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Introduction

It is a well established experimental fact that the Universe is strongly asymmetric in its matter and
antimatter content. Indeed, there is no direct/indirect evidence up to now about the formation of
primordial stars or galaxies made entirely of antiparticles. The only clear observation of antimatter
in the Universe, besides the one created in particle accelerators, resides on the measurement of the
cosmic ray flux through the Earth. The antiproton number density in the cosmic rays is about 1074
smaller than the density of protons [1] and it is consistent with antiproton secondary production
through accelerator-like processes, p + p — 3p + p. This suggests that there is no remnant of a
primordial antimatter abundance in our galaxy. Experimental evidences of a baryonic asymmetric
Universe are also observed at larger scales [2, 3].

An indirect measurement of the relative abundance of baryonic (protons and neutrons) matter
and antimatter can be deduced empirically in two different ways : 7) from Big Bang Nucleosynthesis
(BBN) [4] and #4) from the cosmic microwave background (CMB) anisotropies [5]. The theory of
BBN predicts that the light elements of the Universe, namely D, 3He, “He and “Li were produced in
the first three minutes after the Big Bang. The relative density of these elements depend crucially
on the following quantity:

_ Ny — 1y

n= "0 1)
where ny, ny and n, are number densities of baryons, antibaryons and photons, respectively. The
quantity 7 is by definition the baryon asymmetry of the Universe. It can be shown that the same
value of 7 explain, within the BBN scenario, all the primordial abundances of the light elements
listed above, which can be inferred, independently, from different observations [4]. This is considered
a great success of the Standard Cosmological Model. The range of n (at 95% CL), compatible with
BBN constraints [4], is

4.7 x 10710 < BBN < 6.5 x 10710, (2)

The second way in which 7 can be measured is from the CMB anisotropies. The CMB radiation
has a thermal blackbody spectrum with a nearly constant temperature 7' =2 2.73 K. Temperature
fluctuations AT/T ~ 107° in different directions in the sky, were measured quite in detail by the
satellite WMAP [5]. Such anisotropies are connected to acoustic oscillations of the baryon-photon
fluid at the time of recombination, about 400 thousand years after the Big Bang, when protons and
electrons formed neutral hydrogen atoms and photons decoupled from the thermal plasma. The
seeds of these tiny temperature variations can be traced back to quantum fluctuations during the
inflationary era. The baryon energy density strongly affects the shape of the CMB power spectrum.
From the analysis of the spectrum it is possible to obtain a measurement of n which is independent
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from the one given by BBN. The WMAP 5 year data [5] report the value
n™B = (6.17 4 0.17) x 1071, (3)

in perfect agreement with the determination obtained from the primordial nucleosynthesis.
An alternative way to express the matter-antimatter asymmetry is to use the ratio between the
baryon number density and the entropy density s of the Universe:

Yp = =T (4)

S

1

The two formulations in terms of Yz and 7, at the present time, * are easily related:

3

0
Yp = S—gn = 0.1427n = (8.77+0.24) x 1071, (5)
where ng and sY denote the current photon and the entropy densities.

A simple computation shows that the Standard Cosmological Model, which gives the correct
description of the evolution of the Universe after the BBN era, fails in explaining the small number
reported in (5). To be more concrete, starting with an initial equal number density of matter and
antimatter, n = 0, as predicted within the Standard Big Bang Model, at temperatures 7' S m,, ~ 1
GeV, the baryon and antibaryon number densities are Boltzmann suppressed and result: n, ~ ng ~
(my/T)%? exp(—m,,/T) n,. Owing to the expansion (cooling) of the Universe, n, and n; decrease
as long as the annihilation rate I' &~ ny(oan,v) is larger than the expansion rate of the Universe
H. Taking a thermally averaged annihilation cross-section (oanav) ~ m-2, with m, ~ 135 MeV,
the annihilation rate of nucleons and antinucleons equals the expansion rate of the Universe at the
freeze-out temperature Ty ~ 20 MeV. Consequently, nucleons and antinucleons become so rare that
they cannot interact anymore and their comoving number densities remain constant until present
time: ny/n, = ny/ny ~ (m,/T)>? exp(—m,/Tr) ~ 10718, In order to avoid this annihilation
catastrophe, a primordial asymmetry between baryons and antibaryons, at the level of 1 part in
10'%, should be dynamically generated so that, after the annihilation process, the Universe remains
with an excess of baryons over antibaryons, in the amount given by (5). The generation of the
baryon asymmetry of the Universe is called baryogenesis.

The necessary and sufficient conditions under which baryogenesis occurs in the early Universe,
were pointed out for the first time by Sakharov in 1967 [6]. These conditions, which should be si-
multaneously satisfied at some epoch of the evolution of the Universe, consist in: ¢) baryon number
violation, i) C (charge conjugation symmetry) and CP violation and iii) departure from thermal
equilibrium. All the mentioned criteria are already verified inside the Standard Model (SM) of
elementary particles: due to the chiral anomaly of the electroweak (EW) interactions, the baryon
number B and lepton number L are not conserved at the quantum level. Only the combination
B — L, which is anomaly free, is preserved. At zero temperature, B + L violating interactions
are determined by instanton configurations of the gauge fields which allow tunneling between two
inequivalent vacua of the theory. Non-perturbative transitions of this type create 9 quarks and

Throughout the thesis the computation of the baryon asymmetry is compared to the measurement reported in
(5), which is obtained from the CMB analysis in [5].



3 leptons, one for each family. The associated B + L violating rate at zero temperature is expo-
nentially suppressed and does not produce observable effects. However, when temperature effects
are included, thermal fluctuations can excite static gauge field configurations, called sphalerons
[7], which correspond to an energy equal to the energy barrier between two adjacent vacua. The
sphaleron interaction rates were shown [8] to approach thermal equilibrium at temperatures larger
than the EW symmetry breaking scale and at such temperatures can mediate fast B 4+ L violating
processes in the thermal bath. The second Sakharov condition is satisfied in the SM: C is maxi-
mally violated by the weak interaction, while CP is broken due to the Cabibbo-Kobayashi-Maskawa
mixing [9, 10], i.e. quarks mass eigenstates and electroweak flavour states are mixed via a complex
unitary matrix, the so-called CKM matrix, which contains one CP violating phase that is different
from zero. Finally, the departure from thermal equilibrium can be determined by a strongly first
order electroweak phase transition in the early Universe. This mechanism for the generation of the
baryon asymmetry, which resides only on the SM field content, is called electroweak baryogenesis
[11]. Unfortunately, it cannot provide sufficient primordial baryon production, since the source of
CP violation in the quark sector of the theory is too small, due to the smallness of some of the
quark masses and of the quark mixing angles [12]. Moreover, the first order EW phase transition
does not result strong enough to allow successful baryogenesis, because of the lower bound on the
Higgs mass [13]. In conclusion, in order to obtain the observed value of Yp, it is necessary to go
beyond the SM, providing new sources of CP violation and a new mechanism for realizing departure
from thermal equilibrium.

Several scenarios of baryogenesis have been proposed in the literature, each one with proper
variations. Some examples are provided by GUT baryogenesis, MSSM electroweak baryogenesis,
Affleck-Dine mechanism and leptogenesis.

In this thesis phenomenological aspects related to the thermal leptogenesis mechanism 2 of
baryon asymmetry generation are analyzed in detail. The leptogenesis mechanism was introduced
for the first time by Fukugita and Yanagida in 1986 [15]. What makes it appealing is the fact that
it is intimately related to neutrino physics. Neutrino oscillation experiments [16] have provided
compelling evidences for existence of transitions in flight between the different flavour neutrinos,
caused by non-zero neutrino masses and neutrino mixing. Massive neutrinos cannot be implemented
in the SM, therefore some type of new physics is necessary to explain their small mass.

One of the most viable theoretical frameworks used to yield neutrino masses is the see-saw
mechanism [17]. The basic features of this scenario are the following: the SM Lagrangian is extended
with the addition of at least two heavy right-handed (RH) Majorana neutrinos which are SM
singlets and have masses much larger than the EW symmetry breaking scale, close to the GUT
scale. These particles are coupled to the left-handed charged lepton and Higgs doublets and have
a Majorana mass term which violate total lepton number by two units. At low energy the heavy
fields are integrated out leaving an effective SM invariant dimension-5 operator, suppressed by the
RH neutrino mass scale, which generate a Majorana mass term for the light left-handed flavour
neutrinos after EW symmetry breaking.

Thermal leptogenesis, in its standard formulation, is based on the see-saw extension of the SM.
It provides a dynamical mechanism which produces a primordial lepton charge asymmetry L. The
latter is partially converted into a baryon number asymmetry when the B + L violating sphaleron

For a recent review on the subject of thermal leptogenesis see [14].
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interactions of the SM enter in thermal equilibrium. All the Sakharov criteria are naturally satisfied
in this scenario: ) lepton number is violated by RH neutrinos, because of their Majorana nature;
i1) C is violated by the chiral nature of the see-saw interactions and a source of CP violation is
given by the (complex) neutrino Yukawa couplings; 7i7) the heavy Majorana fields are produced in
the thermal bath at a temperature close to their mass scale, via the neutrino Yukawa interactions:
the most efficient processes are inverse decays and two-by-two scatterings involving the top quark
or EW gauge bosons. When the temperature drops below their mass, they start to decay and
departure from thermal equilibrium is reached, provided their decay rate in the thermal bath is not
too big when compared with the expansion rate of the Universe. The out-of-equilibrium decays of
the RH neutrinos generate an asymmetry in the lepton flavour charge which can survive at lower
temperature. The evolution of the RH neutrino number density and the lepton asymmetry can
be computed solving the corresponding system of Boltzmann equations, which take into account
the production and wash-out of the lepton charge asymmetry via all the lepton number violating
processes present at the time of leptogenesis.

The main topic of this thesis is the role played by CP violation in the thermal leptogenesis
scenario. CP violation in the lepton sector can be revealed, in principle, in future neutrino experi-
ments. Observable CP violating effects in such experiments can put constraints on the Dirac and
the Majorana phases which enter in the neutrino mixing matrix. These “low energy” CP violating
phases may play an important role in the generation of the baryon asymmetry of the Universe
via the leptogenesis mechanism. Their contribution to the CP asymmetry generated in the decays
of the Majorana neutrinos is studied in a model independent way, emphasizing the region of the
parameter space in which they can give a dominant/unsuppressed input.

The thesis is organized as follows. In Chapter 1 the type I see-saw mechanism of neutrino mass
generation is introduced and the connection of this with leptogenesis is explained thoroughly. The
CP asymmetry in the RH neutrino decays is derived and the different sources of CP violation are
pointed out. The computation of the baryon asymmetry in a generic see-saw framework is hence
performed in Chapters 2 and 3. It is shown, in particular, on the basis of a complete numerical
analysis, that in large regions of the parameter space, the production of the baryon asymmetry
depends crucially on low energy observables, namely the lightest neutrino mass and the CP violating
phases in the neutrino mixing matrix. The last two chapter of the thesis consider supersymmetric
see-saw scenarios which are based on the discrete A4 flavour symmetry. The interesting feature of
this kind of models is that they predict a mixing pattern of neutrinos which is naturally compatible
with the tri-bimaximal scheme. Moreover the CP violating phases which enter in the expression of
the CP asymmetry and drive successful leptogenesis are given exclusively by the Majorana phases
of the neutrino mixing matrix. The leptogenesis scale in such supersymmetric models is correlated
to lepton flavour violating processes which can be probed in flavour physics experiments. Charged
lepton flavour violating rates are computed in the minimal supergravity scenario. A summary of
the main results obtained in this work is reported in the concluding chapter.
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Chapter 1

See-Saw Mechanism and Thermal
Leptogenesis

1.1 Type I See-Saw Extension of the Standard Model

In the simplest thermal leptogenesis scenario, the SM is extended by the addition of two or three
RH Majorana neutrinos, which are SM singlets and have a mass much larger than the electroweak
EW symmetry breaking scale. This is the well known type I see-saw scenario [17]. These heavy
fields are integrated out at low energies and generate an effective Majorana mass term for light

active neutrinos: )

2
where v,y and v, = CﬁgL, for « = e, pu, 7, are the left-handed light neutrino field and the
corresponding (right-handed) charge conjugated field !, respectively.

In the case of three RH neutrino fields N;(x) 2, i = 1,2,3, with masses M3 > My > Mj, the
interaction and L violating Lagrangian in the lepton sector, £!°P, is given by:

Lf%(x) = Leo(x) + Ly(z) + Ly (@), (1.2)

Lo, (@) = STom(e) (m)as vas(@) + b, (L1)

where Loc and Ly denote the charged current and the Yukawa Lagrangians, respectively, while
ﬁj\N4 involve the lepton number violating Majorana mass term of the RH neutrino fields. In the
basis in which the RH neutrino mass matrix and the charged lepton Yukawa matrix are diagonal
with real eigenvalues, (see-saw flavour basis), the terms in the interaction Lagrangian £°P are:

Loo(x) = —% oL (T)Yplar (@)W (z) + h.c., (1.3)
Ly(z) = MaNgp(x)HT (2)ioy lo(x) — haCar(z)HT (2)i0 Lo(x) + h.c., (1.4)
i) = —3MF)N(). (1.5

1C is the usual charge conjugation matrix of Dirac spinors: CyLC™! = —v,, CTC =1 and CT = —C.

2Throughout this chapter the greek subscript in the definition of the fields and matrix elements is always intended
as a flavour index (e.g. @ = e, and 7). The latin indices, instead, are used to label the RH neutrino fields, unless
differently specified.



1. SEE-SAW MECHANISM AND THERMAL LEPTOGENESIS

The left-handed SU(2) lepton doublets and the right-handed charged lepton singlets are indicated
as {L = (Var, €ar) and eyr, while W# and H = (h*, h°) represent the charged SU(2) gauge boson
and Higgs doublets, respectively. The field H(z) = iooH (2)* (02 is the second Pauli matrix)
denotes the charge conjugated Higgs doublet with hypercharge Y = —1. The RH neutrino fields
Ny (z) satisfy the Majorana condition:

C(Ny)"(x) = Ni(). (1.6)

Note that the see-saw Lagrangian Ey—l—ﬁjj\\/fl contains 18 independent parameters: three RH neutrino
masses M, and 15 real parameters in the neutrino Yukawa matrix A. 3 In contrast, as discussed
below, the low energy effective theory described by £,,, + Lo contains only 9 independent (mea-
surable) elements: three light neutrino masses, three mixing angles and three CP violating phases.

The effective Majorana mass term m,, in (1.1) is a combination of the (high energy) see-saw
parameters Ax, and M. Below the EW symmetry breaking scale, the see-saw Lagrangian can be
written in the matrix form:

_ l —c @ mp VL(x)
Loass(z) = —5 (7R(z) Nr(z)) < mT My > < N (2) + h.c.. (1.7)
The 3 x 3 matrix O has all null entries and
mp = )\U, MN Ediag(Ml,MQ,Mg) (18)

are the 3 x 3 Dirac and Majorana mass matrices, where v = (h%) = 174 GeV is the SM Higgs
vacuum expectation value (VEV). The fields Nr and N} = CN}; are the two chiral components of
the Majorana neutrino (vector) N. In the see-saw mechanism, the Majorana mass term is much
larger than the Dirac mass, i.e. My > mp. This implies that the mixing between left-handed,
Vor, and right-handed, Ngg, fields is of the order § ~ mp/my < 1, i.e. the heavy neutrino mass
eigenstates are decoupled and have a mass matrix equal to My at leading order in 6. The effective
Majorana mass matrix m,, given in Eq. (1.1), is obtained from the diagonalization of the 6 x 6
mass matrix in (1.7). At leading order in 6, one has in the flavour basis:

(Mu)ag = VAL M Neg = UZymy UL (1.9)

B’
where m; > 0, for j = 1,2,3 are the light neutrino mass eigenvalues. Assuming a light neutrino
mass scale m, = 0.1 eV, from Eq. (1.9) one obtains that RH Majorana neutrinos Ny, should have
a mass My ~ 10'* GeV.

The neutrino mass matrix m, is diagonalized by a unitary transformation U, with neutrino
mass eigenstates v; given by:

vi = 3 Ul var (1.10)

Light neutrino mass eigenstates resulting from the see-saw are Majorana fermions. They satisfy the

Majorana condition *: vi = C (7;)T = v;. In the basis in which the charged lepton mass matrix

30ne can always remove three phases of the complex Yukawa matrix A with a redefinitionof the lepton doublet
fields 4, ¢,, and ¢-.

“Majorana fermions can be defined more generally through the condition: CET = &y, with || = 1. However the
phase ¢ has no physical meaning and therefore it can be neglected (see e.g. [20]).



1.2 Neutrino Mixing Parameters and CP violating Phases

is diagonal, U coincides with the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing
matrix [21]. The unitary matrix U parametrizes the flavor mixing in the lepton sector, in analogy
to the CKM matrix [9, 10], which correctly describe the analogous mixing in the quark sector [22].
However, as discussed in the next section, the lepton mixing is characterized by two large and one
small (approximately zero) angles, which give rise to a mixing pattern completely different from
the one determined by the CKM matrix.

1.2 Neutrino Mixing Parameters and CP violating Phases

Throughout the thesis the PMNS neutrino mixing matrix U is always expressed in the standard
parametrization:

c12€13 512€13 s13e”"
o i i . ;921 Ppasis
U= —s12c23 — c12523513€"°  C12C23 — 512523513€" 593C13 diag(l,e" 2 ,e" 2 ), (1.11)
i i
512523 — C12€23513€"°  —C12523 — $12C23513€"  C23C13

where ¢;; = cos 0;5, s;j = sinb;;, 0;; € [0,7/2], § € [0,27] is the Dirac CP violating phase and o
and o are the two Majorana CP violating phases [23, 24, 25], 9131 € [0, 27]. As discussed below,
the source of low energy CP violation in the lepton sector is directly related to the existence of
three observable rephasing invariants, Jcp, S1 and S.

The best fit values of the neutrino mixing angles with the corresponding errors are reported
in Tab. 1.1. These are obtained from a global fit [26] of all neutrino oscillation data including
solar, atmospheric, reactor (KamLAND and CHOOZ) and accelerator (K2K and MINOS) experi-
ments [16].

The main features of the neutrino mixing pattern, mixing angles and CP violating phases, as
well as the experimental probes of the neutrino mass spectrum are briefly discussed below.

1.2.1 Neutrino mass spectrum

The solar and atmospheric neutrino oscillations are driven by two different mass scales, Am?D and
Ami, respectively. The solar neutrino mass difference is standardly defined as:

Am2 = Am3, =m3—mi > 0. (1.12)

In this case
|Am3| = [Am3,| = |m3 — m]| (1.13)

and Am% > 0 (Am3 < 0) for a light neutrino mass spectrum with normal (inverted) ordering:
mip < mo < Mms (m3 <mo < ml).

