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ABSTRACT 

 

Olfactory sensory neurons (OSNs) use a Ca
2+

-activated Clˉ channels amplification 

mechanism in olfactory transduction. Odor binding to odorant receptors in the cilia of 

OSNs leads to an increase of intraciliary Ca
2+

 concentration by Ca
2+

 entry through 

cyclic nucleotide-gated channels. Ca
2+

 activates a Clˉ channel that leads to an efflux 

of Clˉ from the cilia, contributing to the depolarization in OSNs.  

The molecular identity of the olfactory Ca
2+

-activated Clˉ channel is not definitely 

established. Bestrophin2 and TMEM16b/anoctamin2 are located at the surface of the 

olfactory epithelium, in the cilia of OSNs where olfactory transduction takes place. 

Moreover when expressed in heterologous systems each of these proteins produces 

Ca
2+

-activated Clˉ currents. Both proteins have been indicated as a candidate for being 

a molecular component of the olfactory Ca
2+

-activated Clˉ channel.  

In the first part of this Thesis we analyzed knockout (KO) mice for bestrophin2. We 

compared the electrophysiological properties of Ca
2+

-activated Clˉ currents in OSNs 

from WT and KO mice for bestrophin2. Our data show that Ca
2+

-activated Clˉ 

currents are still present in the cilia of OSNs from KO mice for bestrophin2 and that 

their properties are not significantly different from those of WT mice. These results 

indicate that bestrophin2 does not appear to be the main molecular component of the 

olfactory Ca
2+

-activated Clˉ channel. Therefore further studies are required to 

determine the physiological function of the bestrophin2 in the cilia of OSNs. 

In the second part of this Thesis we measured functional properties of the native Ca
2+

-

activated Clˉ current in mouse OSNs and compared them with those of 

TMEM16b/anoctamin2-induced current in transfected HEK cells. We found a similar 

extracellular blocking potency for some Clˉ channels blockers, a similar anion 

permeability sequence and a reversal potential time-dependency. Therefore, we 

conclude that the measured electrophysiological properties are largely similar and 

further indicate that TMEM16b/anoctamin2 is likely to be a major subunit of the 

native olfactory Ca
2+

-activated Clˉ current.    
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1 INTRODUCTION 

 

 

 

1.1 Organization of the olfactory system 

Chemical senses are responsible for detecting molecules of immense chemical 

variety from the environment thereby processing specific information concerning food or 

toxic substances as well as suitable mating partners or predators (reviewed by Firestein, 

2001; Tirindelli et al., 2009).  

The vertebrate olfactory system is composed of a number of subsystems anatomically 

segregated within the nasal cavity (reviewed by Breer et al., 2006; Schoenfeld & Cleland, 

2005; Ma, 2007; Munger et al., 2009) some well known and others only recently 

characterized: the main olfactory epithelium, the vomeronasal organ, the Grüneberg 

ganglion, the septal organ and guanylate cyclase D-containing cells in the main olfactory 

epithelium (Figure 1.1A). These subsystems are clearly distinguished by the 

chemosensory receptors they express and the signaling mechanisms they employ to detect 

and transduce chemosensory stimuli (reviewed by Mombaerts, 1999; Frings, 2001; Breer 

et al., 2006; Tirindelli et al., 2009); moreover they make distinct neural connections to 

regions of the olfactory forebrain for processing (reviewed by Munger et al., 2009). 

 

1.1.1 The olfactory epithelium and the olfactory sensory neurons 

In vertebrates the main olfactory epithelium lines cartilaginous lamellae, called 

turbinates, in the posterior nasal cavity. It is a columnar pseudo-stratified neuroepithelium 

which contains some millions of ciliated olfactory sensory neurons (OSNs), microvillar 

cells, supporting/sustentacular cells, and basal stem cells (Figure 1.1B) (reviewed by 
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Breer et al., 2006; Munger et al., 2009; Pifferi et al., 2009c). A layer of mucus is secreted 

by Bowman‟s glands at the surface of the olfactory epithelium, partially protecting the 

tissue that is in direct contact with the external environment. The olfactory epithelium has 

evolved a constitutive mechanism of neurogenesis (Schwob, 2002) to replenish neuronal 

population lost during natural turnover or after lesions. At the basal germinal layer, 

globose and horizontal basal cells are thought to contribute to ongoing neurogenesis but 

the process is poorly understood (Caggiano et al., 1994; Calof et al., 2002; Leung et al., 

2007).  

 

 

Figure 1.1 A) Cartoon of olfactory sensory system within the nasal cavity of mouse 

(From Brennan & Zufall, 2006). MOE, main olfactory epithelium; VNO, 

vomeronasal organ; GG, Grüneberg ganglion; SOM, septal organ of Masera; GCD, 

guanylate cyclase D-containing cells in the MOE; NC, nasal cavity; NG, necklace 

glomeruli; MOB, main olfactory bulb; AOB, accessory olfactory bulb;  

B) Cartoon of the olfactory sensory epithelium primary cells: olfactory sensory 

neurons, supporting or sustentacular cells and basal stem-cells. Enlargement shows 

the odor binding at OSNs cilia level (From Firestein, 2001). 

 

Olfactory sensory neurons in mammals are bipolar neurons with the cell body 

diameter of 5-10 μm (Schild & Restrepo, 1998). The dendrite reaches up to the surface of 

the tissue with a knob-like ending (diameter 2-3 µm) and several nonmotile cilia (Menco, 

1980; Lidow & Menco, 1984; Getchell, 1986; Menco, 1997; Schild & Restrepo, 1998) 

(Figure 1.2). Cilia are the site of the sensory transduction apparatus (reviewed by Schild 

& Restrepo, 1998; Nakamura, 2000; Frings, 2001; Kleene, 2008; Pifferi et al., 2009c), 
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their number (20-30) and length (15–50 μm with ~200 nm diameter) increase the cell 

surface for odor binding (Adamek et al., 1984; Getchell, 1986; Lancet, 1986; Schild & 

Restrepo, 1998; Kleene, 2008). The axonal processes of OSNs cross the cribriform plate 

and projects to glomeruli in the olfactory bulb in the most rostral part of central nervous 

system (Malnic et al., 1999; Mori et al., 1999; Firestein, 2001).  

 

 

Figure 1.2 Microphotograph of human olfactory epithelium and 

olfactory sensory neurons knob/cilia obtained with scanning 

electron microscopy (From Morrison & Costanzo, 1990).  

 

 

1.2 Odor-induced electrical response in olfactory sensory neurons 

In 1955 Ottoson published the first analysis of the electrical activity of the olfactory 

epithelium by electro-olfactogram (EOG) method (Ottoson, 1955). In EOG recording the 

odor induced potential change is measured on the surface of the olfactory epithelium 

(Ottoson, 1955; Scott & Scott-Johnson, 2002; Cygnar et al., 2010).   

In isolated OSNs, the response to odor stimuli in solution has been well characterized 

(Kleene, 2008). Most often, the response has been measured under voltage-clamp upon 

presentation of a brief pulse of odor (Firestein & Werblin, 1989; reviewed by Kleene, 

2008). A given neuron responds to a small and unpredictable subset of odors (Grosmaitre 
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et al., 2006; Zhao et al., 1998; Lagostena & Menini, 2003). Some evidences suggest that 

more neurons respond to odors when the epithelium is intact (Sicard & Holley, 1984; 

Duchamp-Viret et al., 2000) whereas success rates are lower in isolated neurons, 

typically ranging from 3% to 12% in mouse (Lagostena & Menini, 2003; Reisert et al., 

2007).  

By directing the odor stimulus to various parts of the cell, it has been shown that 

the sensitivity to odors is largely restricted to the cilia (Kurahashi, 1989; Firestein et al., 

1990; Lowe & Gold, 1993; Takeuchi & Kurahashi, 2003) The odor stimulation generates 

a transient inward receptor current that would be expected to depolarize the neuron in 

situ. The response typically lasts 1 s or more (Takeuchi et al., 2003; reviewed by Kleene, 

2008). In mouse and rat, the latency between arrival of the stimulus and the onset of the 

current is shorter ( ~160 ms; Reisert & Matthews, 2001; Grosmaitre et al., 2006)  than in 

amphibians (150 to 600 ms; Firestein et al., 1993; Takeuchi & Kurahashi, 2003; 

Kurahashi, 1989; Firestein & Werblin, 1987). The amplitude of the peak of the receptor 

current increases proportionally to concentration or duration of the odor stimulus pulse 

(Takeuchi & Kurahashi, 2002). The relation between odor dose and peak receptor current 

is generally well fitted by a Hill equation: 

 

where Imax is the maximum macroscopic current, C is the concentration of odor, K½ is the 

half-maximally effective concentration, and nH is the Hill coefficient (Hille, 2001; 

Kleene, 2008). For some odors K½ ranges from few to hundred μM both in amphibian 

(Firestein et al., 1993) and mouse OSNs (Grosmaitre et al., 2006), however some studies 

report OSN response even at nM and pM odor concentration (Frings & Lindemann, 1990; 

Grosmaitre et al., 2006). 

The parameter nH in Hill equation describes the slope of the dose–response relation. As nH 

decreases, the slope also decreases, and the dynamic range (range of stimulus strengths 

over which the neuron response varies) increases. In isolated amphibian OSNs under 

whole-cell recording conditions, nH ranges from 3-10 (Firestein et al., 1993; Takeuchi & 

Kurahashi, 2005; Tomaru & Kurahashi, 2005), whereas with suction electrode recordings 
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or perforated patch analysis, nH is much smaller, 1 to 2 (Ma et al., 1999; Reisert & 

Matthews, 1999; Grosmaitre et al., 2006). 

In physiological solutions, the current-voltage relation of the odor-induced current is 

nearly linear with a slight outward rectification (Takeuchi & Kurahashi, 2003). The 

reversal potential is about 0-3 mV (Lowe & Gold, 1993; Takeuchi & Kurahashi, 2003). 

 

1.3 Olfactory transduction 

The olfactory transduction of several OSNs involves a canonical cAMP signaling 

pathway (Figure 1.3) (reviewed by Kleene, 2008; Pifferi et al., 2009c). Binding of 

odorants activates the odorant receptor, which stimulates the rapid synthesis of cAMP by 

ACIII through a mechanism mediated by the olfaction-specific G protein, Gαolf.  

Cyclic nucleotide-gated (CNG) channels located in the ciliary membrane are directly 

activated by cAMP, causing a depolarizing influx of Na
+
 and Ca

2+
 ions (Nakamura & 

Gold, 1987). The increase of the intracellular Ca
2+

 concentration generated by Ca
2+

 entry 

through CNG channels directly gates Ca
2+

-activated Clˉ channels (Kleene & Gesteland, 

1991; Lowe & Gold, 1993; Kurahashi & Yau, 1993; Kleene, 1993b).  

 

Figure 1.3 Cartoon of olfactory sensory neuron (OSN) and olfactory 

transduction. The binding of odorant molecules to ORs induces the G protein-

mediated activation of ACIII. cAMP directly gates CNG channels generating a 

depolarizing influx of Na
+
 and Ca

2+
. Ca

2+
 opens a Clˉ channel that produces a 

depolarizing efflux of Clˉ (From Pifferi et al. 2006a). 
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In OSNs the Na
+
/Ca

2+
/2Clˉ cotransporter NKCC1 (Kaneko et al., 2004; Reisert et al., 

2005; Nickell et al., 2006, 2007; Hengl et al., 2010) and probably the Clˉ/HCO3ˉ 

exchanger SLC4A1 (Hengl et al., 2010) maintain an unusually high internal 

concentration of Clˉ that is in the same range of the Clˉ concentration present in the 

mucus at the external side of the ciliary membrane (Reuter et al., 1998; Kaneko et al., 

2001; Kaneko et al., 2004; Nakamura et al., 1997). Therefore in physiological conditions, 

the opening of Ca
2+

-activated Clˉ channels causes an efflux of Clˉ ions from the cilia, 

corresponding to an inward current that further contributes to the depolarization of OSNs 

(Kurahashi & Yau, 1993; Lowe & Gold, 1993; Kleene & Gesteland, 1991; Kleene, 

1993).  

Odor response recovery includes reestablishment of the resting ionic gradients in cilia. A 

Na
+
/Ca

2+
 exchanger (Noé et al., 1997; Reisert & Matthews, 1998) and a plasma 

membrane Ca
2+

-ATPase (Antolin et al., 2010) contribute to Ca
2+

 efflux as the odor 

response terminates (Frings, 2001).  

In the next paragraphs the olfactory transduction steps will be discussed in detail.   

 

1.3.1 Odorant receptors  

Odorant receptor (OR) proteins belong to the G protein-coupled receptors 

(GPCRs) family (Buck & Axel, 1991). The number of genes encoding ORs varies 

considerably among species (reviewed by Mombaerts, 2001; Nei et al., 2008), but they 

probably represent the largest genes family in the mammalian genome (reviewed by 

Kaupp, 2010). Most mammals have between 600 and 1,300 OR genes, 12 to 50% of them 

non-functional pseudogenes (reviewed by Nei et al., 2008). Some ORs with unknown 

function are also expressed in other cell types and body regions, notably in the kidneys 

and sperm (Spehr et al., 2003; Pluznick et al., 2009).  

OR proteins share common motifs but there is a region of hypervariability in the third, 

fourth and fifth transmembrane regions (reviewed by Mombaerts, 1999; 2004) thought to 

be a probable binding site for ligands (reviewed by Nakamura, 2000). Reconstruction of 

odorant-binding sites would help understanding the molecular mechanisms underlying 

specificity.  

http://www.nature.com/nrn/journal/v11/n3/full/nrn2789.html#B13
http://www.nature.com/nrn/journal/v11/n3/full/nrn2789.html#B13
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A given OR is expressed only in a small number of olfactory sensory cells (Ressler et al., 

1993) and the idea that expression of ORs in OSNs follows the so-called one receptor–

one neuron rule is widely accepted but has not been proved. It is better established that 

each neuron expresses only one of the two alleles of a given OR gene (reviewed by 

Mombaerts, 2004), with a transcription process that is not yet fully understood 

(Rodriguez, 2007). The dose–response relationship for a given odor varies considerably 

among neurons (Firestein et al., 1993; Grosmaitre et al., 2006; reviewed by Kleene, 

2008) and different odorants are recognized by unique but overlapping ensembles of ORs 

(reviewed by Kaupp, 2010).  

 

1.3.2 The G protein 

 

Odorant receptors, like other GPCRs, interact with a Gs protein which is able to 

stimulate adenylyl cyclase enzymatic activity.  The receptor interacts with α subunit of G-

protein (Gα), GDP on this subunit is exchanged to GTP, and the βγ-subunit (Gβγ) is 

released from Gα allowing Gα to activate adenylyl cyclase (reviewed by Nakamura, 2000; 

Pifferi et al., 2009c). Jones & Reed (1989) reported that OSNs express a new variant of 

the Gα, named Gαolf, localized in olfactory cilia (Menco, 1992). Gαolf importance in 

olfactory transduction has been definitely established by showing that knockout mice for 

Gαolf are anosmic (Belluscio et al., 1998). 

 

1.3.3 The adenylyl cyclase 

 

Odor-induced adenylyl cyclase activity has been shown to depend on GTP 

presence in olfactory cilia (Pace et al., 1985; Sklar et al., 1986; Shirley et al., 1986). 

Adenylyl cyclase found in OSNs by PCR screening (Bakalyar & Reed, 1990) was distinct 

from before-known AC type I or II, therefore it was named type III (ACIII) (reviewed by 

Frings, 2001; Nakamura, 2000).  

Knockout mice for ACIII are completely anosmic (Wong et al., 2000) supporting the idea 

that cAMP signaling constitutes the main odor transduction mechanism in OSNs. 
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1.3.4 The phosphodiesterase 

Two phosphodiesterases (PDEs) with distinct cellular localization have been found 

in OSNs: PDE1C is a Ca
2+

/calmodulin-stimulated PDE (Yan et al., 1995) mainly 

enriched in the cilia and dendritic knob (Borisy et al., 1992; Yan et al., 1995; Yan et al., 

1996; Menco, 2005) while PDE4A is Ca
2+

 insensitive (Conti & Beavo, 2007) and it is 

present throughout the cell, but is absent from the cilia (Cherry & Davis, 1995; Juilfs et 

al., 1997; reviewed by Nakamura, 2000). PDE1C was hypothesized to be critical for 

rapid termination of the OSN response due to its ciliary localization and Ca
2+

 

dependency, while PDE4A was not expected to affect OSN responses as it is excluded 

from the cilia. 

Cygnar & Zhao (2009) showed that double knockout Pde1c
−/−

-Pde4a
−/−

 mice and not 

single knockout mice for PDE1C or PDE4A displayed response for odorants with 

reduced amplitude, prolonged termination, and slower onset kinetic compared to the wild 

type, in EOG recordings. Their data indicate that PDE1C and PDE4A are both necessary 

and that removal of cAMP from the cilia is substantially impaired when all PDE activity 

is eliminated, confirming a previous study by Firestein et al. (1991). 

 

1.3.5 The cyclic nucleotide-gated channel 

 

In 1987 Nakamura and Gold showed the presence of a cAMP-gated current in 

excised patches from olfactory cilia of toad. Such a current was then described in many 

other species including salamander, frog, newt, rat and mouse (Kurahashi & Kaneko, 

1991; Firestein et al., 1991; Frings et al., 1992; Kleene, 1994).  

CNG channels are activated by the direct binding of cyclic nucleotides to a large C-

terminal cyclic nucleotide-binding domain (reviewed by Pifferi et al., 2006a). The gating 

of CNG channels is not very voltage-dependent (Kaupp & Seifert, 2002). 

 Olfactory CNG channel affinity for cGMP is higher than cAMP: K½ for cAMP is 3 µM 

in mouse (Michalakis et al., 2006; Song et al., 2008; reviewed by Pifferi et al., 2006a),  

4.1 μM in rat (Bönigk et al., 1999) and 2 μM in frog (Kleene, 1999); K½ for cGMP is 2 

µM (reviewed by Nakamura, 2000; Pifferi et al., 2006a). The Hill coefficient ranges from 
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1.3 and 2.3 suggesting that at least 2 molecules of cAMP must bind the channel for gating 

(reviewed by Kleene, 2008).  

With low concentrations of divalent cations on both sides of the membrane, the CNG 

single channel conductance varies from 8 to 46 pS (Kurahashi & Kaneko, 1991; Larsson 

et al., 1997; Zufall & Firestein, 1993; Frings et al., 1992; Zufall et al., 1991; reviewed by 

Kleene, 2008) and the current-voltage relation is almost linear with a slight outward 

rectification (Bönigk et al., 1999; Kurahashi, 1990; Frings et al., 1992; Kleene, 1993a; 

reviewed by Kleene, 2008).  

CNG channels are permeant to all monovalent alkali cations, Na
+

, K
+

 , Li
+

 , Rb
+
 and Cs

+
 

with similar permeability ratios in rat (Frings et al., 1992) and in newt (Kurahashi, 1990).   

Extracellular divalent cations like Ca
2+

 and Mg
2+

 are permeant but also block this channel 

at negative potentials (Nakamura & Gold, 1987; Zufall & Firestein 1993; Kleene, 1995) 

resulting in a single channel conductance from 0.56 to 1.5 pS (Zufall & Firestein, 1993; 

Kleene, 1997). A complex of Ca
2+

 and calmodulin at the intracellular side lowers the 

affinity for cAMP (Liu et al., 1994; Chen & Yau, 1994), resulting in a lowering of its 

open probability (reviewed by Nakamura, 2000).  

Leinders-Zufall et al. (1997, 1998) demonstrated that during odorants application resting 

Ca
2+ 

concentration in the cilium increases from 40 nM to 300 nM exclusively from Ca
2+ 

entry through the CNG channel (reviewed by Nakamura, 2000). 

The first cyclic nucleotide-gated channel was cloned in retinal rods (Kaupp et 

al., 1989), then in OSNs (Dhallan et al., 1990; Ludwig et al., 1990). Nowadays six CNG 

channel genes have been identified in mammals (Kaupp & Seifert, 2002), four subunits 

types A and two subunits types B (reviewed by Pifferi et al., 2006a). 

 

Figure 1.4 Topology (A) and oligomeric state (B) of cyclic 

nucleotide-gated channel (CNG). Olfactory CNG is composed by 

one B1b, one A4 and two A2 subunits (From Kaupp, 2010). 
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Olfactory CNG channels consist of two CNGA2, one CNGA4 and one CNGB1 (b splice 

variant) subunits (Bradley et al., 1994; Liman & Buck, 1994; Sautter et al., 1998) (figure 

1.4). CNGA2 knockout mice lack EOG responses to most odorants (Brunet et al., 1996), 

though  showing residual responses to some other odorants (Zhao & Reed, 2001; Lin et 

al., 2004).  

CNG channels are composed of four subunits forming a tetramer with a central pore 

(figure 1.4). The topology of each subunit is similar to that of the cationic voltage-

activated channels with six transmembrane-spanning domains, a pore-loop domain 

between the fifth and sixth transmembrane domain, and intracellular N- and C-terminal 

regions (figure 1.4) (reviewed by Pifferi et al., 2006a). 

 

1.3.6 Chloride accumulation in olfactory cilia 

In cryosections of rat olfactory epithelium Reuter et al. (1998) used energy 

dispersive X-ray micro analysis and estimated the inner Clˉ concentration to be 69 mM 

and the olfactory mucus Clˉ concentration to be 55 mM, with a calculated equilibrium 

potential for Clˉ of +6 mV.  In intact olfactory epithelium from mice and rats, Kaneko et 

al. (2004) used two-photon fluorescence lifetime imaging microscopy of the Clˉ sensitive 

dye 6-methoxy-quinolyl acetoethyl ester to measure Clˉ concentration in different 

compartments. They found 50 mM extracellular Clˉ and 40-50 mM Clˉ concentration in 

dendritic knobs. Clˉ concentration was less in OSN soma suggesting a gradient for Clˉ 

accumulation. 

Clˉ accumulation process charges the resting cilia to support the excitatory Clˉ efflux in 

olfactory transduction (reviewed by Kleene, 2008) (see paragraph 1.3.7).  

The Na
+
/K

+
/2Clˉ cotransporter NKCC1 has been shown to be expressed in the cilia of 

OSNs by proteomic (Stephan et al., 2009; Mayer et al., 2009) and immunological (Hengl 

et al., 2010) studies. NKCC1 contributes substantially to Clˉ uptake (Kaneko et al., 2004) 

to maintain the intracellular Clˉ concentration above electrochemical equilibrium 

(reviewed by Kleene, 2008). NKCC1 is regulated by phosphorylation of four threonine 

residues in its N terminus by SPAK (Ste20-related proline-alanine-rich) and OSR1 

(oxidative-stress response1) kinases (Dowd & Forbush, 2003; Gagnon et al., 2007; 
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Delpire & Gagnon, 2008). Both SPAK and OSR1 in turn are regulated by the WNK1 and  

WNK4 kinases (Anselmo et al., 2006; Delpire, 2009). 

Recently Hengl et al. (2010) clearly showed ciliary expression of NKCC1 and of the 

entire regulatory complex for Clˉ accumulation in OSNs (see figure 1.5). 

 

Figure 1.5 Model for signal amplification strategy of olfactory 

sensory cilia by Hengl et al. (2010). Transduction proteins for 

this model are in green and amplification proteins in red. 

 

Reisert et al. (2005) showed that isolated OSNs do not accumulate Clˉ if NKCC1 is 

eliminated by pharmacological block or genetic removal, but studies in isolated olfactory 

epithelia (Nickell et al., 2007, 2006) indicated that mice lacking NKCC1 retain 

approximately 40% to the total Cl
−
 accumulation. Smith et al. (2008) also showed normal 

olfactory sensitivity of NKCC1 knockout mice measured in behavioral test.  

The Cl
−
/HCO3

−
 exchanger SLC4A1 has been shown to localize to the olfactory 

cilia (Hengl et al., 2010) where it works as an additional mechanism for ciliary Cl
−
 

uptake.  

 

1.3.7 The calcium-activated chloride channel 

The presence of a Ca
2+

-activated Clˉ conductance in OSNs was first discovered in 

frog olfactory cilia (Kleene & Gesteland, 1991; Kleene, 1993b) and it soon became 

apparent its importance for olfactory transduction. The Ca
2+

-activated Clˉ channel 
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involvement in the response to odorants has been demonstrated in isolated OSNs from 

amphibians (Kurahashi & Yau, 1993; Firestein & Shepherd, 1995; Zhainazarov & Ache, 

1995) and from rats and mice (Lowe & Gold, 1993; Reisert et al., 2005). 

