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Summary of the Dissertation 

The work presented here has been aimed at exploring a polymer nanoparticle based 

approach to cancer diagnostics and therapy. Cancer is the second leading cause of death in 

the world. Nanoparticles and polymer science have opened up a new world of opportunities 

for the development of efficient medical diagnostic methods and of selective cancer therapy. 

The different (sometimes hierarchical and/or multilayer) structures, shapes and compositions 

of nanoparticles provide good potential for their application in the biomedical field. With the 

development of nanotechnology, various types of uncoated and coated nanoparticles are 

being developed for cancer diagnostics and therapy.  

In an attempt to contribute towards improving cancer therapy three approaches have been 

explored in the present thesis, all of them exploiting a different characteristic of the 

cancerous cell / nanoparticle interaction, and all of them containing a certain degree of 

innovation. 

1) The first approach uses target specific, polymer coated gold nanoparticles and is based 

on the advantages which arise due to their easy preparation, efficient bioconjugation, 

potential non-cytotoxicity, and their tunable and enhanced absorption and scattering of 

electromagnetic radiation that provides an opportunity for their use in cancer cell imaging. 

Furthermore, their strong absorption provides a possibility for them to be used in efficient 

cancer diagnostics ultimately coupled to selective photo-thermal therapy. This combination 

of diagnostics and therapeutic ability defines what in the current literature is often called a 

THERANOSTIC SYSTEM. In this part, we will describe and show the development of a new 

protocol to prepare stable multilayer, polymer coated gold nanoparticles system conjugated 

with folic acid, which makes them potentially, a viable and efficient cancer cell targeted 

theranostic system. We also show that in between different layers one can upload drugs or 
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other molecules of interest for diagnoses or therapy or both. This is shown by uploading a 

Boron 10 (10B) compound in the target specific coated gold nanoparticles, to be developed as 

a probe for Boron neutron capture therapy (BNCT). 

 2) The second novel therapeutic approach for cancer developed in this thesis is based on 

the development of the first combined genomics based delivery of TWO “drugs” to correct at 

the same time TWO fundamental alteration in the cell cycle check-point and cell signaling 

pathway in cancer cells. Here too we use multilayer electropolymer deposition technology 

describing the preparation and characterization of target specific folic acid containing 

Coacervate Particles (CPs). We show here that these CPs are capable to deliver (therefore 

allowing for cell death), to three vey different cancer cell lines, siRNA against the oncogenic 

mRNA (e.g. c-myc) to stop cancer cell proliferation and a plasmid bearing a wild-type tumor 

suppressor gene (e.g. the p53 gene) which are capable of inducing apoptosis and are mutated 

away in at least 50% of all cancer types. 

3) The third part of this thesis, will describe a simple pure polyelectrolyte approach. To a 

rapid diagnosis of the presence of cancer cells which has possible ramifications also for 

cancer therapy. In contrast to the two previous methods that were receptor based targeted 

systems, this approach exploits the physical characteristic differences between normal and 

cancer cells e.g. low membrane rigidity, low membrane integrity and higher concentration of 

negative surface charge in many cancerous cells compared to normal healthy cells.  

The unifying theme of the present thesis that has been the hallmark of the work of one of 

my two supervisors (Dr. Silke Krol) in recent years is the systematic exploitation of the 

electrostatic interactions between nanoparticles and polymers as well as between cells and 

polymers and between polymers themselves. These interactions (that are the same as those 

followed by nature, sometimes more specifically through hydrogen bonding) give to our 
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approach, maximum flexibility to introduce new or to integrate different systems to develop 

multi-functional and/or multi-drug systems. Whilst the approaches used were specifically 

applied, to cancer, it should be possible to develop them for application to other diseases for 

better diagnostics and improved therapeutics.  
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1. Abstract 

Cancer is the second leading cause of death in the world only after coronary diseases. It is 

estimated that within the next 30 years, it will become the main reason for death. This 

bothersome statistic result not from an increase in incidences of cancer, but because deaths 

from heart disease could be reduced to nearly half, while the number of cancer-related deaths 

remains about the same. This emphasizes the need for new and more effective therapies.  

In this section, the importance of nano-diagonostic and therapeutic aspects of nanotechnology 

will be assessed as a new weapon in the arsenal to fight cancer, exploring the advances in 

areas such as improved drug delivery, new therapies, and bio-imaging. 

 
 
2. 1. Cancer: an overview 

According to the World Cancer Report 2008 by WHO, the global cancer burden has 

doubled in the last thirty years of 

the twentieth century, and it is 

estimated that it will double again, 

between 2000 and 2020 and 

almost triple by 2030 (fig.1-1) [1]. 

Cancer, which was once 

considered to be a disease of the 

westernized, industrialized 

countries, has now become a common disease of low- and medium-resource countries (table 

1-1) [2].  

 

Fig. 1-1. Predicted global deaths for selected cause from 2004-
2030 [1].  
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In Italy (2001), cancer accounted for 31% of all deaths (table 1-2a) [3]. In comparison 

with the Eur-A (according to World Health Organisation (WHO), those european countries 

with very low child and very low adult mortality where categorized as Eur-A) average males 

(<24 years old) showed about 17% excess mortality due to cancer, whereas females showed 

15% excess mortality due to cancer (table 1-2b) [3]. Mortality due to cancer of the lymphoid 

and haematopoietic tissue for children (0–14 years old) in Italy was found to be the sixth 

highest in the 2001 as compared to Eur-A. Furthermore, people between the ages of 15–29 

years old, revealed the death rate due to these types of cancer was the second highest in Eur-

A, and equal with Luxembourg (table 1-2c) [3]. 

The “war against cancer” is now in its fourth decade since the declaration of the National 

Cancer Act was passed in 1971. To control, conquer, and eliminate cancer, we need to 

understand cancer as acquirely as possible [4].  

Table 1.1. Summary of cancer (excluding non-melanoma skin cancer) incidences and mortality worldwide in 2008 
(GLOBOCAN 2008, WHO) [2]. 
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Cancer is a disease where abnormal cells divide without control and during metastasis 

they are able to invade through the blood and lymph systems, other tissues. Thus, cancer 

could spread all over the body [5].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.2.  Selected mortality in Italy compared with Eur-A averages (a). Selected mortality data for the group 
aged (b) 1–14 years and (c) 15–24 years by sex in Italy and Eur-A: SDR per 100 000 of population and percentage 
changes from 1995 to latest available year [3]. 
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Anatomically, tumors are highly heterogeneous, showing elevated proliferation along 

with necrosis or hemorrhages in the core [6]. The tumor-induced blood vessels are highly 

permeable enhancing macromolecular transport due to the presence of open gaps (inter-

endothelial junctions & trans-endothelial channels), vesicular vascular organelles and 

fenestrations [7]. In vivo fluorescence microscopic studies suggest that the cutoff and the size 

of these pores are around 400nm [8]. However, the transport of anticancer drugs in/across 

interstitium was opposed by physiological (i.e., interstitial pressure) properties of the tumor 

or physic-chemical properties of the drug molecule (e.g. size, configuration, charge, 

hydrophobicity) [8]. 

Moreover cancer is caused by abnormalities in the genetic material of the transformed 

cells [9]. These abnormalities are due to mutations in the DNA of a normal cell, changing 

them to transformed cells or “mutants”. Mutations are mainly caused by exposure to 

carcinogens; such as tobacco smoke, radiation, chemicals, or infectious agents [10]. Other 

cancer-enhancing genetic abnormalities may occur randomly due to errors in DNA 

replication, or are inherited [11]. The heritability of cancers is usually affected by complex 

interactions between carcinogens and the host's genome with cancer-enhancing genetic 

abnormalities present in cells from birth. Although much progress has been made in 

cataloging the environmental causes and cellular and molecular biological basis for this 

dreaded disease, we still do not have a precise understanding of the differences between a 

cancer cell and its normal counterpart.  

Cancer development occurs when cells in a part of the body begin an ‘out-of-control’ 

growth of abnormal cells, and instead of dying, they outlive normal cells and continue to 

form new abnormal cells. Hanahan and Weinberg [5] have highlighted six hallmarks of most 

cancer, if not all (fig. 1-2). Cancer cells acquire autonomy from growth signals, evasion of 
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Fig. 1-2. The Six hallmarks of 
cancer [5]. 

growth inhibitor signals, evasion of apoptotic cell death, 

unlimited replication potential, angiogenesis, and invasion and 

metastasis, of which all are essential for carcinogenesis.  

With the completion of the human genome sequencing in 

2001 [10, 13] and subsequent improvements in the sequence 

data [14], we are now closer to being able to fully characterize 

the differences between normal and tumor cells. At about the 

same time that the human genome was sequenced, a new, novel focus of research evolved 

from the convergence and coalescence of many diverse scientific disciplines. This new era of 

research called “nanotechnology” introduced the creation, manipulation, and application of 

structures in the nanometer range.  

As described by Heath and Davis [15], nanoparticles have four unique properties that 

distinguish them from other cancer therapeutics: (1) the nanoparticle, which by itself can 

have therapeutic or diagnostic properties and which can carry a complex and highly 

concentrated therapeutic “payload”; (2) nanoparticles can be attached to multivalent targeting 

ligands which yield high affinity and specificity for target cells; (3) nanoparticles can 

accommodate multiple drug molecules that allow combinatorial cancer therapy, either 

simultaneously or serial; and (4) nanoparticles can bypass multiple drug resistance 

mechanisms typical for traditional chemotherapeutics. 

 
2.2. Nanomedicine and new drug therapies for Cancer 

2.2.1. Conventional therapies for cancer 

The traditional strategies for cancer treatment, includes surgery, radiation, and 

chemotherapy or combined strategies of these treatments. These are supplemented by some 
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more specialized therapies such as immunotherapy or hormone therapy which can be applied 

only some tumor types [16].  

The oldest form of cancer treatment is surgery. It renders the greatest chance of cure, 

mainly for solid tumors; especially those which have not yet metastazied to other parts of the 

body. It is and will remain in future one of the most important weapons against cancer. 

Radiotherapy is the second major weapon against cancer. Radiation therapy involves use of 

high-energy particle beams or waves (radiation), such as X-rays, gamma rays, neutrons or pi-

mesons for treating cancer [17]. Radiotherapists often implant radioisotopes into tumors [18]. 

The radioactive material transfers its energy into highly energetic electrons which ionize the 

matter they hit, such as water and/or proteins or other molecules of the cell cytoplasm, or 

RNA and DNA. This ionization changes the molecules and hence leads to variations or 

inactivation in their biological properties; e.g causing cell death or inhibits cell division. 

Radiation is more harmful for cancerous cells than for normal cells because cancerous cells 

are more unstable in all respects and thus more vulnerable to the damaging radiations. 

However, the cellular repair mechanism is also not prominently active in the highly dividing 

cells like cancer cells. However, due to proper functionally active cellular repair mechanism 

normal cells can recover from the effects of radiation more easily. One of the major 

drawbacks of radiotherapy is that that it is impossible to treat only tumor cells, without 

affecting the surrounding healthy cells. 

Chemotherapy uses chemicals to treat cancer, especially suitable for those cancers that 

have been spread out (metastasied) and can not be treated any longer by localized methods 

such as surgery and radiation. One common characteristic of most cancer cells is their rapid 

rate of cell division. Anticancer drugs like taxol (interferes with the depolarization of 

microtubules and hyperstabilizes their structure), doxo- (is thought to intercalates in DNA) or 
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daunorubicin (intercalates, with its daunosamine residue directed toward the minor groove), 

all adversely affects the process of cell division. Thus are aimed to destroy aggressive 

cancers. Nevertheless, chemotherapeutics have the same disadvantage like radio-therapeutics. 

They are unspecific and therefore do not distinguish between healthy and cancerous cell and 

hence damage also healthy cells as well.  

Some more specialized therapies which are only applicable in specific tumor types are 

hormone, immune or photodynamic therapy (PDT). Hormone therapy which is also known as 

androgen deprivation therapy or androgen suppression therapy changes the internal 

environment and prevents the growth of cancers that are hormone-dependent, such as some 

cases of breast or prostate cancers [19, 20]. Hormone therapy lowers androgen levels (either 

by surgery or drugs such as pituitary down-regulators and anti-androgens) and slows down 

the tumor growth or reduces the tumor volume. 

PDT which is a very local and highly tumor specific treatment has greatly reduced the 

side-effects as the photosensitizer is accumulating mainly (intravenous or intratumoral 

injection) in the tumor tissue and then becomes activated by a local application of non-

toxic infrared light. This irradiation produces highly toxic singlet oxygen which 

irreversibly damages the cancer cells so they undergo apoptosis or necrosis [21-24]. 

Unfortunately this technique can be used exclusively for superficial tumors such as 

melanomas, head and neck cancer, tumors of the bladder because of the limited light 

penetration of the tissue and accessability by a light source. 

Immunotherapy (also known as biologic therapy) has emerged as a more specific cancer 

treatment method for cancers that affect the immune system, like leukemia (cancer of the 

leukocytes) and lymphoma (cancer of the lymphatic tissues). These cancers weaken the 

immune system and make it harder for the body to fight off disease. Immunotherapy has 
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proven to be a new cancer treatment that stimulates a patient's immune system so it is better 

able to fight disease by administration of cytokines or monoclonal antibodies [25]. Cytokines 

bind to cancer cells, making them easily recognizable and more susceptible to the action of 

other immune cells. Other cytokines enhance the killing action of immune cells and help the 

natural ability of the body to repair cells damaged by radiation or chemotherapy [26, 27]. 

Interferon-alfa (INF-α), interleukin-2 (IL-2) and colony-stimulating factor (CSFs) have 

shown promise as cancer therapies. INF-α slows the growth of cancer cells, and promotes 

more normal cell activity and stimulates the body's natural immune system to fight cancer 

cells, according to the National Cancer Institute (NCI). Monoclonal antibodies specifically 

target cancer cells and then block their activation (therapeutic antibodies) or inhibit tumor 

growth by delivering covalently bound radioactive chemicals (targeting antibodies) [28]. A 

few of these monoclonal antibodies are currently in clinical trials. Moreover, the Food and 

Drug Administration (FDA) has approved some of them for certain types of cancer treatment 

(see Table1-3, respectively) [29, 30]. Compared to the side effects of standard chemotherapy, 

the side effects of naked mAbs are often ”allergic" reactions which rarely can be life-treating 

but often prevents a second treatment [31].  
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 a 

Table 1.3. (a) List of Monoclonal antibodies till 2008, includes approved and investigational drugs as well as drugs 
that have been withdrawn from market; consequently (the column Use does not necessarily indicate clinical usage). 
(b) FDA approved therapeutic monoclonal antibodies [29]. 
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Table 1-3. (a) List of Monoclonal antibodies till 2008 (continuation…..)
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Table1-3. (b) FDA approved therapeutic monoclonal. 

Table 1-3. (a) List of Monoclonal antibodies till 2008 (continuation…..)
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2.2.2. Nano therapeutic advances for cancer therapy 

Conceivably, the greatest immediate impact of nanotechnologies in cancer therapy is in 

the realm of drug delivery. The therapeutic index of nearly all drugs currently being used 

could be improved if they were more efficiently delivered to their biological targets through 

appropriate application of nanotechnological tools [32, 33]. On the other hand, those drugs 

that have previously failed clinical trials because of toxicity concerns may be re-examined 

using nanoparticulated preparations [34].  

An effective and safe cancer drug or drug deliver system should fulfill the following 

requirements: a) it must have an adequate drug concentration which allows an effective dose 

at the tumor cells, b) it must be targeted to tumor cells, and prevent uptake by normal cells, c) 

should have high biocompatibility, d) should have a long half-life in blood circulation, and 

being stable and keep the drug until they reach their target. 

 

2.2.3. Nanomedicines and drug delivery system 

Nowadays nanomaterials system focus on development of target specific, slow but 

controlled drugs release system. A major milestone was achieved in drug delivery systems 

with the development of technologies that can mask the nano carriers from the immune 

system. This has significantly increased the nano-drug or drug delivery systems blood half-

life. The introduction of synthetic lipid derivatives of polyethyleneglycol (PEG) confers 

‘stealth’ capability on nanocarrior system, due to the hydrophilicity of the PEG chains. This 

PEG stealth avoids opsination and reduces fast blood clearance by immune recognition. 

Hence helps in passive accumulation in tumors via an enhanced permeation and retention 

(EPR) effect [35-37].  
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The first generation of nano drug delivery systems was nanometric liposomes delivering 

their chemotherapy payloads to the tumour reducing the overall toxicity to the body [38]. 

PEG coating have improved the circulation of these liposomal drugs in blood. Liposomal 

formulations of doxorubicin are approved for use in Kaposi sarcoma, breast cancer and 

refractory ovarian cancer.  

The next generation was polyplexes, polymeric nanoparticles precipitated with drug 

molecules and surface functionalized prevent the immune recognition and nowadays even 

having targeting moieties in form of antibodies or folic acid [39, 40]. 

For therapeutic applications, selective or preferential delivery of nanomaterials to sites of 

cancer has to be optimal. The targeting of nanoparticles can be achieved by the conjugation 

of a tumor-specific ligand(s) to nanoparticles for delivery of nanoparticles to tumor sites [41, 

42]. Targeting moieties that have been investigated includes antibodies, peptides, cell surface 

ligands, and aptamers [43, 44]. Targets on tumor cells include tumor antigens, cell surface 

receptors that are internalized (e.g. folate receptors (FR) [45], transferrin receptors [46], and 

tumor vasculature [47]). Active targeting has been extensively studied in preclinical models 

but has not been effectively translated into current clinical applications [48]. In preclinical 

models, targeting has invariably led to an increased accumulation of nanocarriors in tumors 

[48, 49]. In many instances, though targing has enhanced cancer cell uptake at in-vitro level 

but at tumor level overall tumor accumulation of nanoparticles was not significant (table 1-4) 

[48-51]. One potent outcome of this technology has been the development of nucleic acid 

ligands, called aptamers, which mimic antibodies and act as potential replacements because 

they can be designed to bind practically against any antigen. Moreover they are preventing 

the problem with immunogenicity of antibodies [52]. Aptamers have a high affinity for the 

targeted antigens and have been investigated successfully to direct PEG-coated nanoparticles 
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to prostate-specific membrane antigen for prostate cancer [53]. There are numerous other 

examples of aptamer-guided targeting of nanoparticles [54-58]. This area of research 

promises to provide an important new weapon in the arsenal to improve cancer treatment 

outcome. 

 

Finally, the success of nanotechnology in the future will depend on toxicologic issues 

associated with understanding of the fate of nanocarriers in the body, as well as the 

elimination of the risk metabolic products. In this respect, the possibility of using drug 

carriers made from natural polymers (e.g., chitosan, alginate, polypeptides) represents an 

attractive prospect [59-62]. 

The unique properties of nanoparticles and the possibilities to redesign according to one’s 

need have opened the door to new, noninvasive strategies for cancer therapy, previously not 

possible. This includes photothermal therapy (PTT), nanoparticle enhanced radiotherapy, 

targeted combinatorial cancer therapy, and nanoparticle-enhanced radiofrequency cancer 

therapy.  

Table 1.4. Various nanoparticles as Drug Delivery Carriers [48]. 
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PTT relies on unique properties of nanoparticles which have high absorption in the red or 

near infrared (NIR) region. Nanoshells have been most extensively characterized as 

nanoscale mediators of photothermal ablation. O’Neal et al. [63] first demonstrated thermal 

ablation of tumors in a mouse model following systemic injection of particles and exposure 

of tumors to NIR light. Other nanostructures such as nanorods and carbon nanotubes which 

also strongly absorb in the NIR region have also been utilized.  

Gold is an excellent absorber of X-rays. The tumor loaded with nanogold, has lead to an 

enhanced effect in the cancerous tissue compared with the dose received by normal tissue 

during a radiotherapy treatment [64]. Gold nanoparticles have been demonstrated to enhance 

the effect of radiotherapy on tumors in vitro [65] and in mouse models of cancer such as 

melanoma [63-66]. This phenomenon suggests that the specific delivery of gold nanoparticles 

to cancer has the potential to enhance the efficacy of radiation therapy on cancer, allowing 

dose reduction with reduced toxicity to surrounding normal tissues. 

Nanotechnology clearly holds immense potential for targeting cancer. These approaches 

will encompass the desired goals of early detection, tumor regression with limited collateral 

damages, and efficient monitoring of response to chemotherapy. The exciting milestones 

made in these areas need to be paralleled with safety evaluations of the platforms before they 

are translated to the clinics. Nevertheless, we believe that the next few years are likely to see 

an increasing number of nanotechnology-based therapeutics and diagnostics reaching the 

clinic. 

Recently, Multi-Stage Vectors (MSV) have been introduced which are designed to attach 

to the blood vessel walls in a tumor (fig. 1-3, above left). Nanoparticles released by the 

MSVs (fig. 1-3, above right) then seek cancerous cells and inject material designed to kill 

that particular cancer (fig. 1-3, bottom) [67]. 
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2. 3. Nanotechnologies in bioimaging and detection of Cancer 

2.3.1. Conventional Cancer diagnostics 

Conventional primary cancer diagnostics are based on tissue pathology, such as biopsy, 

endoscopy, and imaging which all looked at the cell appearance under the microscope [68, 

69]. Until now biopsy is the only definitive prove for the presence of cancer cells. During a 

biopsy, the doctor removes a sample of the tissue from the abnormal area or removes the 

whole tumor and then the pathologist examines the tissue visually. 

In order to use more non-invasive technologies and visualize also metastasis, imaging was 

developed examining the body by X-ray, or computed tomography (CT), ultrasonography 

and MRI (magnetic resonance imaging). It usually uses a contrast agent to increase the 

imaging contrast for certain organs. One can distinguish two different types of images, 

Fig.1-3. A Multi-Stage Vectors system (MSV), presenting an implanted drug release system in blood 
vessels [67]. 
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functional (MRI, contrast comes from biological active susbstances (water)) and anatomical 

(contrast comes from e.g. bones).  

X-ray imaging is the most common way to visualize tumors. In this case a radiotisotope 

is administered intravenously or orally and passively accumulates in the tumor. CT, 

sometimes called CAT (computed angled tomography) scan, uses special x-ray equipment to 

obtain image data from different angles and then uses computer processing to show a 3-

dimensional cross-section of body.  

Recently, an improved imaging system was developed by positron emission tomography 

(PET) often aid with CT X-ray scan. PET is a nuclear medicine imaging technique which 

produces functional 3-D or 4-D (where 4th dimension is time) image. PET is used heavily in 

clinical oncology (medical imaging of tumors and the search for metastases) [70]. Ultra-

sonography uses high-frequency sound waves to enter the body and the reflected echoes to 

produce a sonogram. But the main problem is the low contrast because usually it is used 

without contrast agents. One improvement is now the usage of coated or uncoated gas 

bubbles to imprive contrast [71, 72]. 

Magnetic resonance imaging (MRI) uses radiofrequency waves and a strong magnetic 

field to provide remarkably clear and detailed pictures of internal organs and soft tissues. The 

technique has proven very valuable for the diagnosis of a broad range of pathologic 

conditions in all parts of the body including cancer, heart and vascular disease, stroke, spinal 

and joint problems. Moreover it can be used not only for anatomical images but also for 

functional. 

The advanced development of cancer molecular biology in the last decade has made 

enormous progress in understanding the molecular events that accompany malignant 

transformation and progression by genomics and proteomics [73]. Molecular diagnostics 
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determines the molecular markers such as genes and proteins typical for cancer cells and the 

signatures interacting patterns of cancer cells (i.e. the genetic changes disrupt the cell's 

normal communication network, due to altered proteins along many different pathways cause 

signals to be garbled, intercepted, amplified, or misdirected) [74, 75]. However, with these 

advances in the conventional methods, no significant improvement in diagnostics and staging 

of the majority of cancer cells in real time [76]. This led to requirement for more sofisticated 

methodology for cancer therapy and diagnostics.  

 

2.3.2. Nano-devices in cancer imaging and diagnostic 

Advances in nanoscience and nanotechnology are augmenting a significant 

improvement of the above mentioned conventional methods leading to a great progress in 

cancer diagnostics. One of the challenges of nanotechnology has been the development of 

multimodal contrast agents (i.e., imaging simultaneously or in succession by more than 

one imaging modality). This approach offers the potential to integrate the advantages of 

different techniques while at the same time surmounting the limitations of each other [77, 

78]. Multimodal contrast agents offer improvements in patient care, and at the same time 

reduce costs and enhance safety, by 

limiting the number of contrast agent 

administrations required for imaging 

purposes. For example, Gd-doped 

gold-speckled silica nanoparticles 

were developed as a multimodal 

contrast agent for MRI and PET 

Figure-1.4. Gold-speckled silica nanoparticles doped with 
gadolinium shell for dual-mode imaging in PET and MRI. The 
signal tagged C1, C2, and C3 are increasing concentrations of 
particles in a tissue-like phantom [78]. 
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using reversed micelles (fig. 1-4) [79]. Quantum dots, which are generally defined as 

particles with physical dimensions smaller than the exciton Bohr radius [80], are 

emerging as powerful optical contrast agents, both for monitoring cellular events and for 

imaging tumours in vivo. The multimodal quantum dots (Q-dots) with the fluorescence, 

X-ray contrast, and magnetic properties (fig. 1-5) [81] can contribute greatly in the field 

of cancer imaging. Unlike Q-dots, a noble-metal nanoparticle exhibits unique optical 

properties, 

depending upon the 

size and shape of 

the particles, due to 

surface plasmon 

resonance (SPR). 

For these properties, 

metal nanoparticles 

have been used for developing oligonucleotide-functionalized gold nanoparticles based 

commercialized biomedical assays for 

the ultra-sensitive detection of biomarker 

in diseases like cancer (fig. 1-6) [82, 83].  

Cancer-related nanotechnology 

research is preceding in another frontier 

in diagnostics i.e. laboratory-based 

diagnostics. Nanodevices can 

Fig.1-5. Multimodal quantum dots (QD) 
visualized in (a) fluorescence, (b) and X-
ray contrast, as well as their (c) 
magnetic properties. (d) The 
fluorescence image of a cross section of 
rat brain showing the labeling of the 
branches of right middle cerebral artery 
with TAT-conjugated QD for targeted 
recognition [81].

Fig.1-6. Colorimetric assays based on the aggregation of 
gold nanoparticles (AuNPs). Two categories can be 
distinguished, cross-linking, and dispersion. The principle 
is to assay the effect of the AuNP size on the dynamic 
range of Optical Density (OD) before and after 
aggregation [82].  
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provide rapid and sensitive detection 

of cancer-related molecules by 

enabling detection to investigate 

molecular changes even when they 

occur only in a small percentage of 

cells. Nanocantilever is a device capable 

of detecting masses as small as 1 

attogram (1 x 10-18 g) at ambient 

temperature and pressure. Conventional 

devices (e.g. Knudsen cell with Quartz 

crystal microbalance, detection 

sensititivety >1ng [84]) require high 

vacuum and low temperature in order to 

achieve comparable sensitivity. The 

nanocantilever sensors are tiny 

cantilevers of a few hundred nanometres 

across that vibrate like a nano “diving 

board”. When an object rests on the 

'diving board' the frequency at which it 

vibrates changes in proportion to the added mass (fig. 1-7) [85].  

Another nanodevice developed in recent years is the nanowire sensors. Nanowire sensor 

arrays are highly sensitive, label-free, multiplexed electrical detection system developed for 

Fig. 1-7. Nanocantilevers are devices which are coated 
with antibodies to capture target macromolecules such as 
proteins, viruses or other biomolecules by the principle of 
a nanobalance. This can be used for designing a new 
class of ultra-small highly sensitive sensors for viruses, 
bacteria and other pathogens or single cell analysis [85].  
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cancer marker detection using silicon-nanowire field-effect devices in which distinct 

nanowires and surface receptors are incorporated into arrays (fig. 1-8) [86].  

 
The newly developed bio-barcode assay system for detection of nucleic acid or protein 

targets (without PCR) has been shown to be extraordinary sensitive (attomolar sensitivity) 

[87]. Two types of particles are used in the assay: (i) a magnetic micro-particle with  

recognition elements for the 

target of interest; and (ii) a 

gold nanoparticle (AuNP) 

with a second recognition 

agent (which can form a 

sandwich around the target 

in conjunction with the 

magnetic particle) and 

hundreds of thiolated single-

strand oligonucleotide barcodes (fig. 1-9). After reaction with the analyte, a magnetic field is 

used to localize and collect the sandwich structures, and then the barcode strands are 

released. They can be identified on a microarray via scanometric detection or in situ if the 

barcodes carry also a detectable marker [88]. 

 

Figure 1-8. The nanowire nanosensor allows 
for real time cancer marker detection at a very 
low concentration and with very high selectivity 
and specificity [86].  
 

Fig. 1-9. The bio-barcode assay is a sandwich immunoassay system [87]. 
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1. A brief overview 

When the size of a material is reduced to the nanometric range the properties change 

completely with respect to the bulk material or even molecules in an unpredictable way. In 

metals for example the surface properties become dominant and give nanoparticles some new 

properties [1, 2]. A nanoparticle is here defined as a sub-microscopic particle with the 

dimension less than 100nm. The radiative properties of noble metal nanoparticles (like gold, 

silver and copper) is greatly enhance if interacting with resonant electromagnetic radiation 

due to the coherent collective oscillation of electrons in the conduction band induces large 

surface electric fields [3]. This enhances both the absorption and light scattering by orders of 

magnitude properties as compared to strong absorbing molecules [4] or the fluorescence of 

fluorophores, respectively [5]. These unique properties of noble metal nanoparticles provide 

a great potential to be used in applications, such as biochemical sensors [6], biological 

imaging and medical therapeutics [6-12] as well as catalysts because of their high surface-to-

volume ratios [13, 14]. 

In case of polymeric nanoparticles consisting of drug molecules precipitated by 

polyelectrolytes or neutral polymers it was observed that they have additional therapeutic 

capabilities like inhibiting the multi drug resistance in cancer cells. This observation has led 

to the development of a novel field of science, polymer genomics [15].  

In the following sections, the properties of the main compounds (polyelectrolytes as 

multifucntional tool, nanogold as core and for possible imaging purposes, and targeting 

moieties to allow guided delivery to cancer cells) for the fabrication of the newly developed 

nano drugs and delivery systems in the frame of my PhD will be described in more detail. 
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2. Nanotechnology in cancer applications 

Nanoparticles and nanocapsules has opened a new arena in the field of cancer therapy 

because of its unique properties such as the small size, controlled release of drugs and 

reduced toxic side-effects [2, 5, 16-24]. Metallic nanostructures demonstrate unique 

electronic, photonic, catalytic as a consequence of the size reduction from bulk material to 

the nanoscale [2, 25-29]. These nanoparticles exhibit similar size ranges as many 

biomolecules, such as proteins and DNA, and thus offer great possibilities for the integration 

of nanotechnology into biotechnology. Typical applications comprise contrast agents for 

disease diagnostics and therapies [30-60], developing homogenous and highly sensitive 

immuno-assay [34-36] and assembling new materials [37, 38]. 

