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Introduction

The loss of adiabaticity and the production of defects in a system driven across a

quantum phase transition have attracted a lot of attention in the last years. This

problem was initially considered in cosmology in trying to understand signatures

of the phase transition that took place in the early universe[1]. More recently with

the Quantum Annealing[2, 3, 4, 5] and the Adiabatic Quantum Computation[6, 7]

a renewed research activity has been devoted to the subject also in the field of

condensed matter and quantum information science.

The idea behind the annealing technique is to transform a given optimization

problem onto the determination of the ground state of a corresponding model

Hamiltonian. A typical example is offered by the research of the minimum en-

ergy configuration of a spin glass[4, 8, 9]: Quantum Annealing tries to solve the

issue by continuously changing (i.e. by annealing) an initial Hamiltonian with a

perfectly known ground state into the Hamiltonian to solve; if adiabaticity holds,

the starting ground state is brought by the evolution into the required unknown

ground state, providing the desired answer to the problem. The main difficulty

encountered in this kind of problem is that the energy landscape of a spin glass

is characterized by many local minima separated by barriers from the global one;

standard optimization techniques1 are then easily trapped into the wrong solutions.

Quantum Annealing instead exploits the quantum tunneling to pass through such

barriers and reveal the true minimum. In many situations QA is able to outper-

form also its precursor, the Classical Annealing[8], in which the temperature drives

the transformation and thermal fluctuations are used to explore all the configura-

tions space[4].

Almost contemporary to Quantum Annealing, Adiabatic Quantum Computation

(AQC) was proposed as an alternative to the circuit-theory approach to imple-

ment quantum algorithms. It is commonly reckoned that quantum computers can

1Like steepest descent methods.

1



Introduction 2

efficiently solve problems otherwise intractable with classical computers. There

are indeed problems whose solution through classical algorithms requires a run-

ning time increasing exponentially with the input length, i.e. the number of dig-

its. In some cases, as for the integer factorization problem through the Shor’s

algorithm[10], quantum mechanics is able to convert such an exponential depen-

dence into a manageable power law, definitely cutting the running time. Ten years

ago, in Ref[6], an approach to quantum computation based on quantum adiabatic

evolution was presented, marking the birth of Quantum Adiabatic Computation.

In analogy with QA, this protocol worked out the answer to a satisfiability search

problem (K-SAT) following the evolution of the ground state of an initial easily

solvable Hamiltonian when the latter is slowly transformed into the final Hamil-

tonian whose ground state encodes the satisfying assignments. Subsequently in

Refs[11, 12] the issue has been cast in a more wider perspective, with the demon-

stration that an arbitrary quantum algorithm can be efficiently simulated with

AQC. Obviously this is only one possible way to build quantum algorithms and

leaves open the matter about how slow must be the evolution in order to be adi-

abatic.

The key point to reach the target in QA-AQC is the adiabaticity of the evolution.

The adiabatic theorem ensures such a condition when the time scale over which

the Hamiltonian is changed is large with respect to the typical inverse spectral gap;

so adiabaticity is guaranteed if the ground state energy is well separated from all

the other excited states for the whole transformation process. Unfortunately it is

not rare the condition in which the controlled initial state and the unknown target

sit on opposite sides of a quantum phase transition, so that a critical closed gap

has to be crossed[13]. In this situation, no matter how slow the annealing is, the

adiabaticity is lost nearby the critical point and the evolved state may differ from

desired final ground state. For instance employing QA in the case of a disordered

magnet[4, 9], typically the initial state is built by strongly polarizing the spins

with a transverse field (paramagnetic phase) and the final ground state (ferromag-

netic phase) is reached by annealing the field intensity, crossing a quantum critical

point. In AQC this corresponds to run into steps of the computation at which the

von Neumann entropy diverges with the size of the system (quantum register), so

that the algorithm cannot be effectively simulated by classical computers[14].

Understanding what computational problems can be solved efficiently through
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QA-AQC, or which advantage can be taken from QA with respect to other opti-

mization techniques (for instance, its classical counterpart, simulated annealing[8])

is in general a formidable task and there is no unique prescription. In this perspec-

tive, tractable, exactly solvable systems can be of great help in exploring the issue.

In those test models, the production of defects in the evolved state with respect

to the desired instantaneous ground state, quantifying the loss of adiabaticity,

becomes a measure of the power of the method in providing the correct result.

Recently a large amount of work has been devoted to the characterization of the

defect production density[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] and two sce-

narios have been proposed to derive its behavior as function of the total evolution

time: the Kibble-Zurek mechanism[15] (KZM) and the perturbative analysis based

on the Fermi Golden rule[16, 23, 27] (FGR). The KZM was originally introduced

in the context of classical transitions driven by thermal fluctuations[1] and only

few years ago adapted to quantum, zero temperature critical points for particular

quench regimes[15, 28]. The idea at the basis of KZM is that the evolution of

a system driven through a quantum phase transition becomes diabatic when the

time scale at which the Hamiltonian is varied is of the order of the relaxation time,

determined by the inverse of the instantaneous gap. The adiabaticity is recovered

only when, crossed the critical point, the relaxation time comes back to be smaller

than the transition rate and the defect density can be estimated via the correlation

length ξ at the instant of the loss of adiabaticity2. KZM has been tested in various

models through both analytical and numerical studies[17, 18, 21, 22, 29] and is

also supported by experiments[30]. The Fermi Golden Rule (FGR) approach[16],

appeared almost contemporary to the quantum rielaboration of KZM, moves in-

stead from a different perspective: the excitation probability during the dynamics

is estimated by considering only transitions involving the instantaneous ground

state and neglecting the contribution of direct population exchange between ex-

cited states. Then general scaling arguments can be invoked in order to extract

the dependence of the defect density on the transition rate. It should be men-

tioned that recent studies have highlighted particular transitions apparently not

describable with these approaches[22, 24, 25, 26, 31, 32, 33, 34].

This thesis aims at probing the effectiveness and the limits of QA-AQC techniques

by using as test different exactly solvable quantum many-body systems. In par-

ticular the attention has been focused on the effect of disorder that as known can

2In average for every domain of size ξ a defect is produced.
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produce extremely small energy excitations[9, 35] particularly dangerous for the

adiabaticity condition. On the contrary, an high coordination number, i.e. an

high dimensionality, intuitively reinforces the system against dynamical perturba-

tion, making QA-AQC more effective, so that the extreme limit of an infinitely

coordinated system has been also investigated. Another possibility to improve the

adiabaticity is to engineer an optimal time dependence for the parameter driving

the evolution. It can be done via many techniques and one of the most promising

is the optimal control through the Krotov algorithm[36]; the latter has been then

selected to improve the adiabaticity in the Landau-Zener system and in the Or-

dered Ising model.

The structure of the present Thesis is the following. The first part is devoted to

the analysis of the performance of standard (i.e. transformations linear in time)

Quantum Annealing in different quantum critical models. After reviewing the

status of art in Chapter 1, the random Ising chain is considered in Chapter 2; it

will be shown that the presence of disorder dramatically reduces the power of the

method also in simple 1D systems without frustration. This is one of the first

examples in which a logarithmic decay of the residual energy and defect density

as a function of the total evolution time is clearly revealed; a mechanism based on

the Landau-Zener tunneling theory and on a Fisher’s type renormalization group

analysis is proposed to justify the observed numerical results.

In Chapter 3 the Lipkin-Meshkov-Glick (LMG) model, a system with infinite range

interactions, is analyzed. The work represents the first study of QA in a prototype

of high-dimensional system; due to the fact that a finite dimension is not defined

for the model, standard approaches like the Kibble-Zurek mechanism cannot be

applied to explain the residual energy behavior. However, as it will be argued, a

Landau-Zener argument can be still invoked to recover the correct scaling.

Chapter 4 and Chapter 5 are devoted to the problem of optimization of time

dependent transformations: the condition of linear annealing is relaxed and the

optimal shape of the time-dependent transformation is investigated. Among the

various techniques at disposal to implement this new ingredient, the quantum

control through Krotov’s algorithm is considered. This numerical method, in

contrast to other analytical approaches, offers the advantage of being flexible and

easily implementable also for complex systems. In Chapter 4 the Krotov algorithm

is employed to work out the optimal time evolution in two paradigmatic cases:

the Landau-Zener model and the ordered Ising model. The performance of the
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method is analyzed as a function of the total evolution time; the results show

that the optimal control technique is able to reach the maximum speed allowed by

quantum mechanics, the so called Quantum Speed Limit (QSL). Finally in Chapter

5 the QSL theory is directly connected to the loss of adiabaticity in a general non

linear annealing process across a second order quantum phase transition: the QSL

perspective for deriving the production of defect is then discussed.



Chapter 1

Adiabatic Dynamics close to a

Quantum Phase Transition

1.1 Second order Quantum Phase Transition

A phase transition is a drastic change in the structure of a system: daily life ex-

amples are the change of state substances from the gaseous to the liquid state or

viceversa, etc. Classical transitions are driven by thermal fluctuations and and oc-

curs at a finite temperature, the critical temperature. Quantum phase transitions,

instead, occur at T=0 and are entirely driven by quantum fluctuations. Both clas-

sical and quantum are characterized by the existence of an order parameter which

becomes non-zero in the ordered phase. The order parameter can be continuous or

manifests a jump at the transition point depending if transition is of the second or

the first order. In this thesis the attention will be focused exclusively on systems

which cross a second-order quantum phase transition[13].

Consider a parameter dependent-Hamiltonian H(g), where g is dimensionless. By

following the evolution of the ground state energy induced by the variation of the

parameter, it can happen that, at a specific value g = gc, the ground state energy

becomes very close to the energy of the first excited states and in the thermody-

namic limit the gap vanishes. Under such circumstances the system undergoes a

quantum phase transition. For second order quantum phase transitions, the gap

∆ between the ground state and the first excited state vanishes as

∆ ∼ J |g − gc|zν (1.1)

6



Chapter 1 Adiabatic Dynamics close to a QPT 7

where J is the typical scale of the microscopic coupling and z, ν are the critical

exponents, which depend only on the universality class of the underlying Hamil-

tonian.

The time scale on which a system is able to respond to a perturbation of its state,

is measured by the inverse of the minimum instantaneous gap. The adiabatic the-

orem establishes that a system can be adiabatically driven without introducing

excitations only if the transformation rate is much larger than the minimum gap

encountered during the whole dynamics[37]. The critical closure of the gap then

sets up an insurmountable obstacle for the adiabaticity condition: no matter how

slow the system is driven through the transition, its evolution becomes diabatic

compromising the effectiveness of QA-AQC techniques. From this perspective a

lot of attention should be paid to the choice of the path connecting the initial

and the target state and the study of quenches crossing critical regions acquires

a specific relevance because it can reveal the ultimate limit of the methods. To-

gether with the vanishing of the energy gap the system acquires a macroscopic

correlation characterized by a length, the correlation length, which diverges at the

critical point as

ξ−1 ∝ |g − gc|ν , (1.2)

and which is a further manifestation of the collective nature of the phenomenon.

1.2 Dynamics through a Quantum Phase Tran-

sition

Usually a QPT takes place when the governing Hamiltonian is characterized by

two (or more) competing parts: in Bose Hubbard-like models the kinetic term

copes with the onsite repulsion; in ferromagnetic Ising-like models the coupling

between spins along a particular direction has to struggle with a transverse field.

Typically when the relative weight of one term respect to the other is very large,

the system belongs to a specific phase; the transition happens when the compet-

ing forces have an intensity of the same order. The dynamics through a QPT can

be then performed by introducing a time modulation of the relative strength or,

borrowing the terminology from QA, by annealing one component in time.

QA and AQC aim to reach the ground state |ψgs(tfin)〉 of an Hamiltonian H(tfin),
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by adiabatically following its evolution from an instant tin at which it is assumed

exactly known. The evolution of a system is determined by the Scrhödinger equa-

tion

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉 (1.3)

and in the QA-AQC framework it is assumed

H(t) = Hp + Γ(t)Ht, (1.4)

where Hp is the Hamiltonian whose ground state is looked for, Ht is solvable and

Γ(t) is the time dependent intensity driving the transformation. In the annealing

process, the value of Γ(t) is reduced from some large initial value to zero in a time

τ = tfin − tin, for instance in linear way

Γ(t) = Γ0

(

1− t− tin
τ

)

, with Γ0 ≫ 1. (1.5)

By starting the evolution in the initial ground state,

|ψ(tin)〉 = |ψgs(tin)〉, (1.6)

if adiabaticity holds, |ψ(t)〉 corresponds to the instantaneous ground state during

all the dynamics and also at the final time

|ψ(tfin)〉 = |ψgs(tfin)〉 = |ψHp

gs 〉, (1.7)

furnishing the desired solution.

1.3 Measures of the loss of adiabaticity

As outlined in the Introduction, the most interesting problems tackled with QA-

AQC methods involve the crossing of a quantum critical point, the initial known

state and final unknown target usually belonging to different quantum phases[38].

But as noticed in Sec. 1.1, a system driven across a second order quantum phase



Chapter 1 Adiabatic Dynamics close to a QPT 9

transition loses the adiabaticity due to the critical closure of the gap1. This im-

plies that during the annealing the system is unavoidably excited respect to the

instantaneous ground state; therefore the state reached at the end of the evolution

may differ from the real target, or, referring to the possible presence of an order

parameter, it may present defects. The main scope of the thesis is to quantify the

amount of the loss of adiabaticity and analyze its behavior in different contexts

to test the response and the flexibility of the QA-AQC respect to general effects

like the presence of disorder (Chapter 2), long range interactions (Chapter 3) or

to which extent is possible to improve the performance of the method with an

optimized time dependence of the driving term (Chapter 4). Solvable models are

an ideal ground to this purpose due to the fact that the result of the annealing

can be compared at each instant of the evolution with the exact solution. In this

Section various measures of the loss of adiabaticity are presented, everyone more

suitable depending on the specific problem at hand; these quantities will be re-

peatedly used in the thesis.

The first natural measure of the loss of adiabaticity is the residual energy defined

as

Eres = Efin −Egs , (1.8)

where Egs is the ground state energy of H(tfin), and Efin = 〈ψ(tfin)|H(tfin)|ψ(tfin)〉
is the average energy of the final time-evolved state |ψ(tfin)〉. Obviously Efin, and

hence Eres, depends on the annealing time τ ; the slower the evolution the closer

the final energy to Egs, hence the smaller the residual energy.

An alternative general way of quantifying the degree of adiabaticity of the evolution

is in term of the infidelity that measures the total excitation probability of the

evolved state respect to the target ground state

I = 1− |〈ψ(tfin)|ψgs(tfin)〉|2 (1.9)

where |ψgs(tfin)〉 represents the ground state of H(tfin).

Finally another estimation widely used in literature is the density of defects ρ. Its

definition is strongly dependent on the model in analysis and on what is considered

as a defect. In the thesis this concept will be applied to ferromagnetic spin systems

1However, as shown in Ref.[23], in integrable systems the presence of a quantum phase tran-
sition is not a necessary condition to induce a non-adiabatic process.
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so that a defect corresponds to a spin reversed respect to its interacting neighbors.

In particular for Ising chains, the defect density is identified with the kink density

and can be defined as

ρ =
1

N

N−1
∑

i

〈ψ(tfin)|
1

2

(

1− σz
i σ

z
i+1

)

|ψ(tfin)〉 (1.10)

where N is the size of the chain and σα
i are the Pauli operators.

In the following different approaches to obtain a prediction about the loss of adi-

abaticity will be described.

1.3.1 Kibble-Zurek Mechanism

Assumed that the not adiabatic behavior manifests only nearby the critical point,

it is natural to wonder whether the loss of adiabaticity can be described in terms

of the static features of the transition, for instance through its critical exponents.

The Kibble-Zurek mechanism[1] addresses exactly this issue, providing an elegant

connection between statics and non-equilibrium properties. According to KZM

the time scale at which the system is able to react to an external change diverges

at the transition point as manifestation of the critical slowing down, observed also

in the classical case[15]. This effect allows to distinguish two regimes for the evolu-

tion: the adiabatic regime, in which the system is able to adjust to the variation of

the time dependent Hamiltonian, so that there is no population transfer between

the instantaneous energy eigenstates, and the impulse regime, embracing the crit-

ical point, in which the relaxation times are so long that there is no change in

the wave function except for an overall phase factor. The instant of the evolution

which signals the boundary between the two regimes, is called the freeze-out time,

t̂ see Fig.(1.1).

According the KZM, the adiabaticity is lost when the time remaining to the tran-

sition is equal to the relaxation time, given by the inverse of the instantaneous gap

∆. Being ǫ = g− gc the dimensionless parameter measuring the distance from the

transition, near the critical point (ǫ = 0) its time dependence can be linearized:

ǫ = t/τ, (1.11)
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Figure 1.1: Relaxation time scale from KZ theory; t̂ represents the freeze-out
time (picture from Ref[39]).

where τ represents the quench time. In formula:

t̂ ∼ ∆−1(t̂) = |ǫ(t̂)|−zν, (1.12)

or

t̂ ∼ τ−zν/(1+zν), (1.13)

zν being the critical exponents entering in Eq(1.1). The correlation length at the

freezing time, giving an estimate of the size of the typical ordered domain, can be

employed to evaluate the defect density ρ, assuming that on average one defect

per domain is produced. The Kibble-Zurek prediction is then

ρ ∼ ξ−d(t̂), (1.14)

where d is the space dimension and by using ξ(t̂) ∼ |ǫ(t̂)|−ν it finally leads to

ρ ∼ τ−dν/(1+zν). (1.15)

This formula has been tested in various models through both analytical and numer-

ical studies[15, 16, 17, 18, 21, 22, 29] and is also supported by experiments[30].

Recently Eq(1.15) has been generalized to the case of inhomogeneous quantum



Chapter 1 Adiabatic Dynamics close to a QPT 12

phase transitions2, a more realistic condition for the experimental setup[40].

For the ordered quantum Ising chain[15], in which z = ν = 1, Eq(1.15) gives the

well known result[17] ρ ∼ τ−1/2.