Activation of the Ca
2+

-activated Clˉ channel is subsequent to the influx of Ca
2+

 through 

the CNG channel (Kleene, 1993b) during odor response. 

In voltage-clamp experiments it has been shown that a large fraction of the odor-induced 

inward current is carried by the secondary Clˉ component ranging from 36% in newt and 

salamander (Kurahashi & Yau, 1993) up to 90% in mice and rats (Lowe & Gold, 1993; 

Reisert et al., 2005; Nickell et al., 2006; Boccaccio & Menini, 2007) of the total current 

response. 

The current conducted by a single olfactory Clˉ channel is very small and single-channel 

studies have not been possible. By noise analysis of macroscopic currents, the unit 

conductance was estimated to be 0.8 pS in frog (Larsson et al., 1997), 1.5 pS in rat 

(Reisert et al., 2003) and 1.6 pS in mouse (Pifferi et al., 2006b). 

Half maximal activation (K½) by Ca
2+

, reported for Clˉ conductance, ranges from 2.2 to 

4.8 μM Ca
2+ 

(Kleene & Gesteland, 1991; Reisert et al., 2003; Pifferi et al., 2006b) 

showing consistent results for amphibians and rodents. In one other study, K½ was 26 μM 

(Hallani et al., 1998), the reason of such a higher value maybe can be related to the 

unbuffered Ca
2+

 solution used. 

Hill coefficient nH ranges from 2.0 (Kleene & Gesteland, 1991) to 6.6 (Pifferi et al. 

2006b) suggesting that gating of the channel is probably cooperative.  

The current-voltage relations in symmetrical Clˉ solutions have been shown to rely on 

Ca
2+

 concentrations: at 2–3 μM Ca
2+

, significant outward rectification is apparent, 

whereas at high Ca
2+

  levels moderate inward rectification is seen (Kleene & Gesteland, 

1991; Reisert et al., 2003). 

The permeability sequence in inside-out patches are consistent in Reisert et al. (2003) (Iˉ 

> Brˉ > Clˉ > Fˉ) and in Pifferi et al. (2006b) (Iˉ > NO3ˉ > Brˉ > Clˉ >> MeSˉ) with 

“weak field strength” lyotropic series (Wright & Diamond, 1977; Eisenman & Horn, 

1983); indicating that the permeability is primarily determined by the hydration energy of 

the ion. In this model low electrical field strength is associated to the channel binding 

site, therefore interactions between permeant ions and the channel are weaker than ion-
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water interactions. This is why ions with bigger diameter but well dehydrated pass more 

easily through the channel pore than smaller water-coated ions. Hallani et al. (1998) have 

shown a different ionic permeability sequence (Clˉ > Fˉ > Iˉ > Brˉ), but these data have 

not been confirmed by other groups. 

Niflumic acid (NFA) 300 µM to 1 mM has been shown to reduce by 70-90% the Ca
2+

-

activated Clˉ current when applied either to the intracellular (Kleene & Gesteland, 1991; 

Kleene 1993; Reisert et al., 2003; Pifferi et al., 2006b) or the extracellular (Lowe & 

Gold, 1993; Reisert et al., 2005; Pifferi et al., 2006b; Boccaccio et al., 2006; Boccaccio 

& Menini, 2007; Antolin et al., 2010) side of the ciliary membrane.  

SITS has been applied at the intracellular side of the olfactory membrane (Kleene & 

Gesteland, 1991; Pifferi et al., 2006b) with a less blocking effect than NFA. 

Some other compounds like DIDS, DPC, FFA, have been shown to partially inhibit the 

olfactory Clˉ current (Kleene & Gesteland, 1991), but very specific blockers for Ca
2+

-

activated Clˉ channels and other Clˉ channels are not known. 

The presence of a pair of cationic and anionic currents has been thought to be 

useful to allow depolarizing current responses in a variety of extracellular ionic 

environments (Kurahashi & Yau, 1993); in fact ciliary membrane of olfactory neurons is 

exposed to the external environment in the nasal cavity. This is a possible problem for 

animals such as fish and amphibians whose fresh water habitat could reduce the 

extracellular Na
+
 concentration and thereby the CNG channels current. 

After first studies in amphibians the discovery of the Ca
2+

-activated Clˉ current in 

mammals suggested a more general function for this secondary component in olfactory 

transduction. Ca
2+

-activated Clˉ current plays the key role of high-gain and low-noise 

amplifier of the primary CNG current (Kleene, 1997) in olfactory transduction. 

 

1.3.8 Calcium clearance in olfactory cilia 

In OSNs cilia free Ca
2+ 

levels at rest are ~100 nM (Restrepo et al., 1993; Jung et 

al., 1994; Leinders-Zufall et al., 1997; Saidu et al., 2009), during the odor response free 

Ca
2+

 concentration increases ranging from 300 nM (Leinders-Zufall et al., 1998) to 100 

µM (Delgado & Bacigalupo, 2004). 
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The restoration of Ca
2+

 concentrations to pre-stimulus levels (see paragraph 1.3.5) 

depends on the Na
+
 electrochemical gradient (Reisert & Matthews, 1998; Antolin & 

Matthews, 2007). Ca
2+

 extrusion mainly occurs via a Na
+
/Ca

2+
 exchanger (NCX) which 

has been shown to be present in the olfactory dendrite and cilia (Jung et al., 1994; Noé et 

al., 1997; Castillo et al., 2007; Pyrski et al., 2007). Accumulation of Na
+
 in cilia 

produced by exchange with Ca
2+

 is likely to be reversed by a Na
+
/K

+
-ATPase which has 

been identified to be expressed in olfactory cilia (Kern et al., 1991; Lo et al., 1991; 

Menco et al., 1998; Castillo et al., 2007; Klimmeck et al., 2008; Mayer et al., 2008). 

A plasma membrane Ca
2+

-ATPase (PMCA, also called Ca
2+

 pump) has been supposed to 

further reduce intraciliary Ca
2+

 as the odor response terminates (Lo et al., 1991; Castillo 

et al., 2007). Ca
2+

-ATPase has been localized to the olfactory cilia by immunological  

(Weeraratne et al., 2006; Castillo et al., 2007) and proteomic (Klimmeck et al., 2008; 

Mayer et al., 2008) studies.  

The quantitative importance of the Ca
2+

-ATPase appears to be limited compared 

to the Na
+
/Ca

2+
 exchanger contribution to ciliary Ca

2+
 clearance in OSN both from 

amphibians (Reisert & Matthews, 1998; Reisert & Matthews, 2001; Antolin & Matthews, 

2007; Kleene, 2009; Antolin et al., 2010) and mouse (Saidu et al., 2009). 

Na
+
/Ca

2+
 exchanger has a lower affinity for Ca

2+
 with (K½ > 1 µM) than Ca

2+
-ATPase 

(K½ < 0.5 µM) (Carafoli & Brini, 2000). Na
+
/Ca

2+
 exchanger could therefore reduce most 

of the high ciliary Ca
2+

 produced during a strong odor response (see paragraph 1.3.5), 

Ca
2+

-ATPase could account for only a small fraction of the Ca
2+

 clearance maybe 

restoring Ca
2+

 down to the OSN basal level (reviewed by Kleene, 2008). 
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1.4 Calcium-activated chloride channels in other cell types 

Ca
2+

-activated Clˉ currents were first described in the 1980s in Xenopus oocytes 

(Barish, 1983; Miledi, 1982) and salamander photoreceptor inner segments (Bader et al., 

1982). To date it is well known that Ca
2+

-activated Clˉ channels play key roles in several 

physiological processes including epithelial secretion, membrane excitability in cardiac 

muscle and neurons, olfactory transduction, regulation of vascular tone (reviewed by 

Frings et al., 2000; Hartzell et al., 2005). 

In oocytes, Ca
2+

-activated Clˉ channels play a role in the prevention of polyspermy in 

amphibians (Webb & Nuccitelli, 1985). In fertilized egg, IP3 production induces a rapid 

increase in intracellular Ca
2+

 from internal stores. Ca
2+

 activates Clˉ channels resulting in 

membrane depolarization (reviewed by Hartzell et al., 2005).   

In smooth muscle cells, activation of Ca
2+

-activated Clˉ channels is part of an 

amplification mechanism in the regulation of the myogenic tone through membrane 

depolarization (Leblanc et al., 2005; reviewed by Large & Wang, 1996). Activation of 

Ca
2+

-activated Clˉ channel is mediated by Ca
2+

 entry through the voltage-gated channels 

or through the Ca
2+

 released from intracellular stores by IP3 generated in phospholipase C 

pathway (Large & Wang, 1996; Davis & Hill, 1999). Ca
2+

-activated Clˉ channels opening 

produces a depolarization because chloride equilibrium potential is more positive than the 

resting potential (Chipperfield & Harper, 2000). 

In photoreceptor Ca
2+

-activated Clˉ channels are localized in inner segment (Bader et al., 

1982; Barnes & Hille, 1989; Maricq & Korenbrot, 1988; Lalonde et al., 2008). The 

depolarization produced by the dark current opens voltage-gated channels located at the 

synaptic terminal causing a Ca
2+

 influx that activates a large Clˉ conductance. Upon 

illumination, the dark current turns off, the cell membrane hyperpolarizes, and transmitter 

release stops (Yau, 1994). The role of Ca
2+

-activated Clˉ channel in rods is not known, in 

cones it has been suggested that this current plays a role in modulating lateral inhibition 

(Barnes & Hille, 1989; Maricq & Korenbrot, 1988; Thoreson & Burkhardt, 1991).  

In airway epithelia activation of  Ca
2+

-activated Clˉ channels controls the level of mucous 

hydration which is important for protection against infection. Basally located transporters 

accumulate Clˉ in the cell against the electrochemical gradient. Secretion of fluids is 
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accomplished by apical Clˉ channels that permit Clˉ to flow into the extracellular space 

down its electrochemical gradient (Kunzelmann et al., 2007).  

In dorsal root ganglion (DRG) neurons, spinal cord neurons, and neurons of the 

autonomic nervous system Ca
2+

-activated Clˉ channels are thought to regulate neuronal 

excitability but the mechanism is poorly established (reviewed by Scott et al., 1995). In 

DRG neurons opening of Ca
2+

-activated Clˉ channels by Ca
2+

 entry or Ca
2+

 release from 

stores would depolarize the cell membrane or produce after-depolarization following 

action potentials (De Castro et al., 1997; reviewed by Scott et al., 1995; Frings et al., 

2000; Hartzell et al., 2005)   

Proteins constituting Ca
2+

-activated Clˉ channels in most cells and tissues are 

still elusive. Ca
2+

-activated Clˉ currents show heterogeneous biophysical properties, 

regulatory mechanisms and pharmacology suggesting that different channels are 

expressed. In many cases, Ca
2+

-activated Clˉ channels are activated by Ca
2+

 in a wide 

range of concentrations (Kuruma & Hartzell, 2000; Hartzell et al., 2005; Angermann et 

al., 2006) and are also voltage-dependent, with membrane depolarization increasing the 

activity (Nilius et al., 1997; Lalonde et al., 2008; Hartzell et al., 2005). At not saturating 

Ca
2+

 concentrations they show outwardly rectifying current-voltage relationship, at 

maximal Ca
2+

 the current-voltage relationship becomes linear (Kuruma & Hartzell, 2000; 

reviewed by Frings et al., 2000; Hartzell et al., 2005). In some studies Ca
2+

-activated Clˉ 

currents are directly activated by Ca
2+

, in others, activation requires the intervention of a 

Ca
2+

/calmodulin-dependent kinase (Arreola et al., 1998; Kaneko et al., 2006).  

Despite considerable efforts in the past years these physiologically important ion 

channels have been difficult to identify at the molecular level. The search for the 

molecular counterparts for Ca
2+

-activated Clˉ currents has been difficult first because a 

favorite system for expression cloning of ion channels, the Xenopus oocyte, is not 

suitable for these channels since these cells express large endogenous Ca
2+

-activated Clˉ 

currents. Second, drugs to differentiate Ca
2+

-activated Clˉ channels from other Clˉ 

channels lack specificity (De La Fuente et al., 2008). Finally, homology cloning has not 

been fruitful because none of the known cloned Clˉ channels have properties that suggest 

clear structural relationships to Ca
2+

-activated Clˉ channels (reviewed by Hartzell et al., 

2009). 
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To date five candidate proteins have been proposed as the molecular counterparts of 

Ca
2+

-activated Clˉ currents: CLCA, ClC-3 and Tweety (reviewed by Hartzell et al., 2005) 

are briefly described in this section; Bestrophins and TMEM16/Anoctamins (reviewed by 

Kunzelmann et al., 2009; Hartzell et al., 2009; Flores et al., 2009) will be discussed in 

detail in the following sections. 

CLCA. The Ca
2+

-activated Clˉ channel (CLCA) family was cloned from a bovine 

tracheal cDNA expression library (Ran et al., 1992). Transfect ion of various cell types 

with cDNAs encoding various CLCAs induces Ca
2+

-dependent currents. However there 

is great skepticism over the function of CLCAs as chloride channels, because there are 

too many differences in Ca
2+

 sensitivity, voltage sensitivity and pharmacology with 

native Ca
2+

-activated Clˉ channels (reviewed by Eggermont, 2004; Hartzell et al., 2005), 

and some of them have very high homology to known cell adhesion proteins and some 

seem to be soluble, secreted proteins (Gruber & Pauli, 1999).  

ClC. The ClC-3 is a member of the ClC family of chloride channels and transporters. The 

properties of the currents reported for ClC-3, however, differ from those typically 

described for Ca
2+

-activated Clˉ channels (reviewed by Hartzell et al., 2005) and a 

normal Ca
2+

-activated Clˉ channels activity has been shown in parotid acinar cells from a 

ClC-3 knockout mouse (Arreola et al., 2002). 

TWEETY. The human genes hTTYH2 and hTTYH3, with homology to a Drosophila 

gene called tweety, have been shown to encode a Ca
2+

-regulated maxi-Clˉ channel 

(Suzuki & Mizuno, 2004; Suzuki, 2006). Big single channel conductance (260 pS) 

(Suzuki & Mizuno, 2004) and the absence of this channel in cells with classical Ca
2+

-

activated Clˉ currents suggest this is not the favorite candidate (reviewed by Hartzell et 

al., 2005). 
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1.5 Bestrophins protein family 

Proteins of the bestrophin family have been shown to form Clˉ channels when 

expressed in heterologous systems (Sun et al., 2002; Tsunenari et al., 2003) and were 

proposed to be bona fide Ca
2+

-activated Clˉ channels (Qu et al., 2004; Qu et al., 2003; 

Pusch, 2004; Tsunenari et al., 2006; reviewed by Kunzelmann et al., 2007; Hartzell et al., 

2008; Marmorstein et al., 2009).  

The electrophysiological properties of Clˉ channels bestrophins were generally 

investigated after transient heterologous expression in HEK 293 cells (Sun et al., 2002) 

(Qu et al., 2003; Qu et al., 2004; Pifferi et al., 2006b) and other cell types. 

Different bestrophins produce currents with different current-voltage relations and 

kinetics of activation. Human bestrophin1 currents have linear current-voltage 

relationships, essentially time independent, whereas human bestrophin3 currents strongly 

inwardly rectify and activate slowly with time (Tsunenari et al., 2003).  

The ionic permeability of mouse and Xenopus bestrophin2 showed a weak selectivity 

among various anions with the following permeability sequence: SCNˉ > Iˉ > Brˉ > Clˉ > 

Fˉ (Qu et al., 2003; Qu et al., 2004; Pifferi et al., 2006b), as reported for many Ca
2+

-

activated Clˉ channels (reviewed by Frings et al., 2000; Hartzell et al., 2005). 

It is generally agreed that the selectivity of a channel is determined by the channel pore; 

point mutations in human bestrophin1 and mouse bestrophin2 produce changes in Clˉ 

channel properties (Pusch, 2004; Qu et al., 2004) such as the ionic permeability and/or 

the channel gating, supporting strong evidence that bestrophin is responsible for forming 

the channel. However a new study in airway epithelial cells proposed bestrophins as 

intracellular store calcium modulator (Barro-Soria et al., 2010; reviewed by Edwards & 

Kahl, 2010). 

Ca
2+

 sensitivity has been investigated for some bestrophins. Human bestrophin1 is 

activated by increase of intracellular Ca
2+

 concentration with K½ ~150 nM (Fischmeister 

& Hartzell, 2005); mouse bestrophin2 with K½ ~200 nM (Qu et al., 2003; Qu et al., 

2004). If native bestrophin channels have the same Ca
2+

 sensitivity as these 

heterologously expressed channels, bestrophin current must be partially activated at all 

times, because basal free cytosolic Ca
2+

 is typically around 100 nM. Sun et al. (2002) 
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reported that human bestrophin1 current can be rapidly activated by release of Ca
2+

 from 

caged Ca
2+

, suggesting a direct activation by Ca
2+

. The Ca
2+

 binding site might be located 

in the C-terminus immediately after the last transmembrane domain because this region 

contains a high density of acidic amino acids that could coordinate positively charged 

Ca
2+

. This Asp-rich domain, indicated as a possible Ca
2+

 sensor for bestrophins 

(Tsunenari et al., 2006), exhibits some similarity with other Ca
2+

-binding domains like 

the cytoplasmic Ca
2+

 bowl motif of BKCa  potassium channels (Schreiber & Salkoff, 

1997; Bao et al., 2004) and the type 3 (T3) motifs in the C-terminal region of 

thrombospondins (Carlson et al., 2008). 

Because of the significant sequence similarity between the Asp-rich domain and the 

aforementioned Ca
2+

-binding domains, it is plausible to hypothesize that Ca
2+

 activation 

of bestrophins could involve, at least in part, Ca
2+

-binding to the Asp-rich domain. 

Molecular dynamics simulations by Kranjc et al. (2009) suggest that at least two Ca
2+

-

binding sites could be present in the Asp-rich domain of bestrophins possibly involved in 

Ca
2+

-dependent activation of the channel. In the same study they show through 

electrophysiological experiments that mutations predicted by their model within the 

bestrophin Asp-rich domain have an impact on the function, decreasing the Ca
2+

-

activated current amplitude. 

Single channel properties of endogenous bestrophin have been measured from 

Drosophila S2 cells (Chien et al., 2006). In inside-out patches Drosophila bestrophin1 

has a single channel conductance of ~2 pS; such a small single channel conductance is a 

common feature of many Ca
2+

-activated Clˉ channels expressed in many cell types 

(reviewed by Frings et al., 2000; Hartzell et al., 2005). 

The human genome contains four bestrophin paralogs (hBest1-4) (Stöhr et al., 

2002; Tsunenari et al., 2003), whereas mice have three paralogs (mBest1-3) and one 

pseudogene (Krämer et al., 2004; reviewed by Hartzell et al., 2008). The first member of 

the family to be discovered, human bestrophin1 (hBest1 or VDM2), was identified 

(Marquardt et al., 1998; Petrukhin et al., 1998) as the site of mutation in Best vitelliform 

macular dystrophy (BVMD - Best‟s disease), a dominantly inherited, early onset form of 

macular degeneration (reviewed by Hartzell et al., 2008; Kunzelmann et al., 2009). It was 

assumed that BVMD is caused by a defect in the basolateral retinal pigmented epithelium 
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(RPE) cells (Sun et al., 2002; Hartzell & Qu, 2003), where human bestrophin1 was 

shown to be localized (Marmorstein et al., 2000; Bakall et al., 2003; Mullins et al., 

2007). However mice with the bestrophin1 gene disrupted (mBest-/-) have no retinal 

pathology and Ca
2+

-activated Clˉ current in mouse RPE cells is not changed, suggesting 

bestrophin1 itself could not function as Clˉ channel (Marmorstein et al., 2006).  

Experimental data for bestrophin transmembrane topology exist mainly for human 

bestrophin1, but the high conservation of the predicted transmembrane domains, suggests 

that all vertebrate bestrophins topologies are similar (reviewed by Hartzell et al., 2008). 

Bestrophins in all of these species have a conserved N-terminal domain that includes the 

putative transmembrane regions, and a variable C-terminal domain (reviewed by Hartzell 

et al., 2008). Two topology models have been proposed for hBest1; according to them, 

the N- and C-terminal domains of bestrophins would be located at the intracellular side of 

the membrane and would be connected to five (Tsunenari et al., 2003) or four 

(Milenkovic et al., 2007) hydrophobic domains forming the channel. 

Using mutagenesis and cysteine-accessibility analysis of all amino acids from 69 to 105, 

Qu and co-workers have shown that TMD2 very likely plays a role in ion selectivity of 

the mouse bestrophin2 pore. Amino acids in TMD2 closer to the C-terminal (A73C, 

V78C, S79C, and F80C) react with anionic sulfhydryl reagents more slowly than those 

closer to the N-terminal suggesting that these residues may form the outer mouth of the 

channel. This is consistent with the C-terminal end of the putative transmembrane domain 

being closer to the cytoplasm and deeper in the pore. Several other observations indicate 

that anionic selectivity is determined by this region of the protein. Replacement of F80 

with amino acids of opposite charge had opposite effects on rectification of the current: 

F80R outwardly rectifies, whereas F80E inwardly rectifies (Qu et al., 2004; Qu et al., 

2006). Finally the fact that most of the amino acid substitutions that were made in serine 

79 (Qu & Hartzell, 2004) disrupted the channel function in qualitatively similar ways, 

suggests that this residue plays an important role in the pore (reviewed by Hartzell et al., 

2008).  

Alternative mechanisms for bestrophin functions have been proposed. Barro-Soria et al. 

(2010) showed that endogenous bestrophin1 primarily resides in the endoplasmic 

reticulum in airway epithelial cells modulating Ca
2+

 release and uptake from intracellular 
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stores (reviewed by Edwards & Kahl, 2010). Bestrophin1 has also been demonstrated to 

be permeable to other anions such as HCO3ˉ (Qu & Hartzell, 2008) and γ-aminobutyric 

acid (GABA) (Lee et al., 2010) showing it could be involved in physiological roles other 

than chloride flux. 

 

1.5.1 Bestrophin2 as olfactory Ca
2+

-activated Clˉ channel  

Bestrophin2 is expressed in epithelial cells of airways (Barro-Soria et al., 2008), 

colon (Barro Soria et al., 2009), kidney (Hennig et al., 2008) in the eye (Zhang et al., 

2010) and olfactory ciliary epithelium (Pifferi et al., 2006b; Klimmeck et al., 2009).  

Qu et al. (2004) showed that bestrophin2 heterologously expressed was localized at the 

cell surface and induced similar Ca
2+

-activated currents in different cell lines (reviewed 

by Hartzell et al., 2005). Currents induced by bestrophin2 have little or no rectification, 

with reversal potential as expected for a Clˉ selective current and the same anionic 

permeability sequence SCNˉ > Iˉ > Brˉ > Clˉ > Fˉ (Qu et al., 2004). Mutations in putative 

pore domains of bestrophin2 (Qu & Hartzell, 2004) alter the conduction and binding of 

anions. In wild-type channels, substitution of extracellular Clˉ with SCNˉ produced a 

significant decrease in conductance and a shift of the Erev. The reduced conductance in 

both the inward and outward directions by extracellular SCNˉ suggests that not only is 

SCNˉ less conductive than Clˉ, it is also able to block outward movement of Clˉ (inward 

current), presumably by binding in the channel pore. With the S79C mutant, in contrast, 

substitution of SCNˉ for Clˉ did not reduce the conductance and the Erev shifting was 

smaller. 