 

2.1. Polymeric nanodrugs  

The nanotherapeutics has drawn the attention of world from researcher to companies. The 

first nanodrug to be approved by FDA was Abraxis BioScience’s Abraxane, for metastatic 

breast cancer treatment, in 2005 [39]. From then onward, there is no turning back and now 

there are several in the list of FDA (table 1-1) [40, 41]. With the introduction of nanodrug, 

the whole medicinal world is now aging to a new era of drug development. The whole 

concept of drug formulation from characteristics, bioavailability, pharmacokinetics, stability, 

drug use, and toxicity has to be reconsidered. It is predicted that better understanding and 

application of nanotechnology will ensure the effective drug delivery which would ultimately 

enhance the efficacy of treatment and patient drug use compliance [39].   
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2.2. Polymer coated nanoparticles in drug delivery 

The use of nanoparticles, polymeric or metallic, is an attractive novel vehicle for drug 

delivery because their small size allows for intravenous administration and the surface makes 

them suitable for multifunctional coatings. Especially polymer multilayer coating on 

Table 1-1. FDA approved nano-drug delivery systems in the market [40]. 
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nanoparticles has several advantages such as easy incorporation of drugs within the layers on 

the nanoparticles, the ability to 

stabilize the drugs in vivo and 

decreased toxicity of the incorporated 

drug molecules [42, 43]. Fig 1-1 [44] 

depicts a common way of the drug 

delivery into cells and the later 

releasing to target. Polymer can also 

be functionalized with cancer marker 

targeting molecules as other 

nanoparticles. Accordingly, the 

polymer can specifically target the 

cancer cells when conjugated to targeting molecule and then release the drugs to the cancer 

[45]. 

 

2.3. Layer-by-Layer Deposition of Polyelectrolyte multilayer on gold nanoparticles 

The Layer-by-layer (LbL) technique basically develops non-covalently bound ultra-thin 

multilayered capsules of organic compounds such as polyelectrolytes, multilayer films which 

are formed by the consecutive electrostatic adsorption of oppositely charged polyions [46-

49]. Popularity of this technique is due to the ability to create highly tailored polymer thin 

matrices with a nearly unlimited range of functional groups and to incorporate via 

electrostatic but also via hydrophobic interaction a drug molecule which facilitates the release 

compared to covalent binding. Moreover the polymers can explore therapeutic properties by 

themselves increasing the potentcy of nanoparticulated polymeric drug systems. 

Fig. 1-1. Intracellular trafficking of nanoparticles. Following 
their uptake by the cell, nanoparticles were transported 
through early endosomes to the sorting endosomes. A fraction 
of nanoparticles recycle back to the cell exterior while another 
fraction is transported to secondary endosomes/lysosomes 
from where nanoparticles escape into the cytoplasm. 
Nanoparticles that escape into the cytoplasm could act as 
intracellular reservoirs for sustained release of the 
encapsulated therapeutic agent [44]. 
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To enhance stability, biocompatibility and affinity of the capsules, a variety of materials 

such as bio-polymers, proteins, DNA, lipids, synthetic polyelectrolytes, multivalent dyes and 

magnetic nanoparticles have been 

used to fabricate and design the shell 

[50, 51]. A schematic presentation in 

fig. 1-2, explains the different types 

of interactions involved in between 

the polyionic layers within the 

capsule which determines the final 

structure of the polyion multilayer thin 

film [52]. Moreover, other short range 

forces (like van der Waals force and hydrogen bonding) also play a significant role in 

determining the film thickness, the final morphology of the film, the surface properties, and 

in some cases, can determine the stability of multi-layers [52].  

The electrostatic interaction is the key interaction between the polyions. The 

understanding of these interactions has helped in the development of new ordered systems 

like 3-dimensional polymer structures and 

Figure 1-2. A schematic representation of forces involved in 
layer-by-layer film growth following the applications 
achieved by controlling or manipulating these interactions 
with processing [52]

Figure 1-3. (A) Schematic of the film deposition 
process using slides and beakers. Steps 1 and 3 
represent the adsorption of a polyanion and polycation, 
respectively, and steps 2 and 4 are washing steps. The 
four steps are the basic buildup sequence for the 
simplest film architecture, (A/B). The construction of 
more complex film architectures requires only 
additional beakers and a different deposition sequence. 
(B) Simplified molecular picture of the first two 
adsorption steps, depicting film deposition starting with 
a positively charged substrate. Counterions are omitted 
for clarity. The polyion conformation and layer 
interpenetration are an idealization of the surface 
charge reversal with each adsorption step. (C) 
Chemical structures of two typical polyions, the sodium 
salt of poly(styrene sulfonate) and poly(allylamine 
hydrochloride) [53]. 
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patterns, selective membranes, and a range of functional organic and organic-inorganic 

hybrid composite thin films [52]. Fig. 1-3 schematically outlined, the LbL multilayer growth 

composed of polyions or other charged molecular or colloidal objects (or both) [53]. With the 

same principle, multilayers are prepared on colloids and on objects with dimensions of 

several tens of centimetres or 

meters  (fig 1-4) [54]. The 

foremost advantages of the LbL 

adsorption from solution are that 

many different materials can be 

integrated in between the 

multilayer films and that the 

possible layer architectures could 

be completely determined in the 

deposition sequence. The most 

remarkable examples of multi-

composite shell include proteins 

[55-56], clay platelets [50, 55, 57-60], virus particles [61], and gold colloids [62, 63]. 

 

2.3.1. Interactions between polyelectrolytes in LbL deposition 

The Influence of small ions on strong polyelectrolytes and their interaction with the 

oppositely charged polyion is quite limited. However, in case of weak polyelectrolyte, the 

layer thickness and its stability could be varied by the ionic strength or pH of the 

polyelectrolyte solution before deposition [64]. This is due to the fact that the varying pH 

condition affects the charge density on the polyelectrolyte (fig. 1-5) [65]. Accordingly, by 

Fig. 1-4. Schematic illustration of the polyelectrolyte deposition 
process and of subsequent core decomposition, as a) core 
attacked by polyelectrolytes; b) coating of charged 
polyelectrolytes on core; c) coating of alternative charged 
polyelectrolyte; d) core with well-deposited polyelectrolyte 
coated layers; e) process of core decomposition and removal 
from coated polyelectrolytes shells and f) Core removed hollow 
capsules [54].  
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changing the ionic strength of a weak 

polyelectrolyte solution capsule 

parameters like layer thickness and 

permeability can be tuned. 

 

 

 

 

2.3.2. The Zone Model for LbL multilayer film growth 

The multilayer growth of two simple cationic or anionic homopolyelectrolyte can be 

divided in 3 distinct zones. Zone I, also considered as charged zone, comprise the first one or 

few layers close to the template. The 

polyelectrolytes in this zone are highly 

influenced by the charge of the template; 

while oppositely charge polyions are 

attracted the likewise charged polyions are 

repulsed. Zone II is considered as “bulk” 

or neutral, in this zone the multilayers are 

not influenced by the envirment due to 

protection from the zone I and II. Zone III is 

also charged as zone I. Polyelectrolytes of 

this zone are influenced by the surrounding medium (i.e. solution or air) to which they 

present the interface (fig. 1-6) [66]. The zonal distribution pattern illustrates that the Zone II, 

is the most suitable region for uploading drug or other molecules of interest.  

Figure 1-5. The average incremental layer 
thickness contributed by weak polyelectrolytes ( 
i.e. PAA and PAH) adsorbed layer as function of 
solution pH, over the pH range 2.5-9.0. Both the 
polyelectrolyte, dipping solutions in this case were 
at the same pH. Solid line represents the PAA 
(polyanion) layer thickness, and the dashed line is 
the PAH (polycation) layer thickness [65]. 

Figure 1-6. Schematic representation of a multilayer. 
Multilayer films can be subdivided into three 
regions: I, II, and III.It should be noted that the 
transitions between regions I and II and between II 
and III are gradual and not as sharp as 
schematically depicted here [66]. 
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2.4. Important properties of gold nanoparticles 

In the present work, gold nanoparticles are used as the core for LbL polymer deposition 

due to its unique properties which may be eventually utilized for diagnostics as well as 

therapy for cancer in the future. 

 

2.4.1. Light absorption by gold nanoparticles 

Gold nanoparticles show a strong absorption band in the visible region due to plasmon 

resonance. Metallic nanoparticles of sub-wavelength 

size in an oscillating electromagnetic field, leads to 

field amplification, both inside and in the near-field 

zone out-side the particle called localized plasmon 

resonance [67]. As a consequence, nanoparticles 

exhibit bright colours both in transmitted and 

reflected light due to  resonance enhanced absorption 

and scattering. The surface plasmon absorption occurs 

due to the dipole oscillations of the free electrons with 

respect to the ionic core of the spherical nanoparticles 

[25]. A net charge difference is shown on the nanoparticle surface when an interaction with 

an electric field results in a polarization of the electrons with respect to the ionic core of a 

nanoparticle (see fig 1-7) [68]. The polarizability α, of a small metallic sphere of sub-

wavelength diameter in electrostatic approximation is given by 

εε
εεπα
2 0

034
+

−
=

M

Ma  

(1.1) 

Figure 1-7. a) A scheme of surface 
plasmon absorption of spherical 
nanoparticles, showing the displacement of 
the conduction electron charge cloud 
relative to the nuclei -dipole surface 
plasmon oscillation [68]. b)  A typical 
surface plasmon absorption spectrum of 
spherical nanoparticles. 
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Where ‘a’ is the radius of the particle; εM and ε0, are the isotropic and non-absorbing 

medium’s dielectric constant and dielectric response on nanoparticles surface, respectively. 

This induces a dipolar oscillation of all the 

electrons in the same phase. The frequency 

of the electromagnetic field becomes 

resonant with the coherent electron motion 

and is designated as εM=-2Re(ε0). This 

relationship is called Fröhlich condition and 

associated mode (in an oscillating field) is 

referred to as, the dipole surface plasmon of 

metal nanoparticles. A strong absorption 

band of gold nanoparticles at around 520nm in the spectrum of (Fig 1-8), is the source of the 

observed brilliant red color of gold nanoparticles in solution.  

Mie (1908) explained first the surface plasmon resonance behavior of spherical metal 

nanoparticles [69]. He solved Maxwell’s equation for an electromagnetic light wave 

interacting with a small metallic sphere. His theory found a wide applicability as it allows the 

calculation of particle extinction spectra, when the material dielectric function is known and 

the size is smaller than the wavelength of the light [67]. For nanoparticles much smaller than 

the wavelength of light (<20nm), only the dipole oscillation contributes significantly to the 

extinction cross section and therefore Mie’s theory is reduced to the following equation: 

[ ] εεε
εω

2
2

2
01 2

9
++

= V
cCext  

(1.2) 

Fig. 1-8. Surface plasmon absorption spectrum of 
15nm gold nanoparticles. A strong absorption band, 
around 520 nm in the spectrum, is the origin of the 
observed red color of the nanoparticles solution. 
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Where V is the particle volume, ω is the angular frequency of the exciting light, c is the 

speed of light, and ε0 and ε = ε1 + i ε2, are the dielectric functions of the surrounding medium 

and the material itself respectively. The resonance condition is fulfilled when ε1(ω) = -2ε0 if 

ε2 is small or weakly dependent on ω [70]. The plasmon bandwidth mainly depends on ε2(ω). 

For bigger nanoparticles, the light is not able to polarize the nanoparticles homogeneously 

and the retardation effect leads to the excitation of higher-order modes [2]. From equation 

(1.2), it can be seen that the peak intensity and position of the surface plasmon absorption 

band is dependent on the size and shape of the metal nanoparticles as well as the dielectric 

constant of the metals and the medium surrounding the particles [2]. The plasmon resonance 

of particles beyond the quasi-static regime (a>10nm) is damped by two competing processes 

Figure 1-9. Schematic representation of radiative (left) and nonradiative (right) decay of particle plasmons in 
noble-metal nanoparticles. The nonradiative decay occurs via excitation of electron-hole pairs either within the 
conduction band (intraband excitation) or between the d band and the conduction band (interband excitation) [71]. 
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(fig. 1-9) [71]: a radiative decay process into photons, dominating for larger particles, and a 

non-radiative process due to absorption. The non-radiative decay is mainly due to the 

creation of electron-hole pairs through either intraband excitations within the conduction 

band or by the interband transitions from lower-lying d-bands to the sp conduction band (for 

noble metal particles). Due to the above reason, as the size increases, the absorption 

maximum shows a red shift (See fig. 1-10, part a) [69]. The bandwidth also changes when the 

size changes. Link and 

El-Sayed [4] have 

shown that the 

bandwidth decreases 

with the increase of the 

nanoparticle size when 

the nanoparticles are 

less than 20nm in 

diameter (Fig 1-10, 

part b) and the 

bandwidth increases 

with the increase of the 

nanoparticle size, 

when the nanoparticles 

are larger than 20nm. 

It has been a well established fact that the bandwidth is inversely proportional to the radius 

‘a’ of the particle for sizes smaller than ~20 nm [69]. It has also been observed that the 

Figure 1-10. Size effects on the surface plasmon absorption of spherical gold 
nanoparticles. The UV-vis absorption spectra of colloidal solutions of gold 
nanoparticles with diameters varying between 9 and 99 nm show that the 
absorption maximum red-shifts with increasing particle size in part a, while the 
plasmon bandwidth follows the behavior illustrated in part b. The bandwidth 
increases with decreasing nanoparticle radius in the intrinsic size region and also 
with increasing radius in the extrinsic size region, as predicted by theory. In part c 
the extinction coefficients of these gold nanoparticles at their respective plasmon 
absorption maxima are plotted against their volume on a double logarithmic scale. 
The solid line is a linear fit of the data points, illustrating that a linear dependence 
is observed, in agreement with the Mie theory [69]. 
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absorption coefficient is linearly dependent upon the volume of the nanoparticles which is in 

agreement with the Mie-theory (Fig 1-10, part c) [69]. 

The strong surface plasmon absorption property of gold nanoparticles offers a great 

potential in photo-thermal therapeutic applications. It is seen that the strong absorbed 

radiation is converted efficiently into heat on a picosecond time domain, due to electron-

phonon and phonon-phonon processes [72]. Thus, upon the laser irradiation at the surface 

plasmon absorption band, the nanoparticles absorb photon energy and then immediately 

transfer into heat energy. If the nanoparticles are incorporated or incubated with 

biomolecules, cells or tissues, this heat energy will cause the sharp increase on the local 

temperature around the nanoparticles and thus cause the damage of the surrounding 

materials. This photo-thermal destructive effect can be used as a therapy for cancer. 

The higher optical cross-sections of the gold nanospheres i.e. of 3-4 orders of magnitude 

as compared to those of conventionally used dyes, has made gold nanoparticles a good 

candidate for photo-thermal therapy. For instance, El-Sayed et al. [73] and Huang et al. [74] 

have successfully used gold nanospheres for laser photo-thermal destruction of cancer cells 

with molar absorption coefficient ε of 7.66×109M-1cm-1) at a plasmon resonance wavelength 

maximum at 528nm. The ε-value of the nanoparticle is 5 orders of magnitude larger than the 

molar extinction coefficient for indocyanine green (ε= 1.08×104 M-1cm-1 at 778nm [2]), a 

Near-Infrared (NIR) dye commonly used in laser photothermal tumor therapy. For treating 

cancer, gold nanoparticles provide a novel class of photo-absorber in medical applications. In 

comparison to the strongly absorbing Eosin Y (ε = 1.12x105M-1cm-1 at 524nm [75]) dye, gold 

nanoparticles absorb about 102 stronger (for nanospheres of 15nm in diameter, ε = 8.1×107M-

1cm-1 at 520nm [2]). Thus, strong plasmon resonance properties make gold nanoparticles a 

strong probe for photo-thermal therapy (PTT). 
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2.4.2. Light scattering of gold nanoparticles 

Gold colloidal nanoparticles are responsible for the brilliant red and yellow colors in 

stained glass windows. Gold nanoparticle suspensions scatter colored light when illuminated 

by a beam of white light [76].  

It is well-known that the plasmon 

resonance of metal nanoparticles is 

strongly sensitive to the nanoparticle 

size, shape, and the dielectric properties 

of the surrounding medium. The light-

scattering gold nanoparticle suspensions 

have the same appearance as 

fluorescent solutions as shown in Fig 

1-11 [5].  

Yguerabide and Yguerabide [5] 

presented the theory of the light-

scattering properties. The light 

scattering intensity is described by 

equation (1.3)  
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where spherical nanoparticle with radius ‘a’ is much smaller than the wavelength λ0 of the 

incident beam is given by the Rayleigh expression, which depends upon the detection 

Figure 1-11. (a) Photograph showing the appearance of 
light-scattering suspensions of silver and gold particles and 
a solution of fluorescein when illuminated by a narrow 
beam of white light. Composition, particle diameter, and 
particle molar concentration are as follows from left to 
right: silver, 40 nm (2 ×10-12 M); gold, 40 nm (1.3 × 10-11 
M), 78 nm (1.7 × 10-12 M), 118 nm (5 × 10-13 M), and 140 
nm (3 × 10-13 M); Solution of fluorescein (2 × 10-6 M). Light 
microscopic image of (b) 58-nm and (c) 78-nm diameter 
gold particles as seen in under light microscope system and 
modified for detecting light scattering particles (60× 
objective and ×10 eyepiece) [5]. 
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direction of the scattered light [77]. The light-scattering power of the nanoparticle is 

expressed in terms of the light-scattering cross section defined by the expression (1.4)  
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where ‘a’ is the particle radius, nmed is the refractive 

index of the medium surrounding the particle, I0 is 

the intensity of the incident monochromatic light, m 

is the relative refractive index of the bulk particle 

material, α is the angle between the detection 

direction r and the incident beam, λ0 is the 

wavelength of the incident beam (Fig 1-12) [6].  

From equations 1.4 and 1.5, it can be seen that 

the light scattering power is proportional to the sixth 

power of the particle radius. Fig 1-13 [6] shows the 

normalized light scattering profile of the gold nanospheres in different sizes and Table 1-2 [6] 

Fig. 1-12. Coordinate systems for describing 
the geometrical arrangement of the 
illuminating and detecting systems. A light-
scattering suspension is at the origin of the 
coordinate system. A monochromatic light 
beam travels along the z axis and is polarized 
along the y direction. The direction r for 
detection of scattered light is described by 
the spherical coordinates, θ and Φ. α is the 
angle between r and direction of polarization 
y of the incident beam [6] 

Fig. 1-13. Calculated light scattering cross section vs wavelength for homogeneous, spherical gold particles 
with different diameters [6]. 
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shows the relative strength of the light scattering of these particles. Therefore, the strength 

and the light scattering profile can be tuned by changing the size of the nanoparticles.  

 

 

The light scattering properties of gold nanoparticles offer great potential for their 

application in biomedical imaging. For example, the light scattered by 60nm gold 

nanoparticles is 105 times more brilliant than the fluorescence emitted by fluorescein 

molecules. In addition, the scattered light color and intensity can be tuned by changing the 

size and shapes of the gold. Compared to fluorescent molecules, the use of gold nanoparticles 

for imaging is simple because they do not photobleach like fluorophores. 

From the explanation above, we know that the peak intensity and position of both surface 

plasmon absorption and scattering bands are dependent upon the size and shape of the metal 

nanoparticles. For the calculation of the total extinction (Qabs) and scattering (Qsca) efficiency 

of gold nanospheres, the Mie theory for homogeneous spheres was considered [66]. Since the 

total extinction efficiency is equal to the sum of scattering and absorption efficiency, the 

absorption and scattering percentage vary according to size and shape of the nanoparticles, 

the Mie theory for total  Qext and Qsca (for a homogeneous sphere) are expressed as infinite 

series [73]: 

Table 1-2. Calculated light absorption and scattering properties for gold particles of different Sizes [6]. 
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Fig 1-14 shows the calculated size and 

shape dependence of the percentage of the 

absorption and scattering efficiency [73] 

using Mie theory, separation of variables 

method and discrete dipole approximation 

method. 

For 40nm nanospheres, the absorption 

cross section is higher than the light Fig. 1-14. Calculated spectra of the efficiency of absorption 
Qabs (red dashed), scattering Qsca (black dotted), and 
extinction Qext (green solid) for gold nanospheres (a) D= 20 
nm, (b) D= 40 nm, (c) D= 80 nm, and polystyrene 
nanospheres (d) D= 300 nm [73]. 
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scattering cross section. However, if the shapes change to a spheroid or nanorod with an 

aspect ratio of 2, they are equal and when the aspect ratio changes to 3 for the nanorodthe 

scattering cross section dominates [47]. By varying the aspect ratio of nanorods the 

absorption and scattering efficiency can be tuned. This tunability between the absorption and 

scattering provides great flexibility for their use in imaging and PTT. 

 

2.5. Gold nanoparticles in cancer imaging and PTT 

During this decade, a variety of nanostructures with unique optical properties has been 

Fig. 1-15. Plasmonic gold nanostructures commonly used for PPTT. a) Nanospheres (transmission electron 
microscopy [TEM] image; b nanorods (TEM image); c Nanoshells (TEM image) [80].
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characterized that are useful in PTT [3, 30, 78-81]. The plasmonic property of the metallic 

nanostructures is being utilized for PTT and is thus termed as plasmonic photothermal 

therapy (PPTT) [79] in order to distinguish it from PTT and PDT. Currently, the chief 

nanostructures that have been demonstrated in PPTT are gold nanospheres [45, 73, 74, 81, 

83–86], gold nanorods [86–89], gold nanoshells [90–93], gold nanocages [94, 95], and 

carbon nanotubes [96] due to their strongly enhanced absorption in the visible and NIR  

regions. Of these structures, the first three nanostructures (fig. 1-15) are especially promising, 

because of their ease of preparation, multi-functionalization, and tunable optical properties 

[80]. 

The absorption band of core/shell particles can be tuned by adjusting the ratio of the 

thickness of the gold shell or the diameter core (Fig 1-15, [80]) and thus enables both strong 

scattering and absorption efficiency. Therefore, they can be used as dual imaging/therapy 

contrast agents (see Fig 1-16, [79]). Fig 1-17 [12] shows the PTT using gold nanoshell in in 

vivo experiments.  
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Fig. 1-16. (a) Selective PPTT for cancer cells in the NIR region by using anti-EGFR conjugated gold 
nanorods [79]. After incubation with anti-EGFR conjugated gold nanorods, HaCat normal cells are 
destroyed at a laser power threshold of 20 W/cm2, while HSC and HOC cancerous cells are destroyed at 
a much lower threshold of 10 W/cm2. The difference reflects the much larger density of gold nanorods on 
the surface of the cancer cells compared to that on the normal cells (b) Selective PPTT for cancer cells 
by using anti-Her2 antibody conjugated gold nanoshells. Only the cells incubated with anti-Her2 
antibody conjugated gold nanoshells are damaged under NIR irradiation [93]. 
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Various preliminary studies 

have reported that the light 

scattering properties of gold 

nanoparticles makes them useful  as 

contrast agents for biomedical 

imaging e.g. multiphoton plasmon 

resonance microscopy [9], second 

harmonic generation microscopy [97], 

third-harmonic generation microscopy 

[11], optical coherence microscopy 

[10] and confocal scanning optical 

microscopy [9]. Gold nanoparticles 

have several advantages as compared 

to other agents, for imaging 

application. The nanogold scatters 

light very strongly, hence is much 

brighter than chemical fluorophores 

and can be easily seen in 

concentrations as low as 10-16M [5, 72]. Moreover it is resistant to photobleaching. Sokolov 

et al. [7, 8] used confocal microscopy to detect the scattering of anti-EGFR/Au nanoparticles 

Fig. 1-17. (a) Gross pathology after in vivo cancer treatment with 
nanoshells and NIR laser reveal hemorrhaging and loss of tissue 
birefringence beneath the apical tissue surface. (b) Silver 
staining of a tissue section reveals the region of localized 
nanoshells (outlined in red). (c) Hematoxylin_and eosin staining 
within the same plane clearly shows tissue damage within the 
area occupied by nanoshells. (d) Likewise, MRTI calculations 
reveal an area of thermal damage of similar dimension to a, b, 
and c [12]. 

Fig. 1-18. SiHa cells labeled with anti-EGFR gold 
conjugates in (a) brightfield (b) in brightfield with laser 
pointer illumination (red patches due to particle 
internalization). (c) laser-pointer illumination at grazing 
incidence. The scattering of gold conjugates is false-colored 
in red. The laser pointer emits light in 630–680nm region 
with power output less than 5mW. The laser pointer 
illuminated an area ca. 3–5mm in diameter. The scale bar is 
ca. 30µm [7].
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in cervical cancer (see fig 1-18, 1-19). Irradiation with a laser will only produce single color 

which is close to the laser wavelength used. When illuminated with a beam of white light, 

gold nanoparticles scatter light of different colors in dependence of the size and shape. [8]. 

This color dependent scattering property provides the potential for imaging studies with a 

simple white light source, which has a low penetration depth during in vivo application. 

 

2.6. Targeting nano-drugs for cancer specificity 

Most negative side-effects of anticancer drugs stem from the fact that they are widely 

distributed throughout the body, causing damage of both, tumour and normal cells. 

Consequently, the efficacy of chemotherapy and, similarly, radiotherapy is often limited due 

Fig. 1-19. Laser scanning confocal 
reflectance (A, C, and E) and confocal 
fluorescence (B and D) images of 
precancerous (A and B) and normal (C-E) 
fresh cervical ex vivo tissue labeled with 
anti-EGFR/gold conjugates. Reflectance 
images were obtained with 647nm 
excitation wavelength, and fluorescence 
images were obtained using 488nm 
excitation and 515nm long band-pass 
emission filter. Reflectance images A and 
C were obtained after labeling with gold 
conjugates under the same acquisition 
conditions. Image E was obtained after 6% 
AA solution was added to the normal 
cervical biopsy and laser power was 
increased by ~6-fold. AA is a nonspecific 
contrast agent that is used in reflectance 
imaging of epithelium to increase 
scattering from nuclei (6). Confocal 
fluorescence images B and D were 
obtained under the same acquisition 
conditions. The reflectance images are 
false colored in red. The scale bar is 20µm 
[7]. 
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to this problem, which is normally tackled by the use of small non-antigenic ligands targeted 

to cancer cells.  

2.6.1. Folic acid as cancer cell targeting ligand 

The Low molecular weight (MW) targeting agents, such as folic acid (Fo), and its counter 

part, the FR,  have emerged as the most [98-103] promising tool for selective cancer therapy 

(fig. 1-20). It was found that malignant cells overexpress significantly higher number of 

folate receptors (≥20 pmol [3H]folate/106 cells) than normal epithelial cells and fibroblasts 

(≤1 pmol [3H]folate /106 cells) [99, 104-108]. This receptor has also been reported as a tumor 

marker in most cancers [104], but especially in ovarian carcinoma [100, 101]. Moreover folic 

Fig. 1-20. Folic Acid. Conjugation of a chelating-linker system or electrostatic conjugation of a NH3
+ group of 

coated particles is accessible via the α- or γ-carboxyl group of the glutamate-moiety of folic acid whereas the 
pteroate part is essential for FR-binding. After receptor binding of the radiofolate the FR/radiofolate complex is 
internalized via endocytosis leading to radioactivity deposition throughout the tumor cell tissue [140]. 
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acid has a very high affinity for its cell surface receptor (Kd~1nM) [109] and its efficient cell 

internalization [119-114]. Once the folic acid binds to the folate receptor, it is delivered 

directly to the nucleus of the cell, because folic acid is required for RNA synthesis [108, 

110]. Thus, the advantages of using Fo as targeting agent is that it is stable, non-

immunogenic and less expensive as compared to proteins such as monoclonal antibodies. 

These properties make it a highly recommended molecule for nuclear delivery of anticancer 

agents [115]. 

2.6.2. Folate receptors as cancer cell target 

The mammalian FR occurs as a family of homologous glycopolypeptides which bind 

folate compounds and antifolates (a group of compounds commonly used to treat varrious 

forms of cancer by produce an intracellular state of folic acid deficiency in turn inhibiting 

folate-dependent enzymes along the 

folate metabolic pathway) with high 

affinity (fig.1-21) [103]. The cDNAs 

for isoforms of FR from human (hFR-

α, hFR-β and hFR-γ/γ4) as well as 

murine (mFR-α, mFR-β) [116-119] 

even though illustrates >70% 

similarity in their deduced amino acid 

sequences, they display significant 

differences in their relative affinities 

and stereospecificities for the reduced 

Fig. 1-21. Structure prediction of folate receptor using 
sequence information (accession No.:CAG46816.1) in 
FFAS03 where receptor tyrosine protein kinase Musk 
(3HKL) covered as template.  The ligand binding groove 
shows the interaction of pteroic acid moiety of folic acid 
[149]. 
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folate compounds and antifolate drugs [119, 121]. The hFR-α and hFR-β are attached to 

the cell membrane by a glycosylphosphatidylinositol (GPI) anchor [116, 122–124] and 

internalize bound folate/antifolate and folate conjugates by an endocytic mechanism 

[104, 125, 126] whereas hFR-γ is a soluble folate binding protein that is constitutively 

secreted in the absence of an efficient signal for GPI modification [127]. The expressions 

of hFR isoforms are differentially tissue-specific and its elevated level in several 

malignancies is also differential [98, 100, 101, 120, 129]. Usually, hFR-α is expressed in 

certain normal epithelial cells but is immensely elevated in some carcinomas. The hFR-

β isoform is absent in most normal tissues as well as moderately expressed in placenta, 

spleen and thymus. However, it is highly overexpressed in certain malignancies of non-

epithelial origin including myeloid leukemia. In general, the expression of hFR-

γ/γ4 isoform is restricted to tissues and malignant cells of hematopoietic origin including 

lymphoid cells [128]. The FR isoforms are, hence, regarded as promising tumor-specific 

targets for a number of experimental cancer therapies and also has demonstrated to be a 

potential prognostic and diagnostic serum marker [105, 106, 128-137].  