1.3.2 Fermi Golden Rule approach

Almost contemporary to the application of KZM to QPT, in Ref[16] it has been

proposed a description of the loss of adiabaticity on the basis of the perturbation

theory and Fermi Golden Rule (FGR). Following Ref[16] let’s consider a time-

parameter dependent Hamiltonian H [ǫ(t)] in which ǫ><0 describes different phases.

A general state can be decomposed as

ψ(t) =
∑

p

ap(t)φp(t) (1.16)

where φp(t)’s are the instantaneous eigenvectors ofH [ǫ(t)] with eigenvalues ωp(t)’s.

Let’s insert this decomposition into the Schrödinger equation

i[
∑

p

ȧp(t)φp(t) +
∑

p

ap(t)φ̇p(t)] =
∑

p

ωp(t)ap(t)φp(t) (1.17)

and exploit the orthogonality of the states:

iȧp(t) + i
∑

q

aq(t)〈p, t|∂t|q, t〉 = ωp(t)ap(t). (1.18)

Then performing the gauge transformation

ap(t) = ãp(t)e
−i

R t ωp(t′)dt′ (1.19)

the following exact equation is obtained

˙̃ape
−i

R t ωp(t′)dt′ +
∑

q

ãq(t)e
−i

R t ωq(t′)dt′〈p, t|∂t|q, t〉 = 0. (1.20)

2That is transitions in which the annealing is not exactly homogeneous throughout the system,
i.e. ǫ(t)→ ǫ(j, t) where j is the site index.
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The problem can be solved through perturbation theory. Indeed by making a

perturbative expansion into the quench time τ , from Eq(1.18) we have

iȧ(n+1)
p (t) = −idǫ

dt

∑

q

a(n)
q (t)〈p, ǫ|∂ǫ|q, ǫ〉+ ωp(t)a

(n)
p (t) with

dǫ

dt
∝ 1

τ
(1.21)

so that assuming to start the quench into the ground state p = 0 we obtain

ãp = δp,0 + ã(1)
p + ...+ ã(n)

p ... (1.22)

where ã
(n)
p ∼ (1/τ)n. In the limit of slow quench, τ ≫ 1, we can keep only the

first term in the expansion, i.e. with the Fermi Golden Rule:

˙̃ap = −ei
R t[ωp(t′)−ω0(t′)]dt′〈p, t|∂t|0, t〉. (1.23)

Then the density of excited states is simply given by integrating and summing[27]

over all p 6= 0:

Pex = ρ ∼
∑

p 6=0

∣

∣

∣

∣

∫ ∞

−∞
dt〈p, t|∂t|0, t〉ei

R t dt′[ωp(t′)−ω0(t′)]

∣

∣

∣

∣

2

(1.24)

where |p, t〉 is the p-th instantaneous eigenstate of the Hamiltonian describing the

system 3.

By assuming of dealing with a uniform d-dimensional system, previous equation

can be rewritten in momentum space leading to

ρ ∼
∫

ddk

(2π)d

∣

∣

∣

∣

∫ ∞

−∞
dǫ〈k, ǫ|∂ǫ|0, ǫ〉eiτ

R ǫ dǫ′[ωk(ǫ′)−ω0(ǫ′)]

∣

∣

∣

∣

2

(1.25)

where the time dependence of ǫ has been also exploited. From general scaling

argument, by remembering that from Eq(1.1) ∆ ∝ |ǫ|zν, it can be written

ωk − ω0 = kzF (ǫzν/kz) (1.26)

with

F (x) ∼
{

1 for x≪ 1

x for x≫ 1,
(1.27)

3Notice that the definition used in Refs.[16, 41] holds only in the case of linear quench λ = t/τ .
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the latter condition implying ωk − ω0 ∼ ∆ for k → 0. Then by introducing the

variable y = ǫzν/kz it turns out

dǫ =
k1/ν

zνy1+1/(zν)
dy. (1.28)

So the integral of the phase transforms into

iτ

∫ ǫ

dǫ′[ωk(ǫ
′)− ω0(ǫ

′)] = iτ

∫ ǫ

dǫ′kzF (ǫ′zν/kz)

= iτ

∫ y

kzF (y′)k1/ν 1

zν
y′−(1+1/(zν))dy′

= τkz+1/νf(y), (1.29)

instead the matrix element, assuming[16] 〈k, ǫ|∂∆|0, ǫ〉 = k−zV (∆/kz), brings to

〈k, ǫ|∂ǫ|0, ǫ〉dǫ = k−zV

(

∆

kz

)

d∆

dǫ
dǫ = V (y)dy. (1.30)

Previous equations suggest a second change of variable, q = kτ ν/(1+zν) so that

dk = τ−ν/(1+zν)dq and finally for the defect density it is obtained

ρ ∼ Cτ−dν/(1+zν), (1.31)

where C is a constant to be determined and the scaling of Eq(1.15) is gained

again. The perturbative approach has been also generalized to non linear quench

of polynomial form[41], ǫ ∝ sign(t)|t/τ |r, and has been also exploited to construct

the optimal power dependence of such a polynomial shape[27] for the ordered Ising

model.

1.3.3 Landau-Zener approximation

In Ref[15] an alternative approach based on the quantum tunneling effect has been

also proposed. For finite-size systems with a small but non-vanishing gap, the

thermodynamical critical closure of the gap is rounded off in an avoided crossing

that can be locally approximated with a Landau-Zener model[42]. Under the

assumption that only the first gap accessible during the dynamics is responsible

for the loss of adiabaticity, the Landau-Zener formula can be used to give a lower
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bound to the true, global excitation probability of the system:

Pex = e−π(∆/2)2τ (1.32)

where ∆ represents the amplitude of the gap at the finite size critical point and τ is

the rate of the linear quench., Notice that for particular models, like the ordered

Ising chain[17], or the 1d Kitaev model[41], the first instantaneous gap can be

exactly mapped onto a LZ-like Hamiltonian.

Then once the scaling of the critical gap with the size is known, ∆ = f(N),

Eq(1.32) can be exploited to determine the behavior of the maximum defect-free

size after a quench, Nfree, as function of τ . Once an arbitrary small but fixed

probability P̃ is chosen, it turns out that

P̃ex = e−π(f(Nfree)/2)2τ =⇒ Nfree ∼ f−1

(
√

κ

τ

)

. (1.33)

with κ = −4(ln P̃ )/π. Finally, once the relation connecting Nfree and the selected

measure of the loss of adiabaticity (residual energy, defect density, infidelity etc.)

is established, the desired behavior is obtained. For instance, for the ordered Ising

chain it is known[43] that ∆ ∼ N−1 and ρ ∼ N−1
free; so Eq(1.33) leads to the correct

result ρ ∼ τ−1/2.

For systems exhibiting a dominant isolated critical point[34], this alternative ap-

proach provides the same result as KZM; however the LZ estimate of Eq(1.33)

works also in some cases in which KZM fails[22, 24, 25], see next section. This is

the reason why the LZ perspective has been preferentially adopted in this thesis.

1.3.4 Quenches eluding KZM and FGR descriptions

As mentioned in the Introduction, a possible way to improve the adiabaticity in

QA-AQC techniques is to relax the linear dependence on time of the annealing as

well as to look for a convenient path in the parameter space spanned by the Hamil-

tonian under consideration. For instance in XY spin-1/2 models[18] a quench can

be performed not only by modulating the transverse field along the Z direction but

also the anisotropy in the XY -plane. The idea behind the procedure is to investi-

gate the possibility of finding a gentle way to cross the transition in order to reduce

the impact of the loss of adiabaticity. For the ordered Ising model the issue has

been recently analyzed[22], enlightening the existence of peculiar paths, specifically
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through a multicritical point, for which the observed anomalous τ−6 decay of the

defect density with the quench time cannot be described via usual KZM or FGR

arguments -as shown in previous sections predicting 1/
√
τ behavior. And this is

not an isolated case. Other pathological situations, unmanageable with standard

tools has been revealed, such as while crossing a multicritical point[22, 31] or a

(d−m) dimensional critical surface4[32], quenching along a gapless line[33, 34]or

going through a BKT quantum phase transition [25, 26]; moreover KZ, FGR for-

mula cannot be used for infinitely coordinated systems, i.e. without a definite

space dimensionality d[24], see Chapter 3.

The problem with these situations is that the critical exponents and also the ef-

fective model dimension characterizing the quantum phase transition turns out to

be dependent on the path followed during the quench in the Hamiltonian param-

eter space[34]. This issue unluckily cannot be easily cured within KZM or FGR

derivation of Eq(1.15); the only possibility is to introduce ad hoc substitutions. It

turns out that crossing a multicritical point the exponent z has to be changed by

a new dynamical exponent z2[31]; instead going through a (d − m) dimensional

critical surface not all the phase space is at disposal and this influences the scaling

of the variables in such a way that d must be corrected with m[32]. In many situ-

ations, for finite size systems, the issue can be cured by exploiting Landau-Zener

(LZ) effective models (see Sec. 1.3.3) locally approximating the dynamical critical

gap[15, 20, 24, 25, 44]5. This approach although based on the assumption that the

contribution to the non adiabatic behavior is due to the first minimum gap only, is

quite more general, bypassing the knowledge of critical exponents and dimension,

and focusing the attention only on the spectral properties of the system: the path

dependence of the critical exponents is directly taken in account by the spectrum

shape close to the anticrossing point.

4Here m denotes the number of directions orthogonal to the critical surface.
5It should be stressed that in presence of a BKT transition, in which it is not possible to

identify a dominant gap[25, 26], an effective theory is still lacking.



Chapter 2

Adiabatic quantum dynamics of a

random Ising chain

2.1 Introduction

In this Chapter the adiabatic dynamics in a one-dimensional quantum disordered

Ising model in a transverse field is analyzed. The reasons for considering this

problem are various. First of all it is an important test for the effectiveness of

QA-AQC method in presence of disorder. The randomness of the coupling can

produce extremely low excitations over the instantaneous ground state not only

nearby the critical point, as pointed out in the Introduction, but also in extended

regions as in presence of Griffith’s phases[13, 35]. It is well established that the

effects of disorder strongly weaken the performances of QA-AQC for single in-

stances of NP -complete problems[7] or single realizations of bidimensional quan-

tum spin-glasses[9]; but the definitive evidence of the ineffectivity of the technique

in presence of randomness is still argument of debate. For this purpose the ran-

dom Ising chain constitutes an ideal ground: it is solvable, so totally under control,

and it is easily simulatable. The latter condition allows for the analysis of large

systems, reducing the influence of finite size effects, and for the statistical study

of its properties averaged over a large number of disorder configurations. In ad-

dition, although in a very simplified manner, it may help in understanding more

interesting problems that can be formulated in terms of interacting Ising spins,

the Traveling Salesman problem[45] and Satisfiability[46] problem being only two

well-known examples. The simplicity of our test problem lies in the particularly

17
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simple geometry of the interactions, which forbids frustration. The only ingre-

dient that our problem shares with more challenging computational tasks is the

fact that the interactions are chosen to be random. This feature, the presence of

disorder, makes the problem interesting and non-trivial for a physically inspired

computational approach based on QA-AQC. Lastly it can be used as further test

of the prediction of the KZM-perturbative scaling of Eq(1.15) and Eq(1.31).

In this Chapter the anomalously slow dynamics characterized by an average den-

sity of kinks, which vanishes only logarithmically with the annealing rate, is

presented[19, 20]. Moreover a detailed analysis of the statistics of both the resid-

ual energy and kink density is presented. In a disordered chain, the formation of

kinks is no longer translational invariant and therefore it affects in a non-trivial

way, as it will be shown below, the scaling of the residual energy.

The rest of the Chapter is organized as follows: In Sec. 2.2 the problem and the

technique to solve the its adiabatic dynamics are defined. Next, in Sec. 2.3, are

introduced the quantities — residual energy and density of defects — that are

calculated to quantify the departure from the adiabatic ground state. In Sec. 2.4

numerical results for both these quantities are presented, together with an analysis

of the large-annealing-time behavior of the density of defects, based on the Landau-

Zener theory, explicitly showing the slow dynamics which the disorder entails.

2.2 The model

The one-dimensional random Ising model is defined by the Hamiltonian

H(t) = −
∑

i

Jiσ
z
i σ

z
i+1 − Γ(t)

∑

i

hiσ
x
i . (2.1)

where σα
i (α = x, z) are Pauli matrices for the i-th spin of the chain, Ji are

random couplings between neighboring spins, and hi are random transverse fields.

The time-dependent function Γ(t) rescaling the transverse field term allows to

drive the system from a region of infinitely high transverse fields (Γ = ∞, where

the ground state has all spins aligned along x, see below), to the case of a classical

Ising model (Γ = 0). Specifically, in the following Γ(t) will be taken to be a linear
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function of time characterized by an annealing rate τ−1

Γ(t) = − t
τ

for t ∈ (−∞, 0] .

In one-dimension, and for nearest-neighbor couplings, there is no frustration as-

sociated to the random nature of the couplings Ji: by appropriately performing

spin rotations of π along the x-spin axis, it is always possible to change the de-

sired σz
i into −σz

i and invert accordingly the signs of the couplings in such a way

that all Ji’s turn out to be non-negative. Therefore it is assumed that the Ji

are randomly distributed in the interval [0, 1], specifically with a flat distribution

π[J ] = θ(J)θ(1 − J), where θ is the Heaviside function. The same distribution

is used for the random field π[h] = θ(h)θ(1 − h). This is different from the

model considered in Ref.[19], where the disorder was introduced in the exchange

coupling only. The present choice is found quite convenient since, by duality argu-

ments [35], the critical point separating the large-Γ quantum paramagnetic phase

from the low-Γ ferromagnetic region is exactly known to be located at Γc = 1.

At the initial time tin = −∞ the ground state of H(tin), completely dominated by

the transverse field term, is simply the state with all spins aligned along the +x̂ spin

direction: |Ψin〉 =
∏

i |x̂〉i =
∏

i[|↑〉i + |↓〉i]/
√

2. On the other side of the transition

point Γc, the final Hamiltonian H(tfin) = Hcl describes a random ferromagnet

whose ground states, which are the targets to be reached by adiabatically switching

off Γ(t), are obviously the two trivial states |Ψ↑〉 =
∏

i |↑〉i and |Ψ↓〉 =
∏

i |↓〉i: as

an optimization problem, Hfin represents, therefore, a trivial problem.

Even if the ground states in the two limiting cases, Γ = ∞ and Γ = 0, are

very easy to find, when it comes to dynamics, the evolution dictated by H(t)

is no longer a trivial problem. The instantaneous spectrum of the Hamiltonian

H(t) is gapless in the thermodynamic limit [35]. This implies that, during the

adiabatic evolution, defects in the form of domain walls between differently aligned

ferromagnetic ground states, of the type

| . . . ↑↓↓↓↓↓↑↑↑↑↑↑↑↑↓↓↓↓ . . . 〉

are formed, and reflected in a whole structure of closing gaps will appear in the

instantaneous spectrum.
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2.2.1 Fermion representation and Bogoliubov-de Gennes

equations

By means of the Jordan-Wigner transformation, the one-dimensional Ising model

is reduced to a free fermion model. One first writes the spin operators in terms of

hard-core bosons ai and a†i in a representation that maps the state |σz
i = +1〉 →

|1〉i = a†i |0〉i and |σz
i = −1〉 → |0〉i, with the hard-core constraint (a†i )

2|0〉i = 0:

σz
i = 2a†iai−1, σx

i = ai+a
†
i , and σy

i = −i(a†i−ai). The hard-core boson operators ai

are then re-expressed in terms of spinless fermions operators ci: ai = eiπ
P

j<i c†jcjci.

After a π/2 rotation around the y-axis, which maps σx → σz and σz → −σx, the

Hamiltonian in Eq(2.1) can be rewritten in terms of fermion operators as

H = −
L−1
∑

i

Ji{c†ic†i+1 + c†ici+1 + H.c.} − 2Γ

L
∑

i

hic
†
ici , (2.2)

where open boundary conditions (OBC) for the spin-chain have been assumed.

For the case of periodic boundary conditions (PBC) on the spins, σL+1 = σ1,

extra boundary terms appear in the fermionic Hamiltonian, of the form ∆HPBC =

JL(−1)NF {c†Lc†1+c†Lc1+H.c.}, where NF =
∑

i c
†
ici is the total number of fermions.

Notice that although NF is not conserved by the Hamiltonian (2.2), the parity of

NF is conserved because fermions are created (destroyed) in pairs, like in a BCS

model: (−1)NF is a constant of motion with value 1 or −1.

The model in Eq(2.2) can be diagonalized through a Bogoliubov rotation [47, 48],

by introducing the new fermionic operators γµ and γ†µ

γµ =
L
∑

j=1

(u∗jµcj + v∗jµc
†
j)

ci =

L
∑

µ=1

(uiµγµ + v∗iµγ
†
µ) , (2.3)

where the L-dimensional vectors uµ and vµ, for µ = 1, · · · , L, satisfy the Bogoliubov-

de Gennes equations:

A · uµ +B · vµ = ǫµuµ

−B · uµ − A · vµ = ǫµvµ . (2.4)
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Here A and B are real L×L matrices whose non-zero elements are given by Ai,i =

−Γhi, Ai,i+1 = Ai+1,i = −Ji/2, Bi,i+1 = −Bi+1,i = −Ji/2. (For the PBC spin-

chain case, we have the additional matrix elements AL,1 = A1,L = (JL/2)(−1)NF ,

and BL,1 = −B1,L = (JL/2)(−1)NF ). While in the ordered case the solution of

Eqs(2.4) can be reduced, by switching to momentum-space, to independent 2× 2

problems, in the general disordered case one has to diagonalize the 2L×2L problem

numerically in Eq(2.4) [49, 50].

The spectrum of Eqs(2.4) turns out to be given by ±ǫµ, with ǫµ ≥ 0, and in terms

of the new fermion operators, H becomes:

H =

L
∑

µ=1

(ǫµγ
†
µγµ − ǫµγµγ

†
µ) =

L
∑

µ=1

2ǫµ(γ†µγµ −
1

2
) . (2.5)

The ground state of H is the Bogoliubov vacuum state |Ψ0〉 annihilated by all γµ

for µ = 1 · · ·L, γµ|Ψ0〉 = 0, with an energy E0 = −
∑L

µ=1 ǫµ.

