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ABSTRACT 

The pathogenesis of a disease involves a stochastic refolding of the etiologic protein into a 
misfolded infectious state known as prion. Recently, there has been renewed interest in the 
possibility that proteins causing neurodegeneration are all prions. The β-sheet rich pathological 
α-synuclein (α-syn) can cross from the neurons of transplanted patients into the grafted cells, 
and induce a change in the structure of α-syn in Parkinson’s disease (PD) is an example. The 
convergence of studies showing the presence of prions in the pathogenesis of common 
neurodegenerative maladies has since been remarkable. Studies on synthetic prions showed 
that recombinant (rec) prion protein (PrP) is refolded into infectious conformations in vitro. This 
synthetic prion protein stimulates the conversion of cellular PrP into nascent pathological PrP 
and induces the accumulation of the isoform that causes neurodegeneration in vivo. 

Using defined biophysical and biochemical conditions in vitro, we developed methods for the 
pathological conversion of recPrP into PrPSc, and we established whether synthetic pathological 
agents of rec human α-syn amyloids can be infectious, as Legname et al. showed for the first 
time in production of mammalian synthetic prions. The pathological conversion process of both 
PrP and α-syn required only purified recombinant proteins and common chemicals. We 
generated putative infectious materials that possess different conformational structures. 
Moreover, we designed a novel build-in screening methodology for amyloid preparations to 
achieve putative infectious materials using amyloid-infected-cell culture assay. 

At fifth cell passage after single infection, prion amyloid fibrils from different preparations 
induced endogenous PrPC to convert into PrPSc in both non-infected mouse hypothalamic GT1 
and mouse neuroblastoma N2a cell lines. Moreover, these variant synthetic proteinaceous 
infectious agents can replicate and be detected by protein misfolding cyclic amplification 
(PMCA). Through this methodology that was used to obtain synthetic mammalian prions, we 
also tested whether recombinant human α-syn amyloids can infect neuronal cell lines in vitro, 
and wild-type mice in vivo. A single exposure to amyloid fibrils of human α-syn was sufficient to 
induce aggregation of endogenous α-syn in human neuroblastoma SH-SY5Y cells, mouse 
hypothalamic GT1 cells and mouse brains. Interestingly, we found pathological phosphorylated 
α-syn in amyloid-infected cells and in neurons and neurites of mice. These results suggest that 
recombinant human α-syn amyloids can promote endogenous α-syn aggregation and 
pathological post-translational modification. Upon subsequent passages, mice inoculated with 
either human α-syn amyloid or diseased mouse brain homogenates showed marked 
neurological symptoms resembling those of PD, as well as neuropathological α-syn inclusions in 
neurons. 
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INTRODUCTION 

1. Neurodegenerative diseases: findings on protein misfolding 
1.1. Structural information on protein aggregates in neurodegeneration 

1.1.1. Amyloid structure 
Amyloids were first described in 1854 as deposits in human tissue that resembled carbohydrate 
starches when stained with iodine. It is well established that amyloid is predominantly composed 
of a β-sheet structure [1] based on the detailed structure deduced for cross-β silk [2]. Amyloid 
is a distinct β-sheet-rich fold that many peptides or proteins can acquire. Despite great 
variation in primary sequence, many proteins can assemble into amyloid fibrils [3]. However, all 
amyloids share several distinguishing biophysical properties. Proteins or peptides that adopt the 
amyloid fold assemble into β-sheet-rich fibrils, where the individual β-strands are oriented 
perpendicular to the fibril axis [4][5] (Figure 1). The cross-β structure and texture form a robust, 
stable structure in which the protein chains are held together securely by repetitive hydrogen-
bond that extends the length of the fibrils. Fibrilization is initiated by self-aggregation of protein 
monomers into oligomers, which accumulate over time and nucleate the self-assembly cascade 
of fibril polymerization (Figure 2) characterized by the stacking of parallel or anti-parallel β-
sheet secondary structure; this transition can be detected by circular dichroism (CD) 
spectroscopy. Once formed, amyloid fibrils are robust, extremely stable and difficult to solubilize 
[6]; they can also resist disassembly by enzymatic or chemical digestion. They show 
characteristic FTIR and X-ray diffraction patterns (Figure 1), and can bind to specific dyes such 
as Congo red (CR) and thioflavin T (ThT) resulting in a red shift and green birefringence under 
polarized light, leading to increased fluorescence at certain wavelengths, respectively [7]. 
Colorimetric and biochemical analyses of amyloids are often coupled because CR and ThT can 
bind other molecules, such as cellulose and amorphous aggregates, respectively [8]. 
Fibrilization is very sensitive even to small modifications of the peptide backbone [9]. The 
assembly of amyloid fibers does not require energy because amyloid proteins can "seed" their 
own oligomerization [10] (Figure 2). 

 

Figure 1. Amyloid fibrils are composed of long filaments as shown by the transmission electron 
micrograph. In the fiber diffraction pattern they show a meridional reflection at 4.7 Å and an equatorial 
reflection at around 8–11 Å, which suggest the presence of a cross-β-sheet structural motif as depicted in 
the drawing [11] 
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Figure 2. Nucleation-dependent polymerization model of amyloid aggregation. Amyloid formation 
consists of two phases: (i) a nucleation phase/lag phase, in which monomers undergo conformational 
change/misfolding and associate to form oligomeric nuclei, and (ii) an elongation phase/growth phase, in 
which the nuclei rapidly grow by further addition of monomers and form larger polymers/fibrils until 
saturation. The "nucleation phase", is thermodynamically unfavorable and occurs gradually, whereas the 
"elongation phase" is a much more favorable process and proceeds quickly. Thus, kinetics of amyloid 
formation is well represented by a sigmoidal curve with a lag phase followed by rapid growth phase 
(green curve). The rate-limiting step in the process is the formation of nuclei/seeds to promote 
aggregation. Thus, amyloid formation can be substantially speeded up by adding preformed seeds 
(nuclei). The addition of seeds reduces the lag time and induces faster aggregate formation (red curve) 
[12] 

1.1.2. Abnormal protein aggregation in neurodegeneration 
Despite the important differences in clinical manifestation, neurodegenerative disorders share 
some common features such as their appearance late in life, the extensive neuronal loss and 
synaptic abnormalities, and especially the presence of cerebral deposits of misfolded protein 
aggregates [13]. This is the reason why they are called "protein misfolding diseases". The 
formation of these insoluble inclusions is a hallmark of neurodegenerative diseases, and 
although the main protein component is different in each one, they have similar morphological, 
structural, and staining characteristics (Figure 3). Aggregation of misfolded proteins is one of the 
disease characteristics, and it is believed to occur through nucleated polymerization and fibril 
elongation that involves the addition of precursors [14]. In the early stages of disease, a key 
protein undergoes a major conformational change from its normal cellular structure to an 
alternative state, which forms amorphous and/or fibrillar aggregates. In most cases this 
transformation involves a partial unfolding of the native state and refolding into a β-sheet-rich 
conformation. These abnormal forms are traditionally considered to lie at the basis of protein 
misfolding diseases that affect humans, including prion diseases, Alzheimer's, Parkinson's and 
Huntington's diseases. [13][15]. 



 15 

 

 

Figure 3. Cerebral aggregates in neurodegenerative diseases. Extracellular amyloid plaques (white 
arrows) and intracytoplasmic neurofibrillary tangles (yellow arrows) are the pathological signature of 
Alzheimer's disease. Intracytoplasmic aggregates are typically present in the neurons of people affected 
by Parkinson's disease and amyotrophic lateral sclerosis. Intranuclear inclusions of huntingtin are 
observed in Huntington's disease patients, and extracellular prion amyloid plaques that are located in 
different brain regions are present in some cases of transmissible spongiform encephalopathy. In spite of 
the different protein compositions, the ultrastructure of these deposits seems to be similar and composed 
mainly of a network of fibrillar polymers (center) [13] 

Insoluble deposits and diffusible oligomers from different diseases are composed of individual 
amyloidogenic proteins as different as amyloid β-protein (Aβ), tau, prion protein (PrP), α-
synuclein (α-syn) and huntingtin. In Alzheimer's disease there are two types of protein deposits: 
(i) Amyloid plaques are deposited extracellularly in the brain parenchyma and around the 
cerebral vessel walls, and their main component is a 40- to 42-residue peptide termed Aβ [16]; 
(ii) Neurofibrillary tangles are located in the cytoplasm of degenerating neurons and are 
composed of aggregates of hyperphosphorylated tau protein [17]. In patients with Parkinson’s 
disease, Lewy bodies are observed in the cytoplasm of substantia nigra neurons. The major 
constituents of these aggregates are fragments of α-syn [18]. In patients with Huntington’s 
disease, intranuclear deposits of a polyglutamine-rich version of huntingtin protein are a typical 
feature of the brain [19]. Patients with amyotrophic lateral sclerosis (ALS) have aggregates 
mainly composed of superoxide dismutase (SOD) in cell bodies and axons of motor neurons 
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[20]. Finally, the brains of humans and animals with diverse forms of transmissible spongiform 
encephalopathy (TSE) are characterized by accumulation of protease-resistant aggregates of 
the prion protein (PrP) [21]. Although the proteins implicated in each of these pathologies and 
the clinical manifestations of the diseases differ, the molecular mechanism of protein misfolding 
is strikingly similar. These diseases might share common structural epitopes and common 
mechanisms of neurotoxicity and memory impairment [22]. 

1.2. A brief overview of some neurodegenerative diseases 
This section describes some of most common neurodegenerative diseases. Prion disorders and 
Parkinson’s disease, also mentioned here, will be described and discussed more extensively in 
Chapter 2 (Prion disorders) and Chapter 5.1 (Parkinson’s disease) as they are related to the 
subject of my PhD work. 

1.2.1. Alzheimer’s disease 
Alzheimer's disease (AD) is the most common form of dementia. This progressive neurologic 
disease of the brain leads to the irreversible loss of intellectual abilities, including memory and 
reasoning, which becomes severe enough to impede social or occupational functioning [23]. AD 
is characterized by loss of neurons and synapses in the cerebral cortex and certain subcortical 
regions. This results in gross atrophy of the affected regions, including degeneration in the 
temporal and parietal lobes, and parts of the frontal cortex and cingulate gyrus [24]. 
Neurofibrillary tangles and amyloid plaques are the classical neuropathological hallmarks of AD 
[25][26][27]. Indeed, AD has been identified as a protein misfolding disease, caused by 
accumulation of abnormally folded Aβ known as extracellular aggregates, and intracellular 
aggregates of amyloid tau proteins in the brain [28][23]. Plaques are made of small peptides, 
39–43 amino acids in length, called beta-amyloid (Aβ). Amyloid beta protein is a fragment from 
a larger protein called amyloid precursor protein (APP), a transmembrane protein that 
penetrates through the neuron's membrane. APP is critical to neuron growth, survival and post-
injury repair [29][30]. AD is also considered a tauopathy due to abnormal aggregation of the tau 
protein, which stabilizes the microtubules when phosphorylated. In AD, tau undergoes chemical 
changes, becoming hyperphosphorylated; it then begins to pair with other threads, creating 
neurofibrillary tangles and disintegrating the neuron's transport system [31]. Most cases of AD 
are idiopathic (i.e., of an unknown cause), although mutations in the gene encoding APP or in 
the enzymes (presenilin gene) that sequentially cleave it cause inherited forms of the disease. 
These forms are relative rare. In sporadic AD, genes do not cause the disease, but they may 
influence the risk of developing the disease. The best-studied susceptibility gene in sporadic AD 
is apolipoprotein E (APOE), which is responsible for the production of a protein that transport 
cholesterol and fats through out the body. The protein may also be involved in structure and 
function of the fatty membrane surrounding a brain cell [32][33]. 

1.2.2. Huntington’s disease 
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by the expansion of 
a CAG triplet repeat coding for polyglutamine stretch within the N-terminal of huntingtin protein, 
which gradually damages cells in the brain [34]. Mutations in the gene encoding huntingtin 
underlie the autosomal dominant inheritance of HD, which is characterized by involuntary 
movements, personality changes and dementia. These mutations also affect muscle 
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coordination and lead to cognitive decline and psychiatric problems. Huntingtin protein is made 
up of 3,144 amino acids, is expressed widely throughout the body and has numerous interacting 
protein partners. Its normal functions are not fully understood; it has been implicated in anti-
apoptosis, neuronal gene transcription, synaptic function, and vesicle and axonal transport [35]. 
The mutation encodes an expanded polyglutamine tract, which makes the protein (or a fragment 
of the protein) prone to aggregate and to form intraneuronal inclusion bodies [36][19]. Generally, 
the number of CAG repeats is related to how much the pathological process is affected and the 
resulting disease status. A polyglutamine sequence containing 36 repeats in the corresponding 
disease protein is benign, whereas a sequence with only 2–3 additional glutamines is 
associated with disease risk. Above this threshold range, longer repeat lengths are associated 
with earlier disease onset [37][38] because the longer the polyglutamine tract, the more rapid 
the aggregation [39]. 

1.2.3. Parkinson’s disease 
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia 
nigra pars compacta (SNc). The neuropathological hallmarks of this movement disorder are 
Lewy bodies (LBs) and Lewy neuritis (LNs), which are protein aggregates in the cell body and 
neuronal processes, respectively. In adult-onset of PD, LBs are found in cytoplasm of neurons, 
often near the nucleus. The most abundant protein in the aggregates is α-syn. This 140-amino 
acid presynaptic protein is natively unfolded, interacts with multiple proteins as well as lipids and 
membranes, and has been suggested to play a part in vesicular transport [40]. LBs can also be 
labeled for ubiquitin, a synuclein interactor termed synphilin-1, proteasome proteins, and 
cytoskeletal and other proteins [41]. Although most Parkinson's disease cases are idiopathic, 
mutations in the α-syn gene underlie rare, inherited forms. Recessive early-onset PD can be 
caused by mutations in the genes encoding parkin, DJ-1 or PINK 1 etc. [42], and can also be 
cause by toxins as MPTP, presumably by loss-of-function mechanisms. 

1.2.4. Prion diseases 
Transmissible spongiform encephalopathies (TSE) or prion diseases are fatal 
neurodegenerative disorders affecting the brains of both humans and animals. They can be 
sporadic (spontaneous), familial (genetic/inherited) or acquired (transmitted by infection). 
Human TSEs are rare neurological maladies including Creutzfeldt-Jakob disease (CJD), 
Gerstmann-Sträussler-Scheinker (GSS) syndrome, Fatal familial insomnia (FFI) and kuru. 
Animal TSE infections include scrapie in sheep and goats, bovine spongiform encephalopathy 
(BSE) in cattle, and chronic wasting disease (CWD) in elk, deer and moose [43][44][45]. 
Inherited prion diseases include CJD, GSS and FFI. Variant CJD is believed to be acquired from 
cattle infected with BSE. However, most cases of human prion diseases occur as sporadic CJD 
(sCJD) [46][47][48]. Acquired prion diseases include iatrogenic CJD, kuru, variant CJD (vCJD) 
in humans, scrapie in sheep, and bovine spongiform encephalopathy (BSE) in cattle. Both 
human and animal conditions share common histopathological features that include neuronal 
loss with deposition of amyloid plaques, spongiform vacuolation of grey matter and astrogliosis 
[49]. Prion diseases are linked to the misfolding and subsequent aggregation of the normal 
globular protein PrPC [50]. PrPC is encoded by the prion gene (PRNP) on human chromosome 
20, with equivalent prion genes in animals. The function of PrPC remains unknown but it may 
play a role in anti-oxidant systems and cellular copper metabolism. The distinctive feature of 
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these diseases is the presence of: (i) microscopic vacuolization of the brain tissue, called 
spongiform degeneration (meaning that the tissue deteriorates, developing a spongy texture); 
and (ii) an abnormal protein, called scrapie prion protein (PrPSc), prions or abnormal prion 
protein. Unlike other known infectious diseases, prions are believed to result from a change in 
the conformation of PrPC, which is present in large amounts in the brain as well as in other 
tissues. Since the abnormal prion protein cannot be broken down through the body’s normal 
processes, it aggregates mostly in the brain, causing degeneration and disease. PrPSc 
deposition is associated with neuropathological changes such as neuronal loss, astrocytic 
gliosis, and spongiform change (Figure 4).  

 

Figure 4. Histological features of prion diseases. Immunohistochemical staining for prion protein on 
frontal cortices of sCJD (a–d, f–h) and vCJD (e) illustrating deposition of the prion protein in the form of 
synaptic (a), perivacuolar (b), plaque-like (c), kuru-plaque (d), florid plaque (e), punctuate (f), perineuronal 
(g), and intraneuronal (h) patterns. Scale bar in h = 50 µm.[51] 

 

2. Transmissible proteins and prion diseases 

2.1. Prion diseases in humans 

2.1.1. Creutzfeldt-Jakob disease (CJD) 
Creutzfeldt-Jakob disease (CJD) is the most common human prion disease. There are three 
types of CJD: 1) sporadic, also called spontaneous, for which the cause is not known; 2) 
familial, also called genetic or inherited, which is due to a defect in the prion protein gene; and 
3) acquired, which is transmitted by infection due to exposure to the infectious prion from 
contaminated meat, or from transplant of contaminated tissues or use of contaminated 
instruments during surgical procedures. In human prion diseases, a common polymorphism at 
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codon 129 has important effects on susceptibility to disease, the resulting clinical characteristics 
and the incubation period (in acquired forms). At codon 129 of PRNP, an individual may encode 
for methionine (M) or valine (V) and, therefore, all humans are MM or VV homozygotes or MV 
heterozygotes. 

Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common form of human prion disease, 
accounting for approximately 85% of all cases, arising from either a spontaneous PRNP gene 
somatic mutation or a stochastic PrP protein structural change. sCJD includes five distinct 
types, which differ in clinical characteristics (observable physical and subjective symptoms) and 
neuropathological characteristics (brain tissue changes). The molecular features of the different 
sCJD types also vary, such as the genotype at codon 129 of the prion protein gene and the 
length of the scrapie prion protein. As stated above, codon 129 MM is clearly a risk factor for 
sporadic CJD, with MV heterozygosity affording a partial protection. sCJD typically presents with 
a rapidly progressive dementia. Other neurological features include cerebellar ataxia and, most 
characteristically, myoclonus [52][53]. 

Familial CJD (fCJD) is the second most common type of CJD, accounting for approximately 10-
15% of cases worldwide. This hereditary form of CJD is caused by a genetic mutation in the 
prion protein gene, which causes a change in the amino acid sequence of the normal prion 
protein. This is believed to cause the mutated prion protein to take on the scrapie prion protein 
conformations. Currently, there are over 55 mutations of the prion gene, that are known to 
cause fCJD and other familial prion diseases in humans, including FFI and GSS [736]. The 
mutations include missense point mutations, octapeptide repeat mutations with insertions of 1, 2 
and 4–9 additional repeats, octapeptide repeat mutations with deletion of two repeats and two 
nonsense mutations. Three missense polymorphisms located at codons 129 (M/V), 171 (N/S), 
and 219 (E/K), and the deletion of one 24-bp octapeptide repeat is known along with 12 silent 
polymorphisms [52]. 

Variant CJD (vCJD) is also a form of acquired CJD, and is thought to be transmitted through the 
ingestion of contaminated meat [54][55]. vCJD can affect young people, with a mean age at 
death of 29 years (range 15–73 years) in contrast to a mean age at death of 65 years in 
sporadic CJD. The early clinical course is dominated by psychiatric symptoms, including 
depression, withdrawal and anxiety, although a minority of cases has early neurological 
symptoms in the form of cognitive impairment and, notably, persistent painful sensory 
symptoms. On average, after six months ataxia develops and this is associated with involuntary 
movements, which may be choreiform, dystonic, or myoclonic. There is progressive cognitive 
impairment and other focal signs may occur, including dysphasia, rigidity, hyperreflexia, and 
primitive reflexes. The later stages are similar to those of sporadic CJD, with terminal akinetic 
mutism in many cases. The mean survival time is around 14 months, but some patients have 
survived over three years from the first symptom. Furthermore, vCJD is the only type of prion 
disease in which a definitive diagnosis can be made with a tonsil biopsy [54][55]. 

In retrospect, transmission of CJD via neurosurgical instruments probably occurred in the 1950s 
in three cases operated on in the same theatre, with instruments previously used in cases of 
CJD. In the 1980s iatrogenic transmission via human pituitary growth hormone and human dura 
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mater grafts was recognized. Iatrogenic CJD (iCJD) is a form of acquired CJD and one of the 
least common types, accounting for less than 1% of cases. Both laboratory and clinical research 
has determined that human-to-human transmission of CJD can occur. [54]. Iatrogenic CJD in 
humans can have incubation periods longer than 30 years [56]. The route of exposure 
determines the clinical presentation of iatrogenic CJD. In cases with effective inoculation into 
the CNS via neurosurgical instruments, for example, the clinical features are indistinguishable 
from sporadic CJD, with rapidly progressive dementia and myoclonus. Survival is usually 
measured in months.  

2.1.2. Kuru 
Kuru was the first human prion disease to be transmitted to experimental animals. As an 
acquired prion disease, it is virtually extinct. Gajdusek first described it in Papua New Guinea as 
a disorder linked to ritual cannibalism, caused by a peripheral route of exposure. It also presents 
with a predominant cerebellar syndrome [57]. The epidemics probably originated from the 
consumption of contaminated meat from a member of the tribe affected by sporadic CJD. The 
central clinical feature of kuru is progressive cerebellar ataxia and dementia that is a less 
prominent and usually late clinical feature. In comparisons of the transmission properties of kuru 
prions with those isolated from patients with sCJD, iCJD and vCJD in both transgenic and wild-
type mice, kuru prions have shown prion strain properties equivalent to those of classical 
(sporadic and iatrogenic) CJD prions but distinct from vCJD prions [54][58]. 

2.1.3. Gerstmann-Sträussler-Scheinker syndrome (GSS) 
Gerstmann’s publications in 1928 and 1936 originally described the syndrome observed in a 
large Austrian family, with affected members manifesting slowly progressive cerebellar ataxia 
coupled with cognitive decline at sometime in the course of their illness. According to the clinical 
symptoms, GSS was classified as prion disease in 1981 [59]. Although this syndrome is 
somewhat non-specific, all GSS patients share the distinctive underlying neuropathological 
feature of widespread milticentric amyloid plaques, which equally facilitate delineation of this 
group of disorders as a discrete entity [60]. GSS is characterized by an early onset between 30 
and 60 years of age and slow disease progression extended over a period of 3.5-9.5 years. The 
PRNP polymorphism M129V has been shown to influence the disease phenotype. When linked 
to V129 allele, P102L, which is the most common cause of GSS, resulted in the predominance 
of psychiatric signs such as apathy and depression. Following PRNP mutations have been 
shown to cosegregate with GSS: P102L, P105L, A117V, Y145X, Q160X, F198S, Q217R, 
Y218N, Y226X and Q227X [61][62][63]. Only patients harboring this mutation have been 
reproducibly transmissible, but even then in just 40% of such cases [60]. The other less frequent 
mutations associated with GSS either have not transmitted or have not been assessed 
[64][65][66]. 

2.1.4. Fatal familial insomnia (FFI) 
The descriptive diagnosis FFI was first used in 1986 to depict an illness afflicting five members 
of a large Italian family [67] but it was not until 1992 that the disorder was proposed as a novel, 
genetically determined prion disease [68]. Final nosologic verification as a TSE was achieved 
with its eventual successful transmission to laboratory animals [66][69]. Since its clarification as 
a TSE, a number of additional FFI pedigrees have been described. The FFI cases present 
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between 20 and 72 years with an average of 49 years and may live after the disease onset for 
8-72 months with an average of 18.4 months [68][70][71][72][73][74]. The D178N mutation had 
previously been described as the cause of familial CJD [75][76]. However, FFI was found to 
segregate with the D178N mutation when combined in cis with methionine at codon 129 
(D178N–129M), whereas CJD was linked to valine at the latter coding position (D178N–129V) 
[77]. Detailed studies of kindred containing the D178N mutation have shown sufficient 
clinicopathological diversity and overlap [78]. Sporadic Fatal insomnia (sFI) has clinical and 
histopathological features indistinguishable from those of FFI but does not have the mutation on 
the prion gene that characterizes FFI [52][53]. 

Table 1. Prion diseases in humans (G S G Knight, J Neurol Neurosurg Psytriaty, 2004; 75) 

Disease Abbreviation Mechanism of pathogenesis Notes 

Creutzfeldt-Jakob 
disease 

CJD Unknown mechanism The most common 
human prion disease. 
First described in 1921 

Exists in four forms: 

Sporadic 

Genetic 

Iatrogenic 

Variant (described in 
1996) 

Sporadic CJD sCJD Unknown mechanism; possibly 
somatic mutation or 
spontaneous conversion of 
PrPC to PrPSc 

Variant CJD vCJD Infection presumably from 
consumption of BSE-
contaminated cattle products 
and secondary blood-borne 
transmission 

Familiar CJD fCJD Germline mutations in PrP 
gene 

Iatrogenic CJD 

 

iCJD Infection from contaminated 
corneal and dural grafts, 
pituitary hormone, or 
neurosurgical equipment 

Kuru  Infection through ritualistic 
cannibalism 

Confined to Papua New 
Guinea. Related to 
cannibalistic mourning 
rituals 

Gerstmann-
Sträussler-
Scheinker syndrome 

GSS Germline mutations in PrP 
gene 

A rare autosomal 
dominant hereditary 
disease 

Fatal familial FFI Germline mutations in PrP A rare autosomal 
dominant hereditary 
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insomnia gene disease 

2.2. Prion diseases in animals  
Prion diseases occur in many animal species and more frequently as infectious disorders (Table 
2). The most known are scrapie in sheep and goat, bovine spongiform encephalopathy (BSE) in 
cattle, chronic wasting disease (CWD) [79] of mule deer and elk, transmissible mink 
encephalopathy (TME) and the more recently described feline spongiform encephalopathy 
(FSE) [80]. 

Scrapie is the prototype of prion disease. Its name originates from the main clinical symptom, an 
itching sensation caused by the disease that induces the animal to scrape its fleece off. In 1936, 
studies demonstrated that scrapie can be transmitted to goat upon injection with scrapie 
infected brain homogenate. Further transmission experiments demonstrated the ability of 
scrapie to cross the "species barrier", including the effective transmission to sheep [81], 
laboratory mice [82] and other species. Up to now, scrapie has never been shown to pose a 
threat to human health [83]. 

Bovine spongiform encephalopathy (BSE), commonly known as "mad cow disease", appeared 
for the first time in 1986 in Great Britain like an epidemic that infected nearly one million cows 
with prions [84][85]. The clinical signs of BSE may include tremors, gait abnormalities 
particularly of hind limb (ataxia), aggressive behavior, apprehension, and hyperreactivity to 
stimuli. PrPSc accumulation and spongiform vacuolation are usually found in the brain [86]. Brain 
extracts derived from prion-infected cows can transmit the disease to mice and other species 
like sheep and pigs after intracerebral inoculation [87][88][89]. At the terminal stages of the 
disease, BSE prions may also be detected in spinal cord, retina, ileum, adrenal glands, tonsils, 
bone marrow, peripheral nerves, dorsal root ganglia, trigeminal ganglion and thoracic ganglia. 
Epidemiological and transmission studies have found no evidence of BSE prions in milk, semen 
or embryos and there is little or no evidence of its horizontal transmission. However, the 
offspring of infected animals have shown an increased risk for disease development. The 
incubation period for BSE is 2 to 8 years and most BSE cases have been found in 4- to 5-year-
old dairy cattle [86]. Apart from the BSE strain causing classical BSE, two other strains (H-type 
and L-type) causing atypical BSE have been described. Most atypical BSE cases have been 
detected during active surveillance targeting fallen stocks and slaughtered animals [90][91]. 
More importantly, unlike scrapie, BSE can be transmitted to humans by ingestion of 
contaminated food, resulting in a new variant of disease, vCJD [92][93]. These atypical BSE 
cases presented unusual neurophathological features that did not match with CJD cases [50]. 
Natural cases of BSE transmission have been described in sheep and goats. Such bovid 
animals may be an additional source of BSE transmission to humans [94][95]. Indeed, 
transgenic mice expressing human PrPC are more susceptible to sheep-passaged BSE than 
classical BSE [96]. The origins of BSE are unknown. Although several PRNP variants have 
been described for cattle [97][98], only three amongst these variants — a 23-bp indel in the 
PRNP promoter, a 12-bp indel in the first intron and an E211K polymorphism — are known to 
confer susceptibility to BSE [99][100][98][101]. 
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Chronic wasting disease (CWD) is a TSE of mule deer, white-tailed deer, black-tailed deer, 
Rocky Mountain elk, and Shira's moose. To date, CWD has been found mainly in cervids. CWD 
was first recognized as a clinical "wasting" syndrome in 1967 in mule deer in wildlife, and is 
typified by chronic weight loss leading to death. Intracerebral transmission of the scrapie agent 
has been shown to induce the disease in elk [85][102][103]. CWD can also cause these animals 
to have a rough, dry coat, and patchy retention of the winter coat in summer. In subclinical or 
early clinical CWD, affected cervids, particularly elk, may also show some other highly subtle 
symptoms including lassitude, sudden death in deer after handling, a lowered head and 
drooping ears and behavioral changes such as fixed gaze and lack of fear of humans. With the 
progression of the disease, more perceptible symptoms may arise: flaccid hypotonic facial 
muscles, ataxia, head tremors, teeth grinding, repetitive walking close to the boundary of the 
enclosure, hyperexcitability with handling, excessive salivation due to difficulty swallowing, 
esophageal dilation or ruminal atony, regurgitation of ruminal fluid, polyuria, polydipsia, 
syncope, and aspiration pneumonia. Upon histopathological examination, the CNS of affected 
cervids shows intraneuronal vacuolation, degeneration and loss of neurons, extensive neuropil 
spongiosis, astrocytic hypertrophy and hyperplasia, and occasional amyloid plaques. 
Spongiform lesions are mainly observed within the thalamus, hypothalamus, midbrain, pons, 
medulla oblongata, the olfactory tubercle and cortex. The most consistent histological lesions 
and PrPCWD immunohistochemical staining are seen within the dorsal motor nucleus of the 
vagus nerve, which is considered the first site of PrPCWD accumulation. Importantly, the clinical 
signs of polyuria and polydipsia and the low urine specific gravity in clinically dehydrated 
animals may be attributed to severe lesions in the supra-optic and paraventricular nuclei, where 
the production of anti-diuretic hormone occurs [85]. Incubation periods in CWD lie within the 
range of 16 months to 5 years and the disease equally affects both males and females. Death 
usually occurs within 1 year after the onset of clinical signs [85]. Epidemiological and 
experimental data provide evidence that horizontal transmission of CWD can efficiently occur by 
contact with affected animals or through environmental exposure [85][104][105][106]. So far, the 
natural transmission of CWD has not been evident in humans nor in domestic bovids such as 
sheep and cattle. Moreover, transgenic mice expressing either the human, ovine or bovine PrPC 
coding frames did not develop the disease when inoculated with the CWD agent [85][104][106]. 
However, other cervids such as red deer and reindeer/caribou are also susceptible to CWD 
through intracerebral inoculation [107][108]. CWD is also intracerebrally transmissible to cattle, 
sheep, goats, ferrets, hamsters, bank voles, mink, raccoons and squirrel monkeys [104]. The 
PrPCWD infectivity can be detected in the nervous system, the lymphoreticular system, the 
hematopoietic system, skeletal and cardiac muscles, pancreas, fat, retina, and the adrenal and 
salivary glands of naturally and/or experimentally infected animals [85][104][109][110][111]. 
Virtually, no tissue in infected cervids should be considered free of the CWD agent. Susceptible 
animals may acquire the infection from their habitats during feeding on grasses or by drinking 
water contaminated with PrPCWD which affected cervids excrete or secrete or deposit into the 
environment, even in the asymptomatic carrier state, in the form of feces, urine, saliva, blood, 
placenta and carcasses [85][104][112][113]. Acquisition of the infection may be further 
enhanced by oral abrasions and nasal exposure to PrPCWD-containing droplets and aerosols 
[114][115]. An important point is that the TSE agents can bind to soil particles, persist there for 
years still retaining the infectivity, and transmit the disease via oral route with even more 
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efficiency [116][117]. These investigations provide a plausible explanation for the high incidence 
of CWD and efficient transmission of the infection among cervids. PRNP polymorphisms S96G, 
M132L and S225F in cervids have been associated with resistance to CWD 
[104][111][118][119]. 

Exotic ungulate encephalopathy (EUE) is a TSE of exotic zoo ruminants of the family Bovidae. 
During a period overlapping with BSE epidemic, 6 greater kudu, 6 elands, 2 each of Arabian 
oryx and ankole cattle, and 1 each of gemsbok, nyala, scimitar-horned oryx and bison were 
diagnosed with EUE from the UK. The affected animals had been fed meat and bone derived 
from ruminants. Indeed, mice inoculated with brain homogenates from greater kudu and nyala 
with EUE, and from cattle with BSE developed a TSE with similar profiles of neuropathological 
lesions, and incubation periods. Strain typing studies in these mice also revealed a similarity 
between the EUE and BSE strains, supporting the hypothesis that EUE is caused by an 
infection with PrPBSE. The course of EUE and clinical symptoms, according to the species, are 
distinct from those of BSE and scrapie. All EUE cases died of this disease [85][120][121]. 

Feline spongiform encephalopathy (FSE) is a TSE of domestic cats and captive wild members 
of the family Felidae. As most FSE cases occurred in parallel to the BSE epidemic, exposure of 
affected cats to feed contaminated with PrPBSE was taken as causative of the disease. TSE 
profiles of neuropathological lesions and incubation periods are similar in mice after inoculation 
of brain homogenates from cats with FSE and cattle with BSE. Strain typing studies in these 
mice also revealed a similarity between the FSE and BSE strains, supporting the hypothesis 
that FSE is caused by an infection with BSE prions [104][122][123]. However, in 1998, a 
domestic cat and his owner were shown to be affected with a similar strain distinct from PrPBSE. 
A bifurcation in phenotypes was noted: the man revealed a phenotype reminiscent of sCJD 
rather than vCJD, and the cat showed a clinical phenotype distinct from FSE. It remains 
unknown whether this incidence was due to a chance, whether a horizontal transmission 
occurred between the man and the cat, or if both contracted the disease from the same 
unknown source [124]. The clinical manifestation of the disease includes severe behavioral 
changes, depression, restlessness and neglect in coat grooming. The behavioral changes 
include fear, uncharacteristic aggressiveness or unusual timidity and hiding. Abnormal or 
hypermetric gait and ataxia, mainly of the hind limbs, are also characteristics of FSE. Affected 
cats often show poor judgment of distance and hyperesthesia to touch or noise, and may also 
develop tremors, stare vacantly or circle. In addition, excessive salivation, polyphagia, 
polydipsia and dilated pupils have been reported as symptoms of FSE. At the end of the 
disease course, convulsions may occur and somnolence is common. Death occurs after 3-8 and 
8-10 weeks of clinical onset of the disease in domestic cats and cheetahs, respectively [85]. 
Neuropathological profiles of FSE include spongiform degeneration in the neuropil of the brain 
and spinal cord, with a predominance of the most severe lesions in the medial geniculate 
nucleus of the thalamus and the basal nuclei. PrP deposits of the FSE agent, with characteristic 
florid plaques, have been detected by immunohistochemistry in the central and peripheral 
nervous system, retina, lymphoreticular system, kidney and adrenal glands [85][122][123]. 

Transmissible mink encephalopathy (TME) is a rare TSE of farmed mink. Mink is a small semi-
aquatic wild mammal that is raised in several countries for the production of fur. TME was first 
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recognized in Wisconsin and Minnesota in 1947. Subsequently, TME outbreaks in US have 
occurred in the '60s and '70s with the most recent upsurge in 1985 [125]. Although the origin of 
TME is still unknown, contaminated feed, mainly with the scrapie agent, was presumed to be 
the main source of infection. Mink inoculated with various strains of the scrapie agent developed 
TME. Oral infection of minks with the classical BSE agent also caused TME, but animals 
exhibited docile rather than aggressive behavior. More recently, the L-type BSE agent has been 
described as the most likely candidate for being causative of TME [126][85]. TME is readily 
transmissible to raccoons by parenteral, intracerebral and oral routes, and can be transmitted 
intracerebrally to striped skunks, ferrets, American sable, beech martens, cattle, sheep, goats, 
hamsters and non-human primates such as rhesus macaque, stump-tailed macaque and 
squirrel monkey. Non-transgenic mice are not susceptible to TME [85]. TME passaged in cattle 
has also been transmitted to mink both intracerebrally and orally with incubation periods of only 
4-7 months [127]. A bifurcation in clinical phenotypes with distinct incubation periods, 
neuropathological lesions and biochemical profiles was produced in hamsters on inoculation 
with TME. Depending on clinical symptoms of the disease, one strain was named as “hyper 
(HY)” while the other as “drowsy (DY)” [128]. On co-infection of these strains, DY showed a 
dominant competition for the recruitment of cellular PrPC into oligomers, and may reduce the 
incubation time or even block the ability of HY to cause the disease [129]. 

