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Abstract

The  aim of  this  thesis  is  to  explore  language  mechanisms in  two aspects.  First,  the  statistical
properties of syntax and semantics, and second, the neural mechanisms which could be of possible
use in trying to understand how the brain learns those particular statistical properties. In the first
part of the thesis (part A) we focus our attention on a detailed statistical study of the syntax and
semantics of the mass-count distinction in nouns. We collected a database of how 1,434 nouns are
used with respect to the mass-count distinction in six languages; additional informants characterised
the  semantics  of  the  underlying  concepts.  Results  indicate  only  weak  correlations  between
semantics and syntactic usage. The classification rather than being bimodal, is a graded distribution
and it is similar across languages, but syntactic classes do not map onto each other, nor do they
reflect, beyond weak correlations, semantic attributes of the concepts. These findings are in line
with the hypothesis that much of the mass/count syntax emerges from language- and even speaker-
specific grammaticalisation. Further, in chapter 3 we test the ability of a simple neural network to
learn the syntactic and semantic relations of nouns, in the hope that it may throw some light on the
challenges in modelling the acquisition of the mass-count syntax. It is shown that even though a
simple self-organising neural network is insufficient to learn a mapping implementing a syntactic-
semantic link, it does however show that the network was able to extract the concept of 'count', and
to some extent that of ‘mass’ as well, without any explicit definition, from both the syntactic and
from the semantic data. 

The second part of the thesis (part B) is dedicated to studying the properties of the Potts neural
network.  The Potts neural network with its adaptive dynamics represents a simplified model of
cortical mechanisms. Among other cognitive phenomena, it intends to model language production
by utilising  the  latching  behaviour  seen  in  the  network.  We  expect  that  a  model  of  language
processing should robustly handle various syntactic- semantic correlations amongst the words of a
language.  With this  aim,  we test  the  effect  on storage  capacity of  the Potts  network when the
memories  stored  in  it  share  non  trivial  correlations.  Increase  in  interference  between  stored
memories due to correlations is studied along with modifications in learning rules to reduce the
interference.  We  find  that  when  strongly  correlated  memories  are  incorporated  in  the  storage
capacity  definition,  the  network  is  able  to  regain  its  storage  capacity  for  low sparsity.  Strong
correlations also affect the latching behaviour of the Potts network with the network unable to latch
from one memory to another. However latching is shown to be restored by modifying the learning
rule. Lastly, we look at another feature of the Potts neural network, the indication that it may exhibit
spin-glass characteristics. The network is consistently shown to exhibit multiple stable degenerate
energy states other than that of pure memories. This is tested for different degrees of correlations in
patterns, low and high connectivity, and different levels of global and local noise. We state some of
the  implications  that  the  spin-glass  nature  of  the  Potts  neural  network  may have  on language
processing.
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1 General Overview

One of the epitomes of cognitive function is the ability to communicate through a language.

The formal study of language has a long history with one of the earliest works dating back to 500

BCE when Panini studied Sanskrit. Humans are thought to be the only species that exhibit such a

high level of complexity and structure in their communication, which far exceeds the few other

species  that  show,  to  some  extent,  a  developed  communication  ability  like  songbirds  [van

Heiningen et al 2009] and cetaceans like Killer Whales [Deecke et al 2009]. These species have a

limited set of 'symbols' and rely mostly on repetition of sequences to communicate. The marked

difference in the human languages is the possibility to combine symbols in different ways to convey

different meanings, and possibly construct infinite set of unique sentences. It is still unclear why

there is a sudden leap in human communication abilities despite sharing similar neural mechanisms

to other species [Fisher, Marcus 2006]. 

Language processing can be investigated in several aspects, including A) The structure and

rules of a language, which entails the study of syntax and semantics, and B) The encoding of those

rules in the brain through neural mechanisms. 

Several proposals have been made in the quest to explain language acquisition in humans.

'Generativism'  was one of the earlier ideas in the 1980's and its initial formulation proposed that

humans are born with biological constraints on their knowledge of linguistic principles and as the

child  grows,  syntactic  cues  from the  environment  set  certain  features  in  the  child's  syntactic

repertoire, thus bringing about complete language acquisition [Chomsky, 1980; Baker, 2002]. This

view  was  challenged  by  the  'empiricism'  idea  which  argues  that  in  the  light  of  lacking

neuroscientific evidence to find a specific language acquisition device as proposed in generitivism,

language is  rather an emergent  phenomenon developed through language use [Tomasello 2003;

O'Grady 2008]. In relation to this, statistical models of language learning emerged, which suggest

that a child can extract rules and structure from the statistics of the inputs it receives and thus is able

to acquire the required knowledge to use the language [Saffran 2003; Lany, Saffran 2010].

Statistical models of language learning extend to connectionist models, which try to explore

the mechanisms by which language can be encoded in the connections between neurons and make

use of the general cognitive principles of learning. Several attempts have been made at modelling

the brain mechanisms that would subserve language processing [SRN-Elman 1991; LISA-Hummel,
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Holyack 1997; Neural Blackboard Architecture-Velde, de Kamps 2006]. All these models provide a

conceptual basis and requirements (like learning with distributed representations, self-organisation

and the combinatorial property of syntax) for a neural architecture to support language processing

but fall short in satisfying a realistic upward scaling of a natural language (eg. LISA) or require

specifically  pre-organised  structure  (eg.  Neural  Blackboard  Architecture).  An  important  aspect

however is the ability of a neural network to learn from the statistics of a natural language. An

attempt at artificially simulating statistical relations between words and syntactic categories was

presented in BLISS [Pirmoradian, Treves 2011] and a neural network modelling cortical dynamics

was tested in its ability to 'acquire' the statistical relationships. All such models show promise to

some  extent,  however  also  highlight  the  enormous  challenge  and  difficulty  in  approaching

anywhere near the full requirements of a natural language. 

 In this thesis we focus our attention (in part A) on the statistical properties of  6 natural

languages  in  the domain of the mass-count  distinction in nouns.  The mass-count  distinction as

explained in chapter 2 has been subject to intense debate for several decades and is particularly

interesting to us, due to its perceived intuitive relation between syntax and semantics, which is also

linked to  the  cognitive  perception  of  nouns.  We make a  detailed  cross  linguistic  study on the

information  obtained  from  the  native  speakers  of  the  6  languages  and  probe  the  statistical

relationship between syntax and semantics of the mass-count nouns. Further, in chapter 3 we test

the ability of a simple neural network to learn the syntactic and semantic relations of nouns, in the

hope that it may throw some light on the challenges in modelling the acquisition of the mass-count

syntax. 

In part B we study properties of the Potts neural network, regarding its storage capacity and

the spin glass phase. The Potts neural network is a simplified model of cortical dynamics and its

dynamical  behaviour  exhibits  some  interesting  features  like  latching  between  attractor  states

[Kropff,  Treves  2006;  Russo,  Treves  2012].  The  model  was  studied  in  its  ability  to  produce

sentences from BLISS [Pirmoradian, Treves 2012], however the correlations between words in a

sentence was kept low to study the basic behaviour of the network. In chapter 4-section II we look

at why correlations are important and a necessary requirement for a language processing model and

then study the effects  of increased correlations  amongst  stored memories  in  the Potts  network.

Lastly in section III of chapter 4 we look at an interesting observation, namely the spin glass phase

of the Potts neural network. We describe what a spin glass phase is and look at the indications that
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the Potts neural network is operating in the spin glass phase. The possible implications of which are

discussed in the conclusions. 
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Part A

Statistical study of natural languages: The Mass-Count

Distinction 
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Chapter 2

A Statistical Investigation into the Cross-Linguistic Distribution of Mass and Count 
Nouns: Morphosyntactic and Semantic Perspectives

2.1 Introduction:

The  mass/count  distinction  between  nouns,  in  various  languages,  has  been  discussed  in  the

linguistic literature since [Jespersen 1924], and has received considerable attention in particular in

the last 35 years [see the bibliography in Bale & Barner 2011]. This distinction between mass and

count nouns is a grammatical difference, which is reflected in the syntactic usage of the nouns in a

natural language, if it makes the distinction at all (as has been often noted, not all language do; in

the Chinese language family, for example, all nouns are mass). For example, in English, mass nouns

are associated with quantifiers like little and much and require a measure classifier (kilos, boxes)

when used with numerals; on the other hand, count nouns are associated with determiners like a(n),

quantifiers like many/few or each, and can be used with numerals without a measure classifier.

These syntactic properties are intuitively correlated with semantic properties. Typical count

nouns denote sets of individual entities, as in girl,  horse, pen, while typical mass nouns denote

‘substances’ or  ‘stuff’,  for  example,  mud,  sand,  and  water.  It  has  often  been  noted  that  the

correlation  is  not  absolute,  and  that  there  are  mass  nouns  which  intuitively  denote  sets  of

individuals (e.g., furniture, cutlery, footwear). Nonetheless, the correlation seems non-arbitrary and

there has been much discussion of this  correlation in the linguistics literature as well  as in the

psycholinguistics literature [e.g., Soja et al. 1991, Prasada et al. 2002, Barner & Snedeker 2005,

Bale & Barner 2009] and in the philosophical literature [e.g., Pelletier 2011 and references cited

therein].
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Within  the  semantics  literature,  a  seminal  attempt  to  ground  the  syntactic  distinction

semantically is [Link, 1983]. Link proposed that mass nouns are associated with homogeneity and

cumulativity,  while  count  nouns  are  associated  with  atomicity.  Homogeneity,  cumulativity,  and

atomicity are properties which can be associated with matter or with predicates. An object is atomic

when  it  has  a  distinguishable  smallest  element  which  cannot  be  further  divided  without

compromising  the  very nature  of  the  object,  and  an  atomic  predicate  denotes  a  set  of  atomic

elements. Thus boy is an atomic predicate, since we can easily identify atomic boys, parts of which

do not count as boys. Homogeneity is a property by which, when parts of an object are separated,

each individual part holds the entire identity of the original object, and a homogeneous predicate is

one which denotes entities (or quantities of matter) of this kind. For example, any part of something

which is water is water, thus water is a homogeneous predicate. Cumulativity is the property that a

predicate has if two distinct entities in its denotation can be combined together to make a single

entity in the denotation of the same predicate. For example, if A is water and B is water, then A and

B together are water. Cumulativity and homogeneity can be seen as different perspectives on the

same  phenomenon,  though  linguistic  research  has  shown  that  the  difference  between  them is

important in certain contexts [see e.g., Landman & Rothstein 2012]. However, for our purposes, we

can ignore these differences. The generalization emerging from [Link 1983] is that mass nouns are

non-atomic and exhibit properties of being homogeneous and cumulative, whereas count nouns are

atomic. 

Link’s proposal has been hugely influential, giving a representation to the intuition that the

syntactic expression of the mass/count distinction correlates with a real semantic or ontological

contrast.  Expressions  of  this  intuition  are  widespread.  Thus  [Koptjevskaya-Tamm 2004]  writes

about the mass/count distinction: “In semantics, the difference is between denoting (or referring to)

discrete entities with a well-defined shape and precise limits vs. homogeneous undifferentiated stuff

without any certain shape or precise limits”. 

Despite this ingrained intuition, it has been generally recognized that it is not possible to

postulate a simple projection of the homogeneous/atomic or undifferentiated/discrete  distinction

onto mass/count syntax [seem e.g., some recent references such as Gillon 1992, Chierchia 1998,
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2010,  Barner  &  Snedeker  2005,  Nicolas  2010,  Rothstein  2010,  Landman  2010,  as  well  as

Koptjevskaya-Tamm 2004]. There are various pieces of evidence which show this. In the first place,

there are mass nouns which denote sets of atomic entities, such as furniture and kitchenware, and

some  of  these  have  synonyms  in  the  count  domain  as  in  the  English  pairs  change/coin(s),

footwear/shoe(s), carpeting/carpet(s) which denote roughly the same entities. Conversely, there are

also count nouns such as fence and wall which show properties of homogeneity [Rothstein 2010].

Secondly, nouns stems may have both a count and mass realization in a single language, with the

choice depending on context. In some cases, both count and mass usage are equally acceptable, as

with  stone  and  brick  and  hair  in  English.  In  other  cases,  one  of  the  uses  is  considered  non-

normative, for example, when a count noun like dog is used as a mass noun in After the accident

there was dog all over the road. Thirdly, items which are comparable in terms of lexical content do

not have stable expressions cross-linguistically as either mass or count. The much cited examples is

furniture, which is mass in English but count in French (meuble/s), while in Dutch and Hebrew, the

comparable lexical item has both a mass and a count realization (Hebrew: count rehit/im vs. mass

rihut, Dutch: count meuble/s vs. mass meubiliar).

The received wisdom therefore oscillates between these two perspectives, with much recent

research trying to mediate between them, both capturing the basic generalization, while accounting

for the variations both cross-linguistically and within a single language. [Chierchia 2010] suggests

that the mass/count distinction is based on whether or not the noun is envisaged to have a set of

stable  atoms.  [Rothstein  2010]  argues  that  semantic  atomicity  is  context  dependent.  [Pires  de

Oliveira & Rothstein 2011] argue that the mass/count alternation is a reflection of whether the noun

relates to its denotata as a set of entities to be counted or as a set of quantities to be measured.

However, in the midst of all this discussion, certain basic facts remain unclear. In particular,

how great is the cross-linguistic variation in mass/count syntax? Clear evidence that the syntactic

mass/count distinction is not a projection of a semantic or ontological distinction has stayed at the

level of the anecdotal, with discussion focusing on a few well known and well-worn examples [see,

e.g., Chierchia 1998 and Pelletier 2010 for reviews]. As a consequence, most discussions of the

basis of the mass/count distinction have been based on some explicit and some tacit assumptions,
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which have not been verified empirically.  In particular,  it  is  often assumed that the mass/count

distinction  is  essentially  binary,  that  is,  that  a  noun  is  classified  as  mass  or  as  count  or  as

ambiguous. (This is explicit in accounts which assume that nouns are labeled as mass or count in

the lexicon, and implicit in accounts such as [Borer 2005] which assume that noun roots are not

classified lexically but naturally appear in either a count or a mass syntactic context.)  Another,

related, common assumption is that in a language with a mass/count distinction, most nouns are

either mass or count, with the syntax reflecting the homogeneous/atomic distinction, and that cross-

linguistic variation occurs in a lexically defined ‘gray area’ in the middle, which includes nouns

which are not easily classifiable. But crucially, discussion of the facts of the matter has not gone far

beyond the anecdotal. The semantics literature has discussed in great depth the syntactic properties

of nouns like furniture and comparing it  syntactically and semantically with its  cross-linguistic

counterparts, but despite very few more in-depth, but still narrow, studies [e.g., Wierzbicka 1988],

we have little sense of how representative nouns like this actually are.

An answer to the question to what degree there is cross-linguistic variation in the expression

of the mass/count distinction is essential to the discussion of its cognitive and semantic basis. If

there is ultimately little cross-linguistic variation, then we are entitled to hypothesize that there may

be  some  general  strong  correlation  between  properties  of  the  denotata  (e.g.,  as  atomicity  and

homogeneity) and the grammatical distinction. In this case, the grammatical mass/count distinction

may have a sound cognitive/perceptual foundation, and its semantic interpretation would reflect

this.  The  task  of  linguistics  would  then  be  to  characterise  precisely the  semantic  basis  of  the

grammatical  distinction,  to  identifying  ‘exceptional’ areas  where  the  correlation  does  not  hold

and/or where cross-linguistic variation naturally appears, and to try and explain why these occur.

This is an approach which has been exploited especially with respect to ‘furniture nouns’ which has

been identified as ‘super-ordinates’ [Markman 1985] or functional artifacts [Grimm & Levin 2011].

On the other hand, if cross-linguistic variation is wide, then the basis for assuming that there is a

correlation between cognitive/perceptual features and the grammatical distinction is considerably

weakened. Then questions that linguistics should be asking will depend directly on the nature of the

patterns, or lack of them, that an analysis of the cross-linguistic facts of the matter reveals. The lack

of any quantitive data on the extent of cross-linguistic variation is thus highly problematic.

8



With the goal of remedying this lack of data and contributing to understanding the cognitive

aspects  of  mass/count  syntax  and  the  relation  between  grammatical,  semantic,  and  cognitive

differentiation in this domain, we have conducted a statistical cross-linguistic empirical study based

on  a  quantitative  approach,  and  also  a  corpus  study on  the  Browns  section  of  the  CHILDES

database  [MacWhinney 1995].  We hope with  this  to  be  able  to  begin  to  answer  several  basic

questions: To what extent is the mass/count distinction a straight-forward reflection of the semantic

properties  of  nouns?  Is  the  variability  across  languages  in  any  degree  predictable,  or  is  the

grammatical division into mass and count arbitrary? Furthermore, is the division into mass and

count absolute, or are some nouns ‘more count’ or ‘more mass’ than others? Do differences in the

semantic explanations essentially arise due to the multi-dimensional nature of the semantic (as well

as the syntactic) space? And if so, can the multi-dimensional aspect provide useful insights in the

acquisition of mass/count syntax in humans?

Our study aims to go some way to providing empirically substantiated answers to these

questions. We carried out a relatively large scale analysis of the mass/count classification of nouns

cross  linguistically.  Count  nouns  are  usually  distinguished  from  mass  nouns  by  a  number  of

different  syntactic  properties,  for  example,  co-occurrence  with  numerical  expressions,  co-

occurrence  with  distributive  quantifiers  like  each,  and  so  on,  but  the  specific  tests  vary  from

language to language. We focused on several issues: 

(i) To  what  extent  can  mass/count  syntax  be  predicted  in  language  A on  the  basis  of

knowledge of language B? 

(ii) To what extent is mass/count syntax a binary division (i.e. if a noun classifies as count

on one test, what are the odds that it will classify as count on all tests)?

(iii) To what extent can mass/count syntax be predicted on the basis of real-world semantic

properties?
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2.2. Methods:
2.2.1. Data Collection:
A) Noun List:

Binary syntactic usage tables were compiled for a list of 1,434 common nouns in English,

which included 650 abstract and 784 concrete nouns. The list was derived from a longer list of

1,500  very  frequent  English  nouns,  originally  extracted  from  the  CELEX  database  [see

http://www.ldc.upenn.edu/Catalog/ CatalogEntry.jsp?catalogId=LDC96L14] for a different project,

integrated with about 150 additional nouns often used in linguistics to study the mass/count domain,

after translating the nouns into the five other languages included in our study, and eliminating over

200 nouns for which either the identification of the common semantic concept, or the syntactic

classification in at  least  one language,  as described below, were unclear or problematic.  At the

translation stage, each noun/concept was provided with a sample usage sentence, to disambiguate

its potentially divergent meanings; thus trying to ensure that each language had the same semantic

concept translated, for the same context, into a corresponding noun.

B) Usage Tables: 

A set of yes/no questions was then prepared, in each language, to probe the usage of the

nouns  in  the  mass/count  domain.  The  questions  asked whether  a  noun  from the  list  could  be

associated with a particular morphological or syntactic marker relevant in distinguishing mass/count

properties. Some questions were designed to give positive properties of count nouns (e.g., can N be

directly modified by a numeral?) and some to give positive properties of mass nouns (e.g., can the

noun appear in the singular with measure expressions?). Since the mass/count distinction is marked

by different syntactic properties cross-linguistically, the questions were dependent on the particular

morphosyntactic expressions of mass/count contrast in each language. For example, in English we

asked whether a noun could appear with the indefinite determiner a(n) but this was obviously an

inappropriate question to ask in Hebrew where there is a null indefinite determiner. The questions in

English are shown in Table 1 below.

The questions were answered by native speakers of each of the languages in our study. Thus

each noun was associated, for each informant, with a string of binary digits, 1 indicating yes and 0

indicating no, reporting how that particular noun is used (or predominantly used) in the mass/count

domain, by that informant. Such usage tables (a tiny portion of an English usage table is shown as

Table  2.3  below)  were  compiled  by  Armenian,  English,  Hebrew,  Hindi,  Italian,  and  Marathi
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informants (at present, we have complete data for 16 informants; Armenian: AN, AR, GR, GY, RF;

Italian:  LE,  FR,  GS,  RS,  BG;  Marathi:  SN,  TJ,  SK;  English:  PN;  Hebrew:  HB;  Hindi:  MN).

Although  the  choice  of  languages  was  ultimately  determined  by the  available  informants,  the

languages studied represent a spread across language families. The five Indo-European languages

come from distinct branches: Germanic (English), Romance (Italian), Northern Indo-Aryan (Hindi),

southern  Indo-Aryan (Marathi),  and Armenian,  which  constitutes  a  branch of  its  own.  Hebrew

comes from a distinct phylum, the Semitic family.

No. Syntactic Questions

1. Can the noun be used in bare form?

2. Can the noun be used with a/an?

3. Can the noun be pluralized (in a morphological distinct form)?

4. Can it be used with numerals?

5. Can the noun be used with every/each?

6. Can the noun be used with many/few?

7. Can the noun be used with much/little?

8. Can the noun be used with not much?

9. Can the noun be used with a lot of?

10. Can the noun be used with a numeral modifier + plural on kind?

11. Does the noun appear in the singular with a classifier or measure phrase?

Table 2.1:  List of questions used in English to compile the usage table.

The  questions  probe  whether  a  particular  noun  is  associated  with  certain  typical  syntactic  markers,
important  in  English  for  the  mass/count  distinction.  Similar  questions  were  used  for  other  languages,
formulated according to the morphosyntactic properties of the languages in question. These are listed in
tables A1–A5 in the Appendix.
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C) Semantic Table: 

A similar table was prepared by five informants (KM, RI, SL, SU, and TJ, four native Marathi and

one Hindi speaker) using the English database to describe the properties of the denotations of the

nouns in the list. These questions probed aspects of the denotations which were plausibly related to

the more general semantic properties of atomicity, homogeneity and cumulativity discussed above.

The questions asked (also supplied with an example to each, to clarify the meaning) are shown in

Table 2.2. The questions were purposely formulated in informal terms, since we were interested in

the correlation between mass/count syntax and what is often taken as the ‘intuitively obvious’ basis

for the distinction. We will somewhat loosely refer to these as ‘semantic questions’. 

No. Semantic Questions

1. Is it Alive irrespective of context?

2. It is an Abstract Noun?

3.Does it have a single Unit to represent itself ? 

4.Does it have a definite Boundary, visually or temporally? 

5.Does it have a stable Stationary shape (only if concrete)? 

6.Can it Flow freely (only if concrete)?

7.Does it take the shape of a Container (only if concrete)? 

8.Can it be Mixed together indistinguishably (only if concrete)?

9. Is the identity Degraded when a single unit is Divided (only if concrete)? 

10.Can it have an easily defined Temporal Unit (only if abstract)? 

11.Is it an Emotion /Mental process (only if abstract)?

12.Can it have an easily defined Conceptual Unit (only if abstract)?

Table 2.2:  Questions used to probe the semantic properties of the nouns. 

The questions are based on the properties of atomicity, homogeneity and cumulativity, if nouns are concrete.
For abstract nouns, the semantics is based on how easy it is to define a unit of the concept. The questions
were asked without elaboration, with only a reference example; in the case of question 8,  for example,
applicable to concrete nouns: Can it be mixed together indistinguishably? [e.g., butter as opposed to man]. 

Both  syntactic  and  semantic  tables  were  then  processed  through  the  analysis  described

below.
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2.2.2. Analysis:

Nouns in the syntactic usage table of a particular informant were clustered together according to the

binary string associated with them. In this way, nouns which have the exact same binary string are 

grouped together, reflecting the fact that their mass/count syntactic behavior is (considered by that 

informant to be) the same. Thus each group formed in the usage table is identified with a unique 

binary string. Informants for each language of course group the nouns according to their own 

syntactic rules, hence the clusters formed in different languages inform us about mass/count 

phenomenology in that language. The same grouping procedure can be applied to the semantic 

table, generating ‘semantic classes’ (relative to the main features putatively underlying mass/count 

syntax across languages). The resulting distributions of nouns/concepts in syntactic or semantic 

classes were analyzed, with the measures described below, for both syntactic and semantic tables.

A) Hamming Distance Scale:

The  data  in  the  usage  tables  is  in  principle  high-dimensional,  containing  distinct

contributions  from each of several syntactic markers.  It  is  possible,  however,  that  much of the

relevant  mass/count  syntax  might  be  organized  along  one  main  dimension.  We  consider  the

hypothesis that this most important dimension may be defined as the ‘distance’ from a pure count

string, where nouns at different distances might be associated with characteristic combinations of

syntactic markers (see Fig. 2.1 below).
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Noun Context 1 2 3 4 5 6 7 8 9 10 11

ability
Ability  is  more  desirable  than
wealth.

