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Abstract
Purpose – Steady-state free convection heat transfer in a right-angle triangular porous enclosure filled
by a nanofluid using the mathematical nanofluid model proposed by Buongiorno has been numerically
analyzed. The paper aims to discuss this issue.
Design/methodology/approach – The nanofluid model takes into account the Brownian diffusion
and thermophoresis effects. The governing equations formulated in terms of the vorticity-stream
function variables were solved by finite difference method.
Findings – It has been found that the average Nusselt number is an increasing function of the
Rayleigh and Lewis numbers and a decreasing function of Brownian motion, buoyancy-ratio and
thermophoresis parameters. At the same time the average Sherwood number is an increasing function
of the Rayleigh and Lewis numbers, Brownian motion and thermophoresis parameters and a
decreasing function of buoyancy-ratio parameter.
Originality/value – The present results are new and original for the heat transfer and fluid flow in a
right-angle triangular porous enclosure filled by a nanofluid using the mathematical nanofluid model
proposed by Buongiorno. The results would benefit scientists and engineers to become familiar with
the flow behaviour of such nanofluids, and the way to predict the properties of this flow for possibility
of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power
generation, chemical sectors, ventilation, air-conditioning, etc.
Keywords Nanofluid, Free convection, Buongiorno’s model, Numerical study,
Triangular porous cavity
Paper type Research paper
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Roman letters
C nanoparticle volume

fraction
Cc nanoparticle volume fraction

of the cooled wall

Ch nanoparticle volume
fraction of the hot wall

DB Brownian diffusion
coefficient (m2 s–1)

International Journal of Numerical
Methods for Heat & Fluid Flow
Vol. 25 No. 5, 2015
pp. 1138-1161
©EmeraldGroup Publishing Limited
0961-5539
DOI 10.1108/HFF-06-2014-0181

Received 18 June 2014
Revised 20 August 2014
Accepted 22 August 2014

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/0961-5539.htm

This work of M.A. Sheremet was conducted as a government task of the Ministry of Education
and Science of the Russian Federation, Project No. 13.1919.2014/K. The authors also would like to
thank the reviewers for the valuable comments and suggestions.

1138

HFF
25,5

D
ow

nl
oa

de
d 

by
 D

oc
to

r 
M

ik
ha

il 
Sh

er
em

et
 A

t 2
3:

58
 1

6 
Ju

ne
 2

01
5 

(P
T

)



DT thermophoretic diffusion
coefficient (m2 s–1)

g gravitational acceleration (m s–2)
k thermal conductivity (W m–1 K–1)
K permeability of the porous medium

(m2)
L length of the cavity (m)
Le Lewis number
mw,0 mass transfer from hot wall (m s–1)
Nb Brownian motion parameter
Nr buoyancy-ratio parameter
Nt thermophoresis parameter
Nu local Nusselt number
Nu mean Nusselt number
qw,0 heat flux from the hot wall (W m–2)
Ra Rayleigh number for the porous

medium
Sh Sherwood number
Sh mean Sherwood number
T temperature of the fluid (K)
Tc temperature of the cooled wall (K)
Th temperature of the hot wall (K)
u; v dimensional velocity components

along the axes x; y (m s–1)
x dimensional coordinate

measured along the bottom wall of
the cavity (m)

y dimensional coordinate measured
along the vertical wall (m)

x, y dimensionless Cartesian
coordinates

Greek symbols
αm thermal diffusivity of the

porous medium (m2 s–1)
β volumetric expansion coefficient

of the fluid (K–1)
ε porosity of the porous medium
θ dimensionless temperature
μ dynamic viscosity (kg m–1 s–1)
ρf fluid density (kg m–3)
ρp nanoparticle mass density