Oscillation experiments are not able to provide information on the absolute neutrino mass scale,
but only on two mass squared differences. Direct measurements of the absolute mass scale are per-
formed in different types of experiments. Some of them put limits on the upper end of the spectral
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Parameter Best Fit 20 30

Am3, (107°eV?) | 7.59T0 | [7.22,8.03] | [7.03,8.27]

|AmZ| (1073 eV?) | 240707 | [2.18,2.64] | [2.07,2.75]

sin? 09 0.31870:019 | [0.29,0.36] | [0.27,0.38]
sin? fo3 0.505:07 | [0.39,0.63] | [0.36,0.67]
sin? 013 0.01370005 | < 0.039 | <0.053

Table 1.1: Best fit values with 1o errors and 20 and 3¢ intervals for the three flavour neutrino oscilla-
tion parameters. The global fit is performed on data including solar, atmospheric, reactor (KamLAND
and CHOOZ) and accelerator (K2K and MINOS) experiments (see [26] and references therein).

distribution of electrons in tritium B—decay, SH—3He+7, + e~. They provide a determination of
the electron neutrino mass

(1.14)

The Mainz experiment obtained the bound m,,, < 2.2 eV [27] and the Troitsk experiment m,, < 2.5
eV [28], both at 95% CL. The KATRIN experiment [29], which is under construction at the moment,
aims to search for the mass of the electron neutrino with a sensitivity of 0.2 eV.

Indirect determination of the absolute neutrino mass can be derived from CMB data as well as
data from large scale structures, which are sensitive to the sum of the neutrino masses. They allow
to set the conservative upper limit [30, 31]: 3. m; < 0.5 eV at 95% CL.

1.2.2 Tri-bimaximal mixing pattern

The data reported in Tab. 1.1 suggest a pattern of the PMNS matrix which is remarkably similar to
the so called “tri-bimaximal” (TB) mixing [32]. In the case of TB mixing, the solar and atmospheric
neutrino mixing angles 615 and o3 are very close to, or coincide with, the best fit values determined
in global analyses of neutrino oscillation data:

sin? 019 = 1/3,  sin?fo3 = 1/2. (1.15)

The reactor mixing angle 013 is predicted to be exactly zero. Correspondingly, the PMNS matrix
(1.11) takes the form:

U = Upgdiag (1,ei0‘21/2,ei°‘31/2) : (1.16)

10



1.2 Neutrino Mixing Parameters and CP violating Phases

where

2/3 1/V/3 0
Urp=| -1/v6 1/vV3 1/v2 |]. (1.17)
—1/v/6 1/V/3 —1/V2

The TB scheme suggests the interesting possibility that the neutrino mixing originates from some
flavour symmetry in the lepton sector. An example of such symmetry is provided by the tetra-
hedral group A4. Supersymmetric (SUSY) models based on the discrete flavour group A4 will be
introduced in Chapters 4 and 5, where several results concerning leptogenesis and lepton flavour
violating processes within these models will be derived.

1.2.3 CP violation in neutrino oscillations

CP violation in the lepton sector, due to the Dirac phase d, can be probed in neutrino oscillations
experiments and is directly related to the rephasing invariant [33]:

Jop = Im {UelUM 1} = sm 2615 sin 2093 cos? 013 sin Ay 3 sin 0, (1.18)

which is analogous to the rephasing invariant associated with the Dirac CP violating phase in the
CKM quark mixing matrix [34, 35].

If Jop # 0, i.e. if sinfy3sind # 0, there is no CP violation coming from the Dirac phase ¢ in
the PMNS matrix. An experimental signature of CP violation associated to the Dirac phase d can
in principle be obtained searching for CP asymmetries in neutrino flavour oscillations: [33, 36, 37]:

AY = P(ar — vsr) — P(Var = 7pL) | (1.19)

where P(vo1, — vg1,) is vacuum oscillation probability [20] for three massive neutrinos:

Amzk
P(var = vpr) = a5—4ZRe +Usj akUﬁk)sm2< 4EJ L)
>k
Am?
7k
—|—2§Im aiUsiUakUpy) sm( 1B L) . (1.20)
J

In the previous equation F is the mean energy of neutrinos in the beam and L denotes the distance
between the detector and the source. Using (1.18) and (1.20), one can get the following expressions
for the CP asymmetries [33]:

Aég = Aé’; = —Aé’; = JCP Fvacuum, (121)

. [ Am3 [ Am? [ Am?
Foocuum = sin (ﬁL) + sin (ﬁL) + sin (ﬁL) . (1.22)

Because of CPT invariance, effects of CP violation can also be inferred from T asymmetries [33],
A%’B , in neutrino oscillation, with

A%ﬁ = P(I/aL — I/ﬁL) — P(VﬁL — VaL), (1.23)
A = A% (1.24)

11



1. SEE-SAW MECHANISM AND THERMAL LEPTOGENESIS

Future experiments [38, 39] on neutrino oscillations aim to constraints the reactor angle #1353 and
measure CP violating effects associated to the Dirac phase §. Hints of a non-zero value of 0,3 at
1.60 where found in a recent analysis on global neutrino oscillation data [40].

1.2.4 Majorana phases and neutrinoless double beta decay

The Majorana phases ag; and asp, entering in the PMNS matrix (1.11), can have physical effects
only if the neutrino mass eigenstates v; in (1.10) are Majorana particles. As explained in Section 1.1,
the see-saw mechanism provides naturally an effective Majorana mass term for the three flavour
neutrinos, Eq. (1.9) and thus, in this framework, massive active neutrinos behave as Majorana
particles. In analogy to the Dirac phase, as; and ag; can be related to a particular combination of
the neutrino mixing matrix elements, invariant under a basis transformation of the lepton fields.
Such rephasing invariants are not unique [41, 42]. A possible choice is

Sl = Im{U:lUTQ}, (1.25)
Sy = Im{U%U.s} . (1.26)

The two Majorana phases ao; and ag; can be expressed in terms S; and S5 in the following way:

St
cosagy = 1—2————, (1.27)
‘Uel‘Q ‘Ue3‘2
S3
cos(as; —agy) = 1—-2——=——. (1.28)
‘UeQ‘Q ‘Ue3‘2

As will be discussed in more detail in Section 1.3.2, all the CP violating effects associated with
the Majorana nature of the massive neutrinos are generated by a9 # km and/or as; # k'w
(k' =0,£1,£2,...).

The Majorana nature of massive neutrinos °

can be inferred from the existence of processes
which violate the lepton number by two units, AL = 2. The only viable experiments that currently
may prove if neutrinos are Majorana particles and possibly put constraints on the Majorana phases
of the PMNS matrix are the ones searching for neutrinoless double beta ((5/3)o,-) decay [44] of
even-even nuclei:

(A,Z) — (A, Z+2) +¢ +e . (1.29)

The corresponding decay rate is proportional to the effective Majorana mass m.., which contains
all the dependence on the neutrino mixing parameters:

3
Mee =y UZmy. (1.30)
j=1

One can distinguish two possible scenarios, compatible with neutrino mixing data (see Tab. 1.1):
i) normal ordered mass spectrum, m; < mg < ms; ii) inverted ordered mass spectrum, ms < m; <

% As is well known, oscillations of neutrinos are insensitive [23, 43] to the phases aa1 and as1 in the PMNS matrix.

12
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ms. The corresponding expression of the Majorana mass term me. is the following:

Normal Ordering:

Mee = ‘ml cos? 019 + \/m3 4+ Am sin? f10€™2t + \/m? + Am3% sin? f5¢*(@31-20) (1.31)

Inverted Ordering:

Mee = /M3 +|Am3| |cos? 015 + €™ sin® f15] (1.32)

The latest results of the CUORICINO experiment [45] set an upper limit on the effective Majorana
mass: mee < 0.20 — 0.68 eV, at 90% CL. Next generation experiments [46, 47, 48] searching for
(85)o,-decay, currently under preparation, will probe the quasi-degenerate and inverted hierarchical
ranges of me.. They aim to reach the sensitivity of m.. ~ 50 meV.

The measurement of the (53)g,-decay rate in oncoming experiments might allow to obtain
constraints on the Majorana phase ag; in the PMNS matrix (see e.g. [49, 50] and also [51]).

1.3 Casas-Ibarra Parametrization and CP Invariance Constraints

1.3.1 Bottom-up parametrization of the see-saw

The amount of CP violation necessary to generate the baryon asymmetry of the Universe, can be
related to both “low” and “high” energy contributions, the first being correlated to a particular
combination of the Dirac and Majorana CP violating phases in the neutrino mixing matrix, studied
in the previous section. In order to distinguish and analyze quantitatively the different sources of
CP violation in the lepton sector, it is useful to work in the Casas-Ibarra [52] parametrization of
the neutrino Yukawa coupling matrix A, which appears in Ly (see Eq. (1.4)):

1
A = ;\/MNR\/EU*, (1.33)

where My = diag(My, My, M3) and m = diag(my, ma, m3). The unitary matrix U is the PMNS
neutrino mixing matrix introduced in Section 1.2. From the expression (1.4) and the type I see-
saw mass relation given in (1.9), it comes out that R is a 3 x 3 (complex) orthogonal matrix:
RR" = R"R = 1. It contains three mixing angles and three phases, which together with My, U
and m provide the 18 independent parameters of the see-saw Lagrangian, Ly + ﬁj\Nﬂ.

The parametrization (1.33) is derived in the see-saw flavour basis, which corresponds to diagonal
mass matrices for the charged leptons and RH neutrinos, both with real eigenvalues. In a generic
see-saw basis, given by the neutrino Yukawa matrix )\ the charged lepton Yukawa matrix )\g and
the RH neutrino mass matrix M, ~N, Eq. (1.33) can be written in the form [52, 53]:

v <\/M—N> ViX = RymV). (1.34)

13



1. SEE-SAW MECHANISM AND THERMAL LEPTOGENESIS

The unitary matrices Vg, V¢, and V,, define the basis transformation:

VA My Ve = diag(My, M, Ms) (1.35)
VI N Ve, = diag (hZ, b7, h2) (1.36)
Vl/ - ‘/eLU, (137)

where V,, diagonalizes the neutrino mass matrix m, = VAT M ]\_,1/): in L,,,, Eq. (1.1):
V.Im,V, = diag(mi,ma, ms) . (1.38)

Equation (1.34) can be derived directly from (1.33), using the basis transformation defined
above. Thus, given any see-saw model {/)\\, /)\\g, M, N}, in some particular basis, the orthogonal matrix
R can be computed directly form Eq. (1.34) and is an invariant see-saw quantity [53], i.e. it doesn’t
change under basis transformations. ¢ Actually, R parametrizes basis invariant classes of see-saw
models, C(R), in the sense that, each see-saw model defined by the set {\, Ay, M, N} € C(R), which is
consistent with a set of low energy parameters {me, m,, m,,m;, U}, is related to another model of
the same class by applying lepton basis changes. Models belonging to distinct classes are associated
to different R matrices and cannot be related to one another.

1.3.2 CP transformation properties

If CP is a symmetry of the lepton Lagrangian (1.2), then the neutrino Yukawa couplings Ak,
should satisfy specific constraints [20]. Using the parametrization given in (1.33), such constraints
translate into conditions on matrix R elements. Indeed, if CP is preserved, the Majorana fields Ny

and v; have definite CP parities [20] név CP and s CP respectively, and transform as:
UcpNi(@)Ulp = Py Ni(a'),  with 5" =+, (1.39)
Ucpuj(:v)UéP = n}fcpwouj(:ﬂ’) ,  with n}fcp =+i. (1.40)

The RH neutrino mass term defined in EJA\/TI is invariant under the above transformation. The Yukawa
part of the lepton Lagrangian Ly is also CP invariant if and only if the following transformation
of the neutrino Yukawa matrix elements occurs:

Na = Naln) T )t (1.41)
where n® and n” are the (unphysical) phase factors which enter in the CP transformation of the
left-hand lepton and Higgs doublets, respectively. One can fix, without loss of generality: n® =1
and ! = 1. 7 Using the above assumptions, the CP invariance constraints satisfied by the neutrino
Yukawa matrix, A, become [54]:

No = Napy . p) ==+L1. (1.42)

“More generally, R is invariant under a non-unitary RH neutrino trasformation, namely Ny — Si; N;, where S is
a non-singular matrix [53].

"Such values of the parameters n® and ™ can always be obtained due to a convenient redefinition of the phases
of the lepton and Higgs doublets in the lepton Lagrangian (1.2).
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1.4 CP Violation in Thermal Leptogenesis

Thus, under CP the neutrino Yukawa matrix elements would be real or purely imaginary, depending
on the CP parities of the RH neutrino fields. Note that CP invariance in the high energy see-saw
model would imply that CP is conserved in the lepton sector even after EW symmetry breaking. In
such a case, the phases which enter in the neutrino mixing matrix take the values (see Section 1.2):

0 = 7q, q=0,+1,+2,..., (1.43)
asy = nqd, ¢ =0,+1,+£2,..., (1.44)
a1 = nd", ¢"'=0,%£1,+£2,..., (1.45)
or equivalently [20]
Usj = Uajply, pf==1. (1.46)

Taking into account Eqs (1.42) and (1.46), one can derive the CP transformation properties of the
orthogonal matrix R [54]:

Ry = Rjiplpr - (1.47)

All the constraints derived above can be conveniently expressed in terms of the following quan-
tity [54, 55]:

ijma = Rijij;kUam- (1.48)

Indeed, from Eqgs (1.42), (1.46) and (1.47) one has:
e = (02002 (0) Pitma = Pitma - (1.49)
The previous equation implies that CP is violated in the lepton sector, provided Pjj,q is complex:
CPviolation <= Im(Pjgma) #0. (1.50)

Notice that Pjp,q is a see-saw invariant quantity, because it is defined in terms of the matrix R
and the neutrino mixing matrix U, which are basis independent.

In the next section CP violation in the lepton sector, enclosed in the CP violating phases of the
matrices R and U, will be discussed in connection with thermal leptogenesis. In particular, it will
be shown that the condition (1.50) “triggers” CP violation in the thermal leptogenesis scenario,
when the dynamics of the flavour states plays a role in the generation of the baryon asymmetry of
the Universe.

1.4 CP Violation in Thermal Leptogenesis
The different sources of CP violation that enter in the lepton sector play a crucial role in the gen-
eration of the baryon asymmetry of the Universe via the leptogenesis mechanism. In the following

the expression of the CP asymmetry in the decays of the heavy Majorana neutrinos is derived and
the connection to the CP violating phases in the PMNS is discussed in detail.
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1. SEE-SAW MECHANISM AND THERMAL LEPTOGENESIS

1.4.1 Implications of CPT and unitarity

A non zero CP asymmetry can be generated in the out-of-equilibrium decays of the heavy RH
Majorana neutrinos, only if the neutrino Yukawa couplings A\, are complex and are not constrained
by relation (1.41) or, equivalently, if the condition (1.50) is verified. The lepton CP asymmetry
in the decays of the RH field Nj, €., which determines the evolution of the lepton charge L,
(=€, p,7), is defined as:

T (N, — by H) —T(Ny, — (o H) (151)
e} FDk Y N

where I'py is the total decay rate of Nj:

Tpe = > [T(Nk = Lo H) +T(Ny — lo H)]
AT My, .

= (1.52)

The evaluation of the CP asymmetry in RH neutrino decays, given in (1.51), can be handled taking
into account the constraints on the transition matrix elements derived from CPT invariance and
unitarity of the S matrix [56]. Indeed, considering S = 1 + ¢T, the unitarity condition, ssf =
StS = 1, implies:

iTay — iTh, = [TTMwy = [TTT]us . (1.53)

The matrix element Ty, is related to the decay amplitude M(a — b), from an initial state of
particles a = {ai(p1), ..., an(pn)} to the final set b = {b1(k1), ..., by (km)}:

n m
Too =M (a—b) 2r)* 6 > pi = > k|, (1.54)
i=1 j=1
where p; (i = 1,...,n) and k; (j = 1,...,m) are the momenta of the incoming and outgoing

particles, respectively. Notice that if CP is preserved, T is a hermitian matrix and M(a — b) =
M(b — a)*. The absolute value of (1.53) provides a relation between the transition rates of the
processes a <> b :

2

Tal® = [Toal* = ~20m {[TT5 T, + |[TTM. (1.55)

Assuming that the transition rate for the process a — b can be perturbatively expanded in powers
of a small coupling constant a, i.e. M%) (a — b)|> = O(a*), it follows from (1.55) that the CP
asymmetry |[M®(a — b)|? — |IMF) (b — a)|?> must be at least of order o#*!. Therefore, CP
violating effects may arise only from loop corrections to the amplitude of the process a — b. These
corrections should arise from CP violating vertices and the particles running in the loops should
correspond to physical eigenstates. Notice that, even if the particles running in the loops have CP
violating coupling constants, they can produce a CP asymmetry of the form (1.55) only if their
masses are small enough to let them propagate on their mass-shells.
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ls la
N;
N TIRY ’ N
[ [ . - \\
H ‘g

)

Figure 1.1: Diagrams contributing to the CP asymmetry €,. The lepton field ¢z and the Higgs
field H in the loop are taken on-shell (see the text for details). The sum over the lepton doublets (3
(8 = e, u, 7) and RH Majorana fields N; (j # k) is implicit. Diagrams ¢) and i) are lepton flavour and
lepton number violating, while the amplitude given in #i7) is flavour changing but conserves total lepton
number, i.e. it does not contribute to the total CP asymmetry ey.

The previous considerations can be applied directly to the neutrino Yukawa interactions in the
see-saw Lagrangian. From CPT invariance, the rate of inverse decays, ¢, + H — N, is:

M (ba H = N2 = |M (N —» L, H) [ (1.56)
At tree-level, CP and T are conserved. Therefore, the RH neutrino decay amplitude satisfies:

MO(N, = 0, H) = MO (0, H— Np)* | (1.57)
where the superscript “(0)” indicates that the amplitude is evaluated at tree-level. From expres-
sions (1.54)—(1.56), the CP asymmetry in the decays, €xq, defined in (1.51), can be computed
as the convolution of tree-level amplitudes 8 MO(N, — £, H), MO(N,, — €5H ({5 H)) and
MOV 0s H (bg H) — o H), for B =e,pu, 7 (see Fig. 1.1). An explicit calculation gives:

Im {f iy, g MO(N, = b H)* S [ dllgy MO, = {n}) MO ({n} — £, H)}
{n}

€ka — )

f dﬁgmH {M(O)(Nk — fa f[)‘2

(1.58)

where > (n} indicates the sum over all possible on-shell states in the loops of Fig. 1.1, while the
phase space factor in the integral is, in general

- d3 a3
dthm’n = pn1 pnk

k
= GopaE, T @mpeEy, M0 (Pw ; P | k=2, (159)

pn, and p,; (j = 1,...,k) being the 4-momentum of the decaying RH neutrino Ny and the final
state n;, respectively.

8 At leading order in the small coupling constant the last term on the r.h.s. of (1.55) gives a negligible contribution.
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1. SEE-SAW MECHANISM AND THERMAL LEPTOGENESIS

For a non degenerate RH neutrino mass spectrum, |M; — M;| > I'p;, expression (1.58) becomes:

€ha = ( 1 5 [)\)\T Z Im {Aka [)\)\ Ikj )\]a} flx;)
1 1
& )[w Z Im{)\ka AT A% } — (1.60)
where z; = MZ /M7 and the loop function f(z;) is [57]:
flz) = ﬁ[ﬁ—i—l—(l—i—x)log(l—i—é)]%—%—i— oy fora;>1. 0 (1.61)

Thus, the total CP asymmetry ¢ associated to the decays of the RH neutrino Ny, is:

€ = E €la

07

- w ZIm{[AA ]k] }f(xj). (1.62)

A similar computation can be done in supersymmetrlc (SUSY) see-saw models. In_this
case, the RH neutrino IV}, and its supersymmetric partner Nj decay into the channels: Ni, Nk —
b H (fa H ). The sum of the asymmetries into leptons and sleptons is given by the expression (1.60),
with the loop function [57]: 1°

+..., forz; >1. (1.63)

f@) = —ﬁ[%—l—log(l—i—i)}—)—%

1.4.2 Sources of CP violation

The necessary amount of CP violation which allows to produce the observed value of the baryon
asymmetry of the Universe via the thermal leptogenesis mechanism, stems from both the “high”
energy CP violating phases in the matrix R (R—phases) and by the “low” energy Dirac phase ¢ and
Majorana phases ag; and a1, which enter in the PMNS matrix (1.11). The latter can, in principle,
be measured in neutrino physics experiments, as discussed in Section 1.2. Conversely, the purely
“high” energy CP violating R—phases produce physical effects only in processes that arise at some
high energy scale, such as in the production and decays of the heavy RH fields. Related to this,
there are three possibilities that should be considered [54]:

9SUSY soft breaking terms do not contribute to the CP asymmetries for a RH neutrino mass much larger than
the EW symmetry breaking scale, as in the standard see-saw scenario considered here.