The FRα is generally over-expressed in several epithelial malignancies, including 

ovarian, renal, lung, and breast cancers [138]. Whilst the proper function of FRα in 

tumors is not yet established, in the kidney it serves as a high affinity salvage receptor. It 

retrieves folate from the filtrate and returns it via transcytosis to the blood [139]; in the 

brain, it probably concentrates folate in the cerebrospinal fluid [140]. The expression of 

FRα in normal tissues is restricted to the apical surfaces of polarized epithelial cells 

[141], where it is not exposed to the blood stream. The FRα also regulated the folate 
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homeostasis, by ubiquitiously expressing reduced FRs that conjugated to low molecular 

weight compounds like proteins, or nanoparticles. These reduced FR conjugates are then 

internalized by photon-coupled folate transpoter [142]. This property has been implicated 

for targeting of chemotherapeutic drugs, cytotoxic viruses, or imaging agents to FRα-

expressing cells. FRα became very popular in the field of targeted biological therapy of 

ovarian cancer [143, 144]. It has been reported that expression of FRα is at a level 10- to 

100-fold higher in majority of non-mucinous epithelial ovarian tumors than in the kidney 

and on lung and breast epithelial cells [145]. Moreover, FRα is also considered as tumor 

marker, as 70% of women with ovarian or breast cancer showing measurable immune 

responses against this protein [146]. The high level of expression of FRα, its tumor 

specificity and the potential to boost immunogenicity to tumors with FRα-specific 

approaches, have generated enthusiasm for testing different strategies to target FRα in 

ovarian cancer patients. For example, MORAb-003, a humanized, high-affinity 

monoclonal antibody against FRα based, which is at present undergoing phase II testing 

on ovarian cancer patients after cell-mediated cytotoxicity caused by complement-

dependent killing [147]. Additionally, Boiocchi and co-workers have stated that FRα 

overexpression may be an indicator of platinum resistance in ovarian cancer i.e., higher 

levels of FRα expression after primary treatment may be a predictor of chemotherapy 

response failure [148]. 

The present part of the thesis will describe in detail, the preparation, characterization and 

application of target specific multilayer coated gold nanoparticles for cancer therapy. This 

includes the development of a modified layer-by-layer coating protocol in order to improve 

the stability against aggregation of polyelectrolyte coated nanogold (PNG) system in 
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presence of small ions; electrostatic conjugation of the cancer targeting molecule as well as 

the incorporation of Boron (10B) in the PNG system for Boron Neutron Capture Therapy 

(BNCT) combined with photothermal cancer therapy. 
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CHAPTER 1 

Novel generation of non-aggregating targeted functionalized gold nanoparticles and a 

detailed surface enhanced Raman spectroscopic characterization.
* 

 

1.1. Aim of the present work 

Gold nanoparticles (AuNP) became increasingly interesting for nanomedicial 

applications due to its broad spectrum of possible functions in therapy but also in diagnostics. 

The main features which make them so useful are the fact that they are inert and not toxic and 

can be visualized by different optical techniques. As the properties of the nanoparticle are 

mainly determined by its surface in this section of the thesis I will investigate in detail the 

properties of the polyelectrolytes capsule in contact with the gold nanoparticles. Moreover I 

will introduce a novel polyelectrolyte (PE) multilayer encapsulation protocol aimed to 

improve the long-term stability (shelf life) and the resistance AGAINST AGGREGATION 

IN PRESENCE OF SMALL IONS of coated gold nanoparticles. 

Initially the binding of the first polyelectrolyte layer, either the positive or the negative 

one, and the orientation of the polymers toward the gold surface was studied by surface 

enhanced Raman spectroscopy (SERS). Then I have functionalized the PE coated gold 

nanoparticles (PNGs) by electrostatically conjugating folic acid for targeted delivery in breast 

cancer cell lines, VP 229 and MDA MB 231 which over-express folate-receptors. . After 

incorporation of B-10 in the layers of the multi-layters of the PNGs (10BPNGs) the particles 

were tested for a potential application in Boron Neutron Capture Therapy (BNCT), a novel 

treatment for cancer.  
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CHAPTER 2 

 

2.1. Introduction 

Nanotechnology in medicine promises a completely new and revolutionary way for 

diagnosing and treating diseases. However this has led to an increasing interest in 

multifunctional nanoparticles.  

Colloidal gold nanoparticles (AuNPs) and gold salts have a long tradition in medical [1-4]. 

Their unique properties, such as being non-toxic, inert against chemical modifications and 

emitting luminescence, make them a very attractive tool for “theranostics”, the combination 

of drug or drug delivery with diagnostic features. AuNPs can be used as drug for microwave 

induced cancer lesion treatment by radiotherapy and thermotherapy [3, 4]. Some examples of 

diagnostic applications which are in development are the visualization of receptors or other 

targets in electron microscopy [5] and as fluorescence label for antibody binding [6-8]. The 

main obstacle for using AuNP for medical preparation is the fact that functionalized AuNPs 

tend to aggregate, as in the case of thiol-stabilized AuNPs [9-11], or to become cytotoxic due 

to coating or size [12, 13]. Especially the work of Decher and Schneider [14] indicates that 

polyelectrolyte multilayer coated AuNPs (PNGs) are aggregating in presence of ions. On the 

other hand polyelectrolyte multilayer coating is an appealing method to functionalize AuNP 

for drug delivery or theranostics via electrostatic forces [15-19].  

In the present work, we address most of the above mentioned drawbacks by introducing a 

new protocol for non-aggregating, targeted PNG preparation. As working hypothesis we 

assumed that the low stability against agglomeration reported by Decher and Schneider [14] 

may be due to the excessive length of the polyelectrolytes (PEs) with respect to the particle 
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size leading to incomplete wrapping and in turn to bridging flocculation. Therefore we 

decided to collapse the PE by incubating them in the ionic solution and then coating the 

AuNP with these random coil polymers. In the literature related to weak polyelectrolytes 

[15], it has been reported that they can change their conformation in dependence of the ionic 

strength and that a shielding of the intramolecular repulsive forces induce a structural change 

from the extended chain to a random coil structure [20]. The resulting were tested for 

aggregation behaviour in Ringer’s solution as a typical injection solution in medicine, or at 

high ionic strength (0.5M NaCl). Targeting against cancer cells was possible with the 

electrostatic binding of Fo. 

Folic acid was chosen as a model for receptor-mediated up-take of the targeted PNG. FRs 

are significantly over-expressed in the majority of human cancers [20-25] because they 

require high amounts of folic acid for rapid nucleic acid biosynthesis [26, 27]. 

The binding of poly-allylamine hydrochloride (PAH) as well as poly-styrene-4-sulfonate 

(PSS) to the AuNPs surface is not yet fully understood and therefore was characterized in 

more detail by Surface Enhanced Raman Spectroscopy (SERS) in the present work. 

 The key attribute of nanoparticle-based agents is its multifunctionality. This feature enable in 

conjugating various therapeutic drugs, targeting ligands, imaging label and other 

functionalities can all be integrated to allow for targeted molecular imaging and molecular 

therapy of cancer. As an application for the multifunctional targeted gold nanoparticles I 

studied the development of a possible nanodrug for Neutron Capture Therapy (BNCT). A 

major challenge in the translation of experimental BNCT into a routine clinical therapy is the 

selective delivery of boron compounds to tumors in addition to safety concerns.  

In radiation therapy, BNCT is a bimodal method, which offer a great promise in the 

search for the ideal cancer therapy, with the potential for selective destruction of tumor cells 
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while sparing normal cells/tissue. BNCT takes advantage of the ability of the stable isotope 

10-Boron (10B) to capture neutrons. When 10B is irradiated with low energy thermal neutrons, 

there nuclear capture and fission reactions occur that results in high-energy particles [α-

particle (1.47 MeV) and Li-7 ion (0.84 MeV)]. The Linear Energy Transfer (LET) of these 

highly charged energy particles ranges within approximately one cell diameter [28], which 

confines the radiation damage within the cell from which they arise. Therefore,  minimizing 

the cytotoxic effects on the surrounding tissue. 

Selective delivery of a sufficient number of 10B atoms to malignant cells (109 atoms/cell, 

which translates to approximately 35µg 10B per gram of tissue) [29] is a critical prerequisite 

for successful BNCT. Furthermore, enough thermal neutrons must be absorbed by them to 

“activate” the high lethal dosage during neutron capture reaction within the cancer cell. The 

damage of the healthy tissue in the path of the neutron beam can be prevented if the 

surrounding tissue should contain < 5µg of 10B per gram of tissue. 

Hence, the most critical challenge to the translation of experimental BNCT into a routine 

clinical therapeutic option for cancer is the selective delivery of boron compounds to the 

tumor tissue while sparing the healthy one and their safety.  

To date, only two boron delivery agents, borocaptate sodium (BSH) and 

boronophenylalanine (BPA) are clinically approved for BNCT. Despite the possibility to 

attain average tumor-to-normal tissue ratios of therapeutic significance after infusion of BPA, 

the outcome of pre-clinical and clinical BNCT trials has been limited. In a report by Zonta et 

al [30], residual viable tumor cells were observed at the periphery of a tumor mass biopsied 

after extracorporeal liver BNCT of liver metastases. The patient went on to develop a 

recurrence of the disease. In another noteworthy observation, Altieri et al [31] found a 
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heterogeneous micro distribution of boron was observed within the tumor masses after BPA 

infusion in patients. Thus uniform distribution is lacking. 

These observations suggest that the low accumulation of boron in certain areas of a 

tumor, either due to inherent accumulation properties of different subpopulations of 

malignant cells, or to external conditions, such as poor vascularisation, limit the therapeutic 

outcome of BNCT [31]. 

In this study I describe the synthesis of multi-functional nanoparticles for targeted boron 

delivery and molecular imaging, with a perspective application in BNCT. These multilayers 

coated AuNPs were equipped with fluorophores for visualization, folic acid molecules for 

targeted and receptor guided delivery and the layer-wise deposition of the polymers allowed 

electrostatically conjugating boron containing molecules like Boronophenylalanine (BPA).  

The architecture of the resulting nanostructures was characterized by Transmission electron 

microscopy (TEM) while neutron autoradiography was used to validate the amount of 

incorporated boron. Colloidal stability of the nanoparticles was tested in physiological 

solutions. biocompatibility/toxicity and receptor mediated cellular uptake was evaluated by 

using in vitro various cancer cell lines. Fluorescence microscopy revealed that the 

nanoparticles were internalized and accumulated in the perinuclear region of the cancer cells. 

A MTT assay showed low overall toxicity in both non-cancerous cell line i.e. IHH 

(immortalized liver cell line) and J774.2 (macrophage cell line) and cancerous cell line i.e. 

JHH6 (Hepatocellular carcinoma cell line), HL60 (leukemic cell line) and MDA MB 231 

(breast cancer cell line). 
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CHAPTER 3 

 

Materials and Methods 

3.1. Materials 

 The cationic PE poly(allylamine hydrocloride)(PAH) (MW. 15 kDa), poly(fluorescein 

allylamine hydrocloride)(FITC-PAH) (MW. 15 kDa), the anionic PE poly(sodium4-

styrenesulfonate)(PSS) (MW. 4.3 kDa), folic acid (Fo), sodium tetrachloroaurate(III) 

dihydrate (NaAuCl4.2H2O), sodium citrate tribasic dihydrate, sodium chloride (NaCl), 

potassium chloride (KCl), 10-boronophenylalanine (10BPA) and calcium chloride (CaCl2) 

were purchased from Sigma, Aldrich (Milan, Italy) and used without further purification. 

MEGM® SingleQuots medium, foetal bovine serum (FBS), foetal calf serum (FCS) and 

DMEM medium were purchased from Lonza (USA). For all experiments and washing steps 

Milli-Q (MQ) water with a resistance approximately 18.2 MΩ/cm2 was used (if mentioned 

otherwise).  

 

3.2. Methods 

3.2.1. Gold nanoparticle preparation, coating and functionalisation 

Gold nanoparticles (AuNPs) were prepared according to the technique described by 

Turkevich (fig. 3-1) [1]. The absorption of the colloidal gold solution was determined at 

λ=518 nm with the UV-Vis spectrophotometer DU®730 (BeckmanCoulter, Italy). Then the 

concentration was calculated according to the Lambert-Beer equation using the values for ε 

from Liu et al. [2] to be 35±0.52nM. This solution was stable for at least three months 

without a visually significant agglomeration. The particle size was determined with a 
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Transmission Electron microscope (TEM) JEM-2100F (JEOL, UK) while the polydispersity 

index (PDI), hydrodynamic diameter and surface charge were measured by Dynamic Light 

Scattering (DLS) and ζ-potential analysis on Zeta-sizer (Nano-ZS, Malvern, UK). TEM 

measurements showed AuNPs with a diameter of 15±1nm, whilst the analysis determines the 

particle diameter with 21±2nm. In general, DSL serves as a quality control of the preparation. 

Gold nanoparticles preparations with one single peak in DLS and a PDI below 0.2 were used 

for further experiments. The size difference between TEM and DSL can be explained by the 

citrate/structured water shell around the particles which stabilizes the AuNPs in solution and 

influences the measurement with DSL, but is not visible in TEM. In recent studies it was 

shown that DLS is a highly sensitive technique for the detection of aggregates [3-5]. 

 

The multilayer coating was performed according to a modified protocol of Chanana et al. 

[6]. The first 5 layers were deposited from PEs solved in pure Milli-Q-grade water. The 

following layers were deposited from PE solutions prepared with 0.5M NaCl. All PE 

solutions were prepared one day in advance. PSS was used in a supersaturated concentration 

of 10mg/mL, PAH with 2 or 3mg/mL, solved in either in MQ-water or 0.5M NaCl solution.  

Fig. 3-1. Synthesis of 15 nm gold nanospheres with the technique of Turkevich [1]. 
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For the first layer, the AuNPs stock solution was added drop-wise under continuous 

vortexing either to the polycation or polyanion solution. Then the mixture was kept for 20min 

in the dark to allow a sufficient and homogenous coating of the nanoparticles. The protection 

from light is only a precaution to avoid light-induced aggregation of the AuNPs. Next the PE 

coated AuNPs i.e. PNGs, were washed twice in MQ-water by centrifugation 18,000×g for 

30min, removal of the supernatant and re-dispersion of the pellet in MQ-water. For the next 

layer, the procedure was repeated with an oppositely charged PE. Again the coated AuNPs 

was added drop-wise to the PE solution. For the normal PNGs this procedure was repeated 

until the desired number of layers was reached. For fluorescently labeled PE coating on the 

AuNPs (FPNG), FITC-PAH (2 mg/mL) was used instead of unlabeled PAH.  

The 0.5M PNGs consist of five layers were prepared according to the protocol described 

above with aqueous PEs but all following outer layers were prepared with PEs dissolved in 

0.5M NaCl. For these layers, washing and removal of unbound PEs was performed by twice 

Fig. 3-2. Scheme of the multilayer PE sequence deposited on the gold nanoparticles as core according to 
the novel protocol and functionalisation by electrostatic binding of folate as a targeting molecule for the 
cancer cell. 
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repeating a centrifugation at 12,000×g for 30min and re-suspension in fresh 0.5M NaCl 

solution. The PDI value for citrate stabilized AuNPs was usually 0.192±0.017 whereas for 

coated particles the value varies from 0.23 to 0.27. A detailed coating procedure is 

schematically depicted in fig. 3-2. 

For the conjugation of 10-Boron (10-B) between the layers, PSS 10 mg/mL was 

dissolved along with 2 mg/mL 10BPA, whereas to 3 mg/mL PAH with solution 0.5 mg/ml 

10BPA was dissolved in MQ-water. After 5th layer, coating was done with 10 mg/mL PSS and 

3 mg/mL PAH dissolved in 0.5 M NaCl solution (0.5M PEs), respectively. All the boronated 

polyelectrolyte (10BPE) solutions were prepared one day in advance, to get maximum boron 

conjugation on the PEs.  The coating is done described above in this section. To differential 

PNGs from 10BPA conjugated PNGs, they are called as 10BPNG and in case of penultimate 

and ultimate layered 0.5M PE coated 10BPNGs are termed as 0.5M 10BPNGs. 

Fo functionalized PNG for receptor-mediated up-take in cancer cells was prepared by 

adding drop-wise a folic acid (0.07 mg/mL) colloidal solution (solubility limit for folic acid: 

1.6µg/mL) to 0.5M PNGs coated with the layer sequence [(PAH/PSS)2/PAH/(0.5 PSS/PAH)] 

under constant vortexing, followed by 30 minutes incubation in the dark. The particles were 

used after 4 washing steps. In order to visualize the folate receptor-mediated endocytosis by 

confocal microscopy, FPNGs with the following sequence of layers [(FITC-

PAH/PSS)2/FITC-PAH/(0.5M PSS/0.5M FITC-PAH)] were functionalized with folic acid. 

Then the particles were stored for 2 h in the dark at room temperature before they were 

further characterized.  

The same above procedure was followed for 0.5M 10BFPNG preparation (fig. 3-3). The 

layering was started with 10BPAH (10BPA conjugated PAH) PEs followed by 10BPSS (10BPA 

conjugated PSS) coating and so on. The first 5 layers were coated using 10BPEs solubilized in 
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MQ water. Following the 6th and 7th layering was with PEs dissolved in 0.5M NaCl. Thus, 

the sequence of layering was [(FITC-10BPAH/10BPSS)2/FITC-10BPAH/(0.5M PSS/0.5M 

FITC-PAH)]. The presence of folic acid on the FPNGs (Fo-FPNG) was proven by an 

increase in diameter in DLS, and the folic acid signal by surface enhanced Raman 

spectroscopy (SERS). Each measurement was repeated for a minimum of ten times. 

 

 

3.2.2. Particle agglomeration by small ions 

 The stability of the PNGs was tested in various media. In order to study the particle 

agglomeration in presence of ions, coated and uncoated gold nanoparticles were centrifuged. 

Then the particles were resuspended in MQ-water, 0.5 M NaCl solution and Ringer’s 

solution ([NaCl]=0.147 M, [KCl]=0.004 M, [CaCl2]=0.0033 M), respectively. After 2h, the 

particles were characterized by DSL. For each preparation in solution a UV-Vis spectrum 

was recorded because bigger particles or aggregates usually show a color change from wine 

red to blue or black precipitates. Each measurement was repeated for a minimum of five 

times. 

Fig. 3-3. Schematic representation of the design and synthesis of 10BPA conjugated Fo-0.5M 10BPNG according 
to the novel protocol to be used as probe for the BNCT. 
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 In order to study the stability of Fo-0.5M PNG in serum, 2.5pM Fo-0.5M PNG was 

incubated in 10% BSA for 2h at room temperature, followed by DLS studies. The 

experiments were repeated at least three times.  

 

3.2.3. Surface characterization by SERS and Raman measurements 

SERS spectroscopy yields information about the molecules adsorbed on the gold surface. 

The vibrational Raman spectra of molecules or molecular moieties in direct contact to certain 

metals can be strongly enhanced [7-8]. 

The adsorption of one or two PE layers onto the surface of AuNP was followed by SERS 

measurements with a Raman system (Renishaw plc, Wotton-under-Edge, UK). The laser 

(632.8 nm He-Ne laser, Melles-Griot, Albuquerque NM, USA) was focused by a 10× 

objective (0.25 NA) on the sample, consisting of a 10µL drop of AuNP dispersion 

(previously concentrated upon centrifugation) on a CaF2 slide (OEC Optoelectronic 

Components GmbH, Zusmarshausen, Germany) for SERS measurements or aqueous 

solutions of PSS (80mg/mL), PAH (160mg/mL) or sodium citrate (160mg/mL) for normal 

Raman measurement. The laser power at the sample was 15mW. The total acquisition time 

was 30s per spectrum. 

In order to understand if folic acid is binding stably to the AuNPs were coated only with 

one PAH layer followed after washing by immersion of the coated particles in folic acid and 

investigation in SERS. It was necessary to limit the number of polyelectrolyte layers to one 

between the gold surface and the folic acid because SERS signals can be measured only close 

to the gold surface. However, the electrostatic folic acid binding to polycation layers other 

than the first is supposed to be comparable. SERS measurements of the Fo-PNG were 

performed with an excitation wavelength of 785nm (Renishaw HP-NIF diode laser) and a 
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laser power at the sample 90 mW. For comparison the pure folic acid crystals were measured 

by Raman spectroscopy. 

 

3.2.4. Cellular nanoparticle up-take 

For the folate receptor-mediated up-take of Fo-FPNGs, VP229 and MDA MB 231 

(breast cancer cell lines, ECACC and ATCC HTB 26, Sigma-Aldrich, Milan, Italy) were 

seeded onto 22 X 22 mm cover-slips to a density of 105 cells per plate in MEGM, 

supplemented with glutamine and 2% FCS but without antibiotics and DMEM medium 

supplemented with 10% heat-inactivated FBS, penicillin (100units/ml), streptomycin 

(100µg/ml) and gentamicin (10µg/ml). They were grown for 24h in an incubator at 37°C 

and 5% CO2, prior to treatment. The cells were then incubated for 2h along with FPNGs 

or Fo-FPNGs at the concentration of 2.4pM and 2.6pM, respectively. After washing 

twice with serum-free medium, time-relapsed confocal fluorescence microscopic studies 

were performed to visualized FPNGs and Fo-FPNGs uptake by the cells. The 

experiments were repeated at least three times on each cell line.  

In order to exclude other mechanisms than folate-receptor mediated up-take a 

competition study with free folic acid was performed. For this, 2×105 cells/mL breast 

cancer cells (MDA MB 231) were seeded on a microscopic slide and incubated for 24h at 

37°C and 5% CO2 in serum containing medium, with different concentrations (0.567, 

2.27, 4.54, 9.08, 18.16 and 27.24nM) of folic acid and 2.23pM Fo-FPNGs. After washing 

with serum-free medium, confocal fluorescence microscopic studies were performed to 

visualize Fo-FPNGs internalized in cells. From one slide at least 15 regions of interest 

were taken for the calculation. The experiments were repeated at least for three times.  
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The immune recognition of the coated particles was tested with a macrophage cell 

line as model system for immune response. The macrophages cell line, J774.2 (ECACC, 

Mouse BALB/C monocyte macrophage) (a generous gift from Prof. A. Nistri, 

Neurobiology sector, SISSA) (4×104 cells/ml) were grown on 22 X 22 mm cover-slips in 

Petri-dishes. They were grown for 24h in an incubator at 37°C and 5% CO2. The cells 

were rinsed with DMEM medium, followed by incubation for 4h with Fo-0.5 M FPNGs 

(2.4pM) or with 0.5M FPNGs (2.9pM). The cells were rinsed three times as described 

above. Time-lapse confocal fluorescence microscopy was performed to visualize the 

uptake of these particles by the cells. Each experiment was repeated five times (for each 

experiment ~1000 cells were studied). Statistical analysis was performed by SigmaStat 

and Origin8 software. 

Image acquisition was preformed with a Nikon C1si laser scanning confocal unit 

(Nikon D-eclipse C1, Japan) attached to an inverse fluorescence microscope (Nikon D-

eclipse C1, Japan) with 100X/1.49 oil Apo TIRF objective (Nikon, Japan). Excitation 

was performed with an air-cooled argon laser emitting at 488 nm and appropriate filter 

sets were used to collect the fluorescence emission. Images were acquired and processed 

using the NIKON software EZ-C1.  

 

 

 

 

 

 



__________________________________Part 1: Chapter 3 
 

___________________________________________ 
 -- 94 -- 
 

3.3. References 

1. Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth 

processes in the synthesis of colloidal gold. J Disc Farad Soc 1951;11:55-75. 

2. Liu X, Atwater M, Wang J, Huo Q. Extinction coefficient of gold nanoparticles 

with different sizes and different capping ligands. Colloids Surf B Biointerfaces 

2007;58(1):3-7. 

3. Ahonen P, Laaksonen T, Nykänen A, Ruokolainen J, Kontturi K. Formation of 

stable Ag-nanoparticle aggregates induced by dithiol cross-linking. J Phys Chem 

B 2006;110(26):12954-12958. 

4. Soman CP, Giorgio TD. Quantum dot self-assembly for protein detection with 

sub-picomolar sensitivity. Langmuir 2008;24(8):4399-4404. 

5. Bogdanovic J, Colon J, Baker C, Huo Q. A label-free nanoparticle aggregation 

assay for protein complex/aggregate detection and study. Anal Biochem 

2010;405(1):96-102. 

6. Chanana M, Gliozzi A, Diaspro A, Chodnevskaja I, Huewel S, Moskalenko V, et 

al. NanoLetters 2005;5(12):2605-2612. 

7. Chang RK, Furtak TE. Surface Enhanced Raman Scattering. Plenum Press: New 

York, 1982. 

8. Edwards HGM, Brown DR, Dale JA, Plant S. Raman spectroscopy of sulfonated 

polystyrene resins. Vibr Spectr 2000;24(2):213-224. 

 



__________________________________Part 1: Chapter 4 
 

___________________________________________ 
 -- 95 -- 
 

CHAPTER 4 

 

Results and Discussion 

4.1. Surface characterization by SERS and Raman measurements 

 In order to understand the binding of the first PE layer, SERS measurements were 

performed. Raman and SERS experiments give information about the orientation and 

composition of the molecules adsorbed directly onto the surface of metal (most commonly 

Ag or Au) nanoparticles.  

 

Fig. 4-1. (a) Normal Raman spectra of citrate, PSS and PAH (bottom to top) measured in water. (b) SERS spectra of 
uncoated and coated AuNP. For SERS spectra, average spectra (over 4 samples) are reported as black lines, and 
standard deviations as gray lines. The excitation wavelength was 632.8 nm and the power at the sample was 15 mW. 
Acquisition time was 30s. 
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 In fig. 4-1a the normal Raman of sodium citrate, PSS and PAH aqueous solutions are 

reported, together with the average SERS spectra of citrate stabilized AuNPs and AuNP 

coated with PAH or PSS (fig. 4-1b). The SERS spectrum of citrate stabilized AuNP is in 

substantial agreement with those previously reported in literature [1]. The intense SERS 

bands corresponding to the anti-symmetric (1640 and 1533 cm-1) and symmetric (1380 cm-1) 

stretching of citrate carboxylates are down-shifted with respect to the normal Raman 

spectrum, indicating an adsorption on the metal surface via the COO- moieties. The presence 

of intense bands for both anti-symmetric and symmetric stretching suggests a variability of 

orientations for the adsorbed citrate, in which the carboxylate moieties are oriented with the 

line joining the two oxygen atoms both parallel and perpendicular to the metal surface [2]. 

 The SERS spectrum of PSS-coated AuNP (AuNP/PSS) show a striking similarity with 

that of citrate stabilized AuNP, indicating the persistence of the adsorbed citrate layer on the 

gold surface upon the addition of PSS. In spite of this resemblance, some significant 

differences were observed, such as, the emergence of a band at 1591 cm-1 and the decrease in 

intensity of the band at 1640 cm-1. The band at 1591 cm-1 can be attributed to the aromatic C-

C stretching of the PSS benzene ring, which is present as an intense and narrow band at 1598 

cm-1 in the normal Raman spectrum of PSS [3]. The occurrence of this band suggests the 

presence of the PSS near the metal surface. Moreover, SERS spectra of AuNP/PSS show less 

variability than those of citrate stabilized AuNP, as indicated by the respective intensity 

standard deviations in the spectral regions of the anti-symmetric and symmetric carboxylate 

stretching (depicted as grey lines in Fig. 4-1, right panel). This observation suggests that the 

adsorption of PSS perturbs the pre-existing citrate layer, inducing the absorbance of citrate 

molecules onto the gold with the carboxylates having a preferential orientation with the line 

joining the two oxygen atoms parallel to the surface. The presence of PSS on the citrate-
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coated particle surface is inferred from both indirect (fig.4-1b, AuNP/PSS) and direct (fig. 4-

1b, AuNP/PSS/PAH) experimental evidences. The electrostatic repulsion between the citrate-

coated surface and PSS is likely to be shielded by the well-known "counterion condensation" 

effect, which can even lead to a counter-intuitive phenomenon of an attractive interaction 

between like-charged PEs or nanoparticles [4-6]. 

 The addition of PAH as second layer in AuNP/PSS/PAH samples significantly perturbs 

the pre-existing layers (fig. 4-1b), as shown by its SERS spectrum (fig. 4-1a). The spectral 

features due to the adsorbed citrate are still present, indicating the persistence of the citrate 

layer, but the intensity standard deviation increases upon PAH binding. Additionally, the PSS 

layer is still present, as suggested by the PSS band at 1591 cm-1. Interestingly, a band appears 

at 1128 cm-1 upon PAH binding. Due to the uncertain assignment of this band, it is difficult 

to postulate about the nature of this interaction, which needs further investigation.  

 On the other hand, the citrate layer appears to be displaced by PAH in AuNP/PAH 

samples, as indicated by the SERS spectrum (fig. 4-1b). In fact, in the spectra of AuNP/PAH, 

the characteristic carboxylate stretching bands, which are due to citrate, disappear, and are 

replaced by a group of weak and broad bands, which are in agreement with previously 

reported PAH SERS spectra [3, 7]. These bands are difficult to assign to PAH vibrations. The 

two broad bands at 1370 and around 1600 cm-1 could be due to the formation of amorphous 

carbon upon laser irradiation [8] which are often observed in SERS spectra of polymers. On 

the other hand, the 1300-1700 cm-1 region in the SERS spectrum of PAH bears some 

resemblance to the normal PAH Raman spectrum, with SERS bands at 1600, 1443 and 1370 

cm-1 corresponding to the normal Raman bands at 1595, 1463 and 1353 cm-1. Indeed, the 

band at 1600 cm-1 could be due to the vibrations of the –NH2 groups of PAH which interact 

with the metal surface. In fact, amino groups are known to have a stronger affinity for metals 
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rather than carboxylates [9], and therefore PAH is likely to displace citrate, by adsorbing 

directly onto the gold surface via its –NH2. This latter hypothesis is supported by the SERS 

band at 1443 cm-1, which can be assigned to the’ bending ‘or the -CH2- groups of PAH 

backbone [10]. 

 The SERS spectrum of AuNP/PAH/PSS is almost identical to that of AuNP/PAH, 

indicating that the addition of PSS does not significantly perturb the pre-existing PAH layer. 

The presence of an additional PSS layer, however, is inferred from the appearance of the two 

weak bands at 1128 and 1591cm-1, which are attributed to the S=O stretching of the 

undissociated form of PSS and to the aromatic C-C stretching of the PSS benzene ring. It is 

interesting to note that in all the samples in which PSS is associated with PAH (i.e. in 

AuNP/PSS/PAH and AuNP/PAH/PSS) the band at 1128cm-1 is present, whereas in 

AuNP/PSS it is absent. This observation was also observed in case of AuNP/PSS/PAH. 

 

4.2. Synthesis of non-aggregating polyelectrolyte multilayer PNGs  

Although surface-functionalized PNGs are good candidates for targeted drug delivery or 

therapeutic approaches as in local radio- and hyperthermal therapy for cancer treatment, the 

major obstacle in its use, is its low stability against aggregation in presence of ions and its 

low shelf life due to light induced agglomeration.  