The clinical manifestation of the disease includes behavioral changes such as increased 
aggressiveness and hyperesthesia, depression, restlessness, and neglect in parental care and 
coat grooming. The affected minks often soil the nest or scatter feces in the cage. At the earlier 
stages of disease they may also exhibit difficulty eating and swallowing. Later, symptoms such 
as abnormal gait, ataxia, incoordination, occasional tremors, clenching of the jaw, curved tail 
like those of squirrels, and compulsive biting or mutilation of objects or of the self, particularly of 
the tail, may be noted. Near the end of the disease course, convulsions may occur, and minks 
become somnolent and unresponsive, and can be seen to press their heads against the cage 
for hours. Incubation time in naturally occurring TME may range from 6 to 12 months, and death 
usually occurs within 2 to 8 weeks [85]. 

Neuropathological features of TME include extensive spongiform degeneration in the neuropil of 
the brain; astrocytosis also occurs. Spongiform changes are intense in the cerebral cortex, 
particularly in the frontal cortex, as well as the corpus striatum, thalamus and hypothalamus, but 
are less severe in the midbrain, pons and medulla, and usually are not evident in the cerebellum 
and spinal cord. In addition to CNS, PrP deposits of the TME agent, but not amyloid plaques, 
have been detected in spleen, intestine, the mesenteric lymph node, thymus, kidney, liver and 
salivary glands of experimentally infected mink [85]. 

TSE in non-human primates (NHP). Two Mayotte brown lemurs and 1 each of white fronted 
brown lemur, mongoose lemur and Rhesus macaque from a zoo and three primate facilities in 
France were diagnosed with a TSE, from 1996 to 1999. Although a large number of non-human 
primates are susceptible to experimental exposure to various TSE strains, they have never 
been reported before to contract a TSE naturally. The affected animals had been fed primate 
diets likely contaminated with meat. Indeed, lemurs experimentally inoculated with brain 
homogenates from cattle with BSE developed a TSE with profiles of neuropathological lesions 
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similar to those seen in naturally infected lemurs. Strain typing studies also revealed a similarity 
between the two strains. Further, in these naturally and experimentally infected lemurs, 
immunohistochemical examination showed similar staining patterns and the distribution of PrPres 
in the brain, spinal cord, tonsils, spleen and various sections of the gut and gut-associated 
lymphatic tissues [85][130]. 

Table 2. Prion diseases in animals (G S G Knight, J Neurol Neurosurg Psytriaty, 2004; 75) 

Disease Abbreviation Natural host Mechanism of 
pathogenesis 

Note 

Scrapie  Sheep, 
goats, 
mouflon 

 

Infection in genetically 
susceptible sheep 

 

Naturally 
occurring 
disease of sheep 
and goats 

Bovine 
spongiform 
encephalopathy 

BSE Cattle Infection with prion-
contaminated feedstuffs 

First reported in 
1987 

Chronic 
wasting 
disease 

 

CWD Mule, deer, 
white-tailed 
deer, Rocky 
Mountain elk 

Unknown mechanism; 
possibly from direct 
animal contact or 
indirectly from 
contaminated feed and 
water sources 

Confined to 
North America 

Exotic ungulate 
encephalopathy 

 

EUE Nyala, 
greater kudu 
and oryx 

Infection with BSE-
contaminated feedstuffs 

 

Feline 
spongiform 
encephalopathy 

 

FSE Domestic 
and wild cats 
in captivity 

Infection with BSE-
contaminated feedstuffs 

BSE-related 
diseases. 
Transmission of 
BSE to cats 
(FSE) and other 
animals 

Transmissible 
mink 
encephalopathy 

TME Mink  

 

Infection with prion-
contaminated feedstuffs 

A disease of 
farmed mink 
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2.3. The prion protein gene 
The PRNP gene encodes the prion protein, which has been implicated in various types of 
transmissible neurodegenerative spongiform encephalopathies. This gene belongs to the PRN 
gene family that consists of PRND, encoding for Doppel protein [131] and SPRN, encoding 
Shadoo [132]. Approximately 15% of human prion diseases are inherited (fCJD, GSS, FFI) and 
associated with coding mutations in the PRNP gene. The cDNA clone corresponding to a 
pathogenic PrP fragment from a scrapie-infected hamster brain cDNA library was isolated in 
1985 [133]. In 1986 Kretzschmar et al. isolated a PRNP cDNA from a human retina cDNA 
library [134]. The 253-amino acid protein shared 90% amino acid sequence identity with the 
hamster protein. In the same year, Basler et al. also determined that the pathogenic PrP protein 
in scrapie and normal cellular PrP are encoded by the same gene [135]. The PrP coding 
sequence encodes an amino-terminal signal peptide. The primary structure of PrP encoded by 
the gene of a healthy animal did not differ from that encoded by a cDNA from a scrapie-infected 
animal, suggesting that the different properties of PrP from normal and scrapie-infected brains 
are due to posttranslational events. PRNP is located in the short arm of chromosome 20 in 
humans and in a homologous region in mouse chromosome 2 [136]. About gene structure, the 
open-reading frame (ORF), responsible for transduction of the PrPC protein, resides in a single 
exon in all mammalian prions and avian gene PRNP [135][137]. However, the PRNP gene 
comprises two to three exons that contain untranslated sequences including the promoter and 
terminal sequences [61][138][139]. The region 5-prime of the transcriptional start site has GC-
rich features commonly seen in housekeeping genes. Mahal et al. characterized the promoter 
region of PRNP [140]. This region is highly GC-rich, lacks a canonical TATA box, contains a 
CCAAT box, and has a number of putative binding sites for transcription factors SP1 [141], AP1, 
and AP2. PRNP transcript is constitutively expressed in different tissues and especially in 
different brain of different animals, but highly regulated during development [142][133]. In 
addition, PrP-related mRNA was found at similar levels in normal and scrapie-infected hamster 
brain, as well as in many other normal tissues during the course of prion disease [133]. High 
levels of similarities in PRNP sequence have been found by aligning more than 40 translated 
sequences from different species [143]. This highlights the importance of PrPC protein functions 
and explains why the gene has been conserved through the evolution, and the risk of prions in 
transmission within the “species barrier” on the other hand. 

2.4 The cellular prion protein 
The physiological cellular form PrPC is a glycosylphosphatidylinositol (GPI) anchored 
polypeptide present on the outside leaflet of the cellular membrane of most cell types in 
mammals (Figure 6A). PrPC expresses early in embryogenesis and is present at a high level in 
the adult CNS, particularly in neurons but also in glial cells [144][145][146][147]. In neurons, 
PrPC is predominant in axons and dendrites [148]. It seems to be excluded from synaptic 
vesicles but present within the synaptic specialization and perisynaptically [149][150][151]. PrPC 
is also found mostly on plasma membranes [152]. In addition, PrPC is widely expressed in the 
immune system, in hematopoietic stem cells and mature lymphoid, and myeloid compartments 
[153]. Also many other tissues and organs like the spleen, intestines, skin, muscles and heart 
have been found positive for PrP expression. 
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While most PrP molecules are linked to the plasma membrane exclusively via a GPI anchor, 
three topological variants have been described: CytoPrP, NtmPrP, and CtmPrP [154]. CytoPrP, 
in which the polypeptide chain lies entirely in the cytoplasm, is produced at low levels as a result 
of inefficient translocation into the ER [155]. The amount of CytoPrP can be regulated by cellular 
stress, a mechanism that has been termed "pre-emptive quality control" [156]. Mice expressing 
a transgenically encoded form of CytoPrP show a severe neurodegenerative phenotype, 
indicating that this molecule possesses neurotoxic activity [157]. It has been claimed that prion 
infection increases production of CytoPrP [158]. At present, the pathogenic role of CytoPrP in 
prion diseases remains unclear [159]. Two other transmembrane variants of PrP, NtmPrP and 
CtmPrP, span the lipid layer once via a stretch of hydrophobic amino acids in the central region 
of protein [159] with opposite sequence orientation with respect to the lumen of the endoplasmic 
reticulum [160]. 

  

Figure 5. Two transmembrane variants of PrP, NtmPrP and CtmPrP. Mature PrPC translocates to the 
outer leaflet of the plasma membrane. Instead, CtmPrP and NtmPrP are unusual transmembrane forms, 
generated in the ER, which have their COOH or NH2 terminus in the ER lumen, respectively [89]. 

Full-length PrPC is found in non-, mono-, or diglycosylated forms [161]. A rather large variety of 
N-glycans are found attached to both full-length and truncated PrPC [162][163], which may be 
differentially distributed in various areas of the CNS [164][165]. The physiological significance of 
PrPC glycosylation is unknown. 

2.4.1. PrPC structure 
The pre-pro-protein is composed of 253 amino acids in humans. Removal of 22-amino acid N-
terminal and 23-amino acid C-terminal sequences leaves a functional protein, which is 209 
amino acids in length and is attached to the cell membrane through a glycophosphatidylinositol 
(GPI) anchor. Other prominent posttranslational modifications include a disulfide bond between 
Cys179 and Cys 214, and N-linked glycosylation at Asn 181 and Asn 197 [166] (Figure 6). 

Structural and biophysical studies with brain derived PrPC have been hindered by relative low 
expression levels and difficulties in obtaining larger quantities of highly purified material. Thus, 
most structural information about PrPC has come from studying proteins and polypeptides, 
which have been prepared through recombinant expression in bacteria or chemical synthesis. 
Despite the lack of translational modifications such as glycosylation and the GPI anchor, rPrP 
has been shown to be structurally equivalent to PrPC found in vivo [167]. 
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The part of PrP that is structurally best characterized is the C-terminal domain (residue ~21-
231), often referred to as "structured" or "folded" domain. By contrast, the N terminal domain 
part of the molecule is highly flexible, and early nuclear magnetic resonance (NMR) experiments 
suggest that it is largely disordered [168][169]. This structurally less-defined NH2 proximal 
region consists of residues 23-124 and contains a stretch of several octapeptide repeats (OR) 
(Figure 6), flanked by two positively charged clusters, CC1 (aa 23-27) and CC2 (aa 95-110), 
which are important for PrP trafficking. These domains are linked by a hydrophobic stretch of 
amino acids known as the hydrophobic core (HC) region (aa 111-135) that can be used by PrPC 
to assume different transmembrane topologies. As mentioned above, PrPC presents at least 
three distinct topological orientations: the fully extracellular form, which is GPI anchored (Figure 
6) and two transmembrane isoforms (called Ntm-PrP and Ctm-PrP) [160] (Figure 5). The N-
terminal region encompasses five signature OR that coordinate copper and, to a lesser extent, 
other metal ions. In addition to its ability to bind copper, the OR region has been found to bind 
polyanions such as glycosaminoglycan, hemin, as well as oligonucleotides and nucleic acid 
[170][171]. Although the repeats have a propensity to be disordered, they can form β-turn 
conformations under physiologically relevant conditions [172][173]. Interestingly, the OR region 
does not appear to be essential for prion infectivity [174]. Although this region has been 
hypothesized to play a role in self-association of the prion protein [175], it is not a part of the β-
sheet rich core of the infectious PrPSc. Nonetheless, it is perplexing that germline insertion of 
extra OR results in familial prion disease in humans [176]. This has been corroborated in mouse 
models in which the insertion of extra OR causes a spontaneous and progressive 
neurodegenerative disease [177][178][179]. Although not essential for pathogenicity, the OR 
region appears to play a role in modulating the conversion of prion protein into its pathogenic 
form [166]. 
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Figure 6. Model PrPC attaches to the membrane (A). Three-dimensional rendering of PrP(61–231) with 
coppers included. Intervening regions were built in a relaxed conformation [180] (B). Outline of the 
primary structure of the cellular prion protein including posttranslational modifications (C). A secretory 
signal peptide resides at the extreme NH2 terminus. CC1 and CC2 define the charged clusters. OR 
indicates the octapeptide repeat, and four are present. HC defines the hydrophobic core. MA denotes the 
membrane anchor region. S-S indicates the single disulfide bridge, and the glycosylation sites are 
designated as CHO. The numbers describe the position of the respective amino acids [89] 

The atomic detail in structures of variant human PrP [181][182][183][184][185][186][187] and at 
least 14 other vertebrates have been determined by solution NMR [188][189][190]. Collectively, 
these studies reveal a consensus structure composed of three α-helices in almost 45% of 
structure and two short β-strands which from an antiparallel β-sheet. Helices 2 and 3 form the 
bulk of the structure and are covalently bridged by characteristic disulfide bonds between Cys 
179 and Cys 214 (residue numbering according to human PrP sequence). PrPC has an 
unusually small hydrophobic core, which is mainly found between α-helices 2 and 3, and to a 
lesser extent between helix 1 and small β-sheet, which wrap around helix 3. Many hydrophilic 
and charged residues reflective of the sequence of the C-terminal domain dress the surface of 
the protein. Although PrP structures from different species are strikingly similar, an intriguing 
difference in the dynamic loop between β-strand 2 and α-helix 2 has been observed, providing 
insight into a region of potential importance for pathogenicity and barriers to disease 
transmission across species [191][192]. Interestingly, the majority of the pathogenic germline 
mutations that have been linked to cases of inherited human prion disease appear within the C-
terminal domain, mostly in the region encompassing helix 2 and 3 and the loop between them 
[193]. 

2.4.2. PrPC functions 
The physiological function of PrPC has not been established with certainty. Based on studies in 
PrP-null mice, Collinge et al. concluded that prion protein is necessary for normal synaptic 
function [194]. They postulated that inherited prion disease may result from a dominant-negative 
effect with generation of PrPSc, the posttranslationally modified form of cellular PrPC, ultimately 
leading to progressive loss of functional PrPC [194]. In 1998, Pauly and Harris et al. proposed 
the roles of PrPC in metal ion trafficking. The preferential localization of PrPC in lipid rafts 
suggested its possible involvement in signal transduction, as explained by Mouillet-Richard et 
al. [195][196][197]. Mange et al. [198] suggested that PrPC may also play a role in cell adhesion. 
A recent report suggests a role for PrPC in embryonic cell adhesion, based on the phenotype of 
zebrafish in which expression of a PrP homologue has been knocked down [199]. In further 
experiments, PrPC was also suggested to have neuroprotective functions. Indeed, 
transmembrane or secreted forms of PrP (as discussed in 2.4) mediate these functions, and 
mutations causing loss of function may be involved in the pathophysiology of prion diseases 
[200][201]. Several intriguing lines of evidence have emerged recently suggesting that PrPC may 
exert a cytoprotective activity against oxidative and pathologic stressors, particularly against 
stresses (either internal or environmental) that initiate an apoptotic program [202][203]. A recent 
study has shown that PrPC protects against cellular stress, and that PrPSc abrogates this activity 
by activating stress-related signaling cascades [204]. In addition to its contribution to nervous 
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system functions, evidence of PrPC modulating the immune system response has also been 
published [205][153].  

 

Figure 7. Functional categorization of identified interacting partners of PrPC [206] 

Recent prion research focused on a possible role of the PrP in neuronal differentiation and 
polarization [201]. As mentioned in paragraph 2.4.1 describing the octapeptide repeat region, 
prion protein binds Cu2+ ions, suggesting that it may be involved in copper homeostasis. A 
number of studies have explored functional aspects of this interaction, postulating that PrPC acts 
as a transporter of copper, a sink for excess cooper, a copper-dependent receptor, or a 
scavenger of Cu2+ generated free radicals [207][208]. Although the principal anomaly of PrPC is 
the lack of an intracellular domain activating the cascade of molecular events in response to 
external stimuli, PrPC was suggested as a receptor in its signal transduction roles. Therefore, 
many attempts have been made to identify the physiological ligands of PrPC that could serve as 
co-receptors and overcome the absence of transmembrane and cytoplasmic portions [209]. 
Interestingly, Lauren et al. identified PrPC as an amyloid-beta oligomer receptor [210][211] and 
concluded that PrPC is a mediator of amyloid-beta-oligomer-induced synaptic dysfunction. In 
2010, axonal prion protein was found to be required for peripheral myelin maintenance [212]. 

2.5. The infectious prion protein 
In 1982, Stanley B. Prusiner hypothesized the existence of prions as infectious proteins able to 
adopt replicating conformations that would lead to neurodegenerative disease in an affected 
organism [213][50]. Prion diseases are now widely known to be caused by changes in the 
conformation of the endogenous normal cellular form PrPC leading to an abnormally folded, 
disease-causing form denoted as PrPSc or prion (Figure 8). According to the "protein only 
hypothesis" [50][214], the aggregated scrapie form, PrPSc, is the causative agent of the various 
TSE-linked diseases. The scrapie conformation can recruit PrPC and facilitate its conversion to 
PrPSc, thus ensuring self-propagation [215]. Conversion to PrPSc results in a protein that content 
in β-sheet increase considerably [50][216]. This insoluble form of the PrP protein is derived 
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posttranslationally from the normal, protease-sensitive PrPC [217]. PrPC and PrPSc possess the 
same primary polypeptide sequence, but different secondary and tertiary structures. Residues 
90–231 of PrPC are believed to be the major or only infectious unit [50] (Figure 8A). Although 
structures of mammalian as well as non-mammalian PrPC from a number of species show that 
residues 90–121 are mostly disordered while the rest of the residues are ordered 
[190][186][218], as mentioned in 2.4.1, there is no clear structural model for the scrapie form 
[219][220][221].  

 

Figure 8. Bar diagram of SHaPrP, which consists of 254 amino acids. Attached carbohydrate (CHO) and 
a glycosyl-phosphatidylinositol (GPI) anchor are indicated. After processing of the NH2 and COOH 
termini, both PrPC and PrPSc consist of 209 residues. After limited proteolysis, the NH2 terminus of PrPSc 
is truncated to form PrP 27–30, which is composed of approximately 142 amino acids (A). Model of the 
PrPC to PrPSc conversion (B). Electron micrographs of negatively stained and ImmunoGold-labeled prion 
proteins (C). (1) PrPC.(2) PrPSc (3) PrP 27-30 the proteinase K-res core of PrPSc typically appears under 
the shape of “rods” that indistinguishable from many purified amyloids. (Bar = 100 nm). [50] 

PrPSc tends to aggregate and insoluble, protease-resistant forms can be isolated from prion-
infected brains. The protease-resistant isoform of the prion protein (PrPres) is important in the 
pathogenesis of these diseases [222]. However, protease-sensitive PrPSc (sPrPSc) oligomers 
are also predominant in some types of prion disease [223][224][225] and are infectious [226]. 
Recent studies have revealed a more complex picture about characterization of prions. A 
proteinase K (PK) sensitive PrPSc fraction was first described by Safar et al. [224] and later 
isolated and characterized from infected brain tissues [223,227]. Recently, several new strains 
of protease-resistant synthetic prions have been created from amyloids generated under a 
variety of conditions and inoculated into mice that overexpress truncated and full-length PrP 
[214,228]. On the other hand, also in the synthetic prion field, Colby et al. as well as other 
groups showed that sPrPSc is clearly pathogenic [229]. These studies described the generation 
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of novel protease-sensitive synthetic prions [229]. Indeed, some findings established that sPrPSc 
alone, in the absence of detectable rPrPSc, is sufficient to cause neurodegeneration 
[226][230][231][232]. The creation of these novel protease-sensitive prions challenges the 
accepted definition of what constitutes a prion. Although examples of natural prion diseases that 
feature sPrPSc predominantly are rarely reported [230], mixtures composed of rPrPSc and sPrPSc 
appear in many prions observed in nature [231][224][232][233][234][225], though the 
relationship between them is unclear. These findings also suggest that sPrPSc does not arise as 
an off-pathway product during the replication of rPrPSc since it can be recruited infectious 
products by digestion. 

Proteinase digestion is still being used as standard for the identification of infectious prions. In 
fact, limited proteolysis using, for example, proteinase K (PK) digestion is instrumental for the 
detection of prions. The readout is usually the partial resistance or sensitivity of prions to 
proteolitic digestion [21][225]. Fischer et al. identified plasminogen, a proprotease implicated in 
neuronal excitotoxicity, as a PrPSc-binding protein[235]. Binding is abolished if the conformation 
of PrPSc is disrupted by 6M urea or guanidine. Because plasminogen does not bind to PrPC, the 
authors suggested it represents the first endogenous factor discriminating between normal and 
pathologic prion protein. 

The pathological effects of PrPSc might include directly perturbed endocytosis, signaling, cell-to-
cell contact, axonal transport, metal homeostasis, membrane trafficking, and membrane fluidity 
or potential [236][237][238][239]. Some evidence argues that PrPSc may not be the proximate 
cause of neuronal dysfunction and degeneration in prion diseases. In several kinds of 
transmission experiments, significant pathology and/or clinical dysfunction develop with little 
accumulation of PrPSc [240][241][242]. In addition, some familial prion diseases are not 
transmissible, and are not accompanied by the accumulation of protease resistant PrP 
[243][244][245][246][247]. On the other hand, there are sub-clinical infections with abundant 
PrPSc but little symptomatology, e.g., after inoculation of hamster prions into mice [248][249]. 
Because high levels of prions and PrPSc accumulate in the brains of clinically healthy animals, 
whether PrPSc itself is neurotoxic or not needs to be addressed. Several lines of evidence 
suggest that PrPSc itself may not be highly neurotoxic. Büeler et al. reported that by 20 weeks 
after inoculation with RML scrapie prions, mice carrying only one functional PrP allele 
accumulated levels of infectivity and PrPSc as high as wild-type animals, but remained healthy 
until almost a year after inoculation, while wild-type animals died by about 26 weeks [250]. In 
another experiment, PrP over-expressing brain tissue was grafted into PrP knockout mice, 
which were then inoculated with prions. While the grafted, PrP-overexpressing tissue developed 
hallmark signs of prion disease, such as spongiform change and accumulation of PrPSc, the 
surrounding tissue (in which PrP was not expressed) suffered no deleterious effects [251]. Also, 
in human fatal familial insomnia there are severe clinical symptoms, although the levels of PrPSc 
are low or undetectable[252]; some of these cases were transmitted to susceptible animals, 
confirming the presence of infectious prions [253]. Transmission of BSE to wild-type mice 
resulting in characteristic prion disease in the absence of detectable PrPSc has also been 
reported [241]. 
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These observations suggest that PrPSc, as defined by its physicochemical properties of 
insolubility and partial resistance to protease treatment, while being an accurate marker of prion 
infection, may not be the neurotoxic molecule responsible for the pathogenesis of these 
diseases. The neurotoxic species may be a different form of PrP, possibly an intermediate 
formed in the conversion of PrPC to PrPSc, which remains to be defined at the molecular level 
[248][254]. Perhaps PrPSc is a relatively inert end-product, with the rate of neurodegeneration 
governed by the rate at which the neurotoxic intermediate is formed [248]. Therefore, several 
alternative forms of PrP, distinct from both PrPC and PrPSc, were hypothesized to be the primary 
neurotoxic species [159] 

2.6 Prion infection 
The molecular basis for prion infectivity is the ability of PrPSc to efficiently induce the 
transformation of PrPC into PrPSc [255]. Despite the obvious differences between prions and 
conventional infectious micro-organisms (such as bacteria or viruses), prions exhibit the typical 
characteristics of bona fide infectious agents: exponential multiplication in an appropriate host; 
transmission between individuals by various routes (including food-borne and blood-borne); 
titration by infectivity bioassays; resistance to biological clearance mechanisms; penetration of 
biological membrane barriers; ‘‘mutation’’ by structural changes forming diverse strains; and 
transmission controlled by species barriers [256].  

 

Figure 9. Different stages of prion infection. 1) Accumulation of prions in lymphoid tissues; (2) 
neuroinvasion, i.e. the spread from the lymphoid tissues to the peripheral nervous system (PNS); (3) 
dissemination within the brain and spinal cord (central nervous system, (CNS) and, (4) centrifugal spread 
from the CNS to further peripheral sites such as muscles. (PhD Thesis by Maddalena Costanzo, 
"Mechanism of spreading prion and poly glutamine aggregates and role of the cellular prion protein in 
Huntington’s disease"). 

2.6.1. Prion infection in nature 
TSE infections in animals have arisen through feeding with PrPSc-contaminated animal food. It is 
not clear how prions pass through the intestinal mucosa after oral uptake. Microfold cells (M 
cells), which are portals for antigens and pathogens [257], may be involved in the transepithelial 
transport of prions [258] (Figure 10). Thus, the infectious agent may penetrate the mucosa 
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Figure 15 Different stages of prion infection. 1) accumulation of prions in lymphoid 
tissues; (2) neuroinvasion, consisting in the spread from the lymphoid tissues to the 
peripheral nervous system (PNS); (3) dissemination within the brain and spinal cord 
(central nervous system, (CNS)) and, (4) centrifugal spread from the CNS to further 
peripheral sites such as muscles. This figure was kindly provided by L. Marzo 

 
 

3.1 From the periphery to the central nervous system: which is 
the route to follow? 
 
Following oral exposure, prions enter the host organism through 
the gut before invasion of the draining lymphoid tissues where 
the first amplification of PrPSc (e.g. prion replication) takes place 
(Andréoletti et al., 2000; Heggebø et al., 2002; Aguzzi, 2003). 
The mechanism by which prions spread from the gastrointestinal 
tract to the lymphoid tissues is still not well understood but 
different players with specific roles have been identified. 
From early studies in mice fed with scrapie or BSE agent, it was 
observed that the first prion deposition may occur in Peyer’s 
patches and mesenteric lymph nodes prior to infection to other 
lymphoid tissues (Kimberlin and Walker, 1989) and that the 
spleen does not play a major role in neuroinvasion (Maignien et 
al., 1999). Instead, gut-associated lymphoid tissue (GALT) and 
GALT-draining lymph nodes appear to play a more significant role 
in early pathogenesis (Beekes and Mc Bride 2007).  
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through M cells and reach the Peyer's patches. Although prion diseases are neurological 
disorders, critical events in their pathogenesis take place in restricted sites outside the nervous 
system, especially in peripheral lymph organs [259].  

 

Figure 10. Intestinal cell types and tissue components showing deposition of disease-associated prion 
protein from transmissible spongiform encephalopathy-affected individuals (PrPTSE) after exposure of the 
alimentary tract to transmissible spongiform encephalopathy agents. Microfold cells (M cells) in the 
follicle-associated epithelium (FAE), dendritic cells (DCs), macrophages, and follicular dendritic cells 
(FDCs) of the gut-associated lymphoid tissue (GALT), as well as fibers and ganglia of the enteric nervous 
system (ENS), may be involved in the uptake, replication and spread of prions [260]. 

PrPSc first accumulates in gut-associated lymphoid tissues (GALT) such as Peyer’s patches in 
the intestine before neuroinvasion occurs [261][262]. The dendritic cells (DCs) of the 
suprafollicular dome in the Peyer’s patches are thought to capture PrPSc [263]. Moreover, PrPSc 
is taken up by other immune cells such as macrophages in the Peyer’s patches, and 
subsequently transmitted and concentrated in intestinal follicular dendritic cells (FDCs) 
[264][265][266]. PrPSc then migrates to the enteric nervous system (ENS) [264][267][268][269], 
passing asymptomatically through the peripheral nervous system (PNS) by axonal anterograde 
and retrograde transport mechanisms via the vagus and splanchnic nerves [270]. A number of 
studies suggest that macrophages, DCs and FDCs play an important role in the transmission of 
PrPSc from the gastrointestinal tract to the CNS [271][272][273]. However, the mechanism of 
PrPSc transmission from the immune system to the nervous system as well as from nerve to 
nerve is still unknown. 

2.6.2. In vivo 
In vivo studies with transgenic mice have examined the roles of the seed factors and templates 
to identify the characteristics that decide the nature of the final product [143]. In fact, a small 
amount of purified PrPSc can produce neurotoxicity and induce apoptosis, which demonstrate 
their neurodegenerative capability [274]. Certain kinds of seed factors or templates increase the 
titre of infectious prions in the inoculum [275]. Like the effect of infectious materials within cell 
models (described below in paragraph 2.6.3), dissociation and/or denaturation treatments by 
sonication have also been used to increase the titre of infectious PrP in vivo 
[276][277][278][279][280]. Understanding the nature of prions base on in vivo experiments has 
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been further complicated by the recent demonstration that infectious prions can arise 
spontaneously from normal brain [281]. The catalyst in this study was steel wire, which had 
been previously shown to effectively bind infectious prions. Surprisingly, even non-infected 
mouse brain homogenate attaching to the wires could induce a prion infection in cell cultures, 
which was transmissible to mice. This finding may emphasize that the emergence of a single or 
a few misfolded PrP proteins, not necessarily originating from mutational changes in the PrP 
gene, might be enough to initiate a cascade of misfolding events involving homologous proteins. 
Interestingly, prion infection of mice expressing PrP lacking a GPI anchor indicated that 
membrane association was necessary for maximal PrPSc toxicity. PrPSc amyloid built up in the 
brains of these mice, but they either showed no evidence of neurodegeneration or developed 
late-onset neurological dysfunction, depending on the PrP expression levels [282][283]. 

It has long been argued that the incubation period of a prion disease can exceed the natural life 
span of an animal studied in vivo [284]. After inoculation of mice with mouse-adapted scrapie 
prions, prion titres typically rise first in spleen and later in brain, and histopathological changes 
develop in the CNS during a long incubation period devoid of clinical symptoms. Early 
preclinical signs in brain are increased PrPSc levels and astrocytosis, accompanied by subtle 
behavioral changes and loss of synapses and synaptic proteins [285][286][287][288][113]. 
Under certain circumstances, the incubation period approaches the natural life span of the 
animal and, if it were to exceed it, the brain and other tissues could harbor significant levels of 
infectious prions even though clinical signs of infection never appear. Obviously, one cannot 
determine whether or not clinical symptoms would have appeared had the animals lived longer, 
underlining the difficulty in distinguishing between preclinical and subclinical disease. Thus, 
clinically, asymptomatic animals may have significant infectious titres in brain and other tissues. 
However, there may also be subclinical, as distinct from such preclinical, forms of prion 
infection, where animals become asymptomatic carriers of infectivity and would not develop 
clinical disease. The incubation periods are extremely prolonged; distinction between subclinical 
and preclinical states is difficult. It certainly can be argued that animals dying after a typical life 
span without clinical signs of prion disease but harboring high levels of infectivity represent the 
late preclinical stage of "transmissions" where the "incubation period" exceeds the normal life 
span. The term subclinical prion infection was operationally defined to refer to animals in which 
prion replication is occurring, but which have not developed clinical signs of prion disease during 
a normal life-span [248][289]. The subclinically infected animals harbored significant prion levels 
in their brain that in some cases exceeded those in terminally sick, wild-type, controls [290]. 
Subclinical prion infection has also been described in Tga20 mice (transgenic mice 
overexpressing mouse PrP) injected with low doses of RML or ME-7 prions [291]. The response 
of these animals oscillated between a healthy appearance and mild scrapie symptoms. 
However, animals that developed an ataxic syndrome always progressed to terminal stages of 
disease. Surprisingly, the subclinically infected animals that were sacrificed over 200 days after 
inoculation contained similar levels of infectivity as terminally sick animals. This again shows 
that prion titres may reach maximum levels without eliciting clinical disease. Therefore, in 
judging susceptibility to infection of an animal exposed to prions, it is not sufficient to monitor for 
clinical signs, but it is necessary to assay for PrPSc and/or prion infectivity. In some studies 
investigating the role of the lymphoreticular system in the pathogenesis of prion disease, B-cell-



 37 

deficient mice appeared resistant to peripheral prion infection as judged by their failure to 
develop clinical disease [292]. They were, however, susceptible to prion infection when 
inoculated intracerebrally, exhibiting incubation periods similar to those seen in wild-type control 
animals. Although peripherally challenged immunodeficient mice showed no clinical signs of 
scrapie, marked accumulation of PrPSc in their brains was observed. 

2.6.3. In vitro 
To date, cell culture models have been one of the most powerful and useful experimental tools 
to study at the molecular and cellular levels the biological properties of PrP in both forms, and to 
investigate the events controlling the conversion of PrPC into PrPSc. Cell culture systems make it 
possible to determine the natural effect at single cell level of the infectious agents and the 
factors governing their propagation, screen drugs with potential therapeutic values, and also 
determine biological markers for the infectious materials with potential diagnostic and 
physiological interest. However, the use of these models in general is limited by the failure to 
generate mutated PrPSc [293]. Cell culture models are also useful for analyzing PrPSc 
transmission in vitro. Although mouse neuronal cell lines, N2a and GT-1 cells [294][295] are 
frequently used to propagate PrPSc in tissue culture models, whether PrPSc transmission from 
immune cells to neuronal cells occurs from cell-to-cell or is medium-mediated is still 
undetermined. Indeed, it has been reported that PrPSc can be transmitted to other cells in the 
supernatant of scrapie-infected GT-1 cells [295]. On the other hand, cell-to-cell contact is 
required for PrPSc transmission in the case of scrapie-infected neuronal SMB cells [296]. In 
cultured cells, PrPC traffics to the plasma membrane before conversion to PrPSc takes place 
[297][298] but whether conversion occurs on the plasma membrane and/or in an endo-
lysosomal compartment is unclear. After PrPC to PrPSc conversion, N-terminal amino acids 23–
89 of the mature protein are trimmed off in acidic late-endosomal compartments in cultured cells 
[299][300]. 

To be infectious, the prion protein must undergo a conformational change involving a decrease 
of α-helical content along with an increase of β-strand structure. In cellular models, the 
abnormal PrP is added to the cells media; even though they are prepared in different ways, they 
share common conformation features within the amyloid forms. The infectivity of individual cells 
infected with amyloid infectious materials depends on the dimensions of amyloid aggregates. 
This was showed on experimental results on amyloid assembly [301] and cellular biological 
responses. This factor is likely mediated by surface interactions, for example between fibrils and 
membranes and/or between fibrils themselves. In order to further the understanding of 
fundamental infectivity of prion disease, precise information is highly needed regarding the 
effect of the environmental factors on the formation and properties of amyloid fibrils [302] as well 
as the molecular determinants of fibril structure, stability and dynamics [303][304][305], how 
these properties alter the fragmentation rate, size and distribution of amyloid species and the 
effect on their infectious ability. 

First, the changes in the physical dimensions of fibrils, without parallel changes in their 
composition or molecular conformation, could be sufficient to alter the biological responses to 
their presence in amyloid disease. Wei-Feng Xue et al. showed a striking relationship between 
reduced length of fibril (caused by fibril fragmentation) and enhanced ability of fibril samples to 
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disrupt membranes and to reduce cell viability. These conclusions hypothesize that the physical 
dimensions and surface interactions of fibrils play key roles in prion disease. The precise rates 
of fibril fragmentation for different amyloid systems or different amyloidogenic sequences 
represent the key parameter that must be characterized in this case. The rates of fragmentation 
(the division/replication of fibril particles), the rates of nucleation (the creation/infection of new 
fibril particles), and extension (the growth of existing fibril particles), represent the key triad of 
processes that together determine the size distributions of amyloid species, and may dictate the 
detailed infectious progress. The type and extent of cellular responses to the addition of 
amyloids are determined by fibril length and the length distribution of fibrils. Information 
regarding fibril length will also be vital to characterize the process of fibril fragmentation, as 
fragmentation rates are themselves fibril length-dependent [306]. Fibril fragmentation has 
recently been implicated as a key process in determining the kinetics of amyloid assembly 
[301][307]. As amyloid formation in disease, the concentration of nucleation is slow and the rate 
of fibril growth can be drastically accelerated by the process of fragmentation through the 
resulting creation of extension-competent surfaces when fibrils break. Fragmentation of fibril 
particles has also been shown to affect the phenotype strength of different yeast prion strains, 
as increased brittleness of fibrils increases the efficiency of prion infection [307]. Different types 
of aggregation species lead to different biological responses, but changes in the physical 
dimensions of aggregates alone, without parallel changes in their composition or molecular 
conformations, may also be sufficient to alter the biological responses to amyloids [308,309]. 
Fibrils (at least micrometers in length) [223] could interact with membranes either through their 
end surfaces or through their surface along the fibril axis. On the other hand, both types of 
surfaces may be able to interact co-occurrently with membranes for fibrils that are shorter than 
the size of cells or cellular compartments (in the order of hundred nanometres or shorter), 
possibly leading to enhance the interactions. Thus, in cell models used in infectivity assays of 
synthetic prion experiments, the differences in biological response may depend on differences 
in fibril length and the length distributions of fibrils that populate each amyloid preparation. In 
addition, inside the population of fibril samples, fibril-fibril interactions depend on the length of 
fibrils: long fibrils are likely to be more prone to entangle and form clusters or networks that are 
less biologically active than their unclustered counterparts. 

