) = uN
r , eN (t) = eN

r , pN (t) = pN
r , MN (t) = MN

r ,

fN (t) = fN
r , m1

N (t) = (m1)N
r ,

where r is the largest integer such that tNr ≤ t . By definition (uN (t), eN (t), pN (t)) is kinematically
admissible for every t ∈ [0, T ] .

In the proof of the existence, it was shown that for approximate solutions one has the estimate

sup
t∈[0,T ]

‖eN (t)‖2;Ω + Var(pN ; 0, T ) + sup
t∈[0,T ]

‖uN‖2,1;Ω ≤ C, (5.12)

which is uniform with respect to N , and it was established that these functions converge pointwise
(with respect to t) to a solution of the quasistatic evolution problem.
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5.3.3 Continuity estimates of solutions of the incremental problems

In [Dem09] it was established that the quasistatic evolution is absolutely continuous in time.
However, as we will deal precisely with the solutions of the time-discretized problems, we would
need the continuity estimates of solutions at the level of incremental problems.

The following notation will be often used below: given a function h : [0, T ] → X ,

δhN
r := h(tNr )− h(tNr−1). (5.13)

We also consider the increment of the data of the problem, defined by

DN
r := ‖δ(m1)N

r ‖2;Ω + ‖δfN
r ‖2;Ω. (5.14)

By (5.3) and (5.4), after time reparametrization, we may assume that

f ∈ Lip([0, T ];L2(Ω)) ∩ L∞([0, T ];W 1,2
loc (Ω)),

and
m1 ∈ Lip([0, T ];L2(Ω;M2×2

sym)).

Indeed, every absolutely continuous function can be made Lipschitz just by time reparametrization,
and this leads to a corresponding reparametrization of the solutions, the problem being rate-
independent. In other words, we may suppose, that

DN
r ≤ C

N
. (5.15)

Theorem 5.3.7. For solutions of the incremental problems (uN
r , eN

r , pN
r ) the following inequality

holds:

‖δeN
r ‖2;Ω + ‖δpN

r ‖1;Ω + ‖δuN
r ‖2,1;Ω ≤ DN

r , (5.16)

where δhN
r in understood as in (5.13) and DN

r denotes the increment of the data of the problem,

defined by (5.14).

Proof: As the triple
(uN

r−1, e
N
r−1, p

N
r−1)

is kinematically admissible, the minimality condition (5.11) and the integration by parts formula
(5.7) imply

Q(eN
r )−

∫

Ω

(m1)N
r : eN

r dx + ‖pN
r − pN

r−1‖1;Ω − 〈(m1)N
r , pN

r − pN
r−1〉 ≤

≤ Q(eN
r−1)−

∫

Ω

(m1)N
r : eN

r−1 dx

Developing the quadratic form in the right-hand side we arrive at:

1
2

∫

Ω

MN
r : eN

r dx− 1
2

∫

Ω

MN
r−1 : eN

r−1 dx +H(pN
r − pN

r−1) ≤

+〈(m1)N
r , pN

m − pN
m−1〉 −

∫

Ω

(m1)N
r : eN

r−1 dx +
∫

Ω

(m1)N
r : eN

r dx.

(5.17)
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Now consider the functions

v = uN
r − uN

r−1, η = eN
r − eN

r−1,

q = pN
r − pN

r−1.

Since (v, η, q) is kinematically admissible and (uN
r−1, e

N
r−1, p

N
r−1) is a solution of the corresponding

minimum problem at the previous step, we obtain, by means of Remark 5.3.6 and the integration
by parts formula (5.7)

−
∫

Ω

MN
r−1 : (eN

r − eN
r−1) dx +

∫

Ω

(m1)N
r−1 : (eN

r − eN
r−1) dx+

〈(m1)N
r−1, p

N
r − pN

r−1〉 ≤ H(pN
r − pN

r−1).
(5.18)

By combining (5.17) and (5.18) we get the following

Q(eN
r − eN

r−1) =
1
2

∫

Ω

MN
r : eN

r dx− 1
2

∫

Ω

MN
r−1 : eN

r−1 dx−

−
∫

Ω

MN
r−1 : (eN

r − eN
r−1) dx ≤ 〈(m1)N

r , pN
r − pN

r−1〉−

−
∫

Ω

(m1)N
r : eN

r−1 dx +
∫

Ω

(m1)N
r : eN

r dx−

−
∫

Ω

(m1)N
r−1 : (eN

r − eN
r−1) dx− 〈(m1)N

r−1, p
N
r − pN

r−1〉,

(5.19)

where 〈·, ·〉 is the duality defined in (5.6).
Let us apply the integration by parts formula (5.7) to compute 〈(m1)N

m, pN
m − pN

m−1〉 :

〈(m1)N
r , pN

r − pN
r−1〉 =

−
∫

Ω

(m1)N
r : (eN

r − eN
r−1) dx +

∫

Ω

fN
r (uN

r − uN
r−1) dx.

(5.20)

A similar formula holds for 〈(m1)N
r−1, p

N
r − pN

r−1〉 .
Putting (5.20) into (5.19) we end up with the estimate

Q(eN
r − eN

r−1) ≤
∫

Ω

(fN
r − fN

r−1) · (uN
r − uN

r−1) dx+

+‖fN
r − fN

r−1‖2;Ω ‖uN
r − uN

r−1‖2,1;Ω.

(5.21)

Now let us estimate ‖pN
r − pN

r−1‖1;Ω in terms of the data of the problem. First of all, the safe
load condition yields

λ‖pN
r − pN

r−1‖1;Ω ≤ H(pN
r − pN

r−1)− 〈(m1)N
r , pN

r − pN
r−1〉.

Now, the relation (5.17) and the boundedness of ‖%N
r ‖∞;Ω, ‖eN

r ‖2;Ω and ‖pN
r ‖1;Ω imply

‖pN
r − pN

r−1‖1;Ω ≤ C(‖eN
r − eN

r−1‖2;Ω + DN
r ) (5.22)
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Taking into account the inequality

‖uN
r − uN

r−1‖2,1;Ω ≤ C(‖eN
r − eN

r−1‖2;Ω + ‖pN
r − pN

r−1‖1;Ω,

proved in [Dem09, estimate (3.9)], the estimate

‖pN
r − pN

r−1‖1;Ω + ‖eN
r − eN

r−1‖2;Ω ≤ CDN
r (5.23)

follows now from (5.21), (5.22) and the application of the Cauchy inequality.
To prove

‖D2uN
r −D2uN

r−1‖1;Ω ≤ CDN
r , (5.24)

we recall the additive decomposition D2u = e + p and make use of (5.23).
Finally to show the validity of (5.16), it remains to estimate ‖uN

r − uN
r−1‖1;Ω . By the Poincare

inequality for BH the result follows from (5.15), (5.23), (5.24) and the latter inequality. ¤

5.4 Minimax problem

In this section we briefly discuss the minimax formulation of the incremental problem. We follow
the general scheme, described in [FS00], which was applied in [Ser94] for studying the regularity
of solutions of static problems in the theory of perfect elastoplastic plates.

We refer to [FS00, Chapter 1] for the complete exposition of an abstract theory and to [Dem08b,
Section 4] for its short presentation. The following calculations follow closely [Dem08b, Section 5],
making use of constructions developed in [Ser94].

Recall that the time-discretization procedure, that provides us a way of constructing approx-
imate solutions to the quasistatic problem for perfect elasto-plastic plates, leads one to solving a
sequence of the following incremental problems:

min
(u,M,p)

{Q(M) + ‖p− pN
r−1‖1;Ω − 〈fN

r , u〉}, (5.25)

where the minimum is taken over all kinematically admissible triples (see Definition 5.3.1), with
pN

r−1 be a solution of the corresponding incremental problem, obtained at the previous step.

5.4.1 Functional setting of the problem

We set
V0 = W 2,1

0 (Ω), U = W 1,2
0 (Ω),

U∗ is the dual space of U . If 1 < p ≤ +∞ , the space Lp(Ω), is embedded in U∗ by the usual
identification

〈f, u〉 =
∫

Ω

f u dx for any u ∈ W 1,2
0 (Ω).