1 1 1 1 1 1 1 1 1 0 0

accident
The  crash  was  an  accident,  not
intentional.

0 1 1 1 1 1 0 0 0 0 0

acid Acid stains clothes. 1 1 1 1 1 1 1 1 1 1 1

act The flood was an act of nature. 0 1 1 1 1 1 0 0 0 0 0

act  of

crime
Murder is always an act of crime. 0 1 1 1 1 1 0 0 0 0 0

activity
A  favorite  activity  was  spitting
cherry stones.

1 1 1 1 1 1 1 1 1 1 0

actor Any good actor can play Tarzan. 0 1 1 1 1 1 0 0 0 0 0

Table 2.3:  A small section of the usage table for English as filled by a native informant.

Numbers in the top row refer to the syntactic questions in Table 1.

To probe this potential organizing dimension, the high dimensional data is collapsed onto a

single dimension. This is obtained by calculating the Hamming distance, or fraction of discordant

elements, of each noun (i.e. of each syntactic group) from a bit string representing a pure count

noun. A pure count string is one which has ‘yes’ answers for all count questions and ‘no’ answers

for all mass questions. Hence a noun that has distance 0 from a pure count string is a proper count

noun, whereas a noun with all its bits flipped with respect to a pure count string is a mass noun, and

has a normalized distance of 1 from the pure count string. Such a noun has answers ‘no’ to all count

questions and ‘yes’ to the mass questions. By plotting the distribution of nouns on this dimension

we expect to be able to visualize the main mass/count structure, to relate easily with a linguistic

interpretation. This measure does not strictly reflect the categorical nature of groups defined by a

unique syntactic string, in the sense that all nouns with a syntactic string differing at 3 bits from the
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pure count string are clustered together, irrespective of which are the 3 syntactic markers for each

noun.  This  allows  for  a  coarser  but  perhaps  more  intuitive  and  linguistically  more  transparent

comparison between languages than the mutual information measure discussed below, which is a

fine-grained comparison between languages, taking into account all the existing dimensions. 

Figure 2.1: Schematic representation of the Hamming distance scale. 

Nouns  are  located  in  an  N-dimensional  space  (here  only  three  dimensions  are  represented)  and  the
Hamming Distance scale projects these points onto the mass/count dimension (red diagonal), going from the
bit string of pure count to that of pure mass.

Agreement between two languages is estimated as a variance measure, ⟨x
2
⟩+⟨ y2

⟩−2 ⟨ xy ⟩

which is simply a sum of squares of the difference between the Hamming distances x and y of a

noun from the pure count class, as found in the two languages concerned. This measure has a strict

upper bound of 1, if Hamming distances are expressed as fractions of discordant bits, which is

attained when each noun is either pure count in one language and pure mass in the other, or vice

versa; clearly a rather implausible occurrence. A more natural reference value, although not strictly

speaking  an  upper  bound,  can  be  estimated  by calculating  the  variance  measure  between  the

Hamming distances  in  a  language  and those  of  randomly shuffled  nouns  in  another  language,
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〈x2
〉+〈 y2

〉−2 〈x 〉 〈 y 〉 . The random shuffling simulates the case of a total absence of any relation

between the position of the nouns along the main mass/count dimension in the two languages, while

respecting the distribution of Hamming distances in each. Thus by comparing the actual value with

the reference value, we can get an understanding of how the languages match each other in broadly

classifying nouns on the main mass/count dimension. Each language however has different number

of  questions  analyzing  its  mass/count  structure  and  hence  the  Hamming  distance  space  for  a

language is populated only at intervals of 1/Nth of a bit, where N is the number of questions in a

language. To minimize the effect of different intervals we estimate a true minimum of variance

between languages (which in an ideal case is 0) by calculating the variance between two languages

when all the nouns are ordered in the same way in their position on the Hamming distance scale. We

adjust  the  raw  variance  by  simply  subtracting  the  minimum  variance  for  that  pair,  and  then

normalize it by dividing it by the (adjusted) effective maximum value as mentioned above.

B) Clustering and Information Measures:

Information theory provides us with useful tools to quantify aspects of the clustering observed in

the data. The entropy of a variable, which can take a certain set of values, quantifies the uncertainty

in predicting the value it can take in terms of its possible values and their probabilities. A variable

which always takes a single value is perfectly predictable and has an entropy of 0 bits. A binary

variable has an entropy of 1 bit when it has 50% probability to take either value, e.g. 1 or 0. We can

apply  this  measure  to  the  grouping  structure  formed  around  the  mass/count  distinction  in  the

languages we study. In our case, the variable G is which group any given noun or concept has been

associated to in a particular table, taking values 1,…,i,…,n, where n is the total number of groups

observed in that table. The probability p(i) is determined for our purposes as the relative frequency

of nouns/concepts assigned to group i. The entropy of the table is then calculated as: 

H (G)=−∑
i=1

n

p (i) log2 p (i)
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H(G) informs us about the overall syntactic variability expressed (by an informant) in a language,

and can be regarded as the logarithm of an equivalent number of significant syntactic classes.

To make cross lingual comparisons, we quantify the extent to which the groups formed by

informants in one language overlap with the groups formed by those in another. This amounts to

defining  equivalence  classes,  whereby two nouns are  grouped together  if  and only if  they are

members of the same syntactic usage group in the two languages. For example, if the nouns water

and wine are a part of the same group in language X and also fall in one group in language Y,

whatever the syntactic usage questions that define groups in the two languages, they are members

of the same equivalence class. For analyzing syntactic-semantic relations, language Y is replaced by

the semantic table. To give a limiting case, if two languages were to behave exactly the same in

classifying  nouns  in  the  mass/  count  domain,  the  equivalence  classes  would  coincide  with  the

groups formed in the individual languages, reflecting the exact match between groups produced by

language X and Y. At the other extreme, if two languages were to share no commonality, there

would be no relation whatsoever between the groups in the two languages, and membership in a

group in one language would not be informative about membership in the other language. 

The mass/count similarity between X and Y can be quantified by the mutual information

I(X;Y), a measure that quantifies the mutual dependence of two variables. If two variables share no

common information then the mutual information between them is 0, which is the lower bound for

I, whereas the upper bound on mutual information is the lower between the entropies of the two

variables (the shared information between two variables cannot be more than the total information

content in one variable, i.e. its entropy). Mutual information is calculated using the joint entropy of

the two variables in question, which in our case is the entropy of the groups, by the relation

I ( X;Y )=H ( X )+H (Y )−H ( X,Y )

which can be written also
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I (X ;Y )=∑ p (i , j) log2(
p(i , j)

p(i ) p ( j)
)

and where H(X,Y) is the joint entropy of the two variables, at least equal to the higher of the two

individual  entropies.  In  the  limit  case  in  which  the  syntactic  groups  are  identical,

H(X)=H(Y)=H(X,Y)=I(X;Y),  whereas  in  the  opposite  limit  case,  in  which  there  is  no  relation

whatsoever between the groups each table, p(i,j)=p(i)p(j), expressing independent assignments, and

then H(X,Y)=H(X)+H(Y), so that I(X;Y)=0.

Mutual information measures suffer from a bias due to limited sampling [Panzeri & Treves

1996] related to the number of equivalence classes actually occupied compared to the total possible

(2Nq1 × 2Nq2) classes, where Nq1 and Nq2 are the number of questions for the two languages in

the pair. The correction to mutual information is estimated by calculating the mutual information

between the pairs of languages when the nouns for one pair are randomly shuffled, thus simulating

the lack of correlation between the two languages,  and then averaging the value over  50 such

shuffles. The correction is then subtracted from the raw value calculated for a pair.

C) Artificial Syntactic String Generation:

To  test  the  importance  of  the  mass/count  dimension  and  its  link  with  semantics,  an  artificial

syntactic usage table was also generated, wherein the ‘yes/no’ decision to a syntactic question was

decided  by  a  stochastic  algorithm  based  on  the  position  of  the  noun  on  the  main  semantic

mass/count dimension. This algorithm generates a 0 or 1 for each of a string of N ’pseudo-syntactic’

questions, one string per language, where N is the number of syntactic questions in that language.

To do so, it uses two reference points, namely the syntactic pure count string for that language and

the position of the noun concept along the semantic mass/count dimension, which is taken to be a

language universal. The latter is quantified by the Hamming distance from the pure count semantic

string, i.e. by the fraction d=D/N of semantic features that differ, for that concept, from those of the

pure count. Each bit of the artificial string is then assigned, one by one, for a given noun, the value

the bit has in the pure count string with probability (1–d), and the other value with probability d.
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Syntactic questions, for this purpose, are empty of content, and simply refer to distinct bits

of  a  pseudo-syntactic  usage  string.  Such bits  are  determined,  for  a  particular  language,  by the

specific configuration of the pure count string for that language. If the noun is semantically close to

a pure count then the probability to generate a syntactic pure count, or something close to it, is

higher. The Hamming distances of the artificial strings from the pure count string have a certain

distribution (a convolution with exponentials of the semantic Hamming distance distribution) which

resembles that of the real syntactic strings, in most cases (except for Marathi, see below); while the

position of each noun along the artificial syntactic mass/count dimension is strongly correlated with

the position of the noun along the semantic mass/count dimension. The variance measure between

the pseudo-usage table of any language and the semantics table provides us with a lower reference

value for the variance itself, in contrast to the upper reference value obtained by random shuffling

of the nouns. We are then able to better gauge the significance of the mass/count dimension and the

importance  of  semantics  with  respect  to  the  mass/count  syntax.  Also,  the  mutual  information

between natural usage tables and semantics can be compared to the mutual information between the

pseudo-usage table and semantics, to allow a better estimate of what is the contribution of sheer

semantics to the mass count syntax (by providing what for the mutual information scale is a more

realistic upper value, see Fig. 12 below). The entropy for a particular language depends also on the

number of questions used to investigate the mass/count syntax. By looking at the entropies of the

artificial syntax we can see how the entropy measure scales with the number of questions. 

2.2.3. Corpus Study of the Mass/Count Distinction in English:

Brown’s section of the CHILDES corpus was also used, in an additional component of the study, to

obtain mass/count information about nouns occurring in a natural English language corpus. For this

purpose all nouns were collected, in the adult-produced sentences of the corpus, which co-occurred

with a set of predefined mass/count markers. The co-occurrence frequency of a noun and the set of

mass/count markers was recorded and normalized to the total occurrence frequency of the noun.

Thus,  for each noun, there was a  set  of numbers which indicated the statistical  distribution of

syntactic markers for that noun. The markers that were used to measure co-occurrence frequency

were a(n), every/each, pluralization, many, much, some + sing. N, and a lot of + sing. N. This study
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contains a total of 1,506,629 word tokens and 27,304 word types.

The usage table obtained from the CHILDES corpus was analyzed with multi-dimensional

scaling, and the distribution of the nouns on the mass count dimension. Multi-dimensional scaling

projects high dimensional data on a lower dimensional space while preserving the inter-data-point

distance,  allowing  to  visually  identify  structural  information  in  the  data.  By  analyzing  the

distribution  and  clusters  in  the  projected  space  one  can  gain  information  about  statistically

important dimensions and markers. Moreover, the data from the CHILDES cor-pus was analyzed in

terms  of  distribution  of  distances  from  the  pure  count  class  and  of  entropy  measures,  after

binarising the table indicating the frequency of each marker. Thus, for example, if a noun was found

at least once in plural form, this was taken as evidence that it could be pluralized; if found at least

once with a or an, that it could take the indefinite article, and so on. In this way, the same analyses

could be applied as for our database.
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2.3. Results:

2.3.1. Individual Syntactic Rules and Semantic Attributes Do Not Match:

The starting point of our analysis is the observation that, at least in five out of the six languages we

considered, roughly half the nouns in the sample can be easily classified as pure count nouns. The

exact  numbers  in  each  language  are  Armenian:  1058,  English:  693,  Hebrew:  757,  Hindi:  994,

Italian: 863, and Marathi: 255. For example, in both Italian and English nouns like 'act', 'animal',

'box', 'country' (as the territory of a nation), 'house', 'meeting', 'person', 'shop', 'tribe', 'wave'; and

'accident', 'cell'  (as in biology), 'loan', 'option', 'pile', 'question', 'rug', 'saint', 'survey', 'zoo' were

classified as count in all respects by our informants. In Marathi, while the first 10 examples were

also classified as count, the second 10 tested positive on all count properties except one, usually the

property of having a morphologically distinct plural form. Marathi appears to stand out from the

group in other ways, as reported below. For all other languages, clearly the focus has to be on the

remaining  proportion  of  non-pure-count  nouns.  (see  appendix  A6,  A7  for  details  about  each

question)

Among the informant responses, we observed cases of nouns that were regarded as pure

count in English but cannot be normally used with numerals in Italian ('back', 'forum', 'grin'), or

vice versa that test as pure counts in Italian but cannot be normally used with numerals in English

(such as 'behavior' or 'disgrace') Interestingly, when considering only usage with numerals and with

distributive each/every (ogni in Italian), our informants classified as ‘count’ in English nouns the

translation of which failed both tests in Italian: 'love', 'noon', 'youth' have count usages in English,

but not in Italian. The converse is also found: there are count nouns in Italian that, translated into

English, failed both the numerals test and the test “can be used with each/every”: 'advice', 'blame',

'literature', 'trust', 'wood'. There were cases where the impression of one of the authors was that his

or  her judgment might differ from the informants, or the informants disagreed among themselves.

Since we are interested in this study in an overall quantitative analysis of cross-linguistic usage

judgments, we did not subject these differences of judgments to in-depth linguistic analysis, but
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entered the judgments of the majority. We note that there were a significant number of such cases.

Overall, there were only 116 nouns that were classified as pure count in all six languages, and still

only 392 when excluding Marathi. We thus proceeded to a quantitative analysis, without further

questioning the responses by the informants on a noun-by-noun basis.

For  a  quantitative  analysis,  we  first  assessed  whether,  in  any  of  the  languages  in  the

database, a particular syntactic usage rule can be taken to reflect in a straightforward manner a

particular semantic attribute of the noun. While in many cases the yes/no answer to a syntactic

question turns out to be significantly or highly significantly correlated with a specific semantic

attribute, we found no cases where the correspondence could be described as expressing a ‘rule’,

even a rule with a few exceptions. To present quantitative results, we focused on cases where the

semantic-syntactic  correspondence was higher.  The notion of high correspondence is  somewhat

arbitrary,  because  for  example,  one  may  contrast  a  case  where  among  10% of  nouns  with  a

particular semantic attribute, 90% admit a certain syntactic construct, with another case where those

proportions are 30% and 70%. In our sample, the first ‘quasi-rule’ appears stricter, but it applies to

only 129 nouns in the sample,  whereas the second one,  while laxer,  applies to 301 nouns. For

consistency with later analyses, we focus on relative (normalized) mutual information as a measure

of correspondence, while reporting also the number of nouns for which syntax matches semantics.

The relative mutual information measure ranges from 0 to 1 and it quantifies the degree to which

the variability in the syntax, across nouns, reproduces that in the semantic attributes, both of which

are quantified by entropy measures.
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Language ++ +– –+ –– H(Lang) H(Sem) MI(S,L) Norm MI

Armenian 24 31 686 43 0.451 0.366 0.080 0.218

Italian 26 29 662 67 0.536 0.366 0.053 0.145

Marathi 25 30 559 170 0.819 0.366 0.020 0.054

English 29 26 668 61 0.503 0.366 0.046 0.126

Hebrew 29 26 682 47 0.447 0.366 0.055 0.150

Hindi 28 27 686 43 0.434 0.366 0.062 0.170

Table 2.4: A case of relatively high correspondence between a semantic attribute and a syntactic rule. 

Semantic question 8, applied only to 784 concrete nouns, asked whether the noun denotes an entity (or
individual  quantity)  that  can  be  mixed  with  itself  without  changing properties.  (This  somewhat  loosely
phrased question makes reference to the homogeneity and cumulativity properties discussed in section 2.1,
since it can be interpreted either as asking whether proper parts can be permuted without changing the
nature of the object, or whether instantiations can be collected under the same description.) The syntactic
question considered was whether the noun can be used with numerals, and it was present in all languages.
The largest group of concrete nouns, in the –+ class, denote objects that are not homogeneous, and the
nouns can be used with numerals. The relative proportion of nouns in each of the four classes, however, yield
meager normalized information values, indicating that individual attributes are insufficient to inform correct
usage of specific rules, even in this ‘best case’ example.

Table 2.4 shows that most concrete nouns in our database (729/784) denote entities that,

according to our informants, cannot be ‘mixed’ while retaining their properties as instantiations of

the noun. Most of these nouns can be counted in the sense that they can be preceded with numerals,

across languages (with a somewhat less disproportionate bias in Marathi). Nevertheless, among the

nouns for  which the  answer  to  question  8 was positive,  i.e.  that  displayed properties  of  either

cumulativity or  homogeneity,  roughly half  can  be used with numerals,  again across  languages,

yielding rather low values of mutual information between semantics and syntax, as quantified in the

last column of the table. Normalized MI (as mentioned in section 2.2.2 B) values are much closer to

zero than to one.
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Even though the correspondence with the particular semantic attribute of cumulativity is

low, the results  above suggest  that  there might be a high degree of correspondence among the

syntactic usage with numerals across languages, at least when excluding Marathi. After all, across

languages it is roughly half the nouns denoting entities which intuitively are cumulative, which can

be used with numerals, and half which cannot. Is it roughly the same half?

Language

pair
++ +– –+ –– H1 H2 I(1:2)

Norm.

MI

Arm–Ita 662 48 26 48 0.451 0.536 0.124 0.275

Arm–Mar 560 150 24 50 0.451 0.819 0.059 0.131

Arm–Eng 666 44 31 43 0.451 0.503 0.106 0.235

Arm–Heb 675 35 36 38 0.451 0.447 0.095 0.212

Arm–Hin 683 27 31 43 0.451 0.434 0.129 0.297

Ita–Mar 548 140 36 60 0.536 0.819 0.062 0.115

Ita–Eng 654 34 43 53 0.536 0.503 0.131 0.261

Ita–Heb 652 36 59 37 0.536 0.447 0.068 0.152

Ita–Hin 661 27 53 43 0.536 0.434 0.102 0.235

Mar–Eng 547 37 150 50 0.819 0.503 0.041 0.082

Mar–Heb 553 31 158 42 0.819 0.447 0.034 0.076

Mar–Hin 556 28 158 42 0.819 0.434 0.037 0.086

Eng–Heb 669 28 42 45 0.503 0.447 0.119 0.266

Eng–Hin 675 22 39 48 0.503 0.434 0.144 0.331

Heb–Hin 675 36 39 34 0.447 0.434 0.078 0.181

Table 2.5:  The correspondence between languages is not higher. 

In the same case of relatively high correspondence between a semantic attribute and a
syntactic rule, entropy and mutual information between languages yield the relatively low
normalized MI values listed in the fifth column, which indicate that a broadly applicable
syntactic question (“Can the noun be used preceded by a numeral?”) selects different
subsets of nouns across different languages.
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 Figure 2.2:  Agreement across languages remains low, however it is measured. 

The solid bars show the normalized mutual information between pairs of languages for a single question, on
usage with numerals, for concrete nouns only. The stippled bars are for the same measure over all nouns in
the database, both concrete and abstract. The patterned bars are for pairs of questions, on both the use of
numerals and that of distributive quantifiers such as each/every in English (see text).

Table  2.5  and Figure  2.2  show that  the  naïve  expectation  is  not  met  by the  data.  The

syntactic correspondence in the usability with numerals is weak across languages, even irrespective

of any semantic attribute it may originate from. The congruence (number of concrete nouns in the

same syntactic class when translated across languages) appears relatively high, because most nouns

can  be  used  with  numerals  anyway,  but,  properly  quantified  in  terms  of  normalized  mutual

information, the degree of correspondence even excluding the special case of Marathi is roughly in

the 15–30% range, with English and Hindi reaching a peak value of 33%. When considering all

nouns in the database,  including abstract nouns, the degree of correspondence does not change

much (stippled bars in Fig. 2.2). Again excluding the special case of Marathi, it falls roughly in the

20–27% range, with English and Hindi reaching a peak value of 39%.

One may ask whether the low MI values with semantics, in Table 2.4 above, may be due to

the lack of exact match between the semantic attribute considered and the specific syntactic rule.

Similarly, one may ask whether the weak correspondence in the pattern of usage with numerals may

also be due to the fact that numerals might point in different directions, so to speak, in the syntactic

space of each distinct language, for example, atomicity vs. non-homogeneity. To approach these
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issues, we have begun by considering pairs of attributes, and pairs of syntactic rules. The degree of

correspondence of each language with semantics does not change much, and in fact it  tends to

slightly decrease.  For example,  when asking whether the object  denoted by the noun can flow

freely, and also whether it is cumulative, and on the other hand whether the noun can be used with

numerals and whether it can be used with distributive quantifiers like ‘each’ in English, we find that

the normalized MI decreases with respect to the above analysis with one attribute and one rule, in

all cases except for Marathi (data not shown). The decrease is entirely due to the increase in the

entropy that  appears  in  the denominator  of the normalization (see Methods).  In  terms on non-

normalized mutual information, instead, adding dimensions reveals perforce more variability.

Similarly,  the  match  between  languages,  independently  of  semantic  attributes,  does  not

increase when considering two syntactic rules instead of one. Table 2.6 and Figure 2.2 report the

data, this time for concrete and abstract nouns together, when considering the two syntactic rules

above.

Table 2.6 shows that normalized mutual information values are low, all below 0.23 except

for the English–Hindi match, even though ‘congruence’ values appear high. Congruence is the sum

of the number of nouns that are used in the same way in both languages, with respect to the two

syntactic constructs considered. Except for pairs including Marathi, between 70–81% of nouns are

congruent across pairs. Yet mutual information is low because many of the congruent nouns are

simply pure count nouns in either language, accepting both numerals and distributives, and their

permanence in the largest class is not very informative about mass/count syntax in the other classes.

As considering two questions rather than one does not affect results, it is interesting to ask what

happens when considering all available questions together. We first focus on the main mass count

dimension.

26



Language pair H1 H2 I(1:2)

Norm.

MI Congruency

Arm–Ita 0.862 1.129 0.186 0.215 1119

Arm–Mar 0.862 1.427 0.109 0.127 825

Arm–Eng 0.862 0.872 0.176 0.204 1154

Arm–Heb 0.862 0.940 0.143 0.166 1152

Arm–Hin 0.862 1.242 0.172 0.200 1046

Ita–Mar 1.129 1.427 0.106 0.094 849

Ita–Eng 1.129 0.872 0.199 0.228 1132

Ita–Heb 1.129 0.940 0.141 0.150 1081

Ita–Hin 1.129 1.242 0.182 0.161 1011

Mar–Eng 1.427 0.872 0.094 0.108 882

Mar–Heb 1.427 0.940 0.082 0.087 826

Mar–Hin 1.427 1.242 0.122 0.098 812

Eng–Heb 0.872 0.940 0.191 0.219 1157

Eng–Hin 0.872 1.242 0.320 0.367 1099

Heb–Hin 0.940 1.242 0.169 0.179 1037

Table 2.6:  Congruency and mutual information between languages.

The correspondence between languages is not higher when considering pairs of rules at a

time. Here we considered whether a noun can be used with numerals, and whether it can be used

with a distributive quantifier such as each/every in English.

27



2.3.2. Hamming Distance:

Plotting the data on the main mass/count dimension (Fig. 2.3) as the distance from the pure

count string shows that a very high proportion of the nouns are at a distance zero from the pure

count class (groups are labeled from 1 to N+1 at an increasing Hamming distance of a single bit,

where N is the number of questions and group 1 represents pure count nouns). Overall there is an

exponential-like decreasing trend in the group frequencies (see Appendix A9), as we go further

from the pure count, for all languages but Marathi. Since this measure does not distinguish between

different classes that are at the same distance from the pure count class but vary in the questions that

define them, we use different colors in the bars to show the proportions of particular classes at that

specific distance from the pure count class. The number of questions, N, is 9 for Armenian, 8 for

Italian, 5 for Marathi, 11 for English, 9 for Hebrew, and 5 for Hindi. Since there are N+1 possible

groups, we see that for Italian the 9th group is empty, whereas for Hebrew the last two groups are

empty. 