Bestrophin2 has been proposed as the putative molecular counterpart of Ca
2+

-

activated Clˉ channels involved in olfactory transduction (Pifferi et al., 2006b). Pifferi et 

al. (2006b) found by RT-PCR that Bestrophin2 is expressed in OSNs. Bestrophin2 was 

detected on the cilia by immunocytochemistry, where it colocalizes with CNGA2, the 

principal subunit of the olfactory CNG channel that is responsible for the primary 

transduction current. The biophysical and pharmacological properties of the current 

induced by heterologous expression of bestrophin2 and those of the native Ca
2+

-activated 

Clˉ current from dendritic knob/cilia of mouse olfactory sensory neurons present many 
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similarities, including the same anion permeability sequence (Iˉ > NO3ˉ > Brˉ > Clˉ > 

MeSˉ), small estimated single-channel conductance, and the same side-specific blockage 

by some Clˉ channel blockers (Pifferi et al., 2006b). The most significant difference 

between the two currents was found to be their sensitivity to intracellular Ca
2+

. In fact, 

currents were half-maximal at a Ca
2+

 concentration of 0.4 µM for bestrophin2, whereas 

native currents required a higher Ca
2+

 concentration, 4.7 µM (Pifferi et al., 2006b).  

Two studies challenged the idea of bestrophin2 role in olfactory transduction. Bakall et 

al. (2008) replaced the first two exons of bestrophin2 with Lac-Z and found expression in 

colon and ciliary epithelium but not olfactory epithelium. Bestrophin2 knockout mice 

showed no obvious olfactory deficit, but they show diminished intraocular pressure 

suggesting that bestrophin2 may be involved in aqueous humor generation. 

On the contrary Klimmeck et al. (2009) clearly showed that bestrophin2 expression was 

restricted to the cilia of mature OSN and at all subcellular levels in developing sensory 

neurons. This group suggested a role for bestrophin2 in the process of neurogenesis, 

during differentiation and growth of axons and cilia of OSNs.  

Bestrophin2 has also been suggested to be a cellular volume-regulated Clˉ channel 

(Fischmeister & Hartzell, 2005) because it is strongly inhibited by hyperosmotic and 

stimulated by hyposmotic solutions; and a HCO3ˉ channel having a relatively high 

PHCO3/PCl (0.69 ± 0.4 for hBest2 and 0.63 ± 0.3 for mBest2; (Qu & Hartzell, 2008; Yu et 

al., 2010).  

 

1.6 Anoctamins/TMEM16 protein family 

 
The TMEM16 family of genes was first described in vertebrates by bioinformatic 

analyses (Katoh & Katoh, 2003). TMEM16 proteins are well conserved among 

eukaryotes; humans and mice have 10 genes named as TMEM16A-K, sharing 

considerable homology (Galindo & Vacquier, 2005). TMEM16A amino acid sequence 

identity with TMEM16B is larger than 60%, ~40% for TMEM16C, D, and E; whereas 

TMEM16F, G, H, J, and K, with 20 – 30% identity, probably represent a more distant 

subgroup of proteins. 
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S. cerevisiae‟s sole TMEM16 homologue, called Ist2p, plays a role in salt balance and 

modulation of intracellular ion concentration (Kim et al., 2005; reviewed by Hartzell et 

al., 2009). Drosophila melanogaster has six paralogues. Axs (aberrant x-segregation) is 

∼35% identical to TMEM16H and K, is localized to the endoplasmic reticulum in early 

embryos, involved in chromosomal nondisjunction and progression of the meiotic cycle 

(Zitron & Hawley, 1989; Whyte et al., 1993; Krämer et al., 2003; Galindo & Vacquier, 

2005). 

All TMEM16 proteins have a similar putative topology, consisting of eight 

transmembrane segments and intracellular NH2 and COOH termini; a conserved C-

terminal domain of unknown function (DUF590) and a N-linked glycosylation site in the 

last extracellular loop (except in TMEM16K) (reviewed by Flores et al., 2009; Galietta, 

2009; Hartzell et al., 2009; Kunzelmann et al., 2009). 

A highly conserved hydrophobic region between TM5 and TM6 that protrudes into the 

membrane is predicted to form a re-entrant p-loop (except in TMEM16H and K) (Katoh 

& Katoh, 2004a,b,c; Katoh & Katoh, 2005; Galindo & Vacquier, 2005) 

It has been proposed that some members of the TMEM16 family of membrane proteins, 

TMEM16A and B, are calcium-activated chloride channels (Caputo et al., 2008; Yang et 

al., 2008; Schroeder et al., 2008; Pifferi et al., 2009a; Stephan et al., 2009). Because of 

their eight transmembrane segments topology and their supposed role in anion transport, 

TMEM16 proteins were also named „anoctamins‟ (Yang et al., 2008); therefore they are 

also referred as ANO1-10. 

Some TMEM16 genes have short splice variant transcripts (Bera et al., 2004; Yang et al., 

2008), suggesting the possibility that they could have additional non-channel functions or 

could fulfill tasks in intracellular compartments (Tsutsumi et al., 2004; Mizuta et al., 

2007; Schreiber et al., 2010). Current data suggest that members of the TMEM16 family 

of proteins are involved in both normal vertebrate development and disease; the existence 

of multiple TMEM16 paralogs in mice and humans might have evolved to allow tissue-

specific expression of proteins with similar functions (Galindo & Vacquier, 2005; Rock 

& Harfe, 2008; Gritli-Linde et al., 2009). 

Several members of the TMEM16 family are overexpressed in different types of cancer 

(Katoh & Katoh, 2003; Galindo & Vacquier, 2005) and mutation of TMEM16E is 
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associated with the human disorder gnathodiaphyseal dysplasia (GDD) (Tsutsumi et al., 

2004; Mizuta et al., 2007). TMEM16G has been shown to promote adhesion between 

prostate cancer cells (Das et al., 2007, 2008). Because they are accessible cell surface 

proteins, TMEM16 proteins are a potential drug target for human diseases (Das et al., 

2008; reviewed by Hartzell et al., 2009). 

 

Figure1.6 A) Phylogenetic tree of human TMEM16 members (From Schroeder et al. 

2008). B) TMEM16A protein containing all of its potential alternatively spliced exons 

(the ‘abcd’ form, Caputo et al. (2008) Alternatively spliced segments a, b, c and d are 

shown with a chartreuse background. Single amino acid codes are in circles colored 

according to the physical properties of the amino acid (green, hydrophilic; pale blue, 

hydrophobic; red, acidic; magenta, basic; cyan, other ionizable (tyrosine and 

histidine); yellow, proline; gold, glycine; pink, cysteine) (From Hartzell et al. 2009).   

 

At this point in time, it has been shown experimentally that TMEM16A and B are 

calcium-activated chloride channels but it is not clear whether it is the same for all 

TMEM16 members, and TMEM16H has been shown (Schreiber et al., 2010) to inhibit 

TMEM16A currents. Also, there are no data showing whether different members of the 

family form heteromers with other members. 
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1.6.1 TMEM16A/Anoctamin1 

TMEM16A is expressed in many of the tissues that are known to express Ca
2+

-

activated Clˉ currents: airway epithelium and smooth muscle cells, acinar cells of 

pancreas  and salivary glands, proximal kidney tubule epithelium, retina, dorsal root 

ganglion sensory neurons, and submandibular gland (Huang et al., 2009; Schreiber et al., 

2010).  

In 2008, three research groups have arrived independently at the identification of 

TMEM16A as a membrane protein strongly related to the activity of Ca
2+

-activated Clˉ 

channels. TMEM16A expressed in different cell systems, HEK-293, FRT cells and 

Axolotl oocytes always leads to the appearance of currents very similar to classical Ca
2+

-

activated Clˉ channels (Caputo et al., 2008; Schroeder et al., 2008; Yang et al., 2008).  

At nonmaximal Ca
2+

 concentrations, voltage pulses to positive membrane potentials elicit 

slow-activating currents. This effect is reversible, as the return to negative membrane 

potentials causes a deactivation of the current. Accordingly, the steady-state current-

voltage relationship under this condition is outwardly rectifying. 

At maximal concentration of Ca
2+

, the channels become fully active at all membrane 

potentials, and consequently, the relaxation after voltage steps disappear (reviewed by 

Kunzelmann et al., 2009). 

Similar to the case for native Ca
2+

-activated Clˉ currents, the Ca
2+

 sensitivity of the 

channel in excised inside-out patches was voltage dependent. At −60 mV the K½ for Ca
2+

 

was 2.6 μM, whereas it decreased to 0.4 μM at +60 mV (Yang et al., 2008). 

Schroeder et al., (2008) shows that expression of xTMEM16A in Axolotl oocytes 

produces currents with multiple components with different reversal potentials. These 

findings suggest that xTMEM16A has multiple open states that differ in their gating 

kinetics and ionic selectivity. 

At present there are no data about the Ca
2+

 binding site: TMEM16A does not have any 

obvious E-F hand-like Ca
2+

-binding sites or IQ-domain CaM binding sites. This could 

mean that either the protein requires another subunit to confer Ca
2+

 sensitivity or that the 

Ca
2+

 binding site is a novel type that is not easily recognized. If another subunit is 

required for Ca
2+

 sensitivity, this subunit must be expressed endogenously in the 
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expression systems used. (reviewed by Flores et al., 2009; Galietta, 2009; Hartzell et al., 

2009; Kunzelmann et al., 2009).  

TMEM16A has at least four alternatively spliced exons resulting in proteins having 

between 712 and 1006 amino acids. The alternatively spliced exons include two at the 

cytoplasmic N-terminus and two in the first cytoplasmic loop (Caputo et al., 2008; 

Ferrera et al., 2009). All splice variants produced Ca
2+

-activated Clˉ currents when 

expressed in HEK cells, but the variant without any of these segments was not functional 

(Caputo et al., 2008). This finding suggests that alternative splicing is a mechanism to 

regulate channel properties and may be the basis for generation of different Ca
2+

-

activated Clˉ channel types with different voltage dependence and Ca
2+

 sensitivity in a 

tissue-specific manner  (Ferrera et al., 2009). 

The region between the fifth and sixth transmembrane segments is predicted to form a 

reentrant loop important for the formation of the channel pore. Mutagenesis of positively 

charged amino acids localized in this region (Yang et al., 2008) altered ion selectivity of 

the channel, thus enhancing its permeability to cations. Altered ion selectivity and voltage 

dependence were also observed by mutagenesis of an arginine and a glutamine in the 

third and sixth transmembrane domains, respectively (Caputo et al., 2008). 

Another characteristic of TMEM16A is its overexpression in human cancers. Its 

transcript was also identified as expressed at high levels in gastrointestinal stromal 

tumors and oral squamous cell carcinomas and therefore also named DOG1 (West et al., 

2004)  and TAOS2 (Huang et al., 2006). The relationship between cancer and a protein 

with a role in Cl
−
 transport is not clear. Ca

2+
-activated Clˉ channels may be important in 

proliferation, migration, and resistance of cancer cells to apoptotic stimuli (reviewed by 

Galietta, 2009). TMEM16A was also found to be one of the candidate genes responsible 

for autosomal recessive hearing impairment (Kalay et al., 2007). This is of interest 

because during mouse development TMEM16A is strongly expressed in inner ear cells 

which will later form the organ of Corti, and parts of the stria vascularis (Gritli-Linde et 

al., 2009). Finally TMEM16A has an important role in the physiology of airway 

epithelium and is a possible pharmacological target to circumvent the Cl
−
 transport defect 

in cystic fibrosis patients. 
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Rock et al. (2008) had reported a TMEM16A knockout mouse. All knockout 

homozygous mice died within one month of birth showing a severe phenotype 

characterized by altered formation of tracheal cartilage rings (tracheomalacia). At the 

moment the reason for tracheal cartilage abnormalities is unknown; it was suggested that 

the defect in the cartilage rings should be secondary to the improper embryonic 

stratification of the embryonic tracheal epithelium, which may point out to a functional 

crosstalk between epithelium and the submucosal tissue during development (reviewed 

by Flores et al. 2009; Galietta, 2009).  

Because animals lacking expression of TMEM16A die shortly after birth (Rock et al., 

2008), long-term observations are currently not possible. 

TMEM16A loss was further analyzed by Ousingsawat et al. (2009) in a broad spectrum 

of epithelial tissues, including airways, colonic epithelium, pancreatic acinar cells, 

salivary gland cells and hepatocytes, showing TMEM16A contribution to Ca
2+

-activated 

whole cell currents and to Ca
2+

-dependent Clˉ secretion. 

Rock et al. (2009) found accumulation of mucus in the lumen of tracheas of TMEM16A 

null mice, suggesting an important function of TMEM16A for mucociliary clearance in 

mouse airways. 

 

1.6.2 TMEM16B/Anoctamin2 

Among the members of the mouse family, TMEM16B is the most similar to 

TMEM16A, with ~60% amino acid identity (Katoh & Katoh, 2003; Galindo & Vacquier, 

2005). TMEM16B transcripts have been found in the retina photoreceptors, in olfactory 

bulb, olfactory epithelium, pancreas, salivary glands and some brain regions 

(http://www.brain-map.org).  

Large deletions of TMEM16B N-terminus together with von Willebrand factor genes are 

involved in some cases of the severe von Willebrand disease type 3 (Schneppenheim et 

al., 2007). Furthermore a recent genome-wide association study (Otowa et al., 2009) in a 

Japanese population indicated that single nucleotide polymorphisms in TMEM16B gene 

were significantly associated with panic disorder. 

http://www.brain-map.org/
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Schroeder et al. (2008) and Pifferi et al. (2009a) reported that TMEM16b 

generated Ca
2+

-activated Cl
−
 currents in Axolotl oocytes and HEK 293 cells.   

TMEM16b has been pointed to as a promising candidate for the olfactory Cl
−
 current.  

Stephan et al. (2009) characterized the mouse olfactory TMEM16b isoform, composed of 

24 exons (909 amino acids), with a predicted molecular weight of ~110 kDa. Exon 3, 

which encodes 33 amino acids in the predicted N-terminal cytoplasmic domain, is lacking 

in a minority of transcripts in both OSNs and retinal cells, where TMEM16b was first 

studied (Stöhr et al., 2009). The olfactory TMEM16b variant also lacks the exon 13 (4 

amino acids of unknown function) in the first intracellular loop in the retinal variant.  

The presence of TMEM16b in OSN has been demonstrated by using different techniques. 

By in situ hybridization TMEM16b mRNA has been shown to be highly and specifically 

localized in mature OSNs within the mouse olfactory epithelium (Yu et al., 2005; Hengl 

et al., 2010; Rasche et al., 2010) and not to the sustentacular or basal stem cell layers.  

TMEM16b protein was identified from a proteomic screen of olfactory cilia membrane 

preparation (Mayer et al., 2009; Stephan et al., 2009; Rasche et al., 2010; Hengl et al., 

2010) and by immunocytochemistry it was detected in olfactory epithelium limited to the 

sensory cilia, where TMEM16b colocalized with marker proteins for olfactory cilia such 

as acetylated tubulin, CNGA2 (Rasche et al., 2010) and ACIII (Hengl et al., 2010). 

Finally in mouse olfactory epithelium infected with adenoviral vector, TMEM16b protein 

localized primarily in the cilia and dendritic knobs of OSNs (Stephan et al., 2009), 

demonstrating that TMEM16b is able to use the ciliary targeting machinery.  

TMEM16b isoforms from retina (Stöhr et al., 2009; Pifferi et al., 2009a) or OSNs 

(Stephan et al., 2009) expressed in HEK 293 cells produced Ca
2+

-activated Cl
−
 current 

with functional properties similar to the native olfactory Cl
−
 current when studied both in 

whole cell configuration (Stöhr et al., 2009; Pifferi et al., 2009a); and in inside out 

patches (Pifferi et al., 2009a; Stephan et al., 2009), indicating a possible involvement of 

TMEM16b in the olfactory signal transduction cascade. 

TMEM16b Ca
2+

 sensitivity is slightly voltage-dependent, with a K½  that ranges from 1.8 

µM (Stephan et al., 2009) to 5.1 µM (Pifferi et al., 2009a) at negative potentials  and Hill 

coefficients ~2 (Stephan et al., 2009; Pifferi et al., 2009a) 
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The single channel conductance associated with TMEM16b by noise analysis was 

estimated to be ~1.2 pS (Pifferi et al., 2009a; Stephan et al., 2009).  

TMEM16b current–voltage relationship is linear (Pifferi et al., 2009a) or with inward 

rectification (Pifferi et al., 2009a; Stephan et al., 2009) in saturating calcium conditions, 

whereas it shows pronounced outward rectification after activation at sub-saturating 

calcium concentrations (Pifferi et al., 2009a).  

Halide permeability sequence for TMEM16b is SCN
−
  > I

−
 > NO3

−
  > Br

−
 > Cl

−
 > MeS > 

F
− 

with consistent permeability ratios (PX/PCl) in Stephan et al. (2009) and Pifferi et al. 

(2009a), which are inversely related to the ions hydration energies.  

Activation of the TMEM16b channel by different divalent cations: Sr
2+

 efficiently 

activated a current almost as well as Ca
2+

, Ba
2+

 activated a small current, and no current 

was observed upon Mg
2+

 application (Pifferi et al., 2009a; Stephan et al., 2009).  

TMEM16b current is blocked ~70-80% by the intracellular (Pifferi et al., 2009a; Stephan 

et al., 2009) and extracellular (Pifferi et al., 2009a) application of niflumic acid (NFA) in 

a voltage-independent manner, and the blockage is reversible. Two other fenamates, 

flufenamic and mefenamic acids (FFA and MFA), as well as NPPB and SITS, only 

partially blocked the current, whereas DIDS did not have any blocking effect at the 

intracellular side (Pifferi et al., 2009a). NPPB, SITS, and DIDS, produced a 65-80% 

partial block of both inward and outward currents when applied extracellularly (Pifferi et 

al., 2009a).  

The strong similarities between the properties of native Cl
−
 currents (see paragraph 1.3.7) 

and currents induced by TMEM16b described here, support the hypothesis that 

TMEM16b is part of the ciliary Cl
−
 channel and may contribute to the excitatory current 

in olfactory transduction.  
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2 MATERIALS AND METHODS 

 

 

 

2.1 Dissociation of mouse olfactory sensory neurons 

 Mice were handled in accordance with the Italian Guidelines for the Use of 

Laboratory Animals (Decreto Legislativo 27/01/1992, no. 116) and European Union 

guidelines on animal research (No. 86/609/EEC).  

Olfactory sensory neurons were dissociated enzymatically from the olfactory epithelium 

of 1 to 3-months-old C57Black wild type or Bestrophin2
-/- 

mice (see paragraph 2.6). 

Mice were anesthetized with CO2 inhalation, decapitated,
 

and then the head was 

hemisected sagittally along the septum to expose olfactory turbinates. The olfactory 

epithelium was removed and transferred in 1 ml of zero-divalent mammalian Ringer’s 

solution with 200 µM cysteine and 2 U/ml papain (Sigma, Milano, Italy) for 8-10 

minutes at room temperature. The olfactory epithelium was minced with fine forceps. 

The reaction was stopped by adding 0.5 ml of Ringer’s solution with 0.1 mg/ml BSA 

(bovine serum albumin), 0.3 mg/ml leupeptin, and 0.02 mg/ml of DNAseI (all from 

Sigma, Milano, Italy). After centrifugation (300 g for 5 min) the cells were resuspended 

in 1 ml of Ringer’s solution and plated on glass coverslips (WPI, Sarasota, FL), coated 

with poly-L-lysine and concanavalin-A TypeV (Sigma, Milano, Italy). Before use, 

dissociated olfactory sensory neurons were allowed to settle for 60 min at +4°C.  Only 

olfactory sensory neurons with clearly visible cilia were used for the experiments. 
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2.2 Cell culture and transfection 

 HEK 293T cells were grown in DMEM (GIBCO) supplemented with 10% FBS 

(Sigma, Milano, Italy), 100 U/ml penicillin, and 100 µg/ml streptomycin (Sigma, 

Milano, Italy) at 37ºC in a humidified CO2 incubator.  

The full-length, dominant olfactory isoform of the mouse TMEM16b/anoctamin2 cloned 

into the pAdTrack-CMV EGFP-expressing vector (Stratagene, LaJolla, CA, Figure 2.1), 

provided by professor Haiqing Zhao of the Johns Hopkins University in Baltimore 

(Stephan et al., 2009), was transfected into HEK 293T cells by using FuGENE 6 reagent 

(Roche Applied Science, Mannheim, Germany) according to the manufacturer’s 

protocol. Transfected cells were identified by EGFP fluorescence and used for 

electrophysiological recordings from 24 to 48 hours after transfection.  

 

 

Figure 2.1. pAdTrack-CMV map (www.addgene.org). The full-length, 

dominant olfactory isoform of the mouse TMEM16b/anoctamin2 was 

inserted into the multi cloning site (MCS) between NotI and SalI restriction 

enzymes (Stephan et al., 2009). Transfected HEK 293T cells were identified 

by EGFP fluorescence and used for electrophysiological recordings.  

 

 

 

http://www.addgene.org/
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2.3 The experimental set-up for patch clamp recording  

 Experiments with olfactory sensory neurons and HEK 293T cells transfected 

with TMEM16b/anoctamin2 were performed on the same experimental setup, shown in 

Figure 2.2. 

The preparation was observed through an oil immersion 100X objective (N.A. 0.17, 

Zeiss, Milano, Italy) with an Olympus IX70 inverted microscope (Olympus, Japan) 

placed on an antivibration table (TMC, USA). A homemade Faraday cage provided 

adequate electrical shielding. 

 

 

Figure 2.2 Experimental set up used for patch clamp 

experiments with photolysis of caged compounds. 

 

Patch pipettes were made using borosilicate glass (outer diameter 1.65 mm; inner 

diameter 1.1 mm, WPI, Sarasota, FL, USA) and pulled with a PP83 puller (Narishige, 

Tokyo, Japan) using a double-stage pull. The diameter of the tip was about 1 µm and the 

pipette resistances were 3–7 MΩ when filled with the standard intracellular solution. 

Pipettes were mounted in a pipette holder with an Ag/AgCl electrode for electrical 

recording. The holder movements were controlled by an electronic micromanipulator 

(Luigs & Neumann, Feinmechanick Elektrotechnik GmbH, Ratingen, Germany).  
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Currents were recorded in the whole cell voltage-clamp mode with an Axopatch 200B 

patch-clamp amplifier, controlled by Clampex 8 via a Digidata 1332A (Axon 

Instruments, Union City, CA, USA). Currents were low-pass filtered at 1 kHz and 

acquired at 2 kHz for experiments with olfactory sensory neurons, or filtered at 5 kHz 

and sampled at 10 kHz for experiments with transfected HEK 293T cells. 

The perfusion system was entirely gravity driven. Solutions were stored in 50 ml 

syringes and polyethylene tubes were used for connection with the recording chamber. 

The recording chamber was continuously bathed with mammalian Ringer solution while 

an aspiration tube, placed at the opposite site and connected with a trap bottle, controlled 

the level of solution in the recording chamber. The flow of solution was manually 

controlled by valves.  

In experiments in which the Clˉ concentration was changed, the bath was grounded 

through a 1M KCl agar bridge connected with an Ag/AgCl reference electrode.  

All experiments were carried out at room temperature (20 - 24°C). 

 

2.4 Flash photolysis of caged compounds 

 For flash photolysis of caged compounds a xenon flash-lamp system JML-C2 

(Rapp OptoElectronic, Hamburg, Germany) was used coupled with the epifluorescence 

port of the inverted  microscope with a quartz light guide (Boccaccio et al., 2006).  

The spot of light had a diameter of about 15 µm to cover only the ciliary region of 

olfactory sensory neurons (but given the very small size of mouse olfactory sensory 

neurons it was sometimes technically difficult to restrict the illumination area to the cilia 

only); or about 50% of the surface of HEK 293T cells (Figure 2.3). 

The diameter of the spot was measured by inserting the quartz light guide in an 

illuminator (Highlight 3100 Olympus) and focusing the spot of the light on the plan of a 

graduated coverslip. The spot was focused through the oil immersion 100X Zeiss 

objective used for all the experiments with caged compounds in this thesis.  

The released energy at the objective was a few mJ, and this was reduced to an unknown 

grade of intensity inside the cell. 
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The flash duration was 1 ms and was kept constant during each experiment. At the 

beginning of each experiment, the stability of the response was checked by applying 

repetitive flashes at intervals of about 2 min.  