Put
P = L1(Ω;M2×2

sym) P ∗ = L∞(Ω;M2×2
sym).

We have the following
the embedding of V0 into U is continuous
V0 is dense in U .

(5.26)
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Let us introduce the functionals G : P → R and L : U → R by

G(m) =
∫

Ω

g(m + eN
r−1) dx, m ∈ P,

L(v) = −
∫

Ω

fN
r · v dx, v ∈ U.

(5.27)

Thus, G and L are continuous and it is easy to see that the Legendre transform of G is

G∗(M) =
∫

Ω

(
g∗(M)−M : eN

r−1

)
dx, for M ∈ P ∗ . (5.28)

Here g :M2×2
sym → R has the form

g(m) ≡ g0(|m|) :=

{
1
2 |m|2, if |m| ≤ 1;

|m| − 1
2 , if |m| > 1,

(5.29)

while its Legendre transform g∗ : M2×2
sym → R is given by the formula

g∗(M) =

{
1
2 |M |2, if |M | ≤ 1;
+∞, otherwise.

5.4.2 Saddle-point problem in its strong formulation

Introduce the continuous linear operator A : V0 → P as

Av := D2v, v ∈ V0.

We define the Lagrangian ` : V ×K(Ω) → R by

`(v,m) =
∫

Ω

(
D2v : m + m : er−1

N

)
dx−

∫

Ω

g∗(m) dx + L(v),

and consider the following minimax problem
{

find a pair (u,M) ∈ V0 ×K(Ω) such that
`(u,m) ≤ `(u,M) ≤ `(v,M), for all v ∈ V0, m ∈ K(Ω).

(5.30)

The minimax problem (5.30) generates a pair of dual problems, the primal one
{

find δuN
r ∈ V0 such that

I(δuN
r ) = inf{I(v) : v ∈ V0},

(5.31)

where the functional I is given by

I(v) = G(Av) + L(v) =
∫

Ω

g(D2v + er−1
N ) dx−

∫

Ω

fN
r · v dx,

and the dual one
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{
find MN

r ∈ QfN
r
∩ K(Ω) such that

R(MN
r ) = sup{R(m) : m ∈ QfN

r
∩ K(Ω)}, (5.32)

where

R(m) =





`(0,m) =
∫

Ω

(
m : eN

r−1 − g∗(m)
)

dx, m ∈ QfN
r
∩ K(Ω);

−∞, m /∈ QfN
r
∩ K(Ω),

for m ∈ K(Ω),

with QfN
r

being defined as

QfN
r

=
{

m ∈ S(Ω) : div div m = fN
r

}
.

The following theorem (see [FS00, Chapter 1]) shows that under very mild assumptions the
dual problem (5.32) has a solution and one can exchange inf and sup signs.

Theorem 5.4.1. Suppose that the following two conditions hold

C := inf{I(v) : v ∈ V0} ∈ R, (5.33)

there exists u1 ∈ V such that G(Au1) < +∞, L(u1) < +∞
and the function p 7→ G(Au1 + p) is continuous at zero.

(5.34)

Then problem (5.32) has at least one solution and the identity

C = sup{R(m) : m ∈ P ∗}

is valid.

Condition (5.34) is obviously satisfied. It is easy to see, that the safe load condition (5.4) yields
condition (5.33) and the coercivity of the functional I with respect to the norm of V0 . However,
as the space V0 is not reflexive, one needs to construct a suitable relaxation of the variational
problem (5.30), (5.31).

5.4.3 The relaxed problem

We construct a variational extension of the problem. To this aim we construct a relaxation of
problem (5.30). We will make use of an auxiliary space D , defined in the following way: a function
m belongs to D if and only if there exists u∗ ∈ U∗ such that

∫

Ω

u∗ v dx =
∫

Ω

m : D2v dx for all v ∈ V0 .

Thus,
D =

{
M ∈ P ∗ : div div M ∈ U∗

}
,
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According to the general procedure (see [FS00, Chapter 1]) we define an extension V+ of the space
V as

V+ =
{

v ∈ U : sup
‖M‖∞;Ω≤1, M∈D

∫

Ω

v div div M dx < +∞
}

.

In particular, taking the test fields M ∈ C∞0 (Ω;M2×2
sym) we conclude that v ∈ BH(Ω).

Introduce the relaxed Lagrangian

L(v, m) =
∫

Ω

(div div m− fr
N ) v dx +

∫

Ω

m : er−1
N dx−

∫

Ω

g∗(m) dx

for v ∈ V+ and m ∈ K(Ω) ∩D . Consider the minimax problem for this relaxed Lagrangian L :
{

find a pair (u,M) ∈ V+ × (K(Ω) ∩D) such that
L(u,m) ≤ L(u,M) ≤ L(v, M), for all v ∈ V+, m ∈ K(Ω) ∩D.

(5.35)

Arguing as in [FS00, Chapter 1] and [Dem08b, Section 5] we conclude that the following result
holds (see Theorem 5.4.2 below): there exists a saddle point u ∈ V+ and M ∈ K(Ω) ∩D of the
Lagrangian L on the set V+ × (K(Ω) ∩ D). In this case the tensor M is the unique solution of
the problem (5.32) and w ∈ V+ is a solution of the problem

{
find w ∈ V+ such that
Φ(w) = inf{Φ(v) : v ∈ V+},

(5.36)

where
Φ(v) := sup{L(v, m) : m ∈ K(Ω) ∩D}.

The precise result is expressed in the following Theorem, which is a a consequence of [FS00,
Theorem 1.2.2] (see also [Ser94, assertions (2.7)-(2.9)] for a similar construction in the static
problem).

Theorem 5.4.2. Suppose that fN
r ∈ L2(Ω) and condition (5.4) holds. Then there exists at least

one solution (δuN
r ,MN

r ) to the minimax problem (5.35) in V+ × (K ∩D) . Moreover, MN
r is the

unique solution to the dual variational problem (5.32) and δuN
r is a solution to (5.36). The identity

Φ(δuN
r ) = R(MN

r )

holds. Finally, every minimizing sequence of the problem (5.31) contains a subsequence which

converges to some solution of (5.36) weakly in U and strongly in W 1,p
0 (Ω;R2) for 1 ≤ p < 2 .

We have the following representation result.

Lemma 5.4.3. For u ∈ V+ we have

Φ(u) =
∫

Ω

g(D2u + eN
r−1)−

∫

Ω

fN
r u dx,

where the corresponding integral is understood as functional of measure (see [Tem85, Chapter II]).

Proof: We refer to [Dem08b, Lemma 5.3] for the proof. ¤
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5.4.4 Saddle points generate solutions of the incremental problems

Let us show, that if we interpret a saddle point (δuN
r ,MN

r ) of (5.35) as the increment of u and
the updated value of M , then we get a solution to the incremental problem (5.25).

Theorem 5.4.4. Let (δuN
r ,MN

r ) ∈ V+ × (D ∩ K(Ω)) be a saddle point of the relaxed Lagrangian

L . Then the triple (uN
r , eN

r , pN
r ) , constructed as

uN
r = uN

r−1 + δuN
r ,

eN
r = MN

r ,

pN
r = D2uN

r − eN
r in Ω,

pN
r = −∇uN

r ¯ νH1 on ∂Ω

is kinematically admissible and is a solution to the incremental problem (5.25).

Proof: First of all, kinematic admissibility of the triple (uN
r , eN

r , pN
r ) is obvious by its construc-

tion. Let us prove that it solves (5.25).
As (δuN

r ,MN
r ) ∈ V+ × (D ∩ K(Ω)) is a saddle point of L , we have

L(δuN
r ,m) ≤ L(δuN

r ,MN
r ) ≤ L(v, MN

r ), for all v ∈ V+ and m ∈ (D ∩ K(Ω)). (5.37)

Since MN
r ∈ D ∩ K(Ω), we already know that MN

r ∈ K(Ω), while the second part of (5.37)
implies

div div MN
r = fN

r ∈ L2(Ω). (5.38)

The first part of inequality (5.37) yields
∫

Ω

[
div div MN

r · δuN
r − g∗(MN

r ) + MN
r : MN

r−1

]
dx ≥

≥
∫

Ω

[
div div m · δuN

r − g∗(m) + m : MN
r−1

]
dx

(5.39)

for every m ∈ K(Ω) ∩D .
For δuN

r ∈ BH(Ω) with δuN
r = 0 on ∂Ω and m ∈ S(Ω), the integration by parts formula

[Dem89, Proposition 2.3] takes the form

∫

Ω

div div m · δuN
r dx = [D2(δuN

r ) : m](Ω)−
∫

∂Ω

∂(δuN
r )

∂ν
mijνiνj dH1.