Distributions in Figure 2.3 seem to reflect the nature of the nouns as brought out by the

questions used to investigate them. In the case of Marathi, the distribution is seen to have two

groups  of  high  frequency,  at  the  distance  of  1  bit  from the  pure  count  class  and  mass  class,

respectively. In each of these high frequency groups there is one class that accounts for most of the

nouns. The class making up most of 5th group differs from the pure mass class in answering ‘no’ to

the question regarding use of measure classifiers. Upon closer inspection, we find that, out of the

411 nouns that form the largest class in the 5th group, 332 are abstract nouns, hence answering ‘no’

to the measure classifier question. The question that differentiates, instead, the largest class in the

2nd group from the pure count class is ‘Pluralization with morphological change’, to which for

nouns in  the largest  class the answer is  ‘no’.  Figure 2.4 shows the same distribution,  only for

Marathi, but restricted to the 650 abstract and to the 784 concrete nouns, respectively. Notice the

changes in the frequencies of the 5th group for both concrete and abstract nouns, as compared to

Figure 2.3. For other languages, the distributions restricted to concrete and to abstract nouns look

similar to the overall distribution, with a quasi-exponential downward trend (not shown).

 In summary, the distribution of mass/count syntactic properties is undoubtedly graded rather

than binary,  as might have been intuitively expected. Most common nouns are strictly count in

nature,  in  five  of  the  six  languages  considered,  with  mass  features  increasingly  rarer  as  they

approach the  pure  mass  ideal.  Marathi  differs  from the  other  languages,  and it  remains  of  be
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examined whether it is representative of several other natural languages not considered in this study.

Figure 2.3:  Distribution of nouns along the mass/count dimension. Each histogram reports the frequency of
nouns in the database, for a particular language, at increasing distances from pure count usage (1) and
towards pure mass usage (N+1), where N is the number of syntactic question for the language. Colors in the
bars indicate the proportion of  nouns in each of  the syntactic classes occurring at  the same Hamming
distance from the pure count.

Figure 2.4: The distribution for Marathi, restricted to concrete and to abstract nouns. As the 5th group in the
histogram  in  Figure  2.3  (top  right)  includes  mostly  abstract  nouns,  it  dominates  the  abstract  noun
distribution (right), while it is considerably reduced for concrete nouns (left).
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How distributed  are  the  semantic  features  characterizing  these  same nouns?  Figure  2.5

shows that, for concrete nouns, semantic features define a monotonically decreasing distribution

from the pure count class, roughly similar to that observed for syntactic usage features in five out of

six languages. Prima facie, this might suggest that concrete semantics might be the common source

that influences the global structure of the mass/count classification, at least for concrete nouns. For

abstract nouns, the two semantic questions considered leave most nouns in the ‘ambiguous group’

— in particular, in the class which includes abstract nouns without an easily definable conceptual

unit or a temporal unit. Since the semantics of abstract nouns does not have as clear a definition as

concrete  nouns,  it  may not  have  a  strong independent  influence  on  the  mass/  count  syntax  of

abstract nouns.

 Figure 2.5: Distribution of nouns on the main mass/count dimension for semantics. Given the different
applicable semantic questions, it is shown separately for concrete (left) and abstract nouns (right). Concrete
nouns show an exponential like shape similar to most of those in Figure 2.3, whereas most abstract nouns
are in the ambiguous group. 

If semantics serves as the common source of the mass/count syntax for concrete nouns, we

expect not only the distributions to look similar overall,  but also to include individual nouns at

similar  positions  along  the  main  mass/count  dimension,  both  when  comparing  semantics  with

syntax  for  each of  the  ‘well-behaved’ languages,  and when comparing  the  syntax  of  two such
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languages.  This  can  be  assessed  through  our  variance  measure,  which  quantifies  the  overall

difference between such positions.

 Figure  2.6:  Scatter  plots  of  variance  values  along the  main  mass/count  dimension.  The  adjusted  and
normalized variance (see Methods) in the position of individual nouns is shown between semantics and
syntax (left) and between syntax in pairs of languages (right). In each plot, the adjusted and normalized
variance for concrete nouns is on the y-axis and for abstract nouns on the x-axis. Pairs that include Marathi
are indicated in red.

This  expectation  is  only  weakly  borne  out  by  the  data.  Figure  2.6  shows  our  relative

variance  measure,  which  is  normalized  to  range  between  zero  (when  individual  nouns  are

identically ordered  in  terms  of  their  distance  from the  pure count  class,  either  in  both of  two

languages or between semantics and the syntax of one language) and one (when the relative orders

are completely unrelated to each other). For concrete nouns, Figure 2.6 (left) shows that relative

variance  from semantics  hovers  around 0.5,  halfway to  complete  lack  of  any relationship.  For

abstract nouns, variance values from semantics are somewhat higher. Marathi is an outlier, with yet

higher variance from semantics, for abstract nouns. It appears therefore that the relationship to the

underlying semantics is not very strong, even when considered solely along the main mass/count

dimension.
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Between languages, the adjusted variance is less than 40% of the adjusted maximum for all

the pairs except for those including Marathi, both for concrete and abstract nouns. Marathi is an

outlier,  with  higher  variances  from semantics  (for  concrete  nouns)  and  from other  languages.

Marathi has higher variance since it does not have the exponential-like distribution as the rest of the

languages.  The variance values calculated over the entire  database tend to be,  for each pair  of

languages,  close  to  the  average  between the  values  calculated  over  concrete  and over  abstract

nouns, separately (not shown). The fact that between languages variance values are relatively low,

relative to those from semantics, may indicate that there is an overall agreement across languages in

classifying the nouns in the mass/count domain. This is shown only a gross level, however, along

the main mass/count dimension, since here we do not take into account the fine grained differences

between the classes at the same distance from the pure count class. 

2.3.3. Mutual Information along the Main Mass/Count Dimension:

The results from the analysis of the variance can be verified by considering an alternative

measure  of  the  correspondence  in  the  classification,  the  mutual  information.  Along  the  main

mass/count dimension, the mutual information can be calculated, e.g. between two languages, by

grouping nouns at each Hamming distance from the pure count nouns, rather than each syntactically

defined  class.  The  mutual  information  (Table  2.7)  ranges  between  zero  (when  there  is  no

correspondence whatsoever in the groupings) and the minimum of the two entropy values, where

entropy is  calculated also by putting together  all  nouns in a  group, i.e.,  at  the same Hamming

distance from pure count nouns.
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Language Entropy

*Armenian 1.63

*Italian 1.96

*Marathi 2.15

English 2.66

Hebrew 2.11

Hindi 1.54

*Semantics (2.01)
1.58 (C)  1.24 (A)

Table 2.7:  Language–entropy relations. Entropy values along the main mass/count dimension in the six
languages, and for semantics. The * sign indicates an ‘average’ over five informants (three for Marathi),
taken by assigning to each question and each noun the yes/no answer chosen by the majority. For semantics,
the  overall  value  (in  parenthesis)  has  little  significance,  because  concrete  nouns  are  assigned to  eight
distinct groups and abstract to only three, and combining them distributes the abstract nouns into the two
extreme concrete groups and one central group.
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Figure 2.7 confirms, on the different quantitative scale of mutual information measures, the results

obtained with the analysis of variance. The normalized mutual information with semantics is quite

low, and lower for abstract than for concrete nouns, corresponding to higher variance values. It is at

its lowest, 0.016, for abstract nouns in Marathi, which had the highest variance values. Between

languages, mutual information is somewhat higher, and not markedly different between abstract and

concrete nouns. 

To better appreciate the significance of the relatively high variance values we measured, and

of the relatively low MI values, we contrasted the values obtained between different languages with

those obtained ‘within’ languages, i.e. measuring the correspondence between different informants

of the same language. These data are available for five informants each for Armenian and Italian,

and three for Marathi,  and also five for the semantics classification.  They give thus rise to 10

informant pairs in three cases and three pairs for Marathi. 

  Figure  2.7:  Scatter  plots  of  mutual  information  values  along  the  main  mass/count  dimension.  The
normalized mutual information (see Methods) between the groups of individual nouns is shown between
semantics and syntax (left) and between the syntax of pairs of languages (right). In each plot, the normalized
mutual information for concrete nouns is on the y-axis and for abstract nouns on the x-axis.  Pairs that
include Marathi are indicated in red.
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Figure 2.8: Scatter plots comparing variance with mutual information values. 

The normalized mutual information (along the main mass/count dimension) is shown on the x-axis with the
corresponding normalized variance value on the y-axis, for abstract nouns (left) on and for concrete nouns
(right). Different colors denote data points between the syntax of pairs of languages (empty circles), between
the semantics and syntax (red), within language (green) for 10 Armenian, 10 Italian, and three Marathi data
points, and within different semantics informants (10 light blue data points). 

Figure 2.8 shows, first of all, that the MI measure and the Variance measure are broadly

equivalent. Their relation is (very roughly) Var ~ (1–MI)4. This occurs despite the different nature of

the  two  measures:  the  mutual  information  is  not  sensitive  to  distance  along  the  mass/count

dimension, only to group membership, whereas variance has limited sensitivity to small differences

in the exact classification of each noun, as long as its position on the mass/count dimension does

not vary too much. Variance turns out to be a more informative measure with our data, which better

span its 0–1 range, but mutual information can be easily generalized beyond the main mass/count

dimension.

Second, the within language data show mostly more agreement (higher MI and lower Var)

than the between language data. Exceptions are due to one Armenian informant (yielding four data
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points)  and one Marathi informant (yielding two more data  points)  that differ  sensibly in  their

syntactic judgment from the rest. The ‘average’ data for both Armenian and Marathi, however, due

to the majority rule effectively disregards their peculiarities. Thus both measures overall indicate

more agreement between informants of the same language than between languages, although this is

very far from a clear cut all-or-none difference. Confronted with the requirement to answer yes or

no to a set of binary questions, speakers of the same language vary substantially in their responses. 

Third, the informants who contributed the semantic classification show the least agreement,

particularly for abstract nouns. Even though there were just two questions to answer for abstract

nouns,  the responses to those two questions are  effectively random, with the variance between

informants  close  to  its  random  reference  value  (in  one  case  exceeding  it),  and  the  mutual

information close to zero. This suggests that while the semantic properties that should inform the

mass/count syntactic usage are already not that salient and self-evident for concrete nouns, they are

completely irrelevant for abstract nouns.

2.3.4. Mutual Information across the Complete Syntactic Classification:

Mutual information is however higher when all the dimensions are considered (Fig. 2.11),

even in relative terms, i.e. when taking into account that the entropy values are higher for the full

classification (Table 2.8). Entropy values, as discussed in the Methods section, inform us about the

logarithm of the equivalent number of significant classes found in the data. Table 2.8 shows that the

entropies of the languages are in the range of 2–4 bits, which indicates the presence of something

equivalent to 22–24 equipopulated classes of nouns (from slightly above 4 for Hindi to just below

16 for English). In a hypothetical case where there were just two significant classes of mass and

count the entropy would have been in the range of 1 bit, in fact even less if the count class were, as

it turns out to be in most cases, much more populated. This provides a quantitative estimate of the

variability that exists in the mass/count classification, which is much higher than may have been

intuitively expected. 

36



Language Entropy

*Armenian 2.29

*Italian 3.02

*Marathi 2.71

English 3.92

Hebrew 3.40

Hindi 2.12

*Semantics (3.72)
2.94 (C)  2.34 (A)

Table 2.8:  Entropy values for the full classification in the 2.6 languages, and for semantics. 

The * sign indicates an ‘average’ over five informants (three Marathi), taken by assigning to each question
and each noun the yes/no answer chosen by the majority.

 Figure 2.9:  The entropy scales up with the number of questions. Both when calculated for natural syntax
and for the artificial syntactic strings used as controls, entropy values turn out to be roughly proportional to
the logarithm of number of questions, hence to yield almost the same value, around 1, when divided by that
number.
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It is important to note that the entropy and mutual information values obtained with our procedure

are influenced by the number of questions used for each language. The scale of the entropy of the

‘artificial syntax’ depends solely on the number of questions, and we can see from Figure 2.9 how

also the entropy values for natural syntax are strongly correlated with the logarithm of number of

questions. Dividing the entropy of natural syntax (Table 2.8) by the logarithm of the number of

question all the entropy values get together at around the 1 bit mark. 

The limited agreement  that  there is,  is  somewhat stronger for concrete  than for abstract

nouns except for the 10 within Italian pairs. Figure 2.10 indicates that this holds within languages,

between languages, and much more so when including semantics. As noted above in the case of

measures restricted to the main mass/count dimension, the semantic classification of abstract nouns

is so arbitrary that agreement among the five informants that filled the questionnaire is extremely

low, and the correspondence of their majority response with any natural syntax is also low. 

 

Figure 2.10: Scatter plots of mutual information values for abstract and concrete nouns. The normalized
mutual information is shown for abstract nouns on the x-axis with the corresponding value for concrete
nouns on the y-axis. Different colors denote data points between the syntax of pairs of languages (empty
circles), between the semantics and syntax (red), within language (green) for 10 Armenian, 10 Italian, and
three Marathi data points, and within different semantics informants (10 light blue data points). 
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Figure  2.11:  Scatter  plots  comparing  mutual  information  on  the  MC  dimension  with  total  mutual
information values. 

The normalized mutual information along MC dimension is shown on the x-axis with the

corresponding normalized mutual information including all dimensions on the y-axis, for abstract

nouns (left)  on and for concrete  nouns (right).  Different colors denote data  points  between the

syntax  of  pairs  of  languages  (empty  circles),  between  the  semantics  and  syntax  (red),  within

language (green) for 10 Armenian, 10 Italian, and three Marathi data points, and within different

semantics informants (10 light blue data points).

From Figure 2.11 we see that relative mutual information, when all the dimensions are taken

together, is only slightly higher than when just the main mass/count dimension is considered, telling

us that most of the variability is present along the main MC dimension. Again, abstract nouns show

a larger variability between and within languages, and this difference is particularly strong within

semantics.  The source of the variability is most likely to be the degrees of freedom left  in the

syntactic or semantic classification task, applied to the abstract nouns. Even though the nouns and

their meanings were disambiguated with a reference sentence, informants were still free to frame
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the sentences while deciding whether a particular marker can be used with a particular noun. Hence

part of the variability may come as a result of the somewhat arbitrary determination of the exact

meaning  used  by different  informants  when  adapting  their  abstract  cognitive  categories  to  the

classification of nouns, or of individual differences in the manipulation of context (Raymond et al.

2011).

 Figure 2.12: Mutual information between language pairs vs. artificially generated control values. 

Normalized mutual information between language pairs (red solid) are in the 0.33–0.52 range, except for
pairs including Marathi, for which they are around 0.2. These values can be contrasted with the higher
values obtained by generating a pseudo usage table, based solely on semantic properties (red empty), as
explained in Methods. A similar comparison is shown for the normalized mutual information but only on the
MC dimension (blue-solid for real and blue empty for artificial). 

Figure 2.12 tells us that there while relative values are higher than when computed only

along the main mass/count dimension (Fig. 2.7), still there is little agreement across languages even

on a finer scale, as the MI values are mostly less than half of the lower of the two entropies. Mutual

information  is  a  strict  measure,  wherein  a  single  bit  difference  will  put  a  noun  in  a  different

equivalence class and lower the mutual information. In contrast, however, artificial syntactic strings

produced from the semantic ones, with the stochastic procedure outlined in Methods, share around

50% mutual information, relative to the lower of their entropy values. Artificial syntactic strings

also ‘suffer’ from a sensitivity to single fluctuating bits,  hence the contrast  between their  50%

agreement and the 20–30% (roughly) agreement of the real syntax tells us that real agreement is
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genuinely low, and it is not all due to using a bizarre measure. The low mutual information of the

natural syntax suggests that there is considerable syntactic variability along different dimensions of

the syntactic domain, although most of the variability is already in the main mass/count dimension,

since when restricted along that dimension agreement is even lower (Fig. 2.11–2.12).

2.3.5. CHILDES Corpus Study:

With  a  method  analogous  to  the  Hamming  distance  measures,  we  analyze  the  Brown's

section of the CHILDES corpus (only for the adult sentences) on the main mass/count dimension.

We  simply  count  the  frequency  of  occurrence  of  a  noun  with  mass  markers  out  of  the  total

occurrence of the noun in the corpus. There are 1551 nouns in this study out of which 522 nouns

(151 are abstract and 371 concrete) are in common with the nouns used for the analyses above.

Figure 2.13 plots the distribution of all the nouns on this main mass/count dimension. In a similar

trend to Figure 2.3, we see the nouns to be distributed all across the spectrum from count to mass,

with an overall decreasing trend in frequency going from count to mass (except for the pure mass

class). Nouns with pure count usage are very many compared to the rest of the groups. We do find,

however, a higher number of pure mass nouns in the corpus, as compared to the English syntactic

data obtained from an informant.
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 Figure 2.13:  Distribution of nouns from the CHILDES corpus on the main mass/count dimension. 

Count occurrences of nouns are very frequent as compared to mass occurrences, with nouns lying along the
entire spectrum.

A multi-dimensional analysis of the corpus data brings forward four markers as salient, two

count  (‘a(n)’ and Pluralization)  and two mass  markers  (bareness  and ‘some + singular  noun’).

Nouns mostly lie along the vertices connecting these four markers. Figure 2.14 shows the most

significant dimensions in terms of the co-occurrence frequencies found in the corpus, for example,

along the edge connecting the vertices ‘a(n)’ and ‘pluralization’, close to the ‘a(n)’ vertex there are

nouns that occur almost always with ‘a(n)’ but seldom in plural form, in the corpus, while close to

the ‘pluralization’ vertex there are nouns with the opposite occurrence, with the rest of the nouns

occurring in between these two extremes. All nouns along this edge are in any case classified as

pure count nouns, in the first bin of Figure 2.13. The density of nouns along the count edge is much

higher than along the ‘mass edge’ (defined by the properties of appearing in bare form, at  one

vertex, and appearing with ’some’ + singular noun at the other vertex). These four markers have the

highest variance in their frequency of occurrence across the nouns in the corpus (Table 2.9).
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bare a/an every/each many pluralization much some a lot of

0.0485 0.1556 0.0044 0.0015 0.1177 0.0034 0.0275 0.0010

Table 2.9:  Variance of the markers in the CHILDES corpus.

The variance of the markers we used to classify nouns in the Brown’s section of the CHILDES corpus was
calculated across its 1551 nouns, and the four markers with highest variance were used, a posteriori, to
characterize the three most significant dimensions of mass/count variability, as independently generated by
multi-dimensional scaling.

Finally,  we  contrast  mass/count  entropy  values  extracted  from  the  corpus  from  those

measured from the informant responses. To obtain entropy estimates from the CHILDES corpus,

which can be used for the comparison, we first binarise the corpus co-occurrence frequency table,

such that if a marker was found at least once with a noun, it was assigned the value of 1, and 0

otherwise. With this method, the total entropy of the corpus data was calculated to be 3.75 bits, as

compared to the English informant entropy, which is 3.92. Since 522 nouns (151 abstract and 371

concrete) are common to the corpus and informant usage tables, we calculated the entropy on the

MC dimension for them, too.

Informant entropy for concrete nouns on MC dimension 2.16

Corpus entropy for concrete nouns on the MC dimension 1.37

Informant entropy for abstract nouns on MC dimension 2.46

Corpus entropy for abstract nouns on the MC dimension 1.35

Table 2.10: The entropy values for nouns in both the database and the CHILDES corpus. 

The entropy of the corpus on the MC dimension is lower than that of informants, perhaps

due to the restricted contexts in which sentences can occur in a corpus, as opposed to the freedom of
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choice to the informants. The normalized mutual information, including all dimensions, between

binarised corpus and informant data after sampling correction is 0.051 for concrete nouns and 0.001

for abstract nouns. 

Figure 2.14:  Visualization of the nouns in the Brown’s section of CHILDES corpus in three dimensions, from
multi-dimensional scaling.

2.4. Discussion:

This is to our knowledge the first wide scale examination of cross-linguistic variation in the

expression of the mass count distinction, which attempts to investigate the question of the degree to
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which the distinction is driven by perceptual-semantic attributes. Previous discussions in terms of

data have stayed more or less at the level of the anecdotal. Our major contributions to the discussion

are to show that the relation between such universal perceptual-semantic attributes and syntactic

usage in specific languages is very weak; as is the relation between languages: There is a core group

of count nouns where semantic atomicity corresponds directly with count syntax, but beyond this

there is indeed widespread cross-linguistic variation in whether or not a concept is expressed via

count syntax. In our sample of 1,434 nouns, in the five languages excluding Marathi, approximately

50% were  what  we would  call  ‘robustly  count’,  however  only  392  were  robustly  count  cross

linguistically. We have little to say about core mass nouns, of which there were few or none in our

sample. This might conceivably be because of the way in which we chose our data base, rather than

because of the inherently lower number of mass nouns in the languages. We leave it to other studies

to identify a  significant  core group of  mass  nouns,  cross-linguistically.  However  the frequency

distribution from the native speakers is similar to the corpus obtained distributions.

We  have  made  a  number  of  observations  which  are  relevant  to  the  discussion  of  the

mass/count distinction:

I. Semantic or ‘real world’ attributes do not lead in a straightforward manner to individual

syntactic rules in the mass/count domain, hence we have to probe a potential mapping, for

any given natural  language,  between semantic  attributes  and a  constellation  of  multiple

syntactic rules. The obvious alternation i.e. atomic vs. homogeneous does not predict mass

vs. count morphosyntax. This provides solid statistical support for the theoretical discussion

in [Gillon 1992; Chierchia 1998; Rothstein 2010], and many others. 

II. When probing this  domain with multiple syntactic usage alternatives,  the distribution of

1,434 frequently occurring nouns in six natural languages is typically very far from binary.

The largest single class of nouns in five of the six languages was the pure count prototype,

i.e. the nouns classed ‘count’ by all syntactic probes. The rest are distributed in a graded

fashion, with fewer and fewer nouns having more usage properties opposite to those of pure

count nouns. Out of the 1,434 nouns, on average 873 were ‘pure’ count in a single language,

range [693–1058], when excluding Marathi (where the figure was 255), but only 392 were
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‘pure count’ in all other five (‘typical’) languages. 

III. Outside of the pure count nouns, the correspondence between languages is weak, even when

considering a single matching usage marker in each of the five non-exceptional ‘typical’

languages in the sample. In other words, learning what is a pure count noun, in any of these

five languages, gave no significant clues as to the content of the pure count class in any of

the other languages, beyond the 392 nouns which were pure count in all languages.

IV. Marathi differs from the other ‘typical’ languages in having a substantial fraction of nouns

close to a pure mass prototype, particularly among abstract nouns, and a distribution closer

to bimodal.

V. The  semantic  attributes  that  may be  at  the  origin  of  the  syntactic  usage  properties  are

distributed similarly, across concrete nouns, to the typical syntactic distribution, with most

concrete nouns having ‘count-like’ attributes, and gradually decreasing proportions showing

progressively more mass-like attributes (as seen from figures 2.3 and 2.5).

VI. Despite the overall similarity between distributions, of semantic attributes and of syntactic

usage properties (in  all  languages tested except Marathi)  the correspondence in position

along the main mass/count dimensions between semantics and syntax is very weak, even for

concrete nouns. Quantitatively, in terms of variance it is midway between fully matching

and random, and in terms of mutual information it is close to random. The different range

reflects the non-linearity of the MI measure, but both measures point at the weakness of the

observed correlation. 

VII. Similarly, the correspondence between languages is weak, whatever measure is used.

VIII. Taking into account the detailed attributes and syntactic rules, rather than only the

main mass/count dimension, the correspondence remains weak.

IX. There is considerable variability also among informants of the same language; part of which

may be due to the testing paradigm.

X. A similar  distribution  along the  main  mass/count  dimension can  be gauged from 1,551

nouns extracted from the adult section of the English-language CHILDES database, after a

different analysis, namely in terms of graded rather than binary syntactic usage frequencies.
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The  three  main  dimensions  of  syntactic  variability  of  nouns  in  the  CHILDES database

describe an asymmetrically loaded pyramid: most nouns are countable, and simply vary in

their  plurality  at  each  instance;  many  fewer  nouns  span  the  other  two  dimensions,

characterized by an increasing frequency of use in bare form, and of use with some+singular

form, both mass-like attributes.

First, we have provided solid empirical evidence that count syntax is not a direct reflection

of atomicity in the denotation. Our initial aim to quantify the correlation (which we had presumed

strong) between non-homogeneous nouns and count syntax could not reach beyond a core group of

392 nouns which pattern as pure count in all languages checked, excluding Marathi. This indicates a

weak correspondence between perceptual/semantic and grammatical or morphosyntactic properties.