2.2.1.1 Dynamics

The Schrödinger dynamics associated to a time-dependent H(t) can be solved by

a time-dependent Bogoliubov theory [51]. The basic fact that makes the solution

possible even in the time-dependent case is that the Heisenberg’s equations of

motion for the operators ci,H(t) are linear, because the Hamiltonian is quadratic:

i~
d

dt
ci,H(t) = 2

L
∑

j=1

[

Ai,j(t)cj,H(t) +Bi,j(t)c
†
j,H(t)

]

. (2.6)

Here the matrices A and B have the same form given previously, except that

now the time-dependence of Γ(t) is explicitly accounted for. If γµ,in denote the

Bogoliubov operators that diagonalize H(tin) at the initial time, and uin
µ , vin

µ the

corresponding initial eigenvectors, it is simple to verify that the Ansatz

ci,H(t) =
L
∑

µ=1

(

uiµ(t)γµ,in + v∗iµ(t)γ†µ,in

)

, (2.7)

does indeed solve the Heisenberg equations (2.6), provided the time-dependent

coefficients uiµ(t) and viµ(t), satisfy the following system of first-order differential
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equations

i
d

dt
uiµ(t) =

2

~

L
∑

j=1

[Ai,j(t)ujµ(t) +Bi,j(t)vjµ(t)]

i
d

dt
viµ(t) = −2

~

L
∑

j=1

[Ai,j(t)vjµ(t) +Bi,j(t)ujµ(t)] , (2.8)

with initial condition uiµ(tin) = uin
iµ, viµ(tin) = vin

iµ. Eqs(2.8) are the natural time-

dependent generalizations of the static Bogoliubov-de Gennes Eqs(2.4), and, once

again, they have to be solved numerically in the general disordered case.

2.3 Residual energy and kink density

How effectively the Schrödinger dynamics drives the system from the initial disor-

dered quantum ground state |Ψin〉 towards the classical ground state |Ψ↑〉 =
∏

i |↑〉i
(or the fully reversed one |Ψ↓〉 =

∏

i |↓〉i)?
The two most natural way of quantifying the degree of adiabaticity in the random

Ising chain are the residual energy of Eq(1.8) and kinks density of Eq(1.10).

When no disorder is present the two quantities coincide, apart from trivial con-

stants. In the disordered case, however, this is not the case. A defect will form

with higher probability at a link where the corresponding exchange coupling Ji is

small. Therefore the residual energy is not simply given by the kink density times

the exchange coupling.

The calculation of quantities like Efin or ρk is straightforward. Quite generally,

given an operator Ô(ci, c
†
i ) expressed in terms of the ci’s and c†i ’s, its expecta-

tion value over the final state |Ψ(tfin = 0)〉 can be expressed, switching from the

Schrödinger to the Heisenberg picture, as

〈Ψ(0)|Ô(ci, c
†
i)|Ψ(0)〉 = 〈Ψ(tin)|Ô(ci,H(0), c†i,H(0))|Ψ(tin)〉. (2.9)

Next, one uses the expressions (2.7) for the ci,H(0)’s and c†i,H(0) in terms of γµ,in,

γ†µ,in, ui,µ(0), and vi,µ(0), and uses the fact that the γµ,in annihilates by construction

the initial state |Ψ(tin)〉. By applying this procedure to the calculation of Efin it
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turns out:

Efin =
∑

i,j

(

Aij(0)
[

v(0)v†(0)− u(0)u†(0)
]

ij
+

Bij(0)
[

v(0)u†(0)− u(0)v†(0)
]

ij

)

, (2.10)

where u(0) and v(0) are L×L matrices with elements ui,µ(0) and vi,µ(0). Similarly,

the density of defects ρk can be expressed as:

ρk =
1

2L

L−1
∑

i

{

1−
(

[v(0)− u(0)]
[

u†(0) + v†(0)
])

i,i+1

}

. (2.11)

2.4 Results

The results for the dynamics are obtained by integrating numerically the time-

dependent Bogoliubov-de Gennes equations (2.8). As initial point of the evolution

it is enough to consider tin = −5τ , taking uin
µ and vin

µ from the diagonalization of

H(tin) according to Eq(2.4): it has been checked that the results do not depend

on the precise value of tin, as long as it is not too small. Systems up to L = 512

and annealing times up to τ = 1000 have been considered. Ensemble averages

are calculated over a suitably large number of disorder realizations (of the order

of 1000). The analysis of the instantaneous spectrum and its statistics has been

obtained by solving the static Bogoliubov-de Gennes eigenvalue equations (2.4)

for systems up to L = 512 (with a huge number of disorder realizations, of order

106).

In order to get an initial understanding on the mechanism that leads to breaking

of adiabaticity in the present system, it is instructive to consider in more detail the

time-evolution of a single realization of the disorder. To be specific, Fig.(2.1) shows

the time-evolution of the residual energy for a single L = 64 sample and for values

of τ up to 5000. The instantaneous spectral gaps of the problem are also plotted

(thick solid lines), obtained by diagonalizing the Hamiltonian for any given value

of the parameter Γ. As mentioned previously, the dynamics conserves the fermion

parity, so that only excitations in the same fermion parity sector are accessible. If

the single-particle eigenvalues are ordered as ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫL, then the lowest

excited state accessible to the dynamics (i.e., conserving the fermionic parity) is

associated with an excitation energy ∆1 = 2(ǫ1 + ǫ2), rather than ∆ = 2ǫ1. The
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Figure 2.1: (Color online) Residual energy Eres(t) versus t for a given instance
with L = 64 of the random Ising model with transverse field, at different values
of τ . The solid lines are the lowest-lying instantaneous spectral gaps ∆n as a

function of Γ.

next excited state is ∆2 = 2(ǫ1 + ǫ3), and so on. These are the instantaneous gaps

shown in Fig.(2.1).

An important feature which emerges from this example is that one cannot in

general locate a single specific value of Γ where the minimum and most important

gap is present. Certainly, typically the first occurrence of a small gap during the

annealing trajectory is close to the critical point, Γc = 1. Usually, this critical-

point gap is also the smallest one that the systems encounters during its evolution.

However, it can happen, as Fig.(2.1) shows, that the system safely goes through

the critical-point small gap (see τ = 5000 results) but then looses adiabaticity due

to a comparable gap encountered later on (here at Γ ∼ 0.5). Once adiabaticity is

lost, the system will generally miss to follow the first excited state either, getting

more and more excited as time goes by.

The energy landscape sketched in Fig.(2.1) is strongly dependent on the particular

configuration of couplings and fields adopted in the simulation. In order to give a

general description of the issue, as the treatment of the statical properties done in

Ref[35, 49] has shown, the analysis of the adiabatic dynamics of a disordered Ising

chain requires a knowledge of the statistics of these low-lying gaps in the spectrum

(in the pertinent parity sector). The attention has been concentrated on the region

close to the critical point, where the smallest gaps are found, for large L. The first

question is how these smallest gaps are distributed, for different realizations of

the disorder. Let denote by P (∆1, L) the distribution of gaps ∆1 = 2(ǫ1 + ǫ2)

(the lowest one relevant for the dynamics) for a chain of length L, assumed to

be normalized:
∫∞
0
d∆1 P (∆1, L) = 1. For the smallest gap ∆ = 2ǫ1, Young
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Figure 2.2: (Color online) Distribution of ∆1 = 2(ǫ1 + ǫ2), the smallest gap
relevant for the dynamics, at the critical point Γc = 1 for different systems sizes,
showing the collapse of the distributions P (∆1, L) when the scaling variable
g = − log (∆1)/

√
L is used. The resulting distribution is the P∗(g) discussed in

the text.

and Rieger [49] have shown that the correct scaling variable which makes the

critical point distribution universal, for different L, is − log (∆)/
√
L. By using

a scaling variable of the same form, g = − log (∆1)/
√
L, it can be seen that the

gaps ∆1 are also distributed in the same universal way, see Fig.(2.2). This implies

that at the critical point, P∗(g) =
√
Le−g

√
LP (e−g

√
L;L) is, for large L, universal

and normalized. As a consequence, gaps at the critical point have an extremely

wide distribution, for large L, with typical gaps which are exponentially small

[35, 49, 50] in the system size: [∆1]typ ∝ e−C
√

L.

2.4.1 Density of kinks

Given the wide distribution of the instantaneous gaps, it is important to under-

stand how this reflects itself in the distribution of various observables. First the

behavior of the density of defects ρk defined in Eq(1.10) has been considered.

The results for the probability distribution function of ρk, P (ρk), are presented in

Fig.(2.3) for τ = 10 and τ = 1000. The distribution P (ρk), for given τ , is found

to be approximately log-normal:

P (ρk) =
1√

2πσL

1

ρk
e−(lnρk−lnρk)

2
/2σ2

L ,

with a standard deviation σL decreasing as 1/
√
L. The data collapse of the results

for different L, in terms of the variable (ln ρk − ln ρk)/σL, shown in the inset,
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Figure 2.3: (Color online) Probability distribution for the logarithm of the
density of defects x = − ln ρk, for two different annealing rates τ . The distri-
bution function is universal and log-normal with a variance σL which scales as
1/
√
L. In the insets we show the data collapse of all the curves when plotted as

a function of the reduced variable (x− x̄)/σL, where x = − ln ρk.

qualifies the accuracy of this statement. This
√
L-reduction of the width of the log-

normal distribution P (ρk) with increasing L is at variance with the result obtained

for the distribution of the gaps at the critical point, whose width increases as
√
L:

here, on the contrary, the correct scaling variable appears to be (ln ρk − ln ρk)
√
L,

rather than (ln ρk−ln ρk)/
√
L. This width reduction, for increasing L, implies that

the average density of defects [ρk]av approaches the typical value [ρk]typ = e[lnρk]av

for large enough L, since [ρk]av = elnρk+σ2
L/2 implies that:

[ρk]av − [ρk]typ

[ρk]typ
= eσ2

L/2 − 1 ∼ 1

L
. (2.12)

This fact is shown explicitly in Fig.(2.4) (top), where it can be seen that large

deviations between [ρk]typ = e[ln ρk]av and [ρk]av are seen only for L ≤ 64. For

large systems, L ≥ 128, the two quantities are essentially coincident, for all values
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of τ . Despite the universal behavior of the distribution P (ρk) at all annealing

rates, the behavior of [ρk]av(τ) changes drastically between short and long τ ’s

[19]. Fig.(2.4)(bottom) focuses on the average kink density [ρk]av for various L,

as a function of τ . The initial small-τ behavior of [ρk]av(τ), indicated by the

dashed line in Fig.(2.4), seems a power-law, [ρk]av(τ) ∼ τ−0.5, i.e., exactly what

one finds for the ordered Ising chain [15], where the result is interpreted in terms

of the Kibble-Zurek mechanism. A possible explanation resides in the fact that

the model presents a Griffiths phase extending for all Γ > Γc [52]. This phase

is characterized by a gap ∆ ∼ L−z, where the dynamical exponent z(Γ) is a

continuous function of the parameter Γ, diverging, z → ∞, for Γ → Γc, while

saturating to a constant for large Γ. The second gap, which is relevant for our

dynamical problem, shows a similar behavior,[52] ∆1 ∼ L−z′ , with a dynamical

exponent z′(Γ) = z(Γ)/2. For fast annealing rates, the system loses adiabaticity

before reaching the critical point, well inside the Γ > Γc Griffiths phase. As in the

ordered case, the gaps exhibited by such a phase would induce a defect density

decreasing as a power-law of the annealing time τ , with the crucial difference

that the power-law exponent is not constant here, due to the Γ-dependence of z′.

One should expect, presumably, a gradual crossover with a power-law exponent

which becomes smaller and smaller, connecting in a gentle way with the large

τ behavior of [ρk]av, which shows marked deviations from a power-law behavior.

Dziarmaga, based on scaling arguments [19], showed that at large τ the density

of kinks should decrease as the inverse square of the logarithm of τ . Our data for

the largest systems agree very well with this prediction (solid line in Fig.(2.4)).

A bound to [ρk]av(τ) can also be constructed by a Landau-Zener argument —

complemented by a knowledge of the distribution of the first gap P (∆1, L) —, in

a similar fashion to that presented by Zurek et al. [15] for the ordered Ising case.

The derivation starts by considering the probability Pex(τ, L) of loosing adiabatic-

ity for a system of size L, when turning off Γ with an annealing rate τ−1. Evidently,

Pex(τ, L) ≥ P cr.point
ex (τ, L), where by P cr.point

ex (τ, L) has been denoted the probability

of getting excited by Landau-Zener events at the critical point (indeed, it has been

shown that there is a chance of getting excited also by gaps well below the critical

point). P cr.point
ex (τ, L), in turn, can be constructed by knowing the distribution of

the gaps ∆1 at the critical point, and the simple two-level Landau-Zener formula

P LZ
ex = e−π∆2

1τ/(4~α) (α being the slope of the two approaching eigenvalues). Lump-

ing all constants together, γ = π/(4~α), it can be written P LZ
ex = e−γτ∆2

1 and it

can be assumed that the distribution of γ ∝ α−1 is not important in the estimate,
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Figure 2.4: (Color online) Top: Comparison between average [ρk]av and typ-

ical [ρk]typ = e[lnρk]av kink density for different system sizes on varying the
annealing rate τ . The same symbol is used for both cases. The typical value
(dashed line) lies always below the average value (continuous line), but the
difference between the two is negligible for L ≥ 128. Bottom: Average kink
density [ρk]av as a function of the annealing rate τ for chains of different lengths
L = 16, 32, 64, 128, 256, 512. The data for [ρk]av are the same appearing in the
top part of the figure. The dashed line is a power-law describing the small-τ
behavior, [ρk]av(τ) ∼ τ−0.5. The solid thick line through the [ρk]av data is a fit
with a function A/ log2 (γτ), described in the text. The averages are calculated

over 1000 different realizations of disorder.

while that of ∆1 is, so that:

P cr.point
ex (τ, L) =

∫ ∞

0

d∆1 P (∆1, L) e−γτ∆2
1

=

∫ ∞

−∞
dg P∗(g) e

−γτe−2
√

Lg

, (2.13)

where the second equality follows from switching to the scaling variable g =

− log (∆1)/
√
L. Obviously, for τ = 0 it is correctly obtained P cr.point

ex (τ = 0, L) =
∫∞
−∞ dg P∗(g) = 1, from the normalization condition. When τ is finite, the

LZ factor e−γτe−2
√

Lg
provides a lower cut-off in the integral at a characteristic

gc = log (γτ)/(2
√
L), and this cut-off is sharper and sharper as L increases: one

can verify that, for large L, e−γτe−2
√

Lg ≈ θ(g − gc). As a consequence, for large
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Figure 2.5: (Color online) Approach to the universal function Π(gc) for in-
creasing chain lengths L, see text. All data from L ≥ 512 collapse well into a
single curve. Inset: P cr.point

ex (τ, L) obtained from the integral in Eq(2.13) versus
τ for different values of L.

enough L it can be rewritten:

P cr.point
ex (τ, L) ≈ Π (gc) ≡

∫ ∞

gc

dg P∗(g) , (2.14)

i.e., P cr.point
ex (τ, L) turns out to be a universal function of the scaling variable gc =

log (γτ)/(2
√
L), for L large. This universal function Π(gc) is shown in Fig.(2.5),

where it can be seen that data for L ≥ 512 collapse into a single curve. The density

of kinks for large τ , and large enough L, can be obtained by evaluating the typical

length L̃ǫ(τ) of a defect-free region upon annealing, ǫ being a small quantity of our

choice, denoting the probability of getting excited. Since P cr.point
ex (τ, L) ≈ Π(gc) is

a lower bound for Pex(τ, L), it turns out that

L̃ǫ(τ) ≤
log2 (γτ)

[Π−1(ǫ)]2
, (2.15)

where Π−1 denotes the inverse function of Π. If now the inverse of the defect-free

region length, L̃−1
ǫ (τ), is identified with the density of kinks ρk(τ), the following

lower bound is given for the latter:

ρk(τ) ∼
1

L̃ǫ(τ)
≥ [Π−1(ǫ)]2

log2 (γτ)
. (2.16)

On the basis of this argument, it can be concluded that the density of kinks

cannot decrease faster than 1/ log2 (γτ) for large τ , which agrees with the argument

discussed by Dziarmaga [19].
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Figure 2.6: (Color online) Probability distribution for the residual energy per
site at two different annealing rates τ−1. The distribution function is universal
and log-normal with a variance which scales as 1/

√
L. In the insets we show

the data collapse.

2.4.2 Residual energy

In the ordered case the residual energy per spin is simply proportional to the

kink-density, Eres/L = 2Jρk, while here, evidently, kinks sitting at small Ji’s

are favored, on average, by the adiabatic evolution process. It is therefore of

importance to analyze the scaling of the residual energy that, as it will be shown,

differs quantitatively from that of the kink density. Since kinks will be formed

on the weak links, one expects on general grounds that the residual energy would

decay faster than the kink-density for large τ ’s.

As in the case of the kink density, first the probability distribution for the resid-

ual energy per site is analyzed, which is presented in Fig.(2.6). Once again the

residual energies are approximately log-normal distributed and can be reduced

to a universal form (see the insets) when properly rescaled, i.e., in terms of the

variable (ln (Eres/L)− ln (Eres/L))
√
L.
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Figure 2.7: (Color online) Top: Average residual energy per site [Eres/L]av
as functions of the annealing rate τ for chains of different lengths L =
16, 32, 64, 128, 256, 512. The dashed line is the power-law describing the small-τ
behavior, [Eres/L]av(τ) ∼ τ−1. Averages are calculated over 1000 realizations
of disorder. Bottom: The ratio of the density of kinks and the residual energy

versus τ , used to extract the power of the log-dependence of Eres.