Secondly, it has been shown that each prion strain is enciphered by a distinct conformation of 
PrPSc, therefore the conformational distinct amyloid states of amyloid/fibril preparation become 
crucial profiles to study. In this case, the biological response and infectivity not only depend on 
the physiological dimension structure, but also on the structural properties of each infectious 
material generated in vitro at molecular level. The PrP expression level of the cell lines that are 
used for infectious assays with amyloids is an important factor to detect a successful infection. 
Recent data on permissible cell lines revealed that cultures have the potential to accumulate as 
in the brain from affected animals with many infectious units per mg of protein [310]. In addition, 
the presence of infectivity has been also detected in the culture medium of infected cells 
[311][295], confirming that these extracellular infections are very efficient in propagating the 
infectious agent and represent a useful tool to study prion conversion and to produce prions for 
a variety of further studies in cell culture models. Although brain- and cell-derived PrPres are 
different, strain-specific banding pattern differences observed for brain PrPres were also 
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detected after serial propagation in cultured cells [312][313][314][315]. The available data also 
suggest that the biological properties of the strains are not modified after propagation in cultured 
cells. Importantly, strain-specific features of abnormal PrP are maintained upon multiplication in 
cultured cells, indicating that these models represent interesting cell biological systems to study 
how distinct abnormal PrP from various amyloid states is generated in a single cell type. On the 
other hand, there are some suggestions that the subcellular distribution of abnormal PrP may 
vary depending on the cell type in which a given infectious amyloid/strain is replicated [316].  

Using these models can decrease the effectiveness of prion propagation mostly because of 
differences in primary amino sequences of PrP. Other neuroblastoma cell lines replicate prion 
agents with the same efficacy as N2a cells [317][318][311][295][319]. Also widely used, the 
hypothalamic cell line called GT1 represents a reliable support for prion replication ex vivo [295]. 
GT1 cells are well differentiated, neuronal cell lines originating from the central nervous system 
and were established from gonadotropin-releasing hormone neurons immortalized by 
genetically targeted tumourigenesis in transgenic mice. From the different studies published so 
far, using homologous models of cell lines, regarding the transmission of prions in general, only 
some strains can replicate in one particular cell line; only some cells from a culture become 
infected and subcloning could improve the susceptibility to prions. In some cases of infection 
with infectious materials, the propagation of prions induces subtle changes in the phenotype of 
the cultures. Another way for understanding the molecular strain determinants could be studying 
infected cells. For example, it has been shown that SMB cells could be infected with different 
strains of scrapie and that the biological properties and prion-protein profiles characteristic of 
each of the original strains were propagated in this mode [313]. In synthetic prion studies, 
experiments with fibril/amyloid-infected cell cultures models have given significant information 
concerning abnormal PrP propagation. It is clear that one cell line can be infected by several 
amyloid species. Conversely, it appears that one amyloid species can infect several different 
cell lines. In addition to the level and the type of PrP molecules expressed in cells, several other 
factors may also account for this phenomenon. 

2.7 Prion conversion and propagation 
The molecular detail of the process by which PrPSc is made from PrPC is still an area of intense 
research. In crystal structural studies, some structures reveal two types of homo-dimeric 
interactions that can exist between PrP molecules, providing a glimpse into the structure 
repertoire of PrP and the interactions that may be relevant to the conversion into the pathogenic 
state [183][184][185][320][321]. The first type of interaction is the pairing of the two-stranded 
antiparallel β-sheet within a symmetry related PrP molecule in the crystal lattice to form an 
extended four-stranded β-sheet. This extended β-sheet is particularly notable because the 
interaction between molecules centers on residue 129, the site of a Met/Val polymorphism in the 
human population that affects the susceptibility to prion disease [322][323][324]. Therefore, it 
has been suggested that the interaction between PrP molecules may play a role (possibly as a 
nucleation site) in the PrPC–PrPSc conversion [185][190][320]. The second type of interaction 
found in the majority of crystallized human PrP variants is the symmetrical exchange of helices 
2 and 3 between the pair of PrP molecules in a phenomenon called “domain swapping” 
[325][183][184]. The formation of such dimers requires the breaking and reforming of two 
covalent disulfide bonds and implies an intermediate state of protein under which such an 
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exchange could happen. Domain swapping has also been proposed as a mechanism of ordered 
protein aggregation for some amyloidogenic protein [326][327][328]. However, at present it is 
not clear whether any domain swapped form of PrP exists in vivo. There are some other factors 
that are involved in the PrPSc conversion: for instance, a structural understanding of the 
coordination of copper to the octapeptide repeats was discussed above (paragraph 2.3.1). The 
binding sites of C-terminal with the octapeptide repeat are potentially significant as they are 
within the 90-230 region, a part of the protein critical for prion infectivity. Therefore this raises 
the possibility that the copper binding could modulate the conversion of PrPC to PrPSc [166] 

 

 

 

 

Figure 11. Models for the conformational conversion of PrPC into PrPSc. A: the "refolding" or template 
assistance model postulates an interaction between exogenously introduced PrPSc and endogenous 
PrPC, which is induced to transform itself into further PrPSc. A high-energy barrier may prevent 
spontaneous conversion of PrPC into PrPSc. B: the "seeding" or nucleation-polymerization model proposes 
that PrPC and PrPSc are in a reversible thermodynamic equilibrium. Only if several monomeric PrPSc 
molecules are mounted in a highly ordered seed, can further monomeric PrPSc be recruited and 
eventually aggregate to amyloid. Fragmentation of PrPSc aggregates increases the number of nuclei, 
which can recruit further PrPSc and thus results in apparent replication of the agent [89]. 

In biochemical studies, it is believed that this conversion occurs through PrPSc contact with 
PrPC, thereby inducing it to change into PrPSc [50]. The conversion of normal PrP to the 
protease-resistant PrP in a cell-free system requires the presence of preexisting pathogenic PrP 
[329]. However, Ma et al showed in their studies that recPrP can be converted to recPrPSc by 
PMCA without any added preexisting PrPSc [277]. .Many findings provided direct evidence that 
the pathogenic PrP can be formed from specific protein-protein interactions between it and the 
normal PrP. Prion protein retrogradely transported out of the endoplasmic reticulum produces 
both amorphous aggregates and a PrPSc in the cytosol. The distribution between these forms 
correlated with the rate of appearance in the cytosol. Once conversion to the PrPSc occurred, it 
was sustained. Thus, PrP has an inherent capacity to promote its own conformation conversion 
in mammalian cells [330]. Although it is clear that PrPC is necessary for prion disease, there is 
still debate regarding whether other ancillary proteins or molecules are involved in the change of 
protein conformation in vivo[331][332]. The plasma membrane invaginations with PrPSc 
aggregates in the fold are an early sign of prion pathology [333]. A recent study of Peyer's 
patches in mice orally inoculated with prions also strongly suggested that prion formation occurs 
on plasma membranes of follicular dendritic cells [334]. Furthermore, epitope-tagged PrPC 
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converts to PrPSc primarily on the plasma membrane of neuroblastoma cells exposed to 
exogenous PrPSc [335]. By contrast, studies using trafficking inhibitors in cultured cells provide 
evidence for PrPC-PrPSc conversion in recycling vesicles [336]. Endocytosis of PrPC is also 
relevant in prion disease pathology, since the endosomal compartment has been identified as a 
putative conversion site for prions [297][337]. 

After the infection process, the conversion process follows the seeding-nucleation model with 
infectious PrPSc acting as a seed to capture PrPC into the polymer [338] (Figure 11). The 
molecules of PrPC stay with PrPSc aggregates and acquire the same conformation of the PrPSc 
template to be able to incorporate stably into the polymer. In this way, PrPSc aggregates grow 
and at a certain stage polymers can be broken down into smaller pieces multiplying the number 
of oligomeric seeds to further propagate prion replication. Prion replication requires exposure to 
tiny quantities of PrPSc, present in the infectious material, to trigger the autocatalytic conversion 
of host PrPC to PrPSc. This process follows a crystallization-like model in which the infectious 
particle (a small PrPSc aggregate) acts as a nucleus to recruit monomeric PrPC into the growing 
PrPSc polymer [339]. A key step in prion replication is the breakage of large PrPSc aggregates 
into many smaller seeding-competent polymers that amplify the prion replication process, 
resulting in the exponential accumulation of PrPSc [279]. This seeding-nucleation mechanism of 
prion propagation has been reproduced in vitro to "cultivate" prions with infectious properties 
when inoculated into animals [278][280][277]. However, the precise mechanisms and cellular 
factors required for prion replication in vivo, as well as the detailed structure of the infectious 
folding of the prion protein are still unclear. 

Prion propagation in brain proceeds via two distinct phases: a clinically silent exponential phase 
not rate-limited by prion protein concentration that rapidly reaches a maximal prion titer, 
followed by a distinct switch to a plateau phase. The latter determines time to clinical onset in a 
manner inversely proportional to prion protein concentration. Therefore, there is an uncoupling 
of infectivity and toxicity [340]. Production of neurotoxic species is triggered when prion 
propagation saturates, leading to a switch from autocatalytic production of infectivity (phase 1) 
to a toxic (phase 2) pathway [340]. Recent studies suggest that the rate of prion replication is 
controlled by the conformational stability of prion fibrils. The results are consistent with a view 
that failure in inducing clinical disease of non-transgenic animals was reported for the first time 
with synthetic prion mice [214]. It might be due to a slow rate of prion replication rather than lack 
of infectivity in preparations of synthetic prions. The slow replication rate seems to be a 
manifestation of the exceptionally high conformational stability of synthetic prions. Gaining 
insight into the molecular mechanisms that link the incubation time to disease and 
conformational stability of prion fibrils, Ying et al. proposed that conformational stability 
determines critical physical properties of fibrils, such as their intrinsic fragility, i.e. their ability to 
fragment into small pieces, and/or the size of the smallest possible fragments [341]. Fibril 
fragmentation is believed to be a key step in prion replication, as it is essential for multiplication 
of active centers [341][341]. The rate of multiplication of active centers is regulated by intrinsic 
fragility and the length of fibrillar fragments [342], parameters that could have a direct impact on 
prion infectivity. Variations in intrinsic fragility of prion amyloid structures or the length of the 
smallest possible fibrillar fragments could account for strain-specific differences in the 
incubation time to disease. 
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2.8 Prion spreading, transmission and strains 
PrPSc at intercellular junctions may indicate cell-to-cell spread (Figure 13). Several mechanisms 
for intercellular prion spread have been proposed, including transfer via membrane-bound 
subcellular particles such as exosomes, or membrane bridges [343][344][345]. Other studies 
indicated that cells could become infected by contact with prion-infected cells, even if these 
were fixed [296][346][347]. As mentioned in some studies, transgenic animals expressing 
human misfolded protein transgene develop some clinical and neuropathological features of the 
human disease, whereas PrP knock-out mice are resistant to prion infection [348], showing that 
misfolded proteins are intimately implicated in the malady. Indeed, all inherited cases of prion 
diseases are linked with mutations in the prion protein gene, which usually have an earlier onset 
and more severe phenotype than the sporadic forms [89]. Moreover, some transgenic mice 
carrying mutation homologous to human prion disease also develop spontaneous disease which 
is transmissible [349][46][350,351][352]. Most TSEs are transmitted naturally by peripheral 
routes, either orally or transcutaneously. The mechanism of spread from the periphery to the 
central nervous system (CNS) is an important issue [353]. Experiments performed since the 
early 1960s have demonstrated that transmission of prion disease between mammalian species 
is limited, less efficient than within species, by a so-called "species" or "transmission barrier" 
[354]. Recognition of prion transmission usually relies on the appearance of clinical symptoms in 
inoculated animals and the interval between inoculation and appearance of clinical disease is 
designated incubation period. When, following transmission across a species barrier, brain 
homogenate from the sick recipient is passaged through the same species, the incubation 
period shortens and becomes much more consistent. This marked difference in transmission 
parameters between primary and second passage is diagnostic for the existence of a species 
barrier and the extent of the fall provides a guide to the size of the barrier. At some points during 
this clinically silent period, neuropathological and biochemical changes as well as accumulation 
of prions in the brain can be detected and this stage can be called preclinical prion disease. 
Recently, several lines of evidence have suggested that subclinical forms of prion disease exist, 
in which high levels of infectivity and PrPSc are found in animals that do not develop clinically 
apparent disease during a normal life-span. These asymptomatic prion "carrier" states [289] 
were found to be involved in the molecular basis of barriers to transmission. 
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Figure 12. Proposed mechanisms of cell-to-cell spread of prion infectivity. (A) Prion transmission through 
direct cell-to-cell contact (conversion of recipient PrPC without internalization of donor PrPSc). (B) 
Transmission of prions through exosomal PrPSc association; both a direct interaction of exosome-
associated PrPSc with cell-associated PrPC and incorporation of exosomal membrane with recipient cell 
membrane are represented. (C) C-terminal truncation of PrPSc allowing release from an infected cell and 
movement to an uninfected recipient cell. (D) "GPI-painting" mode of prion transfer. (E) PrPSc spread 
through tunneling nanotubes, in association with small vesicles of lysosomal origin. Mode (A) is 
represented by lipid raft associated PrP, but could involve non-raft associated PrP. Mode (D) is depicted 
by transfer of cell surface PrPSc, but could potentially occur with exosomal PrPSc. [355] 

Different prion strains produce distinct phenotypes, as defined by the pattern of 
neuropathological lesions (so called lesion profile) and length of the incubation period when 
inoculated into susceptible animals. Several strains of naturally occurring sheep scrapie have 
been isolated by biological cloning in mice [356]. The finding that different prion strains can be 
propagated in in-bred mice expressing PrP with the same primary sequence suggests that 
strain variation is not necessarily dependent on the primary sequence of the host prion protein 
gene [357]. Several lines of evidence suggest that PrPSc itself encodes prion strain information. 
For example, the hyper (HY) and drowsy (DY) strains of transmissible mink encephalopathy 
(TME), which can be passaged in hamsters and distinguished by their disease phenotype, differ 
in the physicochemical properties of PrPSc deposited in the brains of the affected animals [358]. 
The different mobilities of PrPSc in immunoblots of brain extracts after digestion with proteinase 
K are due to cleavage at different amino-proximal sites, whose exposure to proteinase may 
reflect distinct conformations of PrPSc characteristic for each strain [350][46]. Differences in the 
banding pattern of protease-treated PrPSc are also observed in cases of CJD in humans that 
present with distinct phenotypes [46][53] (Figure 14). Crucially, these biochemical differences 
can be transmitted to PrP in transgenic mice expressing human PrP [46][359][360]. 
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3.2 Cell-to-cell spreading   
 
At the different stages of its lethal journey to the CNS (Figure 
17), PrPSc is transferred from one cell to another and this 
passage can involve several mechanisms (not mutually exclusive) 
probably depending on cell types, strains infecting and hosts.  
As depicted in figure 18, prion transmission may occur (A) by 
cell-to-cell contact through the conversion of recipient PrPC on 
the cell surface without internalization of donor PrPSc; (B) in 
association with secreted exosomes; (C) through the release in 
the medium of a C-terminal truncated form of PrPSc followed by 
uptake in the recipient cell; (D) by “GPI-painting” and, (E) by 
spreading through tunneling nanotubes (TNTs).  
 

 
Figure 18 Proposed mechanisms of cell-to- cell spread of prion infectivity. (A) 
Prion transmission through direct cell-to-cell contact(conversion of recipient PrPC 
without internalization of donor PrPSc). (B) Transmission of prions through exosomal 
PrPSc association; both a direct interaction of exosome-associated PrPSc with cell-
associated PrPC and incorporation of exosomal membrane with recipient cell 
membrane are represented. (C) C-terminal truncation of PrPSc allowing release from 
an infected cell and movement to an uninfected recipient cell. (D) "GPI-painting" mode 
of prion transfer. (E) PrPSc spread through tunnelling nanotubes, in association with 
small vesicles of lysosomal origin. Mode (A) is represented by lipid raft associated 
PrP, but could involve non-raft associated PrP. Mode (D) is depicted by transfer of cell 
surface PrPSc, but could potentially occur with exosomal PrPSc. From Lewis and 
Hooper 2011. 

 
A brief description of the different means of PrPSc transmission 
is presented below:  
- Cell-to-cell contact 
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Figure 13. Representation of the three glycosylated PrPSc moieties (un-, mono-, and diglycosylated 
PrPSc) in immunoblots of brain extracts after digestion with proteinase K. Different inocula result in 
specific mobilities of the three PrP bands as well as different predominance of certain bands (top panel). 
These characteristic patterns can be retained, or changed to other predictable patterns after passage in 
wild-type mice (bottom panel). On the basis of the fragment size and the relative abundance of individual 
bands, three distinct patterns (PrPSc types 1–3) were defined for sCJD and iCJD cases. In contrast, all 
cases of vCJD and of BSE displayed a novel pattern, designated as type 4 pattern. [89] 

Several parameters are known to influence the transmissibility of prions both across and within 
species. These include polymorphisms in the prion protein gene that give rise to differences in 
PrPC primary structure between donor and host, prion strain type, the route of inoculation (e.g., 
peripheral versus intracerebral) and the dose. The effect of a very substantial species barrier is 
that few, if any, animals succumb to disease on primary passage, and if they do so, then only 
after incubation periods approaching the natural life span of the animal [289]. The PrP primary 
structure is the major determinant of species barriers [361]. Experiments with transgenic mice 
expressing a variety of mammalian PrP genes have been useful in assessing barriers to prion 
disease. For instance, transgenic mice devoid of mouse PrP but expressing human PrP lack a 
barrier to infection with human prions from sCJD, but not vCJD cases [46][253]. 

A strong barrier to the development of clinical disease has frequently been observed when 
prions are transferred from one mammalian species to another. In some cases of transmission, 
both natural and experimental, of cattle BSE prions, only a relatively low barrier to clinical 
disease is observed. In the transmission of cattle BSE into wild-type mice, they succumb to 
clinical disease with a low, but distinct, barrier to the development of clinical disease [359][362]. 
On the other hand, a barrier to transmission, as determined by appearance of clinical disease, 
may also be due to differences in the prion strain rather than to differences in the PrPC of donor 
and recipient. Hence, it has been proposed that "transmission barriers" reflect the complex 
relationship between species, PrP primary structure and prion strain type, and the contribution 
these parameters make to the disease process [363]. 
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3. Synthetic prions: de novo mammalian prion generation 
The prion hypothesis states that the infectious agent in TSEs is composed exclusively of PrPSc, 
which replicates in infected individuals by transforming PrPC into more of the misfolded isoform 
[50], but this hypothesis remained controversial for decades. Recent studies have settled all 
doubts by demonstrating that infectious material can be generated in vitro, in the absence of 
genetic material, by replication of the protein misfolding process [214,277,278,280]. Although 
lacking both glycosylation and the GPI anchor, secondary and tertiary structures of recPrP 
appear to be identical to those of brain-derived PrPC [167],therefore they provided a useful tool 
for studying the physiochemical properties and conformational transitions of the prion protein. 

One of the most important, recent advancements in prion biology has been the discovery of the 
de novo generation of prion infectivity from recombinant protein sources. Amyloid fibrils 
prepared in vitro from bacterially expressed PrP have confirmed that PrPSc is the principal, if not 
the sole, causative agent of TSEs, providing the definitive proof for the prion hypothesis. These 
PrP amyloid fibrils can be used as a synthetic surrogate of PrPSc to obtain a model for 
understanding the structural basis of prion conversion, for studying prion neurotoxicity, or for the 
development of drug leads able to halt the fibrilization process. However, the specific infectivity 
(i.e. titer per unit protein) of PrP amyloid fibrils is very low in Tg overexpressors (i.e. >100 million 
fold lower than brain derived prions) and undetectable in wild type hosts. In the past few years, 
considerable progress has been made in the understanding of prion diseases through the 
development of several protocols for producing amyloid fibrils from recombinant PrP (recPrP) 
[364]. This chapter recapitulates relevant studies and experimental data that have led to the 
generation of synthetic prions (Table 3). 

 

Figure 14. Diverse prion protein (PrP) conformations account for the phenotypes displayed by synthetic 
prion strains. PrP amyloids with high, intermediate and low stability can be formed by altering the length 
of the recombinant PrP (recPrP) construct and the conditions used for refolding. In mice, the incubation 
periods and conformational stabilities of the resulting prion strains seem to be dependent on the 
conformational stability of the recPrP amyloid from which they originated [143] 

Table 3. The generation of synthetic prions 

Strategy Methods Results Infectivity Reference 
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Cell-free 
assay 

Incubation of PrPC 
with PrPSc 

PK-resistant 
PrPSc 

Negative on wild-type mice [365][366][32
9] 

Overexpression of 
PrP pathological 
mutants 

Bona fide 
prion 
diseases 

Negative on wild-type mice [177][367][36
8][196] 

Mouse 
transgene
sis 

Knock-in mice 
expressing FFI 
causing mutation 

Bona fide 
FFI disease 

Positive on WT mice 
carrying 3F4 epitope, and 
after passage in Tga20 
mice 

[369] 

Tg(1020) mice 
overexpressing 
mutations causing 
structural rigidity in 
the α2-β2 loop 

Bona fide 
prion 
diseases 

Positive in Tga20 mice; 
resistance to some prion 
strains. 

[275][192] 

Amplification and 
conversion of Syrian 
hamster PrPC into 
PrPSc 

PK-resistant 
PrPSc 

Positive in WT Syrian 
hamster 

[370][278][12
9] 

PMCA Generation of prions 
starting from normal 
brain homogenates 
in the absence of 
any PrPSc seed 

PK-resistant 
PrPSc 

Positive in Syrian hamster [276] 

De novo prions 
starting from 
recombinant MoPrP, 
POPG and RNA 

Bona fide 
prion 
disease 

Positive in WT mice [371][277] 

 

ASA 

Incubation in 
partially denaturing 
condition of 
recMoPrP(89-230) 

Bona fide 
prion 
disease 

Positive in Tg9949 and 
after passage in WT FVB 
mice and Tg4053 

[229][372][21
4][373][374] 

 

Annealing 

Incubation of recPrP 
with normal brain 
homogenate at 
different 
heating/cooling 
cycles 

Bona fide 
prion 
disease 

Positive in WT Syrian 
hamsters 

[375][376] 
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recPrP-
PMCA 

Similar to PMCA, 
but recPrP as 
substrate for the 
conversion instead 
of normal brain 
homogenate 

PK-resistant 
PrPSc 

Not determined [377] 

 

QuIC 

recPrP as a 
substrate and 
automated tube 
shaking rather than 
sonication 

PK-resistant 
PrPSc 

Not determined [378] 

 

 

qPMCA 

The PrPSc content is 
estimated by the 
number of PMCA 
rounds necessary 
for a positive 
response 

PK-resistant 
PrPSc 

Not determined [379] 

 

RT-Quic 

Similar to ASA, but 
the PrPSc content is 
estimated by serial 
dilution of the seed 

PK-resistant 
PrPSc 

Not determined [380][381][38
2][383] 

 

3.1. Cell-free assay using mammalian prions 
The earliest efforts in defining the in vitro process of PrPC conversion into PrPSc have been 
described in the 1990s by Caughey and collaborators. Radiolabeled, eucaryotically expressed, 
purified PrPC was incubated with PrPSc derived from scrapie-diseased animals. The interaction 
with PrPSc resulted in the formation of a PK-resistant form of the radiolabeled progenitor [329]. 
The same method has been used for inter and intraspecies transmission studies of prion 
diseases. The incubation of radiolabeled PrPC with two different strains of PrPSc, the hyper (HY) 
and drowsy (DY) strains of hamster transmissible mink encephalopathy (TME) generated two 
distinct sets of PK-resistant progenitor forms [365]. Additionally, the mouse PrP MH2M variant 
(expressing a Syrian hamster (SHa) PrP sequence in the central region), extracted from cell 
culture, has been converted in a PK-resistant form after incubation with the SHa263K scrapie 
strain. However, no infectivity was detected when the converted material was inoculated into 
wild-type CD1 mice [366]. These pioneering studies recapitulate many features associated with 
prion transmission in vitro, demonstrating that the direct interaction between PrPSc and PrPC is 
one of the key events during the conformational transition. Nevertheless, the PK-resistant PrP 
isoforms in the above mentioned studies could not be properly considered synthetic prions as 
they lacked infectivity. 
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3.2. De novo generation of prions by mouse transgenesis 
A different approach that was largely explored for the purpose of generating de novo infectious 
material consists in expressing PrP pathological mutants. These experiments were based on 
the hypothesis that PrP mutants should produce infectivity by increasing the likelihood of 
misfolding. This hypothesis is supported by evidence in vitro showing that some recPrP mutants 
(F198S and H187R) display an increased propensity to self-aggregate in amyloid PK-resistant 
fibrils reminiscent of natural prions [384,385]. Early efforts included the expression of two 
pathological mutants (six extra octapeptide insertions and the homologous human E200K) in 
stably transfected CHO cells, resulting in the formation of mutant proteins with biochemical 
properties similar to the scrapie isoform [386]. However, none of them was shown to be 
infectious. 

Transgenic (Tg) mice expressing PrP containing pathological mutations develop a spectrum of 
neurological diseases that are comparable with TSEs [177][367][368][387][196]. However, none 
of the brain extracts from diseased Tg animals resulted able to reproduce the infectivity when 
inoculated in wild-type mice. Therefore, it has been argued that the neurological symptoms 
similar to those of prion diseases observed in these Tg mice could be merely an acceleration of 
pre-existing diseases in the recipient mice, rather than bona fide transmission [387]. One 
possible explanation for why these experiments failed to develop de novo prions is that these 
models employed randomly integrated transgenes. In all these cases, mutant PrP transgene 
integrates in a random position, often with a variable copy number and without the control of the 
PrP promoter complex. The integration of multiple PrP copies causes an unusual high level of 
PrP expression, which would increase the likelihood of pathological conversion. Indeed, 
sometime an uncoupling of messenger RNA transcription levels and variable, and usually lower 
proteins expression are described. This may represent the complexity of protein expression 
regulation that Tg mice often lack. 

New insights in the generation of de novo prions were derived by experiments carried out in 
knock-in mice expressing a PrP mutation (D179N-M129 with the 3F4 epitope tag) associated 
with a human prion disease, FFI [369]. These mice developed biochemical, physiological, 
behavioral and neuropathological traits that were similar to FFI observed in humans. 
Interestingly, FFI knock-in mice display protease sensitive PrP as well as human FFI cases 
[388][389][68][390], and other type of prion diseases [391]. Moreover, this spontaneous disease 
is infectious when transmitted to mice carrying the same 3F4 epitope, and to other Tg mice, 
namely Tga20 [392], expressing high level of wild-type PrP. These knock-in mice were 
generated replacing the endogenous mouse PRNP gene with the construct carrying the FFI 
mutation, leaving the native regulatory elements unchanged. The implications of this work on 
the comprehension of prion diseases are remarkable. The presence of PK-sensitive PrPSc in FFI 
mice supports recent findings showing that novel synthetic prions become infectious yet the 
protein remains protease sensitive [229]. These results extend the notion about prions, which 
are not obligatorily protease resistant [393][394]. The observation that only knock-in mice 
developed de novo infectious materials suggests that PrP needs to be expressed and regulated 
in particular cell types in order to generate TSE. Changes in the PrP regulatory elements or the 
overexpression of PrP may play a role by altering the physiological pathways in which PrP is 
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involved. In any case, the observation that de novo prions were generated expressing a PrP 
mutant with endogenous expression level fulfills the prion hypothesis. 

Recently, two papers reported the spontaneous appearance of infectivity from chimeric 
constructs of PrP inducing rigidity in the α2-β2 loop [275][192]. Sigurdson and coworkers [275] 
developed Tg mice (Tg1020), termed RL-PrP, overexpressing a PrP containing two artificial 
mutations, S170N and N174T, which confer a rigid structure to the α2-β2 loop in elk and horse 
PrP [191][395]. These RL-PrP mice developed spontaneous and progressive clinico-
pathological features similar to prion diseases, suggesting that these two aminoacidic 
substitutions are pathogenic for mice. These RL-PrP mice exhibited a very prolonged incubation 
time when infected with wild-type RML strain, arguing that the structural variation imposed by 
the artificial mutations creates transmission barrier to prion disease. Interestingly, sick animals 
are able to transmit disease to Tga20 mice causing similar symptoms after a long incubation 
time. However, when brain homogenates of RL-PrP mice were inoculated in Tga20 recipient 
mice, they caused similar neurological signs, but with shorter incubation periods. Both PK 
resistance and conformational stability increased after each passage. These data indicated the 
presence of a transmission barrier that was gradually overcome by repeated passaging. Finally, 
after serial passages in Tga20 mice, the prion infected brain homogenates were transmissible to 
wild-type mice but not to PrP deficient mice. This work clearly confirms previous findings, 
demonstrating that de novo prions could be generated by altering PrP coding sequence. 
Moreover, it underlies the role of α2-β2 loop region in modulating prion susceptibility and 
infectivity. 

3.3. De novo prions in vitro by PMCA 
An invaluable contribution to the demonstration of the prion hypothesis is represented by an 
alternative conversion system, denoted as Protein Misfolding Cyclic Amplification (PMCA). This 
technique is based on the experience of the "cell-free conversion" developed by Caughey and 
collaborators, and it is widely used to generate de novo prions in vitro. This approach developed 
by Soto’s group [396][279] mimics the PrPSc autocatalytic amplification. It consists in the 
incubation of a large excess of PrPC from healthy brain homogenate with an extremely low titer 
(usually 10-10 dilution factor) of PrPSc derived from TSE-infected animals. Basically, the mixture 
is incubated to enlarge PrPSc conformers, and then subjected to multiple rounds of sonication in 
order to break down the aggregates and generate multiple smaller units of PrPSc conformers. 
The products are then diluted in new healthy brain homogenate for further amplification cycles 
allowing the elimination of the original PrPSc seed (10-20 dilution factor of the starting brain 
infectious material). The presence of newly generated PrPSc has been confirmed by different 
biochemical assays, such as the resistance to PK digestion, insolubility in non-ionic detergent or 
fourier transform infrared spectroscopy [278]. Importantly, it has been shown that PMCA-
generated PrPSc is infectious when intracerebrally injected into wild-type SHa, leading to a 
disease with biochemical and clinico-pathological features identical to the illness caused by the 
natural prion strain. The only difference reported was the longer incubation time of the disease 
in the animals infected by PMCA-generated prion (177 ± 7.3 days) compared to those infected 
by 263K prion (106 ± 2.9 day), arguing a lower efficiency of infectivity [278]. Additionally, this 
method was used to amplify five different mouse strains, obtaining the same strain-specific 
features (incubation time, biochemical and neuropathological characteristics) in wild-type mice 
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infected by PMCA-generated PrPSc[397]. To rule out the possibility that other unknown agents in 
the TSE-infected brain homogenate may trigger in turn the conversion of PrPC during the PMCA 
process, the same group demonstrated the de novo generation of prions starting from normal 
brain homogenates in the absence of any PrPSc seed [276], however the results were not 
reproducible and could have been due to cross-contamination. Importantly, another group 
demonstrated the feasibility of the de novo prion generation by PMCA, showing that PMCA of 
the DY and HY strains of TME recapitulates the strain specific properties of PrPSc when 
inoculated in wild-type SHa [370][129]. However, the presence of many unknown molecules in 
the brain homogenates used for the PMCA has brought on uncertainty about whether the 
infectivity is indeed derived from the prion agent only, or from other facilitating factors. The 
objective of inducing prion diseases in wild-type animals using only recPrP still represents a 
great challenge.  

An important step forward in defining the chemical composition of mammalian prions derived 
from studies showing that polyanions, particularly RNA [398][280][331][399], and lipids [400][60] 
facilitate the PrP conversion in vitro, and thus might promote the de novo prion formation [280]. 
On the basis of these findings Wang et al. recently applied PMCA to produce de novo prions 
starting from recPrP (murine full-length PrP) in the presence of both lipid (the synthetic 
phospholipid POPG) and RNA (total RNA isolated from mouse liver) [371][277]. The infected 
brain homogenates were able to propagate the disease to recipient wild-type mice. These 
findings support the hypothesis that RNA and lipids are potentially important cofactors for the 
PrP conversion, and may represent a definitive answer to the question whether altered 
conformations of recPrP cause bona fide prion disease in wild-type mice. However, one of the 
major criticisms concerns the role of RNA for prion replication in vivo, since it is not clear 
whether nucleic acids are physiologically relevant or simply mimic other not well-characterized 
polyanionic molecules. 

 

Figure 15. Schematic representation of the protein misfolding cyclic amplification (PMCA) reaction. PrPC 
is recruited into growing aggregates of PrPSc; hence, it undergoes conformational conversion and 
becomes PrPSc. During PMCA, the growing PrPSc species are disrupted by repeated sonication in the 
presence of detergents. This treatment generates an expanded population of converting units for the 
continuous recruitment of PrPC. The whole procedure is repeated several times. PrPC is shown as light 
gray spheres. PrPSc is shown as trapezium. The original seed is in dark gray, and the newly formed PrPSc 
is in light gray. [89] 
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3.4. De novo prions by amyloid seeding assay 
Another largely explored strategy consists of using several physico-chemical approaches to 
induce misfolding of the recPrP into β-strand rich states. Such investigations are relevant 
because they address the question whether PrP alone is sufficient for the spontaneous 
formation of prions without the presence of any exogenous agent or facilitator of the conversion. 
A plethora of studies have attempted to provide an answer to this question, but these 
experiments have largely failed in producing infectivity in vivo or the infectivity potential has not 
been tested so far [401][402][403][404][405][406][325][407]. However, in 2004 the production of 
synthetic prions via the in vitro conversion of bacterially expressed recPrP was reported [214]. 
In a previous work [401] the same authors had analyzed in detail the multiple misfolding 
pathways of recPrP (from residue 89 to 230) leading to β-sheet rich conformers. Depending on 
the reaction conditions, two misfolded forms were adopted: at acidic pH (3 to 5) and in the 
presence of partially denaturing urea concentration (4-5 M) a β-oligomer PrPSc-like is formed 
with no further aggregation, whereas under neutral or slightly acidic pH values and at low 
concentration of urea (1-2 M) recPrP aggregates in fibrillar structures which develop into 
amyloid. The polymerization process was monitored simply adding thioflavin T (ThT) to the 
reaction mixture. This dye shows strong increase of fluorescence upon binding to β-sheet rich 
structures like amyloid aggregates. Importantly, the authors discovered that the addition of a 
seed of pre-folded amyloid to the fresh reaction substantially reduces the time of the fibrilization 
(called lag phase) process, demonstrating that recPrP fibrils can be induced by seeding. 
Starting from these findings, Prusiner and collaborators [214] addressed the question of whether 
these synthetic fibrils were infectious when inoculated into mice. The pre-folded amyloid fibrils 
(denoted as “unseeded”) and the seeded ones composed of recMoPrP(89-230) were 
intracerebrally injected into Tg9949 mice, which overexpress MoPrP(89-230). Seeded amyloid 
fibrils exhibited shorter incubation time (382 days) and PK resistance than unseeded (473 days 
and PK sensitivity). Interestingly, also the neuropathological features associated with seeded 
and unseeded amyloids were different in terms, for instance, of vacuolation and gray matter 
PrPSc deposition. The authors argued that this result might be due to the creation of two new 
prion strains, denoted as MoSP1 (for Mouse Synthetic Prion strain 1, obtained from seeded PrP 
amyloids) and as MoSP2 (from unseeded amyloid). Moreover, MoSP1 prion exhibited infectivity 
and shortened incubation periods upon serial passages to both wild-type FVB mice and different 
Tg mice lines [214][373][374]. The conformational stability of MoSP1, as measured by the 
GndHCl concentration required to denature half of the sample, was very high (~4.5 M) 
compared to other natural prion strains, confirming that a novel synthetic prion has been 
obtained [373]. Subsequent serial passages of this strain led to shorter incubation periods and a 
decreased conformational stability of the resulting prions. Combining these data with those 
available for naturally occurring prion strains, it was demonstrated that the length of the 
incubation time in mice is directly proportional to the conformational stability of the prion strain 
[372,374] (Figure 15). These results suggest that decreasing PrPSc stability increases the 
fragmentation of PrPSc. This in turn causes the generation of multiple seeds that can increase 
the rate of the conversion and shorten the incubation period. Consistent with this hypothesis, 
studies examining other fibrillogenic proteins (Sup35, Tau, synuclein and β-amyloid) 
demonstrate that less stable fibrils have a higher propensity to undergo breakage, creating new 
seeds for the conversion [408][409][410][307][336][411][412]. It has been reported that partially 
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purified prion strains preparation may act as a seed for the polymerization of recPrP in amyloid 
fibrils. This conformational change can be monitored simply by a fluorescence shift in the dye 
ThT. When used in conjunction with multi-well plates and automated fluorescence plate readers, 
the ThT represents a feasible, highly sensitive, high-throughput approach for the detection of 
conformational changes of proteins. Authors denoted “amyloid seeding assay” (ASA) the 
method of amyloid fibrils formation seeded by preformed PrPSc and monitored by ThT 
fluorescence. ASA is able to detect PrPSc (both PK sensitive or resistant) from different human 
or animal infected brain samples [229][372]. Another feature of ASA is the possibility to shake 
the sample in order to enhance the interaction between recPrP and the seed (included 
preformed amyloid from recPrP or partially purified PrPSc from infected sample) and promote the 
generation of multiple seeds. Additionally, the partial unfolding of recPrP is enhanced by the 
presence of low denaturant concentration (usually Gnd-HCl). 