Note that the 392 cross-linguistically count nouns included approximately 27% abstract nouns (284

concrete and 108 abstract), thus it is not even possible to argue that count syntax correlates directly

with concrete atomic entities. Beyond this group of 392 nouns, the low level of mutual information

between any two languages indicates language-specific grammaticalisation of the distinction. This

means that it is no longer possible to assume a general correlation between atomicity and count, and

homogeneity and non-count. A preliminary examination of the 284 items in the pure count group

which are concrete rather than abstract indicates a high number of [+animate] nouns, in particular

individuals  of  a  certain  profession  (scientist,  nurse,  preacher,  slave,  spectator),  nouns  denoting

buildings with a particular function (library, bank, apothecary) and nouns denoting artifacts that

individuals stand in an one-to-one relation with (wallet, watch, handkerchief). All these predicates

are atomic in an absolute sense, since they come in inherently individuable units, but they also

frequently occur  in  contexts  in  which a  particular  instantiation  of  the predicate  is  perceptually

salient. Thus it is plausible to posit that atomicity may be a necessary condition of a non-abstract

noun being robustly count cross-linguistically. However, beyond this there are no straightforward

generalizations.

The fact that these 284 nouns constitute between a third and a half of the robustly count

nouns,  in  any  particular  language,  indicate  that  beyond  this  weak  generalization  the

grammaticalization  of  the  correlation  between  atomicity  and  count  differs  from  language  to
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language. Furthermore, there are 108 abstract nouns in the pure count group, where the criteria for

atomicity are by definition not well  defined (since ‘atomicity’ is  usually taken to  express non-

overlapping properties of matter). One can at this stage hypothesize potential criteria, for example,

individuation via events: nightmare, appointment, and crash are all robustly count and non-concrete

and atomic instantiations can be potentially be individuated via temporally located events. But this

requires a notion of event individuation, itself problematic (see, e.g., Parsons 1990) and even then,

leaves  open  the  question  of  which  event-types  are  ‘inherently  atomic’  and  which  not.  The

conclusion for the linguist is that exploration of the basis of the mass/count distinction must be

language  particular,  and  will  involve  semantic  features  far  beyond  the  homogeneous/atomic

distinction.

We can draw a second theoretical implication from our results. We have seen that, for each

language (again  excluding Marathi),  the  approximately 50% of  nouns which  are  not  purely or

robustly count in almost all cases cannot be characterized as ‘pure mass’. These nouns are located at

varying distances from the pure count class, depending on how many non-count features they have.

This could be taken as support for the view that mass/count syntax is imposed on a neutral root, that

it is appropriate to talk of mass or count ‘usage’, and that essentially, noun roots are flexible and can

appear in either context. This is the view taken in [Borer 2005], who claims that ‘being a count

noun’ is an exoskeletal phenomenon, the result of count syntax being imposed on a neutral syntactic

root. Our data, however, show that approximately 50% of the nouns in each language do show a

consistent count pattern, and furthermore, as stressed above, beyond the first 392 nouns, the choice

of which nouns are used consistently as counts is specified within a language (subject to some

idiolectal  variation)  and  not  across  languages.  This  suggests  that  count  syntax  is  a  lexical

specification, and that beyond a core group, it is specified independently for each language.

A third point is that our data reveals cross-linguistically (again excluding Marathi) a large

group of pure count nouns, and no comparable group of mass nouns. This may be taken to support

the widely accepted view [e.g., Chierchia 1998, Borer 2005; Rothstein 2010] that mass syntax is the

default case, and that count nouns are derived from mass nouns via some form of operation, which

results in their sharing common properties. The degree to which Marathi differs from the other
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languages studied also forces us to realize that languages with a mass/count contrast may differ

quite radically in how they implement it, and that the division of languages into those which have a

count/mass distinction and those which do not tells us little about typological variation.

The  overall  conclusion  is  that  the  questions  that  linguists  have  been  asking  should  be

reformulated:  Instead  of  looking  for  a  general  semantic  characterization  of  the  mass/count

distinction which will explain the grammatical distribution cross-linguistically, linguists should be

looking for language-specific patterns or generalizations, indicating that in a particular language,

certain lexical classes are or are not grammaticalised as count. (For example, a cursory examination

of the data indicates that Marathi is very restricted in allowing count syntax for abstract nouns.) If

there  are  cross-linguistic  generalizations,  we  might  expect  for  them  to  have  an  implicational

structure in the sense of [Greenberg 1963], i.e. we could look for patterns of the form: If lexical

class C1 is pure count, then lexical class C2 is also pure count. But it is an open question whether

we would find them at any significant level. We should avoid classifying nouns as ‘count’, ‘mass’

or ‘flexible’. In particular, our data show that non-robustly count nouns are flexible in different

ways and to different degrees. What these ways and degrees are is still to be investigated. 

If there is a general characterization of the mass/count distinction, then it probably is in

terms of how the denotations of count (or mass) predicates are represented in the language, rather

than in terms of any real-world feature. For example, [Rothstein 2010] suggests that count nouns

denote entities which are indexed for the context in which they count as atomic. This leaves place

for particular languages to rank features which contribute to contextual salience, or to give them

different weights, which might then influence patterns in classifying nouns as count. Features which

weigh heavily in their contribution to count syntax in all languages would result in the set of pure

count nouns cross-linguistically. In any case, the set of robust count nouns and the lack of a set of

robust mass nouns indicate that we are more likely to find a general semantic characterization of

count nouns than of mass nouns.

At a deeper epistemological level, not only is mass count syntax largely left undetermined
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by semantic attributes, it is also mistaken to regard it as a binary or quasi-binary structure. The

distribution of syntactic usage properties is very far from bimodal in five out of the six languages

tested, in fact it has nothing to do with bimodality. One is led to think of this grammaticalisation as

a graded self-organization process, operating within languages and to some extent within individual

speakers, and driven only to a limited extent by universal attributes, and plausibly governed or at

least constrained by language specific principles.  However,  at this stage we cannot tell  to what

degree the grammaticalisation is governed, beyond the universal semantic or perceptual principles

that we have attempted to quantify,  by language-specific principles of different nature,  such as

cultural  factors,  historical  accidents,  individual  language  acquisition  history,  even  context

dependence  within  individual  speakers.  What  is  already  clear,  however,  is  that  a  domain  of

grammar, that to the non-specialist may seem rather straightforward, in fact opens new vistas on the

character of what are improperly called language ‘rules’.
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Appendix A

The following tables are the equivalent of Table 2.1, for languages other than English.

No. Syntactic Questions

1.
Can the noun be used with ‘a(n)’? 

(   +’ ’ )անորոշ գոյական մի հոդ

2.
Number distinction: Can the noun be used with plural form?

(  )հոգնակի թիվ

3.
Can it be used in combination with numerals?

(   )համադրում թվականների հետ

4.
In  combination  with  classifiers  or  measure  phrases  that  manipulate

number? (   )համադրում դասակարգիչների հետ

5.
Can the noun be used with ‘every’/’each’?

( / )Ամեն յուրաքանչյուր

6. Can it be used with ‘(a) little’?      (  )մի քիչ

7. Can it be used with ‘(a) few’?       (  )մի քանի

8.
In combination of ‘many’ + plural form of noun? 

(  +   )շատ գոյականի հոգնակի թիվ

9.
In combination of ‘much’ + singular form of noun? 

(  +   )շատ գոյականի եզակի թիվ

Table A1: List of questions used in Armenian to compile the usage table.
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No. Syntactic Questions

1. Can the noun appear in the singular?

2.
Can the basic form appear with af (as in af yeled lo ‘ana, ‘not a single boy

answered’)?

3. Is there a plural form?

4. Can the plural form of the noun appear with a number?

5. Can the singular form of the noun appear after kol ‘every’?

6.
Can the singular form appear with kzat, me’at, harbe (‘a little, a little, a

lot’)?

7. Can the noun appear with tipa (literally ‘a drop’)?

8. Can the noun appear with a classifier?

9. Is it possible to say 10 + the singular form of the noun?

Table A2: List of questions used in Hebrew to compile the usage table. 

No. Syntactic Questions

1. Can it be used with ‘many’/‘few’?

2. Can it be pluralized?

3. Can it be used with ‘every’?

4. Can it be used with numerals? 

5. Can it be used ‘with a lot of’?

Table A3: List of questions used in Hindi to compile the usage table.
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No. Syntactic Questions

1. Can the noun be in singular form with the indefinite article (un/o/a)?

2. Can it appear (suitably pluralized) with a numeral (due, tre)?

3.
Can the noun appear with at  least  one singular indeterminate quantifier

(molto/molta/un po' di)? Note: non molto should not be considered.

4. Can the singular form be preceded by indefinite quantifier qualche?

5. Can the singular form be preceded by exact quantifiers (chili di, litri di)? 

6. Can the singular form be preceded by non molto (‘not much’)?

7. Can it have a plural form with a definite article (i, gli, le)?

8. Can the plural form be preceded by exact quantifiers (chili di, litri di)?

Table A4: List of questions used in Italian.

No. Syntactic Questions

1. Can it appear with a numeral?

2. Can it be used in combination with an exact quantifier (kilo, liter)?

3. Can it be used with the article ek (‘a’)?

4. Can it be pluralized?

5. Does the morphology change when pluralized?

Table A5: List of questions used in Marathi.

Note: The questions were posed to the informants in their respective languages, not in the English

translation.
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A6: Fraction of 'yes' answers to the questions above.

A7: Correlation between question pairs.
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Question No. Armenian Italian Marathi English Hebrew Hindi Semantics
1 0.90 0.89 0.57 0.37 0.99 0.91 0.11
2 0.90 0.81 0.09 0.87 0.77 0.90 0.45
3 0.83 0.27 0.67 0.87 0.88 0.78 0.54
4 0.05 0.85 0.66 0.83 0.84 0.86 0.52
5 0.94 0.08 0.23 0.85 0.91 0.83 0.44
6 0.18 0.16 - 0.85 0.30 - 0.04
7 0.85 0.88 - 0.30 0.16 - 0.04
8 0.85 0.01 - 0.29 0.08 - 0.04
9 0.14 - - 0.34 0.05 - 0.43
10 - - - 0.19 - - 0.14
11 - - - 0.12 - - 0.22
12 - - - - - - 0.41
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A8: Subgroups at each hamming distance.

A9: Exponential fit of the MC dimension distributions

Fit: y=A '+a e−bx  
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Armenian Italian Marathi
Group # of Subgroups Mean Size Std # of Subgroups Mean Size Std # of Subgroups Mean Size Std

1 1 1058 0 1 863 0 1 269 0
2 7 8.7142857143 10.531132983 8 20.625 20.975751306 5 9 191.86140831
3 15 4 7.3775721907 19 7.8421052632 18.454939591 6 21 39.766401229
4 17 3.5294117647 4.302871818 17 5.2352941176 5.4946498042 6 12 4.5934736311
5 13 3.0769230769 3.2522181779 19 3.5263157895 4.6111991819 5 1 177.1205804
6 9 2.1111111111 2.260776661 13 4 6.5064070986 1 40 0
7 14 3.7142857143 4.7137861873 5 8 9.0829510623 - - -
8 9 4.2222222222 6.8698212818 3 3 3.4641016151 - - -
9 4 7.75 7.5443135318 - - - - - -
10 1 15 0 - - - - - -

English Hebrew Hindi
Group # of Subgroups Mean Size Std # of Subgroups Mean Size Std # of Subgroups Mean Size Std

1 1 693 0 1 757 0 1 994 0
2 11 16.363636364 28.688927227 9 27.777777778 30.987004445 5 34.4 47.794351131
3 19 3.5263157895 4.9929775246 19 8.3684210526 16.197429585 10 8.2 7.4803446148
4 21 3.1904761905 4.8230596888 19 3.85 4.6822734019 10 7.6 7.3212020871
5 12 8.4166666667 22.589049372 19 4.3684210526 5.4488584566 5 15.8 16.783920877
6 17 4.5882352941 9.0488868344 12 5.3333333333 8.3047996345 1 31 0
7 21 2.8571428571 5.4155859728 9 4.2222222222 7.8386506775 - - -
8 15 2.2 2.0071301474 5 1.2 0.4472135955 - - -
9 16 2.4375 3.2035136959 - - - - - -
10 12 5.1666666667 11.01101377 - - - - - -
11 8 4.875 7.1999503967 - - - - - -
12 1 15 0 - - - - - -



57



Chapter 3

Attempts of a competitive neural network to decipher the mass-count

information 

3.1 Motivation and a brief summary:

3.1.1 Introduction:

In the previous chapters we looked at a  detailed statistical investigation of the mass-count

distinction with regards to its syntactic-semantic features, in this chapter and the ones following, we

move our  attention  to  the  'cognitive'  aspects  of  language processing.  Our aim  is  to  study the

properties of associative neural networks as a mechanism to sub serve syntactic processing in the

brain. In the current chapter a competitive neural network is applied to the mass-count database to

look at the self organising of nouns and markers in the neural space while later chapters involve the

study of a recurrent associative network which attempts to model global cortical mechanisms in the

brain.

The question of how the brain acquires language can be posed in terms of its  ability to

discover, from exposure to a corpus, the syntactic structure of a specific natural language and its

relation with universal semantics. This has been a subject of study and of intense debate for the past

few decades (Barner and Snedeker, 2005, Barner and Bale, 2009). Natural language acquisition

appears  to  presuppose  certain  cognitive  abilities  like  rule  recognition,  generalisation  and

compositionality. These high-level abstract concepts should be realized in the language domain and

in specific sub-domains by general-purpose neural processing machinery, since there is no evidence

for dedicated circuitry of a distinct type for each sub-domain nor, for that matter, for languages a

whole  [Tomasello  2003;  Ogrady  2007].  How  can  rule  recognition  and  generalization  be

implemented in standard, vanilla neural networks? To explore this issue, we focus our attention on a

sub-domain of syntax, namely the syntax of the mass-count distinction. Following up on the results

of  statistical  analysis  of  the  mass-count  distinction  in  6  languages,  with  relation  to  its  cross-
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linguistic syntactic and semantic properties, we now aim to study the learnability of those syntactic

properties by a basic neural network model, with the distant goal of eventually understanding how

such processes might be implemented in the brain. 

We briefly summarise some of  our main findings. As many linguistics studies have pointed

out, a simplistic mapping between homogeneity and mass syntax and/or atomicity and count syntax

on the whole would imply that the expressions denoting the same real world objects would be count

or mass cross-linguistically. However, this is not the case seen in Kulkarni, Rothstein and Treves

2013, words with a similar interpretation may be associated with very different arrays of syntactic

properties cross-linguistically. A noun which is associated with a count array in one language may

not be associated with a count   array in a different language. Furthermore, over a sample of 6

different  languages  we saw that  there  is  no  binary divide  into  mass/count  nouns,  but  rather  a

continuum with a small group of nouns which are count with respect to all properties, and then a

range of nouns which are more of less count depending on how many count properties they display.

This makes the mass-count distinction an interesting linguistic phenomenon to model with its rich

diversity and lack of simple intuitive correspondence between syntax-semantics. Acquisition of the

correct syntactic usage of the mass-count nouns, by a child learning to speak, however should be

brought about by the same neural mechanisms in the brain that bring out other cognitive functions.

Thus the same neural principles of associative learning, proposed several decades ago, based on

Hebbian plasticity of co-active neurons,  should serve as a functional mechanism to acquire the

knowledge of mass and count. We explore here, to what degree a standard neural framework with

unsupervised learning, can be useful to gain knowledge of what is mass and count in a particular

language.

3.1.2 Network modelling:

Our goal in the current study is to assess the learnability of syntactic and semantic features

of the mass-count distinction using simple neural networks. Artificial neural networks have a long

history as a method for neurally plausible cognitive modelling [Hopfield 1982; Elman, J, 1991;
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Nyamapfene A. 2009], and can be endowed with properties including feature extraction, memory

storage, pattern recognition, generalisation and fault tolerance. Understanding how humans might

acquire  the  capacity  for  handling  syntax  in  a  specific  sub-domain  might  start  from encoding

syntactic/semantic  knowledge  into  a  neural  network,  which  self-organizes  with  a  prescribed

learning algorithm to recode that information in a neurally plausible format. That way one may

draw parallels about governing principles in the brain that bring about the acquisition of syntax.

Taking cues from biological neurons, most artificial neural networks employ ‘Hebbian’ plasticity

rules, wherein the synaptic connection between two units is strengthened if they are activated nearly

simultaneously, thus leading to associative learning of the conjunction or sequence of activations.

(See chapter 4, section I, II for more on neural networks and learning rules). Here we consider a

competitive network, a simple self-organising network which through ‘unsupervised’ learning may

produce a useful form of recoding. A competitive network, under the right conditions, is able to

discover patterns and clusters in a stimulus space and to train itself to correctly identify and group

inputs that share a close resemblance to each other. A competitive network is particularly interesting

in our case since much of linguistic information during language acquisition is rather 'discovered'

than explicitly taught. Moreover, mass and count nouns have been shown to exhibit differential

evoked potential responses, both with a syntactic and with a semantic stimulus [Chiarelli V, 2011].

We aim to study the performance of a simple competitive network in view of understanding how

well can syntactic and semantic features of the nouns in our mass-count database be accommodated

within a single network, thus exploring if the network can indeed achieve some rule-recognition

that will allow it to successfully categorise nouns in the syntactic mass-count space.  

3.2  The network:

A) Classification of nouns:

Our network consists of a single input and a single output layer.  At the input layer each unit

represents a syntactic feature (‘numeral’, ‘a/an’ etc) in case of the syntactic network or a semantic

feature (‘fixed shape’, ‘fluidity’ etc) for the semantic network. We label the network as 'syntactic' or

'semantic' based on weather the network is classifying syntactic or semantic markers. The input

layer is binary, and for each noun given as input a given unit can be active (activation value 1) to

indicate that the feature can be attributed to the noun, or inactive (value 0) to indicate that it cannot.
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Thus  a  single  learning event  for  the  network  includes  the  application  of  a  binary input  string

containing the syntactic or semantic information pertaining to a single noun, activity propagation to

the output units, and modification of the synaptic weights according to the prescribed learning rule.

B) Classification of markers:

 Similarly, instead of self-organizing an output representation of nouns, we explore the self-

organization  of  syntactic  features  (‘markers’).  Rather  than  an  input  noun  with  the  features  as

components, we apply as input a single feature/marker, with the nouns as components, i.e. there are

a few very long input string instead of many short strings. 

On  the  output  side,  the  number  of  units  is  variable,  determined  by  the  simulation

requirements. Unlike the input units, outputs units are graded, taking continuous values in the range

of 0 to 1.A competition amongst the output units based upon their activation levels decides the final

output level of each unit.

Figure 3.1. Schematic diagram of the artificial neural network, showing an input layer where units are
binary strings containing syntactic/semantic information of nouns and an output layer where units compete
with each other to produce graded firing rates based on connection weights and on competition.
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We use a fully connected network, where each input unit j is connected to each output unit i

with a synapse whose connection strength is given by w ij . The training sequence is executed as

follows:

An input is presented to the network and the activation hi  of each output unit i   is calculated

as

hi=∑
j=1

N

r ' j w ij

where N is the number of input units and r ' is the input vector. The w ij ’s are initially set at random

values, which randomly causes certain output units to have a  higher activation and lower activation

in others.

The final output firing of each unit r ,  is decided after setting up the competition between

output units as  

r i=
e
(

h
i

T )

∑
i

e
(

h
i

T )

Here T governs the strength of the competition, lowering T makes the competition stronger

and as T approaches 0 it becomes ‘winner take all’, a case where only the unit which wins has a

maximum firing rate while all other units are suppressed to be inactive; whereas the competition

becomes softer as T is  raised higher,  allowing more graded output firing rates.  Firing rates are

automatically normalised in  the range of 0 to  1 by this  form of the output function (thus also

allowing a probabilistic interpretation of the firing rates of the units).
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In the next step we adjust the weights w ij  according to the Hebbian rule, taking into account the

input and output firing rates of the units obtained in the previous step. The learning rule here is

slightly modified from the standard Hebbian rule to incorporate normalisation of the weights during

learning in a biologically plausible way. Normalising weights is important since it prevents a small

fraction  of  connections  becoming  too  strong  and  resulting  in  the  same  units  winning  the

competition each time.  The weights are adjusted at each presentation of an input as

δw ij =kri (r j
'−wij )

k in the above equation controls the learning rate, i.e the size of increments in the weights as new

input-output pairs are presented to the network. The change in weight is proportional to the input

and output firing rates, however the second terms restricts a monotonous increase in weights by

causing a decay proportional to the activity of the output unit and to its existing synaptic strength. 

One training  iteration  includes  presenting  each noun in  the  list  once  and the  above process  is

repeated for the desired number of iterations.

We  now  move  towards  the  results  section  where  we  apply  the  above  mentioned

unsupervised cluster discovering  process to the participant data in 6 languages and semantics.
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3.3 Categorisation of markers:

As  described  in  section  3.2  B,  we  present  as  input  the  syntactic  markers  used  in  the

classification of the nouns. Here an input vector is comprised of N units, where N  is the number of

nouns (784 in case of concrete nouns and 650 in case of abstract nouns), for each of the syntactic

markers. Thus an input includes information on how that particular marker is used over all the

nouns. Each input vector is presented once in one iteration, for 100 such iterations, which is also

when the synaptic weight matrix is observed not to change with further iterations. We use 3 output

units, N out=3 , with T = 0.1 and k = 0.01 for all languages except, Marathi (T=0.1, k=0.001).  After

obtaining the output firing rates for each input marker at the end of the iterations, we calculate the

correlogram,  representing  how correlated  the  output  vectors  are  with  each  other,  hence  giving

information  about  marker  categorization.  We  show  the  mean  correlograms  over  100  distinct

network simulations.  

 Figure 3.2. Correlograms for 784 concrete nouns in each of the 6 languages in our study. Dark blue regions

represent  complete  lack of  correlation (orthogonal  vectors)  while  dark red regions represent  congruent

vectors. 
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The correlograms in Figure 3.2 allow us to visually identify markers that fall in the same

category, as self-organized in the output of the network. High levels of correlation between two

markers signify close proximity in the firing rates of the output units for that pair of markers, and

are  represented  by light  shades.  For  concrete  nouns in  Armenian,  markers  like ‘a/an’,  ‘plural’,

‘numeral’,  ‘few’,  ‘every’ and  ‘many+plural’ have  a  correlation  of  1,  thus  occupying  the  same

position in the output space of the network. These are markers that can be applied to count nouns

and  not  to  mass  nouns.  Instead,  the  typical  mass  markers  of  ‘measure  classifier’  form  an

independent representation, whereas ‘little’ and ‘much’ share the same position in output space but

distant from the count markers. Italian, Marathi, English and Hebrew follow the same Armenian

line of grouping count markers together and having separate but nearby representation for mass

markers, distant from the count markers. Hindi is different, as 4 of the 5 markers that were chosen

appear to be ‘count’ in nature, but all show gradation within the broad count category.

Figure 3.3. Correlograms, same as in figure 3.2, but for 650 abstract nouns. Note that markers are
ordered in the same way as in figure 3.2.
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Results are similar for abstract nouns except for Italian having fewer graded categorisation

than for concrete nouns (figure 3.3) while for Hebrew ‘little’ and ‘tipa’ are co-incident. 

The competitive network can be similarly tested on semantic features based on what value

each feature assumes over all the nouns. As seen in figure 3.4, semantic features are neatly divided

into  mass  and  count  features.  Count  features  like  ‘single  unit’,  ‘boundary’,  ‘stable  shape’ and

‘degradation’ all have a correlation of 1 with each other and 0 with mass features like ‘free flow’,

‘container shape’ and ‘mixing’. While ‘free flow’ forms a separate representation, ‘container shape’

and ‘mixing’ have the same output activation.

 Figure 3.4. Correlogram of semantic markers for concrete nouns.
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 3.4  Categorization of nouns:

Similar to the process in section 3.1, we now present nouns as input to the network and

visualize the activation of the output units.  The input vector here consists of  N  units for each

noun, equaling the number of markers for a language, hence containing information on how the

noun is used over all the mass-count markers for that language. The parameters used are Nout=3

(the  number of  output  neurons),  T = 1,  k  = 0.01 and Iterations  = 10 (except  for  Marathi,  the

parameters were: T=0.1 and k = 0.01). Figure 3.5 shows the position of the nouns in the 3-D output

space, where each axis represents an output unit. Axes are selected such that x ,y and z, respectively,

represent units in descending order of variance over the values of output activation they span. The

colour  of  each  point  signifies  where  that  noun (or  cluster  of  nouns,  since  nouns  classified  as

identical are co-incident) lies on the MC dimension as defined by the Hamming distance from the

pure count string (see section 1.1 A). Red indicates a distance of 0, thus pure count, while yellow

indicates a distance of 1, representing a ‘mass noun’. (convergence of learning is shown in appendix

B2)

Nouns are seen to approximately fall along a single line for all languages (a predominantly

linear structure for English and Marathi), barring an outlier at 0 which represents inputs that are

inactive for a noun. Moreover we can see a gradient from red to yellow, which implies that nouns,

even though not completely faithful, to a great extent lie along a gradient from ‘count’ to ‘mass’.