The average residual energy per site [Eres/L]av as a function of the annealing time

τ shows a crossover from a power-law decay, approximately τ−1 for fast quenches,

to a much slower decay (see below) for slow evolutions. It is interesting to note

that although for fast quenches the disorder is considered to play a minor role,

nevertheless the exponent of the decay of the residual energy differs from that of

the kink density. The analysis of the regimes of large τ ’s is more delicate. The

LZ argument given above tells nothing about the behavior of the residual energy

for large τ . Then a possible procedure is the following. Assuming for the residual

energy a logarithmic behavior similar to that found for ρk

[

Eres

L

]

av

∼ 1

logζ (γτ)
, (2.17)

ζ can be determined from the data of Fig.(2.7)(Top) by plotting the ratio of [ρk]
α
av

and [Eres/L]av versus τ for several values of α, as done in Fig.(2.7)(Bottom). If
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[ρk]av ∼ log−2 (γτ), then the value of α which makes this ratio constant is:

[ρk]
α
av

[Eres/L]av
∝ logζ−2α (γτ) ∼ const. ⇐⇒ α = ζ/2 . (2.18)

Numerically, see Fig.(2.7), we find α ≈ 1.7± 0.1, which implies ζ ≈ 3.4± 0.2.



Chapter 3

Adiabatic quantum dynamics of

the Lipkin-Meshkov-Glick model

3.1 Introduction

Most of the work done so far in the search for a deeper understanding of the loss of

adiabaticity on crossing a quantum critical point concentrated on one-dimensional

quantum systems with short range interaction. In this Chapter a complemen-

tary limit is addressed, i.e. a model with infinite coordination (in the thermody-

namic limit), but still amenable to an exact solution: the Lipkin-Meschkov-Glick

model (LMG). First introduced by Lipkin, Meschkov and Glick [53] in the context

of nuclear physics, it was then adopted by the condensed matter community as

paradigm of an infinitely coordinated solvable system [54]. The result of a sudden

quench in this model was recently discussed in [55], here results in the opposite

regime in which the system is dragged adiabatically through the critical point are

presented. As it will be shown in the following, although the phase transition is

of mean field nature, the dynamics leads to non-trivial results.

The Chapter is organized as follows: In Sec. 3.2 the model is introduced and its

properties which are important for the purposes of this work are briefly reviewed.

In the same section it is also discussed how to solve numerically the dynamics,

Sec. 3.2.1, and the observables used to quantify the departure from the adiabatic

ground state, Sec. 3.2.2. In this work the residual energy (the excess energy

as compared to the adiabatic limit), the incomplete magnetization (the deficit

33
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magnetization as compared to the adiabatic limit) and the entanglement entropy

are used. The numerical results together with the corresponding scaling arguments

are presented in Sec. 3.3.

3.2 The Model

The properties of the LMG model have been thoroughly scrutinized in the lit-

erature (see e.g. [56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68] and refer-

ences therein). Below a few results that are relevant to the present discussion are

briefly recalled. The LMG Hamiltonian describes a system of spins (1/2 in this

work) interacting through an infinite-range exchange coupling and subjected to

a transverse field. Assuming that the field is directed along the z-direction the

Hamiltonian can be written as

H = − 2

N

∑

i<j

(Sx
i S

x
j + γSy

i S
y
j )− Γ

N
∑

i

Sz
i , (3.1)

where N is the number of the spins in the system, Si are the Pauli operators, γ is

the anisotropy parameter and Γ is the transverse field. By introducing the total

spin operator ~S =
∑

i
~Si, the Hamiltonian can be rewritten, apart from a additive

constant, as H = − 1
N

[S2
x + γS2

y ]− ΓSz. The Hamiltonian, hence, commutes with

S2 and does not couple states having a different parity of the number of spins

pointing in the magnetic field direction: [H,S2] = 0 and [H,
∏

i S
z
i ] = 0. In the

isotropic case γ = 1 also the z-component of ~S is conserved, [H,Sz] = 0.

In the thermodynamical limit the LMG model undergoes a second order quantum

phase transition at Γc = 1 characterized by mean-field critical exponents [56].

The magnetization in the x-direction (or in the xy-plane, for γ = 1) vanishes

when Γ→ 1− as

m =















(1− Γ2)1/2 Γ ≤ 1

0 Γ > 1

(3.2)

for all values of the anisotropy parameter γ. For Γ > Γc and for any γ the

ground state is non degenerate; while for Γ < Γc it is doubly degenerate in the

thermodynamical limit for any γ 6= 1, signaling the breaking of the Z2 symmetry.
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The gap vanishes at the transition as

∆ = [(Γ− 1)(Γ− γ)]1/2 for Γ ≥ 1. (3.3)

For any finite N both the magnetization and the gap are modified (as any other

physical observable). The finite size scaling behavior is available in literature in all

the relevant regimes (see, e.g., [56, 63]). The deviation from the thermodynamic

limit for the gap δ∆N = ∆N −∆ and the magnetization δmN = mN −m scale as

δ∆N ∼ N−1 δmN ∼ N−1/2 Γ > 1

δ∆N ∼ N−1/3 δmN ∼ N−1/3 Γ = 1

∆(N) ∼ e−aN δmN ∼ N−1 Γ < 1

(3.4)

for γ > 1 (where a is a constant) and

δ∆N ∼ N−1 δmN ∼ N−1/2 Γ > 1

δ∆N ∼ N−1 δmN ∼ N−1/2 Γ = 1

δ∆N ∼ N−1 δmN ∼ N−1 Γ < 1

(3.5)

for γ = 1, respectively. The scaling behavior of the gap is important in order to

distinguish the various dynamical regimes in the adiabatic annealing. It is however

important to stress at this point that the equilibrium gap is not necessarily the

one responsible for the loss of adiabaticity. As it will seen in the following section,

due to the parity conservation the relevant gap for the dynamics is different from

the equilibrium one (although with the same scaling behavior).

3.2.1 Adiabatic dynamics

The adiabatic dynamics is implemented by changing the external transverse field

from an initial value Γ≫ 1 at tin, where the ground state of H(tin) is completely

dominated by the transverse field term with all the spins aligned along the +ẑ

direction, to Γ = 0, where the ground state is ordered in the xy plane. The

annealing time is characterized by a time scale τ . More specifically the case, as

often in this type of problems, to reduce the magnetic field linearly in time is

considered

Γ(t) = −t/τ for t ∈ (−|tin|, 0] (3.6)
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with |tin| ≫ τ .

The problem is further simplified by the following observation. In the initial state,

the ground state of H(tin) belongs to the sector of maximum spin S = N/2. Since

S is a constant of motion it is sufficient to restrict the attention to this subspace

only. From now it is assumed S = N/2 (for simplicity we consider N even). In

the basis |N/2,Sz〉 (Sz = −N/2, ..., N/2), the Schrödinger evolution of the state

|ψ(t)〉 =

N/2+1
∑

j=1

u2j−1(t)|N/2,−N/2− 2 + 2j〉, (3.7)

amounts to solving the following set of coupled equations

i
du2j−1

dt
=
∑

k

Mj,ku2k−1(t) . (3.8)

The odd amplitudes |N/2,−N/2− 1+2j〉 do not couple because of parity conser-

vation. In Eq(3.8) M is a (N/2+1)× (N/2+1) symmetric matrix whose non-zero

entries are given by

Mj,j+1 = − 1

4N
(1− γ)a−N/2−2+2ja−N/2+2j−1

Mj,j = − 1

4N
(1 + γ)[a2

−N/2−3+2j + a2
−N/2−2+2j ]

−Γ(−N
2
− 2 + 2j) +

1

4
(1 + γ) , (3.9)

in terms of the usual angular momentum raising operator matrix elements:

aj =

[

N

2
(
N

2
+ 1)− j(j + 1)

]1/2

. (3.10)

Special values have the boundary terms of M , given by:

M1,1 = − 1

4N
(1 + γ)a2

−N/2 − Γ(−N
2

) +
1

4
(1 + γ)

MN/2+1,N/2+1 = − 1

4N
(1 + γ)a2

N/2−1 − Γ(
N

2
) +

1

4
(1 + γ) . (3.11)

The equations (3.8) were integrated via standard numerical methods with initial

conditions given by the amplitudes of the ground state of H(t = tin).
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3.2.2 Measures of the loss of adiabaticity in the LMG

model

Once again the degree of adiabaticity of the evolution can determined through the

residual energy of Eq(1.8); but an alternative way is in terms of the incomplete

magnetization in the final state, defined by

minc = mgs −m(t) (3.12)

where mgs is the static magnetization of the ground state for Γ = 0 and m(t) is

the average magnetization of the final evolved state. Following Botet et al [54],

the magnetization m has been defined through

m2 =
4

N2
〈ψ|S2

x + δγ,1S2
y |ψ〉, (3.13)

where the expectation value can be taken either on the ground state, for mgs, or

on the evolved state, for m(t). As discussed in Ref[54], the previous definition

differs from that of the spontaneous magnetization; however, it is more convenient

for finite size systems and it reduces to the spontaneous magnetization in the

thermodynamic limit.

Dealing with a model where the coupling has an infinite range, the incomplete

magnetization is an appropriate way for characterizing the loss of adiabaticity: in

this case a correlation length characterizing the typical distance between defects,

along the lines followed for short range models, cannot be introduced.

In the Ising limit, γ = 0, at Γ(t = 0) = 0, the residual energy and the incomplete

magnetization are related, as they both depend only on the average value 〈ψ(t =

0)|S2
x|ψ(t = 0)〉: The residual energy per site can be expressed as

Eres

N
= − 1

N2
〈ψ(t = 0)|S2

x|ψ(t = 0)〉+ 1

4
; (3.14)

the incomplete magnetization is given by

minc = 1−
√

4

N2
〈ψ(t = 0)|S2

x|ψ(t = 0)〉 . (3.15)

In addition to the previous observables, it was recently shown that important

information of the lack of adiabaticity in the system can be acquired by analyzing
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the entanglement entropy S [18, 21]. Entropy and other measures of entanglement

has been recently studied to characterize both equilibrium and non-equilibrium

quantum many-body systems (see [69] for a review). In the case of the LMG model

the ground state entanglement entropy was studied in [70, 71, 72, 73, 74]. In the

present work the time evolution of S during an adiabatic evolution is studied.

Given a bipartition of the system in L and N −L spins, the entanglement entropy

associated to the reduced density matrix of one of the subsystems, say ρL =

TrN−L(ρ), is defined as

SL = −Tr(ρL log2 ρL) . (3.16)

The entropy SL measures the entanglement between the L spins and the rest of

the system.

The entanglement entropy is straightforwardly evaluated by noticing that, being

the states |S = N/2,Sz〉 symmetric under any permutations of the sites and being

the maximum value of the total spin achievable only with the maximum value of

the spin in each subsystem, the following decomposition holds [71]:

|N/2,Sz〉 =

L
∑

l=0

p
1/2
l |L/2, l − L/2〉 ⊗ |(N − L)/2, n− l − (N − L)/2〉 .

In the previous decomposition n and l indicate, respectively, the number of up-

spins in the system and in the partition which defines the L sites. The coefficients

appearing are defined as pl = L!(N − L)!n!(N − n)!/(l!(L − l)!(n − l)!(N − L −
n + l)!N !). With the knowledge of the representation of the evolved state in the

basis |N/2,Sz〉 and by using the previous decomposition, it is immediate to trace

out the N − L spins to obtain the reduced density matrix ρL, and calculate its

entropy.

3.3 Results

The results presented below were obtained by integrating numerically Eq(3.8). It

has been verified that, as for the initial time of the evolution, it is enough to

consider tin = −5τ for faster sweeps (1 < τ < 500) and tin = −2τ for slower ones.

It has been checked (data not reported) that the results do not depend on the
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Figure 3.1: (Color online) Residual energy Eres(t) versus t for a given instance
with N = 32, γ = 0 of the LMG model at different values of τ . The solid lines
are the lowest-lying instantaneous spectral gaps as a function of Γ. The red-
dashed line is the best fit to the lowest gap used to calculate the Landau-Zener

transition rates.

precise value of tin. Systems up to N = 1024 spins and annealing times up to

τ ∼ 103 − 104 have been considered.

Residual energy and incomplete magnetization - In order to understand the mech-

anism that leads to breakdown of adiabaticity in the LMG model it is instructive

to start with one particular example. In Fig.(3.1) a system with N = 32 spins

and γ = 0 has been chosen, showing the time evolution of the residual energy for

different values of the annealing time τ . The instantaneous accessible gaps (thick

solid lines) obtained by diagonalizing the Hamiltonian at any given Γ have been

also plotted. As one can see, as soon as the system loses the adiabaticity, for

fast annealing, it starts to ramp up in energy. The characteristic time scale for

breaking of adiabaticity is however not given by the equilibrium smallest gap. As

noticed in the previous Section, the dynamics is restricted to the subspace with

fixed total spin S = N/2 and can involve only states with the same parity of Sz 1.

Hence, the first gap relevant for the dynamics, that is called dynamical gap, is

the energy difference between the ground state and the second excited state, the

smallest gap being forbidden by parity conservation of Sz. As shown in Fig.(3.2),

the dynamical gap exhibits the same critical behavior of the excitation gap [56]:

both close polynomially in the thermodynamical limit, with the same dynamical

exponent z = 1/3, ∆c ∼ N−z. This is usually accompanied by a polynomial-like

decay of the residual energy with increasing annealing time τ . This is indeed the

1The case γ = 1, due to the conservation of Sz , presents only a trivial evolution for that
concerns our analysis and so has not been considered.
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Figure 3.2: (Color online) Smallest gap and dynamical gap at the critical
point as function of the size of the system.
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Figure 3.3: (Color online) Residual energy per site and incomplete magneti-
zation for the LMG model with N = 1024 for different values of the anisotropy
parameter γ. In all cases, for slow enough quenches, a power-law behavior τ−3/2

appears.

case, for both the residual energy and the incomplete magnetization, as shown in

Fig.(3.3) and, more in detail for γ = 0, in Fig.(3.4). The behavior appears to be

qualitatively independent on the value of the anisotropy parameter γ for γ < 1,

see Fig.(3.3); this was expected due to the fact that the minimum gap has the

same large-N behavior irrespective of the anisotropy. In the following only the

case γ = 0 will be discussed.

Inspection of Fig.(3.4) reveals three different regimes. For fast quenches the dy-

namics involves almost all the levels, see, e.g., Fig.(3.1) for τ = 5. The residual

energy per site is close to its maximum and shows very little dependence on the

size of the system and on the annealing time τ . For larger values of τ , a second in-

termediate region appears in which a power-like decay emerges, with Eres ∼ τ−3/2.

Finally, by further slowing the quench rate, a third large-τ regime characterized by
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Figure 3.4: (Color online) Residual energy per spin as function of τ for γ = 0
compared with different power-law behaviors.

a different power-law, Eres ∼ τ−2, emerges. The emergence of the last two regimes

is briefly discussed by means of a Landau-Zener approach adapted to the present

problem.

The argument follows closely the one given in [15]. The probability of exciting the

system into the first excited state, obtained by the Landau-Zener formula

PLZ ≃ e−α∆2τ , (3.17)

with α = π/4, gives a lower bound to the true transition probability, as it ignore

the transitions to all the other excited levels. Using the scaling of the critical point

gap with the number of spins, ∆ ∼ N−1/3, it is possible to determine the maximum

system size for a defect-free quench once the probability for this to occur is fixed

to an arbitrary small value P̃ex. This gives:

1

Nfree
∼
(

| ln P̃ex|
α

)3/2
1

τ 3/2
. (3.18)

One can consider 1/Nfree as an estimate of the fraction of the flipped spins after

the quench. The residual energy per site in the LMG model can then be evaluated

to be

Eres

N
∼ 1

N2

N

Nfree
N ∼ const.

τ 3/2
. (3.19)

This simple estimate is in good agreement with the numerical data in the inter-

mediate regime of Fig.(3.4).
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For short range models the same power law of Eq(3.19) can be also derived by

determining the spatial scale over which defects occur [15]. It has been tried

to apply the arguments of Zurek et al[15] to the LMG model by identifying the

correlation length with the coherence number introduced in [54]. The procedure

that has been followed, however, does not lead to the correct exponent. There

is a reasonable confidence that the failure in obtaining the correct scaling with

this second method may be related to the above identification and the consequent

definition of defect density. It would be interesting to find the correct argument

in order to extend the approach by Zurek et al[15] or Polkovnikov [16] to infinite

range models.

Effective two-level approximation - As already mentioned before there is, for slower

quenches, a further crossover to a different power-law. Can one explain also this

behavior by using a Landau-Zener argument? To this end, it is important to refine

this comparison and to understand to which extent the dynamics of a many-body

system described by the LMG model can be described by two (many-body) levels.

In general, in a many-body system there will be a number of avoided crossings

and multiple LZ transitions, including interference between them. Only when a

single avoided crossing is dominant and well separated from the others a two-level

approximation is appropriate. A detailed analysis of this issue is summarized in

Figs.3.5 and 3.6 where the case of N = 32 is shown as an example. The analysis

starts by extracting the best dynamical minimum gap and adapting to it the

following two-level Hamiltonian:

HLZ =

(

−ΩLZ(Γ− Γ0) ∆LZ

∆LZ ΩLZ(Γ− Γ0) .

)

, (3.20)

In the effective Landau-Zener problem ΩLZ ,∆LZ and Γ0 are the fitting parameters

and Γ = −t/τ . In Fig.(3.1) the dashed line represents the instantaneous gap of

the Hamiltonian (3.20) suited to the case N = 32. From here the results of the

full LMG model are compared with those obtained using LZ theory. As shown in

Fig.(3.5), the excitation probability in the LMG model for slow enough quenches

coincides with that of the effective LZ problem. It appears that this approximation

is good also in the estimate of the asymptotic value of the probability for 10 <

τ < 100. Deviations come predominantly from the more enhanced oscillations of

the post crossing region in the LMG model. For larges τ ’s the asymptotic value

obtained from the effective two-level system gives a very poor approximation to
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Figure 3.5: (Color online) Comparison between the excitation probabilities as
function of Γ of the LMG model with N = 32 and of its effective LZ approxi-

mation for different values of τ .

the actual data. This can be traced back to the presence of further crossings which

are obviously neglected in the two-level approximation. In the LZ scheme this can

be effectively corrected by approximating the LZ crossing probability to the time

before the next level crossing comes into play. This is explained below.