(kg m–3)
(ρCp)f heat capacity of the fluid

(J K–1 m–3)
(ρCp)p effective heat capacity of the

nanoparticle material (J K–1 m–3)
τ parameter defined by

τ¼ (ρCp)f /(ρCp)p
f rescaled nanoparticle volume

fraction
c dimensional stream function

(m2 s–1)
c dimensionless stream function

1. Introduction
Natural convective heat transfer in fluid-saturated porous media has occupied the
centre stage in many fundamental heat transfer analyses and has received considerable
attention over the last several decades. This interest is due to its wide range of
applications in, for example, packed spherical beds, high performance insulation for
buildings, chemical catalytic reactors, grain storage and such geophysical problems as
frost heave. Porous media are also of interest in relation to the underground spread of
pollutants, solar power collectors and to geothermal energy systems. Porous materials,
such as sand and crushed rock, underground saturated with water, which, under
the influence of local pressure gradients, migrates and transports energy through the
material. Literature concerning convective flow in porous media is abundant.
Representative studies in this are may be found in the recent books by Nield and Bejan
(2013), Pop and Ingham (2001), Ingham and Pop (2005), Vafai (2005, 2010), Vadasz
(2008) and de Lemos (2012).

Analysis of natural convection heat transfer and fluid flow in enclosures filled with
viscous fluids or porous media has been extensively made using numerical techniques
and experiments because of its wide applications and interest in engineering such as
nuclear energy, double pane windows, heating and cooling of buildings, solar
collectors, electronic cooling, micro-electromechanical systems, etc. (Bejan, 2013; Baytas
and Pop, 1999; Kuznetsov and Sheremet, 2008).
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An innovative technique to enhance heat transfer is by using nano-scale particles in
the base fluid. Nanotechnology has been widely used in industry since materials with
sizes of nanometers possess unique physical and chemical properties (Oztop and
Abu-Nada, 2008). Nano-scale particles when added to fluids are called nanofluids, and
this was first introduced by Choi (1995). Some numerical and experimental studies on
nanofluids in cavities filled with water-based nanofluids have been first performed by
many researchers. Khanafer et al. (2003) have analyzed the heat transfer performance
of nanofluids inside an enclosure taking into account the solid particle dispersion.
The transport equations are solved numerically using the finite-volume approach along
with the alternating direct implicit procedure. The effect of suspended ultrafine metallic
nanoparticles on the fluid flow and heat transfer processes within the enclosure is
analyzed and effective thermal conductivity enhancement maps were developed for
various controlling parameters. In addition, a heat transfer correlation of the average
Nusselt number for various Grashof numbers and volume fractions has been presented.
Further Tiwari and Das (2007) have numerically analyzed the behaviour of nanofluids
inside a two-sided lid-driven differentially heated square cavity to gain insight into
convective recirculation and flow processes induced by a nanofluid. A model is
developed to analyze the behaviour of nanofluids taking into account the solid volume
fraction χ. The left and the right moving walls are maintained at different constant
temperatures, while the upper and the bottom walls are thermally insulated. Three
cases were considered depending on the direction of the moving walls. The transport
equations were solved numerically with finite volume approach using SIMPLE
algorithm. It was found that both the Richardson number and the direction of the
moving walls affect the fluid flow and heat transfer in the cavity. The mathematical
nanofluid models proposed by Tiwari and Das (2007) has been used also by Oztop and
Abu-Nada (2008), who have examined the natural convection heat transfer in a
partially heated rectangular enclosure filled with nanofluids. Three different nanofluids
as Cu (copper), Al2O3 (alumina) and TiO2 (titania) were tested to investigate the effect of
nanoparticles on natural convection flow and temperature fields. In a very interesting
paper, Popa et al. (2010) presented a theoretical model based on the integral formalism
approach for both laminar and turbulent external natural convection boundary layer
flow along a vertical wall subjected to a uniform heat flux condition for water-Al2O3
and water-Cu nanofluids and particle volume fractions up to 10 percent. The approach
is based on the assumption of single-phase homogeneous fluid model and the use of
experimental data for the dynamical viscosity and the thermal conductivity nanofluids.
It was shown that heat transfer strongly depends on the flow regime and on particle
volume fraction. A clear degradation of heat transfer is observed using nanofluids
while compared to that of the base-fluid. Moreover, the fact of increasing the particle
volume fraction tends to delay the occurrence of the flow transition to turbulence. Sun
and Pop (2014) considered the problem of steady free convection heat transfer and fluid
flow in a tilted right-angle triangular enclosure filled with a porous medium and
saturated by Cu-water nanofluid. The major purpose has been motivated by the need to
determine the effects of pertinent parameters on the detailed flow and temperature
characteristics as well as the local and average Nusselt numbers, such as the tilted
angle of the cavity, Rayleigh number for a porous number and the solid volume fraction
parameter of Cu-water nanofluid. To this end, we mention the papers by Roşca et al.
(2014), Trambitas et al. (2014) and Patrulescu et al. (2014), where the steady mixed
convection boundary layer flow past a vertical flat plate embedded in a porous medium
filled by a nanofluid (Roşca et al., 2014), the steady mixed convection boundary layer
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flow of water nanofluids past a vertical needle to evaluate the influence of control
parameters on the heat transfer characteristics of nanofluid (Trambitas et al., 2014) and
the development of the steady mixed convection boundary layer flow on a vertical
impermeable frustum of a cone in a nanofluid. The problem has been formulated so that
three different types of nanoparticles, namely, Cu, Al2O3, TiO2 and water as a base fluid
(Patrulescu et al., 2014). In all these three papers the nanofluid mathematical model
proposed by Tiwari and Das (2007) has been used. Detailed review studies on
nanofluids are published in the book by Das et al. (2007) and the review papers by
Buongiorno (2006), Kakaç and Pramuanjaroenkij (2009), Lee et al. (2010), Eagen et al.
(2010), Wong and Leon (2010), Fan and Wang (2011), Mahian et al. (2013), etc. It is clear
from the foregoing review that most of the studies have been performed considering
water-based nanofluids in cavities using the mathematical nanofluid models proposed
by Khanafer et al. (2003) and Tiwari and Das (2007).