We further visualise the distribution of nouns on this line, so as to assess the frequency of nouns in

each cluster. The axis with maximum variance is selected and a histogram of the number of nouns

in each cluster along this axis is plotted. 
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Figure 3.5. Position of 784 concrete nouns in the output space as defined by 3 output units in 6
languages. The gray scale indicates the Hamming distance of the noun on the MC dimension, from
red = ‘pure count’ to yellow = ‘pure mass’.

Figure 3.6. Histogram of nouns in reference to figure 3.5, along the axis of maximum variance.
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Looking at the histogram of the linear alignment of clusters in the output space, we find that

the cluster near the red end has the highest number of nouns, which is followed by smaller bars

towards the mass end. Marathi is different, in having a significant cluster towards the yellow mass

end too. Note that the axis of largest variance is inverted for Marathi with the count end on the

higher side of X, this is because winning units are randomly selected.

It is interesting to note that a dimensionally reduced, entropy preserving representation of

the mass-count nouns has a notional similarity to the concept of the MC dimension as in chapter 2 ,

figure 2.3.  The MC dimension was introduced as a concept to better understand the mass-count

division  in  terms  of  the  ‘pure  count’ string,  but  a  competitive  network  with  the  appropriate

parameters is  able to bring about a roughly similar distribution without needing a prior ad-hoc

definition. 

Below are shown the same plots as in figure 3.5 and 3.6 but for 650 abstract nouns. Differences are

seen in English :  the group of clusters of red count nouns is more stretched in a separate direction,

essentially having two separate lines for mass (yellow) and count (red) nouns.;  Histograms on the

dimension of maximum variance show a similar gradation from count to mass and the difference in

Marathi with two significant peaks at the count and mass ends each.
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 Figure 3.7. Position of 650 abstract nouns in the output space as defined by 3 output units in 6 languages.
The gray scale indicates the Hamming distance of the noun on the MC dimension, from red = ‘pure count’ to
yellow = ‘pure mass’.

 

   Figure 3.8. Histogram of nouns in reference to figure 3.7, along the axis of maximum variance.
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3.5 The syntax-semantics interaction:

As we saw from the information theoretical analysis, the syntax and semantics of the mass-

count distinction share only a weak direct link, in the core structure of the count class, chapter 2,

figure  2.11.  Thus  acquiring  the  complete  set  of  syntactic  classes  from semantic  classes  is  not

possible by any learning mechanism, due to a lack of a direct one-to-one correspondence. However

it is improbable that syntax and semantics are independently learned without any mutual interaction

during learning of mass-count concepts, and there is no evidence that either one is learnt before the

other [David Nicolas, 1996]. From the classification of markers above, we see that broad categories

of  mass  and  count  can  indeed  be  extracted  out  of  the  data,  interestingly  for  both  syntax  and

semantics,  thus  rendering  some  semantic  sense  to  the  syntactic  distinction.  Classes  of  nouns

however, formed from these markers do not reflect mass-count information in a straightforward

manner between syntax and semantics.  Hypothesising an underlying commonality of the mass-

count divide between markers of syntax and semantics,we  test the performance of the competitive

network when syntax and semantics are simultaneously part of the input space during the learning

phase, and test the correspondence between the syntactic and semantic classes after learning. 

3.5.1 Quick summary of information measures:

We  use  mutual  information  as  a  measure  to  analyse  the  correspondence  between  two

representations, encoded either in a syntactic network trained on input information about marker

usage for the nouns in a particular language, or in a semantic network trained on information about

the semantic properties of the nouns.  Here we focus on systems that have undergone a slow process

of self-organisation to categorise their inputs.  

We first begin by calculating the entropy of the output of the network and the information it

contains about the clustering of nouns in the input. Nouns are clustered together if they have exactly

the same output firing rates. So in effect the output, labelled as O, contains  n clusters 1... i ... n ,
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where each cluster contains nouns that are classified as identical by the network. Entropy is then

defined as

H (O )=−∑
i=1

n

p ( i ) log2 p (i )

Where p(i)  is the ‘probability’ obtained as the relative frequency of the nouns in the cluster i .

To  calculate  mutual  information  between  two  representations  X  and  Y we  first  obtain

equivalence classes, i.e. groups where a particular set of nouns has been clustered into the same

class in both X and Y.  For example, if nouns like ‘man’ and ‘dog’ fall in the same cluster in X and

are also found in the same cluster in Y, they belong to the same equivalence class.  The joint entropy

of X and Y, H (X ,Y )  is then used to calculate the mutual information a

I ( X;Y )=H ( X )+H (Y )−H ( X,Y )

Alternatively, one may consider a joint probability distribution table of nouns in X and Y

from the equivalence classes, and calculate mutual information as

I ( X;Y )=∑
i,j

p ( i,j ) log2( p ( i,j )
p (i ) p ( j ) )

Mutual  information  co-varies  with  the  relevant  individual  entropies,  so  to  facilitate

comparisons we use normalised mutual information. When X and Y show completely unrelated

clusters,  p(i , j)=p (i) p ( j)  the mutual information is 0, giving it a strict lower bound. It has a

natural upper bound in the sense that the mutual information between X and Y can never be greater

than  the  lower  of  the  two  entropies  H (X ) ,H (Y ) .  Thus  for  comparison  purposes  we  define
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normalised entropy as I(X ;Y )/min (H (X ) ,H (Y )) , which lies in the range of 0 to 1.  

3.5.2 Processed  Interacting Mutual Information:

First, to compare with previous results, we have calculated the baseline mutual information

between syntax and semantics by providing only semantic information to the network, with no

syntactic information during the learning phase. The mutual information was calculated between

syntactic data and the output of the semantic competitive network. When no syntactic information is

present at the inputs, the resulting mutual information is about equal to the mutual information

between the syntactic and semantic data calculated using the procedure in chapter 2, section 2.2.2-B

A) The effect of competition strength:

The competitive network brings about a dimensional reduction from a high dimensional

input space to a lower dimensional output space defined by the number of output units. Furthermore

the  strength  of  the  competition  affects  how  different  input  clusters  collapse  onto  each  other,

depending on the distance between them. These processes reduce the entropy from its input value,

which critically affects the available mutual information between two data sets, when measured at

the output. We observed that the network failed to consistently learn when the number of output

units, N, was less than 3 and that there was no noticeable change in information measures for N ≥ 3.

Thus we set N =3 and varied the competition strength T to see the effect on the output entropy of

the network. Figure 3.9 plots the ratio of the output entropy to input entropy of the network for

various values of T. Since no information is added during processing, the output entropy is at most

equal to the input entropy or less otherwise.
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 Figure 3.9. Variation of the output entropy to input entropy ratio for different values of the competition

strength, T.

Figure 3.9 shows, at around T = 1, input and output entropies are comparable for all languages

(except Armenian at 1.5), and tends to drop on either side (especially for syntax), thus we select     T

= 1 as optimal value of competition (when maximum information is retained after processing), to

calculate mutual information between syntax and semantics. 

B) Combined learning of syntax and semantics:

Syntactic information is then provided to the network in a partial manner, in a proportion γ ,

which signifies the fraction of input units of the syntactic segment of the input string that are set to

the activation levels of the syntactic string of a particular language. γ=0  represents when none of

the syntactic input units are receiving any information and are set to 0; while γ=1  implies all of
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the  syntactic  information  is  present;  for  in-between  cases  a  fraction  1−γ  units  are  randomly

selected and set to 0. Thus we can vary the amount of syntactic information available to the network

during learning and test the effect on the syntactic-semantic mutual information and weather the

relevant syntactic and semantic classes are brought together in any systematic way. We train and

test the network by providing the same proportion γ of syntactic inputs along with the semantic

ones. 

Figure 3.10. Mean normalised mutual information over 10 independent simulations at various  
γ

values for concrete nouns in 6 languages when N=3 output units, and 10 iterations.

 Figure 3.10 depicts the performance of the network when it is tested on the training set as

the  semantic  inputs  are  incrementally  supplied  with  syntactic  information.  The  green  curves

represent the mutual  information between unprocessed semantic  and syntactic input,  this  is  the
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baseline mutual information between semantic and syntactic data which remains flat, i.e. roughly

independent of γ , the small variations on this flat line are due to the random selection of units that

receive syntactic information at each run. The red curves represent the mutual information between

the output of the network and unprocessed syntactic inputs while the blue curves plot the mutual

information between processed semantic and syntactic outputs. The dashed and dotted curves tend

to  follow  each  other  closely,  implying  that  the  syntactic  competitive  network  results  in  a

dimensionally reduced faithful representation of the syntactic input data. The mutual information

rises above the baseline as  γ  increases above the 0.4-0.5 region for Armenian, English, Hebrew

and Hindi, and above the 0.2 region for Italian and Marathi. Thus semantic classes tend to gradually

realign, with increasing γ , in such a manner that they correspond more to the syntactic classes as

compared to the baseline. This reorganisation is however very limited: at  γ=1 , the normalised

mutual information for all languages is in the range of 0.5-0.6, which is around half way towards

full agreement. Although interacting with syntax does help some reorganisation of the semantic

classes,  the  divide  between  syntax  and  semantics  is  clear  and  almost  half  of  the  semantic

information cannot be shared with syntax at γ=1 .

The performance of the network is further limited by the fact that it cannot be driven by

semantic units only, with no syntactic information during testing. A ‘syntactic context’ is necessary

at the inputs for the network to result in a mutual information performance above baseline. When

tested without  syntactic information,  or with only a  partial  amount,  the drop in the normalised

mutual information is significant, with only a tiny trace of learning shown by the network. 

 

3.6 Discussion:

. This is a first attempt at assessing the learnability of the mass-count statistical data and

rather an exploratory study towards a network modelling of the classification.  By applying such a

network to the mass-count information from participants we can draw a few inferences:
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1. In most  languages,  syntactic  markers  tend to  categorize  ‘spontaneously’ between

mass and count markers, lending validity to the intuitive perception of a quasi-binary

distinction.  This is not fully true, however,  and particularly in Hindi the markers

chosen show a graded distribution of mutual correlations. Hindi however is slightly

different from the remaining languages, in such that the 4 out of 5 markers in Hindi,

answer 'yes' for pure counts. Thus the network is driven towards a count-internal

categorisation.

2.  Nouns, instead, tend in most languages to distribute quite closely along a line which

coincides  with  the  main  mass/count  dimension  introduced in  our  previous  study

(Kulkarni, Rothstein and Treves, 2013). Along this line, nouns are very crowded at

the count end, and scattered all along towards the mass end. Their distribution is

therefore graded rather than binary, with no emergence of a single ‘mass’ class, but

rather of several non exclusive but distinct ways of a noun of being different from

pure count. For example, in  Armenian (Figure 8) nouns like ‘bird’ and ‘ship’ belong

to the ‘pure count’ class while ‘troop ’and ‘lunch’ are in the 9th class away from the

count class. On the mass end, nouns like ‘cotton’ and ‘milk’ are at the extreme mass

end of the spectrum while ‘coffee’ and ‘wheat’ are more mass-like nouns but not at

the pure mass end. The exception is English, where there are at least two clear non-

equivalent dimensions of non-countability.

Both  the  above  observations  are  interesting  because  the  mass-count  information  in  the

categorisation arises on its own. The markers, in some cases, very cleanly segregate themselves into

mass and count. The nouns are reduced to a one dimensional representation along a mass-count

spectrum. Even though the network fails to associate specific syntactic markers with specific nouns

based on the semantics, the network does develop a 'concept', if we may say, of what is the mass-

count classification. The diversity and richness of this classification however, prevents a simple

network to learn specific associations. Which brings us to the third observation,
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3.  The lack of significant mutual information between semantics and syntax implies, as

we have verified, that the latter cannot be extracted solely from the former. Further,

when  allowing  the  competitive  network  to  self-organize  on  the  basis  of  full

semantics and partial syntactic inputs, and testing it with the full syntactic inputs, the

mutual information obtained with the full syntactic usage distribution is only at most

about half the corresponding entropy value. This occurs in fact only when the full

syntax  is  given  in  the  input  also  at  training,  and  it  indicates  that  giving  also

semantics information affects negatively rather than positively the performance of

the network.

Overall, these observations indicate that the acquisition of the mass-count syntax  by humans

with neurally plausible mechanisms, involve more complex computations beyond what can be

captured by a simple neural network. The observations do however,reinforce the conclusions of

our earlier study that mass count syntax is far from a rigid binary rule, rather it appears as the

flexible,  speaker-specific  usage  of  a  variety  of  binary  markers  to  a  quantitatively  and

qualitatively graded repertoire of nouns, where being non-count can be expressed in many ways

(see also, chapter 2, figure 2.8 and 2.11). Taking semantics into account helps speakers to a very

limited extent in generating their own mass/count ‘dialect’.
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Appendix B

B1: Log plots of figures 3.6 and 3.8

a) Concrete Nouns

b) Abstract Nouns
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B2: Convergence of weight matrix during learning. (change in weight matrix against iterations)

a) Concrete Nouns

   b) Abstract Nouns
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B3: Correlation coefficients of groups in figures 3.6 and 3.8 with MC dimension groups in Chapter 
2, section 2.
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Concrete Abstract
Armenian 0.865 0.833
Italian 0.507 0.578
Marthi 0.057 0.301
English 0.718 0.498
Hebrew 0.414 0.61
Hindi 0.277 0.329



Part B

Storing Correlated Memories and the Possible Spin Glass
Nature of the Potts Neural Network
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Chapter 4

Section I

The Potts Neural Network

A] Introduction:

In the previous chapter we have already seen the application of a neural network, namely the

competitive neural network. In this chapter we look at a more complex network, and at some of its

features  in  section  II  and  III,  which  are  particularly  relevant  to  cognitive  function  including

language acquisition. Section I summarises the basic concepts of neural networks and some past

work in the field. First, let us have a quick recapitulation on neural networks.

Neural  network  models,  to  a  great  extent,  are  a  product  of  the  connectionism concept.

Connectionism is founded on the idea that the core information necessary for cognitive function is

stored in the neurons and in their synaptic connections in the brain. The connections are modifiable

and respond to the exposure to various inputs, bringing about a 'learning process' in the network.

One  of  the  popular  earlier  models  was  the  Parallel  Distributed  Processing  model  (PDP),

[McClelland, Rumelhart 1986]. It consisted of having several independent parallel processing units

called 'neurons' which were connected with a specific structure. Neurons were essentially variables

taking a certain range of values decided by an output  function and the structure of connection

amongst them was given by a connectivity matrix of real numbers that represented the strength

between two units. Much of the modern work on neural networks follows the same fundamental

principles. 

B) Types of neural networks:

Different classes of models can be defined from the structure of the connectivity and the

details of how the neuron is modelled. One may model the detail the time dependent voltage-current

response of a neuron [for eg. Izhikevich 2003], or use more abstract units which essentially only
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represent the firing activity of the neuron [an eg. Hopfield 1982]. We use the latter, since we are

interested  in  the  global  behavior  of  a  large  number  of  interacting  neurons,  for  which  one  can

approximate the behavior of a neuron with its mean firing rate [Gertsner 1992a; Gertsner 1992b]. A

synaptic connection between neurons is modelled by another variable J ij , between neuron i and j,

whose strength is changed according to Hebb's rule [Hebb 1949]: the change in connection strength,

δJ ij ,  in  a  learning event  is  proportional  to both the pre and post  synaptic  activity of  the two

neurons in the event. Some other learning mechanisms like the discriminative learning, especially in

the language domain [Bayen et al 2011] aim to achieve learning by the adjustment of conditional

probabilities  between 'language objects'.  However  we restrict  ourselves  to  biologically inspired

mechanisms like  the  Hebb's  rule,  rather  than  the  powerful  but  maybe  biologically  implausible

machine  learning  rules.  Or  at  least,  if  one  wishes  to  manifest  a  similar  model  in  biologically

inspired neurons, one must revert back to a Hebb like situation.

i) Different connectivity structures give rise to different types of neural networks. The very

first neural networks were of the feed-forward type [Hornik 1989]. It consists of an input layer and

an output layer which learns the association between 'representations'  of inputs and outputs via

modifiable connections between the two layers.  It  was found that adding another 'hidden layer'

between the input and out layer, such type of network can potentially map any continuous input-

output function. However, multilayer feed-forward networks predominantly operate with the back-

propagation algorithm, in which the error between input and output travels backwards through the

connections  to  adjust  each  connection  strength.  The  biological  plausibility  of  this  method  is

unlikely. Since the network requires a training set of output patterns, this is a supervised learning

algorithm.

ii) Another class of neural networks is when there is no 'teacher'; this is called the unsupervised

network. We have seen an example of such a network in the previous chapter,  one which uses

competition between the output neurons during learning and classifies the inputs. These are self-

organising networks which can form clusters and categorise inputs based on a similarity measure,

without the requirement of an explicit target output. One may suppose that unsupervised networks
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form the first block of information processing where novel stimuli are categorised to be processed

further. 

iii) A third class of neural networks are the recurrent neural nets [Amit 1989], where neural

activity is fed back to the same neurons by recurrent synaptic connections, thus forming a cycle of

information  flow.  [Elman 1990,  1991]  constructed  one  such  type  of  a  recurrent  net  called  the

'Simple Recurrent Network' (SRN) and applied it to linguistic stimuli. Elman’s SRN had a modular

structure and was a mixture of feed-forward and recurrent modules. His important finding was that

the SRN could segment a continuous unbroken stream of words from a sentence into separate words

that were clustered in grammatical categories of nouns and verbs. 

Another  class  of  recurrent  nets  is  the  autoassociatve  network,  where  the  inputs  learn

associations  with  themselves  and  thus  facilitate  a  content  addressable  memory.  The  stored

memories are attractors of the dynamics of the network and with a partial cue the network can can

recover the entire memory of the object, for example, giving a cue like 'to e_r _s h_m_n'   may

recover the entire phrase 'to err is human'. Our model, to be discussed in Section C, falls into this

category. It is of special interest to us due to its powerful computational abilities, which may help to

replicate how some of the cognitive functions in our brains are brought about.

Figure A: A schematic representation 

of an autoassocitive network with 

recurrent connections. (reproduced 

from [Rolls, Treves 1999])

[Hopfield 1982] designed such a network from the Ising model of interacting spins which

was mathematically treatable and hence led to an intense study, revealing the rich dynamics of such
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models which can serve as the foundation of cognitive function. The neuron was abstracted to two

states of being active(+1) or inactive (-1) and N such neurons were connected by 'synapses', e.g.

synapse  J ij   between neuron i and j. The learning rule was prescribed in such a way that each

pattern,  ξi
μ , i=1,2. .. N ;μ=1,2. .. p , for N neurons and p memories to be stored, was situated at the

bottom of a valley on the energy landscape, thus forming an attractor. The energy is defined as 

 H=−
1
2
∑
i , j≠i

N

J ijξi
μ ξ j

μ  

This term is called the energy because for a suitable definition of the dynamics, a symmetric

J, and in the absence of noise, a flipping of a spin will occur if either it keeps the energy of the

system the same or it reduces it. Hence over many such spin flips the network naturally reaches a

stable state which is the minimum of the energy function.  The Potts model, which we study in

section II and III, is in a sense an extension of the Hopfield model where the fundamental unit is not

a model neuron and it is not restricted to the two states of an Ising spin, but it can be in more than

two possible states. 

 Figure B: Energy landscape depicting attractor dynamics.
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C) The Potts neural network model for cortical dynamics: 

The cortex is a large network of interconnected neurons and is thought to be composed of

several sub-networks with dense recurrent connectivity. These sub-networks are also interconnected

with each other,  thus communicating information to and fro over the whole cortex.  [review on

functional connectivity:  van den Heuvel,  Pol 2010, Yeo  et al  2011 ].  The Potts neural network

model, the one described below, is an adaptation of the Potts network studied in [Kanter, 1988;

Bolle et  al,  1993].  Our model  aims to present a  simplified model of cortical  mechanisms with

adaptive dynamics. It is a global autoassociative network of interacting units, each unit representing

a local sub-network. 

a) The Potts unit: The model we study is a variant of the Potts neural network model [Kanter

1988] aimed at incorporating the time dependant dynamics of cortical mechanisms in the global

attractor space [Treves 2005; Russo, Treves 2012]. A Potts unit, σi
k  , represents the ith local cortical

patch which is in the local attractor state k. Each unit can be in S possible states, hence the internal

dynamics  of  the local  patch are reduced to  a  simplified representation to  depict  only the local

attractor states. At a given time, a single unit might be correlated to only one of its attractor states or

partially correlated to more than one. With N such units we can represent a global pattern over the

entire cortex, ξi , k for i=1,2. ..N ;0⩽k⩽S . s=0 is defined to be the inactive state of the unit. The

total activity of a unit if fixed to 1, thus ∑
l=0

S

σ i
l=1  .  Several distinct combinations of states can

produce different patterns, ξi , k
μ  , where μ  is the pattern identity, μ=1,2... p . 

Figure C: Conceptual visualisation of the Potts model, with

local  patches  represented  by  S  state  interconnected  units,

forming a global cortical network.
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b) The connections: Local patches are connected with long range synapses which communicate

the activity of unit  i  in state  k  to unit  j  in state  l  by an interaction term  J ij
kl .  J  forms a

connectivity matrix which stores information of several patterns  ξμ which are embedded in the

network by a learning rule  [Russo,  Treves 2012],  which  is  similar to  the one in the Hopfield

network but adapted to S-state units. 

J ij
kl =

c ij

Cm a(1− a
S )
∑
μ=1

p

(δξi
μk−

a
S
)(δξ j

μl−
a
S
)×(1−δk0)(1−δl0)

c ij , is a binary number [0,1] which establishes the existence of a connection between unit i  and j ,

c ij  is randomly distributed across the connections and is 1 with probability Cm/N , with c ii=0 ,

where  Cm  is the number of connections between units.  a denotes the sparsity of patterns, so in

effect a fraction Na units are active in a state 0<k⩽S .  The term a/S reduces bias due to random

overlaps and is discussed in chapter 4, section II, 4.7.1. The last two product terms arise out of

biological reasoning and make sure that learning occurs only on active states and that the 0 state is

ineffective over J.

c) Adaptive Dynamics: Once the network has reached a stable attractor state, the active units

are  continuously  'firing',  but  in  a  biologically  realistic  scenario  the  units  cannot  go  on  firing

continuously forever. Hence besides the constant baseline global threshold  U , we introduce two

thresholds that account for neuronal fatigue and slow inhibition [Horn, Usher, 1989]. They deplete

the resources for the unit to fire and eventually destabilise the attractor. The first kind of threshold,

θi
k  , which affects only active units, σi

k , intends to model neural fatigue and short term depression
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[Tsodyks, Markram, 1997 ] and has a time constant, τ2   in the in order of tens of milliseconds.  The

second threshold,  θi
0 , affects only the inactive state and models slow, delayed inhibition within a

cortical patch and has a time constant τ3 in the range of hundreds of milliseconds.  The dynamics of

the thresholds can be stated in the following way,

τ2

dθi
k
(t)

dt
=σ i

k
−θi

k ; τ3

d θi
0
(t )

dt
=∑

k=1

S

σi
k
−θi

0

A third time constant,  τ1 ,  determines the rate of integration of the local fields over each unit,

subject to the dynamic threshold. The local field is the summed inputs that a unit receives from all

other units, given by hi
k
=∑

j≠i

N

∑
l=1

S

J ij
kl
σ j

l
+w (σi

k –
1
S
∑
l=1

S

σi
l
)  .  The second term is an addition,  that

models  self-reinforcement  in  the  local  patch  dynamics  of  an  active  unit,  to  make  it  converge

towards an attractor.  Hence the final inputs that a unit receives can be written as

τ1

dri
k
(t)

dt
=h i

k
(t)−θi

k
(t)−r i

k
(t)

with ri
k  being the input to the active states and θi

0  to the inactive states. The final state of the unit

can be written as,

         

σi
k
=

e
βr i

k

∑
l=1

S

e
β ri

l

+e
β(θi

0+U )
σi

0
=

e
β(θi

0+U )

∑
l=1

S

e
β ri

l

+e
β(θi

0+U )
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where  β  represents the local patch inverse temperature thus modelling noise internal to the unit

(more about this in chapter 4, section III, 4.13). The global dynamics of the network however, is

noiseless.