In order to overcome particle aggregation, which could be due to bridging flocculation 

induced by a mismatch of particle size and PE length or incomplete PE attachment to the 

particle surface, the PEs were pre-incubated in a 0.5 M NaCl solution. This causes the 

collapse of the polyions from extended chains (because in water, polyions are fully charged 

and this imparts a repulsion between the single monomers and hence maximally extension) to 

random coils. It was observed that for up to the first 5 layers, coating with 0.5M NaCl solved 
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PE (0.5M PEs) induced immediate aggregation because of the presence of the ions. This was 

proven by instant colour change from red to blue and a drastic increase in the particle 

diameter to >3000 nm as measured by 

DLS.  

In contrast if the first layers are 

deposited from water solved PE 

solutions and the latter layers are 

deposited from a 0.5M PE solution, no 

colour change was detected. The surface 

charge (fig. 4-2a) and hydrodynamic 

diameter (fig. 4-2b) versus the number 

of layers on the AuNP prepared 

according to the novel protocol were 

measured by DSL and ζ-potential. It was 

noted that the hydrodynamic diameter of 

the PNGs became larger, when coating 

was accomplished by the deposition of 

0.5M PEs (0.5M PNGs) (fig. 4-2b) 

rather than the aq. PEs (aq. PNGs) (inset 

in fig. 4-2b). This is in good agreement with 

the hypothesis that the PE is binding as a 

collapsed random coil to the PNG surface. 

In addition, the large increase in diameter is 

Fig. 4-2. (a) ζ-potential versus No. of deposited 
layers during 0.5M PNGs preparation. The 
arrows indicate the change in the encapsulation 
method from aq. PEs to 0.5M PEs deposition The 
circles represents the surface charge on the PNGs 
at every step of the preparation starting with PSS, 
whereas the squares represents the surface charge 
on the PNGs, starting with PAH as layer 1st layer 
(b) Hydrodynamic radius versus No. of layers 
according to the novel 0.5M PNG preparation 
protocol. Inset: Hydrodynamic radius versus No. 
of layers during the aq. PNG preparation protocol 
with all layers deposited from aq. PEs. 
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not due to particle aggregation was verified from the SEM images (fig. 4-2c & inset). 

Moreover, it was observed that with the deposition of PSS, solved in 0.5 M NaCl (0.5M PSS) 

as 6th layer, the surface charge significantly decreased from -60 mV for the 4th layer to -40 

mV for the 6th layer while for PAH the value of +50 mV is the same for the 4th and the 6th 

layer (fig. 4-2a). A possible explanation could be the nature of the underlying 5th layer, which 

in case of PSS as 6th layer, is composed of PAH. PAH is more sensitive to counter ions 

because it is a weak polyion. Once in contact with the 0.5M PSS solution containing Na+ and 

Cl-, Cl- ions most probably penetrate the layer and shield some of the positive charges of 

PAH. This will reduce the number of polyanions, binding as next layer. However, in the case 

of PAH as a 6th layer, the situation is different. PSS (5th layer) is a strong PE and is not 

affected by the presence of counter ions [11]. Thus, the negative surface charge remains 

unaffected. Nevertheless, the shielding ions in the collapsed polycation causes a reduced 

number of free charges in PAH in comparison to aq. PAH and hence a significantly higher 

amount of 0.5M PAH binds to over-compensate the negative charge of the underlying layer. 

This explanation, was supported by the fact that a significant increase in the hydrodynamic 

diameter of PNG was observed when PNG were coated with 0.5M PSS as the 6th layer as 

determined by DSL (fig. 4-2b). In the SEM image shown in fig. 4-2c, the thickness of the 

collapsed polymeric shell (bright rim around the AuNP) completely deprived by water can be 

estimated to be 8 nm. 

 

4.3. Stability of aq. PNGs and 0.5M PNGs against aggregation in presence of small 

ions 

As shown by Schneider and Decher [12], the presence of ions (NaCl or Ringer solution) 

causes immediate aggregation of citrate-stabilized AuNP (fig. 4-3 & 4-4a) or aq. PNG (fig 4- 
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3 & 4-4b to c). The particle’s 

hydrodynamic diameter (fig. 4-3) 

shows a strong increase, indicating 

particle aggregation, especially for 

AuNP and PNGs in Ringer solution. 

This is supported by the observation 

that the absorption spectrum for AuNP 

(fig. 3-4a) and PNGs (fig. 4-4b, c) has 

a red shift of the spectra. Moreover, in 

case of AuNP the peak intensity 

decreases dramatically, indicating that 

most particles disappear from the 

solution (fig. 4-4a) while in the case of 

aq. PNG, the decrease in the intensity 

of absorbance was not so prominent. 

However, most of the particles are 

Fig. 4-3. (a) Agglomeration of NGs, PNGs and 0.5 M 
PNGs in absence or presence of small ions. The particle 
diameter was measured in MQ water, 0.5 M NaCl, or 
Ringer’s solution. DLS measurement of the hydrodynamic 
diameter (columns) and the PDI (circles) versus particle 
preparation and stored in different solutions.  
 

Fig. 4-4. The stability analysis of AuNPs and aq. 
PNGs by UV-Visible spectrophotometer studies, 
after 2h incubation at RT in respective solutions. 
(a) Absorption spectrum of mono-dispersed 
AuNPs in MQ-water (solid line), in 0.5M NaCl 
solution (dashed line) & Ringer’s solution (dotted 
line)). (b) Absorption spectrum of aq. 7S 
PNG,(with [(PSS/PAH)3PSS] layer pattern) in 
MQ-water(solid line), in 0.5M NaCl solution 
(dashed line) and in Ringer solution (dotted line). 
(c) Absorption spectrum of aq. 7A PNG, where 
AuNPs coated as [(PAH/PSS)3PAH] (solid line) in 
MQ-water, in 0.5M NaCl solution (dashed line) 
and in Ringer solution (dotted line.). All the 
absorption spectra were presented after base 
subtraction to visualise properly the red shift due 
to aggregation. 
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observed to precipitate after incubation and the remaining measurable PNGs are influenced 

by the ions in solution, as deduced from the red shift in the absorption spectrum (fig. 4-5b, c).  

Here, the effect of the novel preparation 

protocol was even more striking (fig. 4-3 & 4-

5). The 0.5M PNGs (fig. 4-5a) do not 

aggregate in ion-containing solutions. This is 

concluded from the fact that the absorption 

spectrum of the coated 0.5M PNG in ionic 

solution does not show any shift (fig. 4-5b) as 

well as that no significant increase in diameter 

can be observed in DLS. This highlights that 

0.5 M PNGs are significantly more stable in 

medicinal solution (Ringer’s solution). 

The improved stability of particles coated by 

0.5M PE, cannot be explained by electrostatic 

repulsion, since the surface charge decreases, 

as measured by the zeta-potential.  

In a model proposed for the layer-by-layer 

technique it was assumed that the first 

“precursor” layers on flat surfaces differ from latter layers because the deposition is still 

influenced by the template [13]. Moreover these layers are supposed to contain small counter 

ions and they are charged. We assume that the same is true for curved templates like gold 

nanoparticles. From the experiments we deduce that on NG the first 5 layers are precursor 

layers and that they are more prone to be affected by small counter ions. Then probably the 

Fig. 4-5. The stability analysis of 0.5M PNGs by UV-
Visible spectrophotometeric studies, after 2h 
incubation at RT in respective solutions. (a) 
Absorption spectrum of 0.5M 7S PNG, where AuNPs 
coated as [(PSS/PAH)2PAH/0.5M PSS/0.5M PAH] 
in MQ-water (solid line), in 0.5M NaCl (dashed line) 
and in Ringer solution (dotted line). (b) Absorption 
spectrum of 0.5M 7A PNG, where AuNPs coated as 
[(PAH/PSS)2PSS/0.5M PAH/0.5M PSS] in water 
(solid line), in 0.5M NaCl solution (dashed line) and 
in Ringer solution (dotted line). All the absorption 
spectra were presented after base subtraction to 
visualise properly the red shift due to aggregation.  
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neutral layers from zone II stabilize the capsule and the exposure to small ions did not cause 

agglomeration any longer [14].  

Bridging flocculation due to the excess length of one of the polyelectrolytes was the main 

reason Schneider and Decher identified for the nanoparticle agglomeration caused by small 

ions [12]. It is known that the polycation PAH in presence of a concentration higher than 0.3 

M NaCl collapse into a random coiled structure [14]. This can explain why we observe an 

increased stability against agglomeration of nanoparticles coated with PEs from a 0.5 M 

NaCl solution while their equivalent particles coated from pure water aggregate. Thus, a 

possible explanation for the higher stability can be that the collapsed structure of the PEs 

prevents bridging flocculation.  

 

4.4. Electrostatic functionalisation of 0.5M FPNG with folic acid for cancer cell 

targeting 

The electrostatic binding of folic acid was assayed as an example for targeting cancer 

cells. In order to orientate the folic acid molecules in the way that it binds with the α- and γ-

COOH (glutamic acid moiety) to assures receptor recognition [15] through free pteroic acid 

moiety (see fig.1-21 of part1 overview chapter) and to follow the particle up-take in real-

time, the folic acid (Fo) was bound to fluorescently labelled 0.5M FPNGs with a positive 

surface charge. An increase in the hydrodynamic diameter from 174±5 nm to 213±14 nm of 

0.5M FPNG [(FITC-PAH/PSS)2 FITC-PAH/ 0.5M PSS/0.5M FITC-PAH] and decrease in 

the surface charge from 32.4±0.6 mV to 19±3.5 mV was observed upon folic acid binding 

(Fig. 4-6a).  

Folic acid absorbs in the UV region with absorption peaks at 280 and 350 nm. The 

absorption spectrum of Fo-0.5M FPNGs shows prominent peaks at these wavelengths, 
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confirming the binding of Fo, in 

conjunction with the absorption peak 

at 533 nm for 0.5M FPNGs (Fig. 4-

6b).  

Furthermore the presence of folic 

acid was confirmed by SERS. Because 

of the short-range of the SERS effect 

the spectrum of AuNP coated with 

only 1 layer of PAH and folic acid was 

measured (Fig. 4-7a). The spectrum 

shows intense bands, which are very 

similar in both, relative intensity and 

frequency, to those of the normal 

Raman spectrum of folic acid. 

Fig. 4-6. (a) Hydrodynamic diameter and zeta potential of the 
coated 0.5M FPNG before and after folic acid binding. (b) 
UV/VIS-spectrum of the coated 0.5M FPNG before (blach bold 
line) and after folic acid binding (blue bold line), along with 
pure Fo spectra (red bold line). Gaussian fit represent the 
major peaks of folic acid alone (red, dashed line for 350nm; 
dotted line for 280nm), spectra from Fo-0.5M PNGs (blue, 
solid line at 260nm coming from the coated particle, whereas 
dotted line for 280nm and dashed line for 350nm coming from 
bound folic acid); of 0.5M PNGs (black, solid line). 
 

Fig. 4-7. SERS spectrum of Fo conjugated PNG. (a) Fo-PNG only with 1 layer of PAH followed by folic acid 
binding, [(PAH)-Fo] (top); normal Raman spectrum of folic acid (powder) (bottom). (b) Fo-PNG only with 1 
layer as [(PAH)-Fo] (Fo1APNG) (top);  normal Raman spectrum of folic acid (powder) and 3 layered PNG 
[(PAH/PSS/PAH)-Fo] (Fo-3APNG) (bottom). Excitation was at λ=785 nm, power at the sample 90 mW.  
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Moreover, it is significantly different from the SERS of PAH-coated nanoparticles. These 

findings clearly indicate that folic acid is adsorbed onto the surface of the AuNPs. 

Experiments with folic acid attached to the 3rd layer did not give any signal in SERS (fig. 4-

7b). From this observation it was deduced that folic acid was not able to penetrate deeply into 

the PE matrix but remained attached to the surface otherwise a signal from folic acid 

molecules which come close to the surface must be visible as SERS is a highly sensitive 

technique. Despite some differences, most likely due to the different nature of the surface, the 

SERS spectrum of folic acid on PAH-coated AuNPs shares many spectral features with the 

SERS spectrum of folic acid on silver nanoparticles, as recently reported by Stokes et al. 

[16]. 

 The stability study of Fo-0.5M PNG 

in 10% BSA ((fig. 4-8), shows a decrease 

in the hydrodynamic diameter of coated 

particles from 163±12 nm to 139±7nm, 

along with an improved PDI value from 

0.225±0.015 to 0.179±0.011. This 

indicates that BSA induces a compaction 

of the polymeric layer on the AuNP 

surface.  

 

4.5. Target specific internalization of Fo-0.5M FPNGs in cancer cell lines  

The receptor-mediated endocytosis by folate receptors is known to guide the content 

directly to the nucleus (fig. 4-9a, schematic diagram) [17]. In fig. 4-9b, a representative 

Fig. 4-8. 10% BSA stability analysis by DLS measurement of 
Fo-0.5M PNGs. The graph represents hydrodynamic 
diameter (columns) and the PDI (half black circles) versus 
particle preparation and stored in different solutions. 
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image visualized by confocal fluorescence microscopy, shows the endocytosis of Fo-0.5M 

FPNG into VP229 breast cancer cells. Due the fact that the cells were not synchronized, 

different cells are in different stages in the endosomal pathway (as in scheme and tags of fig. 

4-9a). The cells tagged as 1 represent particle bearing endosomes (green) still homogenously 

distributed within the cytosol. The endosomes in cells with the tag 2 show particle 

accumulation closer to the nucleus. Whereas, in the cells tagged as 3, it was observed that the 

particles are released into the nucleus (fig. 4-9b).  

The uptake of Fo-0.5MFPNG was followed in two different breast cancer cell lines, i.e. 

Fig. 4-9. (a) Scheme of the folate-receptor endosomal pathway. (b) Confocal micrograph of VP229 (breast 
cancer) cell line internalizing Fo-FPNG by folate-receptor mediated endocytosis. Red arrows are indicating 
aggregates of Fo-FPNGs. The numbers correspond to different steps of internalization depicted in the scheme in 
(a).  

Figure 4-10. (a) Statistical analysis of cells with internalised FPNG with and without folic acid in two breast 
cancer cell lines displayed as a  % of the cells with internalised FPNG. (b) Confocal micrograph of MDA MB 
231 cells internalizing Fo-FPNG. Each experiments were repeated 3 times. 
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VP229 and MDA MB 231. It was observed that Fo functionalised 0.5M FPNGs (Fo-

0.5MFPNGs) for receptor-mediated endocytosis, leads to a significantly (p≤0.001) higher 

number of cells with internalised FPNGs than for FPNGs without Fo (fig. 4-10).  

That the uptake is related to a folate 

receptor-mediated internalization was 

supported by the finding that if the folic 

acid functionalized particles are 

incubated with the MDA MB 231 cells 

in presence of increasing concentrations 

of folic acid the number of cells with 

internalized nanoparticles decreases (fig. 

4-11). 

 

4.6. Non-specific internalization of Fo-0.5M FPNGs in macrophage cell line 

Macrophage recognition (i.e. innate immunological response) of charged nanoparticles is 

Figure 4-11.  Binding competition assay of Fo-0.5M FPNG 
uptake in the presence of different concentrations of free 
folic acid. Each data point is the result of 3 independent 
experiments. 

Figure 4-12. Non-specific uptake analysis in macrophage cell line (J774.2). (a) Statistical study of the % of the 
marked cells with internalised fluorescent 0.5M FPNGs or Fo-0.5M FPNGs (student ‘t’ test, **P≤0.001) (n=5). 
(b) Confocal image showing macrophage cells treated with Fo-FAPNGPs (Green). White arrow indicates cells 
which had internalised nanoparticles.  
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the main reason for the fast clearance of these drug delivery systems from the blood. 

Therefore, I evaluated the non-specific uptake of Fo-0.5MFPNGs and  0.5MFPNGs by 

means of confocal fluorescence microscopy, in non-activated macrophages after 24h after 

incubation. I found that only ∼27% & ∼25% of the macrophages show endocytosis of the Fo-

FPNGs and FPNGs after 24h, respectively (fig. 4-12). As can be observed that number of 

particle containing endosomes in macrophage cell line (fig. 4-12b) were lower than in folate-

receptor expressing cancer cell lines (fig. 4-9b). A possible explanation for this low up-take 

which is the same range than the up-take of coated nanogold without folic acid is that it is 

unspecific endocytosis or pinocytosis rather than receptor-mediated endocytosis because the 

macrophages do not have a folate-receptor. These results show that with folic acid coated 

nanoparticles a target specific delivery is possible while avoiding fast clearance from the 

blood.  

 

4.7. Boron conjugation within the layers of Fo-0.5M PNG as probe for BNCT 

4.7.1. Synthesis of Fo-10BPNG and its stability in different solutions 

PNGs is a good candidate for targeted drug delivery. In the following a protocol was 

described for the Boron-10 (as 10BPA) uploading in the PE multilayer matrix of targeted 

PNGs as probes and boron delivery system for BNCT in cancer treatment.  

In order to maximize 10B loading on PNGs, both the PEs were electrostatically 

conjugated with 10BPA (10BPEs). In fig. 3-3, the layer by layer coating of AuNP and 

targeting molecule conjugation is schematically depicted. The coating was performed by 

10BPAH (10BPA electrostatically bind with polyallylamine hydrochloride) PEs and 10BPSS 

(10BBPA electrostatically bind with polystyrene sulfate) deposition. In order to prevent 

particle aggregation in presence of ionic media or blood fluids the first 5 layers were 
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constructed with 10BPEs solved in MQ water. Two final layer were deposited from pure PEs 

solved in 0.5 M NaCl to avoid exposure of 10BPA on the shell surface because it induces 

uptake in normal proliferating cells as well as to avoid aggregation. 

The PNG hydrodynamic size and the surface charge versus the number of layers of 

coated AuNPs (AuNPs) prepared according to the novel protocol (described in the main part) 

was measured by Dynamic Light Scattering (DSL) and ζ-potential (surface charge) analysis 

(Fig. 4-13a). The behavior of the boron containing polyion layers is exactly the same as 

observed for the pure PE layers. This is somehow surprising because the electrostatic 

interaction between the BPA and the polyelectrolyte should have an effect like ionic strength, 

hence changing the structure and the layer thicknees of the PE layers. It is possible that the 

Figure 4-13. Characterization of the AuNPs by  (a)hydrodynamic size, surface charge and PDI-value analysis after 
every layer deposition, (b) the verification of BPA upload,  by UV-spectrophotometry. The stability analysis (c & d) 
Fo-0.5M 7A10BPNG in MQ-water, saline, Ringer solution and 10% BSA solutions by DLS and PDI-value (c) and 
UV-Visible spectrophotometery (d).  
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amount of boron compound is too low to influence significantly the layer architecture. 

Further investigation will be performed.  

The presence of 10BPA was evaluated by UV-Vis spectrophotometeric analysis (fig. 4-

13b). The UV-absorbance at 278nm is due to phenylalanine of BPA shows the conjugation of 

10BPA. BPA have a phenylalanine group in which the π electrons of the phenyl ring which 

can stack with other aromatic systems and often do within folded PEs, thus adding to the 

stability of the structure. As seen in the 10BPA absorbance spectra having peak at 268nm (fig. 

4-13b, inset) but the absorbance peak in case of 10BPA on the 10BPNG was observed to have 

a 10nm shift to 278nm which can be a hint for ring-stacking (fig. 4-13b). Further detailed 

investigation is going on.  

The binding of BPA was further validated by neutron autoradiography (fig. 4-14b). The 

Figure 4-14. (a) TEM micrograph depicting the mono-dispersity (image up) and the architecture of the AuNP with 
a nano-gold core and PE capsule (image down). Black bar represents 200nm scale length. (b) Neutron 
autoradiography validating the significant upload of 10BPA in the PNGs layers (10BPNG). The scale represents the 
size of the drop pipetted from the sediment of the suspension of Fo-0.5M 7A10BPNG. The spatial map represents 
the alpha particles liberated as a result of the exposure of the dried drop to neutron radiation.  
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neutrographic plate, infers an extremely high density implies from Fo-0.5M 10BPNG 

predicting an equally high concentration of boron in the suspension (drop) that was exposed 

to neutrons. This result verifies the successful conjugation of 10BPA in between the layers of 

Fo-0.5M 10BPNG. The naonoparticles were rinsed several times until the wash through 

(supernatant) does not show negligibly low UV-Visible absorbance, before exposure to 

neutron radiation. This verifies that the alpha particles liberated are solely coming from the 

particles and not from the solution. The neutrographic experiments efficiency of Fo-0.5M 

10BPNG at cell line level (i.e. on non-cell line and cancerous cell line) are underway.  

The PDI value (fig. 4-13a) and TEM image analysis (fig. 4-14a, up) of the 

0.5M7A10BPNG indicates that they are quite mono disperse. The overall architecture of the 

nanogold composite was visualized for particles with 7 layers exemplarily by TEM (fig. 4-

14a, down).  

 While the presence of ions (saline or Ringer’s solution) causes an immediate aggregation 

of PNGs coated from aq. PE, the 0.5M7A10BPNG (7 layers PNGs with last 2 layers with 

0.5M PEs and outermost layer of 0.5M PAH) were stable in in 0.5M NaCl solution and 10% 

BPA (fig. 4-13c & d). But some changes were observed if the coated particles were stored in 

Ringer’s solution. The hydrodynamic size of the 0.5M7A10BPNG increased from ~127nm to 

~180nm and the UV-Vis spectrum shows a shoulder at 650 nm which may indicative particle 

aggregation (lit from Schneider and Decher [12]) (fig. 4-13c & d).  

 

4.7.2. Interaction of Fo-0.5M 10BFPNGs with non-cancerous and cancer cells  

The uptake of Fo-0.5M 7A10BFPNGP was followed in three different cancer cell lines, 

i.e. hepatocellular carcinoma (JHH6), leukemic (HL60) and breast cancer (MDA MB 231) as 



__________________________________Part 1: Chapter 4 
 

___________________________________________ 
 -- 112 -- 
 

well as in two non-cancerous cell line i.e. immortalized human hepatocyte (IHH) and J774.2 

(macrophage cell line) by confocal fluorescence microscopy. In fig. 6-4, it can be seen that 

the targeting with Fo-0.5M 7AFPNGs led to a significantly (p≤0.001) higher particle uptake 

in the tested cancer cell lines (fig. 4-15d-f) in comparison to the non-cancerous cell line (fig. 

4-15a, b). The folate-receptor mediated endosomes are known to guide and liberate its 

content in the nucleus [18]. In fig. 4-15c, after 24 h of treatment, most of the cancer cells had 

internalized the 10BFPNGs which accumulated in the perinuclear region, whereas in the non-

cancerous cell lines, number of cells which have taken up the particles is significantly low.  

 

Fig. 4-15. Fluorescence confocal microscopy reveals negligible 10BPNG uptake in noncancerous cells lines (a) 
IHH & (b) J774.2 while significant uptake is observed in tumor cell lines i.e. JHH6 (d), HL60 (e) and MDA MB 
231 (f). (c) The graphically represented percentage of cells with 10BPNG in non-cancerous and cancer cel lines. 
Each result represents mean±SD of 5 independent experiments.White bar reoresents 10µm scale length. 
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Interaction with the macrophages (i.e. innate immunological response) was also assessed 

as an indicator of systemic drug biocompatibility. Macrophage recognition of PNGs is the 

main reason for fast clearance of charged drug delivery systems from blood. Due to the 

decrease in the surface charge by saturation of the PE capsule with folic acid, it was assumed 

that a quasi neutral surface charge could prevent recognition by macrophages. Therefore, to 

evaluate the above assumption, I did confocal imaging of macrophage cells (J774.2 cell line) 

after 24h treatment with the Fo-0.5 7A10BFPNGs (fig. 4-15c). For each experiment on 

average 1000 cells were analyzed and each experiment was repeated 3 times. I found that 

only ~20% macrophages could endocytosed the Fo-0.5M 7A10BFPNGs.  

Furthermore, an adverse 

effect on the cell viability due to 

10BPNGs treatment was studied 

by a MTT assay. The cell 

viability was found to be 

between 90 and 100%. The only 

exception is the breast cancer 

cell line where it decreased to 

around 80% (fig. 4-16). This 

indicates a quite low toxicity of 

the coated particles themselves. 

 

 

 

 

Figure 4-16. Cell toxicity profiles after 3days of the 10BPNG 
uptake of the test cell lines. There was no significant difference 
between their respective control (untreated cells considered as 
100%). Each result represents mean±SD of 5 independent 
experiments. 
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CHAPTER 5 

 

5.1. Conclusions 

This is the first time that a study has described in detail orientation and binding of the 

first polycation (PAH) or polyanion (PSS) layer to the curved gold surface of nanoparticles. 

In the presented SERS study we confirmed the unexpected binding of PSS and clarified the 

underlying binding mechanism. The changes observed in the spectrum of the aromatic 

system of PSS and the fact that some of the peaks from the PSS spectrum are visible in the 

citrate-gold spectrum indicates that also PSS binds to the gold surface but without replacing 

the citrate shell. By SERS it was shown that the poly-allylamine is oriented with the primary 

amine groups towards the gold surface which was expected and in accordance to the results 

of other groups [1]. These results are supported by the surface charge measurement which 

showed an additional decrease in the negative charge of the citrate stabilized AuNP in case of 

PSS as first layer while the PAH induces a high positive surface charge. Another aim of the 

present study was to improve the stability of PNGs against aggregation in the presence of 

small ions, in order to allow injectability in medicinal solutions without losing the advantage 

of small size of single nanoparticles. It was shown by Schneider and Decher that 

encapsulation in the presence of ions such as sodium or chloride, leads to AuNPs aggregation 

[2]. I confirmed that this observation is true for the first 5 layers. However, if the first 5 

layers were deposited from aq. PE followed by coating with 0.5 M PEs, the coated particles 

are stable against aggregation. The resulting nanoparticles showed also higher stability if 

stored in ionic solutions. In a model proposed for the layer-by-layer technique it was assumed 

that the first “precursor” layers on flat surfaces differ from latter layers because the 



__________________________________Part 1: Chapter 5 
 

___________________________________________ 
 -- 118 -- 
 

deposition is still influenced by the template [3]. Moreover these layers are supposed to 

contain small counter ions and they are charged. This effect could be true for curved 

templates such as AuNPs. From the experiments, it was deduced that on AuNP, the first 5 

layers are the precursor layers and that they are more prone to be affected by small counter 

ions. Probably for a higher number of layers the neutral layers in zone II [3] stabilize the 

capsule and the exposure to small ions does not cause aggregation any longer.  

As a possible reason for the low stability against aggregation of the nanoparticles coated 

with PEs from pure water, the excessive length of the PAH chains as compared to the particle 

diameter was identified. If the particle is smaller than the polyion length, this can lead to 

incomplete wrapping and in turn to bridging of several particles and hence flocculation.  

It is known that the polycation PAH in the presence of a concentration higher than 0.3M 

NaCl, collapses into a random coiled structure [3]. This can explain the increased stability of 

nanoparticles coated with 0.5M PEs against aggregation while their equivalent aq. PE coated 

particles aggregate in the presence of ions.  

After improving the stability of the coated particles for injection into body fluids, the next 

aim was to conjugate targeting molecule with them. I studied whether the electrostatic 

binding of a target molecule is strong enough to allow the recognition in ionic solutions such 

as complex cell culture media. Many recent reports describe the functionalization by 

covalently binding of folic acid for targeted nanoparticle delivery to cancer cells [4-9]. 

However, the covalent binding can always induce toxic by-products, reduce the efficacy of 

the drug, or influence the recognition by the targeted receptor. Therefore, functionalization 

was assessed via electrostatic interactions. The binding of folic acid to the multilayer capsule 

was verified by SERS, ζ-potential and DSL analysis. The observed higher uptake by cancer 

cells of folic acid functionalized AuNPs is in good accordance to other studies described in 
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literature, for folic acid-poly-ethylenglycol conjugates [8, 9]. Moreover the fact that the 

uptake of particles without folic acid in cells without folate-receptor (macrophages) is lower 

supports its increased specificity. 

The 10-B uploading in between the layers of the targeted multilayer coated AuNPs verify 

the potential applicability of the present system. Therefore, stabilised targeted multilayer 

coated AuNPs could be a potential drug delivery or diagnostic system (as drug molecules or 

imaging probes could be loaded in the PE matrix of the multilayers).  
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1. A brief overview 

Cancers are caused by abnormalities in the genetic material of transformed cells [1]. Most 

cancers have mutations in genes for one or more proteins which are crucial cell-cycle 

checkpoints that normally function to restrict progression through the G1 stage of the cell 

cycle (Fig. 1-1). Defects in the apoptotic pathway allow cancer cells to survive for prolonged 

periods of time, accumulating more genetic errors, and live in a suspended state that permits 

metastatic spread. In the absence of tumor suppressor gene products and/or activation of 

other oncoproteins, oncogenes contribute to cancer formation by supporting accelerated 

proliferation, de-regulating cell cycle control or blocking apoptosis [2].  

 

Fig. 1-1. The seven types of proteins that participate in controlling cell growth. Cancer can result from the 
expression of mutant forms of these proteins: growth factors (I), growth factor receptors (II), signal-
transduction proteins (III), transcription factors (IV), pro- or anti-apoptotic proteins (V), cell cycle control 
proteins (VI), and DNA repair proteins (VII). Mutations changing the structure or expression of proteins in 
classes I – IV generally give rise to dominantly active oncogenes. The class VI proteins mainly act as tumor 
suppressors; mutations in the genes encoding these proteins act recessively to release cells from control and 
surveillance, greatly increasing the probability that the mutant cells will become tumor cells. Class VII 
mutations greatly increase the probability of mutations in the other classes. Virus-encoded proteins that 
activate growth-factor receptors (Ia) also can induce cancer [2]. 
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Nanoparticles and nanocapsules have opened up a new ground in the field of cancer 

therapy because of their unique properties, such as small size, controlled release of drug and 

reduced toxic effects on healthy cells. Furthermore they can be multifunctionalized to make 

personalized target specific particles with long blood circulation times. But most importantly 

they can carry nucleic acids in form of plasmids or Ribonucleic acid (RNA) which could 

correct the major classes of mutations in cancer.  

1.1 Oncogenes and tumor suppressor genes. 

Cell growth is regulated by both positive (proto-oncogenes) and negative (tumor 

suppressor genes) molecular factors. Thus, for a cell to divide or to enhance its growth, 

enhancement of positive factors or depletion of negative factors is required (fig. 1-2).  

1.1.1. Gain-of-Function Mutations Convert Proto-Oncogenes into Oncogenes 

Most of the known oncogenes derive due to mutation in growth inducing genes of 

normal cellular genes (i.e., proto-oncogenes) whose products participate in cellular 

growth-controlling pathways. Because most proto-oncogenes are basic to life, they have 

been highly conserved [3].  

Fig. 1-2. Mutation of oncogenes and tumor suppressor genes.  
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Proto-oncogene conversion or activation into an oncogene generally involves a ‘gain-

of-function’ mutation. At least three mechanisms can produce oncogenes from the 

corresponding proto-oncogenes [3]. 