On the other hand, it seems that Nield and Kuznetsov (2009, 2011) are the first who
have studied the Cheng and Minkowycz’s (1977) problem for natural convective
boundary layer flow over a vertical flat plate embedded in a porous medium filled with
a nanofluid using the mathematical nanofluid model proposed by Buongiorno (2006). In
another two papers, Kuznetsov and Nield (2010, 2011) have provided a numerical
solution to the problem of natural convective heat transfer in the boundary layer flow
of a nanofluid past a vertical flat plate embedded in a viscous (Newtonian) fluid using
the same Buongiorno’s (2006) model. Buongiorno (2006) noted that the nanoparticle
absolute velocity can be viewed as the sum of the base fluid velocity and a relative
velocity (that he calls the slip velocity). He considered in turn seven slip mechanisms:
inertia, Brownian diffusion, thermophoresis, diffusiophoresis, Magnus effect, fluid
drainage and gravity settling. It is worth pointing out here that very recently,
Kuznetsov and Nield (2013) and Nield and Kuznetsov (2014) have revisited their
previous model and extended it to the case when the nanofluid particle fraction on the
boundary is passively rather than actively controlled. This makes the model physically
more realistic than the previous model considered in the papers by Nield and
Kuznetsov (2009, 2011) as well as the models employed by other authors simulating
nanofluid flow in porous media. These authors have assumed that nanoparticles are
suspended in the nanofluid using either surfactant or surface charge technology. This
prevents particles from agglomeration and deposition on the porous matrix. On the
other hand, it is very important to explain how nanofluid flow is possible in a porous
medium. Thus, it should be pointed out that without special precautions, nanoparticles
will be simply absorbed by the porous matrix. Basically, the porous matrix will work as
a filter for nanoparticles. This situation has been described, explained and modelled in
the recent papers by Wu et al. (2010, 2011). The physical situation described in these
papers show that the work on porous media filled by nanofluids are not just a
mathematical exercise, but are based on deep physical understanding of nanofluid
flows. This demonstrates that we are simulating here a real physics problem of free
convection flow and heat transfer in a porous cavity filled by a nanofluid. However,
relative little research has been performed on convective flow in porous cavities filled
with nanofluids using the mathematical model proposed by Buongiorno (2006). In this
respect, we mention the very recently published papers by Sheremet et al. (2014) and
Sheremet and Pop (2014).