D) Latching behavior: 

The above equations completely describe the dynamics of the Potts neural network model

with adaptive thresholds. The introduction of the adaptive thresholds generates some interesting and

potentially useful features in terms of cognitive aspects. As the network reaches a stable attractor

state, active units in the network start facing an increasing threshold, which destabilises them and

the network starts falling out of the attractor. However it may happen that as the network falls out of

the attractor it is pushed towards a new basin of attraction and enters into a new attractor. This

process may continue endlessly in the right parameter phase space. In fact the network shows three

phases of dynamical behaviour [Treves 2005; Russo, Treves 2012]: (a) No latching - the network

falls out of the attractor and it decays into inactivity; (b) Finite latching - the network falls out of an

attractor subsequently jumping into another one and this process continues for a finite duration; (c)

Infinite latching - the sequence of jumping continues indefinitely. 

It was observed that the jump from one attractor to another is facilitated if the two attractors are

correlated. 
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Figure D: Latching behavior of the Potts network. (a) No latching; (b) Finite latching; (c) Infinite latching.
(reproduced from Russo, Treves 2012)

E) Application of the Potts neural network to language:

The  latching  phenomenon  in  the  Potts  network  and  particularly  the  fact  that  latching

transitions  are  more  probable  amongst  correlated  patterns  makes  it  a  good  model  to  start

investigating  its  application  to  language.  To produce  a  well  formed sentence  one  has  to  make

transitions from nouns to verbs to adjectives and so on depending on the sentence. Thus we can

propose that the brain latches from one word to another in a structured manner, where each word is

an  attractor.  A  first  attempt  at  applying  the  Potts  network  to  language  was  presented  by

[Pirmoradian,  2012,  PhD  thesis].  An  artificial  language  called  BLISS  (Basic  Language

Incorporating Syntax and Semantics)  was generated with a medium level of complexity, although

much less than a natural language, to be encoded into the Potts network. The learning rule was

modified to incorporate hetero-associativity amongst consecutive words with their syntactic and

semantic content. It was seen that upon giving an initial cue with a word the network spontaneously

exhibited transitions to other words (Nouns or Verbs) in the network.
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Figure E: Potts network applied to BLISS showing transitions amongts different nouns and verbs.
(reproduced from Pirmoradian 2012)

The words encoded in BLISS had a near random correlation. However to build a realistic

model of language production or acquisition, one needs to incorporate natural correlations between

words/syntax/semantics  which  can  be  quite  strong.  By  including  correlations  into  word

representation one soon runs into serious trouble as we shall now see in the section II. 
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 Chapter 4  

Section II

Storage of Correlated memories

4.1 Introduction:

After having an overview of the basics of a computational auto-associative model aiming to

understand  global  cortical  interactions  in  the  preceding  chapter,  namely  the  Potts  Spin  neural

network, let us look at some of its features that are crucial to understand if one intends to 'employ' it

as a language processing model that can handle real world linguistic data. One important aspect of

real world data is the natural correlations found amongst various entities. These correlations are not

isolated  just  to  the  linguistic  domain  but  are  ever  present  in  any  natural  representation  of

'objects/entities' in their occurrence. 

4.1.1 Importance of correlations in neuronal representations:

One clear and immediately occurring example to appreciate correlations is the semantic web

of concepts.  Here, each 'object' can be represented with a set of features that represent the physical

or functional properties of that object. For example, some of the features might be, 'is living', 'has

eyes', 'has wings', 'has wheels', 'is made of metal' and so on, and the list can be endless. Objects,

then can possess or not possess these features, a 'dog' will possess features like 'is living', 'has eyes'

etc. while 'a car' may entail some other features like 'has wheels'. Given such a representation one

can obtain, in an N-dimensional space, the location of all objects and can study the structure and

distribution of various objects. One such database is the McRae database of semantic features or the

WordNet project of Princeton University. 'Dog' and 'Fox'  will share many common features being

highly correlated whereas 'Fox' and 'Fish' will be distant yet sufficiently correlated compared to

'Fox' and 'Car', which may be considered as uncorrelated objects. This however, is quite a simplistic

representation of correlations; in reality, objects distant in feature correlation might be temporally or

functionally correlated, making the picture quite complex. In the language domain, words are not

only semantically correlated but also share syntactic correlations or pragmatic/contextual ones. 

Various experimental findings implicate neuronal correlations, either as pairwise mean firing

rates  or  temporal  correlations  and  on  the  population  scale  in  oscillatory  rhythms  [Salinas  &
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Sejnowski, 2001, de la Rocha  et al 2007]. The interpretations of these correlations and how the

brain makes use of them is however are a matter of debate.

In terms of our mass-count nouns, seen in  chapters 2 and 3, we would intend to represent

each noun and its marker encoded into the network as activation of neurons. The markers are either

syntactic or semantic while each noun has a unique representation to identify itself from the rest.

This first step itself requires us to represent the nouns and markers in such a way that they exhibit

the  natural  correlations  found amongst  them, so that  operations  over  them are  meaningful  and

learning or acquiring ‘the rule' and links amongst them is efficient. Immediately, we then reach an

important and long standing hurdle of storing correlated memories in the network. This has been a

persistent challenge ever since the dawn of connectionist models of brain function. Most of the

early quantitative  work  with  artificial  neural  networks  has  focused on uncorrelated  patterns  of

memory. They have provided a very important and useful insight into the functioning mechanisms

of systems of interacting neurons and showed us the robustness and power of these systems to bring

about computational operations that could form the base of cognitive activities in the brain. Such

networks however fall  short  of satisfying expectations when one involves the use of correlated

patterns.  We use  the word 'pattern'  to  mean a  set  of  N elements  representing N neurons/units,

wherein each of the N elements indicates the firing activity of that neuron/unit.  Together these

elements encode the representation of a particular object in the network as a particular combination

of firing activity over each unit, ξμ={x1, x2. .. xN} .  In a standard Hopfield network x i is either +1 or

-1, while in the Potts network x i  can have S possible states.

4.1.2 A brief summary:

Early work on storage of correlated patterns was done in the 1980's by [Parga and Virasoro,

1986;  Amit,  Gutfreund  and  Sompolinsky,  1987;  Gutfreund,  1988].  Various  extensions  of  the

Hopfield model were considered in its ability to store correlated patterns. The standard prescription

for storing patterns is when the Ising spins in a particular pattern are randomly and independently

distributed, made clear by the probability expression of a single unit being in one of the two states

P(ξ i
μ
)=

1
2
(δξi

μ,−1+δξi
μ, 1) .  Correlations were introduced in the patterns by adding a bias amongst
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patterns  [AGS  1987,  Tsodyks  1988]  so  as  to  violate  the  above  mentioned  probability,  or  by

generating patterns in a systematic way by an algorithm that arranges patterns on an ultrametric tree

[Parga,  Virasoro  86,  Gutfreund 88].  One sees  that  storing correlated  patterns  in  an  associative

network greatly diminishes the storage capacity of the network when a standard Hebbian plasticity

learning rule is used, however making modifications to the learning rule by adding a term to negate

the bias or writing the learning rule in such a way so as to incorporate the hierarchy in the presented

patterns during learning, can restore the storage capacity to some extent, i.e. the ability   of the

network, as an auto-associative attractor network, to retrieve a sufficient number of patterns. For

our purposes the storage capacity is defined as the maximum number of patterns that can be stored

in the network and then be successfully retrieved during recall,  either through a complete or a

partial  cue.   Various  other  attempts  have  been  made  by having  different  ways  to  bring  about

correlations between patterns. [Tamarit  and Curado 1991] studied the retrieval behaviour of the

Hopfield network when the patterns share a pairwise correlations such that patterns within a pair are

correlated  but  those  from a different  pair  do no overlap.  The network  was found to have  two

regimes; one where all  the pairs  (up to a certain level of storage limit)  could be retrieved and

another regime where only the pairs could be retrieved without distinguishing between the patterns

within  the  pair.  [Monasson  1993]  studied  spatial  correlations  between  patterns,  which  the

correlations  between  a  pair  of  patterns  decreased  exponentially  as  a  function  of  the  distance

between the specific units of the pair. It was found that the storage capacity increases for very weak

spatial correlations however the information content in the network reduces. This is in line with

previous work with biased patterns. [Lowe 1998] analysed the Hopfield network when patterns

were generated from a Markov chain with correlations either in the semantic or spatial domain. It

was shown that the storage capacity either scales as 
N

γ logN
 for a strong definition of retrieval

where every pattern is stable and retrieved with probability 1. In this definition the storage capacity

increases with strength of semantic correlations but reduces with increasing spatial correlations.

However, the storage capacity is scaled as αN as in the standard definition of [Hopfiled 1982].

The  bound  on  α  reduces  with  increasing  strength  of  correlations  in  this  definition.  More

recently, a slightly complex variation of the standard Hopfiled model was studied by [Agliari, et al,

2013]  where the patterns  are  diluted,  by having a  portion of  the  inputs  blank and correlations
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introduced by adding a bias to the non-blank inputs, similar to [AGS 87]. They found that having

blank inputs allows space to add additional patterns later and have parallel retrievals.

4.1.3 On ultrametricity:

One important and significant difference in which our study differs from the previous ones is

the use of non-ultrametric patterns. We shall see in detail in the next section, how patterns with

variable correlations are generated in our network. In an ultrametric space, three arbitrarily selected

points x, y and z have to follow both the triangle inequality (more specifically, if d (x , y )  denotes

the  distance  measure  between  points  x  and  y  then,  d (x , y )⩽d( x , z)+d ( y , z) )  and  also   the

additional constraint d (x , y )⩽max (d (x , z ) , d( y , z)) . In such a space patterns can be arranged in a

'family tree', where successive generations branch out from previous ones. In an ultrametric space

one cannot have in-betweens, B cannot be between A and C. Either the nearest common forefather

is common to A and B, hence they are the same distance from C, or the same argument can be made

with respect to A and C. Thus they all lie at the vertices of isosceles triangles since they are at the

same distance from the nearest  common forefather.  In reality,  however,  such an organisation of

natural objects does not represent the true structure. Even more so in the linguistic domain, where

words are hardly ever ultrametric, but rather have a spectrum of existence in the category space,

when measured statistically. This means that a specific instantiation of a word in a specific category

is  probabilistic  and  depends  on  the  multiple  correlations  along  several  syntactic  or  semantic

dimensions.   One can see as a small example in chapter 2 figure 2.14, how nouns in a corpus

arrange themselves  along  a  pyramid  in  the  mass-count  space.  Our  brains  can  easily  store  and

process such correlations but the implementation of this structure in an associative network model

is rather a tough task.

In the current chapter, we explore the ability of the Potts network to store correlated patterns

in a non-ultrametic fashion and look at some variations in learning rules and their effect on the

storage  capacity.  The  storage  capacity  of  the  Potts  network  for  uncorrelated  patterns  was

extensively  studied  in  [Kropff,  Treves  2005].  The  theoretical  estimate  of  the  storage  capacity

obtained here as a function of sparsity can be written as,
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pc =
CS2

4a ln ( 2S
a √ln (S /a)

)
 ...(e4.1)

where C is the dilution parameter that sets the average number of connections present between

units, a  is the sparsity and S are the number of active Potts States. 

[Russo, Treves 2012] showed that this estimated storage capacity for correlated patterns is

severely diminished. We extend the study and look at the correlations in detail and explore the

reasons and how one may attempt to  reduce the effect  of  correlations  on synaptic  connections

between units to enhance the number of patterns that can be stored. 

4.2 Correlations in patterns:

4.2.1 Pattern generation: 

The pattern generation algorithm we use follows the procedure mentioned in [Treves 2005]

as a two-step method to generate Potts network patterns whose degree of correlation can be tuned

using two main parameters. In the first step, we generate a set of uncorrelated patterns, what we call

as 'factors', which then facilitate the formation of final patterns by suggesting the states on each of

the units. A competition amongst the units then finally decides which units will be active and in

which particular state.

For each pattern that is generated, out of its N units having S possible states, each factor

influences a distinct subset of the units. The influence of a factor on a particular unit suggesting a

state decreases exponentially with an exponent ζ  for successive factors, ζ≈0 makes every factor

almost equivalent , resulting in the production of uncorrelated patterns while ζ≈1 makes only the

first few factors influential, giving rise to patterns that are generated from a small group of factors

and  thus  naturally  sharing  more  common  units  in  the  same  direction  and  producing  highly

correlated patterns.
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  Figure 4.1 Schematic representation of the pattern generation algorithm

 Beside the strength of influence of a factor another parameter, apf , governs the probability

that the factor will influence the units in the patterns. This probability is given by a random number

in the range 0 to 1 and is set to 0 with a probability 1−a pf . In this way each factor tries to align a

unit in one of S possible directions given its strength and the probability that it may align the unit.

Once all the suggestions are made, the sparsity 'a' of the patterns is set by selecting a fraction N*a of

the most active units, that is the units that have the strongest alignments in one of the S states, and

those units are set in the state having the strongest 'suggestion field' while all other states are set to

0. Thus ξi
k=1;∑

l=0

S

ξi
l=1 (unit  i has the strongest suggestion field in the direction k ) and rest of

the units, a fraction N(1-a) of them, are set in the inactive state ξi
0
=1

This  allows  us  to  generate  patterns  with  a  varied  degree  of  correlations,  by tuning the

parameters  ζ and apf . The degree of correlation is measured by the fraction of units sharing the

same active state as well as by the second measure, i.e the same fraction of units that are active in

both patterns, in whichever state. Figure 4.2 a&b shows the effect of ζ , apf and sparsity a on the

degree of correlation. The chance overlap between a pair of patterns, i.e. the number of shared
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active units in the same state, denoted as  Nas  ,can be estimated as  Na2
/S , whereas the chance

number  of  co-active  units  in  any  state,  denoted  as  Na ,  is  Na2 .  We  use  these  estimates  as

normalisation factors in figure 4.2 a&b to visualise the levels of correlations as a function of the

three parameters affecting correlations.

4.2.2 Scatter of correlations:

Figure  4.2  shows  the  scatter  of  correlations,  where  each  point  is  a  normalised  overlap

between a pair of patterns for a total of 100 patterns, on the x-axis  normalised fraction of units that

are co-active in a pair and on the y-axis the normalised fraction of units which are active and in the

same state.  We use 3 levels of correlations depicted in the figures 4.2 a,b namely uncorrelated

patterns  (Random, ζ=1e-6 ; aapf=1e-6 ),  low level  of  correlations  (  Low,  ζ=1e-6 ; apf=0.4 )

and highly correlated patterns ( High,  ζ=0.1 ; apf=0.4 ). Figure 4.2a shows the scatter plots for

sparsity from 0.2 to 0.5, while figure 4.2b for sparsity from 0.6 to 0.9. As we can see, pairs of

patterns have a high scatter on both the axes for highly correlated patterns indicating that they share

many units aligned in the same direction, whereas for random patterns this overlap hovers around

the probabilistic estimate normalised to 1. The case of low correlations lies in between these two

extremes. The differences between the different levels of correlations are reduced as the sparsity a

increases. As patterns become less and less sparse i.e as sparsity increases, more and more units

become active in each pair of patterns which naturally increases the chance overlap between them.

Thus   increasing  sparsity  starts  dominating  the  correlations  between  patterns  rather  than  the

correlations being controlled by  factors. 
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 Figure 4.2a: Scatter Plots showing the spread of pairwise correlations amongst patterns for a<0.6
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     Figure 4.2: b Same pairwise correlation scatter as above but for 0.6⩽a⩽0.9

4.3 Storage capacity:

We calculate the storage capacity of the Potts neural network through simulations by storing

patterns  of  three  different  levels  of  correlations  as  mentioned in  section  4.2.  The final  storage

capacity is estimated by storing a varied number of patterns in the network, called as the storage

load, 'p'. The network is tested for different p's from high p to low p and defining storage capacity at

the highest p at which at least 0.5p of the patterns are successfully retrieved. The time varying

thresholds θi
k  and θi

0 , explained in section I-C, are kept constant since we want to investigate

the asymptotic behaviour without adaptation. This procedure is repeated for a varied set of patterns

and random connectivity between units for a constant Cm=90 .  In the absence of external noise the

dynamics of the network is deterministic, hence for a given set of patterns, the success or failure in
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retrieval of a particular pattern remains unchanged and is determined by the interference (noise, as

we shall see in the following section) from the remaining patterns stored in the network other than

the one that is being retrieved. Thus any variance in the storage capacity, Pc (seen in figure 4.3), is

largely due to the different sets of patterns being stored and to a lesser extent, due to the varying

random  connectivity  between  the  units.  Figure4.3  shows  mean  storage  capacity  over  10

independent runs with random connectivity for each value of sparsity. The network parameters, as

described in chapter 4, section-I-C have the values of, N=600 , S=5  , U=0.2 , τ1=2 ,

τ2=∞ ,  τ3=∞ , Cm=90 and  β=11 , w=0 . The network is allowed to relax for 500

time steps after the cue presentation. Same parameters are used throughout all the simulations with

specific changes, if any, are mentioned in the description. 

 Figure 4.3: Storage Capacity as a function of sparsity for Random (green), Low (red) and high (blue)
correlations amongst patterns.

The storage capacity is severely affected as the degree of correlations amongst the patterns

increase (error bars show standard deviation over 10 independent runs). The difference is seen for
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a<0.6 after which specific correlations amongst patterns do not matter any more,  and retrieval

capacity is dominated by the effect of increasing sparsity. From figure 4.2b we see that the patterns

become comparable in their scatter over the correlation measure for  a>0.5 .  In case of random

patterns the storage capacity monotonically decreases as a function of sparsity as predicted by e4.1.

For  low  correlations,  instead,  the  storage  capacity  is  greatly  reduced  and  stays  more  or  less

constant, with a gradual decay up to a=0.5  and then a more rapid decay as  a  increases beyond

0.5. For high correlations however the storage capacity is not a monotonic function of a , it rises

initially till a=0.6 and then decreases as with the random and low correlations. These simulations

confirm the results of [Russo, Treves 2012]. We shall further study the effect of correlations looking

at the noise profile and at different learning rules, in the following sections.

Let us recall the learning rule to store patterns in the synaptic connections mentioned in

chapter 4 section I-C ,

J ij
kl =

c ij

Ca(1− a
S)
∑
μ=1

p

(δξi
μk−

a
S
)(δξ j

μl−
a
S
)×(1−δk0)(1−δl0) ...(e4.2)

with this learning rule each pattern  ξ
μ , is intended to be an attractor of the dynamics such that

pushing the system in the vicinity of the ξμ  with a partial cue, on every further updating of the unit

(i ,k ) , the network state for each unit σi
k  will eventually be driven towards the state ξi , k

μ .  Thus

each ξμ forms a valley in the energy landscape and the system starting in the basin of attraction of a

particular valley will 'fall' into the valley. But when patterns are correlated the boundaries between

the valleys are unclear and the attractors merge with each other,  hence giving a cue towards a

particular attractor does not guarantee the system falling into the desired attractor thus resulting in a

failure  to  retrieve;  which  in  turn  leads  to  the  storage  capacity  getting  lower  as  the  level  of

correlations increase. 
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4.4 Signal and noise:

Another way to look at the effect of correlations is to calculate the signal and noise each unit

receives  on its  field during retrieval.  As seen in  the  section I-C, the  field over  each unit  in  a

particular state while retrieving any pattern (considering w=0), say ξ
1 as an example, without loss of

generality, is written as

hi
k = ∑

j≠i

N

∑
l=1

S

J ij
klξ j ,l

1 ...(e4.3)

inserting equation (e4.2) in to (e4.3) we obtain,

hi
k=Z '∑

μ=1

p

(δ ξi
μ k−

a
S
)∑

j≠i
∑

l

(δξ j
μ l−

a
S
)ξ j l

1

where Z' is the normalisation constant as in (e4.2)

(for the sake of simplicity we do not write the last term in (e4.2), denoting that learning occurs only

over active states, but it is assumed that all calculations are done over active states). 

We can split this equation into two terms, one denoting the component of the field which represents

the  signal  on  that  unit  while  trying  to  retrieve  the  pattern  ξ1 and the  other  term which  is  the

component that can be termed as noise, coming from all the other patterns, ξμ , μ≠1 stored in the

connectivity matrix J.

hi
k
=C '(δ

ξi
1 k−

a
S )∑

j≠i
∑

l

(δ
ξ j

1 l−
a
S )ξ j l

1
+ C '∑

μ=2

p

(δξi
μ k−

a
S )∑

j≠i
∑

l

(δξ j
μ l−

a
S )ξ j l

1

signal noise

 (e4.4)

For the pattern to be retrieved successfully, the mean of the noise term has to be  0 and in the

case  where  the patterns  are  randomly correlated the  noise term is  normally distributed  centred

around 0, with the standard deviation such that the signal term always has a greater magnitude than

the noise term. Thus if the standard deviation is small enough so as to not interfere with the signal,

the stored pattern can be successfully retrieved.  However when patterns are correlated the noise
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term is not normally distributed any more but is rather a skewed normal distribution, as seen by the

positive skewness measure in figure 4.4. The mean of the noise is still 0, but the positive asymmetry

causes the noise to be of comparable or even of greater magnitude on the positive signal. 

Figure 4.4: Standard deviation of the noise profile as a function of sparsity.

Figure 4.4 shows the standard deviation and the skewness of the noise term in (e4.4) as a

function of sparsity 
a

. Skewness here is the third standardised moment defined as 
μ3

σ
3

, μ3  is the

third central moment and  σ  is the standard deviation. Thus if we denote the noise by  κ(k ) ,

taking values from k1, k 2... k n , then the skewness is given by 

γ(κ)=

1
n∑

i=1

n

(k i− k̄)3

(
1
n∑

i=1

n

(k i− k̄ )2)
3/2

  

For the high correlation case the noise term is highly skewed as compared to the low and

random correlation, with random patterns having the least skewness. There is a monotonic decrease
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of skewness, almost as a slow exponential function for random and low correlations, and a sharp

decrease  for  the  highly  correlated  patterns,  and  they  all  converge  as  we  approach   a=0.9 .

Skewness affects the standard deviation of noise for highly correlated patterns in a significant way,

as the standard deviation for  a<0.5 is completely determined by the decreasing skewness. In the

case  of  random and  low  correlation  there  is  a  monotonic  rise  in  the  standard  deviation  with

increasing a . 

This, at least in part, explains the curves in figure 4.3, for random and low correlations the

skewness is low and increasing standard deviation with increasing a , decides the drop in storage

capacity as a function of sparsity, because the signal increasingly gets weaker in comparison to

noise. For high correlation in the region of a<0.6 the storage capacity is governed by the skewness

and decreasing skewness of noise causes the increase in storage capacity due to better retrieval

ability.

In Figure 4.5 we look at the standard deviation and skewness of the noise as a function of

network load p, after fixing sparsity at a=0.2 . Standard deviation rises linearly as p increases, and

the slope is higher for high correlated patterns as compared to random and low correlations. An

interesting observation is that the product of the standard deviation and skewness is almost constant

as a function of p for the random and low correlations while it is more or less linearly increasing for

high correlations, driven by the high slope of the standard deviation.  Thus as we store more and

more patterns in the network, the standard deviation increases, making the signal weaker and thus

affecting the ability of the network to successfully retrieve a pattern.
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Figure 4.5: Standard deviation and noise as a function of storage load.

4.5 Retrieval behaviour above storage capacity:

In the previous section we saw how the noise has an increasing spread as correlation level

increases and this affects the retrieval of a pattern.  In the current section we look at how retrieval

capacity is affected once the storage load on the network is above the storage capacity limit we saw

in figure 4.3.

The network is  loaded at  p(a)=P c(a)+50 for  each specific  sparsity  a and each of  the

stored pattern is cued to test for retrieval. Since the network is operating above its storage capacity

there is a higher fraction of patterns (more than half of the stored patterns) that fail to be retrieved

successfully.  We measure the correlation between the cued pattern and the pattern that  has  the

highest overlap with the network state.  When a pattern is cued and retrieved, besides the cued

pattern there can be other patterns that have a certain degree of overlap with the network state. In a

pure retrieval, the cued pattern has the highest overlap with the network and the remaining patterns

have an overlap which hovers over the average value of overlap that a pattern may have by chance

with the network state.   There are three cases one can see when a pattern is cued and tested for

retrieval:

(i) In the case of successful retrieval the cued pattern itself has the highest overlap with the

network state and we instead measure the correlation of the cued pattern with the pattern that has

the second highest overlap with the network state. 
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(ii) The  cued  pattern  has  failed  and  no  other  pattern  is  successfully  retrieved  beyond  the

threshold  of  retrieval  (overlap  with  network  state  more  than  0.7).  We measure  the  correlation

between the cued pattern and the pattern that is still below the threshold of retrieval but has the

highest overlap amongst all the patterns

(iii) The cued pattern has failed and another pattern other than the cue has the highest overlap

with the network state above the threshold of retrieval and we measure the correlation between

these two patterns

Similar  to figure 4.2a the three situations  are  plotted as a  correlation scatter,  where case (i)  is

represented in green, (ii) in red and (iii) in yellow in figure 4.6. We focus in the sparsity range

0.2⩽a⩽0.5 which is more interesting in the biologically plausible sense,  and because differences

between patterns for different correlations are predominantly seen in this range of sparsity.