ONotice that, in what concerns the CP asymmetry of RH neutrino decays, in the supersymmetric scenario one has
to consider the contribution of three additional diagrams, which are equivalent to the diagrams shown in Fig. 1.1,
provided one replaces the particles in the loops with the corresponding (on-shell) sparticles. Similar diagrams arise
when the final states in the RH neutrino decays are the SUSY partners of the left-handed lepton and Higgs doublets.
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i) CP is a symmetry of the lepton sector at “high” energies, i.e. neutrino Yukawa couplings
Ao satisfy the constraints reported in Eq. (1.42). Then, CP is also preserved in the “low”
energy limit and the neutrino mixing matrix U is constrained by Eq. (1.46). Moreover, as
a consequence of the CP symmetry, the R matrix elements are real or purely imaginary,
Eq. (1.47).

i) CP symmetry is violated at “low” energies by the charged current interactions in (1.3), i.e.
at least one of Eqs (1.43) — (1.45) does not hold. Therefore, CP is also violated at “high”
energy scales through the neutrino Yukawa couplings and it is not possible to use the matrix
R to cancel all the phases present in A. In this case, CP violating effects in “high” energy
phenomena are determined, in general, by the interplay between the phases §, a1 and agy
and the R—phases.

i7i) Charge current interactions are CP conserving and U satisfies constraints in Eq. (1.46), but
CP is violated at some “high” energy scale, i.e. not all the neutrino Yukawa couplings verify
the transformation properties given in Eq. (1.42). CP violation in this case is due to the
matrix R.

A phenomenological interesting situation within point i) corresponds to the particular case of a
CP conserving ! matrix R, Eq. (1.47). In such scenario the effective CP violating phases which
enter in “high” energy phenomena, can be directly linked to the Dirac and/or Majorana phases of
the PMNS matrix, accessible in neutrino experiments (see Section 1.2). In particular, the source
of CP violation necessary for the generation of the observed baryon asymmetry of the Universe
in thermal leptogenesis can be identified, exclusively, with the phases §, as; and agzy. A thorough
analysis on this issue was performed in [54, 59, 60, 61] in the context of flavoured leptogenesis,
where flavour effects [62, 63, 64, 65, 66, 67, 68] may play an important role in the determination of
the observed baryon asymmetry. The topic of flavour effects in thermal leptogenesis will be briefly
discussed in Section 1.5.

Before analyzing the role of flavour effects in leptogenesis, it is convenient to express the CP
asymmetry €g,, derived Eq. (1.60), in terms of the Casas-Ibarra parametrization of the neutrino
mixing matrix A\, Eq. (1.33). Henceforth, it is assumed a see-saw scenario in which the RH neutrino
mass spectrum is strongly hierarchical: M3 > M;. In this case, the lepton number and flavour
asymmetries, which are partially converted into a baryon number symmetry by fast sphaleron
processes, are generated only in the out-of-equilibrium decays of the lightest one, Ni. A possible
lepton charge asymmetry produced in the decays of the heavier states, is expected to be washed
out by the Yukawa interactions of Ni. Thus, the CP asymmetry €14, relevant for leptogenesis, can

171t should be noted, however, that constructing a viable see-saw model which leads to real or purely imaginary
R;; might encounter serious difficulties (see e.g. [58]).

19



1. SEE-SAW MECHANISM AND THERMAL LEPTOGENESIS

be written as [54]:

Im { 3° m}/Q mi/Z Ugj Uak Baj Rag
3M, jk

 16m2 omi |Ra; E
3

€la =

Imz:m;/2 mz/Q Pijka
16mv? > mi |Rul®
i

where Pjjr, was defined in (1.48). Notice that, the CP asymmetry (1.64) depends only on basis
invariant quantities and, therefore, is unique in all the see-saw models belonging to a particular
invariant class C(R) (see Section 1.3). From the previous formulation of €, one can see that the
source of CP violation required in order to have successful leptogenesis is provided, in general, by
the interplay between the three “high” energy phases that enter in the elements of the orthogonal
matrix R and the “low” energy CP violating phases §, a1 and aj3; in the neutrino mixing matrix
U. The total CP asymmetry €1, defined in (1.62), is easily derived:

S Im <2k: mi R%k>

2

(1.65)

€1 =

Thus, €; is sensitive only to the R—phases and there is no correlation with any of the low energy
sources of CP violation in the lepton sector. It can be shown [66] that scenarios in which ¢; =0
while €1, # 0, entail the possibility that the phases in the light neutrino mixing matrix U provide
enough CP violation for successful leptogenesis. In [54, 55], in particular, it was shown that if flavour
effects are relevant and the heavy Majorana neutrinos NV, have a hierarchical mass spectrum, then
the observed baryon asymmetry can be produced even if the only source of CP violation is the
Majorana and/or Dirac phase(s) in the PMNS matrix. The same result was shown to hold also for
quasi-degenerate in mass heavy RH Majorana neutrinos [54, 55].

1.5 Flavour Effects in Thermal Leptogenesis

The notion of flavour enters in the total lepton Lagrangian, £°P, via the charged lepton Yukawa
interactions, mediated by the couplings he, h, and h, (see Eq. (1.4)). They give rise to the
masses of charged leptons in the SM, after the spontaneous breaking of the EW symmetry. In
the early Universe these interactions can be fast enough to put in thermal equilibrium processes
like: eqr, + €ar — h°, Var, + €ar — ht or eqr, + €ar — hOF + AT vor + €ap — KO + ATO,
with A = W3, B and A* = W being the SU(2) x U(1) gauge bosons. These interactions are in
equilibrium if the corresponding rate I', is larger than the expansion rate of the Universe. The
rate I',, can be estimated as [69]:

Iy ~ 5x 102 h2T. (1.66)
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The expansion rate of the Universe is H & 1.669i/2T2/Mp1, where Mp; = 10" GeV is Planck
mass, while g, indicates the number of relativistic degrees of freedom present in the thermal bath.
When the temperature drops due to the expansion of the Universe, the tau Yukawa interactions
enter in thermal equilibrium, i.e. I';y > H. This condition is realized as soon as T' < 10'? GeV. For
the muon the same will happen at 7' < 10? GeV. 2 Hence, for T >> 10'? GeV the charged lepton
Yukawa interactions are negligible and the notion of flavour in the thermal plasma has no meaning.
The physical lepton states arise from the combination of the (flavour) fields ¢, coupled to the RH
Majorana neutrino Ny, i.e. 13

1

10 = m%pgam, (1.67)
_ 1 _
%) = W;Aka!€a>. (1.68)

When the charged lepton Yukawa interactions are in thermal equilibrium (I', > H) and they are
faster than the inverse decay processes ¢, + H,{, + H — Ny, the coherence of the state |f}) is
spoiled and the physical basis is given by |¢,) and the component of |¢}) which is orthogonal to
|o). In this case, the Higgs bosons will interact with the incoherent lepton flavour combinations
given in the physical basis instead of the coherent superpositions |¢) and |[¢}), produced in the Ny
decays.

Following the previous discussion, there are three possible regimes of generation of the baryon
asymmetry in the thermal leptogenesis scenario [65, 66, 67]. Considering a hierarchical neutrino
mass spectrum, M 3 > M, as already done at the end of Section 1.4.2, the leptogenesis time scale
is set at a temperature T~ M;. For T ~ M; > 10'? GeV the lepton flavours are indistinguishable
and the one-flavour approximation is valid: the physical states interacting in the plasma at the
leptogenesis scale are |¢1) and [/1). The relevant CP asymmetry in this case is ¢; = €1, + €1 + €17
and it depends only on the R—phases. Hence for real or purely imaginary CP conserving Ry, it is
impossible to produce any baryon asymmetry (see Eq. (1.65)) . If 10° GeV ST ~ My < 102 GeV,
the tau Yukawa interactions enter in thermal equilibrium and the Boltzmann evolution of the lepton
charge L., proportional to the CP asymmetry €y, is distinct from the evolution of the (e+p)—flavour
number density (lepton charge L, = L.+ L,,), which is related to the CP asymmetry €1, = €1 +€1,.
This corresponds to the so-called two-flavour regime. * At smaller temperatures, T ~ M; < 10°
GeV, also charged muon Yukawa interactions reach thermal equilibrium and the evolution of the
p—favour number density (lepton charge L,) becomes distinguishable in the thermal plasma. In
this three-flavour regime the physical basis coincides with the standard flavour basis: £, £,, and /.

In the one-flavour scenario, T ~ M; > 10'2 GeV, the baryon asymmetry of the Universe Y3, in

2Tn SUSY we have h, = m. /(vsin 3), so that the tau Yukawa is in equilibrium at temperatures T' < (14 tan? ) x
10'2 GeV, where tan f is the ratio of the VEV of the two Higgs doublets present in the minimal SUSY extension of
the Standard Model.

3Note that, if neutrino Yukawa coupling are complex, the state 5 defined in (1.68) does not correspond to the
charge conjugated state of £ in (1.67).

4 As was suggested in [54] and confirmed in the more detailed study [70, 71], in the two-flavour regime of leptogenesis
the flavour effects are fully developed at M; <5 x 10' GeV.
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the formulation given in Eq. (4), can be computed as:

12
Y, =@ — mi) . 1.69
B 37g. 17 (m1) (1.69)

In the previous equation, g, = 217/2 is the number of (SM) relativistic degrees of freedom in the
thermal bath and m is the wash-out mass term:

_ o W, 2

m; = Tl v = ; ‘le‘ mpg , (170)
where the Casas-Ibarra parametrization was used in the last equality. The dimensional parameter

m1 measures the strength of neutrino Yukawa interactions at the leptogenesis time. Indeed, one
has:

I'pi mi
= (1.71)
where I'p; is the total decay rate of Ny (see Eq. (1.52)) and
02
m. = 8tom Hlp_y, = 11X 1073eV. (1.72)

1

From the orthogonality condition of the matrix R, one has: m; > !Zk R%kmﬂ > min(mg). The
range of parameters for which m; 2 m, is referred to as strong wash-out. Conversely, if m1 < m.,
the leptogenesis scenario is said to happen in a weak wash-out regime.

The efficiency function 0 < n < 1, that takes into account the wash-out effects of the total lepton
charge asymmetry produced by the out-of-equilibrium decays Ny, can be parametrized as [72]:

—1
(x) = 3.3 x 107 3eV N X 116 (1.73)
A= X 0.55 x 103V ' '

The previous expression is obtained by performing a fit of the numerical solution of the set of
Boltzmann equations relevant for leptogenesis. The main processes that enter in the computation
are: 1) decays and inverse decays, N1 <> ¢; H and N; < A H:; i) AL = 1 Higgs-mediated scattering
processes, N1 {1 <> Qg7 tg (s-channel) and Ny G5y, <> {1 tr, N1tg <> {1 g3, (t- and u-channels), where
gsr, and tg are the third family SU(2) quark doublet and singlet, respectively; iii) AL = 1 gauge
scatterings, Ny ¢ — H A, with A = W9 and B; iv) AL = 2 scattering processes, {1 H — {1 H
(s-channel), ¢1 ¢, — H H (t- and u-channels), where in the s-channel process only the off-shell
contribution of the RH neutrino fields is considered (the on-shell part is already taken into account
in the decay and inverse decays). One can prove [72] that the AL = 2 scattering processes are
out-of-equilibrium if leptogenesis happens at T~ M; < 10'* GeV and can be safely neglected. In
this case, the efficiency factor n will depend only on the effective wash-out mass parameter myq,
according to Eq. (1.73). For M; 2 104 GeV, Eq. (1.73) is not anymore a good approximation.

In the two-flavour regime, 10° GeV < T ~ M; < 102 GeV, the baryon asymmetry predicted
in the case of interest is:

12 417 390
Ve & _ 417 (2 mn)) 1.74
B 370, (61077 (589 m10> + €17 M (589 mi >> ( )
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with €1, = €1¢ + €14, M1o = Mie + M1y, Mia defined as [65, 66, 67],

2
(1.75)

Mia =

Zle m/ 2 U%,

The terms 1(390m1,/589) = n(0.66m1,) and 1n(417m1,/589) = 1n(0.71m1,) are the efficiency factors
for generation of the asymmetries €1, and €1,. In the flavoured scenario, such efficiency factors are
well approximated by the expression [67]:

8.25 x 1073 eV X 116
X) = - . 1.76
n(X) < X i <2><104eV> ) (1.76)
At T ~ M; < 10° GeV, the three-flavour regime is realized and [67]:
12 151 344 344 _
Yp & — . 1.77
B 370 <61e n (179 mle> +eun (537 mlu) +€1:7m (537 >> ( )

The expression of the CP asymmetries €1, which enter in the computation of the total baryon
asymmetry Yp (see Eqs (1.74) and (1.77)) in the thermal flavoured leptogenesis scenario, depend
on the Dirac and Majorana CP violating phases in the PMNS neutrino mixing matrix. As pointed
out in the previous section, one can distinguish different scenarios according to the dominant source
of CP violation which determines the CP asymmetry.

A phenomenological interesting case is obtained when the only source of CP violation which
enters in the CP asymmetries is provided exclusively by the phases of the PMNS matrix, that is,
when the elements of the matrix R are all real or purely imaginary (see Eq. (1.47)). Actually, it
can be shown [54] that such scenario is encountered if the less restrictive condition Re(Ry; R1x) = 0
or Im(R1jRy;) = 0, for j # k, is fulfilled. In this case, it proves convenient to cast the flavour CP
asymmetries €1, in the form [73]:

m (lele) =0

> > /mm (my —my) prj| Rig R Im (Uzy, Uay)

M1 k j>k

o= , 1.78
o= 7 62 > mi | Ry |? (1.78)
Re (lele) = 0:
>0 ALl my (m; + my) prj|RigRij| Re (UyUaj)
S 3My 'k j>k (1.79)
la 167‘(?}2 Zz m; ‘Rlz‘ ’

where it is assumed that RijRi, = pji |[RijRik| (1.78) or Rij Ry, = ipji |Rij Rkl (1.79), with
pjk = £1, for j # k. One can easily prove that for real or purely imaginary Ri;Ry, for j # k,
in the two flavour regime and for a hierarchical RH neutrino mass spectrum, the two relevant CP
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1. SEE-SAW MECHANISM AND THERMAL LEPTOGENESIS

asymmetries in the computation of the baryon asymmetry Yp (1.74), are related in the following
way:
€1r = —€lo, (180)

where €1, = €1, + €1e.
Few comments are here in order:

i) Real (purely imaginary) R, R1; and purely imaginary (real) UZ,U,;, j # k, implies violation
of CP symmetry by the matrix R.

i1) In order to break CP at low energies [41, 42], both Re(U},.Uyj) # 0 and Im(U}, Uyj) #
0 should be satisfied (see [54] for further details).

i1i) If Ryj, for j =1,2,3, is real or purely imaginary, as the condition of CP invariance requires,
Eq. (1.47), of the three quantities Rjj Ri2, R11R13 and R12R;3, relevant for the computation
of the CP asymmetries €1,, not more than two can be purely imaginary, i.e. if, for instance,
Ri1R12 = ip12 |R11Ri2| and Ri2R13 = ipeg |Ri12R13], then one has Ry Ri3 = p13 |Ri1 R3]

In Chapter 2 a detailed analysis of thermal flavoured leptogenesis is reported in the case when
the source of CP violation, necessary for successful leptogenesis, is provided only by the the Dirac
and/or Majorana CP violating phases in the PMNS matrix. Particular emphasis is given to the
effects played by the lightest neutrino mass, min(m,ms,ms), in the determination of the baryon
asymmetry Yp.

In the general case of complex matrix elements R;;, the R—phases provide a further source of
CP violation in the lepton sector, which can be relevant at the time scale of leptogenesis, T" ~ M.
In order to study the interplay of the different sources of CP violation, it proves convenient to write
the general expression of the CP asymmetry €14, @ = e, u, 7, given in (1.64), in the following form
[74, 75]:

3 M, 1

o= " 167102 >k M| Ragl? ;m% el s g/; Ve il
(1.81)
X [(mp — mg) cos(pg,) Im (U;B Uap) + (m, 4+ mg) sin(¢g,) Re (U;B Uap)] } ,
where ¢1; are the CP violating R—phases:
Ry; = \le\e“alj and  @;; = @1 + P1j - (1.82)

The first term in the curly brackets in Eq. (1.81) represents the contribution to €1, from the “high
energy” CP violation, originating entirely from the matrix R, while the terms in the square brackets
are “mixed”, i.e. they are due both to the “low” and “high” energy CP violation, generated by
the neutrino mixing matrix U and by the matrix R. Obviously, if ¢1; = kjn/2 (k; = 0,1,2, ...,
and 7 = 1,2,3) the “high energy” part is zero, while the “mixed” term reduces to a “low energy”
contribution, in the sense that, with exception of very special cases discussed before, the only
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1.5 Flavour Effects in Thermal Leptogenesis

source of CP violation in leptogenesis will be the PMNS matrix U and the expression of the CP
asymmetry €1, reduces to the formulas (1.78) or (1.79). It is easy to show, taking into account the
unitarity of the matrix U, that in the two flavour regime the expression for the CP asymmetry ey,
can be simply obtained from €y,:

€10 = €1e +e1y = e1-(|Un]? = 1= [Upi|*, UlyUrs — —UkUrs), for k=23.  (1.83)

The interplay between the “high energy” source of CP violation, provided by the R—phases
and the “low energy” phases d and apy 31 of the PMNS neutrino mixing matrix, will be analyzed
in detail in Chapter 3.
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Chapter 2

Effects of Lightest Neutrino Mass

In this chapter a model independent analysis of the thermal leptogenesis scenario is presented.
The amount of CP violation necessary for the generation of the observed baryon asymmetry of
the Universe is provided only by the Dirac and/or Majorana CP violating phases in the PMNS
matrix U.

The RH neutrino mass spectrum is strongly hierarchical (M; < Ma 3) and the results derived in
Chapter 1 are used. Leptogenesis takes place in the two-flavour regime (10° GeV < M; < 102 GeV).
Analytical estimates and a numerical study of the effects of the lightest neutrino masses in the
generation of the baryon asymmetry are reported. Such results are based on the work [73].

The analysis is performed for two possible types of light neutrino mass spectrum allowed by
the data: i) with normal ordering (Am3 > 0), m; < mg < mg, and ii) with inverted ordering
(Am3 < 0), mg < my < ma. The case of inverted hierarchical (IH) spectrum, ms < mj 2, and real
(and CP conserving) matrix R is investigated in detail. Results for the normal hierarchical (NH)
case, mj < may 3, are also derived.