In the present study, we investigate numerically the problem of steady free
convection heat transfer in a triangular cavity filled with a porous medium saturated
with water-based nanofluid using Bongiorno’s (2006) model in combination with
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Darcy’s law for the flow in the porous medium and the Boussinesq approximation for
the convective forces. We notice to the end the published papers by Varol et al. (2006),
Oztop et al. (2009) and Yesiloz and Aydin (2013) on convective flow in right-angled
triangular cavities.

2. Basic equations
Consider the free convection in a two-dimensional porous triangular cavity filled with a
nanofluid based on water and nanoparticles. A schematic geometry of the problem
under investigation is shown in Figure 1, where x and y are the Cartesian coordinates
and L is the bottom wall length and H is the height of the vertical wall. It is assumed
that the vertical wall is maintain at temperature Th and the constant nanoparticle
volume fraction Ch, while the inclined wall is kept at a temperature Tc and
nanoparticle volume fraction Cc, where we assume that ThWTc and ChWCc,
respectively. It is also assumed that the bottom wall of the cavity is adiabatic. Using
the Darcy-Boussinesq approximation, and following the nanofluid model proposed by
Buongiorno (2006), the basic equations are given by (see Nield and Bejan, 2013):

@2c

@x2
þ@2c

@y2
¼ � 1�Ccð Þrf gKb

m
@T
@x

þrp�rf
m

gK
@C
@x

(1)

@c
@y

@T
@x

�@c
@x

@T
@y

¼ am
@2T

@x2
þ@2T

@y2

� �
þt DB

@C
@x

@T
@x

þ@C
@y

@T
@y

� ��

þDT

Tc

@T
@x

� �2

þ @T
@y

� �2
" #)

(2)

1
e

@c
@y

@C
@x

�@c
@x

@C
@y

� �
¼ DB

@2C

@x2
þ@2C

@y2

� �
þDT

Tc

@2T

@x2
þ@2T

@y2

� �
(3)

here T is the nanofluid temperature, C is the nanoparticle volume fraction, K is the
permeability of the porous medium, ε is the porosity, c is the stream function which is
defined as u ¼ @c=@y and v ¼ �@c=@x, and the physical meaning of the other
quantities is given in Nomenclature.

H

Th
Tc

Cc
Ch

0 L
�T /�y = 0,   �C /�y = 0

g

– –

y–

x–
Figure 1.
Physical model and
coordinate system
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Introducing the following dimensionless variables:

x ¼ x=L; y ¼ y=L; c ¼ c=am; y ¼ T�Tcð Þ=DT; f ¼ C�Ccð Þ=DC (4)

where ΔT¼Th−Tc, ΔC¼Ch−Cc, and substituting (4) into Equations (1)-(3), we obtain:

@2c
@x2

þ@2c
@y2

¼ �Ra
@y
@x

þRaUNr
@f
@x

(5)

@c
@y

@y
@x
�@c
@x

@y
@y

¼ @2y
@x2

þ@2y
@y2

þNb
@f
@x

@y
@x

þ@f
@y

@y
@y

� �
þNt

@y
@x

� �2

þ @y
@y

� �2
" #

(6)

@c
@y

@f
@x

�@c
@x

@f
@y

¼ 1
Le

@2f
@x2

þ@2f
@y2

� �
þ 1
Le

Nt
Nb

@2y
@x2

þ@2y
@y2

� �
(7)

where Ra¼ (1−Cc)gKρfβΔTL/(αmμ) is the Rayleigh number. The corresponding
boundary conditions of these equations are given by:

c ¼ 0; y ¼ 1; f ¼ 1 on x ¼ 0

c ¼ 0; y ¼ 0; f ¼ 0 on xþy ¼ 1

c ¼ 0; @y
@y ¼ 0; @f

@y ¼ 0 on y ¼ 0
(8)

here the four parameters Nr, Nb, Nt and Le denote a buoyancy-ratio parameter,
a Brownian motion parameter, a thermophoresis parameter and a Lewis number,
respectively, which are defined as:

Nr ¼ rp�rf
� �

DC
rfbDT 1�Ccð Þ; Nb ¼ t DBDC

am
; Nt ¼ t DTDT

am Tc
; Le ¼ am

e DB
(9)

It should be noticed that for Nr¼Nb¼Nt¼ 0 (regular fluid), Equations (5) and (6)
reduce to those of Walker and Homsy (1978), Bejan (1979), Beckermann et al. (1986),
Gross et al. (1986), Moya et al. (1987) and Manole and Lage (1992).