Figure 4.6: Correlation scatter same as figure 4.2a with an overlay of the three types of retrieval behaviours.
case(i)-green, case(ii)-red and case(iii)-yellow
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For random and low correlations, only two out of the three situations are seen (figure 4.6).

The network can  either  successfully retrieve  a  stored pattern or  fail  all  together  with  no other

pattern being successfully retrieved.  Surprisingly, patterns which have another pattern that shares a

high  correlation  with  it,  in  terms  of  N as ,  are  retrieved  successfully,  seen  from  the  high

concentration of 'green' points on the higher side of the scatter while the patterns which fail lie

lower  on  the  correlation  scale.   Table  4.1a,b  &  c  summarises  the  mean  normalised  pairwise

correlation, defined by Nas , between patterns in the three cases mentioned above

Table 4.1a: Mean Correlation, N as , for Successful Pattern Pairs, case (i)

a=0.2 a=0.3 a=0.4 a=0.5

Random Correlation 2.28 1.87 1.60 1.43

Low Correlation 3.58 2.79 1.98 1.77

High Correlation 11.70 5.10 2.69 2.44

 

Table 4.1b: Mean Correlation, N as , for Failed Pattern Pairs of case (ii)

a=0.2 a=0.3 a=0.4 a=0.5

Random Correlation 1.01 0.98 1.00 0.98

Low Correlation 1.69 1.68 1.58 1.49

High Correlation - 1.84 2.38 1.83
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Table 4.1c: Mean Correlation, Nas , for Failed Pattern Pairs of case (iii)

a=0.2 a=0.3 a=0.4 a=0.5

Random Correlation - - - -

Low Correlation - - - -

High Correlation 6.69 3.86 1.79 2.18

From table 4.1a & b it  is  seen that patterns that are successfully retrieved have another

pattern that is strongly correlated with it if compared to patterns that fail, which tend to be less

correlated with other patterns. 

Case (iii) is seen only in the highly correlated patterns, which also exhibits cases (i) and (ii),

except at a=0.2 there are no pure failures (case (ii) ) in the high correlation patterns. This implies

that when a cued pattern in the high correlation fails, the network tends to successfully go in an

attractor that shares a high correlation with the cued pattern,  i.e., as seen from table 4.1c, the mean

correlation between the cued pattern and the retrieved pattern is much above the normalised chance

Nas=1  

4.6 Storage capacity with correlated retrievals:

In the previous section we saw that in case of highly correlated patterns when a cued pattern

fails to be retrieved, there is a tendency that another pattern that is strongly correlated to it will be

successfully retrieved instead. Thus for patterns with high correlation, we test the storage capacity

of the network  by incorporating the correlations into the storage capacity definition and setting the

successful retrieval condition such that the pattern that is retrieved successfully has a normalised

correlation level above 1.5 with the cued pattern, N as(ξ
cue ,ξretrived

)>1.5  .

Figure 4.7 overlays the correlated storage capacity (purple points) over the regular storage

capacity (blue line) for the highly correlated patterns. Since the high correlations case shows all the

110



three type of retrievals (cases (i),(ii) and (iii)), it is not guaranteed that each time there will be a

correlated retrieval of type (iii) as seen from figure 4.6 , in which case then the network falls back to

the case of a pure success or failure (cases (i) and (ii)),  which correspond to the regular storage

capacity. In fact, as seen from figure 4.6 for highly correlated patterns, the correlated retrievals fall

as a  increases and for a>0.5 there are no correlated retrievals (not shown in figure 4.6, but seen in

figure 4.7 through storage capacity). The number over each point, denoting a correlated retrieval in

figure 4.7, shows the fraction of the simulations (10) when a case of correlated retrieval occurred,

while  the rest of the times the network reverted back to the regular storage capacity. 

When  correlations  are  incorporated  in  the  definition  of  storage  capacity,  there  is  an

enormous jump in the storage capacity for highly correlated patterns. However one must 

remember that the attractors in this case are merged and high correlations imply that that there are

several other patterns which share a significant number of units in the same state with the retrieved

pattern, and have a non-trivial overlap with the network state.  

Figure 4.7: Storage Capacity when the strong correlations are incorporated in the definition of storage

capacity
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4.7 Modification of learning rules: 

The storage capacity that we saw in the previous section was studied with the standard

learning rule (e4.2), restated below

J ij
kl =

c ij

Ca(1− a
S )
∑
μ=1

p

(δξi
μk−

a
S
)(δξ j

μl−
a
S
)×(1−δk0)(1−δl0) ... (LR1)

From the signal and noise analysis we saw that as more and more patterns are stored in the network

there is an increasing interference amongst the patterns which limits the number of patterns that can

be successfully stored and retrieved.

One aspect of this learning rule is the term 
a
S

 which is subtracted from both the pre and

post synaptic terms. A detailed analysis of the significance of including this term, for a standard

Hopfield network, is done in [Amit, Gutfreund, Sompolinsky 1987]. Since the Hopfield model is

only a two-state  spin system, just  subtracting  a is  required,  whereas  for  an S state  system the

natural modification to this term is 
a
S

. This term has an effect of reducing the effect of the bias in

the patterns and making the noise term in (e4.4) to have a 0 mean and thus improving the storage

capacity. 

4.7.1 'Popularity' subtraction:

Subtraction of the bias term is effective when there are no systematic correlations between

patterns  and  the  overlaps  between  patterns  are  only at  chance  level.  With  the  introduction  of

systematic correlations however, as we do with our pattern generation algorithm for low and high

correlations, just subtraction of the  
a
S

 term is not sufficient. In the case of a standard Hopfield

model, this problem was investigated in [Kropff, Treves 2007]. Instead of subtracting a from the

pre and post synaptic terms, they subtract what is called the 'popularity' of the neuron, defined as
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the average activation of that neuron over all the stored patterns. Here we extend that definition to

the Potts units and write the 'popularity' term as 

aik=〈ξik 〉μ ;where 〈a ik〉=
a
S

with this we write the modified learning rule as

J ij
kl
=A∑

μ=1

p

(δξi
μ k−aik)(δξ j

μl−ail)×(1−δk0)(1−δl0) ...(LR2)

Thus the reduction of bias while storing the patterns is more refined rather than using a single mean

value of 
a
S

, and it depends on the specific set of patterns being stored, thus affecting the storage

capacity. We shall see the effect of this modification after the following section, where we look at

another modification to the learning rule.

4.7.2 Constrained synaptic modification:

From the noise profile in section 4.4 we saw how the distribution of noise gets more and

more positively skewed as correlations amongst patterns increase. This is in effect due to the high

contribution of the positive terms in the summation of the noise over all the stored patterns: the

positive  contributions  arise  from  the  increased  positive  overlaps  that  result  due  the  stronger

correlations  between  patterns.  Since  the  source  of  these  excess  positive  contribution  is  in  the

synaptic  connectivity  matrix,  J ij
kl ,  we intend  to  mitigate  this  effect  by modifying the  synaptic

strength  between  two  units,  on  each  successive  presentation  of  a  new  pattern  to  be  stored,

proportionally to the existing strength of the synaptic connection between the units that the pattern

modifies. The rule is written as,

J ij
kl
{q}=J ij

kl
{q−1}+(δξ i

μ k−aik )(δξ j
μ l−a il)e

−α Jij
kl {q−1}(δξi

μ
k−aik)(δξ j

μ
l−ail)

for the qth pattern ,q=1,2... p

...(LR3)

Thus  the  change  in  the  synaptic  strength  between  units  i  and  j is  moderated  by  an
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exponential  function  whose  exponent  is  a  scaled  product  of  the  existing  synaptic  strength,

J ij
kl
{q−1} , and the change due to the new inputs it receives, (δξi

μ k−a ik)(δξ j
μ l−ail)  . If the new

inputs strongly affect a synapse that is already strong, then the influence of these inputs on that

synapse drop exponentially. This drop can be controlled by the parameter  α , setting  α=0  one

gets back LR2. One must note that reducing the influence of  new inputs also reduces, in fact, the

information content about the new inputs, thus one cannot set α⩾0 , otherwise the patterns will not

be stored in the network. Through simulations we find that for highly correlated patterns the  value

of  α  which results in the desired effect of reducing the spread of noise and increasing storage

capacity is α=1  at a=0.2  while for a>0.2  and the low correlations case we see the intended

effect at  α=0.01 for all  a (figure 4.10) .  This learning rule is local,  biologically plausible and

makes on-line modifications during learning.

4.7.3 Effect of modified learning rule on noise profile:

Similar to section 4.4 we look at how the standard deviation and skewness of the noise

distribution is affected by the two modifications mentioned in the previous two sections. Figure 4.8

shows,  overall,  that  LR2  (dotted  line)  and  LR3  (dashed  line)  effectively  reduce  the  standard

deviation and skewness of the noise distribution compared to LR1 (solid line) for the high and low

correlations cases, while there is no significant change in the case of random patterns. 

For the high correlations case there is a marginal reduction in the standard deviation due to

LR2 and a slightly greater reduction for LR3, except at a=0.2 where there is a stronger reduction

in LR3. For the low correlations case the reduction in standard deviation is comparable for both

LR2 and LR3, at a similar level lower than for LR1, while for the random patterns all three learning

rules are comparable. If we look at the skewness, the pattern is similar for high correlations as

mentioned above, while the skewness for the low correlations case is brought down to the level of

random patterns.
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Figure 4.8: Reduction in standard deviation and skewness (as a function of sparsity) brought about by the
modification of the learning rule, LR2 and LR3. 
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Figure 4.9: Reduction in standard deviation and skewness (as a function of storage load) brought about by
the modification of the learning rule, LR2 and LR3.

A similar effect of reduction in standard deviation and skewness is seen as a function of

network load p.  LR3 however has a more pronounced effect in this case, as seen from the 3rd panel

in figure 4.9, where the product of standard deviation and skewness which linearly rises for the high

correlations case is made, instead,  comparable to the low and random correlations cases by the

application of LR3.

4.8 Storage capacity with modified learning rule:

From the results of section 4.7 we expect the storage capacity to be slightly higher than what

we saw in figure 4.3, which is indeed the case as shown in figure 4.10 (pto).
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 Figure 4.10: Storage capacity as a function of sparsity for the three learning rules LR1, LR2 and LR3
(see text)

Both LR2 and LR3 show an increase in the storage capacity for high and low correlations.

The change is  stronger  in  the case of  low correlations  which  can  be  partly understood by the

lowering of skewness for low correlations in figure 4.8.  There is no big difference in the storage

capacities  between  LR2 and  LR3,  with  LR3  resulting  in  only  a  very  marginal  higher  storage

capacity as compared to LR2. A noticeable difference is seen at a=0.2 for the highly correlated case

in LR3 which corresponds to the change seen in figure 4.8. None of the modifications however

sufficiently reduce the interference due to correlations so as to increase the storage capacity to a

comparable level with the random patterns case. LR3 in the case of random patterns, in fact, causes

a slight lowering of the storage capacity, due to the fact that the correlations in the random cases are

so low that any suppression of the inputs on the basis of correlations in turn results in the lack of

information about the entire pattern. A similar effect is seen in the region of a>0.6 , where LR2 and

LR3 result in lowering of storage capacity as compared to LR1. This is due to the subtraction of the

popularity  term,  which  becomes  strong with  increasing  a  and  destroys  information  about  the

pattern. 
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4.9 A self-excitation trick to store more patterns:

We saw how interference from the stored patterns other than one being retrieved puts a limit

to the maximum number of patterns that can be stored. This can be seen from the separation of the

signal and noise terms in (e4.4). What happens if the signal is enhanced by an external input to the

field, which makes it stronger than the interference from noise? 

To recall (e4.3) , the field on each unit is given by 

hi
k
=∑

j≠i
∑
l=1

S

J ij
kl
σ j

l
+w(σi

k
−

1
S
∑
l=1

S

σi
l)

here 'w' as explained  chapter 4 section I-C, controls the self excitation of the unit and boosts the

field in the direction of the signal. The results so far were obtained by setting w=0 and not having

any self  excitation.  We now set w=0.8 thus making the signal stronger and looking at  how the

storage capacity is affect by this change. 

Figure 4.11: Storage capacity when signal is boosted by self reinforcement (w=0.8)

The effect of rising sparsity, a , which lowered the storage capacity, seems to be nullified

in the case of random and low correlation patterns. The increasing spread of noise with increasing
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sparsity does not affect the boosted signal and the storage capacity remains more or less constant as

a function sparsity at the level which corresponds to the higher storage capacity at  a=0.2  in

figure 4.10 for LR2 and LR3. Highly correlated patterns show a peculiar behaviour in the region

a>0.5 , there is a monotonic rise in the storage capacity, which becomes greater than the low

correlated patterns and approaches the random patterns as  a  approaches 0.9. One may try to

partly understand this behaviour from figure 4.4, for a>0.5  the standard deviation of noise for

the  high  correlations  case  continues  to  drop,  although  at  a  much  lower  rate  as  compared  to

a⩽0.5 . This is in contrast to the high and low correlations case, for which the standard deviation

rises with a over the entire range. In fact at a = 0.9 both the standard deviation and skewness for

highly correlated patterns is close to the random patterns and lower than low correlation patterns.

Thus self excitation has a higher impact on the high correlation patterns because of decreasing

standard deviation and in the case of random and low correlations the effect of increasing standard

deviation is balanced out by self excitation. 

4.10 Discussion:

We presented an algorithm which generates patterns of various levels of correlations. These

patterns are intended to represent  the activity of local cortical patches and together represent the

activity over the the entire cortex. Thus each pattern  ξμ , is expected to be a stored memory

which can be recalled when the right cue is presented. Since each unit in the pattern can be in

several possible  states and that there are several such units, a 'memory' of any particular object is

thought be entailing its entire multidimensional aspects. Different objects can share various levels

of correlations along several dimensions in the natural world. Thus it is important to study how

correlations affect the storage of correlated memories in the Potts model. 

Our long term aim is to store syntactic-semantic relations of words into the Potts network

and we saw the first attempt at it in section I-E, [Primoradian 2012]. The words presented in that
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study shared a near random correlation but in future the aim is to introduce corpus-frequency based

correlations amongst words. 

Correlations severely limit the ability to store patterns in the Potts network. We saw that the

signal becomes weaker in comparison to interference (noise) from other stored memories when

correlations  between  the  memories  increase.  Increasing  noise  drastically  reduces  the  storage

capacity for highly correlated patterns. By looking at the three different retrieval behaviours of the

network  for  different  level  of  correlations  we decided  to   relax  the  definition  of  a  successful

retrieval and take into account  the strong correlations amongst patterns. In doing so, we saw that

the network could retrieve its maximum storage capacity around the level of random patterns but

only for a low level of sparsity.  

Modifying the  learning  rule  based  on the  signal-noise  analysis  lead  to  a  very marginal

improvement in the networks ability to store correlated patterns. The increase in storage capacity

due to LR2 and LR3 was more pronounced for the  highly correlated patterns at  a=0.2 , with

LR2 resulting in close to 1.4 times rise in the storage capacity while LR3 resulting in a rise of close

to 2.7 times that of LR1. However, since the storage capacity is already so diminished for high

correlations the increase too is small. 

Storing correlated memories in a neural network, especially of the type as generated by our

algorithm which intends to mimic natural correlations is a challenging task and certainly a crucial

one in the context of language processing. 
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Chapter 4

Section III

Towards the Possibility of the Potts Glass Phase

4.11 On the glass phase of the Potts Neural network:

The Potts model, as described in section I-C, aims to model the interaction of several local

modules in  the cortex,  where each module is  represented by a  Potts  unit  which can assume S

different states. This is an N-body interaction system ( N≫1  ), with infinite range interactions,

which implies that a local unit i  is not restricted to interact with only its neighbouring units but

can interact with all other units in the system, with an interaction strength  J ij . Such systems,

when the interactions are complex, or not following any simple ordering,  are known to exhibit a

rich variety of complex behaviour, one of which is the existence of a spin glass phase. A spin glass

phase can be described as the typical  low-excitation state  of a system of interacting spins that

exhibits both quenched disorder and frustration. In a relatively simpler case where each unit has

only two possible  spin  states  of  +  or  –  (Ising  Spins),  quenched disorder  stands  for  a  random

distribution  of  'ferromagnetic'  and  'anti-ferromagnetic'  interactions.  This  simply  means  that

individual pairs of spins are either favoured to be aligned in the same direction or in the opposite

direction,  and such influences are 'quenched', i.e do not evolve with time. Thus on  average, spin

interactions cancel each other out. 'Frustration' in a spin system is when no spin arrangement of all

the units completely satisfies all the couplings between the spins. The effect of unit i  on j ,

determined by J ij , contributes to the alignment of unit j, but unit j receives such orienting forces

from  many other units. In a frustrated system the spins get 'frozen' such that not all the interacting

forces are satisfied by the final spin orientation of the unit  j . This spin glass phase typically

leads to multiple, possibly infinite different arrangements of spins and hence to a multitude of stable

and metastable degenerate energy states. 
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Since it is a general property of disordered many body interacting systems, and we suppose

the cortex, at least as a first order assumption,  to fall under this category, it  can be subject to

investigation  whether  the  cortex  too,  exhibits  a  spin  glass  like  behaviour  .  The  existence  of

frustration and multiple  degenerate  states  makes it  a particularly interesting problem when one

thinks of rule learning and structured interactions between various domains in the brain. 

4.11.1 Suggestions from the mean field models of the spin glass phase:

Spin Glass properties of interacting spins were originally studied in the scope of magnetic

materials  but  soon  the  importance  and  application  extended  to  various  other  N-body systems.

[Sherrington and Kirkpatrick, 1975] proposed a mean field theory of spin glasses with infinite range

interactions (SK model), which was an extension of the finite range Edward-Anderson model. An

important mathematical tool was developed for this purpose called the 'Replica Trick', which makes

possible to calculate the mean free energy of the system and hence further make a phase study

analysis.  Without  going  in  details,  the  replica  trick  involves  calculating  the  partition  function,

Z=∑
s

e(βH s) ,  of  n  replicas  of  the  system and then take  the  limit  n→0 using the  identity,

log Z=lim
n→0

Zn
−1
n

.   The  free  energy  is  defined  as  F=−T ln Z (where  T  represents  the

temperature  of  the  system).  The  SK  model  develops  the  solution  in  the  replica  symmetry

assumption, where the n replicas are perfectly symmetric, however this leads to a negative entropy

in the n→0  limit. As a solution [Parisi 1979, 1980] proposed a model by introducing an ansatz

and  breaking  the  replica  symmetry  which  solves  the  negative  entropy problem.  Importantly,  a

notable  result is that the low temperature  solution shows a phase transition below a certain critical

temperature,  T c , to the spin-glass phase of infinite degenerate states, in the system of infinite

range interacting Ising spins.

[Gross,  Sompolinsky 1985] developed the mean field theory of   Potts  glass  where they
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found a continuous transition to two distinct glass phases for number of states  S⩾3 , at low

temperatures below the critical temperature T c . The first one at  T<Tc , (PG1), with infinite

pure degenerate states which do not overlap with each other and the second one (PG2) at T2<T c

where each of the pure state in PG1 splits into a hierarchical structure of partially overlapping

states. For S >4 the transition becomes discontinuous.

 

4.11.2  Glass phase in the Potts neural network model:

Our  model,  which  is  specifically  designed  to  address  cortical  dynamics,  has  a  neural

network  structure and differs from the models mentioned above in three aspects, 

a) The interaction term J ij  is a result of associative learning as determined by the specific

patterns that are stored in the network. Importantly, the way in which we define the learning rule,

the J's do not follow the full symmetry of J ij
kl
=J ji

lk . Whereas in the models discussed above, J's

are decided by a Gaussian probability function with a specific mean and standard deviation. 

b) The Potts units in our model are graded and  the final state  σi
k  is determined by a

continuous transfer function applied to the fields, allowing a graded response in the units unlike the
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completely discrete units of above mentioned models.

c)  An important distinction in the dynamics of our model is the definition of 'active' and

'inactive'  states  which  have separate  dynamics.  Learning  occurs  only with the  active states  to

remain in the biologically plausible scenario.  

[Bolle et al 1992] studied the mean field solution of the S state Potts glass neural network

model where the phase is investigated in Temperature-Storage capacity space.  Though the model

discussed by Bolle et al still differs from ours in all the three points mentioned above, nevertheless

it sheds light on the spin glass phase of the Potts neural network and it reveals the rich behaviour of

this  class of networks.  Among the findings of this  study,  they show that  there exists  a  critical

temperature  T g , below which the network exhibits a spin glass phase which consists of states

that share no overlap with the stored states. Another transition occurs at T M<T g , where the states

have a finite overlap with the stored patterns. Thus the stored patterns are local minima of the free

energy and  the  network  can  function  as  an  associative  memory,  and  below  T M  the  stored

patterns become a global minima of the network. 

It is likely that there exists a spin glass phase in all such models of large interacting systems

and in the limit that the brain can be modelled as a system of many interacting neurons/modules,

this becomes an important characteristic which may influence cognitive function. 

4.12 Indication of spin glass phase in the 'cortical' Potts model:

We explore the glassy nature of our model by examining the final steady state energy values

that the network evolves into. In the usual attractor dynamics, the network settles at the bottom of

the energy valley of a particular attractor which is designed to be one of the stored memory patterns.

However in a spin glass situation the network can have multiple stable energy states brought about

by the interactions of various units. We calculate the energy of the network state or pure pattern

with the standard formulation with an addition for graded units,

E=−
1
2
∑
i , j≠i

N

∑
k ,l=1

S

J ij
kl
σ i

k
σ j

l
+∑

i

N

∑
k=1

S

(U σ i
k
+

1
β
(σi

k ln
σi

k

σi
k
+σ i

0+σ i
0 ln

σi
0

σ i
k
+σi

0 ))
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where the first two terms denote the interaction energy and the contribution of the fixed threshold

respectively,  while  the  last  term is  the  contribution  due  to  the  fact  the  Potts  units  are  graded

[Russo,Treves 2012]. 

We first look at the scatter of energy levels of the pure patterns and the stable network state

when a pattern  was cued to  the  network for  retrieval.  As in  section 5.4 we separate  the  three

different retrieval behaviour by the same colour code of green,red and yellow for case(i), case(ii)

and case(iii) respectively. Figure 4.12 plots the energy of the pure pattern (triangle) for each of the

pure pattern  ξμ ,  μ=1,2... p . p is set around the storage capacity level so the network can

exhibit the different types of retrievals. Along with the energy of a pure pattern, the energy of the

final network state when a particular pattern  ξμ  is cued to the network is represented with a

cross. 

We see that the steady network state energies do not coincide with the pure pattern energies

and find a multitude of energy valleys to settle in. The network either settles in a region above the

desired valley and yet have a successful retrieval in the retrieval type of case(i) or find an energy

state below the pure pattern. This is an indication of a typical property of the spin glass phase, in

which there are high number of metastable states due to the formation of multiple local minima,

resulting from several possible spin interactions. One clear phenomenon seen is that whenever the

network fails to retrieve, either case(ii) or case(iii), it almost certainly settles in a state lower than

the cued pattern as seen clearly in figure 4.13. Thus it falls out of the desired attractor and finds a

basin with a lower energy, leading to a failure in correct retrieval. This observation is consistent

across the different levels of correlations amongst patterns. The failed network states are all on the

same level for random patterns because this is the inactive state of the network and for unsuccessful

retrievals the network decays into inactivity. Same is the situation for  low correlation patterns but

in this case the network decays into a mixed state with several patterns having a finite overlap with

the network state. In the case of highly correlated patterns, there exist situations where the network

settles into at the level of pure pattern energy level. An interesting observation in the case of random

patterns is that the pure patterns which are lower in energy than the mean energy of patterns, are

retrieved successfully while those above fail. This clear separation is not seen in the other two cases

of correlated patterns.  
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We calculate the difference in the energy level of the network state and the energy of the

pure pattern, thus positive values imply that  the network could not reach the bottom of the valley 

Figure 4.12:  Energy states for pure patterns (triangles) and network state (crosses).  Horizontal line depicts
mean energy of pure patterns (magenta) with its standard deviation in orange. Random patterns (top panel),
Low correlation patterns (middle panel) and high correlation patterns (bottom panel) Colour codes depict

three types of retrievals green-case(i), red-case(ii) and yellow-case(iii)

and found a stable state above the cued pure pattern, whereas a negative value indicates the network

was able to find an even lower energy level that the cued pattern. Figure 4.13 shows the mean

energy difference for the three possible cases of the difference in energy between network state and

pure  pattern,  namely  being  positive,  negative  or  0  (tolerance  level  of  +/-0.5  of  the  energy

difference) .  The numbers around the bars indicate  the fraction of patterns  in a particular case
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(positive- above the bar, 0-beside the bar at 0 level, negative-below the bar) . The three types of

retrieval behaviours are shown in their defined colours.  Figure 4.13 makes it clear that failures

always  find a  range of  stable  network  states  below the pure pattern  while  the majority of  the

successful states are when the network is trapped in the energy valley of the cued pattern but above

the pure pattern energy level. One may speculate that the tendency of the network is to fall out of

the energy valley towards an attractor with a deeper energy valley but probably frustrated frozen

spins trap the network in the valley while for failures it manages to fall out. 