Colby et al. recently also reported the generation of protease-sensitive, synthetic prions in vitro 
during the polymerization of recPrP into amyloid fibrils [229]. The inoculation of this amyloid 
preparation to Tg9949 mice resulted in novel, protease-sensitive, synthetic prions, which 
caused severe neuropathology and were transmissible both in Tg9949 mice and in Tg4053 
mice, which moderately overexpress the full-length MoPrP. These results demonstrate that also 
PK-sensitive synthetic prions are able to transmit prion disease and change our notion that the 
protease resistance is not an obligatory feature of PrPSc, as it has been reported in some 
sporadic [391] and genetic [388][389][68][390] cases of prion disease. The finding that different 
synthetic prions are able to generate TSE de novo provided the strongest evidence that PrPSc is 
the main and crucial element needed for infectivity. The main criticism about these findings is 
the observation that transgenic animals overexpressing PrP develop prion-like disease 
spontaneously [413][178][414]. 

Therefore, it could not be ruled out that the effects observed might be just an acceleration of a 
disease process. However, it is important to note that the authors clearly answered to these 
criticisms demonstrating by means of different assays (ASA, PK digestion and histopathology) 
that the spontaneous neurological dysfunctions observed in Tg9949 control mice are not related 
to spontaneous generation of prions, but rather to aging of the animals [229]. 

3.5. De novo prions by annealing technique 
Additional evidence has shown that synthetic prions can be generated when amyloid fibrils from 
full length SHaPrP are intracerebrally inoculated in wild-type hamster [376]. Makarava et al. 
converted recPrP into cross-β-sheet amyloids and subjected them to "annealing". Basically, this 
procedure consisted in the incubation of recPrP with normal brain homogenate, and then in 
subjecting the mixture to different heating and cooling cycles [375]. The result was then verified 
by PK-treatment. No disease was produced in the first passage although PrPSc was detected in 
the brain. However, serial transmission gave rise to a TSE disease phenotype with highly 
unique clinical and neuropathological features and a very long incubation time. 

4. The prion principle in other protein misfolding disorders 
Despite the fact that all protein misfolding and aggregation processes have the intrinsic 
possibility for transmissibility, it is likely that biological and pharmacokinetic barriers may prevent 
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some amyloid aggregates from acting like prions [338]. For example, the so-called infectious 
seeds may not be able to reach the correct place of the tissue and the right subcellular 
compartment to propagate the misfolding. This is likely to be a problem especially for some of 
the intracellular aggregates, such as LBs in PD or intranuclear aggregates in Huntington 
disease. There could also be a problem of biological stability, determining that the clearance 
may be faster than the rate of polymer elongation. The high resistance of PrPSc to proteases 
and extreme conditions may be key in the efficiency of prions as infectious agents [415]. Finally, 
some misfolded proteins form hyperstable aggregates may be poor at propagating misfolding 
[416]. Indeed, from findings with the in vitro amplification of mammalian prions [279] and from 
studies of the replication of yeast prions[408], it seems clear that fragmentation of aggregates is 
essential for effective propagation. 

 

Figure 16. Scheme summarizing evidence for seeded aggregation and cell-to-cell spreading in animal 
models of neurodegeneration. The figure depicts the experimental paradigm originally used to replicate 
infectious prions in mice, which is now used to replicate spreading of misfolded Aβ, α-syn, and tau. 
Protein aggregates containing brain lysates from old sick mice (A) or pure recombinant fibrils aggregated 
in vitro (B) are introduced in the brains of young asymptomatic mice by injection. It is important to note 
that some prion-containing lysates (Chandler et al. 1961) or synthetic prion aggregates (Wang et al., 
2010) can transmit disease to wild-type nontransgenic mice, whereas all other aggregates have thus far 
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only been shown to induce aggregation and neuronal dysfunction in transgenic mice expressing the 
human versions of the respective proteins [417] 

The putative transmissibility of protein misfolding diseases has not been analyzed in detail, but 
the lack of epidemiological data supporting disease transmission is often used to rule out an 
infectious origin for these diseases. However, it is likely that, without the fortuitous transmission 
of sheep scrapie in 1937 or Gajdusek’s milestone discovery of kuru transmission by cannibalism 
[418], an infectious origin for TSEs might have never been suspected. Indeed, epidemiological 
studies of relatives and people in contact with Creutzfeldt-Jakob disease (CJD) patients 
consistently produce negative results. Epidemiological tracking of an infectious origin for these 
diseases can be complicated by variable and extended time between exposure to the infectious 
agent and the onset of clinical symptoms, especially when this interval can be decades, as is 
typical for human TSEs. 

A series of recent studies has provided experimental evidence for prion-like mechanisms of 
pathological transmission in various common neurodegenerative diseases (Figure 17 and Table 
4). For example, Alzheimer’s disease (AD) is associated with the misfolding and aggregation of 
two proteins: amyloid-β (Aβ) accumulation in extracellular amyloid plaques and 
hyperphosphorylated tau, which forms neurofibrillary tangles inside of neurons. To assess the 
possibility that AD pathology might be transmissible by a prion-like mechanism, transgenic mice 
expressing the human amyloid protein were injected intracerebrally with diluted brain 
homogenates derived from AD patients [419,420]. The results clearly showed accelerated Aβ-
deposition in the brain of inoculated animals and preformed Aβ aggregates are required to seed 
amyloid plaque deposition in vivo [420]. Reminiscent of prions, seeding-competent Aβ 
aggregates are partially resistant to proteolysis and consist of a continuum of various sizes, with 
the most efficient seeds being smaller Aβ oligomers [421]. Oligomerization may be enhanced by 
posttranslational modifications, such as pyroglutamylation, promoting the formation of the first 
seeds that then propagate in a prion-like manner [422]. However, unlike prion disease, which 
can be induced de novo in animals that do not spontaneously develop the pathology, the 
induction of Aβ deposition observed in these studies only represents an acceleration by a few 
months of the spontaneous process that is set to occur by introduction of the mutant gene. 
Recent experiments performed in transgenic animals expressing low levels of wild-type human 
amyloid precursor protein found that disease alterations can be induced in animals that, without 
exposure to this material, will never develop the pathology during their entire life span [423,424]. 
Another important step forward in the similarities between Aβ and prion transmission has been 
the demonstration that AD brain abnormalities can be induced by intraperitoneal inoculation of 
transgenic mice with Alzheimer’s brain extracts [425]. This finding suggests that seeds acquired 
by peripheral routes of exposure may induce disease in the brain. However, because the source 
of misfolded Aβ used in these experiments is sick brain homogenates, the relevance of these 
findings for AD transmissibility is uncertain. Various studies have been performed to analyze the 
transmission by seeding of tau aggregates, the other typical feature of AD, which is also found 
in other neurodegenerative diseases, collectively called tauopathies (e.g., fronto-temporal 
dementia, chronic traumatic encephalopathy, etc.). Intracerebral injection of brain extract 
containing tau aggregates into transgenic mice expressing human wild-type tau that do not form 
aggregates spontaneously induced the assembly of native tau into misfolded aggregates in 
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recipient mice [426]. Interestingly, the pathology spreads over time beyond the site of injection 
to anatomically connected neighboring brain regions [426]. Unlike Aβ and PrPSc, tau aggregates 
are located in the cytoplasm, suggesting that, in this case, protein misfolding is transmitted 
between cells. This hypothesis is further supported by in vitro studies of cultured cells in which 
extracellular tau aggregates were taken up and induced the misfolding and aggregation of 
intracellular tau [427][428][429]. These intracellular tau aggregates spread among cells to 
extend the pathology to the entire culture. Moreover, recent studies using a transgenic mice 
overexpressing human mutant tau only in a restricted area of the entorhinal cortex showed that 
the pathology initiated in this region spread throughout the brain even to areas without 
detectable human tau expression [430][431]. The progressive accumulation of tau aggregates in 
these animals leads to synaptic degeneration and later to axonal damage and neuronal death. 

Neuropathological studies by Braak et al. and other groups have shown that neurofibrillary 
tangles in AD and LBs in PD initiate very early in the disease in a circumscribed area of the 
brain, and pathology progresses in a topographically predictable manner through anatomical 
connections [432] [433][434]. The defined spatiotemporal progression of the lesions may well be 
explained by spreading of misfolded proteins between cells and by axonal transport between 
different brain regions to propagate the pathology by transmission of protein misfolding. 

 

 

Figure 17. Principles for progression of neuropathological changes. Three drawings propose principles 
for how neuropathological changes in Parkinson’s, Alzheimer’s and Huntington’s diseases spread 
spatiotemporally during disease progression. The earlier the neuropathology develops in a given brain 
region, the darker the shading in the diagram. As only one view (mid-sagittal for Parkinson’s and 
Alzheimer’s diseases; lateral for Huntington’s disease) of the brain is depicted for each disorder, not all 
relevant anatomical structures and details of the spreading patterns (indicated by arrows) are presented.  
[435] 

Table 4. Potential candidate disease-associated transmissible proteins 

Disease Protein 
(Location) 

Experimental 
Transmission 

Natural 
Transmission 

References 

Prion 
disease 

PrPSc 
(extracellular) 

Infectious in 
diverse animal 
species by various 

Infectious in 
diverse 
species by 

[50,89] 
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routes various routes 

Alzheimer’s 
disease 

Alzheimer’s 
disease Aβ 
(extracellular)  

Induction of 
pathology in 
transgenic mice by 
intracerebral and 
intraperitoneal 
inoculation 

Not shown  [419][420][425][
423] 

Parkinson’s 
disease 

α-synuclein 
(cytoplasmatic) 

Cell-to-cell and 
host-to-grafts 
spreading in 
animal models and 
transmission by 
intracerebral 
inoculation 

Host-to-graft 
spreading in 
humans 

[436][437][438][
439][440][441] 

Huntington’
s disease 

Huntingtin 
(nuclear)  

Cell-to-cell 
spreading in 
culture 

Not shown  [442] 

Tauopathies  Tau 
(cytoplasmatic)  

 

Cell-to-cell 
spreading in 
culture and 
transmission in 
transgenic mice by 
intracerebral 
inoculation 

Not shown  

 

[426][427][428][
429][430][431] 

Secondary 
amyloidosis 

Amyloid-A 
(extracellular) 

Acceleration of 
pathology in mice 
by various routes 
of administration 

Possible 
transmission 
to captive 
cheetah 

[443][444] 

Mouse 
senile 
amyloidosis 

Apolipo protein 
A 
(extracellular) 

Acceleration of 
pathology in mice 
by various routes 
of administration 

Transmission 
to mice in the 
same cage by 
feces 
consumption 

[445][446] 

 

5. Synucleinopathies 
Synucleinopathies are a subset of neurodegenerative disorders that have in common a 
pathological lesion composed of fibrillary aggregates of insoluble α-synuclein protein (α-syn) in 
selective populations of neurons and glia. The discovery of a point mutation in the α-syn gene 
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as a rare cause of familial PD has led scientists to the finding that α-syn is the major component 
of Lewy bodies (LB) and Lewy neurites (LN) in idiopathic PD and dementia with LB 
(DLB)[447][18][448]. The LB pathology that is sometimes associated with other 
neurodegenerative diseases, such as sporadic and familial AD, Down's syndrome, and 
neurodegeneration with brain iron accumulation type 1 (Hallervorden-Spatz syndrome), has also 
been shown to be α-syn-positive [448][449][450][451][452][453][454]. Moreover, the filamentous 
glial and neuronal inclusions of multiple system atrophy (MSA) are made of α-syn 
[452][455][456][457][458]. Taken together, these works have shown that PD, DLB, and MSA are 
α-synucleinopathies. The abnormal α-syn is a major component of the tubulofilamentous 
inclusions found in oligodendrocytes, known as glial cytoplasmic inclusions (GCIs). Clinically, 
they are characterized by a chronic and progressive decline in motor, cognitive, behavioral, and 
autonomic functions, depending on the distribution of the lesions. [459]. 

 

5.1. Parkinson’s disease 

5.1.1. Symptoms and neuropathology 
Parkinson's disease (PD) was first described by James Parkinson in 1817 [460][461]. This 
disease approximately affects 1% of the population over age 50 with a higher prevalence in men 
[462]. PD is characterized clinically by severe motor symptoms including uncontrollable resting 
tremor, muscular rigidity, impaired postural reflexes, and bradykinesia, which vary among 
patients [463][464]. These abnormalities can be accompanied by other symptoms, such as 
autonomic dysfunction, depression, and a general slowing of intellectual processes [465]. 
Pathologically, the marked degeneration of dopaminergic neurons in the substantia nigra pars 
compacta leads to the depletion of dopamine (DA) in its striatal projections, and of other 
brainstem neurons, with consequent disruption of the cerebral neuronal systems responsible for 
motor functions [463][464]. This neurodegeneration is accompanied by the presence of 
cytoplasmic (LBs) and neuritic (LNs) inclusions [466] in the surviving dopaminergic neurons and 
other affected regions of the central nervous system (CNS), but the mechanism underlying their 
formation is unclear, as is their pathogenic relevance. The substantia nigra, located in the 
midbrain or mesencephalon, has been the main focus of PD research. The motor symptoms are 
thought to result from the loss of dopamine-producing brain cells in this region and subsequent 
lack of transmitter input into the striatum, an important motor control area. Despite the focus on 
the substantia nigra, most PD patients have additional, non-motor symptoms, and PD is coming 
to be understood as a much broader disease. Chronic constipation, loss of smell, and REM 
sleep disorders often occur before the motor problems [467]. One of the attractive features of 
Braak’s staging scheme [468] is that the areas of the nervous system littered with LBs at the 
earliest stages of disease could account for these non-motor symptoms. Muqit et al. provided a 
review of the role of mitochondrial dysfunction, including oxidative damage and apoptosis, in the 
pathogenesis of PD [469]. Current thinking is that mitochondrial dysfunction, oxidative stress, 
and protein mishandling have a central role in PD pathogenesis [470].  
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5.1.2. Parkinson’s disease genes 
There is a growing list of mutations linked to PD. They account for 2–3% of the late-onset cases 
and ~50% of early-onset forms [471][472]. Typically, late-onset PD with LB pathology is linked 
to mutations in three genes: SNCA (encoding α-syn), LRRK2 (encoding leucine-rich repeat 
kinase 2) and EIF4G1 (elongation initiation factor 4G1). A pathogenic role for α-syn in these 
disorders is supported by various genetic data. Missense mutations in SNCA were first linked to 
familial Parkinsonism with late onset [447], and subsequent SNCA duplications were found in 
kindred in which age of onset, progression and associated comorbidities relate to gene dosage 
[473][474]. Multiplications of SNCA [475] and various point mutations in this gene (A53T, A30P 
and E46K) [476][447][477][478] result in rare autosomal dominant forms of familial PD and DLB. 
Moreover, certain polymorphisms in SNCA are major risk factors for sporadic PD [479]. In 
particular, the development of non-motor features correlates with α-syn gene copy number as 
well as gene and protein expression [480]. These studies suggest that increased neuronal α-syn 
protein levels are a primary factor in the disease. The causes and consequences of α-syn 
aggregation in neurons are not yet fully understood, despite a large number of molecular studies 
[481].  

In addition, polymorphisms in the promoter region [482][483] and the un-translated region [484] 
of α-syn gene are also reported as risk of PD or DLB, and recent genome-wide association 
studies also identified the α-syn gene as one of the major risk loci for sporadic PD [485][479]. 
Recessive forms of Parkinsonism have been recognized that are caused by mutations in the 
genes for parkin [486][487], DJ-1 [488], ubiquitin carboxy-terminal hydrolase L-1 [489] and 
PINK1 [42]. Additional loci have been mapped on chromosomes 2p13 [490], 12cen [491], 1q 
[492], and 2q [493]. The main proteins that cause genetic forms of PD are summarized in Table 
5. Proteins that play a significant role in sporadic disease have come to the forefront mostly 
from non-genetic research avenues [494]. 

Table 5. The main proteins that cause genetic forms of PD 

Form Pattern of 
inheritance 

Chromosome 
region 

Name 
of 

gene 

Gene 
identified 

Name 
of 

protein 

Function of 
protein 

Familial 
PD 

AD 4q21-q22 PARK
1 

yes α-syn Synaptic 
protein 

Young-
onset PD 

AR/AD 6q25.2-q27 PARK
2 

yes parkin Ubiquitin 
protein ligase 

Familial 
PD 

AD 4q region PARK
4 

yes Multipli
cation 
of α-
syn 
chromo
some 

Excess α-syn 
protein  
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region 

Young-
onset PD 

AR 1p35-p36 PARK
6 
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5.2. Dementia with Lewy bodies  
Dementia with Lewy bodies (DLB) is a type of dementia closely associated with both 
Alzheimer's and Parkinson's diseases. It is characterized anatomically by the presence of LB, 
clumps of α-syn and ubiquitin protein in neurons, detectable in post mortem brain histology. Age 
at onset ranges from 50 to 80 years, with a slight male predominance, and disease duration is 
from 1 to 20 years. Clinically, DLB is characterized by dementia, fluctuating cognitive 
impairment, persistent visual hallucinations, and parkinsonism. Although dementia is the most 
frequent presenting feature, psychiatric symptoms or transient alterations of consciousness are 
other early features [495].  

5.3. Multiple system atrophy 
Multiple system atrophy (MSA) is a progressive sporadic neurodegenerative disorder, clinically 
characterized by parkinsonism, autonomic failure, cerebellar and pyramidal dysfunction, in any 
combination [496]. The historical terms striatonigral degeneration (SND), olivopontocerebellar 
atrophy (OPCA), and Shy-Drager syndrome (SDS) refer to neuropathological descriptions of 
patients with a combination of symptoms with predominant parkinsonism in SND, cerebellar 
dysfunction in OPCA, or autonomic failure in SDS, which have been embraced under the term 
MSA [497]. The age of onset can range from 33 to 78 years, and disease duration is from 0.3 to 
24 years from the onset of symptoms [498]. Neuropathologically, MSA is characterized by a 
high density of ubiquitin-, tau-, and α-syn–positive GCIs, associated with neuronal loss and 
gliosis, in some or all of the following structures: inferior olives, pontine nuclei, cerebellar 
Purkinje cells, putamen, caudate nucleus, globus pallidus, substantia nigra, locus coeruleus, 
autonomic nuclei of brainstem, intermediolateral cell columns of the spinal cord, and Onuf's 
nucleus [498][499]. Although highly specific, GCIs are not exclusive of MSA, as they have been 
found in a minority of brains with progressive supranuclear palsy or corticobasal degeneration 
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[459]. The clinical presentation is variable. Parkinsonism is the predominant symptom in more 
than 80% of cases (MSA-P). A cerebellar syndrome predominates in less than 20% of patients 
(MSA-C) but develops in approximately half of the patients. Autonomic dysfunction is present in 
almost every patient to a certain extent. In addition to these key features, a variety of 
accompanying symptoms may also develop [459]. 

5.4. Pure autonomic failure 
Pure autonomic failure (PAF) is a rare clinical manifestation of Lewy body disorders. It is an 
idiopathic, sporadic, neurodegenerative disorder characterized by primary orthostatic 
hypotension as the cardinal symptom, usually with evidence of more widespread autonomic 
failure [500]. No other neurological symptoms are present. Nevertheless, some patients who 
initially present features of PAF may later develop additional symptomatology that prompts 
reclassification of the diagnosis to PD, MSA, or DLB [501]. Neuropathological findings have 
shown severe compromise of both central and peripheral autonomic structures. Postmortem 
studies disclosed prominent LBs, LNs, and neuronal loss both in preganglionic and 
postganglionic sympathetic and parasympathetic systems [502][503][504]. Additionally, varying 
amounts of LBs and neuronal loss have been found in substantia nigra and locus coeruleus, 
and one study documented the presence of LBs in the dorsal raphe nucleus and 
pedunculopontine nucleus [503]. Since the first time the presence of anti–α-syn antibody 
immunoreactivity was found in a case of PAF, this disease belongs to the spectrum of α-
synucleinopathies [503]. 

 

5.5. Proteins in synucleinopathies 

5.5.1.The synuclein family 
The first synuclein nucleotide and amino acid sequences were reported in 1988 from the electric 
organ of the Pacific electric ray (Torpedo californica) [505]. The protein was named synuclein 
because of its apparent localization in presynaptic nerve terminals and portions of the nuclear 
envelope. In 1991, cDNA sequences from rat brain were found homologous to the synuclein 
sequence from T. californica [506]. The amino acid sequence of an abundant protein from rat 
brain was called phosphoneuro protein-14 [507]. In 1993, the amino acid sequence of a protein 
from human brain was named non-amyloid-β component precursor (NACP), because of the 
apparent localization of a portion of this protein in some amyloid plaques from AD brain [508]. 
However, more recent studies using new antibodies have been unable to reproduce the original 
finding that may have resulted from antibody cross-reactivity with the β-amyloid protein 
[509][510]. The amino acid sequences of two homologous proteins from human brain were 
identified because they reacted with an antibody raised against paired helical filament 
preparations from AD brain [511]. The first protein was identical to NACP, whereas the second 
protein was the human homologue of rat phosphoneuroprotein-14. The authors noticed that the 
proteins were similar to each other and to synuclein from T. californica and consequently named 
them α-syn and β-synuclein, respectively. Human α-syn is 140 amino acids in length, whereas 
β-synuclein is 134 amino acids long. The amino acid sequence of a protein from zebra finch 
brain, synelfin, is the zebra finch homologue of α-syn [512]. Human α- and β-synucleins are 
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62% identical in amino acid sequence and share a similar domain organization. The amino-
terminal half of each protein is taken up by imperfect amino acid repeats, with the consensus 
sequence KTKEGV. Individual repeats are separated by an inter-repeat region of 5–8 amino 
acids. Depending on the alignment, α-syn has 5–7 repeats, whereas β-synuclein has five 
repeats. The repeats are followed by a hydrophobic middle region and a negatively charged 
carboxy-terminal region, although both proteins have an identical carboxy-terminus. The human 
α-syn gene maps to chromosome 4q21, whereas the β-synuclein gene maps to chromosome 
5q35 [513][514][515][516][517]. Their genes are composed of five coding exons of similar sizes, 
with the overall organization of these genes being well conserved. Alternative mRNA splicing 
has been observed for exons 4 and 6 of the human α-syn gene [518]. Similarly, the rat cDNAs 
SYN1, SYN2, and SYN3 appear to be splice variants of the same synuclein gene [506]. 
However, at the protein level, there is no evidence to suggest the existence of multiple α-syn 
isoforms. So far, no splice variants have been described for β-synuclein. The α- and β-synuclein 
sequences from several vertebrate species are very similar. No synuclein homologues have 
been identified in Saccharomyces cerevisiae and Caenorhabditis elegans, suggesting that the 
presence of synucleins may be limited to vertebrates [519]. α-Syn and β-syn mRNAs are 
expressed at highest levels in the nervous system, with lower transcript levels in other tissues 
[508] [511]. Both proteins are concentrated in nerve terminals, with little staining of nerve cell 
bodies and dendrites. Ultrastructurally, they are found in nerve terminals, in close proximity to 
synaptic vesicles [506][507][508][509][510][511]. In 1997, Ji et al. reported the amino acid 
sequence of a 127 amino acid protein that they named breast cancer-specific gene-1 (BCSG1) 
protein, because of its presence in large amounts in human breast cancer tissue [520]. BCSG1 
shares 55% sequence identity with human α-syn and has therefore been renamed γ-synuclein 
[521]. It was independently discovered by Buchman et al. who named it persyn [522]. The 
synuclein that was originally identified in T. californica [505] was probably a γ-synuclein 
homologue. γ-Synuclein has the same general domain organization as α-syn and β-synuclein 
and is also encoded by five exons [523][524]. The human γ-synuclein gene maps to 
chromosome 10q23. γ-Synuclein mRNA is expressed at highest levels in the nervous system 
and the heart, with lower transcript levels in other tissues. It appears to be present throughout 
nerve cells, unlike α-syn and β-syn which are concentrated in presynaptic nerve terminals. In 
1999, Surguchov et al. reported the sequence of a 127 amino acid protein that they named 
synoretin because of its expression in the retina [525]. Synoretin is 87% identical to γ-synuclein 
at amino acid level and shows the same tissue distribution as γ-synuclein mRNA. γ-Syn is 
highly expressed in various areas of the brain, particularly in the substantia nigra, and has been 
found to be overexpressed in some breast and ovarian tumors [526]. The sequences of all 
synucleins are similar [527], although only α-syn is implicated in disease. 

5.5.2. Alpha synuclein 
Alpha synuclein (α-syn), as mention above, was originally identified in the electric organ of the 
Pacific electric eel Torpedo Californica [505]. α-Syn is a thermo stable protein [508][511]. 
Hundreds of well-conserved α-syn protein homologues exist in human, bird, mouse, bovine, and 
rat, but no homologues have been reported in lower organisms such as Escherichia coli, yeast, 
C. elegans, or Drosophila. Its localization is concentrated at presynaptic nerve terminals 
[528][511][529]. This is a major component of the fibrillar aggregates in LBs and LNs in sporadic 



 62 

PD and in dementia with Lewy bodies (DLB) [18]. The process of α-syn aggregation, eventually 
leading to the formation of LBs and LNs, appears to be a major contributor to 
neurodegeneration in PD [478][530]. Proteasomes [531][532][533] and lysosomes [534] are 
responsible for the cellular metabolism of α-syn. Recent studies have suggested that soluble 
oligomeric forms of amyloidogenic proteins, including α-syn, are pathogenic and lead to 
neuronal cell death [535]. It has also been shown that soluble α-syn oligomers are elevated not 
only in post mortem parkinsonian brain [536] but also in PD patient CSF [537]. Moreover, in 
altered conditions in vitro and in vivo, α-syn may self-assemble to form ordered fibrils [538] 
characterized by cross β-sheet structures similar to Lewy body aggregates [539]. Recent 
studies provide a sequential explanation for the process of α-syn oligomerization in the 
membrane, and support the role of generated pore-like structures in the molecular mechanisms 
of the PD neurodegenerative process [540][541]. α-Syn monomers might also have a role in 
synucleinopathies by their displacement from their physiological location, resulting in a loss of 
cellular function, or by disrupting the activity of other molecular or signaling pathways [542]. 

5.5.2.1. α -Syn structures 
α-Syn is a 14 kDa protein (140 amino acids; pKa of 4.7) [508] characterized by an amphipathic 
lysine-rich amino terminus, which has a crucial role in modulating its interactions with 
membranes, and a disordered, acidic carboxy-terminal tail, which has been implicated in 
regulating its nuclear localization and interactions with metals, small molecules and proteins 
[543][544] (Figure 19). The highly conserved amino-terminal domain of α-syn (residues 1-65) 
includes six copies of an unusual 11 aa imperfect repeat that displays variations of a KTKEGV 
consensus sequence and is unordered in solution, but can shift to an α-helical conformation 
[527] [545] that appears to consist of two distinct α-helixes interrupted by a short break [546]. 
The amphipathic α-helixes [547] are reminiscent of the lipid binding domains of class A2 
apolipo proteins [548]. α-Syn can bind to negatively charged phospholipids and becomes α-
helical upon binding [544][549][548], suggesting that the protein may normally be membrane 
associated [548]. Several recent studies [550][551][552] have shown that lipidic environments 
promoting α-syn folding also accelerate α-syn aggregation, suggesting that the lipid-
associated conformation of α-syn may be relevant to α-syn misfolding in neurodegenerative 
diseases. α-Syn is a soluble, natively unfolded protein with an extended structure primarily 
composed of random coils [544], but it may acquire secondary structural elements upon 
interaction with a number of ligands and proteins [549] that likely alter its native state 
conformation and lead to α-syn adopting partially folded conformations. 

The central hydrophobic domain of α-syn (residues 66-95) is known as the non-Aβ component 
of plaque (NAC) [508][553], the second major component of brain amyloid plaques in AD. 
[508][554]. It comprises the highly amyloidogenic part of the molecule that is responsible for the 
ability of α-syn to undergo a conformational change from random coil to β-sheet structure [555] 
and to form Aβ-like protofibrils and fibrils [554][555]. These features distinguish α-syn from β-
syn and γ-syn, which fail to form copolymers with α-syn [554]. The NAC region carries a 
phosphorylation site on Ser 87 [556]. It contains a highly hydrophobic motif that comprises 
amino acid residues 65–90 [508][18][557] (Figure 17). The NAC region is indispensable for α-
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syn aggregation; the deletion of large segments within this motif greatly diminished α-syn 
oligomerization and fibrilization in vitro [558][554] and in a cell-based assay[437].  

 

Figure 18. Schematic representation of micelle-bound α-syn (α-syn; Protein Data Bank ID: 1XQ8) (A) 
[559]. The N-terminal region, the non-amyloid-β component of Alzheimer's disease amyloid plaques 
(NAC) region and the C-terminal part are colored blue, orange and red, respectively. Numbers refer to 
amino acid residues flanking the different regions. Schematic representation of the full length 140 amino 
acid α-syn transcript (B). Pathogenic mutations as well as phosphorylation and nitration sites are 
indicated [560] 

The acidic carboxyl-terminal domain (residues 96-140) of α-syn has no recognized structural 
elements but has a strong negative charge composed primarily of acidic amino acids [527]. 
Different from the amphipathic amino-terminal and the hydrophobic NAC regions, which are 
highly conserved between species, the carboxyl-terminal region is highly variable in size and in 
sequence [526]. It hosts an acidic domain (residues 125-140) that appears critical for the 
chaperone-like activity of α-syn [561], as demonstrated by deletion mutants of the carboxyl-
terminal region in which the α-syn chaperone activity is lost [562][563]. Several phosphorylation 
sites have been detected in the carboxyl-terminal region on Tyr-125, -133, and -136, and on 
Ser-129 [564]. Considering that the carboxyl-terminal domain of α-syn is required for its 
chaperone-like activity [561], it is conceivable that phosphorylation of these Tyr residues in this 
region would also affect this property of α-syn. The residue Ser-129 is also phosphorylated by 
G-protein-coupled receptor protein kinases [565]. Studies in vitro suggest that phosphorylation 
at Ser-129 promotes formation of α-syn filaments as well as oligomers [566] as a consequence 
of a change in charge distribution and hydrophobicity of α-syn carboxyl-terminal region [567]. 
Extensive and selective phosphorylation of α-syn at Ser-129 is evident in synucleinopathy 
lesions, including LBs [566]. Other post-translational modifications in the carboxyl-terminal, 
including glycosylation on Ser-129 [567] and nitration on Tyr-125, -133, and -136 [568], may 
affect aggregation of α-syn. An O-glycosylated form of α-syn (α-Sp22), a specific substrate for 
ubiquitination by parkin, has been identified [487]. Although it has not been determined where α-
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syn is glycosylated, a potential target for glycosylation is the carboxyl-terminal Ser-129, hosting 
O-linked sugars [487]. Truncation of the carboxyl-terminal region by proteolysis has been 
reported to play a role in α-syn fibrillogenesis in various neurodegenerative diseases [569]. Full-
length as well as partially truncated and insoluble aggregates of α-syn have been detected in 
highly purified LBs [570]. 

Studies by several groups using different biophysical methods (for example, NMR, light 
scattering and circular dichroism) consistently showed that α-syn purified from Escherichia coli 
under native or denaturing conditions exists predominantly as stable unfolded monomers [544] 
[571]. When α-syn was extracted from patients diagnosed with LBD and age-matched controls 
and evaluated by non-denaturing gels or size exclusion chromatography (SEC) columns, α-syn 
monomers migrated as 57–60 kDa proteins, but in denaturing gels they migrated as 14 kDa 
proteins [558][437]. Two recent studies reported that native α-syn exists as a folded tetramer 
[572][371]. The first study showed that α-syn purified from mammalian cell lines or red blood 
cells exists as a stable α-helical tetramer with an apparent size of 58–60 kDa, as was discerned 
by size exclusion chromatography (SEC), native PAGE and sedimentation equilibrium studies 
[572]. The second study used NMR, chemical crosslinking and SEC, and indicated that α-syn 
produced in Escherichia coli exists as a dynamic tetramer that is rich in α-helical structure [573]. 
Both studies suggested that the tetrameric helical form of α-syn is resistant to aggregation and 
fibril formation. Initially, the apparent size of α-syn in native gels and SEC led many researchers 
to propose that this protein exists as a stable oligomer, but subsequent detailed biophysical 
studies demonstrated that the larger than expected size is mainly due to the fact that 
monomeric α-syn adopts an unfolded, extended conformation [571][559] which results in a 
larger than expected hydrodynamic radius (nature a-syn structure). These findings are in 
agreement with most studies on the oligomeric state of native α-syn, which have consistently 
shown that α-syn behaves as an unfolded monomer [574][571][559]. The migration of α-syn with 
an apparent molecular weight slightly above 66 kDa in native gels and SEC is probably the 
result of its tendency to adopt extended conformations, and not because it exists in an 
oligomeric form (for example, as a tetramer), as the addition of denaturants or boiling of α-syn 
samples from various sources did not change α-syn migration [559]. On the other hand, the 
apparently multifunctional properties of α-syn may lie in its conformational flexibility, which may 
allow the protein to adopt different conformations upon interacting with biological membranes of 
different compositions, other proteins or protein complexes [575][576]. It is well established that 
α-syn adopts an α-helical conformation upon binding to synthetic or biological membranes in 
vitro [544]. Several factors, including oxidative stress [577], post-translational modifications 
[578][579], proteolysis [580][581] and the concentrations of fatty acids [582][583][584], 
phospholipids and metal ions [585][577] were shown to induce and/or modulate α-syn structure 
and oligomerization in vitro, and these factors may influence this equilibrium between the 
monomer and oligomer state in vivo.  

Mutations on α-syn may make it easier to be in the random coil state so that aggregation is 
more likely to occur. It has been suggested that this may be due to acquisition of a β-sheet 
configuration by the protein, which renders it more prone to aggregation and filament formation. 
The A30P and A53T mutations increase the rate of α-syn oligomerization, whereas the rate of 
mature fibril formation is increased and decreased by A53T and A30P mutations, respectively 
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[569]. α-Syn is one of the composers of filamentous inclusions in nerve cells or glial cells which 
are the defining neuropathological feature of a group of neurodegenerative diseases including 
PD, DLB and MSA [521]. In these so-called synucleinopathies, α-syn is deposited in a 
hyperphosphorylated form with β-sheet rich, fibrillar structure [18][457][586][455][566]. Since 
soluble α-syn never induced such pathology [587], the structural difference between soluble and 
filamentous forms of α-syn, for example cross-β structure in α-syn fibrils [588] is critical for 
pathogenesis. 