The physical quantities of interest are the local Nusselt number Nu, the local
Sherwood number Sh and the mean Nusselt Nu and Sherwood Sh numbers. The local
Nusselt and Sherwood numbers are defined as:

Nu ¼ Lqw;0
k Th�Tcð Þ; Sh ¼ Lmw;0

DB Ch�Ccð Þ (10)

where the heat and mass transfer from the vertical wall qw,0 and mw,0 are given by:

qw;0 ¼ �k
@T
@x

� �
x¼0

; mw;0 ¼ �DB
@C
@x

� �
x¼0

(11)

Using (4), (10) and (11), we get:

Nu ¼ � @y
@x

� �
x¼0

; Sh ¼ � @f
@x

� �
x¼0

; Nu ¼
Z 1

0
Nu dx; Sh ¼

Z 1

0
Sh dx (12)
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3. Numerical method
Finite difference method is used to solve governing Equations (5)-(7) subject to the
boundary conditions (8). Central difference method is applied for discretization of
equations. The solution of linear algebraic equations was performed using successive
under relaxation method. As convergence criteria, 10–10 is chosen for all dependent
variables and value of 0.1 is taken for under-relaxation parameter (Varol et al., 2006).
Regular grid distribution is used in this study. The inclined wall was approximated
with staircase-like zigzag lines. The uppermost grid-point on each vertical grid line
coincided with top wall of the triangular enclosure as indicated by Oztop et al. (2009).

For the purpose of obtaining grid independent solution, a grid sensitivity analysis is
performed. Six cases of a uniform grid are tested: 100× 100, 200× 200, 300× 300,
400× 400, 500× 500 and 600× 600 points. The grid independent solution was
performed by preparing the solution for natural convection in a triangular enclosure
filled by a classical (Darcian) porous medium when Nr¼Nb¼Nt¼ 0 and Ra¼ 103.
Table I shows an effect of the mesh on the average Nusselt number of the hot wall.

On the basis of the conducted verifications the uniform grid of 500× 500 points has
been selected for the following analysis.

Several tests were made to compare the results obtained by the present code with
some of earlier studies. The first test was the classical natural convection heat transfer
problem in a differently heated triangular clear enclosure filled with the pure fluid. The
obtained results for the streamlines and isotherms were compared with experimental
and numerical data of Yesiloz and Aydin (2013) as shown in Figures 2 and 3.
It can be seen that the results obtained here are in good agreement with the results that
have been obtained by Yesiloz and Aydin (2013).

The second test was performed to make a comparison with data of Oztop et al. (2009)
and Basak et al. (2008) (see Figure 4). It was found that the streamlines and isotherms
contours are almost the same as those given by Oztop et al. (2009) and Basak et al.
(2008). Therefore, these results provide confidence to the accuracy of the present
numerical method.

Table II compares the accuracy of the average Nusselt number in case of a square
porous cavity for different values of the Rayleigh number at Nr¼Nb¼Nt¼ 0 (regular
fluid) when the mass transfer is absent with some numerical solutions reported by
different authors (Baytas and Pop, 1999; Walker and Homsy, 1978; Bejan, 1979;
Beckermann et al., 1986; Gross et al., 1986; Manole and Lage, 1992; Moya et al., 1987).

4. Results and discussion
Numerical investigation of the boundary value problem (5)-(8) has been carried out at
the following values of dimensionless complexes: Ra¼ 100-500; Le¼ 1-10; Nb¼ 0.1-0.4;
Nt¼ 0.1-0.4; Nr¼ 0.1-0.4; A¼H/L¼ 1.0. Particular efforts have been focussed on the

Uniform grids Nu D ¼ Nui�j�Nu500�500j j
Nui�j

� 100%

100× 100 17.5945 12.34
200× 200 16.2794 5.26
300× 300 15.7874 2.30
400× 400 15.5532 0.83
500× 500 15.4239 –
600× 600 15.3451 0.51

Table I.
Variations of the
average Nusselt
number of the hot
wall with the
uniform grid
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effects of five types of influential factors such as the Rayleigh and Lewis numbers, the
buoyancy-ratio parameter, the Brownian motion parameter and the thermophoresis
parameter on the fluid flow and heat transfer.