Thus, from (5.39) we deduce

〈D2(δuN
r ),m−MN

r 〉 −
1
2

∫

Ω

(
|m|2 − |MN

r |2
)

dx +
∫

Ω

(m−MN
r ) : MN

r−1 dx−

−
∫

∂Ω

∂(δuN
r )

∂ν
(mij −Mij)νiνj dH1 ≤ 0.
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By taking m̃ = MN
r + α(m−MN

r ) ∈ K ∩D and letting α → 0 one obtains

〈D2(δuN
r ),m−MN

r 〉 −
∫

Ω

(m−MN
r ) : δeN

r dx−
∫

∂Ω

∂(δuN
r )

∂ν
(mij −Mij)νiνj dH1 ≤ 0,

that is
〈δpN

r ,m−MN
r 〉 ≤ 0

for all m ∈ D ∩ K(Ω). Hence, by [Dem09, Proposition 2.3]

‖δpN
r ‖1;Ω = 〈δpN

r ,MN
r 〉,

and we have
‖q + δpN

r ‖1;Ω − ‖δpN
r ‖1;Ω − 〈q, MN

r 〉 ≥ 0

for every kinematically admissible triple (v, η, q). The latter inequality and (5.38) imply that
(uN

r , eN
r , pN

r ) is a solution to problem (5.25). ¤

5.5 Approximations

In this section we show that some solutions of the relaxed minimax problem (5.35) can be ap-
proximated by more regular functions in a way that allows us to get higher regularity of bending
moments.

We also prove some technical lemmas to be used in the rest of the paper.

5.5.1 Regularized problems

As in [Ser94, Section 3] and [Dem08b, Section 6] we consider the family of variational problems,
depending on a positive parameter α ∈ (0, 1]:

{
find uα

r ∈ W 2,2
0 (Ω) such that

Iα(uα
r ) = inf{Iα(v) : v ∈ W 2,2

0 (Ω)}, (5.40)

where
Iα(v) =

α

2

∫

Ω

|D2v + MN
r−1|2 dx + I(v) =

=
α

2

∫

Ω

|D2v + MN
r−1|2 dx +

∫

Ω

g(D2v + MN
r−1) dx−

∫

Ω

fN
r v dx.

(5.41)

It is easy to see that problem (5.40) has a unique solution uα
r ∈ W 2,2

0 (Ω), which satisfies a
nonlinear system of PDEs:

∫

Ω

Mα
r : D2v dx =

∫

Ω

fN
r v dx for all v ∈ C∞0 (Ω) , (5.42)

that is
div div Mα

r = fN
r , (5.43)

where
Mα

r = α(D2uα
r + MN

r−1) +
∂g

∂τ
(D2uα

r + MN
r−1). (5.44)
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Lemma 5.5.1. Under conditions (5.3), (5.4) and (5.29) the following estimates hold

√
α‖uα

r ‖2,2;Ω + ‖uα
r ‖2,1;Ω + ‖uα

r ‖1,2;Ω + ‖uα
r ‖∞;Ω ≤ C,

where the constant C = C(‖fN
r ‖2;Ω, ‖MN

r−1‖2;Ω;M2×2
sym

) does not depend on the parameter α .

Proof: The safe-load condition (5.4) implies

∫

Ω

fr
N uα

r dx =
∫

Ω

m1 : D2uα
r dx,

and using definition (5.41) of Iα we deduce the estimate

I1(0) ≥ Iα(uα
r ) ≥

∫

Ω

{α

2
|D2uα

r + MN
r−1|2 + g(D2uα

r + MN
r−1)− c|D2uα

r |
}

dx.

The claim now follows from the embedding theorems. ¤

Lemma 5.5.2. Under the conditions of Lemma 5.5.1 we can find subsequences, denoted by uα
r

and Mα
r , such that as α → 0 we have

Mα
r ⇀ MN

r weakly in L2(Ω;M2×2
sym), (5.45)

uα
r → δuN

r strongly in W 1,p
0 (Ω), for 1 ≤ p < 2, (5.46)

uα
r ⇀ δuN

r weakly in W 1,2
0 (Ω), (5.47)

∇uα
r

∗
⇀ ∇δuN

r weakly∗ in BV (Ω;R2), (5.48)

α

∫

Ω

|D2uα
r + MN

r−1|2 dx → 0, (5.49)

Mα
0 :=

∂g

∂τ
(D2uα

r + MN
r−1)

∗
⇀ MN

r weakly∗ in L∞(Ω;M2×2
sym), (5.50)

where the pair (δuN
r ,MN

r ) is a solution to problem (5.35).

Proof: Assertions (5.45)-(5.48) and (5.50) follow from (5.44), Lemma 5.5.1 and embedding the-
orems.

Thus, it remains to prove (5.49) and that the pair (δuN
r ,MN

r ) is a solution to problem (5.35).
As Mα

0 ∈ K(Ω), the convergence (5.50) yields that MN
r ∈ K(Ω). Hence, from the Euler

equation (5.42) and the convergence (5.45) we conclude that MN
r ∈ QfN

r
∩ K(Ω).

The duality relations imply that

Mα
0 : (D2uα

r + MN
r−1) = g(D2uα

r + MN
r−1) + g∗(Mα

0 ) a.e. in Ω.
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Therefore, by using the Euler equation (5.42) we can rewrite the functional Iα as

Iα(uα
r ) =

∫

Ω

[
Mα

r − α(D2uα + MN
r−1)

]
: (D2uα

r + MN
r−1) dx−

−
∫

Ω

g∗(Mα
0 ) dx−

∫

Ω

f uα
r dx +

α

2

∫

Ω

|D2uα
r + MN

r−1|2 dx =

= −α

2

∫

Ω

|D2uα
r + MN

r−1|2 dx−
∫

Ω

g∗(Mα
0 ) +

∫

Ω

Mα
r : MN

r−1 dx.

By Theorem 5.4.1 applied to problems (5.31) and (5.32), we get

sup{R(m) : m ∈ QfN
r
∩ K} = inf{I(v) : v ∈ V0} ≤ I(uα

r ) ≤ Iα(uα
r ) =

= −α

2

∫

Ω

|D2uα
r + MN

r−1|2 dx−
∫

Ω

g∗(Mα
0 ) +

∫

Ω

Mα
r : MN

r−1 dx.
(5.51)

As

−
∫

Ω

g∗(MN
r ) +

∫

Ω

MN
r : MN

r−1 = R(MN
r ),

by making use of convergence (5.45) and (5.50) it follows, that

lim
α→0

Iα(uα
r ) ≤ R(MN

r )− lim sup
α→0

α

2

∫

Ω

|D2uα
r + MN

r−1|2 dx.

According to (5.51) we have

sup{R(m) : m ∈ QfN
r
∩ K} = inf{I(v) : v ∈ V0} ≤ lim inf

α→0
I(uα

r ) ≤

≤ lim
α→0

Iα(uα
r ) ≤ R(MN

r )− lim sup
α→0

α

2

∫

Ω

|D2uα
r + MN

r−1|2 dx ≤ R(MN
r ),

which implies the relation (5.49) and ensures that MN
r is a solution to problem (5.32).

Moreover, the identity
lim
α→0

I(uα
r ) = inf{I(v) : v ∈ V0} (5.52)

yields that uα
r is a minimizing sequence for problem (5.31), and therefore it converges to a solution

of problem (5.36) as in Theorem 5.4.2. ¤

5.5.2 Convergence of variations

Now we show, that the approximating sequence enjoys better convergence properties, than those
stated in Lemma 5.5.2.