The computation is performed neglecting renormalisation group (RG) running [76] of m; and
of the parameters in the PMNS matrix U, from My to M;. This is a good approximation for
min(m;) < 0.10 eV, i.e. for the NH and IH neutrino mass spectra, as well as for a spectrum with
partial hierarchy (see, e.g. [77]). Under the indicated condition m;, and correspondingly Am3 and
Am%, and U can be taken at the scale of the order My, at which the neutrino mixing parameters
are measured.

2.1 Inverted hierarchical light neutrino mass spectrum

The case of IH neutrino mass spectrum, mg < my < ma, mi2 = 4/ |Am2A|, is of particular interest
since, within the leptogenesis scenario discussed here, for real Ry; (j = 1,2,3), IH spectrum and
negligible lightest neutrino mass ms =2 0, it is impossible to generate the observed baryon asymmetry
Yp in the flavoured regime, ! if the only source of CP violation are the Majorana and/or Dirac
phases in the PMNS matrix. Indeed, for m3 < m; < mg and real Rij, the terms proportional
to /m3 in the expressions of the CP asymmetries €4, Eq. (1.78), and wash-out mass parameters

'A detailed treatment of this region of the parameter space is reported in [54].
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2. EFFECTS OF LIGHTEST NEUTRINO MASS

M1a, Eq. (1.75), are negligible if m3 =~ 0, or if Ri3 ~ 0 and Ry1, Ria # 0, with R?, + R?, ~ 1
from the orthogonality condition. This implies that the CP asymmetries €1, are suppressed by the
factor Am?2 /(2Am3) = 1.6 x 1072, while |Ry1], |Ri2| < 1 and the resulting baryon asymmetry is
too small [54]. The same suppression is also present in the one-flavour regime, M; > 10'? GeV,
when Rj3 ~ 0 and the product Ri; Ri2 has non-trivial real and imaginary parts [78].

On the other hand, if the lightest active neutrino mass mg is not negligible, with still m3 < my 2,
the terms o< \/mg3 in €14 are the dominant contributions, provided that:

2 3
AmZ\7T |R
) ( mQ) Bisl . (2.1)
Jam2 ) \AmG ) [Riq)

This inequality can be fulfilled in the limits Rq1 =~ 0, or R12 = 0, and if mg is sufficiently large.
The latter condition can be satisfied for m3 <5 x 1073 eV < /|Am3|.
In the following, the parameter space relevant for successful leptogenesis is discussed more

quantitatively. A complete numerical analysis as well as useful analytical approximations of the
baryon asymmetry Yp (see Eq. (1.74)) are perfomed.
2.1.1 Analytical estimates: the case R;; = 0

For Ry; = 0 the CP asymmetry €, = —€1, = (€1 + €1,,) reported in (1.78) can be expressed as:

~ 3M1 ms3 *

€1y = — 167T’l)2w/m3 ma <1 - E) pa3rIm (UZUss) (2.2)
where
ma = \Jmd+am], (2.3
|Ri3R12|

- , 2.4
|Ri2|? + 52| Ras|? 24
Im (U:zUTg) = —c93c131m (ei(amiam)ﬁ(qgsgg + 812023813€7i5)> . (2.5)

The two relevant wash-out mass parameters are in this case:

mir = my R|Ural® +ms Ris|Urs|* +2 ma g pas | RizRis| Re (UfyUsrs) (2.6)
Mie = Mie+ My, =My R, +mg3 Rf?) — Mir,

where py3 = sign(Ri2R13).

The orthogonality of the matrix R implies that R}, + R3, + R?; = 1, which in the case under
consideration reduces to R%z + R%?) = 1. It is not difficult to show that for real Ris and Ri3
satisfying this constraint, the maximum of the function r, and therefore of the CP asymmetry |e;,|,
is realized for Rqi5 and Ri3 given by:

9 ms 9 mo

R, =8 gz M2 R < Ry 2.8
2= [ . 12 13 (2.8)
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2.1 Inverted hierarchical light neutrino mass spectrum

At the maximum, |r| is equal to:

1 2
1 (ma\2 1 [ \IAmal
= (=) - [X— = 2.
max(r) = 5 (22) =5 () 29)
and the CP asymmetry |e;,| takes the form:
. 3M, 30,
le1r] 2 o5 (ma —ma) [Im (U2Urs)| = 55—/ |Am3 | [Im (U7, Urs)] - (2.10)

The second approximate equalities in Eqgs (2.9) and (2.10) correspond to IH spectrum, i.e. to
ms < mg = /|Am%|. Thus, the maximum of the asymmetry |e1,| i) is not suppressed by the

factor Am?2 /(Am3) and ii) practically does not depend on mg in the case of IH spectrum. One
can estimate

- \/1Ami| M
le1r] 22 5.0 x 1078 T2_18 A ( L )\Im(U:QUTg)y : (2.11)

/‘AWQA’ 0.05 eV 109 GeV

Because of max (|[Im(U*,U.3)|) = 0.46, for, e.g. sin? 2023 = 1, sin® f12 = 0.30 and sin’ #13 < 0.04 and
max(|n(0.66m1,) —n(0.71m1,)|) = 7x 1072, an absolute upper bound on the baryon asymmetry Yz
in the two flavour regime for IH light neutrino mass spectrum and real matrix R (i.e. real Ry;Ry)
is derived:

\/1Amy | M
V5| S 4.8 x 10712 A ( ! ) . (2.12)

0.05 eV 109 GeV

This upper bound allows to determine the minimal value of M; for which it is possible to reproduce
the observed value of |Yg| 2 for IH spectrum, real matrix R and Ry = 0:

M 2 1.7 x 10'° GeV . (2.13)

The values of Ry, for which |e1,| is maximal, can differ, in general, from those that maximize
|Yp| due to the dependence of the wash-out mass parameters and of the corresponding efficiency
factors on Ryo. However, this difference, when it is present, does not exceed 30%.

For Rjs and R;3, which maximize the ratio |r| and the asymmetry |e;1,|, the relevant wash-out
mass parameters are given by:

~ mo ms 2 2 "

= —= <~ | |U U 2 Re (UX,U. 2.14
mir - [ [Ur2l” + [Urs|® + 2 pa3 Re (USUr3)] (2.14)
~ mo 1ms ~

= 22— — _— 2.15
R (215)

?In all the numerical analysis performed in this chapter, the baryon asymmetry |Yz| takes values in the interval
8.0x 107" < |Vp| £ 9.2 x 107", which is compatible with the observed value reported in (5).
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2. EFFECTS OF LIGHTEST NEUTRINO MASS

Equations (2.11), (2.14) and (2.15) suggest that in the case of IH light neutrino mass spectrum

with non-negligible ms3, ms < {/|Am3|, the generated baryon asymmetry |Yp| can be strongly

enhanced in comparison with the asymmetry |Yp| produced if mg were approximately zero. The
enhancement can be by a factor of ~ 100. Indeed, the maximum of the CP asymmetry |e;,| (with
respect to |Ri2|), Eq. (2.10), does not contain the suppression factor Am? /(2Am3%) = 1.6 x 1072

and its magnitude is not controlled by ms, but rather by 4/ |Ami|. At the same time, the wash-out
mass parameters mi, and my,, Eqs (2.14) and (2.15), are determined by mams/(ma + ms) = ms.
The latter in the case under discussion can take values as large as ms3 ~ 5 x 1073 eV. The efficiency
factors 1(0.66m1,) and 7(0.71m1,), which enter into the expression for the baryon asymmetry,
Eq. (1.74), have a maximal value 7(X) 2 (6 + 7) x 1072 when X 2 (0.7 + 1.5) x 1072 eV (weak
wash-out regime). Since the range of values of m3 for IH spectrum extends to about 5 x 1073 eV,
one can always find a value of mg in this range such that my, or mi, takes a value maximizing
1(0.66m1,) or n(0.71my,), and |n(0.66m1,) —n(0.71m1,)|. This qualitative discussion suggests that
there always exists an interval of values of mg for which the baryon asymmetry is produced in the
weak wash-out regime. On the basis of the above considerations, one can expect that successful
leptogenesis is possible for non-negligible ms in the case of IH spectrum even if the requisite CP
violation is provided by the Majorana or Dirac phase(s) in the PMNS matrix.

2.1.2 Leptogenesis due to Majorana CP violation

For 0 = 0 (m), one has [Im(U,U;3)| = cozci3(s23c12 (f) €23512513)| sin aize /2| and correspondingly
0.36] sin aze/2| S [Im(UX,U3)| < 0.46]sin aiga /2|, where aga = ag1 — 1. 2 The terms proportional
to s13 have a subdominant effect on the magnitude of the calculated |e;,| and |Yp|.

It is easy to check that the CP asymmetry |e;;| and the wash-out mass parameters mi; 1,
remain invariant with respect to the changes pas — —po3 and ass — 27 — a30. Thus, the baryon
asymmetry |Yp| satisfies the following relation:

|YB(p23, az2)| = |YB(—p23, 2m — az2)| . (2.16)

Therefore, one can work with a fixed value of the parameter ps3 without loss of generality. In the
following, po3 = +1 is assumed.

In the case of agy = m, § = 0; 7, and real Ri;Ry;, the CP asymmetry e, is still different
from zero and the source of CP violation is provided only by the matrix R (see discussion after
Eq. (1.79)). For such value of the effective Majorana phase asga |€17| is maximized. The maximum
of the baryon asymmetry Yp, instead, is reached for asy € [7/2,27/3] if pas = +1 or age €
[47/3,3m/2] if pas = —1. The maximal value of |Yp| at azy = 7 is smaller at least by a factor
of two than the value of |Yp| at its absolute maximum (see further Fig. 2.3). Indeed, for asy ~ 7
there is a rather strong mutual compensation between the asymmetries in the lepton charges L,
and (L. + L,) owing to the fact that, due to Re(U%Urz) = 0, my, and mi, have relatively
close values and [7(0.66m1,) — n(0.71m1,)| S 1072. Actually, in certain cases one can even have
[7(0.66m1,) — n(0.71m1,)| =~ 0, and thus |Yz| = 0, for ase lying in the interval asy € [r,4m/3]

3 In the following estimates, it is always assumed sin? 2093 = 1, sin 6012 = 0.3 and the limit sin? 615 < 0.04, which
are compatible with the 30 bounds on neutrino mixing angles (see Tab. 1.1).
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Figure 2.1: Values of m3 and M; for which the flavoured leptogenesis is successful, generating baryon
asymmetry |Yz| = 8.6 x 107! (red/dark shaded area). The figure corresponds to hierarchical heavy
Majorana neutrinos, light neutrino mass spectrum with inverted ordering (hierarchy), ms < m; < mao,
and real elements [21; of the matrix R. The minimal value of M; at given ms, for which the measured
value of |Yp| is reproduced, corresponds to CP violation due to the Majorana phases in the PMNS
matrix. The results shown are obtained using the best fit values of neutrino oscillation parameters:
Am?2 =8.0 x 107° eV?, Am3 = 2.5 x 107 eV?, sin® 1, = 0.30 and sin® 2603 = 1.

(see Fig. 2.3). Similar cancellation can occur for s;3 = 0.2 at ass ~ 7/6. Obviously, |[Yg| = 0 for
azo = 0 and 27.

As mg increases from the value of 1071° eV up to 107% eV, in the case of Ry; = 0, the maximum
possible |Yp| for a given M; increases monotonically, starting from a value which for M; < 102
GeV is much smaller than the observed one, max(|Yp|) < 8.77 x 107! (see Fig. 2.2 further in the
text). At approximately mz = 2 x 1076 eV, max(|Yp|) ~ 8.77 x 107! for M; ~ 5 x 10! GeV. As
ms increases beyond 2 x 1079 eV, max(|Yg|) for a given M; continues to increase until it reaches
a maximum. This maximum occurs for ms such that 0.71m;, = 9.0 x 10~* eV and 1(0.71my,) is
maximal, i.e. 7(0.71m1,) = 6.8 x 1072, while 7(0.66/m1,) is considerably smaller. As can be shown,
for peg = +1, the maximum value of |Yp| always takes place at age = 7/2. For aigo = 7/2, s13 =0
and po3 = +1, max(|Yp|) is located at m3 = 7 x 10~* eV. It corresponds to the CP asymmetry
being predominantly in the (e 4+ p)—flavour. As mg increases further, |7(0.66m1,) — n(0.71m1,)|
and correspondingly |Yg|, rapidly decrease. At certain value of msg, typically lying in the interval
ms3 ~ (1.5 +2.5) x 1073 eV, one has [(0.66m1,) — n(0.717m1,)| ~ 0 and |Yg| goes through a deep
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minimum (see Fig. 2.2).This minimum of |Ypg| corresponds to a partial or complete cancellation
between the CP asymmetries in the 7—flavour and in the (e 4 pu)—flavour. In the previous example
of gy = /2, s13 = 0 and pa3 = +1, the indicated minimum of |Yp| occurs at m3 = 2.3 x 1073 eV.
As mg increases further, |7(0.66m1;) — n(0.71m1,)| and |Yp| rapidly increase and |Yg| reaches a
second maximum, which in magnitude is of the order of the first one. This maximum corresponds
to the CP asymmetry being predominantly in the 7—flavour rather than in the (e + p)—flavour.
Indeed, 1(0.66m.,) = 6.8 x 1072 and n(0.71ms) is substantially smaller. For po3 = +1, s13 = 0 or
s13 = 0.2 and § = 0, it takes place at a value of asy close to 7/2, while for s13 = 0.2 and 0 = T,
it occurs at agy = 27/3. In the case of pos = +1, s13 = 0 and ase = 7/2, the second maximum of
|Yp| is located at mg = 7 x 1073 eV. As mj3 increases further, Y| decreases monotonically rather
slowly.

These features of the dependence of |Yp| on mg discussed above for Ryj; = 0 are confirmed by
a more general analysis in which, in particular, the value of Ry; is not set to zero a priori. The
results of this analysis are presented in Fig. 2.1, while Fig. 2.2 illustrates the dependence of |Yp|
on ms in the case of Ry; = 0.

The correlation between the values of M7 and mg for which one can have successful leptogenesis
is shown in Fig. 2.1. The figure is obtained by performing, for given ms from the interval 10719 <
ms < 0.05 eV, a thorough scan of the relevant parameter space searching for possible enhancement
or suppression of the baryon asymmetry with respect to that found for ms = 0. The real elements
Ry; are allowed to vary in their full ranges determined by the condition of orthogonality of the
matrix R: R} + R?, + R?; = 1. The Majorana phases az; 31 are varied in the interval [0, 27]. The
calculations are performed for three values of the CHOOZ angle 613, corresponding to sinfi3 =
0; 0.1; 0.2. In the cases of sin 3 # 0, the Dirac phase 0 is allowed to take values in the interval
[0,27]. The heavy Majorana neutrino mass M; takes values in the two-flavour regime of thermal
leptogenesis, 10? GeV < M; < 10'2 GeV. For given ms, the minimal value of the mass M, for which
the leptogenesis is successful, generating |Yp| &~ 8.77 x 10~!!, is obtained for the values of the other
parameters which maximize |Yp|. The min(M;) obtained in this way does not exhibit any significant
dependence on s13. If ms < 2.5x 1077 eV, leptogenesis cannot be successful for M; < 10'? GeV: the
baryon asymmetry produced in this regime is too small. As mg increases starting from the indicated
value, the maximal |Ypg| for a given M; < 10'2 GeV, increases monotonically. Correspondingly,
the min(M7) for which one can have successful leptogenesis decreases monotonically and for ms3 2
5x 1079 eV one has min(M7) < 5x 10* GeV. The first maximum of |Yg| (minimum of M), as ms3
increases, is reached at m3 = 5.5 x 1074 eV, azy = 7/2 (a9 =2 0.041, a3; = 1.65), Ry = —0.061,
Ris =2 0.099, and R13 = 0.99. At the maximum one has |Yp| = 8.77x 107! for My ~ 3.4x10'° GeV.
The second maximum of |Yz| (or minimum of M) seen in Fig. 2.1 corresponds to m3 =~ 5.9 x 1073
eV, Q32 = 7T/2 (0421 = —0.022, s3] = 1.45), R11 = —0.18, R12 =~ (0.29 and R13 =~ —0.94. The
observed value of |Yp| is reproduced, in this case, for My ~ 3.5 x 10'° GeV.

Similar features are seen in Fig. 2.2, which shows the dependence of |Yg| on ms for Ry; = 0,
fixed My = 10" GeV, azs = /2, s13 = 0 and pa3 = +1. In the case of azy = 7/2, 513 =0.2, 6 =0
and pe3 = +1, the absolute maximum of |Yp| is obtained for m3 = 6.7 x 1073 eV and |Ry2| = 0.34
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Figure 2.2: The dependence of [Yg| on ms in the case of IH spectrum, real R;;Rix, Majorana CP
violation, Ry; = 0, azs = 7/2, s13 = 0, My = 10! GeV, and for i) sign(Ri2R13) = +1 (left panel), and
i1) sign(Ri2R13) = —1 (right panel). The baryon asymmetry |Yz| was calculated for a given mg, using
the value of |Ry2|, for which the asymmetry |e1,| has the maximum value. The horizontal dotted lines
indicate the range of |Y| compatible with observations: |Yz| € [8.0,9.2] x 1071,

(see Fig. 2.3, left panel). At this maximum 7r(0.66m,) = 0.067, n(0.71m1,) = 0.013 and

I VR

[Yp| = 2.6 x 10712 (2.17)

0.05 eV 109 GeV

Correspondingly, the observed baryon asymmetry |Yz| can be reproduced if My 2 3.0 x 100 GeV.
If s;3 = 0, the same result holds for M; 2 3.5 x 10'° GeV. The minimal values of M; thus found
are somewhat smaller than min(M;) = 5.3 x 10'° GeV obtained in the case of negligible ms3 = 0
(R13 = 0) and purely imaginary Ry R12 [54]. The dependence of the baryon asymmetry on asy in
the case of s13 = 0; 0.2 discussed above is illustrated in Fig. 2.3.