5.5.2.2. α-Syn functions 
Transgenic mice evidence, studies on α-syn knockout mice [589] and primary neurons [590] 
suggested that α-syn is involved in DA neurotransmission. α-Syn appears to be associated 
with synaptic vesicles, and there is evidence that it regulates the size of the synaptic vesicular 
pool [590]. α-Syn is also involved in synaptic plasticity by augmenting transmitter release from 
the presynaptic terminal [591]. Furthermore, α-syn can interact with presynaptic membranes, 
indicating that one of its functions may be in the regulation of DA release and reuptake 
[592][593][594]. There is also evidence that α-syn can modulate expression of genes involved 
in DA synthesis [595] and can affect enzymes involved in chromatin remodeling [596] and signal 
transduction [597]. Several cellular targets of α-syn have been found. The protein is thought to 
be an important component of the presynaptic protein scaffold that regulates dopamine release. 
In fact, inhibiting α-syn or proteins that interact with it at the synapse alters dopaminergic 
transmission and synaptic function [589,598][599]. Furthermore, aggregated α-syn impacts on 
various membrane structures of the cell. It can form pore-like complexes in the plasma 
membrane that alter membrane excitability and calcium permeability [600,601], affect the 
integrity of lysosomal and endosomal compartments, and inhibit vesicular trafficking from the 
endoplasmic reticulum to the Golgi apparatus in a Rab-dependent manner [602].  

Transgenic mice overexpressing human α-syn exhibit impairment in synaptic vesicle 
exocytosis and a reduction in neurotransmitter release [594][603][604]. Similar effects have 
been observed after α-syn overexpression in genetic rodent models of PD [605][606] and in the 
PC12 stable cell line [607]. At the ultra structural level, overexpression of α-syn induces a 
decrease in readily releasable vesicles [605] and affects the recycling of synaptic vesicles 
following endocytosis, inducing a reduction in the size of the synaptic vesicle recycling pool 
[604]. Moreover, excess α-syn induces a reduction in dopamine reuptake in dopaminergic 
terminals [606] and inhibits intersynaptic trafficking of vesicles, leading to a smaller reserve pool 
of vesicles [608]. α-Syn associates with the distal reserve pool of synaptic vesicles 
[609][610][444] and the deficiencies in synaptic transmissions observed in response to 
knockdown or overexpression of α-syn. Therefore α-syn has a role in the regulation of 
neurotransmitter release, synaptic function and plasticity. 

The possible role of α-syn in regulating synaptic homeostasis is not exclusively related to its 
direct interaction with synaptic vesicles. α-Syn interacts with synaptic proteins controlling 
vesicle exocytosis [611][612]. It also functions as a chaperone to maintain the integrity of the 
presynaptic terminal because α-syn overexpression rescues the neurodegenerative phenotype 
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of cysteine-string protein knockout mice [593]. Recent studies reported that α-syn can act as a 
chaperone protein for the presynaptic SNARE protein complex by controlling the degradation 
and affecting the assembly, maintenance and distribution of this complex, which is directly 
implicated in the release of neurotransmitters, including dopamine [613]. Thus, authors 
concluded that α-syn might function to sustain normal SNARE complex assembly in a 
presynaptic terminal during aging. Together, these observations indicate that α-syn has an 
important role in the trafficking of synaptic vesicles and in the regulation of vesicle exocytosis, 
and may contribute to more subtle regulatory phenomena by controlling synaptic homeostasis-
associated proteins. The fact that the individual synuclein knockouts (α-, β- and γ-syn) are 
viable suggests that synucleins are not essential components of the neurotransmitter release 
machinery but may contribute to the long-term regulation and maintenance of nerve terminal 
function [614]. The neuroprotective effects of α-syn against progressive neurodegeneration in 
mice deficient in cysteine-string protein-α (CSPα; also known as DNAJC5) [593] strongly 
suggest that its functional properties become more prominent or essential under conditions of 
stress. The neuroprotective function of α-syn appears to be mediated by its ability to bind to 
membranes and vesicles, as the A30P α-syn mutant, which is deficient in membrane binding, 
failed to show protection in CSPα gene-knockout mice. 

6. Is Parkinson’s disease a prion disorder? 
In recent years, evidence has grown to suggest that toxic amyloidogenic proteins, such as Aβ 
and tau, pass between neurons along functionally connected pathways, corrupting their normal 
counterparts [615][430]. The concept became clearer when aggregate migration was discovered 
in neurodegenerative diseases involving these amyloidogenic proteins. Aβ [616], tau 
[426][617], and polyglutamine peptides [442] all spread across the brain (Figure 18). In addition, 
a growing body of evidence indicates that self-propagating protein aggregates play central roles 
in many neurodegenerative diseases, including PD and AD [426][439][441,618]. 

Since PD is characterized by the accumulation of intracytoplasmic aggregates, made of a-syn 
and primarily located in the substantia nigra, an increasing body of evidence from animal 
models as well as data from genetic, biochemical and biophysical studies support the 
hypothesis that the processes of α-syn oligomerization [574][620] and fibril growth [585,621] 
have central roles in the pathogenesis of PD and other synucleinopathies [622]. 
Neuropathologically, α-syn lesions are believed to spread progressively throughout the brain, 
and their spread seems to be correlated to the staging of clinical symptoms [623]. Supporting 
the potential relevance of this concept in the pathogenesis of α-synucleinopathies, postmortem 
studies on patients with advanced PD who received grafts from healthy embryonic neurons 
many years before showed that some transplanted neurons contained a-syn aggregates 
[627][628][632][633]. In a few cases, the transplanted cells showed phenotypic alterations, such 
as loss of dopamine transporters. 
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Figure 19. Grafting of neurons into brains of patients with Parkinson’s disease (A) Summary of the 
procedure used to prepare long-term grafts. (B) Immunostaining with α-syn antibodies of sections from a 
16-year-old graft (left panel). Lewy bodies (arrows) in the graft are similar to those seen in the substantia 
nigra of the host (right panel). [619] 

Interestingly, α-syn has also been shown to ectopically accumulate in oligodendroglial cells in 
multiple system atrophy [624] and in astroglial cells in PD [625][626]. Some patients died 13–16 
years after transplantation of fetal nigral cells into the striatum. The inclusion bodies appear 
identical in morphology and staining to the LBs found in host dopamine neurons in the SNc 
[627][628][629][630][631]. These LBs occurred in about 5–8% of the grafted neurons similar to 
the proportion found in SNc neurons in cases of PD and stained for α-syn, ubiquitin and 
thioflavin S. Some other previous studies have shown accumulation of α-syn in fetal grafted 
neurons in patients with PD [632][633], as well as in grafted neuronal precursor cells in the 
hippocampus [436] and basal ganglia [634] in mouse models. In human α-syn-expressing mice 
that received stem cell grafts, the transplanted cells also picked up the protein, similar to what 
may have happened to cell grafts in human clinical trials for PD [628][627]. Moreover, the 
ascending distribution of the LB pathology in LBD, as described by Braak [625], has been 
interpreted to support the dissemination of α-syn from subcortical to cortical brain regions. Most 
interestingly, in support for this possibility that α-syn may be transmissible from diseased 
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Parkinson’s disease according to a stereotypic pattern 
following long unmyelinated axons of known anatomical 
pathways (fi gure 2). According to this so-called dual-hit 
hypothesis,61,62 Parkinson’s disease pathology originates 
in the nose and foregut after inhalation of an unknown 
neurotropic pathogen and subsequent swallowing of 
nasal mucus in saliva. Among many theories and 
hypotheses, Braak and colleagues speculated that 
“unconventional pathogens with prion-like properties” 
might induce spreading of Parkinson’s disease 
pathology.61,62 After crossing the epithelium, this 
pathogenic agent could get access to and be transported 
in an anterograde direction along axons of neurons 
projecting from the olfactory epithelium to the temporal 
lobe, and retrogradely from the enteric epithelium via 
sympathetic fi bres in the vagus nerve to the CNS 
(fi gure 2).61,62 

Lewy bodies and Lewy neurites have been detected in 
tufted neurons47 and mitral cells47,63 in the olfactory bulb of 
patients with Parkinson’s disease; mitral cells receive 
direct input from neurons of the olfactory epithelium. 
Lewy body pathology is also apparent all along the 
olfactory pathway (anterior olfactory nucleus, olfactory 
tubercle, and cortices),64 even though the olfactory 
epithelium itself seems devoid of α-synuclein aggregates.65 
In the foregut, Lewy bodies and Lewy neurites have been 
found in enteric nerve cell plexa in patients with 
Parkinson’s disease.66

After reaching the CNS via nasal and gastric routes, 
Lewy pathology has been proposed to ascend from the 
medulla oblongata to midbrain structures, including the 
substantia nigra, and fi nally to cortical areas, along a 
network of neurons interconnecting all these regions 
(fi gure 2).46–48 In view of the direct anatomical connection 

Figure 3: Grafting of neurons into brains of patients with Parkinson’s disease
(A) Summary of the procedure used to prepare long-term grafts.65–67 (B) Immunostaining with α-synuclein antibodies of sections from a 16-year-old graft (left panel). 
Lewy bodies (arrows) in the graft are similar to those seen in the substantia nigra of the host (right panel). 
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neurons to healthy neurons, recent studies showed that exogenous α-syn fibrils induced LB 
pathology in cultured neurons [436][635][428][438], transgenic mouse brains [439][636] and 
wild-type mouse brains [636] [587] 

6.1. Mechanism of LB presence or paths to increased expression and 
accumulation of α-syn in disorders 
PD, DLB and other LBDs show accumulation and redistribution of α-syn in various brain regions 
and cellular populations. These changes in the natural structure and localization of α-syn may 
have pathogenic roles in these disorders and can be reproduced in α-syn transgenic animals 
[637][638][639][640][641] and wild-type mice [441] [587]. The levels of α-syn in the CNS depend 
on the balance between the rates of α-syn synthesis, aggregation and clearance [642] (Figure 
21). An imbalance between these mechanisms, caused by dysfunction of one or more of these 
pathways (Figure 21), can result in abnormal levels of α-syn that might favor the formation 
and/or accumulation of oligomeric and fibrillar species, which may be toxic. Indeed, in some 
familial forms of parkinsonism, multiplication of SNCA results in increased accumulation of α-
syn because of increased protein expression [475], whereas in others, SNCA mutations 
enhance the propensity of α-syn to aggregate [574]. A genome-wide association study (GWAS) 
showed that individuals with certain variations in the SNCA gene had a higher risk of PD [643]. 
One such polymorphism is known as Rep1, which occurs in the promoter region of SNCA and 
might increase the susceptibility to PD by increasing the expression of α-syn [483]. Clearance of 
α-syn monomers and aggregates occurs via direct proteolysis [644], binding to molecular 
chaperones [645], the proteasome [646][647][533] and autophagy (involving the activity of the 
lysosome) [642][648][436][649]. In sporadic forms of PD and DLB, failure of the autophagy 
pathways to eliminate oligomers might enhance α-syn-mediated toxicity [436] and may 
contribute to the pathological release of α-syn [610]. Chaperone-mediated autophagy [648] has 
been shown to be disrupted by oligomeric forms of wild-type and disease-associated mutant α-
syn. In PD and DLB, the levels of key autophagy molecules such as ATG7, a ubiquitin-like 
modifier-activating enzyme, and mammalian target of rapamycin (mTOR), a serine/threonine 
protein kinase, are deregulated [650]. Other mechanisms have been considered for the 
presence of LB in transplanted cells involved in inflammation, oxidative stress, excitoxicity and 
loss of neurotropic support [434]. Interestingly, the secretion of both monomeric and aggregated 
α-syn is elevated in response to proteasomal and mitochondrial dysfunction and cellular defects 
found in PD [651][617][652]. 
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Figure 20. Cellular events controlling intracellular α-syn levels. Intracellular α-syn levels are tightly 
regulated by the balance between the rates of α-syn synthesis, clearance and aggregation. Abnormalities 
affecting α-syn synthesis, including SNCA multiplication and polymorphisms (such as Rep1), may 
increase intracellular α-syn levels and induce its accumulation. Accumulation may also be caused by a 
failure to degrade α-syn. Clearance deficits might arise from failure of the ubiquitin–proteasome system, 
chaperone-mediated autophagy dysfunction (induced by Parkinson's disease-linked mutations) or 
dysfunction of proteases (neurosin or matrix metalloproteinase 9 -MMP9). Finally, certain SNCA 
mutations, post-translational modifications, oxidative stress, toxins and interaction with oxidized dopamine 
increase the propensity of α-syn to aggregate and accumulate [653] 

The presence of toxic aggregates of α-syn along  these paths can act as seeding phenomenon 
in prions concept. "Seeding" is synonymous with the addition of preformed aggregates to a 
solution of monomers. This process can eliminate the lag phase of aggregate growth that is 
associated with the formation of soluble assembly-competent oligomers (known as the "nuclei") 
and can accelerate fibril formation, therefore increasing the accumulation of proteins. Since 
seeding is the theoretical basis for prion infectivity, or the conveyance of prion proteins from 
animal to animal [653], this has been used as a strong approach for researchers in the field of 
prion-like diseases to study especially the possible transmission and infectivity of PD. 

6.2. α-Syn spreading and transmission mechanisms 

6.2.1. Braak’s hypothesis 
The discovery of LBs in the intestine of patients led to a new theory on the origin and 
progression of PD. This theory suggests that PD starts outside the CNS, induced by a virus or 
other pathogen, and then spreads to different areas of the brain in stages. Epidemiological 
research suggests that in human patients, constipation might be one of the early signs of PD, 
preceding motor symptoms by decades [654][655]. Animal studies provide some support for this 
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conclusion as well [656]. A transgenic mouse expressing a mutated human α-syn gene was 
developed. This strain develops α-syn aggregation in the gut at three months of age. These 
mice have signs of constipation and reduced defecation similar to what is seen in PD patients. 
Because this mutation causes some familial forms of PD, the results provide a link between PD 
and a disease process in the gut. These studies concluded this mouse model mimics the early 
stages of PD. In the model, the pathology does not, however, progress to the CNS [656]. 

The ability of wild-type α-syn to convert to a pathological form and then spread in brain has 
gained support recently. This hypothesis is developed by Heiko Braak and considered by some 
to be far-fetched initially. In patients, the enteric nervous system (ENS) is riddled with LBs long 
before they are found in the brain or before motor symptoms emerge [657]. This hypothesis 
focuses on the localization of LBs throughout the nervous system. In this hypothesis, disease 
pathology shows a predictable distribution pattern, in which they suggest that the pathology 
starts in the gut and not the substantia nigra and the pathology might spread across synapses 
from one neuron to the next [658]. Based on painstaking observations of hundreds of tissue 
samples, Braak and colleagues proposed that the pathology associated with PD advances 
systematically through the nervous system in six stages, sequentially moving from the vagus 
nerve up the brainstem to the substantia nigra in the midbrain and eventually reaching the 
forebrain and cerebral cortical areas [659] (Figure 22). They based this staging scheme on the 
assumption that disease pathology would not occur in an area of lower vulnerability without also 
being present in areas of higher vulnerability. In stage 1, while samples show mild pathology, 
the LBs are typically confined to the olfactory bulb and the dorsal motor nucleus of the vagus 
nerve. Because the vagus nerve connects the brain to the enteric nervous system (ENS), the 
authors proposed that the disease could start in the gut and move along the vagus nerve in an 
upstream or retrograde direction toward the brain. In stage 2, LBs continue to ascend into the 
brainstem, reaching the medulla oblongata and pontine tegmentum, parts of the brainstem that 
control swallowing, sleep, and other autonomic functions sometimes affected in PD. By Stage 3, 
pathology starts to affect the amygdala (an almond-shaped mass of neurons involved in 
processing fear and other emotions, but also the sense of smell) and in the substantia nigra; this 
is the stage when the motor phase of the disorder begins. In Stage 4, pathology in areas 
affected in earlier stages worsens, and LBs progress to the forebrain and encroach on a portion 
of the cerebral cortex (the temporal mesocortex), whereas the neocortex, the part of the brain 
involved in higher functions, remains unaffected. In Stages 5 and 6, the pathology is full-blown, 
appearing initially in the anterior association and prefrontal areas of the neocortex and then 
spreading to the posterior association areas, which are involved with memory, learning, and 
planning movement. 
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Figure 21. The Braak staging system of Parkinson's disease, showing the initiation sites in the olfactory 
bulb and the medulla oblongata, through to the later infiltration of LB pathology into cortical regions. α-
Syn-related pathology is possibly initiated in the periphery via input from the olfactory epithelium or vagal 
inputs from the stomach, perhaps involving xenobiotic factors. The red shading represents the pattern of 
pathology. [468] 

 
Figure 22. Dual-hit hypothesis of propagation of synucleinopathy during Parkinson’s disease. Parkinson’s 
disease-associated neuropathology originates in the gut (first hit) or the nose (olfactory bulb; second hit) 
and then propagates to the caudal brainstem and the temporal lobe. LB pathology then ascends to 
midbrain structures and cortical areas. Blue arrows depict the proposed ascending progression of 
Parkinson’s disease pathology. Boxes indicate affected systems and main associated symptoms. [619] 

In a subsequent study, Braak et al. focused on the ENS. The two sites where PD pathology 
begins are the gut and the olfactory bulb. The sPD-associated involvement of the ENS initially 
reported found relatively little resonance in comparison to the literature devoted to lesions in the 
CNS [657]. In autopsies of patients who had positive LB in the CNS, they found LB in both the 
Meissner’s and Auerbach’s plexus, the two layers that make up the ENS. Because the ENS 
lesions were found both in PD cases and in asymptomatic individuals who only had LBs in the 
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lower brainstem, the results confirmed that the disease could start off in the ENS. But a further 
postulate was that the disease could be set off by a yet-unidentified pathogen in the gut [660]. 
Moreover, another publication [661] found no evidence that PD starts in the gut, such as 
aggregates of phosphorylated α-syn. The phosphorylated α-syn aggregates appear in the spinal 
cord or any peripheral site without also being present in the brain [661]. Then, this hypothesis 
was revised to suggest that the pathogen could simultaneously enter the nose, by inhalation, 
and the gut, by swallowing nasal secretions, and then progress to the brain from two directions, 
providing a “dual-hit” [662] (Figure 23). 

 

6.2.2. From cell to cell in vitro 
Cells normally keep their α-syn problems to themselves, but when they accumulate more than 
they can handle, they may release the protein into the extracellular space [436] and the nearby 
cells can pick up α-syn jetsam, helping the toxic protein spread from cell to cell across the brain. 
Indeed, there are discoveries that neurons can exocytose [651] and endocytose [610] α-syn. 
One suggestion to account for these results is that α-syn pathology spreads by a prion-like 
process [663]. The toxic forms of the protein move from cell to cell, seeding new aggregates as 
they go. Accordingly, extracellular α-syn is taken up by neighboring neurons through 
endocytosis, leading to aggregation and intracellular inclusions [651]. Cell-to-cell transmission of 
α-syn was found in neuronal cultures [436][664][438]. Researchers have not quite worked out 
how the malformed proteins jump from cell to cell, perhaps across synapses; some reports have 
suggested endocytosis is involved [436][440]. It is also possible that cell-to-cell transmission 
occurs through direct cellular contact, involving nanotubes, or is mediated by exosomes or 
microvesicles [346] as similar findings have been also reported with other misfolded proteins, 
such as huntingtin, superoxide dismutase, and TDP-43, associated to Huntington’s disease and 
ALS [442][665][666][667]. Cell biology studies are obtained in characterizing the endocytosis of 
α-syn fibrils and oligomers [610], and the release of α-syn by neurons [651][668], while prior 
research has shown smaller species of α-syn, namely soluble oligomers and monomers, getting 
released by neurons and wreaking havoc on neighboring cells [669][670][436][635]. The α-syn 
inclusion, which is seeded by recombinant fibrils and oligomers, recruits normal α-syn in 
cultured primary neurons [669]. More recently, a cell model system that uses preformed α-syn 
fibrils to induce LB pathology, synaptic dysfunction, and death in wild-type mouse neurons was 
developed [438]. The authors showed that pre-formed material of α-syn could jumpstart the 
aggregation process in cells since it is templated recruitment. In this case, these preformed α-
syn fibrils work like seeds in recruiting normal protein to adopt an abnormal conformation. The 
pre-formed fibrils can drive formation of LB-like aggregates in cells [437], but the system was 
extremely artificial in which the host was a non-neuronal cell line engineered to express 
humongous levels of α-syn. 

The inclusions and functional deficits failed to develop in neurons from α-syn knockout mice, 
indicating that endogenous α-syn forms the insoluble intracellular deposits. This study on α-syn 
knockout neurons is a primary work in α-syn transmission by the description of the temporal 
progression of aggregates from the axons to the somato dendrites, and the association of 
aggregate formation with impaired neural activity and connectivity. However, because artificial 



 73 

fibrils were used but not neuron-released α-syn, the physiological relevance of the results and 
the release of α-syn by neurons [651] [668] remains to be determined [610]. Again, the 
mechanisms through which extracellular α-syn oligomers transfer to other cells include 
endocytosis [671], direct penetration [672], trans-synaptic dissemination [670] and membrane-
receptor-mediated access [610]. Once inside the acceptor cell, α-syn oligomers could act as a 
focal point for further intracellular aggregation or the protein could be targeted for degradation.  

6.2.3. From cell to cell in vivo 
A few micrograms of pure, synthetic, aggregated α-syn is all it takes to corrupt normal protein in 
the brain, according to the successful seeding in cell cultures. While injecting brain extracts from 
one diseased rodent into another could seed α-syn pathology, a study was similarly performed 
with synthetic seeds. In PD model mice, a single injection of this synthetic aggregate was 
sufficient to speed up age-related pathology in still-healthy animals, killing them within a few 
months. This is a direct demonstration that the fibril alone is sufficient to cause this pathology 
and spreading [441]. More recently, studies in intracerebral injection of brain and spinal cord 
lysates from sick, aged (more than a year old) mice into the striatum or neocortex of young (two 
to five months) asymptomatic animals showed that the α-syn pathology quickly extended 
throughout both sides of the brain, and triggered an early onset of the disease with motor 
alteration and accumulation of aggregates [439]. Similar tainted-tissue injections can transmit 
amyloid-β inclusions [425][420] and tau aggregates [426]. These studies came to the same 
conclusion that amyloidogenic proteins from the donor animals seed new aggregates in the 
recipients. However, with brain extracts there is always "an element of doubt" because the 
lysate might contain some secondary factor that promotes disease along with the misfolded 
protein. After injection of recombinant α-syn fibrils in Tg mice, they showed responses similar to 
PD [439][636]. In fact, the pathology was more robust. The inclusions reached more parts of the 
brain of injected mice than they normally inhabit in these model mice when they age. The 
injected young mice had more inclusions than did naturally aging sick mice [636]. In addition, 
the progression of pathological inclusions was faster than normal and they died more quickly 
than the aged animals. An explanation for this unnaturally quickly pathology is the expression of 
higher-than-normal concentrations of α-syn. Animals heterogeneous for the mutant gene had a 
slower rate of progression following aggregate injection. While the disease does not move so 
quickly in people, familial PD which is due to extra copies of α-syn do have earlier onset and 
fast progression. This is a so-called prion-like seeding phenomenon: the pathology can spread 
through the brain in a manner that is highly reminiscent of the actual disease. It seem that it was 
more difficult to seed amyloid-β aggregation with recombinant protein, and only recently this 
succeeded with the prions that are the prototype for this kind of malformed protein transmission 
[276][673][674]. The overall picture thus far indicates that, while amyloid-β and prions require 
very specific, hard-to-make conformations to convert their normal structures into pathological 
forms, α-syn may readily adopt an infectious form. Indeed, intracerebral injections of insoluble 
α-syn from brains of patients with dementia with LB induced hyperphosphorylated α-syn 
pathology in wild-type mice [587]. 

Moreover, infection of fibrils of recombinant human and mouse α-syn efficiently induced similar 
α-syn pathologies in wild-type mice [587][441]. In non-transgenic mice, after a single intrastriatal 
inoculation of a small amount of synthetic α-syn into the dorsal striatum [441] or substantia nigra 
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of wild-type C57BL6/C3H mice [587], the aggregates and hyperphosphorylated α-syn spread to 
areas of the brain at the injection site and showed up around this site. The induction of 
phosphorylated α-syn pathology in wild-type mice is time- and brain region-dependent [587]. 
Luk et al. reported dopaminergic neuronal loss and motor dysfunction in wild-type mice injected 
with mouse α-syn fibrils in striatum. In contrast, human α-syn or mouse α-syn fibril-injected 
mice, which were performed in substantia nigra, did not show any motor and cognitive deficits, 
and a dramatic reduction of enkephalin was observed in the amygdala central nucleus and 
globus pallidus [587]. The different phenotypes of these mice might be explained by differences 
in the injection sites. Nonetheless, the spreading pattern of the pathological α-syn is different 
between these studies. Differential vulnerability of neurons to these abnormal proteins may also 
affect phenotypes of these mice. As LBs in these areas multiplied over a longer period, 
inclusions also began turning up in additional connected areas—the neocortex, ventral striatum, 
thalamus, and occipital cortex. Pathology also spread the same way after injection of two other 
wild-type mice CD1 and C57BL6/SJL [675]. Synthetic alpha-syn fibrils led to the cell-to-cell 
transmission of pathologic α-syn and Parkinson-like LB pathology in anatomically 
interconnected regions. LB pathology accumulation resulted in progressive loss of dopamine 
neurons in the substantia nigra pars compacta, but not in the adjacent ventral tegmental area, 
and was accompanied by reduced dopamine levels culminating in motor deficits. However, the 
spreading pattern of the pathological α-syn was found different in different sites of injection, for 
example striatum [441] and substantia nigra [587]. This recapitulation of a neurodegenerative 
cascade thus established a mechanistic link between transmission of pathologic α-syn and the 
cardinal features of PD. These findings suggest that α-syn pathology is spreading in the brain 
by a prion-like transmission process in which intracellular aggregates gain access to the 
extracellular space either by secretion or by damage of the host cell and then get internalized 
into neighboring cells — most likely through endocytosis — where they bind the normally folded, 
soluble protein and template the misfolding process. 
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Figure 23. Mechanisms of α-syn aggregation and propagation. α-Syn aggregation can take place either 
in the cytoplasm or in association with the cellular membrane. In the cytosol, unfolded monomers interact 
to form initially unstable dimers, which grow slowly to generate oligomers of varying morphologies — 
including transient spherical and ring-like oligomers — that eventually convert to fibrils. The α-syn 
oligomers are in equilibrium with monomers and convert to fibrils by monomer addition via a nucleated 
polymerization mechanism. The accumulation of these amyloid fibrils leads to the formation of 
intracellular inclusions called LBs. Membrane-bound monomeric α-syn adopts a predominantly α-helical 
conformation, but at high concentrations the protein undergoes a conformational change either before or 
coincident with its oligomerization to form membrane-bound β-sheet-rich structures that self-associate to 
form oligomers, including trans-membrane amyloid pores (the formation of which may involve several 
intermediates) and fibrils. Note that the ring-like cytosolic oligomers may also associate with the 
membrane and form trans-membrane pores. During α-syn fibrillogenesis and aggregation, the 
intermediate species (oligomers and amyloid fibrils) are highly toxic, affecting mitochondrial function, 
endoplasmic reticulum–Golgi trafficking, protein degradation and/or synaptic transmission, and these 
intracellular effects are thought to induce neurodegeneration. The transmembrane pores disrupt 
membrane integrity as well as intracellular calcium homeostasis and signaling, and may also contribute to 
neuronal toxicity. Interestingly, α-syn oligomers and fibrils, as well as the monomers, can be transferred 
between cells and induce disease spreading to other brain regions. Spreading mechanisms are multiple 
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and can occur via endocytosis, direct penetration, trans-synaptic transmission or membrane receptors. 
Once inside the host cells, α-syn aggregates can nucleate aggregation and propagate via the 
mechanisms described above[653]. 

6.2.4. α-Syn propagation in recipient cells 
The pattern of spreading observed in in vivo studies suggested that the injected fibrils acted as 
seeds that converted native α-syn to a pathogenic form, which then aggregated, crept through 
functionally linked areas, and converted more native protein. Indeed, evidence from in vitro 
biophysical studies has consistently shown that fibrilization of α-syn follows a nucleated 
polymerization mechanism [676] although the exact process of intracellular oligomer and fibril 
propagation remains unclear. A definition for the terms of propagation, dissemination and 
infectivity is provided by key terminology in the field of prion-like disease. This mechanism is 
characterized by a nucleation phase that initially involves the formation of assembly-competent 
oligomers (nuclei), which is followed by cooperative oligomer growth and fibril formation by 
monomer addition [428] (Figure 24). This process can be seeded (initiated) and accelerated by 
the addition of preformed fibrils (the seed) and is thought to serve as the underlying mechanism 
for the spreading of α-syn pathology in the brain. This phenomenon has been observed in a 
cell-based assay in which the introduction of recombinant α-syn fibrils results in seeding, the 
recruitment of endogenous α-syn and the formation of LB-like inclusions [441]. As mentioned 
above, a recent in vivo study on the inoculation of α-syn transgenic mice [636] with 
homogenates containing α-syn protofibrils and fibrils and non-transgenic mice with synthetic 
mouse a-syn fibrils [441][587] resulted in considerable enhancement of the α-syn pathology and 
propagation. As reported, one tiny injection of misfolded, fibrillar, synthetic mouse α-syn recruits 
native protein and converts it to a pathogenic form. Although the setting off a neurodegenerative 
cascade was established, there is still no evidence was showed for a real infection by the 
following passages in mice. Since the mouse expresses only wild-type α-syn of its own species, 
as do most humans with the disease, this injection model could be the closest yet to simulate 
pathogenic protein templating in sporadic forms of PD. Similar works showed that not only fibrils 
made of recombinant mouse α-syn, but also ones from human α-syn fibrils can efficiently induce 
α-syn pathology. Endogenous mouse α-syn is converted into the abnormal form and deposited 
in neurons of the brain through a prion-like mechanism or by seed-dependent aggregation by 
crossing the species barrier [587]. Propagation patterns of pathology in the inoculated mice 
were basically identical regardless of the species of injected seeds (i.e. recombinant human, 
mouse α-syn fibrils or dementia with Lewy bodies brain extracts), but extracts of brains with DLB 
showed lower propagation efficiency than recombinant fibrils [587]. This relatively low efficiency 
may be explained by the lesser amount of abnormal α-syn contained in the DLB brain extracts. 
Comparison of human α-syn fibrils and mouse α-syn fibrils indicated that mouse α-syn fibrils 
showed slightly higher efficiency [587]. In vitro experiments also indicated that mouse α-syn 
fibrils promote fibrilization of the soluble mouse α-syn monomer faster than human α-syn fibrils 
[587]. It is well known that prion propagation can cross the species barrier [677] and the 
efficiency of propagation depends on the amino acid sequences of prion proteins. α-Syn, mouse 
α-syn and human α-syn share 95% amino acid sequence homology, and this may be the reason 
why endogenous mouse α-syn can aggregate by inoculation of human α-syn fibrils. Another 
factor may be that mouse α-syn protein has a threonine residue at amino acid position 53, 
which is known as an aggregation-prone mutation in familial PD in humans [447]. 
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6.3. Is there strain-specificity for prionic α-syn? 
Since the fibrillar forms of α-syn are detected mostly in LB [678][679] that are localized in the 
neuronal cell body, these intracellular structures are the neuropathological hallmark of PD and 
DLB. There are a number of different α-syn conformers, including oligomers, protofibrils and 
fibrils that have been associated with the pathogenesis of these diseases [653].  

In vivo, strong indirect evidence supports the existence of various oligomeric α-syn species 
under pathophysiological conditions. SDS-resistant dimers as well as low- and high-molecular-
weight oligomeric forms of α-syn have been detected in diseased human brains [620] [680][586] 
and in brains of transgenic animal models of synucleinopathies [620][609][681] that express 
wild-type or PD-associated mutant variants of α-syn [540]. In contrast to fibrillar α-syn, 
oligomeric aggregates are most likely located in axons and presynaptic terminals, where they 
might damage synapses and dendrites [603][604][606][560][682][683]. 

In vitro, several oligomeric species of different morphologies, including spherical, chain-like and 
annular oligomers, have been observed before α-syn fibril formation [684]. The various 
oligomeric species seem to exist in equilibrium with monomeric α-syn and undergo a very slow 
conversion to fibrils in the absence of a high molar ratio of monomers to other species of α-syn. 
However, the relationships between the various α-syn oligomeric species and mechanisms of 
the inter-conversion between these different oligomers remain poorly understood, although 
some studies suggest that the formation of ring-like oligomers is not on the pathway to amyloid 
formation.  

Both in vitro and animal model studies show that three PD-linked SNCA mutations (A30P, E46K 
and A53T) accelerate α-syn oligomerization, but only two of these (E46K and A53T) enhance 
fibrilization in vitro and in vivo [574][558][685]. Although the A30P mutation has been shown to 
result in enhanced α-syn fibrilization in vivo, as illustrated by an autopsy case of a patient with 
this mutation who had extensive LB pathology [643], in vitro it exhibits reduced fibrilization 
compared with the wild-type protein and other mutants. 

Biophysical and SEC studies suggest that α-syn SDS-resistant oligomers from post-mortem 
human and transgenic animal brains can be in general divided into small (~2–5-mers), medium 
(~5–15-mers), and large (~15–150-mers) oligomers [686][687]. Spherical oligomers 2–6 nm in 
diameter may be the toxic forms of α-syn, as they promote neuronal degeneration and abnormal 
calcium currents in cultured primary cortical neurons [687]. The detection of oligomeric forms of 
α-syn was solely based on indirect evidence and the use of native and/or denaturing gel 
electrophoresis techniques [559]. Thus, it remains unknown to what extent the oligomers formed 
in vitro share similar characteristics and size with those formed in vivo or isolated from human 
brains or brains of transgenic animal models of synucleinopathies.  
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AIMS OF STUDY 

The infectious prion protein can induce a self-perpetuating process that leads to amplification 
and spreading of pathological protein assemblies in prion diseases. The possibility that proteins 
causing neurodegeneration are all prions, and in particular that the β-sheet rich pathological α-
synuclein may cross from the transplanted patients' own neurons into the grafted cells and 
induce a change in the structure of α-synuclein in Parkinson’s disease has sparked great 
interest. On the other hand, studies on synthetic prions showed that recombinant (rec) prion 
protein (PrP) is refolded into infectious conformation in vitro; these synthetic PrPSc stimulate the 
conversion of PrPC into nascent PrPSc and induces the accumulation of PrPSc that causes 
neurodegeneration in vivo. 

My PhD work, by using defined biophysical and biochemical conditions in vitro, has focused on 
(i) developing methods for the pathological conversion of recPrP into PrPSc and (ii) establishing 
whether synthetic pathological agents of rec human α-syn amyloids are able to infect mouse 
and human normal neuronal cell lines in vitro, and wild-type mice in vivo. The pathological 
conversion process required only purified recombinant proteins and common chemicals. We 
generated putative infectious materials with different conformational structures. Moreover, we 
designed a novel build-in methodology for screening amyloid preparations to achieve putative 
infectious materials using amyloid-infected-cell culture assay. The two parts of the investigation 
are detailed as follows: 

Part 1: De novo synthetic prion infection of neuronal cell lines and 
generation of diverse infectious prions 
Prions are infectious proteins that possess multiple self-propagating structures. The information 
for strains and structural specific barriers appears to be contained exclusively in the folding of 
the pathological isoform, PrPSc. Many recent studies determined that de novo prion strains could 
be generated in vitro from the structural conversion of recPrP into amyloid structures. The aim 
was to elucidate the conformational diversity of pathological recPrP amyloids and their biological 
activities, as well as to gain novel insights in characterizing molecular events involved in 
mammalian prion conversion and propagation. To this end I generated putative infectious 
materials with different conformational structures. My methods for the prion-like conversion of 
recPrP required only purified recombinant full-length mouse (Mo) PrP and common chemicals. 
Neither infected brain extracts nor amplified PrPSc were used. 