Figure 4.13: Mean difference in energy between network state and pure pattern. Numbers indicate fraction
of patterns in each condition (see text) represented by the width of the bar. 
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4.13 Effect of local module temperature:

The parameter  β  intends to represent a local module inverse temperature and in effect

controls the noise level within a unit over its various states. Low values of beta, implying high

temperature would make the units very noisy and hence none of its states would be dominant. On

the other hand at very low temperatures, high  β , the state having the highest local field will

essentially coincide with the final state of the unit while all other states will become 0, representing

a noiseless situation. Thus at high β  the Potts units become in practice non graded. We test how

the above mentioned spin glass effects  are affected at  different local module temperatures.  The

results of the previous section were obtained at  β=11 , which represents a medium noise level

which still allows the network to function as an associative memory. Now we test the extreme limits

of very high temperature at β=5  and very low temperature, β=100 , which makes the Potts

units, in practice non graded. 
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Figure 4.14: Mean difference in energy, same as figure 4.13 but for three different values of β - 5

(top), 11 (middle) and 100 (bottom) panel, in random patterns

At high temperature β=5 , a retrieval becomes highly improbable since the units can not

be kept  in the state with the highest local field. This results in  an almost total failure to retrieve

with only one pattern retrieved, in which shows the network settles much below the pure pattern

energy. In the noiseless case β=100 ,by contrast  99% of the patterns are successfully retrieved.

Importantly the spin glass behaviour is present also when the units practically behave a non graded
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manner. A similar trend is seen for low and high correlation patterns (figures 4.15 and 4.16). As

seen before (figure 4.13) the failures in high correlation patterns are of the type(iii). 

 Figure 4.15: Mean energy difference for three levels of local noise, β=5 (top), β=11 (middle) and

β=100 (bottom), in low correlation patterns.
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Figure 4.16: Mean energy difference for three levels of local noise, β=5 (top), β=11 (middle) and

β=100 (bottom), in high correlation patterns.

4.14 Effect of network level noise:

Apart from the internal local module noise, we add a noise to the fields that globally affects

all the units in a random manner. This maybe considered as having an effect analogous to a global

temperature of the network. Noise is introduced as a random number, 0⩽ρ⩽1 , scaled by η

that is added to each unit when it calculates local field on it.

hi
k = ∑

j≠i

N

∑
l=1

S

J ij
kl ξ j,l

1 +ηρi
k  

Thus  η=0  is the noiseless condition and as it increases the fields start to destabilise, causing

them to be overridden by noise.  The combination of the local and global noise has an interesting
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effect on the random patterns as we can see in figure 4.15. 

Figure 4.17: Fraction of patterns successfully retrieved as a function of external noise, η . For two

different values of β=11 (full), β=100  (dashed)

When β  is high, the fraction of patterns that is successfully retrieved, rapidly decays as

noise increases, with a sigmoid like function. This fits the intuitive notion of how noise may affect

retrievals, because it randomly reorients the units thus dominating over the inputs from the synaptic

connections. However at β=11 , when the units are graded there is a maximum in the fraction of

successful retrievals at η=0.075 , with a rapid decay for η>0.1 . Overall the combination of

both local and global noise results in a higher success rate for  η>0.05 . As one might expect,

when both the internal and external noise levels are low ( β=100 , η=0 ), the network has the

best retrieval rate. 

As before we calculate the mean energy difference between network state and pure pattern

for the global noise η  in figure 4.18. but now we calculate the total mean instead of separating
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the positive and negative differences. In the case of high β , β=100 , the mean difference in

the  energy  is  positive  and  increases  monotonically  with  η .  Hence  the  network  finds  it

increasingly difficult to 

Figure 4.18: Influence of external noise η  on the total Mean difference in energy.

reach the bottom of the energy valley when noise is increased. In the case of β=11 , instead there

seems to  be a  region around  η=0.075 ,  where the effects  of  the two types  of  noises  prove

beneficial for the network to reach closer to the energy valley of the pattern, seen as a reduction in

mean  energy  difference.  For  η<0.075  the  medium  internal  noise  units  ( β=11 )  have  a

difficulty  in  reaching  the  energy bottom as  compared  to  the  noiseless  units  ( β=100 ),  thus

resulting in lower fraction of successful retrievals in figure 4.17.  Having graded units with a small

global random noise helps in better retrieval of patterns as seen through the lower mean energy

difference for β=11  as compared to β=100 , in the region η⩾0.075 . 
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This combined effect of global and local noise to cause an increase in successful retrievals

is seen only for the random patterns and is absent in low correlation patterns, where the fraction of

successful retrievals monotonically reduce with η (figure 4.19).  The low correlation case seems

to follow the intuitive expectation that low internal noise units β=100  will tend to have better

retrieval ability and thus lead to higher number of patterns retrieved as compared to β=11 .

  Figure 4.19: Fraction of patterns successfully retrieved as a function of external noise, η . For two 

different values of β=11 (full), β=100  (dashed) in low correlation patterns.

4.15 Behaviour at low S and full connectivity:

With cues from [Gross et al 1985] where they find a distinction in the phase transition at low

S and S > 4, we reduce the number of states to S=2 to check if we find the same behaviour of

the network as in the case of S=5 investigated before. In addition we test the behaviour when the

network connectivity is increased  to a fully connected network and eliminate effects of dilution,
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thus  Cm  which is 90 in previous cases is increased to 599 (N=600). In both cases the local

inverse temperature β  is set at mid-level of β=11  .

Figure 4.20 confirms the spin glass nature of the 'cortical' Potts network in low S and also in

a fully connected case. Apart from the fact that there is a higher fraction (0.11) of patterns in which

the network reaches the bottom of the energy valley of the cued pattern for S=2,Cm=90 , when

compared to S=5,Cm=90 , there are no major differences. For Cm=599  the network settles

in a varied range of levels during successful retrievals below the cued pattern energy level thus

finding a better configuration of spins which reduce the energy of the network and yet retrieve the

intended pattern. 

Figure 4.20: Mean difference in energy, same as in figure 4.13, but for S=2 , Cm=90   (top) and

S=2 , Cm=599  (bottom) panel 
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4.16 Brief Discussion:

The human cortex is estimated to have 109    neurons [Herculano-Houzel S 2009] and an

order of 1014   synapses. As described in section I-C we model the cortex as N interacting Potts

units,  each of which represents a patch of the cortex,  that can be in S possible attractor states,

resulting in a system of N interacting S state spins . It has been shown that at low temperatures a

system of large N  interacting spins exhibits a spin glass phase. A spin glass phase has multiple

degenerate energy states and has a 'frustrated' spin configuration. This allows the network to settle

in varied energy states with different spin configurations. If we assume that a simplified version of

cortical dynamics can be modelled by the Potts neural network then it is possible that the cortex

may function in a spin glass like manner. 

We found that  the  Potts  neural  network  does  show signs  of  a  spin  glass  like  phase  by

allowing the network to evolve after an initial cue and update its unit as prescribed in section I-C.

The network settles into multiple energy states which are either higher than the energy of the pure

pattern or lower. In the case of successful retrievals, the network predominantly settles in a higher

energy state as compared to the pure pattern energy but the fact the retrieval is successful implies

that the network is in the correct energy valley. Since there is a difference in the two energy levels

of the network state and pure pattern, it implies that not all the Potts spins are aligned with the pure

pattern and some of them are 'stuck' in the attempt of the network to find a suitable energy level.

Since whenever the network fails to retrieve it almost always settles in a state lower than the pure

pattern, and these failed states are the lowest amongst all other states. Thus it is possible that the

Potts spins in a successful state get 'frozen' in the networks attempts to settle in a lower global

minima than the 'successful'  higher local minima and hence leading to the observed positive energy

differences between the network state and pure pattern. 

Spin glass like characteristics that were seen with a  diluted network connectivity, Cm=90

and medium internal noise  β=11    at  S=5, were also consistently observed in the low S=3

condition, full connectivity,  Cm=599    and a near absent internal Potts unit noise  β=100 .

Adding a small amount of external global noise   combined with the medium level of internal noise

seems to facilitate the network, to reach the energy valley bottom. This can be seen through the
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reduction in energy level difference between the network state and pure pattern. As a result it leads

to a higher fraction of patterns that are retrieved successfully. One possibility is that a small external

noise at  , does not destabilise the unit but is sufficient enough so that it overrides the interaction

forces that cause misalignment amongst units. 

The effects of spin glass behavior in the Potts neural network and its application to cognitive

process is yet unexplored but provides an exciting opportunity to study how structured transition

between  stored  memories  may  occur  in  a  dynamical  scenario.  Since  spontaneous  transitions

between memories are largely driven by the energy landscape, the spin glass nature of the Potts

network may influence the transitions. Structured transitions between memory 'objects' constitute a

formal rule and hence the spin glass effects may play a role in language processing too.
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5  A Report  on  the  Effect  of  Learning  Rules  on  Latching

Dynamics

 

5.1 Latching behaviour for increased correlation between patterns

In chapter 4, section I-D we mentioned the dynamic behaviour of the Potts neural network,

in which the network exhibits latching (spontaneous transition from one stored memory to another).

Latching occurs due to the time varying thresholds ( θi
k and  θi

0 ), which destabilise the units

once the network has reached a stable attractor state and thus eventually cause the network to fall

out of the attractor. However, as the network is falling out of the attractor it may be driven towards

another attractor which has its basin of attraction in the proximity of the previous attractor. The

temporal scale of network dynamics is governed by three time constants, 

(i)  τ1  – time constant in which the local field experienced by each unit in its active states is

integrated, subject to the time varying threshold; (ii)  τ2  – the time constant with which θi
k ,

the threshold affecting only the active states,  updates itself and (iii) τ3  – the time constant for

updating  θi
0 , the threshold expressing the effect of slow inhibition. The specific dynamics are

governed by the equations mentioned in chapter 4, section I-C. 

An analysis of the storage capacity in chapter 4, section II was worked out considering the

asymptotic steady state behaviour of the network. For that purpose τ2  and τ3 were effectively

set to ∞ , thus removing the adaptive nature of the Potts units. We now consider the network in

what is termed as the slow adaptive regime, referring to the situation in which neuronal dynamics is
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much faster than the threshold dynamics. This is obtained by setting τ3> τ2≫τ1 for finite  a τ2

and . τ3   [Russo,  Treves  2012] studied the latching properties  of  the network using random

patterns in the slow adaptive regime as a function of various parameters like the self-excitation term

w ,  storage  load  p ,  local  temperature T ,  connectivity  dilution  Cm  and  the  time

constants. One of the observations of interest was that the network tends to latch between patterns

that have an above average correlation amongst them. However we have seen in section II that

increasing the strength of the correlations drastically affects the behaviour of the network in terms

of  its  stable  retrieval  ability  of  stored  patterns.  We now focus  our  attention  on  the  dynamical

behaviour of the network when the patterns are highly correlated and present a preliminary study

with some immediate observations.   

  

  5.2  Effect on latching due to different learning rules:

The network is tested in the 'infinite latching' phase, which refers to the situation when the

network does not stop latching for the entire duration of our simulation (5000 time steps).  The

asymptotic stability of a stored pattern during its retrieval and thus the critical storage capacity of

the network has a limited impact on latching dynamics due to the non-stationary nature of retrieval

in  the  latching  phase.  Latching  is  however,  sensitive  to  the  strength  of  correlations  amongst

patterns. We load the network with 200 patterns and record the latching transitions (consecutive

pairs of patterns that have the highest overlap with the network state across a transition) using the

three learning rules LR1, LR2 and LR3, described in section II-4.7.  In the case of random patterns

latching was seen to occur only for w>0 [Russo, Treves 2012], however in the case of highly

correlated patterns we see continuous and spontaneous activity at w=0 (figure 5.2-(i),(ii)). 
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 figure 5.1-  Latching statistics for high correlation patterns using  the learning rules LR1, LR2 and LR3.

(see text for details)

When the patterns are highly correlated there does not seem to be 'proper' latching in the

network (using LR1 and LR2) even though the network shows spontaneous activity. The network

appears to be stuck in a mixed attractor (figure 5.2-(i) and (ii)) and keeps oscillating between highly

correlated patterns without a transition into another pattern. However with the application of LR3

this cycle is broken, allowing the network to visit other patterns and exhibit 'proper' latching (figure

5.2-(iii)).  The top row of figure 5.1 shows the correlation scatter of all the pairs of patterns (just as

in figure 4.2a) but with an overlay of latching pairs (in red). The three columns represent plots for

the three different learning rules. Most of the latching happens between pairs that share a correlation

of around Nas=10  (2nd row figure 5.1) which is midway between no correlation ( N as=0 ) and

the pairs with maximum correlation ( N as=20 ). 
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We calculate the entropy of latching, which quantifies the diversity of patterns visited during

the latching sequence. Thus low entropy would indicate the network is stuck between a few patterns

and an increase in entropy would imply that network is visiting more patterns during the latching

sequence. The entropy was 0.05, 0.04 and 0.53 for LR1, LR2 and LR3 respectively.  The mean

active length - the time a pattern stays active with the highest overlap during latching is 168.72 and

226.77 time steps (in a total of 5000 time steps), for LR1 and LR2 respectively. This indicates that

the highest active pattern, in the case of highly correlated patterns, shows resistance to decay and

stays active for a longer period of time as compared to low and random correlations (figures C and

D), for which the mean active length is in the range of 44 to 79 time steps. LR3 however, for highly

correlated patterns,  facilitates transitions to other patterns and brings down the mean active length

to 17.75 time steps.

LR3, with its proportional suppression of high correlations during the storage of patterns,

brings about a separation in the energy valleys of stored memories, which otherwise in the case of

high correlations are merged into each other with strong overlaps. Thus we can restore the latching

behaviour of the Potts network for highly correlated patterns.

Below, in Figures B (i), (ii) and (iii) in overlap of each pattern with the network state is

plotted against time (shown for first 1500 time steps). As the network transits from one attractor to

another,  the respective patterns for those particular attractors have the highest overlap with the

network. The overlap is measured as,

mμ=
1

Na(1−a/ S)
∑
j≠i

N

∑
l=1

S

(δξ j
μ , l−a /S)σ j

l

(all symbols have their usual meaning, as described in section I-C)
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Figure 5.2-(i): Latching transitions using LR1. The network activity is mainly dominated by two patterns

which do not show a complete decay

Figure 5.2-(ii): Latching transitions using LR2. The network activity is mainly dominated by a single pattern

which does not show a complete decay
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figure  5.2-(iii):  Latching  transitions  using  LR3  with  α=1 .  The  network  latches  between  various

patterns. 

Rest of the parameters, as described in chapter 4, section-I-C have the values of, N=600

, S=5 ,  a=0.2 , U=0.2 ,  τ1=2 ,  τ2=102 ,  τ3=106 , Cm=90 and  β=11 ,

w=0 . 

We now record the latching statistics, i.e. the same as in figure 5.1 but for low and random

correlations, shown in figure 5.3 and D, with all the network parameters kept the same except w,

which  is  set  at  w=1 in  order  to  be  in  the  infinite  latching  phase.  The  pattern  generation

parameters  for  low and  random correlations  are  the  same as  in  section  II-4.2.  The  dynamical

behaviour of the network for low correlations and random correlations is very similar to each other.

The  phase  transitions  in  the  w−T  space  are  seen  to  be  similar  too,  although  at  different

transition lines [Russo, Treves 2012].
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From figures 5.3 and 5.4 we see that the three learning rules have only a marginal influence

on latching dynamics when correlations are low.

 figure 5.3-  Latching statistics for low correlation patterns using  the learning rules LR1, LR2 and LR3.
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 figure 5.4-  Latching statistics for random correlation patterns using  the learning rules LR1, LR2 and LR3.

 

Overall the entropy increases slightly from LR1 to LR3, thus indicating that more patterns

become accessible  to the network during latching.  The entropy is  highest  for  highly correlated

patterns with LR3 at 0.53, and on an average it increases as correlations become stronger, from

random patterns  to  highly correlated patterns.  This  may be the result  of  better  access  to  other

patterns, due to the fact that increased correlations cause overlaps between the basins of attraction

of other attractors to increase. Increases in correlations also add a higher positive contribution to the

local field hi  of each unit, when J ij
kl  is summed over all the remaining units and states. This

has  an  analogous  effect  to   w .  Thus  the  network  can  exhibit  spontaneous  activity  even  at

w=0  for highly correlated patterns, but this also causes the patters to have an increased stability

against  the  time  varying  thresholds  which  hampers  the  latching  process.  LR3  suppresses  this
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positive contribution to hi  which in turn facilitates latching.  

As stressed in section II, correlations are crucial for a model of language processing and

hence it is of much importance that the latching process is preserved when memories are highly

correlated. We showed that the critical storage capacity has only a limited impact on the latching

behaviour  and  the  network  does  not  lose  its  functional  characteristics,  in  terms  of  dynamical

behaviour while operating above its storage capacity and using LR3 for highly correlated patterns.
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6  Conclusions

The broad aim of our study was to explore language mechanisms and in parallel investigate

the properties of a general neural processing apparatus that may help sub serve those language

mechanisms. Keeping the importance of statistical learning in mind, we focussed our investigation,

in part A (chapters 2-3), on the statistical properties of the mass-count distinction between nouns,

which neatly lies on the interface of syntax, semantics and cognitive perception. Language is mostly

thought  to be processed in the prefrontal  cortex,  which is  also responsible  for other high level

cognitive phenomena [Gabrieli et  al 1998; Bookheimer 2002; Bunge 2004], hence stressing the

need to explore models that use general cortical mechanisms to address language processing. In Part

B (chapter 4: sections I-III) we studied some of the features of a neural network, namely the Potts

neural  network,  intended  to  model  cortical  processing  in  a  simplified  way,  thus  attempting  to

explore the feasibility of the model to serve the purpose of language processing.

The  findings  of  the  second  chapter  suggest  that  the  mass  count  syntax  is  largely  left

undetermined by semantic  attributes  and that  one  cannot  regard  it  as  a  binary or  quasi-binary

structure. The distribution of syntactic usage properties is very far from bimodal in five out of the

six languages tested. One is led to think of this grammaticalisation as a graded self-organization

process, operating within languages and to some extent within individual speakers, and driven only

to  a  limited  extent  by  universal  attributes,  and  plausibly  governed  or  at  least  constrained  by

language  specific  principles.  However,  at  this  stage  we  cannot  tell  to  what  degree  the

grammaticalisation is  governed, beyond the universal  semantic or perceptual principles that we

have attempted to quantify,  by language-specific  principles  of different  nature,  such as cultural

factors,  historical  accidents,  individual  language  acquisition  history,  even  context  dependence

within individual speakers. 

With  rich  multidimensional  diversity  in  the  syntax  and  semantics  of  the  mass-count

distinction and a low cross-linguistic and syntactic-semantic mutual information, it was shown that

a simple self-organising neural network is insufficient to learn a mapping implementing a syntactic-

semantic link. However the network was able to extract the concept of 'count', and to some extent

that of ‘mass’ as well, without any explicit definition, from both the syntactic and from the semantic

data. This categorisation was clear and sharper in the markers than in the nouns. Nouns on the other
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hand were aligned on a single dimension and showed a graded distribution over the mass-count

spectrum. Thus it seems that even though there is a separation in the mass count divide within the

markers, the application of them to the nouns is variable to a large extent and it is predominantly

context dependent.

In  chapter  4-section  II,  we  looked  at  the  ability  of  the  Potts  neural  network  to  store

correlated patterns. We expect a model of language processing to robustly handle various syntactic-

semantic correlations amongst the words of a language. This seems to be a sticky problem and the

question of negating the adverse effects on storage capacity due to increased correlations does not

have an easy solution. By incorporating correlations in the definition of storage capacity we are able

to regain the higher storage capacity seen for random patterns at low sparsity. During the retrieval

of a pattern in the high correlations case, along with the cued pattern one or more patterns that are

strongly correlated with the cue also have a high overlap with the network state. One may think of a

scenario where another secondary network layer may be responsible for the fine tuning between

highly correlated patterns to distinguish them and recover the desired pattern. 

The possibility of a spin glass phase in the Potts neural network opens up an interesting

window to explore its possible role in cognitive functions. Though this area has not been explored

yet, we may think of a scenario where there are many interacting 'features' that bring about specific

rules through their interactions. Language processing is an ideal candidate for this purpose. One of

the ways to formally analyse linguistic structure is given by 'Principles and Parameters' [Chomsky

1986].  We refer  only to  the structural  analysis  of  the syntax,  in which the syntax of  a natural

language is proposed to have general principles (abstract grammar rules) accompanied with a set of

binary parameters that describe the language.  The spin glass phase has many stable degenerate

energy states of frustrated spin interactions, thus a particular configuration of spins (which could

represent parameters) may bring about a description of the syntactic rules in a natural language.

Frustration would imply that a certain arrangement of some 'features/parameters' would enforce the

remaining ones to be frozen in a particular state thus possibly shedding light on the correlations

amongst  syntactic  rules.  This  also  has  an  implication  on  the  'Poverty  of  Stimuli'  argument

[Chomsky 1980], which states that the entire grammar of a language is unlearnable purely from

experience  due  to  insufficient  stimuli  to  a  learning  child.  With  frustrated  interactions,  the

knowledge of  a  limited set  of features may help to determine other  features  without  explicitly

experiencing them. The combinatorial  possibilities of spin configuration of  stable  energy states
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could lead to the generative properties of syntax. 

We have touched upon only a small aspect of language processing in this thesis. Not only

are natural languages in themselves quite varied and complex in their nature but so is the question

of  how humans  acquire  and  process  them using  general  neural  principles.  This  makes  natural

language processing the most fascinating, exciting and challenging aspects of the human brain. 
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Future Directions

The results that we have reported in chapter 2, have been purely statistical, that is to say, we

have reported numbers with no discussion of any of the 1,434 items that make up of data base

(where an item is a token from a particular language plus its particular feature values). An analysis

of patterns within the data base is obviously the next stage in a linguistic analysis. This analysis will

involve investigating whether there are recognizable patterns within the variation which are open to

interpretation,  whether  there  are  lexical  classes  of  nouns  which  function  as  classes  cross

linguistically, and if so how to characterize them. For example, advice, information, and evidence

are strongly count in Hebrew and Italian, and mass in English. Do they behave as a class in other

languages  too?  However,  the  results  that  we have  so  far  already have  theoretical  implications

relevant  for  continued  research  into  the  semantics  and  grammatical  aspects  of  the  mass/count

distinction, and we conclude by specifying three of them.

Another  important  factor  is  the  context  dependence  of  the  mass-count  distinction.  Our

results  establish  that  there  is  no  independent  semantic  content  in  a  noun  that  can  completely

determine its use in the mass-count domain. Thus particular instances of a noun, used in a sentence,

as mass or count are influenced by the information that particular sentence conveys as a whole.

Further investigation is needed in this regard beyond the anecdotal evidence. 

In the corpus study (chapter 2, section 2.3.5) we studied the frequency of the nouns with

markers,  however  to  include  effects  of  context  one  needs  to  involve  higher  order  frequency

relations of the nouns and markers with other words in a sentence. The artificial language, BLISS is

a  useful  tool  in  this  regard,  to  test  higher  order  frequency  effects  in  the  mass-count  domain.

Subsequently, the Potts network can be tested exclusively in the mass-count domain in its ability to

latch between correct nouns and markers based on higher order frequency correlations.

With that in mind, influence of high correlations on the latching transitions needs to be

studied in detail. Although there is a tendency of the network to latch between correlated attractors,

this remains true in the case of random patterns when the attractors are fairly separated. Latching

behavior when the attractors are highly overlapping and share a wide basin of attraction, needs

careful  study  as  high  correlations  are  a  necessary  requirement  in  order  to  model  language

processing. 
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