Summarizing, the results corresponding to the case of Ry; # 0, j = 1,2, 3, which are shown in
Fig. 2.1, are very different from the results obtained for, e.g. R11 = 0 and R12, R13 # 0. According to
the values of M in Fig. 2.1, for which successful leptogenesis is possible, one finds either m, ~ 1073
eV and mir ~ 2 x 107% eV, or mi, ~ 2 x 1072 eV and m, > 1072 eV, practically for any ms
from the interval 10710 eV < m3 < 5.0 x 1072 eV. This explains why successful leptogenesis is
reached for min(M;) < 5 x 10 GeV even when mz = 5 x 1076 eV. If Ry; = 0, for m3 < ma
and Rjo and Rj3 which maximize the asymmetry |ei,|, as it follows from Eqs (2.14) and (2.15),
the relevant wash-out mass parameters are mi, = 7, ~ ms. Consequently, for ms < 1073 eV,
one also has mi,, M1, < 1073 eV and for M; < 10'2 GeV the baryon asymmetry generated under
these conditions is strongly suppressed, |Yp| < 8.6 x 10711,
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Figure 2.3: The dependence of |Yg| on asge (Majorana CP violation), in the case of TH spectrum,
real lele, R11 = 0, M1 = 1011 GeV, and for ’L) 13 = 02, 6=20 (W), |R12| = 0.34 (038), ms =
6.7 (4.3) x 1073V, sign(R12R13) = +1 (left panel, red (blue) line), and ii) s13 = 0, sign(R12R13) = —1,
|Ri2| = 0.41, m3 = 4.2 x 1073eV (right panel). The values of ms3 and |Rj2| used maximise |Yz| at 4)
agy =m/2 (27/3) and i) ase = 37/2. The horizontal dotted lines indicate the range of |Yp| compatible
with observations: |Yg| € [8.0,9.2] x 10711,

2.1.3 Analytical estimates: the case R = 0

One obtains similar conclusions in the case of Ris = 0 and Ri1, R13 # 0. The corresponding
formulae can be obtained from those derived previously for Ry; = 0 by replacing Rio with Riq,

~Y

U¥, with UY; and mg with m; = \/mg + |[Ami | — Am2, = \/mg + |Am%| = mg. In this case
lerr| o< Im(U¥ Urs)| = |casc13(s12523F c12¢23513) sin aiz1 /2|, where the minus (plus) sign corresponds
tod = 0 (7). Evidently, the relevant Majorana phase % is a1 /2. Moreover, one has 0.19]sin az; /2| <
Im (U Urs)| S 0.35|sin g1 /2|, while for s;3 = 0, [Im(U*,Ur3)| = 0.27|sin az;/2|. Therefore, the
maximal value of |e1,| for Rj2 = 0 is smaller approximately by a factor of 1.3 than the maximal
value of |e1;| when Rj; = 0. As a consequence, the minimal M; for which successful leptogenesis
is realized can be expected to be bigger by a factor of approximately 1.3 than the one obtained
previously in the case of Rj; = 0. This is confirmed by the numerical computation. For example,
for s13 = 0.2, § = 7, sign(R12R13) = —1 and the values of |Ry1| = 0.38 and m3 = 4.5 x 1073V
(which maximize |Yp| at ag; = 27/3), one obtain:

\/1Ami| M
~ 922 x 10712 A ( ! ) . (2.18)

0.05 eV 109 GeV

max(|Yp|)

“Note that the Majorana phase a2 (Ri1 = 0) or as (Ri2 = 0), relevant for leptogenesis in the case of TH
spectrum and real matrix R, does not coincide with the Majorana phase 21, which together with \/|Am2A| and
sin® 012 determines the values of the effective Majorana mass in neutrinoless double beta decay (see Section 1.2.4).
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2.1 Inverted hierarchical light neutrino mass spectrum

Consequently, the observed value of |Yp| can be reproduced for My 2 3.7 x 10'° GeV.

2.1.4 Leptogenesis due to Dirac CP violation

Now the Majorana phases are assumed to be CP conserving, as; = 27k and ag; = 27k’ (k, k' =
0,1,2,...) and the only source of CP violation is provided by the Dirac phase §.

Note that the case in which Im(Ry;Ryx) # 0, Ri1 = 0 (R12 = 0) and the Majorana phase ass
(a31) entering into the expression for €1, takes the CP conserving value asy3;y = , corresponds to
CP wiolation given not only by the Dirac phase § # kn (k=0,1,2,...), but also by the orthogonal
matriz R (see discussion in the end of Section 1.5). Therefore this case is not taken into account in
the present analysis.

For Ry; = 0 and agy = 0, |e1,| o< [Im(UUr3)| = c35c13812513]sind] < 0.054]sin 6]. Thus, for
given M; the maximum baryon asymmetry |Yp| is smaller by a factor of about 10 than the possible
max(|Yp|) in the case of CP violation due to the Majorana phase(s) in U. The wash-out mass
parameter mq,, corresponding to Rjs maximizing |e1,| (see Eq. (2.8)), is given by:

3 2, 2 92 2
mir = ————— [(c12523 — p23ci3Ca3)” + 512513Co3 + 2512513C23 (C12523 — P23C13C23) COS 5] , (2.19)
2

while my, is determined by Eq. (2.15). Depending on the value of pe3, there are two quite different
cases to be considered.

If pos = —1, the terms 5%28%3633 and proportional to 2s19513¢93cosd in the expression for
mir, Bq. (2.19), are subdominant and can be neglected. 5 Thus, my, and 71, practically do
not depend on § and for co3 = s93 = 1/v/2 one has: My, = 0.5(ci2 + c13)>mams/(mo + m3) =
1.66mamg/(ma + ms), mi, = 0.34mams/(ms + ma). Both the CP asymmetry |e;,| and the baryon
asymmetry |Ypz| have a maximum value for 6 = n/2 4+ kr (k = 0,1, ...). The dependence of |Ypz|
on mg is analogous to that in the case of CP violation due to the Majorana phase(s) in U: there
are two similar maxima corresponding to the CP asymmetry being predominantly in the 7—flavour
and in the (e + p)—flavour, respectively. The two maxima are separated by a deep minimum
of |Yp| (see Fig. 2.4). The maxima occur at mg = 7.5 x 107* eV (|Ry2| = 0.12) and at mg =
4.9 x 1073 eV (|Ry2| = 0.30), i.e. at values of m3 which differ by a factor of about seven. At the
first (second) maximum, 7(0.66m1,) — 7(0.71m1,) = 0.044 (—0.046) and the absolute value of the
baryon asymmetry is given by:

' \VIAm3|
V5| 3.5 (3.7) x 10713 | sin 4| (Sm913> = ( M ) (2.20)

0.2 0.05 eV 109 GeV

Therefore, the measured value of |Yz| can be reproduced for M; 2 2.3 (2.2) x 10 GeV. This
upper bound allows to derive a lower limit on |sin f;3sind| and thus on sin 6;3:

|sinf13sind| £ 0.087, sinfy3 2 0.087. (2.21)
The preceding lower bound corresponds to

|Jep| = 0.02, (2.22)

5The term oc 2812515C23 COS d, for instance, gives a relative contribution to mi, not exceeding 10%.
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Figure 2.4: The dependence of |Yp| on ms in the case of spectrum with inverted ordering (hierarchy),
real Ry;Ry; and Dirac CP violation, for Ry; = 0, § = 7/2, s13 = 0.2, 5%2 =03, azp = 0, M| =
2.5 x 10* GeV and sign(R12R13) = +1 (—1) (red lines (blue dashed line)). The baryon asymmetry
|Yp| was calculated for a given ms, using the value of |Ry2| for which the CP asymmetry |e;-| has a
maximum. The results shown for sign(Ry2R13) = +1 are obtained for sin? 63 = 0.50 (0.36) [0.64], red
solid (dotted) [dash-dotted] line, while those for sign(R;2R13) = —1 correspond to sin® o3 = 0.5. The
horizontal dotted lines indicate the range of |Yz| compatible with observations: |Yp| € [8.0,9.2] x 10711,

where Jcp is the rephasing invariant associated with the Dirac phase ¢ (see Eq. (1.18)), which
controls the magnitude of CP violating effects in neutrino oscillations. Values of s13 larger than the
bound given in Eq. (2.21) can be probed in the forthcoming Double CHOOZ [38] and future reactor
neutrino experiments [39]. CP violating effects with magnitude determined by |Jop| satisfying (2.22)
are within the sensitivity of the next generation of neutrino oscillation experiments, designed to
search for CP or T symmetry violations in the oscillations [39]. Since in the case under discussion
the wash-out factor |ng| = [1(0.66m1,)—n(0.71m1,)| in the expression for |Yg| practically does not
depend on s13 and J, while both |Yp| o |s13sind| and |Jop| o< |s13sind|, there is a direct relation
between |Yg| and |Jcp| for given ms (or mg) and Mj:

- \/1Am] M
V| = 1.8 x 1071 |Jcp| np| T amen? ( . > : (2.23)

9

where g = ng(mams/(ma + m3),012,023) and, again, the best fit values of sin®f15 and sin? fo3

are assumed in the computation. In the case of IH spectrum one has (mg —ms3)/y/|Am%| = 1 and
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2.1 Inverted hierarchical light neutrino mass spectrum

mams/(ma + ms3) = ms. A similar relation between |Yp| and |Jcp| holds in an analogous case of
normal hierarchical light neutrino mass spectrum [54].

Relatively different results are obtained if ps3 = +1. Now there is a strong compensation
between the terms in the round brackets in the expression (2.19) for mq,, such that: mi, <
maoms/(mo—+ms). Correspondingly, one has m, = 2mams/(mo—+ms) > mi,. Thus, my, practically
does not depend on § and on the neutrino mixing angles. The two wash-out mass parameters mz,
and my, can differ by a factor ~ 100. Indeed, for s3; = c33 = 0.5 and s13 = 0.2 and s%, = 0.30 one
finds 1, /M1, = 0.5(0.0162 — 0.0156 cos §). For fixed sin?#;5 = 0.30, the magnitude of the ratio
mir /M1, (which is practically independent of maoms/(ma + mg)) is very sensitive to the value of
f23: for s35 = 0.64 one has M1, /M1, =2 0.5(0.0066 + 0.0043s%5 /0.04 — 0.0107(s13/0.2) cos §), while if
535 = 0.36 one obtains m1, /M1, = 0.5(0.079440.0077s%5 /0.04—0.0494(s13/0.2) cos §). The maxima
of the asymmetry |Yp| take place at 6 = 7/2 + kr (k = 0,1,2,...). For § = 7/2, s;3 = 0.2 and
535 = 0.64(0.5) [0.36] one has my,/m1, = 0.52 x 1072 (0.81 x 1072)[4.36 x 1072]. Therefore the
two maxima of |Yp| as a function of ms, corresponding to the CP asymmetry being predominantly
in the (e + p)—flavour and in the 7—flavour, can be expected to occur at values of mg which for
s35 = 0.36(0.5) [0.64] and s%, = 0.30 would differ by a factor of my,/mi, ~ 20(120)[190]. The
position of the deep minimum of |Yp| between the two maxima would also be very different for
533 = 0.36 and s3; = 0.5 (0.64). Obviously, the relative position on the mjg axis of two maxima
and the minimum of |Y3| under discussion will depend not only on the precise value of sin? o3, but
also on the precise value of sin? 6;s.

To be more concrete, the maximum of |Yg| (as a function of mg), associated with the CP
asymmetry being predominantly in the (e + pu)—flavour, takes place at mz = 7.5 x 107* eV, i.e.
in the region of IH spectrum. At this value of mg, 7(0.71m,) is maximum, 7(0.71my,) = 0.068,
while 7(0.66m1,) < 0.005 < 7(0.71m1, ), resulting in

ingy [ /1AM M
V| = 5.1 x 10713 | sing | o L2 A ( ! ) . (2.24)

0.2 0.05 eV 109 GeV

The position of this maximum does not depend on 619, fa3, 013 and § (see Fig. 2.4). Thus, the
measured value of |Ypg| can be reproduced for a somewhat smaller value of M; 2 1.6 x 10!t GeV
than the corresponding value of M; found for pss = —1 (compare Eqs (2.20) and (2.24)). In the
vicinity of the maximum there exists a correlation between the values of |Yp| and | Jcp| similar to the
one given in Eq. (2.23). Now the requirement of successful leptogenesis leads for M; < 5x 10! GeV
to a somewhat less stringent lower limit on |sin #13sind|, and thus on sin ;3 and |Jcop|:

|sin 013 sind|, sinf3 2 0.063, |Jop| £ 0.015. (2.25)

The second maximum of |Yz|, related to the possibility of the CP asymmetry being predominantly
in the 7—flavour, takes place, instead, at maoms/(ma + m3) 2 1072 eV, i.e. for values of m3z 2
1.2 x 1072 eV in the region of neutrino mass spectrum with partial inverted hierarchy. In this
case the factor in |Yp|, which determines the position of the maximum as a function of ms, is

((mg —mg)/ \Ami[) 1(0.66m1,), rather than just 1(0.66m,,). Taking this observation into

account, it is not difficult to show that for § = 7/2 and s;3 = 0.2 maximizing |Yp|, s35 = 0.30 and,
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e.g. s33 = 0.36 (0.50), the maximum occurs at m3 = 1.8 (5.0) x 1072 eV. If M; = 10" GeV and
\/|Am3| = 5.0 x 1072 eV, the value of |Y| at this maximum reads: |Yg| = 4.4 (1.1) x 107!, For
535 = 0.64 one has for the same values of the other parameters max(|Yp|) 2 0.6 x 10711, Obviously,
if mg 2 1072 eV, the observed value of |Y3| can be reproduced for M; < 5 x 10! GeV only if
835 < 0.50. The position of the deep minimum of [Yg| at m3 2 1072 eV is also very sensitive to the
value of s35: for § = 7/2, 513 = 0.2 and s2, = 0.30, it takes place at mg = 2 x 1073 eV if s3; = 0.36,
and at m3 = 1072 eV in the case of s3; = 0.50. These features of the dependence of |Yp| on mg
are illustrated in Fig. 2.4.

One can perform a similar analysis in the case of real RijRqx, Ri2 = 0 and Ry1,Ri3 # 0. In
this case, |e1,] oc [Im(UX Ur3)| = c33c13¢12813| sin 8| < 0.082] sin 6| and

~ Mmi1ms

_ 2 2 9 2
M = {(812823 + p13c13¢23)” + CTaCa35T3 — 2813C12023 (812523 + p13C23C13) COS 5] » (2.26)
3+m

mi, = 2mims/(ms + my) — my,, where pi3 = sign(R11R13) = +1 and my = mg = w/m% + |Am3|.

For p13 = +1, the two maxima of |Yp| (as a function of ms) have the same magnitude. They
occur at & = 3m/4, s13 = 0.2 and mz = 7.5 x 107* (3.5 x 107%) eV. The maximum baryon
asymmetry exhibits rather strong dependence on 5%3: for 833 = 0.36 (0.50), My = 5 x 10" GeV

and y/|Am3%| = 5.0x 1072 eV, max(|Yp|) is approximately 1.7 (0.9) x 10719, If s3, > 0.50, however,
it is impossible to reproduce the observed value of |Yg| for M; < 5 x 10'! GeV. The same negative
result holds for any s3; in the interval [0.36,0.64] if s13 < 0.10.

In the case of p13 = —1, |Yp| ¢35 in the region of the maximum of |Yp| at m3 = 7.5 x 1074
eV, associated with the CP asymmetry being predominantly in the (e + pu)— flavour. The baryon
asymmetry |Yp| has a maximum for 6 = 7/2, which maximizes the CP asymmetry |e1,| as well.

For s13 = 0.2, ¢33 = 0.5, M1 =5 x 101 GeV and {/|Am3| = 5.0 x 1072 eV, the absolute value of

the baryon asymmetry is therefore:

ing [ /1AM M
Yi| 22 9.0 x 10713 | sind | 2o L2 A ( L ) . (2.27)

0.2 0.05 eV 109 GeV

Thus, the observed value of the baryon asymmetry can be reproduced for relatively small values of
| sin 013 sin d| and correspondingly of |Jcpl:

|sin 613 sind|, sinfi3 2 0.036, |Jcp| & 0.0086. (2.28)

In contrast, the position (with respect to mgs) of the maximum of |Yp|, associated with the CP asym-
metry being predominantly in the 7—flavour, and its magnitude, exhibit rather strong dependence
on s3;. For s3; = 0.36 (0.50) [0.64], the maximum of |Y| is located at m3 = 0.7 (1.5) [3.0] x 1072
eV. For My <5 x 101 GeV, the measured value of |Yp|, 8.0 x 107 < [Yp| £ 9.2 x 107!, can be
reproduced provided |sin 13 sin 6| 2 0.046 (0.053) [0.16] if s35 = 0.36 (0.50) [0.64].
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2.2 Normal hierarchical neutrino mass spectrum

Results for light neutrino mass spectrum with normal ordering are presented in the following. The
case of negligible m; and real (CP conserving) elements R;; of R was analysed in detail in [54].
It was found that, if the only source of CP violation is the Dirac phase § in the PMNS matrix,
the observed value of the baryon asymmetry can be reproduced if |sinfi3sind| 2 0.09. Given
the upper limit |sin #3sin§| < 0.2, this requires M; 2 2 x 10' GeV. The quoted lower limit on
| sin f13 sin 6| implies that sin 13 2 0.09 and that |Jop| & 2 x 1072, If, however, the Dirac phase §
has a CP conserving value § = k7 (k = 0,1,2,...) and the requisite CP violation is due exclusively
to the Majorana phases ag; 31 in U, the observed Yp can be obtained for M; 2 4 X 1019 GeV [54].
For M; = 5 x 10 GeV, for which the flavour effects are fully developed, the measured value of Yz
can be reproduced for a rather small value of |sin asy/2| =2 0.15, where, as usual, ags = a3) — 9.

In searching for possible significant effects of non negligible m; in leptogenesis, values of mq
as large as 0.05 eV are taking into account. For 3 x 1072 eV < m; < 0.10 eV, the neutrino mass
spectrum is not hierarchical, but the spectrum exhibits a partial hierarchy, i.e. mq < mg < ms.

Two simple possibilities are analyzed in the following: |R11| < 1 and |Ry2| < 1. Results of a
more general analysis performed without making a priori assumptions about the real parameters
R11 and Rjo are discussed further in the text.

2.2.1 Analytical estimates: the case R;; = 0

The CP asymmetry €1, in this case is given by:

— v = <@> V2 s Im (USUys) (2.29)

€11 = —
16702 mo mo + ms
where now
|R12R13]
. (2.30)
|Ria|? + 2| Ras|?

and Im(U%,U;3) is given in Eq. (2.5). The ratio in (2.30) is similar to the ratio in Eq. (2.4). Note,
however, that the masses mg3 present in Egs (2.2) and (2.4) are very different from the masses
ma3 in Eqs (2.29) and (2.30). Using again the fact that R%, + R?; = 1, it is easy to find that r has
a maximum for

2 ms3 2 ma

R12 == R13 == 5 R13 < RlQ 5 (231)

ma +mg’ ma + mg

where mg = \/m? + Am%D and m3 = \/m? + Ami, with AmQA > 0. At the maximum:

max(r) :% (ﬁf . (2.32)

ms3

For the value of Ry (Ri3), which maximizes the ratio |r| and, correspondingly, the asymmetry
ler-] in (2.29), the relevant wash-out mass parameters mj, and my, are given by Eqs (2.14) and
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2. EFFECTS OF LIGHTEST NEUTRINO MASS

(2.15) with mo and mg given above. Since now mg 2 (/Am2 = 0.9 x 1072 eV and m3 2
\/Am% 2 5.0 x 1072 eV, one has mams/(ma +m3) 2 0.7 x 1072 eV. The lightest neutrino mass

my can have any effect on the generation of the baryon asymmetry Yz only if m? > Am?D and

if m; is non negligible with respect to \/Am3%. Indeed, for the values of m; of interest, one has

mams/(ma + m3) 2 1072 eV and the baryon asymmetry will be generated in the “strong wash-
out” regime, unless there is a strong cancellation between the first two and the third terms in
the expression for m, (see Eq. (2.14)). Obviously, the possibility of such a cancellation depends
critically on pa3 = sign(R12R13). Moreover, it results from the dependence of max(|e1;|), mi, and
M1, on Mg 3, that with the increasing of m; beyond 1072 eV the predicted baryon asymmetry
decreases.