Part 2: Horizontal transmission of synthetic human α-synuclein prions in 
mice 
Synucleinopathies are a group of neurodegenerative disorders characterized by fibrillary 
aggregates of α-syn in the cytoplasm of selective populations of neurons and glia. Using cellular 
and animal models for this class of maladies, recent studies have focused on the mechanism 
whereby fibrillary aggregates of α-syn form and spread among cells. In fact, it has been 
proposed that α-syn fibrillary aggregates may share peculiar molecular analogies with well-
established proteinaceous infectious agents such as prions. Given the striking similarities 
between the pathological mechanisms of TSEs and synucleinopathies, a critical question is 
whether Parkinson’s disease is transmissible and whether the synthetic α-syn amyloid forms 
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implicated may also behave as infectious agents. Based on these premises, I considered the 
possibility that recombinant human α-syn could acquire prion properties in vitro and in vivo after 
being infected in cell lines and wild-type mice, respectively, during passaging. 
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MATERIALS AND METHODS 

Part 1: De novo synthetic prion infection of neuronal cell lines and the 
generation of diverse infectious prions 
 

Expression and purification of recPrP 

RecMoPrP(23-231) was expressed in E. coli Rosetta2(DE3) with pET11a(MoPrP23-231)-
without His-tag. The transformed bacteria were grown in LB media using a Biostat B plus 
fermenter 2L vessel. Expression was induced with IPTG at a final concentration of 1mM. The 
cultures were harvested after 24 hours of induction, centrifuged (1500 x g, 30min, 4ºC) and 
resuspended in buffer A (25mMTris-HCl pH 8.0, 5mM EDTA, 1mM PMFS). After centrifugation, 
pellets were resuspended in buffer B (25mMTris-HCl, 5mM EDTA, 1mM 
phenylmethylsulphonylfluoride (PMSF), 0.5% Triton X-100). To disrupt bacterial cells, the 
solution was passed three times through the microfluidizer at 15000-18000 psi. The solution 
was centrifuged for 30min at 3400 x g and inclusion bodies were washed twice with buffer C 
(25mMTris-HCl, 5mM EDTA, 0.8% Triton X-100) and buffer D (25mMTris-HCl pH 8.0) and twice 
with double-distilled H2O. Pellets containing MoPrP(23-231) protein were solubilized in 8M Gdn-
HCl, shaken overnight at 37ºC and centrifuged (3400 x g, 30min). The solution was then 
brought to a buffer containing 6M Gdn-HCl, 20mMTris-HCl pH8.0, 500mM NaCl and loaded 
onto HisTrap FF crude column (GE Healthcare). The column was washed with buffer A (20mM 
Tris-HCl pH 8.0, 10mM Imidazole, 2M Gdn-HCl) and protein was eluted with linear imidazole 
gradient (20-500 mM imidazole in buffer A). Fractions containing MoPrP(23-231) protein were 
then loaded onto reverse phase column (Jupiter C4, 250x21.2mm, 300 A, Phenomenex). The 
column was washed with buffer A (0.1%TFA) and protein was eluted with a linear gradient from 
0 to 95% acetonitrile in 0.1% TFA (buffer B). Fractions containing PrP protein were then 
lyophilized. 

 

Amyloid preparations 

RecMoPrP(23-231) was expressed and purified as described. All stock solutions for fibrilization 
were sterile, filtered through a 0.22µm filter prior to each assay in order to avoid the presence of 
contaminants. Lyophilized protein was dissolved in 6M Gdn-HCl at 10mg/mL or 8M Urea at 
10mg/mL, aliquoted, and frozen at -80oC. To form fibrils in the non-REDOX process, a solution 
of Gdn-HCl (concentrations are indicated in Table 7), 50mM buffer acetate pH 5.5 or PBS pH 
7.5, NaCl (concentrations are indicated in Table 8) and 10 µm ThT was mixed before adding 
recPrP, which has a final concentration of 100 µg/mL or 200 µg/mL (indicated in Table 1). To 
form fibrils in the REDOX process as described (Fig. 24), after dissolving in 6M Gdn-HCl, the 
lyophilized protein was reduced by adding 100mM DTT at 37ºC for 1 hour. In case of conditions 
containing NaCl (as indicated in Table S2) this was added to the protein stock solution saturated 
level. The next steps were the same as those of the non-REDOX process described above. For 
fibrilization, a 3-mm glass bead (Sigma) was added to each well of a 96-well black plate with 
clear bottom (BD Falcon). The final volume fibrillization mixture was 200 µL in each well. The 
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plate was covered with sealing tape (Fisher Scientific) and shaken continuously at 37ºC using 
M5 fluorescence plate reader with auto mix capability (Spectramax M5 Molecular Devices). ThT 
fluorescence was measured with the same plate reader at 444/485 nm excitation/emission 
spectra every 5 min after 72 hours or 52 hours continuous shaking by bottom fluorescence 
reading. Each sample was measured in six independent replicate wells. Fibrils were collected 
by ultracentrifugation at 100,000 x g for 30 min to remove other soluble components before 
further characterizations. 

 

Atomic Force Microscopy (AFM)  

This method was employed in accordance with that described above [407,688]. Specimens 
were imaged with a Nanowizard-II BioAFM (JPK Instruments AG, Berlin, Germany, 
www.jpk.com) operating in dynamic mode and using non-contact Si cantilevers (NSG11, NT-
MDT – Moscow, Russia, www.ntmdt.com or ARROW-NCR, Nano World-Neuchȃtel, 
Switzerland, www.nanoworld.com) with tip radii of <7-10 nm, spring constants of 20-40 N/m, 
and resonance frequencies of 285-325 kHz. After fibrilization, 5-10µL samples were spread onto 
a freshly cleaved mica sheet and left to adhere for 10-20min. Samples were then washed with 
distilled H2O and dried naturally. The images were acquired at line scan rates of 0.5-1 Hz at 
room temperature (RT). The AFM free oscillation amplitudes ranged from 25nm to 40nm, with 
characteristic set points ranging from 75% to 90%. AFM data were analyzed with Gwyddion 
(www.gwyddion.net).  

 

Testing for disulfide bond interchain of fibrils from REDOX process 

After fibrilizations, 1µg of protein samples was precipitated by ultracentrifugation at 100,000 x g 
for 30min, dissolved in non-reducing sample buffer (125 mM TrisHCl, pH 6.8, 4% SDS, 0.2% 
bromophenol blue, 20% glycerol) and separated in 10% non-reducing SDS-PAGE gels. For 
disulfide bond interchain test, 1µg of protein after precipitation by ultracentrifugation was treated 
with 2-β-mercaptoethanol at the last concentration of 150mM or incubated in 1mL 6M Gnd-HCl 
for 3 days, then treated with 150 mM 2-β-mercaptoethanol. These samples were centrifuged at 
100,000 x g for 1 hour, resuspended in reducing loading buffer, boiled for 10min at 100°C and 
separated in 10% polyacrylamide gels. Western blotting was carried out and gels were 
subsequently transferred overnight onto Immobilon P PVDF membranes (Millipore). Membranes 
were blocked by 5% non-fat milk, incubated first with 1 µg/mL anti-PrPFab D18 and then with 
goat anti-human IgG F(ab)2 fragment conjugated with horseradish peroxidase (HRP). Blots 
were developed with the enhanced chemiluminescent system (ECL, Amersham Biosciences) 
and visualized on Hyperfilm (Amersham Biosciences). 

 

 

Preparations of prion amyloid fibrils for cellular assays 
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Collection of amyloid fibrils from 96-well plates into 1.5 mL tubes was performed under sterile 
conditions. Samples were transfered first to eppendorf tubes then centrifuged at 100,000 x g for 
30 min at 4°C in an ultracentrifuge (Beckman Coulter). The pellets were resuspended in sterile 
1X PBS and then sonicated for 5 min prior to being added to cultured cell media. 

 

Cell cultures 

Mouse neuroblastoma N2a cells were cultured in minimal essential medium with Earle’s salt 
(EMEM) supplemented with 10% FBS, 1% non-essential amino acids, 1% L-glutamax, 100 
units/mL penicillin and 100 µg/mL streptomycin. Mouse hypothalamic GT1 cells and mouse 
hippocampal PrP-deficient HpL3-4 were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% fetal bovine serum (FBS), 100 units/mL penicillin and 100 
µg/mL streptomycin. Cell cultures were cultivated in 10-cm plates and incubated at 37ºC in 
humidified 5% CO2. Cells were split at ratio 1:10 for further cultivation when the confluence 
reached 95%. 

 

Infecting N2a, GT1 and HpL 3-4 cell lines with amyloid fibrils 

At the end of the fibrilization, after collection as describe above, 200µL of fibril solutions were 
resuspended in sterile 1X PBS and sonicated in a water-cooled cup-horn sonicator for 5min for 
preparation of fibrillar infections. Cells were seeded in tissue culture plates 1 day prior to 
infection and around 5% confluent on the day of the infection. After removing the media, cells 
were washed and changed once with fresh media. After adding fibrils into the media, cells were 
incubated for 6-7 days. Once confluence was reached, cells in the plate were washed with 1X 
PBS, trypsinized and transferred to another tissue culture plate. Cells were subjected to 1:10 
split, which was counted as passage 1. Subsequently, cells were subjected to routine cell 
culture procedures for further passages. Cell lysates were collected at every passage. After the 
cell plates reached the confluence, they were washed with 1X PBS and lysed in 500 µL cell 
lysis buffer (10mMTris-HCl pH 8.0, 150mMNaCl, 5.0% NP40, 5.0% DOC). Total protein content 
of cell lysates was measured using bicinchoninic acid protein quantification kit (Pierce) and 
stored at -20oC until analysis. 

 

PK-resistant PrP detection by Western blotting in amyloid fibril-infected cell lysates  

Fibril-infected cell lysates were collected at each passage. The accumulation of PK-resistant 
PrP was detected by proteinase K (PK) digestion followed by immunoblotting of lysated cells. 
Five hundred µL of lysis buffer (10 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.5% nonidet P-40, 0.5% 
deoxycholic acid sodium salt) was added to each 10-cm cell plate and cell lysates were 
collected after centrifugation at 400 x g for 5 min in a bench microfuge (Eppendorf). The total 
protein content of samples was measured by means of bicinchoninic acid assay (BCA) (Pierce). 
Lysated cell samples were adjusted to 1mg/mL total protein; 2µg/mL PK (Invitrogen) was added 



 83 

to reach the final volume of 0.5 mL. Following 1 hour incubation at 37ºC, digestion was stopped 
by adding PMSF at 2mM final concentration. Digestion products were precipitated by 
centrifugation at 100,000 x g for 1 hour at 4°C in an ultracentrifuge (Beckman Coulter), and 
resuspended in 2X SDS-PAGE loading buffer (125 mM Tris-HCl, pH 6.8, 10% 2-mercapethanol, 
4% SDS, 0.2% bromophenol blue, 20% glycerol). For non-PK digested samples, 50 µg of cell 
lysates were used and 2X SDS-PAGE loading buffer was added in a 1:1 ratio. The samples 
were boiled for 10 min at 100°C, loaded onto a 12% Tris-Glycine SDS-PAGE gel, and 
transferred overnight onto Immobilon P PVDF membranes (Millipore). Membranes were blocked 
by 5% non-fat milk, incubated first with 1 µg/mL anti-PrPFab D18 or Clone P and then with goat 
anti-human IgG F(ab)2 fragment HRP-conjugated. Blots were developed with the enhanced 
chemiluminescent system (ECL, Amersham Biosciences) and visualized on Hyperfilm 
(Amersham Biosciences). 

 

PK-resistant PrP detection by Western blotting in different amyloid preparations  

One hundred microliters and 7 µL of samples after fibrilization were centrifuged at 100,000 x g 
for 30 min at 4°C (Beckman Coulter ultracentrifuge). Pellets were resuspended in the same 
volume of 1X PBS. One hundred microliters of samples were digested by 2 µg/mL or 20 µg/mL 
of PK in 500 µL total volume of 1X PBS for 1 hour at 37°C. The reaction was stopped with 2 mM 
PMSF and the PK-digested samples were centrifuged at 100,000 x g for 1 hour at 4°C 
(Beckman Coulter ultracentrifuge). Pellets were resuspended in 1X SDS-PAGE loading buffer. 
As non-PK digestion samples, 7 µL of fibril solutions in 1X PBS were added into 2X SDS-PAGE 
loading buffer in a 1:1 ratio. The samples were boiled for 10 min at 100°C, loaded onto a 12% 
Tris-Glycine SDS- PAGE gel, and transferred overnight onto Immobilon P PVDF membranes 
(Millipore). Membranes were blocked by 5% non-fat milk, incubated first with 1 µg/mL anti-
PrPFab D18 and then with goat anti-human IgG F(ab)2 fragment HRP-conjugated. Blots were 
developed with the enhanced chemiluminescent system (ECL, Amersham Biosciences) and 
visualized on Hyperfilm (Amersham Biosciences). 

 

Fluorescence immunostaining of prion amyloid fibril-infected cells  

One million cells/mL of each cell line were cultured for 1 day in each well of a 24-well plate 
containing a 1.2 cm coverslip and appropriate culture medium. Medium was removed and cells 
were washed with 1X PBS. Cells were fixed for 30 min in 4% PFA (paraformaldehyde in 1X 
PBS) at RT then washed twice for 15 min with 1X PBS. Fixed cells were blocked in blocking 
buffer (5% normal rabbit serum (NRS) in 1X PBS + 0.3% Triton), exposed to anti-PrP 
monoclonal antibody D18 or clone P (10 µg/mL final concentration) for 2 hours. Primary 
antibodies were made up in 1% blocking solution and PBS. Cells were washed once with 1X 
PBS for 15 min. The secondary antibody used is goat anti-human Alexa 488 at 1:500 dilution in 
1% blocking buffer and 1X PBS. Secondary antibodies were incubated for 1 hour at RT. Finally, 
cells were washed twice for 15min with 1X PBS. The coverslips were taken out and dried 
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naturally. Coverslips were mounted in DAPI and subsequently placed on glass slides and stored 
at 4ºC for confocal fluorescence microscopy. 

 

Fluorescence immunostaining of prions in cells 

PrPSc was revealed specifically by PK digestion and Gdn-HCl treatment to remove PrPC and 
expose PrPSc as described [305][335]. Briefly, GT1, amyloid-infected GT1 and ScGT1, N2a, 
amyloid-infected N2a and ScN2a cells were seeded to semi-confluence on glass coverslips for 
24h. The cells were fixed with 4% paraformaldehyde, freshly prepared, and simultaneously 
permeabilized with 0.1% of Triton-X 100 for 1h at RT. Denaturation with 6M Gnd-HCl for 10 
minutes followed. After blocking with 1% bovine serum albumin (BSA) for 30 min at RT, the cells 
were incubated with 0.025% of thioflavin S. After washing several times with 80% ethanol and 
water, the primary antibody incubation followed (monoclonal antibody mAb SAF 61, 1:500) 
diluted in 1% of blocking buffer. After appropriate washing with PBS, fluorescently labeled 
secondary antibody incubation followed (Goat anti-mouse – Alexa 594) for 1h at RT. For 
proteinase K digestion, ScGT1, GT1, amyloid-infected GT1, ScN2a, amyloid-infected N2a and 
N2a cells were grown on coverslips pretreated with poly-L-lysine (0.2mg/ml) for 1h at RT. 
Twenty-four hours later cells were fixed and permeabilized with 8% paraformaldehyde and 0.1% 
of Triton-X 100 for 45 min at RT. Cells were incubated with PK (20 µg/ml) for 15 min at 37°C. 
Digestion was stopped with 2mM phenylmethylsulphonylfluoride (PMSF, Sigma) for 15 min at 
RT. Cells were denatured with 6M GndHCl for 10 min. After blocking with 1% BSA for 30 min at 
RT, cells were incubated with primary and secondary Abs which were diluted in 1% BSA for 30 
min at 37°C. 

 

PMCA - In collaboration with Dr. Olivier Andréoletti’s group, INRA-ENVT, Interactions Hôtes 
Agents Pathogènes, Toulouse, France 

- PMCA Substrate  

Transgenic mice lines that express murine PrP (Tga20) were used to prepare the substrate 
[689]. Mice were euthanized by CO2 inhalation and perfused (intra-cardiac) with PBS pH 
7.4/EDTA 5mM (40-60 mL per mouse). The brains were then harvested and snap frozen in 
liquid nitrogen. Ten percent brain homogenate was prepared (disposable UltraTurax – 3 min) in 
4°C PBS pH 7-7.65 + 0.1% Triton X100+ 150 mM NaCl (10% w/v). Substrate was then 
aliquoted and stored at -80°C.  

- PMCA reaction and controls 

Desired amount of cell pellets were resuspended in 200µL of 4°C PBS pH 7.4 + 150mM NaCl+ 
0.1 TRITON X100 and homogenized at high speed (Precess 48, Bertin, France). Samples were 
then spun down 15,000g for 20 seconds and then stored at -80°C or used fresh. Seven µL of 
the seed were mixed with 63µL of substrate in 0.2mL ultrathin wall PCR tube that contained 
eight to fourteen 1mm diameter silica/zirconium beads (Biospec Cat. No.11079110z). 
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Amplification was performed in a modified Misonix 4000 cup horn (see below), using water 
recirculation system (39.5°C). The reactions tubes were then submitted to 96 cycles of 30 
seconds sonication (power 70%) followed by 29 minutes 30 seconds incubation period. After the 
PMCA round, 7µL of the reaction product was added to a new tube containing fresh substrate 
and new round (96 cycles) was performed. In order to limit cross contamination risks that are 
linked to serial PMCA, the procedures employed are similar to those in place for nested PCR. In 
particular, PMCA substrates, amplification and handling of amplified products were performed in 
different rooms using dedicated material. On each PMCA run, a standard 1/10 dilution series 
(ovine BSE, 10% brain homogenate, 10-5 to 10-9 diluted) was included to check the 
amplification performance. A large batch of these controls was prepared and stored at -80°C as 
single use aliquots. Similarly unseeded controls (1 unseeded control for 5 seeded reactions) 
were included on each run. Over a total of 62 PMCA runs were performed in the framework of 
this study. A contamination of some negative controls reactions (false positive) was observed in 
4 runs. In two of these runs, contamination was a likely consequence of a fault in the tube caps 
(obvious loss of reaction mixture in the tube). In two other cases the source of the contamination 
remained undetermined. When a false positive was observed, the complete PMCA runs were 
discarded and restarted from the first amplification round.  

- Misonix 4000 x Sonicator modifications 

Modifications consisted in the enlargement (5mm inner diameter) of existing holes and creation 
of new holes for water recirculation in crown surrounding the plate horn. These holes allowed a 
closed water circulation system in the horn delivering over 1.5 liter of water per minute. 
Permanent water re-circulation was ensured by a peristaltic pump (Watson Marlow 520U) and 
deflectors were added to the horn to avoid water projection. The water circuit consisted of a 10 
meters flexible tygon tube (diameter 9.2 mm) placed in a water bath. This system allowed the 
temperature of the water in the horn to return to its nominal value (39.5°C) within 20-40 seconds 
following the sonication burst and also maintained the water level in the horn at a constant level. 
The reaction tubes were positioned at a height of 2mm above the horn plate and the water level 
in the horn was adjusted (before each PMCA round) to be at the same level as the reaction 
mixture in the tubes. Finally the acoustic protection box containing the sonicator horn was 
placed in an environment (temperature regulated room or incubator) maintaining the air 
temperature between 35°C and 40°C (limitation of condensation). 

- Abnormal PrP Western blotting  

PK resistant abnormal PrP extraction (PrPres) and Western blot were performed as previously 
described [690], using a commercial extraction kit (Biorad, France). For PMCA products the 
equivalent of 20µL of reactions were loaded onto each lane. PrP immunodetection was 
performed using either Sha31 monoclonal antibody (0,06 µg per mL, epitope: YEDRYYRE, 
amino acid 145-152) or 12B2 (4 µg/mL) (epitope WGQGG, amino acid sequences 89-93). Both 
Sha31 and 12B2 antibodies have been described in previous studies to bind the mouse, ovine, 
bovine, porcine and human PrPC and PrPres in WB [691][692][693][694][695]. 
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Measurement of cell viability 

Cell viability was examined based on mitochondrial activity, measured by MTT assay. GT1 and 
N2a cells were maintained in DMEM and EMEM, respectively, and supplemented with FBS and 
antibiotics. After 1 day of incubation, media were aspirated from a confluent 10-cm plate, and 
cells were detached by adding 1 mL of 1X trypsin-EDTA solution. Media were added, and cell 
density determined using a haemacytometer. Cell density was adjusted to 2.5 × 105 cells/mL 
with media. A 96-well, tissue culture-treated, clear bottom, black plate (Costar) wetted with 96 
µL of media was incubated at 37°C, prior to use. One hundred microliters of cell suspension 
was added to each well and cells were allowed to settle for 2 hours, before adding prion amyloid 
fibrils. Four microliters of prion fibril solutions from different amyloid preparations in 1X PBS was 
added to each well (final concentration 2µg/mL of PrP), and plates were incubated at 37°C in 
5% CO2. After incubating for 5 days, media were aspirated and cells were washed twice with 
200 µL of 1X PBS. After treatment with different amyloid samples, cells were further incubated 
for 3 hours in fresh media with a final concentration of 0.5 mg/mL MTT. DMSO was added to 
release the insoluble purple substrates converted by the active mitochondrial dehydrogenases 
in the surviving cells. After shaking 30min for solubilization, the fluorescence emission intensity 
was measured using a SpectraMax M5 fluorescence plate reader, with 570/690 nm 
excitation/emission ratio. [696]. 

 

Part 2: Horizontal transmission of synthetic human α-synuclein prions in 
mice 
 

Cell lines 

Mouse hippocampal neuronal cell line, Hpl 3-4 [697][698], mouse astroglial GpL3 cell line [699], 
and mouse neuronal NpL2 immortalized cell line [700] were all established from the brain of 
ZrchIPrnp0/0mice kindly provided by Dr. T. Onodera (Department of Molecular Immunology, 
School of Agricultural and Life Sciences, University of Tokyo, Japan). Mouse hypothalamic GT1 
cell line established from gonadotropin hormone releasing-hormone neurons immortalized by 
genetically targeted tumorigenesis in transgenic mice [701] and mouse neuroblastoma N2a cell 
line derived from the spontaneous mouse C1300 neuroblastoma by Klebe and Ruddle (1969) 
[702] are often used in prion biology and were kindly provided by Dr. Stanley B. Prusiner. The 
SH-SY5Y cell line is a thrice-cloned sub-line of SK-N-SH cells, which were originally established 
from a bone marrow biopsy of a neuroblastoma patient with sympathetic adrenergic ganglial 
origin [703]. HpL3-4, GpL3, NpL2 and GT1 cells were seeded in 10-cm plates containing 10 mL 
of Dulbecco’s modified Eagle’s medium (DMEM) culture media, supplemented with 10% fetal 
bovine serum (FBS) and 1% penicillin-streptomycin. N2a cells were cultivated in 10-cm plates, 
containing 10 mL of minimal essential medium with Earle’s salt (EMEM) culture media, 
supplemented with 10% FBS, 1% non-essential amino acids, 1% L-glutamax, 1% penicillin-
streptomycin. SH-SY5Y normal cells were cultivated in 10-cm plates, containing 10 mL of 
minimal EMEM: Ham F12 (1:1) culture media, supplemented with 15% FBS, 1% non-essential 
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amino acids, 0.5% L-glutamax, 1% penicillin-streptomycin and 1% G-418 (only for SH-SY5Y 
wild-type cells transfected for over-expressing α-syn). The cells were grown at 37°C in 5% CO2 
to 95% confluence for 1 week before splitting at 1:10 for further cultivation. 

Expression and purification of recombinant human α-syn 

Expression and purification of recombinant human α-syn were performed in accordance with the 
method previously described [704]. Briefly, cloning and expression of human α-syn gene were 
performed in pET11a vector using BL21 (DE3) E. coli strain. Expression of α-syn was obtained 
by growing cells in Luria-Bertani broth medium with 100 mg/mL ampicillin at 37°C until an 
O.D.600 of about 0.6, followed by induction with 0.6 mM isopropyl β-D-thiogalactoside (IPTG) for 
5 hours. The protein was purified according to the method of Huang et al. [705]. 

α-Syn amyloid preparations 

All solutions were sterilized by filtration through a 0.22 µm filter prior to each assay run. 
Reactions were prepared in a 96-well black plate (BD Falcon), and each well contained 200 µL 
of reaction solution (1.5 mg/mL recombinant human α-syn, 100 mM NaCl, 10 µM thioflavin T 
(ThT) in 20 mM Tris-HCl pH 7.4). Each sample analysis was performed in fifteen replicates. 
Each well contained one 3-mm glass bead (Sigma). The plate was covered with sealing tape 
(Fisher Scientific) and incubated at 37°C under continuous shaking, and read on SpectraMax 
M5 fluorescence plate reader (Molecular Devices) by top fluorescence reading every 5 min at 
excitation of 444 nm and emission of 485 nm.  

AFM analysis 

AFM analysis was performed in accordance with the method previously described [704]. Three 
to five µL of fibril solution was deposited onto a freshly cleaved piece of mica and left to adhere 
for 30 min. Samples were then washed with distilled water and blow-dried under a flow of 
nitrogen. Images were collected at a line scan rate of 0.5-2 Hz in ambient conditions. The AFM 
free oscillation amplitudes were ranging from 25 nm to 40 nm, with characteristic set points 
ranging from 75% to 90% of these free oscillation amplitudes. AFM data were analyzed with 
Gwyddion (gwyddion.net) and SPIPTM (www.imagemet.com).  

α-Syn amyloid solution for cell Infection  

α-Syn amyloid solution from 96-well plate into 1.5 mL Eppendorf tube was collected under 
sterile conditions. The solution was centrifuged at 100,000 g for 30 min at 4°C in an 
ultracentrifuge (Beckman Coulter). Pellets were resuspended in 1X PBS and then sonicated 
(Branson 2510) for 5 min prior to adding to cultured cell plate. 

α-Syn fibril infection into cell lines 

Three hundred µg of α-syn amyloids was added to HpL3-4, NpL2, GpL3, GT1, N2a and SH-
SY5Y cell plates (10 cm-plate) and exposed in the cell culture media for 7 days before the next 
splitting and media change. Cells were split and maintained for six additional passages. Cell 
lysates were collected at each passage for Western blotting and immunofluorescence studies. 
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For immunofluorescence of amyloids internalization, cells were cultured in 12 wells plate with 
coverslips, 30 µg of α-syn amyloids was added into cell culture media and incubated for 7 days.  

α-Syn aggregates detection and analysis in infected cells by Western blot 

The total protein content of samples was measured by bicinchoninic acid assay (BCA) (Pierce). 
Fifty µg of Cell lysates was used and 5X loading buffer was added in a 1:5 ratio. The samples 
were boiled for 5 min at 100°C, loaded onto a 10% Tris-Glycine SDS-PAGE gel, and transferred 
overnight onto Immobilon P PVDF membranes (Millipore). Membranes were blocked by 5% 
nonfat milk, incubated with 0.4 µg/mL rabbit polyclonal anti-α-syn antibody (Santa Cruz) 
followed by incubation with goat anti-rabbit IgG F(ab)2 fragment conjugated with horseradish 
peroxidase. Blots were developed with the enhanced chemiluminescent system (ECL, 
Amersham Biosciences) and visualized on Hyperfilm (Amersham Biosciences). For analysis of 
α-syn aggregation in cell samples, cells were scraped in TBS buffer containing 1% Triton X100, 
protease cocktail inhibitors and phosphatase inhibitor. After sonication (Sonicrep 150) with 10 
amplitude microns for 3 times (30 seconds of sonication and 30 seconds intermediate stop) 
cells were centrifuged at 2000 RPM for 5 min then the protein was quantified. Fifty µg cellular 
protein of samples was centrifuged at 100,000 g for 30 min. Supernatant (in term S-TX) was 
collected and the pellets were resuspended in 2% SDS. Samples in SDS 2% were centrifuged, 
supernatant (in term S) and pellet (in term P). All the fractions were added to loading buffer 5X 
in ratio 1:5 and prepared similarly for Western blotting. 

Immunocytochemistry and ThS staining of α-syn fibril-infected cells 

Cells on coverslips were washed with PBS and fixed with 4% paraformaldehyde, then washed 
twice, 15 min/time with PBS and blocked in blocking buffer (5% normal goat serum in PBS + 
0.3% Triton) for 1 hour. For Thioflavin S (ThS) staining, fixed cells were incubated with 0.025% 
of the fluorophore (Sigma) for 8 min and washed three times with 80% ethanol for 5 min each 
time, before the antibody incubations. Fluorescence immunocytochemistry was performed using 
primary antibodies and secondary antibodies listed in Table 6. Primary antibodies were made 
up in 1% blocking buffer and PBS. After incubation, the cells were washed 5 times for 5 
min/time with PBS then secondary antibodies were incubated in 1% blocking buffer and PBS for 
45 min. Finally, cells were washed 5 times, 5 min/time with PBS, and counterstained with DAPI 
to reveal nuclei, then mounted in Vectashield Mounting Medium. Cell coverslips were stored at 
4°C for confocal fluorescence microscopy. Images were obtained with a Leica SP5 confocal 
laser-scanning microscope. 
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Table 6. Antibodies used in this study 

Antibody Source Host Dilution 
(IF) 

Dilution 
(WB) 

Dilution 

ICC) 

Exposed 
time 

α-synuclein (C-
20)-R 

Santa Cruz Rabbit 1:500 1:500  4 hours 

α-synuclein {LB 
509} 

Abcam Mouse 1:1,000 1:1,000  2 hours 

α-synuclein 
(D37A6) 

Cell Signaling 
Technology 

Rabbit 1:100 1:500  Overnight 

α-synuclein 
(clone 4D6) 

Signet Mouse   1:1,000 

(o/n) 

 

α-synuclein 
(phospho S129) 

Abcam Rabbit 1:500 1:500 1:300 
(o/n) 

4 hours 

Glial fibrillary 
acidic protein 
(GFAP) 

DakoCytomation Rabbit   1:800 

(o/n) 

 

Iba1 Abcam Goat   1:2,000 

(o/n) 

 

Tyrosine 
Hydroxylase 

Santa Cruz Rabbit   1:800 
(o/n) 

 

Monoclonal 
ANTI-FLAG® M2 

Sigma Mouse 1:1,000 1:10,000 1:300 
(o/n) 

2 hours 

Alexa 488 anti-
mouse 

 Goat 1:500  1:800 

(o/n) 

45 min 

Alexa 488 anti-
rabbit 

 Goat 1:500  1:2,000 

(o/n) 

45 min 

Alexa 594 anti-
mouse 

 Goat 1:500  1:800 
(o/n) 

45 min 

Alexa 594 anti-
rabbit 

 Goat 1:500   45 min 
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Immunofluorescence 

All dopaminergic neuroblastoma SH-SY5Y cells were grown on ibidi dishes (Biovalley) for 
microscopy. After washing in PBS, cells were fixed using 4% (w/v) paraformaldehyde (Sigma) in 
PBS for 15 min and permeabilized with 0.01% Triton X-100 (Sigma) in PBS for 3 min, washed 
and blocked in 2% Bovine serum albumin (Sigma) in PBS for 20 minutes. Cells were 
immunostained using anti-α-syn (Santa Cruz Biotechnology, INC) and anti-phospho S129 α-syn 
(Abcam) followed by secondary antibody coupled to Alexa 488 (Invitrogen). Cells were mounted 
in Aqua Poly/Mount (Polysciences) and pictures were acquired using white field Axiovision 
microscope (Zeiss) with a 63 x objective. Quantification experiments were carried out 
independently at least three times; more than 150 cells were counted for each condition. 
Individual differences were assessed using individual student’s t-tests. Data are shown as mean 
+ standard error of the mean (SEM). 

Animal inoculations - In collaboration with Prof. Fabrizio Tagliavini’s group, NeuroPrion - Istituto 
Nazionale Neurologico Carlo Besta, Milan, Italy 

- First passage 

All surgical procedures were performed under sterile conditions. Six week-old CD1 mice (n=7) 
were anesthetized with tribromoethanol (100 µL/10 g) and placed in a stereotaxic instrument on 
a mouse and neonatal rat adaptor. Ten µL of (i) synthetic human α-syn monomers, (ii) synthetic 
human α-syn oligomers, (iii) synthetic human α-syn short fibers, (iv) synthetic human α-syn long 
fibers and (v) PBS was inoculated in the right substantia nigra pars compacta (SNpc) following 
these stereotaxical coordinates (- 3.28 caudal; + 1.5 lateral; 4.5 depth). Uninjected animals were 
used as negative controls. 

- Second passage 

Thirty µL of (i) α-syn brain homogenate, (ii) mock brain homogenate and (iii) PBS was 
inoculated in the right striatum following these stereotaxical coordinates (- 1 caudal; + 2 lateral; 
3.5 depth). Uninjected animals were used as negative controls. 

Brain homogenization 

Ten percent brain homogenate (w/v) was prepared from a symptomatic animal previously 
injected with short fibers of synthetic human α-syn. Ten percent mock homogenate (w/v) was 
obtained from healthy CD1 mouse brain. Each homogenate was prepared using saline solution 
(NaCl, B. Braun 0.9%) with the addition of protease inhibitors (Roche). 

Behavior test 

Animal behavior analysis was performed in all groups from 7 dpi (passage 1) and 63 dpi 
(passage 2) until mice were sacrificed. All tests were performed at the same time point between 
15:00 and 17:00 CET. The general aspect and behavioral indicators of PD-mimetic symptoms 
(hypokinesia, muscle rigidity and equilibrium) were evaluated. First, general aspect and normal 
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behavior of mice were assessed by scoring based on the following scoring scale: General 
aspect, (0)=normal; (1)=medium; (2)=bad, (point out symptoms); (3)=pathognomonic. Normal 
behavior, (0)=curiosity; (1)=faint alterations, less curiosity; (2)=less movement but alert, 
isolated, no curiosity; (3)=vocalization, abnormal behaviors.  
Secondly, motor deficits were assessed using "open field" spontaneous locomotion activity by 
scoring animals in walking on the open field, orientation and curiosity: (0)=normal walking; 
(1)=faint problems in walking; (2)=severe problems in walking; (3)=ataxia.  
Thirdly, muscle rigidity and weakness, and equilibrium were evaluated and scored using a "grid" 
test based on the animal's ability to hang on the grid: walking on a grid, (0)=good hand-grip and 
agile; (1)=good hand-grip but uncertain; (2)=good hand-grip but motionless; (3)=bad hand-grip 
but walk; (4)=bad hand-grip and motionless; (5)=no hand-grip. Equilibrium: (0)=agile, (1)=good 
hand-grip, faint uncertain; (2)=problems in moving; (3)=clinging but motionless; (4)=clinging but 
falling down with posterior limbs; (5)=falling down from inclined or inverted grid.  

Histological analysis 

Brains were fixed in Alcolin (Diapath), dehydrated and embedded in paraplast. Seven-µm thick 
serial sections were stained with haematoxylin-eosin (H&E) or immunostained with antibodies 
against: α-syn (monoclonal, clone 4D6, Signet), phosphorylated α-syn (rabbit polyclonal, 
Abcam), glial fibrillary acidic protein (rabbit polyclonal, GFAP, DakoCytomation) as marker of 
astrocytes, Iba1 (goat polyclonal, Abcam) as marker of activated microglial cells, tyrosine 
hydroxylase (rabbit polyclonal, Santa Cruz Biotechnology) as marker of dopaminergic neurons. 
To test for the presence of protease-resistant α-syn, some sections were post-fixed in formalin 
and treated for 5 min with proteinase K at different concentrations (5-30 µg/ml in 0.3% Brij-35). 
Immunoreactions were visualized using anti-rabbit or anti-goat biotinylated secondary antibody 
(1:100, Vector) and streptavidin-peroxidase complex (1:200, Vector). For mouse monoclonal 
antibodies, a specific streptavidin-biotin system (Animal Research Kit and Peroxidase, 
DakoCytomation) was applied. 3-3’-diaminobenzidine (DAB, DakoCytomation) was the 
chromogen used. 