Lemma 5.5.3. We have

|D2uα
r + MN

r−1| ∗⇀ |D2(δuN
r ) + MN

r−1| in Mb(Ω). (5.53)
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Proof: By Lemma 5.5.2, Theorem 5.4.2 and (5.52) we have

lim
α→0

Φ(uα
r ) = lim

α→0
I(uα

r ) = inf
v∈V0

I(v) = inf
V+

Φ(v) = Φ(δuN
r ),

so that in view of Lemma 5.4.3.
∫

Ω

g0(|D2uα
r + MN

r−1|) dx →
∫

Ω

g0(|D2(δuN
r ) + MN

r−1|). (5.54)

The sequence |D2uα
r + MN

r−1| is bounded in Mb(Ω), therefore there exists a nonnegative measure
λ ∈ Mb(Ω), such that

|D2uα
r + MN

r−1| ∗⇀ λ weakly∗ in Mb(Ω), as α → 0. (5.55)

Thus, λ ≥ |D2(δuN
r ) + MN

r−1| in Mb(Ω), and the inequality holds true also for Ln -absolutely
continuous and singular parts:

λa ≥ |D2(δuN
r ) + MN

r−1|a,

λs ≥ |D2(δuN
r ) + MN

r−1|s.
(5.56)

By the weak∗ lower-semicontinuity of convex functionals of measures, and using the explicit
form of the recession function of g0 , which is g∞0 (t) = t , we obtain

lim
α→0

∫

Ω

g0(|D2uα
r + MN

r−1|) dx ≥
∫

Ω

g0(λ) =
∫

Ω

g0(λa) dx + λs(Ω). (5.57)

On the other hand we have

lim
α→0

∫

Ω

g0(|D2uα
r + MN

r−1|) dx =

=
∫

Ω

g0(|D2(δuN
r ) + MN

r−1|a) dx + |D2(δuN
r ) + MN

r−1|s(Ω).
(5.58)

As the function g0 is strictly monotone increasing, from (5.54)-(5.58) we conclude that

λ = |D2(δuN
r ) + MN

r−1|.
Now the result follows from (5.55). ¤

5.5.3 Technical estimates

By the definition (5.44) of Mα
r we have

Mα
r = α(D2uα

r + MN
r−1) +





D2uα
r + MN

r−1, if |D2uα
r + MN

r−1| ≤ 1;

D2uα
r +MN

r−1

|D2uα
r +MN

r−1|
, if |D2uα

r + MN
r−1| > 1.

(5.59)

According to the chain rule of [MT03] the following expression for the derivatives of Mα
r is valid

Mα
r,k = α(D2uα

r,k + MN
r−1,k) +

∂2g

∂κ2
(D2uα

r + MN
r−1)(D

2uα
r,k + MN

r−1,k). (5.60)
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Here and henceforth the subscript ,k denotes the partial derivative with respect to xk .
In what follows we adopt the notation

τα
r := D2uα

r + MN
r−1. (5.61)

Let us introduce two bilinear forms, that depend on α and implicitly on the point x ∈ Ω:

Eα
1 (ε,κ) =

(
∂2g

∂τ2
(τα

r ) ε

)
: κ =

=
g′0(|τα

r |)
|τα

r |
ε : κ +

(
g′′0 (|τα

r |)−
g′0(|τα

r |)
|τα

r |
)

τα
r : ε

|τα
r |

τα
r : κ
|τα

r |

(5.62)

and
Eα

2 (ε,κ) = αε : κ + Eα
1 (ε,κ). (5.63)

Below we establish some technical inequalities to be used in the remaining sections.

Lemma 5.5.4. The following relations hold true:

Mα
r,k : κ = Eα

2 (τα
r,k,κ), (5.64)

Eα
2 (κ,κ) ≤ α|κ|2 +





|κ|2, if |τα
r | ≤ 1

|κ|2
|τα

r | , if |τα
r | > 1

(5.65)

for any κ ∈M2×2
sym .

Proof: Identity (5.64) and inequality (5.65) follow from (5.59)-(5.63) and the expression of g0

as in (5.29). ¤

Corollary 5.5.5. The following estimates are valid

Eα
2 (Mα

r,k, Mα
r,k) ≤ αMα

r,k : Mα
r,k +





Mα
r,k : Mα

r,k, if |τα
r | ≤ 1

1
|τα

r |M
α
r,k : Mα

r,k, if |τα
r | > 1.

(5.66)

In particular, we have

Eα
2 (Mα

r,k, Mα
r,k) ≤ (1 + α)Mα

r,k : Mα
r,k. (5.67)

Lemma 5.5.6.

−Eα
2 (τα

r,k, τα
r,k) = −Mα

r,k : τα
r,k ≤

≤




−Mα

r,k : Mα
r,k + α Eα

2 (τα
r,k, τα

r,k), if |τα
r | ≤ 1;

−|τα
r |Mα

r,k : Mα
r,k + α |τα

r |Eα
2 (τα

r,k, τα
r,k), if |τα

r | > 1.

(5.68)
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Proof: Suppose, |τα
r | ≤ 1 . Then Mα

r = α τα
r + τα

r , and thus

−Mα
r,k : τα

r,k = −Mα
r,k :

(
α τα

r,k + τα
r,k

)
+ α Mα

r,k : τα
r,k =

= −Mα
r,k : Mα

r,k + α Eα
2 (τα

r,k, τα
r,k).

(5.69)

Now let |τα
r | > 1. Then Mα

r = α τα
r + τα

r

|τα
r | , and hence

Mα
r,k = α τα

r,k +
[

τα
r

|τα
r |

]

,k

. (5.70)

Expressing τα
r,k from the latter relation we get

τα
r,k = |τα

r,k|
(
Mα

r,k − α τα
r,k

)
+ τα

r

τα
r : τα

r,k

|τα
r |

,

which yields
−Mα

r,k : τα
r,k = −|τα

r |Mα
r,k : Mα

r,k + α |τα
r |Mα

r,k : τα
r,k−

−τα
r : τα

r,k

|τα
r |2

Mα
r,k : τα

r ≤ −|τα
r |Mα

r,k : Mα
r,k + α |τα

r |Mα
r,k : τα

r,k,
(5.71)

where (5.70) and the orthogonality of
[

τα
r

|τα
r |

]
,k

and τα
r was used:

−τα
r : τα

r,k

|τα
r |2

Mα
r,k : τα

r = −α

(
τα
r : τα

r,k

|τα
r |

)2

≤ 0.

The claim now follows from (5.69) and (5.71). ¤

5.6 W 1,2
loc estimates of bending moments in the incremental

problems

In this section we deduce some iterative estimates for the L2 norms of the gradients of the functions
Mα

r , defined by means of (5.44), and we show that for every given r and N we have MN
r ∈

W 1,2
loc (Ω;M2×2

sym). We note that for the moment we are concerned only with the problem of regularity
of each MN

r , that is, we don’t care about the uniformity of estimates with respect to r and N .
Having obtained the L2 bounds, we conclude that the approximate solutions Mα

r , whih were
known to converge to MN

r weakly in L2(Ω;M2×2
sym), actually converge strongly.

Remark that in what follows Cr will denote a constant independent of α , which may change
from line to line. This constant may depend on r , N , and, in case of local estimates, on a domain
Ω′ ⊂⊂ Ω. We will use the notation C only when this constant does not depend on r and N .

For the moment, our objective is the following estimate:
∫

Ω′
Mα

r,k : Mα
r,k dx ≤ C(r,N, Ω′), (5.72)
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valid for any Ω′ ⊂⊂ Ω.
Suppose, by induction, that we have already proved that MN

r−1 ∈ W 1,2
loc (Ω;M2×2

sym). To simplify
the notation, in this section we sometimes omit writing the index N for the solutions of the
incremental problem (5.25). Let us examine the regularized problem (5.40). Since uα

r is a solution
of the nonlinear elliptic system (5.43) with fN

r ∈ L2(Ω) and eN
r−1 ∈ W 1,2

loc (Ω;M2×2
sym), one can show,

by working with difference quotients, that

uα
m ∈ W 3,2

loc (Ω;M2×2
sym),

Mα
m, D2uα

m ∈ W 1,2
loc (Ω;M2×2

sym).
(5.73)

By using formula (5.64) , estimate (5.67) and the definition (5.61) of τα
r we obtain

Mα
r,k : Mα

r,k = Eα
2 (τα

r,k, Mα
r,k) ≤

≤
[
Eα

2 (τα
r,k, τα

r,k)
]1/2 [

Eα
2 (Mα

r,k,Mα
r,k)

]1/2

≤
≤ 1

2Eα
2 (τα

r,k, τα
r,k) + 1

2Eα
2 (Mα

r,k,Mα
r,k) ≤

≤ 1
2Mα

r,k : τα
r,k +

(
1
2 + α

2

)
Mα

r,k : Mα
r,k ≤

≤ 1
2Mα

r,k : D2uα
r,k + 1

2Mα
r,k : MN

r−1,k +
(

1
2 + α

2

)
Mα

r,k : Mα
r,k.