 

RECORDING 

PIPETTE

B) HEK 293T CELLS

UV

10 µm

RECORDING 

PIPETTE

UV

10 µm

A) OLFACTORY SENSORY NEURON

10 µm

 

Figure 2.3 Patch-clamp experiments in the voltage-clamp whole-cell configuration 

were performed on isolated olfactory sensory neuron with clearly visible cilia (A) 

or HEK293T cells (B).Caged compounds diffused from the patch pipette into the 

cell and the physiologically active compound was released with ultraviolet light 

flashes. The illuminated area is indicated by purple circles. 
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2.5 Ionic solutions 

Bath solutions with different ionic composition were used for experiments with 

olfactory sensory neurons and HEK 293T cells, as listed in the following table: 

EXTRACELLULAR  SOLUTIONS 

NaCl KCl CaCl2 MgCl2 EGTA HEPES Glucose Na-pyruv.

(mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM)

Normal Ringer 140 5 1 1 10 10 1

Low Ca2+ Ringer 140 5 1 10 10 10 1

For permeability experiments the NaCl in Normal Ringer was completely replaced with NaSCN,

NaBr, NaI, NaNO3, NaMeS or CholineCl

All solutions were adjusted to pH 7.4

INTRACELLULAR  SOLUTIONS 

CsCl KCl CaCl2 MgCl2 EGTA HEPES MgATP GTP K-glucon.
BCMCM      
8-Br-cAMP 

DMNP-
EDTA

(mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM)

Caged 8-Br-cAMP 145 4 0.5 10 1 0.1 0.05

Caged calcium 140 1.5 10 3

Low Cl caged calcium 12 10 133 3

All solutions were adjusted to pH 7.4

 

Niflumic acid (NFA) and 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, Tocris) 

were prepared in dimethyl sulfoxide (DMSO) as stock solutions respectively at 200 mM 

or 83 mM and diluted to the final concentration in the normal Ringer solution (DMSO 

alone did not alter the currents); 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) 

was directly dissolved in the normal Ringer solution. Different bathing solutions were 

delivered by using a gravity-fed perfusion system. A slow flow rate was selected in such 

a way that the position of the cilia of the neurons was not perturbed. A complete solution 

change was obtained in about 10 s. To measure blocker effects, current recordings were 

obtained before blocker application (control), 1-2 min after delivery of the solution with 

the blocker, and 2-5 min after perfusion with Ringer solution without the blocker 

(washout).  

In ionic selectivity experiments NaCl was substituted on an equimolar basis with NaX, 

where X is the substituted anion, or NaCl was replaced with equimolar choline chloride. 

Relative permeability of the channels was determined by measuring the shift in reversal 

potential. The bath was grounded through a 1 M KCl agar bridge connected to a Ag/AgCl 

reference electrode. Liquid junction potentials were calculated using Clampex’s Junction 

Potential Calculator, based on the JPCalc program developed by Barry (1994; see also 

http://web.med.unsw.edu.au/phbsoft/LJP_Calculator.htm). Applied membrane potentials 

were corrected off-line. The liquid junction potential between the pipette and the Ringer 

solution was calculated. Then, if the bathing solution was changed after reaching the 

http://web.med.unsw.edu.au/phbsoft/LJP_Calculator.htm
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whole-cell configuration, we calculated the additional liquid junction potential generated 

between the bathing solution and the 1 M KCl agar bridge. We corrected membrane 

potentials for the following calculated liquid junction potentials (in mV) in the indicated 

bathing solutions: -4.6 in Ringer, -4.0 in isothiocyanate Ringer, -4.7 in bromide
 
Ringer, -

4.6 in iodide
 
Ringer, -4.3 in nitrate Ringer,

 
-3.0 in methanesulfonate Ringer, -5.3 in 

Ringer with NaCl replaced with choline chloride.  

 

Intracellular recording solutions for the photorelease of 8-Br-cAMP and  calcium are 

summarized in the following table: 

EXTRACELLULAR  SOLUTIONS 

NaCl KCl CaCl2 MgCl2 EGTA HEPES Glucose Na-pyruv.

(mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM)

Normal Ringer 140 5 1 1 10 10 1

Low Ca2+ Ringer 140 5 1 10 10 10 1

For permeability experiments the NaCl in Normal Ringer was completely replaced with NaSCN,

NaBr, NaI, NaNO3, NaMeS or CholineCl

All solutions were adjusted to pH 7.4

INTRACELLULAR  SOLUTIONS 

CsCl KCl CaCl2 MgCl2 EGTA HEPES MgATP GTP K-glucon.
BCMCM      
8-Br-cAMP 

DMNP-EDTA

(mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM)

Caged 8-Br-cAMP 145 4 0.5 10 1 0.1 0.05

Caged calcium 140 1.5 10 3

Low Cl caged calcium 12 10 133 3

All solutions were adjusted to pH 7.4

 

The caged 8-Br-cAMP (BCMCM-8-Br-cAMP) was provided by Volker Hagen of the 

Leibniz-Institute for Molecular Pharmacology in Berlin; Boccaccio et al., 2006). The 

caged 8-Br-cAMP was dissolved in DMSO at 10 or 50 mM and stored at −20°C for up 

to 3 months. The final concentration of 50 μM was obtained by diluting an aliquot of the 

stock solution into the pipette solution.  

DMNP-EDTA for the photorelease of caged Ca
2+

 was purchased from Molecular 

Probes–Invitrogen (West Eugene, OR), and CaCl2 was adjusted with a 0.1 M standard 

solution from Fluka (Deisenhofen, Germany).  

The caged compounds solutions were stored for a few days at −20°C, kept refrigerated 

in the dark during the experimental session, and were allowed to diffuse freely from the 

patch pipette into the cytoplasm of the cell for about 2 min after establishment of the 

whole cell configuration.  

Chemicals, except for caged compounds or otherwise stated, were purchased from 

Sigma.  
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2.6 mBest2-null mouse line  

 The mBest2 null mouse line was purchased from Deltagen (USA). The targeting 

vector was constructed using 0.8-kb (5') and 2.9-kb (3') mouse Best2 genomic DNA 

fragments as homology arms. The two arms flanked a promoterless lacZ and a neomycin 

resistant gene cassette (lacZ-neo). Homologous recombination in mouse embryonic stem 

cells resulted in the insertion of the lacZ-neo cassette, replacing a region spanning exon 

1 through a part of exon 3 of the mouse Best2 locus. Germ-line–transmitting chimeric 

mice generated from the targeted embryonic stem cells were bred with C57Black mice 

to produce mBest2
+/-

 mice. Intercrossing of heterozygous mice generated Best2
-/-

 mice. 

 

 

 

Figure 2.  Targeted disruption of the mouse Best2 gene. 

Schematic representation of wild-type locus, targeting vector, and 

mutant locus. Thick lines: fragments used for constructing the targeting 

vector 5' and 3' arms. Thin lines: genomic DNA or vector backbone 

sequence. Numbered solid boxes: Best2 exons. Labeled boxes: the LacZ 

and Neo resistance expression cassette. From Deltagen. 
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2.7 Data analysis 

 Current amplitudes at each holding potential were calculated by subtracting the 

value of the baseline. Data are reported as mean ± SEM and N indicates the total number 

of cells. Statistical significance was determined using Student’s t-test, or ANOVA, as 

appropriate. When a statistically significant difference was determined with ANOVA, a 

Tukey post hoc test was done to evaluate which data groups showed significant 

differences. P values <0.05 were considered significant.  

Data analysis and figures were made with Igor software (Wavemetrics, Lake Oswego, 

OR, USA).  
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3 RESULTS 

 

 

 

3.1 Calcium-activated chloride currents in olfactory sensory neurons 

from mice lacking bestrophin-2.  

 Pifferi S, Dibattista M, Sagheddu C, Boccaccio A, Al Qteishat A, Ghirardi F, 

Tirindelli R, Menini A (2009). J Physiol. 587, 4265-79 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pifferi%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dibattista%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sagheddu%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Boccaccio%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Al%20Qteishat%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ghirardi%20F%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tirindelli%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Menini%20A%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'J%20%0d%0aPhysiol.');
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Calcium-activated chloride currents in olfactory sensory
neurons from mice lacking bestrophin-2
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Olfactory sensory neurons use a chloride-based signal amplification mechanism to detect
odorants. The binding of odorants to receptors in the cilia of olfactory sensory neurons activates
a transduction cascade that involves the opening of cyclic nucleotide-gated channels and the
entry of Ca2+ into the cilia. Ca2+ activates a Cl− current that produces an efflux of Cl− ions
and amplifies the depolarization. The molecular identity of Ca2+-activated Cl− channels is
still elusive, although some bestrophins have been shown to function as Ca2+-activated Cl−

channels when expressed in heterologous systems. In the olfactory epithelium, bestrophin-2
(Best2) has been indicated as a candidate for being a molecular component of the olfactory
Ca2+-activated Cl− channel. In this study, we have analysed mice lacking Best2. We compared
the electrophysiological responses of the olfactory epithelium to odorant stimulation, as well as
the properties of Ca2+-activated Cl− currents in wild-type (WT) and knockout (KO) mice for
Best2. Our results confirm that Best2 is expressed in the cilia of olfactory sensory neurons, while
odorant responses and Ca2+-activated Cl− currents were not significantly different between WT
and KO mice. Thus, Best2 does not appear to be the main molecular component of the olfactory
channel. Further studies are required to determine the function of Best2 in the cilia of olfactory
sensory neurons.
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Abbreviations Best2, bestrophin-2; CNG, cyclic nucleotide-gated; KO, knockout; WT, wild-type.

In vertebrates, the process of olfactory transduction occurs
in sensory neurons, located in the olfactory epithelium
in the nasal cavity. Each olfactory sensory neuron bears
several cilia departing from the knob-like swelling of the
apical part of the dendrite. The cilia are the site of olfactory
transduction: odorant molecules bind to specific receptors
expressed in the ciliary plasma membrane activating a G
protein-coupled transduction cascade. The activation of
adenylyl cyclase by the G protein produces an increase
in the ciliary concentration of cAMP, which opens cyclic
nucleotide-gated (CNG) channels, which produces a
primary inward current carried by Na+ and Ca2+ ions
(reviewed by Schild & Restrepo, 1998; Menini, 1999;
Firestein, 2001; Matthews & Reisert, 2003; Menini et al.
2004; Pifferi et al. 2006a; Kleene, 2008). The increase in

S. Pifferi and M. Dibattista contributed equally to this study.

Ca2+ concentration triggers the gating of Ca2+-activated
Cl− channels that gives rise to a secondary Cl− current.
Since olfactory sensory neurons maintain an elevated
intracellular Cl− concentration, which is in the same range
of the Cl− concentration present in the mucus at the
external side of the cilia (Reuter et al. 1998; Kaneko et al.
2001, 2004), the opening of Ca2+-activated Cl− channels in
the ciliary membrane causes an efflux of Cl− ions from the
cilia, which amplifies the primary inward current (Kleene
& Gesteland, 1991; Kleene, 1993; Kurahashi & Yau, 1993;
Lowe & Gold, 1993; Kleene, 1997; Boccaccio & Menini,
2007; reviewed by Frings et al. 2000; Kleene, 2008; Frings,
2009).

While most of the components of the olfactory trans-
duction cascade have been identified at the molecular level,
the molecular identity of Ca2+-activated Cl− channels is
still elusive. In recent years, several proteins have been
proposed as possible candidates for Ca2+-activated Cl−
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channels, including the families of bestrophins, tweety,
CLCA calcium activated chloride channels (reviewed
by Hartzell et al. 2005, 2009) and, very recently, the
anoctamin/transmembrane 16 (TMEM16) protein family
(Caputo et al. 2008; Schroeder et al. 2008; Yang et al. 2008;
Pifferi et al. 2009; Stephan et al. 2009).

Proteins of the bestrophin family have been shown
to form Cl− channels when expressed in heterologous
systems (Sun et al. 2002; Tsunenari et al. 2003) and have
been proposed to be bona fide Ca2+-activated Cl− channels
(Qu et al. 2003, 2004; Pusch, 2004), although other reports
suggested that they function as regulators of ion transport
rather than as ion channels (Rosenthal et al. 2006; Yu et al.
2008; reviewed by Kunzelmann et al. 2007; Hartzell et al.
2008; Marmorstein et al. 2009).

We have previously shown that bestrophin-2 (Best2) is
expressed in the cilia of mouse olfactory sensory neurons,
where it colocalizes with CNGA2, the principal subunit
of the olfactory CNG channel that is responsible for
the primary transduction current (Pifferi et al. 2006b).
Moreover, we have shown that the functional properties
of the current induced by heterologous expression of
mouse Best2 and those of the native Ca2+-activated Cl−

current from dendritic knob/cilia of mouse olfactory
sensory neurons present many similarities, including
the same anion permeability sequence, small estimated
single-channel conductances, and the same side-specific
blockage by some Cl− channel blockers, although also
differences do exist and include a Ca2+ sensitivity
discrepancy of one order of magnitude (Pifferi et al.
2006b). However, based on the overall findings, Best2
was indicated to be candidate molecular component of
Ca2+-activated Cl− channels involved in olfactory trans-
duction (Pifferi et al. 2006b). In the last year knockout
mice for Best2 became commercially available opening
the possibility of further investigation of the physiological
role of Best2. We have therefore analysed the responses
of the olfactory epithelium to odorant stimulation and
investigated the properties of Ca2+-activated Cl− currents
in wild-type (WT) and knockout (KO) mice lacking
Best2. Our results confirm that Best2 is expressed in
the cilia of olfactory sensory neurons, but we found
that Ca2+-activated Cl− currents were not significantly
different between WT and KO mice, indicating that Best2
is not the main molecular component of the olfactory
channel. Further studies are required to determine the
physiological role of Best2 in the cilia of olfactory sensory
neurons.

Methods

Ethical approval

All animals were handled in accordance with the Italian
Guidelines for the Use of Laboratory Animals (Decreto

Legislativo 27/01/1992, no. 116) and European Union
guidelines on animal research (No. 86/609/EEC). For
experiments mice were anaesthetized by CO2 inhalation
and then decapitated.

Animals

Experiments were performed on knockout (KO) mice
for Best2 and wild-type (WT) littermates between 2 and
6 months of age. Best2 homozygous mutant and WT
mice were obtained by breeding heterozygous mutant
mice obtained from Deltagen (San Mateo, CA, USA). The
generation of these mice has been previously described in
detail (Bakall et al. 2008).

Cookie test

Mice were left overnight without food with water ad
libitum. The next day, mice were moved into an opaque
cage, while a food pellet (Altromin-R, A. Rieper S.p.A.,
Vandoies, Bolzano, Italy) was buried in their litter’s
sawdust, about 2 cm underneath. Then, mice were brought
back in their cages and released at the centre of the litter.
The time was measured from the moment they were freed
to the moment they found the pellet. Results were analysed
using the analysis software SPSS 13.0 (SPSS Inc., Chicago,
IL, USA) and StatView (SAS Institute Inc., Cary, NC,
USA).

RNA isolation and RT-PCR

Total RNA was extracted from the olfactory epithelium
of WT and KO mice using standard Clontech procedures
(BD Biosciences, Hertfordshire, UK). RNA quality was
measured using a NanoDrop1000 Spectrophotometer
(ND-1000). Gene expression was examined by RT-PCR
from total RNA using primers designed against Best2,
CNGA2 and the housekeeping gene S16 . PCR conditions
were as follows: an initial denaturation step of 10 min at
95◦C, followed by 35 cycles of 1 min at 94◦C, 1 min at
58◦C and 1 min at 72◦C, and a final extension step of
10 min at 72◦C. The products were visualized following
agarose gel electrophoresis (1.5%) and DNA was stained
with ethidium bromide (10 mg ml−1). Samples without
cDNA were used as negative controls. The sequences of
the primers used were the following:

Best2 (forward: 5′-AGT CCC AGG AAA CAT AAC AGC
TCT C-3′ and reverse: 5′-CTC CCA GCA TCT TCC CTT
GGC TCA C-3′);
CNGA2 (forward: 5′-AGG GAA AGG GCA CCA AAA
AGA AA-3′ and reverse: 5′-CCA GCA CCA GCC ATA
CCA CAA A-3′);
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S16 (forward: 5′-GGC AGA CCG AGA TGA ATC CTC
A-3′ and reverse: 5′-CAG GTC CAG GGG TCT TGG
TCC-3′).

Western blot

Proteins were extracted from olfactory epithelium tissues
by RIPA buffer (Millipore, Milan, Italy) and the protein
concentration of each sample was determined using the
Bio-Rad assay. For Western blotting, 10 μg of protein
was separated by gel electrophoresis (SDS-PAG; 12% w/v)
and the proteins were electro-blotted onto nitrocellulose
filters (Whatman, Germany). Filters were blocked in 1%
w/v bovine serum albumin (BSA) in Tris-buffered saline
Tween 20 (TBS Tween) and incubated overnight at 4◦C
with the following primary antibodies: rabbit polyclonal
anti-Best2 (1 : 500; Pifferi et al. 2006b); mouse mono-
clonal anti-CNGA2 (a gift from F. Müller and U. B. Kaupp,
Forschungszentrum Julich, Julich, Germany; Meyer et al.
2000), and anti-β-actin (1 : 1000; Sigma, Milan, Italy).
Membranes were washed in TBS-Tween before staining
with antibodies to the appropriate peroxidase-conjugated
secondary antibody, diluted 1 : 1000 in 1% w/v BSA in
TBS Tween for 1 h. Blots were developed with the ECL
detection system (Amersham, UK).

Immunohistochemistry

The nasal regions were fixed in 4% paraformaldehyde
for 4 h at 4◦C, decalcified by overnight incubation in
0.5 M EDTA, and then equilibrated in 30% (w/v) sucrose
overnight at 4◦C for cryoprotection. Coronal sections
16 μm thick were cut on a cryostat and stored at −20◦C.
Tissue sections were incubated with 0.5% sodium dodecyl
sulfate (v/v) in phospate buffered saline (PBS) for 15 min
for antigen retrieval, then incubated in blocking solution
(2% normal goat serum, 0.2% Triton X-100 in PBS)
for 90 min, and incubated overnight at 4◦C in primary
antibodies diluted in blocking solution. After rinsing in
0.1% (v/v) Tween 20 in PBS, sections were incubated
with fluorophore-conjugated secondary antibodies in
0.1% Tween 20 in PBS for 2 h at room temperature
and washed. 4′-6-Diamidino-2-phenylindole (DAPI)
(0.1 μg ml−1) was used to stain nuclei: tissue sections
were incubated for 30 min then washed and mounted with
Vectashield (Vector Laboratories, Burlingame, CA, USA).

Primary antibodies were rabbit anti-Best2 (Pifferi
et al. 2006b) and mouse monoclonal anti-CNGA2
(Meyer et al. 2000) used at 1 : 50. Secondary
antibodies were Alexa 488-conjugated goat anti-rabbit and
Alexa 594-conjugated goat anti-mouse diluted to 1 : 200
(Molecular Probes-Invitrogen, Eugene, OR, USA).

Images were visualized by Leica TCS SP2 confocal
microscope, acquired using Leica software at

1024 × 1024 pixels resolution and analysed with
ImageJ software.

Electro-olfactograms

Electro-olfactogram (EOG) recordings were performed as
previously described (Franceschini et al. 2009). The mouse
head was cut sagitally to expose the medial surface of the
olfactory turbinates and EOG recordings were measured
at the surface of the olfactory epithelium in response
to odorant stimuli in the vapour phase. Each odorant,
amylacetate, cineole and acetophenone (Sigma, Milan,
Italy), was prepared as 2.5 M stock in DMSO and then
diluted with water to the final concentrations used in the
experiments. Responses to DMSO alone were less than
0.05 mV. Vapour-phase odorant stimuli were generated
by placing 0.9 ml of an odorant solution in a 10 ml glass
test-tube capped with a rubber stopper. For stimulation,
a 100 ms pulse of the odorant vapour at 8 psi was injected
into a continuous stream of humidified air.

Electrophysiological recordings from dissociated
olfactory sensory neurons

Olfactory sensory neurons were dissociated enzymatically
from the olfactory epithelium of 1- to 2-month-old
mice, with a papain–cysteine treatment as previously
described (Lagostena & Menini, 2003; Boccaccio et al.
2006). Cells were plated on Petri dishes for excised patch
recordings, or on glass coverslips coated with poly-L-lysine
and concanavalin A (Type V, Sigma, Milan, Italy) for
whole-cell recordings with photolysis of caged compounds
(Boccaccio et al. 2006; Boccaccio & Menini, 2007).

Currents in the whole-cell or in the inside-out
voltage-clamp modes were recorded with an Axopatch 1D
or an Axopatch 200B amplifier controlled by Clampex 8
or 9 via a Digidata 1322A or 1332A (Axon Instruments,
Union City, CA, USA). Patch pipettes were made using
borosilicate capillaries (WPI, Sarasota, FL, USA) and
pulled with a Narishige PP83 puller (Narishige, Tokyo,
Japan). Patch pipettes filled with standard intracellular
solutions had resistances of 2–7 M� for whole-cell and
7–10 M� for excised patch recordings. Currents were
low-pass filtered at 1 kHz and acquired at 2 kHz for
whole-cell experiments, or filtered at 4 kHz and sampled
at 10 kHz for excised patch recordings. All experiments
were carried out at room temperature (20–22◦C).

For flash photolysis of the caged compounds, we used a
xenon flash-lamp system, JML-C2 (Rapp OptoElectronic,
Hamburg, Germany), coupled with the epifluorescence
port of the microscope with a quartz light guide (Boccaccio
et al. 2006). The spot of light had a diameter of about
15 μm and was focused on the ciliary region. The interval
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between experiments was about 2 min to allow the cell to
recover from adaptation.

Rapid solution exchange in inside-out patches
was obtained with the perfusion Fast-Step SF-77B
(Warner Instrument Corp., Hamden, CT, USA). For
current–voltage relations of Ca2+-activated currents,
inside-out patches were pre-exposed to the test Ca2+

concentration for 500 ms at −100 mV to allow the current
to partially inactivate, and then a double voltage ramp
from −100 to +100 mV and back to −100 mV was
applied at 1 mV ms−1. The two current–voltage relations
were averaged and leak currents measured with the same
ramp protocol in Ca2+-free solutions were subtracted.
The same type of voltage protocol was used to measure
current–voltage relations of cAMP-activated currents.

Ionic solutions

For whole-cell recordings, the extracellular mammalian
Ringer solution contained (in mM): 140 NaCl, 5 KCl,
1 CaCl2, 1 MgCl2, 10 Hepes, 10 glucose and 1 sodium
pyruvate (pH 7.4). The composition of the low Ca2+

extracellular solution was similar, except that it contained
10 mM EGTA and no added Ca2+. The whole-cell
pipette solution for the photorelease of caged 8-Br-cAMP
contained (in mM): 145 KCl, 4 MgCl2, 0.5 EGTA, 10 Hepes,
1 MgATP, 0.1 GTP, 0.05 caged 8-Br-cAMP, (pH 7.4). The
caged BCMCM-8-Br-cAMP (Boccaccio et al. 2006) was
dissolved in DMSO at 10 or 50 mM and stored at −20◦C
for up to 3 months. The final concentration of 50 μM

was obtained by diluting an aliquot of the stock solution
into the pipette solution, kept refrigerated in the dark
during the experimental session, and stored for a few days
at −20◦C. The standard pipette solution for the photo-
release of caged Ca2+ contained (in mM): 3 DMNP-EDTA,
1.5 CaCl2, 140 KCl, and 10 Hepes (pH 7.4). The low Cl−

intracellular solutions for the photorelease of caged Ca2+

contained (in mM): 3 DMNP-EDTA, 1.5 CaCl2, 12 KCl,
133 potassium gluconate, and 10 Hepes (pH 7.4). Liquid
junction potentials were corrected off-line. DMNP-EDTA
was purchased from Molecular Probes–Invitrogen, and
CaCl2 was adjusted with a 0.1 M standard solution from
Fluka (Deisenhofen, Germany). The caged compounds
were allowed to diffuse from the patch pipette into the
cytoplasm of an olfactory sensory neuron for about 2 min
after establishment of the whole-cell configuration.

For inside-out recordings, the standard solution in
the patch pipette contained (in mM): 140 NaCl, 10
HEDTA and 10 Hepes, pH 7.2. In experiments for Ca2+

dose–response relations, NaCl was replaced with LiCl to
inhibit the Na+/Ca2+ exchanger. The bathing solution at
the intracellular side of the patch contained (in mM): 140
NaCl or LiCl, 10 HEDTA and 10 Hepes, pH 7.2, and
no added Ca2+ for the nominally 0 Ca2+ solution, or

various added Ca2+ concentrations, as calculated with the
program WinMAXC (C. Patton), to obtain free Ca2+ in the
range between 1.5 and 100 μM (Patton et al. 2004). The
free Ca2+ concentrations were experimentally determined
by Fura-4F (Molecular Probes–Invitrogen) measurements
by using an LS-50B luminescence spectrophotometer
(PerkinElmer, Wellesley, MA, USA). To activate CNG
channels a solution containing 100 μM cAMP directly
dissolved into the 0 Ca2+ bathing solution was used.