As found by Vitanov [75], it is possible to define the duration of a single LZ event

as the time required by the probability for jumping from zero to its asymptotic

value, linearly and with the slope calculated at the crossing point. Using Γ as

time-scale one can write:

Γjump ∼
P (∞)

P ′(Γcross)
. (3.21)

This time turns out to be exponentially divergent with τ for large τ [75]. This

means that for slow quenches consecutive LZ transitions are not independent. In

a first crude approximation, it can be guessed that the consequence of this is

simply to stop the probability from relaxing towards the asymptotic value when

the system has reached the second crossing. The presence of a power-law regime

∼ τ−2 for extremely slow dynamics is a clear consequence of the finite duration

of the evolution. In the original works by Landau and by Zener, the final time is

supposed to be tf = ∞; here the evolution is stopped at Γf = −tf/τ = 0 for the

LMG model, and at t(LZ)f = −Γ(LZ)f ·τ for the effective LZ, with Γ(LZ)f = Γf−Γ0.

An accurate analysis of the finite-time Landau-Zener model (FTLZ) has been done
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in Ref. [75], where it is shown that the transition probability reads, in this case2

P(FTLZ)(τ) ∼ PLZ(τ) +
(1− 2PLZ(τ))

16∆4
LZ

τ2

Ω2
LZ

(1 +
Ω2

LZ

∆2
LZ

Γ2
(LZ)f )

3
(3.22)

with PLZ(τ) = e−π∆2
LZτ/ΩLZ . As it can be immediately seen from the previous

equation, by sending the final time to infinity the usual LZ probability is recovered.

The crossover rate τ̂ to the τ−2 scaling is obtained by equating the two terms on

the r.h.s. of Eq(3.22). In the limit 8
π
(1 +

Ω2
LZ

∆2
LZ

Γ2
(LZ)f )

3/2 ≫ 1 the crossover time is

approximated by

τ̂ ∼ ΩLZ

4∆2
LZ

1

(1 +
Ω2

LZ

∆2
LZ

Γ2
(LZ)f)

3/2
. (3.23)

In Fig.(3.6) the excitation probabilities of LMG systems of different sizes are com-

pared with their single-LZ approximations. The probabilities for the effective

models are evaluated for three different final time: Γf = 0,Γ1,Γ2, where the last

two are the positions, respectively, of the minimum gap between the ground state

and the second excited level, and the minimum gap between the first and the

second excited levels. As it can be seen, the agreement is quite good and one can

reproduce in this way also the regime with the τ−2 behavior.

Entanglement entropy - Finally the behavior of the entanglement entropy, which

was already used as a tool to characterize adiabatic many-body dynamics in

2There is also a third term in the formula of Vitanov, but it is negligible respect to the second
one in the large τ limit, for details refer to Ref[75].
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Figure 3.7: (Color online) Left lower panel: entanglement entropy of a block
of L = N/2 spins as function of the quench time τ . Right lower panel: entangle-
ment entropy of a block of L = N/2 divided by its maximum value as function
of the rescaled variable τ/N0.66. Upper panel: the time scale τ∗, see the text

for the definition, as function of system size N .

Refs. [18, 21], is discussed. The results are summarized in Fig.(3.7). In the

left lower panel the entanglement entropy, for a block of size L = N/2, of the

state evolved down to Γf = 0 is plotted as function of the quench time τ . For

fast quenches, τ → 0, the state does not evolve (it remains in a nearly factor-

ized state), thus the entanglement necessarily tends towards zero. For very slow

dynamics τ → ∞, dealing with finite systems, the evolution eventually becomes

adiabatic and the entanglement picks up the value it assumes in the final ground

state, Sgs(Γf = 0) = 1, independently on the subsystem size [71]. Between this two

limiting behaviors, the entropy reaches a size-dependent maximum at an interme-

diate value of τ . An interesting feature is that the presence of a finite minimum

gap can be easily connected with a time scale for the decaying of the entangle-

ment. A possible choice for this time scale consists in selecting the τ ∗ at which the

entropy has reduced by half the value of the its peak respect to the slow quench

limit

SN/2(τ
∗) =

(Smax − 1)

2
+ 1 . (3.24)

In the upper panel of Fig.(3.7), τ ∗ determined in this way is shown as a function of

the system size N . For large N , a power-like behavior emerges with an exponent

∼ 0.66, hinting at a relation

τ ∗ ∼ 1

∆2
. (3.25)
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In the lower right panel of Fig.(3.7), the entanglement SN/2 divided by its maxi-

mum value Smax is plotted as a function of the rescaled variable τ/N0.66, showing,

for large systems (N ≥ 128), a collapse of all data on the same curve. Note that

Eq(3.25) expresses exactly the same energy-time relation found in the usual LZ

system, see Eq(3.17), so that the correspondence stated in previous sections is

again supported.



Chapter 4

Optimized Quantum Annealing

and Quantum Speed Limit

4.1 Introduction

In this second part of the thesis, the condition of a linear quench is relaxed and

an optimal time-dependence of the annealing driving term is investigated. There

are different reasons justifying this research effort. Beside the QA-AQC aim at

paths with a reduced loss of adiabaticity, see Sec. 1.3.4, the optimization problem

has been object of a more general and reinvigorated interest in recent years. The

issue of devising a suitable Hamiltonian evolving a given system into a selected

final state, has become of central relevance in many fields of physics and informa-

tion science, especially with the advent of the quantum computation and quantum

engineering. The challenge in this field is to find out the fastest possible way to

perform such a transformation with the maximum accuracy, in prospect the of re-

alizing sophisticated quantum circuits minimizing decoherence effects. Indeed the

decoherence time sets a tight bound for the running time of a quantum computer,

above which even the most perfect and clever quantum algorithm becomes totally

useless.

A related and intriguing matter is that these hypothetical devices suffer strict

constraints induced by their intrinsic quantum nature and the sensitivity to these

limits is an open problem of theoretical and practical interest [76]. In Sec. 4.2

the existence and the effects of those bounds, summarized in the concept of the

so called Quantum Speed Limit (QSL), are presented. The rest of the Chapter

47
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address the study of the optimization of QA-AQC techniques through the Kro-

tov algorithm (see Sec. 4.3) and analyzes the performance of the method in the

Landau-Zener model (Sec. 4.4) and in the ordered Ising chain (Sec. 4.5). The

limits revealed by the optimization procedure are compatible with the ultimate

bounds imposed by quantum mechanics, supporting the power of method.

4.2 The Quantum Speed Limit

It has been established for many years that a transformation of a quantum system

cannot be performed within an arbitrary short time[76]. A finite maximum speed,

undergoing the name of Quantum Speed Limit (QSL)[77], cannot be overcome

in evolving a quantum state into a distinguishable target. The origin of this

constraint can be brought back to the fundamental principles ruling the quantum

physics. As outlined by Aharonov and Bohm many years ago [78], the correct

meaning of the uncertainty principle,

∆E∆t ≥ ~, (4.1)

is not the common interpretation for which the energy cannot be determined

instantaneously without introducing an error (reproducible energy measurements

arbitrarily fast are indeed allowed [78]), but that the inner time of a state, i.e. the

lifetime, is connected to its energy variance ∆E through the Heisenberg relation.

An equivalent statement is that no unstable quantum system can decay completely

within a time ~/∆E[79].

This simple conclusion has been demonstrated by Bhattacharyya rielaborating

previous results by Mandelstam and Tamm [80]. In Ref[79], for a time-independent

Hamiltonian, the presence of this ultimate bound has been also exactly determined;

for a transformation towards an orthogonal state it assumes the form (~ = 1)

TQSL =
π

2∆E
(4.2)

where ∆E represents the spread in energy of the initial state |ψ(tin)〉. This relation

can be generalized to the case of non orthogonal states[81], leading to

TQSL =
1

∆E
arccos〈ψ(tin)|ψG〉 (4.3)



Chapter 4 Optimized QA and QSL 49

where |ψG〉 represents the target. Almost ten years ago, Margolus and Levitin[82],

while discussing the problem of how fast a quantum computer can run, demon-

strated that a quantum system with a bounded average energy E cannot evolve

into an orthogonal state in a time shorter than

TQSL =
π

2E
. (4.4)

Identifying previous fundamental bound, the authors suggested that, fixed an av-

erage energy, it is not possible to construct a state with a very large ∆E in order to

achieve an arbitrary fast transformation, taking in account only the limit worked

out by Bhattacharyya. Both Eq(4.2) and Eq(4.4) are valid in general so that the

QSL is obtained by considering the maximum value between the two[77]. For

states in which ∆E = E, previous bounds coincide and can be exactly attained1;

however in Ref[83] it is shown that the ultimate limits of Eq(4.2) and Eq(4.4)

cannot be reached if ∆E 6= E.

These bounds have been also generalized, in principle, to the situation of a time

dependent-Hamiltonian[84, 85], but so far the QSL in a time-dependent framework

has been practically determined in few simple cases[86, 87]. It can be guessed that

there should be a tight link between the goal of devising an exact transformation

between two states employing a time-dependent Hamiltonian (QSL perspective)

and the aim to perform an evolution without production of defects (QA-AQC point

of view). In the following the attention will be addressed to this topic; in particu-

lar the parallelism between the achievement of a target within the minimum time

(QSL) and the search for an optimal time dependent shape of the quench will be

stressed through the application of the Krotov algorithm.

4.3 Optimization through the Krotov algorithm

Among the various techniques proposed to reconcile accuracy and speed in quan-

tum dynamics, the optimal control through the Krotov algorithm is considered

a very promising tool[36]. This is a numerical recursive method which seeks the

optimal control pulses necessary to implement the required quantum transforma-

tion by solving a Langrange multiplier problem [88, 89, 90]. This technique has

already been applied with success to a wide range of quantum systems [90, 91].

1A simple example is given by the spin-flip considered in Ref[76].
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One issue that is not yet fully understood about this optimization is what its

limits are, and how these limits may be approached. Besides being of interest

from a theoretical perspective, the discovery of such a constraint is important for

practical implementations of optimal control. The procedure followed to enforce

the Krotov algorithm is summarized below.

Given an input state |ψ(0)〉 and a time-dependent Hamiltonian H(t), that depends

on a set of time-dependent control functions Γ(t) = {Γ1(t),Γ2(t), · · · ,Γk(t)}, an

estimation of the error in reaching the goal state |ψG〉 at the time T is obtained via

the infidelity defined in Eq(1.9), that with previous conventions can be expressed

as I = 1− |〈ψG|ψ(T )〉|2, where |ψ(t)〉 represents the evolution of the initial state

upon H(t). The optimal control technique of Refs [36, 88, 89, 90] allows to find

an optimal time-dependence for the set of parameters Γ(t) with the goal of mini-

mizing the infidelity. This is obtained by looking for the stationary points of the

functional2

F [ψ, ψ̇, χ,Γ] = 1− |〈ψG|ψ(T )〉|2

+

(
∫ T

0

dt〈χ(t)|
{

|ψ̇(t)〉+ iH [Γ(t)]|ψ(t)〉
}

+ c.c.

)

(4.5)

in which the auxiliary states |χ(t)〉 play the role of a continuous set of Lagrange

multipliers imposing the fulfillment of the Schrödinger equation at each time dur-

ing the dynamics. Setting to zero the functional derivatives of F with respect

to its arguments, a Schrödinger-like equation for the auxiliary state, i|χ̇(t)〉 =

H|χ(t)〉, with the boundary condition |χ(T )〉 = |ψG〉〈ψG|ψ(T )〉, and the condition

2Im〈χ(t)|∂ΓH(t)|ψ(t)〉 = 0 are derived[90].

Through the immediate feedback control procedure [89], these basic equations are

exploited to find the optimal Γ(t) via an iterative algorithm that is guaranteed to

improve the fidelity at each step. The procedure requires the following operations:

(i) |ψ(t)〉 is evolved from 0 to T with an initial guess Γ(0)(t); (ii) the state |χ(T )〉
is calculated and propagated backward in time from T to 0 with the same Hamil-

tonian used for the forward evolution of |ψ(t)〉; (iii) the states |χ(t)〉 and |ψ(t)〉
are evolved again forward in time, the first with the old parameter, the latter with

the updated Γ(new)(t) = Γ(old)(t) + 2Im〈χ(t)|∂ΓH|ψ(t)〉/λ(t), where the function

λ(t) enforces the values of the parameter at the beginning and at the end of the

2In order to simplify the notation, the case of a single control parameter Γ(t) is considered.
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evolution. Points (ii) and (iii) are repeated in such a way the optimal Γopt(t) is

constructed iteratively starting from the initial guess Γ(0)(t).

In order to establish a link with the QSL theory, the performance of the process

is analyzed as a function of the total evolution time T and it is shown that the

method is able to produce infidelities arbitrarily close to zero only above a cer-

tain threshold TQSL, which is compared with the dynamical bounds affecting the

system. A good agreement between these (in principle) independent quantities is

found, meaning that the effectiveness of the control pulses is only limited by the

dynamical bounds of the system. Considering the restricted set of controls allowed

in the problem, and the fact that the initial equations are not meant to optimize

T , this is a rather remarkable fact which suggests that optimal control is a pos-

sible candidate for an operational characterization of the QSL of complex systems.

For the sake of clarity and for demonstration of the generality of the argument, two

paradigmatic examples have been focused on: the Landau-Zener (LZ) model [42],

and the ordered Ising model. The former case constitutes a basic step for the

control of complex many-body systems, whose evolution, for finite size systems,

is in many cases a cascade of LZ transitions [9]. QA-AQC [7] is known to be

limited by avoided crossings in the time-dependent system Hamiltonian and by the

inability to avoid excitation of the system. The second case is testbook example

of a many-body quantum system showing a quantum phase transition.

4.4 Landau-Zener model

The first example considered is the paradigmatic case of passing through an

avoided level crossing, modeled by the modified LZ Hamiltonian

H [Γ(t)] =

(

Γ(t) ω

ω −Γ(t)

)

, (4.6)

in which Γ(t) is the control parameter that should be optimize through the Krotov

algorithm. More precisely, the evolution is started by preparing the system in the

instantaneous ground state of H [Γ(0)] and the ground state of H [Γ(T )] is assumed

as target, with Γ(T ) = −Γ(0) (|ψ(0)〉 and |ψG〉 are thus orthogonal only in the

limit |Γ(T )| = |Γ(0)| = ∞). As an initial guess Γ0(t) for the control, Ref[92] has
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Figure 4.1: (Color online) Infidelity I = 1 − |〈Ψ(T )|ψG〉|2 versus number of
iterations n of the Krotov algorithm [36] for different values of T (in units of ~/ω)
for Γ(T )/ω = 500. The dashed line corresponds to the estimated QSL (TQSL =
1.5688) while the dot-dashed line is an exponential fit. Inset: Second derivative
of the infidelity logarithm with respect to the logarithm of the iteration number.

been followed. Here on the basis of the adiabatic theorem [37] the control pulse

Γ(t) was selected through a differential equation

dΓ

dt
= γ ∆2(Γ), (4.7)

where ∆(Γ) is the instantaneous gap and γ is a constant determined by the bound-

ary conditions. For the LZ model of Eq(4.6) ∆(Γ) = 2
√
ω2 + Γ2 and it turns out

that

Γ(t) = ω tan

[

4ωγ(t− ti) + arctan

(

Γ(ti)

ω

)]

γ =

[

arctan
(

Γ(tf )

ω

)

− arctan
(

Γ(ti)
ω

)]

4ω(tf − ti)
(4.8)

In numerical simulations −Γ(ti) = Γ(tf) = Γ̂ and ti = −Γ̂τ = −tf have been

assumed so that the total evolution time for the LZ model is T = 2Γ̂τ .

Starting from Γ0(t) defined above, the optimal control algorithm has been run

for various values of the total time T . The results are reported in Fig.(4.1) by

plotting the infidelity I as a function of the iterations n of the algorithm. As

can be clearly seen from the figure, when T < TQSL ≈ 1.5688, the infidelity I
does not converge to zero: its curvature becomes asymptotically flat. On the

contrary, by progressively increasing T towards and above TQSL, the curvature

changes sign and the infidelity in the large iteration limit decreases exponentially,

as confirmed by the fit in Fig.(4.1). In the inset of Fig.(4.1), data for the second
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derivative of the infidelity logarithm with respect to the logarithm of the number

of iterations n for different T are shown: the derivative starts to cross the zero line

for T ≈ 1.58, and for T > TQSL it clearly becomes negative. It is worth noticing

that the change takes place in a restricted range of time corresponding to about

2.5% of the total evolution time. These findings are reflected by some interesting

features that emerge from the study of the pulse shape of the optimization process,

see Fig.(4.2). For T < TQSL, the pulse develops a peak which grows indefinitely

in height by increasing the number of iterations n of the optimization procedure:

that is, the control seems unable to converge towards an optimal shape. On the

contrary, when T > TQSL, after a certain number of iterations, corresponding

approximately to the appearance of the exponential decay regime, the shape is

stable with respect to the iterations, and only small corrections of the order of the

infidelity take place. Remarkably, the peculiar feature of the initial guess Γ0(t)

of being almost constantly zero for most of the central part of the evolution is

preserved by the recursive optimization of optimal control [36], suggesting that,

for this simple model, an estimate of a finite resource QSL bound TQSL for T

can be deduced by a time-independent formula, assuming H0 = H [Γ = 0] as

Hamiltonian. In other words, for most of the evolution time the dynamics can

be effectively described by a time-independent Hamiltonian, which can be used to

analytically estimate the QSL. For transformations induced by time-independent

Hamiltonians, this can be quantified with the Bhattacharyya bound [79] of Eq(4.3),

where for ∆E it has been assumed ∆E0, the energy variance of H0 calculated on

the initial state |ψ(0)〉, i.e. ∆E0 = [ω2− 4ω4/∆2(Γ(0))]1/2. This approach has the

advantage of providing a bound for T that is independent from the effective shape

of the selected pulse.
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Krotov algorithm as function of the total evolution time.