Preparation of brain homogenates (BH) for biochemical analysis 

To prepare 10% (w/v) brain homogenates, nine volumes of ice-cold PBS were added to brain 
tissue in a 15-ml tube. Brain tissue was homogenized on ice using micro homogenizer (Ultra-
Turrax T8, Ika Labortechnik). The sample was centrifuged at 500 x g for 5 min at room 
temperature to clarify the samples. The supernatant was collected, the pellet was discarded and 
aliquots were frozen at -80°C until use. 

Amyloid seeding assay (ASA) with brain homogenates 

Based on similar monitoring of the kinetics of in vitro amyloid formation in human α-syn amyloid 
preparations (shown above), ASA was performed with BH containing mouse α-syn prions as 
seeding factors in amyloid formation of recombinant mouse α-syn (recMo-α-syn). 0.17% of BH 
was added to each well. As control, we used buffer only, buffer plus seeds without recMo-α-syn; 
also BH of non-injected mice and PBS-infected mice were added similarly. Each sample 
analysis was performed in five replicates. 
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RESULTS AND DISCUSSION 

Part 1: De novo synthetic prion infection of neuronal cell lines and the 
generation of diverse infectious prions 
 

1.1. Objectives 
- Generating variant structural conformations of infectious synthetic prions from recombinant 
prion protein. 

- Creating a novel cell culture assay for screening infectivity of amyloid preparations. 

- Elucidating the conformational diversity of pathological recPrP amyloids and their biological 
activities, as well as gaining novel insights in characterizing molecular events involved in 
mammalian prions conversion and propagation. 

1.2. Specific background 
For most proteins, if not all, the same amino acid sequence can encipher numerous 
conformationally different amyloid states [707][708]. The ability of PrP to acquire multiple self-
propagating structures can thus explain the formation of multiple prion strains within the same 
host [50]. The information for prions is enciphered in these structures by a distinct conformation 
of the pathological isoform [350,351,373]. 

Recently, synthetic prions were produced via in vitro induction of misfolding and aggregation of 
bacterially expressed recPrP [214]. This work clearly indicates that PrPSc is the sole component 
of the infectious agent, which propagates by converting PrP into various misfolded forms 
[214][373][228]. These first synthetic prions were produced injecting amyloid fibrils of recMoPrP 
residues 89-230 (MoPrP(89-230)) in transgenic (Tg) mice carrying the homologous sequence. 
This endeavor has opened new avenues in the structural characterization of infectious prions 
[214]. An array of recPrP amyloids with varying conformation stability was produced, showing a 
direct relationship between stability and incubation times of prion strains. The conformational 
stabilities of the new synthetic prion strains and their incubation periods seem to be dictated by 
the properties of the amyloid preparations from which they were generated [228]. Although 
lacking both glycolsylation and the GPI anchor, secondary and tertiary structures of refolded 
recPrP appear to be identical to those of brain-derived PrPC [167]. Remarkably, using recPrP to 
generate different amyloid preparations can induce the production of prions within the brains of 
the Tg mice harboring new strains with novel neuropathological and biochemical features 
[214][373][228]. This approach provided a useful tool to further investigate the 
functional/structural relationships of mammalian prions. 

The crystal structure of rec human PrP has revealed a possible mechanism for oligomerization 
in which the three-dimensional swapping of the C-terminus helix 3 and the re-arrangement of 
the disulfide bond result in the formation of a dimer [184][183]. These data have suggested a 
possible role for a sulfhydryl-disulfide exchange reaction during the conversion of PrPC to PrPSc. 
Moreover, this mechanism has been recapitulated in vitro by seeded conversion of rec hamster 
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PrP(90-231) truncated form with His-tag to a disulfide-bonded oligomer by a reduction-oxidation 
(REDOX) process [325]. 

We therefore established two different experimental procedures for amyloid preparations: (i) 
REDOX process, and (ii) non-REDOX process, using rec full-length MoPrP residue 23 to 231 
(MoPrP(23-231)). Our methods for the prion-like conversion of PrP required only purified rec 
full-length MoPrP and common chemicals. Neither prion-infected brain extracts, nor amplified 
exogenous PrPSc were used. In both processes, recMoPrP(23-231) converted to conformational 
structures of fibrils without any seeded factor. The fibrils generated by the REDOX process most 
likely contained intermolecular disulfide bridge structures. In addition, the recMoPrP(23-231) 
amyloid preparations subjected to the REDOX and non-REDOX in vitro processes exhibited 
different morphological and biochemical prion-like characteristics. 

Bioassay in animals has been the most commonly used method for assessing prion infectivity in 
vivo. However, employing animal models in synthetic prion studies has been known as an 
expensive and time-consuming method for initial screening of putative infectious materials. As 
an alternative procedure, cell-culture models are among the most powerful and useful 
experimental tools to study the biological properties of PrP at the molecular and cellular levels, 
as well as to investigate the events controlling the conversion of PrPC to PrP abnormal forms. 
Furthermore, cell-culture systems may contribute to determine the cellular factors governing 
prion propagation. Two cellular models have been widely employed in prion biology for in vitro 
studies of infectivity: (i) the murine neuroblastoma Neuro2a (N2a) and (ii) hypothalamic-derived 
GT1 cell lines [709]. 

1.3. Results 
To generate recPrP amyloids with different conformations, we systematically altered the 
conditions for their formation, including denaturant concentrations, pH and buffer composition 
(Table 8 and Table 9). The mechanism of amyloid formation determines significantly the 
amyloid structure of recPrP. The protein has been known to convert to different types of amyloid 
and some may be induced with the formation of intermolecular disulfide bonds leading to 
domain-swapping [710][711]. These alternative structures showed the coexistence of different 
molecular forms of PrP with the capacity of self-propagating prions [325]. In our experiments, 
we started from different states of recMoPrP(23-231) using either REDOX or non-REDOX 
processes. This resulted in different amyloid preparations in which the monomeric 
recMoPrP(23-231) followed different pathways for more stable free energy states. We induced 
the REDOX process by reducing disulfide bonds of recMoPrP(23-231) at high concentration of 
reducing agent in the presence of 6M Gdn-HCl and with or without the addition of NaCl. The 
concentration of all these components and of the protein was subsequently decreased by 
means of direct dilution to reach the final concentrations for fibrilization reactions (Fig. 24). This 
process differs from the earlier protocol reported to convert PrP in vitro [325], although sharing 
the same mechanism [710][711]. In order to study the converted ability and folding behaviors of 
recMoPrP(23-231), we analyzed the kinetics of purified recMoPrP(23-231) conversion into β-
sheet-rich forms under different defined biophysical and biochemical conditions (Table 8 and 
Table 9). To monitor the amyloid formations, we used a thioflavin T (ThT)-binding assay 
[712,713]. Kinetic curves presented a sigmoidal shape, typically denoting an increased content 



 94 

of β-sheet structures, as well as enhanced aggregation of monomeric recPrP (Fig. 25A). These 
sigmoidal curves highlighted a lag phase followed by rapid accumulation of fibrils (Fig. 25B and 
Fig. 33). The quantitative analysis of the lag phase was carried out by estimating the increase in 
ThT fluorescence intensity [407]. The end of the lag phase coincides with the point when ThT 
fluorescence intensity started to increase. The four main amyloids described in this part 
(amyloids #4, #19, #28, #32) were prepared under different conditions, including denaturant 
concentrations ranging from 1M to 4M of Gdn-HCl, and buffers at various pH values (see 
"Materials and Methods"). 

The maximum ThT fluorescence intensities exhibited a wide range between the two amyloid 
preparation processes. In the non-REDOX process, the maximum intensities are higher than 
those of the REDOX process (Fig. 25A). At neutral pH, the lag phases for aggregation 
processes of recMoPrP(23-231) are shorter in comparison with acidic pH 5 (Fig. 33). The 
shortest lag phase and most rapid production of amyloid were observed at pH 7.4 (Fig. 33) 
(p<0.05, n=12). No fibrils were found at pH 3.5 after at least 72 hours of fibrilization (data not 
shown). Interestingly, the fibrilization showed that lag phases vary in the presence of 2M Gdn-
HCl between different conditions (amyloids #6, #14, #19 in non-REDOX process and amyloids 
#25, #26, #33, #34 in REDOX process) and also under the same conditions, which were 
indicated with high error bar values (Fig. 33). These data suggest that at different 
concentrations of Gdn-HCl, which is used as chaotropic agent for improving the yields and 
shorten the lag phase of aggregation [410], monomeric recMoPrP(23-231) explores many states 
of accessible free energies. However, based on the positive increase of ThT intensities, no 
further conversion was detected for up to 72 hours of fibrilization of amyloid preparations #1, #2, 
#3, #13, #21, #22, #35, #36, #37, #38 (data not shown). At denaturant concentration less than 
1M, production of amyloids was observed only at pH 7.5 in the REDOX process, whereas no 
amyloid form was found after fibrilizations at pH 5.0. Full-length PrP tends to generate most 
amyloidal structures at neutral pH. 

Differences in kinetic traces and maximum intensity values (Fig. 25 and Fig. 33) were also 
highlighted in terms of morphology, as revealed by atomic force microscopy (AFM) (Fig. 26 and 
Fig. 34A). 

Therefore, to gain further insights into the aggregated morphology of the end products, we 
studied the aggregated topology of all recMoPrP(23-231) amyloid preparations by AFM. The 
recMoPrP(23-231) aggregation products were imaged at two end point times of fibrilization, i.e. 
52 hours (Fig. 31B) and 72 hours (Fig. 26 and Fig. 34A). AFM scans of mica surfaces treated 
with different amyloid preparations showed that recMoPrP(23-231) aggregated after 72 hours 
and clearly revealed marked morphological differences. The morphology-dependence of the 
fibrilizations was observed at different concentrations of denaturant (Fig. 34B). At 1M Gdn-HCl 
(amyloids #20, #32), 3M Gdn-HCl with NaCl (amyloid #27), 4M Gdn-HCl (amyloids #4, #30) and 
4M Gdn-HCl with NaCl (amyloid #29) in both REDOX and non-REDOX processes, the AFM 
analyses displayed a relatively homogenous population of spherical particles (β-oligomers) [403] 
and very short fibrils (approximately less than 0.5 µm) (Fig. 26 and Fig. 34A). In both processes, 
at 2M Gdn-HCl (amyloids #6, #14, #19, #26, #34), 2M Gdn-HCl with NaCl (amyloids #25, #33), 
and 3M Gdn-HCl (amyloids #5, #18, #28) of denaturant concentrations, recMoPrP(23-231) was 
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converted to amyloid forms. These were visualized by AFM as fibrils, ranging from very short to 
longer and more mature fibrils. The major fibrillar subtypes were straight (amyloids #18, #34), 
slightly curvy ribbons (amyloids #5, #25, #28, #33) or rod-shaped fibrils (amyloids #6, #11, #14, 
#19, #26) (Fig. 26 and Fig. 34A). These results are all in agreement with earlier studies [341]. In 
some instances amyloid morphology was not clear (amyloid #12, #31). In order to ascertain 
whether these were true amyloids, further experiments were carried out to test their capability of 
seeding amyloid formation. 

In our amyloid morphology analyses, different amyloid preparations of recMoPrP(23-231) 
showed aggregate clusters of different heights (Table 7 and Table 10), which in turn were 
comprised of unit steps of varying heights (Fig. 26B). These were revealed by aggregated 
feature height profiles data. Indeed, 3-D views and height distribution (Fig. 26C) revealed 
structures with different topologies from different amyloid preparations. 

The analyses of both AFM and kinetics data showed that different amyloid preparations in which 
pH, denaturing conditions, ionic strength and REDOX processes were defined, reflect 
differences in aggregation pathways and morphology of recMoPrP(23-231) end products. 

Our methods for the conversion of PrP required only purified recPrP and common chemicals. 
Neither prion-infected brain extracts nor PrPSc were used. As spontaneous air re-oxidation 
occurs in the REDOX amyloid preparation process, the disulfide bonds rearrange, changing 
from monomeric intramolecular PrP form to intermolecular multimeric PrP. In order to prove that 
the converted amyloid forms under different amyloid preparations from the REDOX process 
were oligomerized through intermolecular disulfide bonds, we checked for the presence of these 
structures. In comparison with non-reducing experiments, we used a high concentration of 
reducing agent and reduced electrophoresis. Western blottings showed that converted amyloid 
forms from both processes had apparent monomeric, dimeric molecular masses and higher, 
more complex multimeric forms under non-reducing treatments (Fig. 4A). After treatment with 
the reducing agents to disrupt all disulfide bridges, the REDOX-converted PrP forms showed a 
significant decrease in dimeric and trimeric structures. Higher molecular weight forms were also 
observed (Fig. 4B, REDOX amyloids). In amyloid preparations established following the REDOX 
process — which includes the swapping of domains and the rearrangement of intra and 
intermolecular disulfide bridges in PrP molecules — the conversions require both non-covalent 
and covalent bonds to break up. Moreover, induced reduction occurs optimally in denaturing 
condition. Therefore, after incubating the REDOX-converted forms with high concentration of 
denaturant (Gdn-HCl 6M) for three days, and subsequently treating them with reducing agent, 
the amyloid forms were disassembled. This was indicated by the disappearance of PrP 
complexes with structures other than the monomeric form (Fig. 27C, REDOX amyloids). In 
contrast, recMoPrP(23-231) converted into the amyloid forms in the non-REDOX process — in 
which the oxidized PrP was diluted to reach the final concentrations in fibrilization buffer — 
showed greater stability of dimeric and higher structures after treatment with reducing agent. A 
high concentration of denaturant was also observed (Fig. 27B and Fig. 27C, non-REDOX 
amyloids). Besides the differences in morphology and kinetics formation, our intermolecular 
disulfide bridge tests showed that REDOX amyloids are most likely to contain intermolecular 
disulfide bridge conformation structures [325,710,711]. 
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So far, PK-resistance has been used to distinguish PrPC from PrPSc, although many studies 
showed the existence of PK-sensitive PrPSc. We treated amyloid fibrils at PK/recMoPrP(23-231) 
ratios of 1:10 and under standard conditions used for detecting PrPSc in brain homogenates (20 
µg/mL PK, at 37ºC for 1 hour) at the ratio of 1:1. This process aimed at determining whether: (i) 
our abnormal isoforms of PrP generated in vitro are resistant to PK digestion, and (ii) they have 
a PK-resistant core resembling that of PrPSc subjected to PK treatment. Both the β-oligomers 
and the amyloid fibrils in some amyloid preparations showed PK-resistance. Interestingly, in 
both processes, most amyloid preparations in PBS pH 7.4 appeared more sensitive to PK 
digestion than those in acidic conditions, although digestion patterns were undistinguishable 
(Fig. 28 and Fig. 35). At ratio 1:10, the PK-resistant bands of non-REDOX amyloid digestion 
displayed several resistant fragments with molecular masses in the range of ~19-17 KDa. Only 
in the case of amyloid preparations in acidic pH and amyloid #14, molecular masses were less 
than 15 KDa. Contrastingly, REDOX amyloid fibrils exhibited PK-resistant bands of molecular 
masses in the range of ~19-17 KDa (Fig. 28, Fig. 35). In particular, after treatment with PK at 
ratio 1:1, amyloid fibril #28 showed bands with molecular mass of ~16 KDa (Fig. 28). Notably, 
amyloid preparations subjected to the REDOX process in neutral buffers (Fig. 35, #31-34) 
showed most PK-sensitive structures. Upon treatment with high concentration of PK, nearly all 
of these amyloid preparations were almost entirely digested, showing only trace amounts of 
similar KDa bands. 

The biochemical analyses of our amyloid preparations showed that in different biochemical and 
biophysical environments, recMoPrP(23-231) converted to distinct amyloidal forms. These 
different structures exhibited distinct stability in the presence of high concentration of denaturant 
(Fig. 27C), PK treatment (Fig. 28 and Fig. 35) and molecular masses patterning of PK-resistant 
cores. Kinetic studies of fibrilization (Fig. 33) showed that at neutral pH, the lag phase of 
recMoPrP(23-231) was short, and the protein was more prone to generate amyloids different 
from those formed at different pH. Interestingly, the stability of amyloid forms under neutral pH 
condition was lower. 

The molecular basis of prion infectivity is the ability of PrPSc to efficiently induce the conversion 
of PrPC into PrPSc. This process follows the seeding-nucleation model, with infectious PrPSc 
acting as a seed to capture PrPC into a prion polymer [338]. Using cell-cultured models for the 
screening of several amyloid preparations, we seeded our amyloid fibrils in media of cultured 
mouse hypothalamic GT1, mouse neuroblastoma N2a cells and mouse hippocampal knock-out 
PrP HpL3-4 cells. After six cell passages, PK-resistant PrP (Fig. 29A, Fig. 36) and aggregated 
forms of PrP were found in amyloid fibril-infected GT1 as well as in N2a cells (Fig. 29B, Fig. 37 
and Fig. 38), whereas HpL3-4 knockout PrP cells did not harbor any detectable, aggregated PrP 
(data not shown). Throughout serial passages, endogenous PrPC was induced to change its 
conformation to PK-resistant PrP forms. This change was indicated by the increase in PK-
resistant PrP from seeding passage (P1) to further passages (Fig. 30). After digestion with PK, 
PK-resistant bands showed molecular weights of 30-27 and ~19 KDa. The aggregation and PK 
resistance of PrP in amyloid-infected cells were also confirmed by immunofluorescence 
microscopy experiments including constraining PrP and ThS, with or without PK digestion (detail 
in “Materials and Methods”) (Fig. 30 and Fig. 39). 
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PMCA is able to detect the equivalent of a single molecule of infectious PrPSc and propagate 
prions that maintain high infectivity, strain properties and species specificity. PMCA assay can 
answer fundamental questions about infectivity of infectious agent in vitro [423]. We applied the 
PMCA method in order to test the replication ability of the materials from amyloid infected cells. 
After the third amplification, with 1/10 (Fig. 32A) or 1/100 (Fig. 32B) dilution of cell pellet 
(homogenized in 200µl) as seed, these materials led to accelerated prion replication. Although 
we used a smaller amount of PK than PMCA standards, the resistant bands were similar to the 
ScGT1 as positive control. Indeed, in PK digestion assay with cell lysate, PK was used at low 
concentration to obtain the resistant bands. Therefore, the infectious materials after replication 
in PMCA still maintain their partial PK resistance property. 

Some preparations induced aggregation only in one cell line. Amyloids #27 and #30 promoted 
PK-resistant PrP forms in amyloid fibril-infected N2a cells but not in GT1 cells (Fig. 36, Fig. 37 
and Fig. 38). Cell lines used in this work derived from different sources, which may account for 
the diverse susceptibility to various conformations of putatively infectious PrP. Interestingly, 
incubation with amyloid preparations #5, #6, #18, #19 did not promote PK-resistant PrP 
formation in either GT1 or N2a cells (Fig. 29A, Fig. 36).  

The immunofluorescence analyses of amyloid fibril-infected cell lines (Fig. 29B) showed 
different staining and stronger PrP immunoreactivity detection than those of uninfected cells in 
both GT1 (Fig. 38) and N2a (Fig. 37) cell lines. Some cells showed accumulation, indicated by 
punctate and clusters of immune signal. Detected PrP accumulation in amyloid fibril-infected 
cells was found at the cell membrane and in the cytosolic compartments. 

These data suggested that amyloid preparations, in both REDOX and non-REDOX conditions, 
can act as seeds, like natural prions do, in propagating within cultured neuronal cells, leading to 
accumulation and promotion of PK-resistant PrP forms from endogenous PrP. 

The lack of PK-resistant PrP bands in PK digestion assay (Fig. 29A and Fig. 36) excluded any 
seeded ability for amyloid preparations #6 and #19. Neither did they show any change of PrP 
detection level in immunofluorescence experiments compared with non-infected cells (Fig. 29B, 
Fig. 37 and Fig. 38). The amyloid state, starting from a different amyloidogenic precursor, 
oligomeric state, protofibril/filament or mature fibril, is one of the possible elements that might 
affect the bioactivity of amyloid fibrils in vitro [714]. We collected our samples after 72 hours of 
fibrilization. In the case of amyloid #19, which did not lead to PK-resistant PrP formation in 
infected-cell culture assay, the end point of fibrilization was stable (Fig. 25A). In the various 
other preparations, the lag phases ranged from 6 to 40 hours over the final 72 hours of 
fibirilization (Fig. 25B), thus indicating a different kinetics in the maturation of fibrils (Fig. 26). On 
the other hand, in the presence of 2M Gdn-HCl, the kinetics of amyloid formation showed a non-
homogeneous lag phase (Fig. 25B and Fig. 33) accounting for the large range of standard 
deviation. In order to elucidate the relationship between the amyloid state of recMoPrP(23-231) 
and its seeding ability, the timing of fibrilization processes for amyloid #19 was reduced to 55 
hours. The sample was then separated at different stages of the lag phases. The long, medium 
and short lag phases were numbered as 1, 2 and 3, respectively (Fig. 31A). After 55 hours of 
fibrilization, amyloid #19 showed seeded ability in infected-cell cultured assays. This was 
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indicated by the presence of PK-resistant PrP (Fig. 31B) and accumulation of PrP (Fig. 31D) in 
amyloid-infected cells. For the same amyloid fibrils, after 72 hours of fibrilization neither PK-
resistant PrP nor accumulation of PrP was observed in cell lines (Fig. 29). Moreover, amyloid 
forms obtained with different lag phases of amyloid #19 showed differences in promoting PK-
resistant PrP (Fig. 31). These data suggested that the seeding ability of amyloid formations in 
cultured cells may depend on their states at the end of fibrilization. 

In several recent independent studies on different proteins, both synthetic and natural amyloid 
forms have been shown to induce apoptosis in cell cultures [715,716,717]. To check for possible 
toxic effects on neuronal cell lines, we measured cell viability after treatment with amyloid 
preparations in a similar procedure with amyloid fibril-infected cell assay using MTT assay. 
Indeed, some amyloid preparations showed toxicity in cell culture while most did not (Fig. 40). 

 
Discussion 

The production of synthetic prions was introduced in 2004, via a simple in vitro induction of 
misfolding and aggregation of bacterially expressed recPrP [214]. PrP amyloids possessing 
different conformation stability were generated by altering the conditions for their formation, 
including urea concentration, pH and temperature. After passaging in mice, a large ensemble of 
synthetic prions showed a direct relationship between stability and incubation time of novel prion 
strains [229]. The recent, impressive progress in this technique has spurred the renewed 
investigation of prion structural biology [718][719][720][721][182]. 

The aggregation pathway plays an important role in prion disease as it is commonly accepted 
that both species barrier and strain phenomenon are due to different conversion pathways 
[722]. However, the molecular basis of prion conversion remains unclear, especially the varied 
structural landscape of PrPSc, which forms the basis of the strain phenomenon [723]. Therefore, 
the differences in conformational amyloid states of putative infectious materials — which can be 
generated in vitro under defined biophysical and biochemical conditions using recPrP — are the 
key elements to determine the biological activities of functional, pathological amyloid fibrils. In 
our studies, we created amyloid fibers under an array of different chaotropic conditions at two 
pH values: either mimicking the extracellular environment (neutral pH) or the endocytic 
compartment (acidic pH at 5). Although the high concentrations of chaotropic agent are not 
close to physiological conditions, in these cases the kinetics of full-length PrP demonstrated the 
tendency of the protein to adopt different folding states, which may encipher alternative 
pathogenic states (so-called prion states). In the presence of Gdn-HCl, our data showed a direct 
correlation between protein concentration and the final morphologies in fibrilizations (Fig. 34B). 

Although most fibrilizations were obtained in 72 hours and the stable kinetics of some amyloid 
preparations was long, the final samples of some fibrilizations visualized under AFM showed 
oligomeric morphologies (Fig. 26 and Fig. 34A). Indeed, several oligomerization pathways of 
PrP may coexist, underlying that some oligomeric types may eventually assemble into fibrils, 
whereas others may just lead to a dead-end pathway [724][401]. 
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Earlier works reported that, in infected brains, PrPSc accumulates at the plasma membrane and 
occasionally in late endosome/lysosome-like structures [725]. More recent studies show that 
prion conversion occurs in the endosomal recycling compartment where it transits after being 
internalized from the cell surface [336]. In addition, in both REDOX and non-REDOX processes, 
under similar concentration of denaturant and ionic strength, at either neutral pH or acidic pH, a 
shorter lag phase (Fig. 33) indicated that recMoPrP(23-231) is prone to convert to amyloid 
forms under neutral pH. On the other hand, amyloid fibrils converted in neutral pH showed low 
stability when treated with protease and denaturant. In fact, studies have shown that, in mice, 
less stable amyloids produced less stable prion strains, exhibiting short incubation time [229]. 
Generally, they replicate faster because of the lower stability. These data suggested that the 
very first step for PrP conversion and spreading may occur at extracellular sites. Tanaka et al. 
showed that infection of yeast with different amyloid conformations composed of a recombinant 
Sup35 fragment leads to different {PSI+} strains. This evidence indicates that this prion-like 
protein adopts an infectious conformation before entering the cells [708]. 

In general, prion diseases are known to be triggered by PrP conformational conversion and 
subsequent aggregation [726]. These aggregates may be determined by non-covalent 
hydrophobic interactions and/or intermolecular disulfide bond formation. The oxidized and 
reduced states are two basic states of PrP, which are responsible for the formation of disulfide 
bonds. Starting from these two states, our amyloid preparation processes revealed different 
formation mechanisms. In the non-REDOX process, the oxidized recMoPrP at high 
concentration of denaturant was diluted directly into the fibrilization buffer in order to reach the 
final concentrations. During this procedure, protein particles seem to take a random pathway 
and aggregate. In this case the size of the clustered aggregation sometimes can be larger than 
those ones held together by regular, weaker forces, and may thus cause precipitation [727]. The 
underlying kinetic mechanism is likely to be a diffusion-limited aggregation process [728]. 
Indeed, at 3M Gdn-HCl of amyloid preparation #18 (non-REDOX) after 72 hours of 15-minutes 
interval shaking (Fig. 41), we achieved a classical form of diffusion-limited aggregation, whereas 
this was not obtained for condition #28 (REDOX) (data not shown).  

Despite sharing the same conversion mechanism based on domain swapping and 
rearrangement of disulfide bridge, our REDOX amyloid preparation process differs from one 
previously described [325] in which His-tag hamster PrP(90-231) was converted into oligomeric 
forms and showed seed conversion properties in cell-free conversion systems. Indeed, in some 
cases our REDOX amyloid preparations exhibited a PK-resistant PrP band with a molecular 
mass of ~19 KDa, as well as characteristics similar to amyloid preparations obtained using a 
non-REDOX process. These results depart from data reported in [325]. 

Here we demonstrate that seeds derived from our recMoPrP(23-231) amyloid fibrils, which were 
generated by an array of recMoPrP(23-231) amyloid preparations, exhibited different structural 
properties due to different mechanisms of prion aggregation. When directly added to neuronal 
cell lines, endogenous PrPC was induced to change its conformation to PK-resistant PrP forms, 
which are well-known diagnostic markers for prions. We used immunofluorescence with 
confocal microscopy to demonstrate location and level of PrP within the neuronal amyloid fibril-
infected cells at sixth passage. This observation suggested that small amounts of amyloid fibrils, 
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which were added only in the beginning passage (P1), could seed endogenous misfolded PrP 
and lead it to accumulate at membrane and cytosolic compartments. Therefore, our amyloid-
infected cell culture assay using recMoPrP(23-231) to produce synthetic prions may facilitate 
investigation aimed at unraveling mechanistic steps in prion formation. This method is indeed a 
useful and time-efficient tool for screening putative infectious materials. The data we gathered 
lead to three important conclusions. First, putative infectious materials can be generated in vitro, 
under controlled and well-defined biophysical and biochemical conditions using solely rec 
protein and some simple chemicals, without employing prion-infected brain homogenate or 
purified PrPSc. Secondly, the PK-resistant ability of amyloid fibril-infected cells increases during 
cellular passages. Thirdly, different structural properties of putative infectious materials may 
account for different prion-like characteristics. 
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Figure 24. Schematic diagram for the conversion of the monomeric recMoPrP(23-231) to an amyloid form 
by REDOX process. 
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Figure 25. RecMoPrP(23-231) was converted in vitro into different amyloid forms (amyloids #4, #19, #28, 
#32). The amyloid preparations shown (A) exhibited different kinetics for the formation of recMoPrP(23-
231) aggregates. Lag phase distribution of amyloid preparations (B). 
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Figure 26. AFM imaging analysis was performed at the end of the fibrilization reactions after 72 hours 
(amyloids #4, #19, #28, #32). AFM scan topographical images of PrP deposited on mica surface, large-
scale images (A). AFM height profiles along the numbered lines in topographical images. The profile 
reflects the lines as numbered in the images. Higher resolution scan images belonging to the area are 
marked by a white dashed square in part A (B). Three-dimensional representation of AFM topography 
images and height distribution data obtained from the AFM images in part B (C). 
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Figure 27. Monomeric recMoPrP(23-231) was converted into amyloid forms by intermolecular disulfide 
linkage following the REDOX process. Western blotting of non-reducing SDS-PAGE showing the 
conversion of recMoPrP(23-231) to amyloids is indicated by dimer, trimer, and more complex structures 
in both processes (A). Western blotting of reducing SDS-PAGE after treatment of amyloid with reducing 
agent (β-mercaptoethanol) shows the decrease in signals of dimer, trimer and more complicated 
structures in all lanes of amyloid samples from REDOX-process (B). Western blotting of reducing SDS-
PAGE of amyloid after a 3-day treatment with denaturant (6M Gdn-HCl), and subsequently with reducing 
agent (β-mercaptoethanol) shows only monomeric recMoPrP(23-231) bands and the disappearance of 
more complicated structures in all lanes of amyloid samples in REDOX process (C). 
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Figure 28. Western blotting of PK digestion assay (amyloids #4, #19, #28, #32) showed partial protease 
K (PK) resistance of recMoPrP(23-231) (amyloids #4 and #28). RecMoPrP(23-231) amyloids (PK- lanes) 
were digested with PK at ratio 1:10 (w/w) (PK+ lanes) and 1:1 (w/w) (PK++ lanes). 
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Figure 29. Seeding of recMoPrP(23-231) amyloid preparations induced the conversion of endogenous 
PrPC to PK-res forms (A) and accumulation (B) in mouse neuroblastoma N2a and mouse hypothalamic 
GT1 amyloid-infected cell lines. Western blotting shows the partial protease K (PK) resistance of N2a and 
GT1 amyloid fibril-infected cell lysates. Fibril-infected cell lysates (PK-lanes) were digested with PK at 
ratio 1:500 (w/w) (PK+ lanes) (A). Immunofluorescence imaging shows the accumulations of PrP in N2a 
and GT1 amyloid fibril-infected cell lines. Cells were infected with different amyloid preparations. The 
deposition and level of PrP (green) in amyloid fibril-infected cell lines after six passages were detected by 
D18 anti PrP antibody. The nuclei (blue) were stained with DAPI (B). 
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Figure 30. Induction of PrPres form and aggregation in amyloid infected cells. Immunofluorescence 
images of amyloid infected cells after PK treatment are positive with double staining PrP and ThS (A). 
Western blotting of N2a cell lines infected with PrP amyloid preparations was observed throughout, from 
first passage (P1) to fifth passage (P5) and after treatment with proteinase K at ratio 1:500 (w/w) (B). 
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Figure 31. Seeding ability of amyloid formations in cultured cells depends on their state in fibrilization. 
Lag phase distribution of separated amyloid samples of preparation #19 (termed #19.1, #19.2, #19.3) 
after 55 hours of fibrilization (A). AFM imaging at the end of the fibrilization reactions shows morphologies 
of separated amyloid samples after 55 hours of fibrilization (B). Western blotting shows the partial 
protease K (PK) resistance of N2a and GT1 cells after infection with amyloids #19.1, #19.2, #19.3. Fibril-
infected cell lysates (PK- lanes) were digested with PK at ratio 1:500 (w/w) (PK+ lanes) (C). Mouse 
neuroblastoma N2a and mouse hypothalamic GT1 cells were infected with separated amyloid samples 
#19.1, #19.2, #19.3. The deposition and level of PrP (green) in amyloid fibril-infected cell lines after six 
passages were detected by D18 anti PrP antibody, using immunofluorescence. The nuclei (blue) were 
stained with DAPI (D). 
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Figure 32. Detection and replication of synthetic PrPSc form from GT cell line infected with different 
amyloid preparations after 3 cycles of PMCA, with dilution 1/10 (A) and 1/100 (B) of cell pellets 
(homogenized in 200µl buffer). Western blots demonstrate amplification of protease-resistant prion 
protein (PrP) after serial PMCA. x is normal GT1 as negative control. T+ (RML) and + (ScGT1), both are 
positive controls. The samples were numbered based on the name of each amyloid preparation that was 
used to infect cells.  
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Supporting Figures  

 

Figure 33. Lag phase distribution of amyloid preparations following non-REDOX and REDOX processes 
compared to pH 5.0 and pH 7.5. (**, P<0.01, n=12) 
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Figure 34. The morphology-dependence of the fibrilizations was observed at different denaturant 
concentrations. AFM imaging at the end of the fibrilization reactions shows morphologies of amyloid 
preparations after 72 hours of fibrilization (A). Correlation of amyloidal morphologies and Gdn-HCl 
concentrations in fibrilizations (B). 
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Figure 35. Western blotting of PK digestion assay showed partial protease K (PK) resistance of 
recMoPrP(23-231) amyloid preparations. RecMoPrP(23-231) amyloids (PK-lanes) were digested with PK 
at ratio 1:10 (w/w) (PK+ lanes) and 1:1 (w/w) (PK++ lanes). 
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Figure 36. Seeding of recMoPrP(23-231) amyloid preparations induced the conversion of endogenous 
PrPC into protease K (PK) resistant forms. Western blotting shows the partial PK-resistance of 
neuroblastoma N2a and mouse hypothalamic GT1 amyloid fibril-infected cell lysates. Fibril-infected cell 
lysates (PK- lanes) were digested with PK at ratio 1:500 (w/w) (PK+ lanes). 
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Figure 37. Accumulation of PrP was observed in neuroblastoma N2a amyloid fibril-infected cell lines 
infected with different amyloid preparations. The depositions and level of PrP (green) after six passages 
were detected by D18 anti PrP antibody, using immunofluorescence. The nuclei (blue) were stained with 
DAPI. 
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Figure 38. Accumulation of PrP was observed in mouse hypothalamic GT1 amyloid fibril-infected cell 
lines infected with different amyloid preparations. The depositions and level of PrP (green) after six 
passages were detected by D18 anti PrP antibody, using immunofluorescence. The nuclei (blue) were 
stained with DAPI. 
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Figure 39. PrPres form and aggregation in amyloid infected cells. Immunofluorescence images of 
amyloid infected cell with/without PK treatment are positive with double staining PrP and ThS. 
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Figure 40. Amyloid fibrils recMoPrP(23-231) induced cell death in infected-cell cultures. Cell viability 
based on mitochondrial activity was measured by MTT assay. Control cells without treatment were 
counted as 100%. (*, P>0.05, n=6) 
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Figure 41. AFM imaging analyses were carried out at the end of the fibrilization reaction of amyloid 
preparation #18 (non-REDOX) after 72 hours with 15 minutes of interval-shaking time. AFM scan 
topographical image of PrP amyloid #18 deposited on mica surface showed classical forms of diffusion-
limited aggregation. 
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Table 7. Different height of clusters of recMoPrP (23-231) aggregates 

Amyloid 
preparation (#) 

[Gdn-HCl] 
(M) 

Buffer pH Unit height steps 
(nm) 

Top height distribution 
(nm) 

4 4 50mM Acetate 5.0 1.8-2.2 1.8 

19 2 PBS 7.4 25-50 25 

28 3 50mM Acetate 5.0 1.2-2.5 2.5 

32 1 PBS 7.4 2.5-4.5 4.5 
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Table 8. Conditions used for the formation of diverse amyloid preparations in non-REDOX process 

Amyloid 
preparation (#) 

[Denaturant] Buffer pH [MoPrP] µg/mL [NaCl] (M) 

1 4M Urea 50mM Acetate 6.0 100 - 

2 4M Urea 50mM Acetate 5.0 100 - 

3 4M Urea 50mM Acetate 3.5 100 - 

4 4M Gdn-HCl 50mM Acetate 5.0 100 - 

5 3M Gdn-HCl 50mM Acetate 5.0 100 - 

6 2M Gdn-HCl 50mM Acetate 5.0 100 - 

7 1M Gdn-HCl 50mM Acetate 5.0 100 - 

8 0.5M Gdn-HCl 50mM Acetate 5.0 100 - 

9 0.25M Gdn-HCl 50mM Acetate 5.0 100 - 

11 4M Urea 50mM Acetate 5.0 100 0.4 

12 4M Urea 50mM Acetate 5.0 200 0.4 

13 1M Gdn-HCl 50mM Acetate 5.0 200 0.4 

14 2M Gdn-HCl PBS 7.5 200 - 

17 4M Gdn-HCl PBS 7.5 100 - 

18 3M Gdn-HCl PBS 7.5 100 - 

19 2M Gdn-HCl PBS 7.5 100 - 

20 1M Gdn-HCl PBS 7.5 100 - 

21 0.5M Gdn-HCl PBS 7.5 100 - 

22 0.25M Gdn-HCl PBS 7.5 100 - 
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Table 9. Conditions used for the formation of diverse amyloid preparations in REDOX process 

Amyloid preparation(#) [Denaturant] Buffer pH [MoPrP] µg/mL [NaCl] 

23 1M Gdn-HCl 50mM Acetate 5.0 100 + 

24 1M Gdn-HCl 50mM Acetate 5.0 100 - 

25 2M Gdn-HCl 50mM Acetate 5.0 100 + 

26 2M Gdn-HCl 50mM Acetate 5.0 100 - 

27 3M Gdn-HCl 50mM Acetate 5.0 100 + 

28 3M Gdn-HCl 50mM Acetate 5.0 100 - 

29 4M Gdn-HCl 50mM Acetate 5.0 100 + 

30 4M Gdn-HCl 50mM Acetate 5.0 100 - 

31 1M Gdn-HCl PBS 7.4 100 + 

32 1M Gdn-HCl PBS 7.4 100 - 

33 2M Gdn-HCl PBS 7.4 100 + 

34 2M Gdn-HCl PBS 7.4 100 - 

35 3M Gdn-HCl PBS 7.4 100 + 

36 3M Gdn-HCl PBS 7.4 100 - 

37 4M Gdn-HCl PBS 7.4 100 + 

38 4M Gdn-HCl PBS 7.4 100 - 
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Table 10. Different height of clusters of recMoPrP (23-231) aggregates 

Amyloid preparation (#) Unit height steps (nm) Top height distribution (nm) 

5 0.8-1.2 1.6 

6 0.5-0.8 0.5 

11 4 4 

14 3-4.5 4.5 

18 1.6-1.8 1.6 

20 5-7 5 

25 1.8-2 1.6-1.8 

26 4-18 4 

27 1.6-5 1.6-1.8 

29 40-43 40 

30 30-35 60 

31 - 0.35 

33 1.5-2.5 1.5 

34 1.6-2.2 1.6 
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Table 11. The morphology-dependence of the fibrilizations observed at different concentrations of 
denaturant 

[Gdn-HCl] (M) 1 2 3 4 - 

[Gdn-HCl] (M) + NaCl - 1 2 3 4 

Morphologies 
Oligomer, 
very short 
fibrils 

Very short 
and short 
fibrils 

Long and 
mature 
fibrils 

Oligomer, 
very short 
fibrils 

Oligomer, very 
short fibrils 

Amyloid preparations (#) 20, 32 6, 14, 19, 
26, 34 

5, 18, 
25,28, 33 4, 30, 27 29 

Oligomer: homogenous population of spherical particles, <0.1 µm 

Very short fibrils: <0.5 µm 

Short fibrils: <1 µm 

Long fibrils: >1 µm 

  



 124 

Part 2: Horizontal transmission of synthetic human α-synuclein prions in 
mice 
 

2.1. Objectives: 
- To evaluate the possibility that recombinant human α-syn could acquire prion properties, once 
it is converted into a β-sheet-rich structure, and thus determine the fate of endogenous α-syn of 
either human or murine immortalized cell lines. 