Chemicals, unless otherwise stated, were purchased
from Sigma (Milan, Italy).

Data analysis

Data are reported as means ± standard deviation, with
the number of experiments (n) from different mice,
cells or membrane patches, as appropriate. The statistical
significance of data was evaluated by Student’s t-test and
P values < 0.05 were considered significant. Data analysis
and figures were made with Igor software (Wavemetrics,
Lake Oswego, OR, USA).

Results

Expression of Best2 in the olfactory epithelium

To examine the expression of Best2, we performed RT-PCR
on total RNA from the olfactory epithelium of WT and KO
mice. Specific primers for Best2, for the main subunit of the
CNG channel Cnga2, and for the housekeeping gene S16
showed that, in WT mice, PCR products of the predicted
size were amplified (Best2, 205 bp; CNGA2, 200 bp; S16,
102 bp) (Fig. 1A). In KO mice, the 205 bp reaction product,
corresponding to Best2, was absent, while control genes
were normally expressed (Fig. 1A). This result confirms the
absence of expression of Best2 in the olfactory epithelium
of KO mice.

Best2 immunoreactivity in the olfactory epithelium

To verify the lack of expression of the Best2 protein in
the olfactory epithelium of KO mice, we performed both
Western blotting and immunohistochemistry (Fig. 1B
and C), using the antibody against Best2 that we have
previously generated and characterized (Pifferi et al.
2006b).

By Western blotting, we identified a 57 kDa band in
a membrane fraction of the olfactory epithelium of WT
mice, corresponding to the expected molecular weight for
the Best2 protein, in agreement with our previous study
(Pifferi et al. 2006b). The 57 kDa band was undetectable
in KO animals, while both the 75 and 42 kDa bands,
corresponding respectively to CNGA2 and β-actin, were
expressed in both mouse lines (Fig. 1B).
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By immunohistochemistry, we confirmed our previous
results showing that Best2 is expressed in the olfactory
epithelium of WT mice (Pifferi et al. 2006b). We found
staining at the surface of the olfactory epithelium, at the
level of the ciliary layer, where Best2 colocalized with
CNGA2 (Fig. 1C, top panels). In the olfactory epithelium
of KO mice, Best2 immunoreactivity was absent, while
CNGA2 was normally expressed at the level of the ciliary
layer (Fig. 1C, bottom panels). These results demonstrate
the loss of the Best2 protein in the olfactory epithelium
of KO mice and confirm the specificity of our antibody
against this protein.

Behavioural olfactory response

To determine whether deletion of Best2 caused a
behavioural olfactory deficit, mice were examined for
olfactory function in a cookie-finding test. In this test,
we compared the food-finding ability of WT and KO mice
by measuring the latency to locate buried food. Mice were
food-deprived with free access to water overnight and then
were put in a cage where a food pellet was buried under
the litter. None of the mice searched randomly in the litter;
conversely, they dug only in the place where the pellet was
hidden. The average time necessary to locate the cookie

was 55 ± 32 s (n = 22) for WT mice, similar to 62 ± 34 s
(n = 22) for KO animals. These results show that KO mice
do not exhibit any gross olfactory deficit, in agreement
with previous results (Bakall et al. 2008).

Odorant-induced responses in WT and KO mice

To investigate whether disruption of the Best2 gene
modifies the odorant sensitivity of olfactory sensory
neurons, we measured odorant-induced changes in
voltage across the olfactory epithelium of WT and KO
mice. Indeed, the electrical activity of a population of
olfactory sensory neurons in response to odorants can be
recorded at the surface of the olfactory epithelium as a
negative electrical field potential, the electro-olfactogram
(EOG) (Ottoson, 1955; Scott & Scott-Johnson, 2002).
EOG responses induced by delivering the vapour phase
of a 2.5 M amyl acetate solution for 100 ms to the olfactory
epithelium were recorded at 13 different locations as
indicated in Fig. 2A. Although the amplitudes of EOG
responses varied according to the different subregions
of the olfactory epithelium, amplitudes at each specific
location were not significantly different between WT and
KO mice (Fig. 2B). Similar results were obtained with two

Figure 1. Comparison of Best2 mRNA expression and Best2 immunoreactivity in the mouse olfactory
epithelium of WT and KO mice
A, reverse transcription–polymerase chain reaction (RT-PCR) derived cDNA products amplified from RNA of the
olfactory epithelium in WT and KO mice using specific primers for Best2, CNGA2 and S16, as indicated in the
figure. The predicted size of the products for Best2, CNGA2 and S16 was respectively 205, 200 and 102 base pairs
(bp). B, Western blot analysis of proteins of the olfactory epithelium in WT and KO mice probed with antibodies
against Best2, CNGA2 and β-actin. Bands of the appropriate molecular mass were observed for each protein in
WT mice, whereas only bands corresponding to CNGA2 and β-actin were detected in KO mice. The expected
molecular mass for Best2, CNGA2 and β-actin was respectively 57, 75 and 42 kDa. C, immunostaining of sections
of the olfactory epithelium. Confocal micrographs showing Best2 and CNGA2 expression in the ciliary layer of the
olfactory epithelium of WT and KO mice. CNGA2 and Best2 co-expression was evident in WT mice, whereas no
immunoreactivity to Best2 was detectable in KO mice. Each image on the right was obtained from the merge of
the respective left and centre images. Cell nuclei were stained by DAPI.
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other commonly used odorants: acetophenone and cineole
(data not shown).

We determined the dose–response relation in response
to amyl acetate by delivering the vapour phase of odorant
solutions at various concentrations to the olfactory
epithelium. Figure 2C shows representative recordings of
EOG responses to amyl acetate in WT and KO mice. The
odorant concentration producing 50% of the maximal
EOG amplitude was about 10−3 M for both WT and KO
mice (Fig. 2D).

We further analysed the kinetics of the EOG recordings.
We measured the latency of the response as the interval

between the beginning of the odorant application and the
time at which the response reached 1% of its maximal
value, the rise time as the time interval between 1% and
the peak EOG response, and the termination as the time
constant of the exponential fit of the recovery phase of the
EOG response from the peak value to 10% of the peak.
We did not find any significant difference for any of these
parameters between WT and KO mice (Fig. 3).

Thus, no differences were observed between KO and
WT mice in EOG recordings, indicating that the absence
of Best2 does not significantly affect responses to odorants.
However, we cannot exclude the possibility that EOG

Figure 2. Odorant sensitivity in WT and KO mice
A, photomicrograph of the olfactory turbinate system. Roman numbers designate individual turbinates. Arabic
numbers indicate the locations where EOG responses were recorded. D, dorsal; A, anterior. B, average EOG
amplitudes in response to a 100 ms pulse of odorant vapour from a bottle containing 2.5 M amyl acetate liquid
solution measured at the locations indicated in A (n = 7–14). C, representative EOG recordings from WT (black
traces) or KO (grey traces) mice in response to 100 ms pulses of amyl acetate vapours. Numbers above traces are
the concentrations of amyl acetate solutions in the bottle. EOG recordings were from location 1. D, EOG amplitudes
were normalized to the value measured in response to the vapour of a 2.5 M amyl acetate solution, averaged,
and plotted versus amyl acetate concentrations in solution for WT (n = 14; black symbols) or KO (n = 13, grey
symbols) mice. Data points are linked with straight lines.
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recordings are similar in WT and KO animals because
some compensatory mechanism may modify the intra-
ciliary ion concentrations in KO compared to WT mice.
Indeed, although EOG measurements have the advantage
of allowing long recordings while leaving the neurons in a
relatively unperturbed situation, this technique does not
allow the control of the intracellular ionic composition of
neurons and of the membrane potential.

Currents in isolated olfactory sensory neurons

To achieve a control of both the intracellular and
extracellular ionic compositions, as well as of voltage,
we used isolated olfactory sensory neurons and the
patch-clamp technique in the whole-cell voltage-clamp
configuration. To investigate whether a Ca2+-activated
Cl− current was present in individual olfactory sensory
neurons from WT and KO mice, we measured the trans-
duction current directly activating CNG channels in the
cilia (Fig. 4). Indeed, the use of odorants to activate the
transduction current in isolated olfactory sensory neurons
would produce a very low probability of measuring
odorant responses (Lagostena & Menini, 2003), due to the
fact that each olfactory sensory neuron expresses only one
of more than a thousand odorant receptors (for reviews,

see Rodriguez, 2007; Malnic, 2007). To activate CNG
channels in the cilia, we included caged 8-Br-cAMP in the
intracellular solution filling the patch pipette and applied
ultraviolet light flashes to the ciliary region to release
the physiologically active 8-Br-cAMP. Upon flash photo-
lysis, CNG channels are activated by 8-Br-cAMP allowing
the flux of Ca2+ ions in the cilia and the subsequent
opening of Ca2+-activated Cl− channels (Boccaccio et al.
2006; Boccaccio & Menini, 2007). We have previously
shown that the rising phase of the response at −50 mV in
Ringer solution containing 1 mM Ca2+ was multiphasic,
composed of a primary phase of the response due to Na+

and Ca2+ influx through CNG channels and a secondary
phase due to Cl− efflux through Cl− channels activated
by the influx of Ca2+. Moreover, the secondary phase of
the response was absent in low extracellular Ca2+ or at
+50 mV, when the influx of Ca2+ through CNG channels
is strongly reduced and therefore the contribution of
Ca2+-activated Cl− channels is expected to be negligible
(Boccaccio & Menini, 2007).

To investigate the Ca2+ dependence of the rising phase of
the response in WT and KO mice, we compared responses
at −50 mV in extracellular low Ca2+ or in 1 mM Ca2+ in
the same neuron (Fig. 4A and B). Both in WT and in KO
mice the rising phase of the response in low Ca2+ was well

Figure 3. Kinetics analysis of odorant responses in WT and KO mice
A, normalized EOG responses to 100 ms pulses of vapour of the indicated amyl acetate concentration in solution
for WT (black traces) or KO (grey traces). B–D, average values for latency (B), rise time (C), and time constant of
the termination phase (D) were not significantly different in WT and KO animals at each odorant concentration
(n = 10).
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fitted with a single exponential function, while in Ringer
solution containing 1 mM Ca2+, the rising phase was
slower and could not be described by a single exponential
function. To better illustrate the rising phase, traces were
normalized to their peak values and plotted superimposed
on an expanded time scale in the insets of Fig. 4A and B.
We measured the time necessary for the current to reach
50% of its maximal response, t50, after the delivery of the
light flash and found that the average ratio between t50

measured in Ringer solution and in low Ca2+ at −50 mV
was 7.1 ± 3.0 (n = 4) for WT, not significantly different
from the value of 9.1 ± 3.2 (n = 5) for KO.

To further investigate the presence of a Ca2+-activated
Cl− current, we compared currents in Ringer solution
containing 1 mM Ca2+ at +50 or −50 mV in the same

neuron (Fig. 4C and D). At +50 mV the influx of Ca2+

through CNG channels is greatly reduced and the outward
current is mainly carried by K+ ions, whose permeation
through CNG channels is similar to that of Na+ ions
(reviewed in Kaupp & Seifert, 2002). Both in WT and
KO, the rising phase at +50 mV could be well described
by a single exponential function, whereas more than one
current component was present at −50 mV, as discussed
above. The different rising components are illustrated in
more detail in the insets of Fig. 4C and D. The rising time
of the response was measured, as described above, as t50,
and we found that the ratio between t50 at +50 and at
−50 mV was 0.27 ± 0.13 (n = 3) for WT, not significantly
different from the value of 0.22 ± 0.07 (n = 4) for KO.
Furthermore, in the same set of experiments, the ratio

Figure 4. Current responses induced by photorelease of 8-Br-cAMP in isolated olfactory sensory neurons
from WT and KO mice
Currents recorded from isolated mouse olfactory sensory neurons in the whole-cell voltage-clamp configuration
in response to photorelease of 8-Br-cAMP in the cilia. An ultraviolet flash was applied at the time indicated by
each arrow. A and B, an isolated olfactory sensory neuron from WT (A, black traces) and KO (B, grey traces) mice
was bathed in Ringer solution containing 1 mM Ca2+ or in nominally 0 Ca2+ at the holding potential of −50 mV.
Insets: responses were scaled to their maximum value and plotted superimposed on an expanded time scale. The
rising phase of the response in 0 Ca2+ solution was fast and was well fitted by a single exponential (dashed lines),
with τ = 3.6 ms for WT and τ = 6.2 ms for KO. Traces in Ringer solution and 0 Ca2+ in each panel were recorded
from the same neuron. C and D, currents in an isolated olfactory sensory neuron from WT (C, black traces) and KO
(D, grey traces) mice at the holding potential of −50 or +50 mV. Insets: current responses plotted on an expanded
time scale, displayed a multiphasic rising phase at −50 mV, whereas at +50 mV the rising phase was well fitted by
a single exponential (dashed lines, τ = 7.7 ms for WT and τ = 10.9 ms for KO mice). Traces at −50 and +50 mV
in each panel were recorded from the same neuron.
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between peak current amplitude at +50 and −50 mV was
0.35 ± 0.08 (n = 3) for WT, not significantly different from
0.43 ± 0.30 (n = 4) for KO mice.

These results show that in isolated olfactory sensory
neurons from both mouse lines the transduction current
comprises a primary CNG current and a secondary
Ca2+-activated current that is expected to be carried by
Cl− ions (Boccaccio & Menini, 2007).

To directly measure Ca2+-activated currents in WT and
KO mice, we photoreleased Ca2+ in the cilia (Fig. 5).
To determine if Ca2+-activated currents were carried
by Cl−, we measured the reversal potentials in the
presence of various Cl− concentrations. In a first set
of experiments, we measured the reversal potential in
almost symmetrical Cl− solutions (Fig. 5A and B), while
in a second set of experiments we reduced the intra-
cellular Cl− concentration by replacing most Cl− with
gluconate (Fig. 5C and D). The average reversal potential
in symmetrical Cl− solutions for WT, −0.8 ± 1.6 mV
(n = 5), was not significantly different from that measured

in KO, −0.5 ± 3.2 mV (n = 4) (Fig. 5E). The average
reversal potential in the low intracellular Cl− solution was
shifted toward more negative values, as expected for Cl−

channels in our ionic conditions, and was similar for WT,
−37.0 ± 1.2 mV (n = 5), and KO, −41.7 ± 5.6 mV (n = 5)
(Fig. 5E). These results confirm that Ca2+-activated Cl−

channels were present in olfactory sensory neurons from
both WT and KO mice.

Currents in inside-out excised membrane patches
from dendritic knob/cilia

To obtain a precise control of the concentrations of cyclic
nucleotides and Ca2+ at the intracellular side of the
transduction channels, we conducted patch-clamp
experiments on excised membrane patches from the
dendritic knob of dissociated olfactory sensory neurons
with visible cilia of WT and KO mice. As previously noted
(Reisert et al. 2003), cilia were sometimes sucked into the
tip of the patch pipette and therefore the excised patches

Figure 5. Current responses induced by photorelease of Ca2+ in isolated olfactory sensory neurons from
WT and KO mice
Currents recorded from isolated mouse olfactory sensory neurons in the whole-cell voltage-clamp configuration
in response to photorelease of caged Ca2+ (DMNP-EDTA) in the cilia. An ultraviolet flash was applied at the time
indicated by each arrow to release the physiologically active Ca2+ into the ciliary region. A and B, currents from
olfactory sensory neurons were recorded in symmetrical Cl− solutions from WT (A, black traces) and KO (B, grey
traces) mice. Currents in each panel were evoked on the same isolated olfactory sensory neuron at the indicated
holding potentials, corrected for junction potentials. C and D, similar experiments were repeated when most (see
Methods section) Cl− in the intracellular solution was replaced with gluconate. E, average reversal potentials in
symmetrical Cl− solutions and in low Cl− solutions.
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contained membranes from both the dendritic knob and
from the cilia.

To investigate the presence of CNG and Ca2+-activated
Cl− currents, inside-out excised membrane patches, at

the holding potential of −50 mV, were first exposed
to a solution containing 100 μM cAMP in the absence
of divalent cations. The same patch was then exposed
to a solution containing 100 μM Ca2+ (Fig. 6A and B).

Figure 6. Recordings of CNG and Ca2+-activated Cl− currents in inside-out membrane patches
A and B, the cytoplasmic side of membrane patches excised from dendritic knob/cilia of olfactory sensory neurons
from WT mice (A) and KO mice (B) was exposed to 100 μM cAMP, in the absence of divalent cations, to activate
the CNG channels, and to 100 μM Ca2+ to activate the Cl− channels. Divalent cations were absent from the
patch pipette solution. The holding potential was −50 mV. C, percentage of membrane patches with detectable
Ca2+-activated Cl− currents with respect to the presence of CNG currents in WT and KO mice. D, average ratios
between Ca2+-activated Cl− currents and CNG currents in patches from WT (n = 6) and KO (n = 11) mice.
E, comparison of representative current–voltage relations of the CNG current activated by 100 μM cAMP in WT
(black trace) or KO (grey trace) patches. Voltage ramp from −100 to +100 mV. Currents were normalized to
the value at −100 mV. F, comparison of representative current–voltage relations of the Cl− current activated by
100 μM Ca2+ in WT (black trace) or KO (grey trace) patches. Voltage ramps from −100 to +100 mV. Currents
were normalized to the value at −100 mV. G, dose–response relations were measured exposing patches to various
free Ca2+ concentrations. The holding potential was −50 mV. Peak currents at each Ca2+ concentrations were
normalized to the average current measured in the presence of 100 μM Ca2+ before and after each test Ca2+
concentration. Normalized currents were plotted versus Ca2+ concentrations, and fitted to the Hill equation. For
WT mice K1/2 was 4.4 μM, and nH was 2.2 (n = 3). For KO mice K1/2 was 3.8 μM, and nH was 2.9 (n = 3).
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We found that, both in WT and KO mice, about 75%
of the membrane patches that showed detectable CNG
currents also had Ca2+-activated Cl− currents (Fig. 6C).
We observed a great variability in current amplitudes
in both mouse lines: at −50 mV, currents in WT mice
varied from absolute values of 29 to 795 pA for CNG
currents, and from 16 to 495 pA for Ca2+-activated
Cl− currents, while currents in KO mice varied from
absolute values of 56 to 902 pA for CNG currents, and
from 9 to 212 pA for Ca2+-activated Cl− currents. Since
it has been previously shown that Ca2+-activated Cl−

currents in olfactory sensory neurons exhibit a rundown
over time, while CNG currents remain quite constant
(Reisert et al. 2003), both currents were measured within
30 s after patch excision. The average CNG current at
−50 mV was 327 ± 305 pA (n = 7) in WT animals, not
significantly different from the value of 209 ± 254 pA
(n = 14) in KO mice. For Ca2+-activated Cl− currents
the average amplitude at −50 mV was 113 ± 15 pA
(n = 7) in WT animals, also not significantly different
from the value of 44 ± 64 pA (n = 14) in KO mice. To
obtain an estimate of the relative density of channels we
measured the ratio between Ca2+-activated Cl− currents
and CNG currents in each membrane patch. The average
ratio between Ca2+-activated Cl− currents and CNG
currents was 0.42 ± 0.31 (n = 7) in WT animals, not
significantly different from the value of 0.41 ± 0.39
(n = 14) calculated in KO mice (Fig. 6D). These results
show that Ca2+-activated Cl− currents are present in
inside-out patches from the dendritic knob/cilia of KO
mice.

To further compare other biophysical properties of the
transduction channels in WT and KO mice, we measured
the rectification properties of the two types of currents.
Currents were activated by 100 μM cAMP (Fig. 6E) or by
100 μM Ca2+ (Fig. 6F) using voltage ramps from −100
to +100 mV and normalized to the value at −100 mV.
As shown in Fig. 6E and F , normalized current–voltage
relations from WT and KO mice superimposed. The
average ratio between currents at +50 and −50 mV for
CNG currents was 1.13 ± 0.15 (n = 5) in WT animals,
not significantly different from the value of 1.15 ± 0.15
(n = 10) calculated in KO mice. For Ca2+-activated Cl−

currents the average ratio between currents at +50 and
−50 mV was 0.52 ± 0.20 (n = 5) in WT animals, also not
significantly different from the value of 0.52 ± 0.08 (n = 6)
in KO mice.

Since it has been previously shown (Reisert et al.
2003) that, in addition to rundown, Ca2+-activated Cl−

currents in olfactory sensory neurons also exhibit a
reversible time-dependent decrease in amplitude during
the exposure to a constant Ca2+ concentration (Fig. 6A
and B), we measured the ratio between current amplitudes
measured at the peak and after 5 s of 100 μM Ca2+

exposure. We found that the ratio was 0.80 ± 0.10 (n = 6)

in WT mice, not significantly different from the value of
0.78 ± 0.13 in KO animals (n = 12).

Finally, to measure the Ca2+ sensitivity of the Cl−

channel in WT and KO mice, we obtained dose–response
relations by activating currents with various Ca2+

concentrations in excised membrane patches (Fig. 6G).
Experiments were performed after the rapid phase of
rundown, when currents reached an almost steady-state
value and, to take into account a remaining slow phase of
the rundown that was present in some membrane patches,
currents at each test Ca2+ concentration were normalized
to the average current activated by 100 μM Ca2+ before
and after each test Ca2+ concentration. Normalized
currents measured at −50 mV were plotted versus Ca2+

concentration and fitted by the Hill equation: I/Imax =
cnH/(cnH + K nH

1/2), where c is the Ca2+ concentration, K 1/2

the Ca2+ concentration producing half-maximal current
activation, and nH is the Hill coefficient. At −50 mV, the
K 1/2 was 4.4 μM for WT, similar to 3.8 μM for KO mice, and
nH was 2.2 and 2.9 for WT and KO animals, respectively
(Fig. 6G). K 1/2 and nH values were not significantly
different between WT and KO mice.

Thus, electrophysiological properties of Ca2+-activated
Cl− currents in inside-out membrane patches from
dendritic knob/cilia of olfactory sensory neurons are not
significantly different between WT and KO mice.

Discussion

Expression of Best2 in the ciliary layer
of the olfactory epithelium

In this study, we confirmed that Best2 is expressed in the
ciliary layer of olfactory sensory neurons and that the
antibody against Best2 we previously developed (Pifferi
et al. 2006b) is specific for this protein, as demonstrated by
the absence of immunostaining in the olfactory epithelium
of KO mice. Thus, these data, together with those of a very
recently published study (Klimmeck et al. 2009) in which
the expression of Best2 in the olfactory epithelium was
extensively investigated, solve the reported controversy
(Hartzell et al. 2008; Marmorstein et al. 2009) as to
whether mouseBest2 is indeed expressed in the olfactory
epithelium. In fact, Bakall et al. (2008), by employing
immunoistochemistry in the same mouse lines of the pre-
sent study, found expression of the Best2 protein in the
colon and in the eye (in the non-pigmented epithelia cells
of the ciliary body) of WT mice, but not in the olfactory
epithelium, although they detected a Best2 transcript. A
possible explanation of the different results between the
laboratories is likely to reside in the different antibodies
that were used. Indeed, Bakall et al. (2008) reported that
their antibody was not working in Western blot. On the
other side, concerning the immunohistochemistry, it must
be noted that no positive controls of the immunostaining
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in the olfactory epithelium were shown by Bakall et al.
(2008) and therefore it cannot be excluded that, since
cilia are very fragile, they were absent from the olfactory
epithelium slices.