(5.74)

By applying the Cauchy inequality to Mα
r,k : MN

r−1,k we get

(1− α)Mα
r,k : Mα

r,k ≤ MN
r−1,k : MN

r−1,k + 2Mα
r,k : D2uα

r,k. (5.75)

Thus, it remains to prove the boundedness in L1
loc(Ω) of the second summand of

Let us introduce the notation

Mα := Mα
r , f := fN

r , uα := uα
r ,

omitting index m for further convenience. Let ϕ ∈ C3
0 (Ω) be an arbitrary cut-off function, such

that ϕ ≡ 1 on Ω′ , and suppϕ ⊂ Ω′′ ⊂⊂ Ω. By (5.73) we can put the function

v = ϕ4 uα
,k

into the Euler equation (5.42).
We start by ∫

Ω

Mα
,k : D2(ϕ4 uα

,k) dx =
∫

Ω

ϕ4∇f · ∇uα dx.

This equality can be expressed in the following way

Jα
r :=

∫

Ω

ϕ4Mα
,k : D2uα

,k dx =
∫

Ω

ϕ4 f,k uα
,k dx−

−2
∫

Ω

Mα
ij,k ϕ4

,j uα
,ki dx−

∫

Ω

Mα
ij,k ϕ4

,ij uα
,k dx.

(5.76)

Thus, we have
Jα

r ≤ Iα
1 + Iα

2 + Iα
3 , (5.77)
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with
Iα
1 :=

∫

Ω

ϕ4 f,k uα
,k dx, Iα

2 := −2
∫

Ω

Mα
ij,k ϕ4

,j uα
,ki dx

Iα
3 := −

∫

Ω

Mα
ij,k ϕ4

,ij uα
,k dx.

(5.78)

Estimate of Iα
1 .

|Iα
1 | ≤ ‖f‖1,2;Ω′′ ‖uα‖1,2;Ω ≤ Cr. (5.79)

Estimate of Iα
2 . Let us introduce the matrices S(k) = (S(k)

ij ) defined by

S
(k)
ij := −ϕ,j uα

,ki. (5.80)

Then by using (5.64), (5.66), (5.61) and the fact that ‖MN
r−1‖∞;Ω ≤ 1 we obtain

Iα
2 = −2

∫

Ω

Mα
ij,k ϕ4

,j uα
,ki dx = 8

∫

Ω

ϕ3Eα
2 (τα

r,k, S(i)) dx ≤

≤ 1
100

∫

Ω

ϕ4Eα
2 (τα

r,k, τα
r,k) dx + Cr

∫

Ω

ϕ2Eα
2 (S(k), S(k)) dx ≤

≤ 1
100

∫

Ω

ϕ4 Mα
r,k : τα

r,k + α Cr

∫

Ω

ϕ2|S(k)|2 dx+

+Cr

∫

|τα
r |≤1

ϕ2|S(k)|2 dx + Cr

∫

|τα
r |>1

ϕ2|S(k)|2
|τα

r |
dx ≤

≤ 1
100

(
Jα

r +
∫

Ω

ϕ4 Mα
r,k : Mα

r,k dx +
∫

Ω

ϕ4 MN
r−1,k : MN

r−1,k dx

)
+

+Cr

∫

|τα
r |≤1

ϕ2|D2uα
r |2 dx + Cr

∫

|τα
r |>1

ϕ2|D2uα
r |2

|τα
r |

dx + α Cr‖D2uα
r ‖22;Ω ≤

≤ 1
100

(
Jα

r +
∫

Ω

ϕ4 Mα
r,k : Mα

r,k dx +
∫

Ω

ϕ4 MN
r−1,k : MN

r−1,k dx

)
+

+Cr

∫

Ω

|D2uα
r | dx + Cr.

(5.81)

Estimate of Iα
3 . Using (5.64) and Lemma 5.5.1

Iα
3 = −

∫

Ω

Mα
ij,k ϕ4

,ij uα
,k dx =

= −4
∫

Ω

ϕ3 uα
,k Eα

2 (τα
r,k,∇2ϕ) dx− 12

∫

Ω

ϕ2 uα
,k Eα

2 (τα
r,k,∇ϕ⊗∇ϕ) dx ≤

≤ 1
100

∫

Ω

ϕ4Eα
2 (τα

r,k, τα
r,k) dx+

+Cr

∫

Ω

|∇uα|2 (
ϕ2 Eα

2 (∇2ϕ,∇2ϕ) + Eα
2 (∇ϕ⊗∇ϕ,∇ϕ⊗∇ϕ)

)
dx ≤

≤ 1
100

(
Jα

r +
∫

Ω

ϕ4 Mα
r,k : Mα

r,k dx +
∫

Ω

ϕ4 MN
r−1,k : MN

r−1,k dx

)
+ Cr.

(5.82)
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So, (5.76), (5.77), (5.79)-(5.82), and the regularity of MN
r−1 proved at the previous step, imply

that
Jα

r ≤ Cr + 2
100Jα

r + 2
100

∫

Ω

ϕ4 Mα
r,k : Mα

r,k dx.

Therefore, (5.75) allows us to conclude that (5.72) holds for every k = 1, 2, and thus

lim sup
α→0

‖∇Mα
r ‖2;Ω′ ≤ C(r,N,Ω′). (5.83)

Remark 5.6.1. Inequality (5.83) and the convergence Mα
r ⇀ MN

r in L2(Ω;M2×2
sym), see (5.45),

imply that

MN
r ∈ W 1,2

loc (Ω;M2×2
sym),

Mα
r ⇀ MN

r in W 1,2
loc (Ω;M2×2

sym),

and Mα
r → MN

r in L2
loc(Ω;M2×2

sym),

(5.84)

where the strong convergence in L2(Ω;M2×2
sym) is guaranteed by Sobolev embedding.

5.7 Auxiliary estimates

In this section we prove a fine convergence estimate for the approximate solutions of regularized
problems (Lemmas 5.7.1 and 5.7.3) and get analytic estimates, which are the core of the proof of
the uniform boundedness of MN

r in W 1,2
loc (Ω;M2×2

sym) (Lemmas 5.7.4, 5.7.5 and Corollary 5.7.6).
In these estimates it is crucial that the constants C does not depend on r and N , although

they might depend on ϕ .
In the rest of the paper ωr(α) will denote a generic function, converging to 0 as α → 0, which

may change from line to line and may depend on r and N .

5.7.1 Fine properties of approximating sequence

Lemma 5.7.1. For any function ψ ∈ C0(Ω) with 0 ≤ ψ ≤ 1 , we have
∫

|τα
r |>1

ψ
(|D2uα

r + MN
r−1| − |MN

r−1|
)

dx ≤ C

N
+ ωr(α), (5.85)

where the constant C and the quantity ωr(α) may depend on the properties of ψ .

Proof: As |MN
r−1| ≤ 1, we have

∫

|τα
r |>1

ψ
(|D2uα

r + MN
r−1| − |MN

r−1|
)

dx =

=
∫

Ω

ψ
(|D2uα

r + MN
r−1| − |MN

r−1|
)

dx−

−
∫

|τα
r |≤1

ψ
(|D2uα

r + MN
r−1| − |MN

r−1|
)

dx.