Further on, we would like to express the physical reasons for changing of each key
parameter. So, an increase in the Rayleigh number is caused with an increase in the
buoyancy force effect owing to temperature differences. A variation of the Lewis
number is caused with a variation of physical parameters of the nanofluid. Parameter
Nr characterizes an effect of the buoyancy force due to concentration difference in
comparison with the buoyancy force due to temperature difference. Therefore the
product Ra·Nr characterizes an effect of the buoyancy force owing to concentration
differences. Brownian motion parameter Nb defines the random motion of
nanoparticles within the base fluid (Brownian motion) and characterizes an effect of
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Notes: (a) Numerical data of Basak et al. (2008); (b) numerical data of Oztop et al. (2009);
(c) present results

Figure 4.
Streamlines ψ
and isotherms θ
for Da¼ 10–3,
Ra¼ 8×104, Pr ¼ 0.7

Ra
Authors 10 100 1,000 10,000

Baytas and Pop (1999) 1.079 3.16 14.06 48.33
Walker and Homsy (1978) – 3.097 12.96 51.0
Bejan (1979) – 4.2 15.8 50.8
Beckermann et al. (1986) – 3.113 – 48.9
Gross et al. (1986) – 3.141 13.448 42.583
Moya et al. (1987) 1.065 2.801 – –
Manole and Lage (1992) – 3.118 13.637 48.117
Present results 1.071 3.104 13.839 49.253

Table II.
Comparison of the
average Nusselt
number of the
hot wall
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the nanofluid temperature and the nanoparticles diameter. At the same time the
thermophoresis parameter Nt characterizes an effect of a temperature gradient on the
particles diffusion and depends on the thermal conductivity of the fluid and particle
materials. It is worth noting here that when turbulent effects are not important (like in
the present analysis) Brownian diffusion and thermophoresis become important as slip
mechanisms (Buongiorno, 2006; Haddad et al., 2012).

Figures 5-8 illustrate streamlines, isotherms and isoconcentrations at different
values of key parameters.

An increase in the Rayleigh number leads to changes in all characteristics
(streamlines, isotherms and isoconcentrations). One can see from these figures a
decrease in the thermal and concentration boundary layers thickness, and an
intensification of the convective flow in the cavity judging by the maximum absolute
value of the stream function, with Ra. At the same time an increase in Ra leads to
changes in the convective cell core, namely, at small Rayleigh number like Ra¼ 100
(Figures 5 and 6) the core was expanded along the vertical axis but at high Ra like
Ra¼ 500 (Figures 7 and 8) the core has the form of the isosceles spherical triangle. The
main reason for such modification is a stratification of the flow, temperature and
concentration.

It is interesting to note a nonmonotonic effect of the Rayleigh number on the local
Nusselt and Sherwood numbers in Figure 9. An increment in Ra leads to a growth of
Nu at 0⩽Y⩽0.7 but for 0.7oYo1, one can find a decrease in Nu with Ra that can be
explained by a proximity of the cold wall. A decrease in Nu with Y⩽0.7 is due to an
increase in the thermal boundary layer thickness and an increase in Nu with 0.7oY is
due to an interaction of the thermal boundary layers close to the vertical and inclined
walls. A similar behavior to the presented above one can find with the local Sherwood
number. The main differences are both a threshold value of Y¼ 0.5 after that Sh
increases with Y and a presence of the local maximum value of Sh (Figure 9(b)) close to
the bottom wall owing to a decrease in the nanoparticle volume fraction in the zone
0oYo0.1. The latter can be explained by an effect of Brownian motion and
thermophoresis.

The average Nusselt and Sherwood numbers increase with Ra with the exception of
Nr¼ 0.4 and 100oRao200 for the average Sherwood number.