• Point mutations in a proto-oncogene result in a constitutively acting protein products. 

• Localized reduplication (gene amplification) of a Deoxyribonucleic acid (DNA) 

segment that includes a proto-oncogene, leading to overexpression of the encoded 

protein. 

• Chromosomal translocation that changes the promoter for the growth-regulatory gene 

and causes inappropriate expression of the gene. 

Oncogenes caused by the first mechanism, leads to modified oncoproteins that differ 

from the normal protein encoded by the corresponding proto-oncogene. In contrast, the latter 

two mechanisms produces oncogenes, whose protein products are identical with the normal 

proteins; the oncogenic effect is due to their overexpression or in cells where they normally 

are not expressed. However, the gain-of-function mutations which convert proto-oncogenes 

to oncogenes acts usually dominantly, i.e. mutation in only one of the two alleles is sufficient 

for induction of cancer [3]. 

1.1.1.1.  c-Myc oncoprotein and human cancer 

The human c-myc proto-oncogene is the genomic homologue of the transforming 

sequences found in MC29, an avian retrovirus that can cause myelocytomatosis, carcinoma, 

sarcoma and lymphoma [4-6]. The c-Myc protein encoded by the proto-oncogene is a 

multifunctional, nuclear phosphoprotein that plays a key role in cell cycle progression, 
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apoptosis and cellular transformation. It is a transcription factor regulating the transcription 

of specific target genes. Alterations in the structure or expression of c-Myc (fig. 1-3) was 

found to be 

associated with several forms of neoplasia, including avian leukosis virus induced B-cell 

lymphoma, rodent plasmacytoma and human Burkitt’s lymphoma, leukemia, colon 

carcinoma and variant small cell lung cancer [7-18]. Significantly elevated expression levels 

of c-Myc were measured in the majority of tumors. Due to gene rearrangement by 

transposition or by translocation of gene, sometimes if proto-oncogene is located under a 

strong constitutive promoter after the process, they start expressing the onco-protein. 

Transposon can do multiple transposition of the same gene thus causing amplification of the 

Fig. 1-3. Activation of the c-myc proto-oncogene by retroviral promoter and enhancer insertions (a) The promoter 
can be activated when the retrovirus inserts upstream (5′) of the c-myc exons. The right-hand LTR may then act as 
a promoter if the provirus has a defect preventing transcription through to the right-hand LTR. The c-myc gene is 
shown as containing two exons; there is a further upstream exon but it has no coding sequences. (b) The c-myc 
gene can also be activated when a retrovirus inserts upstream of the c-myc gene in the opposite transcriptional 
direction; a viral LTR acts as an enhancer, activating transcription from the c-myc promoter sequence [3].  
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number of gene, leading to enhanced gene expression.But so far no rearrangement or 

amplification of the c-myc gene has been demonstrated [18]. 

1.1.1.2. Structure of the c-Myc protein 

Myc is one of the few proteins which could be sufficient to drive the cell cycle and 

promote DNA synthesis into resting cells [19]. In line with this finding is that the constitutive 

expression of Myc in cells blocks their 

differentiation. The growth stimulating 

properties are most likely to be 

responsible for the ability of Myc to 

initiate and promote tumor formation. 

Interestingly, Myc can also makes cells 

sensitive to apoptosis, suggesting that it is 

also a part of a life-and-death switch. In 

order to fulfill its function as a 

transcriptional regulator Myc needs to 

heterodimerize with Max to exert the biological activities described above and to regulate 

gene transcription. Myc and Max are just two members of a growing family of proteins 

referred to as the Myc/Max/Mad network (fig. 1-4) [19, 20]. A hallmark of these proteins is 

that they possess a C-terminal basic region/helix-loop-helix/leucine zipper domain 

(bHLHZip). The bHLHZip domain specifies dimerization within the network and determines 

sequence specific DNA binding. Importantly this domain together with the N-terminal 

transactivation domain is essential for Myc biology [21].  

 

Figure 1-4. Structure of the c-Myc (red) in complex 
with Max (blue) and DNA (PDB 1NKP). Both proteins 
are binding the major groove of the DNA by forming a 
fork-like structure [20]. 
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1.1.2. Loss-of-Function Mutations in Tumor-Suppressor Genes Are Oncogenic 

Tumor-suppressor genes, in general, encode proteins that inhibit cell proliferation. Defeat in 

one or more of these “brakes” contributes to the development of many cancers. Five broad 

classes of proteins are normally recognized as being encoded by tumor-suppressor genes [3]: 

• Intracellular proteins, such as the p16 cyclin-kinase inhibitor, that regulate or inhibit 

progression through a specific stage of the cell cycle 

• Receptors for secreted hormones (e.g., tumor derived growth factor β) that function to 

inhibit cell proliferation 

• Checkpoint-control proteins that arrest the cell cycle if DNA is damaged or 

chromosomes are abnormal 

• Proteins, such as p53 transcription factor, that promote apoptosis 

• Enzymes that participate in DNA repair. 

Although DNA-repair enzymes do not directly inhibit cell proliferation, cells that have 

lost the ability to repair errors, gaps, or broken ends in DNA accumulate mutations in many 

genes, including those that are critical in controlling cell growth and proliferation [3]. Thus, 

loss-of-function by mutations in the genes encoding DNA-repair enzymes promote 

inactivation of other tumor-suppressor genes not only initiated indirectly activation of 

oncogenes but also enhances the chance of tumorigenesis [3].  

In generally, one copy of a tumor-suppressor gene is sufficient to control cell 

proliferation. Thus, oncogenic loss-of-function mutations in tumor-suppressor genes act 

recessively [3]. Hence in order to promote tumor development both alleles of a tumor-

suppressor gene must be lost or inactivated.. Tumor-suppressor genes in many cancers have 
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deletions or point mutations that prevent production of protein or lead to production of a 

nonfunctional protein [3]. 

1.1.2.1. p53 and human cancers 

The p53 gene is the first tumor suppressor gene to be identified and, ever since its discovery, 

scientists have found that the p53 pathway is altered in most human cancers. The p53 has 

been nicknamed “the Guardian of the Genome” as it is at the heart of the cell’s tumor 

suppressive mechanism. After receiving a “danger signal” such as DNA damage and cells in 

stress, it initiates several crucial cellular responses that suppress tumor formation (fig. 1-5)  

[22]. 

 

 

 

 

 

 

1.1.2.2. Structure of the p53 protein  

The p53 gene, located on chromosome 17p1, contains 11erons that encode a 53kD 

phosphoprotein. The p53 protein is a transcription factor containing 4 distinct domains (fig. 

1-6) [23, 24]:  

Fig. 1-5. Activators and effects of p53 [22]. 
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o the N-terminus transactivation domain,  

o the DNA binding domain containing a Zn2+ ion,  

o an oligomerization domain, and  

o a C-terminus regulatory 

domain. 

The p53 protein binds as a 

tetramer to a DNA response 

element containing 2 inverted 

repeats of the sequence 

5’PuPuPuC(A/T)-3’ (Pu represents 

purine base: A or G) in order to 

regulate transcription of its target 

genes by binding with 

approximately 300 different gene 

promoter regions.  

The loss of function of p53, 

either through deletion, mutation, 

repression, or loss of expression 

is one of the most common 

events in tumorigenesis. The 

restoration of p53 activity in cells with mutated or deleted p53 gene, in many in vitro 

Figure 1-6. (a) Domains of the p53 protein and location of mutational 
hotspots. (b) Structure of the p53 in complex with DNA (PDB 3KZ8). 
Protein-DNA interactions occur at the major and minor groves and at 
the DNA backbone [23]. 
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studies shows that either it suppresses growth of the cells or induces apoptosis [25-29]. 

This led to the idea that gene therapy, aimed at restoring p53 activity in tumors might be 

a fruitful approach to a natural cancer treatment. Indeed a number of studies have shown 

that adenovirus- or retrovirus-driven delivery of the wt p53 gene can suppress tumor 

growth in vivo [30-35]. 

1.2. Nanomedicine and novel therapeutic strategies  

While discovery of new drugs and cancer chemotherapy opened a new era for the treatment 

of tumors, optimized concentration of a drug 

at the target site is only possible at the 

expense of severe side effects [36]. 

Nanoscale carrier systems have shown to be 

the potential system with limited drug 

toxicity and achieve tumor localization [36]. 

These can be easily linked to tumor-

targeting moieties, such as tumor-specific 

ligands or monoclonal antibodies, the nanocarriers can be used to target cancer-specific 

receptors, tumor antigens, and tumor vasculatures with high affinity and precision. But 

unfortunately no proteins or receptors were found so far which are completely tumor specific, 

usually targeting nowadays aims to recognize markers on the cancer cell surface which is 

overexpressed in cancer cells. An effective drug delivery is based on three facts: (a) efficient 

encapsulation of drugs (b) targeted delivery and (c) successful release (fig. 1-7) [37].  

 

Fig. 1-7. Targeted drug deliver system [37]. 
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1.2.1. Nanotechnology for antisense therapy 

Recently, antisense oligonucleotides (ODN) have been used to inhibit the expression of a 

number of oncogenes and growth factors (fig. 1-8) [38, 39]. Antisense oligonucleotides  

directed against or upstream of the AUG region (protein translation start site) of a mRNA are 

thought to hinder interaction of the RNA with the ribosome, thus interfering with its 

translocation [40]. 

The phenomenon of “RNA interference” (RNAi) was first reported by Napoli et al.[41] 

in 1990. RNAi mechanism are intended to regulate the endogenous gene expression. One of 

three type of small RNA molecule, is “small interfering RNA” (siRNA), which are involved 

in this mechanism (fig. 1-8). The siRNA bind to the target mRNA in a sequence specific 

manner. This binding causes localized double strand formation, which is then recognized by 

Dicer. Dicer is a member of  the RNase III family of double-stranded RNA (dsRNA) specific 

endoribonuclease. After binding with siRNA/mRNA duplex, Dicer causes its cleavage which 

Figure 1-8. The siRNA/miRNA pathway. (a) overall pathway; (b) Cartoon of siRNA/miRNA induced cleavage 
mechanism of mRNA in the cytoplasm of a cell [38]. 
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in turn creating short double stranded siRNA/mRNA duplex with characteristic 2 nucleotide 

long 3’-overhang at each end [42]. The 2 nucleotide 3’overhang RNA duplex is then 

identified by the RNA-induced silencing complex (RISC). This complex includes ‘slicer’ and 

‘argonaute’ protein with RNaseH like domain. Argonaute is an endonuclease causes 

degradation of messengerRNA (mRNA) whose sequence is complementary to that of the 

siRNA guide strand (strand which remain bound with RISC). In turn the siRNA guide strand 

(single strand) of RISC/siRNA complex again bind sequence specifically to the target 

mRNA, causing localize duplex formation as above [43]. Dicer recognizes this RISC/RNA 

duplex complex, but in this complex Dicer causes cleavage RNA duplex at the middle of the 

sequence. This short cleaved RNA is then identified as aberrant and are degraded. The RISC/ 

siRNA guide strand after binding to mRNA by sequence specific manner may serve as a 

primer for RNA-dependent RNA polymerase (RDRP) enzyme, and polymerases the siRNA 

strand. This double stranded siRNA/mRNA act as template for Dicer and the same 

mechanism as above was followed. All this complex mechanism causes rapid degradation of 

the mRNA of the target protein mRNA, hence causes targeted silencing of the gene. 

The study of optimal ODN length necessary to preserve the distinguished point mutation 

region of the oncogenic mRNA vs. the mRNA of the proto-oncogene, has provided us with 

new avenues in antisense ODN utilization for nanoparticle therapy in cancer tissue. This will 

stop uncontrolled proliferation in cancer cells to i.e., they enter into G0–phase of cell-cycle.  

Various nano-technological carrier systems have been introduced. Quantum dots (QD) 

have been used for siRNA delivery [44]. Polylactic-co-glycolic (PLGA) and polylactic acid 

(PLA) based nanoparticles have also been used for in vitro RNAi delivery [45]. Although, the 

delivery of siRNA using the various nanomaterials, tracking their delivery and monitoring 

transfection efficiency has been success, but its, still difficult without a suitable tracking 
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agent or marker. Designing an efficient and traceable transfection agent for RNA interference 

is a big challenge. Recently, chitosan nanoparticles encapsulated with quantum dots or with 

fluorescent dyes have been synthesized and were uploaded with targeted siRNA to inhibit 

gene expression [46, 47].  

 

1.2.2. Nanotechnology for gene therapy 

Gene therapy is a therapy which causes insertion of target genes into individual cells of 

an individual to treat various diseases, 

such as cancer, where deleterious 

mutant alleles are replaced with 

functional ones (fig. 1-9) [48]. Viral 

vectors, bio-nanoparticles with 

diameters  of 100 nm or less, have long 

been proven to be the most efficient 

and stable transgene vectors into the cell 

and thus are suitable for vaccine and 

gene therapy [49, 50]. Despite the fact that the viral gene delivery system has shown some 

successes in clinic trials, the FDA has not approved any therapeutic viral vectors because it 

shows a high transfection yield but has many disadvantages such as immunogenicity, 

oncogenicity, and potential virus recombination problems inherent in viral vector systems 

[36, 48]. Recently it has been reported that severe immunodeficiency leukemia patients have 

died following a retroviral vector treatment. The adenovirus therapy trial raised a red flag for 

viral vector-mediated gene transfer [51]. To this end, approaches have been developed to 

circumvent vector immunogenicity [52]. 

Figure 1-9. Adenovirus mediated gene therapy [48]. 
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Safety concerns over the use of viral vectors have stimulated interest in developing 

substitute gene carriers. Nonviral nanoparticles may offer an alternative and perhaps a better 

approach, as they are relatively easy to prepare, are less immunogenic and oncogenic, and 

have no potential of virus recombination and limitation on the size of a transferred gene than 

viral vectors. The main drawback is the low transfection efficacy of non-viral gene delivery 

systems and the unspecific delivery to specific cells. In order to overcome the latter problem, 

they can be decorated to carry genetic materials to target cells. Nanoparticles have been 

successfully tested for both in vitro [52] and in vivo gene delivery [53]. Their high surface 

area to volume ratio increase increases there interaction area with the target cancer cell 

membrane which makes them ideal for nonviral gene transfer. This mechanism has been 

widely used in liposome and other polymer-mediated gene transfer systems [53-55]. Various 

other non-viral nano-carrier system has also been developed for ODN and gene-delivery [56-

57]. 

 

1.2.3. Ideal nanoscopic drug delivery system 

To deliver therapeutic agents to cancer cells in vivo, the following three issues have 

to be considered: (i) drug resistance at the tumor level due to physico-chemical barrier 

(non-cellular based mechanisms), (ii) drug resistance at the cellular level (cellular 

mechanisms), and (iii) distribution, metabolism & clearance of anticancer drugs in the 

body. 

1.2.3.1. Strategies to overcome tumor level resistance 

Various strategies must be considered and accordingly therapeutics should be developed 

in order to overcome tumor level resistance due to several mitigating facts.  
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Firstly, non-cellular drug-resistance mechanisms are poor vasculature, the acidic environment 

of the neoplastic tissue, high interstitial pressure and low micro-vascular pressure, and charge 

on the drug molecules, reducing drug access to the tumor and thus protecting cancerous cells 

from cytotoxicity [58]. Secondly, resistance due to cellular mechanisms which comprises 

altered activity of specific enzyme systems (e.g., topoisomerase activity), altered apoptotic 

regulation (i.e., mutation in the major tumor suppressor genes like p53, p16 etc.), or transport 

based mechanisms, such as P-glycoprotein efflux system, which is responsible for multi-drug 

resistance (MDR), or the multi-drug resistance proteins (MRP) [59, 60]. Thirdly and the most 

destructive fact is, that anticancer drugs are distributed throughout the body, causing damage 

in both, tumor and normal cells. The low efficacy of chemotherapy and radiotherapy is often 

limited due to this side effect [61]. This observation emphasizes that in order to develop 

efficient strategies for cancer therapy the nanoparticulated drug needs to be functionalities to 

overcome these non-cellular and cellular resistance mechanisms as well as increase the 

selectivity towards cancer cells while minimally affecting the normal tissues. 

While  innovative nanoparticles or nanocapsules have opened a new arena in the field of 

cancer therapy mainly two factors reduce the efficiency of these drug delivery systems i.e., 

short blood half-life (rapid elimination from the blood stream) and non-specific targeting.  

Identification by the macrophages of the mononuclear phagocytic system (MPS) as a 

consequence of the absorption of blood opsonin proteins on hydrophobic conventional 

nanoparticles causes their rapid elimination from the blood stream [62]. Thus, to obtain long-

circulating nanoparticles, nanoparticles should be surface modified with hydrophilic, flexible 

and non-ionic polymers such as polyethylene glycol (PEG) [62, 63]. A major breakthrough in 

this field was the introduction of “stealthing” hydrophilic polymers such as polyethylene 

glycol (PEG), polyxamine, poloxamers, polysaccharides [64, 65]. This dynamic ‘cloud’ of 
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hydrophilic and neutral chains, repel plasma proteins as modeled by Jeon et al. [65, 66]. In 

order to enhance the ability of nanoparticles to interact with cells and better permeation of the 

tissue, PEG can be covalently coupled to polylactic acid (PLA), polycaprolactone (PCL) and 

polycyanoacrylate (PCA) [66].  

 

1.2.2. Target specific drug delivery 

A most significant drawback of conventional drug delivery system is the lack of site-

specific targeting, i.e. tissue specificity, of nanoparticles. In first approaches to solve the 

problem, scientists have coupled targeting agents, such as monoclonal antibodies, with the 

nanoparticles [66-73]. But the dimension of antibodies (10nm) causes poor diffusion through 

biological barriers, and they induce a strong immunogenicity. One other strategy is the use of 

small non-antigenic ligands. Among various low molecular weight (MW) targeting agents, 

folic acid (MW 441Da) has been suggested as a target for cancer cells. Indeed, folic acid is a 

vitamin whose receptor is frequently overexpressed on the surface of the cancer cells [71, 72] 

as folate is required for the RNA and DNA synthesis. Moreover the receptor has also been 

reported as a tumor marker, especially in ovarian carcinoma, as it is highly restricted in most 

normal tissues [75-76]. Thus, the advantage of folic acid as targeting agent are that it is 

stable, inexpensive and non-immunogenic compared to monoclonal antibodies. Moreover, it 

has a very high affinity for its cell surface receptor (Kd~1nM) [78] and is effectively 

internalized within the cell [77-79], which makes it a  valuable tool for intracellular delivery 

of anticancer agents [80-86].    
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CHAPTER 1 

Double strike - Target specific polymeric coacervate nanoparticles inhibit proliferation 
and induce apoptosis in Cancer cell by integrating anti-sense and gene therapy.

* 

 

1.1. Aim of the present work 

Cancer is a multi-mutation gathering disease. Mutations typically affect two general classes 

of genes i.e. proto-oncogenes and tumor suppressor genes. A novel therapeutic approach 

aims to develop nanoparticles correcting these mutations. This part of thesis describes the 

formulation, characterization and application of targeted (folate conjugated) Coacervate 

Polymeric particles (CPs) delivering siRNA (against oncogenic mRNA [c-myc]) and plasmid 

bearing wild-type tumor suppressor genes (p53 gene) for cancer therapy. Hence, with the 

formulation of this CP, I am able to integrate two therapeutic system i.e. antisense therapy 

and gene therapy. 
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CHAPTER 2 

 

2.1. Introduction 

Cancer is a disease, in which alterations in the cellular genome affect the expression or 

function of genes which are controlling cell growth, differentiation and programmed cell 

death (apoptosis). There are two major classes of gene mutations present in most of cancer 

types: oncogenes and tumor suppressor genes.  

Since gene therapy is currently being applied in the treatment of many different diseases 

such as cancer, AIDS, and cardiovascular diseases [1-6], numerous studies have been carried 

out or are in progress to develop non-viral gene delivery systems using nanoparticles.[7-14] 

Furthermore,  there are several clinical trials test gene therapy protocols [15-21] and some of 

them have already been successful [22-24] in their outcome e.g. treatment of adenosine 

deaminase deficiency [25]. Moreover, in recent years, numerous research programs have 

been started in order to develop nanoparticles for anti-sense therapy. Several strategies were 

tested which involved uploading small interfering RNA (siRNA) onto the nanoparticles, in 

order to knock down the expression of the target gene at the messenger RNA (mRNA) level 

(hence the term RNA interference) [26-30]. This offers a novel therapeutic strategy to 

overcome the disease, because it could selectively down regulate protein production in cells. 

In developing therapeutic agents for cancer at the cellular level three major issues have to 

be considered:  
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a) Drug resistance (drug non-availability) at the tumor level due to possible 

physicochemical barriers (non-cellular based mechanisms) and at cellular level (cellular 

mechanisms),  

b) Bio-distribution (accumulation of the applied drug in the different organs), and  

c) Bio-transformation and clearance of the anticancer drug in the body.  

Accordingly, in the present part  the strategy has been to develop. My present work is 

aimed to develop polymeric Coacervate Particles (CPs) integrating antisense and gene 

therapeutic strategies for cancer therapy which should be selective to cancer cells and have a  

negligible toxicity for normal cells. Fig. 2-1 shows a scheme of the multilayered 

multifunctional nanoscopic system.  

 

Fig. 2-1. Schematic diagram of the multilayered multifunctional nanoscopic system. 
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2.1.1. The core of the system: introducing gene therapy 

Mutations or deletion of the p53 tumor suppressor gene, have been observed in more than 

50% of human cancers [31-36]. This indicates the cell transformation ability of mutant p53 

genes goes beyond dominant-negative effects [34,35]. It has been already reported that 

induction of wild-type p53 in cancer cells by infection resulted in extensive apoptosis and the 

death of a significant percentage of the infected cells [36-40]. Taking this into consideration, 

the strategy was to couple the delivery of siRNA against oncogenic mRNA of c-myc with 

that of a plasmid encoding for wild-type p53 which, in turn, can activate apoptotic pathways 

in the haltered non-proliferating cancer cells. 

2.1.2. The next layer introducing antisense therapy  

Mutations in c-myc proto-oncogene in most cancer cells cause deregulation and over-

expression of Myc oncoprotein, a transcription factor which in turn contribute to 

tumorigenesis by inducing unrestrained cellular growth, proliferation, angiogenesis, and 

genomic instability [41-44]. Consequently, inhibition of Myc oncoprotein has become an 

attractive pharmacological target for treating diverse types of cancer. Previous studies have 

shown that targeting Myc inhibition, a common downstream trigger for many oncogenic 

signals, could be an effective, efficient and tumor-specific cancer therapy [45]. In view of the 

above argument I chose to deliver in a first step, siRNAs against the oncogenic mRNA of c-

myc in different cancer cell lines, in order to induce down-regulation of Myc oncoprotein 

which can reverse tumorigenesis by inhibiting proliferation [46].  

To deliver these therapeutically active nucleic acid systems I developed CPs, by 

precipitating by electrostatic interactions, the p53 encoding plasmid with the biodegradable, 

biocompatible [47] cationic biopolymer chitosan (a polyaminosaccharide). In contrast to 
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most polycations, chitosan has a low immunogenicity [48]. Moreover, it also protects the 

uploaded nucleic acids from nuclease degradation [48-50].  

 

2.1.3. The outermost layer reduces the uptake in macrophage system (MPS) 

The major limitation for intravenous delivery of polymeric nanoparticles is, however, 

their rapid elimination from the systemic circulation by blood monocytes and cells of the 

mononuclear phagocyte system (MPS) [51,52]. In particular, nanoparticles whose surfaces 

were modified by the incorporation of poly(ethylene glycol) (PEG) during nanoparticle 

formulation either through covalent attachment of PEG to surface functional groups or 

through physical adsorption of PEG to the surface. PEG can decrease MPS cell uptake and 

increase the blood circulation time to augment to the passive delivery by EPR [53-55]., 

therefore the CPs were coated with the tri-block polymer, polylactide-block-poly(ethylene 

glycol)-block-polylactide (PLA-PEG-PLA, P3) in order to obtain CPs combining the ability 

to avoid clearance by MPS along with an enhanced tissue and cell penetration [56-60].  

In the multifunctional P3 polymer, the PEG block, a non-toxic, amphiphilic 

polyglycolether, produces a dynamic, mobile and flexible molecular “cloud” over the particle 

surface due to the chain flexibility and electrical neutrality. This should reduce the adsorption 

of opsonins and other serum proteins by a “steric repulsion effect” [53-56]. Whereas PLA, an 

amorphous polymer widely used for medical and pharmaceutical applications, is known to 

enhance particle interaction with cells and hence allow for a better permeation in the tumor 

tissue [59-61]. Normally, targeted polymeric particles enter only in the first few cell layers of 

the tumor [62].  
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2.1.4. CP decorated with cancer targeting molecule 

Most negative side-effects of anticancer drugs stem from the fact that they are widely 

distributed throughout the body, causing damage of both tumors along with normal cells. 

Consequently, the efficacy of chemotherapy and, similarly, radiotherapy is often limited, due 

to this problem that is normally tackled, in the case of chemotherapy by the use of small non-

antigenic ligands targeted to cancer cells.  

A low molecular weight (MW) targeting agent, Fo and the FR surface protein has 

emerged as one of the most [63-68] promising combinations for the development of selective 

cancer therapy. Specifically, malignant cells express significantly more of the receptor (≥20 

pmol [3H]folate/106 cells) than normal epithelial cells and fibroblasts (≤1 pmol [3H]folate 

/106 cells).[64, 69-73] This receptor has also been reported as a tumor marker in most cancer 

forms [68], especially in ovarian carcinoma [72, 73]. Once the folic acid binds to the FR it is 

delivered directly to the nucleus of the cell, because folic acid is required for RNA synthesis 

[74, 75]. Thus, the advantages of Fo as targeting agent are that it is stable, inexpensive and 

non-immunogenic as compared to proteins such as monoclonal antibodies. [75] It has a very 

high affinity for its cell surface receptor (Kd~1nM) [74] and its efficiently internalized by the 

cell [75-79]. These properties make it a highly suitable molecule for intracellular delivery of 

anticancer agents.  

The complete coacervate particles were characterized by zeta potential, dynamic light 

scattering, electron microscopy and UV-Vis spectroscopy. The interaction with cells such as 

uptake and transfection were studied in 3 different cancer cell lines: 1) HL-60, an 

undifferentiated leukemic cancer cell line with deleted p53 gene, 2) breast cancer cells with a 

mutated p53 gene and 3) hepato carcinoma cells, which are well-described in the literature as 
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targets for p53 gene therapy with even clinical trial phase III studies going on [81]. Finally 

the non-cancerous, immortalized hepatocyte cell line, IHH was used for comparison. The 

CPs showed a significant difference between cancer and non-cancer cells in cytotoxicity due 

to apoptosis induced by p53 expression.  
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CHAPTER 3 

 

Materials and Methods 
 

3.1. Materials 

The cationic polymer, low molecular weight chitosan (LMW-CHI: MW 50-190KDa), 

polylactide-block-poly(ethyleneglycol)-block-polylactide (PLA-PEG-PLA; P3: Mn 3.9KDa), 

folic acid (Fo: MW 0.441KDa), sodium acetate, glacial acetic acid, sodium chloride (NaCl), 

trypan blue solution (T8154), dimethylsulfoxide (DMSO), potassium chloride (KCl), calcium 

chloride (CaCl2), and fluorescein isothiocyanate (FITC) as well as the chemicals for the lysis 

buffer were purchased from Sigma, Aldrich (Milan, Italy) and used without further 

purification. MEGM® SingleQuots medium, fetal bovine serum (FBS), fetal calf serum (FCS) 

and DMEM medium was purchased from Lonza (Sigma, USA). The pcDNA3p53wt 

construct, used as anionic polymer, was a generous gift from Prof. G. Del Sal, (Laboratorio 

Nazionale Consorzio Interuniversitario Biotecnologie-LNCIB, Trieste, Italy) while the 

pAcGFP1 Actin vector was purchased from Clontech, Italy. The antisense oligonucleotide, 

Silencer® Select Pre-designed siRNA (Ambion:#4390818) against c-myc mRNA was 

purchased from Applied Biosystem, Italy. All experiments were performed with autoclaved 

Milli-Q grade water with a resistance of 18.2MΩ/cm2 and treated with DEPC 

(Diethylpyrocarbonate) to prevent RNase degradation during the experiments.  

The statistical analysis was performed using Origin8 and Graphpad Prism 5 software. 
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3.2. Methods 

 

3.2.1. Coacervate particle preparation 

The standard layer-by-layer protocol was followed for the preparation of the multilayered 

multifunctional CPs. Briefly, a charged core was assembled by electrostatic interaction 

between the polyanion, which is the plasmid encoding for wild-type p53 (pcDNA3p53wt) 

(fig. 3-1) and the polycation, 

LWM-CHI solved in 1% acetate 

buffer (pH-5.5).Chitosan is a 

weak base polysaccharide (pKa 

value: 6.2–7.0 for the D-

glucosamine residues), thus 

shows low solubility at neutral 

and alkaline pH. However, at 

low pH (pH-5.5) around 90% of 

the amine groups are protonated 

[1]. The LWM-CHI solution was 

sonicated followed by sterile 

filtration through a 0.22µm 

syringe filter. The polymer 

solutions were heated to 42°C before the addition of the polyelectrolytes for the preparation 

of the core of the CPs at 37°C, in order to optimize the coacervation. 

 

              Fig.  3-1. The pcDNA3p53wt vector map. 
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As the preparation procedure is a series of repeated deposition and washing steps, we 

summarize the details in table 3-1 and describe in the following only the general procedure.  

 

The particle suspension was added as drops to the polymer solution under intensive 

mixing to prevent local high particle concentration and hence agglomeration. Usually the 

unbound polymer was removed by three times centrifugation and re-suspension in a fresh 

DEPC treated water, followed by a brief sonication. Exceptions are indicated in the Table 3-

1. The resulting CPs were characterized by size and polydispersity index (PDI) 

measurements with Dynamic Light Scattering (DLS) as well as the surface charge which was 

determined by the ζ-potential using a Zetasizer (both: Nano-ZS; Malvern Instruments, Milan, 

Italy). Only CPs with PDI values of ∼0.25 were used for the following coating steps. Particle 

concentrations were quantified by UV-Visible spectrophotometry (DU®730, Beckman 

Table 3-1. Detailed step-by-step CP preparation method. 
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Coulter, Milan, Italy). The amount of bound nucleic acids was calculated from the optical 

density (OD) measured at λ=260nm and the assumption that OD is 1 for 50µg/mL DNA and 

for 40µg/mL RNA, respectively [2]. 