(5.86)
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Equality (5.59) implies that on the set {|τα
r | ≤ 1} one has Mα

r = α τα
r + τα

r . Thus, by (5.59),
(5.61), Lemma 5.5.1, (5.84) and (5.16) we obtain

−
∫

|τα
r |≤1

ψ
(|D2uα

r + MN
r−1| − |MN

r−1|
)

dx ≤

≤
∫

|τα
r |≤1

ψ
(|Mα

r −MN
r−1|+ α |τα

r |
)

dx ≤

≤
∫

Ω

ψ|Mα
r −MN

r−1| dx + C α ≤

≤
∫

Ω

ψ|MN
r −MN

r−1| dx +
∫

Ω

ψ|MN
r −Mα

r | dx + C α ≤ C

N
+ ωm(α).

On the other hand, by (5.53) and (5.16)

lim
α→0

∫

Ω

ψ
(|D2uα

r + MN
r−1| − |MN

r−1|
)

dx =

〈ψ, |D2(δuN
r ) + MN

r−1| − |MN
r−1| · Ln〉 ≤ |D2(δuN

r )|(Ω) ≤ C

N
.

The estimate (5.85) follows from last two estimates and (5.86). ¤
As a corollary, we prove a local estimate for |D2uα

r | .

Corollary 5.7.2. We have ∫

Ω

ψ|D2uα
r | dx ≤ C

N
+ ωr(α) (5.87)

for every function ψ ∈ C0(Ω) with 0 ≤ ψ ≤ 1 , where the constant C and the quantity ωr(α) may

depend on ψ .

Proof: Introduce the notation

Ω̃1 = {|τα
r | ≤ 1} , Ω̃2 = {1 < |τα

r |}

Now we divide the integral over Ω into two integrals over Ω̃i, i = 1, 2, and estimate each one of
them, as in (5.87).

Estimate over Ω̃1 . According to (5.59) and (5.61) in the region Ω̃1 we have

D2uα
r = Mα

r −MN
r−1 + ατα

r ,

and hence, by (5.84) and (5.16) we obtain
∫

Ω̃1

ψ |D2uα
r | dx ≤

∫

Ω̃1

ψ |Mα
r −MN

r−1| dx + α

∫

Ω̃1

ψ dx ≤ C

N
+ ωr(α). (5.88)

Estimate over Ω̃2 . By (5.59) and (5.61) in Ω̃2 one has

D2uα
r = Mα

r (|τα
r | − 1)− (MN

r−1 −Mα
r )− α τα

r |τα
r |. (5.89)
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Again, by (5.59) and (5.61) we get

|Mα
r | |τα

r | ≤ α |τα
r |2 + |D2uα

r + MN
r−1|,

and the triangle inequality |Mα
r | ≥ |MN

r−1| − |MN
r−1 −Mα

r | yields

−|Mα
r | ≤ −|MN

r−1|+ |MN
r−1 −Mα

r |.

By the last two estimates, the relation (5.89) becomes
∫

Ω̃2

ψ|D2uα
r | dx ≤

∫

Ω̃2

ψ
(|D2uα

r + MN
r−1| − |MN

r−1|
)

dx+

+2
∫

Ω̃2

ψ|MN
r−1 −Mα

r | dx + 2α

∫

Ω̃2

|τα
r |2 dx

Using (5.85), (5.49), the convergence (5.84) and (5.16), by the last estimate we conclude, that
∫

Ω̃2

ψ|D2uα
r | dx ≤ C

N
+ ωr(α) (5.90)

Now the claim (5.87) follows from (5.88) and (5.90). ¤

Lemma 5.7.3. The following estimate holds:

∫

Ω

ψ2|∇uα
r |2 dx ≤ C

N2
+ ωr(α), (5.91)

for any function ψ ∈ C2
0 (Ω) with 0 ≤ ψ ≤ 1 . Remark, that the constant C and the quantity ωr(α)

depend upon ‖ψ‖2,∞;Ω .

Proof: We begin by defining the functions vα
r := uα

r ψ ∈ W 2,2
0 (Ω), which satisfy the following

equalities:
∇vα

r = ψ∇uα
r + uα

r ∇ψ,

D2vα
r = ψ D2uα

r + 2∇ψ ¯∇uα
r + uα

r ∇2ψ.
(5.92)

Then, by using (5.92), the Sobolev embeddings W 2,1(Ω) ↪→ W 1,2(Ω) and W 1,1(Ω) ↪→ L2(Ω), and
the Poincare inequality for W 2,1

0 (Ω) we can estimate the integral considered as follows
∫

Ω

|ψ∇uα
r |2 dx ≤ 2

∫

Ω

|ψ∇uα
r + uα

r ∇ψ|2 dx + 2
∫

Ω

|uα
r ∇ψ|2 dx ≤

≤ C

∫

Ω

|∇vα
r |2 dx + C

∫

Ω

|uα
r |2 dx ≤ C ‖vα

r ‖22,1;Ω + C ‖uα
r ‖21,1;Ω ≤

≤ C

(∫

Ω

|D2vα
r | dx

)2

+ C ‖uα
r ‖21,1;Ω ≤

≤ C

(∫

Ω

ψ |D2uα
r | dx +

∫

Ω

|∇uα
r | dx +

∫

Ω

|uα
r | dx

)2

+ C‖uα
r ‖21,1;Ω .

(5.93)
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Now we use (5.93), the estimate (5.87), the convergence uα
r → δuN

r in W 1,1(Ω), as in (5.46),
the embedding BH(Ω) ↪→ W 1,1(Ω), and (5.16) to obtain

∫

Ω

ψ2|∇uα
r |2 dx ≤ C

(∫

Ω

ψ |D2uα
r | dx

)2

+ C‖uα
r ‖21,1;Ω ≤

≤ C

N2
+ C ‖δuN

r ‖2BH(Ω) + ωr(α) ≤ C

N2
+ ωr(α).

The claim is proved. ¤

5.7.2 Analytic estimates

Lemma 5.7.4. The following inequality holds for Jα
r defined in (5.76):

Jα
r ≤ −2

∫

Ω

Mα
ij,k ϕ4

,j uα
,ki dx + 1

N

∫

Ω

ϕ4 Eα
2 (τα

r,k, τα
r,k) +

C

N
+ ωr(α). (5.94)

Proof: Recalling (5.77), we have Jα
r ≤ Iα

1 + Iα
2 + Iα

3 with Iα
i , i = 1, . . . , 3 defined in (5.78). We

show, that Iα
1 and Iα

3 are of order 1
N when α → 0.

Estimate of Iα
1 . Since fN

r ∈ W 1,2
loc (Ω), one can employ the convergence (5.47) to pass to the

limit in Iα
1 , and use the estimates (5.16) of ‖δuN

r ‖BH(Ω) to obtain

|Iα
1 | ≤ C(‖f‖L∞([0,T ];W 1,2(Ω′′)))

1
N

+ ωr(α). (5.95)

Estimate of Iα
3 . First of all, remark that the function

ϕ
(
Eα

2 (∇2ϕ,∇2ϕ) + Eα
2 (∇ϕ⊗∇ϕ,∇ϕ⊗∇ϕ)

)

is bounded and has a compact support, which is a subset of supp ϕ . Let us choose a function
ψ ∈ C∞0 (Ω), such that

ψ ≡ 1 on supp ϕ and supp ψ ⊂ Ω′′.

Iα
3 = −

∫

Ω

Mα
ij,k ϕ4

,ij uα
,k dx =

= −4
∫

Ω

ϕ3 uα
r,k Eα

2 (τα
r,k,∇2ϕ) dx− 12

∫

Ω

ϕ2 uα
r,k Eα

2 (τα
r,k, ϕ⊗ ϕ) dx ≤

≤ 1
N

∫

Ω

ϕ4 Eα
2 (τα

r,k, τα
r,k) dx + CN

∫

Ω

ψ2|∇uα
r |2 dx,

(5.96)

with ψ chosen above, using the fact that

ϕ
(
Eα

2 (∇2ϕ,∇2ϕ) + Eα
2 (∇ϕ⊗∇ϕ,∇ϕ⊗∇ϕ)

) ≤ C ψ2.