In Fig.(4.3) a comparison between the estimate TQSL through the second derivative

of the infidelity and the theoretical time-independent estimate (4.3) for various

Γ(0)/ω ratios is shown. It is stressed that there are no fitting parameters. The

excellent agreement shows that the optimal control efficiency is ultimately set by

the dynamical bound of Eq. (4.3). Finally in Fig.(4.4) the optimized infidelity

for a LZ with parameters ω = 0.01, |Γ(ti)| = 5 has been compared with the time-

independent optimal evolution as function of the total evolution time T . Again the

agreement is surprising for T < TQSL; noticed that although the time-independent

infidelity is obviously an oscillating function, the optimized data correctly vanish

above the quantum speed limit.
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4.5 Ordered Ising model

The ordered Ising model Hamiltonian (see Eq(2.1) with Ji ≡ hi ≡ 1) with PBC

σ1 = σN+1, through a Wigner-Jordan transformation and a Fourier transform[17]

can be mapped onto a model of N/2 uncoupled LZ-like Hamiltonians with a com-

mon external field Γ(t) but different overlaps and anticrossing point positions:

Hk = 2

(

Γ− cos(k) sin(k)

sin(k) −(Γ− cos(k))

)

(4.9)

with k = π(2i+ 1)/N , i = 0, (N/2)− 1 and a gap given by

∆k = 4
√

(Γ− cos k)2 + sin2 k. (4.10)

As seen in Sec. 4.3, once an initial guess for the time dependence of Γ(t) is pro-

vided, the Krotov algorithm iteratively improves the shape of the pulse in such a

way to minimize the infidelity of Eq(1.9), where the goal state is in this case the

ground state of the Ising Hamiltonian with Γ = Γ(tf ).

In simulations the evolution begins in the ground state of the Hamiltonian cal-

culated at Γ(ti) = −Γ(tf ) = 2 and the properties of convergence of the Krotov

algorithm has been analyzed as function of the total evolution time T = tf − ti.
As well known[13], the ordered Ising model undergoes a second order quantum

phase transition for Γ/J = ±1 between a paramagnetic phase for |Γ/J | > 1 and a

ferromagnetic phase for |Γ/J | < 1, so that during the evolution two critical points

are crossed. By dealing with finite size system simulations, the critical point is

smoothed into an isolated minimum gap point, see Fig.(5.4). If it is assumed

that only the first gap accessible during the dynamics is responsible for the loss

of adiabaticity, an indication of the true QSL can be obtained with simple ar-

guments. The transformation between the initial and final states takes place by

going through two LZ-like anticrossing points so that, by knowing how to treat the

case of a single LZ, see Sec. 4.4 and Ref[93], it can be guessed that the required

QSL corresponds to doubling the time needed to safely cross a single critical anti-

crossing point. For a single LZ, with the identification ω = sin(π/N), see Eq(4.9),

it turns out:

T LZ
QSL =

π

2ω
=⇒ T Ising

QSL =
π

sin(π/N)
∼ N, (4.11)
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where in the right side the limit N ≫ 1 has been assumed.

The numerical simulations have been performed by using as initial guess for the

transverse field both a linear ramp and the optimal pulse of Ref.[27]. The results

for a system of N = 32 spins are shown in Fig.(4.5). Here the infidelity of the

calculation is presented as function of the total evolution time T . For a sufficiently

large number of iterations, the algorithm seems to converge at the same value of

the infidelity independently of the initial guess. However, the convergence turns

out to be faster by increasing the size, the effect is more evident when using as

starting pulse the optimal power-law of Ref.[27] as starting pulse. It is also clear

that, when the total evolution time reaches the estimate in Eq(4.11), the infidelity

drops to zero. In Fig.(4.6) the behavior of the infidelity as function of the Krotov

iteration number is presented for the largest system size considered, N = 128. The

scenario is analogous to that one revealed in the single LZ case[93], see Sec. 4.4:

for a total evolution time below the threshold of the estimated QSL, the algorithm



Chapter 4 Optimized QA and QSL 57

0 50 100 150
N

0

50

100

150

T
Q

SL

Ordered Ising: Γ
i
=-Γ

f
, T

QSL
~N

Figure 4.7: (Color online) The numerical estimation of the QSL as function
of the size of the system.

is unable to significantly improve the initial guess; instead, when T is about or

greater than TQSL in Eq(4.11), the convergence becomes more and more rapid by

increasing the evolution time, and the infidelity vanishes. This picture has been

verified for different system sizes in the range 16 ≤ N ≤ 128: in each case analyzed,

at the TQSL guessed in Eq(4.11), the infidelity can be made arbitrarily small within

the maximum number of algorithm iterations used in simulations (nmax = 104). If

the algorithm is able to converge for a given evolution time T , the convergence is

ensured for all larger values of T . In practice, the numerical results fix an upper

bound for the true TQSL. As expected, the numerical estimate scales linearly with

the size as in Eq(4.11), see Fig.(4.7). The fact that numerical simulations seems

to be systematically below the estimate in Eq(4.11) can be justified observing

that, in the ordered Ising model, the two level crossings do not correspond to

two true and separate transformations between orthogonal states, but to two not

totally complete rotations: if after the first anticrossing there is any excitation

probability, the latter doesn’t simply contribute to the final infidelity, but, due

to the presence of the following anticrossing, it can be still reduced during the

evolution. The final effect is a slight reduction of the QSL with respect to the

rough estimate of Eq(4.11).



Chapter 5

Loss of adiabaticity and Quantum

Speed Limit

5.1 Introduction

This Chapter aims at strengthening the link between the limits of the optimized

QA-AQC and the QSL, proposing a new point of view to obtain the behavior

of the loss of adiabaticity (i.e. kink density, residual energy), entirely based on

the fundamental concepts of the QSL theory. This simple derivation holds for a

generic shape of the quench and in a wide class of models, some of them even not

contemplated by Fermi Golden Rule and Kibble-Zurek mechanism. In the next

Section, Sec. 5.2, the tight analogy between the LZ approximation (see Sec. 1.3.3)

and the QSL approach is discussed; it is also shown how the LZ formula brings

too much information if the interest is limited only to the scaling of the quantities

involved, while the QSL treatment seizes all the essential physics of the process.

The the case of a linear quench is then discussed in a general perspective. In the

following Sections non-linear quenches are investigated (polynomial shape Sec. 5.3,

optimal shape Sec. 5.4). Finally comparisons with FGR (Sec. 5.6) and KZM

(Sec. 5.7) are presented.

58
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5.2 Linear quench

In order to fix the basic ideas of the QSL approach, the simple spin-flip driven

problem is firstly tackled. The LZ Hamiltonian[42] of Eq(4.6), in which Γ(t) = t/τ

represents the linear driving parameter is considered. The quench is supposed

to start at t = −∞ in the ground state, spin up configuration, | ↑〉 and the

probability of being in the final ground state, spin down configuration, | ↓〉 at

t = +∞ is investigated. It can be guessed that the transition between the two

states becomes effective only when the tunneling ω is of order of the diagonal

energy E(t) = Γ(t) or, equivalently, when the energy fluctuations1 ∆E = ω are

large enough to cover the gap (∼ 2Γ(t)) between the levels. Then the condition

E(t̂) ∼ ∆E (5.1)

sets a time t̂ ∼ ωτ for the duration of the transition. The QSL theory (Sec. 4.2)

requires a time

t̂ ∼ TQSL ∼
π

2
max

(

1

∆E
,

1

E

)

(5.2)

for the transition toward an orthogonal state. So for the total spin-flip the condi-

tion t̂ ∼ ωτ from Eq(5.1) along with Eq(5.2), t̂ ∼ TQSL ∼ ω−1, lead to the scaling

variable 1 ∼ ω2τ . This relation is equivalent to the well known result expressed

by the Landau-Zener formula, PLZ(τ) = e−πω2τ , in which the same time scale for

the probability decay is identified.

The results can be easily generalized to a many-body system of size N driven across

a quantum critical point2. For a sufficiently slow quench, only the first dynamical

gap turns out to be relevant for the dynamics. The critical gap ∆c = f(N) plays

the role of size-dependent fluctuations and Eq(5.1)-(5.2) determine the conditions

for the maximum defect free size of the system:

f 2(Nfree)τ ∼ κ̃ =⇒ Nfree ∼ f−1

(

√

κ̃

τ

)

, (5.3)

1It turns out that ∆E =
√

〈↑ (↓)|H2 − 〈H〉2| ↑ (↓)〉 = ω.
2We are dealing with Hamiltonians for which it is possible to insert all time dependence in

the diagonal elements in a specific diabatic basis, i.e. H = AΓ(t) + B, being A diagonal and B
hermitian matrices.
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with κ̃ ∼ O(1) constant, that is the same relation contained in Eq(1.33). Then as

in Ref[15] and Sec. 1.3.3, by knowing the relation between Nfree and the quantity

used to estimate the loss of adiabaticity (residual energy, defect density etc), it is

possible to deduce its behavior as a function of τ . A summary of the procedure in

a set of models is the following:

• for the ordered Ising chain[15] ρ ∼ 1/Nfree, ∆ ∼ 1/N and it turns out

ρ ∼ 1/τ 1/2;

• for the random Ising chain[19, 20, 94] ρ ∼ 1/Nfree, [∆]typ ∝ e−C
√

N and it

turns out ρ ∼ 4C2/ ln2 τ ;

• for the Lipkin model[24, 56] Eres/N ∼ 1/Nfree, ∆ ∼ 1/N1/3 and it turns out

Eres/N ∼ 1/τ 3/2;

• for the Grover’s algorithm[6, 92] ∆ ∼ 1/
√
N and with a linear quench s =

t/T where T is the total evolution time, the result is T ∼ N , as for the

classical algorithm;

• for the 1d XXZ model, antiferro-ferro quench[25], Ẽres ∼ 1/Nfree, ∆ ∼ 1/N2

so that Ẽres ∼ 1/τ 1/4.

As outlined in the Introduction and in Sec. 1.3.3, the LZ approximation and so

the QSL approach can be employed also in cases which are intractable with the

KZM or FGR (Sec. 1.3.4). The Lipkin-Meshkov-Glick model is only one example:

being highly coordinated, it is not possible to identify a finite dimension d for

the model. The problem is easily overcome within the QSL approach: once the

gap dependence on the size is known, ∆ = f(N) = N−1/3 see Ref.[56], in the

case of a linear quench, by using Eq(5.3), the scaling variable τ/N2/3 is directly

obtained. In practice, the information about the dimension and critical exponents

ν, z is directly taken in account via the function f−1. In Fig.(5.1) the scaling of

the infidelity3 is shown. It should be pointed out that this scaling corresponds

exactly to the finite-size scaling found for the bipartite entanglement after a linear

quench[24].

Finally it should be noticed that the information required to deduce Eq(1.33) is

not the particular functional dependence of the excitation probability, i.e. the

3Notice that for the LMG model the kink density cannot be defined.
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Figure 5.1: (Color online) Infidelity as a function of τ (inset) and of the scaling

variable τ/N2/3 for a linear quench in the Lipkin-Meshkov-Glick model.

exact LZ formula, but simply the scaling variable contained in it. The fact be-

comes evident through the derivation of the same result via the QSL approach,

Eq(5.3). This observation is at the basis of the application of the argument to non

linear quenches, in principle unmanageable with the LZ approximation, being the

excitation probability in general unknown.

5.3 Polynomial quench

As observed at the end of previous Section, the great advantage of the QSL ap-

proach with respect to the LZ approximation is that the former is easily gener-

alizable to non linear quenches. The extension of the discussion to a polynomial

functional dependence is straightforward. Assuming Γ ∝ sign(t)|t/τ |r, the condi-

tion fixing the transition time, Eq(5.1), leads to |t̂| ∼ ω1/rτ . By using the QSL

constraint, Eq(5.2), the following generalized scaling relation is obtained

κ̃

τ
∼ ω1+1/r, (5.4)

with again κ̃ ∼ O(1), or, in the case of a many body system of size N (∆c = f(N)),

Nfree ∼ f−1

(

(

κ̃

τ

)1/(1+1/r)
)

, (5.5)

and all the new scaling summarized in Sec. 5.2 can be easily derived. This for-

mula is equivalent to the results presented by Sen et al.[41] ρ ∼ τ−rνd/(rzν+1) =

τ−d/[z(1+1/rzν)] and in some sense generalizes them, being applicable to systems
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without a definite dimensionality like the Lipkin-Meshkov-Glick model[53].

As a check of Eq(5.4), in Fig.(5.2) it is shown the scaling of the infidelity for a

polynomial quench with r = 10 in the LZ model; in the picture it has been also

reported the analytical estimate (dashed line) for the excitation probability of the

polynomial level crossing model in the adiabatic limit, given in Ref[95]: the oscil-

lations arise from non-linear interference effects, see AppendixC.

To test the results for many body systems, the equivalence between the formula-

tion with the QSL formalism and the findings of Ref[41] can be manifested in the

case of the Ising and Kitaev 1-d models. For both models d = ν = z = 1, so that

the formula found by Sen et al. leads to ρ ∼ τ−r/(r+1). On other hand it turns

out that ∆ = f(N) ∝ N−1 and Eq(5.5) for QSL brings to Nfree ∼ τ 1/(1+1/r) or

ρ ∼ N−1
free ∼ τ−r/(r+1).

5.4 Optimal quench

The QSL perspective is able to treat in a natural way also a generic non-linear

quench like those used in local optimization. As discussed in Sec. 4.4, the optimal

pulse of Ref.[92] is obtained by solving the differential equation Γ̇ = γ∆2(Γ), where

∆(Γ) is the instantaneous gap and γ is a constant determined by the boundary

conditions. For the LZ model, this leads to Eqs(4.8) and recalling the conventions

used in the simulations, −Γi = Γf = Γ̂ and ti = −Γ̂τ = −tf , the total evolution

time for the LZ model is 2Γ̂τ . For the non-linear quench of Eq(4.8) the new scaling

variable is easily obtained. In the limit Γ̂ ≫ ω, we have ωγ → π/4(2Γ̂τ); in this

case Eq(5.1), brings to the condition t̂ ∼ τ , so that, from Eq(5.2), the scaling
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Figure 5.3: (Color online) Infidelity as a function of τ (inset) and of the scaling
variable ωτ for the non linear (Roland and Cerf formula) quench.

relation ωτ ∼ 1 is obtained, see Fig.(5.3).

As a further test for an optimal quench, the Grover’s problem is considered. As

shown in Ref.[92], the local optimal pulse reads in this case

Γ(t) =
1

2

{

1√
N − 1

tan

[

2t

T
arctan

√
N − 1− arctan

√
N − 1

]}

∼ 1

2

{

1√
N

tan

[

t

T
π − π

2

]}

for N ≫ 1, (5.6)

with a minimum gap ∆ ∼ 1/
√
N . Similarly to what was shown above for the

Landau-Zener model, through Eq(5.1) the previous pulse shape leads to t̂ ∼ T ,

which with Eq(5.2), gives T ∼
√
N , i.e. exactly the result found in Ref[92].

Just a few remarks about the local optimization, Eq(5.4) and Eq(5.5). The limit

r →∞, i.e. flat passage through the anticrossing point, induces a quadratic speed

up with respect to the linear quench r = 1, analogously to what observed in

Ref.[92]. Such a speed up is also obtained in Ref.[27] for the optimized adiabatic

pulse in the ordered Ising model: in this case the authors are able to pass from

ρ ∼ 1/
√
τ to ρ ∼ 1/τα, with α → 1−, the adiabaticity condition far from the

critical point preventing from reaching the limit r →∞, i.e. α = 1 (this point will

be discussed in the next Section).

The QSL approach offers an intuitive explanation for this effect: the advantage

taken from a local satisfaction of the adiabaticity condition, with respect to a

global adiabatic constraint is to make effective the transformation from the ini-

tial to the final state for all the evolution time, see Eq(5.1). In other words the

fluctuations (i.e. tunneling) are exploited at the best during the calculation. As
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found in Ref[27, 41, 92] and clearly shown in Eq(5.5), in such a way the speed

up can be at most quadratic. In practice with this procedure a specific path in

the parameter dependent Hamiltonian space has been fixed and a selection of the

optimal speed at each point of the path is simply made.

A larger exponential speed-up would require to act directly on the amount of the

tunneling or on the scaling of the fluctuations with the size, see Eq(5.2). This cor-

responds to look for an alternative path in the parameter dependent Hamiltonian

space[34], for which the minimum gap4 encountered during the calculation scales

with the size in a substantially different way, polynomial or constant. Once such

a path is identified, a local optimization like that one of Ref[92] can be applied for

a further quadratic speed up in the quench time.

5.5 Remarks

It is interesting to discuss and outline from the point of view of the QSL the dif-

ficulties encountered in performing local optimization when different anticrossing

points are present. As shown in Sec. 5.4 and in Ref.[93], the local optimization

consists in reshaping the Hamiltonian driving parameter Γ(t) in such a way that

Eq(5.1) is fulfilled for the maximum time at disposal, in the ideal case for all the

evolution time. When there are many anticrossings threatening the adiabaticity,

the condition of maximum tunneling, if imposed for a specific point, usually turns

out to be non-optimal for the other gaps, especially if they take place at values

of the driving parameter far from the selected one. In Fig.(5.4) the instantaneous

excitation spectrum of the ordered Ising model is sketched[17]: the gaps of ev-

ery single mode k are shown as a function of the Hamiltonian driving parameter

(transverse field). It becomes clear that if the pulse is optimized considering only

the first dynamical gap, an optimal pulse Γ(t) ∼ Γ1 is obtained, Γ1 being the value

of the driving parameter at which the minimum gap is located[93]. In such a way,

the optimal condition t̂ ∼ T is satisfied for the first gap but not for the highest

energy gaps: on the contrary, for such anticrossing points Eq(5.1) is practically

never fulfilled, inducing the excitation of the corresponding modes. As worked out

in Ref.[27], the optimality can be obtained only through the subtle goal of extend-

ing the time of optimal transfer for the first more relevant gap with the constraint

4Here understood as a measure of the tunneling[44].
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of not exciting the higher energy modes. To confirm this scenario, Fig.(5.5) shows

the defect density and the single mode contributions as a function of the total

evolution time for the optimal pulse of Ref.[27] (top) and for the pulse of Ref.[92]

optimized over the first gap (bottom). As it can be clearly seen in the picture,

the optimal power-law pulse of Ref.[27] is able to keep low the excitation of the

high energy modes: the total density of defect, ρ, before reaching the adiabatic

limit regime[23, 24, 75, 96] for large total evolution time (ρ ∼ τ−2), coincides with

the excitation of the first mode. Viceversa, for a pulse optimized by taking into

account only the first gap many modes give a contribution of the same order to

the total defect density.