2.2.2 Leptogenesis due to Majorana CP violation

Suppose first that the Dirac phase § in the PMNS matrix has a CP conserving value, § = wk
(k =0,1,2,...) and that the only source of CP violation are the Majorana phases as;3; in the
PMNS matrix U. In the specific case of R;; = 0, the relevant CP violating parameter is the
effective Majorana phase ago. In this case |e1,| oc Im(UUyrs) = c35c12 sin aga /2| 22 0.42 | sin iz /2]
The effect of 013 is always subleading in the present computation and in what follows it is always
assumed sin 013 = 0.2, unless differently specified. The wash-out mass parameter my, is:

mir = mo QOTgmg 0%2333 + 033 — 2 p93 €23 S93 C12 COS % . (2.33)
Therefore, if cos age/2 = 0, the baryon asymmetry Yz is produced in the strong wash-out regime
and for M; < 10'? GeV the calculated baryon asymmetry is too small to reproduce observed
value, Yp = 8.77 x 1071, On the other hand, the maximum of |Ypg| in the case under discussion
occurs for ago Z w/2+ 7k (k=0,1,2,...). There are two distinctive possibilities to be considered,
corresponding to the two possible signs of pa3sign(cos asa/2). If pa3sign(cos asa/2) = +1, then
mir = 0.25mams/(ma +mg3), the asymmetry in the 7—flavour ((e + p)—flavour) is produced in the
weak (strong) wash-out regime and for, e.g. m1 = 2 x 1072 (5 x 1072) eV, one obtains the following
value of the baryon asymmetry |Yp|:

~ ~12 \/Ami M,y N
Yp| = 1.20(0.36) x 10 , for azx=7n/24wk. (2.34)

0.05 eV 109 GeV

Thus, for m; = 2 x 1072 (5 x 1072) eV the measured value of Yp can be obtained if M; X
7.2 x 10" (2.4 x 10'") GeV.

These results are illustrated in Fig. 2.5, showing the correlated values of M7 and m; for which one
can have successful leptogenesis. The figure is obtained using the same general method of analysis
employed before in order to realize Fig. 2.1: for fixed mq, in the interval 107° < m; < 0.05 eV, a
thorough scan of the relevant parameter space is performed in the calculation of |Yp|, searching for
a possible enhancement or suppression of the baryon asymmetry with respect to the case m; = 0.
The real matrix elements R;;, are allowed to vary in their full ranges determined by the condition
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Figure 2.5: Values of m; and M; for which flavoured leptogenesis is successful and baryon asymmetry
Yp = 8.6 x 107! can be generated (red shaded area). The figure corresponds to light neutrino mass
spectrum with normal ordering. The CP violation necessary for leptogenesis is due to the Majorana
and Dirac phases in the PMNS matrix. The results shown are obtained using the best fit values of
neutrino oscillation parameters: Am?2 = 8.0 x 107° eV?, Am% = 2.5 x 1072 eV?, sin® 612 = 0.30 and
sin? 2093 = 1.

of orthogonality of R: R?, + R%,+ R3; = 1. The Majorana and Dirac phases as; 31 and § are varied
in the interval [0, 27]. The calculations are performed again for three values of the CHOOZ angle,
sinfi3 = 0; 0.1; 0.2. The relevant heavy Majorana neutrino mass M; is varied in the interval
10° GeV < M; < 10'2 GeV. For given mq, the minimal value of the mass M;, for which the
leptogenesis is successful, generating Yz = 8.77 x 107!, is obtained for the values of the other
parameters which maximize |Yp|. The min(M;j) thus calculated does not show any significant
dependence on s13. For m; < 7.5 x 1073 eV there are not relevant effects of m; in leptogenesis:
the behavior practically coincide with that corresponding to m; = 0 and derived in [54]. The
value of min(M;) = 4 x 101 GeV, shown in Fig. 2.5, corresponds to R?, = 0.85, R?; = 0.15 and
30 = /2 (pazsign(cos aze/2) = +1). For 7.5x 1073 eV < my < 5x 1072 eV, the predicted baryon
asymmetry Yp, for given My, is generically smaller with respect to the asymmetry Y one finds for
my = 0. Thus, successful leptogenesis is possible for larger values of min(M;). The corresponding
suppression factor increases with m; and for m; = 5 x 1072 eV values of M; 2 10! GeV are
required.

For the second choice, pas sign(cos aza/2) = —1, both the asymmetries in the 7—flavour and in
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2. EFFECTS OF LIGHTEST NEUTRINO MASS

the (e+ p)—flavour are generated under the conditions of strong wash-out effects. Correspondingly,
it is impossible to have a successful leptogenesis for M; < 10'? GeV, if m; = 5x 1072 eV. If m; has
a somewhat lower value, say m1 = 2 x 1072 eV, the wash-out of the (e + u)—flavour asymmetry is
less severe (my, = 8.6 X 103 eV) and the observed Yp can be reproduced for asy = 7/2 + wk and
My 2 2.5 x 10" GeV.

2.2.3 Leptogenesis due to Dirac CP violation

If the Majorana phases 9131 have CP conserving values and the only source of CP violation is
the Dirac phase § in U, one has |e1,| o |c33c135125138in 6| < 0.054] sin §|. The factor c33c13512813
in |e1,| is smaller by approximately one order of magnitude than the analogous factor 033012 which
enters in the case, considered before, of a CP asymmetry due only to Majorana-type CP violation in
the PMNS matrix. Such relative suppression, encountered in the Dirac-type CP violating scenario,
makes it impossible to generate the observed value of the baryon asymmetry for M; < 5x 101 GeV.

2.2.4 Analytical estimates: the cases R;3 = 0 and R;; =0

For a light neutrino mass spectrum with normal ordering (hierarchy) and real matrix R, with
Rq3 approximately zero, the term o< Rj1[R12 in the expression for €1, is the dominant one. The
numerical analysis shows, indeed, that for Ry3 = 0 it is impossible to have successful leptogenesis
for my < 0.05 eV and M; < 10'2 GeV, if the requisite CP violation is due to the Majorana and /or
Dirac phases in U.

On the other hand, very different results are obtained if Rio = 0, while Ri1R13 # 0. In this
case the expression for the CP asymmetry €1, can be derived formally from Eq. (2.29) by replacing
mo with my, pag with p13, U, with U’ and the ratio r with

_ |R11 Ri3|
|Ru1|? + 72 [Rasl*

r R 4+ R, =1. (2.35)

As in the similar cases discussed earlier, the ratio r and |e;,| take the maximum value for

2 ms3 2 my

R = R = —
1 m1+ms 13 my+ms3

(2.36)

with max(r) = O.5(m1/m3)%, while the expression of the CP asymmetry |e1,| at the maximum

3M“/Ami \/Ami

32w my + ms

reads:

[T (U7, Ur3)| - (2.37)

’617’ =

The wash-out mass parameters my, and mj,, corresponding to the maximum of |e;,|, are then

~ m1ms [ 2 2 *
L= MM 2 4 Ussl? + 2 pris Re (US U } 2.38
mq mi + ma |Ur1] |Ux3] p13 Re (U751 Urs) ( )

mims ( 2 9 2 0431)
—— 879 s c 2 €93 893 S19 COS —— 2.39
my+ ma 12 523 + 23 + P13 €23 S23 S12 2 ) ( )
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Figure 2.6: The dependence of |Yz| on m; in the case of neutrino mass spectrum with normal ordering
and real Ry;Ryy, for Ris = 0, s13 = 0, My = 1.5 x 10'* GeV and sign(R11R13) = —1. The red solid,
the blue dotted, and the green dashed lines correspond to asy = 27/3, /2, and 7/3 respectively. The
figure is obtained for o3 = 7/4.

where s13 = 0 in the second expression and my, = 2myms/(my + ms) — mq,, as usual. Note that
if m; < m3 = 5 x 1072 eV, the CP asymmetry |e;,| practically does not depend on my, while
Mir10 ~ O(my). This implies that the dependence of max(|Ypg|) on m; as the latter increases, will
exhibit the same features as in the case of IH spectrum discussed in previous sections: |Yp| has
two maxima, corresponding to the CP asymmetry being predominantly in the 7—flavour and in the
(e + p)—flavour, respectively, separated with a deep minimum. The previous analysis of the similar
case of IH light neutrino mass spectrum suggests that, for s;3 = 0, the largest baryon asymmetry
|Yp| is obtained for a3y # m(2k + 1) and p13sign(cos asy/2) = —1. These features are confirmed
by the numerical calculations performed here and are illustrated in Fig. 2.6. The results shown in
Fig. 2.6 are obtained for pj3 = —1, sinfy3 = 0, M; = 3 x 10'! GeV, and three CP violating values of
the Majorana phase a1, relevant for the calculation of |Yg|: 27/3; m/2; /3. There are two maxima
and a deep minimum of |Yz| in the figure. The maximum values of |Yp| are reached for az; = 27/3.
As regards the dependence of |Y5| on a31 and p13 in the case of s13 = 0, the following relation holds:
|Y5(p13,a31)| = |YB(—p13, 2m—as31)|. More precisely, these two maxima occur at m; = 7.7x107% eV
and at m; = 5.5 x 1073 eV, for which 7(0.66m1,) — 1(0.7171,) = —0.044 and 0.047, respectively.
The complete compensation between 7(0.66m,) and 7(0.71my,), leading to |Yg| = 0, takes place
at my ~ 1.5 x 1072 eV. For a3, = 27/3, the baryon asymmetry at the two maxima reads:

0.05 eV 109 GeV

\1Am3| M
V5|2 1.5 (1.4) x 10712 a ( ! ) (2.40)
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2. EFFECTS OF LIGHTEST NEUTRINO MASS

Thus, one can have successful leptogenesis for M; 2 5.3 x 1019 GeV.

2.3 Summary

In the present chapter, the dependence of the baryon asymmetry of the Universe Yp on the lightest
neutrino mass, min(m;), was numerically studied, in the context of flavoured thermal leptogenesis,
when the source of CP violation necessary for the generation of the observed baryon asymmetry is
due exclusively to the Majorana and/or Dirac CP violating phases in the PMNS neutrino mixing
matrix U.

The two possible types of light neutrino mass spectrum allowed by the data were considered:
i) with normal ordering (Am3 > 0), m; < ma < mg, and 4i) with inverted ordering (Am3 < 0),
ms < mq < meo. The study was performed within the simplest type I see-saw scenario with
three heavy Majorana neutrinos Nj;, j = 1,2,3, having a hierarchical mass spectrum with masses
My < M.

As regards the case of IH spectrum with non negligible ms, ms < \/|Ami|, the generated

baryon asymmetry |Yp| can be strongly enhanced in comparison with the asymmetry |Yz| produced
if mg =2 0. The enhancement can be roughly by a factor of 100. As a consequence, one can have
successful leptogenesis for IH spectrum with ms 2 5 x 1076 eV even if the elements Ry of the
orthogonal matrix are real and the requisite CP violation is provided by the Majorana and/or Dirac
phase(s) in the PMNS matrix (see Figs 2.1-2.4).

The results obtained for light neutrino mass spectrum with normal ordering (hierarchy) depend
on whether Ri1 = 0 or Rio =2 0. If Ry; =0, there is not any significant enhancement of the baryon
asymmetry |Yp|, generated within the flavoured leptogenesis scenario with real matrix R and CP
violation provided only by the PMNS matrix. When the lightest neutrino mass is varied in the
interval 10710 eV < my < 7.5 x 1072 eV, the produced asymmetry |Yz| practically coincides with
that corresponding to m; = 0 (see Fig. 2.5). For m; 2 1072 eV, the lightest neutrino mass mq
has a suppressing effect on the baryon asymmetry |Yg|. If, however, Rio = 0 (see Fig. 2.6), the
dependence of |Yp| on m; exhibits qualitatively the same features as the dependence of |Yz| on
ms in the case of neutrino mass spectrum with inverted ordering (hierarchy): |Yp| possesses two
maxima separated by a deep minimum. Quantitatively, max(|Yp|) is somewhat smaller than in the
corresponding IH spectrum case. As a consequence, it is possible to reproduced the observed value
of Yp if the CP violation is due to the Majorana phase(s) in U, provided M; 2 5.3 x 1010 GeV.

The results obtained show clearly that the value of the lightest neutrino mass in the cases of
neutrino mass spectrum with inverted and normal ordering (hierarchy) can have strong effects on
the magnitude of the baryon asymmetry of the Universe, generated within the flavoured leptogenesis
scenario with hierarchical heavy Majorana neutrinos.
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Chapter 3

Interplay Between High and Low
Energy CP Violation

In the present chapter the possible connection between flavoured leptogenesis and the low energy
CP violation in the lepton (neutrino) sector is further investigated. In particular, on the basis
of the discussion reported in Chapter 1, great attention is devoted to the interplay between the
“low energy” CP violation, originating from the PMNS neutrino mixing matrix, and the “high
energy” CP violation in the neutrino Yukawa couplings that can manifest itself only at some “high”
energy scale, like e.g. in leptogenesis. The leptogenesis mechanism is studied in the framework
introduced in Chapter 1, which includes the Lagrangian of the Standard Model with the addition
of three heavy RH Majorana neutrinos N; with masses M; < Mj3 and Yukawa couplings A,
(see Eq. (1.2)). Therefore, the CP asymmetries, relevant for leptogenesis, are generated in out-of-
equilibrium decays of the lightest one, Ny. As in the analysis performed in Chapter 2, the baryon
asymmetry is produced in the two-flavour regime (10° GeV < T ~ M; < 10'2 GeV). The general
form of each of the flavoured CP asymmetries €, is provided, for the case under discussion, by
expression (1.81). The total baryon asymmetry Yp is thus computed according to Eq. (1.74). The
effect of both the high energy and the mixed terms in Yp is discussed in detail. Both type of light
neutrino mass spectrum, with normal and inverted hierarchy are taken into account.

The results derived are based on the papers [74] and [75].

3.1 Neutrino Mass Spectrum with Normal Hierarchy

In this section the leptogenesis mechanism is implemented in a framework corresponding to NH
light neutrino mass spectrum: my < mo < mg. The analysis is performed in this case for negligible
lightest neutrino mass m;. ! In particular, in what follows m; is set equal to zero. In this case the

!As already pointed out in the introduction to Chapter 2, RG effects are negligible for both NH and IH light
neutrino mass spectra (see e.g. [76]).
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asymmetry €1, given in Eq. (1.81), takes the form [74]:

30, \/Ami

T1670% AN
(Smr) " Irul + IR

€lr =

Am? o o
X {(A §> |R12? |Ura|® sin2@12 + [Ris|? |Urs|? sin 2613
M

Amz\ 1 o
+ < ®> |Ri2| | R3] 1-

5 cos(P12 + P13) Im (Ufy Urs)
Amiy \ /Ami

\/Am%
w/AmQA

where, as usual, @12 and @13 are the CP violating phases (R—phases) of the matrix elements Rjo
and Rij3, respectively. The expression of the CP asymmetry in the second flavour, €1,, can be
derived from €1, using Eq. (1.83).

The first term in the brackets in Eq. (3.1) is suppressed by the factor Am2 /Am3% = 0.03. A more
detailed study shows that it always plays a subdominant role in the generation of baryon asymmetry
compatible with observations and can be safely neglected. From the expression of €, in Eq. (3.1),
as well as the analogous for €j,, it follows that the CP violation due to the PMNS matrix U can
play a significant role in leptogenesis only if the mized term proportional to |R12R13] in Eq. (3.1)
is comparable in magnitude, or exceeds, the high energy term proportional to |R13|?|U,3|? sin 2413.
The latter will not give a contribution to the asymmetries €1, and €1, if sin 213 = 0, i.e. if Ry3 is
real or purely imaginary, as expected for the CP conserving constraints derived in Chapter 1.

The elements of the matrix R must satisfy the orthogonality condition: R} + R, + R2; = 1.
Then, one can have €171, # 0 only if at least two of the three elements R;; of the first row of R are
different from zero. In the case of “small” lightest neutrino mass m; under consideration, the R
element does not appear in the expressions for €i,, €1,, M1, and mi,, which are relevant for the
calculation of the baryon asymmetry Yp (see Eq. (1.74)). In the following analysis, therefore, it is
considered for simplicity only the possibility of relatively small |R11|, so that the term R?, in the
orthogonality condition can be neglected. This is realized if |R11|? < min(1, |R12|?|sin 2@12]). Such
condition is compatible with the hypothesis of decoupling of the heaviest RH Majorana neutrino
N3 [78, 79], leading effectively to the so-called “3 x 2" see-saw model [80]. For negligible |R11|?, the
orthogonality condition for the elements of R can be written in terms of two equations involving
the absolute values and the phases of Rio and Ri3:

{1+

sin(f12 + ¢13) Re (U Urs) | ¢, (3.1)

\R12]2 cos 2919 + ]R13\2 cos2p13 = 1, (3.2)
|Ri|* sin2¢1 + [Raz|? sin2¢13 = 0, (3.3)
with the constraint: sign(sin2@i2) = —sign(sin2¢3). Using these equations one can express the
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3.1 Neutrino Mass Spectrum with Normal Hierarchy

phases @12 and (P13 in terms of |Ri2|? and |Ry3|? [74]

1+ |Ri2* — |Ris|?
cos 231y = 1 21|2]|%12|2| 187 in251 = /1= co220m. (3.4)
5 1—|Rip|* + [Rus|* . . .
cos2¢13 = | 21|2]£13|2| 13| , sin2@13 = F/1—cos?2p13. (3.5)

The fact that —1 < cos2p19(13) < 1 leads to the following conditions:

(1+ |Riaf*)* > |Rus|*, (1= [Ri2*)? < |Rus|*; (3.6)
(14 [Ri3%)? > [Raa|*, (1= |Ru3|*)? < |Riz|*. (3.7)

Alternatively, one can express |R12|? and |R13]? as functions of the R—phases:

’R12‘2 _ sin 29513
sin2(@13 — P12)
(3.8)
|R13|2 _ sin 2@12

N sin 2(@13 — @12) ’

The R—phases ¢12 and @13 can take CP violating values in the interval [0,27]. The the positivity
of |Ry2|? and |Ry3|? allows to further constrain the ranges of $1o and (13:

k< @13 < (2k+1)5, Qi3 -5 —Kn< @rp < (k—K)m; (3.9)

vl

(Qk‘ + 1)% < 13 < (kﬁ + 1)7‘(‘, (k‘ — k‘/)ﬂ' < @912 < Q13 — % — k‘/ﬂ', (3.10)

where k =0,1,2,3 and k' = 0,41, 42, +3.

The most interesting region of the parameter space, from a phenomenological point of view,
is provided by those values of the relevant leptogenesis parameters for which the mixed term,
proportional to |Ri2 R3] in the expression (3.1) for the CP asymmetry €., is sufficiently large and
gives either a dominant contribution to €1, or at least one comparable to that due to the high energy
term. The latter is proportional to |R13|?|U,3|? sin 2413, as already stated before. Accordingly, it
is useful to know the values |Rj2| and |R13| which maximize the function:

| Riz| [ R3]

A 2 1/2 ’
( mQ) |Ri2]? + |Ri3)?

Fy(|Razl, [Rus]) = (3.11)

p)
Amy

The maximum of F(|Ryz2|, |Ri3|) is obtained for |Ria|/|Ri3| = (Am%/Am?2)Y* =2 2.4 and at the
maximum: Ff* = 0.5 (Am3% /Am2)Y/* =2 1.2. At |Ria|/|Ris| = (Am3 /Am2)'/4, the correspond-
ing function in the high energy term in €.,

|Ry3/?

Am2\Y?
(Sm) I + Il

F3(|Razl, |Ri3]) =

: (3.12)
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3. INTERPLAY BETWEEN HIGH AND LOW ENERGY CP VIOLATION

takes the value 0.5, which is smaller only by a factor of 2 than its largest possible value. The latter,
however, takes place at |Ry2| = 0, for which €1, = €1, = 0.
The wash-out mass parameters (see Eq. (1.75)) in the case of interest are given by:

e = \JAm2 |Ri2? [Usa|? + \/Am3 |Rus|? |Uns]?
(3.13)
+ 2(Am2Am2) 4| Ryy||Rys|Re (e“@w—@w)U:QUTg)

mi, = \/Am% ’R12‘2 + AWQA ’R13‘2 — mir. (3.14)

Below, the combined effects of the “high” energy and “low” energy CP violating phases on the
generation of the baryon asymmetry are analyzed.