Thus, by (5.77), (5.95), (5.96) and (5.91) we obtain (5.94). ¤
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Lemma 5.7.5. The following “iterative” estimate holds true:

(
1− 2

N

) ∫

Ω

ϕ4Eα
2 (τα

r,k, τα
r,k) dx ≤ 100

99

∫

Ω

Mα
r,k : MN

r−1,k dx+

+
9N−1∑
s=1

1
s + 10

∫

Fs

ϕ4Mα
r,k : Mα

r,k dx− 1
99

∫

|τα
r |≤10

ϕ4Eα
2 (τα

r,k, τα
r,k) dx+

+ C
N

∫

Ω

ϕ4Mα
r,k : Mα

r,k dx + C
N

∫

Ω

ϕ4MN
r−1,k : MN

r−1,k dx +
C

N
+ ωr(α),

(5.97)

where Fs, s = 1, . . . , 9N − 1 is defined by Fs = {1 + 9
s+1 < |τα

r | ≤ 1 + 9
s} .

Proof: By (5.64), (5.61), (5.76) and (5.94)

(
1− 1

N

) ∫

Ω

ϕ4Eα
2 (τα

r,k, τα
r,k) dx ≤ −2

∫

Ω

Mα
ij,k ϕ4

,j uα
,ki dx+

+
∫

Ω

ϕ4Mα
r,k : MN

r−1,k dx +
C

N
+ ωr(α) =

= Bα
1 + Bα

2 + Bα
3 + Bα

4 +
∫

Ω

ϕ4Mα
r,k : MN

r−1,k dx +
C

N
+ ωr(α),

(5.98)

where
Bα

i := 8
∫

Ωi

ϕ3 Mα
r,k : S(k) dx, i = 1, . . . , 4,

with S(k) defined in (5.80) and

Ω1 = {|τα
r | ≤ 1} , Ω2 =

{
1 < |τα

r | ≤ 1 + 1
N

}
,

Ω3 =
{
1 + 1

N < |τα
r | ≤ 10

}
, Ω4 = {10 < |τα

r |} .
(5.99)

Estimate of Bα
1 : According to (5.59) and (5.61), in the region Ω1 the following identity holds:

D2uα
r = Mα

r −MN
r−1 − α τα

r .

Hence, by (5.80)
|S(k)|2 ≤ C |D2uα

r |2 ≤ C
(|Mα

r −MN
r−1|2 + α2 |τα

r |2
)
,

and we have ∫

Ω1

ϕ2|S(k)|2 dx ≤ C α2 + C ‖Mα
r −MN

r−1‖22;Ω′′ .

Thus, from the convergence (5.84) and the increment estimate (5.16), it follows that

Bα
1 ≤ 1

N

∫

Ω1

ϕ4 Mα
r,k : Mα

r,k dx + CN

∫

Ω1

ϕ2 |S(k)|2 dx ≤

≤ 1
N

∫

Ω1

ϕ4 Mα
r,k : Mα

r,k dx + C
N + ωr(α).

(5.100)

Estimate of Bα
2 : We remark, that (5.59) and (5.61) yield that for |τα

r | ≥ 1 one has

D2uα
r = Mα

r (|τα
r | − 1)− (

MN
r−1 −Mα

r

)− α τα
r |τα

r |, (5.101)
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so that in the region Ω2 we have

|D2uα
r |2 ≤ C

N2 |Mα
r |2 + C |Mα

r −MN
r−1|2 + C α2 |τα

r |4.

By the inequality |S(k)| ≤ C|D2uα
r | , see (5.80),

8 ϕ3 Mα
r,k : S(k) ≤ 1

N ϕ4 Mα
r,k : Mα

r,k + C N ϕ2 |D2uα
r |2,

so that by the former estimate, the boundedness of τα
r and Mα

r on Ω2 (see (5.59)), (5.84) and
(5.16) we have

Bα
2 ≤ 1

N

∫

Ω2

ϕ4 Mα
r,k : Mα

r,k dx +
C

N
+ ωr(α). (5.102)

Estimate of Bα
3 : Using the notation Fs = {1 + 9

s+1 < |τα
r | ≤ 1 + 9

s} for s = 1, . . . , 9N − 1, we
write

Bα
3 = 8

9N−1∑
s=1

∫

Fs

ϕ3 Mα
r,k : S(k) dx ≤

≤
9N−1∑
s=1

[
1

2(s+10)

∫

Fs

ϕ4 Mα
r,k : Mα

r,k dx + C (s + 10)
∫

Fs

ϕ2|D2uα
r |2 dx

]
.

(5.103)

Now we show, that the last summand can be bounded by C
N + ωr(α).

Thanks to (5.101) on Fs we have

|D2uα
r |2 ≤ 9

s |Mα
r |2 (|τα

r | − 1) + C|Mα
r −MN

r−1|2 + α2 |τα
r |4,

so that by (5.84), (5.12), (5.16), and the boundedness of Mα
r and τα

r on Fs (see (5.59)) we have

9N−1∑
s=1

(s + 10)
∫

Fs

ϕ2 |D2uα
r |2 dx ≤

≤
9N−1∑
s=1

∫

Fs

ϕ2
(

9(s+10)
s |Mα

r |2 (|τα
r | − 1) + CN |Mα

r −MN
r−1|2 + CNα2

)
dx ≤

≤ C

∫

Ω3

ϕ2|Mα
r | (|τα

r | − 1) dx + CN‖Mα
r −MN

r−1‖22;Ω′′ + CNα2.

(5.104)

By (5.59) and (5.61) we have |Mα
r | |τα

r | ≤ α |τα
r |2 + |D2uα

r + MN
r−1|, and by the triangle inequality

|Mα
r | ≥ |MN

r−1| − |MN
r−1 −Mα

r | we have also −|Mα
r | ≤ −|MN

r−1|+ |MN
r−1 −Mα

r |. Therefore using
(5.84) and (5.16) we can bound the right-hand side of (5.104) by

C

∫

Ω3

ϕ2
(|D2uα

r + MN
r−1| − |MN

r−1|
)

+
C

N
+ ωr(α).

Thus, by (5.85) we conclude that

Bα
3 ≤

9N−1∑
s=1

1
2(s+10)

∫

Fs

ϕ4 Mα
r,k : Mα

r,k dx +
C

N
+ ωr(α). (5.105)
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¤
Estimate of Bα

4 : Applying the Cauchy inequality

ϕ3 Eα
2 (τα

r,k, S(k)) ≤ 1
100ϕ4 Eα

2 (τα
r,k, τα

r,k) + Cϕ2 Eα
2 (S(k), S(k)),

and using (5.64), (5.65), (5.80) and (5.49) we obtain

Bα
4 =

∫

Ω4

ϕ4 Eα
2 (τα

r,k, S(k)) dx ≤

≤ 1
100

∫

Ω4

ϕ4 Eα
2 (τα

r,k, τα
r,k) dx + C

∫

Ω4

ϕ2 |D2uα
r |2

|τα
r |

dx + ωr(α).
(5.106)

To show that the last summand is of order 1
N , we first note that on the set Ω4 the inequality

|D2uα
r |2

|τα
r |

< 10
(|D2uα

r + MN
r−1| − |MN

r−1|
)

(5.107)

holds. To prove it, we multiply both sides by |τα
r | = |D2uα

r + MN
r−1| . Using the inequality

|MN
r−1| ≤ 1, which follows from MN

r−1 ∈ K , the right-hand side of (5.107) can be bounded from
below by

10
(|D2uα

r |2 + 2 D2uα
r : MN

r−1 + |MN
r−1|2 − |MN

r−1| · |D2uα
r + MN

r−1|
) ≥

≥ 10
(|D2uα

r |2 − 3 |MN
r−1| · |D2uα

r |
) ≥ 10 |D2uα

r |2 − 30 |D2uα
r |.