CPs for uptake and transfection efficiency determination by confocal fluorescence 

microscopy were prepared by varying the above described protocol. Furthermore to measure 

CP internalisation, fluorescent CPs, called fCPs [P3iMfCp53] were prepared by using FITC-

labeled chitosan instead of the unlabelled one. FITC labeled chitosan was prepared in a 2-

phase reaction. Chitosan flakes were suspended in water and mixed with FITC solved in 

DMSO for 1h. In this pH condition the amine groups are mainly uncharged and hence 

amenable to the covalent fluorophore binding. The success of the reaction can be seen from 

the bright orange color of the chitosan flakes and their solution. The unbound FITC was 

removed by repeated washing of the 

chitosan flakes with pure water until 

the solution was no longer yellow. 

Then the flakes were dried and kept 

as powder until use. Finally, for 

transfection efficacy, reporter-gene 

containing CPs [P3iMCpAcGFP1] 

were prepared with pAcGFP1-Mem 

(4.8Kbps) vector as core encoding for 

AcGFP1 (fig. 3-2), a fusion protein of 

Aequorea coerulescens Green Fluorescence Protein and the N-terminal 20 amino acids of 

neuromodulin. The neuromodulin fragment contains a signal for posttranslational 

Fig. 3-2. The pAcGFP1-Mem vector map.  
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palmylation of cysteine 3 and 4 and hence the expressed GFP construct marks cellular 

membranes green. 

  
3.2.2. CP stability analysis 

The stability of [Fo-P3iMCp53] CPs as well as [Fo-iMCp53] CPs was studied for the 

following conditions: (i) 2months at 4ºC in MQ-water, (ii) 2h at room temperature in a 

Ringer solution ([NaCl]=0.147M, [KCl]=0.004M, [CaCl2]=0.0033M) and (iii) 2h at RT in 

MQ-water. The hydrodynamic size as well as the PDI was determined by DLS. 

 

 3.2.3. CPs Internalization and Transfection efficiency determination 

In order to determine the particle uptake by breast cancer cells, MDA MB 231 (ATCC 

HTB-26™), and Leukemic cell - HL60 (ATCC CCL-240™) line were incubated with green 

fluorescent P3iMfCp53 CPs for 24 h. For the transfection efficiency, the same cell lines were 

incubated with GFP expressing P3iMCpAcGFP1 CPs. In both cases, the coacervates were 

either with or without folic acid functionalisation.  

Both cell lines were continuously maintained in DMEM medium supplemented with 10% 

heat-inactivated fetal bovine serum (FBS), penicillin (100units/ml), streptomycin (100µg/ml), 

gentamicin (10µg/ml) at 5% CO2 and 37°C. The medium was changed every second day. A 

mycoplasma test was performed to exclude any possible contamination prior to performing 

all experiments. 

For the CP uptake study, MDA MB 231 and HL60 cells (2×105 cells/mL), grown on 

WillCo-dish® Glass-Bottom dish (WillCo Wells BV, Netherlands) were treated with 
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P3iMfCp53 CPs (conc. approx. 40.5µg/mL) with or without folic acid and incubated for 24h 

at 37ºC and 5% CO2. The short incubation time was necessary in order to avoid cell loss 

through apoptosis induced by the wild-type p53.  

The transfection efficiency was determined as follows: 2mL of HL60 cell suspension 

(2×105 cells/mL) were incubated for 3days with P3iMCpAcGFP1 and Fo-P3iMCpAcGFP1 

CPs (DNA-RNA concentration: approx. 40.5µg/mL), respectively.  

The percentage of transfected cells were determined by counting the green fluorescent 

cells in comparison to the total number of cells. Therefore, confocal images were acquired 

with Nikon C1 laser scanning confocal microscope (Nikon D-eclipse C1Si, Japan) with 

100X/1.49 oil Apo TIRF objective (Nikon, Japan). The fluorophore excitation was performed 

with an air-cooled argon laser at 488 nm and appropriate filter sets were used to collect the 

fluorescence emission. Images were acquired and analyzed using the Nikon provided 

operation EZ-C1 software. Each experiment was repeated 4 times (for each experiment 

~1000 cells were included in the statistical analysis). 

 

3.2.4. Protein extraction and Western blot  

To evaluate variations in the protein expression induced by CP exposure (incubation 

procedure as described in section 2.3), the total cellular proteins were extracted either from 

untreated control (c) samples, from Fo-iMCpAcGFP1 (tc-treated control) or from Fo-

iMCp53 (t-treated) CPs treated HL60 cells (deleted p53 gene). In the case of the breast 

cancer MDA MB cell line (mutated p53), proteins were only extracted from the control (c), 

and Fo-iMCp53 CPs treated (t) cells.  
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Briefly, after PBS washing, the HL60 cell pellets and the adhered MDA MB 231 cells 

were lysed for 5min on ice with 100µL and 400µL lysis buffer (20 mM Tris-HCl pH 7.0, 

150mM NaCl, 1mM Na2EDTA, 1% Triton, 2.5mM sodium pyrophosphate, 1mM β-

glycerophosphate, 1mM Na3VO4, 1µg/mL leupeptin), respectively . Cell debris was removed 

by centrifugation for 10 min at 14,000×g at 4°C, followed by quick freezing of the 

supernatants. Protein concentrations were determined using the Bicinchoninic Acid Protein 

Assay Kit (SIGMA) in accordance to the manufacturer’s protocol. Subsequently, from the 

differently treated cells 20µg of total cellular protein was separated by gel electrophoresis in  

8% SDS-polyacrylamide gel, followed by electro-blotting onto a nitrocellulose membrane. 

The electro-blotted membranes were then incubated for 1 h in 4% milk-TTBS (Tween-Tris 

Buffered Saline: 0.1% Tween-20 in 100 mM Tris-Cl [pH 7.5], 0.9% NaCl) for blocking and 

incubated over night at 4°C with primary antibodies in 4% milk-TTBS (details can be found 

in Table 3). After washing 3 times with 4% milk-TTBS, the immuno-blots were incubated for 

2h with HRP (Horseradish Peroxidase) conjugated secondary antibodies (condition see: 

Table 3-2). Following 3-4 times washing with TTBS, detection was by the ECL kit, and 

performed in accordance to the manufacturer’s protocol (Amersham ECL Plus kit (RPN 

2132)). For protein quantification, the intensity of the protein band was normalized to that of 

an actin standard, using ImageJ software.  

 

 

 

 

 

Table 3-2. Dilution of antibodies used in western blot analysis.
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3.2.5. CP induced apoptosis analysis 

During early apoptosis, phosphatidyl serine (PS) from the inner leaflet of the plasma 

membrane is transferred to the membrane surface for recognition by macrophages. Thus, PS 

becomes accessible to the Annexin-V/FITC conjugate and appears green in fluorescence 

microscopy [3]. On the other hand, propidium iodide (PI) red fluorescent staining allows the 

detection of late apoptotic cells with disrupted membrane and exposed DNA. In this way, 

early apoptotic cells will stain positive for Annexin-V/FITC and negative for PI, hence late 

apoptotic or necrotic cells, will stain positive for both, Annexin-V and PI, whereas normal 

viable cells in culture will be negative for both dyes.  

For the staining procedure, MDA MB 231 cells were seeded onto glass cover-slips 

(2×105 cells/cover-slip) in a petri-dish under the previously mentioned growing conditions. 

After 24 h of treatment with Fo-P3iMCp53 (as above), the glass cover-slips were rinsed twice 

with PBS and washed with the binding buffer (10mM HEPES/NaOH, 140mM NaCl, 2.5mM 

CaCl2, pH-7.4). The cells were then incubated for 15min at room temperature (RT) with 

Annexin V–FITC (1:100, v/v) (Boehringer Ingelheim, Germany). After washing once with 

PBS, they were further incubated with propidium iodide (PI) (1:100, v/v) (molecular probes, 

USA).  

Finally, the cells were washed twice in PBS and fixed with 4% paraformaldehyde for 20 

min at RT. They were subsequently washed twice in PBS and to visualize the nucleus, the 

cells were incubated with Hoechst-33342 (molecular probes) (10µM) for 10mins. After 

washing again twice with PBS, coverlips were mounted with Vecta-shield (Vector 

Laboratories, Inc., Burlingame). The images were acquired with a Leica laser scanning 

confocal microscope (TCS SP2, Leica, Germany). Every experiment was repeated 3 times. 
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3.2.6. Cell Viability analysis 

Cell viability was determined by Trypan Blue dye exclusion, which is based on the fact 

that viable cells with an intact membrane, exclude the dye, while apoptotic cells or those with 

corrupted membrane integrity, will be stained. The non-cancerous liver cell line- IHH 

(immortalized human hepatocyte cell line, ATCC, Rockville, MD, USA) were used as a 

negative control. The viability of the treated non-cancerous cell line was compared to 3 

cancer cell lines, JHH-6 (hepatocellular carcinoma, JCRB1030, Japan Health Science 

Research Resources Bank), HL-60 (leukaemia), and MDA MB 231 (breast cancer).  

IHH cells were maintained in DMEM/F12 1× medium containing 15mM Hepes buffer, 

L-glutamine and pyridoxine HCl, 1µM dexametasone (Sigma-Aldrich), 5µg/mL bovine 

pancreas insulin (Sigma-Aldrich), antibiotics (10,000U/mL penicillin, and 10mg/mL 

streptomycin (Euro-clone)) and 10% (v/v) fetal bovine serum (FBS) (Invitrogen); whereas 

JHH6 were kept in William’s E medium (Sigma-Aldrich, Missouri, USA W4128) 

supplemented 10% (v/v) fetal bovine serum (FBS), 2mM L-Glutamine (Euro-clone), and 

1%(v/v) antibiotics (10,000U/mL penicillin, and 10mg/mL streptomycin); HL60 and MDA 

MB 231 cells were kept under the same conditions as described for the transfection 

efficiency. They were seeded at 12×104 cells/well in 6 well-plates and transfected with Fo-

P3iMCp53 CPs (concentration as before) and kept for 3 days at 37°C and 5%CO2, with 

respective untreated cells as control. After washing twice with PBS, these cells were 

incubated with 1:1 (v/v) of 4% trypan blue solution for 1 min and unstained cells (live cells) 

and total number of cells were counted on a haemocytometer with a Carl Zeiss light 

Microscope (Axiovert 40C, Zeiss, Milan, Italy). For each cell line, percentage cell viability 
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after treatment was determined on the basis of respective control (untreated) cells as 100% 

viability. Each experiment was repeated three times.  

 

3.2.7. Macrophage recognition  

Fo-P3iMCp53 CPs uptake in macrophages was studied because they are the first 

responder in immune recognition, and hence the main reason for nanoparticle elimination 

from blood by the mononuclear phagocyte system (MPS). 

Non-activated J774.2 macrophages (ECACC, Mouse BALB/C monocyte macrophage 

cell line, a generous gift from Prof. Andrea Nistri, Neurobiology sector, SISSA) were seeded 

(2×105 cells/ml) on a WillCo-dish® Glass-Bottom dish, in DMEM medium supplemented 

with 10% heat-inactivated FBS, penicillin (100units/ml), streptomycin (100µg/ml), 

gentamicin (10 µg/ml) at 5% CO2 and 37°C for 48h. The cells were then incubated for 4h, 

24h or 72h with Fo-P3iMfCp53 CPs (procedure as described in section 2.3), followed by 

three times rinsing with medium. The percentage of cells which had internalized Fo-

P3iMfCp53 CPs was determined by fluorescence confocal microscopy. In order to evaluate 

the cell morphology, transmitted white light was collected through the second channel of the 

microscope to merge the fluorescence and transmission signal. 
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CHAPTER 4 

 

Results and Discussion 

4.1. Synthesis and characterization of the multifunctional coacervate particles 

As cancer is a disease caused by mutations in several genes which mainly regulate cell 

proliferation and apoptosis [1], a new generation of small multifunctional cancer cell targeted 

particles (Fo-P3iMCp53), correcting both of these mutations was been designed and 

produced in a multistep preparation. Fig. 4-1 shows a scheme of CP preparation by using a 

layer-by-layer approach. [2]   

 

Figure 4-1. Scheme of the layer-wise construction of the [Fo-P3iMCp53] coacervate particles. 
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The first step was to create a charged core on which layer-wise several polymers with 

functional moieties could be deposited electrostatically. The positively charged core (Cp53) 

consists of a condensed polyanionic plasmid (due to the presence of polyphosphate group) 

bearing the wild-type p53 gene, complex with the biodegradable, non-toxic polycation, 

chitosan (due to the presence of primary amine group) (fig. 4-1, 4-2a) [3-5]. The polyanion 

(DNA) and polycation (LMW-CHI) were mixed with a charge ratio (N:P) of 20, assuming 

that polymers are completely charged. The resulting particles (pcDNA3p53wt) have a 

hydrodynamic size of 356±3nm (fig. 4-2a). The change in the zeta-potential from -20±3mV 

for the free plasmid to +20±3mV for the coacervate core illustrates the binding of chitosan to 

DNA as well as the overcompensation of the negative charge. By UV-Vis spectroscopy the 

amount of bound plasmid was calculated by the absorption at 260 nm to be 33.85µg/mL (fig. 

4-2b) (Table 4-1). Further the interaction of plasmid and polycation took place, was predicted 

Figure 4-2. (a) Hydrodynamic size (left) by DLS and 
ζ-potential (right) of the CPs. Each column 
represents the mean±SD value of 5 independent 
experiments. (b) UV-Visible absorption spectrum at 
different stages of particle construction to calculate 
plasmid (dotted), and siRNA (dashed) concentration, 
and to prove the presence of folic acid (solid). Inset: 
the UV-Vis absorption spectrum of folic acid. (c) 
SEM image of the complete CP showing elongated 
solid single particles of 100nm length. 
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by the A260/280 ratio. As a result of polycation-plasmid intercalation, a reduction in the A260/280 

ratio i.e. to be 1.28 was observed, whereas it is 1.8 for pure DNA. Due to the fact that 

chitosan has no absorption at these wavelengths, the uploaded amount of DNA was 

calculated to be 67.7% in the CP constructs.  

 The binding of chitosan (pKa =6.5) to the negatively charged plasmid was triggered by 

the fact that the coacervation procedure was carried out at pH 5.5, at which the majority of 

amino groups is protonated [3]. An additional beneficial effect of chitosan binding to the 

plasmid is that it can prevent degradation by nucleases in the blood and in cells [6, 7].  

The next layer deposited on the plasmid core was siRNA which was aimed to bind mRNA in 

order to down-regulate mutated oncoprotein growth factors such as c-Myc. and hence 

suppress cancer cell growth and proliferation. The excess positive charge of the Cp53 CP 

core was used to induce the electrostatic binding of siRNA (fig. 4-2a). The successful 

deposition of the siRNA against c-Myc mRNA was deduced from the reduction in zeta-

potential from +20±3mV to +7±1.5mV. The reduction in zeta-potential value can be 

explained by the interaction of phosphate (PO4
3-) groups of siRNA with remaining free 

positively charged amino (NH4
+) groups of LMW-CHI. Moreover it could be observed that 

the hydrodynamic size decreased from 356±3nm (Cp53) to 307±11nm (iMCp53) (fig. 4-2a). 

A possible explanation for the decrease in the hydrodynamic size after siRNA deposition can 

be that the binding of siRNA condensate the polymeric core by reducing the repulsive forces 

induced by excess positive charges or binding free polycation loops which are also visible in 

the size as determined by DLS.  

The amount of bound siRNA was calculated from UV-Vis spectroscopy (fig. 4-2b, Table 

4-1). From the OD=0.924 at 260 nm it was calculated that 23.42±5.6µg/mL of the initially 

added 135.7µg/mL are bound, which is a binding efficiency of 17.31% (table 3). Here the 
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dilution of the initial plasmid concentration by the RNA addition as well as the absorption at 

260 nm due to the DNA had to be considered..  

In order to induce a long circulating time in blood by “stealthing” the particle surface and to 

improve the binding to cancerous cells, the biodegradable, neutral PLA-PEG-PLA (P3) was 

deposited. 

 

Upon P3 binding only small changes in zeta potential from +7±1.5mV to +3±5 mV and 

hydrodynamic size from 307±11nm to 339±12nm were observed (fig. 4-2a). The small 

changes are due to the fact that the neutral polymer P3 masks the remaining charged amine 

groups of LMW-CHI rather than neutralizing them.  This assumption is supported by the 

observation that without the P3 layer in presence of small ions (like those present e.g. in 

Ringer’s solution) the hydrodynamic size (477±50nm) and the PDI value (0.57±0.1) both 

increase with respect to the (hydrodynamic size: 311±27nm and PDI: 0.26±0.03) in pure 

Table 4-1. Calculation of the nucleic acid content of the CPs at different preparation steps.  
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water (fig. 4-3b). This increase in diameter can be explained by an interaction of the free 

charges of the polyelectrolytes with small ions which can penetrate the polyelectrolyte 

matrix. If the P3 layer is present as for the complete construct [Fo- P3iMCp53] no significant 

change in the size can be observed under the same experimental conditions (fig. 4-3a). In 

general it can be said that the particles with the P3 layer are very stable, even over the period 

of 2 months. This could be due to the presence of dense surface coverage with hydrophilic 

PEG molecules which produce a hydrated nanoshell that may effectively screen the ions and 

later in blood it can repel effectively proteins and cells [8, 9].  

 

In a final preparation step folic acid molecules as targeting ligand are immobilized onto 

the particle surface. While the binding of folic acid onto the [P3iMCp53] CPs [Fo- 

P3iMCp53] shows no differences in the surface charge ((+3±5mV [P3iMCp53] CPs; 

+2.5±2.5mV [Fo-P3iMCp53 CPs]) (fig. 4-2a), a slight increase in hydrodynamic size from 

339±11nm to 363±26nm with PDI: 0.263±0.03 was measured (fig. 4-2a). A final proof that 

folic acid is attached to the particles comes from UV-Vis measurements (fig. 4-2b). The UV-

Figure 4-3. CP stability analysis in different storage condition determined by DLS studies. Stability of CPs (a) with 
and (b) without P3 layer at different storage conditions. Hydrodynamic size (left) and Poly Dispersity Index (PDI) 
values (right) versus storage time and conditions. Each column represents mean±SD values of 3 independent 
experiments.  
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Vis absorbance spectra of Fo-P3iMCp53 shows the characteristic absorption maximum of 

folic acid at 350 nm, as well as a broadening of the main peak between 260nm till 280nm, 

which is a characteristic peak of a folic acid spectrum (inset fig. 4-2b).  

The Scanning Electron Microscopic (SEM) image of Fo-P3iMCp53 CPs (fig. 4-2c) also 

shows that they have a well-shape and compact structure, with an average size of 130±20nm. 

The difference in size between the SEM and DLS measurement can be explained by the fact 

that SEM works at ultra high vacuum and the particles are deprived of water. In contrast the 

DLS measurement determines CPs in a more realistic environment including the associated 

counter ions and the water shell of the particles.  

 

4.2. CP multi-functionality analysis 

4.2.1. Folate-receptor mediated uptake efficiency of Fo-fCPs  

It is known [10] that the folic acid-folate receptor-mediated endosome delivers its content 

into the nucleus (fig. 4-4a). Hence, first I investigated the Fo-fCPs uptake efficiency in the 

breast cancer cell line and leukemic cell line. Both the selected cell lines are known to over 

express FR [11, 12]. Cellular uptake of CPs was analyzed by imaging with confocal 

fluorescence microscopy by using fluorescently labeled P3iMfCp53 particles in the two 

model cell lines: MDA MB 231, a breast cancer cell line as an adherent solid tumor model 

and HL60, a leukemic cell line in suspension as a circulating cancer model (fig. 4-4 c). In 

order to prevent that the cells may undergo apoptosis induced by the p53 plasmid the uptake 

experiment was limited to 24 h. Due to the fact that the cells are not synchronized, cells in 

different states of particle internalization can be observed by confocal microscopy. The 

tagging 1,2 and 3 in the fluorescent micrograph (fig. 4-4b) is in accordance to the scheme in 

fig. 4-4a. It can be clearly seen that the fluorescent construct was internalized into the cells by 
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an endocytic pathway (2) and that it is delivered to and entered into the nucleus (3) (fig. 4-4a, 

b). Moreover the importance of folic acid in the up-take mechanism becomes apparent by 

comparing the number of cells up-taking the particles with or without folic acid (fig. 4-4b). It 

was clearly seen that the number of cancer cells with fCPs are significantly higher in the 

presence of folic acid. The above result was further supported by a competition assay, where 

Fig. 4-4. (a) Scheme describing the folate-receptor mediated uptake of Fo-P3iMfCp53. The tags 1, 2 and 3 show the 
major steps of folate-receptor mediated endosomal pathway. (b) Confocal fluorescence image of Fo-P3iMfCp53 
green) uptake in MDA MB 231 breast cancer cells., where 1, 2 and 3 are the steps in folate-receptor endosomal 
pathwayas tagged  in the scheme  in (a). The scale bar represents 10µm. (b) Statistical study of the % of the CP 
internalised cells (green) after transfecting with the fluorescently labeled P3iMfCp53 or Fo-P3iMfCp53 (*** 
represents P≤0.0005; ** represents P≤0.005). Each value represents the mean±SD of 4 independent experiments. 
 



__________________________________Part 2: Chapter 4 
 

___________________________________________ 
 -- 182 -- 
 

the cells were incubated with particles in 

the presence of different concentrations 

of free folic acid. The number of cells 

with internalized fCPs decreased from 

80 to 40-50% if the concentration 

increased (Fig. 4-5). Moreover, above 

analysis clearly supports that the uptake 

is FR mediated.  

 

4.2.2. Transfection efficiency of Fo-CPs 

In order to determine the influence of folic acid on the transfection efficacy, a pAcGFP1-

mem vector encoding for the reporter 

membrane fusion AcGFP1 protein (Fo-

P3iMCpAcGFP1) instead of 

pcDNA3p53wt vector was used. Fig. 4-6a 

& b, shows the results of the transfections 

of P3iMCpAcGFP1 and Fo-

P3iMCpAcGFP1 CP in the HL60 cell line. 

Here, a significant difference for the 

transfection efficacy between cells 

exposed to the CPs with or without folic 

acid is found (fig. 4-6c). However, even 

more interesting was the difference of 

Figure 4-5. Folic acid competition assay for Fo-
P3iMCp53 CPs to confirm the involvement of folate-
receptor mediated endocytosis in the cellular uptake.The 
CPs were added in presence of different concentrations of 
free folic acid (2.5, 5, 10, 20nM). Each value represents 
mean±SD of 3 independent experiments. The black line 
represents the sigmoid fit. 

Figure 4-6. Confocal fluorescence micrographs of HL60 
cells transfected (a) P3iMCpAcGFP1 CPs or (b) Fo-
P3iMCpAcGFP1 CPs. The green fluorescence shows the 
expression of AcGFP1 3 days after transfection (c) 
Diagram of the % of the cells expressing AcGFP1  with 
and without folic acid mediated particle delivery (** 
represents P≤0.005). Each colunm represents the 
mean±SD value of 3 independent experiments.
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GFP expression to plasmid uptake. While ~ 30% of the HL60 cells internalize the CPs 

without folic acid (fig. 4-6b) only ~14±10% are truly transfected (fig. 4-6c). Assuming that 

the up-take for the GFP encoding plasmid is the same as for the p53 encoding one this 

indicates that the up-take without folic acid leads to a release of the plasmid in the cytosol so 

that the GFP cannot be expressed properly while the uptake and the expression in case of 

folic acid labeling grows to approximately 75%.  That indicates that folic acid not only 

enhances the particle uptake efficiency but also guides the release to the nucleus, thus the 

GFP expression efficiency significantly coincides with the particle internalization 

efficiency.These findings were in good agreement with the result of other groups reporting 

that folate is able to assist in particle up-take and guidance to the nucleus or cytosol [13, 14]. 

Even the presence of 10% FBS did not interfere with the transfection yield, indicating that 

the lack of interaction with serum protein during systemic administration [13].  

 

4.2.3. CPs identification by the MPS 

Finally, I tested the recognition by macrophages which are the first responder of the immune 

system. It was observed 

that only a limited number 

of macrophages internalize 

the fCPs (Fig. 4-7). After 

4h treatment with Fo-fCPs, 

only 15±3% of the 

macrophage cells (J774.2 

cell line) shows 

Figure 4-7. Fo-P3iMfCp53 uptake in J774.2 macrophage. (b) Statistical study 
of the % of the J774.2 cells internalised CPs (green) after 4 h and 24 h 
treatment. Each column represents the mean±SD value of 5 independent 
experiments. (a) Confocal fluorescence image merged with a light 
transmission image ofcells (grey) with internalized Fo-CPs (green). 



__________________________________Part 2: Chapter 4 
 

___________________________________________ 
 -- 184 -- 
 

internalized fCPs, after 24h treatment it is 16±2% cells. Therefore there was no significant 

increase in uptake was observed (fig. 4-7a). There are two possible reasons for the favorable 

low uptake.. 1) the P3 coating is preventing the recognition by the macrophages as described 

previously in literature [15-20]; or 2) the up-take observed in macrophages is in the same 

range as that for particles without folic acid taken up by cancer cells (fig. 4-4c). This can 

indicate that it is related to unspecific pinocytosis induced uptake in cells. In order to 

understand the reason for CP up-take into macrophages, I planned to conduct some future 

experiments with activated macrophages. 

4.2.4. Targeted antisense and gene therapeutic efficiency of the Fo-P3iMCp53 CPs  

4.2.4.1. CP induces targeted protein down- or up-regulation 

In order to determine the efficacy of the multilayered antisense and gene therapeutic 

effect of CPs, several cancer cell line as well as non-cancerous cells were exposed to the 

complete CP construct (Fo-P3iMCp53). The CP was aimed to eventually inhibiting cancer 

cell proliferation by releasing siRNA against c-myc mRNA and to induce apoptosis by 

delivering the vector encoding for wild type p53.  

First the expression level of wild-type p53 gene and c-Myc knockdown was quantified for 

HL60 cell line where the p53 gene is deleted and the MDA MB 231 cell line which has a 

mutation in p53 gene. The expression of p53 as well as the inhibition of c-Myc expression 

induced by Fo-P3iMCp53 particles in the treated cells was determined by Western blot 

analysis.  

For MDA MB 231 cells, the control (untreated cells) showed, as expected, an expression 

of mutated p53 (fig. 4-8a). However, in the treated breast cancer cells, p53 expression was 

enhanced as indicated by an increase in the protein band intensity by ~50% higher when 
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compared to the protein band of the untreated cells. Fig. 4-8a, illustrates the efficacy of the 

CP to suppress c-myc oncogene expression, by the absence or low intensity of the protein 

band when comparing the treated cell with the untreated cells.  

 

In the case of HL60 cells (fig.4-8b), the experimental set-up was more complex, as it was 

my aim to see if both functional unities (p53 plasmid and siRNA) were released and became 

operative. Thus, I measured first the protein level for p53 and c-Myc in untreated control 

Figure 4-8. Western Blot of p53 protein and c-Myc protein expression level in whole cell lysates of MDA MB231 
(a) and HL60 (b). (a) Upper panel- representative western blot results of p53 in control (c), and transfected (t) 
whole cell lysate along with the control actin band. Lower panel- Graph represents mean±SD % of the intensity of 
p53 and c-Myc expression level relative to the expression without CP transfection and normalised to the actin 
band. (b) Upper panel- representative western blot results of p53 in control (c), treated control (tc) and treated (t) 
whole cell lysate along with the control band of actin. Lower panel- Graph represents mean±SD % of the intensity 
of p53 and c-Myc expression level relative to the expression without CP transfection and normalised to the actin 
band. Each value represents 5 independent experiments (n=5). 
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(untreated) cells. As expected the p53 protein band was absent as in the HL60 cell line the 

p53 gene is deleted, but c-Myc was expressed (fig. 4-8b). However to determine the siRNA 

induced know-down of c-myc, I transfected the HL60 cells with Fo-P3iMCpAcGPF1 (treated 

control, tc) in order to inhibit c-Myc oncoprotein without inducing p53 expression. The 

western blot clearly showed the absence of p53 but the band intensity for c-Myc was 

diminished or disappeared completely, as observed for the treated breast cancer cells. Finally, 

the HL-60 cells were treated with the complete Fo-P3iMCp53 CP which led to a significant 

expression of wild-type p53 protein along with diminished c-Myc expression (Fig. 4-8b).  

The results show that the CPs were able to release their content and they are biologically 

active showing respective effects in the treated cells. 

4.2.4.2. CP induced apoptosis in cancer cells 

In order to confirm that the p53 protein was not only expressed by the treated cancer cells but 

also fully functional and hence induces apoptosis, an Annexin-V/PI assay was performed 

Figure 4-9. Immuno-fluorescence images of Annexin-V binding to external PS on the membrane of control (untreated) 
and Fo-P3iMCp53 CP treated MDA MB231 cells, after 3 days of treatment. FITC-labeled Annexin-V (green) represents 
the onset of apoptosis, PI stains necrotic cells (red) and the nucleus was visualized by staining with Hoechst-33342 
(blue). Experiments were repeated 3 times. The scale bar represents 20µm. 
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(Fig. 4-9). The assay basically detects the externalization of phosphatidylserine (PS) to the 

outer membrane leaflet during early apoptosis (Annexin-V) and the decrease in membrane 

integrity (PI). During early apoptosis, phosphatidylserine (PS) is flipped from inner leaflet of 

the plasma membrane to the outer one. Thus PS becomes available to bind to the Annexin-

V/FITC conjugate [21]. Cells that are destined to apoptosis will stain positive for Annexin-

V/FITC and but negative for PI if they are in early apoptosis. Because PI can only enter the 

cells when the membrane integrity is disrupted, which happens at a later stage of apoptosis  

(PI entrance and intercalation in the DNA).  By using a FITC-labeled Annexin-V and the red 

propidium iodide dye, I analyzed the apoptotic cells by fluorescence imaging. The treatment 

of MDA MB 231 cells with Fo-P3iMCp53 CPs at 37°C for 24 h results in a substantial 

increase in FITC-labeled Annexin-V positive, apoptotic cells as compared to control cells 

(fig. 4-9). By counting the labeled cells, it was found that approximately 80% were Annexin-

V positive in complete CP treated MDA MB 231 cells (data not shown). No significant PI 

staining was found, which suggests that the cells are neither necrotic nor late apoptotic. 

Untreated cells were negative for FITC and PI staining as clearly seen in the micrographs in 

fig.4-9.  

4.2.4.3. CP causes decease in cell viability  

Finally, the cell viability after Fo-P3iMCp53 treatment was determined by a trypan blue dye 

exclusion assay. A non-cancerous cell line i.e. the IHH (immortalized human hepatocytes) as 

well as its cancerous counterpart, the JHH-6 (hepato carcinoma), HL60 (leukemia), and 

MDA MB 231 (breast cancer) cells were treated with Fo-P3iMCp53 CPs for 3 days. For the 

non cancerous cell line IHH, which should not express the FR, only a low decrease in cell 

viability was observed (fig. 4-10). In contrast, for the three cancer cell lines, a significant 
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difference (P<0.005) was observed (fig. 4-10). The cell viability was estimated to be 

2.8±1.4% (in HL60), 

4.9±0.44% (in MDA MB 231) 

and 14.9±3.5% (in JHH).  