An increment in the Lewis number leads to both an intensification of the convective
flow judging by the maximum absolute value of the stream function and essential
changes in the isoconcentrations. The latter is related to a decrease in the concentration
boundary layer thickness. It is well known that an increase in the Lewis number leads
to a decrease in the thickness of concentration boundary layers at vertical walls.
It physically means that flow with large Lewis number prevent spreading the
nanoparticle in the nanofluid. The isotherms change insignificantly that has been also
reflected on the distributions of the local Nusselt number (Figure 10(a)). While the local
Sherwood number increases with Le along the vertical wall with the exception of the
top part of this wall. At the same time the average Nusselt number increases with Le at
high Rayleigh numbers and the average Sherwood number significantly increases with
Le regardless of the Rayleigh number value.

One can find from Figures 5-8 that an increase in the buoyancy-ratio parameter Nr
leads to an attenuation of the convective flow taking into account the maximum
absolute value of the stream function. Such behavior leads to the reduction of the heat
and mass transfer rate. It is worth pointing out a decrease in the average Nusselt and
Sherwood numbers with Nr (Figure 11) While Nu and Sh are nonmonotonical functions
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Streamlines ψ,
isotherms θ and
isoconcentrations
ϕ for Ra¼ 100,
Le¼ 1.0 (continued )
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Figure 5.
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Figure 6.
Streamlines ψ,
isotherms θ and
isoconcentrations
ϕ for Ra¼ 100,
Le¼ 10.0 (continued)
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isotherms θ and
isoconcentrations
ϕ for Ra¼ 500,
Le¼ 1.0 (continued)
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Figure 8.
Streamlines ψ,
isotherms θ and
isoconcentrations
ϕ for Ra¼ 500,
Le¼ 10.0 (continued)
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of Nr with a threshold value of Y. The threshold value of Y is similar to ones in case of
the Rayleigh number effect.

An increase in the Brownian motion parameter Nb leads to both an intensification
of the convective flow and mass transfer while the temperature field changes
insignificantly. It should be noted that the above mentioned changes are more
pronounced for Le¼ 10 and Nr¼ 0.4. The local Nusselt number is a weakly decreasing
function of Nb along the vertical wall while Sh is a nonmonotonic function of Nb,
namely, an increasing function at Yo0.78 and a decreasing function at YW0.78
(Figure 12). It is worthpointing out that an increase in Nb leads to a disappearance of a
zone close to the bottom wall where one can find a local maximum of Sh like it was at
Nb¼ 0.1. On the basis of the mentioned features the average Nusselt number is a
decreasing function and the average Sherwood number is an increasing function of Nb.
On the basis of an analysis of Figures 5-8 one can notice a contrary effect of the
thermophoresis parameter Nt in comparison with an influence of Nb. An increase in

Y Y
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Figure 10.
Variation of local
Nusselt number (a)
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vertical wall for
Ra¼ 300,
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and different values
of Lewis number
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Nt leads to an attenuation of the convective flow taking into account the maximum
absolute value of the stream function. At the same time the mass transfer rate increases
while the temperature field changes insignificantly. Behavior of the local Nusselt and
Sherwood numbers vs Nt is similar to an effect of the Brownian motion parameter.
Variations of the average numbers presented in Figure 13 are similar to variations of
the local numbers.

5. Conclusions
Numerical analysis of the steady free convection flow and heat transfer in a triangular
porous cavity filled by a nanofluid using the nanofluid model proposed by Buongiorno
has been carried out. Distributions of streamlines, isotherms and isoconcentrations at a
wide range of key parameters such as Ra¼ 100-500, Le¼ 1-10, Nb¼ 0.1-0.4, Nt¼ 0.1-0.4,
Nr¼ 0.1-0.4,A¼H/L¼ 1.0 have been obtained. It has been found that the average Nusselt
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number is an increasing function of Ra, Le, and a decreasing function of Nr, Nb, Nt. At the
same time the average Sherwood number is an increasing function of Ra, Le, Nb, Nt and
a decreasing function of Nr. It has been shown that the local Nusselt and Sherwood
numbers along the vertical wall decrease with YoY* due to an increase in the boundary
layer thickness and increase withYWY* due to an interaction of the boundary layers close
to the vertical and inclined walls.
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