Finally the oscillating behavior of the optimal power pulse appearing in Fig.(4.5)

and Fig.(5.5) (top) is briefly discussed. This feature is strongly reminiscent of what
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happens for a single LZ in presence of a non-linear, polynomial quench[75, 97],

Γ = sign(t)|t/τ |r. In the latter case, such oscillations correspond to a perfect

conversion of the initial state into the target orthogonal state, i.e. the infidelity

drops really to zero. It can be shown, by using the analytical formula given in

Ref.[75], that the time at which the first oscillation of the infidelity reaches the

zero value presents a minimum in the limit r →∞ and such a minimum is nothing

but the QSL for the single LZ model, as shown in Appendix C. For the ordered

Ising model such a conversion doesn’t happen due to the presence of the other

gaps preventing a complete non-linear interference effect, see Fig.(5.5). On the

other hand the optimal control through the Krotov algorithm seems to be able

to reconstruct the interference effect of the various gaps, destroying the bouncing

shape of the infidelity and ensuring a fast and complete convergence. It should be

noticed that, with the optimal control technique, also the adiabatic regime ∝ τ−2

disappears completely, see Fig.(4.5).

5.6 Analytical derivation: FGR and QSL theory

In this Section an analytical derivation of the loss of adiabaticity through the QSL

theory is provided. The starting point is the FGR approximated expression for

the excitation probability, Eq(1.24). First the case of a single LZ anticrossing is

considered (p ≡ 1):

Pex =

∣

∣

∣

∣

∫ ∞

−∞
dt〈ex, t|∂t|gs, t〉ei

R t dt′[ωex(t′)−ωgs(t′)]

∣

∣

∣

∣

2

, (5.7)

where |gs(ex), t〉 represents the instantaneous ground (excited) state at time t. The

energy difference can be evaluated analytically in this simple case and by using

the notation of Eq(4.6) is given by

ωex(t)− ωgs(t) = 2
√

Γ2(t)− ω2 = 2ω
√

1 + (Γ/ω)2 = ωF (Γ/ω), (5.8)

where F (x) = 2
√

1 + x2 shows exactly the behavior of Eq(1.27). As in Sec. 5.3,

a general polynomial dependence of the driving parameter is considered; the new

variable y = Γ/ω = (sign(t)|t/τ |r)/ω can be then introduced. As in Ref[16]
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assuming 〈ex, t|∂Γ|gs, t〉 = ω−1V (Γ/ω), the matrix element becomes

〈ex, t|∂t|gs, t〉dt = ω−1V

(

Γ

ω

)

dΓ

dt
dt = V (y)dy, (5.9)

and the phase term leads to

∫ t

dt′[ωex(t
′)− ωgs(t

′)] =

∫ y

ω

(

dΓ

dt

)−1

dy′ωF (y′)

=

∫ y

ω1/r τ

r
y′−1+1/r[sign(y′)]1−1/rdy′ω2

√

1 + y′2

=
τ

r
ω1+1/rg(y, r), (5.10)

with g a generic function. Finally the excitation probability can be expressed as

Pex = F
(

τω1+1/r, r
)

(5.11)

that for fixed r is the scaling of Eq(5.4) and used in Fig.(5.2). If it was possible

to solve the integral of Eq(5.10), a more general scaling variable involving τ, ω, r

could be singled out; in Fig.(5.6) the simple scaling τω1+1/r has been tested: it

seems that there is a rough agreement, the dependence on r being responsible for

the differences in the oscillating profile, see Appendix C.

The same formulation allows to recover the scaling variable of the excitation prob-

ability in finite size many body systems For a slow quench the main contribution

to the excitation probability comes from the lowest energy levels, i.e. in Eq(1.24)

only few terms can be kept in the sum. The integral of the energy difference in the

phase is now rewritten in terms of the scaling variable y = Γ/∆, where ∆ = f(N)
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is the critical gap of the system of size N . For the first excited level it leads to

ω1 − ω0 = ∆ · F
(

Γ

∆

)

= ∆ · F (y) (5.12)

where F has the usual definition of Eq(1.27). The meaning of Eq(5.12) reflects

simply the fact that far from the transition region the energy is dominated by

the driving term, viceversa inside the transition region the tunneling part prevails.

Following the same steps of Eq(5.9) and Eq(5.10) the excitation probability is

given by

Pex ∼ G(τ∆1+1/r , r). (5.13)

Then the dependence of the residual energy or the defect density on τ can be

found via the relationship with the defect free size Nfree. By selecting a value P̃ex

to identify the defect free size, i.e.

P̃ex ∼ G(τf 1+1/r(Nfree), r), (5.14)

for fixed r, it turns out

Nfree ∼ f−1





(

G−1(P̃ex)

τ

)
1

1+1/r



 (5.15)

that is exactly Eq(5.5).

Two remarks should be added. As shown in Sec. 1.3.4 and Refs[34, 98], purely dy-

namical effects, not contemplated by statics can occur in determining the behavior

of the loss of adiabaticity, preventing from the direct use of Eq(1.1) to describe the

minimum gap encountered during the evolution. The advantage of the QSL (LZ)

approach respect to the FGR approximation is that the path dependence of the

gap is correctly taken in account in the energy representation through the function

∆ = f(N), without enforcing the usual statical dependence. Second, as discussed

above, with this approach it is assumed that only one excited level is relevant in

determining the loss of adiabaticity. However as suggested by the continuous limit

treatment[16], a contribution to the scaling could derive also from the density of

states. If many accessible levels lie near the first excited state it could be needed
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to include into the integration all of them, modifying in such a way the scaling.

This could be a possible scenario to extend the approach to BKT like transitions.

5.7 Comparison between Kibble-Zurek Mecha-

nism and QSL perspective

As discussed in Sec. 1.3.1, the KZM can be summarized in two steps[40]: the first

is the identification of the time at which the dynamics from adiabatic becomes

impulsive through Eq(1.12); the second one is the relation characterizing the cor-

relation length at the freezing time, ξ̂ ∼ ǫ̂−ν . Assuming a linear quench Eq(1.12)

leads to (ǫ̂ = t̂/τ)

ǫ̂τ ∼ ǫ̂−zν =⇒ ǫ̂ ∼ τ−1/(1+zν). (5.16)

and then the defect density is easily derived, see Sec. 1.3.1.

By using the QSL approach instead the conditions for the intensity fluctuations,

Eq(5.1), and for the duration, Eq(5.2), must be satisfied. From Eq(5.1), identifying

the fluctuations with the gap, ∆E ∼ ∆ ∝ ǫzν , it turns out

ǫ̂zν ∼ t̂/τ. (5.17)

By using the inverse of the fluctuations as estimate of TQSL, it is obtained

τ ǫ̂zν ∼ ǫ̂−zν =⇒ ǫ̂ ∼ τ−1/2zν ; (5.18)

instead with the inverse of the energy it turns out

τ ǫ̂zν ∼ ǫ̂−1 =⇒ ǫ̂ ∼ τ−1/(1+zν) (5.19)

and only this latter relation coincides with the KZM result, in general. Neverthe-

less for particular cases in which zν = 1, Eq(5.18) and Eq(5.19) coincide. This

occurs for the 1d ordered Ising (for traditional paths[34, 98]), for the 1d Kitaev

and for the Landau-Zener models5.

5For the specific case of the LZ model, another possibility to interpret the situation is the
following: as discussed in Chapter 4, the QSL is reached through an optimal pulse close to the
time independent case[93], HLZ

optimal(t) ∼ ωσx. For this kind of transformation ∆E = E[76] and
the identity is recovered.
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5.7.1 Landau-Zener model

In order to better understand differences and similarities between KZM and QSL

approach, the analysis is focused on the LZ model for which an extensive treat-

ment in terms of the KZM has been done in Refs[28, 39]. At a first glance a

disagreement between KZM and QSL perspective in the role and in the definition

of the adiabatic-impulse regions could be revealed. According to the KZM scheme,

for ti = −∞ and tf =∞, the evolution is adiabatic up to the freeze-out time −t̂,
is impulsive for −t̂ < t < t̂ and then is again adiabatic for t > t̂. For the QSL

perspective on the contrary the transformation towards the target state occurs

only in a region centered around the anticrossing point in which the fluctuations

manifest their maximum effect and so contradicting the intuition of a frozen state

within the impulse region. But the contradiction is only apparent and can be

solved analyzing the bounds of validity of the theories.

According to KZM, the loss of adiabaticity takes place in the interval [−t̂, t̂] across

the anticrossing point, in which the state evolves only through an overall phase

and is unable to follow the instantaneous ground state due to the divergence of the

reaction time, see Fig.(1.1). The adiabatic-impulse approximation works better for

reduced impulse interval, see Ref[39], i.e. small freeze-out time |t̂|. This assertion

comes out from the fact that for a LZ system the freezing instant is determined

by the inverse of the instantaneous gap, i.e. by using the notation of Ref[39],

τrel =
1

√

ω2 + (t/τ)2
=

τ0√
1 + ǫ2

(5.20)

with ǫ = t/(τω) = Γ/ω and τ0 = 1/ω and such a equation becomes comparable to

the standard definition of Zurek[99], τrel = τ0/|ǫ| only in the limit ǫ̂ = ǫ(t̂) ≫ 1,

i.e. for fast quenches. Indeed for the freezing time, by using the Zurek equation6,

it turns out

τrel(t̂) = αt̂ =⇒ t̂ ∼











√

τ

α
for αω2τ → 0

1

αω
for αω2τ →∞

(5.21)

and only the first limit gives the usual
√
τ , KZM-like behavior. As outlined in

Ref[39], this fast quench regime is also consistent with the assumption of a small

6In this equation α is a constant that should be determined by fitting the problem in analysis;
for the LZ model, perturbative expansions lead to α = π/2
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impulse region.

Physically by using the language of KZM, two consequences can be drawn: the

loss of adiabaticity should occur in a regime in which the dominant time scale is

the diagonal energy, Γ̂/ω ≫ 1, so that the tunneling doesn’t play any role in de-

termining the freezing time, see Eq(5.21), but fixing a small scale for the energies.

The second conclusion is that the KZM works only for small perturbations of the

initial state, for which the impulse evolution is justified, implying an high produc-

tion of defects: indeed the tunneling in its validity regime acts only for short time.

This fact is evident through the correspondence between KZM prediction and the

perturbative expansion of the LZ formula for αω2τ ≪ 1, see Ref[39].

On the other hand the QSL perspective aims to describe a different regime in

which the initial state is strongly modified, possibly totally transformed into an

orthogonal target. In this case the impulse region is exploited to change the sys-

tem and the best performance is obtained by extending it up to or above the

minimum time fixed by the QSL theory. Indeed the adiabatic regime of KZM can

be related with the region in which the state is not appreciably modified by the

fluctuations in the QSL perspective: in both cases instantaneous eigenstates and

diabatic states are more or less equal. However the two approximations hold in

complementary intervals. As already discussed in Sec. 5.2, with the QSL perspec-

tive by using Eq(5.1) and Eq(5.2) it turns out ω2τ ∼ 1. In this regime, as noticed

in Eq(5.21) and in the following discussion, the adiabatic-impulse approximation

doesn’t hold: indeed in the impulse region the state is drastically changed and not

simply perturbed. Viceversa the condition of KZM, αω2τ ≪ 1, with α ∼ O(1),

can be read as ωτ ≪ 1/ω or in other words t̂≪ TQSL, manifesting incompatibility

with the basic QSL perspective assumptions.
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In the present thesis the problem of adiabatically driving a system through a quan-

tum phase transition has been investigated. The issue has been tackled in different

contexts in order to reach a general understanding of the matter. In this conclu-

sive section, the main results achieved are summarized Chapter by Chapter.

In Chapter 2 the adiabatic quantum dynamics of a one-dimensional disordered

Ising model across its quantum critical point has been studied. The main results

can be summarized in the dependence of the average kink density and resid-

ual energies as a function of the annealing rate: [ρk]av ∼ τ−0.5 small τ (fast

quenches), [ρk]av ∼ (log τ)−2, large τ ; [Eres/L]av ∼ τ−1 small τ (fast quenches),

[Eres/L]av ∼ (log τ)−ζ large τ , with ζ ∼ 3.4. Although the dynamics is dominated

by a very wide distribution of gaps at the critical point, P∗(− ln (∆1)/
√
L) (see

Fig.(2.2)), the distribution for both these quantities turn out to be log-normal with

a variance that decrease, like 1/
√
L, for increasing chain length L: typical and av-

erage values, therefore, coincide for large L. The wide distribution of gaps, on

the other hand, with its characteristic ln (∆1)/
√
L scaling, is responsible, within a

Landau-Zener theory, for the extremely slow decay of the average density of kinks,

[ρk]av ∼ 1/(ln τ)2. This discussion applies only for reasonably large length L. If L

is small, the minimum gap ∆1 of a given instance can be sufficiently large that the

adiabatic regime, predicted to occur beyond a characteristic τc ∝ ∆−2
1 , is actually

seen: a fast decay of ρk and Eres/L is expected [100] for τ > τc, in such a case.

It is interesting to compare these results with those of a classical thermal anneal-

ing, where, according to Huse and Fisher [101], the residual energy also shows a

logarithmic behavior, ECA
res (τ)/L ∼ (log τ)−ζCA, but with an exponent ζCA which

is bound by ζCA ≤ 2.

If this problem is analyzed from the perspective of optimization algorithms, it

seems that quantum annealing (QA) gives a quantitative improvement over clas-

sical annealing for the present system, as is indeed found in other cases [3, 9,

72
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102, 103, 104, 105, 106, 107, 108], but not always (Boolean Satisfiability problems

seem to be a test case where naive QA performs worse than classical annealing,

see Ref. [109]). In this respect, however, several important issues remain to be

clarified. First of all, QA-AQC has a large freedom in its construction: the choice

of the possible source of quantum fluctuations [110] — generally speaking, one

can take H(t) = Hfin +
∑

λ Γλ(t)Hλ —, and the time-dependence of the vari-

ous Γλ(t), which need not be linear in time7. Regarding the time dependence

of the couplings, it can be simply noted that an optimal choice of the “speed”

Γ̇(t) with which the critical point is crossed can provide an improvement in the

exponents [92], but definitely not change a logarithm into a power-law. Regarding

the possibility of adding extra kinetic terms to H(t), it is clear that terms like

−Γxy(t)
∑

i Jiσ
y
i σ

y
i+1 (XY-anisotropy) or similar short range interactions will not

change the universality class of the infinite randomness quantum critical point of

the present model [35]. Hence, a logarithmically-slow QA-AQC is expected also

in more general circumstances, for the present one-dimensional model. It is ex-

pected to be a genuine consequence of the randomness present in the problem at

hand, which makes the adiabatic quantum dynamics intrinsically slow and ineffec-

tive in reaching the simple classical ferromagnetic ground states8. This is perhaps

to be expected in view of the results of Vidal [112], who showed that problems

where the entanglement entropy of a block is bound, can be computed classically

with a comparable efficiency. Generically, in disordered one-dimensional system

the entanglement entropy grows at most logarithmically with the system size at

a critical point [113, 114, 115], at this is not enough to substantially change the

relative efficiency of quantum versus classical algorithms.

Therefore, the route to investigate seems to be following: search for models in more

then one-dimension, where the entropy of entanglement grows stronger, which, at

the same time, have “gentle” enough critical point gap distributions.

Bearing this lesson in mind, in Chapter 3 the adiabatic quantum dynamics of an

infinitely coordinated system, the LMG model in a transverse field, has been con-

sidered. The attention has been focused on the residual energy after the quench

analyzing its behavior as a function of the annealing time, in order to evaluate the

7In order to optimize the adiabatic algorithm one should also find the optimal time dependence
of the coupling constant Γ(t), see Ref. [92].

8However it should be mentioned that for finite-size Ising systems, convergence bound have
been proved for QA-AQC in terms of power-law annealing schedules, see Ref. [111].



Conclusions 74

extent of non-adiabaticity of the evolution. The dynamics is restricted to a sub-

space of definite total spin and parity of its projection along the z-axis, due to the

symmetries of the Hamiltonian. Results appeared to be qualitatively independent

of the value of the XY -anisotropy parameter γ, except for the fully isotropic XX

case at γ = 1, where the further conservation of Sz plays an important role.

Three regimes in the residual energy are identifiable: the first one, corresponding

to fast quenches, is strongly non-adiabatic, involves transitions from the ground

state towards many excited states and is characterized by a residual energy close

to its saturation value. In the intermediate regime, the lowest critical dynamically

accessible gap starts dominating the evolution, inducing a residual energy per site

that decays in a power-like manner, like τ−3/2. The third large-τ region, where the

residual energy decays like τ−2, is understood by taking into account the presence

of additional level crossings. In the effective Landau-Zener description used in

Chapter 3, this results in the requirement to consider a finite-time Landau-Zener

sweep. As show by Vitanov a finite-time sweep leads to a polynomial (in τ) contri-

bution to the LZ transition probability which is dominant for very slow sweeping

rates. Notice that this τ−2 regime, usually described as the general deviation from

adiabaticity deriving by the adiabatic theorem for very slow evolutions9 emerges

here in an alternative way through the parallelism with an effective FTLZ model.