The results of the cell viability 

study along with the high 

efficiency in targeting cancer 

cells, indicates that the 

multilayer CPs releases siRNA 

to know-down the c-myc 

expression and a plasmid 

expresses wild-type p53, support 

the idea of this novel therapeutic 

approach, could be promising for systemic natural cancer treatment. 

 

 

 

 

 

 

 

 

Figure 4-10. (a) Trypan Blue dye exclusion assay to determine the 
cell viability after 3 days of Fo-P3iMCp53 CP treatment in HL60 
and MDA MB 231 cells. Untreated cells were considered as the 
control. The % viability after 3 days, were calculated by 
considering control (untreated) cell viability as 100% viability. 
Each value represents mean±SD of 3 independent experiments 
(n=3).  
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CHAPTER 5 

 

5.1. Conclusions  

 

Several in vitro and in vivo studies have shown that the restoration of wild-type p53 activity 

in cancer cells with mutated or deleted p53, either suppresses tumor growth or induces 

apoptosis [1-3]; thus supporting the idea that gene therapy focused on restoring p53 activity 

in tumors, might be a fruitful approach to cancer treatment. In the past the delivery of the 

wild type p53 containing plasmid is mainly triggered by adenovirus- or retrovirus [4, 5]. 

Most viral gene therapies bear the risk of infection with the remaining viral genome or 

immunogenicity making a repeated treatment impossible. This problem was tackled by the 

introduction of non-viral delivery systems such as polysomes or liposomes [6]. The main 

problem with polymeric delivery systems is that in comparison to viral systems they usually 

have a very low transfection efficiency. In order to improve it, a new generation of 

multifunctional polymeric particles was developed by us and by other researchers. Most 

researchers focus on the covalent conjugation of various moieties with the polymer for 

targeting, prevention of MPS recognition and/ or endosomal escape of the particles to the 

cytosol [7]. Another multifunctional approach used successfully is the polypeptide system for 

the different functionalities, in order to improve transfection efficiency and targeting 

especially for liver cancer [8]. 

In the present part, I develop a new multifunctional nanoparticles delivery system, which 

shows high transfection efficiency in different cancer cell lines but almost no effect in non-

cancerous cells. The CPs with a size of around 350 nm carry various functionalities localized 
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in different layers of the construct. The particle size is nearly in the range (380-780 nm) 

which was found to extravasate preferentially in the tumor tissue rather than being diffusely 

delivered to every tissue like it is the case for smaller particles. [9] A plasmid encoding wild-

type p53 was condensed into a charged core with the non-toxic cationic polysaccharide 

chitosan. On the surface of the core, siRNA against the mRNA of c-myc, was deposited by 

electrostatic self-assembly. Thus, CPs are aimed to induce proliferation arrest along with the 

induction of apoptosis by wild-type p53 expression in the cancer cells.  

 The surface of CP was coated with a neural tri-block copolymer PLA-PEG-PLA to stabilize 

and protect the CP, to induce in vivo long circulation due to “stealthing”, and to allow a better 

penetration into the tumor mass. Finally, the particles were functionalized by electrostatically 

bound folic acid, for cancer cell targeting and for an assisted delivery of the construct to the 

nucleus, and to improve the transfection. Approximately 75% cells clearly showed uptake of 

the CPs into the cells. The improved internalization of the CPs into the cancer cells was due 

to the presence of the targeting moiety, folic acid. Moreover, the expression of the reporter 

gene AcGFP1 showed that with folic acid, the expression rate was in the same range than the 

up-take rate. In contrast, the transfection efficiency was significantly lower than the CP 

internalization without folic acid. This strongly support that the FR mediated endocytosis 

guides the delivery of the endosomes to the nucleus and hence facilitates the transfection. 

Transfection efficiency for the tested construct is comparable to that of virus infected cells 

[10].  

Finally the expression efficacy, in terms of changes in the protein content for c-Myc as well 

as for p53, was measured by Western blot in two different cancer cell lines. A HL60 is a 

leukemic cell line, where p53 gene is absent due to p53 gene deletion [11]. Here the di novo 

p53 expression showed that the transfection was successful. Moreover, for hematopoietic 
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cells, substantial evidence indicates that the c-myc oncogene is linked to growth arrest and to 

the state of differentiation. In HL60 cells in which the differentiation is induced, the steady 

state level of c-myc RNA decreased and remained at low levels [12]. 

Moreover, it was supported by the fact that the expression of c-Myc was maximally down 

regulated by the silencing of the mRNA due to the release of siRNA from the construct. The 

same result was found for the MDA MB 231 breast cancer cells, which has a mutated p53 

gene. Here the amount of p53 increased significantly by the expression of wild-type p53 and 

the c-Myc expression was extinguished.  

The fluorescence microscopic analysis showed that the transfected cancer cell undergoes 

apoptosis induced by the delivered plasmid. The most important result was that the complete 

CP was able to deliver fully functional expression vector and siRNA. Hence, the cell survival 

reduced in the case of cancer, whereas non-cancer cells remained unaffected after incubation 

with the CPs for 3 days. For the non-cancer cells (IHH) the cell viability, with respect to the 

untreated control, was ~90%, while for JHH, a hepatocellular carcinoma (HCC), it was ~15% 

and for both, HL-60 and MDA MB breast cancer, it was <5%. This finding supports the idea 

that the folic acid receptor acts as a mediator for the transfection with p53 and the release of 

siRNA against c-Myc mRNA and, the combination in the form of an electrostatically 

ensembled submicrometric particle, is a promising novel strategy for systemic tumor-targeted 

gene therapy.  
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1. A brief overview 

In recent decades, great progress has been made to extend the life span of cancer patients, 

but up to date, the definitive treatment that can defeat the disease, has not yet been found. 

Whilst the origin of cancer is still not completely understood, at present, depending upon the 

type of cancer, treatment may vary from surgery combined with chemotherapy which targets 

against DNA synthesis or inhibits cell division in fast dividing cells or radiation therapy. 

Today, the selective targeting of cancer cells is one of the major challenges in nano-medicine. 

Many approaches are dedicated to finding suitable biomarkers or targets [1], modifying the 

drug molecules or producing a protective delivery system [2] in order to decrease the 

collateral effects of chemotherapeutics and increase the tumoral drug concentration. I have 

used a polycation which enters preferentially cancer cells on the basis of differences in the 

physical properties of the cell membrane. 

 

1.1. Differences in the physical properties of cancer and normal cells 

1.1.1. Surface charge  

Mammalian cells in suspension migrate toward the anode in a direct current field, 

indicating they are predominantly anionic [3]. Evidently, in some cases, the electromobility 

studies have shown an increase in the net negative charge of cells during carcinogenesis [4-6] 

or during cell growth in general [7]. A critical study by Foley [8] showed that there are many 

differences in the surface membrane properties in between non-neoplastic and neoplastic 

cells. The negative membrane charge of cells is mainly due to carboxyl groups from sialic 

acids in the mucopolysaccharides (N- acetylneuraminic acid, N-glycolylneuraminic acid, 

etc.) on the cell surface [3, 9]. Although the present of negative phosphate and positive 
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ammonium charges also have some contribution on the surface charge properties of the 

cancer cell membrane [9]. The negative charge of the tumor cell membrane has been 

suggested to be involved with its invasive behavior [4]. Moreover the high negative surface 

charge on malignant cells and trophoblasts, may mediate the immune evasion [10].  

The phospholipids are an integral part of the membrane and determine its structure. In the 

most cancer (table 1-1a-c) an increased amount of all phospholipids of cell membrane has 

been observed [11-14]. It has been considered that higher amounts of phospholipids can be 

due to enhanced cell membrane synthesis related to accelerated neoplasm cell replication [4]. 

The mechanisms responsible for an increase of phospholipids can vary depending upon cell 

nature, cell growth phase and its malignancy [14, 15]. The characteristic parameters of 

phospholipids presented in Tables 1-1 a–c, show that the content of phosphatidylcholine in 

cancer cells is higher than that of normal mucosa in comparison to other phospholipids [11]. 

This has been supported by the finding that malignant neoplastic cells with high number of 

metastases are characterized by a higher phosphatidylcholine/phosphatidylethanolamine ratio 

than malignant neoplasm cells which have a lower number of metastases [16]. It was found 

that an increased amount of phospholipids can increase surface density of negatively charged 

groups in cell membrane at low pH values and that of positively charged ones at high pH 

[17]. The pH in tumor tissue was found to be 6.5 instead of 7.3 [18] in normal tissue, this can 

explain why the cell membrane of tumor tissue expose a high negative surface charge. 
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1.1.2. Mechanical properties of cell membranes  

Diseases such as cancer or malaria induce mechanical property changes in cells, which 

may serve as a useful biomarker in the early detection of cancer [19, 20] as well as a test for 

the efficacy of the cancer treatment. Moreover, investigating the mechanical properties of 

cancer cells may help to understand the physical mechanisms responsible for cancer 

metastasis. This can lead to the development of novel strategies for cancer prevention and 

diagnosis.  

Many in vitro studies showed that some cancerous cells are softer than their normal 

counterparts [21-24]. Malignant breast cells have been found to have the apparent Young’s 

modulus significantly lower (1.4–1.8 times) than that of their respective non-malignant 

counterparts at physiological temperature (37°C) [25]. The cancerous cells are less stiff and 

easier to deform than non-malignant cells due to the changes in their sub-cellular structures. 

This reduced stiffness was suggested to be due to a significant reduction in the well-defined 

F-actin filaments or their bundles (stress fibers) [26]. The reduced F-actin results in a weaker 

cytoskeleton in cancer cell. This effect was observed in a combination study of AFM (both as 

an indenter and high resolution imaging tool) and fluorescence microscopy [26]. Hence, these 

transformed malignant cells possess the ability to migrate easier through surrounding tissue 

matrixes and small capillaries (metastasis). A study by Cross et al. [27], have shown that the 

cell stiffness of metastatic cancer cells is more than 70% softer, than the normal endothelial 

cells that line the body cavity. This enhanced softness of cancer cells are contributed by the 

abnormalities in cytoskeletal materials which could be reduction in the amount of constituent 

polymers and accessory proteins and a restructuring of the available network [28-32]. 

Therefore, lower Young’s modulus value i.e. lower stiffness, explains the low elasticity and 
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increases softness properties of the cancerous cells which are mainly due to abnormality in 

their cytoskeletal materials with respect to there normal counterpart. 

 

1.1.3. Modification of Extra-Cellular Matrix (ECM) 

Investigating the composition of the ECM and its stiffness as a risk factor for metastasis 

or possible target for drug delivery is critical, given the profound changes in the mammary 

stroma associated with breast cancer and the diversity of diseases associated with changes in 

collagen deposition, orientation and cross-linking. 

Modification of ECM-integrin interactions can profoundly influence expression of the 

malignant phenotype in culture and in vivo [33]. However, the exact molecular mechanisms 

by which the altered stromal–epithelial interactions regulate tumorigenesis are still to be 

defined. Although, changes in the ECM composition may induce changes the epithelial cell 

integrin expression. For example, altered expression of β1-, β4-, α2-, α3- and α6-integrins has 

been observed in mammary cancer cells [34, 35]. It was observed that matrix stiffness 

possibly promotes breast tumorigenesis by altering integrins and their adhesion interactions 

[36]. Paszek et al. [36] have shown that blocking integrin-dependent cell contractility reverts 

the malignant phenotype in culture. 

In principle, inhibition of matrix modifying ECM proteins can dramatically reduce tumor 

progression through effects on invasion and metastasis. Moreover, there is evidence that 

changes in mammary ECM modifies treatment responsiveness to anti-estrogens in hormone 

therapy and promotes the progression of the breast carcinoma which eventually decreasing 

patient survival [36, 37]. 
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1.2. Polycations as cancer treatment. 

A first attempt to use polycations for cancer treatment was to neutralize the negatively 

charged surface on the malignant cells, which aim to recover proper immune response and 

tumor destruction (table 1-2) [38]. The mechanism of action may involve both, a direct effect 

on tumor cells as well as the nonspecific stimulation of the reticulo-endothelial system (RES) 

of the patient under treatment.  

 

The polycation polylysine has been shown to bind and have an inhibitory activity 

against diploid Ehrlich ascites carcinoma [39], human epidermoid cancer cells [40], and 

polyoma virus-transformed fibroblasts in organ culture [41] and but unfortunately also 

against normal red blood cells and non-neoplastic cells. Polylysine binds to the 

lipoprotein surface of tumor cells. This binding causes migration of the nucleus and 

mitorcondria towards the cytoplamic membrane, which in turn may cause telophase 

inhibition and unipolar mitosis. The polyelectrolyte character of the polycation most 

probably causes chromatin clumping [39]. 

Table 1-2. The effect of polycations, upon eosin staining, lysis, and clumping ofEhrlich ascites cells, L51 78Y cells, 
and murine erythrocytes treated in vitro. Cells were suspended in Eagle's medium plus 10% calf serum and held for 
30mm at 25°C in a hemocytometer before counting [38]. 
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It has also been reported that high-molecular-weight poly-ethyleneimine (PEI), when 

injected intravenously into tumor-grafted mice at nontoxic doses, is effective in causing 

regression of tumor and increasing long-term survival [38]. Woodman et al. [42] found 

that the polycation chitosan aggregated Ll2 10 leukemia cells and have shown a slight 

increase (10 to 20%) in the life-span of leukemic mice.  

 

1.3. The polycationic approach for diagnostic and therapy 

Previous studies have shown that polycations such as PEI and acidified chitosan, are 

cytotoxic, and induce apoptosis of cancer cells in hours or even days [43-45]. I hereby 

propose a novel and selective way to target tumors which may use the difference in physical 

properties of cancer cells from normal cells. Furthermore, I found that the polyallylamine 

hydrochloride (PAH), a polycation, could differentiate between normal cells and cancer 

efficiently causing only minimal adverse effects in healthy cells. It was assumed that this fast 

recognition of cancer cells could be due to its high negative surface charge of cancer cells. 

High binding affinity of PAH to cancer cells (sparing the normal cells), shows the potential 

of PAH to be use as fast diagnostic system. It was also observed that PAH can not only bind 

to the membrane but it instantly enters the cancer cell and dissociating them into small bead-

like structures. This instant entrance of the polycation could be attributed to differences in 

their physical properties like elasticity [24, 46-48] charge distribution [12] and phospholipid 

composition [49-51] as compared to normal cells. Whilst further studies are clearly necessary 

to establish the general validity of our findings, our results strongly support the use of 

polycations as a novel diagnostic and/or local therapeutic tool for cancer.  
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CHAPTER 1 

Selective labeling of cancer cells by Poly-allylamine induces rapid cell death.
* 

 

1.1. Aim of the present work 

An ideal cancer drug should destroy only tumor cells with high selectivity, and spares the 

healthy ones. In this work, I show that a specific positively charged polymer (poly-allylamine 

hydrochloride, PAH) has the ability to fulfill this requirement. I found that PAH enters with 

high selectivity into leukemic and liver cancer cells. After PAH was internalized, cancer cells 

are destroyed within minutes while healthy cells remained almost unaffected. It was also 

evident from the present study that the polycation was more effective in less differentiated 

cancer types. Cell death could be due to the high affinity of poly-allylamine for phosphate 

moieties such as PIP3 and other phosphate bearing cellular moieties, present in higher 

concentrations in the cytosol of cancer cells. This interaction leads to the disintegration of the 

cytosol into non-toxic gel beads. Therefore, it would be quite useful to investigate the 

possible diagnostic and therapeutic use of this polycation for cancer, in particular for the 

intratumoral administration. More studies ought to be carried out, to investigate whether the 

phenomenon discovered in the present work, is a general phenomenon for most of the cancer 

type. It could suggest that, in the case of cancer cells, targeting physical properties may be 

equally fruitful as the commonly used targeting of biomarkers. 

 



_________________________________Part 3: Chapter 2 
 

___________________________________________ 
 -- 214 -- 
 

CHAPTER 2 

 

2.1. Introduction 
 

In recent decades, some progress has been made to extend the life span of cancer patients, 

but, up to date, a definitive treatment that can defeat the disease has not been found. Whilst 

the origin of cancer is still not completely understood, at present, it is generally accepted that 

it is a result of mutations that have accumulated in the genome which leads to basic 

functional alterations in the biology of the cell. Depending on the type of cancer, the 

treatment may vary from surgery combined with chemotherapy, which are mostly targeted 

against the DNA synthesis or inhibitors against cell division or radiation therapy. Today, 

selectively targeting cancer cells is one of the major challenges in nanomedicine. Many 

approaches are dedicated to finding suitable biomarkers or targets [1], modifying the drug 

molecules or producing a protective delivery system [2, 3] in order to decrease the collateral 

effects of chemotherapeutics and increase the tumoral concentration of the drug. The novel 

approach also includes the use of monoclonal antibodies [4] or tyrosine kinase inhibitors and 

the improved delivery of standard chemotherapeutic drugs by means of covalent binding to 

folic acid [5].  

In the present study, I propose a novel and selective way to target tumors based on 

differences in the physical properties of cancer cells in comparison to normal cells. Cancer 

cells show anomalies in most of their metabolic activities, and as a consequence, in their 

physical properties. Several studies have underlined that cancer cells have different elasticity 

[6-10], charge distribution [11] and phospholipid composition [12-14] as compared to normal 

cells. 
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In an early attempt to visualize the charge distribution on cells using fluorescence labeled 

polycations, some specific regions in dividing cells can be seen to have a higher negative 

charge [15]. As it can be deemed possible that the extra negative charge was concentrated in 

the regions of new cell growth it was decided to study cancer cells in which cell growth is an 

ever pervasive feature. Furthermore, two completely different cancer model, leukemia and 

hepatocarcinomas were considered for the present study. For each cancer model two cell 

lines were tested, which differs in their stages of differentiation.  

The HL-60 cell line was derived from human promyelocytic leukemia [16], immature 

(undifferentiated) neutrophils); Jurkat cell line, belong to an immortalized mature 

(differentiated) and T lymphocytes from acute lymphoblastic leukemia (ALL) [17] were all 

investigated as leukemia model. The corresponding models for hepatocarcinoma were the 

HuH-7 and JHH-6 cell lines. The HuH-7 cell line was derived from, a well-differentiated 

type of hepatocellular carcinoma [18]. At the same time JHH-6 cell line, represent a 

undifferentiated hepatocellular carcinoma [19].  

Usually, polycations such as polyethylenimines (PEI) was found to be cytotoxic, and 

induce apoptosis, a process which leads to cell death in hours or even days [20]. However, 

my studies with polycation, polyallylamine hydrochloride (PAH) show that the cancer cells 

began to fragment in less then 5 mins. Furthermore, I found that the strong affinity of PAH to 

phosphate species most probably leads this fragmentation of the complete cell cytosol in the 

form of small gel beads. The above observation was supported by the phosphorus peak, as 

detected with EDS (energy-dispersive X-ray spectroscopy) analysis of the beads, along with 

ATP assay and PIP3 antibody binding studies. 
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Whilst further studies are clearly necessary to establish the general validity of these 

findings, results strongly support the use of PAH having the potential to become a novel 

diagnostic and/or local therapeutic tool for cancer.  
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CHAPTER 3 

 

Materials and methods 

3.1. Materials 

The polycations, poly-(allylamine hydrochloride) (PAH; MW. 15kDa), and the fluorescent-

labeled poly-(fluorescein isothiocyanate polyallylamine hydrochloride) (FITC-PAH; MW. 

15kDa; λexc=494 nm, λem=520 nm), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide (MTT), MgCl2 and dimethylsulfoxide (DMSO), bovine pancreas insulin, 

dexametasone, Hoechst 33258 (λexc=356 nm, λem=465 nm), spermine and Fetal Bovine 

Serum (FBS) were purchased from SIGMA-Aldrich (Milan, Italy). Dulbecco's Modified 

Eagle's Medium (DMEM) were purchased from Lonza (USA), whereas Dulbecco's Modified 

Eagle's Medium/Nutrient F-12 Ham (DMEM/F12), medium and Williams E medium (WEM) 

were purchased from Sigma-Aldrich (Missouri, USA), respectively. Dulbecco’s modified 

Eagle’s high glucose medium (DMEM-hg), penicillin, streptomycin and L-Glutamine were 

purchased from Euro-clone (Italy). Anti-phosphatidylinositol-3,4,5-triphosphate-fluorescein-

5-isothiocyanate ([Anti-PIP3]-FITC) was purchased from Echelon Bioscience Inc. (Salt Lake 

City, USA). The plasma membrane specific dye, dialkylaminostyryl (DiA; λexc=460 nm, 

λem=580 nm), nucleic acid binding dye, Propidium Iodide (PI; λexc=537 nm, λem=619 nm), 

Hepes buffer and pyridoxine HCl were purchased from Invitrogen (Milan, Italy). All 

polycation solutions were prepared in DMEM medium immediately before use. 
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3.2. Methods 

3.2.1. Cell Culture 

3.2.1.1. Cell lines 

Leukemia: Leukemia cell lines (HL60 (ATCC CCL-240™ Human promyelocytic leukemia) 

and Jurkat (TIB-152™ T lymphocytes from patient with T cell leukemia) cell lines were 

maintained in DMEM medium supplemented with 10% heat-inactivated FBS, penicillin (100 

units/ml), streptomycin (100 µg/ml), gentamicin (10 µg/ml) (DMEM complete medium) at 

5% CO2 and 37°C. The medium was changed every second day and mycoplasma test was 

performed routinely by fluorescent Hoechst 33258 staining denoting no contamination. 

Hepatocytes: HuH-7 cell line (JCRB0403 well differentiated Hepatocellular carcinoma 

(HCC)) and JHH-6 cell line (JCRB1030 undifferentiated HCC) were obtained from Japan 

Health Science Research Resources Bank (HSRRB, JCRB0403 JCRB1030), respectively. 

HuH-7 cell culture was performed under standard conditions in Dulbecco’s modified Eagle’s 

high glucose medium DMEM with 10% (v/v) FBS, 2mM L-Glutamine, and 1% (v/v) 

antibiotics (10,000 U/mL penicillin, 10 mg/mL streptomycin). The cells were grown at 37°C 

in a humidified atmosphere 95% air and 5% CO2. JHH-6 was cultured in Williams E medium 

under the conditions described above.  

IHH cell line (hepatic non-tumoral cell line) (a kind gift by Dr. T.H Nguyen [1]) was 

culture d under standard conditions as described above, using DMEM/F12 1x containing 15 

mM Hepes buffer, L-glutamine and pyridoxine HCL, 1 x 10-6M dexametasone, 5 µg/mL 

bovine pancreas insulin, 10,000 U/mL penicillin, and 10 mg/mL streptomycin and 10% (v/v) 

FBS. Mycoplasma test was performed routinely by fluorescent Hoechst 33258 stain with no 

contamination ever found. 
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3.2.1.2. Mononuclear Cell Extraction 

Blood samples of healthy volunteers were obtained from the Dermatology Department of 

Cattinara Hospital and the Liver Research Center, both Trieste, Italy. Leukemic blood 

samples of patients were obtained from the Hematology Department after direct informed 

consent that the blood will be used for new experimental diagnostic procedures.  

 Mononuclear cells (MNCs) were isolated from blood using Ficoll-PaqueTM PLUS (GE 

Healthcare) according to manufacture’s protocols. The MNC were then washed twice with 

PBS and once in DMEM complete medium (as explained section 3.2.1.1.). They were then 

maintained in the same medium during experiment. 

 

3.2.2. Polycation as theranostic application 

3.2.2.1. PAH, as cancer diagnostic 

3.2.2.1.1. PAH specific binding with cancer cells 

 To 5 mL (4×105 cells/mL), of HL60, Jurkat, JHH6, HuH7 and IHH cell line as well as 

MNCs from healthy donors and patients respectively, 400 µg/mL of FITC-PAH was added 

and incubated for 5min. After washing them twice by repeated centrifugation at 1000×g for 

5min at RT in case of HL60 and Jurkat cell lines; and simply raising in case of IHH, HuH7 

and JHH6 cell lines, with there respective medium without PAH, confocal microscopy was 

performed to visualize the cells with FITC-PAH. The experiments were repeated at least five 

times on each cell line.  
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3.2.2.1.2. Possible PAH cell entrance mechanism 

In order to understand the mechanism of polycation entrance, I tested two hypotheses 

(fig. 3-1). The first hypothesis was that the polycation enters via a specific amine channel [2]. 

This was tested by blocking the channel either with high magnesium (50µM) or spermine 

(10µM) concentrations (fig. 3-1a) [2], followed by FITC-PAH (13.4µM) treatment on the 

MDA MB 231 cells. The kinetic of FITC-PAH entrance was studied in the presence and 

absence of the blocking agents, by time lapse imaging under confocal microscope 

(supplementary vedio 1). Each experiment was repeated 4 times. 

 

 The second hypothesis was that the polycation creates nanopores as described for other 

polycations [3-5]. This was tested by an indirect proof using JHH6 (Fig. 3-1b) and MDA MB 

231 cell line. The medium was doped with 30µM Propidium Iodide (PI), a dye which enters 

into late apoptotic cells when the plasma membrane integrity is lost. Then FITC-PAH 

Figure 3-1. Scheme of the hypothetical models for polycation entrance in cancer cells. a) Hypothesis 1: PAH 
entrance through Polyamine transport channels (e.g. MIC); b) Hypothesis 2: PAH causes cell membrane poration 
by interaction with negative moieties in the plasma membrane and enters through these nanopores. 

a 

b 



__________________________________Part 3: Chapter 3 
 

___________________________________________ 
 -- 224 -- 
 

(13.5µM) was added to the cells on a microscopic slide and the entrance of the green and/or 

the red fluorescence was visualized. The experiment was repeated 4 times. 

Imaging was preformed with a Nikon C1 laser scanning confocal unit (Nikon D-eclipse C1Si, 

Japan) attached to an inversed fluorescence microscope with a 100×/1.49 oil Apo TIRF 

objective (Nikon, Japan). The fluorophores were excited with a multiline argon ion laser, 

FITC-PAH at λ=488 nm, DiA at λ=460 nm and PI at λ=535 nm. Images were acquired and 

processed using the operation software EZ-C1 for Nikon C1 confocal microscope. 

 

3.2.2.1.3. Caspase assay 

In order to determine if polycation exposure induces apoptosis, Caspase3/7 assay was 

performed. Caspase-3 is a converging point of these apoptotic pathways [6]. Its activation 

play a key role in initiation of cellular events involved in the early apoptotic process.The 

HL60 and Jurkat cells (2×104 cells/well) were plated in 96 wells and treated with different 

concentration of PAH (100, 200 and 400µg/mL) along with respective untreated cells as 

control. Apoptosis inducition was assayed using the Caspase-Glo®3/7 assay kit (Promega, 

USA) according to the manufacture’s protocol. Each experiment was repeated 3 times. 

 

3.2.2.1.4. Fluorescence activated cell scanning (FACS) analysis 

To 5mL each of HL60 (260×104cells/mL) and Jurkat (645×104) cells, different 

concentrations (50, 100, 200, 400µg/mL) of the polycation (FITC-PAH) was added followed 

by 5min treatment. The cells were then washed twice by centrifugation (as explained in 

previous section 2.2.1.1.) to remove the excess of the compound, the pellet was recovered 

and resuspended in physiologic solution. The respective untreated cells were used as the 
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negative control. The intracellular green fluorescence from FITC-PAH was collected by Flow 

Cytometry using a Becton Dickinson FACS Calibur System (Becton Dickinson, Mountain 

View, CA, USA), equipped with a single argon-ion laser, through a 530 nm band pass filter 

in combination with a 570nm dichroic mirror. A minimum of 10,000cells was analyzed for 

each sample. 

 

3.2.2.2. PAH as therapeutic 

3.2.2.2.1. Cell viability analysis by MTT assay 

Cell viability after PAH treatment, was determined using the MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) dye reduction assay as previously 

described [8]. Briefly, HL60 and Jurkat cells, Mononuclear cells (MNCs) from a healthy 

donor (20 x 104 cells/per well) were exposed to different final concentrations of PAH (20 

µg/mL, 40µg /mL, 80µg/mL, 100µg /mL, 200 µg/mL and 400 µg/mL) for 5 mins. Untreated 

cells were considered as a negative control and for the positive control cells they were lyzed 

with 8µl Lysine. After washing twice with DMEM medium (without serum and antibiotics), 

the respective cells were incubated with 0.5 mg/mL of MTT for 1 h at 37°C. After removing 

the medium, cells were lysed and the resulting blue formazan crystals were dissolved in 

DMSO. Each sample was loaded in triplicates in a 96 well plate. The absorbance of each well 

was read on a microtiter plate reader (Beckman Coulter LD 400C Luminescence detector) at 

570 nm. The absorbance of the untreated controls was taken as 100% survival. The data 

represents the mean±SD of three to five independent experiments. The same procedure was 

also followed for the hepatic cancer cell lines. Each experiment was repeated at least five 

times. 
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3.2.3. Toxicology study of the cell-products from PAH treatment 

The idea was to administer the polycation intratumorally and the resulting beads from the cell 

destruction are released to the blood circulation. As it is well known that PAH usually is 

highly toxic to endothelial cells [7]. The resulting product obtained due the dissociation of 

the cells after PAH treatment, was tested for its toxicity. Now on it will be referred as PAH-

beads in the present work. 

 

3.2.3.1. PAH-Beads preparation 

The PAH-beads were obtained by incubating 1.6 ml of PAH (400µg/ml) in 3.4 ml of HL 

60 and Jurkat cell line (both: 106 cells/mL) respectively, at 37ºC and 5% CO2. After 2h of 

incubation, and in order to obtain as much PAH-beads, cells were washed twice with DMEM 

by centrifugation/resuspension at 16000×g for 30mins at room temperature. The PAH-beads 

were resuspended in 5ml medium.  

 

3.2.3.2. SEM (scanning electron microscopy) and EDS (energy-dispersive X-ray 

spectroscopy) of beads as a product of cell disintegration 

For SEM PAH-beads were prepared as described in section 3.2.3.1. The resulting PAH-

beads from the supernatant were washed twice with MQ-water using repeated centrifugation 

at 16,000×g for 30mins at room temperature and then resuspention in the pure water to 

exclude the presence of medium components. 100µL of extracted PAH beads were dried on a 

gold coated mica wafer at 50°C for 6h in order to provide a conductive surface for energy 

dispersive x-ray spectroscopic (EDS) measurement. .  
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Morphology of the PAH beads were recorded using a Zeiss SUPRA 40 scanning electron 

microscope (Gemeni, UK), equipped with field emission gun (Field Emission Scanning 

Electron Microscope (FE-SEM)) which operates between 0.1–30keV providing a lateral 

resolution of 1nm and an energy dispersive x-ray spectroscope (EDS). The images were 

acquired with the energy of 1keV. Elementary analysis by EDS was performed with 7keV. 