Using again |MN
r−1| ≤ 1, in the region Ω4 we have that |D2uα

r | > 9, which yields that

10 |D2uα
r |2 − 30 |D2uα

r | ≥ |D2uα
r |2 + 51 |D2uα

r | > |D2uα
r |2,

and (5.107) is proved.
From (5.106), (5.107), and (5.85) we have

Bα
4 ≤ 1

100

∫

Ω4

ϕ4 Eα
2 (τα

r,k, τα
r,k) dx +

C

N
+ ωr(α). (5.108)

Collecting (5.98), (5.100), (5.102), (5.105), and (5.108) we obtain
(
1− 1

N

) ∫

Ω

ϕ4 Eα
2 (τα

r,k, τα
r,k) dx ≤

∫

Ω

ϕ4 Mα
r,k : MN

r−1,k dx +

+
9N−1∑
s=1

1
2(s+10)

∫

Fs

ϕ4 Mα
r,k : Mα

r,k dx + 1
100

∫

Ω4

ϕ4 Eα
2 (τα

r,k, τα
r,k) dx +

+ 1
N

∫

Ω

ϕ4 Mα
r,k : Mα

r,k dx +
C

N
+ ωr(α),

or, by easy transformations,

( 99
100 − 1

N )
∫

Ω

ϕ4 Eα
2 (τα

r,k, τα
r,k) dx ≤

∫

Ω

ϕ4 Mα
r,k : MN

r−1,k dx +

+
9N−1∑
s=1

1
2(s+10)

∫

Fs

ϕ4 Mα
r,k : Mα

r,k dx− 1
100

∫

Ω1∪Ω2∪Ω3

ϕ4Eα
2 (τα

r,k, τα
r,k) dx +

+ C
N

∫

Ω

ϕ4 Mα
r,k : Mα

r,k dx +
C

N
+ ωr(α).
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The claim (5.97) now follows by multiplying the last inequality by 100
99 . ¤

By using Lemmas 5.5.4 and 5.5.6 we can express (5.97) in a different form, which is more
suitable for our uniform estimates of Mα

r,k .

Corollary 5.7.6. The following estimate holds

1
2

∫

Ω

ϕ4 Eα
2 (τα

r,k, τα
r,k) dx + 1

2

∫

Ω

ϕ4 Eα
2 (Mα

r,k,Mα
r,k) dx ≤

≤ (
1
4 · 296

99 + C
N + ωr(α)

) ∫

Ω

ϕ4 Mα
r,k : Mα

r,k dx +

+
(

1
4 · 100

99 + C
N

) ∫

Ω

ϕ4 MN
r−1,k : MN

r−1,k dx +
C

N
+ ωr(α).

(5.109)

Proof: We consider each of the domains Ωi, i = 1, . . . , 4, defined in (5.99). First, remark, that
(5.68) yields

−Eα
2 (τα

r,k, τα
r,k) ≤ −(1 + ωr(α)) Mα

r,k : Mα
r,k (5.110)

on Ω1 ∪ Ω2 . We apply (5.97), dividing the integral over Ω into three integrals over the domains
just defined.

(
1
2 − 1

N

) ∫

Ω

ϕ4 Eα
2 (τα

r,k, τα
r,k) dx + 1

2

∫

Ω

ϕ4 Eα
2 (Mα

r,k,Mα
r,k) dx ≤

≤ 1
2

∫

Ω

ϕ4 Eα
2 (Mα

r,k,Mα
r,k) dx + 1

4 ·
(

100
99 + C

N

) ∫

Ω

ϕ4 Mα
r,k : Mα

r,k dx−

− 1
2 · 1

99

∫

Ω1∪Ω2∪Ω3

ϕ4 Eα
2 (τα

r,k, τα
r,k) dx + 1

2

9N−1∑
s=1

1
s + 10

∫

Fs

ϕ4Mα
r,k : Mα

r,k dx+

+ 1
4 ·

(
100
99 + C

N

) ∫

Ω

ϕ4 MN
r−1,k : MN

r−1,k dx +
C

N
+ ωr(α).

(5.111)

Estimates over Ω1∪Ω2 : By (5.67) and (5.110) the sum of the integrals over Ω1∪Ω2 corresponding
to the first three terms in (5.111) is bounded by

(
1
4 · 100

99 + 1
2 − 1

2 · 1
99 + C

N + ωr(α)
) ∫

Ω1∪Ω2

ϕ4 Mα
r,k : Mα

r,k dx ≤

≤ (
1
4 · 296

99 + ωr(α) + C
N

) ∫

Ω1∪Ω2

ϕ4 Mα
r,k : Mα

r,k dx.

(5.112)

Estimates over Ω3 : The integral over Ω3 is estimated by considering the integrals over the sets
Fs , defined in (5.97). Using (5.65), (5.68), the bounds

s+10
s+1 < |τα

r | ≤ s+9
s ,

on each Fs , and the inequality

1
2 · s+1

s+10 − 1
2 · 1

99 · s+10
s+1 + 1

2 · 1
s+10 < 1

2 · 98
99
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valid for s ∈ N , the sum of the integrals over Fs corresponding to the first four terms in (5.111)
is bounded by

9N−1∑
s=1

[ (
1
4 · 100

99 + 1
2 · s+1

s+10 − 1
2 · 1

99 · s+10
s+1 + 1

2 · 1
s+10 + ωr(α) + C

N

)]
·

·
∫

Fs

ϕ4 Mα
r,k : Mα

r,k dx ≤

≤ (
1
4 · 296

99 + C
N + ωr(α)

) ∫

Ω3

ϕ4 Mα
r,k : Mα

r,k dx.

(5.113)

Estimates over Ω4 : By (5.65) and the lower bound |τα
r | > 10, the sum of the integrals over Ω4

corresponding to the first three terms in (5.111) is bounded by

(
1
4 · 100

99 + 1
20 + ωr(α) + C

N

) ∫

Ω4

ϕ4 Mα
r,k : Mα

r,k dx ≤

≤ (
1
4 · 296

99 + ωr(α) + C
N

) ∫

Ω4

ϕ4 Mα
r,k : Mα

r,k dx.

(5.114)

The claim now follows from (5.112)-(5.114). ¤

5.8 Uniform W 1,2
loc estimates of approximate solutions

To carry out the proof of the uniform boundedness of ‖MN‖L∞((0,T );W 1,2
loc (Ω;M2×2

sym)) we will make use
of the refined version of iterative estimate (5.75), deduced in the previous section, which results in
a discrete analogue of Gronwall inequality. To this aim, we need to estimate the last term of (5.75).
To make the estimates uniform, we will use the convergence of uα

r to δuN
r as in (5.46)-(5.48), and

the convergence of Mα
r to MN

r as in (5.84).
So, the goal of this section is to prove the following inequality first

(
1− C

N

) ∫

Ω

ϕ4MN
r,l : MN

r,l dx ≤ (
1 + C

N

) ∫

Ω

ϕ4MN
r−1,l : MN

r−1,l dx +
C

N
, (5.115)

with C independent of N , and then to deduce Theorem 5.2.2.

We begin as in (5.74), using (5.61) and (5.64):
∫

Ω

ϕ4Mα
r,k : Mα

r,k dx ≤ 1
2

∫

Ω

ϕ4Eα
2 (τα

r,k, τα
r,k) dx + 1

2

∫

Ω

ϕ4Eα
2 (Mα

r,k,Mα
r,k) dx.

Thus, (5.109) yields

(
1
4 · 100

96 − C
N + ωr(α)

) ∫

Ω

Mα
r,k : Mα

r,k dx ≤

≤ 1
4 · 100

96

∫

Ω

ϕ4MN
r−1,k : MN

r−1,k dx+

+ C
N

∫

Ω

ϕ4MN
r,k : MN

r,k dx + C
N + ωr(α).

(5.116)
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Now, to deduce (5.115) it remains to pass to the limit with respect to α in (5.116), to use
(5.84) and the lower semicontinuity of the norm, and to sum the resulting expressions with respect
to k .

Proof of Theorem 5.2.2: Iterating (5.115) we get the following for every r = 1, . . . , N

∫

Ω

ϕ4MN
r,l : MN

r,l dx ≤
(
1 + C

N

)N

(
1− C

N

)N

∫

Ω

ϕ4M0,l : σ0,l dx + 2C
N

N∑

i=1

(
1 + C

N

)i−1

(
1− C

N

)i
≤

≤ e2C

∫

Ω

ϕ4M0,l : M0,l dx + 2C e2C .

(5.117)

Thus, we obtain
sup
N∈N

sup
t∈[0,T ]

‖MN (t)‖1,2;Ω′ ≤ C(Ω′),

and the conclusion follows from convergence of MN (t) ⇀ M(t) in L2(Ω;M2×2
sym) for every t ∈ [0, T ] .

¤
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