Physiological role of Best2

Since Best2 is expressed in the cilia of olfactory sensory
neurons (Pifferi et al. 2006b), the site of olfactory trans-
duction, and it has been previously demonstrated that
Best2 forms Ca2+-activated Cl− channels when expressed
in heterologous systems (Qu et al. 2004; Qu & Hartzell,
2004; Pifferi et al. 2006b), we conducted experiments to
investigate the physiological role of Best2 in olfactory
transduction by comparing the properties of WT mice
with those of KO mice. Since a previous study has shown
that KO mice showed no obvious olfactory deficits, as
detected by the cookie test (Bakall et al. 2008), we also
repeated this type of behavioural test and found results
in agreement with those previously published. However,
it cannot be concluded from these experiments that Best2
is not required for normal olfactory sensitivity, as more
detailed behavioural studies, as for example the study
of olfactory behavioural thresholds as reported in mice
lacking NKCC1 (Smith et al. 2008), would be required to
reach such a conclusion. In addition, it is important to
note that, as previously pointed out by Smith et al. (2008),
it is still unknown whether a deficit in Ca2+-activated
Cl− current would produce a reduction in olfactory
sensitivity, and it is possible that the secondary Cl−

current may not be required at all for normal olfactory
sensitivity. Indeed, it is possible that the primary current
through CNG channels is sufficient for normal olfactory
sensitivity.

We analysed the responses to odorants of the olfactory
epithelium and found no differences in the odorant
sensitivity or kinetics properties measured by EOG
recordings in WT and KO mice. Moreover, at the level
of single olfactory sensory neurons, a Ca2+-activated
Cl− channel component was also measured by using
photolysis of caged 8-Br-cAMP or of caged Ca2+ localized
to the cilia of olfactory sensory neurons of KO mice.
Finally, a Ca2+-activated Cl− current was still present in
excised inside-out patches from knob/cilia of olfactory
sensory neurons of KO mice, with electrophysiological
properties similar to those of WT mice.

Thus, we determined that the absence of expression of
Best2 in the ciliary layer of the olfactory epithelium does
not significantly alter the electrophysiological properties
of the olfactory epithelium. These results indicate that
Best2 may not be the main molecular component
of the olfactory Ca2+-activated Cl− channel, although
we cannot exclude the possibility that in KO mice
some compensatory mechanisms may act to replace the
function of the missing protein. However, it must also

be noted here that, although the protein Best2 has
been proposed as a candidate for being a molecular
component of the olfactory Ca2+-activated Cl− channel,
very recent studies reported that the anoctamin/TMEM16
family of membrane proteins display many features of
native Ca2+-activated Cl− channels (Caputo et al. 2008;
Schroeder et al. 2008; Yang et al. 2008). In addition, it
has been shown, by in situ hybridization, that TMEM16B
is expressed in the mature sensory neurons of the
mouse olfactory epithelium (Yu et al. 2005), and it is a
prominent protein in the rat olfactory ciliary proteome
(transmembrane protein 16B isoform 2, Supplementary
Table S1 in Mayer et al. 2009). Stephan et al. (2009)
also identified TMEM16B (Anoctamin 2, ANO2) in a
proteomic screen of ciliary membranes and showed that
the fusion protein TMEM16B-EGFP localized to the
cilia when expressed in vivo using an adenoviral vector.
In addition, Stephan et al. (2009) provided evidence
that the electrophysiological properties of this protein
are remarkably similar to those of native olfactory
Ca2+-activated Cl− channels.

We have also recently characterized the electro-
physiological properties of the mouse TMEM16B
expressed in a heterologous system and found that the
channel properties are remarkably similar to those of
the native Ca2+-activated Cl− channels (Pifferi et al.
2009). Indeed, while we have previously pointed out
that a significant difference between Best2 and the native
olfactory channel was a Ca2+ sensitivity difference of
one order of magnitude, with a Ca2+ concentration for
half-maximal activation at −50 mV of 0.4 μM for Best2
and a higher concentration of 4.7 μM for native channels
(Pifferi et al. 2006b), we recently showed that the K 1/2

for Ca2+ in TMEM16B-induced currents was 4.9 μM,
similar to the native channel. Further studies will have
to establish whether TMEM16B is a component of the
olfactory Ca2+-activated Cl− channel.

In this study, we have shown that Best2 is
expressed in the olfactory ciliary layer, but it does not
appear to be the main molecular component of the
Ca2+-activated Cl− current. What is then the physio-
logical role of Best2 in the olfactory epithelium? In
addition to functioning as Ca2+-activated Cl− channels
when expressed heterologously, mouse Best2 and other
bestrophins have also been shown to be activated by
osmotic cell swelling in the absence of Ca2+, indicating
that they may be cell volume regulators (Fischmeister &
Hartzell, 2005; Chien & Hartzell, 2007). Furthermore,
Best1 can interact with the voltage-gated Ca2+ channel
Cav1.3 and modulate its biophysical properties (Rosenthal
et al. 2006; Yu et al. 2008), indicating that some bestrophins
could also act as regulators of other ion channels. In the
eye, Best2 is expressed in the non-pigmented epithelium
and, using the same mouse line employed in the present
study, it was found that KO mice have a diminished

C© 2009 The Authors. Journal compilation C© 2009 The Physiological Society

) at unknown institution on September 17, 2009jp.physoc.orgDownloaded from J Physiol (

http://jp.physoc.org/


J Physiol 587.17 Ca2+-activated Cl− currents in olfactory sensory neurons 4277

intraocular pressure compared to WT mice (Bakall et al.
2008). A very recent study suggested that Best2 is involved
in the control of aqueous dynamics (Zhang et al. 2009).

In the olfactory epithelium, Klimmeck et al. (2009) have
recently investigated in detail the expression pattern of
Best2 comparing results from adult and postnatal day 1
(P1) mice. In adult mice, whose olfactory epithelium
contains mainly mature olfactory sensory neurons, Best2
expression was found in the cilia of these neurons.
In P1 mice, where most olfactory sensory neurons are
still immature, strong Best2 signals were detected at all
subcellular levels of the developing neurons. Based on
these observations, Klimmeck et al. (2009) suggested a
physiological role for Best2 related to neurogenesis, in
which Best2 may act as a volume-regulated anion channel
contributing to the coordinated extension of cell volume
in developing sensory neurons.

In the olfactory cilia, it is possible to speculate that
Best2 may subserve different functions as, for example,
the maintenance of the local ionic homeostasis, also
preventing volume changes resulting from the exposure to
exogenous osmotically active solutions. It is also possible to
envisage that Best2 could contribute to setting the correct
chloride concentration in the mucous layer of the olfactory
epithelium.

In summary, we now have unequivocal confirmation
that Best2 is expressed in the cilia of mature
olfactory sensory neurons, thus cutting out all the
controversies about its presence in the olfactory
epithelium. Nevertheless, the function of Best2 remains
elusive and further studies will be required to determine
its physiological role.
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Calcium concentration jumps reveal dynamic ion selectivity
of calcium-activated chloride currents in mouse olfactory
sensory neurons and TMEM16b-transfected HEK
293T cells

Claudia Sagheddu1, Anna Boccaccio1,2, Michele Dibattista1, Giorgia Montani3, Roberto Tirindelli3

and Anna Menini1

1International School for Advanced Studies, Scuola Internazionale Superiore di Studi Avanzati, SISSA, and Italian Institute of Technology, SISSA Unit,
Trieste, Italy
2Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
3Section of Physiology, Department of Neuroscience, University of Parma, Parma, Italy

Ca2+-activated Cl− channels play relevant roles in several physiological processes, including
olfactory transduction, but their molecular identity is still unclear. Recent evidence suggests
that members of the transmembrane 16 (TMEM16, also named anoctamin) family form
Ca2+-activated Cl− channels in several cell types. In vertebrate olfactory transduction,
TMEM16b/anoctamin2 has been proposed as the major molecular component of Ca2+-activated
Cl− channels. However, a comparison of the functional properties in the whole-cell configuration
between the native and the candidate channel has not yet been performed. In this study, we have
used the whole-cell voltage-clamp technique to measure functional properties of the native
channel in mouse isolated olfactory sensory neurons and compare them with those of mouse
TMEM16b/anoctamin2 expressed in HEK 293T cells. We directly activated channels by rapid
and reproducible intracellular Ca2+ concentration jumps obtained from photorelease of caged
Ca2+ and determined extracellular blocking properties and anion selectivity of the channels. We
found that the Cl− channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamino)benzoic acid
(NPPB) and DIDS applied at the extracellular side of the membrane caused a similar inhibition
of the two currents. Anion selectivity measured exchanging external ions and revealed that, in
both types of currents, the reversal potential for some anions was time dependent. Furthermore,
we confirmed by immunohistochemistry that TMEM16b/anoctamin2 largely co-localized with
adenylyl cyclase III at the surface of the olfactory epithelium. Therefore, we conclude that the
measured electrophysiological properties in the whole-cell configuration are largely similar,
and further indicate that TMEM16b/anoctamin2 is likely to be a major subunit of the native
olfactory Ca2+-activated Cl− current.

(Received 17 June 2010; accepted after revision 8 September 2010; first published online 13 September 2010)
Corresponding author A. Menini: International School for Advanced Studies, Scuola Internazionale Superiore di Studi
Avanzati, SISSA, Via Bonomea 265, 34136 Trieste, Italy. Email: menini@sissa.it

Abbreviations DIDS, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid; HEK, human embryonic kidney; MeS−,
methanesulfonate; NFA, niflumic acid; NPPB, 5-nitro-2-(3-phenylpropylamino)benzoic acid; SCN−, isothiocyanate;
TMEM16, transmembrane 16.

Introduction

In several cell types, an increase in intracellular Ca2+

concentration produces the activation of chloride channels
that, depending on the electrochemical gradient of
Cl−, will cause depolarization or hyperpolarization

of the cell membrane. Ca2+-activated Cl− channels
were first identified in Xenopus oocytes (Miledi, 1982;
Barish, 1983) and in the inner segment of salamander
photoreceptors (Bader et al. 1982), and afterwards in
many other cell types, including olfactory sensory neurons
(Kleene & Gesteland, 1991; Kleene, 1993; Kurahashi
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& Yau, 1993). These channels are involved in a large
variety of physiological processes, including generation of
the fertilization potential in Xenopus oocytes, regulation
of synaptic transmission in photoreceptors, and signal
amplification in olfactory sensory neurons (reviewed by
Frings et al. 2000; Hartzell et al. 2005; Kleene, 2008; Frings,
2009a,b).

Despite the physiological relevance of Ca2+-activated
Cl− channels, their molecular identity remained largely
elusive. Several molecular candidates have been proposed
for these channels, but none of them completely
reproduced the properties of native Ca2+-activated Cl−

currents (reviewed by Hartzell et al. 2005; Duran et al.
2010). In 2008, three independent studies reported
evidence suggesting that some members of the family
of TMEM16/anoctamins are likely to be the molecular
determinants of Ca2+-activated Cl− currents in some cell
types (Caputo et al. 2008; Schroeder et al. 2008; Yang et al.
2008; reviewed by Flores et al. 2009; Galietta, 2009; Hartzell
et al. 2009; Kunzelmann et al. 2009).

In olfactory sensory neurons, Ca2+-activated Cl−

currents are measured, together with cAMP-activated
currents, in the cilia (Kleene & Gesteland, 1991; Kleene,
1993), where they play an important role in the
amplification of the response to odorants, constituting
up to 90% of the transduction current (Kurahashi & Yau,
1993; Lowe & Gold, 1993; Boccaccio & Menini, 2007).
Indeed, the process of olfactory transduction occurs in
the cilia of olfactory sensory neurons, where a second
messenger cascade is activated by the binding of odorant
molecules to odorant receptors and leads to the production
of cAMP and the opening of cAMP-activated channels
(reviewed by Schild & Restrepo, 1998; Lowe & Gold, 1993;
Menini, 1999; Matthews & Reisert, 2003; Menini et al.
2004; Pifferi et al. 2006a, 2009c; Kleene, 2008; Tirindelli
et al. 2009). Since olfactory sensory neurons maintain
an unusually elevated intracellular concentration of Cl−

(Reuter et al. 1998; Kaneko et al. 2001, 2004), the
influx of Ca2+ through cAMP-activated channels in the
cilia produces an efflux of Cl− through Ca2+-activated
Cl− channels, contributing to the odorant-induced
depolarization (Kleene & Gesteland, 1991; Kleene, 1993,
1997, 2008; Kurahashi & Yau, 1993; Lowe & Gold, 1993;
Boccaccio & Menini, 2007; reviewed by Frings et al. 2000;
Frings, 2009a,b; Pifferi et al. 2009c).

At present, several lines of evidence indicate that
TMEM16b/anoctamin2 is the best candidate for being
the main molecular component of the olfactory
Ca2+-activated Cl− channels in the cilia. Indeed, in situ
hybridization studies showed that TMEM16b/anoctamin2
is expressed in mature sensory neurons of the mouse
olfactory epithelium (Yu et al. 2005); proteomic screenings
identified TMEM16b/anoctamin2 as a prominent protein
of olfactory ciliary membranes (Stephan et al. 2009;

Hengl et al. 2010; Rasche et al. 2010); the fusion protein
TMEM16b/anoctamin2–EGFP localized to the cilia when
expressed in vivo using an adenoviral vector (Stephan et al.
2009); immunohistochemistry showed the localization of
TMEM16b/anoctamin2 to the ciliary region (Hengl et al.
2010; Rasche et al. 2010); functional properties measured
by patch-clamp recordings from excised inside-out
membrane patches of TMEM16b/anoctamin2 expressed
in HEK 293T cells or from the dendritic knobs and ciliary
region of olfactory sensory neurons are very similar (Pifferi
et al. 2009a; Stephan et al. 2009).

However, to identify the channel protein it is necessary
to prove that all the functional properties of native
channels are reproduced by the candidate protein. At
present, several electrophysiological properties of native
olfactory Ca2+-activated Cl− currents are still unknown.
Indeed, while the properties of native olfactory channels
in the excised cilium (Kleene & Gesteland, 1991; Kleene,
1993) or in the excised inside-out membrane patches
have been extensively investigated (Reisert et al. 2003;
Pifferi et al. 2006b, 2009b; Stephan et al. 2009), those
of the native channels in isolated olfactory sensory
neurons are poorly known. Moreover, currents in excised
patches exhibited a pronounced rundown as well as
inactivation/desensitization in the presence of a constant
Ca2+ concentration (Reisert et al. 2003), while whole-cell
recordings appeared to be more stable (Boccaccio &
Menini, 2007; Takeuchi et al. 2009).

Niflumic acid or 4-acetamido-4-isothiocyanato-
stilben-2, 2-disulfonate (SITS; Kurahashi & Yau, 1993;
Lowe and Gold, 1993) are commonly used as extracellular
blockers of Ca2+-activated Cl− channels in intact olfactory
sensory neurons, but the extracellular blocking potencies
of several other compounds have not been measured.
Moreover, the ion selectivity of the native channels in
isolated olfactory sensory neurons has not been estimated
yet, except for showing that the current is carried by Cl−

ions (Kurahashi & Yau, 1993; Takeuchi et al. 2009).
The goal of this study was to measure the

unknown electrophysiological properties of the
native olfactory Ca2+-activated Cl− channels and to
obtain a side-by-side comparison with the recently
cloned TMEM16b/anoctamin2 (Stephan et al. 2009)
heterologously expressed in HEK 293T cells. Channels
were directly activated by rapidly increasing the
intracellular Ca2+ concentration by flash photolysis of
caged Ca2+.

Our results show that Ca2+-activated Cl− currents
measured in the whole-cell configuration in olfactory
sensory neurons were largely similar to those induced
by the candidate protein, contributing further support
to the hypothesis that TMEM16b/anoctamin2 is a
major constituent of the olfactory Ca2+-activated Cl−

channel.
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Methods

Ethical approval

All animals were handled in accordance with the Italian
Guidelines for the Use of Laboratory Animals (Decreto
Legislativo 27/01/1992, no. 116) and European Union
guidelines on animal research (No. 86/609/EEC). For
experiments mice were killed by cervical dislocation or
anaesthetized with CO2 inhalation and then decapitated.

RNA extraction and RT-PCR

RNA was extracted from the olfactory epithelium of
FVB mice and purified using Trizol reagent (Invitrogen
Milano, Italy). About 2 μg of total RNA served as template
for oligo-dT primed first strand cDNA synthesis with
Im-Prom-II Reverse Transcriptase (Promega, Milano,
Italy). PCR was performed in Mastercycler Personal
(Eppendorf, Milano, Italy) using AmpliBiotherm DNA
polymerase, 3 mM MgCl2, 0.2 mM for each dNTPs and
200 pmol forward/reverse target-specific oligonucleotide
primers. Cycling parameters consisted of an initial
denaturation step (95◦C, 2 min) followed by 35 cycles each
of these included a denaturation (95◦C, 30 s), a primer
annealing (50◦C, 30 s), and an extension (72◦C, 30 s) step.
Reaction was completed by a final extension step at 72◦C
for 5 min. Semiquantitative analysis of RNA expression
was performed on agarose gel after electrophoresis using
the NIS-Elements Advanced Research software (Nikon,
Firenze, Italy).

Primers were designed to amplify a 650–700
bp DNA sequence, which is predicted to encode
a region of the C-terminal intracellular domain
of TMEM16/anoctamins. The chromosomic region
corresponding to the amplicon DNA sequences spans over
five exons and four introns.

The following primer sequences were used to amplify
target DNAs:

TMEM16a/anoctamin1: bases 1826–2493, fwd:
5′-ACGTGTACATCTTCCGCTCTTT-3′ (Tm 58◦C),
rev: 5′ GATCTGAACCTCATAGCCCAG-3′ (Tm 59◦C);
TMEM16b/anoctamin2: bases 1694–2358, fwd:
5′-ATGTCTACGTGTTCGACGGTTA-3′ (Tm 58◦C)
rev: 5′-AAACTGAACCTCCTGGTCGAA (Tm 57◦C);
TMEM16c/anoctamin3: bases 2009–2652, fwd:
5′-ACAATAAACTTTTTGAGCGGTG-3′ (Tm 54◦C)
rev: 5′-GTAACCAGATTTTCCCATACC-3′ (Tm 55◦C);
TMEM16d/anoctamin4: bases 1361–2052, fwd: 5′-
ACTTGAGATTGATAAACAGGTG-3′ (Tm 54◦C) rev:
5′-GTACTTCAGAGGGGTTCCTGA-3′ (Tm 59◦C);
TMEM16e/anoctamin5: bases 1739–2382, fwd: 5′-
ACACATATATGTTCAACATATGGA-3′ (Tm 54◦C), rev:
5′-GGTGACGAAGTCTTTTTTCTC-3′) (Tm 55◦C);

TMEM16f/anoctamin6: bases 1751–2418, fwd: 5′-
CAGTGTACTTGCTGGGCAAATA-3′ (Tm 57◦C), rev:
5′-CAAGGTATAGTTACCAAGCCC-3′(Tm 57◦C);
TMEM16g/anoctamin7: bases 1685–2340, fwd: 5′-
ACCACACCTTGTTTGGAATCC-3′ (Tm 57◦C), rev:
5′-GTAAGTCGGAGAATAGTGTCC 3′ (Tm 57◦C);
TMEM16h/anoctamin8: bases 1962–2665, fwd: 5′-
CGAAGAAGACGATGAGCCTGA-3′ (Tm 71◦C), rev:
5′-CCTGCCGCTCGTGCCGCTTGA-3′ (Tm 61◦C);
TMEM16j/anoctamin9: bases 1331–2004, fwd: 5′-
CCACGCGCCTGGCTGGCCTGTG-3′ (Tm 63◦C), rev:
5′-CACGGTCACGTTTTCTTGGCC-3′ (Tm 54◦C);
TMEM16k/anoctamin10: bases 1298–1894, fwd: 5′-
TGGCCACACTCCTGATCACCTC-3′ (Tm 59◦C), rev:
5′-AAGATTCGAATTCCAATCTGG-3′ (Tm 67◦C);
OMP (olfactory marker protein): bases 1–1079, fwd: 5′-
CCCTGCTGGCCAAAGCTGGAA-3′ (Tm 63◦C), rev:
5′-GTCTCTAAAGCTGTAGGGAGA-3′ (Tm 58◦C);
Vmn2r70, bases 1011–1704, fwd: 5′-TTACAGTAGTG-
AATTTTCCTTTGC-3′ (Tm 55◦C), rev: 5′-
TTGGAGGCAGAGAGTATGGTGTTC (Tm 63◦C).

All amplicons were separated by agarose gel
electrophoresis, the corresponding bands were excised and
the DNA extracted and purified (Qiagen gel extraction Kit,
Milano, Italy) and subsequently subcloned in pGEMt-easy
vector (Promega) for sequencing.

Immunohistochemistry

Immunostainings of olfactory epithelium were performed
as previously described (Pifferi et al. 2009b). Primary
antibodies were: mouse monoclonal anti-TMEM16b
(1:1; provided by H. Stöhr, Universität Regensburg,
Regensburg, Germany; Stöhr et al. 2009) and rabbit
anti-adenylyl cyclase III (1:300, Santa Cruz Biotechnology,
SantaCruz, CA, USA; cat. no. sc-558). Secondary
antibodies were: Alexa 488-conjugated goat anti-mouse
and Alexa 594-conjugated goat anti-rabbit diluted to
1:300 (Molecular Probes-Invitrogen, West Eugene, OR,
USA).

Images were visualized by Leica TCS SP2 confocal
microscope (Leica Microsystems, Milano, Italy) acquired
using Leica software at 1024 × 1024 pixels resolution and
analysed with ImageJ software. Images were not modified
other than to balance brightness and contrast.

Dissociation of mouse olfactory sensory neurons

Olfactory sensory neurons were dissociated enzymatically
from the olfactory epithelium of 1- to 3-month-old C57
Black mice with a method similar to that previously
described (Lagostena & Menini, 2003; Boccaccio et al.
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2006). The olfactory epithelium was removed and
transferred in 1 ml of zero-divalent mammalian Ringer
solution with 200 μM cystein and 2 U ml−1 papain (Sigma,
Milano, Italy) for 8–10 min at room temperature. The
olfactory epithelium was minced with fine forceps. The
reaction was stopped by adding 0.5 ml of Ringer solution
with 0.1 mg ml−1 bovine serum albumin (BSA), 0.3 mg
ml−1 leupeptin and 0.02 mg ml−1 of DNaseI (all from
Sigma). After centrifugation (300 g for 5 min) the cells
were resuspended in 1 ml of Ringer solution and plated
on glass coverslips (WPI, Sarasota, FL, USA), coated with
poly-L-lysine and concanavalin-A Type V (Sigma). Before
use, dissociated olfactory sensory neurons were allowed to
settle for 60 min at +4◦C.

Only olfactory sensory neurons with clearly visible cilia
were used for the experiments.

Heterologous expression of TMEM16b/anoctamin2

The full-length, dominant olfactory isoform of the mouse
TMEM16b/anoctamin2 cloned into the expression vector
pAdtrack-CMV (Stratagene, LaJolla, CA, USA) with an
independent expression cassette for EGFP (provided
by Haiqing Zhao of the Johns Hopkins University
in Baltimore (Stephan et al. 2009), was transfected
into HEK 293T cells using FuGENE 6 reagent (Roche
Applied Science, Mannheim, Germany) according to the
manufacturer’s protocol. Transfected cells were identified
by EGFP fluorescence and used for electrophysiological
recordings from 24 to 48 h after transfection.

Patch-clamp recordings

Olfactory sensory neurons or HEK 293T cells
transfected with TMEM16b/anoctamin2 were observed
with an inverted microscope (Olympus IX70, Milano,
Italy) with an oil immersion ×100 objective (Zeiss,
Milano, Italy).

Currents in the whole-cell voltage-clamp mode were
recorded with an Axopatch 200B patch-clamp amplifier,
controlled by Clampex 8 via a Digidata 1322A (Axon
Instruments, Union City, CA, USA). Patch pipettes were
made using borosilicate capillaries (WPI) and pulled with
a Narishige PP83 puller (Narishige, Tokyo, Japan). Pipette
resistances were 3–7 M� when filled with the standard
intracellular solution. Currents were low-pass filtered at 1
kHz and acquired at 2 kHz for experiments with olfactory
sensory neurons, or filtered at 5 kHz and sampled at
10 kHz for experiments with transfected HEK 293T cells.
All experiments were carried out at room temperature
(20–24◦C).