- To investigate whether there are striking similarities between the pathological mechanisms of 
TSEs and synucleinopathies in vitro and in vivo.  

- To answer critical questions: is Parkinson’s disease transmissible? May the synthetic α-syn 
amyloid forms implicated also behave as infectious agents during the passaging? 

2.2. Specific background 
Synucleinopathies are a group of neurodegenerative disorders characterized by fibrillary 
aggregates of α-syn in the cytoplasm of selective populations of neurons and glia. These 
pathologies include Parkinson's disease (PD), dementia with Lewy Bodies (LBs), multiple 
system atrophy and pure autonomic failure. Depending on the distribution of the lesions, these 
disorders are characterized by a chronic and progressive decline in motor, cognitive, autonomic 
functions and behavior. Because of clinicopathologic overlap, differential diagnosis may be 
difficult [459]. 

Using cellular and animal models for this class of maladies, recent studies have focused on the 
mechanism whereby fibrillary aggregates of α-syn form and spread among cells. In fact, it has 
been proposed that α-syn fibrillary aggregates may share peculiar molecular analogies with 
well-established proteinaceous infectious agents such as prions [729]. The observation that LBs 
are present in grafted fetal brain cells in PD patients who underwent transplantation is 
suggestive that α-syn may turn into prion-like elements [730] produced in the grafted cells [627]. 
Another important analogy with prions is the conversion from either a monomeric and unfolded 
[544] or α-helical structured α-syn [572] to a β-sheet-rich structure, orderly organized into 
oligomers or amyloid fibrils [731]. Most importantly, it has been shown that recombinant α-syn in 
a β-sheet-rich structure can recruit endogenous soluble α-syn protein to form pathological 
species in primary cell cultures [437] and induce homologous α-syn prion formation in 
transgenic and non-transgenic mice [439][636][441]. 

Based on these premises, we considered the possibility that recombinant human α-syn could 
acquire prion properties, once it is converted into a β-sheet-rich structure, and thus determine 
the fate of endogenous α-syn of either human or murine immortalized cell lines. 

Human α-syn differs from mouse α-syn in seven positions: A53T, S87N, L100M, N103G, 
A107Y, D121G e N122S. Interestingly, in humans the A53T substitution is a pathological 
mutation leading to rare autosomal dominant genetic cases of PD [732]. 
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2.3. Results and discussion 
We produced highly pure recombinant human α-syn protein (Fig. 46) either as wild-type 
sequence or tagged with a FLAG epitope, and established a protocol to induce the acquisition of 
structured amyloid fibers as previously shown for the production of mammalian synthetic prions 
[214] (Fig. 47). For the purpose of this work, we decided to collect β-sheet-rich structures at 
different time points during the fibrilization assay: (i) at the early inflection of the sigmoid curve, 
as measured by fluorescence detection; (ii) at the middle portion of the curve; and (iii) at 
plateau. We reasoned that these diverse β-sheet-rich structures might differ from the quaternary 
structure of the assembled recombinant human α-syn protein. Indeed, as predicted, atomic 
force microscopy measurements showed diverse assemblies: oligomers, short and long amyloid 
fibers (Fig. 42). 

The human sympathetic adrenergic ganglial neuroblastoma SH-SY5Y cell line was then 
exposed to these diverse molecular assemblies in an attempt to establish whether these β-
sheet-rich structures were able to induce endogenous human α-syn protein to aggregate. To 
this end, we followed different strategies. Either recombinant human α-syn or FLAG-tagged 
recombinant human α-syn proteins were used. The latter would allow the exogenous protein 
assembly to be readily detectable. A single exposure to β-sheet-rich structures of recombinant 
human α-syn was sufficient to induce aggregation of endogenous α-syn in untransfected human 
neuroblastoma SH-SY5Y cells. Remarkably, only short fibrils of α-syn efficiently induced the 
endogenous α-syn to aggregate after seven days in culture (Fig. 43A). The SH-SY5Y cells 
exposed to short fibrils of recombinant human FLAG-tagged α-syn were stained with either an 
anti-human α-syn antibody or an anti-FLAG immunoglobulin. The immunoreactivity was mostly 
cytosolic, with substantial co-localization of anti-FLAG and anti-human α-syn antibodies. 

We next addressed the question whether infection with short fibrils of α-syn was sustained over 
time. We exposed SH-SY5Y cells to FLAG-tagged recombinant human α-syn short fibrils, and at 
each passage we measured the aggregation of endogenous α-syn. Figure 2B shows a typical 
experiment where the aggregation of α-syn was assessed in serial cellular passages. While 
exogenous aggregated α-syn was readily seen after seven-day incubation, corresponding to a 
single passage (P0), only a residual staining of endogenous α-syn could still be observed in the 
subsequent passage (P1) and no staining was detectable in the ensuing two passages (P2 and 
P3). Surprisingly, aggregates of endogenous α-syn reappeared at passages four to six (P4-P6). 
We performed additional passages (up to passage 12) and in each one a sustained aggregation 
of endogenous α-syn was still present (data not shown). In agreement with 
immunohistochemistry, biochemical analysis showed that aggregated α-syn extracted from SH-
SY5Y cells was mostly present in cultures incubated with short fibrils, and it had the same 
electrophoretic mobility as pure recombinant human FLAG-tagged α-syn oligomers or short 
fibrils (Fig. 48). 

We performed similar experiments using a human neuroblastoma SH-SY5Y cell line stably 
over-expressing human α-syn (Fig. 49). Immunostaining of α-syn in this cell line is 
predominantly nuclear. Upon infection with short fibrils of α-syn and after ten passages in cell 
culture, we observed a stronger nuclear staining and, most importantly, the presence of several 
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spots of α-syn throughout the cytosol (Fig. 43C, white arrows). This suggests that α-syn short 
fibrils are able to seed aggregation of over-expressed α-syn in this cellular model.  

To further characterize α-syn aggregates, the different cell lines were probed with an antibody to 
α-syn phosphorylated at position 129. All cells showed nuclear staining, regardless of over-
expression of α-syn or infection with α-syn short fibrils (Fig. 43C, P-S129 α-syn panel). In 
addition, the cytoplasm of several α-syn infected SH-SY5Y cells contained α-syn aggregates. 
Quantitative analysis showed that the number of cells with these cytoplasmic inclusions was 
remarkably higher in α-syn infected cells compared to non-infected cells (54.8% vs. 7.7%, 
p<0.001) (Fig. 43C, bottom left). We thus concluded that although over-expression of α-syn 
induces aggregation, this occurs to a much greater extent when combined with infection (Fig. 
43C, bottom left). Interestingly, the bar graphs in Fig. 43C show a comparative number of cells 
containing aggregates upon staining with α-syn and phosphorylated α-syn, suggesting that most 
α-syn aggregates are phosphorylated. We found the same increase in phosphorylated 
aggregates in α-syn infected cells compared to α-syn cells (44.7% vs. 9.2%, p<0.001) (Fig. 43C, 
bottom right) indicating that most α-syn aggregates induced by short fibrils are phosphorylated. 

The increment in endogenous α-syn aggregates in human neuroblastoma SH-SY5Y cell line 
stably over-expressing human α-syn was measured over passages (Fig. 50). We noticed that 
the immunofluorescent signal becomes brighter over passages (Fig. 50, P1 to P6). The 
corrected total cell fluorescence measurements revealed a steady increase in the signal of 
immuno-positive α-syn in either untransfected SH-SY5Y cell line (Fig. 43B) or SH-SY5Y cell line 
stably over-expressing human α-syn, whereas the signal derived from FLAG-tagged 
recombinant human α-syn short fibrils abruptly decreased over the first two passages (Fig. 43B 
and Fig. 50, P0 to P1).  

Having studied the aggregation properties of recombinant human FLAG-tagged α-syn and its 
ability to infect human neuroblastoma SH-SY5Y cell line in vitro, we questioned whether this 
material would be suitable to induce aggregation of endogenous α-syn in murine cell lines. We 
employed several murine cell lines (see Materials and Methods) and for each one we performed 
the same analysis carried out with SH-SY5Y cells. In particular, we infected mouse 
hypothalamic GT1 cell lines. As shown in Fig. 51, GT1 cells were exposed to human α-syn short 
fibrils following the same procedure applied to SH-SY5Y cell line. In GT1 cell line, expression of 
endogenous mouse α-syn was low and, as expected, human α-syn was missing (Fig. 51). A 
signal derived from immuno-positive human α-syn short fibrils was visible at early passages (P0 
to P1, Fig. 51, in red) but it was absent in subsequent passages (P2 to P4, Fig. 51). At later 
passages, there was a marked increase in granular immuno-positive mouse α-syn signal (P3 to 
P4, Fig. 51, in green). Again, the corrected total cell fluorescence measurements showed a 
steady increase in the signal of immuno-positive mouse α-syn, whereas that derived from 
FLAG-tagged recombinant human α-syn short fibrils abruptly decreased over the first two 
passages (Fig. 51, graph). 

The presence of aggregated endogenous mouse α-syn in infected GT1 cell line was evaluated 
using ThS to assess the extent of binding to β-sheet-rich structures such as amyloids (Fig. 52B). 
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Based on these premises, we attempted in vivo inoculation of human α-syn short fibrils in wild-
type CD-1 mice. One-hundred-twenty-six days after the injection, most animals in group (iii) 
(n=5) injected with human α-syn short fibrils exhibited some behavioral abnormalities, including 
reduced growth rates, which mostly led to less mobility and curiosity though mainly related to 
olfactory tasks. After the treatment, the general condition of mice injected with α-syn short fibrils 
was worse than that of all other mouse groups (p<0.05, Fig. 53). The most striking difference 
was observed between general condition score of α-syn short fibrils and the control group 
(p<0.05). Indeed, as shown in Fig. 53, compared to the control group, mice injected with α-syn 
short fibrils exhibited significant physiological and behavioral differences, detailed as follows: 
lower ponderal growth (p<0.01), worse general condition (p<0.05), altered spontaneous 
behavior (p<0.02), partially impaired auditory sensory responses (p<0.05), poorer performance 
in vertical and upside-down grid tests (p<0.05). We also evaluated the general pathological 
condition of these animals. Fig. 53 shows the clear pathogenetic effect and characteristics of α-
syn short fibrils compared to the control group, and all other molecular assembly and PBS 
control injected animals (p<0.001). The pathological score is significantly worse not only in the 
comparison between α-syn short fibrils and control group (p<0.001) but also between α-syn 
short fibrils and α-syn oligomers (p<0.001), as well as between α-syn short fibrils and α-syn long 
fibrils (p<0.02). 

Even though none of the animals belonging to groups (i), (ii), (iv) and (v) showed any behavioral 
alteration, all mice were sacrificed and the brains were analyzed neuropathologically and 
immunohistochemically. 

Paralleling the behavioral abnormalities in α-syn short fibrils injected mice, 
immunohistochemically we detected focal intraneuronal accumulation of α-syn (LB-like 
pathology) in neurons of specific brain regions, in particular in amygdala and cerebral cortex. 
These pathological inclusions were localized both in the perikarion and in the neurites, and were 
more clearly identifiable by immunostaining for phosphorylated α-syn (Fig. 44A-C). No 
immunodecoration for phosphorylated α-syn was detected in mice inoculated with monomers, 
oligomers, or long fibers of α-syn (Fig. 44D-F). 

After establishing that α-syn short fibrils were able to induce behavioral changes and 
consequently LB-like pathology in injected mice, we attempted a second passage using total 
brain homogenates. Again we used CD-1 wild-type mice and followed the same inoculation 
procedures as in the first passage. In this experiment, the incubation period in CD-1 mice 
inoculated with brain homogenate of mice with α-syn short fibrils was 402±106 days post 
inoculation (dpi) (Fig. 45, panel A). Therefore, at this passage, this isolate exhibited a 
significantly different incubation time from mice inoculated with human α-syn short fibrils. This 
extension in incubation time may be due to the amount of α-syn prions formed at the first 
passage. Control mice were sacrificed at 502 dpi, which correspond to the end of the 
experiment. We assessed the behavioral changes over the whole duration of the experiments. 
The inoculated mice showed significantly altered behavior and motor function (Fig. 45, panel B). 
We performed all tests up to 502 dpi, when all mice, including controls, showed no significant 
differences in the grid tests. In these tests, impairment is a phenomenon mostly related to aging 
problems. All behavior and motor tests were carried out following the standard scoring 
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evaluations of the animals' health with particular focus on neurological symptoms. In terms of 
general health conditions, similarly to short fibril-inoculated mice on first passage, the brain 
homogenate-inoculated mice showed decreased mobility and curiosity after 131 dpi, sometimes 
even no curiosity at all, and paralysis in some cases. Significant changes were found first by 
tail-suspension tests. After 118 dpi, inoculated mice showed hind-leg clasping reflex (Fig. 54). 
This is a marker of disease progression in a number of mouse models of neurodegeneration 
[733]. Moreover, infected mice clearly showed body and tail rigidity, and kyphosis (Fig. 54). 
Kyphosis is a characteristic dorsal curvature of the spine regarded as a common sign of 
neurodegenerative disease in mouse models [734]. Kyphosis is caused by a loss of muscle tone 
in the spinal muscles as a consequence of neurodegeneration. Most likely symptoms 
resembling PD are related to open-field activity. Inoculated mice were less curious and exhibited 
an awkward and shuffling gait, barely lifting their feet off the ground, with short steps and slow 
movement. Gait is a measure of coordination and muscle function. These infected mice showed 
tremor, lowered pelvis, or feet pointing away from the body during locomotion (duck feet) (Fig. 
54). During the tests with the grid, aimed at evaluating the levels of impaired motor coordination 
and balance, injected mice performed poorly on wire-hang test, a complementary measure of 
motor strength and coordination. Impairment was confirmed by significant higher scores in 
walking on the grid and equilibrium tasks (Fig. 45, panel B) in comparison with controls. All 
these changes in normal behavior indicate that mice infected with human α-syn mouse 
passaged prions maintained the behavioral abnormalities from first passage. During aging, 
infected mice showed symptoms resembling those of PD.  

The level of α-syn in the CNS depends on the balance between the rates of α-syn synthesis, 
aggregation and clearance [642]. We noticed that the level of α-syn increased in infected mice, 
in comparison with the controls, at both first and second passages (Fig. 45, panel C). A single 
inoculation with small amounts of synthetic human α-syn short fibrils in the subtantia nigra pars 
compacta of wild-type CD1 mice led to aggregation of monomers. In prion diseases the seeding 
effect is the conveyance of prions from animal to animal [653]. By using an amyloid seeding 
assay analogous to that developed for prions [372], α-syn prions containing brain homogenate 
were detected in both passages (Fig. 45, panel D, left) by elimination of the lag phase of 
aggregate growth. The accelerated fibril formation (1.99 +/- 0.3 compared to 0.86 +/- 0.25 
hours, Fig. 45, panel D, right) indicated the presence of mouse-passaged synthetic human α-
syn prion isolates.  

In the mice of the second passage, immunohistochemistry for phosphorylated α-syn was 
negative. However, marked and diffuse microglial activations were detected. Cells labeled by 
the microglial marker Iba1 were numerous in the cerebral cortex and hippocampus, and their 
activation was revealed by cytoplasmic enlargement and increased number of labeled ramified 
processes (Fig. 44H). Mild astrogliosis was also present. 

In the brain of mice of the first and second passages, pretreatment with proteinase K abolished 
α-synuclein immunoreactivity as in normal control mice (Fig S10). 
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Similarly, the comparison of the different mice groups by histology and immunostaining for 
tirosine hydroxylase (TH) did not reveal neuronal loss or reduction of TH immunoreactivity (Fig. 
56). 

In conclusion, in this work we show that recombinant human α-syn can adopt a conformation 
that is able to recruit cellular α-syn in either human or mouse cell lines and convert the 
endogenous α-syn protein, regardless of the species, into molecular assemblies that replicate 
and accumulate in vitro. This event is paralleled by the introduction of post-translation 
modifications such as phosphorylation at position S129, a hallmark of pathological α-syn. 

A single inoculation of these molecular species, such as α-syn short fibrils in the substantia 
nigra pars compacta of wild-type CD-1 mice, can induce α-syn aggregation, accumulation and 
phopshorylation in vivo. This event has been described as a prion-like spreading in the CNS of 
mice [587] a mechanism similar to that occurring in humans [627]. Based on the results 
presented in this work, we propose that the mechanism of α-syn aggregation, replication and 
accumulation is bona fide that effected by prions, since second passage experiments in mice 
show behavioral changes, microglial activation in CNS, α-syn accumulation and seeding 
properties analogous to prion disorders. As for synthetic prions, inoculation of recombinant prion 
protein amyloid fibrils into wild-type mice will eventually lead to new prion strains only after 
several passages [376]. It is therefore conceivable that, in our studies, subsequent passages in 
wild-type CD-1 mice may also lead to the isolation of the first biologically cloned α-syn prions. 
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Figure 42. Recombinant human α-syn was converted in vitro into different β-sheet-rich structures 
(oligomer, short and long fibrils). AFM imaging analysis was performed at the end of the fibrilization 
reactions. AFM scan topographical images of α-syn deposited on mica surface (A). AFM height profiles 
along the numbered lines in topographical images (B). The profile reflects the lines as numbered in the 
images. Three-dimensional representation of AFM topography images (C) and height distribution data 
obtained from the AFM images (D). 
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Figure 43. Internalization of FLAG-α-syn amyloids into neuroblastoma cells SH-SY5Y (A). α-Syn 
deposition (green) was detected by anti human α-syn antibody. Immunofluorescence was performed on 
cells exposed to FLAG-α-syn amyloids (oligomer, short fibril and long fibril) for 7 days. Bar, 11.9 µm. 
Immunofluorescence images showing induction of aggregation of endogenous human α-syn 
neuroblastoma cell line SH-SY5Y exposed to human FLAG-α-syn (B). Cells were infected with 
recombinant human FLAG-α-syn short fibril preparations. Cells were cultured over coverslips for each 
passage (P0 to P6). The deposition of exogenous short fibrils FLAG-α-syn (red) was detected by anti 
FLAG antibody. Human endogenous a-syn detected by anti human α-syn antibody (green). The nuclei 
were stained with DAPI (blue). Bar, 12 µm. Corrected total cell fluorescence (CTCF) from 
immunofluorescence imaging shows the induction of endogenous α-syn in neuroblastoma cell line SH-
SY5Y infected human α-syn short fibrils during the passages (Bottom panel). Infection with human α-syn 
short fibrils induces aggregation of α-syn in stably transfected SH-SY5Y cells over-expressing human α-
syn (C). (Top panel) Presence of phosphorylated α-syn aggregates in α-syn short fibrils infected SH-
SY5Y cells over-expressing α-syn passage 9. From left to right: neuroblastoma SH-SY5Y (SH), SH-SY5Y 
infected with human α-syn short fibrils passage 9 (SH-SF-P9), SH-SY5Y over-expressing α-syn (SH-OE) 
and SH-SY5Y over-expressing α-syn infected with human α-syn short fibrils (SH-OE-SF-P9). Cells were 
immunolabeled with α-syn (green, upper panel) or phospho S129 α-syn (green, lower panel). Scale bars, 
5 µm. Arrows point at α-syn aggregates. Images are representative of at least three independent 
experiments. (Bottom panel) High percentage of phosphorylated α-syn aggregates in SH-OE-SF-P9. Bar 
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diagram showing quantification of α-syn aggregates (left) and phospho S129 α-syn aggregates (right) in 
SH-OE cells and SH-OE-SF-P9 cells. ***, p<0.001 (Student t test, n>150 cells counted for each condition 
per experiment). Error bars represent the SEM. 
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Figure 44. Immunostaining for phosphorylated α-syn (A, D, G: cerebral cortex; B, E: striatum; C-G: 
amygdala) and for Iba1 as marker of microglia activation (cerebral cortex: H, I). In the first passage (A-F), 
inclusions of phosphorylated α-synuclein are present in neuronal perykaria and neurites in the brain of 
mice inoculated with α-syn short fibrils (A-C), whereas they are absent in mice inoculated with other types 
of fibrils or PBS (the brain of a mouse that received α-syn long fibers is shown in D-F). In the second 
passage (G-I), inclusions of phosphorylated α-syn are not present in mice inoculated with the brain 
homogenate that received α-syn short fibrils (G) but marked and diffuse microglial activation was detected 
(H) whereas this was absent in the control mice (I). Magnification: 40x in all panels. 
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Figure 45. Survival curve of wild-type CD1 mice inoculated with short fibril-injected brain homogenate 
from passage 1 (A). Behavioral assessment of CD1 WT mice (N = 7 mice per group) after a single 
unilateral inoculation of brain homogenate (BH) from short fibril-inoculated mice at first passage into the 
substantia nigra pars compacta (B). BH-injected mice, as well as age-matched non-injected and PBS-
injected CD1 mice are also shown. Data are mean values ±SD; (*), p<0.05; (**), p<0.01; (***), p<0.001. 
Western blotting of brain homogenate of CD1 mice from first (P1) and second passages (P2) shows 
increasing α-syn levels in comparison with the controls, exposed by anti α-syn antibody staining (C). Brain 
homogenate (BH) containing mouse α-syn prions from first passage (P1, short fibril-injected mice) and 
second passage (P2, P1 BH-injected mice) can seed and facilitate amyloid formation of recombinant 
mouse α-syn (recMo-α-syn), (D). As control, buffer only (buf), buffer plus BH of P1 without recMo-α-syn 
(buf+seed), BH of non-injected mice (Ctrl) and PBS-infected mice (PBS) were added similarly. Seeding 
reactions with infected BH (n=5; ***, p<0.001) significantly shorten the mean lag phase (right panel) or 
period before ThT fluorescence rises above background (left panel). 
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Supplementary Figures 

 

 

Figure 46. Plasmids used for expressing human α-syn and FLAG-human α-syn in E. coli BL21(DE)3 (A). 
Homology comparison between mouse α-syn and human α-syn, highlighting amino acid substitutions (B). 
Typical chromatogram obtained from human α-syn protein purification by anion-exchange 
chromatography with HiTrap Q Sepharose Fast Flow column (C). The protein was eluted with a 0-0.5 M 
NaCl gradient in 20 mM Tris pH8.0. Fractions B7-B2 correspond to purified protein. Expression of 
recombinant human α-syn protein (D), 15% SDS-PAGE. Lane 1 and 5, molecular mass marker; lane 2, 
whole cell extract before IPTG induction; lanes 3 and 4, cell extract after IPTG induction: 5 hours (lane 3), 
overnight induction (lane 4); lane 6, purified α-syn protein. 
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Figure 47. In vitro conversion of recombinant human α-syn into different β-sheet-rich structures 
(oligomers, short and long amyloid fibrils). The kinetics for the formation of β-sheet-rich structure: human 
α-syn oligomer (dotted line), human α-syn short fibrils (dashed line) and human α-syn long fibrils (solid 
line) (A). Lag phase, in hours, of all β-sheet structure preparations (B) was measured by thioflavin T 
assay. Lag phase distribution of α-syn and FLAG-α-syn amyloid preparations showed no difference 
(P>0.5). 
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Figure 48. Aggregation of α-syn in dopaminergic human cell lines (SH: neuroblastoma cell line SH-
SY5Y, SH-OE: neuroblastoma cell line SH-SY5Y overexpressing human α-syn) infected with recombinant 
human α-syn amyloid preparations (O: oligomeric α-syn, SF: short fibril α-syn) at fifth passage (P5). 
Western blotting of cell lysates; OP5: α-syn oligomer infected-cells at fifth passage, SFP5: α-syn short 
fibril infected-cells at fifth passage (A, left panel). Western blotting of aggregated analysis of treated and 
non-treated SH-OE cell lysates with α-syn amyloid; total: cell lysates, S-TX: supernatant fractions after 
treatment with 1% TritonX100, S:  supernatant fractions after pellet was treated with S-TX with 2% SDS, 
P: pellet fractions after pellet was treated with S-TX with 2% SDS (B). Aggregation profiles of α-syn in SH-
OE infected with recombinant human α-syn amyloid preparations at sixth passage in comparison with 
original amyloids that were used for the infections. Western blotting exposed by anti α-syn antibody; OP6: 
α-syn oligomer infected-cells at sixth passage, SFP6: α-syn short fibril infected-cells at sixth passage, OA: 
oligomeric α-syn, SFA: short fibril α-syn. Anti α-syn antibody was used (A, right panel).  
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Figure 49. Immunofluorescence imaging of endogenous α-syn aggregation in neuroblastoma cell line 
SH-SY5Y(SH) and in SH-SY5Y over-expressing α-syn (SH-OE) incubated with α-syn oligomers and short 
fibril amyloid. Cells were infected with recombinant human α-syn amyloid preparations (O: oligomeric α-
syn, SF: short fibril α-syn) at sixth passage (P6). The deposition and level of α-syn (red) in amyloid α-syn-
infected cell lines after six passages were detected by anti α-syn antibody. The aggregation of a-syn was 
found by colocalization of immunoreactive α-syn and ThS binding costaining (yellow). The nuclei (blue) 
were stained with DAPI. 
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Figure 50. Immunofluorescence images showing induction of aggregation of endogenous human α-syn 
neuroblastoma cell line SH-SY5Y overexpressing human α-syn exposed to human FLAG-α-syn. Cells 
were infected with recombinant human FLAG-α-syn short fibril preparations. Cells were cultured over 
coverslips for each passage (P0 to P6). The deposition of exogenous short fibrils FLAG-α-syn (red) was 
detected by anti FLAG antibody. Human endogenous α-syn detected by anti human α-syn antibody 
(green). The nuclei were stained with DAPI (blue). Corrected total cell fluorescence (CTCF) from 
immunofluorescence imaging shows the induction of endogenous α-syn in SH-OE (neuroblastoma cell 
line SH-SY5Y overexpressing human α-syn) infected human α-syn short fibril during the passages.  
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Figure 51. Immunofluorescence imaging shows the induction of endogenous mouse α-syn in GT1 
infected human α-syn short fibrils during the passages. Cells were infected with recombinant human α-
syn short fibril preparations that were cultured in coverslips for each passage (P). The deposition of 
exogenous short fibril human α-syn (red) in cells was detected by anti human α-syn antibody. Mouse 
endogenous α-syn was detected by anti mouse α-syn antibody (green). The nuclei were stained with 
DAPI (blue). Control bars, P0 and P1 are 12 µm; P2, P3, P4 are 24 µm.  
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Figure 52. Aggregation of α-syn mouse cell lines, GT1 (mouse hypothalamic GT1) infected with 
recombinant human α-syn amyloid preparations (O: oligomeric α-syn, SF: short fibril α-syn) at fifth 
passage (P5). Western blotting of cell lysates exposed to anti α-syn antibody; OP5: human α-syn 
oligomer infected-cells at fifth passage, SFP5: human α-syn short fibril infected-cells at fifth passage (A). 
Immunofluorescence imaging shows the aggregation of mouse α-syn in GT1 α-syn amyloid-infected cell 
lines. Cells were infected with recombinant human α-syn amyloid preparations (O: oligomeric α-syn, SF: 
short fibril α-syn) at sixth passage (P6). The deposition and level of α-syn (red) in amyloid α-syn-infected 
cell lines after six passages were detected by anti mouse α-syn antibody. The aggregation of a-syn was 
found by colocalization of immunoreactive α-syn and ThS binding costaining (yellow). The nuclei were 
stained with DAPI (blue) (B). 
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Figure 53. Behavioral assessment of CD1 WT mice (N = 7 mice per group) after a single unilateral 
inoculation of α-syn amyloid preparations (monomer, oligomer, short fibrils and long fibrils) into the 
substantia nigra pars compacta. Results of animals on the general health condition (top panel) and 
general pathological score (bottom panel) show significant change in behavior of short fibril-injected but 
not of other amyloid-injected or control mice. Data are mean values ±SD; (*), p<0.05; (**), p<0.01. 
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Figure 54. Behavioral changes of second passage mice after 89 dpi (clasping, alopecia), 152 dpi (tail 
rigidity), 257 dpi (muscle weakness and kyphosis) and 2 days before death (paralysis). 
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Figure 55. Protease digestion and immunostaining for α-syn (4D6 antibody) of the brains of control mice 
inoculated with buffer (A, B, C, G, H, I) and of second passage mice inoculated with the brain 
homogenate that received α-syn short fibrils (D, E, F, J, K, L). Immunostaining of sections including the 
frontal cortex (A, D, G, J), striatum (B, E, H, K) and substantia nigra (C, F, I, L) was carried out without (A-
F) or after proteinase K digestion (G-L). No difference in the pattern of diffuse, finely granular 
immunolabeling was observed between control mice injected with buffer (A-C) and second passage mice 
inoculated with the brain homogenate that received α-syn short fibrils (D-F). Pretreatment with proteinase 
K abolished α-syn immunoreactivity in the two groups of mice. Magnification: 20x in all panels. 
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Figure 56. Hematoxylin and eosin stain and immunostaining for tirosine hydroxylase of the substantia 
nigra of the brains of control mice inoculated with buffer (A, B, C, G, H, I) and of second passage mice 
inoculated with the brain homogenate that received α-synuclein short fibrils (D, E, F, J, K, L). No 
difference is detectable between the two groups of mice, ruling out neuronal loss or reduction of TH 
immunoreactivity in the substantia nigra of second passage mice inoculated with the brain homogenate 
that received α-syn short fibrils. Magnification: A-D 4x; E-H 10x; I-L 20x. 
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CONCLUSION AND PERSPECTIVES 

Ø The first part of my thesis reports the generation of variant putative infectious prion 
amyloids with different structural conformations using only purified recombinant prion 
protein. Two conversion processes, with different amyloid formation mechanisms, were 
applied. Amyloid preparations were infected in GT1 and N2a cell lines in order to 
elucidate the conformational diversity of pathological recPrP amyloids and their 
biological activities, as well as to gain novel insights in characterizing molecular events 
involved in mammalian prion conversion and propagation. This study employed a novel 
cell culture assay as a fast screening methodology to characterize putative infectious 
materials. 

The experimental results we obtained led us to the following conclusions: 

- Following two different in vitro protocols, one under reduction-oxidation (REDOX) and the 
other under non-REDOX conditions, recMoPrP converted to amyloid fibrils without any seeding 
factor. In different biochemical and biophysical environments, recMoPrP(23-231) converted to 
distinct amyloidal forms. Notably, the amyloid fibrils obtained using the REDOX process were 
organized in intermolecular structures. 

- A large number of amyloid preparations are able to induce the conformational change of 
endogenous PrPC to harbor several distinctive proteinase-resistant PrP forms and aggregation 
in neuronal cell lines. 

- The seeding ability of amyloid formations in cultured cells may also depend on their states at 
the end of fibrilization. 

- De novo PrPSc from amyloid infected cell lines can be detected and replicated in PMCA. 

Our synthetic materials have different conformational structures and prionic properties such as 
PK resistance, infectivity in cell line and propagation, however they need to be further 
investigated in vivo. A recent study in synthetic prions shows that synthetic prions can assume 
multiple intermediate conformations before converging into one conformation optimized for in 
vivo propagation [735]. We are currently carrying on in vivo experiments on transgenic and wild-
type mice in order to study the functional/structural relationship of mammalian prions, and test 
whether preparations that are structurally distinct from the initial amyloid preparations can 
encipher different biochemical and biological properties of the adapting strains. 

Ø In the second part of my thesis, I focused on α-syn protein, which is involved in 
synucleinopathies, especially Parkinson’s disease. Through a methodology used to 
obtain synthetic mammalian prions, we tested whether recombinant human α-syn 
amyloids can infect neuronal cell lines in vitro, and wild-type mice in vivo.  

In these experiments we established that: 
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- A single exposure to β-sheet-rich structures of recombinant human α-syn was sufficient to 
induce aggregation of endogenous α-syn in untransfected human neuroblastoma SH-SY5Y 
cells.  

- Only short fibrils of α-syn efficiently induced the endogenous α-syn to aggregate. After seven 
days in culture, α-syn short fibrils are able to seed aggregation of over-expressed α-syn in 
transfected SHSY5Y. Moreover, most α-syn aggregates induced by short fibrils are 
phosphorylated. 

- Human α-syn short fibrils can induce aggregation of endogenous mouse α-syn in mouse 
hypothalamic GT1 cell line. 

- A single inoculation of these molecular species, such as α-syn short fibrils in the substantia 
nigra pars compacta of wild-type CD-1 mice, can induce α-syn aggregation, accumulation and 
phosphorylation in vivo. 

- Second passage experiments in mice show behavioral changes, microglial activation in CNS, 
α-syn accumulation and seeding properties analogous to prion disorders. The mechanism of α-
syn aggregation, replication and accumulation is bona fide that effected by α-syn prions.  
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