In Chapter 4 and Chapter 5 the other mainstream to improve the performances of

QA-AQC methods has been investigated: the problem of working out an optimal

time dependence of the annealing parameter. In Chapter 4 the issue has been

addressed exploiting the Krotov algorithm, a recursive numerical technique rou-

tinely used to implement the optimal control, but whose efficiency limits were not

yet definitely established. The analysis has been focused onto two paradigmatic

examples: the LZ model, a basic quantum problem, and the ordered Ising chain,

prototype of a many body system manifesting a quantum phase transition. In both

models the study has been performed by looking for the minimum running time

required by the algorithm to produce an arbitrarily small infidelity after the an-

nealing. This time has been then compared with the ultimate constraint imposed

by quantum mechanics onto the evolution of a system, the so called Quantum

Speed Limit (QSL). Surprisingly these two in principle independent quantities

manifest the same behavior, setting not only the previously unknown bounds for

the implementations of the optimal control through the Krotov algorithm, but

9See Ref[23] and S. Suzuki and M. Okada in Ref[5].
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even promoting such a technique to a tool identifying the QSL in a general many

body system.

Finally in Chapter 5 the parallelism between optimized adiabatic evolution and

QSL theory has been exploited to produce a QSL approach to the description of

the loss of adiabaticity. The method works for a general dependence on time of

the annealing and furnishes the correct behavior also in situations in which the

usual Kibble-Zurek mechanism (KZM) and the Fermi Golden Rule (FGR) per-

turbative theory fail. A comparison between the approaches enlightens how the

reason of the failure of KZM and FGR has to be brought back to the not always

allowed statical description of the critical point they assume. Indeed as recently

discovered, a significant path dependence of the critical gap behavior can occur

in a general dynamical scenario. Such a dependence is naturally taken in account

through the QSL description of the loss of adiabaticity.



Appendix A

LZ time independent: H = ωσx

The LZ Hamiltonian can be diagonalized through a rotation R, R−1HLZR = ED

R−1HLZR =

(

cos θ − sin θ

sin θ cos θ

)(

Γ ω

ω −Γ

)(

cos θ sin θ

− sin θ cos θ

)

=

(

−
√

Γ2 + ω2 0

0
√

Γ2 + ω2

)

(A.1)

with tan 2θ = −ω/Γ. Further it turns out

{

sin 2θ = ω/
√

Γ2 + ω2

cos 2θ = −Γ/
√

Γ2 + ω2.
(A.2)

The eigenstates can be expressed through the diabatic basis via the relations























|G.S.〉d = R

(

1

0

)

=

(

cos θ

− sin θ

)

|EX.〉d = R

(

0

1

)

=

(

sin θ

cos θ

)

.

By labeling with | ↑〉, | ↓〉 the eigenvalues of σz and with | →〉, | ←〉 that ones of

σx,i.e.

{

σz| ↑〉 = | ↑〉
σz| ↓〉 = −| ↓〉

,

{

σx| →〉 = | →〉
σx| ←〉 = −| ←〉,
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the initial state, being the ground state of the initial Hamiltonian, HLZ [Γi], can

be written as

|ψi〉 = cos θi| ↑〉 − sin θi| ↓〉

=
1√
2
(cos θi − sin θi)| →〉+

1√
2
(cos θi + sin θi)| ←〉 (A.3)

with θi = 1
2
arctan(−ω/Γi) and the final state as

|ψf〉 = cos θf | ↑〉 − sin θf | ↓〉

=
1√
2
(cos θf − sin θf )| →〉+

1√
2
(cos θf + sin θf)| ←〉 (A.4)

with θf = 1
2
arctan(−ω/Γf) + π/2 or θf = π/2− θi, by using −Γi = Γf .

A.1 Time evolution and infidelity

The evolved state in terms of the initial parameters is given by (H0 = H [Γ = 0])

|ψ(t)〉 = eiH0t|ψi〉

=
eiωt

√
2

(cos θi − sin θi)| →〉+
e−iωt

√
2

(cos θi + sin θi)| ←〉 (A.5)

and so its projection on the final state is

〈ψf |ψ(t)〉 =
eiωt

2
(cos θi − sin θi)(cos θf − sin θf)

+
e−iωt

2
(cos θi + sin θi)(cos θf + sin θf )

=
eiωt

2
(cos θi − sin θi)(− cos θi + sin θi)

+
e−iωt

2
(cos θi + sin θi)(cos θi + sin θi)

= −e
−iωt

2
+
eiωt

2
+

(

e−iωt

2
+
eiωt

2

)

sin 2θi

= −i sinωt+ cosωt sin 2θi, (A.6)
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where θf = π/2− θi has been used.

Then the infidelity I = 1− |〈ψf |ψ(t)〉|2 is given by

I = 1−
[

sin2 ωt+ cos2 ωt sin2 2θi

]

= 1−
[(

1 +
Γ2

ω2
sin2 ωt

)

/

(

1 +
Γ2

ω2

)]

(A.7)

and in the limit |Γ/ω| ≫ 1 it leads to

I ∼ cos2 ωt. (A.8)

A.2 Variance

The Variance V =
√

〈ψi|H2 − 〈E〉2|ψi〉 with H = ωσx and 〈E〉 = 〈ψi|H|ψi〉 can

be now easily determined. It turns out

H|ψi〉 =
ω√
2
(cos θi − sin θi)| →〉 −

ω√
2
(cos θi + sin θi)| ←〉

H2|ψi〉 =
ω2

√
2
(cos θi − sin θi)| →〉+

ω2

√
2
(cos θi + sin θi)| ←〉 (A.9)

and so

〈E〉 =
ω

2
(cos θi − sin θi)

2 − ω

2
(cos θi + sin θi)

2

= −ω sin 2θ = − ω2

√

Γ2
i + ω2

= − 2ω2

G(Γi)
(A.10)

where G(Γ) represents the gap of the LZ Hamiltonian, and

〈H2〉 =
ω2

2
(cos θi − sin θi)

2 +
ω2

2
(cos θi + sin θi)

2 = ω2. (A.11)

Finally the variance is

V =

√

ω2 − ω4

ω2 + Γ2
i

. (A.12)
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Finite time multilevel crossing

models

Although the solution of the 2-level Landau-Zener is known for a long time[42], its

generalization to a number of levels n > 2 is still lacking, but particular exception

as the equal slope (n levels with equal slope crossed by a single tilted level) and

the bowtie (n levels crossing at the same point) cases[116], the amplitude of some

specific extremal transition[116, 117] and a recent approximate analytic solution

for the three levels[118].

The problem becomes more complex if the duration of the evolution is not ex-

tended from ti = −∞ to tf = ∞ as in the original work of Zener, but lasts only

till a finite time tf (FTLZ). In this situation, generalizations of the Landau-Zener

probability are at disposal for the simple 2-level system [75, 119]; it has been also

shown that transition probabilities exactly vanishing in the infinite time duration

limit[120], are non-zero in the FTLZ[121].

2-level FTLZ

In this section the results of Ref[75] are briefly summarized and a link with the

notation used in the thesis is established.
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The Schrödinger equation is given by (~ = 1):

i
d

dt

(

c1

c2

)

=

(

−∆v(t) Ω

Ω ∆v(t)

)(

c1

c2

)

(B.1)

Assuming ∆v(t) = β2t the two dimensionless quantities

τv = βt ωv = Ω/β (B.2)

are introduced. By considering the boundary conditions c1(−∞) = 1 and c2(−∞) =

0, the amplitudes can be expressed via the parabolic cylinder function Dν(z):

c1(τv) = e−πω2
v/8Diω2

v/2(τv
√

2e3iπ/4)

c2(τv) = e−iπ/4 ωv√
2
e−πω2

v/8D−1+iω2
v/2(τv

√
2e3iπ/4) (B.3)

Therefore the probability of being excited at the time τv in the diabatic basis,

Pd(τv) = |c2(τv)|2, is given by

Pd(τv) =
ω2

v

2
e−πω2

v/4|D−1+iω2
v/2(τv

√
2e3iπ/4)|2. (B.4)

In order to obtain the probabilities in the adiabatic basis, the LZ Hamiltonian is

diagonalized via a rotation

R =

(

cos θ sin θ

− sin θ cos θ

)

(B.5)

representing the matrix of change from the diabatic to the adiabatic basis (i.e.

vd = Rva), with tan 2θ = Ω/∆v = ωv/τv, so that

R−1HR =

(

−
√

Ω2 + ∆2 0

0
√

Ω2 + ∆2

)

. (B.6)

The instantaneous ground state in the diabatic basis is given by

|G.S.〉d = R

(

1

0

)

=

(

cos θ

− sin θ

)

(B.7)
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and by starting the evolution in the excited state at ti = −∞ (see boundary

conditions), the excitation probability in the adiabatic basis is

Pa(τv) = e−πω2
v/4|Diω2

v/2(τv
√

2e3iπ/4) cos θ(τv)

− e−iπ/4 ωv√
2
D−1+iω2

v/2(τv
√

2e3iπ/4) sin θ(τv)|2. (B.8)

The duration of the Landau-Zener transition is estimated by the jump time defined

in both basis via

τ jump
a(d) =

Pa(d)(∞)

P ′
a(d)(0)

(B.9)

Approximated formulas for transition probabilities and jump

time

The transition probabilities before and after the crossing are approximated by

Pa(τv < 0) ∼ ω2
v

16(ω2
v + τ 2

v )3

Pa(τv > 0) ∼ e−πω2
v + (1 + 2e−πω2

v)
ω2

v

16(ω2
v + τ 2

v )3

+eπω2
v

√

1− eπω2
v

ωv

2(ω2
v + τ 2

v )3/2
sin ξ(τv) (B.10)

for the definition of ξ(τv) see Ref [75].

The expressions for the jump time in the adiabatic basis are

τ jump
a ∼ 2ωv for ω2

v << 1,

τ jump
a ∼ (const.)ω1/3

v eπω2
v/6 for ω2

v >> 1 (B.11)

the two previous conditions corresponding respectively to the diabatic and the

adiabatic limit.

Thesis notation

In simulations discussed in Chapter 2 a different notation has been used:

H =

(

−∆Γ Ω

Ω ∆Γ

)

(B.12)
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with Γ = t/τ , so that β2 = ∆/τ and

ωv =
Ω

β
= Ω

√

τ/∆

τv = βt = t
√

∆/τ . (B.13)

By indicating with Γf = tf/τ the probabilities for the FTLZ are rewritten as

P (Γf < 0) ∼ 1

16Ω4 τ2

∆2 (1 + ∆2

Ω2 Γ2
f)

3

P (Γf > 0) ∼ e−πΩ2τ/∆ + (1 + 2e−πΩ2τ/∆)
1

16Ω4 τ2

∆2 (1 + ∆2

Ω2 Γ2
f)

3

+ oscillatory part (B.14)

For the duration of the Landau-Zener transition in the adiabatic basis, it turns

out

Γjump =
Pa(∞)
dPa

dΓ
(0)

=
Pa(∞)

dPa

dτv
(0)
√

∆τ
= τ jump

a

1√
∆τ

. (B.15)

3-level FTLZ simulations

The Hamiltonian for the three level system is the following

H =









−∆1Γ Ω1 0

Ω1 ∆1Γ Ω2

0 Ω2 ∆3Γ + a3









; (B.16)

the effect of adding a second crossing has been analyzed, focusing the attention

on the duration of the FTLZ.

Two situations has been considered: in the first, the slope of the second crossing

(∆3) is kept constant and its position (a3) is varied; in the second, the position

is constant and the absolute value of the slope is increased. In both cases the

parameters have been chosen in such a way the third level crosses only the high-

est of the first two (i.e. it doesn’t alter the ground state energy), see Fig.(B.1)

and Fig.(B.2) for the spectrum (Ω1 = Ω2 = 0.2, ∆1 = 1, Γi = −5, Γf = 2).

The behavior of the total excitation probability as function of the quench time

is summarized in Fig.(B.3) and Fig.(B.4). The presence of a power-law regime

∼ τ−2 for extremely slow dynamics is a clear consequence of the finite duration
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Figure B.1: (Color online) Instantaneous eigenvalues for the fixed position
second crossing. The thin solid lines represent the diabatic energies
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Figure B.2: (Color online) Instantaneous eigenvalues for the fixed slope second
crossing. The thin solid lines represent the diabatic energies.
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Figure B.3: (Color online) Excitation probability versus τ for different values
of the slope of the second crossing. The analytic formula of Vitanov for the first

crossing without the oscillatory terms is also plotted.
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Figure B.4: (Color online) Excitation probability versus τ for different values
of the position of the second crossing. The analytic formula of Vitanov for the

first crossing without the oscillatory terms is also plotted.

of the evolution. In the original works by Landau and by Zener, the final time

is supposed to be tf = ∞; here the evolution is stopped at Γf = tf/τ = 2. An

accurate analysis of the finite-time Landau-Zener model (FTLZ) has been done in

Ref. [75], where it is shown that the transition probability is given by Eq(B.14) 1,

where all parameters refer to first crossing of the 3-level system. As it can be

immediately seen from the previous equation, by sending the final time to infinity

the usual LZ probability is recovered.

From Fig.(B.3) and Fig.(B.4) emerges that for moderate absolute value of the

slope of the third diabatic level and for far enough crossings, the total excitation

probability for the 3-level system coincides with the 2-level case. Instead consid-

ering the adiabatic limit (large τ region), both position and slope can influence

the process, modifying the effective duration of the first FTLZ.

1There is also a third term in the formula of Vitanov, but it is negligible respect to the second
one in the large τ limit, for details refer to Ref[75].



Appendix C

Non linear Landau-Zener model

As already discussed, exact analytical solutions are not at disposal for the most

part of the dynamical problems considered in this thesis. In practice the only exact

formula is given by the Landau-Zener probability transition for a linear quench of

infinite duration. However in some cases perturbative expansions allow to work

out the analytical asymptotic behavior of particular transitions probability after

a quench.

In this appendix the problem of a Landau-Zener Hamiltonian driven by non linear

pulse is briefly presented. Following Refs[95, 97], the Dykhne-Davis-Penchukas

formula provides the probability for non-adiabatic transitions in the limit of slow

quenches:

P ∼ e−2ImD(tc), (C.1)

where

D(tc) = 2

∫ tc

0

√

ω2 + Γ2(t)dt with
√

ω2 + Γ2(tc) = 0. (C.2)

The point tc is called transition point and is defined as the complex zero of the

quasienergy E(t) =
√

ω2 + Γ2(t), lying in the upper complex t-plane; if there are

more solutions, tc is the closest to the real axis. Moreover in this latter situation

previous formula can be generalized to include all the points in a coherent sum[95].

However the contribution from the farther zeros is exponentially small compared

to the nearest ones to the real axis.

Essentially we can have two different situations: in the first case only one purely
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Figure C.1: (Color online) Pulse shape as function of time, for different poly-
nomial pulses (Γ ∝ |t/τ |r) with ω = 0.01 and −Γi = Γf = 5.

imaginary zero is present in the upper t-plane, like in the usual linear LZ model;

in the second case we have a pair of zeros with equal imaginary part and opposite

real part. The interference between these two points is responsible for the oscilla-

tions in the excitation probability as function of τ , as shown in Fig.(5.2), Fig.(5.6),

Fig.(C.2) and Fig.(C.4). On the contrary, when only a single zero is dominant,

the effect is absent and the probability shows a monotone profile.

In order to get insight into the issue, different families of pulses have been con-

sidered. In this context a family is an ensemble of pulses with a specific time

dependence and an external control parameter; the family is then generated by

varying such a parameter. It is worth noticing that a pulse family can displays

both behaviors depending on the value that its characteristic parameter assumes:

for instance inside the family of polynomial pulses (the power is in this case the

control parameter), r = 1 is monotone, r > 1 (integer) is oscillating. In Ref[97]

an explicit example with a sinh-like pulse is given; also the modified Roland-Cerf

family, obtained by considering the quantity ω in Eq(4.8) as an independent pa-

rameter a, seems to manifest the same transition when the a is reduced well below

the usual R.-C. value, see Fig.(C.3) and Fig.(C.4).

In Ref[95] the excitation probability is provided for the polynomial pulse shape

with Γ(t) = βr+1tr and r = 3, 5, 7..:

Pex ∼



2

(r−1)/2
∑

k=1

(−1)ke−η sin[(2k−1)/2r]π cos

(

η cos
2k − 1

2r
π

)

+ (−1)(r+1)/2e−η





2

(C.3)

where η = 2νr(ω/β)(r+1)/r and νr =
∫ 1

0

√
1− x2rdx; for large ω/β the main con-

tribution comes from the first term k = 1.

An interesting question is the following: is it possible to take advantage from the
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interference effect to engineer a pulse inducing the spin flip in a very short time?

From Eq(C.3) it turns out that the smallest period of the oscillations is obtained

in the limit r →∞ and is given by (for k = 1):

cos2

(

η cos
2k − 1

2r
π

)

−→r→∞ cos2(2ω5τ), (C.4)

where we used νr→∞ → 1 and the normalization condition of the pulse employed in

simulation, Γ = 5|t/(5τ)|r, so that Γ(tfτ
−1 = 5) = 5, leading to βr+1 = 5−r+1τ−r.

The periodicity limit found in Eq(C.4) is exactly the same induced by the time

independent H = ωσx

P t.i.
ex = 1−

[(

1 +
Γ̃2

ω2
sin2 ωT

)/(

1 +
Γ̃2

ω2

)]

, (C.5)

where Γ̃ = Γ(tf) = −Γ(ti), T = tf − ti and with previous convention T = 10τ . In

the limit Γ̃/ω ≫ 1, we have

P t.i.
ex → cos2(ωT ), (C.6)

so that we have further evidence that the time independent evolution upon H =

ωσx marks a bound to the maximum speed reachable for the spin flip.



Bibliography

[1] W. H. Zurek, Nature 317, 505 (1985).

[2] A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll, Chem.

Phys. Lett. 219, 343 (1994).

[3] T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).

[4] J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Science 284, 779

(1999).

[5] A. Das and B. K. Chakrabarti, Quantum Annealing and Related Optimiza-

tion Methods, Lecture Notes in Physics (Springer-Verlag, 2005).

[6] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser (2000),

quant-ph/0001106.

[7] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda,

Science 292, 472 (2001).

[8] S. Kirkpatrick, J. C. D. Gelatt, and M. P. Vecchi, Science 220, 671 (1983).
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