Ionic solutions and perfusion system

The extracellular mammalian Ringer solution contained
(in mM): 140 NaCl, 5 KCl, 1 CaCl2, 1 MgCl2, 10 Hepes,
10 glucose and 1 sodium pyruvate (pH 7.4). The pipette
solution contained (in mM): 140 CsCl, 3 DMNP–EDTA,
1.5 CaCl2 and 10 Hepes (pH 7.4). The caged Ca2+

compound DMNP–EDTA was purchased from Molecular
Probes–Invitrogen, and CaCl2 was adjusted with a 0.1 M

standard solution from Fluka (Deisenhofen, Germany).
Pipette solution aliquots were stored for a few days at
−20◦C and kept refrigerated in the dark during the
experimental session. Caged Ca2+ was allowed to diffuse
from the patch pipette into the cell cytoplasm for at least
2 min after establishment of the whole-cell configuration.

Niflumic acid (NFA) and 5-nitro-2-(3-
phenylpropylamino)benzoic acid (NPPB, Tocris
Bioscience, Bristol, UK) were prepared in dimethyl
sulfoxide (DMSO) as stock solutions at 200 mM or
83 mM, respectively, and diluted to the final concentration
of 400 μM and 100 μM, respectively, in the bathing
solution (DMSO alone did not alter the currents);
4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS)
was directly dissolved in the bathing solution to 1 mM.

Different bathing solutions were delivered by using
a gravity-fed perfusion system. A slow flow rate was
selected in such a way that the position of the cilia of
the neurons was not perturbed. A complete solution
change was obtained in about 10 s. To measure blocker
effects, current recordings were obtained before blocker
application (control), 1–2 min after delivery of the solution
with the blocker, and 2–5 min after perfusion with Ringer
solution without the blocker (washout).

For ionic selectivity experiments, Cl− was substituted
with other anions by replacing NaCl on an equimolar basis
with NaX, where X is the substituted anion, or NaCl was
replaced with equimolar choline chloride.

The bath was grounded through a 1 M KCl agar
bridge connected to a Ag–AgCl reference electrode. Liquid
junction potentials were calculated using Clampex’s
Junction Potential Calculator, based on the JPCalc
program developed by Barry (1994; see also http://web.
med.unsw.edu.au/phbsoft/LJP Calculator.htm). Applied
membrane potentials were corrected off-line. The liquid
junction potential between the pipette and the Ringer
solution was calculated. Then, if the bathing solution
was changed after reaching the whole-cell configuration,
we calculated the additional liquid junction potential
generated between the bathing solution and the 1 M KCl
agar bridge. We corrected membrane potentials for the
following calculated liquid junction potentials (in mV) in
the indicated bathing solutions: −4.6 in Ringer solution,
−4.0 in isothiocyanate Ringer solution, −4.7 in bromide
Ringer solution, −4.6 in iodide Ringer solution, −4.3 in
nitrate Ringer solution, −3.0 in methanesulfonate Ringer
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solution, −5.3 in Ringer solution with NaCl replaced with
choline chloride.

Chemicals, unless otherwise stated, were purchased
from Sigma.

Photolysis of caged Ca2+

For flash photolysis of caged Ca2+, we used a
xenon flash-lamp JML-C2 system (Rapp OptoElectronic,
Hamburg, Germany) coupled with the epifluorescence
port of the microscope with a quartz light guide as
previously described (Boccaccio et al. 2006; Boccaccio
& Menini, 2007). The spot of light had a diameter of
about 15 μm and was focused on the ciliary region of
olfactory sensory neurons or to cover about 50% of the
surface of HEK 293T cells. The flash duration was less than
1.5 ms and was kept constant during each experiment.
At the beginning of each experiment, the stability of the
response was checked by applying repetitive flashes at
intervals of about 2 min. Neurons or cells that did not reach
a stable response to two or three flashes were discarded.

Data analysis

Data analysis and figures were made with Igor software
(Wavemetrics, Lake Oswego, OR, USA). A single
exponential function was fitted to the rising phase for
monophasic current responses. Current recordings at each
holding potential were plotted by subtracting the value of
the baseline.

Data are reported as mean ± S.E.M. and the total number
of cells (n). Statistical significance was determined using
unpaired t tests, or ANOVA, as appropriate. When a
statistically significant difference was determined with
ANOVA, a Tukey post hoc test was done to evaluate which
data groups showed significant differences. P values < 0.05
were considered significant.

Results

Expression of TMEM16s/anoctamins in the olfactory
epithelium

To analyse the expression of each TMEM16/anoctamin
in the olfactory epithelium, we performed RT-PCR using
intron-spanning primers for amplifying DNA encoding a
fragment of the C-terminal intracellular domain of each
family member (Fig. 1).

We found expression in the olfactory epithelium for
TMEM16a/anoctamin1, b/2, f/6, j/9 and k/10 (Fig. 1A).
To semiquantify the expression of the different
TMEM16/anoctamin isotypes in the olfactory epithelium,
we amplified the OMP sequence in the same reaction.

Results indicated that TMEM16a/anoctamin1, b/2 and
j/9 are abundantly expressed, and f/6 and k/10 are
moderately expressed (Fig. 1D). To further investigate the
expression of TMEM16c/anoctamin3, d/4, e/5, g/7 and
h/8 (undetectable in Fig. 1A and D) we loaded them in
a much larger amounts and found a positive expression
of d/4 and g/7 (Fig. 1B). No expression could be detected
for TMEM16c/anoctamin3, e/5 and h/8 (Fig. 1A and B)
although they are abundantly expressed in the whole
E16 embryo (Fig. 1C). To validate the PCR results, all
amplicons were directly sequenced after purification from
agarose gel.

To examine the localization of TMEM16b/anoctamin2
in the olfactory epithelium, we performed immuno-
histochemistry experiments on cryosections of the
olfactory epithelium by using an anti-TMEM16b antibody
(Stöhr et al. 2009). We found staining at the surface of

Figure 1. Expression of TMEM16s/anoctamins in the olfactory
epithelium
A, olfactory transcripts of the TMEM16/anoctamin isoforms 1–10 were
detected by RT-PCR (35 cycles) and sequencing. Specificity was
confirmed by negative (olfactory epithelium cDNA amplified with
primer for vomeronasal receptors, V2R2s) and positive (olfactory
epithelium cDNA amplified with primers for OMP) controls. All lanes
were loaded with the same amount of reaction product (5 μl) to
obtain a semiquantitative evaluation of the TMEM16/anoctamin
expression as represented in D. B, TMEM16c/anoctamin3, d/4, e/5, g/7
and h/8 (apparently undetectable in A) were loaded in a much larger
amount and showed a lower but positive expression of d/4 and g/7. C,
primer specificity for TMEM16c/anoctamin3, e/5 and h/8 (not detected
in the olfactory epithelium) was confirmed by RT-PCR on cDNA from
the whole embryo (E16). D, semiquantitative analysis of the
TMEM16/anoctamin expression in the olfactory epithelium for the
experiment shown in A.
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Figure 2. Localization of TMEM16b/anoctamin2 at the surface
of the olfactory epithelium
Immunostaining of sections of the olfactory epithelium. Confocal
micrographs showing TMEM16b and adenylyl cyclase III (AC3)
expression at the surface of the olfactory epithelium. Cell nuclei were
stained by DAPI. The image on the right was obtained from the merge
of the left and centre images. Scale bar is 10 μm in all panels.

the olfactory epithelium, where TMEM16b/anoctamin2
largely co-localized with adenylyl cyclase III (Fig. 2), a
protein that is mainly expressed in the cilia of olfactory
sensory neurons (Menco et al. 1992, 1994; reviewed
by Menco, 1997). However, we cannot exclude the
presence of TMEM16b/anoctamin2 also in the micro-
villi of sustentacular cells at the surface of the olfactory
epithelium. Therefore, our experiments are in agreement
with previous results, obtained with different antibodies,
showing that TMEM16b/anoctamin2 is expressed at the
site of olfactory transduction (Hengl et al. 2010; Rasche
et al. 2010).

Extracellular blockers of native Ca2+-activated
currents in olfactory sensory neurons

The most commonly used extracellular blocker of
Ca2+-activated Cl− current in intact olfactory sensory
neurons is NFA at concentrations ranging between 300 and
500 μM (Kleene, 1993; Boccaccio et al. 2006; Boccaccio &
Menini, 2007; Takeuchi et al. 2009), while the extracellular
blocking potencies of several other compounds are still
unknown. We measured the effect of adding 400 μM NFA,
100 μM NPPB or 1 mM DIDS at the extracellular side of
olfactory sensory neurons, while activating the current
by producing a sudden Ca2+ concentration increase by
photorelease of caged Ca2+ in the ciliary region at the
holding potential of −50 mV.

Figure 3A illustrates the typical NFA blockage of the
current activated by a Ca2+ concentration jump produced
by an ultraviolet flash applied at the time indicated
in the upper panels. The maximal current amplitude
was reduced to about 17% of its value before blocker
application, and the effect was reversed after perfusion
with Ringer solution without NFA (87% recovery), in
agreement with previous data (Kleene, 1993; Boccaccio
et al. 2006; Boccaccio & Menini, 2007; Takeuchi et al.
2009). To better illustrate the variability of results among
neurons, we normalized the responses for each neuron in
the presence and after washout of the blocker to the value
measured before blocker application (Fig. 3, right panels).
On average, the amplitude in the presence of 400 μM NFA
was 13% of the control value. After perfusion with Ringer
solution without the blocker, the current recovered on
average to 63% of its control value.

Figure 3. Olfactory sensory neurons: extracellular
blockage of currents activated by photorelease of
caged Ca2+ in the cilia
Currents recorded in the whole-cell voltage-clamp
configuration in response to sudden jumps in Ca2+
concentration obtained with photorelease of caged Ca2+.
Ultraviolet light flashes were applied on the ciliary region at
the times indicated by the vertical bars in the upper panels.
The holding potential was −50 mV. The following blockers
were used: A, 400 μM NFA; B, 100 μM NPPB; C, 1 mM DIDS.
Current recordings were obtained before blocker application
(control), 1–2 min after application of the indicated blockers,
and 2–5 min after the removal of blockers (washout). Panels
on the right show peak currents measured in the presence
of each blocker and after washout, normalized to the
control value before blocker application for each neuron
(open circles). Average ratios are plotted as filled circles.
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Figure 3B shows recordings from an olfactory sensory
neuron in which the extracellular addition of 100 μM

NPPB produced a strong block to 2% of its control value
with an almost complete recovery after washout (79%
recovery). In another neuron (Fig. 3C), 1 mM DIDS also
blocked the Ca2+-activated current (2% of its control
value) while the recovery was only partial (53% of control
value).

On average, the current amplitude in the presence of
100 μM NPPB or 1 mM DIDS was, respectively, 16%
or 20% of the control value (Fig. 3B and C, panels on
the right). After washout of NPPB or DIDS, the current
recovered on average to about 60% of its control value for
both blockers (56% for NPPB and 65% for DIDS).

These results show that 100 μM NPPB and 1 mM DIDS
may also be used as efficient blockers of the Ca2+-activated
current in olfactory sensory neurons (see also Fig. 5).

Comparison of extracellular blockers of
Ca2+-activated currents in HEK 293T cells expressing
TMEM16b/anoctamin2 and in olfactory sensory
neurons

To compare the pharmacological profile of the
native olfactory Ca2+-activated current with that of
the protein that is at present the best molecular candidate
for being the olfactory channel, we used the same

experimental conditions described in the previous section,
uncaging caged Ca2+ in HEK 293T cells transfected with
TMEM16b/anoctamin2.

As shown in Fig. 4A–C, each test compound partially
blocked the Ca2+-activated current. On average, the
current amplitude in the presence of 400 μM NFA,
100 μM NPPB or 1 mM DIDS was, respectively, 10%,
42% or 26% of the control value. After washout of the
blockers, the current recovered on average to 54% (NFA),
62% (NPPB) or 64% (DIDS) of its control value.

Since the current after washout from the blockers
presented some variability, to better compare
the blocking efficiencies for the native and the
TMEM16b/anoctamin2-induced currents, we normalized
the blocked current to the average between control and
washout for each experiment (Fig. 5). Ca2+-activated
currents were reduced on average to the following
percentages: 69% for NFA, 81% for NPPB, 76% for
DIDS in olfactory sensory neurons, to be compared
with 84% for NFA, 51% for NPPB and 70% for
DIDS in HEK 293T cells transfected with TMEM16b/
anoctamin2.

The blocking potencies of the three test compounds
(measured both with respect to control, Figs 3 and 4, or
to the average between control and washout, Fig. 5), were
not significantly different in olfactory sensory neurons,
while in HEK 293T cells NFA blocked more potently than
NPPB.

Figure 4. TMEM16b-transfected HEK 293T cells:
extracellular blockage of currents activated by
photorelease of caged Ca2+
Currents recorded in the whole-cell voltage-clamp
configuration in response to photorelease of caged Ca2+.
Ultraviolet light flashes were applied on HEK cells at the
times indicated by the vertical bars in the upper panels. The
holding potential was −50 mV. As in Fig. 3, the following
blockers were used: A, 400 μM NFA; B, 100 μM NPPB; C,
1 mM DIDS. Current recordings were obtained before
blocker application (control), 1–2 min after application of
the indicated blockers, and 2–5 min after the removal of
blockers (washout). Panels on the right show peak currents
measured in the presence of each blocker and after
washout, normalized to the control value before blocker
application for each neuron (open circles). Average ratios
are plotted as filled circles.
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Anion selectivity of native Ca2+-activated currents
in olfactory sensory neurons

To measure the ion selectivity of Ca2+-activated currents in
the whole-cell configuration, we photoreleased caged Ca2+

in the ciliary region, and recorded the current at various
holding potentials while changing the ion composition
in the extracellular solution. To avoid contributions from
Ca2+-activated K+ currents the intracellular monovalent
cation was Cs+.

In a first set of experiments, the intracellular
and extracellular Cl− concentrations were very similar
([Cl−]o = 149 mM, [Cl−]i = 143 mM) and the calculated
equilibrium potential for Cl− was −1.0 mV. Figure 6A
shows currents in response to Ca2+ concentration jumps
obtained by photorelease of Ca2+ when an olfactory
sensory neuron was held at the indicated holding
potentials from −15 to +15 mV. The rise time of the
response was fast and was fitted by a single exponential
with τ = 27 ms at +5 mV and τ = 29 ms at −5 mV.

Figure 6B shows current–voltage relations measured
at various times after Ca2+ photorelease. The V rev

extrapolated from each current–voltage relation did not
significantly change with time and was 0.4 mV, close to
the expected Cl− equilibrium potential (−1.0 mV). The
average V rev from several neurons was 1.0 ± 1.1 mV (n =
13).

Although V rev was very close to the calculated
equilibrium potential for Cl−, a non-selective cation
current might also contribute to the Ca2+-activated
current. If Ca2+-activated channels are permeable to
cations, the replacement of Na+ by choline, a large organic
cation that is usually impermeant in cation channels,
should cause a large shift of the V rev (Franciolini & Nonner,

Figure 5. Comparison of extracellular blockage of
Ca2+-activated currents
Average ratios of currents measured in the presence of each blocker
normalized to the average between control and washout currents.
Experiments were from olfactory sensory neurons (OSN, n = 3–8) or
from HEK 293T cells transfected with TMEM16b/anoctamin2 (HEK,
n = 4–6). The block efficacy of different compounds was not
significantly different in olfactory sensory neurons (ANOVA, F = 0.33,
P = 0.72). In contrast in HEK 293T cells, blockage by NFA was
significantly bigger from NPPB block (ANOVA, Tukey test P < 0.05),
but not different from DIDS block. However, current blockages in
olfactory sensory neurons and in HEK 293T cells were not significantly
different (unpaired t test).

1994; Qu & Hartzell, 2000; Hille, 2001). Instead, we found
that the average V rev measured in the presence of 140 mM

choline chloride remained close to 0 mV, with an average
value of 0.4 ± 0.6 mV (n = 3; data not shown), indicating
that the Ca2+-activated current was indeed mainly carried
by Cl−.

To measure the selectivity among anions we replaced
140 mM NaCl in the Ringer solution with NaNO3, NaI,
NaSCN, NaBr or NaMeS and estimated the V rev in the
presence of each anion. After each anion substitution,
the Ringer bathing solution still contained 9 mM Cl−,
producing a calculated equilibrium potential for Cl− of
+70.2 mV.

Figure 6C shows recordings in the presence of
nitrate Ringer solution. Surprisingly, multiple current
components were clearly evident at several holding
potentials. At −29 mV, a fast outward current (τ = 15 ms)
with a peak amplitude of +45 pA, was followed by a
slower current component reaching a value of 0 pA about
250 ms after the flash and −75 pA at 2.5 s, as illustrated in
Fig. 6D.

Current–voltage relations were measured at various
times after Ca2+ photorelease (Fig. 6E) and the V rev

extrapolated from each current–voltage relation was
plotted as a function of time in Fig. 6F . The V rev in nitrate
Ringer solution showed a time dependence with a gradual
shift from a value of −34 mV at 50 ms, toward a less
negative value of about −24 mV during the following
2–4 s.

In the presence of NaNO3, we measured a
time-dependent shift of V rev in each of four tested neurons.
The average V rev in the presence of NO3

− was −28.6 ±
2.5 mV (n = 4) for the fast current component, and
−17.3 ± 3.6 mV (n = 4) for the current component
measured at 2–4 s. The shift of V rev toward more negative
values upon substitution of Cl− with NO3

− indicates that
NO3

− was more permeant than Cl−.
Substitution of chloride Ringer with iodide Ringer

solution also revealed the presence of multiple current
components (Fig. 7A). At −25 mV a fast outward current
with a peak amplitude of +270 pA 17 ms after the flash,
was followed by a slower component reaching a value of
−150 pA within 2 s from flash release. At −35 mV a fast
inward current component with a value of −270 pA at
50 ms was followed by an additional slower component
that reached −500 pA within 2 s (Fig. 7B). Thus, also in
iodide Ringer solution, V rev was time dependent, with a
gradual shift from −30 mV at 50 ms, to −18 mV at 2–4 s
(Fig. 7C).

A similar time dependence of V rev was measured in
isothiocyanate Ringer solution (from −36 to −21 mV for
the experiment in Fig. 7C). In the presence of bromide
Ringer solution, V rev had a small time dependence (from
−17 to −14 mV for the experiment in Fig. 7C), only in 2
out of 6 olfactory sensory neurons.
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The average reversal potential of the fast component
was −30.5 ± 3 mV (n = 6) in the presence of I−

, −42 ±
5.5 mV (n = 4) in SCN− and −13.8 ± 2.2 mV (n = 6) for
Br−.

When chloride Ringer was replaced by
methanesulfonate Ringer solution, current recordings
showed that MeS− was much less permeant than Cl−;
indeed V rev was +34 mV and remained fairly constant at
different times (Fig. 7C). The average reversal potential
was +31.6 ± 4.3 mV (n = 5). The selectivity sequence
was SCN− ≈ I− ≈ NO3

− > Br− > Cl− > MeS− (Fig. 10).
These results demonstrate that the current activated by

Ca2+ photorelease in the ciliary region of olfactory sensory
neurons is anion selective and that for some anions V rev

gradually shifted with time toward less negative values.

Anion selectivity of Ca2+-activated currents in HEK
293T cells expressing TMEM16b/anoctamin2

To investigate whether Ca2+-activated currents induced
by TMEM16b/anoctamin2 in HEK 293T cells exhibits
a time-dependent V rev in the presence of some anions,
we used the same experimental protocols as in olfactory
sensory neurons.

Figure 8A shows recordings from a cell in chloride
Ringer solution. As in olfactory sensory neurons, the rise
time of the response to photorelease of Ca2+ in NaCl was
fast and was well fitted by a single exponential with τ =
14 ms at+20 mV and τ=4 ms at−20 mV. Current–voltage
relations measured at various times (Fig. 8B) showed
that the estimated V rev was −0.2 mV and was not time

Figure 6. Olfactory sensory neurons: current
responses induced by photorelease of Ca2+ in the
presence of external Cl− or NO3

−
Currents recorded from isolated mouse olfactory
sensory neurons in the whole-cell voltage-clamp
configuration in response to photorelease of caged
Ca2+ in the cilia at the time indicated by the vertical
bars at the top. A, currents from an olfactory sensory
neuron were recorded in almost symmetrical Cl−
solutions at the indicated holding potentials and plotted
on different time scales. The dotted line indicates the
zero current level. B, current–voltage relations measured
from recordings in A at different times from the flash:
50 ms square, 0.5 s diamond, 1 s triangle, 2 s circle, 3 s
double triangle, 4 s asterisk. C, currents from another
olfactory sensory neuron recorded in the presence of
external NO3

− at the indicated holding potentials and
plotted on different time scales. The dotted line
indicates the zero current level. D, recordings in external
NO3

− at −24 and −29 mV are shown on a different
scale to better illustrate the time dependence of V rev. E,
current–voltage relations in external NO3

− measured
from recordings in C at different times from the flash:
50 ms open square, 0.5 s diamond, 1 s triangle, 3 s
double triangle. F, V rev as a function of time for
external NO3

− from recordings in C.
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dependent. Its average value was −0.7 ± 0.7 mV (n = 21).
Moreover, when NaCl was replaced by choline chloride the
average V rev was −0.5 ± 0.6 mV, n = 4 (data not shown),
similar to that in NaCl, indicating that the current was
mainly carried by Cl−, as in olfactory sensory neurons.

In the presence of nitrate Ringer solution multiple
current components were evident (Fig. 8C). The current
amplitude at −20 mV was +230 pA 70 ms after the flash
and −18 pA at 2.5 s (Fig. 8D). Current–voltage relations
as a function of time (Fig. 8E) indicate that V rev gradually
shifted with time from −29 mV to about −20 mV at
2–4 s (Fig. 8F). On average, V rev in the presence of
NO3

− was −26.8 ± 1.5 mV (n = 4) for the fast current
component, and −19.5 ± 4.8 mV (n = 4) for the current
component measured at 2–4 s.

Figure 9 shows a summary of results obtained with the
other anions: in iodide Ringer solution (Fig. 9A and B),
at −20 mV a fast current component of +140 pA was
measured at 200 ms, followed by a slower component
reaching −20 pA at 5 s. A fast and a slow component were
also evident at −40 mV, with a value of −100 pA at 80 ms
that reached −430 pA within 4 s. The time dependence
of V rev for I− is illustrated in Fig. 9C, where V rev shifted
from −26 to −18 mV at 2–4 s.

V rev also had a significant time-dependent shift in
isothyocianate Ringer solution (from −38.5 to −18 mV
for the experiment in Fig. 9C), while the shift was smaller
in bromide Ringer solution (from −11.2 to −7 mV for the
experiment in Fig. 9C).

The average reversal potential of the fast component
was −34.9 ± 1.8 mV (n = 4) in the presence of I−,
−29.0 ± 4.0 mV (n = 5) in SCN− and −15.7 ± 0.4 mV
(n = 5) in Br−.

Figure 9C shows that recordings in methanesulphonate
Ringer solution exhibited a single current component with
a time-independent V rev of +27 mV. The average V rev was
+39.7 ± 4.6 mV (n = 6) confirming that MeS− is less
permeant than Cl−.

Figure 10 summarizes the average V rev of the fast
component in olfactory sensory neurons and in HEK
293T cells expressing TMEM16b/anoctamin2. For both
types of currents the selectivity sequence was the following:
SCN− ≈ I− ≈ NO3

− > Br− > Cl− > MeS−.
Furthermore, these results show that, similarly to

olfactory sensory neurons, also in HEK 293T cells
expressing TMEM16b/anoctamin2, the V rev gradually
shifted as a function of time toward less negative values in
the presence of external NO3

−, I−, SCN− and, to a lesser
extent, in Br−, while it did not change with time in Cl−

and in MeS−.

Discussion

Expression of TMEM16b/anoctamin2 in the ciliary
layer

In this study, we show by RT-PCR that TMEM16b/
anoctamin2 and some other members of the
TMEM16/anoctamin family are expressed in the
olfactory epithelium. Our results are in agreement
with other reports showing the presence not only of
TMEM16b/anoctamin2, but also of a/1 and k/10, whereas
not all studies agree on other family members (Stephan
et al. 2009; Rasche et al. 2010). Indeed, we identified also
the presence of d/4, g/7 and j/9 that could not be detected
in other reports (Rasche et al. 2010). Differences might

Figure 7. Olfactory sensory neurons: current
responses induced by photorelease of Ca2+ in external
I−, SCN−, Br− or MeS−
A, currents recorded at the indicated holding potentials
from an olfactory sensory neuron bathed in external iodide
Ringer solution. The dotted line indicates the zero current
level. B, recordings in external I− at −25 and −35 mV are
shown on a different scale to better illustrate the time
dependence of V rev. C, V rev as a function of time for
external I− (from the recordings in A), Br−, SCN− and
MeS−, each from a different neuron.
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be due to several reasons. The discrepancy for d/4 and
g/7 might reflect a higher efficiency of our amplification
reaction since both are likely to be poorly expressed in the
olfactory epithelium. The different result for j/9 that, in
our hands, appears abundantly expressed in the olfactory
epithelium, is unlikely to be caused by the recognition of
a different isoform, as oligonucleotide primers employed
by Rasche and colleagues are internal to ours. It remains
plausible that the modality for tissue collection may
reveal an important variable to explain this inconsistency,
although in our study, olfactory epithelia were isolated by
distinct operators without appreciable differences in the
final results.