This energy generates a 150nm thick measuring volume, as calculated by Monte Carlo 

simulations [9] and therefore perfectly matches the average diameter of a dried PAH bead of 

100-200 nm. The bead diameter was calculated by ImageJ software and the elementary 

spectra were analyzed for the phosphor (P) to Nitrogen (N) ratio by calculating the peak area 

with Origin8 statistical software.  

 

3.2.3.3. Determination of the content of the PAH beads 

One theory was that the polycation recognizes high concentrations of PIP3 which are 

known to be present in the cell membrane of cancer cells. In order to detect PIP3, 1ml of the 

PAH-beads was incubated with 10ul mouse Fluorescein (FITC) conjugated anti-PIP3 

monoclonal antibody ([Anti-PIP3]-FITC) diluted 1:50 times (0.1µg/mL) for 1h under the 

conditions described in section 3.2.1.1. After washing three times with PBS, the FITC were 

visualised by confocal laser scanning microscopy (CLSM) (as in section 3.2.2.2.). This 

experiment was repeated three times. 

To confirm the presence of PIP3 in tumor cells, 2ml each of HL60 and Jurkat cells (2×105 

cells/mL) were seeded on a cover-slip and treated as described before in section 3.2.2.1.1. 

After washing twice with PBS the cells were fixed with 3.7% para-formaldehyde (PFA) in 

PBS for 20 min. The respective cell bearing coverslip were then incubated for 1h at RT with 

saturation solution of PBS Triton-Tween 100× 0.1% containing 5% BSA-5% normal goat 
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serum (NGS). The fixed slides were then incubated overnight (O/N) at 4°C with Fluorescein 

(FITC) labeled mouse anti-PIP3 monoclonal antibody at a 1:50 dilution. The next day the 

cells were washed three times with PBS and the FITC signal coming from the bound PIP3 

mAb was detected by CLSM (as in section 3.2.2.2.). 

 To determine the presence of ATP, the PAH-beads were assayed with the ATP assay kit 

(Promaga, Italy) according to manufacturer’s protocol. The experiment was repeated three 

times. 

 

3.2.3.4. PAH-bead toxicity analysis 

The beads for the MTT assay were prepared as described in section 3.2.3.1. but washed 

twice with medium instead of MQ water. Finally, the beads were resuspended in 5 mL 

medium. Different volumes (200, 400, 600, 800µL respectively) of bead-containing medium 

were added to untreated HL60 or Jurkat cell suspensions (both: 106 Cells/ml). These were 

incubated for 2h followed by washing twice with DMEM medium and centrifugation at 

1,000×g for 5mins at room temperature. The MTT assay was performed as described in 

section 3.2.2.2.1. The long term toxicity was investigated by incubating HL60 and Jurkat 

cells (20×104 cells/mL) in the presence of 800µl PAH-bead containing medium for 0, 6, 24, 

42, 48h respectively. 

 

3.2.3.5. Fluorescence activated cell scanning (FACS) analysis 

HL60 (260 x 104 cells) and Jurkat (645 x 104) cells were treated with different volumes 

(50, 100, 200, 400µL respectively) of FITC-PAH beads obtained from cells treated for 5 min 

with FITC-PAH. Cells were centrifuged twice to remove the excess of the compound; the 
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pellet was recovered and resuspended in physiological salt solution (0.9% w/v of NaCl 

solution). Untreated cells were used as the negative control. The intracellular green 

fluorescence from FITC-PAH was collected by Flow Cytometry using a Becton Dickinson 

FACS Calibur System, equipped with a single argon-ion laser, through a 530 nm band pass 

filter in combination with a 570 nm dichroic mirror. A minimum of 10,000 cells was 

analyzed for each sample. 
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CHAPTER 4 

Results and Discussions 

 

4.1. PAH, for cancer diagnosis 

4.1.1. Selective cancer cell labeling 

In an earlier attempt to investigate the charge distribution on budding yeast and 

germinating Neurospora crassa cells, it was noticed that for the growth region a higher level 

of negative charge was found [1]. In order to understand if the same is true for mammalian 

cancer cells in comparison with normal healthy cells, I began my study with blood derived 

cells. Incubation of whole blood samples from healthy donor with the fluorescent labeled 

polycation PAH (FITC-PAH), showed to no significant staining of the platelets or of the less 

abundant mononuclear cells (Fig. 4-1a) The same result was observed, when MNCs isolated 

from the blood of 31 healthy donors were treated with FITC-PAH (fig. 4-1b, & graph 4-1f). 

After counting the FITC-PAH marked cells in fluorescence micrographs, I found only 5±2% 

mononuclear cells (MNC) from healthy donor a fluorescence signal (fig. 4-1f). In fig. 4-1b 

some of the MNCs of healthy donor showed a low staining of the cell surface, which 

disappears when the cells are washed with pure medium. Even incubation for 24 h in the 

polycations did not lead to any cell staining (fig.4-1e).  
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Next, I investigated leukemic cell lines as models for blood cancer. In the case of HL60 

cells, I observed that PAH not only attached to the cell surface but was also able to cross the 

plasma membrane and enters into the cell interiors. In fig. 4-1d, f, it could be clearly seen that 

97±2% of the cells shows internalized polycation. Finally, the FITC-PAH staining was 

determined in the MNC fraction of the blood from 4 patients diagnosed with leukemia (2 

with chronic lymphoid leukemia (CLL), 2 with acute myeloid leukemia (AML)). The cell 

staining for a patient with AML is shown in fig. 4-1d. A significantly higher number of cells 

(40-90%; fig. 4-1f) was found to internalize FITC-PAH as compared to healthy donors (<5%) 

suggesting that PAH selectively entered the cancerous white blood cells MNCs.  

 

4.1.2. FACS analysis of FITC-PAH internalized cells 

FACS is a standard technique, used these days in clinics for cancer detection by 

immunological phenotype of cancer cells by 

and screening large amounts of cells which 

is not possible with fluorescence microscopy 

[2]. This technique is based on the 

fluorescently-labeled cell identification. 

FACS analysis of FITC-PAH (at different 

concentration) treated HL60 and Jurkat cells 

(fig. 4-2) confirmed the data observed by 

confocal microscopy that a high amount of 

the cancer cells internalize the polycation while the healthy cells are unstained. By FACS 

analysis also it was seen that undifferentiate cancer cell line (i.e. HL60) were more prone to 

PAH treatment than the more differentiated cancer cell line (i.e., Jurkat).  

Fig. 4-2. FACS analysis. Graphical presentation of 
relative fluorescent enhancement of FITC-PAH 
detected from FITC-PAH internalized cells verses 
different concentration of FITC-PAH treatment. 
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The above study demonstrates that the PAH treatment can be supported by FACS analysis. 

The only limitation which encountered was that most of the cells were fragmentized in PAH-

beads which can falsify the results and lead to higher number of stained cells. A shorter time 

between exposure to PAH and FACS analysis is required. 

 

4.1.3. Possible mechanism of PAH entrance in cancer cells 

4.1.3.1. First hypothesis of PAH entrance mechanism 

In order to understand the mechanism of polycation entrance, I tested two hypotheses 

(fig. 3-1). One based on a channel mediated entrance, the other one a forced entrance by 

nanoporation of the cell membrane as already described for other polycations. 

From literature, it is known that at least in the case of Jurkat and basophilic leukemic 

cells, MIC (Mg2+-inhibited cation) channels are present in the cell membrane. MIC channel 

have an internal diameter of 0.6nm (fig. 3-1a, chapter 3) [3]. The hydrodynamic radius of 

coiled 70kDa PAH was found to be 9.5nm for 2mg/mL [4]. Thus, coiled 70kDa PAH 

polymer cannot penetrate through these channels. However, in the present study, the PAH 

used was shorter i.e., 15kDa with 308 pm transversal diameter, calculated on the basis of the 

binding lengths (fig. 4-3). If we assumed that PAH remains uncoiled while entering in the 

Fig. 4-3. PAH formula structure, with the bond length between C-C: 154pm and C-N: 147pm. 
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channel, it may easily pass through MIC channel. Therefore, the fast entrance of PAH could 

be mediated through these channels. 

Unfortunately, a measurement of the membrane potential with patch clamp as described 

by Fraser et al.[5] was not possible because the cells always disconnected from the pipette 

when exposed to the polycation. But the above 

hypothesis was tested by blocking the channel 

with either a high magnesium concentration 

(50µM) or spermine (10µM) [5] and the kinetic of 

a fluorescent-labeled PAH entrance was followed 

by confocal time series imaging, in the presence 

and absence of the blocking agents. The 

assumption was that if the fast polycation uptake 

was through these channels, a specific channel-

blocker should prevent or prolong the entrance. 

Nevertheless, no difference in the kinetics with and without blocking agents was found (fig. 

4-4 & supplementary video 1).  

 

4.1.3.2. Second hypothesis of PAH entrance mechanism 

It has been described that cancer cells are usually “softer” than normal cells [6, 7] and 

have a higher ratio of negative phospholipid in the plasma membrane [8]. Taking this into 

consideration, the charge of the polycation could interact directly with the phospholipids in 

the plasma membrane. This can condense the negatively charged phospholipids and, may 

Fig. 4-4. Confocal micrograph of FITC-PAH 
internalized HL60 cells after channel blocking by 
Spermine and Mg2+. White bar represents 10µm 
scale bar. 
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induce nanoporation of the cell membrane [9, 10]. This leakage of the cell membrane may 

lead to instantaneous influx of huge amount of PAH into the cell (fig. 3-1b).  

The nanoporation hypothesis due to PAH (polycation) interaction [11-13] was verified by 

an indirect procedure. Hepato carcinoma cells (JHH-6) (fig. 4-5), as adherent cells allow a 

long-term visualization and therefore they were treated with FITC-PAH in presence of 

Propidium Iodide (PI) dye on a microscopic slide. PI enters only in late apoptotic cells when 

the plasma membrane integrity is decreased. Initially, as expected the PI (red dye) is 

excluded by the cancer cells because the membrane is still intact. In a time series by confocal 

microscopy (fig. 4-5a & b) it was observed that 30-60s after the addition of the polycation the 

PI enters the cell. An exact determination of the kinetic is difficult as it cannot be excluded 

that the polycation and the cell suspension mix heterogeneously. Similar entrance kinetics 

was found also for non-adherent HL60 and Jurkat cells. In the case of the HL 60 cells, the 

complete process from the entrance to the destruction of the cells was followed. 

 

Fig. 4-5. Time-series micrograph of the propidium iodide (PI) influx (red) in JHH6 cell, in the presence of 
FITC-PAH (green). PI entrance was visualized at different time point, t=50s, t=60s, and t=100s upon PAH 
exposure in presence of PI. c) Analysis of the fluorescence intensity profile of PI in the white ring of image (a). 
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The time before cell destruction was too short to conclude that the cells were undergoing 

apoptosis or necrosis. This was also supported by a negative caspase assay (fig. 4-6). The 

above studies support the second hypothesis that PAH entrance could be due to nanoporation. 

 

4.2. PAH, as cancer therapy 

4.2.1. PAH reduces cancer cell viability 

The well-known cytotoxicity of PAH [14, 15] directed us to postulate its use as a 

Fig. 4-6. The Caspase-Glo®3/7 assay on the 
HL60 and Jurkat cells after 5 mins treatment 
with PAH at different concentrations. The 
graph presents luminescence intensity vs. PAH 
concentration. The graph represents the 
mean±SD value of 3 experiments. 
 

Fig. 4-7. Cell viability assay. (a) Graphical representation of MTT test for cell viability vs. polyamine 
concentration on leukemic HL 60 and Jurkat cells. Three different polyamines (polyallyamine, poly-ethylenimine, 
spermine) were tested for their toxicity. (b) The first PAH treatment reveals a fraction of “surviving” cells (t=5 
mins). They were re-cultured in fresh medium and the MTT test was repeated after 48h hours.. The graph shows the 
result of the MTT test at t=0 (before treatment), t=5min (after PAH treatment) and t=48h (after re-culturing) 
(n=5). 
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selective drug for cancer cells. Cell survival and the LD50, as a function of the PAH 

concentration (for HL60, Jurkat leukemic cell lines and MNC of healthy donors) for short 

(5mins) exposure to the polycation was determined by MTT assay (fig 4-7a). The healthy  

MNCs showed almost no toxic effect of PAH (survival: 80-100%). In contrast, in case of 

both the leukemic cell lines, cell viability decreased rapidly even for PAH concentrations 

below 100µg/mL. The LC50 calculated for HL60 cells was 7.3±0.6 µg/mL and for Jurkat 

cells, 12.6±1.4µg/mL (fig. 4-8). As the MTT tests were always performed with comparable 

cell concentrations, the LC50 of both cell lines indicates that the less differentiated cancer 

cells (HL60) were significantly (about a factor of two) more vulnerable to PAH treatment 

than the well-differentiated T lymphocytes (Jurkat). 

 

The cell viability reaches a minimum value when the cells were exposed to PAH 

concentrations >100µg/mL. In case of HL60 cells, cell viability was found to be 1.5±0.7% 

whereas for Jurkat cells, it was estimated to be 7±1%, suggesting the possible presence of a 

Fig. 4-8. The % cell viability and LC50 analysis after FITC-PAH treatment of the MNCs from healthy donor, HL60 
and Jurkat cells. (a) The graph presents the percentage of viable cells after treatment with different PAH 
concentrations. (b) LC50 determination for HL60 and Jurkat cells for PAH treatment. All experiments represent 
means±SD of five independent experiments. 
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small fraction of resistant cells for the PAH treatment. To understand if it was an artifact or 

this percentage of cell surviving could escape our treatment, eventually causing a relapse of 

the disease later in the patient; this fraction was re-incubated in fresh medium for 48h. 

However, the re-culturing experiments suggested that these cells were also dead as no 

increase of cell numbers was observed (fig. 4-7b).  

In order to investigate if the PAH effect on leukemic cells was general, the experiments 

were repeated with two types of adherent HCC cell lines (fig. 4-9). HuH-7 cells are an 

example of a well differentiated human HCC cell line, and JHH-6 cells serve as a model for 

an undifferentiated one. HuH-7 cells are not affected by the PAH while JHH-6 cells are 

strongly affected leading to immediate cell death (fig 4-9a). The LC50 value was determined 

to be 60±8µg/mL for JHH-6 (fig. 4-9b). In comparison cell survival for HuH-7 cells was still 

90%, even at the highest tested concentration of PAH (400µg/mL). For the immortalized 

Fig. 4-9. Cell viability and LC50 analysis of HCC cell line (HuH7, JHH6) and immortalized hepatocyte (IHH) 
cell lines. (a) Graph presenting % of viable cells after treatment with different PAH concentrations. (b) LC50 
determination for JHH6 cells for PAH treatment. All experiments represent means±SD of five independent 
experiments. 
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hepatocytes, the polycation showed no toxicity up to a concentration of 100µg/mL, at which 

64% of the IHH cells are dead.  

 

4.3. PAH-beads Analysis 

Next aim was to analyze the side effect or 

after effect of PAH treatment. It was observed 

that after PAH internalization cancer cell 

dissociates in bead-like structure (fig. 4-10). 

The hypothesis that the PAH-beads are 

apoptotic bodies could be neglected because 

the Caspase assay was negative (fig 4-6) and 

normally apoptosis takes several hours up to 

days. Necrosis could be excluded due to the 

appearance of the cell breakdown in form of 

vesicle-like structures. Thus, I concluded 

that the vesicle-like cell disintegration is 

driven by a novel mechanism. 

 

4.3.1. SEM, EDS and immuno-assays of PAH beads 

To further investigate the PAH-bead, the morphology of the beads was investigated by FE-

SEM analysis. Representative images of the beads resulting from decomposition of HL60 

cells or Jurkat cells are shown in fig 4-11a & c, respectively. The dried single PAH-beads 

under ultra high vacuum, showed an average diameter of around 100-200nm. Some 

aggregates are also found. 

Fig. 4-10. PAH treated HL60 cells disintegrates 
in”vesicular” structure (red circle). Inset: 3-D 
reconstruction of HL60 cells visualized by confocal 3 
D optical sectioning. The cells were treated for 10 
minutes with FITC-polycation (green) and then 
stained with DiA (red) for visualization of the 
membranes. The cell disintegrates very similar 
fragmentation as typical for apoptosis. The scale bar 
in both images presents 10µm. 
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In order to determine the chemical 

composition of these PAH-beads an 

EDS measurement of several beads 

originated from both leukemic cell 

types was performed.  EDS was 

performed using the SEM electron 

beam operated at 7keV. Monte Carlo 

simulations [16] indicate that the x-

ray generation volume at this energy 

is around 150 nm thick. The areas 

where EDS spectra corresponding to 

the presence of C, O, N, P, Na and Cl signals were taken (Fig 4-11b & d) are highlighted as 

boxed frames in figures 4-11a & c. The N to P ratio for Jurkat cell derived beads (Fig 4-11c) 

is ~ 2:1 and for HL60 cells (Fig 4-11d) ~ 3:1. While nitrogen is an element coming from the 

cell as well as from the polycation PAH 

the only possible source for the detected 

phosphor signal could be the cellular 

phosphate components.  

The origin of the phosphor signal 

was identified by ATP assay (fig. 4-12) 

and PIP3 immuno-fluorescence analysis. 

As an example, in fig. 4-12, the 

fluorescence micrograph of beads 

Fig. 4-12. ATP assay on PAH-beads derived from HL60 
cells and Jurkat cells. The linear fitting shows the standard 
curve, whereas the amount of ATP on the HL60 and Jurkat 
was determined by the respective intersection point with the 
standard curve. Each point represents mean of 3 
experiments. 

 



__________________________________Part 2: Chapter 4 
 

___________________________________________ 
 -- 243 -- 
 

derived from HL60 (fig. 4-13a) or Jurkat (Fig. 4-13b) recognized by PIP3 antibodies labeled 

with FITC, are shown.  

 

 

 

 

 

 

4.3.2. PAH-bead toxicity analysis 

4.3.2.1. FACS analysis  

FACS analysis of the PAH-bead treated 

cells (fig. 4-14) show that the PAH-bead at 

its highest volume has no significant uptake 

as compared to control cells (untreated 

cells). This results suggested that once the 

PAH complexes in form of stable PAH-bead 

they are no longer toxic because they are not 

able to enter. 

 

4.3.2.2. MTT assay  

The PAH-beads were studied for a possible toxic effect. HL60 and Jurkat cells were exposed 

to increasing volumes (200, 600 and 800 µL bead suspension) of the PAH-bead suspension. 

Cell viability was determined by the MTT assay after 2 h of exposure (fig. 4-15a). The cell 

Fig. 4-13. Confocal fluorescence 
micrographs of FITC-PIP3 
antibodies bound to PAH beads 
(green) derived from (a) HL60 cells 
and (b) Jurkat cells. Image (i) 
presents disintegrating cells, 
whereas (ii) shows single PAH-
beads. The scale bar in (a) and (b) 
represents 20 µm and in the insets 
(i) and (ii)5 µm. 
 

Fig. 4-14. FACS analysis. The graph presents 
the relative fluorescence intensity due to FITC-
PAH-bead internalized cells versus different 
volumes of FITC-PAH beads. 
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viability shows no significant reduction at any of the tested concentrations. Even incubation 

of the respective cells with the highest concentration of the PAH-bead for 48h, no significant 

reduction in cell functionality was observed  (fig. 4-15b). Hence, this observation signifies 

that once PAH are entangled in beaded structure (PAH-bead) they are no more cytotoxic. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-15. MTT assay of HL 60 and Jurkat cells (a) after 30mins of PAH-bead exposure. % cell viability 
verses the amount of added gel beads. (b) Absorbance at 570nm verses time of exposure to 800µl bead 
suspension. 
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CHAPTER 5 

 

5.1. Conclusions 
 
The selective targeting of cancer cells is one of the major challenges in nano-medicine. Many 

approaches are dedicated to find suitable biomarkers or targets [1], modifying the drug 

molecules or producing a protective delivery system [2] in order to decrease the collateral 

effects of chemotherapeutics and increase the tumoral concentration of the drug. From the 

present work, I assume that physical properties such as membrane characteristics and cell 

surface charge could provide us with a new way to target cancer cells. The advantage in 

targeting physical membrane properties rather than biomarkers is that the probability of 

change in physical properties in compared to mutational changes in the biomarkers is much 

less likely. A mutational change in biomarkers will allow the tumor cells to escape marker-

targeted cancer treatment. 

It is known that the membrane of cancer cells differs from that of normal cells in terms of 

fluidity, composition and surface charge. Gottfried [3] and Liebes et al. [4] provided one of 

the earliest results of the different phospholipid contents of the membrane of cancerous cells. 

The special polycation–lipid interaction, which leads to nanoporation permitting the entry of 

the polymer into the cell, was described in detail by Moghimi et al. [5]. They found that 

polyethylenimine (PEI) cause pores in the cell membrane as well as in the mitochondrial 

membrane and induce cell death by apoptosis. However, due to the low selectivity and hence 

the severity of the side-effects, the use of PEI as anti-cancer drug was abandoned.  

In the present work I found that PAH has a high selectivity for cancer cells. The leukemic 

cell lines were treated with the FITC-labeled polycation PAH and the results in terms of 
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polycation up-take and viability were compared to healthy cells (white blood cells and whole 

blood). Moreover the blood of four patients diagnosed with leukemia was exposed to PAH 

and its up-take recorded. The same results were found for real samples. In the present work, I 

found that the cells from blood cancer and liver cancer can selectively take up poly-

allylamine with a fast kinetic (<1 min) whilst the polycation is completely excluded from 

similar healthy cell populations. Once PAH was inside the cells, they disintegrate in less than 

5 min to bead like structures. Additionally, I notice that undifferentiated hepatic tumor cells 

(JHH-6) were stronger affected by PAH than the well-differentiated tumor cells (HuH-7) or 

the non-cancerous hepatocytes (IHH - immortalized normal hepatocytes).  

Two important findings from the present study highlight the potential of PAH to be a 

possible future diagnostic tool for circulating cancer cells as well as therapeutics for primary 

tumors. Firstly, the polycation PAH enters rapidly, with a high selectivity, into cancer cells; 

dedifferentiated cells are even more prone to PAH treatment and once PAH has been 

internalized, the cells are fragmentized. The preferential entry into cancer cells could be due 

to the difference of cell membrane composition from their normal counterpart. Indirectly, this 

observation has also been reported by Morgan et al. [5]. They found that cancerous cells in 

vitro that had not yet reached confluence were evidently more liable to the cytotoxic effect of 

poly-amino acids [5]. Furthermore, an analysis of the phospholipid composition by Gottfried 

[3] estimated a higher negative surface charge and membrane fluidity of cancer cells in 

comparison to normal cells. Phosphatidylinositols such as PIP2 and PIP3 are known to form 

transport vesicles, during the late stages of cell division (cytokinesis) and are accumulating in 

the bridge region of the mother and daughter cell [7]. Cancer cells present a higher division 

rate and therefore should have high amounts of transport vesicles forming the new cells [8]. It 

is also known that cancer cells, as differentiating cells, show significantly higher levels of IP3 
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[9, 10] due to up-regulation of two specific kinases and down-regulation of phospholipase C. 

These inositol polyphosphates contribute significantly to a higher negative charge on the 

membrane or in close vicinity to it and hence can facilitate the selective entrance of PAH in 

cancer cells and the untypical destruction in form of gel beads. It was observed that PAHhas 

a high affinity to negatively charged phosphates such as ATP or PIP3. Since PAH and 

phosphates form very stable gels [11], I conclude that the complete cytosol rapidly 

transformed in gel beads by binding to phosphates or polyphosphates once PAH enters the 

cell. This conclusion was also supported by the fact that I found a strong phosphorus peak in 

the beads by EDS analysis. Also, ATP and PIP3 antibody assays were positive for the gel 

beads.  

Furthermore, the toxicity analysis of the PAH-beads shows that PAH in this form is non-

toxic limiting metabolic side-effects after treatment.  

By the present studies I show the potential of PAH for fast cancer diagnostics and therapy. 

Animal experiments to prove the present concept in vivo, are in progress.  
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Concluding Remark & Future outlook 
 
 
The introduction of nanotechnology in healthcare has imposed a vast impact in the fields of 

drug delivery and diagnostics. The role of nanotechnology in healthcare is becoming very 

important in terms of eradicating diseases, especially in terms of treating cancer. The unique 

ability of targeted nanoparticles to preferentially accumulate in and around the tumor mass 

grants a platform for improved tumor diagnostics and in cancer therapy.  

Polymer chemistry is a versatile and adaptable field. Application of polymers as the 

backbone for nanoparticle formulation has facilitated the advancement in the creation of 

particles combining multiple functionalities such as protection against immune recognition, 

targeting against specific diseased cells, the ability to cross barriers, protection of the payload 

against aggressive environmental conditions, etc. Insertion of tumor-targeting ligands that are 

directed against markers, such as the folic acid receptor and the Epidermal Growth Factor 

Receptor-2 (EGFR-2) like Human Epidermal growth factor Receptor 2 (HER2), not only 

enhances accumulation of the particles in the solid tumor mass, but also allows specific 

targeting of the nanoparticles to small and early stage tumors, metastatic cancer cells and 

leukemic cells. Consequently, this will provides a means to greatly improve both the area of 

targeted drug delivery and visualization of cancerous cells. Especially the targeted delivery 

will lead to a side-effect free anti cancer treatment which is nowadays still beyond 

imagination. 

The cytotoxicity of the present chemotherapeutics has placed the standard for the 

development of anticancer therapy; however, their potent toxicity, nonspecific action, and 

failure in drug-resistant tumors has driven the search for alternative therapies. Polymeric 

multilayer coated nanoparticles allow the co-encapsulation of several drugs and, therefore 
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can delivery simultaneous or serial in a time dependent manner multiple drugs. This can 

offers the possibility to design a treatment which is taking into consideration that the diseased 

cells change under treatment and the therapy must respond to the modified conditions 

induced by the treatment.  

Moving in the direction of side-effect free treatment are the polymeric CP system presented 

here, integrating two major natural therapies (anti-sense and gene therapy). This approach has 

the potential to become a therapy also for genetic disease in which one can block by the 

siRNA a point-mutation and deliver the wild-type sequence to suppress the expression of 

modified proteins. Examples could be sickle cell anemia, hemophilia, muscular dystrophy 

and cystic fibrosis. This strategy may also be on the horizon and applicable for neurological 

disorders, such as Alzheimer’s and Huntington disease, diabetes, Amyotrophic Lateral 

Sclerosis, Duchenne muscular dystrophy, asthma and arthritis with an inflammatory 

component, and many others. 

Even though cancer therapy can be greatly enhanced by the above mean, the diverse 

opportunities are available to use polyelectrolytic polymers. One of such application could be 

polymer coated nanoparticle formulation allows for true multiple functionality of the 

particles.  

The stable polymer coated gold nanoparticles described in this work promises enormous 

possibilities with further improvements in combining a sophisticated therapy with multi-

modal imaging. Even though for cancer treatment, gold nanoparticles offer the possibility to 

combine tumor imaging with a hyperthermal treatment, or imaging with drug delivery, what 

is still missing is a formulation that allow effective high contrast image, the delivery of 

multiple drugs, focus hyperthermal treatment to the tumor, combined with retaining the long 

circulating and tumor localization properties of the nanoparticulated drug. In a first attempt to 



________________________Concluding Remark & Future outlook 
 
 

_________________________________________ 
 -- 254 -- 

develop a multifunctional nanosystem I have developed the system for BNCT by uploading 

10BPA in the polyelectrolyte multilayers  . Similarly, gadolinium can be uploaded along with 

10B, which allows combining cancer imaging by MRI with cancer therapy by NCT. 

However, in another collaboration work of our group, it was found that these coated particles 

bear the potential to be used for neurodegenerative disease as well. Therefore, polymer 

coated nanoparticles pioneer for new strategies not only for a more effective and durable 

cancer therapy but for other incurable diseases.  

An area that also remains unexplored is the properties of polyions as drug itself. The first hint 

that polymers can be much more than only be a vehicle for a nano-formulated drug, comes 

from the experiments in which the polymers actively inhibit the expression of proteins related 

to multidrug resistance, often responsible for tumor evasion of the treatment. 

 However, I found that polycation can be useful specifically against cancer. Its fast and 

selective binding and a novel mechanism of cell destruction has proven its potential to be a 

effective theranostic system. Thus, polycations can help to precisely determine the tumor area 

which may help during surgery. It can be used in detecting the circulating cancer cells in the 

onset of metastasis as well as in the follow-up after treatment.  

All three approaches developed in this thesis have shown their potential to proceed to in vivo 

studies as they have a promising in vitro efficacy.  
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Epilogue 
 

This thesis is interwoven with the development of effective different strategies based on 

nano-technological advantages. I have had the great opportunity and the honour of working 

with four scientific institutions- Scuola Internazionale Superiore di Studi 

Avanzati/International School for Advance Studies (SISSA/ISAS), Cluster in Bio-Medicine 

(CBM), Fondazione Italiana Fegato- Liver Research Center and University of Trieste. I 

found, while working in these establishments, that the best of human beings and the best 

innovative minds were available in plenty. One thing which I realized while working with 

these institutions is that we should never be afraid of failures. Failures contain within 

themselves the seeds of further learning,  which can lead to better technology, and eventually, 

to a high level of success. Another thing which I learnt, is to be a great dreamer,  and these 

dreams finally culminated in all the described achievements in my work. Above all, I have 

had the opportunity of working with great visionaries;  Prof. Giacinto Scoles, Dr. Silke Krol, 

Prof. Claudio Tiribelli, Prof.  Mario Grassi and Prof. Gabriele Grassi, who have all greatly 

enriched my life. 

Future cancer  treatment strategies need to be much more patient tailored. Although it is 

head to predict how long the “classical” cytotoxic chemotherapy will be in use, now is the 

time that new improved next-generation multi-functional drugs will hit the market. In order  

to improve a  cancer patient’s life. The next generation medicine will provide the oppertunity 

for  doctors to design the treatment plan,  according to the needs of the individual patient. 

The presented thesis work illustrates the different scopes of next-generation medicine with 

which not only more patients may  be truely cured, but others will have their disease 

converted from a rapidly progressing stage to a more stationary,chronic diseases. I would like 

to finish my thesis with this thought  

 

Don't worry and fret, faint hearted, 

   The chances have just begun, 

 For the Best jobs haven't been started, 

   The Best work hasn't been done. 

                                      - Berton Braley 

** ** ** 



 