3.1.1 CP violation due to Majorana phases and R—phases

The first case considered is the possibility that the baryon asymmetry |Yp| is generated by the
combined effect of CP violation due to the Majorana phases in the PMNS matrix U and the phases
P12 and P13 of the orthogonal matrix R. The Dirac phase § is, therefore, assumed to take a CP
conserving value: 0 = k7 (k = 0,1,2,...). The CP asymmetries €1, and €, and the wash-out
mass parameters my, and my,, given above, depend explicitly on the Majorana phase difference
39 = a3) — ag. Indeed, the CP asymmetry €1, can be written in the form [74]:

3 M, \/AmQA
~ 2 . ~
= - { F3|Urs|” sin2¢13

e 16 7 v?
1
Am2\ 4 . ) a3 AmZ\? | a3
- <Am2A> Fy |U%Uzs| | sin(pas + T) + <Am2A sin(pa3 — T) , (3.15)

where o3 = P12 + P13. The functions F; and Fj are defined respectively by Eqgs (3.11) and (3.12)
and for § = 7k one has: (exp(—iasa/2)U’,Ur3) = —(c12823 £ s12¢23813)ca3cis = —|UXUrs|. The
CP asymmetry €1, can be obtained from Eq. (3.15) by replacing |U,3|? with (1 — |U,3/|?) and by
changing the minus sign in front of the term proportional to F} to plus sign (see Eq. (1.83)).

The expression for the baryon asymmetry Yp in the two-flavour regime, given in Eq. (1.74),
can be written as

Y = Y9 (Apg + Aux) , (3.16)

where

12

(3.17)

12 3M1 AmQA M Ami
g %3><1010< : ) v

379, 16 7 v?2 109 GeV 5x 1072 eV

The high energy term Apg and the mixed term Aprx, introduced in Eq. (3.16), are defined below:

Apg = F3 sin2¢y3 [ |Urs|? 7(0.66m1,) + (1 — |Urs]*) 9(0.71m01,) | (3.18)
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3.1 Neutrino Mass Spectrum with Normal Hierarchy

Am2\# . ~ -
AMIX = - A 2 F1 |UT2U7—3| [?7(0.6677117—) — 77(0.71m10)]
my
L N o Am2\2 - «
X Sln(tplg + Y13 + ﬁ) + ;D Sln(tplg + 13 — ﬁ) . (3.19)
2 Ami 2

Note that for the best fit value of s33 = 0.5, one has |U,3|? = c33¢33 = 0.5 = (1 — |U,3/?)"/? and,
therefore, one has effectively Apg o (7(0.66m1,) + 1n(0.71m1,)). For @10 = kmw/2 or P13 = k'n/2,
(k,k' =0,1,2,...) the term Ayg is equal to zero and the expression for Yz corresponds to the case in
which the only source of CP violation are the Majorana phases in the PMNS matrix U. 2 In this case
successful leptogenesis is possible, provided M; 2 4 x 10!° GeV and |sinass/2| 2 0.1. The phase
a9 1s also present in the expression for the (53)g,-decay effective Majorana mass corresponding
to the NH spectrum (see Section 1.2.4).

Few more comments are in order. It follows from Eq. (3.16) that the 7 and (e+ p) CP asymme-
tries generated by the high energy term always add up, while the 7 and (e+ ) CP asymmetries due
to the mixed term tend to compensate each other. The contribution of the mixed term to Y has
the additional suppression factor (Am%/Ami)l/ﬂ‘ 2 (.42 in comparison to that due to the high
energy term. For sin(12+ @13+ as2/2) = 0, the mixed term |Aypx| is smaller at least by the factor
(Am2 /Am3)Y2c15/v/2 2 0.11 than the high energy term |Ayg|. Finally, the sign of Ayp is deter-
mined by the sign of sin 213, while the sign of Ayx depends on the signs of sin(@12 + P13 + as2/2)
and (1(0.66m1) — 1(0.71m1,)).

The high energy term Apg o F3sin 213 will be suppressed and will give a subdominant con-
tribution in |Yp| if either the phase of R%?) is to a good approximation CP conserving so that
sin2¢13 = 0 or |Ry3|/|Ri2| is sufficiently small. For sin2p;3 = 0 and |Ry3/, |R12| # 0, however,
one also has sin(2p12) = 0, implying that R}, and Rf?) are real, while RioR;3 is real or purely
imaginary. If, on the other hand, |R;3| = 0, then €1, = €1, = 0, and, as a consequence, Yp = 0. In
order to have successful leptogenesis in the case of interest, the ratio |Ry3|/|R12| should not be too
small, 7.e. should be larger than approximately 0.05.

The wash-out mass parameter mi, in (3.13) takes the value [74]:

mir = \/AmE|Rio)? |Usa|* + \/AmZ |Ris|? |Urs)?
. ~ - o
— 2(Amg Am2A)1/4 |Raz| [Rus| [U7yUrs| cos (<P12 —$13+ %) . (3:20)

Thus, for given |Rj2| and |Ry3|, m, satisfies the following inequalities:

2
Am2\'" |Ria| |Upl
A/ Am2 |Ry3|? U5 2 1—( ®> L2l 2y 3.21
A’ 13‘ ’ 3’ AmQA |R13| |U7_3| ( )
2
Amé)”“ |Riz| |Upal
Ami [Rais| [Urs| |

v

mir

mir < AmQA ’R13‘2 ’U73’2 (1 + ( (3.22)

It follows from Eq. (3.14) that the minimum (maximum) value of m, corresponds to the maximum
(minimum) value of m1,.

*This particular scenario was studied in detail in [54].
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Figure 3.1: The dependence of the high energy term |Y3Anugr| (blue dotted line), the mized term
|Y3Amix| (green dashed line) and of the total baryon asymmetry |Yg| (red continuous line) on R3]
in the case of NH spectrum, CP violation due to the Majorana phases in U and R-phases, asy = 7/2,
533 = 0.5, s13 = 0, |[R12] = 1 and M; = 10'' GeV. The horizontal dotted lines indicate the range of
|Y5|, compatible with observations: |Yg| € [8.0,9.2] x 101!,

Analysis of the parameter space

From the previous expressions, it is clear that for fixed M; and given values of the neutrino os-
cillations parameters, the asymmetry Yp and the relative contributions to Yp of the high energy
and the mixed terms depend on |Rj2|, |R13| and the Majorana phase age, or equivalently, on
the three phases @12, $13 and asze. One of the constraints that @12 and @13 should satisfy is:
sign(sin 2¢19) = —sign(sin 2¢;3) (see Eq. (3.3)). From Egs (3.16)-(3.19) and (3.20) one can prove
that

Y5(P12, P13;a32) = —Yp(—P12, —P13;4m — az2) . (3.23)

Therefore, in what follows, it is enough to analyze the case: sin2¢1s < 0, sin 213 > 0. The results
corresponding to sin2¢12 > 0, sin2@13 < 0 can always be obtained from the indicated property
of Yp.

In what concerns the values of |Ry3| and |Ri3|, there are several possibilities leading to quite
different physical results: i) |Ri3| < |Ria| with |Ria| < 1; di) |Rio| < |Ris| with |Ri3| < 1; di7)
‘Rm’ > 1 or ’ng‘ > 1.

The overall parameter space compatible with successful leptogenesis is represented in Figs 3.1-

3.6.
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Figure 3.2: The same as in Fig. 3.1, but for s3; = 0.64, s13 = 0.2 and § = 0.

Case |R13| S |R12| S 1

As it was already pointed out above, the baryon asymmetry |Yp| will be strongly suppressed
if |Ry3|/|R12] < 0.05, so the discussion is referred to values of |Ry3|/|Ri2| & 0.05. The results
obtained depend on whether |R;3| < 0.5 or |Ry3| 2 0.5.

For |Ry3| < 0.5, one should have |Rj2| > +/0.75 = 0.87 in order to have sin 2¢;3 # 0. In the case of
|R12| = 1 the relevant R—phases depend on |R13| in the following way: cos2p1s = 1 — 0.5|Ry3|* 2
0.97, |sin2@12| = |Ri3)? < 0.25, cos2p13 = 0.5|Ry3? < 0.125, |sin2p13] =2 1 — |[Ri3/*/8 2 1 —
7.8 x 1073, Thus, 0 < (—p12) S 0.12 and $13 = 7/4. This implies that for azs/2 = 7/4 one has
sin(@12 + P13 + ase/2) = 1, while if asy/2 = 37/4 the mixed term will be strongly suppressed. It
follows from these simple observations that the predictions for |Yp| will exhibit a strong dependence
on asy. For ase/2 = /4, cos(pi1a — P13 + age/2) = cos @12 = 1, and for any given |Ri3| < 0.5, m,
takes approximately its minimal value.

At |Ri3] = 0.5 and aszz/2 = 7/4, one has (see Fig. 3.1): m, = 5.7 x 10~* (weak wash-out),
M1 = 2.1x 1072 > m, (strong wash-out), 17(0.66m1,) = 4.2x 1072, and n(0.71m1,) = 6.8x 1073 <
7(0.6671, ). The mixed term and the high energy term have opposite signs and Ayx & —7.3x 1073
and App = 1.40 x 1072, Therefore, the mixed term in Yz has the effect of partially compensating
the contribution of the high energy term, so that the sum (Ayrx + Apg) is approximately by a factor
of 2 smaller than Ayg. As |R;3| decreases starting from 0.5, the wash-out mass parameters m,, m1,
and the efficiency function 1(0.66m1.) also decrease starting from the values given above. However,
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n(0.71m1,) increases and at |Ry3| =2 0.41 3 one has 7(0.66m1,) = 7(0.71m1,). As a consequence, at
|Ri3| = 0.41, |Anrx| goes through a deep minimum and is strongly suppressed. The high energy
term | Apg| just decreases somewhat as |Ri3| changes from 0.50 to 0.41. At |R13| = 0.41, the mixed
term Apirx changes sign: for |Ry3| & (0.3+0.4) one has 7(0.66m1,) < n(0.71m1,) and, consequently,
Apmix > 0. Thus, Apg and Ayrx have the same sign and add up constructively in Yz. When |R;3)|
decreases below 0.41, my,, mi, and 1(0.66m1,) continue to decrease, while 1(0.71m1,) continues
to increase; Ayrx also increases rapidly, while Axp decreases but rather slowly (see Fig. 3.1). At
|Ri3| = (Am2 /Am3Z)Y4c15 = 0.35, the wash-out mass parameter m;, is approximately zero and
Ayiix has a local maximum. At this point, Ayix & Agg = 2 x 1073, As |Ry3| decreases further,
m, and 7(0.66m1,) increase, my, decreases, but 7(0.71my,) increases. As a consequence, Ayg also
increases, while Ayx diminishes. At |Ry3| = 0.27 one gets 7(0.66my,) = 1n(0.71m1,) and Anrx
exhibits a second deep minimum, Ayx = 0. At values of |Ry3| < 0.27 the inequality 7(0.66m1,) >
1(0.71m1,) holds and Apprx is negative, Ayx < 0. Therefore Apg and Ayrx have opposite signs and
their contributions to Yz tend to compensate each other. For decreasing |Ry3| < 0.27, (0.66m1,)
and F1(n(0.66m1,) — n(0.71my,)) grow faster than 7(0.71m,) and F3(n(0.66m1.) + n(0.71m1,)),
respectively. At |Ry3| = 0.18, Axg has a local maximum. However, one also has |Ayix| & Apg.
As a consequence, Ayrx + Apg = 0, d.e. the high energy and the mixed terms cancel each other
and |Yp| is strongly suppressed. This important feature of |Yp| persists for values of aszs/2 up to
7/2. The precise position of the considered deep minimum of |Y3| depends on the value of sin? fo3
and, to less extent, on whether § = 0 or 7 if sinf3 has a value close to the existing upper limit.
As an illustration, Fig. 3.2 shows |Y3Ang|, |YpAwmix| and Y| as functions of |Ry3| for s35 = 0.64,
513 = 0.2 and § = 0. From the figure one can see easily that, for s3; = 0.64 and |Ri3| = 0.30, the
total contribution Ayix + Age = 0 and correspondingly Yp = 0. Note that both |Y]_3AHE| and
[V Auix| have relatively large values at |[Ri3| = 0.30 and thus each of the two terms separately
could account for the observed value of Yp (see Fig. 3.2). Nevertheless, the generated baryon
asymmetry is strongly suppressed, |Yz| = |Y3(Aug + Amix)| < 8.6 x 107! and it is impossible
to reproduce the measured value of Yz for My < 10'2 GeV. Finally, for |Ry3| < 0.17, the mixed
term is larger, in absolute value, than the high energy term, |Ayix| > Apg: at |Ry3| = 0.10, for
instance, |Anix| = 2Axg. Since the two terms have opposite signs, sign(Anrx) = —sign(Apg), the
contributions of the high energy term in Yp partially compensates the contribution of the mixed
term.

Consider now the dependence of the baryon asymmetry |Yz| on the Majorana phase ags. This
study corresponds to values of |Ry3| < |Rj2| =1 in the interval 0.1 < |Ry3| < 0.5. Moreover, three
values of sa3 (533 = 0.36; 0.50; 0.64) and two values of s13 (s13 = 0; 0.2) are considered. In the case
of s13 = 0.2, the two CP conserving values of the Dirac phase, § = 0; m, are distinguished. These
results are illustrated in Figs 3.3-3.5. As these figures indicate, the behavior of |Yp| as a function
of ago exhibits particularly interesting features when «asgo changes in the interval 0 < agy S .
Therefore, for s13 = 0.2 and given s3;, one can get very different dependence of |Yp| on agy for
the two values of § = 0; 7w and that the dependence under discussion for, e.g. 833 = 0.50 can differ
drastically from those for s3; = 0.36 and for s3; = 0.64 (see Figs 3.4 and 3.5).

One can analyze in a similar manner the behavior of Ayx, Apg and |Yg| as functions of | R3]
in the interval 0.5 < |Ri3| < 1.0. As in the preceding discussion, the parameter space is fixed

3This value is obtained as a solution of the equation 0.66m. /(8.25 x 1072 eV) = (0.71M1,/(2 x 10™* eV))~ 116,
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Figure 3.3: The dependence of |Yp| on the Majorana phase (difference) ass in the case of NH
spectrum, Majorana and R matrix CP violation, s3; = 0.5, M7 = 2 x 101! GeV, Ri2 = 1, Ry3 = 0.19,
i) s13 = 0 (red continuous line), i) s13 = 0.2, 6 = 0 (green dashed line), iii) s13 = 0.2, § = 7 (blue
dotted line).

with |Ry3] < |Ri2| < 1.0 and ag2/2 = 7/4. As can be easily verified, when |Ry3| increases from
0.5 to 1.0 under the indicated conditions, i) Fj sin(p12 + @13 + a32/2) changes from 1.14 to 0.60,
i1) F3sin 23 increases from 0.59 to 0.74, i) my, increases monotonically by a factor of about
20 from 5.7 x 1074 eV to 1.1 x 1072 eV and 4v) 11, increases only by a factor of approximately
2.3 from 2.1 x 1072 eV to 4.8 x 1072 eV. Correspondingly, the efficiency factor 1(0.66my,) first
increases starting from the value 4.2 x 1072, reaches a maximum 7(0.66m1,) = 6.8 x 1072 at
|Ri3| = 0.6 when 0.66mq, = 1.1 x 1073 eV and then decreases monotonically to 1.52 x 1072.
In contrast, when |R;3| changes from 0.5 to 1.0, the efficiency factor 7(0.71my,) only decreases
monotonically by a factor of about 2.6, from 6.7 x 1073 to 2.6 x 1072, Thus, the asymmetry in
the (e + u) lepton charge is generated in the regime of strong wash-out, while the wash-out effects
in the production of the asymmetry in the 7 lepton charge change from weak to strong, passing
through a minimum. Clearly, the change of Ayrx and Apg with |R3| is determined essentially by
the behavior of 1(0.66m1,). In particular, 7(0.66m1,) > 1(0.71m1,) in the case under discussion,
implying that sign(Aymx) = —sign(Apg). For the considered range of |Ri3| one typically has
|Avrx| = (0.5 + 0.6) A, so that there is a partial cancellation between the two terms Aygx and
Apg in Yp (see Fig. 3.1).

It should be clear that Ayx, Agp and |Yp| will exhibit a different dependence on |R;3| varying
in the range 0.05 < |Ri3| < |Ri2| < 1 if ase/2 differs significantly from 7 /4. If ase/2 = 37/4, for
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Figure 3.4: The dependence of |Yp| on asq in the case of NH spectrum, Majorana and R matrix
CP violation, |Ri2| = 1, |Ri3| = 0.51, M; = 3.5 x 10'° GeV, s3; = 0.5, 513 = 0.2 and § = 0 (), red
continuous (green dashed) line.

instance, one has |Ayix| < |Apg|. For |Riz| < 0.5 this is due to the fact that sin(@ie + @13 +
as32/2) < 1, while for 0.5 < |Ry3] < 1 and |Rj2| = 1, it is a consequence of the fact that 7(0.66m1,)
and 7(0.71m1,) have rather close values: when |R;3| changes from 0.5 to 1.0, the efficiency function
combination 7(0.66m1,) — 1(0.71m1,) decreases approximately from 7.6 x 1073 to 2.7 x 1073. At
the same time the sum 7(0.661m1,) + 1(0.717m1,) changes from 3 x 1072 to 1072, remaining by a
factor four bigger than 7(0.66my,) — n(0.71m1,).

Case |Ri2| >1

One can perform a similar analysis in the case of |[Rja| > 1 or |Ri3| > 1. The results pertaining
to |Ry2| > 1 are illustrated in Fig. 3.6, which shows the dependence of |Y]_3AHE|, |Y]_3AMIX| and
of |Yg| on |Ry3| for |Ria] = 1.2, agy/2 = 7/4 and s33 = 0.5, s13 = 0. The figure exhibits some
typical features, namely, the relevance of the mixed term in the region close to the minimal allowed
value of |Ry3|, i.e. for |[Ry3| S 1. If |Ria| > 1 (e.g. |Ri2| = 1.2 as in Fig. 3.6), |Ry3|? can take
values in the interval (|Ri2|? — 1) < |Ri3/* < (JR12|? +1). When |Ry3/* changes from its minimal
value to its maximum value, the phase 213 decreases from 7 to 0, whereas 2¢12 changes from 0
to (—7), so that one always has sin 2¢12 < 0. Obviously, at |Ri3/? = (|R12|> — 1) one has Ayg =0
since sin 2¢13 = 0, while for as2/2 # 7k (k = 0,1,2,...), one finds, in general, Ayix # 0. For the
value of azs/2 = 7/4 (see Fig. 3.6), for instance: Ayx = —3.9 x 1073, The salient features of the
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Figure 3.5: The same as in Fig. 3.4, but for s3; = 0.64.

behavior of Axp and Ayrx as functions of |Ry3|, shown in Fig. 3.6, can be understood qualitatively
from the behavior of Fj sin(2g513)77(0.6677L17) and of I} Sin(@lg + ¢13 + 0432/2)77(0.667%17—): both
quantities grow monotonically as |Rj3| increases starting from its minimal value, but the former
grows faster than the latter. There is always a value of |R;3| relatively close to its minimal value
at which Agg = |Amrx|. Obviously, at this point the baryon asymmetry is strongly suppressed:
Y = Y3(Aug + Amix) = 0 (see Fig. 3.6). The behavior of Apg and |Auix| when | R3] increases
beyond the point at which Yp = 0, is basically determined by 7(0.66m1,), which goes through a
maximum and after that decreases monotonically. Note also that at certain value of |Riz| > 1,
sin(@12 + @13 + ag2/2) can go through zero and changes sign. As a consequence, Ayx also can
change sign.