Although not all studies agree on the specific
family members, at present, only the mRNA of
TMEM16b/anoctamin2 has been shown to be specific to

mature olfactory sensory neurons by in situ hybridization
(Yu et al. 2005), and proteomic screening of ciliary
membranes (Mayer et al. 2009; Stephan et al. 2009)
revealed only TMEM16b/anoctamin2 as a prominent
protein in the olfactory cilia. Finally, the expression of
TMEM16b/anoctamin2 in the ciliary layer of olfactory
sensory neurons, has been independently confirmed by
immunohistochemistry in our study, using the antibody
developed by Stöhr et al. (2009), and in other recent reports
using two other different antibodies (Hengl et al. 2010;
Rasche et al. 2010).

Taken together, all these results indicate that
TMEM16b/anoctamin2 is strongly expressed in the cilia of
olfactory sensory neurons, where olfactory transduction
takes place, while some other members of the family might
be present at a lower level or in other cell types.

Figure 8. Anion selectivity of the
TMEM16b/anoctamin2-mediated current in
external Cl− or NO3

−
Currents recorded from HEK 293T cells expressing
TMEM16b/anoctamin2 in the whole-cell voltage-clamp
configuration in response to photorelease of caged
Ca2+ at the time indicated by the vertical bars at the
top. A, currents from a cell were recorded in almost
symmetrical Cl− solutions at the indicated holding
potentials and plotted on different time scales. The
dotted line indicates the zero current level. B,
current–voltage relations measured from recordings in A
at different times from the flash: 50 ms square, 0.5 s
diamond, 1 s triangle, 2 s circle, 3 s double triangle, 4 s
asterisk. C, currents from another cell were recorded in
the presence of external NO3

− at the indicated holding
potentials and plotted on different time scales. The
dotted line indicates the zero current level. D, recordings
in external NO3

− at −40 and −20 mV are shown on a
different scale to better illustrate the time dependence
of V rev. E, current–voltage relations in external NO3

−
measured from recordings in C at different times from
the flash: 50 ms square, 0.5 s diamond, 1 s triangle, 3 s
double triangle. F, V rev as a function of time for
external NO3

− from the recordings in C.
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Extracellular blockers

In previous studies, the pharmacological profile of the
native olfactory Ca2+-activated Cl− current has been
investigated in detail only by applying Cl− channel
inhibitors at the cytoplasmic side of isolated cilia from
frog olfactory sensory neurons (Kleene & Gesteland,
1991; Kleene, 1993; reviewed by Frings et al. 2000).
However, it is well known that some compounds have very
different effects when applied to the extracellular or to the
intracellular side of the membrane. The most commonly
used extracellular blockers for Ca2+-activated Cl− currents
in olfactory sensory neurons are NFA (Lowe & Gold,
1993; Reisert et al. 2005; Boccaccio et al. 2006; Boccaccio
& Menini, 2007; Antolin et al. 2010), which blocks
also from the intracellular side (Kleene & Gesteland,
1991; Kleene, 1993; Reisert et al. 2003; Pifferi et al.
2006b), and SITS (Kurahashi & Yau, 1993; Lowe & Gold,
1993), which is a much less effective blocker from the
intracellular side (Kleene & Gesteland, 1991; Pifferi et al.
2006b). We determined that the blocking properties of
two other compounds, NPPB and DIDS, are side-specific
with extracellular inhibition of 85% for 100 μM NPPB and
76% for 1 mM DIDS, while Kleene and Gesteland (1991)
measured a very poor intracellular inhibition: 32% for
300 μM NPPB, and 5% for 100 μM DIDS (see Table 2 of
Frings et al. 2000).

Similar side-specific effects of NPPB and DIDS on
TMEM16b-induced currents were obtained in this and
in a previous study (Pifferi et al. 2009a). Moreover, we
found that the average percentages of current inhibition
of TMEM16b-induced currents were similar to those we
measured in olfactory sensory neurons. Taken together, the

Figure 10. Comparison of anion selectivity for native and
TMEM16b/anoctamin2-mediated current
Average V rev for the fast component measured in the presence of the
indicated external anions. Experiments were from olfactory sensory
neurons (OSN, n = 4–13) or from HEK 293T cells transfected with
TMEM16b/anoctamin2 (HEK, n = 4–21). V rev in olfactory sensory
neurons and in HEK 293T cells were not significantly different
(unpaired t test).

results on intracellular (Kleene & Gesteland, 1991; Kleene,
1993; Pifferi et al. 2009a) and extracellular blockage of
native olfactory and TMEM16b-induced currents indicate
that NPPB and DIDS block the two currents in a similar
side-specific manner.

It is of interest to note that in some neurons NPPB or
DIDS blocked the current almost completely, while such a
large inhibition was never observed in TMEM16b-induced
currents in HEK cells. A small difference in results
between native and expressed channels has also been
pointed out by Saidu et al. (2010). In fact, in excised
patches the native current slightly inactivates at positive

Figure 9. Anion selectivity of the
TMEM16b/anoctamin2-mediated current in external
I−, SCN−, Br− or MeS−
A, currents from a HEK 293T cell expressing
TMEM16b/anoctamin2 were recorded in external iodide
Ringer solution at the indicated holding potentials. The
dotted line indicates the zero current level. B, recordings in
external I− at −20 and −40 mV are shown on a different
scale to better illustrate the time dependence of V rev. C,
V rev as a function of time for external I− (from recordings in
A), Br−, SCN− and MeS−, each from a different cell.
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membrane potentials (Reisert et al. 2003), whereas the
TMEM16b/anoctamin2-induced current in HEK cells
does not (Stephan et al. 2009; Saidu et al. 2010). These
differences may point to the possibility that additional
subunits and/or splice variants constitute the native
channel, as recently suggested by Saidu et al. (2010).

Dynamic ion selectivity

Another important property of ion channels is ion
selectivity. In previous reports, the ion selectivity of native
olfactory Ca2+-activated Cl− currents has been measured
only from inside-out membrane patches excised from
the knob/ciliary region of olfactory sensory neurons,
exchanging ions at the intracellular side of the membrane
(Reisert et al. 2003; Pifferi et al. 2006b). The ion selectivity
of native channels in isolated olfactory sensory neurons,
replacing extracellular Cl− with other ions, has not been
estimated yet with the exception of substitution of Cl− with
the largely impermeant gluconate to demonstrate that the
Ca2+-activated current was carried by Cl− (Takeuchi et al.
2009).

We found that some anions larger than Cl−, such as
NO3

−, I−, SCN− and Br−, were more permeant than
Cl−, while MeS− was less permeant. Interestingly, in the
presence of NO3

−, SCN− and I−, a gradual time-
dependent shift of V rev was clearly evident. Indeed, V rev

in the presence of these anions changed with time,
shifting about 10 mV toward less negative values over
a few seconds after photorelease of Ca2+, indicating
that channels became less permeant to some foreign
anions. To the best of our knowledge, this is the first
demonstration that the native olfactory Ca2+-activated
Cl− current exhibits dynamic ion selectivity.

What is the origin of the dynamic ion selectivity? A
possibility is that V rev changes with time because of a
restricted anion diffusion: if anions accumulate at the
intracellular mouth of the channel, the local concentration
gradient will change modifying V rev. In the narrow ciliary
compartment, restricted anion diffusion might cause the
accumulation of anions flowing into the cilia near the
intracellular mouth of the channel, therefore leading to
a different concentration gradient and a modification of
V rev. However, it is unlikely that this effect is the origin
of the time-dependent change in V rev, because such an
effect is expected to be present with all anions, whereas
it was not observed in the presence of Cl− or of MeS−.
Furthermore, in some experiments (Figs 6D and 7B)
the current reversed direction, which should not result
from restricted diffusion. In fact, if the initial NO3

− or
I− influx (outward current) causes an accumulation of
NO3

− or I− inside the cilium, this should only proceed
until equilibrium (zero current) and it cannot account for
the Cl− efflux (inward current) measured subsequently.

Finally, an environmental-mediated restriction of anion
diffusion, typical of the olfactory ciliary compartment,
is unlikely to exist in TMEM16b/anoctamin2-transfected
HEK 293T cells that, in turn, display a similar dynamic
ion selectivity.

Since olfactory sensory neurons contain several types
of channels, we cannot exclude that multiple current
components might be due to the activation of different
types of channels. Again, however, when the same
experimental protocols were applied to HEK 293T cells
expressing TMEM16b/anoctamin2, we obtained results
very similar to those observed in the native olfactory
channels. In HEK 293T cells, multiple current components
were clearly evident in the presence of the same anions:
NO3

−, I− and SCN−, and absent with Cl− or MeS−.
Moreover, the average V rev for each anion was not
significantly different between the two systems.

Our results have at least two important consequences:
on one side they show that Ca2+-activated Cl− currents in
olfactory sensory neurons have multiple components with
different anion selectivity and, on the other side they show
that heterologous expression of TMEM16b/anoctamin2 in
HEK 293T cells reproduced similar results, indicating that
time-dependent ion selectivity is not due to different types
of channels.

The presence of multiple current components is not
unique to the Ca2+-activated Cl− current present in
olfactory sensory neurons since, for example, it has
been found in Xenopus oocytes (Boton et al. 1989;
Kuruma & Hartzell, 1999). More recently, Schroeder et al.
(2008) clearly showed the presence of multiple current
components with different anion selectivity, activating
Ca2+-activated Cl− currents in Xenopus oocytes by
photorelease of caged IP3. Moreover, Schroeder et al.
(2008) demonstrated that the TMEM16a/anoctamin1
channel expressed in Axolotl oocytes, which do not have
endogenous Ca2+-activated Cl− currents, also exhibited
current components with different V rev, suggesting that
the multiple components originated from different states
of the same channel.

Furthermore, it is of interest to note that dynamic
changes in ion selectivity are not a peculiarity of
anion channels, and they have been revealed in cation
channels (Khakh & Lester, 1999). For example, the
P2X receptor of mast cells allows a time-dependent
membrane permeability to large molecules (Cockcroft
& Gomperts, 1979), the transient receptor potential
vanilloid 1 (TRPV1) channel shows a time- and
concentration-dependent change in ion selectivity in the
presence of prolonged exposure to chemical agonists
(Chung et al. 2008), and a mutant N-methyl-D-aspartate
(NMDA) channel exhibits multiple current components
with time-dependent ion selectivity (Schneggenburger
& Ascher, 1997). Single-channel analysis of the mutant
NMDA channel revealed the existence of at least two
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subconductance states with different ion selectivity,
indicating a strong coupling between permeation
and gating (Schneggenburger & Ascher, 1997). Zheng
and Sigworth (1997) also showed by single-channel
analysis that a mutant Shaker K+ channel exhibits two
subconductance states with different ion selectivity.

Another example of coupling between gating and
permeation occurs in the cyclic nucleotide-gated channel
in retinal rods. Indeed, it has been shown that in intact
rod photoreceptors, selectivity among divalent cations
changes with different levels of cGMP (Cervetto et al.
1988), and that in inside-out patches from photoreceptors,
both the channel open probability and the selectivity
of Ca2+ over Na+ increases with cGMP concentration
(Hackos & Korenbrot, 1999). In addition, the linkage
between selectivity and gating is specific for divalent
cations, whereas it does not occur if only monovalent
cations are present (Hackos & Korenbrot, 1999).

Previous studies on Ca2+-activated Cl− currents from
various cell types showed that some foreign anions at
the extracellular side affect gating by modifying channel
kinetics (Evans & Marty, 1986; Greenwood & Large, 1999;
Perez-Cornejo et al. 2004). Greenwood and Large (1999)
suggested that some permeant anions might modulate the
kinetics of Ca2+-activated Cl− channels in smooth muscle
cells by binding to a site located on the external surface of
the channel, which may be part of the channel representing
the selectivity filter.

Our experiments were obtained by activating channels
by a fast jump in Ca2+ concentration that decreased
with time by diffusion and/or by active extrusion. In the
presence of some anions, we observed a time-dependent
shift of V rev toward less negative values, corresponding
to a decreased ion selectivity. A possible mechanism
explaining the dynamic ion selectivity of native olfactory
and TMEM16b/anoctamin2-induced Ca2+-activated Cl−

currents is the presence of at least two open states
with different ion selectivity and Ca2+-dependent open
probability. Indeed, our results are consistent with a model
in which the more selective open state is favoured by high
Ca2+ concentrations and the less selective open state by
low Ca2+ concentrations.

The understanding of this phenomenon at the
molecular level by future mutational and structural
analyses, will clarify the molecular mechanisms of
gating and permeation of Ca2+-activated Cl− channels,
contributing to increase the knowledge about their
functioning in physiological and pathophysiological
processes.

Conclusions

In conclusion, we confirmed by immunohistochemistry
that TMEM16b/anoctamin2 is expressed in the

ciliary layer, and showed that TMEM16b/anoctamin2
reproduced the phenotypes of the native olfactory
Ca2+-activated Cl− currents, including the time-
dependent change in selectivity. Taken together with
previous studies on inside-out patches (Pifferi et al. 2009a;
Stephan et al. 2009), these results contribute to strongly
indicate that TMEM16b/anoctamin2 is likely to be the
major subunit of the native olfactory Ca2+-activated Cl−

current. Future studies should examine the presence of
olfactory Ca2+-activated Cl− currents in mice in which
the TMEM16b/anoctamin2 gene is deleted. Moreover, the
combination of molecular biology studies and functional
measurements will clarify if additional subunits and/or
splice variants belonging to the TMEM16/anoctamin or
to other protein families are also part of the native
Ca2+-activated Cl− channel.
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Chung M, Güler AD & Caterina MJ (2008). TRPV1 shows
dynamic ionic selectivity during agonist stimulation. Nat
Neurosci 11, 555–564.

C© 2010 The Authors. Journal compilation C© 2010 The Physiological Society

) at Sissa, Biblioteca, Via Beirut 2-4, 34100 TRIESTE on November 17, 2010jp.physoc.orgDownloaded from J Physiol (

http://jp.physoc.org/


J Physiol 588.21 Dynamic ion selectivity in olfactory Ca2+-activated Cl− currents 4203

Cockcroft S & Gomperts BD (1979). Activation and inhibition
of calcium-dependent histamine secretion by ATP ions
applied to rat mast cells. J Physiol 296,
229–243.

Duran C, Thompson CH, Xiao Q & Hartzell HC (2010).
Chloride channels: often enigmatic, rarely predictable. Annu
Rev Physiol 72, 95–121.

Evans MG & Marty A (1986). Calcium-dependent chloride
currents in isolated cells from rat lacrimal glands. J Physiol
378, 437–460.
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4 DISCUSSION 

 

 

 

The Ca
2+

-activated Clˉ current in the cilia of olfactory sensory neurons accounts 

for most of the depolarizing current in olfactory transduction (Boccaccio & Menini, 2007; 

Kleene, 2008). Despite its important role, the molecular identity of olfactory Ca
2+

-

activated Clˉ current is not definitely established. Bestrophin2 (Pifferi et al., 2006b; 

Klimmeck et al., 2009) and TMEM16b (Yu et al., 2005; Mayer et al., 2009; Stephan et 

al., 2009; Hengl et al., 2010; Rasche et al., 2010) are expressed in the cilia of mature 

olfactory sensory neurons and they have been shown to induce Ca
2+

-activated Clˉ 

conductance when expressed in heterologous systems (Qu & Hartzell, 2004; Qu et al., 

2004; Pifferi et al., 2006b; Schroeder et al., 2008; Pifferi et al., 2009a; Stephan et al., 

2009;  Stöhr et al., 2009). Both bestrophin2 and TMEM16b have been proposed to be a 

part of the Ca
2+

-activated Clˉ channel involved in olfactory transduction.   

In the first part of this Thesis we presented a comparison between the Ca
2+

-activated Clˉ 

current in isolated olfactory sensory neurons from wild type and bestrophin2 knockout 

mice (Pifferi et al., 2009b). In the second part of this Thesis we presented a comparison 

between the electrophysiological properties of the native Clˉ conductance and the Ca
2+

-

activated Clˉ currents induced by heterologous expression of TMEM16b olfactory splice 

variant (Sagheddu et al., 2010).  
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Comparison between OSNs Ca
2+

-activated Clˉ currents from wild type and 

bestrophin2 knockout mice.  

Bestrophin2 protein is specifically localized in the cilia of mature olfactory 

sensory neurons (Pifferi et al., 2006b; Klimmeck et al., 2009). It has been indicated by 

Pifferi et al. (2006b) as a candidate for the Clˉ channel involved in olfactory transduction; 

indeed the Ca
2+

-activated Clˉ currents of native olfactory channels and of bestrophin2 

expressed in HEK 293 cells showed the same anion permeability sequence, current–

voltage relations quite close to linearity, voltage-independent and side-specific blockage 

by NFA and SITS. Nonetheless for bestrophin2 currents K½ was 0.4 µM, whereas for 

native currents K½ was 4.7 µM showing a difference of one order of magnitude from the 

native current (Pifferi et al., 2006b).  

We analyzed more in detail the role of bestrophin 2 in olfactory transduction 

comparing wild type and knockout mice for this protein (Pifferi et al., 2009a). We 

obtained similar EOG recordings in olfactory epithelium from wild type and knockout 

mice, indicating that the lack of bestrophin2 does not produce a big impairment in the 

odorant sensitivity. Ca
2+

-activated Clˉ currents measured by using photolysis of caged 8-

Br-cAMP or of caged Ca
2+

 within the cilia of isolated olfactory sensory neurons from 

wild type and knockout mice did not show significant differences. Finally, a Ca
2+

-

activated Clˉ current was still present in excised inside-out patches from knob/cilia of 

olfactory sensory neurons of knockout mice. From these results we concluded that the 

absence of bestrophin2 in the ciliary layer of the olfactory epithelium does not 

significantly alter the olfactory transduction, although the possibility that some 

compensatory mechanisms occur in bestrophin2 knockout mice cannot be excluded.  

Bestrophin2 expression pattern in olfactory sensory neurons have been recently 

investigated by Klimmeck et al. (2009). In adult mice, bestrophin2 expression has been 

specifically found in the cilia of mature olfactory sensory neurons, whereas in postnatal 

day 1 (P1) mice, bestrophin2 expression has been detected at all subcellular levels in 

developing neurons. Therefore Klimmeck et al. (2009) suggested that bestrophin2 has a 

role in neurogenesis, maybe as a volume-regulated anion channel contributing to the 

coordinated extension of cell volume in developing sensory neurons. 
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Bestrophin2 may also have a role in the maintenance of the intraciliary ionic homeostasis 

since bestrophin2 and other bestrophins have been shown to be activated by osmotic cell 

swelling even in the absence of Ca
2+

, indicating that they may be cell volume regulators 

(Fischmeister & Hartzell, 2005; Chien & Hartzell, 2007). Therefore the presence of 

bestrophin2 protein in the cilia of mature olfactory sensory neurons has been definitely 

confirmed (Pifferi et al., 2006b; Klimmeck et al., 2009; Pifferi et al., 2009b), but further 

studies are required to better define its role in physiology of olfactory epithelium. 

 

Comparison of functional properties of Ca
2+

-activated Clˉ currents from OSNs and 

TMEM16b expressed in HEK 293 cells. 

TMEM16b, a member of the recently characterized protein family 

TMEM16/Anoctamin, produces Ca
2+

-activated Clˉ currents when expressed in different 

cell types (Schroeder et al., 2008; Pifferi et al., 2009a; Stephan et al., 2009). TMEM16b 

mRNA has been shown to be specifically expressed in mature olfactory sensory neurons 

by in situ hybridization (Yu et al., 2005; Hengl et al., 2010); moreover proteomic 

screenings of ciliary membranes (Stephan et al., 2009; Mayer et al., 2009; Rasche et al., 

2010) and immunohistochemistry experiments (Rasche et al., 2010; Hengl et al., 2010) 

revealed that TMEM16b protein is localized in the olfactory cilia. 

It has been shown that some electrophysiological properties of Ca
2+

-activated Clˉ currents 

induced by mTMEM16b expressed in HEK 293 and of native currents in the cilia of 

olfactory sensory neurons are remarkably similar. Currents in olfactory cilia (Kleene & 

Gesteland, 1991; Kleene, 1993b; Kurahashi & Yau, 1993, Reisert et al., 2003; Pifferi et 

al., 2006b; reviewed by Kleene, 2008) and induced by TMEM16b (Pifferi et al., 2009a; 

Stephan et al., 2009) showed similar sensitivity to Ca
2+ 

and other divalent cations, similar 

small channel conductance (~1 pS), similar current-voltage relationship at saturating 

concentration of Ca
2+

 and the same permeability sequence.  

At present TMEM16b protein is the best molecular candidate for the Ca
2+

-activated Clˉ 

current in olfactory transduction.  

In this Thesis we provided a further comparison between the electrophysiological 

properties of the Ca
2+

-activated Clˉ current in isolated olfactory sensory neurons and in 
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HEK 293 transfected with mTMEM16b. We used the whole-cell voltage clamp technique 

to record currents elicited by flash photolysis of caged calcium in the cilia of olfactory 

sensory neurons and in HEK 293 cells heterologously expressing the olfactory splice 

variant (Stephan et al., 2009) of mTMEM16b. 

The presence of TMEM16b at the surface of the olfactory epithelium was 

confirmed in immunohistochemistry experiments by using an anti-TMEM16b antibody 

(Stöhr et al., 2009). In our pharmacology experiments the native current and the current 

induced by TMEM16b are strongly inhibited by extracellular application of NFA, DIDS 

and NPPB. In OSNs we confirmed extracellular blockage by NFA and showed 

extracellular blocking effects for NPPB and DIDS, two compounds that have been shown 

to be poorly effective when applied to the intracellular side of the membrane (Kleene & 

Gesteland, 1991). Similar side-specific effects of NPPB and DIDS on TMEM16b 

currents were obtained also in a previous study (Pifferi et al., 2009a).  

Ion selectivity of olfactory and mTMEM16b channels was determined by exchanging 

anions at the extracellular side of the membrane. We obtained for both channels the same 

permeability sequence, for some anions we also observed a gradual time-dependent shift 

of Vrev toward less negative values, indicating a decreased permeation through the 

channel. The finding that both native channel and TMEM16b display similar dynamic ion 

selectivity is a further point supporting the hypothesis that TMEM16b is a major subunit 

of the ciliary Ca
2+

-activated Clˉ channel.  

 

Conclusions 

The molecular identity of the Ca
2+

-activated Clˉ channel involved in olfactory 

transduction has not been definitely established. Bestrophin2 and TMEM16b proteins are 

expressed in the cilia of OSNs and they have been proposed as candidates for the 

olfactory Ca
2+

-activated Clˉ channel. In this Thesis we showed that olfactory OSNs from 

bestrophin2 knockout mice still have Ca
2+

-dependent Clˉ currents in the olfactory cilia 

and they do not show significant impairments in the electrical properties of olfactory 

transduction; therefore the role of bestrophin2 in the cilia of OSNs remains to be further 

investigated. We found specific similarities between the electrophysiological properties 
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of the native olfactory channel and TMEM16b, supporting the hypothesis that TMEM16b 

is likely to be the main molecular component of the Ca
2+

-activated Clˉ channel.  

Future studies should examine the presence of olfactory Ca
2+

-activated Clˉ currents in 

mice in which the TMEM16b/anoctamin2 gene is deleted. Moreover, the combination of 

molecular biology studies and functional measurements will clarify if additional subunits 

and/or splice variants belonging to the TMEM16/Anoctamin or to other protein families 

are also part of the native Ca
2+

-activated Clˉ channel. 
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