As the results described above show, in the case of NH light neutrino mass spectrum and CP
violation due the “low” energy Majorana phases in U and “high” energy R-phases, the predicted
baryon asymmetry can exhibit strong dependence on the Majorana phase ags if the latter has a
value in the interval 0 < agy < 7 (sin2p12 < 0, sin2p13 > 0) or 3w < agy < 47 (sin2p12 > 0,
sin2@13 < 0). In the most extreme cases both Yp < 8.77 x 107! or Y compatible with the
observations are possible in a certain point of the relevant parameter space, depending on the value
of a39.
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Figure 3.6: The dependence of |Y3Aug| (blue line), |[Y3Awmix| (green line) and of |Yp| (red line) on
|R13| in the case of NH spectrum, Majorana and R matrix CP violation, |Ri2| = 1.2, a3z2/2 = 7/4,
833 = 05, S$13 = 0 and M1 = 1011 GeV.

3.1.2 CP violation due to Dirac phase and R—phases

Consider next the possibility that the CP violation in flavoured leptogenesis is due to the Dirac
phase § in the PMNS matrix U and to the “high” energy phases ¢12 and @13 of the matrix R.
It is assumed in this case that the Majorana phase ass takes a CP conserving value: «aso = wk
(k=0,1,2,...). The expression for the baryon asymmetry Yz also in this case can be cast in the
form (3.16). The high energy term Apg is the same as in the Majorana and R-matrix CP violation
case and is given by Eq. (3.18). The mixed term has the following form for arbitrary ass:

Amz 1/4
Ayix = — <Am2®> Fy ¢3 13 [1(0.66m1,) — 1(0.71m1,)]
A

(3.24)

2
. - - Q39 Am . - - Q39
X 4 c12s23 | sin (8012 + P13 + —> + 2 sin (8012 + P13 — —) + ®Vx ¢
2 Amy 2

where
- . « AmZ ~ «
PPx = S12023513 |sin (8012 P32~ 5) + 5 sin <<P12 P13 — 2+ 5) . (3.25)
2 Ami 2
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Figure 3.7: The dependence of |Yz| on the Dirac phase ¢ in the case of NH spectrum, Dirac and R
matrix CP violation, s;3 = 0.2, Ri2 = 1, M; = 5 x 101! GeV and for i) azs = 0, |Ri3| = 0.16 (left
panel) and i7) agy = 7, |Ri3] = 0.12 (right panel).

The wash-out mass parameter mq, is given by

mir = 4/ Am? |R12|? |Ura|?® + \/ Am3 |Ry3|? |Urs|? — 2 (Am? AWQA)U4 |R12| |R13| casci3

X {012823 cos (@12 —p13+ %) + S12023513 COS (@12 —p13+ % - 5> } - (3.26)
For e.g. aze = 27k (k =0,1,2,...) and @12, ¢13 = 0, £, R12 and Ry3 are real, Apg = 0, while in the
mixed term only the part proportional to (I)E/HX is non-zero, AE/HX x (I)E/HX # 0. The CP violation
in leptogenesis in this case is entirely due to the Dirac phase § in the PMNS matrix. In particular,
one can have successful leptogenesis for M; < 5 x 10! GeV provided |s13sind| 2 0.1. 4 For
ageo = 0 and RiaRi3 > 0 (R12R13 < 0), the baryon asymmetry |Ypz| has a maximum at R%2 = (.75,
R3; = 0.25 (R?, = 0.85, R?; = 0.15). Since the CP violation effects due to the Dirac phase are
always suppressed by the relatively small experimentally allowed value of s13, the regions of interest
would correspond to @13 ~ 0, £7/2, where Apg is also suppressed. The case of ¢13 ~ 0, £7/2,
corresponds to |Ry3| taking values close to the boundaries: |Ri3|? ~ | |Ri2|?> F 1.
Note that the mixed term ABHX contains a piece which does not depend on the Dirac phase
6. This d-independent piece is multiplied by c12503 which is approximately at least by a factor
seven larger than the corresponding mixing angle factor sjocs3s13 in the d-dependent term (I)E/HX'
In the region |Ry3|? ~ ||R12|?> F 1|, one also has sin(P12 + @13 + az2/2) = 0 for azy = 7k and the
d-independent term in ABHX will also be suppressed. A detailed numerical analysis of this region
of parameter space for CP violating values of the Dirac phase § and a CP conserving Majorana

“Values of s13 2 0.1 are within the range to be probed by future experiments with reactor 7. [38]. Future
long baseline experiments will aim at measuring values of sin® 613 as small as 107% = 107® and at constraining (or
determining) ¢ (see e.g. [39]).
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phase aszs shows that successful leptogenesis can still be realized for |Ri3|> 2 ||Ri2/?> — 1| and
|R12| ~ O(1). Moreover, in the cases considered, the effects of the CP violating Dirac phase are
relevant in order to reproduce the observed value of the baryon asymmetry. In Fig. 3.7 it is reported
|Yp| as a function of § for |Ria| = 1, s13 = 0.2, aga = 0 (left panel) and ase = 7 (right panel).
The value of | R3] is taken close to its lower bound. In both the shown cases, there is a significant
interference between the high energy and the mixed terms that can suppress or enhance the baryon
asymmetry. The latter is controlled by the Dirac phase J.

In conclusion, from the previous analysis one can say that if the Majorana phase ags has a
CP conserving value, there still will be regions in the parameter space where the effects of the CP
violating Dirac phase in the PMNS matrix can be significant in flavoured leptogenesis, even if CP
violation is due also to the “high” energy R matrix phases.

3.2 Inverted Hierarchical Light Neutrino Mass Spectrum

Very different results are obtained for IH neutrino mass spectrum: mg < mio = \/|Am3| =
0.05 eV. As follows, for such scenario there exist significant regions of the corresponding leptoge-
nesis parameter space where the relevant “high” energy R—phases have large CP violating values,
but the purely high energy contribution in Yz plays a subdominant role in the production of baryon
asymmetry compatible with the observations. The requisite dominant term in Y3 can arise due to
the “low” energy CP violation in the neutrino mixing matrix U. In some of these regions the high
energy contribution in Yg is so strongly suppressed that one can have successful leptogenesis only
if the requisite CP violation is provided by the Majorana phase(s) in U.

The see-saw parameter space considered in this section is compatible with the two flavour
regime of leptogenesis, 107 GeV < M; < 10'2 GeV. For simplicity, the lightest neutrino mass
is mg is set equal to zero and the heaviest RH neutrino N3 is assumed to be decoupled from
the theory. The latter condition is easily fulfilled if Ri3 = 0. As will be discussed below, all the
results derived here are actually valid if the following more general conditions are fulfilled: 1)
|R13|%sin 213 < min(|Ry1|? sin 2411, | Ri2|? sin 2¢12) and 4i) the terms proportional to ms|Ry3/?
and m3|Ry3|? in the expressions of €1, and €, are negligible. The first condition is satisfied not
only in the N3—decoupling limit but also for Ry3 # 0, but Im(R%g) = 0. The second condition is
naturally verified in the case of inverted hierarchical light neutrino mass spectrum. Working in the
framework defined by the constraints ¢) and i), one can use the orthogonality of the R matrix to
express the two relevant “high” energy phases ¢17 and @12 in terms of the absolute values |R11],
|R12| and of R?; which is real:

(1 R%)® + |Rul* = |Riol*
20 = 3.27
COS 2011 SIHE (1 — ng) ) ( )

(1 R%)® — |Rul* + | Riol*
20 = 3.28
COS 20012 2|R12|2 (1 — R%?)) ) ( )

with the further constraint: sign(sin 2¢11) = —sign(sin 2¢12). In the cases discussed below the sign
is fixed as: sin2¢1; < 0.
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Figure 3.8: The dependence of the high energy term |Y3Ang| (blue dotted line), the mixed term
|Y 3 Amix| (green dashed line) and of the total baryon asymmetry |Yz| (red continuous line) on |Ris| in
the case of TH spectrum, CP violation due to the Majorana phase as; and R—phases: i) (—s13 cosd) =
0.15; 0.17; 0.20, oy = 7/2, |Ry1| = 0.7 (upper left panel); ii) agr = 7/2, |R11] = 1, s13 = 0 (upper
right panel), s13 = 0.2, 6 = 0 (lower left panel), s13 = 0.2, 6 = 7 (lower right panel). The light-blue
dot-dashed curve in the last three panels represents the dependence of Y on | R3] for the given PMNS
parameters and CP conserving matrix R, with Ri3Ris = ik|R11Ri2|, k = —1 and |R11|? — |R12|? = 1.
In all the panels the lightest RH neutrino mass is M; = 10! GeV. The horizontal lines indicate the
allowed range of |Yz|, |Yp| € [8.0,9.2] x 10711,

The CP violating asymmetry €., in the case considered, is given by [75]:

2
3M, /1AMy L , b Amd )
.oz - Ryy)? sin(2 Unl? = |Ura?) — U,
€1 16702 |Ri1|2 + |Ri2)? |R11|” sin(2¢11) | (|Ur1| |Ur2|”) ’AmiH 1]
1 Am? - ~ .
+ |Rut| [Raal| | 5 5 cos(@u1 + 1) Im(U;, Usra)
2 |[Amy
1 Am?
+2 (15t ) sin(@u + @r2) Re(UA Ur) | ¢ - (3.20)
2 [Amy|
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For 911 = kn /2, ¢120 = K'w/2 (k, k' = 0,1,2,...) Ry1 and Ry are either real or purely imaginary and
the expression for €, reduces to Eqs (1.78) or (1.79). Under these conditions successful leptogenesis
is possible for Ry3 = 0 only if Ryj R is purely imaginary, i.e. if |sin(@11 + @12)| = 1, the requisite
CP violation being provided exclusively by the Majorana or Dirac phases in the PMNS matrix [54].

One can easily show that for the IH light neutrino mass spectrum of interest in the present
analysis, the following relation holds [75]: ®

€10 = —€17 (1 + O(Am2 /|Am3])) . (3.30)

As in the NH case discussed in the previous section, the leptogenesis parameter space can
be divided according to the different sources of CP violation that enter in the expression of the
CP asymmetry €1,. In particular, following the discussion reported at the end of Chapter 1, few
considerations should be taken into account:

i) The R matrix satisfies the CP invariance constraint if its elements R;; are real or purely
imaginary (see Eq. (1.47)).

i7) In order to have CP violation, e.g. only due to the Majorana phase ag; in U, both Im(U*,U2)
and Re(U* Ur2) should be different from zero [41, 42], while the Dirac phase 0 should have
a CP conserving value, § = k7 (k= 0,1,2,...) (i.e. the rephasing invariant Jcp, Eq. (1.18),
associated to ¢ should satisfy Jcp = 0).

i11) Purely imaginary Ry Ryg, i.e. |sin(@11+@i12)| = 1, and Re(U¥,Ur2) = 0, Jop = 0 corresponds
to the case of CP invariance and therefore €1, = 0.

iv) Purely imaginary Rj1Ri2 and Jop = 0, Im(UX Ur2) = 0, but Re(UXUz2) # 0, i.e. 6 =
kr, agqy = 2mq (k,q = 0,1,2,...), corresponds to CP violation due to the neutrino Yukawa
couplings, 7.e. due to the combined effect of the matrix R and of the PMNS matrix U,
and €1 # 0. It is interesting that in this case both U and R satisfy the CP invariance
constraints (see Egs (1.46) and (1.47), respectively), while the neutrino Yukawa couplings do
not satisfy these constraints, i.e. relation (1.50) is verified for the specific case considered. As
a consequence, under the indicated conditions there will be no CP violation effects caused
by the PMNS matrix U in the low energy neutrino mixing phenomena (neutrino oscillations,
(B8B)ou-decay, etc.) and there will be no CP violation effects in the “high” energy phenomena
which depend only on the matrix R (i.e. do not depend on the PMNS matrix U).

3.2.1 CP violation and baryon asymmetry

According to relation (3.30), the baryon asymmetry Yp can be expressed just in terms of €., with
good approximation, in analogy to the case of the a CP conserving matrix R, reported in the
previous chapter. Therefore, one has:

voa 12a 390 _ 417 _
—_— —my, | — —m
B 37 g. \ '\ 589" T\ 5gg""e
= Yp(Aug + Aux) , (3.31)

5Note that this relation is valid not only for Rz = 0, but also for non-zero real R%;: Ri3 # 0, Im(ng) =0.
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where Y3 is the same as in Eq. (3.17) and Aupairx) = Carvrx) (1(0.66m1,) — 1(0.71my, ), with

CHE = G11 sin 2(,511 “UTl‘Q — ’U7-2’2:| s (3.32)
Cwvrx = 2Gqo sin(gbu + 3512) RG(U;kqu—Q) , (3.33)
and
|Ru1|?
G S ) I 3.34
H |R11|% + |Ri2|? (3.34)
|R11R12]
G —_— 3.35
2 |R11|% + |R12|? (3.35)

The wash-out mass parameters are in this case:

M = \/IAmE| [[Ru 2 [Unl® + [Riaf? [Ursl?

+ 2|R11||Ri2| Re (ei (P11—P12) U:1UT2> ] ,

VIAmE | (R * + [Raal?) — iy (3.37)

Notice that the contributions proportional to the factor 0.5Am2 /[Am3| = 0.016 in the CP asym-
metry 1., Eq. (3.29), are neglected. In Eq. (3.31), YSAng is the high energy term which vanishes
in the case of a CP conserving matrix R, while YBQAMIX is the mized term which, in contrast to
Y3 Aug, does not vanish when R conserves CP: it includes the “low” energy CP violation, e.g.
due to the Majorana phase o7 in the neutrino mixing matrix. It is important to notice that the
phase aw; enters also into the expression for the (53)g,-decay effective Majorana mass in the case
of TH light neutrino mass spectrum (see Eq. (1.32)). As discussed above, in order to have CP
violation due to the Majorana phase a9, both Im(U* Ur2) and Re(U},Ur2) should be different
from zero [41, 42].

(3.36)

mio

3.2.2 Baryon asymmetry and large 6,3

Using the formalism described above, one can study the interplay between the CP violation arising
from the “high” energy phases of the orthogonal matrix R (R—phases) and the “low” energy CP
violating Dirac and/or Majorana phases in the neutrino mixing matrix, as well as the relative
contributions of the high energy and the mixed terms YgAHE and YgAMIX in Yp, in analogy to the
analysis performed in the previous section concerning the case of NH light neutrino mass spectrum.
One can see now that there are large regions of the corresponding leptogenesis parameter space
where the high energy contribution to Yz is subdominant, or even strongly suppressed. The results
of this study are illustrated in Fig. 3.8.

Two representative examples of such a suppression of YgAHE, which can take place even when
the “high” energy R—phases get large CP violating values, are analyzed below in the simple case
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3. INTERPLAY BETWEEN HIGH AND LOW ENERGY CP VIOLATION

Ry3 = 0. In both scenarios the CP asymmetry €1, is produced in the regime of mild wash-out
(M1, 2 (1+3) x 1073 eV), while €1, (3.30) is generated with strong wash-out effects. Under these
conditions the two-flavour regime in leptogenesis is realized for M; < 5 x 101t GeV [70, 71]. More
precisely, there are small subregions of the parameter space where the two-flavour regime is realized
for My < 7 x 10" GeV; in another subregion, the results are valid for M; < 3 x 10! GeV. If,
for instance, |R11| = 1, the two-flavour regime of leptogenesis is realized for M; < 5 x 101 GeV,
provided that |R1s| < 0.7. For |Ry1| < 0.5, the same conclusion is valid for M7 < 5x 10! GeV in the
whole interval of variability of |Rial; for |[Ry1| = 1.1 and |Rya| < 1 this is realized for M; < 3 x 10!
GeV. In the latter case |Ri2| can vary in the interval 0.45 < |Ri2| S 1.45.

From Egs (3.31) and (3.33) one can see that the term Y3Apg is strictly related to the Dirac
phase 6, for sufficiently large 613. Indeed, the following combination of the elements of the neutrino
mixing matrix is relevant in the computation of the CP asymmetry €, [75]:

’U71’2 — ‘UTQ‘Q = (8%2 — 0%2)833 — 4812012823023813 cos
= —0.20 —0.92s13 cosd, (3.38)

where s2, = 0.30 and s3; = 0.5 are used. Therefore, for s;3 = 0.2 and the Dirac phase assuming
the CP conserving value § = , one has: |Ur1|*> —|Ura|? 2 (—0.016). At the same time, [Y3Anix| o
|UZ Ura| = 0.27. As a consequence, if the Majorana phase ag; has a sufficiently large CP violating
value, the contribution of |Y3Anix| to |Yg| can be by an order of magnitude bigger than the
other term, |Y§AHE|. Actually, for s%, = 0.30 and 5%3 = 0.5, the high energy term in Yp is
strongly suppressed by the factor (|U,1|? — |Ur2|?), if (= sin 613 cos §) 2 0.15, independently of the
values of the “high” energy phases ¢11 and ¢1o. Even if the latter assume large CP violating
values, the purely high energy contribution to Yz would play a subdominant role in the generation
of the baryon asymmetry compatible with the observations if the above inequality holds. For
(—sinfy3 cos §) > 0.17 and M; < 5x 101 GeV, the observed value of the baryon asymmetry cannot
be generated by the high energy term YgAHE alone. One can have successful leptogenesis in this
case only if there is an additional dominant contribution in Yz due to the CP violating Majorana
phase g1 from the neutrino mixing matrix. This result is valid in the whole range of variability
of the parameter |Rys| (Ri3 = 0), |(1 — [Ri1[*)] < [Ri2]* < (1 + |Ru1|?), and for |Ryy| having
values in the interval 0.3 < |R11| S 1.2. For values of |R;1| outside the indicated interval successful
leptogenesis is not realized in the two-flavour regime, for M; < 5 x 10 GeV. For the 30 allowed
values of s3, = 0.38 and s3; = 0.36, the same conclusion is valid if 0.06 < (— sinf13cosd) < 0.12.
The values of sinfi3 and sinfy3cosd, for which the discussed strong suppression is possible of
Y3 Aug, can be probed by the Double CHOOZ and Daya Bay reactor neutrino experiments [38]
and by the planned accelerator experiments on CP violation in neutrino oscillations [39]. As already
discussed in the first chapter, in the recent analysis of the global neutrino oscillation data [40], a
nonzero value of sin’ #3 was reported at 1.60. The best value and the 1o allowed interval of values
of sinf3 found in [40], sinf3 = 0.126 and sin 13 = (0.077 = 0.161), are in the range of interest
for the present analysis. In addition, cosd = —1 is reported to be preferred over cosd = +1 by the
atmospheric neutrino data.

The results discussed above are illustrated in Fig. 3.8, upper left panel, where the dependence
of Y Aug|, [YSAMix| and |Yp| on | Rz is reported, for a fixed value of |R11| 